Sample records for cell membrane amelioration

  1. Preliminary evidence for cell membrane amelioration in children with cystic fibrosis by 5-MTHF and vitamin B12 supplementation: a single arm trial.

    Directory of Open Access Journals (Sweden)

    Cinzia Scambi

    Full Text Available BACKGROUND: Cystic fibrosis (CF is one of the most common fatal autosomal recessive disorders in the Caucasian population caused by mutations of gene for the cystic fibrosis transmembrane conductance regulator (CFTR. New experimental therapeutic strategies for CF propose a diet supplementation to affect the plasma membrane fluidity and to modulate amplified inflammatory response. The objective of this study was to evaluate the efficacy of 5-methyltetrahydrofolate (5-MTHF and vitamin B12 supplementation for ameliorating cell plasma membrane features in pediatric patients with cystic fibrosis. METHODOLOGY AND PRINCIPAL FINDINGS: A single arm trial was conducted from April 2004 to March 2006 in an Italian CF care centre. 31 children with CF aged from 3 to 8 years old were enrolled. Exclusion criteria were diabetes, chronic infections of the airways and regular antibiotics intake. Children with CF were supplemented for 24 weeks with 5-methyltetrahydrofolate (5-MTHF, 7.5 mg /day and vitamin B12 (0.5 mg/day. Red blood cells (RBCs were used to investigate plasma membrane, since RBCs share lipid, protein composition and organization with other cell types. We evaluated RBCs membrane lipid composition, membrane protein oxidative damage, cation content, cation transport pathways, plasma and RBCs folate levels and plasma homocysteine levels at baseline and after 24 weeks of 5-MTHF and vitamin B12 supplementation. In CF children, 5-MTHF and vitamin B12 supplementation (i increased plasma and RBC folate levels; (ii decreased plasma homocysteine levels; (iii modified RBC membrane phospholipid fatty acid composition; (iv increased RBC K(+ content; (v reduced RBC membrane oxidative damage and HSP70 membrane association. CONCLUSION AND SIGNIFICANCE: 5-MTHF and vitamin B12 supplementation might ameliorate RBC membrane features of children with CF. TRIAL REGISTRATION: NCT00730509.

  2. Amelioration of painful crises in sickle cell disease by venesections. (United States)

    Rombos, Yannis; Tzanetea, Revekka; Kalotychou, Vassiliki; Konstantopoulos, Kostas; Simitzis, Spyros; Tassiopoulos, Thomas; Aessopos, Athanasios; Fessas, Phaedon


    Sickle cell disease patients who acquire iron deficiency may experience a degree of amelioration from painful crises in terms of frequency, severity, and duration. This observation prompted us to identify the potential utility of iron load reduction in the management of this disease. Thirteen sickle cell patients not ameliorated by conventional treatment entered a weekly venesection protocol. Hematological values and painful crises of all degrees of severity were recorded and compared to those of the last 12 months before venesection for each case separately ("historical controls"). A decrease was noted in the frequency and intensity of several types of painful crises. Reduction of iron load by venesection seems to be a simple, safe, side-effect-free, and efficient way of preventing and ameliorating to a large extent painful crises in sickle cell disease. The biological effects of venesection on other parameters of sickle cell disease remain to be determined.

  3. Membrane Cells for Brine Electrolysis. (United States)

    Tingle, M.


    Membrane cells were developed as alternatives to mercury and diaphragm cells for the electrolysis of brine. Compares the three types of cells, focusing on the advantages and disadvantages of membrane cells. (JN)

  4. Biological Fuel Cells and Membranes. (United States)

    Ghassemi, Zahra; Slaughter, Gymama


    Biofuel cells have been widely used to generate bioelectricity. Early biofuel cells employ a semi-permeable membrane to separate the anodic and cathodic compartments. The impact of different membrane materials and compositions has also been explored. Some membrane materials are employed strictly as membrane separators, while some have gained significant attention in the immobilization of enzymes or microorganisms within or behind the membrane at the electrode surface. The membrane material affects the transfer rate of the chemical species (e.g., fuel, oxygen molecules, and products) involved in the chemical reaction, which in turn has an impact on the performance of the biofuel cell. For enzymatic biofuel cells, Nafion, modified Nafion, and chitosan membranes have been used widely and continue to hold great promise in the long-term stability of enzymes and microorganisms encapsulated within them. This article provides a review of the most widely used membrane materials in the development of enzymatic and microbial biofuel cells.

