WorldWideScience

Sample records for cell membrane amelioration

  1. Preliminary evidence for cell membrane amelioration in children with cystic fibrosis by 5-MTHF and vitamin B12 supplementation: a single arm trial.

    Directory of Open Access Journals (Sweden)

    Cinzia Scambi

    Full Text Available BACKGROUND: Cystic fibrosis (CF is one of the most common fatal autosomal recessive disorders in the Caucasian population caused by mutations of gene for the cystic fibrosis transmembrane conductance regulator (CFTR. New experimental therapeutic strategies for CF propose a diet supplementation to affect the plasma membrane fluidity and to modulate amplified inflammatory response. The objective of this study was to evaluate the efficacy of 5-methyltetrahydrofolate (5-MTHF and vitamin B12 supplementation for ameliorating cell plasma membrane features in pediatric patients with cystic fibrosis. METHODOLOGY AND PRINCIPAL FINDINGS: A single arm trial was conducted from April 2004 to March 2006 in an Italian CF care centre. 31 children with CF aged from 3 to 8 years old were enrolled. Exclusion criteria were diabetes, chronic infections of the airways and regular antibiotics intake. Children with CF were supplemented for 24 weeks with 5-methyltetrahydrofolate (5-MTHF, 7.5 mg /day and vitamin B12 (0.5 mg/day. Red blood cells (RBCs were used to investigate plasma membrane, since RBCs share lipid, protein composition and organization with other cell types. We evaluated RBCs membrane lipid composition, membrane protein oxidative damage, cation content, cation transport pathways, plasma and RBCs folate levels and plasma homocysteine levels at baseline and after 24 weeks of 5-MTHF and vitamin B12 supplementation. In CF children, 5-MTHF and vitamin B12 supplementation (i increased plasma and RBC folate levels; (ii decreased plasma homocysteine levels; (iii modified RBC membrane phospholipid fatty acid composition; (iv increased RBC K(+ content; (v reduced RBC membrane oxidative damage and HSP70 membrane association. CONCLUSION AND SIGNIFICANCE: 5-MTHF and vitamin B12 supplementation might ameliorate RBC membrane features of children with CF. TRIAL REGISTRATION: ClinicalTrials.gov NCT00730509.

  2. Curcumin ameliorates experimental autoimmune myasthenia gravis by diverse immune cells.

    Science.gov (United States)

    Wang, Shan; Li, Heng; Zhang, Min; Yue, Long-Tao; Wang, Cong-Cong; Zhang, Peng; Liu, Ying; Duan, Rui-Sheng

    2016-07-28

    Curcumin is a traditional Asian medicine with diverse immunomodulatory properties used therapeutically in the treatment of many autoimmune diseases. However, the effects of curcumin on myasthenia gravis (MG) remain undefined. Here we investigated the effects and potential mechanisms of curcumin in experimental autoimmune myasthenia gravis (EAMG). Our results demonstrated that curcumin ameliorated the clinical scores of EAMG, suppressed the expression of T cell co-stimulatory molecules (CD80 and CD86) and MHC class II, down-regulated the levels of pro-inflammatory cytokines (IL-17, IFN-γ and TNF-α) and up-regulated the levels of the anti-inflammatory cytokine IL-10, shifted the balance from Th1/Th17 toward Th2/Treg, and increased the numbers of NKR-P1(+) cells (natural killer cell receptor protein 1 positive cells, including NK and NKT cells). Moreover, the administration of curcumin promoted the differentiation of B cells into a subset of B10 cells, increased the anti-R97-166 peptide IgG1 levels and decreased the relative affinity indexes of anti-R97-116 peptide IgG. In summary, curcumin effectively ameliorate EAMG, indicating that curcumin may be a potential candidate therapeutic agent for MG. PMID:27181511

  3. Proton exchange membrane fuel cells

    CERN Document Server

    Qi, Zhigang

    2013-01-01

    Preface Proton Exchange Membrane Fuel CellsFuel CellsTypes of Fuel CellsAdvantages of Fuel CellsProton Exchange Membrane Fuel CellsMembraneCatalystCatalyst LayerGas Diffusion MediumMicroporous LayerMembrane Electrode AssemblyPlateSingle CellStackSystemCell Voltage Monitoring Module (CVM)Fuel Supply Module (FSM)Air Supply Module (ASM)Exhaust Management Module (EMM)Heat Management Module (HMM)Water Management Module (WMM)Internal Power Supply Module (IPM)Power Conditioning Module (PCM)Communications Module (COM)Controls Module (CM)SummaryThermodynamics and KineticsTheoretical EfficiencyVoltagePo

  4. Cell Membrane Softening in Cancer Cells

    Science.gov (United States)

    Schmidt, Sebastian; Händel, Chris; Käs, Josef

    Biomechanical properties are useful characteristics and regulators of the cell's state. Current research connects mechanical properties of the cytoskeleton to many cellular processes but does not investigate the biomechanics of the plasma membrane. We evaluated thermal fluctuations of giant plasma membrane vesicles, directly derived from the plasma membranes of primary breast and cervical cells and observed a lowered rigidity in the plasma membrane of malignant cells compared to non-malignant cells. To investigate the specific role of membrane rigidity changes, we treated two cell lines with the Acetyl-CoA carboxylase inhibitor Soraphen A. It changed the lipidome of cells and drastically increased membrane stiffness by up regulating short chained membrane lipids. These altered cells had a decreased motility in Boyden chamber assays. Our results indicate that the thermal fluctuations of the membrane, which are much smaller than the fluctuations driven by the cytoskeleton, can be modulated by the cell and have an impact on adhesion and motility.

  5. Coniferyl Aldehyde Ameliorates Radiation Intestine Injury via Endothelial Cell Survival

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Ye Ji; Jung, Myung Gu; Lee, Yoonjin; Lee, Haejune [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Lee, Yunsil [Ewha Woman' s Univ., Seoul (Korea, Republic of); Ko, Younggyu [Korea Univ., Seoul (Korea, Republic of)

    2014-05-15

    Cancer treatments related gastrointestinal toxicity has also been recognized as a significant economic burden. Especially, extensive apoptosis of microvascular endothelial cell of the lamina propria is the primary lesion initiating intestinal radiation damage after abdominal radiation therapy. Coniferyl aldehyde (CA) is phenolic compounds isolated from cork stoppers, and one of the major pyrolysis products of lignin. Shi H. was support for the empirical use of CA as a medicinal food for cardiovascular diseases. CA has positive effect in broad way but there is no consequence in radiation induced intestine damage. Here, we investigate effect of CA on small intestine after abdominal IR to mice in this study. In this study, CA increased the survival rate in C3H mice against 13.5 Gy abdominal IR. We found CA protects small intestine via preventing endothelial cell apoptosis and enhancing their angiogenic activity. CA also showed protective effect on crypt cell survival. Endothelial cell survival may affect crypt cell protection against IR. From this data, we concluded that CA is effective for protection against abdominal radiation injury. CA could ameliorate side-effect of radiation therapy.

  6. Brain microvascular endothelial cell transplantation ameliorates ischemic white matter damage.

    Science.gov (United States)

    Puentes, Sandra; Kurachi, Masashi; Shibasaki, Koji; Naruse, Masae; Yoshimoto, Yuhei; Mikuni, Masahiko; Imai, Hideaki; Ishizaki, Yasuki

    2012-08-21

    Ischemic insults affecting the internal capsule result in sensory-motor disabilities which adversely affect the patient's life. Cerebral endothelial cells have been reported to exert a protective effect against brain damage, so the transplantation of healthy endothelial cells might have a beneficial effect on the outcome of ischemic brain damage. In this study, endothelin-1 (ET-1) was injected into the rat internal capsule to induce lacunar infarction. Seven days after ET-1 injection, microvascular endothelial cells (MVECs) were transplanted into the internal capsule. Meningeal cells or 0.2% bovine serum albumin-Hank's balanced salt solution were injected as controls. Two weeks later, the footprint test and histochemical analysis were performed. We found that MVEC transplantation improved the behavioral outcome based on recovery of hind-limb rotation angle (P<0.01) and induced remyelination (P<0.01) compared with the control groups. Also the inflammatory response was repressed by MVEC transplantation, judging from fewer ED-1-positive activated microglial cells in the MVEC-transplanted group than in the other groups. Elucidation of the mechanisms by which MVECs ameliorate ischemic damage of the white matter may provide important information for the development of effective therapies for white matter ischemia. PMID:22771710

  7. Mesenchymal stem cells ameliorate the histopathological changes in a murine model of chronic asthma.

    Science.gov (United States)

    Firinci, Fatih; Karaman, Meral; Baran, Yusuf; Bagriyanik, Alper; Ayyildiz, Zeynep Arikan; Kiray, Muge; Kozanoglu, Ilknur; Yilmaz, Osman; Uzuner, Nevin; Karaman, Ozkan

    2011-08-01

    Asthma therapies are effective in reducing inflammation but airway remodeling is poorly responsive to these agents. New therapeutic options that have fewer side effects and reverse chronic changes in the lungs are essential. Mesenchymal stem cells (MSCs) are promising for the development of novel therapies in regenerative medicine. This study aimed to examine the efficacy of MSCs on lung histopathology in a murine model of chronic asthma. BALB/c mice were divided into four groups: Group 1 (control group, n=6), Group 2 (ovalbumin induced asthma only, n=10), Group 3 (ovalbumin induced asthma + MSCs, n=10), and Group 4 (MSCs only, n=10). Histological findings (basement membrane, epithelium, subepithelial smooth muscle thickness, numbers of goblet and mast cells) of the airways and MSC migration were evaluated by light, electron, and confocal microscopes. In Group 3, all early histopathological changes except epithelial thickness and all of the chronic changes were significantly ameliorated when compared with Group 2. Evaluation with confocal microscopy showed that no noteworthy amount of MSCs were present in the lung tissues of Group 4 while significant amount of MSCs was detected in Group 3. Serum NO levels in Group 3, were significantly lower than Group 2. The results of this study revealed that MSCs migrated to lung tissue and ameliorated bronchial asthma in murine model. Further studies are needed to evaluate the efficacy of MSCs for the treatment of asthma. PMID:21439399

  8. Fuel cell with ionization membrane

    Science.gov (United States)

    Hartley, Frank T. (Inventor)

    2007-01-01

    A fuel cell is disclosed comprising an ionization membrane having at least one area through which gas is passed, and which ionizes the gas passing therethrough, and a cathode for receiving the ions generated by the ionization membrane. The ionization membrane may include one or more openings in the membrane with electrodes that are located closer than a mean free path of molecules within the gas to be ionized. Methods of manufacture are also provided.

  9. Model cell membranes

    DEFF Research Database (Denmark)

    Günther-Pomorski, Thomas; Nylander, Tommy; Cardenas Gomez, Marite

    2014-01-01

    The high complexity of biological membranes has motivated the development and application of a wide range of model membrane systems to study biochemical and biophysical aspects of membranes in situ under well defined conditions. The aim is to provide fundamental understanding of processes control...

  10. Dielectric breakdown of cell membranes.

    Science.gov (United States)

    Zimmermann, U; Pilwat, G; Riemann, F

    1974-11-01

    With human and bovine red blood cells and Escherichia coli B, dielectric breakdown of cell membranes could be demonstrated using a Coulter Counter (AEG-Telefunken, Ulm, West Germany) with a hydrodynamic focusing orifice. In making measurements of the size distributions of red blood cells and bacteria versus increasing electric field strength and plotting the pulse heights versus the electric field strength, a sharp bend in the otherwise linear curve is observed due to the dielectric breakdown of the membranes. Solution of Laplace's equation for the electric field generated yields a value of about 1.6 V for the membrane potential at which dielectric breakdown occurs with modal volumes of red blood cells and bacteria. The same value is also calculated for red blood cells by applying the capacitor spring model of Crowley (1973. Biophys. J. 13:711). The corresponding electric field strength generated in the membrane at breakdown is of the order of 4 . 10(6) V/cm and, therefore, comparable with the breakdown voltages for bilayers of most oils. The critical detector voltage for breakdown depends on the volume of the cells. The volume-dependence predicted by Laplace theory with the assumption that the potential generated across the membrane is independent of volume, could be verified experimentally. Due to dielectric breakdown the red blood cells lose hemoglobin completely. This phenomenon was used to study dielectric breakdown of red blood cells in a homogeneous electric field between two flat platinum electrodes. The electric field was applied by discharging a high voltage storage capacitor via a spark gap. The calculated value of the membrane potential generated to produce dielectric breakdown in the homogeneous field is of the same order as found by means of the Coulter Counter. This indicates that mechanical rupture of the red blood cells by the hydrodynamic forces in the orifice of the Coulter Counter could also be excluded as a hemolysing mechanism. The detector

  11. Corrugated Membrane Fuel Cell Structures

    Energy Technology Data Exchange (ETDEWEB)

    Grot, Stephen [President, Ion Power Inc.

    2013-09-30

    One of the most challenging aspects of traditional PEM fuel cell stacks is the difficulty achieving the platinum catalyst utilization target of 0.2 gPt/kWe set forth by the DOE. Good catalyst utilization can be achieved with state-of-the-art catalyst coated membranes (CCM) when low catalyst loadings (<0.3 mg/cm2) are used at a low current. However, when low platinum loadings are used, the peak power density is lower than conventional loadings, requiring a larger total active area and a larger bipolar plate. This results in a lower overall stack power density not meeting the DOE target. By corrugating the fuel cell membrane electrode structure, Ion Power?s goal is to realize both the Pt utilization targets as well as the power density targets of the DOE. This will be achieved by demonstrating a fuel cell single cell (50 cm2) with a twofold increase in the membrane active area over the geometric area of the cell by corrugating the MEA structure. The corrugating structure must be able to demonstrate the target properties of < 10 mOhm-cm2 electrical resistance at > 20 psi compressive strength over the active area, in combination with offering at least 80% of power density that can be achieved by using the same MEA in a flat plate structure. Corrugated membrane fuel cell structures also have the potential to meet DOE power density targets by essentially packaging more membrane area into the same fuel cell volume as compared to conventional stack constructions.

  12. Mesenchymal Stem Cell-Like Cells Derived from Mouse Induced Pluripotent Stem Cells Ameliorate Diabetic Polyneuropathy in Mice

    Directory of Open Access Journals (Sweden)

    Tatsuhito Himeno

    2013-01-01

    Full Text Available Background. Although pathological involvements of diabetic polyneuropathy (DPN have been reported, no dependable treatment of DPN has been achieved. Recent studies have shown that mesenchymal stem cells (MSCs ameliorate DPN. Here we demonstrate a differentiation of induced pluripotent stem cells (iPSCs into MSC-like cells and investigate the therapeutic potential of the MSC-like cell transplantation on DPN. Research Design and Methods. For induction into MSC-like cells, GFP-expressing iPSCs were cultured with retinoic acid, followed by adherent culture for 4 months. The MSC-like cells, characterized with flow cytometry and RT-PCR analyses, were transplanted into muscles of streptozotocin-diabetic mice. Three weeks after the transplantation, neurophysiological functions were evaluated. Results. The MSC-like cells expressed MSC markers and angiogenic/neurotrophic factors. The transplanted cells resided in hindlimb muscles and peripheral nerves, and some transplanted cells expressed S100β in the nerves. Impairments of current perception thresholds, nerve conduction velocities, and plantar skin blood flow in the diabetic mice were ameliorated in limbs with the transplanted cells. The capillary number-to-muscle fiber ratios were increased in transplanted hindlimbs of diabetic mice. Conclusions. These results suggest that MSC-like cell transplantation might have therapeutic effects on DPN through secreting angiogenic/neurotrophic factors and differentiation to Schwann cell-like cells.

  13. Implantation of bFGF-treated islet progenitor cells ameliorates streptozotocin-induced diabetes in rats

    OpenAIRE

    Li, Ge; Huang, Li-song; Jiang, Ming-hong; Wu, Hui-Ling; Chen, Jing; Huang, Yin; Shen, Yan; He-Xi-Ge, SaiYin; Fan, Wei-wei; Lu, Zhi-qiang; Da-ru LU

    2010-01-01

    Aim: To examine whether implantation of islet preparation-derived proliferating islet cells (PIC) could ameliorate diabetes in rats. Methods: PIC were expanded from rat islet preparation by supplementation of basic fibroblast growth factor (bFGF) and implanted into rats with streptozotocin (STZ)-induced diabetes through the portal vein. Body weight and blood glucose levels were measured. Serum insulin levels were measured by radioimmunoassay. The presence of insulin-positive cells was determi...

  14. STUDYING MEMBRANE ANCHOR ORGANIZATION IN LIVING CELL MEMBRANES

    OpenAIRE

    Huang, Hector Han-Li

    2011-01-01

    The cell membrane is a complex mixture of various lipids, proteins and other biomolecules that are all organized into a fluid 2-dimensional bilayer. A rather unique trait of this organelle is the lateral mobility of the component molecules. Surprisingly, these molecules are not necessarily distributed homogeneously in the membrane. From a physical perspective, these inhomogeneities are interesting because they indicate some level of organization in the membrane. From a biological perspect...

  15. Genistein and Daidzein Effects on Proliferation, Cell Membranes,Cell Cycles and Cell Apoptosis of Different Cell Lines

    Institute of Scientific and Technical Information of China (English)

    李重华; 王洪钟; 肖锐; 张勇; 于江涛; 谢莉萍; 张荣庆

    2001-01-01

    Genistein and daidzein are two principle isoflavonoids in soybeans. They have received increasing attention in the past few years because of their possible roles in cancer prevention. Here are provided experimental evidences that genistein could inhibit the growth of human bladder carcinoma cells (ECV-304), human colon cancer cells (HT29), human uterus cervix cancer cells (Hela), and murine transformed muscle cells (3T3). Different from genistein, daidzein could only inhibit the growth of ECV-304, HT29, and 3T3 cells. To elucidate the mechanisms of the anti-tumor effect of genistein and daidzein, fluorescent polarization, circular dichroism, and flow cytometric analysis were employed to study the influence of genistein and daidzein on membrane fluidity and membrane protein conformation of these cell lines. The results showed that genistein increased the order of membrane protein conformation and reduced the membrane fluidity of ECV-304, HT29, and Hela cells. Daidzein also increased the order of membrane protein conformation of ECV-304 and HT29, but had no effect on the membrane fluidity of all these four cell lines. Also demonstrated was that both compounds affected the apoptosis and cell cycle progression of some cell lines. However, the effects of genistein and daidzein were not the same. These evidences suggested that the effects of genistein and daidzein on malignant cells were multisites and multiapproaches, and there were differences between their functional mechanisms. The amelioration effect on cell conditions may represent one of the mechanisms of the effect of genistein and daidzein on the growth, differentiation, and transference of malignant cells.

  16. Fuel-Cell Structure Prevents Membrane Drying

    Science.gov (United States)

    Mcelroy, J.

    1986-01-01

    Embossed plates direct flows of reactants and coolant. Membrane-type fuel-cell battery has improved reactant flow and heat removal. Compact, lightweight battery produces high current and power without drying of membranes.

  17. POLYMER ELECTROLYTE MEMBRANE FUEL CELLS

    DEFF Research Database (Denmark)

    2001-01-01

    thermoplastic polymers for high temperature polymer electrolyte fuel cells have also been developed. Miscible blends are used for solution casting of polymer membranes (solid electrolytes). High conductivity and enhanced mechanical strength were obtained for the blend polymer solid electrolytes....... With the thermally resistant polymer, e.g., polybenzimidazole or a mixture of polybenzimidazole and other thermoplastics as binder, the carbon-supported noble metal catalyst is tape-cast onto a hydrophobic supporting substrate. When doped with an acid mixture, electrodes are assembled with an acid doped solid...

  18. Chemical degradation mechanisms of membranes for alkaline membrane fuel cells

    International Nuclear Information System (INIS)

    Chemical degradation mechanisms of membranes for alkaline membrane fuel cells have been investigated using density functional theory (DFT). We have elucidated that the aryl-ether moiety of membranes is one of the weakest site against attack of hydroxide ions. The results of DFT calculations for hydroxide initiated aryl-ether cleavage indicated that the aryl-ether cleavage occurred prior to degradation of cationic functional group. Such a weak nature of the aryl-ether group arises from the electron deficiency of the aryl group as well as the low bond dissociation energy. The DFT results suggests that removal of the aryl-ether group in the membrane should enhance the stability of membranes under alkaline conditions. In fact, an ether fee poly(phenylene) membrane exhibits excellent stability against the attack from hydroxide ions

  19. Chemical degradation mechanisms of membranes for alkaline membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Choe, Yoong-Kee [National Institute of Advanced Industrial Science and Technology, Umezono 1-1-1, Tsukuba (Japan); Henson, Neil J.; Kim, Yu Seung [Los Alamos National Laboratory, Los Alamos, NM (United States)

    2015-12-31

    Chemical degradation mechanisms of membranes for alkaline membrane fuel cells have been investigated using density functional theory (DFT). We have elucidated that the aryl-ether moiety of membranes is one of the weakest site against attack of hydroxide ions. The results of DFT calculations for hydroxide initiated aryl-ether cleavage indicated that the aryl-ether cleavage occurred prior to degradation of cationic functional group. Such a weak nature of the aryl-ether group arises from the electron deficiency of the aryl group as well as the low bond dissociation energy. The DFT results suggests that removal of the aryl-ether group in the membrane should enhance the stability of membranes under alkaline conditions. In fact, an ether fee poly(phenylene) membrane exhibits excellent stability against the attack from hydroxide ions.

  20. In-membrane micro fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Omosebi, Ayokunle; Besser, Ronald

    2016-09-06

    An in-membrane micro fuel cell comprises an electrically-insulating membrane that is permissive to the flow of cations, such as protons, and a pair of electrodes deposited on channels formed in the membrane. The channels are arranged as conduits for fluids, and define a membrane ridge between the channels. The electrodes are porous and include catalysts for promoting the liberation of a proton and an electron from a chemical species and/or or the recombination of a proton and an electron with a chemical specie. The fuel cell may be provided a biosensor, an electrochemical sensor, a microfluidic device, or other microscale devices fabricated in the fuel cell membrane.

  1. Infusion of Mesenchymal Stem Cells Ameliorates Hyperglycemia in Type 2 Diabetic Rats

    OpenAIRE

    Si, Yiling; Zhao, Yali; Hao, Haojie; Liu, Jiejie; Guo, Yelei; Mu, Yiming; Shen, Jing; Cheng, Yu; Fu, Xiaobing; Han, Weidong

    2012-01-01

    Infusion of mesenchymal stem cells (MSCs) has been shown to effectively lower blood glucose in diabetic individuals, but the mechanism involved could not be adequately explained by their potential role in promoting islet regeneration. We therefore hypothesized that infused MSCs might also contribute to amelioration of the insulin resistance of peripheral insulin target tissues. To test the hypothesis, we induced a diabetic rat model by high-fat diet/streptozotocin (STZ) administration, perfor...

  2. Fuel cell and membrane therefore

    Energy Technology Data Exchange (ETDEWEB)

    Aindow, Tai-Tsui

    2016-08-09

    A fuel cell includes first and second flow field plates, and an anode electrode and a cathode electrode between the flow field plates. A polymer electrolyte membrane (PEM) is arranged between the electrodes. At least one of the flow field plates influences, at least in part, an in-plane anisotropic physical condition of the PEM that varies in magnitude between a high value direction and a low value direction. The PEM has an in-plane physical property that varies in magnitude between a high value direction and a low value direction. The PEM is oriented with its high value direction substantially aligned with the high value direction of the flow field plate.

  3. Live cell imaging of membrane / cytoskeleton interactions and membrane topology

    Science.gov (United States)

    Chierico, Luca; Joseph, Adrian S.; Lewis, Andrew L.; Battaglia, Giuseppe

    2014-09-01

    We elucidate the interaction between actin and specific membrane components, using real time live cell imaging, by delivering probes that enable access to components, that cannot be accessed genetically. We initially investigated the close interplay between Phosphatidylinositol 4,5-bisphosphate (PIP2) and the F-actin network. We show that, during the early stage of cell adhesion, PIP2 forms domains within the filopodia membrane. We studied these domains alongside cell spreading and observed that these very closely follow the actin tread-milling. We show that this mechanism is associated with an active transport of PIP2 rich organelles from the cell perinuclear area to the edge, along actin fibers. Finally, mapping other phospholipids and membrane components we observed that the PIP2 domains formation is correlated with sphingosine and cholesterol rafts.

  4. Membrane Organization and Dynamics in Cell Polarity

    OpenAIRE

    Orlando, Kelly; Guo, Wei

    2009-01-01

    The establishment and maintenance of cell polarity is important to a wide range of biological processes ranging from chemotaxis to embryogenesis. An essential feature of cell polarity is the asymmetric organization of proteins and lipids in the plasma membrane. In this article, we discuss how polarity regulators such as small GTP-binding proteins and phospholipids spatially and kinetically control vesicular trafficking and membrane organization. Conversely, we discuss how membrane trafficking...

  5. Adipose-Derived Stem Cells Ameliorate Allergic Airway Inflammation by Inducing Regulatory T Cells in a Mouse Model of Asthma

    OpenAIRE

    Kyu-Sup Cho; Mi-Kyung Park; Shin-Ae Kang; Hee-Young Park; Sung-Lyong Hong; Hye-Kyung Park; Hak-Sun Yu; Hwan-Jung Roh

    2014-01-01

    Although several studies have demonstrated that mesenchymal stem cells derived from adipose tissue (ASCs) can ameliorate allergic airway inflammation, the immunomodulatory mechanism of ASCs remains unclear. In this study, we investigated whether regulatory T cells (Tregs) induction is a potential mechanism in immunomodulatory effects of ASCs on allergic airway disease and how these induced Tregs orchestrate allergic inflammation. Intravenous administration of ASCs significantly reduced allerg...

  6. Membrane lipidome of an epithelial cell line

    DEFF Research Database (Denmark)

    Sampaio, Julio L; Gerl, Mathias J; Klose, Christian;

    2011-01-01

    Tissue differentiation is an important process that involves major cellular membrane remodeling. We used Madin-Darby canine kidney cells as a model for epithelium formation and investigated the remodeling of the total cell membrane lipidome during the transition from a nonpolarized morphology...

  7. Interaction of Defensins with Model Cell Membranes

    Science.gov (United States)

    Sanders, Lori K.; Schmidt, Nathan W.; Yang, Lihua; Mishra, Abhijit; Gordon, Vernita D.; Selsted, Michael E.; Wong, Gerard C. L.

    2009-03-01

    Antimicrobial peptides (AMPs) comprise a key component of innate immunity for a wide range of multicellular organisms. For many AMPs, activity comes from their ability to selectively disrupt and lyse bacterial cell membranes. There are a number of proposed models for this action, but the detailed molecular mechanism of selective membrane permeation remains unclear. Theta defensins are circularized peptides with a high degree of selectivity. We investigate the interaction of model bacterial and eukaryotic cell membranes with theta defensins RTD-1, BTD-7, and compare them to protegrin PG-1, a prototypical AMP, using synchrotron small angle x-ray scattering (SAXS). The relationship between membrane composition and peptide induced changes in membrane curvature and topology is examined. By comparing the membrane phase behavior induced by these different peptides we will discuss the importance of amino acid composition and placement on membrane rearrangement.

  8. Does ATP cross the cell plasma membrane.

    OpenAIRE

    Chaudry, I. H.

    1982-01-01

    Although there is an abundance of evidence which indicates that ATP is released as well as taken up by cells, the concept that ATP cannot cross the cell membrane has tended to prevail. This article reviews the evidence for the release as well as uptake of ATP by cells. The evidence presented by various investigators clearly indicates that ATP can cross the cell membrane and suggests that the release and uptake of ATP are physiological processes.

  9. Functional dynamics of cell surface membrane proteins

    Science.gov (United States)

    Nishida, Noritaka; Osawa, Masanori; Takeuchi, Koh; Imai, Shunsuke; Stampoulis, Pavlos; Kofuku, Yutaka; Ueda, Takumi; Shimada, Ichio

    2014-04-01

    Cell surface receptors are integral membrane proteins that receive external stimuli, and transmit signals across plasma membranes. In the conventional view of receptor activation, ligand binding to the extracellular side of the receptor induces conformational changes, which convert the structure of the receptor into an active conformation. However, recent NMR studies of cell surface membrane proteins have revealed that their structures are more dynamic than previously envisioned, and they fluctuate between multiple conformations in an equilibrium on various timescales. In addition, NMR analyses, along with biochemical and cell biological experiments indicated that such dynamical properties are critical for the proper functions of the receptors. In this review, we will describe several NMR studies that revealed direct linkage between the structural dynamics and the functions of the cell surface membrane proteins, such as G-protein coupled receptors (GPCRs), ion channels, membrane transporters, and cell adhesion molecules.

  10. Mechanical tension drives cell membrane fusion

    OpenAIRE

    Kim, Ji Hoon; Ren, Yixin; Ng, Win Pin; Li, Shuo; Son, Sungmin; Kee, Yee-Seir; Zhang, Shiliang; Zhang, Guofeng; Fletcher, Daniel A.; Robinson, Douglas N.; Chen, Elizabeth H.

    2015-01-01

    Membrane fusion is an energy-consuming process that requires tight juxtaposition of two lipid bilayers. Little is known about how cells overcome energy barriers to bring their membranes together for fusion. Previously, we have shown that cell-cell fusion is an asymmetric process in which an “attacking” cell drills finger-like protrusions into the “receiving” cell to promote cell fusion. Here we show that the receiving cell mounts a Myosin II (MyoII)-mediated mechanosensory response to its inv...

  11. Angioblast Derived from ES Cells Construct Blood Vessels and Ameliorate Diabetic Polyneuropathy in Mice

    Directory of Open Access Journals (Sweden)

    Tatsuhito Himeno

    2015-01-01

    Full Text Available Background. Although numerous reports addressing pathological involvements of diabetic polyneuropathy have been conducted, a universally effective treatment of diabetic polyneuropathy has not yet been established. Recently, regenerative medicine studies in diabetic polyneuropathy using somatic stem/progenitor cell have been reported. However, the effectiveness of these cell transplantations was restricted because of their functional and numerical impairment in diabetic objects. Here, we investigated the efficacy of treatment for diabetic polyneuropathy using angioblast-like cells derived from mouse embryonic stem cells. Methods and Results. Angioblast-like cells were obtained from mouse embryonic stem cells and transplantation of these cells improved several physiological impairments in diabetic polyneuropathy: hypoalgesia, delayed nerve conduction velocities, and reduced blood flow in sciatic nerve and plantar skin. Furthermore, pathologically, the capillary number to muscle fiber ratios were increased in skeletal muscles of transplanted hindlimbs, and intraepidermal nerve fiber densities were ameliorated in transplanted plantar skin. Transplanted cells maintained their viabilities and differentiated to endothelial cells and smooth muscle cells around the injection sites. Moreover, several transplanted cells constructed chimeric blood vessels with recipient cells. Conclusions. These results suggest that transplantation of angioblast like cells induced from embryonic stem cells appears to be a novel therapeutic strategy for diabetic polyneuropathy.

  12. Mesenchymal stem cell transplantation ameliorates motor function deterioration of spinocerebellar ataxia by rescuing cerebellar Purkinje cells

    Directory of Open Access Journals (Sweden)

    Ma Wei-Hsien

    2011-08-01

    Full Text Available Abstract Background Spinocerebellar ataxia (SCA refers to a disease entity in which polyglutamine aggregates are over-produced in Purkinje cells (PCs of the cerebellum as well as other neurons in the central nervous system, and the formation of intracellular polyglutamine aggregates result in the loss of neurons as well as deterioration of motor functions. So far there is no effective neuroprotective treatment for this debilitating disease although numerous efforts have been made. Mesenchymal stem cells (MSCs possess multi-lineage differentiation potentials as well as immuno-modulatory properties, and are theoretically good candidates for SCA treatment. The purpose of this study is to investigate whether transplantation of human MSCs (hMSCs can rescue cerebellar PCs and ameliorate motor function deterioration in SCA in a pre-clinical animal model. Method Transgenic mice bearing poly-glutamine mutation in ataxin-2 gene (C57BL/6J SCA2 transgenic mice were serially transplanted with hMSCs intravenously or intracranially before and after the onset of motor function loss. Motor function of mice was evaluated by an accelerating protocol of rotarod test every 8 weeks. Immunohistochemical stain of whole brain sections was adopted to demonstrate the neuroprotective effect of hMSC transplantation on cerebellar PCs and engraftment of hMSCs into mice brain. Results Intravenous transplantation of hMSCs effectively improved rotarod performance of SCA2 transgenic mice and delayed the onset of motor function deterioration; while intracranial transplantation failed to achieve such neuroprotective effect. Immunohistochemistry revealed that intravenous transplantation was more effective in the preservation of the survival of cerebellar PCs and engraftment of hMSCs than intracranial injection, which was compatible to rotarod performance of transplanted mice. Conclusion Intravenous transplantation of hMSCs can indeed delay the onset as well as improve the motor

  13. Tamarind seed coat ameliorates fluoride induced cytotoxicity, oxidative stress, mitochondrial dysfunction and apoptosis in A549 cells.

    Science.gov (United States)

    Ameeramja, Jaishabanu; Panneerselvam, Lakshmikanthan; Govindarajan, Vimal; Jeyachandran, Sivakamavalli; Baskaralingam, Vaseeharan; Perumal, Ekambaram

    2016-01-15

    Fluoride (F) is an environmental contaminant and industrial pollutant. Molecular mechanisms remain unclear in F induced pulmonary toxicity even after numerous studies. Tamarind fruits act as defluoridating agents, but no study was conducted in in vitro systems. Hence, we aimed to assess the ameliorative impact of the tamarind seed coat extract (TSCE) against F toxicity utilizing lung epithelial cells, A549. Cells were exposed to sodium fluoride (NaF-5 mM) alone and in combination with TSCE (750 ng/ml) or Vitamin C (positive control) for 24 h and analyzed for F content, intracellular calcium ([Ca(2+)]i) level, oxidative stress, mitochondrial integrity and apoptotic markers. TSCE treatment prevented the F induced alterations in [Ca(2+)]i overload, F content, oxidant (reactive oxygen species generation, lipid peroxidation, protein carbonyl content and nitric oxide) and antioxidant (superoxide dismutase, catalase, glutathione peroxidase and glutathione) parameters. Further, TSCE modulates F activated changes in mitochondrial membrane potential, permeability transition pore opening, cytochrome-C release, Bax/Bcl-2 ratio, caspase-3 and PARP-1 expressions. In conclusion, our study demonstrated that TSCE as a potential protective agent against F toxicity, which can be utilized as a neutraceutical.

  14. Nuclear myosin I regulates cell membrane tension

    Science.gov (United States)

    Venit, Tomáš; Kalendová, Alžběta; Petr, Martin; Dzijak, Rastislav; Pastorek, Lukáš; Rohožková, Jana; Malohlava, Jakub; Hozák, Pavel

    2016-01-01

    Plasma membrane tension is an important feature that determines the cell shape and influences processes such as cell motility, spreading, endocytosis and exocytosis. Unconventional class 1 myosins are potent regulators of plasma membrane tension because they physically link the plasma membrane with adjacent cytoskeleton. We identified nuclear myosin 1 (NM1) - a putative nuclear isoform of myosin 1c (Myo1c) - as a new player in the field. Although having specific nuclear functions, NM1 localizes predominantly to the plasma membrane. Deletion of NM1 causes more than a 50% increase in the elasticity of the plasma membrane around the actin cytoskeleton as measured by atomic force microscopy. This higher elasticity of NM1 knock-out cells leads to 25% higher resistance to short-term hypotonic environment and rapid cell swelling. In contrast, overexpression of NM1 in wild type cells leads to an additional 30% reduction of their survival. We have shown that NM1 has a direct functional role in the cytoplasm as a dynamic linker between the cell membrane and the underlying cytoskeleton, regulating the degree of effective plasma membrane tension. PMID:27480647

  15. Proton conducting membrane for fuel cells

    Science.gov (United States)

    Colombo, Daniel G.; Krumpelt, Michael; Myers, Deborah J.; Kopasz, John P.

    2007-03-27

    An ion conducting membrane comprising dendrimeric polymers covalently linked into a network structure. The dendrimeric polymers have acid functional terminal groups and may be covalently linked via linking compounds, cross-coupling reactions, or copolymerization reactions. The ion conducting membranes may be produced by various methods and used in fuel cells.

  16. Diffuse Charge Effects in Fuel Cell Membranes

    NARCIS (Netherlands)

    Biesheuvel, P.M.; Franco, A.A.; Bazant, M.Z.

    2009-01-01

    It is commonly assumed that electrolyte membranes in fuel cells are electrically neutral, except in unsteady situations, when the double-layer capacitance is heuristically included in equivalent circuit calculations. Indeed, the standard model for electron transfer kinetics at the membrane/electrode

  17. Ameliorative effect of membrane-associated estrogen receptor G protein coupled receptor 30 activation on object recognition memory in mouse models of Alzheimer's disease.

    Science.gov (United States)

    Kubota, Takashi; Matsumoto, Hiroshi; Kirino, Yutaka

    2016-07-01

    Membrane-associated estrogen receptor "G protein-coupled receptor 30" (GPR30) has been implicated in spatial recognition memory and protection against neuronal death. The present study investigated the role of GPR30 in object recognition memory in an Alzheimer's disease (AD) mouse model (5XFAD) by using novel object recognition (NOR) test. Impairment of long-term (24 h) recognition memory was observed in both male and female 5XFAD mice. Selective GPR30 agonist, G-1, ameliorated this impairment in female 5XFAD mice, but not in male mice. Our study demonstrated the ameliorative role of GPR30 in NOR memory impaired by AD pathology in female mice. PMID:27423484

  18. Membrane elastic properties and cell function.

    Directory of Open Access Journals (Sweden)

    Bruno Pontes

    Full Text Available Recent studies indicate that the cell membrane, interacting with its attached cytoskeleton, is an important regulator of cell function, exerting and responding to forces. We investigate this relationship by looking for connections between cell membrane elastic properties, especially surface tension and bending modulus, and cell function. Those properties are measured by pulling tethers from the cell membrane with optical tweezers. Their values are determined for all major cell types of the central nervous system, as well as for macrophage. Astrocytes and glioblastoma cells, which are considerably more dynamic than neurons, have substantially larger surface tensions. Resting microglia, which continually scan their environment through motility and protrusions, have the highest elastic constants, with values similar to those for resting macrophage. For both microglia and macrophage, we find a sharp softening of bending modulus between their resting and activated forms, which is very advantageous for their acquisition of phagocytic functions upon activation. We also determine the elastic constants of pure cell membrane, with no attached cytoskeleton. For all cell types, the presence of F-actin within tethers, contrary to conventional wisdom, is confirmed. Our findings suggest the existence of a close connection between membrane elastic constants and cell function.

  19. Advanced membrane electrode assemblies for fuel cells

    Science.gov (United States)

    Kim, Yu Seung; Pivovar, Bryan S

    2014-02-25

    A method of preparing advanced membrane electrode assemblies (MEA) for use in fuel cells. A base polymer is selected for a base membrane. An electrode composition is selected to optimize properties exhibited by the membrane electrode assembly based on the selection of the base polymer. A property-tuning coating layer composition is selected based on compatibility with the base polymer and the electrode composition. A solvent is selected based on the interaction of the solvent with the base polymer and the property-tuning coating layer composition. The MEA is assembled by preparing the base membrane and then applying the property-tuning coating layer to form a composite membrane. Finally, a catalyst is applied to the composite membrane.

  20. Vitamin D Can Ameliorate Chlorhexidine Gluconate-Induced Peritoneal Fibrosis and Functional Deterioration through the Inhibition of Epithelial-to-Mesenchymal Transition of Mesothelial Cells

    Directory of Open Access Journals (Sweden)

    Yi-Che Lee

    2015-01-01

    Full Text Available Background. Peritoneal dialysis (PD can induce fibrosis and functional alterations in PD patients’ peritoneal membranes, due to long-term unphysiological dialysate exposure, partially occurring via triggering of epithelial-to-mesenchymal transition (EMT in peritoneal mesothelial cells (MCs. Vitamin D can ameliorate these negative effects; however, the mechanism remains unexplored. Therefore, we investigated its possible links to MCs EMT inhibition. Methods. Peritoneal fibrosis was established in Sprague-Dawley rats by chlorhexidine gluconate (CG intraperitoneal injection for 21 days, with and without 1α,25(OH2D3 treatment. Morphological and functional evaluation and western blot analysis of EMT marker were performed upon peritoneum tissue. In vitro study was also performed in a primary human peritoneal MC culture system; MCs were incubated with transforming growth factor-β1 (TGF-β1 in the absence or presence of 1α,25(OH2D3. EMT marker expression, migration activities, and cytoskeleton redistribution of MCs were determined. Results. 1α,25(OH2D3 ameliorated CG-induced morphological and functional deterioration in animal model, along with CG-induced upregulation of α-SMA and downregulation of E-cadherin expression. Meanwhile, 1α,25(OH2D3 also ameliorated TGF-β1-induced decrease in E-cadherin expression, increase in Snai1 and α-SMA expression, intracellular F-actin redistribution, and migration activity in vitro. Conclusion. 1α,25(OH2D3 can ameliorate CG-induced peritoneal fibrosis and attenuate functional deterioration through inhibiting MC EMT.

  1. IL-10 and regulatory T cells cooperate in allergen-specific immunotherapy to ameliorate allergic asthma.

    Science.gov (United States)

    Böhm, Livia; Maxeiner, Joachim; Meyer-Martin, Helen; Reuter, Sebastian; Finotto, Susetta; Klein, Matthias; Schild, Hansjörg; Schmitt, Edgar; Bopp, Tobias; Taube, Christian

    2015-02-01

    Human studies demonstrated that allergen-specific immunotherapy (IT) represents an effective treatment for allergic diseases. IT involves repeated administration of the sensitizing allergen, indicating a crucial contribution of T cells to its medicinal benefit. However, the underlying mechanisms of IT, especially in a chronic disease, are far from being definitive. In the current study, we sought to elucidate the suppressive mechanisms of IT in a mouse model of chronic allergic asthma. OVA-sensitized mice were challenged with OVA or PBS for 4 wk. After development of chronic airway inflammation, mice received OVA-specific IT or placebo alternately to airway challenge for 3 wk. To analyze the T cell-mediated mechanisms underlying IT in vivo, we elaborated the role of T-bet-expressing Th1 cells, T cell-derived IL-10, and Ag-specific thymic as well as peripherally induced Foxp3(+) regulatory T (Treg) cells. IT ameliorated airway hyperresponsiveness and airway inflammation in a chronic asthma model. Of note, IT even resulted in a regression of structural changes in the airways following chronic inhaled allergen exposure. Concomitantly, IT induced Th1 cells, Foxp3(+), and IL-10-producing Treg cells. Detailed analyses revealed that thymic Treg cells crucially contribute to the effectiveness of IT by promoting IL-10 production in Foxp3-negative T cells. Together with the peripherally induced Ag-specific Foxp3(+) Treg cells, thymic Foxp3(+) Treg cells orchestrate the curative mechanisms of IT. Taken together, we demonstrate that IT is effective in a chronic allergic disease and dependent on IL-10 and thymic as well as peripherally induced Ag-specific Treg cells. PMID:25527785

  2. Cell membrane softening in human breast and cervical cancer cells

    Science.gov (United States)

    Händel, Chris; Schmidt, B. U. Sebastian; Schiller, Jürgen; Dietrich, Undine; Möhn, Till; Kießling, Tobias R.; Pawlizak, Steve; Fritsch, Anatol W.; Horn, Lars-Christian; Briest, Susanne; Höckel, Michael; Zink, Mareike; Käs, Josef A.

    2015-08-01

    Biomechanical properties are key to many cellular functions such as cell division and cell motility and thus are crucial in the development and understanding of several diseases, for instance cancer. The mechanics of the cellular cytoskeleton have been extensively characterized in cells and artificial systems. The rigidity of the plasma membrane, with the exception of red blood cells, is unknown and membrane rigidity measurements only exist for vesicles composed of a few synthetic lipids. In this study, thermal fluctuations of giant plasma membrane vesicles (GPMVs) directly derived from the plasma membranes of primary breast and cervical cells, as well as breast cell lines, are analyzed. Cell blebs or GPMVs were studied via thermal membrane fluctuations and mass spectrometry. It will be shown that cancer cell membranes are significantly softer than their non-malignant counterparts. This can be attributed to a loss of fluid raft forming lipids in malignant cells. These results indicate that the reduction of membrane rigidity promotes aggressive blebbing motion in invasive cancer cells.

  3. Metric dynamics for membrane transformation through regulated cell proliferation

    OpenAIRE

    Ito, Hiroshi C.

    2016-01-01

    This study develops an equation for describing three-dimensional membrane transformation through proliferation of its component cells regulated by morphogen density distributions on the membrane. The equation is developed in a two-dimensional coordinate system mapped on the membrane, referred to as the membrane coordinates. When the membrane expands, the membrane coordinates expand in the same manner so that the membrane is invariant in the coordinates. In the membrane coordinate system, the ...

  4. High temperature polymer electrolyte membrane fuel cells

    DEFF Research Database (Denmark)

    This book is a comprehensive review of high-temperature polymer electrolyte membrane fuel cells (PEMFCs). PEMFCs are the preferred fuel cells for a variety of applications such as automobiles, cogeneration of heat and power units, emergency power and portable electronics. The first 5 chapters...

  5. Exosomes from adipose-derived stem cells ameliorate phenotype of Huntington's disease in vitro model.

    Science.gov (United States)

    Lee, Mijung; Liu, Tian; Im, Wooseok; Kim, Manho

    2016-08-01

    Huntington's disease (HD) is a hereditary neurodegenerative disorder caused by the aggregation of mutant Huntingtin (mHtt). Adipose-derived stem cells (ASCs) have a potential for use in the treatment of incurable disorders, including HD. ASCs secrete various neurotrophic factors and microvesicles, and modulate hostile microenvironments affected by disease through paracrine mechanisms. Exosomes are small vesicles that transport nucleic acid and protein between cells. Here, we investigated the therapeutic role of exosomes from ASCs (ASC-exo) using in vitro HD model by examining pathological phenotypes of this model. Immunocytochemistry result showed that ASC-exo significantly decreases mHtt aggregates in R6/2 mice-derived neuronal cells. Western blot result further confirmed the reduction in mHtt aggregates level by ASC-exo treatment. ASC-exo up-regulates PGC-1, phospho-CREB and ameliorates abnormal apoptotic protein level in an in vitro HD model. In addition, MitoSOX Red, JC-1 and cell viability assay showed that ASC-exo reduces mitochondrial dysfunction and cell apoptosis of in vitro HD model. These findings suggest that ASC-exo has a therapeutic potential for treating HD by modulating representative cellular phenotypes of HD. PMID:27177616

  6. Electrically Conductive, Hydrophilic Porous Membrane for Fuel Cell Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This Phase I effort seeks to produce a conductive polyethersulfone (PES) microporous membrane for fuel cell water management applications. This membrane will...

  7. Adipose-Derived Stem Cells Ameliorate Allergic Airway Inflammation by Inducing Regulatory T Cells in a Mouse Model of Asthma

    Directory of Open Access Journals (Sweden)

    Kyu-Sup Cho

    2014-01-01

    Full Text Available Although several studies have demonstrated that mesenchymal stem cells derived from adipose tissue (ASCs can ameliorate allergic airway inflammation, the immunomodulatory mechanism of ASCs remains unclear. In this study, we investigated whether regulatory T cells (Tregs induction is a potential mechanism in immunomodulatory effects of ASCs on allergic airway disease and how these induced Tregs orchestrate allergic inflammation. Intravenous administration of ASCs significantly reduced allergic symptoms and inhibited eosinophilic inflammation. Airway hyperresponsiveness, total immune cell and eosinophils in the bronchoalveolar lavage fluid, mucus production, and serum allergen-specific IgE and IgG1 were significantly reduced after ASCs administration. ASCs significantly inhibited Th2 cytokines (IL-4, IL-5, and IL-13 and enhanced Th1 cytokine (IFN-γ and regulatory cytokines (IL-10 and TGF-β in the bronchoalveolar lavage fluid and lung draining lymph nodes. Furthermore, levels of IDO, TGF-β, and PGE2 were significantly increased after ASCs administration. Interestingly, this upregulation was accompanied by increased Treg populations. In conclusion, ASCs ameliorated allergic airway inflammation and improved lung function through the induction of Treg expansion. The induction of Treg by ASCs involves the secretion of soluble factors such as IDO, TGF-β, and PGE2 and Treg might be involved in the downregulation of Th2 cytokines and upregulation of Th1 cytokines production.

  8. Adipose-derived stem cells ameliorate allergic airway inflammation by inducing regulatory T cells in a mouse model of asthma.

    Science.gov (United States)

    Cho, Kyu-Sup; Park, Mi-Kyung; Kang, Shin-Ae; Park, Hee-Young; Hong, Sung-Lyong; Park, Hye-Kyung; Yu, Hak-Sun; Roh, Hwan-Jung

    2014-01-01

    Although several studies have demonstrated that mesenchymal stem cells derived from adipose tissue (ASCs) can ameliorate allergic airway inflammation, the immunomodulatory mechanism of ASCs remains unclear. In this study, we investigated whether regulatory T cells (Tregs) induction is a potential mechanism in immunomodulatory effects of ASCs on allergic airway disease and how these induced Tregs orchestrate allergic inflammation. Intravenous administration of ASCs significantly reduced allergic symptoms and inhibited eosinophilic inflammation. Airway hyperresponsiveness, total immune cell and eosinophils in the bronchoalveolar lavage fluid, mucus production, and serum allergen-specific IgE and IgG1 were significantly reduced after ASCs administration. ASCs significantly inhibited Th2 cytokines (IL-4, IL-5, and IL-13) and enhanced Th1 cytokine (IFN-γ) and regulatory cytokines (IL-10 and TGF-β) in the bronchoalveolar lavage fluid and lung draining lymph nodes. Furthermore, levels of IDO, TGF-β, and PGE2 were significantly increased after ASCs administration. Interestingly, this upregulation was accompanied by increased Treg populations. In conclusion, ASCs ameliorated allergic airway inflammation and improved lung function through the induction of Treg expansion. The induction of Treg by ASCs involves the secretion of soluble factors such as IDO, TGF-β, and PGE2 and Treg might be involved in the downregulation of Th2 cytokines and upregulation of Th1 cytokines production. PMID:25246732

  9. Alternate Fuel Cell Membranes for Energy Independence

    Energy Technology Data Exchange (ETDEWEB)

    Storey, Robson, F.; Mauritz, Kenneth, A.; Patton, Derek, L.; Savin, Daniel, A.

    2012-12-18

    The overall objective of this project was the development and evaluation of novel hydrocarbon fuel cell (FC) membranes that possess high temperature performance and long term chemical/mechanical durability in proton exchange membrane (PEM) fuel cells (FC). The major research theme was synthesis of aromatic hydrocarbon polymers of the poly(arylene ether sulfone) (PAES) type containing sulfonic acid groups tethered to the backbone via perfluorinated alkylene linkages and in some cases also directly attached to the phenylene groups along the backbone. Other research themes were the use of nitrogen-based heterocyclics instead of acid groups for proton conduction, which provides high temperature, low relative humidity membranes with high mechanical/thermal/chemical stability and pendant moieties that exhibit high proton conductivities in the absence of water, and synthesis of block copolymers consisting of a proton conducting block coupled to poly(perfluorinated propylene oxide) (PFPO) blocks. Accomplishments of the project were as follows: 1) establishment of a vertically integrated program of synthesis, characterization, and evaluation of FC membranes, 2) establishment of benchmark membrane performance data based on Nafion for comparison to experimental membrane performance, 3) development of a new perfluoroalkyl sulfonate monomer, N,N-diisopropylethylammonium 2,2-bis(p-hydroxyphenyl) pentafluoropropanesulfonate (HPPS), 4) synthesis of random and block copolymer membranes from HPPS, 5) synthesis of block copolymer membranes containing high-acid-concentration hydrophilic blocks consisting of HPPS and 3,3'-disulfonate-4,4'-dichlorodiphenylsulfone (sDCDPS), 6) development of synthetic routes to aromatic polymer backbones containing pendent 1H-1,2,3-triazole moieties, 7) development of coupling strategies to create phase-separated block copolymers between hydrophilic sulfonated prepolymers and commodity polymers such as PFPO, 8) establishment of basic

  10. Resting microglial cells exhibit tubular membrane protrusions

    Directory of Open Access Journals (Sweden)

    Ulrike Gimsa

    2002-11-01

    Full Text Available Nano- and microtubular structures have recently become a subject of increasing interest due to their importance in biology and medicine as well as their technological potential. Such structures have been observed in anorganic (Iijima, 1991 as well as in organic (Schnur 1993; Oda et al. 1991 systems. Micro- and nanotubular protrusions of bilayer membranes have been found in cells (Kralj-Iglic et al. 1998; Kralj-Iglic et al. 2001a and phospholipid vesicles (Kralj-Iglic et al. 2002; Kralj-Iglic et al. 2001b. In this work we describe membrane protrusions in microglial cells.

  11. Mesenchymal stem cells transplantation mildly ameliorates experimental diabetic nephropathy in rats

    Institute of Scientific and Technical Information of China (English)

    ZHOU Hong; TIAN Hao-ming; LONG Yang; ZHANG Xiang-xun; ZHONG Li; DENG Li; CHEN Xiao-he; LI Xiu-qun

    2009-01-01

    Background Diabetic nephropathy is a common complication of diabetes mellitus.This study aimed to explore whether mesenchymal stem cells(MSCs)transplantation could attenuate diabetic nephropathy in experimental diabetic rats.Methods Sprague-Dawley rats received a single intraperitoneal injection of streptozotocin(STZ)(60 mg/kg).Diabetic rats were randomized to four groups:diabetes control group(DC),ciclosporin A group(CsA),MSC group,and MSC+CsA group(MSCA).Bone marrow mesenchymal stern cells were cultured,identified and labeled by 5-bromo-2'-deoxyuridine(BrdU)in vitro.Then they were transplanted to diabetic rats via introcardiac infusion.Ciclosporin A was administered daily at 5 mg/kg.At 1,2,4,8 weeks after transplantation,random blood glucose,urine albumin/creatinine ratio(Alb/Cr),endogenous creatinine clearance rate and renal mass index were tested.Renal morphology and labeled cells were examined.Results Cultured MSCs expressed mesenchymal cell phenotype,and could be multidifferentiated to osteogenic and adipogenic cells.Labeled MSCs could be detected in the kidney of nephropathic rats,mainly in renal interstitium,but they did not propagate after engrafting in kidney.Over the course of the experiment,MSCA group showed a significant decrease in blood glucose compared with MSC group,CsA group and DC group(P<0.05,respectively).The Alb/Cr in MSCA group and MSC group were significantly lower than CsA group and DC group(P<0.05).And the Alb/Cr in MSCA group showed a significant decrease compared with MSC group(0.74 vs 0.84,P<0.05).There was a significant difference in renal mass index between the MSCA group and DC group(5.66 vs 6.37,P<0.05).No significant difference was found in creatinine clearance rate among 4 groups(P>0.05).Treatment with MSC+CsA significantly ameliorated the morphology of diabetic kidney.Conclusion MSC could mildly ameliorate diabetic nephropathy by decreasing blood glucose,Alb/Cr ratio and renal mass index.

  12. Parasitic nematode-induced CD4+Foxp3+T cells can ameliorate allergic airway inflammation.

    Directory of Open Access Journals (Sweden)

    Shin Ae Kang

    2014-12-01

    Full Text Available The recruitment of CD4+CD25+Foxp3+T (Treg cells is one of the most important mechanisms by which parasites down-regulate the immune system.We compared the effects of Treg cells from Trichinella spiralis-infected mice and uninfected mice on experimental allergic airway inflammation in order to understand the functions of parasite-induced Treg cells. After four weeks of T. spiralis infection, we isolated Foxp3-GFP-expressing cells from transgenic mice using a cell sorter. We injected CD4+Foxp3+ cells from T. spiralis-infected [Inf(+Foxp3+] or uninfected [Inf(-Foxp3+] mice into the tail veins of C57BL/6 mice before the induction of inflammation or during inflammation. Inflammation was induced by ovalbumin (OVA-alum sensitization and OVA challenge. The concentrations of the Th2-related cytokines IL-4, IL-5, and IL-13 in the bronchial alveolar lavage fluid and the levels of OVA-specific IgE and IgG1 in the serum were lower in mice that received intravenous application of Inf(+Foxp3+ cells [IV(inf:+(+ group] than in control mice. Some features of allergic airway inflammation were ameliorated by the intravenous application of Inf(-Foxp3+ cells [IV(inf:+(- group], but the effects were less distinct than those observed in the IV(inf:+(+ group. We found that Inf(+Foxp3+ cells migrated to inflammation sites in the lung and expressed higher levels of Treg-cell homing receptors (CCR5 and CCR9 and activation markers (Klrg1, Capg, GARP, Gzmb, OX40 than did Inf(-Foxp3+ cells.T. spiralis infection promotes the proliferation and functional activation of Treg cells. Parasite-induced Treg cells migrate to the inflammation site and suppress immune responses more effectively than non-parasite-induced Treg cells. The adoptive transfer of Inf(+Foxp3+ cells is an effective method for the treatment and prevention of allergic airway diseases in mice and is a promising therapeutic approach for the treatment of allergic airway diseases.

  13. Rosiglitazone-mediated dendritic cells ameliorate collagen-induced arthritis in mice.

    Science.gov (United States)

    Byun, Sei-Hee; Lee, Jun-Ho; Jung, Nam-Chul; Choi, Hyun-Ji; Song, Jie-Young; Seo, Han Geuk; Choi, Jinjung; Jung, Sang Youn; Kang, Sangjin; Choi, Yong-Soo; Chung, Ji Hyung; Lim, Dae-Seog

    2016-09-01

    Rosiglitazone is a selective ligand for peroxisome proliferator-activated receptor-gamma (PPAR-γ), which serves diverse biological functions. A number of autoimmune disease models have been used to examine the anti-inflammatory and immunosuppressive effects of tolerogenic dendritic cells (tDCs). The aim of the present study was to investigate whether rosiglitazone-mediated DC (Rosi-DC) therapy suppressed arthritis in a collagen-induced arthritis (CIA) mouse model. Rosi-DCs were generated by treating immature DCs with TNF-α, type II collagen, and rosiglitazone. CIA mice then received subcutaneously (s.c.) two injections of Rosi-DCs. The severity of arthritis was then assessed histopathologically. The phenotypes of the DC and regulatory T (Treg) cell populations in CIA mice were determined by flow cytometry and the effect of Rosi-DCs on the secretion of autoimmunity-inducing cytokines was examined by ELISA. Rosi-DCs expressed lower levels of DC-related surface markers than mature DCs. Histopathological examination revealed that the degree of inflammation in the paws of Rosi-DC-treated mice was much lower than that in the paws of PBS-treated CIA mice. Taken together, these results clearly show that rosiglitazone-mediated DCs ameliorate CIA, most likely via the induction of antigen-specific Treg cells. PMID:27208887

  14. Mesenchymal Stem Cell-Educated Macrophages Ameliorate LPS-Induced Systemic Response

    Science.gov (United States)

    Hu, Yaoqin; Qin, Chaojin; Zheng, Guoping; Tao, Huikang; Zhang, Yan; Qiu, Guanguan; Ge, Menghua; Huang, Lanfang; Chen, Lina; Cheng, Baoli

    2016-01-01

    Both bone marrow and adipose-derived mesenchymal stem cells (ASCs) have immunomodulatory effects. The goal of this study was to determine whether ASCs-educated macrophages could directly ameliorate LPS-induced systemic response in a mouse model. Mouse peritoneal macrophages were cocultured with ASCs in a Transwell system for 2 days to educate macrophages. Mice were divided into 5 groups: control, LPS, LPS + ASCs, LPS + untreated macrophages, and LPS + educated macrophages. Educated macrophages decreased lung inflammation, weight loss, pulmonary edema, and inflammatory cytokine response. In vitro, ASCs increased expression of M2 macrophages independent of direct cell-to-cell contact when macrophages were treated with LPS or serum from patients with acute respiratory distress syndrome (ARDS). When macrophages were cultured with serum from ARDS patients who were treated with ASCs or placebo in our previous clinical trial, there was no difference in M2 macrophage levels before and after ASCs treatment indicating a suboptimal response to the treatment protocol. ASCs also reduced the levels of LPS-induced proinflammatory cytokines in vitro which were mimicked by IL-10 and blocked by antibodies for IL-10 and IL-10 receptor supporting the notion that educated macrophages exert their anti-inflammatory effects via IL-10-dependent mechanisms. PMID:27546994

  15. Delivery of Placenta-Derived Mesenchymal Stem Cells Ameliorates Ischemia Induced Limb Injury by Immunomodulation

    Directory of Open Access Journals (Sweden)

    Bo Zhang

    2014-11-01

    Full Text Available Background: Peripheral artery disease (PAD is a major health burden in the world. Stem cell-based therapy has emerged as an attractive treatment option in regenerative medicine. In this study, we sought to test the hypothesis that stem cell-based therapy can ameliorate ischemia induced limb injury. Methods: We isolated mesenchymal stem cells derived from human placentas (PMSCs and intramuscularly transplanted them into injured hind limbs. Treatment with PMSCs reduced acute muscle fibers apoptosis induced by ischemia. Results: PMSC treatment significantly enhanced regeneration of the injured hind limb by reducing fibrosis and enhancing running capacity when the animals were subjected to treadmill training. Mechanistically, injected PMSCs can modulate acute inflammatory responses by reducing neutrophil and macrophage infiltration following limb ischemia. ELISA assays further confirmed that PMSC treatment can also reduce pro-inflammatory cytokines, TNF-α and IL-6, and enhance anti-inflammatory cytokine, IL-10 at the injury sites. Conclusion: Taken together, our results demonstrated that PMSCs can be a potential effective therapy for treatment of PAD via immunomodulation.

  16. Dehydroepiandrosterone ameliorates H2O2-induced Leydig cells oxidation damage and apoptosis through inhibition of ROS production and activation of PI3K/Akt pathways.

    Science.gov (United States)

    Ding, Xiao; Wang, Dian; Li, Longlong; Ma, Haitian

    2016-01-01

    Dehydroepiandrosterone (DHEA) is widely used as a nutritional supplement, and administration of DHEA produces a number of beneficial effects in the elderly. Many researchers have suggested that DHEA exerts it function after conversion into more biologically active hormones in peripheral target cells. The actions of DHEA in Leydig cells, a major target cell of DHEA biotransformation in males, are not clear. The present study found that DHEA increased cell viability and decreased reactive oxygen species (ROS) and malondialdehyde contents in H2O2-induced Leydig cells. DHEA significantly increased the activities of superoxide dismutase, catalase and peroxidase, and decreased the DNA damage in H2O2-induced Leydig cells. Apoptosis was significant decreased in H2O2-induced Leydig cells after DHEA treatment. DHEA inhibited the loss of mitochondrial membrane potential (ΔΨm) and the upregulation of the caspase-3 protein level induced by H2O2 in Leydig cells. DHEA also reversed the decrease in PI3K and p-Akt protein levels induced by H2O2. These data showed that DHEA could ameliorate H2O2-induced oxidative damage by increasing anti-oxidative enzyme activities, which resulted in reduced ROS content, and decreased apoptosis, mainly by preventing the loss of ΔΨm and inhibiting caspase-3 protein levels via activation of PI3K/Akt signaling pathways. These results increase our understanding of the molecular mechanism of the anti-ageing effect of DHEA.

  17. Lithium. Effects on excitable cell membranes

    NARCIS (Netherlands)

    Ploeger, Egbert Johan

    1974-01-01

    LITHIUM: Effects on excitable cell membranes. Lithium salts have been used in the treatment of manic-depressive psychosis for many years but their mechanism of action is not well understood. Many workers assume that the action of lithium on catecholamine metabolism and/or on electrolyte distribution

  18. Insulin-Producing Cells Differentiated from Human Bone Marrow Mesenchymal Stem Cells In Vitro Ameliorate Streptozotocin-Induced Diabetic Hyperglycemia.

    Directory of Open Access Journals (Sweden)

    Ying Xin

    Full Text Available The two major obstacles in the successful transplantation of islets for diabetes treatment are inadequate supply of insulin-producing tissue and immune rejection. Induction of the differentiation of human bone marrow-derived mesenchymal stem cells (hMSCs into insulin-producing cells (IPCs for autologous transplantation may alleviate those limitations.hMSCs were isolated and induced to differentiate into IPCs through a three-stage differentiation protocol in a defined media with high glucose, nicotinamide, and exendin-4. The physiological characteristics and functions of IPCs were then evaluated. Next, about 3 × 10(6 differentiated cells were transplanted into the renal sub-capsular space of streptozotocin (STZ-induced diabetic nude mice. Graft survival and function were assessed by immunohistochemistry, TUNEL staining and measurements of blood glucose levels in the mice.The differentiated IPCs were characterized by Dithizone (DTZ positive staining, expression of pancreatic β-cell markers, and human insulin secretion in response to glucose stimulation. Moreover, 43% of the IPCs showed L-type Ca2+ channel activity and similar changes in intracellular Ca2+ in response to glucose stimulation as that seen in pancreatic β-cells in the process of glucose-stimulated insulin secretion. Transplantation of functional IPCs into the renal subcapsular space of STZ-induced diabetic nude mice ameliorated the hyperglycemia. Immunofluorescence staining revealed that transplanted IPCs sustainably expressed insulin, c-peptide, and PDX-1 without apparent apoptosis in vivo.IPCs derived from hMSCs in vitro can ameliorate STZ-induced diabetic hyperglycemia, which indicates that these hMSCs may be a promising approach to overcome the limitations of islet transplantation.

  19. Interruption of Wnt signaling in Muller cells ameliorates ischemia-induced retinal neovascularization.

    Directory of Open Access Journals (Sweden)

    Kelu Kevin Zhou

    Full Text Available Retinal Müller cells are major producers of inflammatory and angiogenic cytokines which contribute to diabetic retinopathy (DR. Over-activation of the Wnt/β-catenin pathway has been shown to play an important pathogenic role in DR. However, the roles of Müller cell-derived Wnt/β-catenin signaling in retinal neovascularization (NV and DR remain undefined. In the present study, mice with conditional β-catenin knockout (KO in Müller cells were generated and subjected to oxygen-induced retinopathy (OIR and streptozotocin (STZ-induced diabetes. Wnt signaling was evaluated by measuring levels of β-catenin and expression of its target genes using immunoblotting. Retinal vascular permeability was measured using Evans blue as a tracer. Retinal NV was visualized by angiography and quantified by counting pre-retinal nuclei. Retinal pericyte loss was evaluated using retinal trypsin digestion. Electroretinography was performed to examine visual function. No abnormalities were detected in the β-catenin KO mice under normal conditions. In OIR, retinal levels of β-catenin and VEGF were significantly lower in the β-catenin KO mice than in littermate controls. The KO mice also had decreased retinal NV and vascular leakage in the OIR model. In the STZ-induced diabetic model, disruption of β-catenin in Müller cells attenuated over-expression of inflammatory cytokines and ameliorated pericyte dropout in the retina. These findings suggest that Wnt signaling activation in Müller cells contributes to retinal NV, vascular leakage and inflammation and represents a potential therapeutic target for DR.

  20. Splenic dendritic cell involvement in FXR-mediated amelioration of DSS colitis.

    Science.gov (United States)

    Massafra, Vittoria; Ijssennagger, Noortje; Plantinga, Maud; Milona, Alexandra; Ramos Pittol, José M; Boes, Marianne; van Mil, Saskia W C

    2016-02-01

    Inflammatory Bowel Disease (IBD) is a multifactorial disorder involving dysregulation of the immune response and bacterial translocation through the intestinal mucosal barrier. Previously, we have shown that activation of the bile acid sensor Farnesoid X Receptor (FXR), which belongs to the family of nuclear receptors, improves experimental intestinal inflammation, decreasing expression of pro-inflammatory cytokines and protecting the intestinal barrier. Here, we aimed to investigate the immunological mechanisms that ameliorate colitis when FXR is activated. We analyzed by FACS immune cell populations in mesenteric lymph nodes (MLN) and in the spleen to understand whether FXR activation alters the systemic immune response. We show that FXR activation by obeticholic acid (OCA) has systemic anti-inflammatory effects that include increased levels of plasma IL-10, inhibition of both DSS-colitis associated decrease in splenic dendritic cells (DCs) and increase in Tregs. Impact of OCA on DC relative abundance was seen in spleen but not MLN, possibly related to the increased FXR expression in splenic DCs compared to MLN DCs. Moreover, FXR activation modulates the chemotactic environment in the colonic site of inflammation, as Madcam1 expression is decreased, while Ccl25 is upregulated. Together, our data suggest that OCA treatment elicits an anti-inflammatory immune status including retention of DCs in the spleen, which is associated with decreased colonic inflammation. Pharmacological FXR activation is therefore an attractive new drug target for treatment of IBD. PMID:26554605

  1. P-Glycoprotein Induction Ameliorates Colistin Induced Nephrotoxicity in Cultured Human Proximal Tubular Cells.

    Directory of Open Access Journals (Sweden)

    Sun-hyo Lee

    Full Text Available The pathogenesis of colistin induced nephrotoxicity is poorly understood. Currently there are no effective therapeutic or prophylactic agents available. This study was aimed to determine the mechanism of colistin induced nephrotoxicity and to determine whether P-glycoprotein (P-gp induction could prevent colistin induced nephrotoxicity. Colistin induced cell toxicity in cultured human proximal tubular cells in both dose and time dependent manner. Colistin provoked ROS in a dose dependent manner as measured by DCF-DA. To investigate apoptosis, caspase 3/7 activity was determined. Caspase 3/7 activity was increased dose dependently (25, 50, 100 μg/ml at 6 h. Autophagosome formation was assessed by measuring LC3- II/LC3-I ratio. The ratio of LC3-II to LC3- I was increased at 2 h (25 μg/ml. Suppression of autophagosome formation increased colistin induced nephrotoxicity. The expression of P-gp and the cell toxicity was determined in colistin with or without dexamethasone (P-gp inducer and verapamil (selective P-gp inhibitor. Colistin itself suppressed the expression of P-gp. P-gp expression and activity decreased colistin induced nephrotoxicity with dexamethasone treatment. In addition induced P-gp transporter was shown to improve the efflux effect on colistin treated HK2 cell line, which was demonstrated by calcein-AM fluorescence accumulation assay. The increased activity could be blocked by N-acetylcysteine. In conclusion, colistin induces nephrotoxicity by suppressing P-gp. Induction of P-gp could ameliorate colistin induced nephrotoxicity by decreasing apoptosis.

  2. Microfluidic microbial fuel cells: from membrane to membrane free

    Science.gov (United States)

    Yang, Yang; Ye, Dingding; Li, Jun; Zhu, Xun; Liao, Qiang; Zhang, Biao

    2016-08-01

    Microfluidic microbial fuel cells (MMFCs) are small carbon-neutral devices that use self-organized bacteria to degrade organic substrates and harness energy from the waste water. Conventional MMFCs have made great strides in the past decade and have overcome some limitations, such as high capital costs and low energy output. A co-laminar flow MFC has been first proposed in 2011 with the potential to be an attractively power source to niche applications. Co-laminar MFCs typically operate without any physical membranes separating the reactants, and bacterial ecosystems can be easily manipulated by regulating the inlet conditions. This paper highlights recent accomplishments in the development of co-laminar MFCs, emphasizing basic principles, mass transport and fluid dynamics including boundary layer theory, entrance conditions and mixing zone issues. Furthermore, the development of current techniques, major challenges and the potential research directions are discussed.

  3. Interaction of peptides with cell membranes: insights from molecular modeling

    International Nuclear Information System (INIS)

    The investigation of the interaction of peptides with cell membranes is the focus of active research. It can enhance the understanding of basic membrane functions such as membrane transport, fusion, and signaling processes, and it may shed light on potential applications of peptides in biomedicine. In this review, we will present current advances in computational studies on the interaction of different types of peptides with the cell membrane. Depending on the properties of the peptide, membrane, and external environment, the peptide–membrane interaction shows a variety of different forms. Here, on the basis of recent computational progress, we will discuss how different peptides could initiate membrane pores, translocate across the membrane, induce membrane endocytosis, produce membrane curvature, form fibrils on the membrane surface, as well as interact with functional membrane proteins. Finally, we will present a conclusion summarizing recent progress and providing some specific insights into future developments in this field. (topical review)

  4. Interaction of peptides with cell membranes: insights from molecular modeling

    Science.gov (United States)

    Li, Zhen-lu; Ding, Hong-ming; Ma, Yu-qiang

    2016-03-01

    The investigation of the interaction of peptides with cell membranes is the focus of active research. It can enhance the understanding of basic membrane functions such as membrane transport, fusion, and signaling processes, and it may shed light on potential applications of peptides in biomedicine. In this review, we will present current advances in computational studies on the interaction of different types of peptides with the cell membrane. Depending on the properties of the peptide, membrane, and external environment, the peptide-membrane interaction shows a variety of different forms. Here, on the basis of recent computational progress, we will discuss how different peptides could initiate membrane pores, translocate across the membrane, induce membrane endocytosis, produce membrane curvature, form fibrils on the membrane surface, as well as interact with functional membrane proteins. Finally, we will present a conclusion summarizing recent progress and providing some specific insights into future developments in this field.

  5. Amelioration of oxidative stress in bio-membranes and macromolecules by non-toxic dye from Morinda tinctoria (Roxb.) roots.

    Science.gov (United States)

    Bhakta, Dipita; Siva, Ramamoorthy

    2012-06-01

    Plant dyes have been in use for coloring and varied purposes since prehistoric times. A red dye found in the roots of plants belonging to genus Morinda is a well recognized coloring ingredient. The dye fraction obtained from the methanolic extract of the roots of Morinda tinctoria was explored for its role in attenuating damages caused by H(2)O(2)-induced oxidative stress. The antioxidant potential of the dye fraction was assessed through DPPH radical scavenging, deoxyribose degradation and inhibition of lipid peroxidation in mice liver. It was subsequently screened for its efficiency in extenuating damage incurred to biomembrane (using erythrocytes and their ghost membranes) and macromolecules (pBR322 DNA, lipids and proteins) from exposure to hydrogen peroxide. In addition, the non-toxic nature of the dye was supported by the histological evaluation conducted on the tissue sections from the major organs of Swiss Albino mice as well as effect on Hep3B cell line (human hepatic carcinoma). The LC-MS confirms the dye fraction to be morindone. Our study strongly suggests that morindone present in the root extracts of M. tinctoria, in addition to being a colorant, definitely holds promise in the pharmaceutical industry.

  6. Proton exchange membrane fuel cells modeling

    CERN Document Server

    Gao, Fengge; Miraoui, Abdellatif

    2013-01-01

    The fuel cell is a potential candidate for energy storage and conversion in our future energy mix. It is able to directly convert the chemical energy stored in fuel (e.g. hydrogen) into electricity, without undergoing different intermediary conversion steps. In the field of mobile and stationary applications, it is considered to be one of the future energy solutions.Among the different fuel cell types, the proton exchange membrane (PEM) fuel cell has shown great potential in mobile applications, due to its low operating temperature, solid-state electrolyte and compactness.This book pre

  7. Virus-specific regulatory T cells ameliorate encephalitis by repressing effector T cell functions from priming to effector stages.

    Directory of Open Access Journals (Sweden)

    Jingxian Zhao

    2014-08-01

    Full Text Available Several studies have demonstrated the presence of pathogen-specific Foxp3+ CD4 regulatory T cells (Treg in infected animals, but little is known about where and how these cells affect the effector T cell responses and whether they are more suppressive than bulk Treg populations. We recently showed the presence of both epitope M133-specific Tregs (M133 Treg and conventional CD4 T cells (M133 Tconv in the brains of mice with coronavirus-induced encephalitis. Here, we provide new insights into the interactions between pathogenic Tconv and Tregs responding to the same epitope. M133 Tregs inhibited the proliferation but not initial activation of M133 Tconv in draining lymph nodes (DLN. Further, M133 Tregs inhibited migration of M133 Tconv from the DLN. In addition, M133 Tregs diminished microglia activation and decreased the number and function of Tconv in the infected brain. Thus, virus-specific Tregs inhibited pathogenic CD4 T cell responses during priming and effector stages, particularly those recognizing cognate antigen, and decreased mortality and morbidity without affecting virus clearance. These cells are more suppressive than bulk Tregs and provide a targeted approach to ameliorating immunopathological disease in infectious settings.

  8. Fuel cell membranes and crossover prevention

    Science.gov (United States)

    Masel, Richard I.; York, Cynthia A.; Waszczuk, Piotr; Wieckowski, Andrzej

    2009-08-04

    A membrane electrode assembly for use with a direct organic fuel cell containing a formic acid fuel includes a solid polymer electrolyte having first and second surfaces, an anode on the first surface and a cathode on the second surface and electrically linked to the anode. The solid polymer electrolyte has a thickness t:.gtoreq..times..times..times..times. ##EQU00001## where C.sub.f is the formic acid fuel concentration over the anode, D.sub.f is the effective diffusivity of the fuel in the solid polymer electrolyte, K.sub.f is the equilibrium constant for partition coefficient for the fuel into the solid polymer electrolyte membrane, I is Faraday's constant n.sub.f is the number of electrons released when 1 molecule of the fuel is oxidized, and j.sub.f.sup.c is an empirically determined crossover rate of fuel above which the fuel cell does not operate.

  9. Proton-exchange membrane regenerative fuel cells

    Science.gov (United States)

    Swette, Larry L.; LaConti, Anthony B.; McCatty, Stephen A.

    This paper will update the progress in developing electrocatalyst systems and electrode structures primarily for the positive electrode of single-unit solid polymer proton-exchange membrane (PEM) regenerative fuel cells. The work was done with DuPont Nafion 117 in complete fuel cells (40 cm 2 electrodes). The cells were operated alternately in fuel cell mode and electrolysis mode at 80°C. In fuel cell mode, humidified hydrogen and oxygen were supplied at 207 kPa (30 psi); in electrolysis mode, water was pumped over the positive electrode and the gases were evolved at ambient pressure. Cycling data will be presented for Pt-Ir catalysts and limited bifunctional data will be presented for Pt. Ir, Ru. Rh and Na xPt 3O 4 catalysts as well as for electrode structure variations.

  10. Alpha-tocopherol ameliorates experimental autoimmune encephalomyelitis through the regulation of Th1 cells

    Directory of Open Access Journals (Sweden)

    Haikuo Xue

    2016-05-01

    Full Text Available Objective(s: Multiple sclerosis (MS is a serious neurological autoimmune disease, it commonly affects young adults. Vitamin E (Vit E is an important component of human diet with antioxidant activity, which protects the body’s biological systems. In order to assess the effect of Vit E treatment on this autoimmune disease, we established experimental autoimmune encephalomyelitis (EAE, the animal model of MS, and treated EAE with α-tocopherol (AT which is the main content of Vit E. Materials and Methods:Twenty C57BL/6 adult female mice were used and divided into two groups randomly. EAE was induced with myelin oligodendrocyte glycoprotein (MOG, and one group was treated with AT, at a dose of 100 mg/kg on the 3th day post-immunization with MOG, the other group was treated with 1% alcohol. Mice were euthanized on day 14, post-immunization, spleens were removed for assessing splenocytes proliferation and cytokine profile, and spinal cords were dissected to assess the infiltration of inflammatory cells in spinal cord. Results:AT was able to attenuate the severity of EAE and delay the disease progression. H&E staining and fast blue staining indicated that AT reduced the inflammation and the demyelination reaction in the spinal cord. Treatment with AT significantly decreased the proliferation of splenocytes. AT also inhibited the production of IFN-γ (Th1 cytokine, though the other cytokines were only affected slightly. Conclusion:According to the results, AT ameliorated EAE, through suppressing the proliferation of T cells and the Th1 response. AT may be used as a potential treatment for MS.

  11. The application of Dow Chemical's perfluorinated membranes in proton-exchange membrane fuel cells

    Science.gov (United States)

    Eisman, G. A.

    1990-02-01

    Dow Chemical's research activities in fuel cells revolve around the development of perfluorosulfonic acid membranes, useful as the proton transport medium and separator. The following work will outline some of the performance characteristics which are typical for such membranes.

  12. Sodium selectivity of Reissner's membrane epithelial cells

    Directory of Open Access Journals (Sweden)

    Kim Kyunghee X

    2011-02-01

    Full Text Available Abstract Background Sodium absorption by Reissner's membrane is thought to contribute to the homeostasis of the volume of cochlear endolymph. It was previously shown that the absorptive transepithelial current was blocked by amiloride and benzamil. The most commonly-observed target of these drugs is the epithelial sodium channel (ENaC, which is composed of the three subunits α-,β- and γ-ENaC. However, other less-selective cation channels have also been observed to be sensitive to benzamil and amiloride. The aim of this study was to determine whether Reissner's membrane epithelial cells could support parasensory K+ absorption via amiloride- and benzamil-sensitive electrogenic pathways. Results We determined the molecular and functional expression of candidate cation channels with gene array (GEO GSE6196, RT-PCR, and whole-cell patch clamp. Transcript expression analysis of Reissner's membrane detected no amiloride-sensitive acid-sensing ion channels (ASIC1a, ASIC2a, ASIC2b nor amiloride-sensitive cyclic-nucleotide gated channels (CNGA1, CNGA2, CNGA4, CNGB3. By contrast, α-,β- and γ-ENaC were all previously reported as present in Reissner's membrane. The selectivity of the benzamil-sensitive cation currents was observed in whole-cell patch clamp recordings under Cl--free conditions where cations were the only permeant species. The currents were carried by Na+ but not K+, and the permeability of Li+ was greater than that of Na+ in Reissner's membrane. Complete replacement of bath Na+ with the inpermeable cation NMDG+ led to the same inward current as with benzamil in a Na+ bath. Conclusions These results are consistent with the amiloride/benzamil-sensitive absorptive flux of Reissner's membrane mediated by a highly Na+-selective channel that has several key characteristics in common with αβγ-ENaC. The amiloride-sensitive pathway therefore absorbs only Na+ in this epithelium and does not provide a parasensory K+ efflux route from scala

  13. Cell membrane-camouflaged nanoparticles for drug delivery.

    Science.gov (United States)

    Luk, Brian T; Zhang, Liangfang

    2015-12-28

    Nanoparticles can preferentially accumulate at sites of action and hold great promise to improve the therapeutic index of many drugs. While conventional methods of nanocarrier-mediated drug delivery have focused on primarily synthetic approaches, engineering strategies that combine synthetic nanoparticles with natural biomaterials have recently gained much attention. In particular, cell membrane-camouflaged nanoparticles are a new class of biomimetic nanoparticles that combine the unique functionalities of cellular membranes and engineering versatility of synthetic nanomaterials for effective delivery of therapeutic agents. Herein, we report on the recent progress on cell membrane-coated nanoparticles for drug delivery. In particular, we highlight three areas: (i) prolonging systemic circulation via cell membrane coating, (ii) cell-specific targeting via cell membrane coating, and (iii) applications of cell membrane coating for drug delivery. The cell membrane-camouflaged nanoparticle platform has emerged as a novel delivery strategy with the potential to improve the therapeutic efficacy for the treatment of a variety of diseases.

  14. High temperature polymer electrolyte membrane fuel cell

    Institute of Scientific and Technical Information of China (English)

    K.Scott; M. Mamlouk

    2006-01-01

    One of the major issues limiting the introduction of polymer electrolyte membrane fuel cells (PEMFCs) is the low temperature of operation which makes platinum-based anode catalysts susceptible to poisoning by the trace amount of CO, inevitably present in reformed fuel. In order to alleviate the problem of CO poisoning and improve the power density of the cell, operating at temperature above 100 ℃ is preferred. Nafion(R) -type perfluorosulfonated polymers have been typically used for PEMFC. However, the conductivity of Nafion(R) -type polymers is not high enough to be used for fuel cell operations at higher temperature ( > 90 ℃) and atmospheric pressure because they dehydrate under these condition.An additional problem which faces the introduction of PEMFC technology is that of supplying or storing hydrogen for cell operation,especially for vehicular applications. Consequently the use of alternative fuels such as methanol and ethanol is of interest, especially if this can be used directly in the fuel cell, without reformation to hydrogen. A limitation of the direct use of alcohol is the lower activity of oxidation in comparison to hydrogen, which means that power densities are considerably lower. Hence to improve activity and power output higher temperatures of operation are preferable. To achieve this goal, requires a new polymer electrolyte membrane which exhibits stability and high conductivity in the absence of liquid water.Experimental data on a polybenzimidazole based PEMFC were presented. A simple steady-state isothermal model of the fuel cell is also used to aid in fuel cell performance optimisation. The governing equations involve the coupling of kinetic, ohmic and mass transport. This paper also considers the advances made in the performance of direct methanol and solid polymer electrolyte fuel cells and considers their limitations in relation to the source and type of fuels to be used.

  15. N-Docosahexaenoylethanolamine ameliorates ethanol-induced impairment of neural stem cell neurogenic differentiation.

    Science.gov (United States)

    Rashid, Mohammad Abdur; Kim, Hee-Yong

    2016-03-01

    Previous studies demonstrated that prenatal exposure to ethanol interferes with embryonic and fetal development, and causes abnormal neurodevelopment. Docosahexaenoic acid (DHA), an omega-3 polyunsaturated fatty acid highly enriched in the brain, was shown to be essential for proper brain development and function. Recently, we found that N-docosahexenoyethanolamine (synaptamide), an endogenous metabolite of DHA, is a potent PKA-dependent neurogenic factor for neural stem cell (NSC) differentiation. In this study, we demonstrate that ethanol at pharmacologically relevant concentrations downregulates cAMP signaling in NSC and impairs neurogenic differentiation. In contrast, synaptamide reverses ethanol-impaired NSC neurogenic differentiation through counter-acting on the cAMP production system. NSC exposure to ethanol (25-50 mM) for 4 days dose-dependently decreased the number of Tuj-1 positive neurons and PKA/CREB phosphorylation with a concomitant reduction of cellular cAMP. Ethanol-induced cAMP reduction was accompanied by the inhibition of G-protein activation and expression of adenylyl cyclase (AC) 7 and AC8, as well as PDE4 upregulation. In contrast to ethanol, synaptamide increased cAMP production, GTPγS binding, and expression of AC7 and AC8 isoforms in a cAMP-dependent manner, offsetting the ethanol-induced impairment in neurogenic differentiation. These results indicate that synaptamide can reduce ethanol-induced impairment of neuronal differentiation by counter-affecting shared targets in G-protein coupled receptor (GPCR)/cAMP signaling. The synaptamide-mediated mechanism observed in this study may offer a possible avenue for ameliorating the adverse impact of fetal alcohol exposure on neurodevelopment.

  16. Senescent mesenchymal cells accumulate in human fibrosis by a telomere-independent mechanism and ameliorate fibrosis through matrix metalloproteinases.

    Science.gov (United States)

    Pitiyage, Gayani Nadika; Slijepcevic, Predrag; Gabrani, Aliya; Chianea, Yaghoub Gozaly; Lim, Kue Peng; Prime, Stephen Stewart; Tilakaratne, Wanninayake Mudiyanselage; Fortune, Farida; Parkinson, Eric Kenneth

    2011-04-01

    Fibrosis can occur in many organs, where it is a debilitating and preneoplastic condition. The senescence of activated fibroblasts has been proposed to ameliorate fibrosis via the innate immune system but its role in humans has not been investigated. The availability of oral submucous fibrosis (OSMF) biopsies at different stages of disease progression allowed us to test the hypothesis that senescent fibroblasts accumulate with the progression of human fibrosis in vivo, and also to examine the mechanism of senescence. We tested the hypothesis that senescent cells may ameliorate fibrosis by increasing the secretion of matrix metalloproteinases (MMPs). We have used a combination of in situ immunodetection techniques, drug treatments, fluorescence-activated cell sorting and enzyme-linked absorbance assays on tissue samples and fibroblast cultures. We report a novel panning technique, based on fibronectin adhesion rates, to enrich and deplete senescent cells from fibroblast populations. Senescent fibroblasts, as determined by the presence of senescence-associated heterochromatic foci, accumulated with OSMF progression (R(2) = 0.98) and possessed a reduced replicative lifespan in vitro. Unlike wounds, however, OSMF fibroblasts were quiescent in vivo and consistent with this observation, possessed functional telomeres of normal length. Senescence was associated in vivo and in vitro with oxidative damage, DNA damage foci and p16(INK4A) accumulation and required the production of reactive oxygen species (ROS), perhaps from damaged mitochondria, but not the continuous presence of the disease stimulus (areca nut and tobacco), the tissue environment or other cell types. Depletion of OSMF fibroblasts of senescent cells showed that these cells accounted for 25-83 times more MMP-1 and -2 than their pre-senescent counterparts. The results show that the accumulation of senescent fibroblasts in human fibrosis occurs by a telomere-independent mechanism involving ROS and may locally

  17. Membrane fluidity adjustments in ethanol-stressed Oenococcus oeni cells

    NARCIS (Netherlands)

    Silveira, da M.G.; Golovina, E.A.; Hoekstra, F.A.; Rombouts, F.M.; Abee, T.

    2003-01-01

    The effect of ethanol on the cytoplasmic membrane of Oenococcus oeni cells and the role of membrane changes in the acquired tolerance to ethanol were investigated. Membrane tolerance to ethanol was defined as the resistance to ethanol-induced leakage of preloaded carboxyfluorescein (cF) from cells.

  18. Origin of subdiffusion of water molecules on cell membrane surfaces

    CERN Document Server

    Yamamoto, Eiji; Yasui, Masato; Yasuoka, Kenji

    2014-01-01

    Water molecules play an important role in providing unique environments for biological reactions on cell membranes. It is widely believed that water molecules form bridges that connect lipid molecules and stabilize cell membranes. Using all-atom molecular dynamics simulations, we show that translational and rotational diffusion of water molecules on lipid membrane surfaces exhibit subdiffusion. Moreover, we provide evidence that both divergent mean trapping time (continuous-time random walk) and long-correlated noise (fractional Brownian motion) contribute to this subdiffusion. These results suggest that subdiffusion on cell membranes causes the water retardation, an enhancement of cell membrane stability, and a higher reaction efficiency.

  19. Preparation of cell membranes for high resolution imaging by AFM

    International Nuclear Information System (INIS)

    Studies of cell membrane structure by atomic force microscopy (AFM) have been limited because of the softness of cell membranes. Here, we utilize a new technique of sample preparation to lay red blood cell membranes on the top of a mica surface to obtain high resolution images by in-situ AFM on both sides of cell membranes. Our results indicate that the location of oligosaccharides and proteins in red blood cell membranes might be different from the current membrane model. The inner membrane leaflet is covered by dense proteins with fewer free lipids than expected. In contrast, the outer membrane leaflet is quite smooth; oligosaccharides and peptides supposed to protrude out of the outer membrane leaflet surface might be actually hidden in the middle of hydrophilic lipid heads; transmembrane proteins might form domains in the membranes revealed by PNGase F and trypsin digestion. Our result could be significant to interpret some functions about red blood cell membranes and guide to heal the blood diseases related to cell membranes.

  20. Intravacuolar Membranes Regulate CD8 T Cell Recognition of Membrane-Bound Toxoplasma gondii Protective Antigen

    OpenAIRE

    Jodie Lopez; Amina Bittame; Céline Massera; Virginie Vasseur; Grégory Effantin; Anne Valat; Célia Buaillon; Sophie Allart; Barbara A. Fox; Leah M. Rommereim; David J. Bzik; Guy Schoehn; Winfried Weissenhorn; Jean-François Dubremetz; Jean Gagnon

    2015-01-01

    Apicomplexa parasites such as Toxoplasma gondii target effectors to and across the boundary of their parasitophorous vacuole (PV), resulting in host cell subversion and potential presentation by MHC class I molecules for CD8 T cell recognition. The host-parasite interface comprises the PV limiting membrane and a highly curved, membranous intravacuolar network (IVN) of uncertain function. Here, using a cell-free minimal system, we dissect how membrane tubules are shaped by the parasite effecto...

  1. Polybenzimidazole and sulfonated polyhedral oligosilsesquioxane composite membranes for high temperature polymer electrolyte membrane fuel cells

    DEFF Research Database (Denmark)

    Aili, David; Allward, Todd; Alfaro, Silvia Martinez;

    2014-01-01

    Composite membranes based on poly(2,2′(m-phenylene)-5,5́bibenzimidazole) (PBI) and sulfonated polyhedral oligosilsesquioxane (S-POSS) with S-POSS contents of 5 and 10wt.% were prepared by solution casting as base materials for high temperature polymer electrolyte membrane fuel cells. With membran...

  2. Resting microglial cells exhibit tubular membrane protrusions

    OpenAIRE

    Ulrike Gimsa; Veronika Kralj-Iglic; Jan Gimsa; Ales Iglic

    2002-01-01

    Nano- and microtubular structures have recently become a subject of increasing interest due to their importance in biology and medicine as well as their technological potential. Such structures have been observed in anorganic (Iijima, 1991) as well as in organic (Schnur 1993; Oda et al. 1991) systems. Micro- and nanotubular protrusions of bilayer membranes have been found in cells (Kralj-Iglic et al. 1998; Kralj-Iglic et al. 2001a) and phospholipid vesicles (Kralj-Iglic et al. 2002; Kralj-Igl...

  3. Treatment with 4-methylpyrazole modulated stellate cells and natural killer cells and ameliorated liver fibrosis in mice.

    Directory of Open Access Journals (Sweden)

    Hyon-Seung Yi

    Full Text Available Accumulating evidence suggests that retinol and its metabolites are closely associated with liver fibrogenesis. Recently, we demonstrated that genetic ablation of alcohol dehydrogenase 3 (ADH3, a retinol metabolizing gene that is expressed in hepatic stellate cells (HSCs and natural killer (NK cells, attenuated liver fibrosis in mice. In the current study, we investigated whether pharmacological ablation of ADH3 has therapeutic effects on experimentally induced liver fibrosis in mice.Liver fibrosis was induced by intraperitoneal injections of carbon tetrachloride (CCl4 or bile duct ligation (BDL for two weeks. To inhibit ADH3-mediated retinol metabolism, 10 μg 4-methylpyrazole (4-MP/g of body weight was administered to mice treated with CCl4 or subjected to BDL. The mice were sacrificed at week 2 to evaluate the regression of liver fibrosis. Liver sections were stained for collagen and α-smooth muscle actin (α-SMA. In addition, HSCs and NK cells were isolated from control and treated mice livers for molecular and immunological studies.Treatment with 4-MP attenuated CCl4- and BDL-induced liver fibrosis in mice, without any adverse effects. HSCs from 4-MP treated mice depicted decreased levels of retinoic acids and increased retinol content than HSCs from control mice. In addition, the expression of α-SMA, transforming growth factor-β1 (TGF-β1, and type I collagen α1 was significantly reduced in the HSCs of 4-MP treated mice compared to the HSCs from control mice. Furthermore, inhibition of retinol metabolism by 4-MP increased interferon-γ production in NK cells, resulting in increased apoptosis of activated HSCs.Based on our data, we conclude that inhibition of retinol metabolism by 4-MP ameliorates liver fibrosis in mice through activation of NK cells and suppression of HSCs. Therefore, retinol and its metabolizing enzyme, ADH3, might be potential targets for therapeutic intervention of liver fibrosis.

  4. Nanocomposite Membranes based on Perlfuorosulfonic Acid/Ceramic for Proton Exchange Membrane Fuel Cells

    Institute of Scientific and Technical Information of China (English)

    LI Qiong; WANG Guangjin; YE Hong; YAN Shilin

    2015-01-01

    Perlfuorosulfonic acid/ceramic nanocomposite membranes were investigated as electrolytes for polymer electrolyte membrane fuel cell applications under low relative humidity. Different nanosized ceramics (SiO2, ZrO2, TiO2) with diameters in the range of 2-6 nm were synthesized in situ in Nafion solution through a sol-gel process and the formed nanosized ceramics were well-dispersed in the solution. The nanocomposite membranes were formed through a casting process. The nanocomposite membrane showes enhanced water retention ability and improved proton conductivity compared to those of pure Naifon membrane. The mechanical strength of the formed nanocomposite membranes is slightly less than that of pure Naifon membrane. The experimental results demonstrate that the polymer ceramic nanocompsite membranes are potential electrolyte for fuel cells operating at elevated temperature.

  5. Roles of membrane trafficking in plant cell wall dynamics

    OpenAIRE

    Ebine, Kazuo; Ueda, Takashi

    2015-01-01

    The cell wall is one of the characteristic components of plant cells. The cell wall composition differs among cell types and is modified in response to various environmental conditions. To properly generate and modify the cell wall, many proteins are transported to the plasma membrane or extracellular space through membrane trafficking, which is one of the key protein transport mechanisms in eukaryotic cells. Given the diverse composition and functions of the cell wall in plants, the transpor...

  6. Plasma membranes from insect midgut cells

    Directory of Open Access Journals (Sweden)

    Walter R. Terra

    2006-06-01

    Full Text Available Plasma membranes from insect midgut cells are separated into apical and basolateral domains. The apical domain is usually modified into microvilli with a molecular structure similar to other animals. Nevertheless, the microvillar structure should differ in some insects to permit the traffic inside them of secretory vesicles that may budd laterally or pinch-off from the tips of microvilli. Other microvillar modifications are associated with proton-pumping or with the interplay with an ensheathing lipid membrane (the perimicrovilllar membrane observed in the midgut cells of hemipterans (aphids and bugs. The perimicrovillar membranes are thought to be involved in amino acid absorption from diluted diets. The microvillar and perimicrovillar membranes have densities (and protein content that depend on the insect taxon. The role played by the microvillar and perimicrovillar proteins in insect midgut physiology is reviewed here trying to provide a coherent picture of data and highlighting further research areas.As membranas plasmáticas das células intestinais dos insetos apresentam um domínio apical e outro basal. O domínio apical é geralmente modificado em microvilosidades com organização molecular similar a de outros animais, embora possam diferir naqueles insetos que apresentam vesículas secretoras em trânsito que brotam lateralmente ou destacam-se das extremidades das microvilosidades. Outras modificações microvilares estão associadas a bombeamento de prótons ou a interrelações com uma membrana lipídica (a membrana perimicrovilar que reveste as microvilosidades de células intestinais de hemípteros (pulgões e percevejos. Admite-se que as membranas perimicrovilares estejam envolvidas na absorção de aminoácidos a partir de dietas diluídas. As membranas microvilares e perimicrovilares tem densidades distintas (e conteúdo protéico que dependem do táxon do inseto. O papel desempenhado pelas proteínas microvilares e

  7. A Quaternary Polybenzimidazole Membrane for Intermediate Temperature Polymer Electrolyte Membrane Fuel Cells

    DEFF Research Database (Denmark)

    Xu, C.; Scott, K.; Li, Qingfeng;

    2013-01-01

    A quaternary ammonium polybenzimidazole (QPBI) membrane was synthesized for applications in intermediate temperature (100–200 °C) hydrogen fuel cells. The QPBI membrane was imbibed with phosphoric acid to provide suitable proton conductivity. The proton conductivity of the membrane was 0.051 S cm–1...... at 150 °C with the PA acid loading level of 3.5 PRU (amount of H3PO4 per repeat unit of polymer QPBI). The QPBI membrane was characterized in terms of composition, structure and morphology by NMR, FTIR, SEM, and EDX. The fuel cell performance with the membrane gave peak power densities of 440 and 240 m...

  8. Amelioration of streptozotocin-induced diabetes in mice with cells derived from human marrow stromal cells.

    Directory of Open Access Journals (Sweden)

    Min Zhao

    Full Text Available BACKGROUND: Pluri-potent bone marrow stromal cells (MSCs provide an attractive opportunity to generate unlimited glucose-responsive insulin-producing cells for the treatment of diabetes. We explored the potential for human MSCs (hMSCs to be differentiated into glucose-responsive cells through a non-viral genetic reprogramming approach. METHODS AND FINDINGS: Two HMSC lines were transfected with three genes: PDX-1, NeuroD1 and Ngn3 without subsequent selection, followed by differentiation induction in vitro and transplantation into diabetic mice. Human MSCs expressed mRNAs of the archetypal stem cell markers: Sox2, Oct4, Nanog and CD34, and the endocrine cell markers: PDX-1, NeuroD1, Ngn3, and Nkx6.1. Following gene transfection and differentiation induction, hMSCs expressed insulin in vitro, but were not glucose regulated. After transplantation, hMSCs differentiated further and approximately 12.5% of the grafted cells expressed insulin. The graft bearing kidneys contained mRNA of insulin and other key genes required for the functions of beta cells. Mice transplanted with manipulated hMSCs showed reduced blood glucose levels (from 18.9+/-0.75 to 7.63+/-1.63 mM. 13 of the 16 mice became normoglycaemic (6.9+/-0.64 mM, despite the failure to detect the expression of SUR1, a K(+-ATP channel component required for regulation of insulin secretion. CONCLUSIONS: Our data confirm that hMSCs can be induced to express insulin sufficient to reduce blood glucose in a diabetic mouse model. Our triple gene approach has created cells that seem less glucose responsive in vitro but which become more efficient after transplantation. The maturation process requires further study, particularly the in vivo factors influencing the differentiation, in order to scale up for clinical purposes.

  9. Amelioration of altered antioxidant status and membrane linked functions by vanadium and Trigonella in alloxan diabetic rat brains

    Indian Academy of Sciences (India)

    Mohammad Rizwan Siddiqui; Asia Taha; K Moorthy; Mohd Ejaz Hussain; S F Basir; Najma Zaheer Baquer

    2005-09-01

    Trigonella foenum graecum seed powder (TSP) and sodium orthovanadate (SOV) have been reported to have antidiabetic effects. However, SOV exerts hypoglycemic effects at relatively high doses with several toxic effects. We used low doses of vanadate in combination with TSP and evaluated their antidiabetic effects on antioxidant enzymes and membrane-linked functions in diabetic rat brains. In rats, diabetes was induced by alloxan monohydrate (15 mg/100 g body wt.) and they were treated with 2 IU insulin, 0.6 mg/ml SOV, 5% TSP and a combination of 0.2 mg/ml SOV with 5% TSP for 21 days. Blood glucose levels, activity of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), Na+/K+ ATPase, membrane lipid peroxidation and fluidity were determined in different fractions of whole brain after 21 days of treatment. Diabetic rats showed high blood glucose ( < 0.001), decreased activities of SOD, catalase and Na+/K+ ATPase ( < 0.01, < 0.001 and < 0.01), increased levels of GPx and MDA ( < 0.01 and < 0.001) and decreased membrane fluidity ( < 0.01). Treatment with different antidiabetic compounds restored the above-altered parameters. Combined dose of Trigonella and vanadate was found to be the most effective treatment in normalizing these alterations. Lower doses of vanadate could be used in combination with TSP to effectively counter diabetic alterations without any toxic effects.

  10. Estradiol pretreatment attenuated nicotine-induced endothelial cell apoptosis via estradiol functional membrane receptor.

    Science.gov (United States)

    Wang, Li-li; Zhao, Jian-li; Lau, Wayne-Bond; Zhang, Yan-qing; Qiao, Zhong-dong; Wang, Ya-jing

    2011-06-01

    Cigarette smoking is highly associated with increased cardiovascular disease complications. The female population, however, manifests reduced cardiovascular morbidity. We define nicotine's effect upon human umbilical vein endothelial cells (HUVECs), determine whether estradiol might ameliorate endothelial dysfunction via its membrane estrogen receptor (mER), and attempt to elucidate the underlying mechanisms. Endothelial cells were pretreated with estradiol-BSA and measured resultant ion flux across the cells via the patch clamp technique to assess mER is functionality. Estradiol-BSA administration was associated with 30% decreased nicotine-induced apoptosis and also attenuated nicotine-activated phosphorylation of p38 and ERK. Pretreatment of estradiol-BSA triggered a low calcium influx, suggesting ahead low influx calcium played a critical role in the underlying protective mechanisms of estradiol. Furthermore, this estradiol-BSA protection against apoptosis remained effective in the presence of tamoxifen, an intracellular estrogen receptor (iER) inhibitor. Additionally, tamoxifen did not abolish estradiol-BSA's inhibitory effect upon p38 and ERK's activation, giving evidence to the obligatory role of p38 and ERK signaling in the estradiol-BSA's anti-apoptotic action via mER. Our study provides evidence that nicotine enhances endothelial cell apoptosis, but estrogen exerts anti-apoptotic effect through its functional membrane estrogen receptor. Clinically, the nicotine in cigarettes might contribute to endothelial dysfunction, whereas ambient estradiol may provide cellular protection against nicotine-induced injury through its functional membrane receptor via MAPK pathway downregulation.

  11. Cytocompatibility of Three Corneal Cell Types with Amniotic Membrane

    Institute of Scientific and Technical Information of China (English)

    CHENJian-su; CHENRui; XUJin-tang; DINGYong; ZHAOSong-bin; LISui-lian

    2004-01-01

    Rabbit limbal corneal epithelial cells, corneal endothelial cells and keratocytes were cultured on amniotic membrane. Phase contrast microscope examination was performed daily. Histological and scan electron microscopic examinations were carried out to observe the growth, arrangement and adhesion of cultivated cells. Results showed that three corneal cell types seeded on amniotic membrane grew well and had normal cell morphology. Cultured cells attached firmly on the surface of amniotic membrane. Corneal epithelial cells showed singular layer or stratification. Cell boundaries were formed and tightly opposed. Corneal endothelial cells showed cobblestone or polygonal morphologic characteristics that appeared uniform in size. The cellular arrangement was compact. Keratocytes elongated and showed triangle or dendritic morphology with many intercellular joints which could form networks. In conclusion, amniotic membrane has good scaffold property, diffusion effect and compatibility with corneal cells. The basement membrane side of amniotic membrane facilitated the growth of corneal epithelial cells and endothelial cells and cell junctions were tightly developed. The spongy layer of amniotic membrane facilitated the growth of keratocytes and intercellular joints were rich. Amniotic membrane is an ideal biomaterial for layering tissue engineered cornea.

  12. Fetal kidney stem cells ameliorate cisplatin induced acuterenal failure and promote renal angiogenesis

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    AIM To investigate whether fetal kidney stem cells(fKSC) ameliorate cisplatin induced acute renal failure(ARF) in rats and promote renal angiogenesis.METHODS: The fKSC were isolated from rat fetusesof gestation day 16 and expanded in vitro up to 3rdpassage. They were characterized for the expressionof mesenchymal and renal progenitor markers by flowcytometry and immunocytochemistry, respectively.The in vitro differentiation of fKSC towards epitheliallineage was evaluated by the treatment with specificinduction medium and their angiogenic potential bymatrigel induced tube formation assay. To study theeffect of fKSC in ARF, fKSC labeled with PKH26 wereinfused in rats with cisplatin induced ARF and, the bloodand renal tissues of the rats were collected at differenttime points. Blood biochemical parameters werestudied to evaluate renal function. Renal tissues wereevaluated for renal architecture, renal cell proliferationand angiogenesis by immunohistochemistry, renal cellapoptosis by terminal deoxynucleotidyl transferase nickendlabeling assay and early expression of angiogenicmolecules viz . vascular endothelial growth factor (VEGF),hypoxia-inducible factor (HIF)-1α and endothelial nitricoxide synthase (eNOS) by western blot.RESULTS: The fKSC expressed mesenchymal markersviz . CD29, CD44, CD73, CD90 and CD105 as well as renal progenitor markers viz . Wt1, Pax2 and Six2. Theyexhibited a potential to form CD31 and Von Willebrandfactor expressing capillary-like structures and could bedifferentiated into cytokeratin (CK)18 and CK19 positiveepithelial cells. Administration of fKSC in rats with ARF ascompared to administration of saline alone, resulted in asignificant improvement in renal function and histology onday 3 (2.33 ± 0.33 vs 3.50 ± 0.34, P 〈 0.05) and on day7 (0.83 ± 0.16 vs 2.00 ± 0.25, P 〈 0.05). The infusedPKH26 labeled fKSC were observed to engraft in damagedrenal tubules and showed increased proliferation andreduced

  13. The relevance of membrane models to understand nanoparticles-cell membrane interactions

    Science.gov (United States)

    Rascol, Estelle; Devoisselle, Jean-Marie; Chopineau, Joël

    2016-02-01

    Over the past two decades, numerous types of nanoparticles (NPs) have been developed for medical applications; however only a few nanomedicines are actually available on the market. One reason is the lack of understanding and data concerning the NP fate and their behavior upon contact with biological media and cell membranes. Biomimetic membrane models are interesting tools to approach and understand NPs-cell membrane interactions. The use of these models permits one to control physical and chemical parameters and to rapidly compare membrane types and the influence of different media conditions. The interactions between NPs and cell membranes can be qualified and quantified using analytical and modeling methods. In this review, the major studies concerning NPs-cell membrane models and associated methods are described. The advantages and drawbacks for each method are compared for the different models. The key mechanisms of interactions between NPs and cell membranes are revealed using cell membrane models and are interrogated in comparison with the NP behavior in cellulo or in vivo. Investigating the interactions between NPs and cell membrane models is now proposed as an intermediate step between physicochemical characterization of NPs and biological assays.

  14. Intravacuolar Membranes Regulate CD8 T Cell Recognition of Membrane-Bound Toxoplasma gondii Protective Antigen.

    Science.gov (United States)

    Lopez, Jodie; Bittame, Amina; Massera, Céline; Vasseur, Virginie; Effantin, Grégory; Valat, Anne; Buaillon, Célia; Allart, Sophie; Fox, Barbara A; Rommereim, Leah M; Bzik, David J; Schoehn, Guy; Weissenhorn, Winfried; Dubremetz, Jean-François; Gagnon, Jean; Mercier, Corinne; Cesbron-Delauw, Marie-France; Blanchard, Nicolas

    2015-12-15

    Apicomplexa parasites such as Toxoplasma gondii target effectors to and across the boundary of their parasitophorous vacuole (PV), resulting in host cell subversion and potential presentation by MHC class I molecules for CD8 T cell recognition. The host-parasite interface comprises the PV limiting membrane and a highly curved, membranous intravacuolar network (IVN) of uncertain function. Here, using a cell-free minimal system, we dissect how membrane tubules are shaped by the parasite effectors GRA2 and GRA6. We show that membrane association regulates access of the GRA6 protective antigen to the MHC I pathway in infected cells. Although insertion of GRA6 in the PV membrane is key for immunogenicity, association of GRA6 with the IVN limits presentation and curtails GRA6-specific CD8 responses in mice. Thus, membrane deformations of the PV regulate access of antigens to the MHC class I pathway, and the IVN may play a role in immune modulation. PMID:26628378

  15. Exocytosis and endocytosis in neurodocrine cells: inseparable membranes !

    Directory of Open Access Journals (Sweden)

    Sébastien eHouy

    2013-10-01

    Full Text Available Although much has been learned concerning the mechanisms of secretory vesicle formation and fusion at donor and acceptor membrane compartments, relatively little attention has been paid towards understanding how cells maintain a homeostatic membrane balance through vesicular trafficking. In neurons and neuroendocrine cells, release of neurotransmitters, neuropeptides and hormones occurs through calcium-regulated exocytosis at the plasma membrane. To allow recycling of secretory vesicle components and to preserve organelles integrity, cells must initiate and regulate compensatory membrane uptake. This review relates the fate of secretory granule membranes after full fusion exocytosis in neuroendocrine cells. In particular, we focus on the potential role of lipids in preserving and sorting secretory granule membranes after exocytosis and we discuss the potential mechanisms of membrane retrieval.

  16. Huangqin-Tang Ameliorates TNBS-Induced Colitis by Regulating Effector and Regulatory CD4+ T Cells

    Directory of Open Access Journals (Sweden)

    Ying Zou

    2015-01-01

    Full Text Available Huangqin-Tang decoction (HQT is a classic traditional Chinese herbal formulation that is widely used to ameliorate the symptoms of gastrointestinal disorders, including inflammatory bowel disease (IBD. This study was designed to investigate the therapeutic potential and immunological regulatory activity of HQT in experimental colitis in rats. Using an animal model of colitis by intrarectally administering 2,4,6-trinitrobenzenesulfonic acid (TNBS, we found that administration of HQT significantly inhibited the severity of TNBS-induced colitis in a dose-dependent manner. In addition, treatment with HQT produced better results than that with mesalazine, as shown by improvedweight loss bleeding and diarrhoea scores, colon length, and intestinal inflammation. As for potential immunological regulation of HQT action, the percentages of Th1 and Th17 cells were reduced, but those Th2 and Treg cells were enhanced in LPMCs after HQT treatment. Additionally, HQT lowered the levels of Th1/Th17-associated cytokines but increased production of Th2/Treg-associated cytokines in the colon and MLNs. Furthermore, we observed a remarkable suppression of the Th1/Th17-associated transcription factors T-bet and ROR-γt. However, expression levels of the Th2/Treg-associated transcription factors GATA-3 and Foxp3 were enhanced during treatment with HQT. Our results suggest that HQT has the therapeutic potential to ameliorate TNBS-induced colitis symptoms. This protective effect is possibly mediated by its effects on CD4+ T cells subsets.

  17. Atorvastatin ameliorates contrast medium-induced renal tubular cell apoptosis in diabetic rats via suppression of Rho-kinase pathway.

    Science.gov (United States)

    Su, Jinzi; Zou, Wenbo; Cai, Wenqin; Chen, Xiuping; Wang, Fangbing; Li, Shuizhu; Ma, Wenwen; Cao, Yangming

    2014-01-15

    Contrast medium-induced acute kidney injury (CI-AKI) remains a leading cause of iatrogenic, drug-induced acute renal failure. This study aimed to investigate the protective effects of atorvastatin against renal tubular cell apoptosis in diabetic rats and the related mechanisms. CI-AKI was induced by intravenous administration of iopromide (12ml/kg) in streptozotocin-induced diabetic rats. Atorvastatin (ATO) was administered intragastrically at the dose of 5, 10 and 30mg/kg/d in different groups, respectively, for 5 days before iopromide injection. Renal function parameters, kidney histology, renal tubular cell apoptosis, the expression of apoptosis regulatory proteins, caspase-3 and Rho-associated protein kinase 1 (ROCK-1), and the phosphorylation of myosin phosphatase target subunit -1 (MYPT-1), were determined. Atorvastatin was shown to notably ameliorate contrast medium induced medullary damage, restore renal function, and suppress renal tubular apoptosis. Meanwhile, atorvastatin up-regulated the expression of Bcl-2, down-regulated the expression of Bax, caspase-3 and ROCK-1, restored the ratio of Bcl-2/Bax, and suppressed the phosphorylation of MYPT-1 in a dose-dependent manner. Thus, atorvastatin pretreatment could dose-dependently ameliorate the development of CI-AKI, which was partly attributed to its suppression of renal tubular cell apoptosis by inhibiting the Rho/ROCK pathway.

  18. Development of composite membranes of PVA-TEOS doped KOH for alkaline membrane fuel cell

    International Nuclear Information System (INIS)

    Anion exchange membranes (AEMs) play an important role in separating fuel and oxygen (or air) in the Alkaline Membrane Fuel Cells. Preparation of hybrid organic inorganic materials of Polyvinylalcohol (PVA) - Tetraethylorthosilicate (TEOS) composite membrane doped KOH for direct alcohol alkaline fuel cell application has been investigated. The sol-gel method has been used to prepare the composite membrane of PVA-TEOS through crosslinking step and catalyzed by concentrated of hydrochloric acid. The gel solution was cast on the membrane plastic plate to obtain membrane sheets. The dry membranes were then doped by immersing in various concentrations of KOH solutions for about 4 hours. Investigations of the cross-linking process and the presence of hydroxyl group were conducted by FTIR as shown for frequency at about 1600 cm−1 and 3300 cm−1 respectively. The degree of swelling in ethanol decreased as the KOH concentration for membrane soaking process increased. The ion exchange capacity (IEC) of the membrane was 0.25meq/g. This composite membranes display significant ionic conductivity of 3.23 x 10−2 S/cm in deionized water at room temperature. In addition, the morphology observation by scanning electron microscope (SEM) of the membrane indicates that soaking process of membrane in KOH increased thermal resistant

  19. Development of composite membranes of PVA-TEOS doped KOH for alkaline membrane fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Haryadi,, E-mail: haryadi@polban.ac.id; Sugianto, D.; Ristopan, E. [Department of Chemical Engineering, Politeknik Negeri Bandung Jl. Gegerkalong Hilir, Ds. Ciwaruga, Bandung West Java (Indonesia)

    2015-12-29

    Anion exchange membranes (AEMs) play an important role in separating fuel and oxygen (or air) in the Alkaline Membrane Fuel Cells. Preparation of hybrid organic inorganic materials of Polyvinylalcohol (PVA) - Tetraethylorthosilicate (TEOS) composite membrane doped KOH for direct alcohol alkaline fuel cell application has been investigated. The sol-gel method has been used to prepare the composite membrane of PVA-TEOS through crosslinking step and catalyzed by concentrated of hydrochloric acid. The gel solution was cast on the membrane plastic plate to obtain membrane sheets. The dry membranes were then doped by immersing in various concentrations of KOH solutions for about 4 hours. Investigations of the cross-linking process and the presence of hydroxyl group were conducted by FTIR as shown for frequency at about 1600 cm{sup −1} and 3300 cm{sup −1} respectively. The degree of swelling in ethanol decreased as the KOH concentration for membrane soaking process increased. The ion exchange capacity (IEC) of the membrane was 0.25meq/g. This composite membranes display significant ionic conductivity of 3.23 x 10{sup −2} S/cm in deionized water at room temperature. In addition, the morphology observation by scanning electron microscope (SEM) of the membrane indicates that soaking process of membrane in KOH increased thermal resistant.

  20. Development of composite membranes of PVA-TEOS doped KOH for alkaline membrane fuel cell

    Science.gov (United States)

    Haryadi, Sugianto, D.; Ristopan, E.

    2015-12-01

    Anion exchange membranes (AEMs) play an important role in separating fuel and oxygen (or air) in the Alkaline Membrane Fuel Cells. Preparation of hybrid organic inorganic materials of Polyvinylalcohol (PVA) - Tetraethylorthosilicate (TEOS) composite membrane doped KOH for direct alcohol alkaline fuel cell application has been investigated. The sol-gel method has been used to prepare the composite membrane of PVA-TEOS through crosslinking step and catalyzed by concentrated of hydrochloric acid. The gel solution was cast on the membrane plastic plate to obtain membrane sheets. The dry membranes were then doped by immersing in various concentrations of KOH solutions for about 4 hours. Investigations of the cross-linking process and the presence of hydroxyl group were conducted by FTIR as shown for frequency at about 1600 cm-1 and 3300 cm-1 respectively. The degree of swelling in ethanol decreased as the KOH concentration for membrane soaking process increased. The ion exchange capacity (IEC) of the membrane was 0.25meq/g. This composite membranes display significant ionic conductivity of 3.23 x 10-2 S/cm in deionized water at room temperature. In addition, the morphology observation by scanning electron microscope (SEM) of the membrane indicates that soaking process of membrane in KOH increased thermal resistant.

  1. Selective effect of cell membrane on synaptic neurotransmission

    Science.gov (United States)

    Postila, Pekka A.; Vattulainen, Ilpo; Róg, Tomasz

    2016-01-01

    Atomistic molecular dynamics simulations were performed with 13 non-peptidic neurotransmitters (NTs) in three different membrane environments. The results provide compelling evidence that NTs are divided into membrane-binding and membrane-nonbinding molecules. NTs adhere to the postsynaptic membrane surface whenever the ligand-binding sites of their synaptic receptors are buried in the lipid bilayer. In contrast, NTs that have extracellular ligand-binding sites do not have a similar tendency to adhere to the membrane surface. This finding is a seemingly simple yet important addition to the paradigm of neurotransmission, essentially dividing it into membrane-independent and membrane-dependent mechanisms. Moreover, the simulations also indicate that the lipid composition especially in terms of charged lipids can affect the membrane partitioning of NTs. The revised paradigm, highlighting the importance of cell membrane and specific lipids for neurotransmission, should to be of interest to neuroscientists, drug industry and the general public alike.

  2. Norisoboldine ameliorates DSS-induced ulcerative colitis in mice through induction of regulatory T cells in colons.

    Science.gov (United States)

    Lv, Qi; Qiao, Si-miao; Xia, Ying; Shi, Can; Xia, Yu-feng; Chou, Gui-xin; Wang, Zheng-tao; Dai, Yue; Wei, Zhi-feng

    2015-12-01

    Norisoboldine (NOR), the main active constituent of Radix Linderae, was previously demonstrated to ameliorate collagen-induced arthritis in rats through regulating the imbalance of T cells in intestines, which implied its therapeutic potential in inflammatory bowel disease. Here, we investigated the effect of NOR on ulcerative colitis (UC) induced by dextran sulfate sodium (DSS) in mice. Results showed that NOR (20, 40mg/kg) markedly reduced the symptoms of colitis, the levels of IL-1β and TNF-α, and the activation of ERK, p38 MAPK and NF-κB-p65. NOR only slightly decreased the levels of IFN-γ and IL-17A in mouse colons, but it dramatically increased the level of IL-10 at both protein and mRNA grades. Consistently, NOR increased the number of CD4(+)CD25(+)Foxp3(+) Treg cells more obviously than it decreased that of CD4(+)IL-17(+) Th17 cells in mesenteric lymph nodes (MLNs) and colonic lamina proprias (LPs) of colitis mice, and promoted the expression of Foxp3 mRNA in colon tissues. It could facilitate the in vitro differentiation of Treg cells from naive T cells and promote the phosphorylations of Smad2/3 in colon tissues of colitis mice. On the other hand, NOR did not affect the expressions of homing receptors CCR9 and α4β7 in SPs, and homing ligands CCL25 and Madcam-1 in MLNs and colonic LPs, suggesting that the increase of Treg cells in colons by NOR was not due to gut homing. In conclusion, NOR can ameliorate DSS-induced UC in mice, and the mechanisms involve reduction of pro-inflammatory cytokines and selective induction of Treg cells in colons.

  3. Finite element analysis of microelectrotension of cell membranes

    OpenAIRE

    Bae, Chilman; Butler, Peter J.

    2007-01-01

    Electric fields can be focused by micropipette-based electrodes to induce stresses on cell membranes leading to tension and poration. To date, however, these membrane stress distributions have not been quantified. In this study, we determine membrane tension, stress, and strain distributions in the vicinity of a microelectrode using finite element analysis of a multiscale electro-mechanical model of pipette, media, membrane, actin cortex, and cytoplasm. Electric field forces are coupled to me...

  4. Membrane Fouling in Microfiltration used for Cell Harvesting

    Institute of Scientific and Technical Information of China (English)

    Tahereh Kaghazchi; Farzin Zokaee; Abbas Zare

    2001-01-01

    In the present study the membrane fouling in microfiltration used for cell harvesting in a deadend system has been investigated. Experimental results were analysed in terms of existing membrane filtration models and membrane resistances. The cake filtration model (CFM) and standard blocking model (SBM) have been considered in this study.Various membrane resistances were determined at different processing time, feed concentration and stirring speed. Resistances to permeation in this system include filter medium, pore blocking, adsorption, cake layer and concentration polarization.

  5. miR-196a Ameliorates Cytotoxicity and Cellular Phenotype in Transgenic Huntington's Disease Monkey Neural Cells.

    Science.gov (United States)

    Kunkanjanawan, Tanut; Carter, Richard L; Prucha, Melinda S; Yang, Jinjing; Parnpai, Rangsun; Chan, Anthony W S

    2016-01-01

    Huntington's disease (HD) is an inherited neurodegenerative disorder caused by the expansion of polyglutamine (polyQ) tract that leads to motor, cognitive and psychiatric impairment. Currently there is no cure for HD. A transgenic HD nonhuman primate (HD-NHP) model was developed with progressive development of clinical and pathological features similar to human HD, which suggested the potential preclinical application of the HD-NHP model. Elevated expression of miR-196a was observed in both HD-NHP and human HD brains. Cytotoxicity and apoptosis were ameliorated by the overexpression of miR-196a in HD-NHP neural progenitor cells (HD-NPCs) and differentiated neural cells (HD-NCs). The expression of apoptosis related gene was also down regulated. Mitochondrial morphology and activity were improved as indicated by mitotracker staining and the upregulation of CBP and PGC-1α in HD-NPCs overexpressing miR-196a. Here we demonstrated the amelioration of HD cellular phenotypes in HD-NPCs and HD-NCs overexpressing miR-196a. Our results also suggested the regulatory role of miR-196a in HD pathogenesis that may hold the key for understanding molecular regulation in HD and developing novel therapeutics. PMID:27631085

  6. miR-196a Ameliorates Cytotoxicity and Cellular Phenotype in Transgenic Huntington’s Disease Monkey Neural Cells

    Science.gov (United States)

    Carter, Richard L.; Prucha, Melinda S.; Yang, Jinjing; Parnpai, Rangsun; Chan, Anthony W. S.

    2016-01-01

    Huntington’s disease (HD) is an inherited neurodegenerative disorder caused by the expansion of polyglutamine (polyQ) tract that leads to motor, cognitive and psychiatric impairment. Currently there is no cure for HD. A transgenic HD nonhuman primate (HD-NHP) model was developed with progressive development of clinical and pathological features similar to human HD, which suggested the potential preclinical application of the HD-NHP model. Elevated expression of miR-196a was observed in both HD-NHP and human HD brains. Cytotoxicity and apoptosis were ameliorated by the overexpression of miR-196a in HD-NHP neural progenitor cells (HD-NPCs) and differentiated neural cells (HD-NCs). The expression of apoptosis related gene was also down regulated. Mitochondrial morphology and activity were improved as indicated by mitotracker staining and the upregulation of CBP and PGC-1α in HD-NPCs overexpressing miR-196a. Here we demonstrated the amelioration of HD cellular phenotypes in HD-NPCs and HD-NCs overexpressing miR-196a. Our results also suggested the regulatory role of miR-196a in HD pathogenesis that may hold the key for understanding molecular regulation in HD and developing novel therapeutics. PMID:27631085

  7. Phosphoric acid doped imidazolium polysulfone membranes for high temperature proton exchange membrane fuel cells

    DEFF Research Database (Denmark)

    Yang, Jingshuai; Li, Qingfeng; Jensen, Jens Oluf;

    2012-01-01

    A novel acid–base polymer membrane is prepared by doping of imidazolium polysulfone with phosphoric acid for high temperature proton exchange membrane fuel cells. Polysulfone is first chloromethylated, followed by functionalization of the chloromethylated polysulfone with alkyl imidazoles i.......e. methyl (MePSU), ethyl (EtPSU) and butyl (BuPSU) imidazoliums, as revealed by 1H NMR spectra. The imidazolium polysulfone membranes are then doped with phosphoric acid and used as a proton exchange membrane electrolyte in fuel cells. An acid doping level of about 10–11mol H3PO4 per mole of the imidazolium...

  8. Engineered nanoparticles mimicking cell membranes for toxin neutralization.

    Science.gov (United States)

    Fang, Ronnie H; Luk, Brian T; Hu, Che-Ming J; Zhang, Liangfang

    2015-08-01

    Protein toxins secreted from pathogenic bacteria and venomous animals rely on multiple mechanisms to overcome the cell membrane barrier to inflict their virulence effect. A promising therapeutic concept toward developing a broadly applicable anti-toxin platform is to administer cell membrane mimics as decoys to sequester these virulence factors. As such, lipid membrane-based nanoparticulates are an ideal candidate given their structural similarity to cellular membranes. This article reviews the virulence mechanisms employed by toxins at the cell membrane interface and highlights the application of cell-membrane mimicking nanoparticles as toxin decoys for systemic detoxification. In addition, the implication of particle/toxin nanocomplexes in the development of toxoid vaccines is discussed. PMID:25868452

  9. Membrane tension and cytoskeleton organization in cell motility

    International Nuclear Information System (INIS)

    Cell membrane shape changes are important for many aspects of normal biological function, such as tissue development, wound healing and cell division and motility. Various disease states are associated with deregulation of how cells move and change shape, including notably tumor initiation and cancer cell metastasis. Cell motility is powered, in large part, by the controlled assembly and disassembly of the actin cytoskeleton. Much of this dynamic happens in close proximity to the plasma membrane due to the fact that actin assembly factors are membrane-bound, and thus actin filaments are generally oriented such that their growth occurs against or near the membrane. For a long time, the membrane was viewed as a relatively passive scaffold for signaling. However, results from the last five years show that this is not the whole picture, and that the dynamics of the actin cytoskeleton are intimately linked to the mechanics of the cell membrane. In this review, we summarize recent findings concerning the role of plasma membrane mechanics in cell cytoskeleton dynamics and architecture, showing that the cell membrane is not just an envelope or a barrier for actin assembly, but is a master regulator controlling cytoskeleton dynamics and cell polarity. (topical review)

  10. Anatomy of the red cell membrane skeleton: unanswered questions.

    Science.gov (United States)

    Lux, Samuel E

    2016-01-14

    The red cell membrane skeleton is a pseudohexagonal meshwork of spectrin, actin, protein 4.1R, ankyrin, and actin-associated proteins that laminates the inner membrane surface and attaches to the overlying lipid bilayer via band 3-containing multiprotein complexes at the ankyrin- and actin-binding ends of spectrin. The membrane skeleton strengthens the lipid bilayer and endows the membrane with the durability and flexibility to survive in the circulation. In the 36 years since the first primitive model of the red cell skeleton was proposed, many additional proteins have been discovered, and their structures and interactions have been defined. However, almost nothing is known of the skeleton's physiology, and myriad questions about its structure remain, including questions concerning the structure of spectrin in situ, the way spectrin and other proteins bind to actin, how the membrane is assembled, the dynamics of the skeleton when the membrane is deformed or perturbed by parasites, the role lipids play, and variations in membrane structure in unique regions like lipid rafts. This knowledge is important because the red cell membrane skeleton is the model for spectrin-based membrane skeletons in all cells, and because defects in the red cell membrane skeleton underlie multiple hemolytic anemias. PMID:26537302

  11. Electrochemical proton gradient in Micrococcus lysodeikticus cells and membrane vesicles.

    OpenAIRE

    Friedberg, I.; Kaback, H R

    1980-01-01

    Using the distribution of weak acids to measure the pH gradient (delta pH; interior alkaline) and the distribution of the lipophilic cation [3H]tetraphenylphosphonium+ to monitor the membrane potential (delta psi; interior negative), we studied the electrochemical gradient or protons (delta mu- H+) across the membrane of Micrococcus lysodeikticus cells and plasma membrane vesicles. With reduced phenazine methosulfate as electron donor, intact cells exhibited a relatively constant delta mu- H+...

  12. Revealing the Dynamics of Thylakoid Membranes in Living Cyanobacterial Cells

    OpenAIRE

    Laura-Roxana Stingaciu; Hugh O’Neill; Michelle Liberton; Urban, Volker S.; Himadri B. Pakrasi; Michael Ohl

    2016-01-01

    Cyanobacteria are photosynthetic prokaryotes that make major contributions to the production of the oxygen in the Earth atmosphere. The photosynthetic machinery in cyanobacterial cells is housed in flattened membrane structures called thylakoids. The structural organization of cyanobacterial cells and the arrangement of the thylakoid membranes in response to environmental conditions have been widely investigated. However, there is limited knowledge about the internal dynamics of these membran...

  13. Polybenzimidazole and sulfonated polyhedral oligosilsesquioxane composite membranes for high temperature polymer electrolyte membrane fuel cells

    International Nuclear Information System (INIS)

    Composite membranes based on poly(2,2′(m-phenylene)-5,5′bibenzimidazole) (PBI) and sulfonated polyhedral oligosilsesquioxane (S-POSS) with S-POSS contents of 5 and 10 wt.% were prepared by solution casting as base materials for high temperature polymer electrolyte membrane fuel cells. With membranes based on pure PBI as a reference point, the composite membranes were characterized with respect to spectroscopic and physicochemical properties. After doping with phosphoric acid, the composite membranes showed considerably improved ex situ proton conductivity under anhydrous as well as under fully humidified conditions in the 120-180 °C temperature range. The conductivity improvements were also confirmed by in situ fuel cell tests at 160 °C and further supported by the electrochemical impedance spectroscopy data based on the operating membrane electrode assemblies, demonstrating the technical feasibility of the novel electrolyte materials

  14. The Stirred Tank Reactor Polymer Electrolyte Membrane Fuel Cell

    CERN Document Server

    Benziger, J; Karnas, E; Moxley, J; Teuscher, C; Kevrekidis, Yu G; Benziger, Jay

    2003-01-01

    The design and operation of a differential Polymer Electrolyte Membrane (PEM) fuel cell is described. The fuel cell design is based on coupled Stirred Tank Reactors (STR); the gas phase in each reactor compartment was well mixed. The characteristic times for reactant flow, gas phase diffusion and reaction were chosen so that the gas compositions at both the anode and cathode are uniform. The STR PEM fuel cell is one-dimensional; the only spatial gradients are transverse to the membrane. The STR PEM fuel cell was employed to examine fuel cell start- up, and its dynamic responses to changes in load, temperature and reactant flow rates. Multiple time scales in systems response are found to correspond to water absorption by the membrane, water transport through the membrane and stress-related mechanical changes of the membrane.

  15. Cell volume and membrane stretch independently control K+ channel activity

    DEFF Research Database (Denmark)

    Bomholtz, Sofia Hammami; Willumsen, Niels J; Olsen, Hervør L;

    2009-01-01

    A number of potassium channels including members of the KCNQ family and the Ca(2+) activated IK and SK, but not BK, are strongly and reversibly regulated by small changes in cell volume. It has been argued that this general regulation is mediated through sensitivity to changes in membrane stretch....... To test this hypothesis we have studied the regulation of KCNQ1 and BK channels after expression in Xenopus oocytes. Results from cell-attached patch clamp studies (approximately 50 microm(2) macropatches) in oocytes expressing BK channels demonstrate that the macroscopic volume-insensitive BK current...... was not affected by membrane stretch. The results indicate that (1) activation of BK channels by local membrane stretch is not mimicked by membrane stress induced by cell swelling, and (2) activation of KCNQ1 channels by cell volume increase is not mediated by local tension in the cell membrane. We conclude...

  16. Studying the Nucleated Mammalian Cell Membrane by Single Molecule Approaches

    Science.gov (United States)

    Wang, Feng; Wu, Jiazhen; Gao, Jing; Liu, Shuheng; Jiang, Junguang; Jiang, Shibo; Wang, Hongda

    2014-01-01

    The cell membrane plays a key role in compartmentalization, nutrient transportation and signal transduction, while the pattern of protein distribution at both cytoplasmic and ectoplasmic sides of the cell membrane remains elusive. Using a combination of single-molecule techniques, including atomic force microscopy (AFM), single molecule force spectroscopy (SMFS) and stochastic optical reconstruction microscopy (STORM), to study the structure of nucleated cell membranes, we found that (1) proteins at the ectoplasmic side of the cell membrane form a dense protein layer (4 nm) on top of a lipid bilayer; (2) proteins aggregate to form islands evenly dispersed at the cytoplasmic side of the cell membrane with a height of about 10–12 nm; (3) cholesterol-enriched domains exist within the cell membrane; (4) carbohydrates stay in microdomains at the ectoplasmic side; and (5) exposed amino groups are asymmetrically distributed on both sides. Based on these observations, we proposed a Protein Layer-Lipid-Protein Island (PLLPI) model, to provide a better understanding of cell membrane structure, membrane trafficking and viral fusion mechanisms. PMID:24806512

  17. B7H1/CD80 interaction augments PD-1-dependent T cell apoptosis and ameliorates graft versus host disease

    Science.gov (United States)

    Deng, Ruishu; Cassady, Kaniel; Li, Xiaofan; Yao, Sheng; Zhang, Mingfeng; Racine, Jeremy; Lin, Jeffrey; Chen, Lieping; Zeng, Defu

    2014-01-01

    Interactions of B7H1 (PD-L1) with its two ligands, PD-1 and CD80, on T cells play a pivotal role in controlling T cell activation, proliferation, anergy, and apoptosis. However, the interactions between the two pathways remain unknown. Using an alloimmune response model of graft-versus-host disease (GVHD), we report here that: 1) Comparison of proliferation and apoptosis of wild-type (WT) and PD-1−/− CD4+ conventional T (Tcon) cells in WT and B7H1−/− recipients has revealed that B7H1/CD80 interaction per se augments T cell proliferation, and this interaction augments T cell apoptosis mediated by B7H1/PD-1 interaction. This observation was recapitulated in an in vitro mixed lymphocyte reaction assay. 2) Specific blockade of the B7H1/CD80 axis by anti-B7H1 mAb reduces WT-alloreactive Tcon cell proliferation, IL-2 production, expression of PD-1, and apoptosis, resulting in worsening GVHD. In contrast, specific blockade of B7H1/CD80 interaction reduces donor PD-1−/− Tcon cell proliferation without impact on apoptosis, resulting in ameliorating GVHD. 3) B7H1 fused to an immunoglobulin Fc domain (B7H1-Ig), when produced in vivo by hydrodynamic injection of B7H1-Ig plasmid, ameliorates GVHD by augmenting proliferation and apoptosis of WT- alloreactive Tcon cells. Conversely, B7H1-Ig treatment has no impact on apoptosis but augments PD-1−/− T cell proliferation and worsens GVHD. These results indicate that B7H1/CD80 interaction augments Tcon cell proliferation, IL-2 production, and expression of PD-1, which leads to increased apoptosis mediated by the B7H1/PD1 pathway. Additionally, by engaging both PD-1 and CD80, B7H1-Ig can be a powerful therapeutic reagent for down-regulating the T cell immune response. PMID:25488990

  18. Durability of symmetrically and asymmetrically porous polybenzimidazole membranes for high temperature proton exchange membrane fuel cells

    Science.gov (United States)

    Jheng, Li-Cheng; Chang, Wesley Jen-Yang; Hsu, Steve Lien-Chung; Cheng, Po-Yang

    2016-08-01

    Two types of porous polybenzimidazole (PBI) membranes with symmetric and asymmetric morphologies were fabricated by the template-leaching method and characterized by scanning electron microscope (SEM). Their physicochemical properties were compared in terms of acid-doping level, proton conductivity, mechanical strength, and oxidative stability. The durability of fuel cell operation is one of the most challenging for the PBI based membrane electrode assembly (MEA) used in high-temperature proton exchange membrane fuel cells (HT-PEMFCs). In the present work, we carried out a long-term steady-state fuel cell test to compare the effect of membrane structure on the cell voltage degradation. It has also been demonstrated that the asymmetrically porous PBI could bring some notable improvements on the durability of fuel cell operation, the fuel crossover problem, and the phosphoric acid leakage.

  19. Radiation-Grafted Polymer Electrolyte Membranes for Water Electrolysis Cells: Evaluation of Key Membrane Properties.

    Science.gov (United States)

    Albert, Albert; Barnett, Alejandro O; Thomassen, Magnus S; Schmidt, Thomas J; Gubler, Lorenz

    2015-10-14

    Radiation-grafted membranes can be considered an alternative to perfluorosulfonic acid (PFSA) membranes, such as Nafion, in a solid polymer electrolyte electrolyzer. Styrene, acrylonitrile, and 1,3-diisopropenylbenzene monomers are cografted into preirradiated 50 μm ethylene tetrafluoroethylene (ETFE) base film, followed by sulfonation to introduce proton exchange sites to the obtained grafted films. The incorporation of grafts throughout the thickness is demonstrated by scanning electron microscopy/energy-dispersive X-ray spectroscopy (SEM/EDX) analysis of the membrane cross-sections. The membranes are analyzed in terms of grafting kinetics, ion-exchange capacity (IEC), and water uptake. The key properties of radiation-grafted membranes and Nafion, such as gas crossover, area resistance, and mechanical properties, are evaluated and compared. The plot of hydrogen crossover versus area resistance of the membranes results in a property map that indicates the target areas for membrane development for electrolyzer applications. Tensile tests are performed to assess the mechanical properties of the membranes. Finally, these three properties are combined to establish a figure of merit, which indicates that radiation-grafted membranes obtained in the present study are promising candidates with properties superior to those of Nafion membranes. A water electrolysis cell test is performed as proof of principle, including a comparison to a commercial membrane electrode assembly (MEA). PMID:26393461

  20. Nano thermo-hydrodynamics method for investigating cell membrane fluidity

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    As a barrier to compartmentalize cells,mem-branes form the interface between a cell and its surround-ings.The essential function of a membrane is to maintain a relatively stable environment in the cell,exchange sub-stances selectively and transfer energy and information continually from the outside.It is intriguing that above the phase transition temperature,the membrane lipid molecule will have three modes-lateral diffusion,rotational movement and flip-flop activity.These thermodynamic processes are vital to cell existence,growth,division,differentiation and are also responsible for hundreds of thousands of phenomena in life.Previously,species transport across the membrane was interpreted mainly from a phenomenological view using a lumped system model.Therefore,detailed flow processes occurred in the membrane domain and clues related to life mechanism were not sufficiently tackled.Such important issues can be clarifled by modeling nano scale thermal hydrodynamics over the gap space of a cell membrane.Previously observed complex membrane behaviors will be shown in this paper and explained by the thermally induced fluidic convections inside the membrane.A correlation between nano scale hydrodynamics,non-equilibrium thermodynamics and eell membrane activities is set up.The disclosed mechanisms are expected to provide a new viewpoint on the interaction between intracellular and extracellular processes through the membrane.

  1. Oncostatin M regulates membrane traffic and stimulates bile canalicular membrane biogenesis in HepG2 cells

    NARCIS (Netherlands)

    Van der Wouden, Johanna M.; Van IJzendoorn, Sven C.D.; Hoekstra, Dick

    2002-01-01

    Hepatocytes are the major epithelial cells of the liver and they display membrane polarity: the sinusoidal membrane representing the basolateral surface, while the bile canalicular membrane is typical of the apical membrane. In polarized HepG2 cells an endosomal organelle, SAC, fulfills a prominent

  2. Catalyst Degradation in High Temperature Proton Exchange Membrane Fuel Cells Based on Acid Doped Polybenzimidazole Membranes

    DEFF Research Database (Denmark)

    Cleemann, Lars Nilausen; Buazar, F.; Li, Qingfeng;

    2013-01-01

    Degradation of carbon supported platinum catalysts is a major failure mode for the long term durability of high temperature proton exchange membrane fuel cells based on phosphoric acid doped polybenzimidazole membranes. With Vulcan carbon black as a reference, thermally treated carbon black...

  3. Electron Spin Resonance Study of Fuel Cell Polymer Membrane Degradation

    Institute of Scientific and Technical Information of China (English)

    Alexander Panchenko; Elena Aleksandrova; Emil Roduner

    2005-01-01

    @@ 1Introduction The long term stability of the membrane is an important factor limiting the fuel cell lifetime. During extended use the membrane degrades, probably via reaction with hydroxyl and superoxide radicals which are regular intermediates of the oxygen reduction at the cathode. Only extremely stable membranes can withstand the aggressive chemical and physical environment in an operating fuel cell. Within a given set of operating conditions, intrinsic chemical and mechanical properties of the membrane as well as its water content impact its durability dramatically.

  4. Revealing the Dynamics of Thylakoid Membranes in Living Cyanobacterial Cells

    Science.gov (United States)

    Stingaciu, Laura-Roxana; O'Neill, Hugh; Liberton, Michelle; Urban, Volker S.; Pakrasi, Himadri B.; Ohl, Michael

    2016-01-01

    Cyanobacteria are photosynthetic prokaryotes that make major contributions to the production of the oxygen in the Earth atmosphere. The photosynthetic machinery in cyanobacterial cells is housed in flattened membrane structures called thylakoids. The structural organization of cyanobacterial cells and the arrangement of the thylakoid membranes in response to environmental conditions have been widely investigated. However, there is limited knowledge about the internal dynamics of these membranes in terms of their flexibility and motion during the photosynthetic process. We present a direct observation of thylakoid membrane undulatory motion in vivo and show a connection between membrane mobility and photosynthetic activity. High-resolution inelastic neutron scattering experiments on the cyanobacterium Synechocystis sp. PCC 6803 assessed the flexibility of cyanobacterial thylakoid membrane sheets and the dependence of the membranes on illumination conditions. We observed softer thylakoid membranes in the dark that have three-to four fold excess mobility compared to membranes under high light conditions. Our analysis indicates that electron transfer between photosynthetic reaction centers and the associated electrochemical proton gradient across the thylakoid membrane result in a significant driving force for excess membrane dynamics. These observations provide a deeper understanding of the relationship between photosynthesis and cellular architecture.

  5. Detecting Nanodomains in Living Cell Membrane by Fluorescence Correlation Spectroscopy

    Science.gov (United States)

    He, Hai-Tao; Marguet, Didier

    2011-05-01

    Cell membranes actively participate in numerous cellular functions. Inasmuch as bioactivities of cell membranes are known to depend crucially on their lateral organization, much effort has been focused on deciphering this organization on different length scales. Within this context, the concept of lipid rafts has been intensively discussed over recent years. In line with its ability to measure diffusion parameters with great precision, fluorescence correlation spectroscopy (FCS) measurements have been made in association with innovative experimental strategies to monitor modes of molecular lateral diffusion within the plasma membrane of living cells. These investigations have allowed significant progress in the characterization of the cell membrane lateral organization at the suboptical level and have provided compelling evidence for the in vivo existence of raft nanodomains. We review these FCS-based studies and the characteristic structural features of raft nanodomains. We also discuss the findings in regards to the current view of lipid rafts as a general membrane-organizing principle.

  6. Protein tyrosine phosphatase 1B deficiency ameliorates murine experimental colitis via the expansion of myeloid-derived suppressor cells.

    Directory of Open Access Journals (Sweden)

    Jing Zhang

    Full Text Available Protein tyrosine phosphatase 1B (PTP1B is a key molecule in modulating low-degree inflammatory conditions such as diabetes. The role of PTP1B in other chronic inflammations, however, remains unknown. Here, we report that PTP1B deficiency ameliorates Dextran Sulfate Sodium (DSS-induced murine experimental colitis via expanding CD11b(+Gr-1(+ myeloid-derived suppressor cells (MDSCs. Employing DSS-induced murine experimental colitis as inflammatory animal model, we found that, compared with wild-type littermates, PTP1B-null mice demonstrated greater resistance to DSS-induced colitis, as reflected by slower weight-loss, greater survival rates and decreased PMN and macrophage infiltration into the colon. The evidence collectively also demonstrated that the resistance of PTP1B-null mice to DSS-induced colitis is based on the expansion of MDSCs. First, PTP1B-null mice exhibited a greater frequency of MDSCs in the bone marrow (BM, peripheral blood and spleen when compared with wild-type littermates. Second, PTP1B levels in BM leukocytes were significantly decreased after cells were induced into MDSCs by IL-6 and GM-CSF, and the MDSC induction occurred more rapidly in PTP1B-null mice than in wild-type littermates, suggesting PTP1B as a negative regulator of MDSCs. Third, the adoptive transfer of MDSCs into mice with DSS-colitis significantly attenuated colitis, which accompanies with a decreased serum IL-17 level. Finally, PTP1B deficiency increased the frequency of MDSCs from BM cells likely through enhancing the activities of signal transducer and activator of transcription 3 (STAT3 and Janus kinase 2 (JAK2. In conclusion, our study provides the first evidences that PTP1B deficiency ameliorates murine experimental colitis via expanding MDSCs.

  7. A Mushroom Extract Piwep from Phellinus igniarius Ameliorates Experimental Autoimmune Encephalomyelitis by Inhibiting Immune Cell Infiltration in the Spinal Cord

    Directory of Open Access Journals (Sweden)

    Lan Li

    2014-01-01

    Full Text Available The present study aimed to evaluate the therapeutic potential of a mushroom extract from Phellinus igniarius in an animal model of multiple sclerosis. The medicinal mushroom, Phellinus igniarius, contains biologically active compounds that modulate the human immune system. Experimental autoimmune encephalomyelitis (EAE was induced by immunization with myelin oligodendrocyte glycoprotein (MOG 35–55 in C57BL/6 female mice. A water-ethanol extract of Phellinus igniarius (Piwep was delivered intraperitoneally every other day for the entire experimental course. Three weeks after the initial immunization, demyelination and immune cell infiltration in the spinal cord were examined. Piwep injection profoundly decreased the daily incidence rate and clinical score of EAE. The Piwep-mediated inhibition of the clinical course of EAE was accompanied by suppression of demyelination and infiltration of encephalitogenic immune cells including CD4+ T cells, CD8+ T cells, macrophages, and B cells in the spinal cord. Piwep reduced expression of vascular cell adhesion molecule-1 (VCAM-1 in the spinal cord and integrin-α4 in the lymph node of EAE mice. Piwep also inhibited proliferation of lymphocytes and secretion of interferon-γ in the lymph node of EAE mice. The results suggest that a mushroom extract, Piwep, may have a high therapeutic potential for ameliorating multiple sclerosis progression.

  8. How the antimicrobial peptides destroy bacteria cell membrane: Translocations vs. membrane buckling

    Science.gov (United States)

    Golubovic, Leonardo; Gao, Lianghui; Chen, Licui; Fang, Weihai

    2012-02-01

    In this study, coarse grained Dissipative Particle Dynamics simulation with implementation of electrostatic interactions is developed in constant pressure and surface tension ensemble to elucidate how the antimicrobial peptide molecules affect bilayer cell membrane structure and kill bacteria. We find that peptides with different chemical-physical properties exhibit different membrane obstructing mechanisms. Peptide molecules can destroy vital functions of the affected bacteria by translocating across their membranes via worm-holes, or by associating with membrane lipids to form hydrophilic cores trapped inside the hydrophobic domain of the membranes. In the latter scenario, the affected membranes are strongly corrugated (buckled) in accord with very recent experimental observations [G. E. Fantner et al., Nat. Nanotech., 5 (2010), pp. 280-285].

  9. Measurement of the nonlinear elasticity of red blood cell membranes

    Science.gov (United States)

    Park, Yongkeun; Best, Catherine A.; Kuriabova, Tatiana; Henle, Mark L.; Feld, Michael S.; Levine, Alex J.; Popescu, Gabriel

    2011-05-01

    The membranes of human red blood cells (RBCs) are a composite of a fluid lipid bilayer and a triangular network of semiflexible filaments (spectrin). We perform cellular microrheology using the dynamic membrane fluctuations of the RBCs to extract the elastic moduli of this composite membrane. By applying known osmotic stresses, we measure the changes in the elastic constants under imposed strain and thereby determine the nonlinear elastic properties of the membrane. We find that the elastic nonlinearities of the shear modulus in tensed RBC membranes can be well understood in terms of a simple wormlike chain model. Our results show that the elasticity of the spectrin network can mostly account for the area compression modulus at physiological osmolality, suggesting that the lipid bilayer has significant excess area. As the cell swells, the elastic contribution from the now tensed lipid membrane becomes dominant.

  10. Membrane curvature in cell biology: An integration of molecular mechanisms.

    Science.gov (United States)

    Jarsch, Iris K; Daste, Frederic; Gallop, Jennifer L

    2016-08-15

    Curving biological membranes establishes the complex architecture of the cell and mediates membrane traffic to control flux through subcellular compartments. Common molecular mechanisms for bending membranes are evident in different cell biological contexts across eukaryotic phyla. These mechanisms can be intrinsic to the membrane bilayer (either the lipid or protein components) or can be brought about by extrinsic factors, including the cytoskeleton. Here, we review examples of membrane curvature generation in animals, fungi, and plants. We showcase the molecular mechanisms involved and how they collaborate and go on to highlight contexts of curvature that are exciting areas of future research. Lessons from how membranes are bent in yeast and mammals give hints as to the molecular mechanisms we expect to see used by plants and protists.

  11. Oxidative degradation of polybenzimidazole membranes as electrolytes for high temperature proton exchange membrane fuel cells

    DEFF Research Database (Denmark)

    Liao, J.H.; Li, Qingfeng; Rudbeck, H.C.;

    2011-01-01

    Polybenzimidazole membranes imbibed with acid are emerging as a suitable electrolyte material for high-temperature polymer electrolyte fuel cells. The oxidative stability of polybenzimidazole has been identified as an important issue for the long-term durability of such cells. In this paper...... the oxidative degradation of the polymer membrane was studied under the Fenton test conditions by the weight loss, intrinsic viscosity, size exclusion chromatography, scanning electron microscopy and Fourier transform infrared spectroscopy. During the Fenton test, significant weight losses depending...

  12. The Flocculating Cationic Polypetide from Moringa oleifera Seeds Damages Bacterial Cell Membranes by Causing Membrane Fusion.