  5. Proton exchange membrane fuel cells

    CERN Document Server

    Qi, Zhigang


    Preface Proton Exchange Membrane Fuel CellsFuel CellsTypes of Fuel CellsAdvantages of Fuel CellsProton Exchange Membrane Fuel CellsMembraneCatalystCatalyst LayerGas Diffusion MediumMicroporous LayerMembrane Electrode AssemblyPlateSingle CellStackSystemCell Voltage Monitoring Module (CVM)Fuel Supply Module (FSM)Air Supply Module (ASM)Exhaust Management Module (EMM)Heat Management Module (HMM)Water Management Module (WMM)Internal Power Supply Module (IPM)Power Conditioning Module (PCM)Communications Module (COM)Controls Module (CM)SummaryThermodynamics and KineticsTheoretical EfficiencyVoltagePo

  6. Cell Membrane Softening in Cancer Cells (United States)

    Schmidt, Sebastian; Händel, Chris; Käs, Josef

    Biomechanical properties are useful characteristics and regulators of the cell's state. Current research connects mechanical properties of the cytoskeleton to many cellular processes but does not investigate the biomechanics of the plasma membrane. We evaluated thermal fluctuations of giant plasma membrane vesicles, directly derived from the plasma membranes of primary breast and cervical cells and observed a lowered rigidity in the plasma membrane of malignant cells compared to non-malignant cells. To investigate the specific role of membrane rigidity changes, we treated two cell lines with the Acetyl-CoA carboxylase inhibitor Soraphen A. It changed the lipidome of cells and drastically increased membrane stiffness by up regulating short chained membrane lipids. These altered cells had a decreased motility in Boyden chamber assays. Our results indicate that the thermal fluctuations of the membrane, which are much smaller than the fluctuations driven by the cytoskeleton, can be modulated by the cell and have an impact on adhesion and motility.

  7. Coniferyl Aldehyde Ameliorates Radiation Intestine Injury via Endothelial Cell Survival

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Ye Ji; Jung, Myung Gu; Lee, Yoonjin; Lee, Haejune [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Lee, Yunsil [Ewha Woman' s Univ., Seoul (Korea, Republic of); Ko, Younggyu [Korea Univ., Seoul (Korea, Republic of)


    Cancer treatments related gastrointestinal toxicity has also been recognized as a significant economic burden. Especially, extensive apoptosis of microvascular endothelial cell of the lamina propria is the primary lesion initiating intestinal radiation damage after abdominal radiation therapy. Coniferyl aldehyde (CA) is phenolic compounds isolated from cork stoppers, and one of the major pyrolysis products of lignin. Shi H. was support for the empirical use of CA as a medicinal food for cardiovascular diseases. CA has positive effect in broad way but there is no consequence in radiation induced intestine damage. Here, we investigate effect of CA on small intestine after abdominal IR to mice in this study. In this study, CA increased the survival rate in C3H mice against 13.5 Gy abdominal IR. We found CA protects small intestine via preventing endothelial cell apoptosis and enhancing their angiogenic activity. CA also showed protective effect on crypt cell survival. Endothelial cell survival may affect crypt cell protection against IR. From this data, we concluded that CA is effective for protection against abdominal radiation injury. CA could ameliorate side-effect of radiation therapy.

  8. Brain microvascular endothelial cell transplantation ameliorates ischemic white matter damage. (United States)

    Puentes, Sandra; Kurachi, Masashi; Shibasaki, Koji; Naruse, Masae; Yoshimoto, Yuhei; Mikuni, Masahiko; Imai, Hideaki; Ishizaki, Yasuki


    Ischemic insults affecting the internal capsule result in sensory-motor disabilities which adversely affect the patient's life. Cerebral endothelial cells have been reported to exert a protective effect against brain damage, so the transplantation of healthy endothelial cells might have a beneficial effect on the outcome of ischemic brain damage. In this study, endothelin-1 (ET-1) was injected into the rat internal capsule to induce lacunar infarction. Seven days after ET-1 injection, microvascular endothelial cells (MVECs) were transplanted into the internal capsule. Meningeal cells or 0.2% bovine serum albumin-Hank's balanced salt solution were injected as controls. Two weeks later, the footprint test and histochemical analysis were performed. We found that MVEC transplantation improved the behavioral outcome based on recovery of hind-limb rotation angle (P<0.01) and induced remyelination (P<0.01) compared with the control groups. Also the inflammatory response was repressed by MVEC transplantation, judging from fewer ED-1-positive activated microglial cells in the MVEC-transplanted group than in the other groups. Elucidation of the mechanisms by which MVECs ameliorate ischemic damage of the white matter may provide important information for the development of effective therapies for white matter ischemia.