    Science.gov (United States)

    Shebek, Kevin; Schantz, Allen B; Sines, Ian; Lauser, Kathleen; Velegol, Stephanie; Kumar, Manish

    2015-04-21

    A cationic protein isolated from the seeds of the Moringa oleifera tree has been extensively studied for use in water treatment in developing countries and has been proposed for use in antimicrobial and therapeutic applications. However, the molecular basis for the antimicrobial action of this peptide, Moringa oleifera cationic protein (MOCP), has not been previously elucidated. We demonstrate here that a dominant mechanism of MOCP antimicrobial activity is membrane fusion. We used a combination of cryogenic electron microscopy (cryo-EM) and fluorescence assays to observe and study the kinetics of fusion of membranes in liposomes representing model microbial cells. We also conducted cryo-EM experiments on E. coli cells where MOCP was seen to fuse the inner and outer membranes. Coarse-grained molecular dynamics simulations of membrane vesicles with MOCP molecules were used to elucidate steps in peptide adsorption, stalk formation, and fusion between membranes.

  13. Nafion-layered silicate nanocomposite membrane for fuel cell application

    OpenAIRE

    Thomassin, Jean-Michel; Pagnoulle, Christophe; Bizzari, Didier; Caldarella, Giuseppe; Germain, Albert; Jérôme, Robert

    2004-01-01

    Direct methanol fuel cells (DMFCs) using a proton exchange membrane as electrolyte is an attractive option for electricity generation. The most widely used membrane in the DMFC system is based on a perfluorinated polymer bearing sulfonic acid functions like Nafion®. The latter combines chemical, mechanical and thermal stability and high protonic conductivity but shows elevated methanol permeability. We propose the preparation of a novel type of hybrid membranes to tentatively solve this probl...

  14. Improved Membrane Materials for PEM Fuel Cell Application

    Energy Technology Data Exchange (ETDEWEB)

    Kenneth A. Mauritz; Robert B. Moore

    2008-06-30

    The overall goal of this project is to collect and integrate critical structure/property information in order to develop methods that lead to significant improvements in the durability and performance of polymer electrolyte membrane fuel cell (PEMFC) materials. This project is focused on the fundamental improvement of PEMFC membrane materials with respect to chemical, mechanical and morphological durability as well as the development of new inorganically-modified membranes.

  15. Nanoscale cell membrane organization : a near-field optical view

    NARCIS (Netherlands)

    Koopman, Marjolein

    2006-01-01

    The cell plasma membrane of eukaryotic cells is a lipid bi-layer that separates the cell cytosol from the extracellular environment. The composition and organization of proteins and lipids within this bi-layer have a direct impact on many cellular processes, since they form the senses of the cell. T

  16. Methanol extract of Ficus platyphylla ameliorates seizure severity, cognitive deficit and neuronal cell loss in pentylenetetrazole-kindled mice.

    Science.gov (United States)

    Chindo, Ben A; Schröder, Helmut; Becker, Axel

    2015-01-15

    Decoctions of Ficus plathyphylla are used in Nigeria's folk medicine to manage epilepsy for many years and their efficacies are widely acclaimed among the rural communities of Northern Nigeria. In this study, we examined the ameliorative effects of the standardized methanol extract of Ficus platyphylla (FP) stem bark on seizure severity, cognitive deficit and neuronal cell loss in pentylenetetrazole-kindled mice. The (35)S-GTPγS, glutamate and γ-aminobutyric acid receptors binding properties of the extract were also evaluated. Male CD-1 mice were kindled with an initial subeffective dose of pentylenetetrazole (PTZ, 37.5mg/kg, i.p.) for a total of 13 convulsant injections and the treatment groups concurrently received FP (100 and 200mg/kg). Control animals received the same number of saline injections. Twenty-four h after kindling completion the animals' learning performance was tested in a two-way shuttle-box. The animals were challenged with another subeffective dose of PTZ (32.5mg/kg, i.p.) on day 7 after kindling completion. Animals were sacrificed a day after the challenged experiment and the brains were processed for histological investigation. FP ameliorates seizure severity, cognitive deficits and neuronal cell loss in PTZ kindled mice. Components of the extract showed affinity for GABAergic and glutamatergic receptors. Glutamate release was diminished and the (35)S-GTPγS binding assay revealed no intrinsic activity at glutamatergic receptors. Our results revealed that FP contains psychoactive secondary metabolites with anticonvulsant properties, thus supporting the isolation and development of the biologically active components of this medicinal plant as antiepileptic agents.

  17. Investigating cell membrane structure and dynamics with TCSPC-FLIM

    Science.gov (United States)

    Le Marois, Alix; Owen, Dylan M.; Suhling, Klaus

    2015-03-01

    We report the use of Time-Correlated Single Photon Counting (TCSPC) in a polarization-resolved Fluorescence Lifetime Imaging (FLIM) setup for the investigation of cell membrane structural and dynamic properties. This technique allows us to study the orientation and mobility of fluorescent membrane dyes, namely di-4-ANEPPDHQ and DiO, in model bilayers of different lipid compositions. Dipole alignment and extent of rotational motion can be linked to membrane order and fluidity. Comparison of the time-resolved anisotropy decays of the two fluorescent dyes suggests that rotational motion of membrane constituents is restricted in liquid-ordered phases, and appears to be limited to the region of aliphatic tails in liquid-disordered phases. In living cells, understanding the membrane structure provides crucial information on its functional properties, such as exo- and endocytosis, cell mobility and signal transduction.

  18. Galectin-9 Ameliorates Con A-Induced Hepatitis by Inducing CD4+CD25low/int Effector T-Cell Apoptosis and Increasing Regulatory T Cell Number

    Science.gov (United States)

    Zhang, Mengying; Zhong, Min; Suo, Qifeng

    2012-01-01

    Background T cell-mediated liver damage is a key event in the pathogenesis of many chronic human liver diseases, such as liver transplant rejection, primary biliary cirrhosis, and sclerosing cholangitis. We and other groups have previously reported that galectin-9, one of the β-galactoside binding animal lectins, might be potentially useful in the treatment of T cell-mediated diseases. To evaluate the direct effect of galectin-9 on hepatitis induced by concanavalin A (Con A) administration in mice and to clarify the mechanisms involved, we administered galectin-9 into mice, and evaluated its therapeutic effect on Con A-induced hepatitis. Methodology/Principal Findings Galectin-9 was administrated i.v. to Balb/c mice 30 min before Con A injection. Compared with no treatment, galectin-9 pretreatment significantly reduced serum ALT and AST levels and improved liver histopathology, suggesting an ameliorated hepatitis. This therapeutic effect was not only attributable to a blunted Th1 immune response, but also to an increased number in regulatory T cells, as reflected in a significantly increased apoptosis of CD4+CD25low/int effector T cells and in reduced proinflammatory cytokine levels. Conclusion/Significance Our findings constitute the first preclinical data indicating that interfering with TIM-3/galectin-9 signaling in vivo could ameliorate Con A-induced hepatitis. This strategy may represent a new therapeutic approach in treating human diseases involving T cell activation. PMID:23118999

  19. Toughness of membranes applied in polymer electrolyte fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Kiefer, J.; Brack, H.P.; Scherer, G.G. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    Since several years we apply the radiation-grafting technique to prepare polymeric membranes for application in polymer electrolyte fuel cells (PEFCs). Our investigations presented here focus on changes in toughness of these materials after the various synthesis steps and the importance of membrane toughness for their application in PEFCs. (author) 2 figs., 4 refs.

  20. Prism-patterned Nafion membrane for enhanced water transport in polymer electrolyte membrane fuel cell

    Science.gov (United States)

    Kim, Sang Moon; Kang, Yun Sik; Ahn, Chiyeong; Jang, Segeun; Kim, Minhyoung; Sung, Yung-Eun; Yoo, Sung Jong; Choi, Mansoo

    2016-06-01

    Here, we report a simple and effective strategy to enhance the performance of the polymer electrolyte membrane fuel cell by imprinting prism-patterned arrays onto the Nafion membrane, which provides three combined effects directly related to the device performance. First, a locally thinned membrane via imprinted micro prism-structures lead to reduced membrane resistance, which is confirmed by electrochemical impedance spectroscopy. Second, increments of the geometrical surface area of the prism-patterned Nafion membrane compared to a flat membrane result in the increase in the electrochemical active surface area. Third, the vertically asymmetric geometry of prism structures in the cathode catalyst layer lead to enhanced water transport, which is confirmed by oxygen gain calculation. To explain the enhanced water transport, we propose a simple theoretical model on removal of water droplets existing in the asymmetric catalyst layer. These three combined effects achieved via incorporating prism patterned arrays into the Nafion membrane effectively enhance the performance of the polymer electrolyte membrane fuel cell.

  1. BLEND MEMBRANES FOR DIRECT METHANOL AND PROTON EXCHANGE MEMBRANE FUEL CELLS

    Institute of Scientific and Technical Information of China (English)

    Perurnal Bhavani; Dharmalingam Sangeetha

    2012-01-01

    Sulphonated polystyrene ethylene butylene polystyrene (SPSEBS) prepared with 35% sulphonation was found to be highly elastic and enlarged up to 300%-400% of its initial length.It absorbed over 110% of water by weight.A major drawback of this membrane is its poor mechanical properties which are not adequate for use as polymer electrolytes in fuel cells.To overcome this,SPSEBS was blended with poly(vinylidene fluoride) (PVDF),a hydrophobic polymer.The blend membranes showed better mechanical properties than the base polymer.The effect of PVDF content on water uptake,ion exchange capacity and proton conductivity of the blend membranes was investigated.This paper presents the results of recent studies applied to develop an optimized in-house membrane electrode assembly (MEA) preparation technique combining catalyst ink spraying and assembly hot pressing.Easy steps were chosen in this preparation technique in order to simplify the method,aiming at cost reduction.The open circuit voltage for the cell with SPSEBS is 0.980 V which is higher compared to that of the cell with Nafion 117 (0.790 V).From this study,it is concluded that a polymer electrolyte membrane suitable for proton exchange membrane fuel cell (PEMFC) and direct methanol fuel cell (DMFC) application can be obtained by blending SPSEBS and PVDF in appropriate proportions.The methanol permeability and selectivity showed a strong influence on DMFC performance.

  2. Sulfated Titania-Silica Reinforced Nafion Nanocomposite Membranes for Proton Exchange Membrane Fuel Cells.

    Science.gov (United States)

    Abu Sayeed, M D; Kim, Hee Jin; Gopalan, A I; Kim, Young Ho; Lee, Kwang-Pill; Choi, Sang-June

    2015-09-01

    Sulfated titania-silica (SO4(2-)-/TiO2-SiO2) composites were prepared by a sol-gel method with sulfate reaction and characterized by X-ray diffraction (XRD) and energy-dispersive X-ray spectroscopy (EDS). The nanometric diameter and geometry of the sulfated titania-silica (STS) was investigated by transmission electron microscopy (TEM). A small amount of the STS composite in the range of 0.5-3 wt% was then added as reinforcing into the Nafion membrane by water-assisted solution casting method to prepare STS reinforced Nafion nanocomposite membranes (STS-Nafion nanocomposite membranes). The additional functional groups, sulfate groups, of the nanocomposite membrane having more surface oxygenated groups enhanced the fuel cell membrane properties. The STS-Nafion nanocomposite membranes exhibited improved water uptake compared to that of neat Nafion membranes, whereas methanol uptake values were decreased dramatically improved thermal property of the prepared nanocomposite membranes were measured by thermogravimetric analysis (TGA). Furthermore, increased ion exchange capacity values were obtained by thermoacidic pretreatment of the nanocomposite membranes. PMID:26716283

  3. Gangliosides in cell recognition and membrane protein regulation

    OpenAIRE

    Lopez, Pablo H. H.; Schnaar, Ronald L.

    2009-01-01

    Gangliosides, sialic acid-bearing glycosphingolipids, are expressed on all vertebrate cells, and are the major glycans on nerve cells. They are anchored to the plasma membrane through their ceramide lipids with their varied glycans extending into the extracellular space. Through sugar-specific interactions with glycan binding proteins on apposing cells, gangliosides function as receptors in cell-cell recognition, regulating natural killer cell cytotoxicity via Siglec-7 binding, myelin-axon in...

  4. Total Lignans of Schisandra chinensis Ameliorates Aβ1-42-Induced Neurodegeneration with Cognitive Impairment in Mice and Primary Mouse Neuronal Cells.

    Science.gov (United States)

    Zhao, Xu; Liu, Chunmei; Xu, Mengjie; Li, Xiaolong; Bi, Kaishun; Jia, Ying

    2016-01-01

    Lignan compounds extracted from Schisandra chinensis (Turcz.) Baill. have been reported to possess various biological activities, and have potential in the treatment of Alzheimer's disease. This study was designed to investigate the effects of total lignans of Schisandra chinensis (TLS) on cognitive function and neurodegeneration in the model of AD induced by Aβ1-42 in vivo and in vitro. It was found that intragastric infusion with TLS (50 and 200 mg/kg) to Aβ1-42-induced mice significantly increased the number of avoidances in the shuttle-box test and swimming time in the target quadrant in the Morris water maze test. TLS at dose of 200 mg/kg significantly restored the activities of total antioxidant capacity (T-AOC), as well as the level of malondialdehyde (MDA) both in the hippocampus and cerebral cortex in mice. Results of histopathological examination indicated that TLS noticeably ameliorated the neurodegeneration in the hippocampus in mice. On the other hand, TLS (100 μM) could protect the Aβ1-42-induced primary mouse neuronal cells by blocking the decrease of mitochondrial membrane potential (MMP), change the expressions of Bcl-2 (important regulator in the mitochondria apoptosis pathway). Moreover, TLS also decreased the activity of β-secretase 1 (BACE1), crucial protease contributes to the hydrolysis of amyloid precursor protein (APP), and inhibited the expression of JKN/p38, which involved in the MAPKs signaling pathways in both mice and primary mouse neuronal cells. In summary, TLS might protect against cognitive deficits and neurodegeneration by releasing the damage of oxidative stress, inhibiting the expression of BACE1 and the MAPKs inflammatory signaling pathways. PMID:27035824

  5. Total Lignans of Schisandra chinensis Ameliorates Aβ1-42-Induced Neurodegeneration with Cognitive Impairment in Mice and Primary Mouse Neuronal Cells.

    Science.gov (United States)

    Zhao, Xu; Liu, Chunmei; Xu, Mengjie; Li, Xiaolong; Bi, Kaishun; Jia, Ying

    2016-01-01

    Lignan compounds extracted from Schisandra chinensis (Turcz.) Baill. have been reported to possess various biological activities, and have potential in the treatment of Alzheimer's disease. This study was designed to investigate the effects of total lignans of Schisandra chinensis (TLS) on cognitive function and neurodegeneration in the model of AD induced by Aβ1-42 in vivo and in vitro. It was found that intragastric infusion with TLS (50 and 200 mg/kg) to Aβ1-42-induced mice significantly increased the number of avoidances in the shuttle-box test and swimming time in the target quadrant in the Morris water maze test. TLS at dose of 200 mg/kg significantly restored the activities of total antioxidant capacity (T-AOC), as well as the level of malondialdehyde (MDA) both in the hippocampus and cerebral cortex in mice. Results of histopathological examination indicated that TLS noticeably ameliorated the neurodegeneration in the hippocampus in mice. On the other hand, TLS (100 μM) could protect the Aβ1-42-induced primary mouse neuronal cells by blocking the decrease of mitochondrial membrane potential (MMP), change the expressions of Bcl-2 (important regulator in the mitochondria apoptosis pathway). Moreover, TLS also decreased the activity of β-secretase 1 (BACE1), crucial protease contributes to the hydrolysis of amyloid precursor protein (APP), and inhibited the expression of JKN/p38, which involved in the MAPKs signaling pathways in both mice and primary mouse neuronal cells. In summary, TLS might protect against cognitive deficits and neurodegeneration by releasing the damage of oxidative stress, inhibiting the expression of BACE1 and the MAPKs inflammatory signaling pathways.

  6. Total Lignans of Schisandra chinensis Ameliorates Aβ1-42-Induced Neurodegeneration with Cognitive Impairment in Mice and Primary Mouse Neuronal Cells.

    Directory of Open Access Journals (Sweden)

    Xu Zhao

    Full Text Available Lignan compounds extracted from Schisandra chinensis (Turcz. Baill. have been reported to possess various biological activities, and have potential in the treatment of Alzheimer's disease. This study was designed to investigate the effects of total lignans of Schisandra chinensis (TLS on cognitive function and neurodegeneration in the model of AD induced by Aβ1-42 in vivo and in vitro. It was found that intragastric infusion with TLS (50 and 200 mg/kg to Aβ1-42-induced mice significantly increased the number of avoidances in the shuttle-box test and swimming time in the target quadrant in the Morris water maze test. TLS at dose of 200 mg/kg significantly restored the activities of total antioxidant capacity (T-AOC, as well as the level of malondialdehyde (MDA both in the hippocampus and cerebral cortex in mice. Results of histopathological examination indicated that TLS noticeably ameliorated the neurodegeneration in the hippocampus in mice. On the other hand, TLS (100 μM could protect the Aβ1-42-induced primary mouse neuronal cells by blocking the decrease of mitochondrial membrane potential (MMP, change the expressions of Bcl-2 (important regulator in the mitochondria apoptosis pathway. Moreover, TLS also decreased the activity of β-secretase 1 (BACE1, crucial protease contributes to the hydrolysis of amyloid precursor protein (APP, and inhibited the expression of JKN/p38, which involved in the MAPKs signaling pathways in both mice and primary mouse neuronal cells. In summary, TLS might protect against cognitive deficits and neurodegeneration by releasing the damage of oxidative stress, inhibiting the expression of BACE1 and the MAPKs inflammatory signaling pathways.

  7. Cell-free system for synthesizing membrane proteins cell free method for synthesizing membrane proteins

    Science.gov (United States)

    Laible, Philip D; Hanson, Deborah K

    2013-06-04

    The invention provides an in vitro method for producing proteins, membrane proteins, membrane-associated proteins, and soluble proteins that interact with membrane-associated proteins for assembly into an oligomeric complex or that require association with a membrane for proper folding. The method comprises, supplying intracytoplasmic membranes from organisms; modifying protein composition of intracytoplasmic membranes from organism by modifying DNA to delete genes encoding functions of the organism not associated with the formation of the intracytoplasmic membranes; generating appropriate DNA or RNA templates that encode the target protein; and mixing the intracytoplasmic membranes with the template and a transcription/translation-competent cellular extract to cause simultaneous production of the membrane proteins and encapsulation of the membrane proteins within the intracytoplasmic membranes.

  8. Novel Membrane for Highly Efficient Fuel Cells Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Proton Exchange Membrane (PEM) fuel cells and electrolyzers are key technologies for NASA space systems utilizing hydrogen, oxygen, or water as reactants. In order...

  9. Novel High Temperature Membrane for PEM Fuel Cells Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovation proposed in this STTR program is a high temperature membrane to increase the efficiency and power density of PEM fuel cells. The NASA application is...

  10. Membrane Protein Mobility and Orientation Preserved in Supported Bilayers Created Directly from Cell Plasma Membrane Blebs.

    Science.gov (United States)

    Richards, Mark J; Hsia, Chih-Yun; Singh, Rohit R; Haider, Huma; Kumpf, Julia; Kawate, Toshimitsu; Daniel, Susan

    2016-03-29

    Membrane protein interactions with lipids are crucial for their native biological behavior, yet traditional characterization methods are often carried out on purified protein in the absence of lipids. We present a simple method to transfer membrane proteins expressed in mammalian cells to an assay-friendly, cushioned, supported lipid bilayer platform using cell blebs as an intermediate. Cell blebs, expressing either GPI-linked yellow fluorescent proteins or neon-green fused transmembrane P2X2 receptors, were induced to rupture on glass surfaces using PEGylated lipid vesicles, which resulted in planar supported membranes with over 50% mobility for multipass transmembrane proteins and over 90% for GPI-linked proteins. Fluorescent proteins were tracked, and their diffusion in supported bilayers characterized, using single molecule tracking and moment scaling spectrum (MSS) analysis. Diffusion was characterized for individual proteins as either free or confined, revealing details of the local lipid membrane heterogeneity surrounding the protein. A particularly useful result of our bilayer formation process is the protein orientation in the supported planar bilayer. For both the GPI-linked and transmembrane proteins used here, an enzymatic assay revealed that protein orientation in the planar bilayer results in the extracellular domains facing toward the bulk, and that the dominant mode of bleb rupture is via the "parachute" mechanism. Mobility, orientation, and preservation of the native lipid environment of the proteins using cell blebs offers advantages over proteoliposome reconstitution or disrupted cell membrane preparations, which necessarily result in significant scrambling of protein orientation and typically immobilized membrane proteins in SLBs. The bleb-based bilayer platform presented here is an important step toward integrating membrane proteomic studies on chip, especially for future studies aimed at understanding fundamental effects of lipid interactions

  11. Bipolar membranes in forward bias region for fuel cell reactors

    International Nuclear Information System (INIS)

    Three bipolar membranes, two home-made composed of commercial cation (DuPont) and anion (FuMA-Tech) exchange membranes (called Nafion/FT-FAA and Nafion/FT-FAS) and a commercial one, BP-1 from FuMA-Tech, were investigated in order to characterize their suitability to use in a H2/O2 fuel cell intended to produce hydrogen peroxide on the cathode instead of water. The Nafion/FT-FAA and Nafion/FT-FAS membranes were prepared using a hot-pressing method. The optimal hot-pressing conditions were determined by measuring the ionic conductivity of the membranes. The latter was observed to depend on the relative humidity of the bipolar membrane. Of the studied bipolar membranes, Nafion/FT-FAA showed the best performance. The transport number of protons measured in a concentration cell was observed to depend on the direction of the proton diffusion flux through these membranes so that transport numbers of ca. unity were obtained when the cation exchange side faced the solution with higher proton concentration. In the opposite case, when the higher concentration faced anion exchange side, the transport number of proton was clearly lower, indicating the usefulness of the bipolar membranes for hydrogen peroxide production in the fuel cell

  12. Intravacuolar Membranes Regulate CD8 T Cell Recognition of Membrane-Bound Toxoplasma gondii Protective Antigen

    Directory of Open Access Journals (Sweden)

    Jodie Lopez

    2015-12-01

    Full Text Available Apicomplexa parasites such as Toxoplasma gondii target effectors to and across the boundary of their parasitophorous vacuole (PV, resulting in host cell subversion and potential presentation by MHC class I molecules for CD8 T cell recognition. The host-parasite interface comprises the PV limiting membrane and a highly curved, membranous intravacuolar network (IVN of uncertain function. Here, using a cell-free minimal system, we dissect how membrane tubules are shaped by the parasite effectors GRA2 and GRA6. We show that membrane association regulates access of the GRA6 protective antigen to the MHC I pathway in infected cells. Although insertion of GRA6 in the PV membrane is key for immunogenicity, association of GRA6 with the IVN limits presentation and curtails GRA6-specific CD8 responses in mice. Thus, membrane deformations of the PV regulate access of antigens to the MHC class I pathway, and the IVN may play a role in immune modulation.

  13. Electrospun nanofibre composite polymer electrolyte fuel cell and electrolysis membranes

    OpenAIRE

    Sood, Rakhi; Cavaliere, Sara; Rozière, Jacques; Jones, Deborah

    2016-01-01

    International audience Large-scale commercialisation of Proton Exchange Membrane Fuel Cell (PEMFC) technology for automotive and stationary applications demands the development of a robust, durable and cost-effective materials. In this regard, ionomer membranes being present at the core of PEMFCs are required to maintain elevated proton conductivity, high mechanical strength and low gas permeability during the lifespan of the fuel cell. These challenges are addressed by investigating novel...

  14. Andrographolide Ameliorate Rheumatoid Arthritis by Promoting the Development of Regulatory T Cells

    Directory of Open Access Journals (Sweden)

    Muhaimin Rifa’i

    2010-10-01

    Full Text Available Andrographolide is important material present in Andrographis paniculata. This material can promote T cell to develop into regulatory T cell, CD4+CD25+. CD4+CD25+ regulatory T (Treg cells, a component of the innate immune response, which play a key role in the maintenance of self-tolerance, have become the focus of numerous studies over the last decade. These cells have the potential to be exploited to treat autoimmune disease. These cells inhibit the immune response in an Ag-nonspecific manner, interacting with other T cells. These T cell populations actively control the properties of other immune cells by suppressing their functional activity to prevent autoimmunity but also influence the immune response to allergens as well as against tumor cells and pathogens. In this experiment we showed that active compound from Andrographis paniculata namely andrographolide can induce active regulatory T cell that has an efficacy to cure rheumatoid arthritis mice model.

  15. Tetrandrine stimulates the apoptosis of hepatic stellate cells and ameliorates development of fibrosis in a thioacetamide rat model

    Institute of Scientific and Technical Information of China (English)

    Ming-Fu Yin; Li-Hua Lian; Dong-Ming Piao; Ji-Xing Nan

    2007-01-01

    AIM: To investigate the therapeutic effect of tetrandrine on liver fibrosis induced by thioacetamide in rats in vivo and in vitro.METHODS: In vitro study: we investigated the effect of tetrandrine on the apoptosis of rat hepatic stellate cells transformed by simian virus 40 (T-HSC/Cl-6), which retains the features of activated cells. In vivo study:hepatic fibrosis was induced in rats by thioacetamide.Tetrandrine was given orally to rats at doses of 5, 10 or 20 mg/kg for 4 wk compared with intraperitoneal injection of interferon-r.RESULTS: In vitro study: 5, 10 or 25 μg/mL of tetrandrine-induced activation of caspase-3 in t-HSC/Cl-6 cells occurred dose-depenclently. In vivo study: tetrandrine treatment as well as interferon-r significantly ameliorated the development of fibrosis as determined by lowered serum levels of aspartate aminotransferase (AST),alanine aminotransferase (ALT), total bilirubin (T-Bil)and the levels of liver hydroxyproline (Hyp), hyaluronic acid (HA), laminin (LN) and also improved histological findings. The effects of tetrandrine at the concentration of 20 mg/kg were better than the other concentration groups.CONCLUSION: Tetrandrine promotes the apoptosis of activated HSCs in vitro. Tetrandrine administration can prevent liver fibrosis and liver damage induced by thioacetamide in rats in vivo, indicating that it might exert a direct effect on rat HSCs.

  16. Surface-enhanced Raman spectroscopy of the endothelial cell membrane.

    Directory of Open Access Journals (Sweden)

    Simon W Fogarty

    Full Text Available We applied surface-enhanced Raman spectroscopy (SERS to cationic gold-labeled endothelial cells to derive SERS-enhanced spectra of the bimolecular makeup of the plasma membrane. A two-step protocol with cationic charged gold nanoparticles followed by silver-intensification to generate silver nanoparticles on the cell surface was employed. This protocol of post-labelling silver-intensification facilitates the collection of SERS-enhanced spectra from the cell membrane without contribution from conjugated antibodies or other molecules. This approach generated a 100-fold SERS-enhancement of the spectral signal. The SERS spectra exhibited many vibrational peaks that can be assigned to components of the cell membrane. We were able to carry out spectral mapping using some of the enhanced wavenumbers. Significantly, the spectral maps suggest the distribution of some membrane components are was not evenly distributed over the cells plasma membrane. These results provide some possible evidence for the existence of lipid rafts in the plasma membrane and show that SERS has great potential for the study and characterization of cell surfaces.

  17. Andrographolide Ameliorate Rheumatoid Arthritis by Promoting the Development of Regulatory T Cells

    OpenAIRE

    Muhaimin Rifa’i

    2010-01-01

    Andrographolide is important material present in Andrographis paniculata. This material can promote T cell to develop into regulatory T cell, CD4+CD25+. CD4+CD25+ regulatory T (Treg) cells, a component of the innate immune response, which play a key role in the maintenance of self-tolerance, have become the focus of numerous studies over the last decade. These cells have the potential to be exploited to treat autoimmune disease. These cells inhibit the immune respo...

  18. Spray deposition of Nafion membranes: Electrode-supported fuel cells

    Science.gov (United States)

    Bayer, Thomas; Pham, Hung Cuong; Sasaki, Kazunari; Lyth, Stephen Matthew

    2016-09-01

    Fuel cells are a key technology for the successful transition towards a hydrogen society. In order to accelerate fuel cell commercialization, improvements in performance are required. Generally, polymer electrolyte membrane fuel cells (PEFCs) are membrane-supported; the electrocatalyst layer is sprayed onto both sides of the membrane, and sandwiched between carbon-based gas diffusion layers (GDLs). In this work we redesign the membrane electrode assembly (MEA) and fabricate an electrode-supported PEFC. First the electrocatalyst layer is sprayed onto the GDL, and then Nafion dispersion is sprayed over the top of this to form a thin membrane. This method has the advantage of simplifying the fabrication process, allowing the fabrication of extremely thin electrolyte layers (down to ∼10 μm in this case), and reducing the amount of ionomer required in the cell. Electrode-supported PEFCs operate at significantly increased power density compared to conventional membrane-supported PEFCs, with a maximum of 581 mW/cm2 at 80 °C (atmospheric pressure, air at the cathode). Impedance spectroscopy confirmed that the origin of the improved performance was an 80% reduction in the membrane resistance due the thinner Nafion layer. This novel fabrication method is a step towards cheaper, thinner, fully printable PEFCs with high power density and efficiency.

  19. Membrane transport of anandamide through resealed human red blood cell membranes

    DEFF Research Database (Denmark)

    Bojesen, I.N.; Hansen, Harald S.

    2005-01-01

    of unidirectional flux from inside to outside is 0.361 ± 0.023 s. The rate constant of unidirectional flux from the membrane to BSA in the medium ([BSA]) increases with the square root of [BSA] in accordance with the theory of an unstirred layer around ghosts. Anandamide passed through the red blood cell membrane...... very rapidly, within seconds. At a molar ratio of anandamide to BSA of...

  20. The amelioration of phagocytic ability in microglial cells by curcumin through the inhibition of EMF-induced pro-inflammatory responses

    OpenAIRE

    He, Gen-Lin; Liu, Yong; Min LI; Chen, Chun-Hai; Gao, Peng; Yu, Zheng-Ping; Yang, Xue-Sen

    2014-01-01

    Background Insufficient clearance by microglial cells, prevalent in several neurological conditions and diseases, is intricately intertwined with MFG-E8 expression and inflammatory responses. Electromagnetic field (EMF) exposure can elicit the pro-inflammatory activation and may also trigger an alteration of the clearance function in microglial cells. Curcumin has important roles in the anti-inflammatory and phagocytic process. Here, we evaluated the ability of curcumin to ameliorate the phag...

  1. Classification of Cells with Membrane Staining and/or Fixation Based on Cellular Specific Membrane Capacitance and Cytoplasm Conductivity

    Directory of Open Access Journals (Sweden)

    Song-Bin Huang

    2015-01-01

    Full Text Available Single-cell electrical properties (e.g., specific membrane capacitance (Cspecific membrane and cytoplasm conductivity (σcytoplasm have been regarded as potential label-free biophysical markers for the evaluation of cellular status. However, whether there exist correlations between these biophysical markers and cellular status (e.g., membrane-associate protein expression is still unknown. To further validate the utility of single-cell electrical properties in cell type classification, Cspecific membrane and σcytoplasm of single PC-3 cells with membrane staining and/or fixation were analyzed and compared in this study. Four subtypes of PC-3 cells were prepared: untreated PC-3 cells, PC-3 cells with anti-EpCAM staining, PC-3 cells with fixation, and fixed PC-3 cells with anti-EpCAM staining. In experiments, suspended single cells were aspirated through microfluidic constriction channels with raw impedance data quantified and translated to Cspecific membrane and σcytoplasm. As to experimental results, significant differences in Cspecific membrane were observed for both live and fixed PC-3 cells with and without membrane staining, indicating that membrane staining proteins can contribute to electrical properties of cellular membranes. In addition, a significant decrease in σcytoplasm was located for PC-3 cells with and without fixation, suggesting that cytoplasm protein crosslinking during the fixation process can alter the cytoplasm conductivity. Overall, we have demonstrated how to classify single cells based on cellular electrical properties.

  2. Heme Oxygenase-1 Ameliorates Dextran Sulfate Sodium-induced Acute Murine Colitis by Regulating Th17/Treg Cell Balance*

    Science.gov (United States)

    Zhang, Liya; Zhang, Yanjie; Zhong, Wenwei; Di, Caixia; Lin, Xiaoliang; Xia, Zhenwei

    2014-01-01

    Inflammatory bowel disease (IBD), including ulcerative colitis and Crohn's disease, is a group of autoimmune diseases characterized by nonspecific inflammation in the gastrointestinal tract. Recent investigations suggest that activation of Th17 cells and/or deficiency of regulatory T cells (Treg) is involved in the pathogenesis of IBD. Heme oxygenase (HO)-1 is a protein with a wide range of anti-inflammatory and immune regulatory function, which exerts significantly protective roles in various T cell-mediated diseases. In this study, we aim to explore the immunological regulation of HO-1 in the dextran sulfate sodium-induced model of experimental murine colitis. BALB/c mice were administered 4% dextran sulfate sodium orally; some mice were intraperitoneally pretreated with HO-1 inducer hemin or HO-1 inhibitor stannum protoporphyrin IX. The results show that hemin enhances the colonic expression of HO-1 and significantly ameliorates the symptoms of colitis with improved histological changes, accompanied by a decreased proportion of Th17 cells and increased number of Tregs in mesenteric lymph node and spleen. Moreover, induction of HO-1 down-regulates retinoic acid-related orphan receptor γt expression and IL-17A levels, while promoting Treg-related forkhead box p3 (Foxp3) expression and IL-10 levels in colon. Further study in vitro revealed that up-regulated HO-1 switched the naive T cells to Tregs when cultured under a Th17-inducing environment, which involved in IL-6R blockade. Therefore, HO-1 may exhibit anti-inflammatory activity in the murine model of acute experimental colitis via regulating the balance between Th17 and Treg cells, thus providing a possible novel therapeutic target in IBD. PMID:25112868

  3. Amelioration of Sickle Cell Pain after Parathyroidectomy in Two Patients with Concurrent Hyperparathyroidism: An Interesting Finding

    Directory of Open Access Journals (Sweden)

    John Muthu

    2016-01-01

    Full Text Available Patients with sickle cell disease have high morbidity and healthcare utilization due to repeated painful crises. Some coexisting conditions which cause pain similar to sickle cell disease may go undiagnosed in these patients. We report two adults with concurrent hyperparathyroidism who experienced significant improvement in sickle cell pain following parathyroidectomy thereby pointing to hyperparathyroidism as the principal causative factor for their pain. Meticulous evaluation for parathyroid disorders can be rewarding in sickle cell disease.

  4. Cytotoxicity of bovine and porcine collagen membranes in mononuclear cells.

    Science.gov (United States)

    Moura, Camilla Christian Gomes; Soares, Priscilla Barbosa Ferreira; Carneiro, Karine Fernandes; Souza, Maria Aparecida de; Magalhães, Denildo

    2012-01-01

    This study compared the cytotoxicity and the release of nitric oxide induced by collagen membranes in human mononuclear cells. Peripheral blood was collected from each patient and the separation of mononuclear cells was performed by Ficoll. Then, 2x10(5) cells were plated in 48-well culture plates under the membranes in triplicate. The polystyrene surface was used as negative control. Cell viability was assessed by measuring mitochondrial activity (MTT) at 4, 12 and 24 h, with dosage levels of nitrite by the Griess method for the same periods. Data had non-normal distribution and were analyzed by the Kruskal-Wallis test (p<0.05). Statistically significant differences (p<0.05) were observed between the membranes and the control in the experimental period, although there was a significant reduction in viability over time (p<0.01). At 4 and 12 h, the porcine membrane induced a higher release of nitrite compared with the control and bovine membrane, respectively (p<0.01), and this difference was maintained at 24 h (p<0.05). This in vitro study showed that the porcine collagen membrane induces an increased production of proinflammatory mediators by mononuclear cells in the first hours of contact, decreasing with time. PMID:22460313

  5. Transplantation of fetal liver epithelial progenitor cells ameliorates experimental liver fibrosis in mice

    Institute of Scientific and Technical Information of China (English)

    Jin-Fang Zheng; Li-Jian Liang; Chang-Xiong Wu; Jin-Song Chen; Zhen-Sheng Zhang

    2006-01-01

    AIM: To investigate the effect of transplanted fetal liver epithelial progenitor (FLEP) cells on liver fibrosis in mice.METHODS: FLEP cells were isolated from embryonal day (ED) 14 BALB/c mice and transplanted into female syngenic BALB/c mice (n = 60). After partial hepatectomy (PH), diethylnitrosamine (DEN) was administered to induce liver fibrosis. Controls received FLEP cells and non-supplemented drinking water, the model group received DEN-spiked water, and the experimental group received FLEP cells and DEN.Mice were killed after 1, 2, and 3 mo, and alanine aminotransferase (ALT), aspartate aminotransferase (AST), hyaluronic acid (HA), and laminin (LN) in serum,and hydroxyproline (Hyp) content in liver were assessed.Alpha-smooth muscle actin (α-SMA) of liver was tested by immunohistochemistry. Transplanted male mice FLEP cells were identified by immunocytochemistry for sry (sex determination region for Y chromosome) protein.RESULTS: Serum ALT, AST, HA, and LN were markedly reduced by transplanted FLEP cells. Liver Hyp content and α-SMA staining in mice receiving FLEP cells were lower than that of the model group, which was consistent with altered liver pathology. Transplanted cells proliferated and differentiated into hepatocytes and bile duct epithelial cells with 30%-50% repopulation in the liver fibrosis induced by DEN after 3 mo.CONCLUSION: Transplanted FLEP cells proliferate and differentiate into hepatocytes and bile duct epithelial cells with high repopulation capacity in the fiberized liver induced by DEN, which restores liver function and reduces liver fibrosis.

  6. Rituximab therapy reduces organ-specific T cell responses and ameliorates experimental autoimmune encephalomyelitis.

    Directory of Open Access Journals (Sweden)

    Nancy L Monson

    Full Text Available Recent clinical trials have established B cell depletion by the anti-CD20 chimeric antibody Rituximab as a beneficial therapy for patients with relapsing-remitting multiple sclerosis (MS. The impact of Rituximab on T cell responses remains largely unexplored. In the experimental autoimmune encephalomyelitis (EAE model of MS in mice that express human CD20, Rituximab administration rapidly depleted peripheral B cells and strongly reduced EAE severity. B cell depletion was also associated with diminished Delayed Type Hypersensitivity (DTH and a reduction in T cell proliferation and IL-17 production during recall immune response experiments. While Rituximab is not considered a broad immunosuppressant, our results indicate a role for B cells as a therapeutic cellular target in regulating encephalitogenic T cell responses in specific tissues.

  7. Inhibiting Matrix Metalloproteinase 3 Ameliorates Neuronal Loss in the Ganglion Cell Layer of Rats in Retinal Ischemia/Reperfusion.

    Science.gov (United States)

    Hu, Tu; You, Qiuting; Chen, Dan; Tong, Jianbin; Shang, Lei; Luo, Jia; Qiu, Yi; Yu, Huimin; Zeng, Leping; Huang, Jufang

    2016-05-01

    It has been demonstrated that matrix metalloproteinase 3 (MMP3) is integrally involved in the neuronal degeneration of the central nervous system by promoting glial activation, neuronal apoptosis and damage to the brain-blood barrier. However, whether MMP3 also contributes to the neuronal degeneration induced by retinal ischemia/reperfusion is still uncertain. In the present study, we detected the cellular localization of MMP3 in adult rat retinae and explored the relationship of its expression with neuronal loss in the ganglion cell layer (GCL) in retinal ischemia/reperfusion. We found that MMP3 was widely expressed in many cells throughout the layers of the rat retinae, including Vertebrate neuron-specific nuclear protein (NeuN)-, parvalbumin-, calbindin-, protein kinase C-α-, glial fibrillary acidic protein-, glutamine synthetase- and CD11b-positive cells. Furthermore, all rats were treated with high intraocular pressure (HIOP) for 1 h (h) and sacrificed at 6 h, 1 day (d), 3 d, and 7 d after HIOP. Compared to the normal control, the expression of both proenzyme MMP3 and active MMP3 were significantly up-regulated after HIOP treatment without alteration of the laminar distribution pattern. Moreover, inhibiting MMP3 ameliorated the loss of NeuN-positive cells in the GCL following HIOP. In summary, our data demonstrates that MMP3 is expressed in multiple types of neurons and glial cells in normal rat retinae. Simultaneously, the up-regulation of its expression and activity are closely involved in neuronal loss in the GCL in retinal ischemia/reperfusion. PMID:26830289

  8. Treadmill exercise ameliorates motor dysfunction through inhibition of Purkinje cell loss in cerebellum of valproic acid-induced autistic rats.

    Science.gov (United States)

    Cho, Han-Sam; Kim, Tae-Woon; Ji, Eun-Sang; Park, Hye-Sang; Shin, Mal-Soon; Baek, Seung-Soo

    2016-08-01

    Autism is a complex developmental disorder with impairments in social interaction, communication, repetitive behavior and motor skills. Exercise enhances cognitive function, ameliorates motor dysfunction, and provides protective profits against neurodegeneration. In the present study, we evaluated the effect of treadmill exercise on the motor coordination and Purkinje cell loss in relation with reactive astrocytes and microglial activation in the cerebellum using valproic acid (VPA)-induced autism rat model. On the 12th day of pregnancy, the pregnant rats in the VPA-exposed group received intraperitoneal injections of 600-mg/kg VPA. After birth, the rat pups were divided into four groups: the control group, the exercise group, the VPA-treated group, the VPA-treated and exercise group. The rat pups in the exercise groups were forced to run on a treadmill for 30 min once a day, 5 times a week for 4 weeks. In the present results, motor balance and coordination was disturbed by induction of autism, in contrast, treadmill exercise alleviated motor dysfunction in the autistic rats. Purkinje cell loss, reactive astrocytes, and microglial activation were occurred by induction of autism, in contrast, treadmill exercise enhanced survival rate of Purkinje neurons through inhibition of reactive astrocytes and microglia in the autistic rats. The present study showed that exercise may provide a potential therapeutic strategy for the alleviation of motor dysfunction in autistic patients. PMID:27656625

  9. Kallikrein transduced mesenchymal stem cells protect against anti-GBM disease and lupus nephritis by ameliorating inflammation and oxidative stress.

    Directory of Open Access Journals (Sweden)

    Yajuan Li

    Full Text Available Previously we have shown that kallikreins (klks play a renoprotective role in nephrotoxic serum induced nephritis. In this study, we have used mesenchymal stem cells (MSCs as vehicles to deliver klks into the injured kidneys and have measured their therapeutic effect on experimental antibody induced nephritis and lupus nephritis. Human KLK-1 (hKLK1 gene was transduced into murine MSCs using a retroviral vector to generate a stable cell line, hKLK1-MSC, expressing high levels of hKLK1. 129/svj mice subjected to anti-GBM induced nephritis were transplanted with 10(6 hKLK1-MSCs and hKLK1 expression was confirmed in the kidneys. Compared with vector-MSCs injected mice, the hKLK1-MSCs treated mice showed significantly reduced proteinuria, blood urea nitrogen (BUN and ameliorated renal pathology. Using the same strategy, we treated lupus-prone B6.Sle1.Sle3 bicongenic mice with hKLK1-MSCs and demonstrated that hKLK1-MSCs delivery also attenuated lupus nephritis. Mechanistically, hKLK1-MSCs reduced macrophage and T-lymphocyte infiltration into the kidney by suppressing the expression of inflammation cytokines. Moreover, hKLK1 transduced MSCs were more resistant to oxidative stress-induced apoptosis. These findings advance genetically modified MSCs as potential gene delivery tools for targeting therapeutic agents to the kidneys in order to modulate inflammation and oxidative stress in lupus nephritis.

  10. Treadmill exercise ameliorates motor dysfunction through inhibition of Purkinje cell loss in cerebellum of valproic acid-induced autistic rats

    Science.gov (United States)

    Cho, Han-Sam; Kim, Tae-Woon; Ji, Eun-Sang; Park, Hye-Sang; Shin, Mal-Soon; Baek, Seung-Soo

    2016-01-01

    Autism is a complex developmental disorder with impairments in social interaction, communication, repetitive behavior and motor skills. Exercise enhances cognitive function, ameliorates motor dysfunction, and provides protective profits against neurodegeneration. In the present study, we evaluated the effect of treadmill exercise on the motor coordination and Purkinje cell loss in relation with reactive astrocytes and microglial activation in the cerebellum using valproic acid (VPA)-induced autism rat model. On the 12th day of pregnancy, the pregnant rats in the VPA-exposed group received intraperitoneal injections of 600-mg/kg VPA. After birth, the rat pups were divided into four groups: the control group, the exercise group, the VPA-treated group, the VPA-treated and exercise group. The rat pups in the exercise groups were forced to run on a treadmill for 30 min once a day, 5 times a week for 4 weeks. In the present results, motor balance and coordination was disturbed by induction of autism, in contrast, treadmill exercise alleviated motor dysfunction in the autistic rats. Purkinje cell loss, reactive astrocytes, and microglial activation were occurred by induction of autism, in contrast, treadmill exercise enhanced survival rate of Purkinje neurons through inhibition of reactive astrocytes and microglia in the autistic rats. The present study showed that exercise may provide a potential therapeutic strategy for the alleviation of motor dysfunction in autistic patients.

  11. Human salivary gland stem cells ameliorate hyposalivation of radiation-damaged rat salivary glands.

    Science.gov (United States)

    Jeong, Jaemin; Baek, Hyunjung; Kim, Yoon-Ju; Choi, Youngwook; Lee, Heekyung; Lee, Eunju; Kim, Eun Sook; Hah, Jeong Hun; Kwon, Tack-Kyun; Choi, Ik Joon; Kwon, Heechung

    2013-11-15

    Salivary function in mammals may be defective for various reasons, such as aging, Sjogren's syndrome or radiation therapy in head and neck cancer patients. Recently, tissue-specific stem cell therapy has attracted public attention as a next-generation therapeutic reagent. In the present study, we isolated tissue-specific stem cells from the human submandibular salivary gland (hSGSCs). To efficiently isolate and amplify hSGSCs in large amounts, we developed a culture system (lasting 4-5 weeks) without any selection. After five passages, we obtained adherent cells that expressed mesenchymal stem cell surface antigen markers, such as CD44, CD49f, CD90 and CD105, but not the hematopoietic stem cell markers, CD34 and CD45, and that were able to undergo adipogenic, osteogenic and chondrogenic differentiation. In addition, hSGSCs were differentiated into amylase-expressing cells by using a two-step differentiation method. Transplantation of hSGSCs to radiation-damaged rat salivary glands rescued hyposalivation and body weight loss, restored acinar and duct cell structure, and decreased the amount of apoptotic cells. These data suggest that the isolated hSGSCs, which may have characteristics of mesenchymal-like stem cells, could be used as a cell therapy agent for the damaged salivary gland.

  12. Proton Exchange Membrane Fuel Cell Characterization for Electric Vehicle Applications

    OpenAIRE

    Swan, D.H.; Dickinson, B.E.; Arikara, M.P.

    1994-01-01

    This paper presents experimental data and an analysis of a proton exchange membrane fuel cell system for electric vehicle applications. The dependence of the fuel cell system's performance on air stoichiometry, operating temperature, and reactant gas pressure was assessed in terms of the fuel cell's polarity and power density-efficiency graphs. All the experiments were performed by loading the fuel cell with resistive heater coils which could be controlled to provide a constant current or con...

  13. Polybenzimidazole Membranes Containing Benzimidazole Side Groups for High Temprature Polymer Electrolyte Membrane Fuel Cells

    DEFF Research Database (Denmark)

    Yang, Jingshuai; Li, Xueyuan; Xu, Yizin;

    2013-01-01

    Polybenzimidazole (PBI) with a high molecular weight of 69,000 was first synthesized. It was afterwards grafted with benzimidazole pendant groups on the backbones. The acid doped benzimidaozle grafted PBI membranes were investigated and characterized including fuel cell tests at elevated...... temperatures without humidification. At an acid doping level of 13.1 mol H3PO4 per average molar repeat unit, the PBI membranes with a benzimidazole grafting degree of 10.6% demonstrated a conductivity of 0.15 S cm-1 and a H2-air fuel cell peak power density of 378 mW cm-2 at 180 oC at ambient pressure without...

  14. Signal amelioration of electrophoretically deposited whole-cell biosensors using external electric fields

    Energy Technology Data Exchange (ETDEWEB)

    Ben-Yoav, Hadar, E-mail: benyoav@post.tau.ac.il [Department of Physical Electronics, School of Electrical Engineering, Faculty of Engineering, Tel Aviv University, Tel-Aviv 69978 (Israel); Amzel, Tal [Department of Physical Electronics, School of Electrical Engineering, Faculty of Engineering, Tel Aviv University, Tel-Aviv 69978 (Israel); Sternheim, Marek [Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel-Aviv, 69978 (Israel); Belkin, Shimshon [Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem, 91904 (Israel); Rubin, Adi [Department of Molecular Microbiology and Biotechnology, Faculty of Life Sciences, Tel Aviv University, Tel-Aviv, 69978 (Israel); Shacham-Diamand, Yosi [Department of Physical Electronics, School of Electrical Engineering, Faculty of Engineering, Tel Aviv University, Tel-Aviv 69978 (Israel); Freeman, Amihay [Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel-Aviv, 69978 (Israel)

    2011-11-01

    Highlights: > We present an electrochemical whole-cell biochip that can apply electric fields. > We examine the integration of cells on a biochip using electrophoretic deposition. > The effect of electric fields on the whole-cell biosensor has been demonstrated. > Relatively short DC electric pulse improves the performance of whole-cell biosensors. > Prolonged AC electric fields deteriorated the whole-cell biosensor performance. - Abstract: This paper presents an integrated whole-cell biochip system where functioning cells are deposited on the solid micro-machined surfaces while specially designed indium tin oxide electrodes that can be used to apply controllable electric fields during various stages; for example during cell deposition. The electrodes can be used also for sensing currents associated with the sensing mechanisms of electrochemical whole-cell biosensors. In this work a new approach integrating live bacterial cells on a biochip using electrophoretic deposition is presented. The biomaterial deposition technique was characterized under various driving potentials and chamber configurations. An analytical model of the electrophoretic deposition kinetics was developed and presented here. The deposited biomass included genetically engineered bacterial cells that may respond to toxic material exposure by expressing proteins that react with specific analytes generating electrochemically active byproducts. In this study the effect of external electric fields on the whole-cell biochips has been successfully developed and tested. The research hypothesis was that by applying electric fields on bacterial whole-cells, their permeability to the penetration of external analytes can be increased. This effect was tested and the results are shown here. The effect of prolonged and short external electric fields on the bioelectrochemical signal generated by sessile bacterial whole-cells in response to the presence of toxins was studied. It was demonstrated that relatively

  15. Signal amelioration of electrophoretically deposited whole-cell biosensors using external electric fields

    International Nuclear Information System (INIS)

    Highlights: → We present an electrochemical whole-cell biochip that can apply electric fields. → We examine the integration of cells on a biochip using electrophoretic deposition. → The effect of electric fields on the whole-cell biosensor has been demonstrated. → Relatively short DC electric pulse improves the performance of whole-cell biosensors. → Prolonged AC electric fields deteriorated the whole-cell biosensor performance. - Abstract: This paper presents an integrated whole-cell biochip system where functioning cells are deposited on the solid micro-machined surfaces while specially designed indium tin oxide electrodes that can be used to apply controllable electric fields during various stages; for example during cell deposition. The electrodes can be used also for sensing currents associated with the sensing mechanisms of electrochemical whole-cell biosensors. In this work a new approach integrating live bacterial cells on a biochip using electrophoretic deposition is presented. The biomaterial deposition technique was characterized under various driving potentials and chamber configurations. An analytical model of the electrophoretic deposition kinetics was developed and presented here. The deposited biomass included genetically engineered bacterial cells that may respond to toxic material exposure by expressing proteins that react with specific analytes generating electrochemically active byproducts. In this study the effect of external electric fields on the whole-cell biochips has been successfully developed and tested. The research hypothesis was that by applying electric fields on bacterial whole-cells, their permeability to the penetration of external analytes can be increased. This effect was tested and the results are shown here. The effect of prolonged and short external electric fields on the bioelectrochemical signal generated by sessile bacterial whole-cells in response to the presence of toxins was studied. It was demonstrated that

  16. Ameliorating replicative senescence of human bone marrow stromal cells by PSMB5 overexpression

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Li, E-mail: luli7300@126.com [Department of Anatomy, Shanxi Medical University, Taiyuan 030001 (China); Song, Hui-Fang; Wei, Jiao-Long; Liu, Xue-Qin [Department of Anatomy, Shanxi Medical University, Taiyuan 030001 (China); Song, Wen-Hui [Department of Orthopaedics, The Second Affiliated Hospital of Shanxi Medical University, Taiyuan 030001 (China); Yan, Ba-Yi; Yang, Gui-Jiao [Department of Anatomy, Shanxi Medical University, Taiyuan 030001 (China); Li, Ang [Department of Medicine, University of Hong Kong Faculty of Medicine, Hong Kong (Hong Kong); Department of Anatomy, University of Hong Kong Faculty of Medicine, Hong Kong (Hong Kong); Yang, Wu-Lin, E-mail: wulinyoung@163.com [School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei 230009 (China); Laboratory of Metabolic Medicine, Singapore Bioimaging Consortium (SBIC), Agency for Science, Technology and Research - A*STAR (Singapore)

    2014-01-24

    Highlights: • PSMB5 overexpression restores the differentiation potential of aged hBMSCs. • PSMB5 overexpression enhances the proteasomal activity of late-stage hBMSCs. • PSMB5 overexpression inhibits replicative senescence and improved cell viability. • PSMB5 overexpression promotes cell growth by upregulating the Cyclin D1/CDK4 complex. - Abstract: Multipotent human bone marrow stromal cells (hBMSCs) potentially serve as a source for cell-based therapy in regenerative medicine. However, in vitro expansion was inescapably accompanied with cell senescence, characterized by inhibited proliferation and compromised pluripotency. We have previously demonstrated that this aging process is closely associated with reduced 20S proteasomal activity, with down-regulation of rate-limiting catalytic β-subunits particularly evident. In the present study, we confirmed that proteasomal activity directly contributes to senescence of hBMSCs, which could be reversed by overexpression of the β5-subunit (PSMB5). Knocking down PSMB5 led to decreased proteasomal activity concurrent with reduced cell proliferation in early-stage hBMSCs, which is similar to the senescent phenotype observed in late-stage cells. In contrast, overexpressing PSMB5 in late-stage cells efficiently restored the normal activity of 20S proteasomes and promoted cell growth, possibly via upregulating the Cyclin D1/CDK4 complex. Additionally, PSMB5 could enhance cell resistance to oxidative stress, as evidenced by the increased cell survival upon exposing senescent hBMSCs to hydrogen peroxide. Furthermore, PSMB5 overexpression retained the pluripotency of late-stage hBMSCs by facilitating their neural differentiation both in vitro and in vivo. Collectively, our work reveals a critical role of PSMB5 in 20S proteasome-mediated protection against replicative senescence, pointing to a possible strategy for maintaining the integrity of culture-expanded hBMSCs by manipulating the expression of PSMB5.

  17. Ameliorating replicative senescence of human bone marrow stromal cells by PSMB5 overexpression

    International Nuclear Information System (INIS)

    Highlights: • PSMB5 overexpression restores the differentiation potential of aged hBMSCs. • PSMB5 overexpression enhances the proteasomal activity of late-stage hBMSCs. • PSMB5 overexpression inhibits replicative senescence and improved cell viability. • PSMB5 overexpression promotes cell growth by upregulating the Cyclin D1/CDK4 complex. - Abstract: Multipotent human bone marrow stromal cells (hBMSCs) potentially serve as a source for cell-based therapy in regenerative medicine. However, in vitro expansion was inescapably accompanied with cell senescence, characterized by inhibited proliferation and compromised pluripotency. We have previously demonstrated that this aging process is closely associated with reduced 20S proteasomal activity, with down-regulation of rate-limiting catalytic β-subunits particularly evident. In the present study, we confirmed that proteasomal activity directly contributes to senescence of hBMSCs, which could be reversed by overexpression of the β5-subunit (PSMB5). Knocking down PSMB5 led to decreased proteasomal activity concurrent with reduced cell proliferation in early-stage hBMSCs, which is similar to the senescent phenotype observed in late-stage cells. In contrast, overexpressing PSMB5 in late-stage cells efficiently restored the normal activity of 20S proteasomes and promoted cell growth, possibly via upregulating the Cyclin D1/CDK4 complex. Additionally, PSMB5 could enhance cell resistance to oxidative stress, as evidenced by the increased cell survival upon exposing senescent hBMSCs to hydrogen peroxide. Furthermore, PSMB5 overexpression retained the pluripotency of late-stage hBMSCs by facilitating their neural differentiation both in vitro and in vivo. Collectively, our work reveals a critical role of PSMB5 in 20S proteasome-mediated protection against replicative senescence, pointing to a possible strategy for maintaining the integrity of culture-expanded hBMSCs by manipulating the expression of PSMB5

  18. Coating nanofiber scaffolds with beta cell membrane to promote cell proliferation and function

    Science.gov (United States)

    Chen, Wansong; Zhang, Qiangzhe; Luk, Brian T.; Fang, Ronnie H.; Liu, Younian; Gao, Weiwei; Zhang, Liangfang

    2016-05-01

    The cell membrane cloaking technique has emerged as an intriguing strategy in nanomaterial functionalization. Coating synthetic nanostructures with natural cell membranes bestows the nanostructures with unique cell surface antigens and functions. Previous studies have focused primarily on development of cell membrane-coated spherical nanoparticles and the uses thereof. Herein, we attempt to extend the cell membrane cloaking technique to nanofibers, a class of functional nanomaterials that are drastically different from nanoparticles in terms of dimensional and mechanophysical characteristics. Using pancreatic beta cells as a model cell line, we demonstrate successful preparation of cell membrane-coated nanofibers and validate that the modified nanofibers possess an antigenic exterior closely resembling that of the source beta cells. When such nanofiber scaffolds are used to culture beta cells, both cell proliferation rate and function are significantly enhanced. Specifically, glucose-dependent insulin secretion from the cells is increased by near five-fold compared with the same beta cells cultured in regular, unmodified nanofiber scaffolds. Overall, coating cell membranes onto nanofibers could add another dimension of flexibility and controllability in harnessing cell membrane functions and offer new opportunities for innovative applications.

  19. Cell Membrane-Cloaked Nanoparticles for Targeted Therapeutics

    Science.gov (United States)

    Luk, Brian Tsengchi

    The advent of nanoparticle-based delivery systems has made a significant impact on clinical patient outcomes. In recent decades, myriad nanoparticle-based therapeutic agents have been developed for the treatment and management of ailments such as cancer, diabetes, pain, bacterial infections, and asthma, among many others. Nanotherapeutics offer many distinct advantages over conventional free drug formulations. For example, nanoparticles are able to accumulate at tumor sites by extravasation through leaky vasculature at tumor sites via the enhanced permeability and retention (EPR) effect; nanoparticles can also be tailored to have desirable characteristics, such as prolonged circulation in the blood stream, improved drug encapsulation, and sustained or triggered drug release. Currently, a growing number of nanoformulations with favorable pharmacological profiles and promising efficacy are being used in clinical trials for the treatment of various cancers. Building on the success of these encouraging clinical results, new engineering strategies have emerged that combine synthetic nanoparticles with natural biomaterials to create nature-inspired biomimetic delivery systems. The work presented in this dissertation focuses on the biointerfacing between synthetic and natural materials, namely in the manifestation of cell membrane-coated nanoparticles. By exploiting the natural functionalities of source cell membranes, cell membrane-cloaked nanoparticles have huge potential in the delivery of therapeutic agents for a variety of applications. The first portion of this thesis will focus on understanding the fundamentals underlying cell membrane coating on synthetic nanoparticles. First introduced in 2011, cell membrane-cloaked nanoparticles showed immediate promise in drug delivery applications, but further understanding was necessary to be able to harness the full potential of the membrane coating platform. The first section provides further insight into the interfacial

  20. Interferon gamma peptidomimetic targeted to hepatic stellate cells ameliorates acute and chronic liver fibrosis in vivo

    NARCIS (Netherlands)

    Bansal, Ruchi; Prakash, Jai; De Ruiter, Marieke; Poelstra, Klaas

    2014-01-01

    Hepatic stellate cells play a crucial role in the pathogenesis of hepatic fibrosis. Thus, pharmacological inhibition of pro-fibrotic activities of these cells might lead to an effective therapy for this disease. Among the potent antifibrotics, interferon gamma (IFN gamma), a proinflammatory cytokine

  1. Application of Proton Exchange Membrane Fuel Cell for Lift Trucks

    DEFF Research Database (Denmark)

    Hosseinzadeh, Elham; Rokni, Masoud

    2011-01-01

    in order to account for water back diffusion. Further Membrane water content is assumed to be a linear function of thickness. PEM fuel cell is working at rather low operating conditions which makes it suitable for the automotive systems. In this paper motive power part of a lift truck has been investigated......In this study a general PEMFC (Proton Exchange Membrane Fuel Cell) model has been developed to take into account the effect of pressure losses, water crossovers, humidity aspects and voltage over potentials in the cells. The model is zero dimensional and it is assumed to be steady state. The effect...

  2. Nonlinear electro-mechanobiological behavior of cell membrane during electroporation

    KAUST Repository

    Deng, Peigang

    2012-01-01

    A nonlinear electroporation (EP) model is proposed to study the electro-mechanobiological behavior of cell membrane during EP, by taking the nonlinear large deformation of the membrane into account. The proposed model predicts the critical transmembrane potential and the activation energy for EP, the equilibrium pore size, and the resealing process of the pore. Single-cell EP experiments using a micro EP chip were conducted on chicken red blood cells at different temperatures to determine the activation energy and the critical transmembrane potential for EP. The experimental results are in good agreement with the theoretical predictions. © 2012 American Institute of Physics.

  3. Attachment of killed Mycoplasma gallisepticum cells and membranes to erythrocytes

    International Nuclear Information System (INIS)

    To correlate viability with attachment capacity, Mycoplasma gallisepticum cells harvested at different growth phases and treated by various agents were tested for their capacity to attach to human erythrocytes. The results show that viability per se is not essential for M. gallisepticum attachment to erythrocytes, as cells killed by ultraviolet irradiation and membranes isolated by lysing M. gallisepticum cells by various means retained attachment capacity. However, treatment of the mycoplasmas by protein-denaturing agents, such as heart, glutaraldehyde, or prolonged exposure to low pH, drastically affected or even abolished attachment, supporting the protein nature of the mycoplasma membrane components responsible for specific binding to the sialoglycoprotein receptors on the erythrocytes

  4. Direct Cytoskeleton Forces Cause Membrane Softening in Red Blood Cells

    Science.gov (United States)

    Rodríguez-García, Ruddi; López-Montero, Iván; Mell, Michael; Egea, Gustavo; Gov, Nir S.; Monroy, Francisco

    2015-01-01

    Erythrocytes are flexible cells specialized in the systemic transport of oxygen in vertebrates. This physiological function is connected to their outstanding ability to deform in passing through narrow capillaries. In recent years, there has been an influx of experimental evidence of enhanced cell-shape fluctuations related to metabolically driven activity of the erythroid membrane skeleton. However, no direct observation of the active cytoskeleton forces has yet been reported to our knowledge. Here, we show experimental evidence of the presence of temporally correlated forces superposed over the thermal fluctuations of the erythrocyte membrane. These forces are ATP-dependent and drive enhanced flickering motions in human erythrocytes. Theoretical analyses provide support for a direct force exerted on the membrane by the cytoskeleton nodes as pulses of well-defined average duration. In addition, such metabolically regulated active forces cause global membrane softening, a mechanical attribute related to the functional erythroid deformability. PMID:26083919

  5. Interaction of injectable neurotropic drugs with the red cell membrane.

    Science.gov (United States)

    Reinhart, Walter H; Lubszky, Szabina; Thöny, Sandra; Schulzki, Thomas

    2014-10-01

    The normal red blood cell (RBC) shape is a biconcave discocyte. An intercalation of a drug in the outer half of the membrane lipid bilayer leads to echinocytosis, an intercalation in the inner half to stomatocytosis. We have used the shape transforming capacity of RBCs as a model to analyse the membrane interaction potential of various neurotropic drugs. Chlorpromazine, clomipramine, citalopram, clonazepam, and diazepam induced a reversible stomatocytosis, phenytoin induced echinocytosis, while the anticonvulsants levetiracetam, valproic acid and phenobarbital had no effect. This diversity of RBC shape transformations suggests that the pharmacological action is not linked to the membrane interaction. We conclude that this simple RBC shape transformation assay could be a useful tool to screen for potential drug interactions with cell membranes. PMID:24997296

  6. Membrane Mechanics of Endocytosis in Cells with Turgor

    CERN Document Server

    Dmitrieff, Serge

    2015-01-01

    Endocytosis is an essential process by which cells internalize a piece of plasma membrane and material from the outside. In cells with turgor, pressure opposes membrane defor- mations, and increases the amount of force that has to be generated by the endocytic machinery. To determine this force, and calculate the shape of the membrane, we used physical theory to model an elastic surface under pressure. Accurate fits of experimental profiles are obtained assuming that the coated membrane is highly rigid and preferentially curved at the endocytic site. The forces required from the actin machinery peaks at the onset of deformation, indicating that once invagination has been initiated, endocytosis is unlikely to stall before completion. Coat proteins do not lower the initiation force but may affect the process by the curvature they induce. In the presence of isotropic curvature inducers, pulling the tip of the invagination can trigger the formation of a neck at the base of the invagination. Hence direct neck cons...

  7. Altered Membrane Potential and Electrolyte in Sickle Cell Anemia

    Directory of Open Access Journals (Sweden)

    JK Nnodim

    2014-01-01

    Full Text Available Aim: This study has been to evaluate the level of membrane potential and electrolyte in sickle cell disease patients. Material and methods: 100 sickle cell patients in steady state ages 5 to 30 years attending General Hospital Owerri were used in the study while 100 normal subjects (HbAA were used as control. Also 30 HbSS in crisis have been involved. Results: The results obtained showed that the level of membrane potential was significantly lower in sickle cell anemia as compared to the controls. Also, the level of the electrolyte was found significantly decreased in HbSS when compared with HbAA at P<0.05. Conclusion: The membrane potential translates to energy which means that there is less energy in sickle cell disease which is linked to electrolyte imbalance. Hence people with sickle disease should be monitored closely for their electrolytes to avoid crisis.

  8. Endothelial monolayers on collagen-coated nanofibrous membranes: cell-cell and cell-ECM interactions.

    Science.gov (United States)

    Kang, Donggu; Kim, Jeong Hwa; Jeong, Young Hun; Kwak, Jong-Young; Yoon, Sik; Jin, Songwan

    2016-06-01

    Endothelial cells (ECs) form a monolayer lining over the entire vascular wall and play an important role in maintaining vascular homeostasis and cancer metastasis. Loss of proper endothelial function can lead to vascular diseases. Therefore, the endothelial monolayer is particularly important in tissue regeneration and mimicking vascular tissue in vitro. Numerous studies have described the effects of ECs on nanofibers made from a variety of synthetic polymer materials designed to mimic the extracellular matrix (ECM). However, little is known about maintaining the integrity of ECs in in vitro systems. Here we describe polycaprolactone nanofibrous membranes coated with collagen gel that overcome many limitations of conventional nanofibers used for engineering endothelia. We investigated cell-cell and cell-ECM junctional complexes using collagen-coated and conventional nanofibrous membranes. Conventional nanofibrous membranes alone did not form a monolayer with ECs, whereas collagen-coated nanofibrous membranes did. Several concentrations of collagen in the gel coating promoted the formation of cell-cell junctional complexes, facilitated the deposition of laminin, and increased the focal contact organization of ECs. These results suggest the possible use of collagen-coated nanofibrous membranes for vascular tissue engineering applications and a vascular platform for organ-on-a-chip systems. PMID:27186924

  9. Modeling Of Proton Exchange Membrane Fuel Cell Systems

    DEFF Research Database (Denmark)

    Nielsen, Mads Pagh

    The objective of this doctoral thesis was to develop reliable steady-state and transient component models suitable to asses-, develop- and optimize proton exchange membrane (PEM) fuel cell systems. Several components in PEM fuel cell systems were characterized and modeled. The developed component...

  10. Development of new membrane materials for direct methanol fuel cells

    NARCIS (Netherlands)

    Yildirim, Mustafa Hakan

    2009-01-01

    Development of new membrane materials for direct methanol fuel cells Direct methanol fuel cells (DMFCs) can convert the chemical energy of a fuel directly into electrical energy with high efficiency and low emission of pollutants. DMFCs can be used as the power sources to portable electronic devices

  11. High-throughput functional genomics identifies genes that ameliorate toxicity due to oxidative stress in neuronal HT-22 cells: GFPT2 protects cells against peroxide.

    Science.gov (United States)

    Zitzler, Jürgen; Link, Dieter; Schäfer, Rolf; Liebetrau, Wolfgang; Kazinski, Michael; Bonin-Debs, Angelika; Behl, Christian; Buckel, Peter; Brinkmann, Ulrich

    2004-08-01

    We describe a novel genetic screen that is performed by transfecting every individual clone of an expression clone collection into a separate population of cells in a high-throughput mode. We combined high-throughput functional genomics with experimental validation to discover human genes that ameliorate cytotoxic responses of neuronal HT-22 cells upon exposure to oxidative stress. A collection of 5,000 human cDNAs in mammalian expression vectors were individually transfected into HT-22 cells, which were then exposed to H(2)O(2). Five genes were found that are known to be involved in pathways of detoxification of peroxide (catalase, glutathione peroxidase-1, peroxiredoxin-1, peroxiredoxin-5, and nuclear factor erythroid-derived 2-like 2). The presence of those genes in our "hit list" validates our screening platform. In addition, a set of candidate genes was found that has not been previously described as involved in detoxification of peroxide. One of these genes, which was consistently found to reduce H(2)O(2) -induced toxicity in HT-22, was GFPT2. This gene is expressed at significant levels in the central nervous system (CNS) and encodes glutamine-fructose-6-phosphate transaminase (GFPT) 2, a rate-limiting enzyme in hexosamine biosynthesis. GFPT has recently also been shown to ameliorate the toxicity of methylmercury in Saccharomyces cerevisiae. Methylmercury causes neuronal cell death in part by protein modification as well as enhancing the production of reactive oxygen species (ROS). The protective effect of GFPT2 against H(2)O(2) toxicity in neuronal HT-22 cells may be similar to its protection against methylmercury in yeast. Thus, GFPT appears to be conserved among yeast and men as a critical target of methylmercury and ROS-induced cytotoxicity.

  12. A boron phosphate-phosphoric acid composite membrane for medium temperature proton exchange membrane fuel cells

    Science.gov (United States)

    Mamlouk, M.; Scott, K.

    2015-07-01

    A composite membrane based on a non-stoichiometric composition of BPO4 with excess of PO4 (BPOx) was synthesised and characterised for medium temperature fuel cell use (120-180 °C). The electrolyte was characterised by FTIR, SS-NMR, TGA and XRD and showed that the B-O is tetrahedral, in agreement with reports in the literature that boron phosphorus oxide compounds at B:P < 1 are exclusively built of borate and phosphate tetrahedra. Platinum micro electrodes were used to study the electrolyte compatibility and stability towards oxygen reduction at 150 °C and to obtain kinetic and mass transport parameters. The conductivities of the pure BPOx membrane electrolyte and a Polybenzimidazole (PBI)-4BPOx composite membrane were 7.9 × 10-2 S cm-1 and 4.5 × 10-2 S cm-1 respectively at 150 °C, 5%RH. Fuel cell tests showed a significant enhancement in performance of BPOx over that of typical 5.6H3PO4-PBI membrane electrolyte. The enhancement is due to the improved ionic conductivity (3×), a higher exchange current density of the oxygen reduction (30×) and a lower membrane gas permeability (10×). Fuel cell current densities at 0.6 V were 706 and 425 mA cm-2 for BPOx and 5.6H3PO4-PBI, respectively, at 150 °C with O2 (atm).

  13. Nanodomain stabilization dynamics in plasma membranes of biological cells

    Science.gov (United States)

    Das, Tamal; Maiti, Tapas K.; Chakraborty, Suman

    2011-02-01

    We discover that a synergistically amplifying role of stabilizing membrane proteins and continuous lipid recycling can explain the physics governing the stability, polydispersity, and dynamics of lipid raft domains in plasma membranes of biological cells. We establish the conjecture using a generalized order parameter based on theoretical formalism, endorsed by detailed scaling arguments and domain mapping. Quantitative agreements with morphological distributions of raft complexes, as obtained from Förster resonance energy transfer based visualization, support the present theoretical conjecture.

  14. Paclitaxel ameliorates fibrosis in hepatic stellate cells via inhibition of TGF-β/Smad activity

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    AIM: To investigated if paclitaxel can attenuate hepatic fi brosis in rat hepatic stellate cells (RHSCs). METHODS: RHSCs were cultured in vitro and randomly assigned to four groups: normal control group (treated only with Dulbecco's Modified Eagle's Medium), Taxol group (200 nmol/L paclitaxel was added to the cell culture), transforming growth factor (TGF)-β group (5 ng/mL recombinant human TGF-β1 was added to the cell culture), and TGF-β + Taxol group. TGF-β signaling cascade and status of various extracel...

  15. Umbilical cord mesenchymal stem cell transplantation ameliorates burn-induced acute kidney injury in rats.

    Science.gov (United States)

    Lu, Gang; Huang, Sha; Chen, Yongbin; Ma, Kui

    2013-09-01

    Excessive systemic inflammation following burns could lead to acute kidney injury (AKI). Mesenchymal stromal cells (MSCs) suppress immune cell responses and have beneficial effects in various inflammatory-related immune disorders. However, autologous MSCs are not vital enough for the treatment because of the severely burned patients' deleterious condition. Umbilical cord-derived mesenchymal stem cells (UC-MSCs) could be a suitable substitute cell candidate but no data are available on the therapeutic effectiveness of UC-MSCs transplantation for burn injury and its consequences. In this study, UC-MSCs or ulinastatin was administered intravenously in the rats with burn trauma, and the therapeutic effects of UC-MSCs on the survival of severe burn-induced AKI rats and functional protection of kidney were analyzed. Results showed that UC-MSCs promoted the survival and prevented commitment to apoptosis of resident kidney cells and reduced organ microscopic damage in kidneys after thermal trauma. Thus, our study demonstrates that intravenously delivered UC-MSCs protected the host from death caused by kidney injury subsequent to severe burn, identifying UC-MSCs transplantation may be an attractive candidate for cell-based treatments for burns and induced organ damage. PMID:24043673

  16. Understanding the transport processes in polymer electrolyte membrane fuel cells

    Science.gov (United States)

    Cheah, May Jean

    Polymer electrolyte membrane (PEM) fuel cells are energy conversion devices suitable for automotive, stationary and portable applications. An engineering challenge that is hindering the widespread use of PEM fuel cells is the water management issue, where either a lack of water (resulting in membrane dehydration) or an excess accumulation of liquid water (resulting in fuel cell flooding) critically reduces the PEM fuel cell performance. The water management issue is addressed by this dissertation through the study of three transport processes occurring in PEM fuel cells. Water transport within the membrane is a combination of water diffusion down the water activity gradient and the dragging of water molecules by protons when there is a proton current, in a phenomenon termed electro-osmotic drag, EOD. The impact of water diffusion and EOD on the water flux across the membrane is reduced due to water transport resistance at the vapor/membrane interface. The redistribution of water inside the membrane by EOD causes an overall increase in the membrane resistance that regulates the current and thus EOD, thereby preventing membrane dehydration. Liquid water transport in the PEM fuel cell flow channel was examined at different gas flow regimes. At low gas Reynolds numbers, drops transitioned into slugs that are subsequently pushed out of the flow channel by the gas flow. The slug volume is dependent on the geometric shape, the surface wettability and the orientation (with respect to gravity) of the flow channel. The differential pressure required for slug motion primarily depends on the interfacial forces acting along the contact lines at the front and the back of the slug. At high gas Reynolds number, water is removed as a film or as drops depending on the flow channel surface wettability. The shape of growing drops at low and high Reynolds number can be described by a simple interfacial energy minimization model. Under flooding conditions, the fuel cell local current

  17. Metformin ameliorates insulin resistance in L6 rat skeletal muscle cells through upregulation of SIRT3

    Institute of Scientific and Technical Information of China (English)

    Song Yuping; Shi Jingli; Wu Ying; Han Chong; Zou Junjie; Shi Yongquan; Liu Zhimin

    2014-01-01

    Background SIRT3 is an important regulator in cell metabolism,and recent studies have shown that it may be involved in the pharmacological effects of mefformin.However,the molecular mechanisms underlying this process are unclear.Methods The effects of SIRT3 on the regulation of oxidative stress and insulin resistance in skeletal muscle were evaluated in vitro.Differentiated L6 skeletal muscle cells were treated with 750 μmol/L palmitic acid to induce insulin resistance.SIRT3 was knocked down and overexpressed in L6 cells.SIRT3,nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) p65,c-Jun N-terminal kinase 1 (JNK1),and superoxide dismutase 2 (SOD2) were evaluated by Western blotting.Results Over expression of SIRT3 increased glucose uptake and decreased ROS production in L6-IR cells as well as in L6 cells.Knock-down of SIRT3 induced increased production of ROS while decreased glucose uptake in both L6 and L6-IR cells,and these effects were reversed by N-acetyl-L-cysteine (NAC).Metformin increased the expression of SIRT3 (1.5-fold) and SOD2 (2-fold) while down regulating NF-κB p65 (1.5-fold) and JNK1 (1.5-fold).Knockdown of SIRT3 (P<0.05)reversed the metformin-induced decreases in NF-κB p65 and JNK1 and the mefformin-induced increase in SOD2 (P<0.05).Conclusions Upregulated SIRT3 is involved in the pharmacological mechanism by which mefformin promotes glucose uptake.Additionally,SIRT3 may function as an important regulator of oxidative stress and a new alternative approach for targeting insulin resistance-related diseases.

  18. Antigen-Specific IgG ameliorates allergic airway inflammation via Fcγ receptor IIB on dendritic cells

    Directory of Open Access Journals (Sweden)

    Karasuyama Hajime

    2011-04-01

    Full Text Available Abstract Background There have been few reports on the role of Fc receptors (FcRs and immunoglobulin G (IgG in asthma. The purpose of this study is to clarify the role of inhibitory FcRs and antigen presenting cells (APCs in pathogenesis of asthma and to evaluate antigen-transporting and presenting capacity by APCs in the tracheobronchial mucosa. Methods In FcγRIIB deficient (KO and C57BL/6 (WT mice, the effects of intratracheal instillation of antigen-specific IgG were analysed using the model with sensitization and airborne challenge with ovalbumin (OVA. Thoracic lymph nodes instilled with fluorescein-conjugated OVA were analysed by fluorescence microscopy. Moreover, we analysed the CD11c+ MHC class II+ cells which intaken fluorescein-conjugated OVA in thoracic lymph nodes by flow cytometry. Also, lung-derived CD11c+ APCs were analysed by flow cytometry. Effects of anti-OVA IgG1 on bone marrow dendritic cells (BMDCs in vitro were also analysed. Moreover, in FcγRIIB KO mice intravenously transplanted dendritic cells (DCs differentiated from BMDCs of WT mice, the effects of intratracheal instillation of anti-OVA IgG were evaluated by bronchoalveolar lavage (BAL. Results In WT mice, total cells and eosinophils in BAL fluid reduced after instillation with anti-OVA IgG1. Anti-OVA IgG1 suppressed airway inflammation in hyperresponsiveness and histology. In addition, the number of the fluorescein-conjugated OVA in CD11c+ MHC class II+ cells of thoracic lymph nodes with anti-OVA IgG1 instillation decreased compared with PBS. Also, MHC class II expression on lung-derived CD11c+ APCs with anti-OVA IgG1 instillation reduced. Moreover, in vitro, we showed that BMDCs with anti-OVA IgG1 significantly decreased the T cell proliferation. Finally, we demonstrated that the lacking effects of anti-OVA IgG1 on airway inflammation on FcγRIIB KO mice were restored with WT-derived BMDCs transplanted intravenously. Conclusion Antigen-specific IgG ameliorates

  19. Corona discharge in electroporation of cell membranes

    Energy Technology Data Exchange (ETDEWEB)

    Cramariuc, R; Nisiparu, L [Competence Centre in Electrostatics and Electrotehchnologies (Romania); Tudorache, A; Branduse, E; Fotescu, L [Research Institute of Wine Processing, Valea Mantei Street, No.l, Valea Calugareasca (Romania); Popa, M E; Mitelut, A [Biotechnology Faculty, University of Agronomical Sciences and Veterinary Medicine (Romania); Turtoi, M O

    2008-12-01

    The objective of the present work is to demonstrate that electrical corona discharge is very efficient in cellular membrane electroporation due to current pulses with sharp front (2-5 ns) and to the fact that corona discharge is associated with UV radiation and micro particles emission. A comparison between DC and AC at 800 Hz and a special waveform to corona application is presented. The comparison is analyzed by means of applying all these in the maceration process (electroplasmolysis) of red wine production and in the processes of different types of the microbes.

  20. Estimation of membrane hydration status for standby proton exchange membrane fuel cell systems by impedance measurement

    DEFF Research Database (Denmark)

    Bidoggia, Benoit; Rugholt, Mark; Nielsen, Morten Busk;

    2014-01-01

    Fuel cells are getting growing interest in both backup systems and electric vehicles. Although these systems are characterized by long periods of inactivity, they must be able to start at any instant in the shortest time. However, the membrane of which PEMFCs are made tends to dry out when not in...

  1. Nafion®/ODF-silica composite membranes for medium temperature proton exchange membrane fuel cells

    KAUST Repository

    Treekamol, Yaowapa

    2014-01-01

    A series of composite membranes were prepared by dispersing fluorinated polyoxadiazole oligomer (ODF)-functionalized silica nanoparticles in a Nafion matrix. Both melt-extrusion and solvent casting processes were explored. Ion exchange capacity, conductivity, water uptake and dimensional stability, thermal stability and morphology were characterized. The inclusion of functionalized nanoparticles proved advantageous, mainly due to a physical crosslinking effect and better water retention, with functionalized nanoparticles performing better than the pristine silica particles. For the same filler loading, better nanoparticle dispersion was achieved for solvent-cast membranes, resulting in higher proton conductivity. Filler agglomeration, however,was more severe for solvent-castmembranes at loadings beyond 5wt.%. The composite membranes showed excellent thermal stability, allowing for operation in medium temperature PEM fuel cells. Fuel cell performance of the compositemembranesdecreaseswithdecreasing relativehumidity, but goodperformance values are still obtained at 34% RHand 90 °C,with the best results obtained for solvent castmembranes loaded with 10 wt.% ODF-functionalized silica. Hydrogen crossover of the composite membranes is higher than that forpureNafion membranes,possiblydue toporosityresulting fromsuboptimalparticle- matrixcompatibility. © 2013 Crown Copyright and Elsevier BV. All rights reserved.

  2. Ameliorated Chrysotile-induced DNA Damage in Human Embryo Lung Cells by Surface Modification of Chrysotile With Rare Earth Compounds

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Objective In view of the fact that asbestos is not only a key occupational hazard, but also an important environmental pollutant, it is necessary to develop a proper method to decrease the carcinogenecity of asbestos fibers. This study was designed to determine if the surface modification of chrysotile asbestos fiber (CAF) with rare earth compounds (REC) can ameliorate CAF-induced DNA damages in human embryo lung (HEL) cells. Methods After incubation with REC solution at different concentrations at room temperature for 1 h, natural and REC-pretreated CAF was added to cell culture at various doses. At the selected time as the experiment designed, DNA damages of the HEL cells were detected by Unscheduled DNA Synthesis (UDS) and Single Cell Gel Electrophoresis (SCGE) assays. Results The UDS induced by natural CAF was elevated with the increase of CAF doses. There was a good dose-response relationship between the UDS and the amount of CAF in the medium and the coefficient of correlation (R) was 0.958 at P<0.05. In REC-pretreated CAF groups, the UDS declined with the increase of REC doses. Both catalase (CAT) and dimethylsulfoxide (DMSO) also reduced the CAF-induced enhancement of UDS. In SCGE assay, CAF induced DNA chain breakage and the magnitude of DNA chain breakage increased in a dose-dependent manner and the coefficient of correlation (R) was 0.992 at p<0.01, while REC-pretreated CAF significantly decreased the induction of DNA chain breakage in a dose-dependent manner(r=0.989, p<0.05). Conclusion It can be concluded that CAF-induced DNA damages in HEL cells may be partly mediated by oxygen derivatives, and the surface modification of CAF with REC might hide critical sites on the fiber surface, thereby reducing the fiber-mediated production of oxygen derivation and lowering the CAF-induced UDS and DNA chain breakage in HEL cells.

  3. Ameliorated Chrysotille—induced DNA Damage in Human Embryo Lung Cells by Surface Modification of Chrysotile With Rare Earth Compounds

    Institute of Scientific and Technical Information of China (English)

    FANJING-GUANG; WANGQI-EN; 等

    2001-01-01

    Objective:In view of the fact that asbestos is not only a key occupational hazard,but also an important enviromental pollutant,it is necessary to develop a proper method to decrease the carcinogenectiy of asbestos fibers.This study was designed to determine if the surface modification of chrysotile asbestos fiber(CAF)with rare earth compounds(REC) can ameliorate CAF-induced DNA damages in human embryo lung(HEL)cells,Methods:After incubation with REC solution at different concentrations at room temperature for 1h,natural and REC-pretreated CAF was added to cell culture at various doses.At the selected time as the experiment designed ,DNA damages of the HEL cells were detected by Unscheduled DNA Synthesis(UDS) and Single Cell Gel Electrophoresis(SCGE) assays.Results:The UDS induced by natural CAF was elevated with the increase of CAF doses,There was a good dose-response relationship between the UDS and the amount of CAF in the mdeium and the coefficient of correlation(R) was 0.958 at P<0.05,In REC-pretreated CAF groups,the use declined with the increase of REC doses.Both catalase(CAT) and dimethylsulfoxide(DMSO)also reduced the CAF-induced enhancement of UDS.In SCGE assay,CAF induced DNA chain breakage and the magnitude of DNA chain breakage increased in a dosedependent manner and the coefficient of correlation(R))was 0.992 at P<0.01,while REC-pretreated CAF significantly decreased the induction of DNA chain breakage in a dose-dependent manner(r=0.989,P<0.05).Conclusion:It can be concluded that CAF-induced DNA damages in HEL cells may be partly mediated by oxygen derivatives,and the surface modification of CAF with REC might hide critical sites on the fiber surface ,thereby reducing the fiber-mediated production of oxygen derivation and lowering the CAF-induced UDS and DNA chani breakage in HEL cells.

  4. Classification of Cells with Membrane Staining and/or Fixation Based on Cellular Specific Membrane Capacitance and Cytoplasm Conductivity

    OpenAIRE

    Song-Bin Huang; Yang Zhao; Deyong Chen; Shing-Lun Liu; Yana Luo; Tzu-Keng Chiu; Junbo Wang; Jian Chen; Min-Hsien Wu

    2015-01-01

    Single-cell electrical properties (e.g., specific membrane capacitance (Cspecific membrane) and cytoplasm conductivity (σcytoplasm)) have been regarded as potential label-free biophysical markers for the evaluation of cellular status. However, whether there exist correlations between these biophysical markers and cellular status (e.g., membrane-associate protein expression) is still unknown. To further validate the utility of single-cell electrical properties in cell type classification, Cspe...

  5. Surface Electrical Potentials of Root Cell Plasma Membranes: Implications for Ion Interactions, Rhizotoxicity, and Uptake

    Directory of Open Access Journals (Sweden)

    Yi-Min Wang

    2014-12-01

    Full Text Available Many crop plants are exposed to heavy metals and other metals that may intoxicate the crop plants themselves or consumers of the plants. The rhizotoxicity of heavy metals is influenced strongly by the root cell plasma membrane (PM surface’s electrical potential (ψ0. The usually negative ψ0 is created by negatively charged constituents of the PM. Cations in the rooting medium are attracted to the PM surface and anions are repelled. Addition of ameliorating cations (e.g., Ca2+ and Mg2+ to the rooting medium reduces the effectiveness of cationic toxicants (e.g., Cu2+ and Pb2+ and increases the effectiveness of anionic toxicants (e.g., SeO42− and H2AsO4−. Root growth responses to ions are better correlated with ion activities at PM surfaces ({IZ}0 than with activities in the bulk-phase medium ({IZ}b (IZ denotes an ion with charge Z. Therefore, electrostatic effects play a role in heavy metal toxicity that may exceed the role of site-specific competition between toxicants and ameliorants. Furthermore, ψ0 controls the transport of ions across the PM by influencing both {IZ}0 and the electrical potential difference across the PM from the outer surface to the inner surface (Em,surf. Em,surf is a component of the driving force for ion fluxes across the PM and controls ion-channel voltage gating. Incorporation of {IZ}0 and Em,surf into quantitative models for root metal toxicity and uptake improves risk assessments of toxic metals in the environment. These risk assessments will improve further with future research on the application of electrostatic theory to heavy metal phytotoxicity in natural soils and aquatic environments.

  6. FABRICATION AND BIOCOMPATIBILITY OF CELL OUTER MEMBRANE MIMETIC SURFACES

    Institute of Scientific and Technical Information of China (English)

    Ming-ming Zong; Yong-kuan Gong

    2011-01-01

    The surface design used for improving biocompatibility is one of the most important issues for the fabrication of medical devices. For mimicking the ideal surface structure of cell outer membrane, a large number of polymers bearing phosphorylcholine (PC) groups have been employed to modify the surfaces of biomaterials and medical devices. It has been demonstrated that the biocompatibility of the modified materials whose surface is required to interact with a living organism has been obviously improved by introducing PC groups. In this review, the fabrication strategies of cell outer membrane mimetic surfaces and their resulted biocompatibilities were summarized.

  7. Microstructured Electrolyte Membranes to Improve Fuel Cell Performance

    Science.gov (United States)

    Wei, Xue

    Fuel cells, with the advantages of high efficiency, low greenhouse gas emission, and long lifetime are a promising technology for both portable power and stationary power sources. The development of efficient electrolyte membranes with high ionic conductivity, good mechanical durability and dense structure at low cost remains a challenge to the commercialization of fuel cells. This thesis focuses on exploring novel composite polymer membranes and ceramic electrolytes with the microstructure engineered to improve performance in direct methanol fuel cells (DMFCs) and solid oxide fuel cells (SOFCs), respectively. Polymer/particle composite membranes hold promise to meet the demands of DMFCs at lower cost. The structure of composite membranes was controlled by aligning proton conducting particles across the membrane thickness under an applied electric field. The field-induced structural changes caused the membranes to display an enhanced water uptake, proton conductivity, and methanol permeability in comparison to membranes prepared without an applied field. Although both methanol permeability and proton conductivity are enhanced by the applied field, the permeability increase is relatively lower than the proton conductivity improvement, which results in enhanced proton/methanol selectivity and improved DMFC performance. Apatite ceramics are a new class of fast ion conductors being studied as alternative SOFC electrolytes in the intermediate temperature range. An electrochemical/hydrothermal deposition method was developed to grow fully dense apatite membranes containing well-developed crystals with c-axis alignment to promote ion conductivity. Hydroxyapatite seed crystals were first deposited onto a metal substrate electrochemically. Subsequent ion substitution during the hydrothermal growth process promoted the formation of dense, fully crystalline films with microstructure optimal for ion transport. The deposition parameters were systematically investigated, such as

  8. Cinnamon Ameliorates Experimental Allergic Encephalomyelitis in Mice via Regulatory T Cells: Implications for Multiple Sclerosis Therapy

    OpenAIRE

    Susanta Mondal; Kalipada Pahan

    2015-01-01

    Upregulation and/or maintenance of regulatory T cells (Tregs) during an autoimmune insult may have therapeutic efficacy in autoimmune diseases. Although several immunomodulatory drugs and molecules are available, most present significant side effects over long-term use. Cinnamon is a commonly used natural spice and flavoring material used for centuries throughout the world. Here, we have explored a novel use of cinnamon powder in protecting Tregs and treating the disease process of experiment...

  9. Exercise ameliorates chronic kidney disease–induced defects in muscle protein metabolism and progenitor cell function

    OpenAIRE

    Wang, Xiaonan H.; Du, Jie; Klein, Janet D.; Bailey, James L; Mitch, William E.

    2009-01-01

    Chronic kidney disease (CKD) impairs muscle protein metabolism leading to muscle atrophy, and exercise can counteract this muscle wasting. Here we evaluated how resistance exercise (muscle overload) and endurance training (treadmill running) affect CKD-induced abnormalities in muscle protein metabolism and progenitor cell function using mouse plantaris muscle. Both exercise models blunted the increase in disease-induced muscle proteolysis and improved phosphorylation of Akt and the forkhead t...

  10. Preconditioning L6 Muscle Cells with Naringin Ameliorates Oxidative Stress and Increases Glucose Uptake

    OpenAIRE

    R. Dhanya; K B Arun; Nisha, V. M.; Syama, H. P.; Nisha, P.; Santhosh Kumar, T. R.; Jayamurthy, P.

    2015-01-01

    Enhanced oxidative stress contributes to pathological changes in diabetes and its complications. Thus, strategies to reduce oxidative stress may alleviate these pathogenic processes. Herein, we have investigated Naringin mediated regulation of glutathione (GSH) & intracellular free radical levels and modulation of glucose uptake under oxidative stress in L6 cell lines. The results from the study demonstrated a marked decrease in glutathione with a subsequent increase in free radical levels, w...

  11. Glial cell line-derived neurotrophic factor gene therapy ameliorates chronic hyperprolactinemia in senile rats

    OpenAIRE

    Morel, Gustavo R.; Sosa, Yolanda E.; Bellini, Maria J.; Carri, Nestor G.; Rodriguez, Silvia S.; Bohn, Martha C.; Goya, Rodolfo G.

    2010-01-01

    Progressive dysfunction of hypothalamic tuberoinfundibular dopaminergic (TIDA) neurons during normal aging is associated in the female rat with chronic hyperprolactinemia. We assessed the effectiveness of glial cell line-derived neurotrophic factor (GDNF) gene therapy to restore TIDA neuron function in senile female rats and reverse their chronic hyperprolactinemia. Young (2.5 months) and senile (29 months) rats received a bilateral intrahypothalamic injection (1010 pfu) of either an adenovir...

  12. Flavivirus cell entry and membrane fusion

    NARCIS (Netherlands)

    Smit, Jolanda M.; Moesker, Bastiaan; Rodenhuis-Zybert, Izabela; Wilschut, Jan

    2011-01-01

    Flaviviruses, such as dengue virus and West Nile virus, are enveloped viruses that infect cells through receptor-mediated endocytosis and fusion from within acidic endosomes. The cell entry process of flaviviruses is mediated by the viral E glycoprotein. This short review will address recent advance

  13. Proton Exchange Membranes for Fuel Cells Challenges and Recent Developments

    Institute of Scientific and Technical Information of China (English)

    Qingfeng Li; Jens Oluf Jensen; Pernille P. Noyé; Chao Pan; Niels J. Bjerrum

    2005-01-01

    @@ 1Introduction The current technology of proton exchange membrane fuel cells (PEMFC) is based on perfluorosulfonic acid (PFSA) membranes (e. g. Nafion(R)) as electrolyte. It operates on pure hydrogen and oxygen/air at typically 80℃ with high power density and long-term durability. For the membranes to be conductive, a minimum threshold of absorbed water molecules is about 6 to 7 mole per sulfonic site. The highest conductivity is only obtained under fully hydrated conductions, i.e. 21 - 22 mole water per sulfonic acid site. In other words, the proton conductivity is achieved by the locally liquid-like hydrophilic domain of the nanostructure.This strong dependence of conductivity on the water content in membranes limits the operational temperatureof PEMFC below 100℃.

  14. Smoking and red blood cell phospholipid membrane fatty acids.

    Science.gov (United States)

    Murff, H J; Tindle, H A; Shrubsole, M J; Cai, Q; Smalley, W; Milne, G L; Swift, L L; Ness, R M; Zheng, W

    2016-09-01

    Smoking is associated with lower n-3 long chain polyunsaturated fatty acids (LCPUFA) concentrations; however, limited studies have accounted for dietary PUFA intake or whether tobacco dose or smoking duration influences this association. We measured red blood cell phospholipid (RBC) membrane concentrations of fatty acids in 126 current smokers, 311 former smokers, and 461 never smokers using gas liquid chromatography and tandem mass spectrometry. Smokers had lower RBC membrane percentages of total n-3 LCPUFAs compared to former smokers or never smokers (median percent: 5.46, [interquartile range (IQR) 4.52, 6.28] versus 6.39; [IQR: 5.18, 7.85] versus 6.59; [IQR 5.34, 8.01]) (psmoking and cigarettes per day were not associated with RBC membrane n-3 LCPUFA differences. Smoking is associated with lower n-3 LCPUFA RBC membrane percentages and this association was not influenced by diet or smoking dose or duration. PMID:27637337

  15. Regulatory T cell transfer ameliorates lymphedema and promotes lymphatic vessel function

    Science.gov (United States)

    Gousopoulos, Epameinondas; Proulx, Steven T.; Bachmann, Samia B.; Scholl, Jeannette; Dionyssiou, Dimitris; Demiri, Efterpi; Halin, Cornelia; Dieterich, Lothar C.

    2016-01-01

    Secondary lymphedema is a common postcancer treatment complication, but the underlying pathological processes are poorly understood and no curative treatment exists. To investigate lymphedema pathomechanisms, a top-down approach was applied, using genomic data and validating the role of a single target. RNA sequencing of lymphedematous mouse skin indicated upregulation of many T cell–related networks, and indeed depletion of CD4+ cells attenuated lymphedema. The significant upregulation of Foxp3, a transcription factor specifically expressed by regulatory T cells (Tregs), along with other Treg-related genes, implied a potential role of Tregs in lymphedema. Indeed, increased infiltration of Tregs was identified in mouse lymphedematous skin and in human lymphedema specimens. To investigate the role of Tregs during disease progression, loss-of-function and gain-of-function studies were performed. Depletion of Tregs in transgenic mice with Tregs expressing the primate diphtheria toxin receptor and green fluorescent protein (Foxp3-DTR-GFP) mice led to exacerbated edema, concomitant with increased infiltration of immune cells and a mixed TH1/TH2 cytokine profile. Conversely, expansion of Tregs using IL-2/anti–IL-2 mAb complexes significantly reduced lymphedema development. Therapeutic application of adoptively transferred Tregs upon lymphedema establishment reversed all of the major hallmarks of lymphedema, including edema, inflammation, and fibrosis, and also promoted lymphatic drainage function. Collectively, our results reveal that Treg application constitutes a potential new curative treatment modality for lymphedema. PMID:27734032

  16. Durability Issues of High Temperature Proton Exchange Membrane Fuel Cells Based on Acid Doped Polybenzimidazole Membranes

    DEFF Research Database (Denmark)

    To achieve high temperature operation of proton exchange membrane fuel cells (PEMFC), preferably under ambient pressure, phosphoric acid doped polybenzimidazole (PBI) membrane represents an effective approach, which in recent years has motivated extensive research activities with great progress...... or ionically cross-linking and structure modification With load, thermal or startup-shutdown cycling, the performance loss was found to be much bigger, about 300 µV per cycle or 40 µV per operating hour, due to the increased acid loss and catalyst support corrosion, particularly under open circuit voltage...

  17. Transplantation of autologous adipose-derived stem cells ameliorates cardiac function in rabbits with myocardial infarction

    Institute of Scientific and Technical Information of China (English)

    ZHANG Duan-zhen; GAI Lu-yue; LIU Hong-wei; JIN Qin-hua; HUANG Jian-hua; ZHU Xian-yang

    2007-01-01

    Background Adipose-derived stem cells (ADSCs) are capable of differentiating into cardiomyogenic and endothelial cells in vitro. We tested the hypothesis that transplantation of ADSCs into myocardial scar may regenerate infracted myocardium and restore cardiac function.Methods ADSCs were isolated from the fatty tissue of New Zealand white rabbits and cultured in Iscove's modified dulbecco's medium. Three weeks after ligation of left anterior descending coronary artery of rabbits, either a graft of untreated ADSCs (UASCs, n=14), 5-azacytidine-pretreated ADSCs (AASCs, n=13), or phosphate buffer saline (n=13)were injected into the infarct region. Transmural scar size, cardiac function, and immunohistochemistry were performed 5 weeks after cell transplantation.Results ADSCs in culture demonstrated a fibroblast-like appearance and expressed CD29, CD44 and CD105. Five weeks after cell transplantation, transmural scar size in AASC-implanted hearts was smaller than that of the other hearts.Many ADSCs were differentiated into cardiomyocytes. The AASCs in the prescar appeared more myotube-like. AASCs in the middle of the scar and UASCs, in contrast, were poorly differentiated. Some ADSCs were differentiated into endothelial cells and participate in vessel-like structures formation. All the ADSC-implanted hearts had a greater capillary density in the infarct region than did the control hearts. Statistical analyses revealed significant improvement in left ventricular ejection fraction, myocardial performance index, end-diastolic pressure, and peak +dP/dt, in two groups of ADSC-implanted hearts relative to the control hearts. AASC-implanted hearts had higher peak -dP/dt values than did control, higher ejection fraction and peak +dP/dtvalues than did UASC-implanted hearts.Conclusions ADSCs transplanted into the myocardial scar tissue formed cardiac islands and vessel-like structures,induced angiogenesis and improved cardiac function. 5-Azacytidine pretreatment before

  18. Electrospun fiber membranes enable proliferation of genetically modified cells

    Directory of Open Access Journals (Sweden)

    Borjigin M

    2013-02-01

    Full Text Available Mandula Borjigin*, Chris Eskridge*, Rohina Niamat, Bryan Strouse, Pawel Bialk, Eric B KmiecDepartment of Chemistry, Delaware State University, Dover, DE, USA *These authors contributed equally to this work Abstract: Polycaprolactone (PCL and its blended composites (chitosan, gelatin, and lecithin are well-established biomaterials that can enrich cell growth and enable tissue engineering. However, their application in the recovery and proliferation of genetically modified cells has not been studied. In the study reported here, we fabricated PCL-biomaterial blended fiber membranes, characterized them using physicochemical techniques, and used them as templates for the growth of genetically modified HCT116-19 colon cancer cells. Our data show that the blended polymers are highly miscible and form homogenous electrospun fiber membranes of uniform texture. The aligned PCL nanofibers support robust cell growth, yielding a 2.5-fold higher proliferation rate than cells plated on standard plastic plate surfaces. PCL-lecithin fiber membranes yielded a 2.7-fold higher rate of proliferation, while PCL-chitosan supported a more modest growth rate (1.5-fold higher. Surprisingly, PCL-gelatin did not enhance cell proliferation when compared to the rate of cell growth on plastic surfaces. Keywords: nanofibers, PCL-biomaterial blends, miscibility, gene editing, cell proliferation

  19. Antigenicity and immunogenicity of an extract from the cell wall and cell membrane of Histoplasma capsulatum yeast cells.

    OpenAIRE

    Gómez, A M; Rhodes, J C; Deepe, G S

    1991-01-01

    In order to identify T-cell antigens from Histoplasma capsulatum yeast cells, we prepared a detergent extract of the cell wall and cell membrane of yeast-phase H. capsulatum G217B and analyzed its antigenicity and immunogenicity. Mice injected with viable H. capsulatum yeast cells or with 500 or 1,000 micrograms of the extract mounted a delayed-type hypersensitivity response to solubilized cell wall and cell membrane. Vaccination with this antigenic preparation conferred a protective immune r...

  20. Intra-por tal transplantation of bone marrow stromal cells ameliorates liver ifbrosis in mice

    Institute of Scientific and Technical Information of China (English)

    Jin-Fang Zheng; Li-Jian Liang

    2008-01-01

    BACKGROUND: Bone marrow cells can differentiate into hepatocytes in a suitable microenvironment. This study was undertaken to investigate the effects of transplanted bone marrow stromal cells (BMSCs) on liver ifbrosis in mice. METHODS: BMSCs were harvested and cultured from male BALB/c mice, then transplanted into female syngenic BALB/c mice via the portal vein. After partial hepatectomy, diethylnitrosamine (DEN) was administered to induce liver ifbrosis. Controls received BMSCs and non-supplemented drinking water, the model group received DEN with their water, and the experimental group received BMSCs and DEN. Mice were killed after 3 months, and ALT, AST, hyaluronic acid (HA), and laminin (LN) in serum and hydroxyproline (Hyp) in the liver were assessed. Alpha-smooth muscle actin (α-SMA) in the liver was assessed by immunohistochemistry. Bone marrow-derived hepatocytes were identiifed by lfuorescent in situ hybridization (FISH) in liver sections. RESULTS: BMSCs were shown to differentiate into hepatocyte-like phenotypes after hepatocyte growth factor treatment in vitro. Serum ALT, AST, HA, and LN were markedly reduced by transplanted BMSCs. Liver Hyp content andα-SMA staining in mice receiving BMSCs were lower than in the model group, consistent with altered liver pathology. FISH analysis revealed the presence of donor-derived hepatocytes in the injured liver after cross-gender mouse BMSC transplantation. After three months, about 10%of cells in the injured liver were bone marrow-derived. CONCLUSION: BMSCs transplanted via the portal vein can convert into hepatocytes to repair liver injury induced by DEN, restore liver function, and reduce liver ifbrosis.

  1. Optical Trapping Techniques Applied to the Study of Cell Membranes

    Science.gov (United States)

    Morss, Andrew J.

    Optical tweezers allow for manipulating micron-sized objects using pN level optical forces. In this work, we use an optical trapping setup to aid in three separate experiments, all related to the physics of the cellular membrane. In the first experiment, in conjunction with Brian Henslee, we use optical tweezers to allow for precise positioning and control of cells in suspension to evaluate the cell size dependence of electroporation. Theory predicts that all cells porate at a transmembrane potential VTMof roughly 1 V. The Schwann equation predicts that the transmembrane potential depends linearly on the cell radius r, thus predicting that cells should porate at threshold electric fields that go as 1/r. The threshold field required to induce poration is determined by applying a low voltage pulse to the cell and then applying additional pulses of greater and greater magnitude, checking for poration at each step using propidium iodide dye. We find that, contrary to expectations, cells do not porate at a constant value of the transmembrane potential but at a constant value of the electric field which we find to be 692 V/cm for K562 cells. Delivering precise dosages of nanoparticles into cells is of importance for assessing toxicity of nanoparticles or for genetic research. In the second experiment, we conduct nano-electroporation—a novel method of applying precise doses of transfection agents to cells—by using optical tweezers in conjunction with a confocal microscope to manipulate cells into contact with 100 nm wide nanochannels. This work was done in collaboration with Pouyan Boukany of Dr. Lee's group. The small cross sectional area of these nano channels means that the electric field within them is extremely large, 60 MV/m, which allows them to electrophoretically drive transfection agents into the cell. We find that nano electroporation results in excellent dose control (to within 10% in our experiments) compared to bulk electroporation. We also find that

  2. The Coumarin Derivative Osthole Stimulates Adult Neural Stem Cells, Promotes Neurogenesis in the Hippocampus, and Ameliorates Cognitive Impairment in APP/PS1 Transgenic Mice.

    Science.gov (United States)

    Kong, Liang; Hu, Yu; Yao, Yingjia; Jiao, Yanan; Li, Shaoheng; Yang, Jingxian

    2015-01-01

    It is believed that neuronal death caused by abnormal deposition of amyloid-beta peptide is the major cause of the cognitive decline in Alzheimer's disease. Adult neurogenesis plays a key role in the rescue of impaired neurons and amelioration of cognitive impairment. In the present study, we demonstrated that osthole, a natural coumarin derivative, was capable of promoting neuronal stem cell (NSC) survival and inducing NSC proliferation in vitro. In osthole-treated APP/PS1 transgenic mice, a significant improvement in learning and memory function was seen, which was associated with a significant increase in the number of new neurons (Ki67(+)/NF-M(+)) and a decrease in apoptotic cells in the hippocampal region of the brain. These observations suggested that osthole promoted NSC proliferation, supported neurogenesis, and thus efficiently rescued impaired neurons in the hippocampus and ameliorated cognitive impairment. We also found that osthole treatment activated the Notch pathway and upregulated the expression of self-renewal genes Notch 1 and Hes 1 mRNA in NSCs. However, when Notch activity was blocked by the γ-secretase inhibitor DAPT, the augmentation of Notch 1 and Hes 1 protein was ameliorated, and the proliferation-inducing effect of osthole was abolished, suggesting that the effects of osthole are at least in part mediated by activation of the Notch pathway. PMID:26328484

  3. Endothelial progenitor cell transplantation ameliorates elastin breakdown in a Kawasaki disease mouse model

    Institute of Scientific and Technical Information of China (English)

    CHEN Zhi; DU Zhong-dong; LIU Jun-feng; LU Dun-xiang; LI Li; GUAN Yun-qian; WAN Sui-gui

    2012-01-01

    Background Coronary artery damage from Kawasaki disease (KD) is closely linked to the dysfunction of endothelial progenitor cells (EPCs).The aim of the present study was to evaluate the therapeutic effect of EPCs transplantation in KD model.Methods Lactobacillus casei cell wall extract (LCWE)-induced KD model in C57BL/6 mice was established.The model mice were injected intravenously with bone marrow-derived in vitro expanded EPCs.Histological evaluation,number of circulating EPCs and the function of bone marrow EPCs were examined at day 56.Results Inflammation was found around the coronary artery of the model mice after 14 days,Elastin breakdown was observed after 56 days.CM-Dil labeled EPCs incorporated into vessel repairing foci was found.At day 56,the number of peripheral EPCs in the KD model group was lower than in EPCs transplanted and control group.The functional index of bone marrow EPCs from the KD model group decreased in proliferation,adhesion and migration.Increased number of circulating EPCs and improved function were observed on the EPCs transplanted group compared with model group.Conclusion Exogenously administered EPCs,which represent a novel strategy could prevent the dysfunction of EPCs,accelerate the repair of coronary artery endothelium lesion and decrease the occurrence of aneurysm.

  4. Upregulation of miR-21 by Ghrelin Ameliorates Ischemia/Reperfusion-Induced Acute Kidney Injury by Inhibiting Inflammation and Cell Apoptosis.

    Science.gov (United States)

    Zhang, Wanzhe; Shu, Liliang

    2016-08-01

    Renal ischemia-reperfusion (I/R) injury can be caused by cardiac surgery, renal vascular obstruction, and kidney transplantation, mainly leading to acute kidney injury (AKI), which is complicated by lack of effective preventative and therapeutic strategies. Ghrelin has recently been reported to possess anti-inflammatory properties in several types of cells; however, little attention has been given to the role of ghrelin in I/R-induced AKI. The aim of this study is to explore the role of ghrelin in I/R-induced AKI. In this study, an I/R-induced rat AKI model and a hypoxia-induced NRK-52E cell I/R model were successfully constructed. Ghrelin expression was increased significantly in these rat and cell models. After enhancing ghrelin level by injecting exogenous ghrelin into rats or transfecting a ghrelin-pcDNA3.1 vector into renal tubular epithelial cells, we observed that I/R-induced AKI can be ameliorated by ghrelin, as shown by alterations in histology, as well as changes in serum creatinine (SCr) level, cell apoptosis, and the levels of inflammatory factors. Based on the importance of microRNA-21 (miR-21) in renal disease and the modulation effect of ghrelin on miR-21 in gastric epithelial cells, we tested whether miR-21 participates in the protective effect of ghrelin on I/R-induced AKI. Ghrelin could upregulate the PI3K/AKT signaling pathway by increasing the miR-21 level, which led to the protective effect of ghrelin on I/R-induced AKI by inhibiting the inflammatory response and renal tubular epithelial cell apoptosis. Our research identifies that ghrelin can ameliorate I/R-induced AKI by upregulating miR-21, which advances the understanding of mechanisms by which ghrelin ameliorates I/R-induced AKI. PMID:27152763

  5. Effect of stress on the membrane capacitance of the auditory outer hair cell.

    OpenAIRE

    Iwasa, K H

    1993-01-01

    The membrane capacitance of the outer hair cell, which has unique membrane potential-dependent motility, was monitored during application of membrane tension. It was found that the membrane capacitance of the cell decreased when stress was applied to the membrane. This result is the opposite of stretching the lipid bilayer in the plasma membrane. It thus indicates the importance of some other capacitance component that decreases on stretching. It has been known that charge movement across the...

  6. Difference in Membrane Repair Capacity Between Cancer Cell Lines and a Normal Cell Line.

    Science.gov (United States)

    Frandsen, Stine Krog; McNeil, Anna K; Novak, Ivana; McNeil, Paul L; Gehl, Julie

    2016-08-01

    Electroporation-based treatments and other therapies that permeabilize the plasma membrane have been shown to be more devastating to malignant cells than to normal cells. In this study, we asked if a difference in repair capacity could explain this observed difference in sensitivity. Membrane repair was investigated by disrupting the plasma membrane using laser followed by monitoring fluorescent dye entry over time in seven cancer cell lines, an immortalized cell line, and a normal primary cell line. The kinetics of repair in living cells can be directly recorded using this technique, providing a sensitive index of repair capacity. The normal primary cell line of all tested cell lines exhibited the slowest rate of dye entry after laser disruption and lowest level of dye uptake. Significantly, more rapid dye uptake and a higher total level of dye uptake occurred in six of the seven tested cancer cell lines (p electroporation. Viability in the primary normal cell line (98 % viable cells) was higher than in the three tested cancer cell lines (81-88 % viable cells). These data suggest more effective membrane repair in normal, primary cells and supplement previous explanations why electroporation-based therapies and other therapies permeabilizing the plasma membrane are more effective on malignant cells compared to normal cells in cancer treatment. PMID:27312328

  7. The Phytoalexin Resveratrol Ameliorates Ochratoxin A Toxicity in Human Embryonic Kidney (HEK293) Cells.

    Science.gov (United States)

    Raghubeer, Shanel; Nagiah, Savania; Phulukdaree, Alisa; Chuturgoon, Anil

    2015-12-01

    Ochratoxin A (OTA) is a nephrotoxic mycotoxin produced by Aspergillus and Penicillium fungi. It contaminates human and animal food products, and chronic exposure is associated with renal fibrosis in humans (Balkan endemic nephropathy). Resveratrol, a phytoalexin, possesses anti-cancer and antioxidant properties. We investigated the mechanism of cellular oxidative stress induced by OTA, and the effect of resveratrol in human embryonic kidney (HEK293) cells over 24 and 48 h. Cells were exposed to OTA [IC50 = 1.5 μM (24 h) and 9.4 μM (48 h) determined using MTT assay] and 25 μM resveratrol. Glutathione was quantified by luminometry and gene expression of Nrf2 and OGG1 was determined by qPCR. Protein expression of Nrf2, LonP1, SIRT3, and pSIRT1 was assessed by Western blot, DNA damage (comet assay), and intracellular reactive oxygen species (flow cytometry). At 24 h, resveratrol increased mRNA expression of the DNA repair enzyme, OGG1 (P < 0.05), whereas OTA and OTA+resveratrol significantly decreased OGG1 expression (P < 0.05). OGG1 expression increased during 48-h exposure to resveratrol and OTA+resveratrol (P < 0.05). Comet tail lengths doubled in 48-h OTA-treated cells, whereas at both time periods, OTA+resveratrol yielded shorter comet tails (P < 0.0001). During 24- and 48-h exposure, OTA, resveratrol, and OTA+resveratrol significantly decreased mRNA expression of Nrf2 (P < 0.05). Luminometry analysis of GSH revealed an increase by OTA+resveratrol for 24 and 48 h (P < 0.05 and P < 0.001, respectively). Western blot analysis showed decreased Nrf2 protein expression during 24-h exposure, but increased Nrf2 expression during 48 h. LonP1 protein expression increased during 24-h exposure to OTA (P < 0.05) and OTA+resveratrol (P < 0.0011) and during 48-h exposure to resveratrol (P < 0.0005).

  8. Durable, Low-cost, Improved Fuel Cell Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Chris Roger; David Mountz; Wensheng He; Tao Zhang

    2011-03-17

    The development of low cost, durable membranes and membranes electrode assemblies (MEAs) that operate under reduced relative humidity (RH) conditions remain a critical challenge for the successful introduction of fuel cells into mass markets. It was the goal of the team lead by Arkema, Inc. to address these shortages. Thus, this project addresses the following technical barriers from the fuel cells section of the Hydrogen Fuel Cells and Infrastructure Technologies Program Multi-Year Research, Development and Demonstration Plan: (A) Durability (B) Cost Arkema’s approach consisted of using blends of polyvinylidenefluoride (PVDF) and proprietary sulfonated polyelectrolytes. In the traditional approach to polyelectrolytes for proton exchange membranes (PEM), all the required properties are “packaged” in one macromolecule. The properties of interest include proton conductivity, mechanical properties, durability, and water/gas transport. This is the case, for example, for perfluorosulfonic acid-containing (PFSA) membranes. However, the cost of these materials is high, largely due to the complexity and the number of steps involved in their synthesis. In addition, they suffer other shortcomings such as mediocre mechanical properties and insufficient durability for some applications. The strength and originality of Arkema’s approach lies in the decoupling of ion conductivity from the other requirements. Kynar® PVDF provides an exceptional combination of properties that make it ideally suited for a membrane matrix (Kynar® is a registered trademark of Arkema Inc.). It exhibits outstanding chemical resistance in highly oxidative and acidic environments. In work with a prior grant, a membrane known as M41 was developed by Arkema. M41 had many of the properties needed for a high performance PEM, but had a significant deficiency in conductivity at low RH. In the first phase of this work, the processing parameters of M41 were explored as a means to increase its proton

  9. Bone marrow-derived cells can acquire renal stem cells properties and ameliorate ischemia-reperfusion induced acute renal injury

    Directory of Open Access Journals (Sweden)

    Jia Xiaohua

    2012-09-01

    Full Text Available Abstract Background Bone marrow (BM stem cells have been reported to contribute to tissue repair after kidney injury model. However, there is no direct evidence so far that BM cells can trans-differentiate into renal stem cells. Methods To investigate whether BM stem cells contribute to repopulate the renal stem cell pool, we transplanted BM cells from transgenic mice, expressing enhanced green fluorescent protein (EGFP into wild-type irradiated recipients. Following hematological reconstitution and ischemia-reperfusion (I/R, Sca-1 and c-Kit positive renal stem cells in kidney were evaluated by immunostaining and flow cytometry analysis. Moreover, granulocyte colony stimulating factor (G-CSF was administrated to further explore if G-CSF can mobilize BM cells and enhance trans-differentiation efficiency of BM cells into renal stem cells. Results BM-derived cells can contribute to the Sca-1+ or c-Kit+ renal progenitor cells population, although most renal stem cells came from indigenous cells. Furthermore, G-CSF administration nearly doubled the frequency of Sca-1+ BM-derived renal stem cells and increased capillary density of I/R injured kidneys. Conclusions These findings indicate that BM derived stem cells can give rise to cells that share properties of renal resident stem cell. Moreover, G-CSF mobilization can enhance this effect.

  10. Formation of functional cell membrane domains: the interplay of lipid- and protein-mediated interactions.

    OpenAIRE

    Harder, Thomas

    2003-01-01

    Numerous cell membrane associated processes, including signal transduction, membrane sorting, protein processing and virus trafficking take place in membrane subdomains. Protein-protein interactions provide the frameworks necessary to generate biologically functional membrane domains. For example, coat proteins define membrane areas destined for sorting processes, viral proteins self-assemble to generate a budding virus, and adapter molecules organize multimolecular signalling assemblies, whi...

  11. Blockage of caspase-1 activation ameliorates bone marrow inflammation in mice after hematopoietic stem cell transplantation.

    Science.gov (United States)

    Qiao, Jianlin; Wu, Jinyan; Li, Yuanyuan; Xia, Yuan; Chu, Peipei; Qi, Kunming; Yan, Zhiling; Yao, Haina; Liu, Yun; Xu, Kailin; Zeng, Lingyu

    2016-01-01

    Conditioning regimens before hematopoietic stem cell transplantation (HSCT), cause damage to bone marrow and inflammation. Whether inflammasomes are involved in bone marrow inflammation remains unclear. The study aims to evaluate the role of inflammasomes in bone marrow inflammation after HSCT. On days 7, 14, 21 and 28 after HSCT, mice were sacrificed for analysis of bone marrow inflammation, pro-inflammatory cytokines secretion, inflammasomes expression and caspase-1 activation. Bone marrow inflammation with neutrophils and macrophages infiltration was observed after HSCT. Secretion of IL-1β, IL-18, TNF-α and IL-6 were elevated, with increased caspase-1 activation and inflammasomes expression. Caspase-1 inhibitor administration after HSCT significantly reduced infiltration of neutrophils and macrophages into bone marrow and increased the numbers of megakaryocytes and platelets. In conclusion, inflammasomes activation is involved in bone marrow inflammation after HSCT and caspase-1 inhibition attenuates bone marrow inflammation and promoted hematopoietic reconstitution, suggesting targeting caspase-1 might be beneficial for improving HSCT outcomes.

  12. LPS nephropathy in mice is ameliorated by IL-2 independently of regulatory T cells activity.

    Directory of Open Access Journals (Sweden)

    Roberta Bertelli

    Full Text Available Immunosuppressive regulatory T cells (Tregs have been hypothesized to exert a protective role in animal models of spontaneous (Buffalo/Mna and/or drug induced (Adriamycin nephrotic syndrome. In this study, we thought to define whether Tregs can modify the outcome of LPS nephropathy utilizing IL-2 as inducer of tissue and circulating Tregs. LPS (12 mg/Kg was given as single shot in C57BL/6, p2rx7⁻/⁻ and Foxp3EGFP; free IL-2 (18.000 U or, in alternative, IL-2 coupled with JES6-1 mAb (IL-2/anti-IL-2 were injected before LPS. Peripheral and tissue Tregs/total CD4+ cell ratio, urinary parameters and renal histology were evaluated for 15 days. IL-2 administration to wild type mice had no effect on peripheral Tregs number, whereas a significant increase was induced by the IL-2/anti-IL-2 immunocomplex after 5 days. Spleen and lymph nodes Tregs were comparably increased. In p2rx7⁻/⁻ mice, IL-2/anti-IL-2 treatment resulted in increase of peripheral Tregs but did not modify the spleen and lymph nodes quota. LPS induced comparable and transient proteinuria in both wild type and p2rx7⁻/⁻ mice. Proteinuria was inhibited by co-infusion of human IL-2, with reduction at each phase of the disease (24 -48 and 72 hours whereas IL-2/anti-IL-2 produced weaker effects. In all mice (wild type and p2rx7⁻/⁻ and irrespective of treatment (IL-2, IL-2/anti-IL-2, LPS was associated with progressive signs of renal pathologic involvement resulting in glomerulosclerosis. In conclusion, IL-2 plays a transient protective effect on proteinuria induced by LPS independent of circulating or tissue Tregs but does not modify the outcome of renal degenerative renal lesions.

  13. The Autohumidification Polymer Electrolyte Membrane Fuel Cell

    CERN Document Server

    Benziger, J B; Tulyani, S; Turner, A; Bocarsly, A B; Kevrekidis, Yu G

    2003-01-01

    A PEM fuel cell was specially constructed to determine kinetics under conditions of well-defined gas phase composition and cell temperature. Steady state multiplicity was discovered in the autohumidification PEM fuel cell, resulting from a balance between water production and water removal. Ignition was observed in the PEM fuel cell for a critical water activity of about 0.1. Ignition is a consequence of the exponential increase of proton conductivity with water activity, which creates an autocatalytic feedback between the water production and the proton conduction. The steady state current in the ignited state decreases with increasing temperature between 50 to 105 deg C. At temperatures greater than 70 deg C five steady states were observed in the PEM fuel cell. The steady state performance has been followed with variable load resistance and hysteresis loops have been mapped. The dynamics of transitions between steady states are slow about 10^3 to 10^4 s. These slow dynamics are suggested to result from a c...

  14. Tandem cathode for proton exchange membrane fuel cells

    DEFF Research Database (Denmark)

    Siahrostami, Samira; Björketun, Mårten E.; Strasser, Peter;

    2013-01-01

    The efficiency of proton exchange membrane fuel cells is limited mainly by the oxygen reduction reaction at the cathode. The large cathodic overpotential is caused by correlations between binding energies of reaction intermediates in the reduction of oxygen to water. This work introduces a novel...

  15. Lipid signalling dynamics at the β-cell plasma membrane.

    Science.gov (United States)

    Wuttke, Anne

    2015-04-01

    Pancreatic β-cells are clustered in islets of Langerhans and secrete insulin in response to increased concentrations of circulating glucose. Insulin in turn acts on liver, muscle and fat tissue to store energy and normalize the blood glucose level. Inappropriate insulin release may lead to impaired glucose tolerance and diabetes. In addition to glucose, other nutrients, neural stimuli and hormonal stimuli control insulin secretion. Many of these signals are perceived at the plasma membrane, which is also the site where insulin granules undergo exocytosis. Therefore, it is not surprising that membrane lipids play an important role in the regulation of insulin secretion. β-cells release insulin in a pulsatile fashion. Signalling lipids integrate the nutrient and neurohormonal inputs to fine-tune, shape and co-ordinate the pulsatility. An important group of signalling lipids are phosphoinositides and their downstream messengers. This MiniReview will discuss new insights into lipid signalling dynamics in β-cells obtained from live-cell imaging experiments with fluorescent translocation biosensors. The plasma membrane concentration of several phosphoinositides and of their downstream messengers changes rapidly upon nutrient or neurohormonal stimulation. Glucose induces the most complex spatio-temporal patterns, typically involving oscillations of messenger concentrations, which sometimes are locally restricted. The tightly controlled levels of lipid messengers can mediate specific binding of downstream effectors to the plasma membrane, contributing to the appropriate regulation of insulin secretion.

  16. Characterisation of cell-wall polysaccharides from mandarin segment membranes

    NARCIS (Netherlands)

    Coll-Almela, L.; Saura-Lopez, D.; Laencina-Sanchez, J.; Schols, H.A.; Voragen, A.G.J.; Ros-García, J.M.

    2015-01-01

    In an attempt to develop a process of enzymatic peeling of mandarin segments suitable for use on an industrial scale, the cell wall fraction of the segment membrane of Satsuma mandarin fruits was extracted to obtain a chelating agent-soluble pectin fraction (ChSS), a dilute sodium hydroxide-soluble

  17. Cell-penetrating peptides for drug delivery across membrane barriers

    DEFF Research Database (Denmark)

    Foged, Camilla; Nielsen, Hanne Moerck

    2008-01-01

    , proteins and colloidal carriers such as liposomes and polymeric nanoparticles. Their ability to cross biological membranes in a non-disruptive way without apparent toxicity is highly desired for increasing drug bioavailability. This review provides an overview of the application of cell...

  18. Amlodipine Ameliorates Ischemia-Induced Neovascularization in Diabetic Rats through Endothelial Progenitor Cell Mobilization.

    Science.gov (United States)

    Sun, Jiayin; Xie, Jun; Kang, Lina; Ferro, Albert; Dong, Li; Xu, Biao

    2016-01-01

    Objectives. We investigated whether amlodipine could improve angiogenic responses in a diabetic rat model of acute myocardial infarction (AMI) through improving bone marrow endothelial progenitor cell (EPC) mobilization, in the same way as angiotensin converting enzyme inhibitors. Methods. After induction of AMI by coronary artery ligation, diabetic rats were randomly assigned to receive perindopril (2 mgkg(-1) day(-1)), amlodipine (2.5 mgkg(-1) day(-1)), or vehicle by gavage (n = 20 per group). Circulating EPC counts before ligation and on days 1, 3, 5, 7, 14, and 28 after AMI were measured in each group. Microvessel density, cardiac function, and cardiac remodeling were assessed 4 weeks after treatment. The signaling pathway related to EPC mobilization was also measured. Results. Circulating EPC count in amlodipine- and perindopril-treated rats peaked at day 7, to an obvious higher level than the control group peak which was reached earlier (at day 5). Rats treated with amlodipine showed improved postischemia neovascularization and cardiac function, together with reduced cardiac remodeling, decreased interstitial fibrosis, and cardiomyocyte apoptosis. Amlodipine treatment also increased cardiac SDF-1/CXCR4 expression and gave rise to activation of VEGF/Akt/eNOS signaling in bone marrow. Conclusions. Amlodipine promotes neovascularization by improving EPC mobilization from bone marrow in diabetic rats after AMI, and activation of VEGF/Akt/eNOS signaling may in part contribute to this. PMID:27243031

  19. Amlodipine Ameliorates Ischemia-Induced Neovascularization in Diabetic Rats through Endothelial Progenitor Cell Mobilization

    Directory of Open Access Journals (Sweden)

    Jiayin Sun

    2016-01-01

    Full Text Available Objectives. We investigated whether amlodipine could improve angiogenic responses in a diabetic rat model of acute myocardial infarction (AMI through improving bone marrow endothelial progenitor cell (EPC mobilization, in the same way as angiotensin converting enzyme inhibitors. Methods. After induction of AMI by coronary artery ligation, diabetic rats were randomly assigned to receive perindopril (2 mgkg−1 day−1, amlodipine (2.5 mgkg−1 day−1, or vehicle by gavage (n=20 per group. Circulating EPC counts before ligation and on days 1, 3, 5, 7, 14, and 28 after AMI were measured in each group. Microvessel density, cardiac function, and cardiac remodeling were assessed 4 weeks after treatment. The signaling pathway related to EPC mobilization was also measured. Results. Circulating EPC count in amlodipine- and perindopril-treated rats peaked at day 7, to an obvious higher level than the control group peak which was reached earlier (at day 5. Rats treated with amlodipine showed improved postischemia neovascularization and cardiac function, together with reduced cardiac remodeling, decreased interstitial fibrosis, and cardiomyocyte apoptosis. Amlodipine treatment also increased cardiac SDF-1/CXCR4 expression and gave rise to activation of VEGF/Akt/eNOS signaling in bone marrow. Conclusions. Amlodipine promotes neovascularization by improving EPC mobilization from bone marrow in diabetic rats after AMI, and activation of VEGF/Akt/eNOS signaling may in part contribute to this.

  20. SIRT1 ameliorates age-related senescence of mesenchymal stem cells via modulating telomere shelterin

    Directory of Open Access Journals (Sweden)

    Huiqiang eChen

    2014-06-01

    Full Text Available Age-related mesenchymal stem cells (MSCs senescence, which impairs its tissue repair capacity in vivo and hence compromises the effects of MSCs-based therapy in clinical applications, is closely related to aging and aging-related diseases. Here, we demonstrated the effect of SIRT1, a NAD+-dependent deacetylase, on age-related MSCs senescence. Knockdown of SIRT1 in young MSCs induces cellular senescence and inhibits cellular proliferation ability whereas overexpression of SIRT1 in aged MSCs reversed the cellular senescence and regained its proliferation capacity, suggesting that SIRT1 could modulate age-induced MSCs senescence. Aging-related proteins, P16 and P21, might be involved in SIRT1-mediated anti-aging effect on MSCs. SIRT1 could positively modulate age-related DNA damage in MSCs. In addition, SIRT1 could induce telomerase reverse transcriptase (TERT expression and consequently enhance telomerase activity, however, no significant change was observed in telomere length. Moreover, SIRT1 could positively regulate TPP1, an important member of telomere shelterin, expression. Together, these results demonstrate that SIRT1 dampens age-related MSCs senescence, which was correlated with the up-regulation of TPP1 expression, telomerase activity and down-regulation of DNA damage.

  1. Preconditioning L6 Muscle Cells with Naringin Ameliorates Oxidative Stress and Increases Glucose Uptake.

    Directory of Open Access Journals (Sweden)

    R Dhanya

    Full Text Available Enhanced oxidative stress contributes to pathological changes in diabetes and its complications. Thus, strategies to reduce oxidative stress may alleviate these pathogenic processes. Herein, we have investigated Naringin mediated regulation of glutathione (GSH & intracellular free radical levels and modulation of glucose uptake under oxidative stress in L6 cell lines. The results from the study demonstrated a marked decrease in glutathione with a subsequent increase in free radical levels, which was reversed by the pretreatment of Naringin. We also observed that the increased malondialdehyde level, the marker of lipid peroxidation on induction of oxidative stress was retrieved on Naringin pretreatment. Addition of Naringin (100 μM showed approximately 40% reduction in protein glycation in vitro. Furthermore, we observed a twofold increase in uptake of fluorescent labeled glucose namely 2-(N-(7-Nitrobenz-2-oxa-1,3-diazol-4-ylAmino-2-Deoxyglucose (2-NBDG on Naringin treatment in differentiated L6 myoblast. The increased uptake of 2-NBDG by L6 myotubes may be attributed due to the enhanced translocation of GLUT4. Our results demonstrate that Naringin activate GSH synthesis through a novel antioxidant defense mechanism against excessive Reactive Oxygen Species (ROS production, contributing to the prevention of oxidative damage in addition to its effect on glycemic control.

  2. Adiponectin ameliorates the apoptotic effects of paraquat on alveolar type II cells via improvements in mitochondrial function

    Science.gov (United States)

    HE, YARONG; ZOU, LIQUN; ZHOU, YAXIONG; HU, HAI; YAO, RONG; JIANG, YAOWEN; LAU, WAYNE BOND; YUAN, TUN; HUANG, WEN; ZENG, ZHI; CAO, YU

    2016-01-01

    Previous studies have demonstrated that excessive reactive oxygen/nitrogen species (ROS/RNS)-induced apoptosis is an important feature of the injury to the lung epithelium in paraquat (PQ) poisoning. However the precise mechanisms of PQ-induced dysfunction of the mitochondria, where ROS/RNS are predominantly produced, remain to be fully elucidated. Whether globular adiponectin (gAd), a potent molecule protective to mitochondria, regulates the mitochondrial function of alveolar type II cells to reduce PQ-induced ROS/RNS production remains to be investigated. The current study aimed to investigate the precise mechanisms of PQ poisoning in the mitochondria of alveolar type II cells, and to elucidate the role of gAd in protecting against PQ-induced lung epithelium injury. Therefore, lung epithelial injury was induced by PQ co-culture of alveolar type II A549 cells for 24 h. gAd was administrated to and removed from the injured cells in after 24 h. PQ was observed to reduce cell viability and increase apoptosis by ~1.5 fold in A549 cells. The oxidative/nitrative stress, resulting from ROS/RNS and disordered mitochondrial function were evidenced by increased O2−., NO production and reduced mitochondrial membrane potential (ΔΨ), adenosine 5′-triphosphate (ATP) content in PQ-poisoned A549 cells. gAd treatment significantly reversed the PQ-induced cell injury and mitochondrial dysfunction in A549 cells. The protective effects of gAd were partly abrogated by an adenosine 5′-monophosphate-activated protein kinase (AMPK) inhibitor, compound C. The results suggest that reduced ΔΨ and ATP content may result in PQ-induced mitochondrial dysfunction of the lung epithelium, which constitutes a novel mechanism for gAd exerting pulmonary protection against PQ poisoning via AMPK activation. PMID:27220901

  3. Defining the optimal window for cranial transplantation of human induced pluripotent stem cell-derived cells to ameliorate radiation-induced cognitive impairment.

    Science.gov (United States)

    Acharya, Munjal M; Martirosian, Vahan; Christie, Lori-Ann; Riparip, Lara; Strnadel, Jan; Parihar, Vipan K; Limoli, Charles L

    2015-01-01

    Past preclinical studies have demonstrated the capability of using human stem cell transplantation in the irradiated brain to ameliorate radiation-induced cognitive dysfunction. Intrahippocampal transplantation of human embryonic stem cells and human neural stem cells (hNSCs) was found to functionally restore cognition in rats 1 and 4 months after cranial irradiation. To optimize the potential therapeutic benefits of human stem cell transplantation, we have further defined optimal transplantation windows for maximizing cognitive benefits after irradiation and used induced pluripotent stem cell-derived hNSCs (iPSC-hNSCs) that may eventually help minimize graft rejection in the host brain. For these studies, animals given an acute head-only dose of 10 Gy were grafted with iPSC-hNSCs at 2 days, 2 weeks, or 4 weeks following irradiation. Animals receiving stem cell grafts showed improved hippocampal spatial memory and contextual fear-conditioning performance compared with irradiated sham-surgery controls when analyzed 1 month after transplantation surgery. Importantly, superior performance was evident when stem cell grafting was delayed by 4 weeks following irradiation compared with animals grafted at earlier times. Analysis of the 4-week cohort showed that the surviving grafted cells migrated throughout the CA1 and CA3 subfields of the host hippocampus and differentiated into neuronal (∼39%) and astroglial (∼14%) subtypes. Furthermore, radiation-induced inflammation was significantly attenuated across multiple hippocampal subfields in animals receiving iPSC-hNSCs at 4 weeks after irradiation. These studies expand our prior findings to demonstrate that protracted stem cell grafting provides improved cognitive benefits following irradiation that are associated with reduced neuroinflammation.

  4. Dendronized Polymer Architectures for Fuel Cell Membranes

    DEFF Research Database (Denmark)

    Nielsen, Mads Møller; Dimitrov, Ivaylo; Takamuku, S.;

    2013-01-01

    evaluated as PEMs for use in fuel cells by proton conductivity measurements, and in the case of dendronized architectures: thermal stability. The proposed synthetic strategy facilitates exploration of a non‐fluorous system with various flexible side chains where IEC is tunable by the degree of substitution....

  5. How to Evaluate the Electric Noise in a Cell Membrane?

    Science.gov (United States)

    Bier, M.

    2006-05-01

    There has been considerable public anxiety about possible health effects of electromagnetic radiation emitted by high voltage power lines. Power frequencies (60 Hz in the US, 50 Hz in many other countries) are sufficiently slow for the associated electric fields to distribute themselves across the highly resistive cell membranes. To assess the ambient power frequency fields, researchers have compared the voltage that these fields induce across cell membranes to the strength of the electric noise that the membranes generate themselves through Brownian motion. However, there has been disagreement among researchers on how to evaluate this equilibrium membrane electric noise. I will review the different approaches and present an {ITALIC ab initio} modeling of membrane electric fields. I will show that different manifestations of Brownian noise lead to an electric noise intensity that is many times larger than what conventional estimates have yielded. Next, the legitimacy of gauging a nonequilibrium external signal against internal equilibrium noise is questioned and a more meaningful criterion is proposed. Finally, an estimate will be derived of the nonequilibrium noise intensity due to the driven ion traffic through randomly opening and closing ion channels.

  6. Do adipose tissue-derived mesenchymal stem cells ameliorate Parkinson's disease in rat model?

    Science.gov (United States)

    Ahmed, Hh; Salem, Am; Atta, Hm; Ghazy, Ma; Aglan, Ha

    2014-12-01

    Parkinson's disease (PD) is a common neurodegenerative disorder in middle-aged and elderly people. This study aimed to elucidate the role of mesenchymal stem cells (MSCs) in management of PD in ovariectomized rat model. MSCs were excised from adipose tissue of both the omentum and the inguinal fat pad of male rats, grown, and propagated in culture; then characterized morphologically; and by the detection of surface markers gene expression. In this study, 40 ovariectomized animals were classified into 5 groups; group 1 was ovariectomized control, groups 2 to 5 were subcutaneously administered with rotenone for 14 days after 1 month of ovariectomy for induction of PD. Group 2 was left untreated; groups 3, 4, and 5 were treated with Sinemet(®), Cerebrolysin(®), and a single dose of adipose tissue-derived MSCs (ADMSCs), respectively. Y-chromosome gene (sry) was assessed by polymerase chain reaction (PCR) in brain tissue of the female rats. Serum transforming growth factor β (TGF-β), monocyte chemoattractant protein 1 (MCP-1), and brain-derived neurotrophic factor (BDNF) levels were assayed using enzyme-linked immunosorbent assay technique. Brain dopamine level was assayed fluorometrically, while brain tyrosine hydroxylase (TH) gene expression was detected by semiquantitative real-time PCR. The PD group showed significant increase in serum TGF-β and MCP-1 levels associated with significant decrease in serum BDNF, brain dopamine, and brain TH gene expression levels. In contrast, all treatments produce significant decrease in serum TGF-β and MCP-1 levels in concomitant with significant increase in serum BDNF, brain dopamine, and brain TH gene expression levels. In conclusion, the observed improvements in the studied biomarkers due to ADMSCs infusion might be attributed to their immunomodulatory, anti-inflammatory, and neurotrophic effects. PMID:24567299

  7. Do adipose tissue-derived mesenchymal stem cells ameliorate Parkinson's disease in rat model?

    Science.gov (United States)

    Ahmed, Hh; Salem, Am; Atta, Hm; Ghazy, Ma; Aglan, Ha

    2014-12-01

    Parkinson's disease (PD) is a common neurodegenerative disorder in middle-aged and elderly people. This study aimed to elucidate the role of mesenchymal stem cells (MSCs) in management of PD in ovariectomized rat model. MSCs were excised from adipose tissue of both the omentum and the inguinal fat pad of male rats, grown, and propagated in culture; then characterized morphologically; and by the detection of surface markers gene expression. In this study, 40 ovariectomized animals were classified into 5 groups; group 1 was ovariectomized control, groups 2 to 5 were subcutaneously administered with rotenone for 14 days after 1 month of ovariectomy for induction of PD. Group 2 was left untreated; groups 3, 4, and 5 were treated with Sinemet(®), Cerebrolysin(®), and a single dose of adipose tissue-derived MSCs (ADMSCs), respectively. Y-chromosome gene (sry) was assessed by polymerase chain reaction (PCR) in brain tissue of the female rats. Serum transforming growth factor β (TGF-β), monocyte chemoattractant protein 1 (MCP-1), and brain-derived neurotrophic factor (BDNF) levels were assayed using enzyme-linked immunosorbent assay technique. Brain dopamine level was assayed fluorometrically, while brain tyrosine hydroxylase (TH) gene expression was detected by semiquantitative real-time PCR. The PD group showed significant increase in serum TGF-β and MCP-1 levels associated with significant decrease in serum BDNF, brain dopamine, and brain TH gene expression levels. In contrast, all treatments produce significant decrease in serum TGF-β and MCP-1 levels in concomitant with significant increase in serum BDNF, brain dopamine, and brain TH gene expression levels. In conclusion, the observed improvements in the studied biomarkers due to ADMSCs infusion might be attributed to their immunomodulatory, anti-inflammatory, and neurotrophic effects.

  8. Experimental Investigation and Discussion on the Mechanical Endurance Limit of Nafion Membrane Used in Proton Exchange Membrane Fuel Cell

    OpenAIRE

    Yang Xiao; Chongdu Cho

    2014-01-01

    As a solution of high efficiency and clean energy, fuel cell technologies, especially proton exchange membrane fuel cell (PEMFC), have caught extensive attention. However, after decades of development, the performances of PEMFCs are far from achieving the target from the Department of Energy (DOE). Thus, further understanding of the degradation mechanism is needed to overcome this obstacle. Due to the importance of proton exchange membrane in a PEMFC, the degradation of the membrane, such as ...

  9. The amniotic membrane as a source of stem cells.

    Science.gov (United States)

    Insausti, Carmen L; Blanquer, Miguel; Bleda, Patricia; Iniesta, Paqui; Majado, María J; Castellanos, Gregorio; Moraleda, José M

    2010-01-01

    Cellular therapy has emerged as a new potential tool for curing a wide range of degenerative diseases and tissue necrosis. Embryonic stem cells possess potential for differentiation into a wide range of cell lineages, but the ethical issues associated with establishment of this human cell line have to be resolved prior to any use. The bone marrow (BM) is the usual source of adult stem cells for hematopoietic stem cell transplants and cellular therapy, but the BM harvest is a surgical procedure that requires general anesthesia or sedation, and there seems to be a reduction of the proliferative potential and differentiation capacity of the marrow mesenchymal stem cells in older donors. For these reasons there is an increasing interest in other sources of stem cells from adult and fetal tissues. The amniotic membrane (AM) or amnion is a tissue of particular interest because its cells possess characteristics of stem cells with multipotent differentiation ability, and because of low immunogenicity and easy procurement from the placenta, which is a discarded tissue after parturition, thus avoiding the current controversies associated with the use of human embryonic stem cells. Therefore, amniotic membrane has been proposed as a good candidate to be used in cellular therapy and regenerative medicine. PMID:19924645

  10. Cannabinoid receptor-2 (CB2) agonist ameliorates colitis in IL-10{sup −/−} mice by attenuating the activation of T cells and promoting their apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Udai P.; Singh, Narendra P. [Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC 29208 (United States); Singh, Balwan [National Primate Research Center, Emory University, Atlanta GA 30329 (United States); Price, Robert L. [Department of Cell and Developmental Biology, University of South Carolina, Columbia, SC 29208 (United States); Nagarkatti, Mitzi [Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC 29208 (United States); Nagarkatti, Prakash S., E-mail: Prakash.Nagarkatti@uscmed.sc.edu [Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC 29208 (United States)

    2012-01-15

    Inflammatory bowel disease (IBD) is a chronic intestinal inflammation caused by hyperactivated effector immune cells that produce pro-inflammatory cytokines. Recent studies have shown that the cannabinoid system may play a critical role in mediating protection against intestinal inflammation. However, the effect of cannabinoid receptor induction after chronic colitis progression has not been investigated. Here, we investigate the effect of cannabinoid receptor-2 (CB2) agonist, JWH-133, after chronic colitis in IL-10{sup −/−} mice. JWH-133 effectively attenuated the overall clinical score, and reversed colitis-associated pathogenesis and decrease in body weight in IL-10{sup −/−} mice. After JWH-133 treatment, the percentage of CD4{sup +} T cells, neutrophils, mast cells, natural killer (NK1.1) cells, and activated T cells declined in the intestinal lamina propria (LP) and mesenteric lymph nodes (MLN) of mice with chronic colitis. JWH-133 was also effective in ameliorating dextran sodium sulfate (DSS)-induced colitis. In this model, JWH-133 reduced the number and percentage of macrophages and IFN-γ expressing cells that were induced during colitis progression. Treatment with aminoalkylindole 6-iodo-pravadoline (AM630), a CB2 receptor antagonist, reversed the colitis protection provided by JWH-133 treatment. Also, activated T cells were found to undergo apoptosis following JWH-133 treatment both in-vivo and in-vitro. These findings suggest that JWH-133 mediates its effect through CB2 receptors, and ameliorates chronic colitis by inducing apoptosis in activated T cells, reducing the numbers of activated T cells, and suppressing induction of mast cells, NK cells, and neutrophils at sites of inflammation in the LP. These results support the idea that the CB2 receptor agonists may serve as a therapeutic modality against IBD. -- Highlights: ► JWH-133, a cannnabinoid receptor-2 agonist ameliorates experimental colitis. ► JWH-133 suppressed inflammation and

  11. Chemical Imaging of the Cell Membrane by NanoSIMS

    Energy Technology Data Exchange (ETDEWEB)

    Weber, P K; Kraft, M L; Frisz, J F; Carpenter, K J; Hutcheon, I D

    2010-02-23

    The existence of lipid microdomains and their role in cell membrane organization are currently topics of great interest and controversy. The cell membrane is composed of a lipid bilayer with embedded proteins that can flow along the two-dimensional surface defined by the membrane. Microdomains, known as lipid rafts, are believed to play a central role in organizing this fluid system, enabling the cell membrane to carry out essential cellular processes, including protein recruitment and signal transduction. Lipid rafts are also implicated in cell invasion by pathogens, as in the case of the HIV. Therefore, understanding the role of lipid rafts in cell membrane organization not only has broad scientific implications, but also has practical implications for medical therapies. One of the major limitations on lipid organization research has been the inability to directly analyze lipid composition without introducing artifacts and at the relevant length-scales of tens to hundreds of nanometers. Fluorescence microscopy is widely used due to its sensitivity and specificity to the labeled species, but only the labeled components can be observed, fluorophores can alter the behavior of the lipids they label, and the length scales relevant to imaging cell membrane domains are between that probed by fluorescence resonance energy transfer (FRET) imaging (<10 nm) and the diffraction limit of light. Topographical features can be imaged on this length scale by atomic force microscopy (AFM), but the chemical composition of the observed structures cannot be determined. Immuno-labeling can be used to study the distribution of membrane proteins at high resolution, but not lipid composition. We are using imaging mass spectrometry by secondary ion mass spectrometry (SIMS) in concert with other high resolution imaging methods to overcome these limitations. The experimental approach of this project is to combine molecule-specific stable isotope labeling with high-resolution SIMS using a

  12. Durability aspects of polymer electrolyte membrane fuel cells

    Science.gov (United States)

    Sethuraman, Vijay Anand

    In order for the successful adoption of proton exchange membrane (PEM) fuel cell technology, it is imperative that durability is understood, quantified and improved. A number of mechanisms are known to contribute to PEMFC membrane electrode assembly (MEA) performance degradation. In this dissertation, we show, via experiments, some of the various processes that degrade the proton exchange membrane in a PEM fuel cell; and catalyst poisoning due to hydrogen sulfide (H2S) and siloxane. The effect of humidity on the chemical stability of two types of membranes, [i.e., perfluorosulfonic acid type (PFSA, NafionRTM 112) and biphenyl sulfone hydrocarbon type, (BPSH-35)] was studied by subjecting the MEAs to open-circuit voltage (OCV) decay and potential cycling tests at elevated temperatures and low inlet gas relative humidities. The BPSH-35 membranes showed poor chemical stability in ex situ Fenton tests compared to that of NafionRTM membranes. However, under fuel cell conditions, BPSH-35 MEAs outperformed NafionRTM 112 MEAs in both the OCV decay and potential cycling tests. For both membranes, (i) at a given temperature, membrane degradation was more pronounced at lower humidities and (ii) at a given relative humidity operation, increasing the cell temperature accelerated membrane degradation. Mechanical stability of these two types of membranes was also studied using relative humidity (RH) cycling. Hydrogen peroxide (H2O2) formation rates in a proton exchange membrane (PEM) fuel cell were estimated by studying the oxygen reduction reaction (ORR) on a rotating ring disc electrode (RRDE). Fuel cell conditions were replicated by depositing a film of Pt/Vulcan XC-72 catalyst onto the disk and by varying the temperature, dissolved O2 concentration and the acidity levels in HClO4. The HClO4 acidity was correlated to ionomer water activity and hence fuel cell humidity. H 2O2 formation rates showed a linear dependence on oxygen concentration and square dependence on water

  13. Rapamycin ameliorates experimental autoimmune uveoretinitis by inhibiting Th1/Th2/Th17 cells and upregulating CD4+CD25+ Foxp3 regulatory T cells

    Institute of Scientific and Technical Information of China (English)

    Li-Fei; Yuan; Guang-Da; Li; Xin-Jun; Ren; Hong; Nian; Xiao-Rong; Li; Xiao-Min; Zhang

    2015-01-01

    · AIM: To determine the effects of rapamycin on experimental autoimmune uveoretinitis(EAU) and investigate of role of rapamycin on T cell subsets in the disease.·METHODS: EAU was induced in rats using peptides1169 to 1191 of the interphotoreceptor binding protein(IRBP). Rapamycin(0.2 mg/kg/d) was administrated by intraperitoneal injection for a consecutive 7d after immunization. Th1/Th2/Th17 cytokines, TGF-β1, and IL-6produced by lymphocyteswere measured by ELISA, while Th17 cells and CD4 +CD25 + regulatory T cells(Tregs)from rat spleen were detected by flow cytometry.·RESULTS: Intraperitoneal treatment immediately after immunization dramatically ameliorated the clinical course of EAU. Clinical responses were associated with reduced retinal inflammatory cell infiltration and tissue destruction. Rapamycin induced suppression of Th1/Th2/Th17 cytokines, including IFN-γ, IL-2, IL-17, IL-4, and IL-10 release from T lymphocytes of EAU rats, in vitro.Rapamycin also significantly increased TGF-β1production but had no effect on IL-6 productionof T lymphocytes from EAU rats in vitro. Furthermore,rapamycin decreased the ratio of Th17 cells/CD4 +T cells and upregulated Tregs in EAU, as detected by flow cytometry.·CONCLUSION: Rapamycin effectively interferes with T cell mediated autoimmune uveitis by inhibiting antigen-specific T cell functions and enhancing Tregs in EAU.Rapamycin is a promising new alternative as an adjunct corticosteroid-sparing agent for treating uveitis.