  9. Eggshell membrane powder ameliorates intestinal inflammation by facilitating the restitution of epithelial injury and alleviating microbial dysbiosis (United States)

    Jia, Huijuan; Hanate, Manaka; Aw, Wanping; Itoh, Hideomi; Saito, Kenji; Kobayashi, Shoko; Hachimura, Satoshi; Fukuda, Shinji; Tomita, Masaru; Hasebe, Yukio; Kato, Hisanori


    Gut microbiota is an essential factor in the shaping of intestinal immune system development and driving inflammation in inflammatory bowel disease (IBD). We report the effects and microbe-host interactions underlying an intervention using fine powder of eggshell membrane (ESM) against IBD. ESM attenuated lipopolysaccharide-induced inflammatory cytokine production and promoted the Caco-2 cell proliferation by up-regulating growth factors in vitro. In a murine model of dextran sodium sulphate-induced colitis, ESM significantly suppressed the disease activity index and colon shortening. These effects were associated with significant ameliorations of gene expressions of inflammatory mediators, intestinal epithelial cell proliferation, restitution-related factors and antimicrobial peptides. Multifaceted integrated omics analyses revealed improved levels of energy metabolism-related genes, proteins and metabolites. Concomitantly, cecal metagenomic information established an essential role of ESM in improving dysbiosis characterized by increasing the diversity of bacteria and decreasing absolute numbers of pathogenic bacteria such as Enterobacteriaceae and E. coli, as well as in the regulation of the expansion of Th17 cells by suppressing the overgrowth of segmented filamentous bacteria. Such modulations have functional effects on the host; i.e., repairing the epithelium, regulating energy requirements and eventually alleviating mucosal inflammation. These findings are first insights into ESM’s modulation of microbiota and IBD suppression, providing new perspectives on the prevention/treatment of IBD. PMID:28272447

  10. Eggshell membrane powder ameliorates intestinal inflammation by facilitating the restitution of epithelial injury and alleviating microbial dysbiosis. (United States)

    Jia, Huijuan; Hanate, Manaka; Aw, Wanping; Itoh, Hideomi; Saito, Kenji; Kobayashi, Shoko; Hachimura, Satoshi; Fukuda, Shinji; Tomita, Masaru; Hasebe, Yukio; Kato, Hisanori


    Gut microbiota is an essential factor in the shaping of intestinal immune system development and driving inflammation in inflammatory bowel disease (IBD). We report the effects and microbe-host interactions underlying an intervention using fine powder of eggshell membrane (ESM) against IBD. ESM attenuated lipopolysaccharide-induced inflammatory cytokine production and promoted the Caco-2 cell proliferation by up-regulating growth factors in vitro. In a murine model of dextran sodium sulphate-induced colitis, ESM significantly suppressed the disease activity index and colon shortening. These effects were associated with significant ameliorations of gene expressions of inflammatory mediators, intestinal epithelial cell proliferation, restitution-related factors and antimicrobial peptides. Multifaceted integrated omics analyses revealed improved levels of energy metabolism-related genes, proteins and metabolites. Concomitantly, cecal metagenomic information established an essential role of ESM in improving dysbiosis characterized by increasing the diversity of bacteria and decreasing absolute numbers of pathogenic bacteria such as Enterobacteriaceae and E. coli, as well as in the regulation of the expansion of Th17 cells by suppressing the overgrowth of segmented filamentous bacteria. Such modulations have functional effects on the host; i.e., repairing the epithelium, regulating energy requirements and eventually alleviating mucosal inflammation. These findings are first insights into ESM's modulation of microbiota and IBD suppression, providing new perspectives on the prevention/treatment of IBD.

  11. Model cell membranes

    DEFF Research Database (Denmark)

    Günther-Pomorski, Thomas; Nylander, Tommy; Cardenas Gomez, Marite


    The high complexity of biological membranes has motivated the development and application of a wide range of model membrane systems to study biochemical and biophysical aspects of membranes in situ under well defined conditions. The aim is to provide fundamental understanding of processes control...


    DEFF Research Database (Denmark)


    A method for preparing polybenzimidazole or polybenzimidazole blend membranes and fabricating gas diffusion electrodes and membrane-electrode assemblies is provided for a high temperature polymer electrolyte membrane fuel cell. Blend polymer electrolyte membranes based on PBI and various...... thermoplastic polymers for high temperature polymer electrolyte fuel cells have also been developed. Miscible blends are used for solution casting of polymer membranes (solid electrolytes). High conductivity and enhanced mechanical strength were obtained for the blend polymer solid electrolytes...... electrolyte membrane by hot-press. The fuel cell can operate at temperatures up to at least 200 °C with hydrogen-rich fuel containing high ratios of carbon monoxide such as 3 vol% carbon monoxide or more, compared to the carbon monoxide tolerance of 10-20 ppm level for Nafion$m(3)-based polymer electrolyte...