  14. Block copolymers for alkaline fuel cell membrane materials

    Science.gov (United States)

    Li, Yifan

    Alkaline fuel cells (AFCs) using anion exchange membranes (AEMs) as electrolyte have recently received considerable attention. AFCs offer some advantages over proton exchange membrane fuel cells, including the potential of non-noble metal (e.g. nickel, silver) catalyst on the cathode, which can dramatically lower the fuel cell cost. The main drawback of traditional AFCs is the use of liquid electrolyte (e.g. aqueous potassium hydroxide), which can result in the formation of carbonate precipitates by reaction with carbon dioxide. AEMs with tethered cations can overcome the precipitates formed in traditional AFCs. Our current research focuses on developing different polymer systems (blend, block, grafted, and crosslinked polymers) in order to understand alkaline fuel cell membrane in many aspects and design optimized anion exchange membranes with better alkaline stability, mechanical integrity and ionic conductivity. A number of distinct materials have been produced and characterized. A polymer blend system comprised of poly(vinylbenzyl chloride)-b-polystyrene (PVBC-b-PS) diblock copolymer, prepared by nitroxide mediated polymerization (NMP), with poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) or brominated PPO was studied for conversion into a blend membrane for AEM. The formation of a miscible blend matrix improved mechanical properties while maintaining high ionic conductivity through formation of phase separated ionic domains. Using anionic polymerization, a polyethylene based block copolymer was designed where the polyethylene-based block copolymer formed bicontinuous morphological structures to enhance the hydroxide conductivity (up to 94 mS/cm at 80 °C) while excellent mechanical properties (strain up to 205%) of the polyethylene block copolymer membrane was observed. A polymer system was designed and characterized with monomethoxy polyethylene glycol (mPEG) as a hydrophilic polymer grafted through substitution of pendent benzyl chloride groups of a PVBC

  15. MEMBRANE LEc EXPRESSION IN BREAST CANCER CELLS

    Directory of Open Access Journals (Sweden)

    Ya. A. Udalova

    2009-01-01

    Full Text Available Affine chromatography was used to isolate Lec antibodies from the sera of a healthy female donor with the high titers of these anti- bodies, which were labeled with biotin. The study enrolled 51 patients with primary breast cancer (BC. Antigen expression was found by immunohistochemistry and flow cytometry. With these two techniques being used, the detection rate of Lec expression in BC cells was 65% (33/51; the antigen was most frequently found by flow cytometry as compared with immunohistochemistry: 72 and 58% of cases, respectively.

  16. A Theory for the Membrane Potential of Living Cells

    CERN Document Server

    Endresen, L P; Høye, J S; Myrheim, Jan

    1998-01-01

    We give an explicit formula for the membrane potential of cells in terms of the intracellular and extracellular ionic concentrations, and derive equations for the ionic currents that flow through channels, exchangers and electrogenic pumps. We demonstrate that the work done by the pumps equals the change in potential energy of the cell, plus the energy lost in downhill ionic fluxes through the channels and exchangers. The theory is illustrated in a simple model of spontaneously active cells in the cardiac pacemaker. The model predicts the experimentally observed intracellular ionic concentration of potassium, calcium, and sodium. Likewise the shapes of the simulated action potential and five membrane currents are in good agreement with experiments. We do not see any drift in the values of the concentrations in a long time simulation, and we obtain the same asymptotic values when starting from the full equilibrium situation with equal intracellular and extracellular ionic concentrations.

  17. Gold Nanoparticles-Enhanced Proton Exchange Membrane (PEM) Fuel Cell

    Science.gov (United States)

    Li, Hongfei; Pan, Cheng; Liu, Ping; Zhu, Yimei; Adzic, Radoslav; Rafailovich, Miriam

    Proton exchange membrane fuel cells have drawn great attention and been taken as a promising alternated energy source. One of the reasons hamper the wider application of PEM fuel cell is the catalytic poison effect from the impurity of the gas flow. Haruta has predicted that gold nanoparticles that are platelet shaped and have direct contact with the metal oxide substrate to be the perfect catalysts of the CO oxidization, yet the synthesis method is difficult to apply in the Fuel Cell. In our approach, thiol-functionalized gold nanoparticles were synthesized through two-phase method developed by Brust et al. We deposit these Au particles with stepped surface directly onto the Nafion membrane in the PEM fuel cell by Langmuir-Blodgett method, resulting in over 50% enhancement of the efficiency of the fuel cell. DFT calculations were conducted to understand the theory of this kind of enhancement. The results indicated that only when the particles were in direct surface contact with the membrane, where AuNPs attached at the end of the Nafion side chains, it could reduce the energy barrier for the CO oxidation that could happen at T<300K.

  18. Membrane electrode assemblies for unitised regenerative polymer electrolyte fuel cells

    Science.gov (United States)

    Wittstadt, U.; Wagner, E.; Jungmann, T.

    Membrane electrode assemblies for regenerative polymer electrolyte fuel cells were made by hot pressing and sputtering. The different MEAs are examined in fuel cell and water electrolysis mode at different pressure and temperature conditions. Polarisation curves and ac impedance spectra are used to investigate the influence of the changes in coating technique. The hydrogen gas permeation through the membrane is determined by analysing the produced oxygen in electrolysis mode. The analysis shows, that better performances in both process directions can be achieved with an additional layer of sputtered platinum on the oxygen electrode. Thus, the electrochemical round-trip efficiency can be improved by more than 4%. Treating the oxygen electrode with PTFE solution shows better performance in fuel cell and less performance in electrolysis mode. The increase of the round-trip efficiency is negligible. A layer sputtered directly on the membrane shows good impermeability, and hence results in high voltages at low current densities. The mass transportation is apparently constricted. The gas diffusion layer on the oxygen electrode, in this case a titanium foam, leads to flooding of the cell in fuel cell mode. Stable operation is achieved after pretreatment of the GDL with a PTFE solution.

  19. Linoleic acid derivative DCP-LA ameliorates stress-induced depression-related behavior by promoting cell surface 5-HT1A receptor translocation, stimulating serotonin release, and inactivating GSK-3β.

    Science.gov (United States)

    Kanno, Takeshi; Tanaka, Akito; Nishizaki, Tomoyuki

    2015-04-01

    Impairment of serotonergic neurotransmission is the major factor responsible for depression and glycogen synthase kinase 3β (GSK-3β) participates in serotonergic transmission-mediated signaling networks relevant to mental illnesses. In the forced-swim test to assess depression-like behavior, the immobility time for mice with restraint stress was significantly longer than that for nonstressed control mice. Postsynaptic cell surface localization of 5-HT1A receptor, but not 5-HT2A receptor, in the hypothalamus for mice with restraint stress was significantly reduced as compared with that for control mice, which highly correlated to prolonged immobility time, i.e., depression-like behavior. The linoleic acid derivative 8-[2-(2-pentyl-cyclopropylmethyl)-cyclopropyl]-octanoic acid (DCP-LA) restored restraint stress-induced reduction of cell surface 5-HT1A receptor and improved depression-like behavior in mice with restraint stress. Moreover, DCP-LA stimulated serotonin release from hypothalamic slices and cancelled restraint stress-induced reduction of GSK-3β phosphorylation at Ser9. Taken together, the results of the present study indicate that DCP-LA could ameliorate depression-like behavior by promoting translocation of 5-HT1A receptor to the plasma membrane on postsynaptic cells, stimulating serotonin release, and inactivating GSK-3β. PMID:24788685

  20. Linoleic acid derivative DCP-LA ameliorates stress-induced depression-related behavior by promoting cell surface 5-HT1A receptor translocation, stimulating serotonin release, and inactivating GSK-3β.

    Science.gov (United States)

    Kanno, Takeshi; Tanaka, Akito; Nishizaki, Tomoyuki

    2015-04-01

    Impairment of serotonergic neurotransmission is the major factor responsible for depression and glycogen synthase kinase 3β (GSK-3β) participates in serotonergic transmission-mediated signaling networks relevant to mental illnesses. In the forced-swim test to assess depression-like behavior, the immobility time for mice with restraint stress was significantly longer than that for nonstressed control mice. Postsynaptic cell surface localization of 5-HT1A receptor, but not 5-HT2A receptor, in the hypothalamus for mice with restraint stress was significantly reduced as compared with that for control mice, which highly correlated to prolonged immobility time, i.e., depression-like behavior. The linoleic acid derivative 8-[2-(2-pentyl-cyclopropylmethyl)-cyclopropyl]-octanoic acid (DCP-LA) restored restraint stress-induced reduction of cell surface 5-HT1A receptor and improved depression-like behavior in mice with restraint stress. Moreover, DCP-LA stimulated serotonin release from hypothalamic slices and cancelled restraint stress-induced reduction of GSK-3β phosphorylation at Ser9. Taken together, the results of the present study indicate that DCP-LA could ameliorate depression-like behavior by promoting translocation of 5-HT1A receptor to the plasma membrane on postsynaptic cells, stimulating serotonin release, and inactivating GSK-3β.

  1. Inferring maps of forces inside cell membrane microdomains

    CERN Document Server

    Masson, J -B; Tuerkcan, S; Voisinne, G; Popoff, M R; Vergassola, M; Alexandrou, A

    2015-01-01

    Mapping of the forces on biomolecules in cell membranes has spurred the development of effective labels, e.g. organic fluorophores and nanoparticles, to track trajectories of single biomolecules. Standard methods use particular statistics, namely the mean square displacement, to analyze the underlying dynamics. Here, we introduce general inference methods to fully exploit information in the experimental trajectories, providing sharp estimates of the forces and the diffusion coefficients in membrane microdomains. Rapid and reliable convergence of the inference scheme is demonstrated on trajectories generated numerically. The method is then applied to infer forces and potentials acting on the receptor of the $\\epsilon$-toxin labeled by lanthanide-ion nanoparticles. Our scheme is applicable to any labeled biomolecule and results show show its general relevance for membrane compartmentation.

  2. Nanoporous silicon membrane for fuel cells realized by electrochemical etching

    Energy Technology Data Exchange (ETDEWEB)

    Jaouadi, M., E-mail: mohja05.08@hotmail.com [Laboratoire de Photovoltaieque, Centre de Recherches et des Technologies de l' Energie, Technopole de Borj-Cedria, BP 95 Hammam-Lif 2050 (Tunisia); Dimassi, W.; Gaidi, M.; Chtourou, R.; Ezzaouia, H. [Laboratoire de Photovoltaieque, Centre de Recherches et des Technologies de l' Energie, Technopole de Borj-Cedria, BP 95 Hammam-Lif 2050 (Tunisia)

    2012-05-15

    In this work we propose a simple method to realize nanoporous silicon proton exchange membranes for fuel cells. The electrochemical etching allows in a single step, the grooving of the membrane and the realization of double porous silicon (PS) layer. We have studied the impact of the different electrochemical conditions: current density, the electrolyte concentration (ethanoic HF) and the anodization time leading to optimal thickness (of 50-90 {mu}m) and nanoporosity for silicon microstructures. The experimental techniques employed for surface studies and depths of groove in silicon are mainly scanning electronic microscopy (SEM) and atomic force microscopy (AFM) which give information of the silicon microstructures. Photoluminescence (PL) measurements of porous silicon membrane were carried out in order to investigate the optical properties of the PS.

  3. Benzimidazole grafted polybenzimidazoles for proton exchange membrane fuel cells

    DEFF Research Database (Denmark)

    Yang, Jingshuai; Aili, David; Li, Qingfeng;

    2013-01-01

    High molecular weight polybenzimidazole (PBI) was synthesized and grafted with benzimidazole pendant groups. The high molecular weight of PBI resulted in good film-forming properties and superior tensile strength. With a phosphoric acid doping level (ADL) of 13.1, a tensile strength of 16 MPa...... was achieved at room temperature. Grafting of benzimidazole moieties onto the PBI macromolecular chain introduced additional basic sites which allowed the membrane to achieve higher phosphoric acid uptakes. A molar acid conductivity, defined as the specific conductivity of each mole of doping acid......, was proposed to evaluate the effective conductivity contributed from the doping acids. With a grafting degree of 5.3% and an ADL of 13.1, the PBI membranes exhibited a total conductivity of 0.15 S cm-1. A H2-air fuel cell based on this membrane showed a peak power density of 378 mW cm-2 at 180 °C without...

  4. Nature of the elements transporting long-chain fatty acids through the red cell membrane

    DEFF Research Database (Denmark)

    Bojesen, Inge Norby; Bojesen, Eigil

    1998-01-01

    Docosahexaenoic acid, linoleic acid, red cell membrane, transporting elements, transport kinetics, fatty acid transport......Docosahexaenoic acid, linoleic acid, red cell membrane, transporting elements, transport kinetics, fatty acid transport...

  5. Inorganic-organic Composite Membranes with Novel Microstructure for High Temperature Proton Exchange Membrane Fuel Cells

    Institute of Scientific and Technical Information of China (English)

    Zhigang Ma; Jiandong Gao; Jing Guo; Zhenghua Deng; Jishuan Suo

    2007-01-01

    Nowadays,more and more fossil fuels are consumed and air pollurion has become a threat to the survival of people.Therefore,we need some other power sources to provide energy without damaging the environment.Proton exchange membrane fuel cells(PEMFCs)have received wide attention due to their advantages Such as high energy density and zero emission[1].Particularly, direct methanol fuel cells (DMFCs)were considered as the most suitable energy sources for electric vehicles(EVs)and portable electronics.

  6. Murine CD4+CD25- cells activated in vitro with PMA/ionomycin and anti-CD3 acquire regulatory function and ameliorate experimental colitis in vivo

    Directory of Open Access Journals (Sweden)

    Majowicz Anna

    2012-12-01

    Full Text Available Abstract Background Induced regulatory T (iTreg lymphocytes show promise for application in the treatment of allergic, autoimmune and inflammatory disorders. iTreg cells demonstrate advantages over natural Treg (nTreg cells in terms of increased number of starting population and greater potential to proliferate. Different activation methods to generate iTreg cells result in iTreg cells that are heterogeneous in phenotype and mechanisms of suppression. Therefore it is of interest to explore new techniques to generate iTreg cells and to determine their physiological relevance. Methods Using phorbol myristate acetate (PMA/ionomycin and anti-CD3 activation of CD4+CD25- cells we generated in vitro functional CD4+CD25+ iTreg (TregPMA cells. Functionality of the generated TregPMA cells was tested in vivo in a mouse model of inflammatory bowel disease (IBD - CD45RB transfer colitis model. Results TregPMA cells expressed regulatory markers and proved to ameliorate the disease phenotype in murine CD45RB transfer colitis model. The body weight loss and disease activity scores for TregPMA treated mice were reduced when compared to diseased control group. Histological assessment of colon sections confirmed amelioration of the disease phenotype. Additionally, cytokine analysis showed decreased levels of proinflammatory colonic and plasma IL-6, colonic IL-1 β and higher levels of colonic IL-17 when compared to diseased control group. Conclusions This study identifies a new method to generate in vitro iTreg cells (TregPMA cells which physiological efficacy has been demonstrated in vivo.

  7. Development of structured polymer electrolyte membranes for fuel cell applications

    Science.gov (United States)

    Gasa, Jeffrey

    The objective of this research was to explore structure-property relationships to develop the understanding needed for introduction of superior PEM materials. Polymer electrolyte membranes based on sulfonated poly(ether ketone ketone) (SPEKK) were fabricated using N-methyl pyrrolidone as casting solvent. The membranes were characterized in terms of properties that were relevant to fuel cell applications, such as proton conductivity, methanol permeability, and swelling properties, among others. It was found in this study that the proton conductivity of neat SPEKK membranes could reach the conductivity of commercial membranes such as NafionRTM. However, when the conductivity of SPEKK was comparable to NafionRTM, the swelling of SPEKK in water was quite excessive. The swelling problem was remedied by modifying the microstructure of SPEKK using different techniques. One of them involved blending of lightly sulfonated PEKK with highly acidic particles (sulfonated crosslinked polystyrene-SXLPS). Low sulfonation level of SPEKK was used to reduce the swelling of the membrane in water and the role of the highly acidic particles was to enhance the proton conductivity of the membrane. Because of the residual crystallinity in SPEKK with low sulfonation levels (IEC blending with non-conductive polymers (poly(ether imide) and poly(ether sulfone)) to act as mechanical reinforcement. It was found that miscibility behavior of the blends had a significant impact on the transport and swelling properties of these blends, which could be explained by the blend microstructure. The miscibility behavior was found to be strongly dependent on the sulfonation level of SPEKK. The conductivities of the blends were enhanced by as much as two orders of magnitude when the morphology was modified by electric field. The last approach was ionic crosslinking of the sulfonate groups in SPEKK using divalent cations, specifically barium ions. The crosslinking treatment has greatly improved the thermal

  8. Creating transient cell membrane pores using a standard inkjet printer.

    Science.gov (United States)

    Owczarczak, Alexander B; Shuford, Stephen O; Wood, Scott T; Deitch, Sandra; Dean, Delphine

    2012-03-16

    Bioprinting has a wide range of applications and significance, including tissue engineering, direct cell application therapies, and biosensor microfabrication. Recently, thermal inkjet printing has also been used for gene transfection. The thermal inkjet printing process was shown to temporarily disrupt the cell membranes without affecting cell viability. The transient pores in the membrane can be used to introduce molecules, which would otherwise be too large to pass through the membrane, into the cell cytoplasm. The application being demonstrated here is the use of thermal inkjet printing for the incorporation of fluorescently labeled g-actin monomers into cells. The advantage of using thermal ink-jet printing to inject molecules into cells is that the technique is relatively benign to cells. Cell viability after printing has been shown to be similar to standard cell plating methods. In addition, inkjet printing can process thousands of cells in minutes, which is much faster than manual microinjection. The pores created by printing have been shown to close within about two hours. However, there is a limit to the size of the pore created (~10 nm) with this printing technique, which limits the technique to injecting cells with small proteins and/or particles. A standard HP DeskJet 500 printer was modified to allow for cell printing. The cover of the printer was removed and the paper feed mechanism was bypassed using a mechanical lever. A stage was created to allow for placement of microscope slides and coverslips directly under the print head. Ink cartridges were opened, the ink was removed and they were cleaned prior to use with cells. The printing pattern was created using standard drawing software, which then controlled the printer through a simple print command. 3T3 fibroblasts were grown to confluence, trypsinized, and then resuspended into phosphate buffered saline with soluble fluorescently labeled g-actin monomers. The cell suspension was pipetted into the

  9. Modeling and Simulation for Fuel Cell Polymer Electrolyte Membrane

    Directory of Open Access Journals (Sweden)

    Takahiro Hayashi

    2013-01-01

    Full Text Available We have established methods to evaluate key properties that are needed to commercialize polyelectrolyte membranes for fuel cell electric vehicles such as water diffusion, gas permeability, and mechanical strength. These methods are based on coarse-graining models. For calculating water diffusion and gas permeability through the membranes, the dissipative particle dynamics–Monte Carlo approach was applied, while mechanical strength of the hydrated membrane was simulated by coarse-grained molecular dynamics. As a result of our systematic search and analysis, we can now grasp the direction necessary to improve water diffusion, gas permeability, and mechanical strength. For water diffusion, a map that reveals the relationship between many kinds of molecular structures and diffusion constants was obtained, in which the direction to enhance the diffusivity by improving membrane structure can be clearly seen. In order to achieve high mechanical strength, the molecular structure should be such that the hydrated membrane contains narrow water channels, but these might decrease the proton conductivity. Therefore, an optimal design of the polymer structure is needed, and the developed models reviewed here make it possible to optimize these molecular structures.

  10. Modified SPEEK membranes for direct ethanol fuel cell

    KAUST Repository

    Maab, Husnul

    2010-07-01

    Membranes with low ethanol crossover were prepared aiming their application for direct ethanol fuel cell (DEFC). They were based on (1) sulfonated poly(ether ether ketone) (SPEEK) coated with carbon molecular sieves (CMS) and (2) on SPEEK/PI homogeneous blends. The membranes were characterized concerning their water and ethanol solution uptake, water and ethanol permeability in pervaporation experiments and their performance in DEFC tests. The ethanol permeabilities for the CMS-coated (180 nm and 400 nm thick layers) SPEEK were 8.5 and 3.1 x 10(-10) kg m s(-1) m(-2) and for the homogeneous SPEEK/PI blends membranes with 10, 20 and 30 wt.% of PI were 4.4, 1.0 and 0.4 x 10(-10) kg m s(-1) m(-2) respectively, which is 2- to 50-fold lower than that for plain SPEEK (19 x 10(-10) kg m s(-1) m(-2)). Particularly the SPEEK/PI membranes had substantially better performance than Nafion 117 membranes in DEFC tests at 60 degrees C and 90 degrees C. (C) 2010 Elsevier B.V. All rights reserved.

  11. Neural Stem Cell Gene Therapy Ameliorates Pathology and Function in a Mouse Model of Globoid Cell Leukodystrophy

    OpenAIRE

    Neri, Margherita; Ricca, Alessandra; di Girolamo, Ilaria; Alcala'-Franco, Beatriz; Cavazzin, Chiara; Orlacchio, Aldo; Martino, Sabata; Naldini, Luigi; Gritti, Angela

    2011-01-01

    Murine neural stem cells (mNSCs), either naive or genetically modified to express supranormal levels of β-galactocerebrosidase (GALC), were transplanted into the brain of Twitcher mice, a murine model of globoid cell leukodystrophy, a severe sphingolipidosis. Cells engrafted long-term into the host cytoarchitecture, producing functional GALC. Levels of enzyme activity in brain and spinal cord tissues were enhanced when GALC-overexpressing NSC were used. Enzymatic correction correlated with re...

  12. Lowering the platinum loading of high temperature polymer electrolyte membrane fuel cells with acid doped polybenzimidazole membranes

    DEFF Research Database (Denmark)

    Fernandez, Santiago Martin; Li, Qingfeng; Jensen, Jens Oluf

    2015-01-01

    Membrane electrode assemblies (MEAs) with ultra-low Pt loading electrodes were prepared for high temperature polymer electrolyte membrane fuel cells (HT-PEMFCs) based on acid doped polybenzimidazole. With no electrode binders or ionomers, the triple phase boundary of the catalyst layer was establ......Membrane electrode assemblies (MEAs) with ultra-low Pt loading electrodes were prepared for high temperature polymer electrolyte membrane fuel cells (HT-PEMFCs) based on acid doped polybenzimidazole. With no electrode binders or ionomers, the triple phase boundary of the catalyst layer...

  13. Near-critical fluctuations and cytoskeleton-assisted phase separation lead to subdiffusion in cell membranes

    CERN Document Server

    Ehrig, Jens; Schwille, Petra

    2010-01-01

    We address the relationship between membrane microheterogeneity and anomalous subdiffusion in cell membranes by carrying out Monte Carlo simulations of two-component lipid membranes. We find that near-critical fluctuations in the membrane lead to transient subdiffusion, while membrane-cytoskeleton interaction strongly affects phase separation, enhances subdiffusion, and eventually leads to hop diffusion of lipids. Thus, we present a minimum realistic model for membrane rafts showing the features of both microscopic phase separation and subdiffusion.

  14. Near-Critical Fluctuations and Cytoskeleton-Assisted Phase Separation Lead to Subdiffusion in Cell Membranes

    OpenAIRE

    Ehrig, Jens; Petrov, Eugene P.; Schwille, Petra

    2011-01-01

    We address the relationship between membrane microheterogeneity and anomalous subdiffusion in cell membranes by carrying out Monte Carlo simulations of two-component lipid membranes. We find that near-critical fluctuations in the membrane lead to transient subdiffusion, while membrane-cytoskeleton interaction strongly affects phase separation, enhances subdiffusion, and eventually leads to hop diffusion of lipids. Thus, we present a minimum realistic model for membrane rafts showing the featu...

  15. Phosphoric acid doped polybenzimidazole membranes: Physiochemical characterization and fuel cell applications [PEM fuel cells

    DEFF Research Database (Denmark)

    Qingfeng, Li; Hjuler, Hans Aage; Bjerrum, Niels

    2001-01-01

    A polymer electrolyte membrane fuel cell operational at temperatures around 150-200 degrees C is desirable for fast electrode kinetics and high tolerance to fuel impurities. For this purpose polybenzimidazole (PBI) membranes have been prepared and H/sub 3/PO/sub 4/-doped in a doping range from 30...

  16. Multi-layer graphene membrane based memory cell

    Science.gov (United States)

    Siahlo, Andrei I.; Popov, Andrey M.; Poklonski, Nikolai A.; Lozovik, Yurii E.; Vyrko, Sergey A.; Ratkevich, Sergey V.

    2016-10-01

    The scheme and operational principles of the nanoelectromechanical memory cell based on the bending of a multi-layer graphene membrane by the electrostatic force are proposed. An analysis of the memory cell total energy as a function of the memory cell sizes is used to determine the sizes corresponding to a bistable memory cell with the conducting ON and non-conducting OFF states and to calculate the switching voltage between the OFF and ON states. It is shown that a potential barrier between the OFF and ON states is huge for practically all sizes of a bistable memory cell which excludes spontaneous switching and allows the proposed memory cell to be used for long-term archival storage.

  17. Stimulating Effect of Terfenadine on Erythrocyte Cell Membrane Scrambling

    Directory of Open Access Journals (Sweden)

    Elena Signoretto

    2016-04-01

    Full Text Available Background/Aims: The antihistaminic drug Terfenadine may trigger apoptosis of tumor cells, an effect unrelated to its effect on histamine receptors. Similar to apoptosis of nucleated cells, erythrocytes may enter eryptosis, the suicidal death of erythrocytes characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine translocation to the erythrocyte surface. Signaling triggering eryptosis include increase of cytosolic Ca2+ activity ([Ca2+]i, oxidative stress, and ceramide. The present study explored, whether Terfenadine is capable to trigger eryptosis. Methods: Flow cytometry was employed to estimate phosphatidylserine abundance at the erythrocyte surface from annexin-V-binding, cell volume from forward scatter, [Ca2+]i from Fluo3-fluorescence, abundance of reactive oxygen species (ROS from 2′,7′-dichlorodihydrofluorescein (DCF diacetate dependent fluorescence, and ceramide abundance at the human erythrocyte surface utilizing specific antibodies. Hemolysis was quantified from haemoglobin concentration in the supernatant. Results: A 48 hours exposure of human erythrocytes to Terfenadine (≥ 5 µM significantly increased the percentage of annexin-V-binding cells and triggered hemolysis without significantly modifying the average forward scatter. Terfenadine (7.5 µM significantly increased Fluo3-fluorescence, but did not significantly modify DCF fluorescence or ceramide abundance. The effect of Terfenadine on annexin-V-binding was significantly blunted but not abolished by removal of extracellular Ca2+. Exposure of human erythrocytes to Ca2+ ionophore ionomycin (1 µM, 15 min triggered annexin-V-binding, an effect augmented by Terfenadine pretreatment (10 µM, 48 hours. Conclusions: Terfenadine triggers phospholipid scrambling of the human erythrocyte cell membrane, an effect in part due to entry of extracellular Ca2+ and in part due to sensitizing human erythrocyte cell membrane scrambling to Ca2+.

  18. Amelioration of murine sickle cell disease by nonablative conditioning and γ-globin gene-corrected bone marrow cells.

    Science.gov (United States)

    Pestina, Tamara I; Hargrove, Phillip W; Zhao, Huifen; Mead, Paul E; Smeltzer, Matthew P; Weiss, Mitchell J; Wilber, Andrew; Persons, Derek A

    2015-01-01

    Patients with severe sickle cell disease (SCD) are candidates for gene therapy using autologous hematopoietic stem cells (HSCs), but concomitant multi-organ disease may contraindicate pretransplant conditioning with full myeloablation. We tested whether nonmyeloablative conditioning, a regimen used successfully for allogeneic bone marrow transplantation of adult SCD patients, allows engraftment of γ-globin gene-corrected cells to a therapeutic level in the Berkeley mouse model of SCD. Animals transplanted according to this regimen averaged 35% engraftment of transduced hematopoietic stem cells with an average vector copy liver, spleen, and kidneys. Thus, modest levels of chimerism with donor cells expressing high levels of HbF from an insulated γ-globin lentiviral vector can improve the pathology of SCD in mice, thereby illustrating a potentially safe and effective strategy for gene therapy in humans. PMID:26665131

  19. Development of a membrane electrode assembly process for proton exchange membrane fuel cell (PEMFC)

    International Nuclear Information System (INIS)

    In this work, a Membrane Electrode Assembly (MEA) producing process was developed, involving simple steps, aiming cost reduction and good reproducibility for Proton Exchange Membrane Fuel Cell (PEMFC) commercial applications. The electrodes were produced by spraying ink into both sides of the polymeric membrane, building the catalytic layers, followed by hot pressing of Gas Diffusion Layers (GDL), forming the MEA. This new producing method was called 'Spray and hot pressing hybrid method'. Concerning that all the parameters of spray and hot pressing methods are interdependent, a statistical procedure were used in order to study the mutual variables influences and to optimize the method. This study was earned out in two distinct steps: the first one, where seven variables were considered for the analysis and the second one, where only the variables that interfered in the process performance in the first step were considered for analysis. The results showed that the developed process was adequate, including only simple steps, reaching MEA's performance of 651 m A cm-2 at a potential of 600 mV for catalysts loading of 0,4 mg cm-2 Pt at the anode and 0,6 mg cm-2 Pt at the cathode. This result is compared to available commercial MEA's, with the same fuel cell operations conditions. (author)

  20. HYDROGEN-RICH MEDIUM AMELIORATES LIPOPOLYSACCHARIDE-INDUCED BARRIER DYSFUNCTION VIA RHOA-MDIA1 SIGNALING IN CACO-2 CELLS

    Science.gov (United States)

    Yang, Tao; Wang, Lu; Sun, Ruiqiang; Chen, Hongguang; Zhang, Hongtao; Yu, Yang; Wang, Yanyan; Wang, Guolin; Yu, Yonghao; Xie, Keliang

    2016-01-01

    ABSTRACT Gastrointestinal barrier dysfunction is associated with the severity and prognosis of sepsis. Hydrogen gas (H2) can ameliorate multiple organ damage in septic animals. Ras homolog gene family member A (RhoA) and mammalian diaphanous-related formin 1 (mDia1) are important to regulate tight junction (TJ) and adherens junction (AJ), both of which determine the integrity of the intestinal barrier. This study was aimed to investigate whether H2 could modulate lipopolysaccharide (LPS)-stimulated dysfunction of the intestinal barrier and whether RhoA-mDia1 signaling is involved. Caco-2 cells were exposed to different concentrations of LPS (1 μg/mL–1 mg/mL). The permeability of the intestinal barrier was evaluated by transepithelial resistance (TER) and fluorescein-isothiocyanate-dextran flux. Expression and distribution of occludin and E-cadherin were analyzed by Western blot and immunofluorescence. RhoA activity was measured by G-Lisa assay, and mDia1 expression was assessed by Western blot. LPS (100 μg/mL) decreased TER and increased fluorescein-isothiocyanate-dextran flux, which were alleviated by H2-rich medium. Also, H2 down-regulated LPS-induced oxidative stress. Moreover, H2 improved the down-regulated expression and redistribution of occludin and E-cadherin caused by LPS. Additionally, H2 alleviated LPS-caused RhoA activation, and the beneficial effects of H2 on barrier were counteracted by RhoA agonist CN03. Rho inhibitor C3 exoenzyme mitigated LPS-induced barrier breakdown. Furthermore, H2-rich medium increased mDia1 expression, and mDia1 knockdown abolished protections of H2 on barrier permeability. mDia1 knockdown eliminated H2-induced benefits for occludin and E-cadherin. These findings suggest that H2 improves LPS-induced hyperpermeability of the intestinal barrier and disruptions of TJ and AJ by moderating RhoA-mDia1 signaling. PMID:26529665

  1. Solid Polymer Fuel Cells. Electrode and membrane performance studies

    Energy Technology Data Exchange (ETDEWEB)

    Moeller-Holst, S.

    1996-12-31

    This doctoral thesis studies aspects of fuel cell preparation and performance. The emphasis is placed on preparation and analysis of low platinum-loading solid polymer fuel cell (SPEC) electrodes. A test station was built and used to test cells within a wide range of real operating conditions, 40-150{sup o}C and 1-10 bar. Preparation and assembling equipment for single SPFCs was designed and built, and a new technique of spraying the catalyst layer directly onto the membrane was successfully demonstrated. Low Pt-loading electrodes (0.1 mg Pt/cm{sup 2}) prepared by the new technique exhibited high degree of catalyst utilization. The performance of single cells holding these electrodes is comparable to state-of-the-art SPFCs. Potential losses in single cell performance are ascribed to irreversibilities by analysing the efficiency of the Solid Oxide Fuel Cell by means of the second law of thermodynamics. The water management in membranes is discussed for a model system and the results are relevant to fuel cell preparation and performance. The new spray deposition technique should be commercially interesting as it involves few steps as well as techniques that are adequate for larger scale production. 115 refs., 43 figs., 18 tabs.

  2. Sterol-Rich Membrane Domains Define Fission Yeast Cell Polarity.

    Science.gov (United States)

    Makushok, Tatyana; Alves, Paulo; Huisman, Stephen Michiel; Kijowski, Adam Rafal; Brunner, Damian

    2016-05-19

    Cell polarization is crucial for the functioning of all organisms. The cytoskeleton is central to the process but its role in symmetry breaking is poorly understood. We study cell polarization when fission yeast cells exit starvation. We show that the basis of polarity generation is de novo sterol biosynthesis, cell surface delivery of sterols, and their recruitment to the cell poles. This involves four phases occurring independent of the polarity factor cdc42p. Initially, multiple, randomly distributed sterol-rich membrane (SRM) domains form at the plasma membrane, independent of the cytoskeleton and cell growth. These domains provide platforms on which the growth and polarity machinery assembles. SRM domains are then polarized by the microtubule-dependent polarity factor tea1p, which prepares for monopolar growth initiation and later switching to bipolar growth. SRM polarization requires F-actin but not the F-actin organizing polarity factors for3p and bud6p. We conclude that SRMs are key to cell polarization. PMID:27180904

  3. Exegoeconomic Analysis On A Proton Electrolyte Membrane Fuel Cell

    International Nuclear Information System (INIS)

    The objective of this study is to perform an exergy and economic analysis on proton electrolyte membrane fuel cell power system (PEMFC) known as exegoeconomic. A 5 kW PEMFC was taken as case study. The fuel cell includes the hydrogen processing system and a fuel cell stack. The hydrogen processing system consisted of an auto-thermal reactor (ATR), a water gas shift reactor (WGS), tubular ceramic membrane module (TCR) and a pressure swing adsorber (PSA). The fuel cell stack was the main power generator. It was obseved that TCM and PSA have low energy efficiency of 0.29 % and 0.09 % respectively. Energy efficiency for the auto-thermal reactor and fuel cell stack were higher at 22.44 % and 31.97 % respectively and both values are comparable with other studies. The exergoeconomics for the 5kW fuel cell system was determined as RM4756.62 per GJ. From the analysis, it is also found that the fuel cell cost can more competitive, if the cost of operation, maintenance and fuel can be reduced. (author)

  4. Proton exchange membrane fuel cell technology for transportation applications

    Energy Technology Data Exchange (ETDEWEB)

    Swathirajan, S. [General Motors R& D Center, Warren, MI (United States)

    1996-04-01

    Proton Exchange Membrane (PEM) fuel cells are extremely promising as future power plants in the transportation sector to achieve an increase in energy efficiency and eliminate environmental pollution due to vehicles. GM is currently involved in a multiphase program with the US Department of Energy for developing a proof-of-concept hybrid vehicle based on a PEM fuel cell power plant and a methanol fuel processor. Other participants in the program are Los Alamos National Labs, Dow Chemical Co., Ballard Power Systems and DuPont Co., In the just completed phase 1 of the program, a 10 kW PEM fuel cell power plant was built and tested to demonstrate the feasibility of integrating a methanol fuel processor with a PEM fuel cell stack. However, the fuel cell power plant must overcome stiff technical and economic challenges before it can be commercialized for light duty vehicle applications. Progress achieved in phase I on the use of monolithic catalyst reactors in the fuel processor, managing CO impurity in the fuel cell stack, low-cost electrode-membrane assembles, and on the integration of the fuel processor with a Ballard PEM fuel cell stack will be presented.

  5. Study of the effect of membrane thickness on microcapsule strength, permeability, and cell proliferation.

    Science.gov (United States)

    Ma, Ying; Zhang, Ying; Wang, Yu; Wang, Qiuyan; Tan, Mingqian; Liu, Yang; Chen, Li; Li, Na; Yu, Weiting; Ma, Xiaojun

    2013-04-01

    Cell microencapsulation is one of the promising strategies for in vitro production of proteins or in vivo delivery of therapeutic products. Membrane thickness controls microcapsule strength and permeability, which may in return affect cell growth and metabolism. In this study, the strength, permeability, and encapsulated Chinese hamster ovary cell proliferation and metabolism of four groups of microcapsules with different membrane thicknesses were investigated. It was found that increasing membrane thickness increases microcapsule strength, whereas decreases membrane permeability. During the first 6 days, cells within microcapsules with 10 μm thickness membrane proliferated fast and could reach a cell density of 1.9 × 10(7) cells/mL microcapsule with 92% cell density. A cell density of 5.5 × 10(7) cells/mL microcapsule with >85% cell density was achieved within microcapsules with 15 μm membrane thickness and these microcapsules kept over 88% integrity ratio after 11 days, which was much higher than that of microcapsules with 10 μm membrane thickness. Membrane with more than 20 μm thickness was not suited for encapsulated cell culture owing to low-protein diffusion rate. These results indicated that cells survived shortly within the thinnest membrane thickness. There was a specific membrane thickness more suitable for cell growth for a long-time culture. These findings will be useful for preparing microcapsules with the desired membrane thickness for microencapsulated cell culture dependent on various purposes.

  6. Islet-like cell aggregates generated from human adipose tissue derived stem cells ameliorate experimental diabetes in mice.

    Directory of Open Access Journals (Sweden)

    Vikash Chandra

    Full Text Available BACKGROUND: Type 1 Diabetes Mellitus is caused by auto immune destruction of insulin producing beta cells in the pancreas. Currently available treatments include transplantation of isolated islets from donor pancreas to the patient. However, this method is limited by inadequate means of immuno-suppression to prevent islet rejection and importantly, limited supply of islets for transplantation. Autologous adult stem cells are now considered for cell replacement therapy in diabetes as it has the potential to generate neo-islets which are genetically part of the treated individual. Adopting methods of islet encapsulation in immuno-isolatory devices would eliminate the need for immuno-suppressants. METHODOLOGY/PRINCIPAL FINDINGS: In the present study we explore the potential of human adipose tissue derived adult stem cells (h-ASCs to differentiate into functional islet like cell aggregates (ICAs. Our stage specific differentiation protocol permit the conversion of mesodermic h-ASCs to definitive endoderm (Hnf3β, TCF2 and Sox17 and to PDX1, Ngn3, NeuroD, Pax4 positive pancreatic endoderm which further matures in vitro to secrete insulin. These ICAs are shown to produce human C-peptide in a glucose dependent manner exhibiting in-vitro functionality. Transplantation of mature ICAs, packed in immuno-isolatory biocompatible capsules to STZ induced diabetic mice restored near normoglycemia within 3-4 weeks. The detection of human C-peptide, 1155±165 pM in blood serum of experimental mice demonstrate the efficacy of our differentiation approach. CONCLUSIONS: h-ASC is an ideal population of personal stem cells for cell replacement therapy, given that they are abundant, easily available and autologous in origin. Our findings present evidence that h-ASCs could be induced to differentiate into physiologically competent functional islet like cell aggregates, which may provide as a source of alternative islets for cell replacement therapy in type 1 diabetes.

  7. Membraner

    DEFF Research Database (Denmark)

    Bach, Finn

    2009-01-01

    Notatet giver en kort introduktion til den statiske virkemåde af membraner og membrankonstruktioner......Notatet giver en kort introduktion til den statiske virkemåde af membraner og membrankonstruktioner...

  8. Melittin interaction with sulfated sugars and cell membranes

    OpenAIRE

    Klocek, Gabriela

    2008-01-01

    The presented work focused on an alternative mechanism of action of melittin on the cell membranes. The study using ITC reveals that melittin has a high affinity for several glycosaminoglycans (GAGs), i.e. heparan sulfate (HS), dermatan sulfate and heparin. The interaction between peptide and GAGs comprised both electrostatic and non-ionic components. Circular dichroism (CD) spectroscopy demonstrates that the binding of melittin to HS and other GAGs induces a conformational cha...

  9. Collaboration between primitive cell membranes and soluble catalysts

    OpenAIRE

    Adamala, Katarzyna P.; Engelhart, Aaron E.; SZOSTAK, JACK W.

    2016-01-01

    One widely held model of early life suggests primitive cells consisted of simple RNA-based catalysts within lipid compartments. One possible selective advantage conferred by an encapsulated catalyst is stabilization of the compartment, resulting from catalyst-promoted synthesis of key membrane components. Here we show model protocell vesicles containing an encapsulated enzyme that promotes the synthesis of simple fatty acid derivatives become stabilized to Mg2+, which is required for ribozyme...

  10. Polybenzimidazole membranes for zero gap alkaline electrolysis cells

    DEFF Research Database (Denmark)

    Kraglund, Mikkel Rykær; Aili, David; Christensen, Erik;

    Membranes of m-PBI doped in KOH (aq), 15-35 wt%, show high ionic conductivity in the temperature range 20-80 ºC. In electrolysis cells with nickel foam electrodes m-PBI membranesprovide low internal resistance. With a 60 µm membraneat 80ºC in 20 wt% KOH,1000 mA/cm2 is achieved at 2.25....

  11. Interface-designed Membranes with Shape-controlled Patterns for High-performance Polymer Electrolyte Membrane Fuel Cells

    OpenAIRE

    Yukwon Jeon; Dong Jun Kim; Jong Kwan Koh; Yunseong Ji; Jong Hak Kim; Yong-Gun Shul

    2015-01-01

    Polymer electrolyte membrane fuel cell is a promising zero-emission power generator for stationary/automotive applications. However, key issues, such as performance and costs, are still remained for an economical commercialization. Here, we fabricated a high-performance membrane electrode assembly (MEA) using an interfacial design based on well-arrayed micro-patterned membranes including circles, squares and hexagons with different sizes, which are produced by a facile elastomeric mold method...

  12. Stimulation of Erythrocyte Cell Membrane Scrambling by Mushroom Tyrosinase

    Directory of Open Access Journals (Sweden)

    Leonie Frauenfeld

    2014-03-01

    Full Text Available Background: Mushroom tyrosinase, a copper containing enzyme, modifies growth and survival of tumor cells. Mushroom tyrosinase may foster apoptosis, an effect in part due to interference with mitochondrial function. Erythrocytes lack mitochondria but are able to undergo apoptosis-like suicidal cell death or eryptosis, which is characterized by cell shrinkage and cell membrane scrambling leading to phosphatidylserine-exposure at the erythrocyte surface. Signaling involved in the triggering of eryptosis include increase of cytosolic Ca2+-activity ([Ca2+]i and activation of sphingomyelinase with subsequent formation of ceramide. The present study explored, whether tyrosinase stimulates eryptosis. Methods: Cell volume has been estimated from forward scatter, phosphatidylserine-exposure from annexin V binding, [Ca2+]i from Fluo3-fluorescence, and ceramide abundance from binding of fluorescent antibodies in flow cytometry. Results: A 24 h exposure to mushroom tyrosinase (7 U/mL was followed by a significant increase of [Ca2+]i, a significant increase of ceramide abundance, and a significant increase of annexin-V-binding. The annexin-V-binding following tyrosinase treatment was significantly blunted but not abrogated in the nominal absence of extracellular Ca2+. Tyrosinase did not significantly modify forward scatter. Conclusions: Tyrosinase triggers cell membrane scrambling, an effect, at least partially, due to entry of extracellular Ca2+ and ceramide formation.

  13. Handle Region Peptide Ameliorating Insulin Resistance but Not β Cell Functions in Male Rats Neonatally Treated with Sodium L-Glutamate

    Directory of Open Access Journals (Sweden)

    Guo-shu Yin

    2013-01-01

    Full Text Available Handle region peptide (HRP, which was recognized as a blocker of (prorenin receptor ((PRR, may block the function of (PRR. The aim of this study was to investigate the effect of HRP with a large dose of 1 mg/kg/d on glucose status in the rats treated neonatally with monosodium L-glutamate (MSG. At the age of 8 weeks, the MSG rats were randomly divided into MSG control group, HRP treated group with minipump (MSG-HRP group, losartan treated group (MSG-L group, and HRP and losartan cotreated group (MSG-HRP-L group and fed with high-fat diet for 4 weeks. Losartan but not HRP increased the levels of insulin releasing and ameliorate glucose status although both losartan and HRP improved insulin sensitivity. On the one hand, both losartan and HRP decreased levels of pancreatic local Ang-II and NADPH oxidase activity as well as its subunits P22phox. On the other hand, losartan but not HRP decreased α-cell mass and number of PCNA-positive cells located periphery of the islets and decreased picrosirius red stained area in islets. HRP ameliorating insulin resistance but not β-cell functions leads to hyperglycemia in the end in male MSG rats, and the dual characters of HRP may partly account for the phenomenon.

  14. Mesenchymal Stromal/Stem Cells Do Not Ameliorate Experimental Autoimmune Encephalomyelitis and Are Not Detectable in the Central Nervous System of Transplanted Mice.

    Science.gov (United States)

    Abramowski, Pierre; Krasemann, Susanne; Ernst, Thomas; Lange, Claudia; Ittrich, Harald; Schweizer, Michaela; Zander, Axel R; Martin, Roland; Fehse, Boris

    2016-08-01

    Mesenchymal stromal/stem cells (MSCs) constitute progenitor cells that can be isolated from different tissues. Based on their immunomodulatory and neuroprotective functions, MSC-based cell-therapy approaches have been suggested to antagonize inflammatory activity and neuronal damage associated with autoimmune disease of the central nervous system (CNS), for example, multiple sclerosis (MS). Intravenous MSC transplantation was reported to ameliorate experimental autoimmune encephalomyelitis (EAE), the murine model of MS, within days after transplantation. However, systemic distribution patterns and fate of MSCs after administration, especially their potential to migrate into inflammatory lesions within the CNS, remain to be elucidated. This question has of recent become particularly important, since therapeutic infusion of MSCs is now being tested in clinical trials with MS-affected patients. Here, we made use of the established EAE mouse model to investigate migration and therapeutic efficacy of murine bone marrow-derived MSCs. Applying a variety of techniques, including magnetic resonance imaging, immunohistochemistry, fluorescence in-situ hybridization, and quantitative polymerase chain reaction we found no evidence for immediate migration of infused MSC into the CNS of treated mice. Moreover, in contrast to other studies, transplanted MSCs did not ameliorate EAE. In conclusion, our data does not provide substantiation for a relevant migration of infused MSCs into the CNS of EAE mice supporting the hypothesis that potential therapeutic efficacy could be based on systemic effects. Evaluation of possible mechanisms underlying the observed discrepancies in MSC treatment outcomes between different EAE models demands further studies. PMID:27250994

  15. Orally administered lactoperoxidase ameliorates dextran sulfate sodium-induced colitis in mice by up-regulating colonic interleukin-10 and maintaining peripheral regulatory T cells.

    Science.gov (United States)

    Shin, Kouichirou; Horigome, Ayako; Yamauchi, Koji; Yaeshima, Tomoko; Iwatsuki, Keiji

    2009-11-01

    We previously demonstrated orally administered bovine lactoperoxidase (LPO) ameliorated dextran sulfate sodium-induced colitis in mice. Here, we examine the mechanism of action of LPO. Three days after colitis induction, expression of interferon-gamma mRNA in colonic tissue was significantly decreased in mice administered LPO; while mRNA expression of interleukin (IL)-10 and regulatory T cell (Treg) marker, Foxp3, were significantly increased. The proportion of CD4+CD25+ Tregs in peripheral CD4+ T cells was also significantly elevated when LPO was administered. Nine days after colitis induction, the severity of colitis symptoms, including body weight loss and colon shortening, was reduced and expression of IL-10 mRNA was increased in mice administered LPO. The proportion of CD4+CD25+ Tregs in peripheral leukocytes was also significantly elevated when LPO was administered. These results suggest LPO ameliorates colitis by up-regulating colonic anti-inflammatory cytokines and maintaining peripheral regulatory T cells.

  16. Latent progenitor cells as potential regulators for tympanic membrane regeneration

    Science.gov (United States)

    Kim, Seung Won; Kim, Jangho; Seonwoo, Hoon; Jang, Kyung-Jin; Kim, Yeon Ju; Lim, Hye Jin; Lim, Ki-Taek; Tian, Chunjie; Chung, Jong Hoon; Choung, Yun-Hoon

    2015-06-01

    Tympanic membrane (TM) perforation, in particular chronic otitis media, is one of the most common clinical problems in the world and can present with sensorineural healing loss. Here, we explored an approach for TM regeneration where the latent progenitor or stem cells within TM epithelial layers may play an important regulatory role. We showed that potential TM stem cells present highly positive staining for epithelial stem cell markers in all areas of normal TM tissue. Additionally, they are present at high levels in perforated TMs, especially in proximity to the holes, regardless of acute or chronic status, suggesting that TM stem cells may be a potential factor for TM regeneration. Our study suggests that latent TM stem cells could be potential regulators of regeneration, which provides a new insight into this clinically important process and a potential target for new therapies for chronic otitis media and other eardrum injuries.

  17. Water Soluble Polymers as Proton Exchange Membranes for Fuel Cells

    Directory of Open Access Journals (Sweden)

    Bing-Joe Hwang

    2012-03-01

    Full Text Available The relentless increase in the demand for useable power from energy-hungry economies continues to drive energy-material related research. Fuel cells, as a future potential power source that provide clean-at-the-point-of-use power offer many advantages such as high efficiency, high energy density, quiet operation, and environmental friendliness. Critical to the operation of the fuel cell is the proton exchange membrane (polymer electrolyte membrane responsible for internal proton transport from the anode to the cathode. PEMs have the following requirements: high protonic conductivity, low electronic conductivity, impermeability to fuel gas or liquid, good mechanical toughness in both the dry and hydrated states, and high oxidative and hydrolytic stability in the actual fuel cell environment. Water soluble polymers represent an immensely diverse class of polymers. In this comprehensive review the initial focus is on those members of this group that have attracted publication interest, principally: chitosan, poly (ethylene glycol, poly (vinyl alcohol, poly (vinylpyrrolidone, poly (2-acrylamido-2-methyl-1-propanesulfonic acid and poly (styrene sulfonic acid. The paper then considers in detail the relationship of structure to functionality in the context of polymer blends and polymer based networks together with the effects of membrane crosslinking on IPN and semi IPN architectures. This is followed by a review of pore-filling and other impregnation approaches. Throughout the paper detailed numerical results are given for comparison to today’s state-of-the-art Nafion® based materials.

  18. Quantitative analysis of cell surface membrane proteins using membrane-impermeable chemical probe coupled with 18O labeling

    Science.gov (United States)

    Zhang, Haizhen; Brown, Roslyn N.; Qian, Wei-Jun; Monroe, Matthew E.; Purvine, Samuel O.; Moore, Ronald J.; Gritsenko, Marina A.; Shi, Liang; Romine, Margaret F; Fredrickson, James K.; Paša-Tolić, Ljiljana; Smith, Richard D.; Lipton, Mary S.

    2010-01-01

    We report a mass spectrometry-based strategy for quantitative analysis of cell surface membrane proteome changes. The strategy includes enrichment of surface membrane proteins using a membrane-impermeable chemical probe followed by stable isotope 18O labeling and LC-MS analysis. We applied this strategy for enriching membrane proteins expressed by Shewanella oneidensis MR-1, a gram-negative bacterium with known metal-reduction capability via extracellular electron transfer between outer membrane proteins and extracellular electron receptors. LC/MS/MS analysis resulted in the identification of about 400 proteins with 79% of them being predicted to be membrane localized. Quantitative aspects of the membrane enrichment were shown by peptide level 16O and 18O labeling of proteins from wild-type and mutant cells (generated from deletion of a type II secretion protein, GspD) prior to LC-MS analysis. Using a chemical probe labeled pure protein as an internal standard for normalization, the quantitative data revealed reduced abundances in ΔgspD mutant cells of many outer membrane proteins including the outer membrane c-cype cytochromes OmcA and MtrC, in agreement with previously investigation demonstrating that these proteins are substrates of the type II secretion system. PMID:20380418

  19. Graphene-doped electrospun nanofiber membrane electrodes and proton exchange membrane fuel cell performance

    Science.gov (United States)

    Wei, Meng; Jiang, Min; Liu, Xiaobo; Wang, Min; Mu, Shichun

    2016-09-01

    A rational electrode structure can allow proton exchange membrane (PEM) fuel cells own high performance with a low noble metal loading and an optimal transport pathway for reaction species. In this study, we develop a graphene doped polyacrylonitile (PAN)/polyvinylident fluoride (PVDF) (GPP) electrospun nanofiber electrode with improved electrical conductivity and high porosity, which could enhance the triple reaction boundary and promote gas and water transport throughout the porous electrode. Thus the increased electrochemical active surface area (ECSA) of Pt catalysts and fuel cell performance can be expected. As results, the ECSA of hot-pressed electrospun electrodes with 2 wt% graphene oxide (GO) is up to 84.3 m2/g, which is greatly larger than that of the conventional electrode (59.5 m2/g). Significantly, the GPP nanofiber electrospun electrode with Pt loading of 0.2 mg/cm2 exhibits higher fuel cell voltage output and stability than the conventional electrode.

  20. Splenic B cells from Hymenolepis diminuta-infected mice ameliorate colitis independent of T cells and via cooperation with macrophages.

    Science.gov (United States)

    Reyes, José L; Wang, Arthur; Fernando, Maria R; Graepel, Rabea; Leung, Gabriella; van Rooijen, Nico; Sigvardsson, Mikael; McKay, Derek M

    2015-01-01

    Helminth parasites provoke multicellular immune responses in their hosts that can suppress concomitant disease. The gut lumen-dwelling tapeworm Hymenolepis diminuta, unlike other parasites assessed as helminth therapy, causes no host tissue damage while potently suppressing murine colitis. With the goal of harnessing the immunomodulatory capacity of infection with H. diminuta, we assessed the putative generation of anti-colitic regulatory B cells following H. diminuta infection. Splenic CD19(+) B cells isolated from mice infected 7 [HdBc(7(d))] and 14 d (but not 3 d) previously with H. diminuta and transferred to naive mice significantly reduced the severity of dinitrobenzene sulfonic acid (DNBS)-, oxazolone-, and dextran-sodium sulfate-induced colitis. Mechanistic studies with the DNBS model, revealed the anti-colitic HdBc(7(d)) was within the follicular B cell population and its phenotype was not dependent on IL-4 or IL-10. The HdBc(7(d)) were not characterized by increased expression of CD1d, CD5, CD23, or IL-10 production, but did spontaneously, and upon LPS plus anti-CD40 stimulation, produce more TGF-β than CD19(+) B cells from controls. DNBS-induced colitis in RAG1(-/-) mice was inhibited by administration of HdBc(7(d)), indicating a lack of a requirement for T and B cells in the recipient; however, depletion of macrophages in recipient mice abrogated the anti-colitic effect of HdBc(7(d)). Thus, in response to H. diminuta, a putatively unique splenic CD19(+) B cell with a functional immunoregulatory program is generated that promotes the suppression of colitis dominated by TH1, TH2, or TH1-plus-TH2 events, and may do so via the synthesis of TGF-β and the generation of, or cooperation with, a regulatory macrophage.

  1. Cell Surface and Membrane Engineering: Emerging Technologies and Applications

    Directory of Open Access Journals (Sweden)

    Christopher T. Saeui

    2015-06-01

    Full Text Available Membranes constitute the interface between the basic unit of life—a single cell—and the outside environment and thus in many ways comprise the ultimate “functional biomaterial”. To perform the many and often conflicting functions required in this role, for example to partition intracellular contents from the outside environment while maintaining rapid intake of nutrients and efflux of waste products, biological membranes have evolved tremendous complexity and versatility. This article describes how membranes, mainly in the context of living cells, are increasingly being manipulated for practical purposes with drug discovery, biofuels, and biosensors providing specific, illustrative examples. Attention is also given to biology-inspired, but completely synthetic, membrane-based technologies that are being enabled by emerging methods such as bio-3D printers. The diverse set of applications covered in this article are intended to illustrate how these versatile technologies—as they rapidly mature—hold tremendous promise to benefit human health in numerous ways ranging from the development of new medicines to sensitive and cost-effective environmental monitoring for pathogens and pollutants to replacing hydrocarbon-based fossil fuels.

  2. Fault tolerance control for proton exchange membrane fuel cell systems

    Science.gov (United States)

    Wu, Xiaojuan; Zhou, Boyang

    2016-08-01

    Fault diagnosis and controller design are two important aspects to improve proton exchange membrane fuel cell (PEMFC) system durability. However, the two tasks are often separately performed. For example, many pressure and voltage controllers have been successfully built. However, these controllers are designed based on the normal operation of PEMFC. When PEMFC faces problems such as flooding or membrane drying, a controller with a specific design must be used. This paper proposes a unique scheme that simultaneously performs fault diagnosis and tolerance control for the PEMFC system. The proposed control strategy consists of a fault diagnosis, a reconfiguration mechanism and adjustable controllers. Using a back-propagation neural network, a model-based fault detection method is employed to detect the PEMFC current fault type (flooding, membrane drying or normal). According to the diagnosis results, the reconfiguration mechanism determines which backup controllers to be selected. Three nonlinear controllers based on feedback linearization approaches are respectively built to adjust the voltage and pressure difference in the case of normal, membrane drying and flooding conditions. The simulation results illustrate that the proposed fault tolerance control strategy can track the voltage and keep the pressure difference at desired levels in faulty conditions.

  3. Polymer Materials for Fuel Cell Membranes :Sulfonated Poly(ether sulfone) for Universal Fuel Cell Operations

    Institute of Scientific and Technical Information of China (English)

    Hyoung-Juhn Kim

    2005-01-01

    @@ 1Introduction Polymer electrolyte fuel cells (PEFCs) have been spotlighted because they are clean and highly efficient power generation system. Proton exchange membrane fuel cells (PEMFCs), which use reformate gases or pure H2 for a fuel, have been employed for automotives and residential usages. Also, liquid-feed fuel cells such as direct methanol fuel cell (DMFC) and direct formic acid fuel cell (DFAFC) were studied for portable power generation.

  4. A hybrid microbial fuel cell membrane bioreactor with a conductive ultrafiltration membrane biocathode for wastewater treatment

    KAUST Repository

    Malaeb, Lilian

    2013-10-15

    A new hybrid, air-biocathode microbial fuel cell-membrane bioreactor (MFC-MBR) system was developed to achieve simultaneous wastewater treatment and ultrafiltration to produce water for direct reclamation. The combined advantages of this system were achieved by using an electrically conductive ultrafiltration membrane as both the cathode and the membrane for wastewater filtration. The MFC-MBR used an air-biocathode, and it was shown to have good performance relative to an otherwise identical cathode containing a platinum catalyst. With 0.1 mm prefiltered domestic wastewater as the feed, the maximum power density was 0.38 W/m2 (6.8 W/m3) with the biocathode, compared to 0.82 W/m2 (14.5 W/m3) using the platinum cathode. The permeate quality from the biocathode reactor was comparable to that of a conventional MBR, with removals of 97% of the soluble chemical oxygen demand, 97% NH3-N, and 91% of total bacteria (based on flow cytometry). The permeate turbidity was <0.1 nephelometric turbidity units. These results show that a biocathode MFC-MBR system can achieve high levels of wastewater treatment with a low energy input due to the lack of a need for wastewater aeration. © 2013 American Chemical Society.

  5. Better Proton-Conducting Polymers for Fuel-Cell Membranes

    Science.gov (United States)

    Narayan, Sri; Reddy, Prakash

    2012-01-01

    Polyoxyphenylene triazole sulfonic acid has been proposed as a basis for development of improved proton-conducting polymeric materials for solid-electrolyte membranes in hydrogen/air fuel cells. Heretofore, the proton-conducting membrane materials of choice have been exemplified by a family of perfluorosulfonic acid-based polymers (Nafion7 or equivalent). These materials are suitable for operation in the temperature of 75 to 85 C, but in order to reduce the sizes and/or increase the energy-conversion efficiencies of fuel-cell systems, it would be desirable to increase temperatures to as high as 120 C for transportation applications, and to as high as 180 C for stationary applications. However, at 120 C and at relative humidity values below 50 percent, the loss of water from perfluorosulfonic acid-based polymer membranes results in fuel-cell power densities too low to be of practical value. Therefore, membrane electrolyte materials that have usefully high proton conductivity in the temperature range of 180 C at low relative humidity and that do not rely on water for proton conduction at 180 C would be desirable. The proposed polyoxyphenylene triazole sulfonic acid-based materials have been conjectured to have these desirable properties. These materials would be free of volatile or mobile acid constituents. The generic molecular structure of these materials is intended to exploit the fact, demonstrated in previous research, that materials that contain ionizable acid and base groups covalently attached to thermally stable polymer backbones exhibit proton conduction even in the anhydrous state.

  6. Graptopetalum paraguayense ameliorates chemical-induced rat hepatic fibrosis in vivo and inactivates stellate cells and Kupffer cells in vitro.

    Directory of Open Access Journals (Sweden)

    Li-Jen Su

    Full Text Available BACKGROUND: Graptopetalum paraguayense (GP is a folk herbal medicine with hepatoprotective effects that is used in Taiwan. The aim of this study was to evaluate the hepatoprotective and antifibrotic effects of GP on experimental hepatic fibrosis in both dimethylnitrosamine (DMN- and carbon tetrachloride (CCl(4-induced liver injury rats. METHODS: Hepatic fibrosis-induced rats were fed with the methanolic extract of GP (MGP by oral administration every day. Immunohistochemistry, biochemical assays, and Western blot analysis were performed. The effects of MGP on the expression of fibrotic markers and cytokines in the primary cultured hepatic stellate cells (HSCs and Kupffer cells, respectively, were evaluated. RESULTS: Oral administration of MGP significantly alleviated DMN- or CCl(4-induced liver inflammation and fibrosis. High levels of alanine transaminase, aspartate transaminase, bilirubin, prothrombin activity and mortality rates also decreased in rats treated with MGP. There were significantly decreased hydroxyproline levels in therapeutic rats compared with those of the liver-damaged rats. Collagen I and alpha smooth muscle actin (α-SMA expression were all reduced by incubation with MGP in primary cultured rat HSCs. Furthermore, MGP induced apoptotic cell death in activated HSCs. MGP also suppressed lipopolysaccharide-stimulated rat Kupffer cell activation by decreasing nitric oxide, tumor necrosis factor-α and interleukin-6 production, and increasing interleukin-10 expression. CONCLUSIONS: The results show that the administration of MGP attenuated toxin-induced hepatic damage and fibrosis in vivo and inhibited HSC and Kupffer cell activation in vitro, suggesting that MGP might be a promising complementary or alternative therapeutic agent for liver inflammation and fibrosis.

  7. New proton conducting membranes for fuel cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Sukumar, P.R.

    2006-07-01

    In order to synthesize proton-conducting materials which retain acids in the membrane during fuel cell operating conditions, the synthesis of poly(vinylphosphonic acid) grafted polybenzimidazole (PVPA grafted PBI) and the fabrication of multilayer membranes are mainly focussed in this dissertation. Synthesis of PVPA grafted PBI membrane can be done according to ''grafting through'' method. In ''grafting through'' method (or macromonomer method), monomer (e.g., vinylphosphonic acid) is radically copolymerized with olefin group attached macromonomer (e.g., allyl grafted PBI and vinylbenzyl grafted PBI). This approach is inherently limited to synthesize graft-copolymer with well-defined architectural and structural parameters. The incorporation of poly(vinylphosphonic acid) into PBI lead to improvements in proton conductivity up to 10-2 S/cm. Regarding multilayer membranes, the proton conducting layer-by-layer (LBL) assembly of polymers by various strong acids such as poly(vinylphosphonic acid), poly(vinylsulfonic acid) and poly(styrenesulfonic acid) paired with basic polymers such as poly(4-vinylimidazole) and poly(benzimidazole), which are appropriate for Proton Exchange Membrane Fuel Cell applications have been described. Proton conductivity increases with increasing smoothness of the film and the maximum measured conductivity was 10-4 S/cm at 25A C. Recently, anhydrous proton-conducting membranes with flexible structural backbones, which show proton-conducting properties comparable to Nafion have been focus of current research. The flexible backbone of polymer chains allow for a high segmental mobility and thus, a sufficiently low glass transition temperature (Tg), which is an essential factor to reach highly conductive systems. Among the polymers with a flexible chain backbone, poly(vinylphosphonic acid), poly(vinylbenzylphosphonic acid), poly(2-vinylbenzimidazole), poly(4-styrenesulfonic acid), poly(4-vinylimidazole), poly

  8. Restoring effect of selenium on the molecular content, structure and fluidity of diabetic rat kidney brush border cell membrane.

    Science.gov (United States)

    Gurbanov, Rafig; Bilgin, Mehmet; Severcan, Feride

    2016-04-01

    Diabetic kidney disease (DKD) is a dominant factor standing for kidney impairments during diabetes. In this study, attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy was used to disclose the diabetes-induced structural changes in the kidney and evaluate the effects of selenium on diabetes. The increase in the area of the olefinic band indicated increased amount of lipid peroxidation end products in diabetic kidney brush border cell membrane. Moreover, saturated lipid content of this cell membrane considerably diminished. DKD was found to disrupt lipid order and cause a decrease in membrane dynamics. However, the administration of selenium at low and medium doses was shown to improve these conditions by changing the lipid contents toward control values, restoring the ordered structure of the lipids and membrane dynamics. Curve-fitting and artificial neural network (ANN) analyses of secondary structures of proteins demonstrated a relative increase in α-helix and reduction in the β-sheet during diabetes in comparison to the control group, which were ameliorated following selenium treatment at low and medium doses. These findings were further confirmed by applying hierarchical cluster analysis (HCA) and principal component analysis (PCA). A clear separation of the experimental groups was obtained with high heterogeneity in the lipid and protein regions. These chemometric analyses showed that the low and medium doses of selenium-treated diabetic groups are successfully segregated from the diabetic group and clustered closer to the control. The study suggests that medium and, more predominantly, low-dose selenium treatment can be efficient in eliminating diabetes-induced structural alterations. PMID:26850735

  9. Alkaline direct alcohol fuel cells using an anion exchange membrane

    Energy Technology Data Exchange (ETDEWEB)

    Matsuoka, Koji; Iriyama, Yasutoshi; Abe, Takeshi; Ogumi, Zempachi [Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510 (Japan); Matsuoka, Masao [Faculty of Science and Engineering, Ritsumeikan University, Kusatsu, Shiga 525-8577 (Japan)

    2005-10-04

    Alkaline direct alcohol fuel cells using an OH-form anion exchange membrane and polyhydric alcohols were studied. A high open circuit voltage of ca. 800mV was obtained for a cell using Pt-Ru/C (anode) and Pt/C (cathode) at 323K, which was about 100-200mV higher than that for a DMFC using Nafion{sup R}. The maximum power densities were in the order of ethylene glycol>glycerol>methanol>erythritol>xylitol. Silver catalysts were used as a cathode catalyst to fabricate alkaline fuel cells, since silver catalyst is almost inactive in the oxidation of polyhydric alcohols. Alkaline direct ethylene glycol fuel cells using silver as a cathode catalyst gave excellent performance because higher concentrations of fuel could be supplied to the anode. (author)

  10. Global Hypoxia-Ischemia Induced Inflammation and Structural Changes in the Preterm Ovine Gut Which Were Not Ameliorated by Mesenchymal Stem Cell Treatment

    Science.gov (United States)

    Nikiforou, Maria; Willburger, Carolin; de Jong, Anja E; Kloosterboer, Nico; Jellema, Reint K; Ophelders, Daan RMG; Steinbusch, Harry WM; Kramer, Boris W; Wolfs, Tim GAM

    2016-01-01

    Perinatal asphyxia, a condition of impaired gas exchange during birth, leads to fetal hypoxia-ischemia (HI) and is associated with postnatal adverse outcomes including intestinal dysmotility and necrotizing enterocolitis. Evidence from adult animal models of transient, locally induced intestinal HI has shown that inflammation is essential in HI-induced injury of the gut. Importantly, mesenchymal stem cell (MSC) treatment prevented this HI-induced intestinal damage. We therefore assessed whether fetal global HI induced inflammation, injury and developmental changes in the gut and whether intravenous MSC administration ameliorated these HI-induced adverse intestinal effects. In a preclinical ovine model, fetuses were subjected to umbilical cord occlusion (UCO), with or without MSC treatment, and euthanized 7 d after UCO. Global HI increased the number of myeloperoxidase-positive cells in the mucosa, upregulated messenger RNA (mRNA) levels of interleukin (IL)-1β and IL-17 in gut tissue and caused T-cell invasion in the intestinal muscle layer. Intestinal inflammation following global HI was associated with increased Ki67+ cells in the muscularis and subsequent muscle hyperplasia. Global HI caused distortion of glial fibrillary acidic protein immunoreactivity in the enteric glial cells and increased synaptophysin and serotonin expression in the myenteric ganglia. Intravenous MSC treatment did not ameliorate these HI-induced adverse intestinal events. Global HI resulted in intestinal inflammation and enteric nervous system abnormalities, which are clinically associated with postnatal complications, including feeding intolerance, altered gastrointestinal transit and necrotizing enterocolitis. The intestinal histopathological changes were not prevented by intravenous MSC treatment directly after HI, indicating that alternative treatment regimens for cell-based therapies should be explored. PMID:27257938

  11. Porous polybenzimidazole membranes doped with phosphoric acid: Preparation and application in high-temperature proton-exchange-membrane fuel cells

    International Nuclear Information System (INIS)

    Highlights: • Porous polybenzimidazole membrane was prepared with glucose as porogen. • Phosphoric acid content was as high as 15.7 mol H3PO4 per PBI repeat unit. • 200 h Constant current density test was carried out at 150 °C. • Degradation was due to the gap between membrane and catalyst layer. - Abstract: In this paper, the preparation and characterization of porous polybenzimidazole membranes doped with phosphoric acid were reported. For the preparation of porous polybenzimidazole membranes, glucose and saccharose were selected as porogen and added into PBI resin solution before solvent casting. The prepared porous PBI membranes had high proton conductivity and high content of acid doping at room temperature with 15.7 mol H3PO4 per PBI repeat unit, much higher than pure PBI membrane at the same condition. Further, the performance and stability of the porous PBI membrane in high-temperature proton-exchange-membrane fuel cells was tested. It was found that the cell performance remained stable during 200 h stability test under a constant current discharge of 0.5 A cm−2 except for the last fifty hours. The decay in the last fifty hours was ascribed to the delamination between the catalyst layer and membrane increasing the charge-transfer resistance

  12. Nanocomposite membranes based on polybenzimidazole and ZrO2 for high-temperature proton exchange membrane fuel cells.

    Science.gov (United States)

    Nawn, Graeme; Pace, Giuseppe; Lavina, Sandra; Vezzù, Keti; Negro, Enrico; Bertasi, Federico; Polizzi, Stefano; Di Noto, Vito

    2015-04-24

    Owing to the numerous benefits obtained when operating proton exchange membrane fuel cells at elevated temperature (>100 °C), the development of thermally stable proton exchange membranes that demonstrate conductivity under anhydrous conditions remains a significant goal for fuel cell technology. This paper presents composite membranes consisting of poly[2,2'-(m-phenylene)-5,5'-bibenzimidazole] (PBI4N) impregnated with a ZrO2 nanofiller of varying content (ranging from 0 to 22 wt %). The structure-property relationships of the acid-doped and undoped composite membranes have been studied using thermogravimetric analysis, differential scanning calorimetry, dynamic mechanical analysis, wide-angle X-ray scattering, infrared spectroscopy, and broadband electrical spectroscopy. Results indicate that the level of nanofiller has a significant effect on the membrane properties. From 0 to 8 wt %, the acid uptake as well as the thermal and mechanical properties of the membrane increase. As the nanofiller level is increased from 8 to 22 wt % the opposite effect is observed. At 185 °C, the ionic conductivity of [PBI4N(ZrO2 )0.231 ](H3 PO4 )13 is found to be 1.04×10(-1)  S cm(-1) . This renders membranes of this type promising candidates for use in high-temperature proton exchange membrane fuel cells.

  13. 160 C PROTON EXCHANGE MEMBRANE (PEM) FUEL CELL SYSTEM DEVELOPMENT

    Energy Technology Data Exchange (ETDEWEB)

    L.G. Marianowski

    2001-12-21

    The objectives of this program were: (a) to develop and demonstrate a new polymer electrolyte membrane fuel cell (PEMFC) system that operates up to 160 C temperatures and at ambient pressures for stationary power applications, and (b) to determine if the GTI-molded composite graphite bipolar separator plate could provide long term operational stability at 160 C or higher. There are many reasons that fuel cell research has been receiving much attention. Fuel cells represent environmentally friendly and efficient sources of electrical power generation that could use a variety of fuel sources. The Gas Technology Institute (GTI), formerly Institute of Gas Technology (IGT), is focused on distributed energy stationary power generation systems. Currently the preferred method for hydrogen production for stationary power systems is conversion of natural gas, which has a vast distribution system in place. However, in the conversion of natural gas into a hydrogen-rich fuel, traces of carbon monoxide are produced. Carbon monoxide present in the fuel gas will in time cumulatively poison, or passivate the active platinum catalysts used in the anodes of PEMFC's operating at temperatures of 60 to 80 C. Various fuel processors have incorporated systems to reduce the carbon monoxide to levels below 10 ppm, but these require additional catalytic section(s) with sensors and controls for effective carbon monoxide control. These CO cleanup systems must also function especially well during transient load operation where CO can spike 300% or more. One way to circumvent the carbon monoxide problem is to operate the fuel cell at a higher temperature where carbon monoxide cannot easily adsorb onto the catalyst and poison it. Commercially available polymer membranes such as Nafion{trademark} are not capable of operation at temperatures sufficiently high to prevent this. Hence this project investigated a new polymer membrane alternative to Nafion{trademark} that is capable of operation at

  14. ACME: automated cell morphology extractor for comprehensive reconstruction of cell membranes.

    Directory of Open Access Journals (Sweden)

    Kishore R Mosaliganti

    Full Text Available The quantification of cell shape, cell migration, and cell rearrangements is important for addressing classical questions in developmental biology such as patterning and tissue morphogenesis. Time-lapse microscopic imaging of transgenic embryos expressing fluorescent reporters is the method of choice for tracking morphogenetic changes and establishing cell lineages and fate maps in vivo. However, the manual steps involved in curating thousands of putative cell segmentations have been a major bottleneck in the application of these technologies especially for cell membranes. Segmentation of cell membranes while more difficult than nuclear segmentation is necessary for quantifying the relations between changes in cell morphology and morphogenesis. We present a novel and fully automated method to first reconstruct membrane signals and then segment out cells from 3D membrane images even in dense tissues. The approach has three stages: 1 detection of local membrane planes, 2 voting to fill structural gaps, and 3 region segmentation. We demonstrate the superior performance of the algorithms quantitatively on time-lapse confocal and two-photon images of zebrafish neuroectoderm and paraxial mesoderm by comparing its results with those derived from human inspection. We also compared with synthetic microscopic images generated by simulating the process of imaging with fluorescent reporters under varying conditions of noise. Both the over-segmentation and under-segmentation percentages of our method are around 5%. The volume overlap of individual cells, compared to expert manual segmentation, is consistently over 84%. By using our software (ACME to study somite formation, we were able to segment touching cells with high accuracy and reliably quantify changes in morphogenetic parameters such as cell shape and size, and the arrangement of epithelial and mesenchymal cells. Our software has been developed and tested on Windows, Mac, and Linux platforms and is

  15. Force Balance and Membrane Shedding at the Red-Blood-Cell Surface

    Science.gov (United States)

    Sens, Pierre; Gov, Nir

    2007-01-01

    During the aging of the red-blood cell, or under conditions of extreme echinocytosis, membrane is shed from the cell plasma membrane in the form of nanovesicles. We propose that this process is the result of the self-adaptation of the membrane surface area to the elastic stress imposed by the spectrin cytoskeleton, via the local buckling of membrane under increasing cytoskeleton stiffness. This model introduces the concept of force balance as a regulatory process at the cell membrane and quantitatively reproduces the rate of area loss in aging red-blood cells.

  16. Process for recycling components of a PEM fuel cell membrane electrode assembly

    Science.gov (United States)

    Shore, Lawrence

    2012-02-28

    The membrane electrode assembly (MEA) of a PEM fuel cell can be recycled by contacting the MEA with a lower alkyl alcohol solvent which separates the membrane from the anode and cathode layers of the assembly. The resulting solution containing both the polymer membrane and supported noble metal catalysts can be heated under mild conditions to disperse the polymer membrane as particles and the supported noble metal catalysts and polymer membrane particles separated by known filtration means.

  17. Investigation of interaction between the drug and cell membrane by capillary electrophoresis

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    By introducing cell membrane into electrophoretic buffer as pseudo-stationary phase,a novel capillary electrophoresis method was established to explore the interaction between drugs and cell membrane,where the interaction between citalopram and rabbit red blood cell membrane was used as an example. A series of concentrations of cell membrane were suspended into the running buffer by peak-shift method. The binding constant of citalopram to rabbit red blood cell membrane of 0.977 g-1·L was obtained after treatment of Scatchard plot. This method could provide not only a new way for the investigation on the interactions between drugs and cell membrane,but also a new approach for high throughput screening of the drug membrane permeability,biological activity,and evaluating drugs in vivo.

  18. Proteomic analysis of ERK1/2-mediated human sickle red blood cell membrane protein phosphorylation

    Directory of Open Access Journals (Sweden)

    Soderblom Erik J

    2013-01-01

    Full Text Available Abstract Background In sickle cell disease (SCD, the mitogen-activated protein kinase (MAPK ERK1/2 is constitutively active and can be inducible by agonist-stimulation only in sickle but not in normal human red blood cells (RBCs. ERK1/2 is involved in activation of ICAM-4-mediated sickle RBC adhesion to the endothelium. However, other effects of the ERK1/2 activation in sickle RBCs leading to the complex SCD pathophysiology, such as alteration of RBC hemorheology are unknown. Results To further characterize global ERK1/2-induced changes in membrane protein phosphorylation within human RBCs, a label-free quantitative phosphoproteomic analysis was applied to sickle and normal RBC membrane ghosts pre-treated with U0126, a specific inhibitor of MEK1/2, the upstream kinase of ERK1/2, in the presence or absence of recombinant active ERK2. Across eight unique treatment groups, 375 phosphopeptides from 155 phosphoproteins were quantified with an average technical coefficient of variation in peak intensity of 19.8%. Sickle RBC treatment with U0126 decreased thirty-six phosphopeptides from twenty-one phosphoproteins involved in regulation of not only RBC shape, flexibility, cell morphology maintenance and adhesion, but also glucose and glutamate transport, cAMP production, degradation of misfolded proteins and receptor ubiquitination. Glycophorin A was the most affected protein in sickle RBCs by this ERK1/2 pathway, which contained 12 unique phosphorylated peptides, suggesting that in addition to its effect on sickle RBC adhesion, increased glycophorin A phosphorylation via the ERK1/2 pathway may also affect glycophorin A interactions with band 3, which could result in decreases in both anion transport by band 3 and band 3 trafficking. The abundance of twelve of the thirty-six phosphopeptides were subsequently increased in normal RBCs co-incubated with recombinant ERK2 and therefore represent specific MEK1/2 phospho-inhibitory targets mediated via ERK2

  19. A theory for the membrane potential of cells

    CERN Document Server

    Endresen, L P; Endresen, Lars Petter; Hall, Kevin

    1997-01-01

    We give an explicit formula for the membrane potential of cells in terms of the intracellular and extracellular ionic concentrations, and derive equations for the ionic currents that flow through channels, exchangers and electrogenic pumps based on simple energy considerations and conservation laws. We demonstrate that the work done by the pump is equal to the potential energy of the cell plus the energy loss due to the downhill ionic fluxes through the channels and the exchanger. Our equations predict osmotic pressure variations. The theory is illustrated in a simple model of spontaneously active cells in the cardiac pacemaker. The simulated action potential and the five currents in the model are in excellent agreement with experiments. The model predicts the experimental observed intracellular ionic concentration of potassium, calcium and sodium. We do not see any drift of the values for the concentrations in a long time simulation, instead we can obtain the same asymptotic values starting with equal intrac...

  20. Cryptosporidia: epicellular parasites embraced by the host cell membrane.

    Science.gov (United States)

    Valigurová, Andrea; Jirků, Miloslav; Koudela, Bretislav; Gelnar, Milan; Modrý, David; Slapeta, Jan

    2008-07-01

    The ultrastructure of two gastric cryptosporidia, Cryptosporidium muris from experimentally infected rodents (Mastomys natalensis) and Cryptosporidium sp. 'toad' from naturally infected toads (Duttaphrynus melanostictus), was studied using electron microscopy. Observations presented herein allowed us to map ultrastructural aspects of the cryptosporidian invasion process and the origin of a parasitophorous sac. Invading parasites attach to the host cell, followed by gradual envelopment, with the host's cell membrane folds, eventually forming the parasitophorous sac. Cryptosporidian developmental stages remain epicellular during the entire life cycle. The parasite development is illustrated in detail using high resolution field emission scanning electron microscopy. This provides a new insight into the ultrastructural detail of host-parasite interactions and species-specific differences manifested in frequency of detachment of the parasitophorous sac, radial folds of the parasitophorous sac and stem-formation of the parasitised host cell. PMID:18158154

  1. Alterations of red cell membrane properties in neuroacanthocytosis.

    Directory of Open Access Journals (Sweden)

    Claudia Siegl

    Full Text Available Neuroacanthocytosis (NA refers to a group of heterogenous, rare genetic disorders, namely chorea acanthocytosis (ChAc, McLeod syndrome (MLS, Huntington's disease-like 2 (HDL2 and pantothenate kinase associated neurodegeneration (PKAN, that mainly affect the basal ganglia and are associated with similar neurological symptoms. PKAN is also assigned to a group of rare neurodegenerative diseases, known as NBIA (neurodegeneration with brain iron accumulation, associated with iron accumulation in the basal ganglia and progressive movement disorder. Acanthocytosis, the occurrence of misshaped erythrocytes with thorny protrusions, is frequently observed in ChAc and MLS patients but less prevalent in PKAN (about 10% and HDL2 patients. The pathological factors that lead to the formation of the acanthocytic red blood cell shape are currently unknown. The aim of this study was to determine whether NA/NBIA acanthocytes differ in their functionality from normal erythrocytes. Several flow-cytometry-based assays were applied to test the physiological responses of the plasma membrane, namely drug-induced endocytosis, phosphatidylserine exposure and calcium uptake upon treatment with lysophosphatidic acid. ChAc red cell samples clearly showed a reduced response in drug-induced endovesiculation, lysophosphatidic acid-induced phosphatidylserine exposure, and calcium uptake. Impaired responses were also observed in acanthocyte-positive NBIA (PKAN red cells but not in patient cells without shape abnormalities. These data suggest an "acanthocytic state" of the red cell where alterations in functional and interdependent membrane properties arise together with an acanthocytic cell shape. Further elucidation of the aberrant molecular mechanisms that cause this acanthocytic state may possibly help to evaluate the pathological pathways leading to neurodegeneration.

  2. Nafion and modified-Nafion membranes for polymer electrolyte fuel cells: An overview

    Indian Academy of Sciences (India)

    A K Sahu; S Pitchumani; P Sridhar; A K Shukla

    2009-06-01

    Polymer electrolyte fuel cells (PEFCs) employ membrane electrolytes for proton transport during the cell reaction. The membrane forms a key component of the PEFC and its performance is controlled by several physical parameters, viz. water up-take, ion-exchange capacity, proton conductivity and humidity. The article presents an overview on Nafion membranes highlighting their merits and demerits with efforts on modified-Nafion membranes.

  3. Geometry of the Contact Zone between Fused Membrane-Coated Beads Mimicking Cell-Cell Fusion.

    Science.gov (United States)

    Savić, Filip; Kliesch, Torben-Tobias; Verbeek, Sarah; Bao, Chunxiao; Thiart, Jan; Kros, Alexander; Geil, Burkhard; Janshoff, Andreas

    2016-05-24

    The fusion of lipid membranes is a key process in biology. It enables cells and organelles to exchange molecules with their surroundings, which otherwise could not cross the membrane barrier. To study such complex processes we use simplified artificial model systems, i.e., an optical fusion assay based on membrane-coated glass spheres. We present a technique to analyze membrane-membrane interactions in a large ensemble of particles. Detailed information on the geometry of the fusion stalk of fully fused membranes is obtained by studying the diffusional lipid dynamics with fluorescence recovery after photobleaching experiments. A small contact zone is a strong obstruction for the particle exchange across the fusion spot. With the aid of computer simulations, fluorescence-recovery-after-photobleaching recovery times of both fused and single-membrane-coated beads allow us to estimate the size of the contact zones between two membrane-coated beads. Minimizing delamination and bending energy leads to minimal angles close to those geometrically allowed. PMID:27224487

  4. Analysis of plasma membrane phosphoinositides from fusogenic carrot cells

    International Nuclear Information System (INIS)

    Phosphatidylinositol monophosphate (PIP) and phosphatidylinositol bisphosphate (PIP2) were found to be associated with the plasma membrane-rich fractions isolated by aqueous polymer two-phase partitioning from fusogenic cells. They represented at least 5% and 0.7% of the total inositol-labeled lipids in the plasma membrane-rich fractions, respectively, and were present in a ratio of about 7:1 (PIP:PIP2). In addition, two unidentified inositol-labeled compounds, which together were approximately 3% of the inositol-labeled lipids, were found predominantly in the plasma membrane-rich fractions and migrated between PIP2 and PIP. The R/sub f/s of these compounds were approximately 0.31 and 0.34 in the solvent system CHCl3:MeOH:15N NH4OH:H2O (90:90:7:22) using LK5 plates presoaked in 1% potassium oxalate. These compounds incorporated 32P/sub i/, (3H)inositol and were hydrolyzed in mild base. These data suggested that they were glycero-phospholipids. Although the compounds did not comigrate with lysoPIP obtained from bovine brain (R/sub f/ ∼ 0.35), when endogenous PIP was hydrolyzed to lysoPIP, the breakdown product migrated in the region of the unidentified inositol lipids

  5. Durable Catalysts for High Temperature Proton Exchange Membrane Fuel Cells

    DEFF Research Database (Denmark)

    Durability of proton exchange membrane fuel cells (PEMFCs) is recognized as one of the most important issues to be addressed before the commercialization. The failure mechanisms are not well understood, however, degradation of carbon supported noble metal catalysts is identified as a major failure...... significant attention in recent years because of its potential advantages such as high CO tolerance, easy cooling, better heat utilization and possible integration with fuel processing units. However, the high temperature obviously aggravates the carbon corrosion and catalyst degradation. Based on thermally...

  6. Elisidepsin Interacts Directly with Glycosylceramides in the Plasma Membrane of Tumor Cells to Induce Necrotic Cell Death

    Science.gov (United States)

    Molina-Guijarro, José Manuel; García, Carolina; Macías, Álvaro; García-Fernández, Luis Francisco; Moreno, Cristina; Reyes, Fernando; Martínez-Leal, Juan Fernando; Fernández, Rogelio; Martínez, Valentín; Valenzuela, Carmen; Lillo, M. Pilar; Galmarini, Carlos M.

    2015-01-01

    Plasma membrane integrity is essential for cell life. Any major break on it immediately induces the death of the affected cell. Different molecules were described as disrupting this cell structure and thus showing antitumor activity. We have previously defined that elisidepsin (Irvalec®, PM02734) inserts and self-organizes in the plasma membrane of tumor cells, inducing a rapid loss of membrane integrity, cell permeabilization and necrotic death. Here we show that, in sensitive HCT-116 colorectal cells, all these effects are consequence of the interaction of elisidepsin with glycosylceramides in the cell membrane. Of note, an elisidepsin-resistant subline (HCT-116-Irv) presented reduced levels of glycosylceramides and no accumulation of elisidepsin in the plasma membrane. Consequently, drug treatment did not induce the characteristic necrotic cell death. Furthermore, GM95, a mutant derivative from B16 mouse melanoma cells lacking ceramide glucosyltransferase (UGCG) activity and thus the synthesis of glycosylceramides, was also resistant to elisidepsin. Over-expression of UGCG gene in these deficient cells restored glycosylceramides synthesis, rendering them sensitive to elisidepsin, at a similar level than parental B16 cells. These results indicate that glycosylceramides act as membrane targets of elisidepsin, facilitating its insertion in the plasma membrane and the subsequent membrane permeabilization that leads to drug-induced cell death. They also indicate that cell membrane lipids are a plausible target for antineoplastic therapy. PMID:26474061

  7. Elisidepsin Interacts Directly with Glycosylceramides in the Plasma Membrane of Tumor Cells to Induce Necrotic Cell Death.

    Directory of Open Access Journals (Sweden)

    José Manuel Molina-Guijarro

    Full Text Available Plasma membrane integrity is essential for cell life. Any major break on it immediately induces the death of the affected cell. Different molecules were described as disrupting this cell structure and thus showing antitumor activity. We have previously defined that elisidepsin (Irvalec®, PM02734 inserts and self-organizes in the plasma membrane of tumor cells, inducing a rapid loss of membrane integrity, cell permeabilization and necrotic death. Here we show that, in sensitive HCT-116 colorectal cells, all these effects are consequence of the interaction of elisidepsin with glycosylceramides in the cell membrane. Of note, an elisidepsin-resistant subline (HCT-116-Irv presented reduced levels of glycosylceramides and no accumulation of elisidepsin in the plasma membrane. Consequently, drug treatment did not induce the characteristic necrotic cell death. Furthermore, GM95, a mutant derivative from B16 mouse melanoma cells lacking ceramide glucosyltransferase (UGCG activity and thus the synthesis of glycosylceramides, was also resistant to elisidepsin. Over-expression of UGCG gene in these deficient cells restored glycosylceramides synthesis, rendering them sensitive to elisidepsin, at a similar level than parental B16 cells. These results indicate that glycosylceramides act as membrane targets of elisidepsin, facilitating its insertion in the plasma membrane and the subsequent membrane permeabilization that leads to drug-induced cell death. They also indicate that cell membrane lipids are a plausible target for antineoplastic therapy.

  8. Study of the effect of membrane thickness on microcapsule strength, permeability, and cell proliferation

    DEFF Research Database (Denmark)

    Ma, Ying; Zhang, Ying; Wang, Yu;

    2013-01-01

    Cell microencapsulation is one of the promising strategies for in vitro production of proteins or in vivo delivery of therapeutic products. Membrane thickness controls microcapsule strength and permeability, which may in return affect cell growth and metabolism. In this study, the strength......, permeability, and encapsulated Chinese hamster ovary cell proliferation and metabolism of four groups of microcapsules with different membrane thicknesses were investigated. It was found that increasing membrane thickness increases microcapsule strength, whereas decreases membrane permeability. During...... the first 6 days, cells within microcapsules with 10 μm thickness membrane proliferated fast and could reach a cell density of 1.9 × 10(7) cells/mL microcapsule with 92% cell density. A cell density of 5.5 × 10(7) cells/mL microcapsule with >85% cell density was achieved within microcapsules with 15 μm...

  9. Cordyceps militaris fruit body extract ameliorates membranous glomerulonephritis by attenuating oxidative stress and renal inflammation via the NF-κB pathway.

    Science.gov (United States)

    Song, Jingjing; Wang, Yingwu; Liu, Chungang; Huang, Yan; He, Liying; Cai, Xueying; Lu, Jiahui; Liu, Yan; Wang, Di

    2016-04-01

    Membranous glomerulonephritis (MGN) is a common pathogenesis of nephritic syndrome in adult patients. Nuclear factor kappa B (NF-κB) serves as the main transcription factor for the inflammatory response mediated nephropathy. Cordyceps militaris, containing various pharmacological components, has been used as a kind of crude drug and folk tonic food for improving immunity and reducing inflammation. The current study aims to investigate the renoprotective activity of Cordyceps militaris aqueous extract (CM) in the cationic bovine serum albumin (C-BSA)-induced rat model of membranous glomerulonephritis. Significant renal dysfunction was observed in MGN rats; comparatively, 4-week CM administration strongly decreased the levels of 24 h urine protein, total cholesterol, triglyceride, blood urea nitrogen and serum creatinine, and increased the levels of serum albumin and total serum protein. Strikingly, recovery of the kidney histological architecture was noted in CM-treated MGN rats. A significant improvement in the glutathione peroxidase and superoxide dismutase levels, and a reduced malondialdehyde concentration were observed in the serum and kidney of CM-treated rats. Altered levels of inflammatory cytokines including interleukins, monocyte chemoattractant protein-1, intercellular adhesion molecule 1, vascular adhesion molecule 1, tumor necrosis factor-α, 6-keto-prostaglandin F1α, and nuclear transcriptional factor subunit NF-κB p65 reverted to normal levels upon treatment with CM. The present data suggest that CM protects rats against membranous glomerulonephritis via the normalization of NF-κB activity, thereby inhibiting oxidative damage and reducing inflammatory cytokine levels, which further provide experimental evidence in support of the clinical use of CM as an effective renoprotective agent. PMID:27008597

  10. Performance Degradation Tests of Phosphoric Acid Doped Polybenzimidazole Membrane Based High Temperature Polymer Electrolyte Membrane Fuel Cells

    DEFF Research Database (Denmark)

    Zhou, Fan; Araya, Samuel Simon; Grigoras, Ionela;

    2015-01-01

    Degradation tests of two phosphoric acid (PA) doped PBI membrane based HT-PEM fuel cells were reported in this paper to investigate the effects of start/stop and the presence of methanol in the fuel to the performance degradation of the HT-PEM fuel cell. Continuous tests with pure dry H2 and meth......Degradation tests of two phosphoric acid (PA) doped PBI membrane based HT-PEM fuel cells were reported in this paper to investigate the effects of start/stop and the presence of methanol in the fuel to the performance degradation of the HT-PEM fuel cell. Continuous tests with pure dry H2...... to the corrosion of carbon support in the catalyst layer and degradation of the PBI membrane. During the continuous test with methanol containing H2 as the fuel the reaction kinetic resistance and mass transfer resistance of both single cells increased, which may be caused by the adsorption of methanol...

  11. Grafting of Vinyl Pyrrolidone/Styrene onto Ethylene/Chlorotrifluoroethylene Membrane for Proton ExchangeMembrane Fuel Cell

    International Nuclear Information System (INIS)

    Highlights: • Gamma irradiation was used as a tool for membranes grafting. • Sty and VP were grafted ECTFE. • The membranes were characterized using; FT-IR, TGA and SEM. • The membranes were investigated for their ability into the PEMFCusing different techniques. • The highest fuel cell performance was at 75 °C and more durableup to 450 hours. - Abstract: Simultaneous gamma irradiation was proved to be an effective tool for ethylene/ chlorotrifluoroethylene grafting by styrene and vinyl pyrrolidone with different ratios. It was found that; the optimum grafting yield was 81% by using 40 kGy gamma irradiation dose when the binary monomers ratio was 1:1 (styrene: vinyl pyrrolidone). The grafted membranes were investigated for chemical structure by FT-IR and thermal properties by thermal gravimetric analysis. The mechanical properties were studied by measuring tensile strength while morphological structure was characterized by scanning electron microscope. The membranes’ free volume sizes were determined using positron annihilation lifetime spectroscopy (PALS). Ion exchange capacity, water uptake and membranes thickness were investigated and proton conductivity was evaluated. The optimum temperature for attaining the maximum fuel cell performance was at 75 °C while it reduced by decreasing the temperature to 50 °C or increasing it to 85 °C. The fuel cell performance based highest yield of the grafted membrane was more durable than compressed Nr.118 (commercial membranes) up to 450 hours

  12. SOD3 Ameliorates H2O2-Induced Oxidative Damage in SH-SY5Y Cells by Inhibiting the Mitochondrial Pathway.

    Science.gov (United States)

    Yang, Rong; Wei, Li; Fu, Qing-Qing; Wang, Hua; You, Hua; Yu, Hua-Rong

    2016-07-01

    This study was designed to investigate the protective effects of extracellular superoxide dismutase (SOD3) against hydrogen peroxide (H2O2) induced damage in human neuroblastoma SH-SY5Y cells and to elucidate the mechanisms responsible for this beneficial effect. SOD3-overexpressing SH-SY5Y cells were generated by adenoviral vector-mediated infection, and H2O2 was then added into the cell culture system to establish an in vitro model of oxidative stress. Cell viability, the generation of intracellular reactive oxygen species (ROS), the expression and activity of antioxidant enzymes, the levels of lipid peroxidation malondialdehyde (MDA), the expression of mitochondrial apoptosis-related genes, and calcium imaging were examined. Following H2O2 exposure, the over-expression of SOD3 promoted the survival of SH-SY5Y cells; decreased the production of ROS, MDA levels, cytochrome C, caspase-3, caspase-9, and Bax gene expression, and calcium levels; and increased the expression and activity of antioxidant enzyme genes and the expression level of Bcl-2. Together, our data demonstrate that SOD3 ameliorates H2O2-induced oxidative damage in neuroblastoma SH-SY5Y cells by inhibiting the mitochondrial pathway and provide new insights into the functional actions of SOD3 on oxidative stress-induced cell damage. PMID:27084770

  13. Kaempferol ameliorates aflatoxin B1 (AFB1) induced hepatocellular carcinoma through modifying metabolizing enzymes, membrane bound ATPases and mitochondrial TCA cycle enzymes

    Institute of Scientific and Technical Information of China (English)

    Kulanthaivel Langeswaran; Rajendran Revathy; Subbaraj Gowtham Kumar; Shanmugam Vijayaprakash

    2012-01-01

    Objective: The present study was aimed to scrutinize the anticancer consequence of kaempferol against aflatoxin B1 induced hepatocarcinogenesis. Epidemiological studies of the incidence of liver cancer in the population, where dietary aflatoxin exposure is high, have provided much circumstantial evidence for the development of aflatoxin B1 induced primary liver cancer in humans. Methods:In the present investigation, aflatoxin B1 (2 mg/kg body weight i.p) was used as a hepatocarcinogen to induce hepatocellular carcinoma in experimental animals. Results: In the present analysis, on treatment with bioflavonoid kaempferol (100 mg/kg body weight p.o) the nucleic acids levels were brought back to normal and also the altered levels of biological enzymes such as membrane bound ATPase, carbohydrate metabolizing enzymes and mitochondrial TCA cycle enzymes levels (P<0.01).Conclusions:Membrane bound ATPase, carbohydrate metabolizing enzymes and mitochondrial TCA cycle enzymes were modulated by kaempferol evaluated on aflatoxin B1 induced primary liver carcinogenesis.

  14. The Effect of Platinum Electrocatalyst on Membrane Degradation in Polymer Electrolyte Fuel Cells.

    Science.gov (United States)

    Bodner, Merit; Cermenek, Bernd; Rami, Mija; Hacker, Viktor

    2015-12-08

    Membrane degradation is a severe factor limiting the lifetime of polymer electrolyte fuel cells. Therefore, obtaining a deeper knowledge is fundamental in order to establish fuel cells as competitive product. A segmented single cell was operated under open circuit voltage with alternating relative humidity. The influence of the catalyst layer on membrane degradation was evaluated by measuring a membrane without electrodes and a membrane-electrode-assembly under identical conditions. After 100 h of accelerated stress testing the proton conductivity of membrane samples near the anode and cathode was investigated by means of ex situ electrochemical impedance spectroscopy. The membrane sample near the cathode inlet exhibited twofold lower membrane resistance and a resulting twofold higher proton conductivity than the membrane sample near the anode inlet. The results from the fluoride ion analysis have shown that the presence of platinum reduces the fluoride emission rate; which supports conclusions drawn from the literature.

  15. Characteristics of Gintonin-Mediated Membrane Depolarization of Pacemaker Activity in Cultured Interstitial Cells of Cajal

    Directory of Open Access Journals (Sweden)

    Byung Joo Kim

    2014-08-01

    Full Text Available Background/Aims: Ginseng regulates gastrointestinal (GI motor activity but the underlying components and molecular mechanisms are unknown. We investigated the effect of gintonin, a novel ginseng-derived G protein-coupled lysophosphatidic acid (LPA receptor ligand, on the pacemaker activity of the interstitial cells of Cajal (ICC in murine small intestine and GI motility. Materials and Methods: Enzymatic digestion was used to dissociate ICC from mouse small intestines. The whole-cell patch-clamp configuration was used to record pacemaker potentials and currents from cultured ICC in the absence or presence of gintonin. In vivo effects of gintonin on gastrointestinal (GI motility were investigated by measuring the intestinal transit rate (ITR of Evans blue in normal and streptozotocin (STZ-induced diabetic mice. Results: We investigated the effects of gintonin on pacemaker potentials and currents in cultured ICC from mouse small intestine. Gintonin caused membrane depolarization in current clamp mode but this action was blocked by Ki16425, an LPA1/3 receptor antagonist, and by the addition of GDPβS, a GTP-binding protein inhibitor, into the ICC. To study the gintonin signaling pathway, we examined the effects of U-73122, an active PLC inhibitor, and chelerythrine and calphostin, which inhibit PKC. All inhibitors blocked gintonin actions on pacemaker potentials, but not completely. Gintonin-mediated depolarization was lower in Ca2+-free than in Ca2+-containing external solutions and was blocked by thapsigargin. We found that, in ICC, gintonin also activated Ca2+-activated Cl- channels (TMEM16A, ANO1, but not TRPM7 channels. In vivo, gintonin (10-100 mg/kg, p.o. not only significantly increased the ITR in normal mice but also ameliorated STZ-induced diabetic GI motility retardation in a dose-dependent manner. Conclusions: Gintonin-mediated membrane depolarization of pacemaker activity and ANO1 activation are coupled to the stimulation of GI

  16. Optimal microporous layer for proton exchange membrane fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Wei-Mon; Wu, Dong-Kai [Department of Greenergy, National University of Tainan, Tainan 700 (China); Wang, Xiao-Dong [Department of Thermal Engineering, School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Ong, Ai-Lien [Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, 16146 Genoa (Italy); Lee, Duu-Jong [Department of Chemical Engineering, National Taiwan University, Taipei 106 (China); Su, Ay [Department of Mechanical Engineering, Fuel Cell Center, Yuan Ze University, Taoyuan 300 (China)

    2010-09-01

    This study elucidates how fabrication processes (screen-printing and spraying) and constituent materials (carbon paper as backing, Acetylene Black (AB) carbon (42 nm), XC-72R carbon (30 nm) or BP2000 (15 nm) as carbon powders, and 10-50% fluorinated ethylene propylene (FEP) as hydrophobic substances) for microporous layers (MPLs) affect the performance of proton exchange membrane fuel cells. The screen-printing process produces MPLs with smaller surface fractures than does the spraying process. The effect of optimal FEP content on cell performance is noted. The presence of an optimal FEP content is due to the counterbalance between enhanced performance produced with increased gas permeability and decreased performance yielded with small contact area and electrical conductivity with excess FEP. The MPL with large carbon powders is preferred when oxygen supply is limited; otherwise, small carbon powders should be utilized. Optimal MPL design should address negative effects possibly associated with contact resistance, gas permeation resistance, and excess water resistance. (author)

  17. New hybrid model of proton exchange membrane fuel cell

    Institute of Scientific and Technical Information of China (English)

    WANG Rui-min; CAO Guang-yi; ZHU Xin-jian

    2007-01-01

    Model and simulation are good tools for design optimization of fuel cell systems. This paper proposes a new hybrid model of proton exchange membrane fuel cell (PEMFC). The hybrid model includes physical component and black-box component. The physical component represents the well-known part of PEMFC, while artificial neural network (ANN) component estimates the poorly known part of PEMFC. The ANN model can compensate the performance of the physical model. This hybrid model is implemented on Matlab/Simulink software. The hybrid model shows better accuracy than that of the physical model and ANN model. Simulation results suggest that the hybrid model can be used as a suitable and accurate model for PEMFC.

  18. Cell-Culture Reactor Having a Porous Organic Polymer Membrane

    Science.gov (United States)

    Koontz, Steven L. (Inventor)

    2000-01-01

    A method for making a biocompatible polymer article using a uniform atomic oxygen treatment is disclosed. The substrate may be subsequently optionally grated with a compatibilizing compound. Compatibilizing compounds may include proteins, phosphory1choline groups, platelet adhesion preventing polymers, albumin adhesion promoters, and the like. The compatibilized substrate may also have a living cell layer adhered thereto. The atomic oxygen is preferably produced by a flowing afterglow microwave discharge, wherein the substrate resides in a sidearm out of the plasma. Also, methods for culturing cells for various purposes using the various membranes are disclosed as well. Also disclosed are porous organic polymers having a distributed pore chemistry (DPC) comprising hydrophilic and hydrophobic regions, and a method for making the DPC by exposing the polymer to atomic oxygen wherein the rate of hydrophilization is greater than the rate of mass loss.

  19. Extracellular superoxide dismutase ameliorates house dust mite-induced atopic dermatitis-like skin inflammation and inhibits mast cell activation in mice.

    Science.gov (United States)

    Lee, Yun Sang; Choi, Jung-Hye; Lee, Ji-Hyun; Lee, Han-Woong; Lee, Weontae; Kim, Woo Taek; Kim, Tae-Yoon

    2016-08-01

    Extracellular superoxide dismutase (EC-SOD) is an enzyme that catalyses the dismutation of superoxide anions. It has multiple functions, such as reactive oxygen species scavenging, anti-angiogenic, anti-inflammatory, antichemotatic and antitumor activities. Recently, we demonstrated that EC-SOD inhibits ovalbumin-induced allergic airway inflammation in mice. However, the anti-allergic effect of EC-SOD on skin tissue and the role of EC-SOD in mast cells, which are important for allergic responses, have not been well studied. In this study, we investigated whether EC-SOD can alleviate atopic dermatitis in mice and inhibit mast cell activation. Treatment with human recombinant EC-SOD ameliorated house dust mite-induced atopic dermatitis in mice. Furthermore, the levels of pro-allergic cytokine gene expression and histamine release increased in EC-SOD KO mast cells and decreased in EC-SOD overexpressing mast cells, suggesting that EC-SOD inhibits mast cell activation. Consistently, a passive cutaneous anaphylaxis experiment showed more blood leakage from EC-SOD KO mouse ear skin, implying that the lack of EC-SOD increases allergic responses. These results suggest that EC-SOD inhibits mast cell activation and atopic dermatitis and that the loss of EC-SOD causes more severe allergic responses, implying that EC-SOD might be a good drug candidate for treatment of allergic disorders, such as atopic dermatitis. PMID:27061078

  20. Pyro-electrification of polymer membranes for cell patterning

    Science.gov (United States)

    Rega, R.; Gennari, O.; Mecozzia, L.; Grilli, S.; Pagliarulo, V.; Ferraro, P.

    2016-05-01

    In the recent years, much attention has been devoted to the possibility of charging polymer-based materials, due to their potential in developing large-scale and inexpensive flexible thin-film technology. The availability of localized electrostatic fields is in of great interest for a huge amount of applications such as distribution of biomolecules and cells from the liquid phase. Here we report a voltage-free pyro-electrification (PE) process able to induce permanent dipoles into polymer layers; the lithium niobate (LN) crystal is the key component that plays the multi-purpose role of sustaining, heating and poling the polymer layer that is then peeled-off easily in order to have a free-standing charged membrane. The results show the fascinating application for the living cell patterning. It well known that cell behaviour is affected by chemical and topographical cues of substrate. In fact, polymers, such as polystyrene (PS) and poly(methyl methacrylate) (PMMA), are naturally cytophobic and require specific functionalization treatments in order to promote cell adhesion. Through our proposal technique, it's possible to obtain spontaneous organization and a driven growth of SH-SY5Y cells that is solely dictated by the nature of the charge polymer surface, opening, in this way, the innovative chance to manipulate and transfer biological samples on a free-standing polymer layer [1].

  1. Immunoprecipitation of membrane proteins of cultured human sarcoma cells.

    Science.gov (United States)

    Grófová, M; Forchhammer, J; Lizonová, A; Popovic, M

    1981-01-01

    Human sarcoma associated antigens (HSAA) have previously been identified by indirect immune fluorescence in human sarcoma cells in culture using sera from patients bearing different types of sarcoma. To further characterize these HSAA, surface proteins of cultured cells were labeled with 125Iodine, [3H]-glucosamine and [35S]-methionine and solubilized. After immunoprecipitation labeled proteins were detected in immune complexes by SDS polyacrylamide gel electrophoresis and autoradiography, which allowed comparison with antigens described by other groups. A surface protein (Mr 96 000) was precipitated with sera from sarcoma bearing patients, and two glycoproteins (Mr 115 000 and 85 000) were preferentially precipitated with antisera from rabbits immunized with membranes from two human sarcoma cell lines. At least two of these proteins were found in each of five human sarcoma cell lines studied (U-4SS, U-3930S, U-20S, B-5GT and B-6FS). None of the proteins were precipitated with three human control sera, and only occasionally a faint band was observed in immunoprecipitates from control cells (B-25F, B-41B, B-42FC, U-2S, and U-393S with the immune sera. These proteins are probably some of the antigens responsible for the immune fluorescence observed in determination of HSAA. However, purification of the proteins and competition experiments are needed before this can be finally established.

  2. DEVELOPMENT OF NOVEL ELECTROCATALYSTS FOR PROTON EXCHANGE MEMBRANE FUEL CELLS

    Energy Technology Data Exchange (ETDEWEB)

    Shamsuddin Ilias

    2002-06-11

    The Proton Exchange Membrane Fuel Cell (PEMFC) is one of the most promising power sources for stand-alone utility and electric vehicle applications. Platinum (Pt) Catalyst is used for both fuel and air electrodes in PEMFCs. However, carbon monoxide (CO) contamination of H{sub 2} greatly affects electro catalysts used at the anode of PEMFCs and decreases cell performance. The irreversible poisoning of the anode can occur even in CO concentrations as low as few parts per million (ppm). In this work, we have synthesized several novel elctrocatalysts (Pt/C, Pt/Ru/C, Pt/Mo/C, Pt/Ir and Pt/Ru/Mo) for PEMFCs. These catalysts have been tested for CO tolerance in the H{sub 2}/air fuel cell, using CO concentrations in the H{sub 2} fuel that varies from 10 to 100 ppm. The performance of the electrodes was evaluated by determining the cell potential against current density. The effects of catalyst composition and electrode film preparation method on the performance of PEM fuel cell were also studied. It was found that at 70 C and 3.5 atm pressure at the cathode, Pt-alloy catalyst (10 wt% Pt/Ru/C, 20 wt% Pt/Mo/C) were more CO tolerant than the 20 wt% Pt/C catalyst alone. It was also observed that spraying method was better than the brushing technique for the preparation of electrode film.

  3. Development of a living membrane comprising a functional human renal proximal tubule cell monolayer on polyethersulfone polymeric membrane

    NARCIS (Netherlands)

    Schophuizen, Carolien M S; De Napoli, Ilaria E; Jansen, Jitske; Teixeira, Sandra; Wilmer, Martijn J; Hoenderop, Joost G J; Van den Heuvel, Lambert P W; Masereeuw, R.; Stamatialis, Dimitrios

    2015-01-01

    The need for improved renal replacement therapies has stimulated innovative research for the development of a cell-based renal assist device. A key requirement for such a device is the formation of a "living membrane", consisting of a tight kidney cell monolayer with preserved functional organic ion

  4. Peripheral Blood Mononuclear Cell Membrane Fluidity and Disease Outcome in Patients with Multiple Sclerosis

    OpenAIRE

    Gloudina M Hon; Hassan, Mogamat S.; van Rensburg, Susan J.; Abel, Stefan; Erasmus, Rajiv T; Matsha, Tandi

    2011-01-01

    Immune cell membrane lipids are important determinants of membrane fluidity, eicosanoid production and phagocytosis and fatty acid metabolic abnormalities have been reported in immune cells from patients with multiple sclerosis. The aim of this study was to investigate the relationship between peripheral blood mononuclear cell membrane fluidity, permeability status, and disease outcome as measured by the Kurtzke expanded disability status scale. Phospholipids, fatty acids and cholesterol comp...

  5. Cell membrane stability in two barley genotypes under water stress conditions

    OpenAIRE

    Hanna Bandurska; Halina Gniazdowska-Skoczek

    2014-01-01

    The effect of water stress induced in vitro by polyethylene glycol 6000 (PEG) and under drought stress on cell membrane stability was examined in two barley genotypes, the cultivar Aramir and line R567. The injury of cell membranes was markely influenced by leaf age, leaf position on the stem, and the degree of drought stress. The differences in percentage of injury to cell membrane between these genotypes were also found. The cv. Aramir exhibited a lower percentage injury value as compared t...

  6. Nafion/Silicon Oxide Composite Membrane for High Temperature Proton Exchange Membrane Fuel Cell

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Nafion/Silicon oxide composite membranes were produced via in situ sol-gel reaction of tetraethylorthosilicate (TEOS) in Nafion membranes. The physicochemical properties of the membranes were studied by FT-IR, TG-DSC and tensile strength. The results show that the silicon oxide is compatible with the Nafion membrane and the thermo stability of Nafion/Silicon oxide composite membrane is higher than that of Nafion membrane. Furthermore, the tensile strength of Nafion/Silicon oxide composite membrane is similar to that of the Nafion membrane. The proton conductivity of Nafion/Silicon oxide composite membrane is higher than that of Nafion membrane. When the Nafion/Silicon oxide composite membrane was employed as an electrolyte in H2/O2 PEMFC, a higher current density value (1 000 mA/cm2 at 0.38 V) than that of the Nafion 1135 membrane (100 mA/cm2 at 0.04 V) was obtained at 110 ℃.

  7. Single cell membrane poration by bubble-induced microjets in a microfluidic chip.

    Science.gov (United States)

    Li, Z G; Liu, A Q; Klaseboer, E; Zhang, J B; Ohl, C D

    2013-03-21

    This paper demonstrates membrane poration of a single suspension cell due to a fast liquid microjet. The jet is formed during the collapse of a laser induced bubble created at a variable stand-off distance from the target cell. The cell is trapped by a converging structure within a microfluidic chip. The asymmetrical growth and collapse of the cavitation bubble next to the cell lead to the microjetting, which deforms and porates the cell membrane. In the experiments, the membrane porations of myeloma cells are probed with the uptake of trypan blue. Time-resolved studies of the diffusion of trypan blue show a marked dependency on the bubble dynamics, i.e. the stand-off distance. The penetration length of the dye increases with shorter distances. Numerical simulations of the diffusion process agree with larger pores formed on the cell membrane. This method allows for a fast, repeatable, and localized rupture of membranes of individual cells in suspension. PMID:23364762

  8. Influence of Silica/Sulfonated Polyether-Ether Ketone as Polymer Electrolyte Membrane for Hydrogen Fueled Proton Exchange Membrane Fuel Cells

    Directory of Open Access Journals (Sweden)

    Sri Handayani

    2011-12-01

    Full Text Available The operation of non-humidified condition of proton exchange membrane fuel cell (PEMFC using composite sPEEK-silica membrane is reported. Sulfonated membrane of PEEK is known as hydrocarbon polyelectrolyte membrane for PEMFC and direct methanol fuel cell (DMFC. The state of the art of fuel cells is based on the perluorosulfonic acid membrane (Nafion. Nafion has been the most used in both PEMFC and DMFC due to good performance although in low humidified condition showed poor current density. Here we reported the effect of silica in hydrocarbon sPEEK membrane that contributes for a better water management system inside the cell, and showed 0.16 W/cm2 of power density which is 78% higher than that of non-silica modified [Keywords: composite membrane, polyether-ether ketone, silica, proton exchange membrane fuel cell].

  9. Lipid-protein interactions in plasma membranes of fiber cells isolated from the human eye lens.

    Science.gov (United States)

    Raguz, Marija; Mainali, Laxman; O'Brien, William J; Subczynski, Witold K

    2014-03-01

    The protein content in human lens membranes is extremely high, increases with age, and is higher in the nucleus as compared with the cortex, which should strongly affect the organization and properties of the lipid bilayer portion of intact membranes. To assess these effects, the intact cortical and nuclear fiber cell plasma membranes isolated from human lenses from 41- to 60-year-old donors were studied using electron paramagnetic resonance spin-labeling methods. Results were compared with those obtained for lens lipid membranes prepared from total lipid extracts from human eyes of the same age group [Mainali, L., Raguz, M., O'Brien, W. J., and Subczynski, W. K. (2013) Biochim. Biophys. Acta]. Differences were considered to be mainly due to the effect of membrane proteins. The lipid-bilayer portions of intact membranes were significantly less fluid than lipid bilayers of lens lipid membranes, prepared without proteins. The intact membranes were found to contain three distinct lipid environments termed the bulk lipid domain, boundary lipid domain, and trapped lipid domain. However, the cholesterol bilayer domain, which was detected in cortical and nuclear lens lipid membranes, was not detected in intact membranes. The relative amounts of bulk and trapped lipids were evaluated. The amount of lipids in domains uniquely formed due to the presence of membrane proteins was greater in nuclear membranes than in cortical membranes. Thus, it is evident that the rigidity of nuclear membranes is greater than that of cortical membranes. Also the permeability coefficients for oxygen measured in domains of nuclear membranes were significantly lower than appropriate coefficients measured in cortical membranes. Relationships between the organization of lipids into lipid domains in fiber cells plasma membranes and the organization of membrane proteins are discussed.

  10. Modelling membrane hydration and water balance of a pem fuel cell

    DEFF Research Database (Denmark)

    Liso, Vincenzo; Nielsen, Mads Pagh

    2015-01-01

    Polymer electrolyte membrane (PEM) fuel cells requires an appropriate hydration in order to ensure high efficiency and long durability. As water is essential for promoting proton conductivity in the membrane, it is important to control membrane water hydration to avoid flooding. In this study we...

  11. Narrow-Band Ultraviolet B Phototherapy Ameliorates Acute Graft-Versus-Host Disease of the Intestine by Expansion of Regulatory T Cells

    Science.gov (United States)

    Iyama, Satoshi; Yoshida, Masahiro; Ibata, Soushi; Tatekoshi, Ayumi; Kamihara, Yusuke; Horiguchi, Hiroto; Murase, Kazuyuki; Kawano, Yutaka; Takada, Kohichi; Miyanishi, Koji; Kobune, Masayoshi; Ichimiya, Shingo; Kato, Junji

    2016-01-01

    Narrowband ultraviolet B (NB-UVB) has been widely used in dermatological phototherapy. As for the application of NB-UVB phototherapy to graft-versus-host disease (GVHD), we previously reported that it was highly efficacious for cutaneous lesions of acute GVHD (aGVHD) and that expansion of regulatory T (Treg) cells induced by NB-UVB might be one of the mechanisms. In order to examine whether NB-UVB irradiation through expansion of Treg cells is effective for the treatment of not only cutaneous aGVHD but also aGVHD of inner organs such as the intestine or liver, we conducted experiments in which a murine lethal aGVHD model, characterized by severe involvement of the intestine, was irradiated with NB-UVB. We found that NB-UVB irradiation improved the clinical score and survival rate. The pathological score of aGVHD was improved in all affected organs: intestine, liver, and skin. In the serum of mice irradiated with NB-UVB, the levels of Treg cells-associated cytokines such as transforming growth factor beta (TGFβ) and interleukin-10 (IL-10) were elevated. The numbers of infiltrating Treg cells in inflamed tissue of the intestine and those in spleen were increased in mice treated with NB-UVB. This is the first report demonstrating that NB-UVB phototherapy has the ability to ameliorate intestinal aGVHD through the expansion of Treg cells. PMID:27031239

  12. Narrow-Band Ultraviolet B Phototherapy Ameliorates Acute Graft-Versus-Host Disease of the Intestine by Expansion of Regulatory T Cells.

    Science.gov (United States)

    Hashimoto, Akari; Sato, Tsutomu; Iyama, Satoshi; Yoshida, Masahiro; Ibata, Soushi; Tatekoshi, Ayumi; Kamihara, Yusuke; Horiguchi, Hiroto; Murase, Kazuyuki; Kawano, Yutaka; Takada, Kohichi; Miyanishi, Koji; Kobune, Masayoshi; Ichimiya, Shingo; Kato, Junji

    2016-01-01

    Narrowband ultraviolet B (NB-UVB) has been widely used in dermatological phototherapy. As for the application of NB-UVB phototherapy to graft-versus-host disease (GVHD), we previously reported that it was highly efficacious for cutaneous lesions of acute GVHD (aGVHD) and that expansion of regulatory T (Treg) cells induced by NB-UVB might be one of the mechanisms. In order to examine whether NB-UVB irradiation through expansion of Treg cells is effective for the treatment of not only cutaneous aGVHD but also aGVHD of inner organs such as the intestine or liver, we conducted experiments in which a murine lethal aGVHD model, characterized by severe involvement of the intestine, was irradiated with NB-UVB. We found that NB-UVB irradiation improved the clinical score and survival rate. The pathological score of aGVHD was improved in all affected organs: intestine, liver, and skin. In the serum of mice irradiated with NB-UVB, the levels of Treg cells-associated cytokines such as transforming growth factor beta (TGFβ) and interleukin-10 (IL-10) were elevated. The numbers of infiltrating Treg cells in inflamed tissue of the intestine and those in spleen were increased in mice treated with NB-UVB. This is the first report demonstrating that NB-UVB phototherapy has the ability to ameliorate intestinal aGVHD through the expansion of Treg cells.

  13. Binding and Fusion of Extracellular Vesicles to the Plasma Membrane of Their Cell Targets.

    Science.gov (United States)

    Prada, Ilaria; Meldolesi, Jacopo

    2016-01-01

    Exosomes and ectosomes, extracellular vesicles of two types generated by all cells at multivesicular bodies and the plasma membrane, respectively, play critical roles in physiology and pathology. A key mechanism of their function, analogous for both types of vesicles, is the fusion of their membrane to the plasma membrane of specific target cells, followed by discharge to the cytoplasm of their luminal cargo containing proteins, RNAs, and DNA. Here we summarize the present knowledge about the interactions, binding and fusions of vesicles with the cell plasma membrane. The sequence initiates with dynamic interactions, during which vesicles roll over the plasma membrane, followed by the binding of specific membrane proteins to their cell receptors. Membrane binding is then converted rapidly into fusion by mechanisms analogous to those of retroviruses. Specifically, proteins of the extracellular vesicle membranes are structurally rearranged, and their hydrophobic sequences insert into the target cell plasma membrane which undergoes lipid reorganization, protein restructuring and membrane dimpling. Single fusions are not the only process of vesicle/cell interactions. Upon intracellular reassembly of their luminal cargoes, vesicles can be regenerated, released and fused horizontally to other target cells. Fusions of extracellular vesicles are relevant also for specific therapy processes, now intensely investigated. PMID:27517914

  14. A rapid method for the evaluation of the ionic permeabilities across epithelial cell membranes.

    Science.gov (United States)

    Movileanu, L

    1999-02-01

    This short note presents a recipe for the calculation of the ionic permeabilities across epithelial cell membranes. The method requires the Goldman-Hodgkin-Katz formalism as well as the consideration of the equivalent electrical circuit for an epithelial cell. The equivalent electrical circuit is solved in terms of the equivalent electromotive forces coupled in series with the ionic resistances of both cell membranes (apical and basolateral). The present procedure is feasible for any leaky epithelial cell membrane with the condition that this membrane (apical or basolateral) does not contain primary or secondary mechanisms for active transport. PMID:10100952

  15. Infectious rotavirus enters cells by direct cell membrane penetration, not by endocytosis

    Energy Technology Data Exchange (ETDEWEB)

    Kaljot, K.T.; Shaw, R.D.; Greenberg, H.B. (Stanford Univ. School of Medicine, CA (USA) Palo Alto Veterans Administration Medical Center, CA (USA)); Rubin, D.H. (Univ. of Pennsylvania, Philadelphia (USA))

    1988-04-01

    Rotaviruses are icosahedral viruses with a segmented, double-stranded RNA genome. They are the major cause of severe infantile infectious diarrhea. Rotavirus growth in tissue culture is markedly enhanced by pretreatment of virus with trypsin. Trypsin activation is associated with cleavage of the viral hemagglutinin (viral protein 3 (VP3); 88 kilodaltons) into two fragments (60 and 28 kilodaltons). The mechanism by which proteolytic cleavage leads to enhanced growth is unknown. To determine whether trypsin treatment affected rotavirus internalization, the authors studied the kinetics of entry of infectious rhesus rotavirus (RRV) into MA104 cells. Trypsin-activated RRV was internalized with a half-time of 3 to 5 min, while nonactivated virus disappeared from the cell surface with a half-time of 30 to 50 min. In contrast to trypsin-activated RRV, loss of nonactivated RRV from the cell surface did not result in the appearance of infection, as measured by plaque formation. Purified trypsin-activated RRV added to cell monolayers at pH 7.4 mediated {sup 51}Cr, ({sup 14}C)choline, and ({sup 3}H)inositol released from prelabeled MA104 cells. This release could be specifically blocked by neutralizing antibodies to VP3. These results suggest that MA104 cell infection follows the rapid entry of trypsin-activated RRV by direct cell membrane penetration. Cell membrane penetration of infectious RRV is initiated by trypsin cleavage of VP3. Neutralizing antibodies can inhibit this direct membrane penetration.

  16. DEVELOPMENT OF NOVEL ELECTROCATALYSTS FOR PROTON EXCHANGE MEMBRANE FUEL CELLS

    Energy Technology Data Exchange (ETDEWEB)

    Shamsuddin Ilias

    2003-04-24

    Fuel cells are electrochemical devices that convert the available chemical free energy directly into electrical energy, without going through heat exchange process. Of all different types of fuel cells, the Proton Exchange Membrane Fuel Cell (PEMFC) is one of the most promising power sources for stand-alone utility and electric vehicle applications. Platinum (Pt) Catalyst is used for both fuel and air electrodes in PEMFCs. However, carbon monoxide (CO) contamination of H{sub 2} greatly affects electro catalysts used at the anode of PEMFCs and decreases cell performance. The irreversible poisoning of the anode can occur even in CO concentrations as low as few parts per million (ppm). In this work, we have synthesized several novel elctrocatalysts (Pt/C, Pt/Ru/C, Pt/Mo/C, Pt/Ir and Pt/Ru/Mo) for PEMFCs. These catalysts have been tested for CO tolerance in the H{sub 2}/air fuel cell, using CO concentrations in the H{sub 2} fuel that varies from 10 to 100 ppm. The performance of the electrodes was evaluated by determining the cell potential against current density. The effects of catalyst composition and electrode film preparation method on the performance of PEM fuel cell were also studied. It was found that at 70 C and 3.5 atm pressure at the cathode, Pt-alloy catalyst (10 wt% Pt/Ru/C, 20 wt% Pt/Mo/C) were more CO tolerant than the 20 wt% Pt/C catalyst alone. It was also observed that spraying method was better than the brushing technique for the preparation of electrode film.

  17. Membrane cholesterol regulates lysosome-plasma membrane fusion events and modulates Trypanosoma cruzi invasion of host cells.

    Directory of Open Access Journals (Sweden)

    Bárbara Hissa

    Full Text Available BACKGROUND: Trypomastigotes of Trypanosoma cruzi are able to invade several types of non-phagocytic cells through a lysosomal dependent mechanism. It has been shown that, during invasion, parasites trigger host cell lysosome exocytosis, which initially occurs at the parasite-host contact site. Acid sphingomyelinase released from lysosomes then induces endocytosis and parasite internalization. Lysosomes continue to fuse with the newly formed parasitophorous vacuole until the parasite is completely enclosed by lysosomal membrane, a process indispensable for a stable infection. Previous work has shown that host membrane cholesterol is also important for the T. cruzi invasion process in both professional (macrophages and non-professional (epithelial phagocytic cells. However, the mechanism by which cholesterol-enriched microdomains participate in this process has remained unclear. METHODOLOGY/PRINCIPAL FINDING: In the present work we show that cardiomyocytes treated with MβCD, a drug able to sequester cholesterol from cell membranes, leads to a 50% reduction in invasion by T. cruzi trypomastigotes, as well as a decrease in the number of recently internalized parasites co-localizing with lysosomal markers. Cholesterol depletion from host membranes was accompanied by a decrease in the labeling of host membrane lipid rafts, as well as excessive lysosome exocytic events during the earlier stages of treatment. Precocious lysosomal exocytosis in MβCD treated cells led to a change in lysosomal distribution, with a reduction in the number of these organelles at the cell periphery, and probably compromises the intracellular pool of lysosomes necessary for T. cruzi invasion. CONCLUSION/SIGNIFICANCE: Based on these results, we propose that cholesterol depletion leads to unregulated exocytic events, reducing lysosome availability at the cell cortex and consequently compromise T. cruzi entry into host cells. The results also suggest that two different pools of

  18. Label-free measuring and mapping of binding kinetics of membrane proteins in single living cells

    Science.gov (United States)

    Wang, Wei; Yang, Yunze; Wang, Shaopeng; Nagaraj, Vinay J.; Liu, Qiang; Wu, Jie; Tao, Nongjian

    2012-10-01

    Membrane proteins mediate a variety of cellular responses to extracellular signals. Although membrane proteins are studied intensively for their values as disease biomarkers and therapeutic targets, in situ investigation of the binding kinetics of membrane proteins with their ligands has been a challenge. Traditional approaches isolate membrane proteins and then study them ex situ, which does not reflect accurately their native structures and functions. We present a label-free plasmonic microscopy method to map the local binding kinetics of membrane proteins in their native environment. This analytical method can perform simultaneous plasmonic and fluorescence imaging, and thus make it possible to combine the strengths of both label-based and label-free techniques in one system. Using this method, we determined the distribution of membrane proteins on the surface of single cells and the local binding kinetic constants of different membrane proteins. Furthermore, we studied the polarization of the membrane proteins on the cell surface during chemotaxis.

  19. Microfabricated polymer electrolyte membrane fuel cells with low catalyst loadings

    Energy Technology Data Exchange (ETDEWEB)

    Gruber, D.; Ponath, N.; Mueller, J. [Hamburg University of Technology, Hamburg (Germany). Department of Micro Systems Technology

    2005-11-01

    Miniaturized fuel cells as compact power sources fabricated in Pyrex glass using standard polymer electrolyte membrane (PEM) and electrode materials are presented. Photolithographic patterned and wet chemically etched serpentine flow channels of 1 mm in width and 250 {mu} m in depth transport the fuels to the cell of 1.44 cm{sup 2} active electrode area. Feeding H{sub 2}/O{sub 2} a maximum power density of 149 mW cm{sup -2} is attained at a very low Pt loading of 0.054 mg cm{sup -2}, ambient pressure, and room temperature. Operated with methanol and oxygen about 9 mW cm{sup -2} are achieved at ambient pressure, 60 C, and 1 mg cm{sup -2} PtRu/Pt (anode/cathode) loading. A planar two-cell stack to demonstrate and investigate the assembly of a fuel cell system on Pyrex wafers has successfully been fabricated. (author)

  20. CFD simulation of fuel cell proton exchange membrane multichannel

    International Nuclear Information System (INIS)

    Hydrogen has several applications that make the strongest candidate for implementation as an energy carrier in the future sustainable scenario. Current hydrogen production is based on fossil fuels that have a high contribution to air pollution. The imminent depletion of fossil fuels and high emissions of greenhouse gases that cause consumption has brought the world to consider energy scenarios that are more environmentally friendly and yet profitable. The use of hydrogen as an energy carrier generally occurs with good application prospects. Fuel cells have attracted great interest for its application mainly in the transport sector. The fuel cell PEM proton exchange membrane which convert chemical energy stored in hydrogen into electrical energy directly and efficiently, with water as a byproduct, have the ability to reduce emissions and dependence on fossil fuels. A model for multiple cell PEM five channels using the ANSYS software CFD occurs. Performance analysis and optimization of the thermodynamic and geometric parameters of the fuel cell is performed. It was analyzed the overall electrical performance and assessed performance by local current density, flow and temperatures. (full text)

  1. Measurement of the cell membrane capacitance and conductance of colonic crypt cells of the rat using the patch clamp technique

    OpenAIRE

    Schill, C.

    2005-01-01

    Using the patch clamp technique the membrane capacitance and membrane conductance of colonic crypt cells of the rat was measured. The influence of the intracellular agonists Ca++, cAMP and of osmotic changes on the membrane capacitance and conductance was studied.

  2. Homeostatic restitution of cell membranes. Nuclear membrane lipid biogenesis and transport of protein from cytosol to intranuclear spaces.

    Directory of Open Access Journals (Sweden)

    Amalia Slomiany, Maria Grabska, Bronislaw L. Slomiany

    2006-01-01

    Full Text Available Our studies on homeostatic restitution of cellular and subcellular membranes showed that vesicular intracellular transport is engaged in systematic and coordinated replacement of lipids and proteins in the membranes of the secretory, non-dividing epithelial cells (Slomiany et al., J. Physiol. Pharmacol. 2004; 55: 837-860. In this report, we present evidence on the homeostatic restitution of lipids in the biomembranes that constitute nuclear envelopes. We investigated nuclear membranes lipid synthesis by employing purified intact nuclei (IN, the outer nuclear membrane (ONM, the inner nuclear membrane (INM and the cell cytosol (CC. In contrast to Endoplasmic Reticulum (ER which in the presence of CC generates new biomembrane that forms ER vesicles transporting ER products to Golgi, the IN, ONM and INM are not producing transport vesicles. Instead, the newly synthesized lipids remain in the nuclear membranes. The membranes (INM, ONM of IN incubated with CC become enriched with newly synthesized phosphatidylcholine (PC, phosphatidylinositol (PI, phosphatidylinositol phosphates (PIPs and phosphatidic acid (PA. The incubation of separated ONM and INM with CC also enriched the membranes with IN specific lipids identified above. Moreover, the incubation of IN or its membranes with CC afforded retention of numerous CC proteins on the nuclear membrane. Here, we concentrated on 30kDa CC protein that displayed affinity to nuclear membrane PIP2. The 30kDa CC protein bound to PIP2 of IN, INM, and ONM. With IN, initially the PIP2-30kDa CC protein complex was detected on ONM, after 30-120 min of incubation, was found on INM and in nuclear contents. At the same time when the 30 kDa protein was released from INM and found in nuclear contents, the PIP2 of INM and ONM became undetectable, while the lipid extract from the membrane displaced from IN contained labeled PI only. Since ONM is an uninterrupted continuum of ER and INM, we speculate that the synthesis of

  3. Mitochondrial Swelling and Incipient Outer Membrane Rupture in Preapoptotic and Apoptotic Cells

    OpenAIRE

    Sesso, A.; Belizário, JE; Marques, MM; Higuchi, ML; Schumacher, RI; Colquhoun, A; Ito, E.; Kawakami, J.

    2012-01-01

    Outer mitochondrial membrane (OMM) rupture was first noted in isolated mitochondria in which the inner mitochondrial membrane (IMM) had lost its selective permeability. This phenomenon referred to as mitochondrial permeability transition (MPT) refers to a permeabilized inner membrane that originates a large swelling in the mitochondrial matrix, which distends the outer membrane until it ruptures. Here, we have expanded previous electron microscopic observations that in apoptotic cells, OMM ru...

  4. Endogenously generated amyloid β increases membrane fluidity in neural 2a cells

    Institute of Scientific and Technical Information of China (English)

    NIU Ying; SHENG BaiYang; SONG Bo; LIU LingLing; ZHANG XiuFang; ZHAO NanMing; GONG YanDao

    2009-01-01

    The effect of endogenously generated amyloid β on membrane fluidity was investigated in Neural 2a cells stably expressing Swedish mutant amyloid precursor protein (APPswe). Membrane fluidity was studied by fluorescence polarizability using 1,6-Diphenyl-1,3,5-Hexatriene (DPH) as the fluorescence probe. It was found that the membrane fluidity in APPswe cells was significantly higher than that in its wild type counterparts. Alleviating the effect of amyloid β either by y secretase activity inhibition or by amyloid antibody treatment decreased membrane fluidity, which indicated an important role of amyloid β in increasing membrane fluidity. Treatment using amyloid β channel blocker, tromethamine and NA4 suggested that channel formed by amyloid β on the cell membrane is a way through which amyloid β takes its membrane fluidizing effect.

  5. Short term exercise induces PGC-1α, ameliorates inflammation and increases mitochondrial membrane proteins but fails to increase respiratory enzymes in aging diabetic hearts.

    Directory of Open Access Journals (Sweden)

    Amy Botta

    Full Text Available PGC-1α, a transcriptional coactivator, controls inflammation and mitochondrial gene expression in insulin-sensitive tissues following exercise intervention. However, attributing such effects to PGC-1α is counfounded by exercise-induced fluctuations in blood glucose, insulin or bodyweight in diabetic patients. The goal of this study was to investigate the role of PGC-1α on inflammation and mitochondrial protein expressions in aging db/db mice hearts, independent of changes in glycemic parameters. In 8-month-old db/db mice hearts with diabetes lasting over 22 weeks, short-term, moderate-intensity exercise upregulated PGC-1α without altering body weight or glycemic parameters. Nonetheless, such a regimen lowered both cardiac (macrophage infiltration, iNOS and TNFα and systemic (circulating chemokines and cytokines inflammation. Curiously, such an anti-inflammatory effect was also linked to attenuated expression of downstream transcription factors of PGC-1α such as NRF-1 and several respiratory genes. Such mismatch between PGC-1α and its downstream targets was associated with elevated mitochondrial membrane proteins like Tom70 but a concurrent reduction in oxidative phosphorylation protein expressions in exercised db/db hearts. As mitochondrial oxidative stress was predominant in these hearts, in support of our in vivo data, increasing concentrations of H2O2 dose-dependently increased PGC-1α expression while inhibiting expression of inflammatory genes and downstream transcription factors in H9c2 cardiomyocytes in vitro. We conclude that short-term exercise-induced oxidative stress may be key in attenuating cardiac inflammatory genes and impairing PGC-1α mediated gene transcription of downstream transcription factors in type 2 diabetic hearts at an advanced age.

  6. Dynamic maintenance of stochastic molecular clusters on cell membranes

    Science.gov (United States)

    Mugler, Andrew; Wehrens, Martijn; Ten Wolde, Pieter Rein

    2015-03-01

    Clustering of molecules on cell membranes is a widely observed phenomenon. A key example is the oncoprotein Ras. Maintenance of Ras clusters has been linked to proper Ras signaling. Yet, the mechanism by which Ras clusters are maintained remains unclear. Recently it was discovered that activated Ras promotes further Ras activation. We show using particle-based simulation that this positive feedback link is sufficient to produce persistent clusters of active Ras molecules via a dynamic nucleation mechanism. The cluster statistics are consistent with experimental observations. Interestingly, our model does not support a Turing regime of macroscopic reaction-diffusion patterning. This means that the clustering we observe is a purely stochastic effect, arising from the coupling of the positive feedback network with the discrete nature of individual molecules. These findings underscore the importance of stochastic and dynamic properties of reaction diffusion systems for biological behavior.

  7. Adalimumab ameliorates OVA-induced airway inflammation in mice: Role of CD4(+) CD25(+) FOXP3(+) regulatory T-cells.

    Science.gov (United States)

    Elsakkar, Mohamed G; Sharaki, Olla A; Abdallah, Dina M; Mostafa, Dalia K; Shekondali, Fadia T

    2016-09-01

    Asthma is a chronic inflammatory heterogeneous disorder initiated by a dysregulated immune response which drives disease development in susceptible individuals. Though T helper 2 (TH2) biased responses are usually linked to eosinophilic asthma, other Th cell subsets induce neutrophilic airway inflammation which provokes the most severe asthmatic phenotypes. A growing evidence highlights the role of T regulatory (Treg) cells in damping abnormal Th responses and thus inhibiting allergy and asthma. Therefore, strategies to induce or augment Treg cells hold promise for treatment and prevention of allergic airway inflammation. Recently, the link between Tumor necrosis factor-α (TNF-α) and Treg has been uncovered, and TNF-α antagonists are increasingly used in many autoimmune diseases. Yet, their benefits in allergic airway inflammation is not clarified. We investigated the effect of Adalimumab, a TNF-α antagonist, on Ovalbumin (OVA)-induced allergic airway inflammation in CD1 mice and explored its impact on Treg cells. Our results showed that Adalimumab treatment attenuated the OVA-induced increase in serum IgE, TH2 and TH1 derived inflammatory cytokines (IL-4 and IFN-γ, respectively) in bronchoalveolar lavage (BAL) fluid, suppressed recruitment of inflammatory cells in BAL fluid and lung, and inhibited BAL fluid neutrophilia. It also ameliorated goblet cell metaplasia and bronchial fibrosis. Splenocytes flow cytometry revealed increased percentage of CD4(+) CD25(+) FOXP3(+) Treg cells by Adalimumab that was associated with increase in their suppressive activity as shown by elevated BAL fluid IL-10. We conclude that the beneficial effects of Adalimumab in this CD1 neutrophilic model of allergic airway inflammation are attributed to augmentation of Treg cell number and activity. PMID:27262379

  8. In situ single molecule imaging of cell membranes: linking basic nanotechniques to cell biology, immunology and medicine

    Science.gov (United States)

    Pi, Jiang; Jin, Hua; Yang, Fen; Chen, Zheng W.; Cai, Jiye

    2014-10-01

    The cell membrane, which consists of a viscous phospholipid bilayer, different kinds of proteins and various nano/micrometer-sized domains, plays a very important role in ensuring the stability of the intracellular environment and the order of cellular signal transductions. Exploring the precise cell membrane structure and detailed functions of the biomolecules in a cell membrane would be helpful to understand the underlying mechanisms involved in cell membrane signal transductions, which could further benefit research into cell biology, immunology and medicine. The detection of membrane biomolecules at the single molecule level can provide some subtle information about the molecular structure and the functions of the cell membrane. In particular, information obtained about the molecular mechanisms and other information at the single molecule level are significantly different from that detected from a large amount of biomolecules at the large-scale through traditional techniques, and can thus provide a novel perspective for the study of cell membrane structures and functions. However, the precise investigations of membrane biomolecules prompts researchers to explore cell membranes at the single molecule level by the use of in situ imaging methods, as the exact conformation and functions of biomolecules are highly controlled by the native cellular environment. Recently, the in situ single molecule imaging of cell membranes has attracted increasing attention from cell biologists and immunologists. The size of biomolecules and their clusters on the cell surface are set at the nanoscale, which makes it mandatory to use high- and super-resolution imaging techniques to realize the in situ single molecule imaging of cell membranes. In the past few decades, some amazing imaging techniques and instruments with super resolution have been widely developed for molecule imaging, which can also be further employed for the in situ single molecule imaging of cell membranes. In

  9. In situ single molecule imaging of cell membranes: linking basic nanotechniques to cell biology, immunology and medicine.

    Science.gov (United States)

    Pi, Jiang; Jin, Hua; Yang, Fen; Chen, Zheng W; Cai, Jiye

    2014-11-01

    The cell membrane, which consists of a viscous phospholipid bilayer, different kinds of proteins and various nano/micrometer-sized domains, plays a very important role in ensuring the stability of the intracellular environment and the order of cellular signal transductions. Exploring the precise cell membrane structure and detailed functions of the biomolecules in a cell membrane would be helpful to understand the underlying mechanisms involved in cell membrane signal transductions, which could further benefit research into cell biology, immunology and medicine. The detection of membrane biomolecules at the single molecule level can provide some subtle information about the molecular structure and the functions of the cell membrane. In particular, information obtained about the molecular mechanisms and other information at the single molecule level are significantly different from that detected from a large amount of biomolecules at the large-scale through traditional techniques, and can thus provide a novel perspective for the study of cell membrane structures and functions. However, the precise investigations of membrane biomolecules prompts researchers to explore cell membranes at the single molecule level by the use of in situ imaging methods, as the exact conformation and functions of biomolecules are highly controlled by the native cellular environment. Recently, the in situ single molecule imaging of cell membranes has attracted increasing attention from cell biologists and immunologists. The size of biomolecules and their clusters on the cell surface are set at the nanoscale, which makes it mandatory to use high- and super-resolution imaging techniques to realize the in situ single molecule imaging of cell membranes. In the past few decades, some amazing imaging techniques and instruments with super resolution have been widely developed for molecule imaging, which can also be further employed for the in situ single molecule imaging of cell membranes. In

  10. Assessment of Membrane Fluidity Fluctuations during Cellular Development Reveals Time and Cell Type Specificity

    KAUST Repository

    Noutsi, Pakiza

    2016-06-30

    Cell membrane is made up of a complex structure of lipids and proteins that diffuse laterally giving rise to what we call membrane fluidity. During cellular development, such as differentiation cell membranes undergo dramatic fluidity changes induced by proteins such as ARC and Cofilin among others. In this study we used the generalized polarization (GP) property of fluorescent probe Laurdan using two-photon microscopy to determine membrane fluidity as a function of time and for various cell lines. A low GP value corresponds to a higher fluidity and a higher GP value is associated with a more rigid membrane. Four different cell lines were monitored such as hN2, NIH3T3, HEK293 and L6 cells. Membrane fluidity was measured at 12h, 72h and 92 h. Our results show significant changes in membrane fluidity among all cell types at different time points. GP values tend to increase significantly within 92 h in hN2 cells and 72 h in NIH3T3 cells and only at 92 h in HEK293 cells. L6 showed a marked decrease in membrane fluidity at 72 h and starts to increase at 92 h. As expected, NIH3T3 cells have more rigid membrane at earlier time points. On the other hand, neurons tend to have the highest membrane fluidity at early time points emphasizing its correlation with plasticity and the need for this malleability during differentiation. This study sheds light on the involvement of membrane fluidity during neuronal differentiation and development of other cell lines.

  11. Assessment of Membrane Fluidity Fluctuations during Cellular Development Reveals Time and Cell Type Specificity.

    Science.gov (United States)

    Noutsi, Pakiza; Gratton, Enrico; Chaieb, Sahraoui

    2016-01-01

    Cell membrane is made up of a complex structure of lipids and proteins that diffuse laterally giving rise to what we call membrane fluidity. During cellular development, such as differentiation cell membranes undergo dramatic fluidity changes induced by proteins such as ARC and Cofilin among others. In this study we used the generalized polarization (GP) property of fluorescent probe Laurdan using two-photon microscopy to determine membrane fluidity as a function of time and for various cell lines. A low GP value corresponds to a higher fluidity and a higher GP value is associated with a more rigid membrane. Four different cell lines were monitored such as hN2, NIH3T3, HEK293 and L6 cells. Membrane fluidity was measured at 12h, 72h and 92 h. Our results show significant changes in membrane fluidity among all cell types at different time points. GP values tend to increase significantly within 92 h in hN2 cells and 72 h in NIH3T3 cells and only at 92 h in HEK293 cells. L6 showed a marked decrease in membrane fluidity at 72 h and starts to increase at 92 h. As expected, NIH3T3 cells have more rigid membrane at earlier time points. On the other hand, neurons tend to have the highest membrane fluidity at early time points emphasizing its correlation with plasticity and the need for this malleability during differentiation. This study sheds light on the involvement of membrane fluidity during neuronal differentiation and development of other cell lines. PMID:27362860

  12. Experimental Investigation and Discussion on the Mechanical Endurance Limit of Nafion Membrane Used in Proton Exchange Membrane Fuel Cell

    Directory of Open Access Journals (Sweden)

    Yang Xiao

    2014-10-01

    Full Text Available As a solution of high efficiency and clean energy, fuel cell technologies, especially proton exchange membrane fuel cell (PEMFC, have caught extensive attention. However, after decades of development, the performances of PEMFCs are far from achieving the target from the Department of Energy (DOE. Thus, further understanding of the degradation mechanism is needed to overcome this obstacle. Due to the importance of proton exchange membrane in a PEMFC, the degradation of the membrane, such as hygrothermal aging effect on its properties, are particularly necessary. In this work, a thick membrane (Nafion N117, which is always used as an ionic polymer for the PEMFCs, has been analyzed. Experimental investigation is performed for understanding the mechanical endurance of the bare membranes under different loading conditions. Tensile tests are conducted to compare the mechanical property evolution of two kinds of bare-membrane specimens including the dog-bone and the deeply double edge notched (DDEN types. Both dog-bone and DDEN specimens were subjected to a series of degradation tests with different cycling times and wide humidity ranges. The tensile tests are repeated for both kinds of specimens to assess the strain-stress relations. Furthermore, Fourier transform infrared spectroscopy (FT-IR, X-ray diffraction (XRD and Scanning electron microscope (SEM observation and water absorption measurement were conducted to speculate the cause of this variation. The initial cracks along with the increasing of bound water content were speculated as the primary cause.

  13. Feline immunodeficiency virus decreases cell-cell communication and mitochondrial membrane potential.

    OpenAIRE

    Danave, I R; Tiffany-Castiglioni, E; Zenger, E; Barhoumi, R.; Burghardt, R C; Collisson, E W

    1994-01-01

    The in vitro effects of viral replication on mitochondrial membrane potential (MMP) and gap junctional intercellular communication (GJIC) were evaluated as two parameters of potential cellular injury. Two distinct cell types were infected with the Petaluma strain of feline immunodeficiency virus (FIV). Primary astroglia supported acute FIV infection, resulting in syncytia within 3 days of infection, whereas immortalized Crandell feline kidney (CRFK) cells of epithelial origin supported persis...

  14. [Transfer of T-DNA from agrobacteria into plant cells through cell walls and membranes].

    Science.gov (United States)

    Chumakov, M I

    2001-01-01

    Discusses probable routes of agrobacterial penetration through the plant integumental tissues, cell wall, and plant cell plasmodesma. Analyzes the contribution of extracellular structures of agrobacteria in penetration through barriers of a plant cell, primary contact (adhesion), and during DNA transfer from bacterial (E. coli, A. tumefaciens) to recipient (bacterial or plant) cells. Discusses the relationship between donor cell adhesion to recipient cell surface and the infectious and conjugation processes. Considers the probable role of piles in conjugative transfer of agrobacterial DNA through membranes of donor and recipient (bacterial and plant) cells. Analyzes the contribution of the plant cell cytoskeleton to T-DNA transfer. Suggests a model of transport of T-DNA-VirD2 complex and VirE2 proteins through independent channels consisting of vir-coded proteins. PMID:11236737

  15. Effects of nitrogen ion implantation on Ca2+ concentration and membrane potential of pollen cell

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The effects of low energy nitrogen ion implantation on Ca2+ concentration and membrane potential of lily (lilium davidii Duch) pollen cell have been studied. The results showed that the Ca2+ concentration was increased when pollen grain was implanted by nitrogen ion with energy 100keV and dose 1013 ions/cra2. However, the increase of Ca2+ concentration was partly inhibited by the addition of Ca2+channel inhibitor depending on dose. And nitrogen ion implantation caused depolarization of pollen cell membrane potential. In other words, membrane potential was increased,but the effect decreased by adding Ca2+ channel inhibitor.However, it was still significantly higher than the membrane potential of control cells. It was indicated that the depolarization of cell membrane potential opened the calcium channel on the membrane that caused the increasing of intraceilular calcium concentration. This might be an earlier step of the effect of low energy nitrogen ion implantation on pollen germination.

  16. A microfluidic platform for probing single cell plasma membranes using optically trapped Smart Droplet Microtools (SDMs).

    Science.gov (United States)

    Lanigan, Peter M P; Ninkovic, Tanja; Chan, Karen; de Mello, Andrew J; Willison, Keith R; Klug, David R; Templer, Richard H; Neil, Mark A A; Ces, Oscar

    2009-04-21

    We recently introduced a novel platform based upon optically trapped lipid coated oil droplets (Smart Droplet Microtools-SDMs) that were able to form membrane tethers upon fusion with the plasma membrane of single cells. Material transfer from the plasma membrane to the droplet via the tether was seen to occur. Here we present a customised version of the SDM approach based upon detergent coated droplets deployed within a microfluidic format. These droplets are able to differentially solubilise the plasma membrane of single cells with spatial selectivity and without forming membrane tethers. The microfluidic format facilitates separation of the target cells from the bulk SDM population and from downstream analysis modules. Material transfer from the cell to the SDM was monitored by tracking membrane localized EGFP.

  17. Plasma Membrane Lesions In Anthracycline-Resistant Tumor Cells Probed Using A Fluorescent Dye

    Science.gov (United States)

    Burke, Thomas G.; Doroshow, James H.

    1989-06-01

    Human cancer cells selected for resistance to several structurally unrelated cytotoxic drugs are known to display plasma membrane alterations such as amplified levels of a variety of glycoproteins, modifications in lipid composition, alterations in membrane fluidity and increased cellular fragility to osmotic shock. We have studied the plasma membrane fluidity of HL60 human leukemia cells and MCF-7 human breast cancer cells that have been selected for acquired resistance against the cytocidal effects of the anthracycline anticancer drug Adriamycin. Fluidity measurements were accomplished by evaluating the fluorescence anisotropy of the plasma membrane specific probe trimethylamino-1,6-dipihenylhexatriene (TMA.DPH) bound to whole, living cells. TMA.DPH anisotropy values for MCF-7 sensitive and 12-fold resistant cells were 0.306 and 0.285, respectively, while anisotropy values for HL-60 sensitive and 80-fold resistant cells lines were 0.310 and 0.295, respectively. In all cases, cell viability exceeded 97% and anisotropy values were subject to a day-to-day uncertainty of +/-2%. Our results demonstrate that increased plasma membrane fluidity apparently accompanies the development of resistance in both cell lines. Because it is known that increased membrane fluidity results in significantly decreased Adriamycin binding in artificial membrane systems, we propose here that decreased drug associations with fluidized, plasma membrane lipid bilayer regions may be a mechanism which contributes, in part, to the reduced rates of drug accumulation observed in HL60 and MCF-7 cells resistant to Adriamycin.

  18. Water Management Membrane for Fuel Cells and Electrolyzers Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Development of an improved water management membrane for a static vapor feed electrolyzer that produces sub-saturated H2 and O2 is proposed. This improved membrane...

  19. Mesenchymal stem cells ameliorate inflammatory cytokine-induced impairment of AT-II cells through a keratinocyte growth factor-dependent PI3K/Akt/mTOR signaling pathway

    Science.gov (United States)

    LI, JIWEI; HUANG, SHA; ZHANG, JUNHUA; FENG, CHANGJIANG; GAO, DONGYUN; YAO, BIN; WU, XU; FU, XIAOBING

    2016-01-01

    Lung epithelium restoration subsequent to injury is of concern in association with the outcomes of diverse inflammatory lung diseases. Previous studies have demonstrated that mesenchymal stem cells (MSCs) may promote epithelial repair subsequent to inflammatory injury, however the mechanism that mediates this effect remains unclear. The current study examined the role of MSCs in alveolar type II epithelial cell (AT-II cell) restoration subsequent to an inflammatory insult. AT-II cells were firstly exposed to inflammatory cytokines including tumor necrosis factor-α, interleukin (IL)-6 and IL-1β, then were co-cultured with MSCs in Transwell for 72 h. Cell proliferation, expression of surfactant protein A (SP-A) and expression of the α1 subunit were evaluated respectively by the Cell Counting Kit-8 assay, western blotting and semiquantitative reverse transcription-polymerase chain reaction. Keratinocyte growth factor (KGF) small interfering RNA (siRNA) was applied to knockdown the main cytoprotective factors in the MSCs. Subsequent to an inflammatory insult, AT-II cells were observed to be impaired, exhibiting the characteristics of injured cell morphology, reduced cell proliferation and reduced expression of SP-A and the α1 subunit. Co-culture with MSCs significantly ameliorated these cell impairments, while these benefits were weakened by the application of KGF siRNA. Simultaneously, expression levels of phosphorylated (p-) protein kinase B (AKT) and p-mammalian target of rapamycin (mTOR) in AT-II cells were upregulated by MSCs, suggesting activation of the phosphoinositide 3-kinase (PI3K) pathway. These data demonstrate that administration of MSCs to the inflammation-insulted AT-II cells may ameliorate the impairments through a KGF-dependent PI3K/AKT/mTOR signaling pathway. PMID:27035760

  20. NAD+ biosynthesis ameliorates a zebrafish model of muscular dystrophy.

    Directory of Open Access Journals (Sweden)

    Michelle F Goody

    Full Text Available Muscular dystrophies are common, currently incurable diseases. A subset of dystrophies result from genetic disruptions in complexes that attach muscle fibers to their surrounding extracellular matrix microenvironment. Cell-matrix adhesions are exquisite sensors of physiological conditions and mediate responses that allow cells to adapt to changing conditions. Thus, one approach towards finding targets for future therapeutic applications is to identify cell adhesion pathways that mediate these dynamic, adaptive responses in vivo. We find that nicotinamide riboside kinase 2b-mediated NAD+ biosynthesis, which functions as a small molecule agonist of muscle fiber-extracellular matrix adhesion, corrects dystrophic phenotypes in zebrafish lacking either a primary component of the dystrophin-glycoprotein complex or integrin alpha7. Exogenous NAD+ or a vitamin precursor to NAD+ reduces muscle fiber degeneration and results in significantly faster escape responses in dystrophic embryos. Overexpression of paxillin, a cell adhesion protein downstream of NAD+ in this novel cell adhesion pathway, reduces muscle degeneration in zebrafish with intact integrin receptors but does not improve motility. Activation of this pathway significantly increases organization of laminin, a major component of the extracellular matrix basement membrane. Our results indicate that the primary protective effects of NAD+ result from changes to the basement membrane, as a wild-type basement membrane is sufficient to increase resilience of dystrophic muscle fibers to damage. The surprising result that NAD+ supplementation ameliorates dystrophy in dystrophin-glycoprotein complex- or integrin alpha7-deficient zebrafish suggests the existence of an additional laminin receptor complex that anchors muscle fibers to the basement membrane. We find that integrin alpha6 participates in this pathway, but either integrin alpha7 or the dystrophin-glycoprotein complex is required in conjunction

  1. Taurine supplementation ameliorates glucose homeostasis, prevents insulin and glucagon hypersecretion, and controls β, α, and δ-cell masses in genetic obese mice.

    Science.gov (United States)

    Santos-Silva, Junia C; Ribeiro, Rosane Aparecida; Vettorazzi, Jean F; Irles, Esperanza; Rickli, Sarah; Borck, Patrícia C; Porciuncula, Patricia M; Quesada, Ivan; Nadal, Angel; Boschero, Antonio C; Carneiro, Everardo M

    2015-08-01

    Taurine (Tau) regulates β-cell function and glucose homeostasis under normal and diabetic conditions. Here, we assessed the effects of Tau supplementation upon glucose homeostasis and the morphophysiology of endocrine pancreas, in leptin-deficient obese (ob) mice. From weaning until 90-day-old, C57Bl/6 and ob mice received, or not, 5% Tau in drinking water (C, CT, ob and obT). Obese mice were hyperglycemic, glucose intolerant, insulin resistant, and exhibited higher hepatic glucose output. Tau supplementation did not prevent obesity, but ameliorated glucose homeostasis in obT. Islets from ob mice presented a higher glucose-induced intracellular Ca(2+) influx, NAD(P)H production and insulin release. Furthermore, α-cells from ob islets displayed a higher oscillatory Ca(2+) profile at low glucose concentrations, in association with glucagon hypersecretion. In Tau-supplemented ob mice, insulin and glucagon secretion was attenuated, while Ca(2+) influx tended to be normalized in β-cells and Ca(2+) oscillations were increased in α-cells. Tau normalized the inhibitory action of somatostatin (SST) upon insulin release in the obT group. In these islets, expression of the glucagon, GLUT-2 and TRPM5 genes was also restored. Tau also enhanced MafA, Ngn3 and NeuroD mRNA levels in obT islets. Morphometric analysis demonstrated that the hypertrophy of ob islets tends to be normalized by Tau with reductions in islet and β-cell masses, but enhanced δ-cell mass in obT. Our results indicate that Tau improves glucose homeostasis, regulating β-, α-, and δ-cell morphophysiology in ob mice, indicating that Tau may be a potential therapeutic tool for the preservation of endocrine pancreatic function in obesity and diabetes. PMID:25940922

  2. Is the surface area of the red cell membrane skeleton locally conserved?

    OpenAIRE

    Fischer, T M

    1992-01-01

    The incompressibility of the lipid bilayer keeps the total surface area of the red cell membrane constant. Local conservation of membrane surface area requires that each surface element of the membrane skeleton keeps its area when its aspect ratio is changed. A change in area would require a flow of lipids past the intrinsic proteins to which the skeleton is anchored. in fast red cell deformations, there is no time for such a flow. Consequently, the bilayer provides for local area conservatio...

  3. Thermal Fluctuations of Red Blood Cell Membrane via a Constant-Area Particle-Dynamics Model

    OpenAIRE

    Marcelli, Gianluca; Parker, Kim H.; Winlove, C. Peter

    2005-01-01

    We describe a model of the mechanical properties of the cell plasma membrane using a finite-temperature particle-dynamics simulation of the whole cell, in which a two-dimensional network of virtual particles embedded in a three-dimensional closed surface represents the membrane. The particles interact via harmonic potential and dihedral angle potential and are subject to a constant area constraint. The evolution of the positions of the particles yields the equilibrium state of the membrane an...

  4. Double-Staining Method for Differentiation of Morphological Changes and Membrane Integrity of Campylobacter coli Cells

    OpenAIRE

    Alonso, Jose L.; Mascellaro, Salvatore; Moreno, Yolanda; Ferrús, María A.; Hernández, Javier

    2002-01-01

    We developed a double-staining procedure involving NanoOrange dye (Molecular Probes, Eugene, Oreg.) and membrane integrity stains (LIVE/DEAD BacLight kit; Molecular Probes) to show the morphological and membrane integrity changes of Campylobacter coli cells during growth. The conversion from a spiral to a coccoid morphology via intermediary forms and the membrane integrity changes of the C. coli cells can be detected with the double-staining procedure. Our data indicate that young or actively...

  5. Translocation of annexin Ⅰ from cellular membrane to the nuclear membrane in human esophageal squamous cell carcinoma

    Institute of Scientific and Technical Information of China (English)

    Yu Liu; Xiao-Hang Zhao; Hui-Xin Wang; Ning Lu; You-Sheng Mao; Fang Liu; Ying Wang; Hai-Rong Zhang; Kun Wang; Min Wu

    2003-01-01

    AIM: To investigate the alteration of the annexin I subcellular localization in esophageal squamous cell carcinoma (ESCC)and the correlation between the translocation and the tumorigenesis of ESCC.METHODS: The protein localization of annexin I was detected in both human ESCC tissues and cell line via the indirect immunofiuorescence strategy.RESULTS: In the normal esophageal epithelia the annexin I was mainly located on the plasma membrane and formed a consecutive typical trammels net. Annexin I protein also expressed dispersively in cytoplasm and the nuclei without specific localization on the nuclear membrane. In esophageal cancer annexin I decreased very sharply with scattered disappearance on the cellular membrane, however it translocated and highly expressed on the nuclear membrane,which was never found in normal esophageal epithelia. In cultured esophageal cancer cell line annexin I protein was also focused on the nuclear membrane, which was consistent with the result from esophageal cancer tissues.CONCLUSION: This observation suggests that the translocation of annexin I protein in ESCC may correlate with the tumorigenesis of the esophageal cancer.

  6. Maitotoxin-induced membrane blebbing and cell death in bovine aortic endothelial cells

    Directory of Open Access Journals (Sweden)

    Schilling William P

    2001-02-01

    Full Text Available Abstract Background Maitotoxin, a potent cytolytic agent, causes an increase in cytosolic free Ca2+ concentration ([Ca2+]i via activation of Ca2+-permeable, non-selective cation channels (CaNSC. Channel activation is followed by formation of large endogenous pores that allow ethidium and propidium-based vital dyes to enter the cell. Although activation of these cytolytic/oncotic pores, or COP, precedes release of lactate dehydrogenase, an indication of oncotic cell death, the relationship between CaNSC, COP, membrane lysis, and the associated changes in cell morphology has not been clearly defined. In the present study, the effect maitotoxin on [Ca2+]i, vital dye uptake, lactate dehydrogenase release, and membrane blebbing was examined in bovine aortic endothelial cells. Results Maitotoxin produced a concentration-dependent increase in [Ca2+]i followed by a biphasic uptake of ethidium. Comparison of ethidium (Mw 314 Da, YO-PRO-1 (Mw 375 Da, and POPO-3 (Mw 715 Da showed that the rate of dye uptake during the first phase was inversely proportional to molecular weight, whereas the second phase appeared to be all-or-nothing. The second phase of dye uptake correlated in time with the release of lactate dehydrogenase. Uptake of vital dyes at the single cell level, determined by time-lapse videomicroscopy, was also biphasic. The first phase was associated with formation of small membrane blebs, whereas the second phase was associated with dramatic bleb dilation. Conclusions These results suggest that maitotoxin-induced Ca2+ influx in bovine aortic endothelial cells is followed by activation of COP. COP formation is associated with controlled membrane blebbing which ultimately gives rise to uncontrolled bleb dilation, lactate dehydrogenase release, and oncotic cell death.

  7. Changes of Saccharomyces cerevisiae cell membrane components and promotion to ethanol tolerance during the bioethanol fermentation.

    Science.gov (United States)

    Dong, Shi-Jun; Yi, Chen-Feng; Li, Hao

    2015-12-01

    During bioethanol fermentation process, Saccharomyces cerevisiae cell membrane might provide main protection to tolerate accumulated ethanol, and S. cerevisiae cells might also remodel their membrane compositions or structure to try to adapt to or tolerate the ethanol stress. However, the exact changes and roles of S. cerevisiae cell membrane components during bioethanol fermentation still remains poorly understood. This study was performed to clarify changes and roles of S. cerevisiae cell membrane components during bioethanol fermentation. Both cell diameter and membrane integrity decreased as fermentation time lasting. Moreover, compared with cells at lag phase, cells at exponential and stationary phases had higher contents of ergosterol and oleic acid (C18:1) but lower levels of hexadecanoic (C16:0) and palmitelaidic (C16:1) acids. Contents of most detected phospholipids presented an increase tendency during fermentation process. Increased contents of oleic acid and phospholipids containing unsaturated fatty acids might indicate enhanced cell membrane fluidity. Compared with cells at lag phase, cells at exponential and stationary phases had higher expressions of ACC1 and HFA1. However, OLE1 expression underwent an evident increase at exponential phase but a decrease at following stationary phase. These results indicated that during bioethanol fermentation process, yeast cells remodeled membrane and more changeable cell membrane contributed to acquiring higher ethanol tolerance of S. cerevisiae cells. These results highlighted our knowledge about relationship between the variation of cell membrane structure and compositions and ethanol tolerance, and would contribute to a better understanding of bioethanol fermentation process and construction of industrial ethanologenic strains with higher ethanol tolerance.

  8. (poly)Phosphoinositide phosphorylation is a marker for plasma membrane in Friend erythroleukaemic cells

    NARCIS (Netherlands)

    Rawyler, A.J.; Roelofsen, B.; Wirtz, K.W.A.; Kamp, J.A.F. op den

    1982-01-01

    Upon subcellular fractionation of (murine) Friend erythroleukaemic cells (FELCs), purified plasma membranes were identified by their high enrichment in specific marker enzymes and typical plasma membrane lipids. When FELCs were incubated for short periods with 32Pi before cell fractionation, the lip

  9. Changes in membrane lipid composition of Mycoplasma capricolum affect the cell volume.

    OpenAIRE

    N. Romano; Shirvan, M H; Rottem, S.

    1986-01-01

    The cellular water volume of Mycoplasma capricolum was markedly increased by a decrease in the cholesterol-to-phospholipid molar ratio in the membrane. An increase in cell volume was also observed with the increase in the phospholipid cell membrane content obtained by the incorporation of exogenous phosphatidylcholine from the growth medium.

  10. Normal chemotaxis in Dictyostelium discoideum cells with a depolarized plasma membrane potential

    NARCIS (Netherlands)

    Duijn, Bert van; Vogelzang, Sake A.; Ypey, Dirk L.; Molen, Loek G. van der; Haastert, Peter J.M. van

    1990-01-01

    We examined a possible role for the plasma membrane potential in signal transduction during cyclic AMP-induced chemotaxis in the cellular slime mold Dictyostelium discoideum. Chemotaxis, cyclic GMP and cyclic AMP responses in cells with a depolarized membrane potential were measured. Cells can be co

  11. Optimisation of the Factor VIII yield in mammalian cell cultures by reducing the membrane bound fraction

    DEFF Research Database (Denmark)

    Kolind, Mille Petersen; Nørby, Peder Lisby; Berchtold, Martin Werner;

    2011-01-01

    of active membrane bound rFVIII to the culture medium. Moreover, the attachment of rFVIII to cell membranes of un-transfected HEK293 cells was studied in the presence of compounds that competes for interactions between rFVIII and PS. Competitive assays between iodinated rFVIII (¹²5I-rFVIII) and annexin V...

  12. Membrane potential and ion transport in lung epithelial type II cells

    International Nuclear Information System (INIS)

    The alveolar type II pneumocyte is critically important to the function and maintenance of pulmonary epithelium. To investigate the nature of the response of type II cells to membrane injury, and describe a possible mechanism by which these cells regulate surfactant secretion, the membrane potential of isolated rabbit type II cells was characterized. This evaluation was accomplished by measurements of the accumulation of the membrane potential probes: [3H]triphenylmethylphosphonium ([3H]TPMP+), rubidium 86, and the fluorescent dye DiOC5. A compartmental analysis of probe uptake into mitochondrial, cytoplasmic, and non-membrane potential dependent stores was made through the use of selective membrane depolarizations with carbonycyanide M-chlorophenylhydrazone (CCCP), and lysophosphatidylcholine (LPC). These techniques and population analysis with flow cytometry, permitted the accurate evaluation of type II cell membrane potential under control conditions and under conditions which stimulated cell activity. Further analysis of ion transport by cells exposed to radiation or adrenergic stimulation revealed a common increase in Na+/K+ ATPase activity, and an increase in sodium influx across the plasma membrane. This sodium influx was found to be a critical step in the initiation of surfactant secretion. It is concluded that radiation exposure as well as other pulmonary toxicants can directly affect the membrane potential and ionic regulation of type II cells. Ion transport, particularly of sodium, plays an important role in the regulation of type II cell function

  13. Enzymatic Oxidation of Cholesterol: Properties and Functional Effects of Cholestenone in Cell Membranes

    DEFF Research Database (Denmark)

    Neuvonen, M.; Manna, M.; Mokkila, S.;

    2014-01-01

    of cholestenone using simulations and cell biological experiments and assessed the functional effects of cholestenone in human cells. Atomistic simulations predicted that cholestenone reduces membrane order, undergoes faster flip-flop and desorbs more readily from membranes than cholesterol. In primary human...

  14. Plasma membrane microorganization of LR73 multidrug-resistant cells revealed by FCS

    Science.gov (United States)

    Winckler, Pascale; Jaffiol, Rodolphe; Cailler, Aurélie; Morjani, Hamid; Jeannesson, Pierre; Deturche, Régis

    2011-03-01

    Tumoral cells could present a multidrug resistance (MDR) to chemotherapeutic treatments. This drug resistance would be associated to biomechanisms occurring at the plasma membrane level, involving modification of membrane fluidity, drug permeability, presence of microdomains (rafts, caveolae...), and membrane proteins overexpression such as Pglycoprotein. Fluorescence correlation spectroscopy (FCS) is the relevant method to investigate locally the fluidity of biological membranes through the lateral diffusion of a fluorescent membrane probe. Thus, we use FCS to monitor the plasma membrane local organization of LR73 carcinoma cells and three derived multidrug-resistant cancer cells lines. Measurements were conducted at the single cell level, which enabled us to get a detailed overview of the plasma membrane microviscosity distribution of each cell line studied. Moreover, we propose 2D diffusion simulation based on a Monte Carlo model to investigate the membrane organisation in terms of microdomains. This simulation allows us to relate the differences in the fluidity distributions with microorganization changes in plasma membrane of MDR cells.

  15. Cellular reactions of osteoblast-like cells to a novel nanocomposite membrane for guided bone regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Meng Yao [State Key Laboratory of Oral Diseases, West China Stomatology Hospital, Sichuan University, Chengdu 610041 (China); Department of Orthodontics, West China Stomatology Hospital, Sichuan University, Chengdu 610041 (China); Liu Man [State Key Laboratory of Oral Diseases, West China Stomatology Hospital, Sichuan University, Chengdu 610041 (China); Stomatology Health Care Center, Shenzhen Maternity and Child Healthcare Hospital, Shenzhen 518048 (China); Wang Shaoan [State Key Laboratory of Oral Diseases, West China Stomatology Hospital, Sichuan University, Chengdu 610041 (China); Mo Anchun [State Key Laboratory of Oral Diseases, West China Stomatology Hospital, Sichuan University, Chengdu 610041 (China)], E-mail: moanchun@163.com; Huang, Cui [State Key Laboratory of Oral Diseases, West China Stomatology Hospital, Sichuan University, Chengdu 610041 (China); Zuo Yi; Li Jidong [Research Center for Nano-biomaterials, Sichuan University, Chengdu 610041 (China)

    2008-11-15

    This study investigated the bioactivity and biocompatibility of hydroxyapatite nanoparticles (n-HA)/Polyamide-66 (PA66) nanocomposite membrane and expanded-polytetrafluoroethylene (e-PTFE) membrane (as control) to MG63 osteoblast-like cells. The attachment and proliferation of the cells on the porous surface of nHA/PA66 membrane and the surface of e-PTFE membrane were evaluated by scanning electron microscope (SEM) observation and the MTT assay. The bioactivity of the cells on the surface of the two membranes was evaluated by testing cell viability and alkaline phosphatase (ALP) activities. The results suggested that the bioresponse of MG63 osteoblast-like cells on the porous surface of nHA/PA66 membrane was better than the bioresponse on the opposite surface of e-PTFE membrane. Because of a better cell attachment manner, there is a potential utilization of the guided bone regeneration (GBR) membrane to substitute nHA/PA66 membrane for e-PTFE membra0008.

  16. A monolayer graphene - Nafion sandwich membrane for direct methanol fuel cells

    Science.gov (United States)

    Yan, X. H.; Wu, Ruizhe; Xu, J. B.; Luo, Zhengtang; Zhao, T. S.

    2016-04-01

    Methanol crossover due to the low selectivity of proton exchange membranes is a long-standing issue in direct methanol fuel cell technology. Here we attempt to address this issue by designing a composite membrane fabricated by sandwiching a monolayer graphene between two thin Nafion membranes to take advantage of monolayer graphene's selective permeability to only protons. The methanol permeability of the present membrane is demonstrated to have a 68.6% decrease in comparison to that of the pristine Nafion membrane. The test in a passive direct methanol fuel cell (DMFC) shows that the designed membrane retains high proton conductivity while substantially suppressing methanol crossover. As a result, the present membrane enables the passive DMFC to exhibit a decent performance even at a methanol concentration as high as 10.0 M.

  17. Covalently Cross-Linked Sulfone Polybenzimidazole Membranes with Poly(Vinylbenzyl Chloride) for Fuel Cell Applications

    DEFF Research Database (Denmark)

    Yang, Jingshuai; Aili, David; Li, Qingfeng;

    2013-01-01

    Covalently cross-linked polymer membranes were fabricated from poly(aryl sulfone benzimidazole) (SO(2) PBI) and poly(vinylbenzyl chloride) (PVBCl) as electrolytes for high-temperature proton-exchange-membrane fuel cells. The cross-linking imparted organo insolubility and chemical stability against...... radical attack to the otherwise flexible SO(2) PBI membranes. Steady phosphoric acid doping of the cross-linked membranes was achieved at elevated temperatures with little swelling. The acid-doped membranes exhibited increased mechanical strength compared to both pristine SO(2) PBI and poly[2,2'-(m......-phenylene)-5,5'-bibenzimidazole] (mPBI). The superior characteristics of the cross-linked SO(2) PBI membranes allowed higher acid doping levels and, therefore, higher proton conductivity. Fuel-cell tests with the cross-linked membranes demonstrated a high open circuit voltage and improved power performance...

  18. Fluctuations of coupled fluid and solid membranes with application to red blood cells

    Science.gov (United States)

    Auth, Thorsten; Safran, S. A.; Gov, Nir S.

    2007-11-01

    The fluctuation spectra and the intermembrane interaction of two membranes at a fixed average distance are investigated. Each membrane can either be a fluid or a solid membrane, and in isolation, its fluctuations are described by a bare or a wave-vector-dependent bending modulus, respectively. The membranes interact via their excluded-volume interaction; the average distance is maintained by an external, homogeneous pressure. For strong coupling, the fluctuations can be described by a single, effective membrane that combines the elastic properties. For weak coupling, the fluctuations of the individual, noninteracting membranes are recovered. The case of a composite membrane consisting of one fluid and one solid membrane can serve as a microscopic model for the plasma membrane and cytoskeleton of the red blood cell. We find that, despite the complex microstructure of bilayers and cytoskeletons in a real cell, the fluctuations with wavelengths λ≳400nm are well described by the fluctuations of a single, polymerized membrane (provided that there are no inhomogeneities of the microstructure). The model is applied to the fluctuation data of discocytes (“normal” red blood cells), a stomatocyte, and an echinocyte. The elastic parameters of the membrane and an effective temperature that quantifies active, metabolically driven fluctuations are extracted from the experiments.

  19. Membrane regulation of the stress response from prokaryotic models to mammalian cells.

    Science.gov (United States)

    Vigh, Laszlo; Nakamoto, Hitoshi; Landry, Jacques; Gomez-Munoz, Antonio; Harwood, John L; Horvath, Ibolya

    2007-10-01

    "Membrane regulation" of stress responses in various systems is widely studied. In poikilotherms, membrane rigidification could be the first reaction to cold perception: reducing membrane fluidity of membranes at physiological temperatures is coupled with enhanced cold inducibility of a number of genes, including desaturases (see J.L. Harwood's article in this Proceedings volume). A similar role of changes in membrane physical state in heat (oxidative stress, etc.) sensing- and signaling gained support recently from prokaryotes to mammalian cells. Stress-induced remodeling of membrane lipids could influence generation, transduction, and deactivation of stress signals, either through global effects on the fluidity of the membrane matrix, or by specific interactions of boundary (or raft) lipids with receptor proteins, lipases, ion channels, etc. Our data point to membranes not only as targets of stress, but also as sensors in activating a stress response. PMID:17656573

  20. C8-glycosphingolipids preferentially insert into tumor cell membranes and promote chemotherapeutic drug uptake.

    Science.gov (United States)

    Cordeiro Pedrosa, Lília R; van Cappellen, Wiggert A; Steurer, Barbara; Ciceri, Dalila; ten Hagen, Timo L M; Eggermont, Alexander M M; Verheij, Marcel; Goñi, Felix María; Koning, Gerben A; Contreras, F-Xabier

    2015-08-01

    Insufficient drug delivery into tumor cells limits the therapeutic efficacy of chemotherapy. Co-delivery of liposome-encapsulated drug and synthetic short-chain glycosphingolipids (SC-GSLs) significantly improved drug bioavailability by enhancing intracellular drug uptake. Investigating the mechanisms underlying this SC-GSL-mediated drug uptake enhancement is the aim of this study. Fluorescence microscopy was used to visualize the cell membrane lipid transfer intracellular fate of fluorescently labeled C6-NBD-GalCer incorporated in liposomes in tumor and non-tumor cells. Additionally click chemistry was applied to image and quantify native SC-GSLs in tumor and non-tumor cell membranes. SC-GSL-mediated flip-flop was investigated in model membranes to confirm membrane-incorporation of SC-GSL and its effect on membrane remodeling. SC-GSL enriched liposomes containing doxorubicin (Dox) were incubated at 4°C and 37°C and intracellular drug uptake was studied in comparison to standard liposomes and free Dox. SC-GSL transfer to the cell membrane was independent of liposomal uptake and the majority of the transferred lipid remained in the plasma membrane. The transfer of SC-GSL was tumor cell-specific and induced membrane rearrangement as evidenced by a transbilayer flip-flop of pyrene-SM. However, pore formation was measured, as leakage of hydrophilic fluorescent probes was not observed. Moreover, drug uptake appeared to be mediated by SC-GSLs. SC-GSLs enhanced the interaction of doxorubicin (Dox) with the outer leaflet of the plasma membrane of tumor cells at 4°C. Our results demonstrate that SC-GSLs preferentially insert into tumor cell plasma membranes enhancing cell intrinsic capacity to translocate amphiphilic drugs such as Dox across the membrane via a biophysical process.

  1. C8-glycosphingolipids preferentially insert into tumor cell membranes and promote chemotherapeutic drug uptake.

    Science.gov (United States)

    Cordeiro Pedrosa, Lília R; van Cappellen, Wiggert A; Steurer, Barbara; Ciceri, Dalila; ten Hagen, Timo L M; Eggermont, Alexander M M; Verheij, Marcel; Goñi, Felix María; Koning, Gerben A; Contreras, F-Xabier

    2015-08-01

    Insufficient drug delivery into tumor cells limits the therapeutic efficacy of chemotherapy. Co-delivery of liposome-encapsulated drug and synthetic short-chain glycosphingolipids (SC-GSLs) significantly improved drug bioavailability by enhancing intracellular drug uptake. Investigating the mechanisms underlying this SC-GSL-mediated drug uptake enhancement is the aim of this study. Fluorescence microscopy was used to visualize the cell membrane lipid transfer intracellular fate of fluorescently labeled C6-NBD-GalCer incorporated in liposomes in tumor and non-tumor cells. Additionally click chemistry was applied to image and quantify native SC-GSLs in tumor and non-tumor cell membranes. SC-GSL-mediated flip-flop was investigated in model membranes to confirm membrane-incorporation of SC-GSL and its effect on membrane remodeling. SC-GSL enriched liposomes containing doxorubicin (Dox) were incubated at 4°C and 37°C and intracellular drug uptake was studied in comparison to standard liposomes and free Dox. SC-GSL transfer to the cell membrane was independent of liposomal uptake and the majority of the transferred lipid remained in the plasma membrane. The transfer of SC-GSL was tumor cell-specific and induced membrane rearrangement as evidenced by a transbilayer flip-flop of pyrene-SM. However, pore formation was measured, as leakage of hydrophilic fluorescent probes was not observed. Moreover, drug uptake appeared to be mediated by SC-GSLs. SC-GSLs enhanced the interaction of doxorubicin (Dox) with the outer leaflet of the plasma membrane of tumor cells at 4°C. Our results demonstrate that SC-GSLs preferentially insert into tumor cell plasma membranes enhancing cell intrinsic capacity to translocate amphiphilic drugs such as Dox across the membrane via a biophysical process. PMID:25917957

  2. Ameliorative effects of dimetylthiourea and N-acetylcysteine on nanoparticles induced cyto-genotoxicity in human lung cancer cells-A549.

    Directory of Open Access Journals (Sweden)

    Ritesh Kumar Srivastava

    Full Text Available We study the ameliorative potential of dimetylthiourea (DMTU, an OH• radical trapper and N-acetylcysteine (NAC, a glutathione precursor/H₂O₂ scavenger against titanium dioxide nanoparticles (TiO₂-NPs and multi-walled carbon nanotubes (MWCNTs induced cyto-genotoxicity in cultured human lung cancer cells-A549. Cytogenotoxicity was induced by exposing the cells to selected concentrations (10 and 50 µg/ml of either of TiO₂-NPs or MWCNTs for 24 h. Anti-cytogenotoxicity effects of DMTU and NAC were studied in two groups, i.e., treatment of 30 minutes prior to toxic insult (short term exposure, while the other group received DMTU and NAC treatment during nanoparticles exposure, i.e., 24 h (long term exposure. Investigations were carried out for cell viability, generation of reactive oxygen species (ROS, micronuclei (MN, and expression of markers of oxidative stress (HSP27, CYP2E1, genotoxicity (P⁵³ and CYP2E1 dependent n- nitrosodimethylamine-demethylase (NDMA-d activity. In general, the treatment of both DMTU and NAC was found to be effective significantly against TiO₂-NPs and MWCNTs induced cytogenotoxicity in A549 cells. Long-term treatment of DMTU and NAC during toxic insults has shown better prevention than short-term pretreatment. Although, cells responded significantly to both DMTU and NAC, but responses were chemical specific. In part, TiO₂-NPs induced toxic responses were mediated through OH• radicals generation and reduction in the antioxidant defense system. While in the case of MWCNTs, adverse effects were primarily due to altering/hampering the enzymatic antioxidant system. Data indicate the applicability of human lung cancer cells-A549 as a pre-screening tool to identify the target specific prophylactic and therapeutic potential of drugs candidate molecules against nanoparticles induced cellular damages.

  3. Morin ameliorates chemically induced liver fibrosis in vivo and inhibits stellate cell proliferation in vitro by suppressing Wnt/β-catenin signaling

    Energy Technology Data Exchange (ETDEWEB)

    MadanKumar, Perumal; NaveenKumar, Perumal; Manikandan, Samidurai [Department of Biochemistry, University of Madras, Guindy Campus, Chennai 600 025, Tamil Nadu (India); Devaraj, Halagowder [Department of Zoology, University of Madras, Guindy Campus, Chennai 600 025, Tamil Nadu (India); NiranjaliDevaraj, Sivasithamparam, E-mail: niranjali@yahoo.com [Department of Biochemistry, University of Madras, Guindy Campus, Chennai 600 025, Tamil Nadu (India)

    2014-06-01

    The anti-fibrotic effect of morin was examined in LX-2 cells (culture-activated human hepatic stellate cells) and in diethylnitrosamine induced rat model of liver fibrosis. The in vitro study was designed to determine whether morin affects the survival of cultured LX-2 cells, while the in vivo study was designed to evaluate the antioxidant and anti-fibrotic efficacy of morin on diethylnitrosamine induced liver fibrosis in male albino Wistar rat. The activities of liver function enzymes in serum, liver lipid peroxide levels, activities of serum antioxidant enzymes and liver architecture were monitored to cast light on the antioxidant and hepatoprotective nature of morin. To establish the anti-fibrotic effects of morin, the levels of key Wnt signaling molecules which are strongly associated with the signal transduction pathway of HSC activation were measured. Overall, from the in vitro results, it was observed that morin at 50 μM concentration inhibited the proliferation of cultured LX-2 cells, inhibited Wnt signaling and induced G1 cell cycle arrest. The in vivo results further confirmed that morin by downregulating the expressions of GSK-3β, β-catenin and cyclin D1 ameliorated DEN-induced liver fibrosis. Hence morin could be employed as a promising chemopreventive natural supplement for liver fibrosis. - Highlights: • In vivo and in vitro results revealed the active participation of Wnt signaling. • Morin at 50 μM inhibited LX-2 cell proliferation by suppressing Wnt signaling. • Morin exhibited hepatoprotective effects against DEN induced liver fibrosis. • Morin inhibited HSC activation in vivo by downregulating Wnt/β-catenin signaling.

  4. U.S. DOE Progress Towards Developing Low-Cost, High Performance, Durable Polymer Electrolyte Membranes for Fuel Cell Applications

    OpenAIRE

    Dimitrios C. Papageorgopoulos; Reginald Tyler; Jason Marcinkoski; Kathi Epping Martin; Donna Lee Ho; Garland, Nancy L.; David Peterson; John Kopasz; Spendelow, Jacob S.; Greg J. Kleen; Cassidy Houchins

    2012-01-01

    Low cost, durable, and selective membranes with high ionic conductivity are a priority need for wide-spread adoption of polymer electrolyte membrane fuel cells (PEMFCs) and direct methanol fuel cells (DMFCs). Electrolyte membranes are a major cost component of PEMFC stacks at low production volumes. PEMFC membranes also impose limitations on fuel cell system operating conditions that add system complexity and cost. Reactant gas and fuel permeation through the membrane leads to decreased fuel ...

  5. The surface charge of a cell lipid membrane

    CERN Document Server

    Pekker, M

    2014-01-01

    In this paper the problem of surface charge of the lipid membrane is considered. It is shown that the membrane surface is negatively charged. Negative ions are in potential wells formed by the dipole heads of membrane phospholipids. The binding energy of the ion with the membrane surface is much greater than its thermal energy. A self-consistent model of the potential in solution is developed, and a stationary charge density on the membrane surface is found. The estimates given in the paper show that the potential difference across the membrane of the unexcited axon (resting potential) can be explained by the difference in surface densities of the bound charges on the inner and outer surfaces of the membrane.

  6. Membrane tether formation from voltage-clamped outer hair cells using optical tweezers

    Science.gov (United States)

    Qian, Feng; Ermilov, Sergey A.; Murdock, David R.; Brownell, William E.; Anvari, Bahman

    2004-06-01

    Outer hair cells contribute an active mechanical feedback to the vibrations of the cochlear structures resulting in the high sensitivity and frequency selectivity of normal hearing. We have designed and implemented a novel experimental setup that combines optical tweezers with patch-clamp apparatus to investigate the electromechanical properties of cellular plasma membranes. A micron-size bead trapped by the optical tweezers is brought in contact with the membrane of a voltage-clamped cell, and subsequently moved away to form a plasma membrane tether. Bead displacement during tether elongation is monitored by a quadrant photodetector to obtain time-resolved measurements of the tethering force. Salient information associated with the mechanical properties of the membrane tether can thus be obtained. Tethers can be pulled from the cell membrane at different holding potentials, and the tether force response can be measured while changing transmembrane potential. Experimental results from outer hair cells and human embryonic kidney cells are presented.

  7. Ion exchange membrane cathodes for scalable microbial fuel cells.

    Science.gov (United States)

    Zuo, Yi; Cheng, Shaoan; Logan, Bruce E

    2008-09-15

    One of the main challenges for using microbial fuel cells (MFCs) is developing materials and architectures that are economical and generate high power densities. The performance of two cathodes constructed from two low-cost anion (AEM) and cation (CEM) exchange membranes was compared to that achieved using an ultrafiltration (UF) cathode, when the membranes were made electrically conductive using graphite paint and a nonprecious metal catalyst (CoTMPP). The best performance in single-chamber MFCs using graphite fiber brush anodes was achieved using an AEM cathode with the conductive coating facing the solution, at a catalyst loading of 0.5 mg/cm2 CoTMPP. The maximum power densitywas 449 mW/ m2 (normalized to the projected cathode surface area) or 13.1 W/m3 (total reactor volume), with a Coulombic efficiency up to 70% in a 50 mM phosphate buffer solution (PBS) using acetate. Decreasing the CoTMPP loading by 40-80% reduced power by 28-56%, with only 16% of the power (72 mW/m2) generated using an AEM cathode lacking a catalyst. Using a current collector (a stainless steel mesh) pressed against the inside surface of the AEM cathode and 200 mM PBS, the maximum power produced was further increased to 728 mW/m2 (21.2 W/m3). The use of AEM cathodes and brush anodes provides comparable performance to similar systems that use materials costing nearly an order of magnitude more (carbon paper electrodes) and thus represent more useful materials for reducing the costs of MFCs for wastewater treatment applications. PMID:18853817

  8. Cat amniotic membrane multipotent cells are nontumorigenic and are safe for use in cell transplantation

    Directory of Open Access Journals (Sweden)

    Vidane AS

    2014-08-01

    Full Text Available Atanasio S Vidane,1 Aline F Souza,1 Rafael V Sampaio,1 Fabiana F Bressan,2 Naira C Pieri,1 Daniele S Martins,2 Flavio V Meirelles,2 Maria A Miglino,1 Carlos E Ambrósio2 1Department of Surgery, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil; 2Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo, São Paulo, Brazil Abstract: Amnion-derived mesenchymal stem cells (AMSCs are multipotent cells with an enhanced ability to differentiate into multiple lineages. AMSCs can be acquired through noninvasive methods, and therefore are exempt from the typical ethical issues surrounding stem cell use. The objective of this study was to isolate and characterize AMSCs from a cat amniotic membrane for future application in regenerative medicine. The cat AMSCs were harvested after mechanical and enzymatic digestion of amnion. In culture medium, the cat AMSCs adhered to a plastic culture dish and displayed a fibroblast-like morphology. Immunophenotyping assays were positive for the mesenchymal stem cell-specific markers CD73 and CD90 but not the hematopoietic markers CD34, CD45, and CD79. Under appropriate conditions, the cat AMSCs differentiated into osteogenic, chondrogenic, and adipogenic cell lineages. One advantage of cat AMSCs was nonteratogenicity, assessed 4 weeks post injection of undifferentiated AMSCs into immunodeficient mice. These findings suggest that cat amniotic membranes may be an important and useful source of mesenchymal stem cells for clinical applications, especially for cell or tissue replacement in chronic and degenerative diseases. Keywords: amnion, cats, cell differentiation, fetal membranes, mesenchymal cells

  9. Phosphatidic acid phosphatase and phospholipdase A activities in plasma membranes from fusing muscle cells.

    Science.gov (United States)

    Kent, C; Vagelos, P R

    1976-06-17

    Plasma membrane from fusing embryonic muscle cells were assayed for phospholipase A activity to determine if this enzyme plays a role in cell fusion. The membranes were assayed under a variety of conditions with phosphatidylcholine as the substrate and no phospholipase A activity was found. The plasma membranes did contain a phosphatidic acid phosphatase which was optimally active in the presence of Triton X-100 and glycerol. The enzyme activity was constant from pH 5.2 to 7.0, and did not require divalent cations. Over 97% of the phosphatidic acid phosphatase activity was in the particulate fraction. The subcellular distribution of the phosphatidic acid phosphatase was the same as the distributions of the plasma membrane markers, (Na+ + k+)-ATPase and the acetylcholine receptor, which indicates that this phosphatase is located exclusively in the plasma membranes. There was no detectable difference in the phosphatidic acid phosphatase activities of plasma membranes from fusing and non-fusing cells.

  10. Fluid levity of the cell: Role of membrane lipid architecture in genetic sphingolipidoses.

    Science.gov (United States)

    D'Auria, Ludovic; Bongarzone, Ernesto R

    2016-11-01

    Sphingolipidoses arise from inherited loss of function of key enzymes regulating the sphingolipid (SL) metabolism and the accumulation of large quantities of these lipids in affected cells. Most frequently, toxicity is manifested in the nervous system, where survival and function of neurons and glial cells are most affected. Although detailed information is available on neuroglial alterations during terminal stages of the disease, the initial pathogenic mechanisms triggering neuropathology are largely unclear. Because they are key components of biological membranes, changes in the local concentration of SLs are likely to impact the organization of membrane domains and functions. This Commentary proposes that SL toxicity involves initial defects in the integrity of lipid domains, membrane fluidity, and membrane bending, leading to membrane deformation and deregulation of cell signaling and function. Understanding how SLs alter membrane architecture may provide breakthroughs for more efficient treatment of sphingolipidoses. © 2016 Wiley Periodicals, Inc. PMID:27638586

  11. Fabrication of a membrane filter with controlled pore shape and its application to cell separation and strong single cell trapping

    International Nuclear Information System (INIS)

    A porous membrane filter is one of the key components for sample preparation in lab-on-a-chip applications. However, most of the membranes reported to date have only been used for size-based separation since it is difficult to provide functionality to the membrane or improve the performance of the membrane. In this work, as a method to functionalize the membrane filter, controlling the shape of the membrane pores is suggested, and a convenient and mass-producible fabrication method is provided. With the proposed method, membrane filters with round, conical and funnel shape pores were successfully fabricated, and we demonstrated that the sidewall slope of the conical shape pores could be precisely controlled. To verify that the membrane filter can be functionalized by controlled pore shape, we investigated filtration and trapping performance of the membrane filter with conical shape pores. In a filtration test of 1000 cancer cells (MCF-7, a breast cancer cell line) spiked in phosphate buffered saline (PBS) solution, 77% of the total cancer cells were retained on the membrane, and each cell from among 99.3% of the retained cells was automatically isolated in a single conical pore during the filtration process. Thanks to its engineered pore shape, trapping ability of the membrane with conical pores is dramatically improved. Microparticles trapped in the conical pores maintain their locations without any losses even at a more than 30 times faster external flow rate com-pared with those mounted on conventional cylindrical pores. Also, 78% of the cells trapped in the conical pores withstand an external flow of over 300 μl min−1 whereas only 18% of the cells trapped in the cylindrical pores remain on the membrane after 120 μl min−1 of an external flow is applied. (paper)

  12. [Radiation-induced changes in structural state of membranes of human blood cells].

    Science.gov (United States)

    Burlakova, E B; Atkarskaia, M V; Fatkullina, L D; Andreev, S G

    2014-01-01

    To evaluate radiation-induced changes in the structural state of the membranes, blood samples of healthy donors were subjected to gamma radiation in the range of small (1-10 cGy) and medium doses (50 cGy-2 Gy). After irradiation, the microviscosity of lipid membranes of red and white blood cells was measured by ESR spin probe method. At doses exceeding 1 cGy, statistically significant changes of the degree of spontaneous erythrocyte hemolysis and of the lymphocyte plasma membrane microviscosity were observed. Under identical irradiation conditions, the stability of lymphocyte membranes was less as compared to erythrocyte membranes.

  13. Wrapping of a deformable nanoparticle by the cell membrane: Insights into the flexibility-regulated nanoparticle-membrane interaction

    Science.gov (United States)

    Tang, Huayuan; Zhang, Hongwu; Ye, Hongfei; Zheng, Yonggang

    2016-09-01

    Although many researches have been conducted on the interaction of the cell membrane with the rigid nanoparticle (NP), relatively little is known about the interaction of the membrane with the deformable NP, which is a promising kind of drug delivery carrier. In this paper, we investigate the wrapping of a deformable NP by the membrane, with particular attention paid to the location of the NP. Phase diagrams with respect to the normalized NP-membrane adhesion strength and the bending stiffness ratio between the NP and membrane are presented. The results show that the NP is easier to be fully wrapped but harder to be shallowly wrapped when the NP locates outside than inside the vesicle. For the system with an outside NP, there are three distinct stages separated by two critical bending stiffness ratios as the NP becomes softer. Moreover, the critical normalized adhesion strength required for a deformable NP to be fully wrapped is the same as that for a rigid NP when the bending stiffness ratio is higher than a critical value, which is different from the wrapping behavior by an initially flat membrane. In addition, a larger vesicle size facilitates the full wrapping configuration when the NP is inside, whereas it prohibits it when the NP is outside. These results are consistent with the previous research and can provide guidelines for the design of drug delivery systems based on the flexibility-tunable NPs.

  14. High heterogeneity of plasma membrane microfluidity in multidrug-resistant cancer cells

    Science.gov (United States)

    Boutin, Céline; Roche, Yann; Millot, Christine; Deturche, Régis; Royer, Pascal; Manfait, Michel; Plain, Jérôme; Jeannesson, Pierre; Millot, Jean-Marc; Jaffiol, Rodolphe

    2009-05-01

    Diffusion-time distribution analysis (DDA) has been used to explore the plasma membrane fluidity of multidrug-resistant cancer cells (LR73 carcinoma cells) and also to characterize the influence of various membrane agents present in the extracellular medium. DDA is a recent single-molecule technique, based on fluorescence correlation spectroscopy (FCS), well suited to retrieve local organization of cell membrane. The method was conducted on a large number of living cells, which enabled us to get a detailed overview of plasma membrane microviscosity, and plasma membrane micro-organization, between the cells of the same line. Thus, we clearly reveal the higher heterogeneity of plasma membrane in multidrug-resistant cancer cells in comparison with the nonresistant ones (denoted sensitive cells). We also display distinct modifications related to a membrane fluidity modulator, benzyl alcohol, and two revertants of multidrug resistance, verapamil and cyclosporin-A. A relation between the distribution of the diffusion-time values and the modification of membrane lateral heterogeneities is proposed.

  15. A self-humidifying acidic-alkaline bipolar membrane fuel cell

    Science.gov (United States)

    Peng, Sikan; Xu, Xin; Lu, Shanfu; Sui, Pang-Chieh; Djilali, Ned; Xiang, Yan

    2015-12-01

    To maintain membrane hydration and operate effectively, polymer electrolyte membrane fuel cells (PEMFCs) require elaborate water management, which significantly increases the complexity and cost of the fuel cell system. Here we propose a novel and entirely different approach to membrane hydration by exploiting the concept of bipolar membranes. Bipolar membrane (BPM) fuel cells utilize a composite membrane consisting of an acidic polymer electrolyte membrane on the anode side and an alkaline electrolyte membrane on the cathode side. We present a novel membrane electrode assembly (MEA) fabrication method and demonstrate experimentally and theoretically that BPM fuel cells can (a) self-humidify to ensure high ionic conductivity; and (b) allow use of non-platinum catalysts due to inherently faster oxygen reduction kinetics on an alkaline cathode. Our Pt-based BPM fuel cell achieves a two orders of magnitude gain in power density of 327 mW cm-2 at 323 K under dry gas feed, the highest power output achieved under anhydrous operation conditions. A theoretical analysis and in situ measurements are presented to characterize the unique interfacial water generation and transport behavior that make self-humidification possible during operation. Further optimization of these features and advances in fabricating bipolar MEAs would open the way for a new generation of self-humidifying and water-management-free PEMFCs.

  16. Chitosan and alginate types of bio-membrane in fuel cell application: An overview

    Science.gov (United States)

    Shaari, N.; Kamarudin, S. K.

    2015-09-01

    The major problems of polymer electrolyte membrane fuel cell technology that need to be highlighted are fuel crossovers (e.g., methanol or hydrogen leaking across fuel cell membranes), CO poisoning, low durability, and high cost. Chitosan and alginate-based biopolymer membranes have recently been used to solve these problems with promising results. Current research in biopolymer membrane materials and systems has focused on the following: 1) the development of novel and efficient biopolymer materials; and 2) increasing the processing capacity of membrane operations. Consequently, chitosan and alginate-based biopolymers seek to enhance fuel cell performance by improving proton conductivity, membrane durability, and reducing fuel crossover and electro-osmotic drag. There are four groups of chitosan-based membranes (categorized according to their reaction and preparation): self-cross-linked and salt-complexed chitosans, chitosan-based polymer blends, chitosan/inorganic filler composites, and chitosan/polymer composites. There are only three alginate-based membranes that have been synthesized for fuel cell application. This work aims to review the state-of-the-art in the growth of chitosan and alginate-based biopolymer membranes for fuel cell applications.

  17. Liposome-based engineering of cells to package hydrophobic compounds in membrane vesicles for tumor penetration.

    Science.gov (United States)

    Lee, Junsung; Kim, Jiyoung; Jeong, Moonkyoung; Lee, Hyoungjin; Goh, Unbyeol; Kim, Hyaeyeong; Kim, Byungji; Park, Ji-Ho

    2015-05-13

    Natural membrane vesicles (MVs) derived from various types of cells play an essential role in transporting biological materials between cells. Here, we show that exogenous compounds are packaged in the MVs by engineering the parental cells via liposomes, and the MVs mediate autonomous intercellular migration of the compounds through multiple cancer cell layers. Hydrophobic compounds delivered selectively to the plasma membrane of cancer cells using synthetic membrane fusogenic liposomes were efficiently incorporated into the membrane of MVs secreted from the cells and then transferred to neighboring cells via the MVs. This liposome-mediated MV engineering strategy allowed hydrophobic photosensitizers to significantly penetrate both spheroids and in vivo tumors, thereby enhancing the therapeutic efficacy. These results suggest that innate biological transport systems can be in situ engineered via synthetic liposomes to guide the penetration of chemotherapeutics across challenging tissue barriers in solid tumors.

  18. Toll/Interleukin-1 Receptor Domain Derived from TcpC (TIR-TcpC) Ameliorates Experimental Autoimmune Arthritis by Down-modulating Th17 Cell Response.

    Science.gov (United States)

    Pasi, Shweta; Kant, Ravi; Surolia, Avadhesha

    2016-06-01

    Evasion through immunomodulation is one of the several strategies adopted by pathogens to prolong their survival within the host. One such pathogen, Escherichia coli CFT073, utilizes an immunomodulatory protein, TcpC, to combat the host's innate immune defense. TcpC abrogates the function of MyD88 in macrophages, thus perturbing all the signaling processes that involve this adaptor protein. Although central to various signaling pathways initiated by IL-1, IL-18, and toll-like receptors, the precise contribution of MyD88 to the development of autoimmunity, particularly rheumatoid arthritis, still needs extensive exploration. Herein, by using the toll/interleukin-1 receptor (TIR) domain homologous C-terminal motif of TcpC, i.e. TIR-TcpC, we found MyD88 to be critical for the induction and progression of rheumatoid arthritis through its pivotal role in the development of Th17 cells, the subset of CD4(+) T-cells widely implicated in various autoimmune disorders. The TIR-TcpC mediated inhibition of signaling through MyD88, and subsequent amelioration of experimental autoimmune arthritis was observed to be an outcome of perturbations in the NFκB-RORγt (RAR-related orphan receptor γt) axis. PMID:27022030

  19. 1,4-Dihydropyridines Active on the SIRT1/AMPK Pathway Ameliorate Skin Repair and Mitochondrial Function and Exhibit Inhibition of Proliferation in Cancer Cells.

    Science.gov (United States)

    Valente, Sergio; Mellini, Paolo; Spallotta, Francesco; Carafa, Vincenzo; Nebbioso, Angela; Polletta, Lucia; Carnevale, Ilaria; Saladini, Serena; Trisciuoglio, Daniela; Gabellini, Chiara; Tardugno, Maria; Zwergel, Clemens; Cencioni, Chiara; Atlante, Sandra; Moniot, Sébastien; Steegborn, Clemens; Budriesi, Roberta; Tafani, Marco; Del Bufalo, Donatella; Altucci, Lucia; Gaetano, Carlo; Mai, Antonello

    2016-02-25

    Modulators of sirtuins are considered promising therapeutic targets for the treatment of cancer, cardiovascular, metabolic, inflammatory, and neurodegenerative diseases. Here we prepared new 1,4-dihydropyridines (DHPs) bearing changes at the C2/C6, C3/C5, C4, or N1 position. Tested with the SIRTainty procedure, some of them displayed increased SIRT1 activation with respect to the prototype 3a, high NO release in HaCat cells, and ameliorated skin repair in a mouse model of wound healing. In C2C12 myoblasts, two of them improved mitochondrial density and functions. All the effects were reverted by coadministration of compound C (9), an AMPK inhibitor, or of EX-527 (10), a SIRT1 inhibitor, highlighting the involvement of the SIRT1/AMPK pathway in the action of DHPs. Finally, tested in a panel of cancer cells, the water-soluble form of 3a, compound 8, displayed antiproliferative effects in the range of 8-35 μM and increased H4K16 deacetylation, suggesting a possible role for SIRT1 activators in cancer therapy. PMID:26689352

  20. Ameliorative effects of human adipose tissue-derived mesenchymal stem cells on myelin basic protein-induced experimental autoimmune encephalomyelitis in Lewis rats

    Institute of Scientific and Technical Information of China (English)

    Myung-Soon Ko; Hyeong-geun Park; Young-Min Yun; Jeong Chan Ra; Taekyun Shin; Kyoung-Kap Lee

    2011-01-01

    Mesenchymal stem cells have been previously shown to exert an immunomodulatory function. The present study sought to investigate the effects of multipotential human adipose tissue-derived mesenchymal stem cells (hAdMSCs) on disease progression and cytokine expression in Lewis rats with experimental autoimmune encephalomyelitis (EAE) induced by myelin basic protein. The duration of EAE paralysis in the group treated on day 7 postimmunization with 5 × 106 hAdMSCs was significantly reduced compared with the vehicle-treated controls and the 1 × 106 hAdMSC- treated group. The duration of EAE paralysis in the groups treated with 5 × 106 hAdMSCs on both day 1 and day 7 postimmunization was significantly reduced compared with the vehicle-treated controls and the groups treated with 5 × 106 hAdMSCs on both day 7 and day 10 postimmunization. The mRNA expression of interleukin-10 and indoleamine 2, 3-dioxygenase was significantly decreased in the hAdMSC-treated group compared with the vehicle-treated group. These findings suggest that the ameliorative effects of hAdMSCs on EAE symptoms operate in a dose- and time-dependent manner and can be mediated in part by the ample production of anti-inflammatory cytokines.

  1. Effects of an antibacterial membrane on osteoblast-like cells in vitro

    Directory of Open Access Journals (Sweden)

    Ye J

    2011-09-01

    Full Text Available Jun Ye1, Qianqian Yao1, Anchun Mo2, Jing Nie2, Wenwen Liu1, Cui Ye1, Xianji Chen11State Key Laboratory of Oral Diseases, 2Department of Oral Implant, West China College of Stomatology, Sichuan University, Chengdu, People's Republic of ChinaAbstract: Infection around membranes is often found in guided bone regeneration (GBR. The excellent antibacterial properties of Ag-nHA-nTiO2/polyamide-66 (PA66 nanocomposite membranes have been demonstrated previously. The aim of this study was to observe the microstructure of an Ag-nHA-nTiO2/PA66 membrane and its effects on osteoblast-like cells in vitro. An Ag-nHA-nTiO2/PA66 membrane was used in the experimental group, and both nHA/PA66 and expanded poly tetrafluroethylene (e-PTFE membranes were set as control. MG63 osteoblast-like cells were cultured on the three kinds of membrane and tissue culture polystyrene (TCP. The microstructure of the above membranes and the cells adhered on them were detected by scanning electronic microscope (SEM. Cell proliferation was determined by 3-(4,5-Dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay, cell viability with a cell viability analyzer, and alkaline phosphatase (ALP activity and Ca2+ concentration of osteoblast-like cell matrix by enzyme-linked immunosorbent assay. SEM showed that both Ag-nHA-nTiO2/PA66 membranes and nHA/PA66 membranes were composed of porous obverse face and smooth opposite face. The e-PTFE membranes showed elliptic surface structure with many tiny lined cracks. The MG63 cells adhered and proliferated well on all three kinds of membranes. Though cell viability on Ag-nHA-nTiO2/PA66 membranes was significantly lower than that of the control groups (P < 0.05, MTT values, ALP activity, and Ca2+ concentration did not differ significantly among the three kinds of membranes (P > 0.05. From these findings, it can be concluded that Ag-nHA-nTiO2/PA66 membranes are as biocompatible as nHA/PA66 membranes and TCP, thus may be applied safely in

  2. Modeling of durability of polyelectrolyte membrane of O2/H2 fuel cell

    CERN Document Server

    Atrazhev, Vadim V

    2014-01-01

    In this paper, we discuss critical aspects of the mechanisms and features of polymer proton exchange membrane (PEM) degradation in low-temperature H2/O2 fuel cell. In this paper, we focused on chemical mechanism of OH radical generation and their distribution in operational fuel cell. According to the current concept, free radicals are generated from hydrogen and oxygen crossover gases at the surface of Pt particles that precipitated in the membrane. We explicitly calculate Pt precipitation rate and electrochemical potential distribution in the membrane that controls it. Based on radical generation rate and Pt distribution we calculate degradation rate of the membrane taking advantage of simple kinetics equations.

  3. Static Magnetic Field Attenuates Lipopolysaccharide-Induced Inflammation in Pulp Cells by Affecting Cell Membrane Stability

    Directory of Open Access Journals (Sweden)

    Sung-Chih Hsieh

    2015-01-01

    Full Text Available One of the causes of dental pulpitis is lipopolysaccharide- (LPS- induced inflammatory response. Following pulp tissue inflammation, odontoblasts, dental pulp cells (DPCs, and dental pulp stem cells (DPSCs will activate and repair damaged tissue to maintain homeostasis. However, when LPS infection is too serious, dental repair is impossible and disease may progress to irreversible pulpitis. Therefore, the aim of this study was to examine whether static magnetic field (SMF can attenuate inflammatory response of dental pulp cells challenged with LPS. In methodology, dental pulp cells were isolated from extracted teeth. The population of DPSCs in the cultured DPCs was identified by phenotypes and multilineage differentiation. The effects of 0.4 T SMF on DPCs were observed through MTT assay and fluorescent anisotropy assay. Our results showed that the SMF exposure had no effect on surface markers or multilineage differentiation capability. However, SMF exposure increases cell viability by 15%. In addition, SMF increased cell membrane rigidity which is directly related to higher fluorescent anisotropy. In the LPS-challenged condition, DPCs treated with SMF demonstrated a higher tolerance to LPS-induced inflammatory response when compared to untreated controls. According to these results, we suggest that 0.4 T SMF attenuates LPS-induced inflammatory response to DPCs by changing cell membrane stability.

  4. A fluctuating elastic plate and a cell model for lipid membranes

    Science.gov (United States)

    Liang, Xiaojun; Purohit, Prashant K.

    2016-05-01

    The thermal fluctuations of lipid bi-layer membranes are key to their interaction with cellular components as well as the measurement of their mechanical properties. Typically, membrane fluctuations are analyzed by decomposing into normal modes or by molecular simulations. Here we propose two new approaches to calculate the partition function of a membrane. In the first approach we view the membrane as a fluctuating von Karman plate and discretize it into triangular elements. We express its energy as a function of nodal displacements, and then compute the partition function and co-variance matrix using Gaussian integrals. We recover well-known results for the dependence of the projected area of the membrane on the applied tension and recent simulation results on the dependence of membrane free energy on geometry, spontaneous curvature and tension. As new applications we compute the fluctuations of the membrane of a malaria infected cell and analyze the effects of boundary conditions on fluctuations. Our second approach is based on the cell model of Lennard-Jones and Devonshire. This model, which was developed for liquids, assumes that each molecule fluctuates within a cell on which a potential is imposed by all the surrounding molecules. We adapt the cell model to a lipid membrane by recognizing that it is a 2D liquid with the ability to deform out of plane whose energetic penalty must be factored into the partition function of a cell. We show, once again, that some results on membrane fluctuations can be recovered using this new cell model. However, unlike some well established results, our cell model gives an entropy that scales with the number of molecules in a membrane. Our model makes predictions about the heat capacity of the membrane that can be tested in experiments.

  5. Cell-free methods to produce structurally intact mammalian membrane proteins.

    Science.gov (United States)

    Shinoda, Takehiro; Shinya, Naoko; Ito, Kaori; Ishizuka-Katsura, Yoshiko; Ohsawa, Noboru; Terada, Takaho; Hirata, Kunio; Kawano, Yoshiaki; Yamamoto, Masaki; Tomita, Taisuke; Ishibashi, Yohei; Hirabayashi, Yoshio; Kimura-Someya, Tomomi; Shirouzu, Mikako; Yokoyama, Shigeyuki

    2016-01-01

    The crystal structures of four membrane proteins, from bacteria or a unicellular alga, have been solved with samples produced by cell-free protein synthesis. In this study, for mammalian membrane protein production, we established the precipitating and soluble membrane fragment methods: membrane proteins are synthesized with the Escherichia coli cell-free system in the presence of large and small membrane fragments, respectively, and are simultaneously integrated into the lipid environments. We applied the precipitating membrane fragment method to produce various mammalian membrane proteins, including human claudins, glucosylceramide synthase, and the γ-secretase subunits. These proteins were produced at levels of about 0.1-1.0 mg per ml cell-free reaction under the initial conditions, and were obtained as precipitates by ultracentrifugation. Larger amounts of membrane proteins were produced by the soluble membrane fragment method, collected in the ultracentrifugation supernatants, and purified directly by column chromatography. For several proteins, the conditions of the membrane fragment methods were further optimized, such as by the addition of specific lipids/detergents. The functional and structural integrities of the purified proteins were confirmed by analyses of their ligand binding activities, size-exclusion chromatography profiles, and/or thermal stabilities. We successfully obtained high-quality crystals of the complex of human claudin-4 with an enterotoxin. PMID:27465719

  6. Imaging lipid domains in cell membranes: the advent of super-resolution fluorescence microscopy

    Directory of Open Access Journals (Sweden)

    Dylan Myers Owen

    2013-12-01

    Full Text Available The lipid bilayer of model membranes, liposomes reconstituted from cell lipids, and plasma membrane vesicles and spheres can separate into two distinct liquid phases to yield lipid domains with liquid-ordered and liquid-disordered properties. These observations are the basis of the lipid raft hypothesis that postulates the existence of cholesterol-enriched ordered-phase lipid domains in cell membranes that could regulate protein mobility, localization and interaction. Here we review the evidence that nano-scaled lipid complexes and meso-scaled lipid domains exist in cell membranes and how new fluorescence microscopy techniques that overcome the diffraction limit provide new insights into lipid organization in cell membranes.

  7. Adhesion and receptor clustering stabilizes lateral heterogeneity in cell plasma membranes

    Science.gov (United States)

    Veatch, Sarah

    2013-03-01

    The thermodynamic properties of plasma membrane lipids play a vital role in many functions that initiate at the mammalian cell surface. Some functions are thought to occur, at least in part, because plasma membrane lipids have a tendency to separate into two distinct liquid phases, called liquid-ordered and liquid-disordered. We find that isolated cell plasma membranes are poised near a miscibility critical point separating these two liquid phases, and postulate that critical composition fluctuations provide the physical basis of functional membrane heterogeneity in intact cells. In this talk I will describe several possible mechanisms through which dynamic fluctuations can be stabilized in super-critical membranes, and will present some preliminary evidence suggesting that these structures can be visualized in intact cells using quantitative super-resolution fluorescence localization imaging.

  8. Microfabrication of a Polymer Based Bi-Conductive Membrane for a Polymer Electrolyte Membrane Fuel Cell

    International Nuclear Information System (INIS)

    This paper reports a novel fabrication process of a high active area ratio bi-conductive membrane for PEMFCs. The fabricated device is a 50μm thick flexible polyimide based membrane that integrates for the first time lateral electrical conductive layers on both sides with a through ionic conductive path. With the use of thermo-conductive rubber as a bonding agent allowing a quick-flip process, five configurations of double-sided multilayer metal sputtering on polyimide were tested. An approach for filling through pores in the membrane with the ionic conductor (Nafion) with a temporary reservoir was also developed. The development of these new processes allowed to fabricate a membrane with 50μm wide holes filled with ionic conductor with double-sided electrical conductive layers

  9. Evaluation of drug-muscarinic receptor affinities using cell membrane chromatography and radioligand binding assay in guinea pig jejunum membrane

    Institute of Scientific and Technical Information of China (English)

    Bing-xiang YUAN; Jin HOU; Lang-chong HE; Guang-de YANG

    2005-01-01

    Aim: To study if cell membrane chromatography (CMC) could reflect drug-receptor interaction and evaluate the affinity and competitive binding to muscarinic acetylcholine receptor (mAChR). Methods: The cell membrane stationary phase(CMSP) was prepared by immobilizing guinea pig jejunum cell membrane on the surface of a silica carrier, and was used for the rapid on-line chromatographic evaluation of ligand binding affinities to mAChR. The affinity to mAChR was also evaluated from radioligand binding assays (RBA) using the same jejunum membrane preparation. Results: The capacity factor (k') profiles in guinea pig jejunum CMSP were: (-)QNB (15.4)>(+)QNB (11.5)>atropine (5.35)>pirenzepine(5.26)>4-DAMP (4.45)>AF-DX 116 (4.18)>pilocarpine (3.93)>acetylcholine(1.31). These results compared with the affinity rank orders obtained from radioligand binding assays indicated that there wasa positive correlation (r2=0.8525, P<0.0001) between both data sets. Conclusion: The CMC method can be used to evaluate drug-receptor affinities for drug candidates.

  10. Vascular endothelial cell membranes differentiate between stretch and shear stress through transitions in their lipid phases.

    Science.gov (United States)

    Yamamoto, Kimiko; Ando, Joji

    2015-10-01

    Vascular endothelial cells (ECs) respond to the hemodynamic forces stretch and shear stress by altering their morphology, functions, and gene expression. However, how they sense and differentiate between these two forces has remained unknown. Here we report that the plasma membrane itself differentiates between stretch and shear stress by undergoing transitions in its lipid phases. Uniaxial stretching and hypotonic swelling increased the lipid order of human pulmonary artery EC plasma membranes, thereby causing a transition from the liquid-disordered phase to the liquid-ordered phase in some areas, along with a decrease in membrane fluidity. In contrast, shear stress decreased the membrane lipid order and increased membrane fluidity. A similar increase in lipid order occurred when the artificial lipid bilayer membranes of giant unilamellar vesicles were stretched by hypotonic swelling, indicating that this is a physical phenomenon. The cholesterol content of EC plasma membranes significantly increased in response to stretch but clearly decreased in response to shear stress. Blocking these changes in the membrane lipid order by depleting membrane cholesterol with methyl-β-cyclodextrin or by adding cholesterol resulted in a marked inhibition of the EC response specific to stretch and shear stress, i.e., phosphorylation of PDGF receptors and phosphorylation of VEGF receptors, respectively. These findings indicate that EC plasma membranes differently respond to stretch and shear stress by changing their lipid order, fluidity, and cholesterol content in opposite directions and that these changes in membrane physical properties are involved in the mechanotransduction that activates membrane receptors specific to each force.

  11. Biocompatibility Assessment of PLCL-Sericin Copolymer Membranes Using Wharton’s Jelly Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Kewalin Inthanon

    2016-01-01

    Full Text Available Stem cells based tissue engineering requires biocompatible materials, which allow the cells to adhere, expand, and differentiate in a large scale. An ideal biomaterial for clinical application should be free from mammalian products which cause immune reactivities and pathogen infections. We invented a novel biodegradable poly(L-lactic-co-ε-caprolactone-sericin (PLCL-SC copolymer membrane which was fabricated by electrospinning. Membranes with concentrations of 2.5 or 5% (w/v SC exhibited qualified texture characteristics with a noncytotoxic release profile. The hydrophilic properties of the membranes were 35–40% higher than those of a standard PLCL and commercial polystyrene (PS. The improved characteristics of the membranes were due to an addition of new functional amide groups, C=O, N–H, and C–N, onto their surfaces. Degradation of the membranes was controllable, depending on the content proportion of SC. Results of thermogram indicated the superior stability and crystallinity of the membranes. These membranes enhanced human Wharton’s jelly mesenchymal stem cells (hWJMSC proliferation by increasing cyclin A and also promoted cell adhesion by upregulating focal adhesion kinase (FAK. On the membranes, hWJMSC differentiated into a neuronal lineage with the occurrence of nestin. These data suggest that PLCL-SC electrospun membrane represents some properties which will be useful for tissue engineering and medical applications.

  12. Biocompatibility Assessment of PLCL-Sericin Copolymer Membranes Using Wharton's Jelly Mesenchymal Stem Cells.

    Science.gov (United States)

    Inthanon, Kewalin; Daranarong, Donraporn; Techaikool, Pimwalan; Punyodom, Winita; Khaniyao, Vorathep; Bernstein, Audrey M; Wongkham, Weerah

    2016-01-01

    Stem cells based tissue engineering requires biocompatible materials, which allow the cells to adhere, expand, and differentiate in a large scale. An ideal biomaterial for clinical application should be free from mammalian products which cause immune reactivities and pathogen infections. We invented a novel biodegradable poly(L-lactic-co-ε-caprolactone)-sericin (PLCL-SC) copolymer membrane which was fabricated by electrospinning. Membranes with concentrations of 2.5 or 5% (w/v) SC exhibited qualified texture characteristics with a noncytotoxic release profile. The hydrophilic properties of the membranes were 35-40% higher than those of a standard PLCL and commercial polystyrene (PS). The improved characteristics of the membranes were due to an addition of new functional amide groups, C=O, N-H, and C-N, onto their surfaces. Degradation of the membranes was controllable, depending on the content proportion of SC. Results of thermogram indicated the superior stability and crystallinity of the membranes. These membranes enhanced human Wharton's jelly mesenchymal stem cells (hWJMSC) proliferation by increasing cyclin A and also promoted cell adhesion by upregulating focal adhesion kinase (FAK). On the membranes, hWJMSC differentiated into a neuronal lineage with the occurrence of nestin. These data suggest that PLCL-SC electrospun membrane represents some properties which will be useful for tissue engineering and medical applications. PMID:26839562

  13. Syzygium cumini ameliorates insulin resistance and β-cell dysfunction via modulation of PPAR, dyslipidemia, oxidative stress, and TNF-α in type 2 diabetic rats.

    Science.gov (United States)

    Sharma, Ashok Kumar; Bharti, Saurabh; Kumar, Rajiv; Krishnamurthy, Bhaskar; Bhatia, Jagriti; Kumari, Santosh; Arya, Dharamvir Singh

    2012-01-01

    Syzygium cumini (SC) is well known for its anti-diabetic potential, but the mechanism underlying its amelioration of type 2 diabetes is still elusive. Therefore, for the first time, we investigated whether SC aqueous seed extract (100, 200, or 400 mg/kg) exerts any beneficial effects on insulin resistance (IR), serum lipid profile, antioxidant status, and/or pancreatic β-cell damage in high-fat diet / streptozotocin-induced (HFD-STZ) diabetic rats. Wistar albino rats were fed with HFD (55% of calories as fat) during the experiment to induce IR and on the 10th day were injected with STZ (40 mg/kg, i.p.) to develop type 2 diabetes. Subsequently, after confirmation of hyperglycemia on the 14th day (fasting glucose level > 13.89 mM), diabetic rats were treated with SC for the next 21 days. Diabetic rats showed increased serum glucose, insulin, IR, TNF-α, dyslipidemia, and pancreatic thiobarbituric acid-reactive substances with a concomitant decrease in β-cell function and pancreatic superoxide dismutase, catalase, and glutathione peroxidase antioxidant enzyme activities. Microscopic examination of their pancreas revealed pathological changes in islets and β-cells. These alterations reverted to near-normal levels after treatment with SC at 400 mg/kg. Moreover, hepatic tissue demonstrated increased PPARγ and PPARα protein expressions. Thus, our study demonstrated the beneficial effect of SC seed extract on IR and β-cell dysfunction in HFD-STZ-induced type 2 diabetic rats. PMID:22786584

  14. Construction of an artificial cell membrane anchor using DARC as a fitting for artificial extracellular functionalities of eukaryotic cells

    Directory of Open Access Journals (Sweden)

    von Nickisch-Rosenegk Markus

    2012-01-01

    Full Text Available Abstract The need to functionalize cell membranes in a directed way for specific applications as single cell arrays or to force close cell-to-cell contact for artificial intercellular interaction and/or induction concerning stem cell manipulation or in general to have a tool for membrane and cell surface-associated processes, we envisaged a neutral inactive membrane anchor for extracellular entities to facillitate the above mentioned functionalities. The silent Duffy antigen/receptor for chemokines (DARC is a receptor-like membrane protein of erythrocytes and mediates no cell transduction not at least regarding a missing or truncated G-loop and therefore it seemed to be the candidate for our cell membrane anchor. We isolated the genetic information of DARC from human genomic DNA and cloned it in a mammalian cell line as a fusion protein via a suitable plasmid vector. In this report we demonstrate that the human plasma membrane protein DARC can be used as an artificial anchor molecule in cell surface engineering applications. We constructed the fusion protein SNAP-tag-DARC, consisting of DARC and the self-labeling protein tag SNAP-tag® (Covalys. The SNAP-tag® served as an example for a molecular-technological developed protein that is artificially attached to the extracellular side of the plasma membrane through our DARC-anchor. SnapTag should serve as an example for any extracellular entity and was easy to detect by a commercial detection system. The synthesis of SNAP-tag-DARC, its correct incorporation into the cell membrane and the functionality of the SNAP-tag® were verified by RT-PCR, Western blotting and confocal fluorescence microscopy and showed the desired functionality as an membrane anchor for an extracellular application entity.

  15. Colitic scid mice fed Lactobacillus spp. show an ameliorated gut histopathology and an altered cytokine profile by local T cells

    DEFF Research Database (Denmark)

    Møller, Peter Lange; Pærregaard, Anders; Gad, Monika;

    2005-01-01

    Scid mice transplanted with CD4 T blast cells develop colitis. We investigated if the disease was influenced in colitic mice treated with antibiotic and fed Lactobacillus spp.......Scid mice transplanted with CD4 T blast cells develop colitis. We investigated if the disease was influenced in colitic mice treated with antibiotic and fed Lactobacillus spp....

  16. Cell surface molecules and fibronectin-mediated cell adhesion: effect of proteolytic digestion of membrane proteins

    OpenAIRE

    1982-01-01

    Proteases have been used as a tool to investigate the role of surface molecules in fibronectin-mediated cell adhesion. Proteolytic digestion of membrane-proteins by pronase (1 mg/ml for 20 min at 37 degrees C) completely inhibited adhesion of baby hamster kidney (BHK) fibroblasts on fibronectin-coated plastic dishes. Various degrees of inhibition were also obtained after treatment with proteinase K, chymotrypsin, papain, subtilopeptidase A, and thermolysin. Protein synthesis was required to r...

  17. Production of Antibodies against Multipass Membrane Proteins Expressed in Human Tumor Cells Using Dendritic Cell Immunization

    OpenAIRE

    Takahiko Tamura; Joe Chiba

    2009-01-01

    Antibody mediated therapeutic strategies against human malignant tumors have been widely authorized and clinically applied to cancer patients. In order to develop methods to generate antibodies reactive to the extracellular domains of multipass plasma membrane proteins specifically expressed in malignant tumors, we examined the use of dendritic cells (DCs) for immunization. DCs were transduced with genes encoding the human six transmembrane epithelial antigen of prostate 1 (STEAP1), STEAP4, a...

  18. Bacillus thuringiensis membrane-damaging toxins acting on mammalian cells.

    Science.gov (United States)

    Celandroni, Francesco; Salvetti, Sara; Senesi, Sonia; Ghelardi, Emilia

    2014-12-01

    Bacillus thuringiensis is widely used as a biopesticide in forestry and agriculture, being able to produce potent species-specific insecticidal toxins and considered nonpathogenic to other animals. More recently, however, repeated observations are documenting the association of this microorganism with various infectious diseases in humans, such as food-poisoning-associated diarrheas, periodontitis, bacteremia, as well as ocular, burn, and wound infections. Similar to B. cereus, B. thuringiensis produces an array of virulence factors acting against mammalian cells, such as phosphatidylcholine- and phosphatidylinositol-specific phospholipase C (PC-PLC and PI-PLC), hemolysins, in particular hemolysin BL (HBL), and various enterotoxins. The contribution of some of these toxins to B. thuringiensis pathogenicity has been studied in animal models of infection, following intravitreous, intranasal, or intratracheal inoculation. These studies lead to the speculation that the activities of PC-PLC, PI-PLC, and HBL are responsible for most of the pathogenic properties of B. thuringiensis in nongastrointestinal infections in mammals. This review summarizes data regarding the biological activity, the genetic basis, and the structural features of these membrane-damaging toxins.

  19. Nanoparticle adhesion in proton exchange membrane fuel cell electrodes

    Science.gov (United States)

    He, Qianping; Joy, David C.; Keffer, David J.

    2013-11-01

    Carbon supported platinum (Pt/C) catalyst remains among the most preferable catalyst materials for Proton Exchange Membrane (PEM) fuel cells. However, platinum (Pt) particles suffer from poor durability and encounter electrochemical surface area (ESA) loss under operation with the accompany of Pt nanoparticle coarsening. Several proposed mechanisms have involved the Pt detachment from its carbonate support as an initial step for the deactivation of Pt nanoparticles. In this study, we investigated the detachment mechanism from the nano-adhesion point of view. Classic molecular dynamics simulations are performed on systems contain Pt nanoparticles of different sizes and shapes. A thin Nafion film (1 nm) at different hydration levels is also included in the system to study the environmental effect on nanoparticle adhesion. We found that the adhesion force strengthens as the Pt size goes up. Pt nanoparticles of tetrahedral shape exhibit relatively stronger connection with the carbon substrate due to its unique ‘anchor-like’ structure. Adhesion is enhanced with the introduction of a Nafion. The humidity level in the Nafion film has a rather complicated effect on the strength of nanoparticle adhesion. The binding energies and maximum adhesive forces are reported for all systems studied.

  20. Role of amphipathic helix of a herpesviral protein in membrane deformation and T cell receptor downregulation.

    Directory of Open Access Journals (Sweden)

    Chan-Ki Min

    2008-11-01

    Full Text Available Lipid rafts are membrane microdomains that function as platforms for signal transduction and membrane trafficking. Tyrosine kinase interacting protein (Tip of T lymphotropic Herpesvirus saimiri (HVS is targeted to lipid rafts in T cells and downregulates TCR and CD4 surface expression. Here, we report that the membrane-proximal amphipathic helix preceding Tip's transmembrane (TM domain mediates lipid raft localization and membrane deformation. In turn, this motif directs Tip's lysosomal trafficking and selective TCR downregulation. The amphipathic helix binds to the negatively charged lipids and induces liposome tubulation, the TM domain mediates oligomerization, and cooperation of the membrane-proximal helix with the TM domain is sufficient for localization to lipid rafts and lysosomal compartments, especially the mutivesicular bodies. These findings suggest that the membrane-proximal amphipathic helix and TM domain provide HVS Tip with the unique ability to deform the cellular membranes in lipid rafts and to downregulate TCRs potentially through MVB formation.

  1. Construction of a dead-end type micro- to R.O. membrane test cell and performance test with the laboratory- made and commercial membranes

    Directory of Open Access Journals (Sweden)

    Darunee Bhongsuwan

    2002-11-01

    Full Text Available A dead-end type membrane stirred cell for an RO filtration test has been designed and constructed. Magnetic stirring system is applied to overcome a pressure-induced concentration polarization occurred over a membrane surface in the test cell. A high pressure N2 tank is used as a pressure source.Feed container is designed for 2.5 l feed solution and a stirred cell volume is 0.5 l . The test cell holds a magnetic stirrer freely moved over the membrane surface. All units are made of stainless steel. A porous SS316L disc is used as a membrane support. The dead-end stirred cell is tested to work properly in an operating pressure ranged 0 - 400 psi. It means that the dead-end cell can be used to test a membrane of different filtration modes, from micro- to Reverse Osmosis filtration. Tests performed at 400 psi for 3 hours are safe but tests at a 500 psi increase leakage possibility. The cell is used to test the performance of both commercial and laboratory-made membranes. It shows that the salt rejection efficiency of the nano- and RO membranes, NTR759HR and LES90, determined by using the new test cell, is closely similar to those reported from the manufacture. Result of the tests for our own laboratory-made membrane shows a similar performance to the nanofiltration membrane LES90.

  2. Detection of anti-liver cell membrane antibody using a human hepatocellular carcinoma cell line

    Energy Technology Data Exchange (ETDEWEB)

    Lobo-Yeo, A.; McSorley, C.; McFarlane, B.M.; Mieli-Vergani, G.; Mowat, A.P.; Vergani, D.

    1989-02-01

    A radioimmunometric technique for the detection of autoantibodies to liver membrane antigens has been developed using Alexander cells, a human hepatocellular carcinoma cell line. After incubation of Alexander cells with serum, antimembrane antibodies were detected by addition of /sup 125/I-labeled Protein A. Binding ratios in 15 children with uncontrolled autoimmune chronic active hepatitis and in seven children with primary sclerosing cholangitis were significantly higher than in 18 age-matched normal controls. Nine patients with inactive autoimmune chronic active hepatitis, 13 with alpha 1-antitrypsin deficiency and five with fulminant hepatic failure had ratios similar to controls. In nine patients with Wilson's disease, there was a modest but significant increase in binding ratio. In four children with autoimmune chronic active hepatitis, binding ratios fell during effective immunosuppressive therapy. Sera from patients with systemic lupus erythematosus or rheumatoid arthritis gave normal results, excluding that binding derives from Fc-mediated immune complex capture. A positive correlation was found between Alexander cell binding values and anti-liver-specific protein antibody titers, suggesting that the two assays detect antibodies against shared antigenic determinants. The Alexander cell assay is a simple, rapid and sensitive technique to detect antibody to liver cell membrane antigens.

  3. Synthesis and characterization of neodymium oxide modified nafion membrane for direct alcohol fuel cells

    International Nuclear Information System (INIS)

    Nafion composite membranes were prepared by incorporating neodymium oxide (Nd2O3), a hygroscopic rare earth oxide and a dopant for H+ ion conduction, into the nafion structure. Five different loadings of Nd2O3 were used to fabricate Nd2O3/nafion composite membranes and characterized extensively for possible use in direct alcohol fuel cells. The proton conductivity, ion exchange capacity, water uptake, tensile strength, and oxidation stability of the composite membrane were higher than pure cast nafion membrane. Nd2O3/nafion composite membrane exhibited reduced methanol and ethanol crossover as compared to pure cast nafion membrane and thus has potential to use in direct alcohol fuel cells.

  4. Multiplex lithography for multilevel multiscale architectures and its application to polymer electrolyte membrane fuel cell.

    Science.gov (United States)

    Cho, Hyesung; Moon Kim, Sang; Sik Kang, Yun; Kim, Junsoo; Jang, Segeun; Kim, Minhyoung; Park, Hyunchul; Won Bang, Jung; Seo, Soonmin; Suh, Kahp-Yang; Sung, Yung-Eun; Choi, Mansoo

    2015-01-01

    The production of multiscale architectures is of significant interest in materials science, and the integration of those structures could provide a breakthrough for various applications. Here we report a simple yet versatile strategy that allows for the LEGO-like integrations of microscale membranes by quantitatively controlling the oxygen inhibition effects of ultraviolet-curable materials, leading to multilevel multiscale architectures. The spatial control of oxygen concentration induces different curing contrasts in a resin allowing the selective imprinting and bonding at different sides of a membrane, which enables LEGO-like integration together with the multiscale pattern formation. Utilizing the method, the multilevel multiscale Nafion membranes are prepared and applied to polymer electrolyte membrane fuel cell. Our multiscale membrane fuel cell demonstrates significant enhancement of performance while ensuring mechanical robustness. The performance enhancement is caused by the combined effect of the decrease of membrane resistance and the increase of the electrochemical active surface area. PMID:26412619

  5. Membrane Supply and Demand Regulates F-Actin in a Cell Surface Reservoir.

    Science.gov (United States)

    Figard, Lauren; Wang, Mengyu; Zheng, Liuliu; Golding, Ido; Sokac, Anna Marie

    2016-05-01

    Cells store membrane in surface reservoirs of pits and protrusions. These membrane reservoirs facilitate cell shape change and buffer mechanical stress, but we do not know how reservoir dynamics are regulated. During cellularization, the first cytokinesis in Drosophila embryos, a reservoir of microvilli unfolds to fuel cleavage furrow ingression. We find that regulated exocytosis adds membrane to the reservoir before and during unfolding. Dynamic F-actin deforms exocytosed membrane into microvilli. Single microvilli extend and retract in ∼20 s, while the overall reservoir is depleted in sync with furrow ingression over 60-70 min. Using pharmacological and genetic perturbations, we show that exocytosis promotes microvillar F-actin assembly, while furrow ingression controls microvillar F-actin disassembly. Thus, reservoir F-actin and, consequently, reservoir dynamics are regulated by membrane supply from exocytosis and membrane demand from furrow ingression. PMID:27165556

  6. Fabrication and Testing of a Bi-Conductive Polymer Membrane Fuel Cell

    International Nuclear Information System (INIS)

    This paper reports the fabrication process and testing of a bi-conductive polymer membrane (BCPM) fuel cell that integrates lateral current collectors on both sides with an ionic conductive path through the membrane. The new membrane shows major advantages over standard Nafion® membranes used in Polymer Electrolyte Fuel Cells (PEMFCs). In addition to being mechanically stable when wet, the flexible BCPM integrates efficient thin film current collectors (ICCs) on an ionic conductive membrane with a high active area ratio. Also, ICCs leave all the surface of the electrode free to eventually integrate a more efficient water and gas management system than traditional gas diffusion layers. Moreover, the fabricated membrane has shown superior volumetric power density than standard PEMFC (0.76 vs 0.47 mW/cm2μm)

  7. Cell Membrane Capsules for Encapsulation of Chemotherapeutic and Cancer Cell Targeting in Vivo.

    Science.gov (United States)

    Peng, Li-Hua; Zhang, Yuan-Hong; Han, Li-Jie; Zhang, Chen-Zhen; Wu, Jia-He; Wang, Xia-Rong; Gao, Jian-Qing; Mao, Zheng-Wei

    2015-08-26

    Systemic administration of chemotherapeutic agents can cause indiscriminate drug distribution and severe toxicity. Until now, encapsulation and targeting of drugs have typically relied on synthetic vehicles, which cannot minimize the clearance by the renal system and may also increase the risk of chemical side effects. Cell membrane capsules (CMCs) provide a generic and far more natural approach to the challenges of drug encapsulation and delivery in vivo. Here aptamer AS1411, which can recognize and bind overexpressed nucleolin on a cancer cell membrane, was chemically conjugated onto CMCs. As a result, AS1411 modified CMCs showed enhanced ingestion in certain cancer cells in vitro and accumulation in mouse cancer xenografts in vivo. Chemotherapeutics and contrast agents with therapeutically significant concentrations can be packaged into CMCs by reversible permeating their plasma membranes. The systematic administration of cancer targeting CMCs loaded with doxorubicin hydrochloride can significantly inhibit tumor growth in mouse xenografts, with significantly reduced toxicity compared to free drug. These findings suggest that cancer targeting CMCs may have considerable benefits in drug delivery and cancer treatment. PMID:26262951

  8. Detecting subtle plasma membrane perturbation in living cells using second harmonic generation imaging.

    Science.gov (United States)

    Moen, Erick K; Ibey, Bennett L; Beier, Hope T

    2014-05-20

    The requirement of center asymmetry for the creation of second harmonic generation (SHG) signals makes it an attractive technique for visualizing changes in interfacial layers such as the plasma membrane of biological cells. In this article, we explore the use of lipophilic SHG probes to detect minute perturbations in the plasma membrane. Three candidate probes, Di-4-ANEPPDHQ (Di-4), FM4-64, and all-trans-retinol, were evaluated for SHG effectiveness in Jurkat cells. Di-4 proved superior with both strong SHG signal and limited bleaching artifacts. To test whether rapid changes in membrane symmetry could be detected using SHG, we exposed cells to nanosecond-pulsed electric fields, which are believed to cause formation of nanopores in the plasma membrane. Upon nanosecond-pulsed electric fields exposure, we observed an instantaneous drop of ~50% in SHG signal from the anodic pole of the cell. When compared to the simultaneously acquired fluorescence signals, it appears that the signal change was not due to the probe diffusing out of the membrane or changes in membrane potential or fluidity. We hypothesize that this loss in SHG signal is due to disruption in the interfacial nature of the membrane. The results show that SHG imaging has great potential as a tool for measuring rapid and subtle plasma membrane disturbance in living cells. PMID:24853757

  9. CXCR4 inhibition ameliorates severe obliterative pulmonary hypertension and accumulation of C-kit⁺ cells in rats.

    Directory of Open Access Journals (Sweden)

    Daniela Farkas

    Full Text Available Successful curative treatment of severe pulmonary arterial hypertension with luminal obliteration will require a thorough understanding of the mechanism underlying the development and progression of pulmonary vascular lesions. But the cells that obliterate the pulmonary arterial lumen in severe pulmonary arterial hypertension are incompletely characterized. The goal of our study was to evaluate whether inhibition of CXC chemokine receptor 4 will prevent the accumulation of c-kit⁺ cells and severe pulmonary arterial hypertension. We detected c-kit⁺⁻ cells expressing endothelial (von Willebrand Factor or smooth muscle cell/myofibroblast (α-smooth muscle actin markers in pulmonary arterial lesions of SU5416/chronic hypoxia rats. We found increased expression of CXC chemokine ligand 12 in the lung tissue of SU5416/chronic hypoxia rats. In our prevention study, AMD3100, an inhibitor of the CXC chemokine ligand 12 receptor, CXC chemokine receptor 4, only moderately decreased pulmonary arterial obliteration and pulmonary hypertension in SU5416/chronic hypoxia animals. AMD3100 treatment reduced the number of proliferating c-kit⁺ α-smooth muscle actin⁺ cells and pulmonary arterial muscularization and did not affect c-kit⁺ von Willebrand Factor⁺ cell numbers. Both c-kit⁺ cell types expressed CXC chemokine receptor 4. In conclusion, our data demonstrate that in the SU5416/chronic hypoxia model of severe pulmonary hypertension, the CXC chemokine receptor 4-expressing c-kit⁺ α-smooth muscle actin⁺ cells contribute to pulmonary arterial muscularization. In contrast, vascular lumen obliteration by c-kit⁺ von Willebrand Factor⁺ cells is largely independent of CXC chemokine receptor 4.

  10. Enhanced proliferation of acinar and progenitor cells by prophylactic pilocarpine treatment underlies the observed amelioration of radiation injury to parotid glands

    NARCIS (Netherlands)

    Burlage, Fred R.; Faber, Hette; Kampinga, Harm H.; Langendijk, Johannes A.; Vissink, Arjan; Coppes, Rob P.

    2009-01-01

    Background: Administration of pilocarpine before irradiation can ameliorate radiation-induced hyposalivation. Indirect evidence Suggests that this effect may be mediated through induction of a compensatory response. In this study, this hypothesis is tested directly, by assessing the proliferation of

  11. Metformin ameliorates the development of experimental autoimmune encephalomyelitis by regulating T helper 17 and regulatory T cells in mice.

    Science.gov (United States)

    Sun, Yafei; Tian, Tian; Gao, Juan; Liu, Xiaoqian; Hou, Huiqing; Cao, Runjing; Li, Bin; Quan, Moyuan; Guo, Li

    2016-03-15

    Immoderate immunoreaction of antigen-specific Th17 and Treg cell dysfunction play critical roles in the pathogenesis of multiple sclerosis. We examined Th17/Treg immune responses and the underlying mechanisms in response to metformin in C57BL/6 mice with experimental autoimmune encephalomyelitis (EAE). Metformin reduced Th17 and increased Treg cell percentages along with the levels of associated cytokines. Molecules involved in cellular metabolism were altered in mice with EAE. Suppressed activation of mTOR and its downstream target, HIF-1α, likely mediated the protective effects of metformin. Our findings demonstrate that regulation of T cell metabolism represents a new therapeutic target for CNS autoimmune disorders.

  12. (Pro)insulin associates with Golgi membranes of pancreatic B cells.

    OpenAIRE

    Orci, L; Ravazzola, M; Perrelet, A

    1984-01-01

    The immunocytochemical demonstration of (pro)insulin on intracellular membrane compartments of the pancreatic B cell reveals that the immunolabeling detected by the protein A/gold method is associated, at the level of the Golgi apparatus, with the inner aspect of the cisternal membranes; on the secretory granules, by contrast, insulin immunoreactive sites predominate over the granule core, and very little immunoreactivity is associated with the granule membrane. The localization of (pro)insul...

  13. Interface-designed Membranes with Shape-controlled Patterns for High-performance Polymer Electrolyte Membrane Fuel Cells

    Science.gov (United States)

    Jeon, Yukwon; Kim, Dong Jun; Koh, Jong Kwan; Ji, Yunseong; Kim, Jong Hak; Shul, Yong-Gun

    2015-11-01

    Polymer electrolyte membrane fuel cell is a promising zero-emission power generator for stationary/automotive applications. However, key issues, such as performance and costs, are still remained for an economical commercialization. Here, we fabricated a high-performance membrane electrode assembly (MEA) using an interfacial design based on well-arrayed micro-patterned membranes including circles, squares and hexagons with different sizes, which are produced by a facile elastomeric mold method. The best MEA performance is achieved using patterned Nafion membrane with a circle 2 μm in size, which exhibited a very high power density of 1906 mW/cm2 at 75 °C and Pt loading of 0.4 mg/cm2 with 73% improvement compared to the commercial membrane. The improved performance are attributed to the decreased MEA resistances and increased surface area for higher Pt utilization of over 80%. From these enhanced properties, it is possible to operate at lower Pt loading of 0.2 mg/cm2 with an outstanding performance of 1555 mW/cm2 and even at air/low humidity operations.

  14. Olopatadine Inhibits Exocytosis in Rat Peritoneal Mast Cells by Counteracting Membrane Surface Deformation

    Directory of Open Access Journals (Sweden)

    Asuka Baba

    2015-01-01

    Full Text Available Backgroud/Aims: Besides its anti-allergic properties as a histamine receptor antagonist, olopatadine stabilizes mast cells by inhibiting the release of chemokines. Since olopatadine bears amphiphilic features and is preferentially partitioned into the lipid bilayers of the plasma membrane, it would induce some morphological changes in mast cells and thus affect the process of exocytosis. Methods: Employing the standard patch-clamp whole-cell recording technique, we examined the effects of olopatadine and other anti-allergic drugs on the membrane capacitance (Cm in rat peritoneal mast cells during exocytosis. Using confocal imaging of a water-soluble fluorescent dye, lucifer yellow, we also examined their effects on the deformation of the plasma membrane. Results: Low concentrations of olopatadine (1 or 10 µM did not significantly affect the GTP-γ-S-induced increase in the Cm. However, 100 µM and 1 mM olopatadine almost totally suppressed the increase in the Cm. Additionally, these doses completely washed out the trapping of the dye on the cell surface, indicating that olopatadine counteracted the membrane surface deformation induced by exocytosis. As shown by electron microscopy, olopatadine generated inward membrane bending in mast cells. Conclusion: This study provides electrophysiological evidence for the first time that olopatadine dose-dependently inhibits the process of exocytosis in rat peritoneal mast cells. Such mast cell stabilizing properties of olopatadine may be attributed to its counteracting effects on the plasma membrane deformation in degranulating mast cells.

  15. Lysosome fusion to the cell membrane is mediated by the dysferlin C2A domain in coronary arterial endothelial cells

    OpenAIRE

    Han, Wei-Qing; Xia, Min; Xu, Ming; Krishna M Boini; Ritter, Joseph K.; Li, Ning-Jun; Li, Pin-Lan

    2012-01-01

    Dysferlin has recently been reported to participate in cell membrane repair in muscle and other cells through lysosome fusion. Given that lysosome fusion is a crucial mechanism that leads to membrane raft clustering, the present study attempted to determine whether dysferlin is involved in this process and its related signalling, and explores the mechanism underlying dysferlin-mediated lysosome fusion in bovine coronary arterial endothelial cells (CAECs). We found that dysferlin is clustered ...

  16. Amelioration of radiation-induced hematopoietic syndrome by an antioxidant chlorophyllin through increased stem cell activity and modulation of hematopoiesis.

    Science.gov (United States)

    Suryavanshi, Shweta; Sharma, Deepak; Checker, Rahul; Thoh, Maikho; Gota, Vikram; Sandur, Santosh K; Sainis, Krishna B

    2015-08-01

    Hematopoietic stem cells and progenitor cells (HSPC) are low in abundance and exhibit high radiosensitivity and their ability to divide dramatically decreases following exposure to ionizing radiation. Our earlier studies have shown antiapoptotic, immune-stimulatory, and antioxidant effects of chlorophyllin, a constituent of the over the counter drug derifil. Here we describe the beneficial effects of chlorophyllin against radiation-induced hematopoietic syndrome. Chlorophyllin administration significantly enhanced the abundance of HSPC in vivo. It induced a transient cell cycle arrest in lineage-negative cells in the bone marrow. However, the chlorophyllin-treated mice exposed to whole body irradiation (WBI) had a significantly higher proportion of actively dividing HSPC in the bone marrow as compared to only WBI-exposed mice. It significantly increased the number of colony forming units (CFUs) by bone marrow cells in vitro and spleen CFUs in irradiated mice in vivo. Pharmacokinetic study showed that chlorophyllin had a serum half-life of 141.8 min in mice. Chlorophyllin upregulated antiapoptotic genes and antioxidant machinery via activation of prosurvival transcription factors Nrf-2 and NF-κB and increased the survival and recovery of bone marrow cells in mice exposed to WBI. Chlorophyllin stimulated granulocyte production in bone marrow and increased the abundance of peripheral blood neutrophils by enhancing serum levels of granulocyte-colony stimulation factor (GCSF). Most importantly, prophylactic treatment of mice with chlorophyllin significantly abrogated radiation-induced mortality. Chlorophyllin mitigates radiation-induced hematopoietic syndrome by increasing the abundance of hematopoietic stem cells, enhancing granulopoiesis, and stimulating prosurvival pathways in bone marrow cells and lymphocytes.

  17. TIGIT overexpression diminishes the function of CD4 T cells and ameliorates the severity of rheumatoid arthritis in mouse models.

    Science.gov (United States)

    Zhao, Weigong; Dong, Yanying; Wu, Caijun; Ma, Yunfeng; Jin, Yaofeng; Ji, Yanhong

    2016-01-01

    Rheumatoid arthritis (RA) is an immune-mediated disease with a pathogenesis that involves CD4 T cell activation. Multiple immune regulatory molecules expressed on CD4(+) T cells were involved in RA pathogenesis. In this study, we investigated the role of T cell immunoglobulin and ITIM (immunoreceptor tyrosine-based inhibition motif) domain (TIGIT) in RA. The frequency of TIGIT-positive CD4(+) T cells in the synovial fluid (SF) of active RA patients was lower than that of inactive RA patients. And a negative correlation between RA disease activity and TIGIT expression was found. In CD4(+) T cells isolated from SF of active RA patients, TIGIT upregulation significantly decreased cell proliferation, as shown by MTT assay. TIGIT overexpression also significantly decreased the production of IFN-γ and IL-17, and increased that of IL-10, as determined by ELISA and qRT-PCR. In CD4(+) T cells isolated from SF of inactive RA patients, TIGIT was silenced by siRNA transfection. As expected, TIGIT knockdown resulted in an opposite effect on cell proliferation and the production of cytokines, including IFN-γ, IL-17 and IL-10. A RA mouse model was established using type II collagen induction. TIGIT was upregulated in RA mouse by lentivector infection. As expected, TIGIT overexpression in vivo significantly alleviated the disease severity and deceased the levels of anti-collagen II antibodies. TIGIT upregulation in the early stage was more effective to alleviate disease severity. Our data suggested the potential therapeutic role of TIGIT in RA patients.

  18. Melatonin ameliorates dexamethasone-induced inhibitory effects on the proliferation of cultured progenitor cells obtained from adult rat hippocampus.

    Science.gov (United States)

    Ekthuwapranee, Kasima; Sotthibundhu, Areechun; Tocharus, Chainarong; Govitrapong, Piyarat

    2015-01-01

    Glucocorticoids, hormones that are released in response to stress, induce neuronal cell damage. The hippocampus is a primary target of glucocorticoids in the brain, the effects of which include the suppression of cell proliferation and diminished neurogenesis in the dentate gyrus. Our previous study found that melatonin, synthesized primarily in the pineal, pretreatment prevented the negative effects of dexamethasone, the glucocorticoid receptor agonist, on behavior and neurogenesis in rat hippocampus. In the present study, we attempted to investigate the interrelationship between melatonin and dexamethasone on the underlying mechanism of neural stem cell proliferation. Addition of dexamethasone to hippocampal progenitor cells from eight-week old rats resulted in a decrease in the number of neurospheres; pretreatment with melatonin precluded these effects. The immunocytochemical analyses indicated a reduction of Ki67 and nestin-positive cells in the dexamethasone-treated group, which was minimized by melatonin pretreatment. A reduction of the extracellular signal-regulated kinase 1 and 2 (ERK1/2) phosphorylation and G1-S phase cell cycle regulators cyclin E and CDK2 in dexamethasone-treated progenitor cells were prevented by pretreatment of melatonin. Moreover, luzindole, a melatonin receptor antagonist blocked the positive effect of melatonin whereas RU48, the glucocorticoid receptor antagonist blocked the negative effect of dexamethasone on the number of neurospheres. Moreover, we also found that dexamethasone increased the glucocorticoid receptor protein but decreased the level of MT1 melatonin receptor, whereas melatonin increased the level of MT1 melatonin receptor but decreased the glucocorticoid receptor protein. These suggest the crosstalk and cross regulation between the melatonin receptor and the glucocorticoid receptor on hippocampal progenitor cell proliferation.

  19. TanshinoneIIA ameliorates inflammatory microenvironment of colon cancer cells via repression of microRNA-155.

    Science.gov (United States)

    Tu, Jiajie; Xing, Yingying; Guo, Yongjian; Tang, Feng; Guo, Le; Xi, Tao

    2012-12-01

    TanshinoneIIA, an active component derived from a traditional Chinese medicine, has anti-inflammatory and anti-cancer effect. However, the mechanisms underlying the interaction between anti-inflammation and anti-cancer of TanshinoneIIA remain elusive. In the present study, a cell model of inflammation between macrophages and colon cancer cells was used. The results showed that TanshinoneIIA inhibited the proliferation of inflammation-related colon cancer cells HCT116 and HT-29 by decreasing the production of inflammatory cytokines tumor necrosis factor α (TNF-α) and interleukin 6 (IL-6), which generated by macrophage RAW264.7 cell line. We identified Phosphatidylinositol-3, 4, 5-trisphosphate 5-phosphatase 1 (SHIP1) was a bona fide target of miR-155. TanshinoneIIA restored the down-regulated level of SHIP1 protein after lipopolysaccharide (LPS)-stimulation in RAW264.7 cells. MicroRNA-155 (miR-155) was up-regulated in macrophages, possibly due to the concomitant increase of PU.1, a transcriptional activator of miR-155, accounting for decreased SHIP1. Treatment with TanshinoneIIA prevented increased PU.1 and hence increased miR-155, whereas aspirin could not. These findings support that the interruption of signal conduction between activated macrophages and colon cancer cells could be considered as a new therapeutic strategy and miR-155 could be a potential target for the prevention of inflammation-related cancer. PMID:22982040

  20. Exercise Ameliorates Renal Cell Apoptosis in Chronic Kidney Disease by Intervening in the Intrinsic and the Extrinsic Apoptotic Pathways in a Rat Model

    Directory of Open Access Journals (Sweden)

    Kuan-Chou Chen

    2013-01-01

    Full Text Available We hypothesized that doxorubicin (DR induced chronic kidney disease (CKD could trigger the intrinsic and the extrinsic renal cell apoptotic pathways, while treadmill exercise could help prevent adverse effects. Male Sprague-Dawley rats were subjected to treadmill running exercise at a speed of 30 m/min, 30 or 60 min/day, 3 times per week, for a total period of 11 weeks. The physiological and biochemical parameters were seen substantially improved (DR-CKD control, 30 min, 60 min exercise: the ratio of kidney weight/body weight (0.89, 0.74, and 0.72; the WBC (1.35, 1.08, and 1.42 × 104 cells/μL; RBC (5.30, 6.38, and 6.26 × 106 cells/μL; the platelet count (15.1, 12.8, and 11.3 × 105/μL; serum cholesterol (659, 360, and 75 mg/dL; serum triglyceride (542, 263, and 211 mg/dL; BUN (37, 25, and 22 mg/dL. Bcl-2 and intramitochondrial cytochrome c were upregulated, while the levels of Bax, SOD, MDA, cleaved caspases 9, 3, 8, 12, and calpain were all downregulated in DRCKD groups with exercise. CHOP (GADD153 and GRP78 were totally unaffected. FAS (CD95 was only slightly suppressed in the 60 min exercise DRCKD group. Conclusively, exercise can ameliorate CKD through the regulation of the intrinsic and extrinsic apoptosis pathways. The 60 min exercise yields more beneficial effect than the 30 min counterpart.

  1. Calcitriol analog ZK191784 ameliorates acute and chronic dextran sodium sulfate-induced colitis by modulation of intestinal dendritic cell numbers and phenotype

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    AIM: To investigate the effects of ZK1916784, a low calcemic analog of calcitriol on intestinal inflammation.METHODS: Acute and chronic colitis was induced by dextran sodium sulfate (DSS) according to standard procedures. Mice were treated intraperitoneally with ZK1916784 or placebo and colonic inflammation was evaluated. Cytokine production by mesenterial lymph node (MLN) cells was measured by ELISA.Immunohistochemistry was performed to detect intestinal dendritic cells (DCs) within the colonic tissue,and the effect of the calcitriol analog on DCs was investigated.RESULTS: Treatment with ZK191784 resulted in significant amelioration of disease with a reduced histological score in acute and chronic intestinal inflammation. In animals with acute DSS colitis, down-regulation of colonic inflammation was associated with a dramatic reduction in the secretion of the proinflammatory cytokine interferon (IFN)-γ and a significant increase in intereleukin (IL)-10 by MLN cells.Similarly, in chronic colitis, IL-10 expression in colonic tissue increased 1.4-fold when mice were treated with ZK191784, whereas expression of the Th1-specific transcription factor T-beta decreased by 81.6%. Lower numbers of infiltrating activated CD11c+ DCs were found in the colon in ZK191784-treated mice with acute DSS colitis, and secretion of proinflammatory cytokines by primary mucosal DCs was inhibited in the presence of the calcitriol analog.CONCLUSION: The calcitriol analog ZK191784 demonstrated significant anti-inflammatory properties in experimental colitis that were at least partially mediated by the immunosuppressive effects of the derivate on mucosal DCs.

  2. 14C-glucose binding assay of the glucose transporter binding sites in muscular cell membrane

    International Nuclear Information System (INIS)

    A method of determining the binding sites of glucose transporter in rat muscular cell membrane was introduced. The crude products of cell membrane form the skeletal muscle of control and insulin treated rats were prepared, and then fractionated in sucrose gradient. Both plasma membrane and microsome membrane were incubated with D-[U-14C] glucose respectively for the measurement of radioactivity and Scatchard plot analysis. It was found that the binding sites of glucose transporter in plasma membrane and intracellular membrane were 5.6 nmol 14C-glucose/mg protein and 8.7 nmol 14C-glucose-mg protein respectively at basic state. Insulin treatment in experimental groups caused approximately 146% increase in plasma membrane fraction and 88% decrease in intracellular membrane fraction. Moreover, the kinetic data of Scatchard plot curve were similar to those of the [3H]-cytochalasin B binding assay. D-[U-14C] glucose binding assay of glucose transporter binding sites in muscular cell membrane is simple, easy and practicable. The D-[U-14C] glucose is commercially available

  3. Durability study and lifetime prediction of baseline proton exchange membrane fuel cell under severe operating conditions

    Energy Technology Data Exchange (ETDEWEB)

    Marrony, M.; Quenet, S.; Aslanides, A. [European Institute for Energy Research, Emmy-Noether Strasse 11, 76131 Karlsruhe (Germany); Barrera, R.; Ginocchio, S.; Montelatici, L. [Edison, Via Giorgio La Pira 2, 10028 Trofarello (Italy)

    2008-08-01

    Comparative studies of mechanical and electrochemical properties of Nafion{sup registered} - and sulfonated polyetheretherketone polymer-type membranes are carried out under severe fuel cell conditions required by industrials, within stationary and cycling electric load profiles. These membranes are proposed to be used in PEM between 70 and 90 C as fluorinated or non-fluorinated baseline membranes, respectively. Thus, though the performance of both membranes remains suitable, Nafion{sup registered} backbone brought better mechanical properties and higher electrochemical stabilities than sulfonated polyetheretherketone backbone. The performance stability and the mechanical strength of the membrane-electrode assembly were shown to be influenced by several intrinsic properties of the membrane (e.g., thermal pre-treatment, thickness) and external conditions (fuel cell operating temperature, relative humidity). Finally, a lifetime prediction for membranes under stationary conditions is proposed depending on the operation temperature. At equivalent thicknesses (i.e. 50 {mu}m), Nafion{sup registered} membranes were estimated able to operate into the 80-90 C range while sulfonated polyetheretherketone would be limited into the 70-80 C range. This approach brings baseline information about the capability of these types of polymer electrolyte membrane under fuel cell critical operations. Finally, it is revealed as a potential tool for the selection of the most promising advanced polymers for the ensuing research phase. (author)

  4. Stochastic transport through carbon nanotubes in lipid bilayers and live cell membranes

    Science.gov (United States)

    Geng, Jia; Kim, Kyunghoon; Zhang, Jianfei; Escalada, Artur; Tunuguntla, Ramya; Comolli, Luis R.; Allen, Frances I.; Shnyrova, Anna V.; Cho, Kang Rae; Munoz, Dayannara; Wang, Y. Morris; Grigoropoulos, Costas P.; Ajo-Franklin, Caroline M.; Frolov, Vadim A.; Noy, Aleksandr

    2014-10-01

    There is much interest in developing synthetic analogues of biological membrane channels with high efficiency and exquisite selectivity for transporting ions and molecules. Bottom-up and top-down methods can produce nanopores of a size comparable to that of endogenous protein channels, but replicating their affinity and transport properties remains challenging. In principle, carbon nanotubes (CNTs) should be an ideal membrane channel platform: they exhibit excellent transport properties and their narrow hydrophobic inner pores mimic structural motifs typical of biological channels. Moreover, simulations predict that CNTs with a length comparable to the thickness of a lipid bilayer membrane can self-insert into the membrane. Functionalized CNTs have indeed been found to penetrate lipid membranes and cell walls, and short tubes have been forced into membranes to create sensors, yet membrane transport applications of short CNTs remain underexplored. Here we show that short CNTs spontaneously insert into lipid bilayers and live cell membranes to form channels that exhibit a unitary conductance of 70-100 picosiemens under physiological conditions. Despite their structural simplicity, these `CNT porins' transport water, protons, small ions and DNA, stochastically switch between metastable conductance substates, and display characteristic macromolecule-induced ionic current blockades. We also show that local channel and membrane charges can control the conductance and ion selectivity of the CNT porins, thereby establishing these nanopores as a promising biomimetic platform for developing cell interfaces, studying transport in biological channels, and creating stochastic sensors.

  5. Intrinsic potential of cell membranes: opposite effects of lipid transmembrane asymmetry and asymmetric salt ion distribution

    DEFF Research Database (Denmark)

    Gurtovenko, Andrey A; Vattulainen, Ilpo

    2009-01-01

    Using atomic-scale molecular dynamics simulations, we consider the intrinsic cell membrane potential that is found to originate from a subtle interplay between lipid transmembrane asymmetry and the asymmetric distribution of monovalent salt ions on the two sides of the cell membrane. It turns out......Cl saline solution and the PE leaflet is exposed to KCl, the outcome is that the effects of asymmetric lipid and salt ion distributions essentially cancel one another almost completely. Overall, our study highlights the complex nature of the intrinsic potential of cell membranes under physiological...

  6. Plasma membrane rafts engaged in T cell signalling: new developments in an old concept

    Directory of Open Access Journals (Sweden)

    Sangani Dhaval

    2009-09-01

    Full Text Available Abstract Considerable controversy arose over the concept that cholesterol/sphingolipid-rich rafts in the T cell plasma membrane serve as a platform for TCR signalling reactions. This controversy was founded on the initial definition of rafts as detergent resistant membranes which later turned out to misrepresent many features of cell membrane organisation under physiological conditions. Raft-organisation was subsequently studied using a number of detergent-free experimental approaches. The results led to a refined perception of membrane rafts which resolves the controversies. Here we review new biophysical and biochemical data which provide an updated picture of the highly dynamic nanometer-sized cholesterol/sphingolipid-rich raft domains stabilised by protein-networks to form TCR signalling platforms in the T cell plasma membrane.

  7. Molecular dynamics study of lipid bilayers modeling the plasma membranes of normal murine thymocytes and leukemic GRSL cells.

    Science.gov (United States)

    Andoh, Yoshimichi; Okazaki, Susumu; Ueoka, Ryuichi

    2013-04-01

    Molecular dynamics (MD) calculations for the plasma membranes of normal murine thymocytes and thymus-derived leukemic GRSL cells in water have been performed under physiological isothermal-isobaric conditions (310.15K and 1 atm) to investigate changes in membrane properties induced by canceration. The model membranes used in our calculations for normal and leukemic thymocytes comprised 23 and 25 kinds of lipids, respectively, including phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphatidylinositol, sphingomyelin, lysophospholipids, and cholesterol. The mole fractions of the lipids adopted here were based on previously published experimental values. Our calculations clearly showed that the membrane area was increased in leukemic cells, and that the isothermal area compressibility of the leukemic plasma membranes was double that of normal cells. The calculated membranes of leukemic cells were thus considerably bulkier and softer in the lateral direction compared with those of normal cells. The tilt angle of the cholesterol and the conformation of the phospholipid fatty acid tails both showed a lower level of order in leukemic cell membranes compared with normal cell membranes. The lateral radial distribution function of the lipids also showed a more disordered structure in leukemic cell membranes than in normal cell membranes. These observations all show that, for the present thymocytes, the lateral structure of the membrane is considerably disordered by canceration. Furthermore, the calculated lateral self-diffusion coefficient of the lipid molecules in leukemic cell membranes was almost double that in normal cell membranes. The calculated rotational and wobbling autocorrelation functions also indicated that the molecular motion of the lipids was enhanced in leukemic cell membranes. Thus, here we have demonstrated that the membranes of thymocyte leukemic cells are more disordered and more fluid than normal cell membranes.

  8. Effect of Ce3+ on membrane permeability of Escherichia coli cell

    Institute of Scientific and Technical Information of China (English)

    CHEN Aimei; SHI Qingshan; OUYANG Yousheng; CHEN Yiben

    2012-01-01

    This study aimed to delineate the antibacterial mechanism of rare-earth ion Ce3+ to the target organism Escherichia coli cell,and the most important purpose was to identify its biological effect of increasing the E.coli cell membrane permeability.The antibacterial activities of Ce3+ to E.coli cells were tested,and then the permeability of outer membrane (OM) and inner membrane (IM) were studied by N-phenyl-1-naphthylamine (NPN) and o-nitrophenyl-β-D-galactopyranoside (ONPG) methods separately.Through these experiments we concluded that the E.coli cells grown to log phage were more sensitive to Ce3+ than the ones not at this stage; the structure of membrane was destroyed and the permeability of both OM and IM was obviously increased by Ce3+; there should be certain interactions between Ce3+ and some proteins inside the cell,which impeded the physiological activities of bacteria.

  9. Cell and membrane lipid analysis by proton magnetic resonance spectroscopy in five breast cancer cell lines.

    Science.gov (United States)

    Le Moyec, L; Tatoud, R; Eugène, M; Gauvillé, C; Primot, I; Charlemagne, D; Calvo, F

    1992-10-01

    The lipid composition of five human breast cancer cell lines (MCF-7, T47D, ZR-75-1, SKBR3 and MDA-MB231) was assessed by proton magnetic resonance spectroscopy (MRS) in whole cells and membrane-enriched fractions. The proportions of the three main lipid resonances in 1D spectra were different for each cell line. These resonances included mobile methyl and methylene functions from fatty acids of triglycerides and phospholipids and N-trimethyl from choline of phospholipids. T47D and ZR-75-1 cells presented a high methylene/methyl ratio (6.02 +/- 0.35 and 6.28 +/- 0.90). This ratio was significantly lower for SKBR3, MCF-7 and MDA-MB231 cells (2.76 +/- 0.22, 2.27 +/- 0.57 and 1.39 +/- 0.39). The N-trimethyl/methyl ratio was high for MDA-MB231 and SKBR3 cells (1.38 +/- 0.54 and 0.86 +/- 0.32), but lower for MCF-7, T47D and ZR-75-1 cells (0.49 +/- 0.11, 0.16 +/- 0.07 and 0.07 +/- 0.03). 2D COSY spectra confirmed these different proportions in mobile lipids. From 1D spectra obtained on membrane preparations, T47D and ZR-75-1 were the only cell lines to retain a signal from mobile methylene functions. These differences might be related to the heterogeneity found for several parameters of these cells (tumorigenicity, growth rate, hormone receptors); an extended number of cases from fresh samples might enable clinical correlations. PMID:1329906

  10. Effects of coffees before and after special treatment procedure on cell membrane potentials in stomach cells.

    Science.gov (United States)

    Fiebich, B L; Valente, P; Ferrer-Montiel, A; Candelario-Jalil, E; Menthe, J; Luecker, P

    2006-01-01

    Coffee, one of the most excessively used beverages worldwide, commences the risk of gastroesophageal reflux (GER), which may lead to gastric ulcers and increase the risk of gastric cancer. Many attempts have been made by the coffee industry to diminish the irritating effect on mucosa by means of altering the extraction methods concerning gerbic acids and the roasting processes. This paper describes the effect of differently produced coffees involving two brands of Darboven and two brands of other coffee roasters. The aim of this study was to prove the results of gastric potential measurements we found in literature by using human AGS gastric epithelial cells (human adenocarcinoma). All four coffee extracts tested differentially affected the membrane resting potential of AGS cells. Coffees no. 1 and no. 2 depolarized the cells, presumably by increasing the cation entry into the cytosol. In marked contrast, coffee no. 4 hyperpolarizes the cells, possibly by H(+) extrusion and/or Cl(-) influx, suggesting that this coffee might increase acidity in the stomach, which might negatively affect the stomach, especially in people with gastroesophageal reflux symptoms. Overall, our data suggest that different roasting methods of coffees affect the membrane potentials of AGS stomach cells, resulting in increased influx of H+ possibly resulting in decreased stomach acidity and thus reducing GER. These results are in good accordance with clinical pharmacological results from potential difference measurements in healthy volunteers we found in the literature. PMID:16894406

  11. Diagnostic tool for red blood cell membrane disorders: Assessment of a new generation ektacytometer.

    Science.gov (United States)

    Da Costa, Lydie; Suner, Ludovic; Galimand, Julie; Bonnel, Amandine; Pascreau, Tiffany; Couque, Nathalie; Fenneteau, Odile; Mohandas, Narla

    2016-01-01

    Inherited red blood cell (RBC) membrane disorders, such as hereditary spherocytosis, elliptocytosis and hereditary ovalocytosis, result from mutations in genes encoding various RBC membrane and skeletal proteins. The RBC membrane, a composite structure composed of a lipid bilayer linked to a spectrin/actin-based membrane skeleton, confers upon the RBC unique features of deformability and mechanical stability. The disease severity is primarily dependent on the extent of membrane surface area loss. RBC membrane disorders can be readily diagnosed by various laboratory approaches that include RBC cytology, flow cytometry, ektacytometry, electrophoresis of RBC membrane proteins and genetics. The reference technique for diagnosis of RBC membrane disorders is the osmotic gradient ektacytometry. However, in spite of its recognition as the reference technique, this technique is rarely used as a routine diagnosis tool for RBC membrane disorders due to its limited availability. This may soon change as a new generation of ektacytometer has been recently engineered. In this review, we describe the workflow of the samples shipped to our Hematology laboratory for RBC membrane disorder analysis and the data obtained for a large cohort of French patients presenting with RBC membrane disorders using a newly available version of the ektacytomer. PMID:26603718

  12. Patterned ion exchange membranes for improved power production in microbial reverse-electrodialysis cells

    KAUST Repository

    Liu, Jia

    2014-12-01

    Power production in microbial reverse-electrodialysis cells (MRCs) can be limited by the internal resistance of the reverse electrodialysis stack. Typical MRC stacks use non-conductive spacers that block ion transport by the so-called spacer shadow effect. These spacers can be relatively thick compared to the membrane, and thus they increase internal stack resistance due to high solution (ohmic) resistance associated with a thick spacer. New types of patterned anion and cation exchange membranes were developed by casting membranes to create hemispherical protrusions on the membranes, enabling fluid flow between the membranes without the need for a non-conductive spacer. The use of the patterned membrane decreased the MRC stack resistance by ∼22 Ω, resulting in a 38% increase in power density from 2.50 ± 0.04 W m-2 (non-patterned membrane with a non-conductive spacer) to 3.44 ± 0.02 W m-2 (patterned membrane). The COD removal rate, coulombic efficiency, and energy efficiency of the MRC also increased using the patterned membranes compared to the non-patterned membranes. These results demonstrate that these patterned ion exchange membranes can be used to improve performance of an MRC. © 2014 Elsevier B.V. All rights reserved.

  13. Resveratrol ameliorates the maturation process of β-cell-like cells obtained from an optimized differentiation protocol of human embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Daniela Pezzolla

    Full Text Available Human embryonic stem cells (hESCs retain the extraordinary capacity to differentiate into different cell types of an adult organism, including pancreatic β-cells. For this particular lineage, although a lot of effort has been made in the last ten years to achieve an efficient and reproducible differentiation protocol, it was not until recently that this aim was roughly accomplished. Besides, several studies evidenced the impact of resveratrol (RSV on insulin secretion, even though the mechanism by which this polyphenol potentiates glucose-stimulated insulin secretion (GSIS is still not clear. The aim of this study was to optimize an efficient differentiation protocol that mimics in vivo pancreatic organogenesis and to investigate whether RSV may improve the final maturation step to obtain functional insulin-secreting cells. Our results indicate that treatment of hESCs (HS-181 with activin-A induced definitive endoderm differentiation as detected by the expression of SOX17 and FOXA2. Addition of retinoic acid (RA, Noggin and Cyclopamine promoted pancreatic differentiation as indicated by the expression of the early pancreatic progenitor markers ISL1, NGN3 and PDX1. Moreover, during maturation in suspension culture, differentiating cells assembled in islet-like clusters, which expressed specific endocrine markers such as PDX1, SST, GCG and INS. Similar results were confirmed with the human induced Pluripotent Stem Cell (hiPSC line MSUH-001. Finally, differentiation protocols incorporating RSV treatment yielded numerous insulin-positive cells, induced significantly higher PDX1 expression and were able to transiently normalize glycaemia when transplanted in streptozotocin (STZ induced diabetic mice thus promoting its survival. In conclusion, our strategy allows the efficient differentiation of hESCs into pancreatic endoderm capable of generating β-cell-like cells and demonstrates that RSV improves the maturation process.

  14. Membrane dynamics

    DEFF Research Database (Denmark)

    Bendix, Pól Martin

    2015-01-01

    Current topics include membrane-protein interactions with regard to membrane deformation or curvature sensing by BAR domains. Also, we study the dynamics of membrane tubes of both cells and simple model membrane tubes. Finally, we study membrane phase behavior which has important implications for...

  15. Chromium(VI)—induces Production of Reactive Oxygen Species,Change of Plasma Membrane Potential and Dissipation of Mitochondria Membrane otential in Chinese Hamster Lung Cell Cultures

    Institute of Scientific and Technical Information of China (English)

    XIEYI; ZHUANGZHI-XIONG

    2001-01-01

    Objective:To examine whether Reactive Oxygen Species(ROS) is generated,and whether plasma membrane potential and mitochnodrial membrane potential are depolarized in Chinese Hamster Lung(CHL)cell lines exposed to Cr(VI),Methods:CHL Cells were incubated with Cr(VI) at 10 umol/L,2.5umol/L,0.65umol/L for 3 and 6 hours,respectively.The rpoduction of ROS was performed by using 2,7-dichlorofluorescin discetate;The changes in plasma membrane potential were performed by using 2,7-dichlorofluorescin discetate;The changes in plasma membrane potential were performed by using 2,7-dichlorofluorescin diacetate;The changes in plasma membrane potential were estimated using fluorescent cationic dye DiBAC4;And the changes in mitochondria membrane potential were estimated using fluorescent dye Rhodamine 123,Results:The ROS levels in CHL cells increased in all treated groups compared with the control group(P<0.01);The plasma membrane potential and mitochondrial membrane potential in CHL cells dissipated after incubated with Cr(VI) at 10umol/L for 3 hours and 6 hours(P<0.01),at 2.5umol/L for 6 hours(P<0.01 or 0.05),Conclusion:Cr(VI) causes the dissipation of plasma membrane potential and mitochnodrial membrane otential in CHL cell cultrues,and Cr(VI)-induced ROS may play a role in the injuries.

  16. Poly(N-isopropylacrylamide)-graft-polypropylene membranes containing adsorbed antibody for cell separation.

    Science.gov (United States)

    Okamura, Aiko; Itayagoshi, Midori; Hagiwara, Taeko; Yamaguchi, Manae; Kanamori, Toshiyuki; Shinbo, Toshio; Wang, Pi-Chao

    2005-04-01

    We developed a novel selective cell-separation method based on using a poly(N-isopropylacrylamide)-graft-polypropylene (PNIPAAm-g-PP) membrane containing adsorbed monoclonal antibody specific to the target cell. This membrane was prepared by plasma-induced polymerization and soaking in an antibody solution at 37 degrees C. Poly(N-isopropylacrylamide) has a thermoresponsive phase transition: at 32 degrees C water-insoluble (hydrophobic) and water-soluble (hydrophilic) states interconvert. Adsorption of antibody onto PNIPAAm-g-PP membrane at 37 degrees C and its desorption at 4 degrees C was verified by fluorescence-microscopy of the PNIPAAm-g-PP membrane after soaking it in fluorescein-conjugated goat anti-mouse IgG in phosphate-buffered saline. PNIPAAm-g-PP membranes containing adsorbed anti-mouse CD80 monoclonal antibody preferentially captured mouse-CD80 transfected cells at 37 degrees C compared with membranes lacking antibody or containing anti-mouse CD86 monoclonal antibody. Detachment of captured cells from PNIPAAm-g-PP membranes was facilitated by washing at 4 degrees C because of the thermoresponsive phase transition of PNIPAAm. With this method, mouse CD80- or mouse CD86-transfected cells were enriched from a 1:1 cell suspension to 72% or 66%, simply and with high yield. PMID:15475058

  17. D-saccharic acid-1,4-lactone ameliorates alloxan-induced diabetes mellitus and oxidative stress in rats through inhibiting pancreatic beta-cells from apoptosis via mitochondrial dependent pathway

    International Nuclear Information System (INIS)

    Oxidative stress plays a vital role in diabetic complications. To suppress the oxidative stress mediated damage in diabetic pathophysiology, a special focus has been given on naturally occurring antioxidants present in normal diet. D-saccharic acid 1,4-lactone (DSL), a derivative of D-glucaric acid, is present in many dietary plants and is known for its detoxifying and antioxidant properties. The aim of the present study was to evaluate the beneficial role of DSL against alloxan (ALX) induced diabetes in the pancreas tissue of Swiss albino rats. A dose-dependent study for DSL (20–120 mg/kg body weight) was carried out to find the effective dose of the compound in ALX-induced diabetic rats. ALX exposure elevated the blood glucose, glycosylated Hb, decreased the plasma insulin and disturbed the intra-cellular antioxidant machineries whereas oral administration of DSL at a dose of 80 mg/kg body weight restored these alterations close to normal. Investigating the mechanism of the protective activity of DSL we observed that it prevented the pancreatic β-cell apoptosis via mitochondria-dependent pathway. Results showed decreased mitochondrial membrane potential, enhanced cytochrome c release in the cytosol and reciprocal regulation of Bcl-2 family proteins in the diabetic rats. These events were also found to be associated with increased level of Apaf-1, caspase 9, and caspase 3 that ultimately led to pancreatic β-cell apoptosis. DSL treatment, however, counteracted these changes. In conclusion, DSL possesses the capability of ameliorating the oxidative stress in ALX-induced diabetes and thus could be a promising approach in lessening diabetic complications. Highlights: ► Oxidative stress is suggested as a key event in the pathogenesis of diabetes. ► D-saccharic acid 1,4-lactone (DSL) reduces the alloxan-induced diabetes mellitus. ► DSL normalizes cellular antioxidant machineries disturbed due to alloxan toxicity. ► DSL inhibits pancreatic β-cells apoptosis

  18. D-saccharic acid-1,4-lactone ameliorates alloxan-induced diabetes mellitus and oxidative stress in rats through inhibiting pancreatic beta-cells from apoptosis via mitochondrial dependent pathway

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharya, Semantee [Department of Life Sciences and Biotechnology, Jadavpur University, 188, Raja S C Mullick Road, Kolkata 700 032 (India); Manna, Prasenjit [Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata-700054 (India); Gachhui, Ratan [Department of Life Sciences and Biotechnology, Jadavpur University, 188, Raja S C Mullick Road, Kolkata 700 032 (India); Sil, Parames C., E-mail: parames@bosemain.boseinst.ac.in [Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata-700054 (India)

    2011-12-15

    Oxidative stress plays a vital role in diabetic complications. To suppress the oxidative stress mediated damage in diabetic pathophysiology, a special focus has been given on naturally occurring antioxidants present in normal diet. D-saccharic acid 1,4-lactone (DSL), a derivative of D-glucaric acid, is present in many dietary plants and is known for its detoxifying and antioxidant properties. The aim of the present study was to evaluate the beneficial role of DSL against alloxan (ALX) induced diabetes in the pancreas tissue of Swiss albino rats. A dose-dependent study for DSL (20-120 mg/kg body weight) was carried out to find the effective dose of the compound in ALX-induced diabetic rats. ALX exposure elevated the blood glucose, glycosylated Hb, decreased the plasma insulin and disturbed the intra-cellular antioxidant machineries whereas oral administration of DSL at a dose of 80 mg/kg body weight restored these alterations close to normal. Investigating the mechanism of the protective activity of DSL we observed that it prevented the pancreatic {beta}-cell apoptosis via mitochondria-dependent pathway. Results showed decreased mitochondrial membrane potential, enhanced cytochrome c release in the cytosol and reciprocal regulation of Bcl-2 family proteins in the diabetic rats. These events were also found to be associated with increased level of Apaf-1, caspase 9, and caspase 3 that ultimately led to pancreatic {beta}-cell apoptosis. DSL treatment, however, counteracted these changes. In conclusion, DSL possesses the capability of ameliorating the oxidative stress in ALX-induced diabetes and thus could be a promising approach in lessening diabetic complications. Highlights: Black-Right-Pointing-Pointer Oxidative stress is suggested as a key event in the pathogenesis of diabetes. Black-Right-Pointing-Pointer D-saccharic acid 1,4-lactone (DSL) reduces the alloxan-induced diabetes mellitus. Black-Right-Pointing-Pointer DSL normalizes cellular antioxidant machineries

  19. Arctigenin Suppress Th17 Cells and Ameliorates Experimental Autoimmune Encephalomyelitis Through AMPK and PPAR-γ/ROR-γt Signaling.

    Science.gov (United States)

    Li, Wen; Zhang, Zhihui; Zhang, Kai; Xue, Zhenyi; Li, Yan; Zhang, Zimu; Zhang, Lijuan; Gu, Chao; Zhang, Qi; Hao, Junwei; Da, Yurong; Yao, Zhi; Kong, Ying; Zhang, Rongxin

    2016-10-01

    Arctigenin is a herb compound extract from Arctium lappa and is reported to exhibit pharmacological properties, including neuronal protection and antidiabetic, antitumor, and antioxidant properties. However, the effects of arctigenin on autoimmune inflammatory diseases of the CNS, multiple sclerosis (MS), and its animal model experimental autoimmune encephalomyelitis (EAE) are still unclear. In this study, we demonstrated that arctigenin-treated mice are resistant to EAE; the clinical scores of arctigenin-treated mice are significantly reduced. Histochemical assays of spinal cord sections also showed that arctigenin reduces inflammation and demyelination in mice with EAE. Furthermore, the Th1 and Th17 cells in peripheral immune organs are inhibited by arctigenin in vivo. In addition, the Th1 cytokine IFN-γ and transcription factor T-bet, as well as the Th17 cytokines IL-17A, IL-17F, and transcription factor ROR-γt are significantly suppressed upon arctigenin treatment in vitro and in vivo. Interestedly, Th17 cells are obviously inhibited in CNS of mice with EAE, while Th1 cells do not significantly change. Besides, arctigenin significantly restrains the differentiation of Th17 cells. We further demonstrate that arctigenin activates AMPK and inhibits phosphorylated p38, in addition, upregulates PPAR-γ, and finally suppresses ROR-γt. These findings suggest that arctigenin may have anti-inflammatory and immunosuppressive properties via inhibiting Th17 cells, indicating that it could be a potential therapeutic drug for multiple sclerosis or other autoimmune inflammatory diseases.

  20. Analyzing the effects of surface distribution of pores in cell electroporation for a cell membrane containing cholesterol

    CERN Document Server

    Shil, Pratip; Vidyasagar, Pandit B

    2007-01-01

    This paper presents a model and numerical analysis of transmembrane potential induced in biological cell membrane under the influence of externally applied electric field (i.e., electroporation). This model differs from the established models in two distinct ways. Firstly, it incorporates the presence of cholesterol (~20% mole-fraction) in the membrane. Secondly, it considers the dependence of pore distribution on the variation of transmembrane potential from one region of the cell to the other. Formulation is based on the role of membrane tension and electrical forces in the formation of pores in a cell membrane, which is considered as an infinitesimally thin insulator. The model has been used to explore the creation and evolution of pores and to determine the number and size of pores as function of applied electric field (magnitude & duration). Results show that the presence of cholesterol enhances poration by changing the membrane tension. Analysis indicate that the number of pores, average pore radii ...

  1. Thermal curing of PBI membranes for high temperature PEM fuel cells

    DEFF Research Database (Denmark)

    Aili, David; Cleemann, Lars N.; Li, Qingfeng;

    2012-01-01

    Phosphoric acid doped polybenzimidazole (PBI) has emerged as one of the most promising electrolyte materials for proton exchange membrane (PEM) fuel cells operating under anhydrous conditions at temperatures of up to 200 °C. The limited long-term durability of the membrane electrode assemblies...

  2. Simplified process for leaching precious metals from fuel cell membrane electrode assemblies

    Science.gov (United States)

    Shore, Lawrence; Matlin, Ramail

    2009-12-22

    The membrane electrode assemblies of fuel cells are recycled to recover the catalyst precious metals from the assemblies. The assemblies are cryogenically embrittled and pulverized to form a powder. The pulverized assemblies are then mixed with a surfactant to form a paste which is contacted with an acid solution to leach precious metals from the pulverized membranes.

  3. Structural Transition of Actin Filament in a Cell-Sized Water Droplet with a Phospholipid Membrane

    CERN Document Server

    Hase, M

    2005-01-01

    Actin filament, F-actin, is a semiflexible polymer with a negative charge, and is one of the main constituents on cell membranes. To clarify the effect of cross-talk between a phospholipid membrane and actin filaments in cells, we conducted microscopic observations on the structural changes in actin filaments in a cell-sized (several tens of micrometers in diameter) water droplet coated with a phospholipid membrane such as phosphatidylserine (PS; negatively-charged head group) or phosphatidylethanolamine (PE; neutral head group) as a simple model of a living cell membrane. With PS, actin filaments are distributed uniformly in the water phase without adsorption onto the membrane surface between 2 and 6 mM Mg2+, while between 6 and 12 mM Mg2+, actin filaments are adsorbed onto the inner membrane surface. With PE, actin filaments are uniformly adsorbed onto the inner membrane surface between 2 and 12 mM Mg2+. With both PS and PE membranes, at Mg2+ concentrations higher than 12 mM, thick bundles are formed in the...

  4. Enhanced assembly of basement membrane matrix by endodermal cells in response to fibronectin substrata

    DEFF Research Database (Denmark)

    Austria, M R; Couchman, J R

    1991-01-01

    Basement membranes are complex extracellular matrices contributing to the regulation of growth, migration and differentiation of many cell types. However, little is known about the mechanisms regulating the deposition and assembly of basement membrane from its constituents. We have investigated t...

  5. Unsynchronized Translational and Rotational Diffusion of Nanocargo on a Living Cell Membrane

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Lehui; Wei, Lin; Liu, Chang; He, Yan; Yeung, Edward

    2012-03-16

    A robust high-speed and high-precision single nanoparticle translational and rotational tracking method has been developed to directly monitor the interactions between transferrin-modified nanocargos (gold nanorods) and the membrane proteins prior to endocytosis. This approach shows that the translational and rotational diffusions of nanocargos on living cell membranes are unsynchronized in space and in time.

  6. Further Improvement and System Integration of High Temperature Polymer Electrolyte Membrane Fuel Cells

    DEFF Research Database (Denmark)

    Jensen, Jens Oluf; Li, Qingfeng

    Polymer electrolyte membrane fuel cell (PEMFC) technology based on Nafion membranes can operate at temperatures around 80°C. The new development in the field is high temperature PEMFC for operation above 100°C, which has been successfully demonstrated through the previous EC Joule III and the 5th...

  7. Amphipaths Differentially Modulate Membrane Surface Deformation in Rat Peritoneal Mast Cells During Exocytosis

    Directory of Open Access Journals (Sweden)

    Itsuro Kazama

    2013-04-01

    Full Text Available Background/Aims: Salicylate and chlorpromazine exert differential effects on the chemokine release from mast cells. Since these drugs are amphiphilic and preferentially partitioned into the lipid bilayers of the plasma membranes, they would induce some morphological changes in mast cells and thus affect the process of exocytosis. Methods: Employing the standard patch-clamp whole-cell recording technique, we examined the effects of salicylate and chlorpromazine on the membrane capacitance (Cm during exocytosis in rat peritoneal mast cells. Using confocal imaging of a water-soluble fluorescent dye, lucifer yellow, we also examined their effects on plasma membrane deformation of the cells. Results: Salicylate dramatically accelerated the GTP-γ-S-induced increase in the Cm immediately after its application, whereas chlorpromazine significantly suppressed the increase. Treatment with salicylate increased the trapping of the dye on the cell surface, while treatment with chlorpromazine completely washed it out, indicating that both drugs induced membrane surface deformation in mast cells. Conclusion: This study demonstrated for the first time that membrane amphipaths, such as salicylate and chlorpromazine, may oppositely modulate the process of exocytosis in mast cells, as detected by the changes in the Cm. The plasma membrane deformation induced by the drugs was thought to be responsible for their differential effects.

  8. Carbon dioxide (hydrogen sulfide) membrane separations and WGS membrane reactor modeling for fuel cells

    Science.gov (United States)

    Huang, Jin

    Acid-gas removal is of great importance in many environmental or energy-related processes. Compared to current commercial technologies, membrane-based CO2 and H2S capture has the advantages of low energy consumption, low weight and space requirement, simplicity of installation/operation, and high process flexibility. However, the large-scale application of the membrane separation technology is limited by the relatively low transport properties. In this study, CO2 (H2S)-selective polymeric membranes with high permeability and high selectivity have been studied based on the facilitated transport mechanism. The membrane showed facilitated effect for both CO2 and H2S. A CO2 permeability of above 2000 Barrers, a CO2/H2 selectivity of greater than 40, and a CO2/N2 selectivity of greater than 200 at 100--150°C were observed. As a result of higher reaction rate and smaller diffusing compound, the H2S permeability and H2S/H2 selectivity were about three times higher than those properties for CO2. The novel CO2-selective membrane has been applied to capture CO 2 from flue gas and natural gas. In the CO2 capture experiments from a gas mixture with N2 and H2, a permeate CO 2 dry concentration of greater than 98% was obtained by using steam as the sweep gas. In CO2/CH4 separation, decent CO 2 transport properties were obtained with a feed pressure up to 500 psia. With the thin-film composite membrane structure, significant increase on the CO2 flux was achieved with the decrease of the selective layer thickness. With the continuous removal of CO2, CO2-selective water-gas-shift (WGS) membrane reactor is a promising approach to enhance CO conversion and increase the purity of H2 at process pressure under relatively low temperature. The simultaneous reaction and transport process in the countercurrent WGS membrane reactor was simulated by using a one-dimensional non-isothermal model. The modeling results show that a CO concentration of less than 10 ppm and a H2 recovery of greater

  9. Hydroxyl pyridine containing polybenzimidazole membranes for proton exchange membrane fuel cells

    DEFF Research Database (Denmark)

    Yang, Jingshuai; Xu, Yixin; Zhou, Lu;

    2013-01-01

    A polybenzimidazole variant polymer containing hydroxyl pyridine groups, termed as OHPyPBI, was synthesized from 3,3'-diaminobenzidine tetrahydrochloride and 4-hydroxy-2,6-pyridinedicarboxylic acid. The thermal-oxidative stability of the OHPyPBI polymer was as high as that of poly[2,2'-(m......, but also benefited the proton conduction, which was proved by the results of acid conductivities of the membranes with comparable acid doping levels. At an acid doping level of 8.6, i.e. 8.6mol acids per molar repeat unit of the polymer, the OHPyPBI membrane exhibited a proton conductivity of 0.102Scm-1...

  10. Microfabrication of a tunable collagen/alginate-chitosan hydrogel membrane for controlling cell-cell interactions.

    Science.gov (United States)

    Song, Yizhe; Zhang, Demeng; Lv, Yan; Guo, Xin; Lou, Ruyun; Wang, Shujun; Wang, Xiuli; Yu, Weiting; Ma, Xiaojun

    2016-11-20

    Indirect cell contact co-culture system is increasingly becoming more attractable owing to their advantages of easy cell separation and desirable outcomes for cell-cell interactions. However, how to precisely control the spatial position of cells within multicellular co-cultures is still experimentally challenging due to the incapability of the conventional methods in vitro. In the present study, a tunable collagen/alginate-chitosan (Col/Alg-Chi) membrane was established, which was capable of controlling intercellular distance between the neighboring cells at a level of micrometer resolution. It was showed that intercellular distance between the hepatocytes and the fibroblasts exerted significant influence on hepatic function in vitro. In particular, maintenance of the functionality of primary hepatocytes requires direct contact between the hepatocytes and their supportive stromal cells, and their effective contact distance is within 30μm. This technical platform would potentially enable investigations of dynamic cell-cell interaction in a multitude of applications including organogenesis, development or even neoplastic transformation. PMID:27561537

  11. Bone marrow cells ameliorate liver fibrosis and express albumin after transplantation in CCl 4 -induced fibrotic liver

    Directory of Open Access Journals (Sweden)

    Gibran Ali

    2012-01-01

    Full Text Available Background/Aim: We investigated the effect of bone marrow-derived stem cell (BMSC transplantation on carbon tetrachloride (CCl 4 -induced liver fibrosis. Patients and Methods: BMSCs of green fluorescent protein (GFP mice were transplanted into 4-week CCl 4 -treated C57BL/6 mice directly to the liver, and the mice were treated for 4 more weeks with CCl 4 (total, 8 weeks. After sacrificing the animals, quantitative data of percentage fibrosis area and the number of cells expressing albumin was obtained. One-way analysis of variance was applied to calculate the significance of the data. Results: GFP expressing cells clearly indicated migrated BMSCs with strong expression of albumin after 28 days post-transplantation shown by anti-albumin antibody. Double fluorescent immunohistochemistry showed reduced expression of αSMA on GFP-positive cells. Four weeks after BMSC transplantation, mice had significantly reduced liver fibrosis as compared with that of mice treated with CCl 4 assessed by Sirius red staining. Conclusion: Mice with BMSC transplantation with continuous CCl 4 injection had reduced liver fibrosis and a significantly improved expression of albumin compared with mice treated with CCl 4 alone. These findings strengthen the concept of cellular therapy in liver fibrosis.

  12. Rapamycin ameliorates CCl4-induced liver fibrosis in mice through reciprocal regulation of the Th17/Treg cell balance.

    Science.gov (United States)

    Gu, Lei; Deng, Wen-Sheng; Sun, Xiao-Fei; Zhou, Hong; Xu, Qing

    2016-08-01

    Previous investigations have suggested that the activation of Th17 cells and/or deficiency of regulatory T cells (Tregs) are involved in the pathogenesis of liver fibrosis. The aim of the present study was to investigate the effect of rapamycin on immune responses in a carbon tetrachloride (CCl4)-induced murine liver fibrosis model. Liver fibrosis was induced by intraperitoneal administration with CCl4. Following injection of CCl4, the mice were treated intraperitoneally with rapamycin (1.25 mg/kg/day) for 8 weeks. Hematoxylin and eosin staining and Masson's trichrome staining were used for histological examination. The protein levels of forkhead/winged helix transcription factor P3, retinoic-acid-related orphan receptor (ROR)‑γt in liver tissue were determined by western blotting, the frequency of Th17 and Treg cells in the liver was evaluated by flow cytometry, and a suppression assay was measured by incorporating [3H]‑thymidine. In addition, to explore the effect of Tregs expanded with rapamycin on hepatic stellate cells (HSC), HSCs were co‑cultured with Tregs from rapamycin or phosphate‑buffered saline‑treated mice. It was found that rapamycin treatment led to a significant reduction in the number of Th17 cells and in the expression levels of ROR‑γt in the liver tissues. Simultaneously, the results of the present study showed a significant increase in the frequency of Tregs and a marked enhancement in the expression of forkhead/winged helix transcription factor P3 in the rapamycin‑treated mice. Furthermore, the Tregs in rapamycin‑treated mice had significantly higher suppressive effects, compared with the cells from mice treated with phospphate‑buffered saline. Consequently, rapamycin treatment prevented the development of CCl4-induced hepatic fibrosis, which was shown by its histological appearances. These results suggested that the immunosuppressive effect of rapamycin on liver fibrosis was associated with the suppression of hepatic

  13. Mesenchymal stem cells from the human umbilical cord ameliorate fulminant hepatic failure and increase survival in mice

    Institute of Scientific and Technical Information of China (English)

    Jin-Feng Yang; Hong-Cui Cao; Qiao-Ling Pan; Jiong Yu; Jun Li; Lan-Juan Li

    2015-01-01

    BACKGROUND:Cell therapy has been promising for various diseases. We investigated whether transplantation of human umbilical cord mesenchymal stem cells (hUCMSCs) has any therapeutic effects on D-galactosamine/lipopolysaccharide (GalN/LPS)-induced fulminant hepatic failure in mice. METHODS:hUCMSCs isolated from human umbilical cord were cultured and transplanted via the tail vein into severe combined immune deifciency mice with GalN/LPS-induced fulminant hepatic failure. After transplantation, the localiza-tion and differentiation of hUCMSCs in the injured livers were investigated by immunohistochemical and genetic analy-ses. The recovery of the injured livers was evaluated histologi-cally. The survival rate of experimental animals was analyzed by the Kaplan-Meier method and log-rank test. RESULTS:hUCMSCs expressed high levels of CD29, CD73, CD13, CD105 and CD90, but did not express CD31, CD79b, CD133, CD34, and CD45. Cultured hUCMSCs displayed adip-ogenic and osteogenic differentiation potential. Hematoxylin and eosin staining revealed that transplantation of hUCMSCs reduced hepatic necrosis and promoted liver regeneration. Transplantation of hUCMSCs prolonged the survival rate of mice with fulminant hepatic failure. Polymerase chain reaction for humanalu sequences showed the presence of human cells in mouse livers. Positive staining for human albumin, human alpha-fetoprotein and human cytokeratin 18 suggested the for-mation of hUCMSCs-derived hepatocyte-like cellsin vivo. CONCLUSIONS:hUCMSC was a potential candidate for stem cell based therapies. After transplantation, hUCMSCs partially repaired hepatic damage induced by GalN/LPS in mice. hUC-MSCs engrafted into the injured liver and differentiated into hepatocyte-like cells.

  14. Ameliorative effects of polyunsaturated fatty acids against palmitic acid-induced insulin resistance in L6 skeletal muscle cells

    Directory of Open Access Journals (Sweden)

    Sawada Keisuke

    2012-03-01

    Full Text Available Abstract Background Fatty acid-induced insulin resistance and impaired glucose uptake activity in muscle cells are fundamental events in the development of type 2 diabetes and hyperglycemia. There is an increasing demand for compounds including drugs and functional foods that can prevent myocellular insulin resistance. Methods In this study, we established a high-throughput assay to screen for compounds that can improve myocellular insulin resistance, which was based on a previously reported non-radioisotope 2-deoxyglucose (2DG uptake assay. Insulin-resistant muscle cells were prepared by treating rat L6 skeletal muscle cells with 750 μM palmitic acid for 14 h. Using the established assay, the impacts of several fatty acids on myocellular insulin resistance were determined. Results In normal L6 cells, treatment with saturated palmitic or stearic acid alone decreased 2DG uptake, whereas unsaturated fatty acids did not. Moreover, co-treatment with oleic acid canceled the palmitic acid-induced decrease in 2DG uptake activity. Using the developed assay with palmitic acid-induced insulin-resistant L6 cells, we determined the effects of other unsaturated fatty acids. We found that arachidonic, eicosapentaenoic and docosahexaenoic acids improved palmitic acid-decreased 2DG uptake at lower concentrations than the other unsaturated fatty acids, including oleic acid, as 10 μM arachidonic acid showed similar effects to 750 μM oleic acid. Conclusions We have found that polyunsaturated fatty acids, in particular arachidonic and eicosapentaenoic acids prevent palmitic acid-induced myocellular insulin resistance.

  15. Roles of the plasma membrane and the cell wall in the responses of plant cells to freezing.

    Science.gov (United States)

    Yamada, Tomoyoshi; Kuroda, Katsushi; Jitsuyama, Yutaka; Takezawa, Daisuke; Arakawa, Keita; Fujikawa, Seizo

    2002-09-01

    In an effort to clarify the responses of a wide range of plant cells to freezing, we examined the responses to freezing of the cells of chilling-sensitive and chilling-resistant tropical and subtropical plants. Among the cells of the plants that we examined, those of African violet ( Saintpaulia grotei Engl.) leaves were most chilling-sensitive, those of hypocotyls in mungbean [ Vigna radiata (L.) R. Wilcz.] seedlings were moderately chilling-sensitive, and those of orchid [ Paphiopedilum insigne (Wallich ex Lindl.) Pfitz.] leaves were chilling-resistant, when all were chilled at -2 degrees C. By contrast, all these plant cells were freezing-sensitive and suffered extensive damage when they were frozen at -2 degrees C. Cryo-scanning electron microscopy (Cryo-SEM) confirmed that, upon chilling at -2 degrees C, bo