  13. Transcranial amelioration of inflammation and cell death after brain injury (United States)

    Roth, Theodore L.; Nayak, Debasis; Atanasijevic, Tatjana; Koretsky, Alan P.; Latour, Lawrence L.; McGavern, Dorian B.


    Traumatic brain injury (TBI) is increasingly appreciated to be highly prevalent and deleterious to neurological function. At present, no effective treatment options are available, and little is known about the complex cellular response to TBI during its acute phase. To gain insights into TBI pathogenesis, we developed a novel murine closed-skull brain injury model that mirrors some pathological features associated with mild TBI in humans and used long-term intravital microscopy to study the dynamics of the injury response from its inception. Here we demonstrate that acute brain injury induces vascular damage, meningeal cell death, and the generation of reactive oxygen species (ROS) that ultimately breach the glial limitans and promote spread of the injury into the parenchyma. In response, the brain elicits a neuroprotective, purinergic-receptor-dependent inflammatory response characterized by meningeal neutrophil swarming and microglial reconstitution of the damaged glial limitans. We also show that the skull bone is permeable to small-molecular-weight compounds, and use this delivery route to modulate inflammation and therapeutically ameliorate brain injury through transcranial administration of the ROS scavenger, glutathione. Our results shed light on the acute cellular response to TBI and provide a means to locally deliver therapeutic compounds to the site of injury.

  14. The Molecules of the Cell Membrane. (United States)

    Bretscher, Mark S.


    Cell membrane molecules form a simple, two-dimensional liquid controlling what enters and leaves the cell. Discusses cell membrane molecular architecture, plasma membranes, epithelial cells, cycles of endocytosis and exocytosis, and other topics. Indicates that some cells internalize, then recycle, membrane area equivalent to their entire surface…

  15. Transplanted bone marrow stromal cells protect neurovascular units and ameliorate brain damage in stroke-prone spontaneously hypertensive rats. (United States)

    Ito, Masaki; Kuroda, Satoshi; Sugiyama, Taku; Maruichi, Katsuhiko; Kawabori, Masahito; Nakayama, Naoki; Houkin, Kiyohiro; Iwasaki, Yoshinobu


    This study was aimed to assess whether bone marrow stromal cells (BMSC) could ameliorate brain damage when transplanted into the brain of stroke-prone spontaneously hypertensive rats (SHR-SP). The BMSC or vehicle was stereotactically engrafted into the striatum of male SHR-SP at 8 weeks of age. Daily loading with 0.5% NaCl-containing water was started from 9 weeks. MRIs and histological analysis were performed at 11 and 12 weeks, respectively. Wistar-Kyoto rats were employed as the control. As a result, T2-weighted images demonstrated neither cerebral infarct nor intracerebral hemorrhage, but identified abnormal dilatation of the lateral ventricles in SHR-SP. HE staining demonstrated selective neuronal injury in their neocortices. Double fluorescence immunohistochemistry revealed that they had a decreased density of the collagen IV-positive microvessels and a decreased number of the microvessels with normal integrity between basement membrane and astrocyte end-feet. BMSC transplantation significantly ameliorated the ventricular dilatation and the breakdown of neurovascular integrity. These findings strongly suggest that long-lasting hypertension may primarily damage neurovascular integrity and neurons, leading to tissue atrophy and ventricular dilatation prior to the occurrence of cerebral stroke. The BMSC may ameliorate these damaging processes when directly transplanted into the brain, opening the possibility of prophylactic medicine to prevent microvascular and parenchymal-damaging processes in hypertensive patients at higher risk for cerebral stroke.

  16. Ganoderma atrum Polysaccharide Ameliorates Hyperglycemia-Induced Endothelial Cell Death via a Mitochondria-ROS Pathway. (United States)

    Li, Wen-Juan; Nie, Shao-Ping; Yao, Yu-Fei; Liu, Xiao-Zhen; Shao, Deng-Yin; Gong, De-Ming; Cui, Steve W; Phillips, Glyn O; He, Ming; Xie, Ming-Yong


    The aim of the present study was to examine the role of Ganoderma atrum polysaccharide (PSG-1) in reactive oxygen species (ROS) generation and mitochondrial function in hyperglycemia-induced angiopathy. In this work, ROS scavenger, oxidizing agent tert-butylhydroperoxide (tBH), mitochondrial permeability transition pore (mPTP) blockers, and caspase inhibition are used to investigate whether PSG-1 may promote survival of human umbilical vein cells (HUVECs) through preventing the overproduction of ROS and mitochondrial dysfunction. Experimental results show that exposure of HUVECs to 35.5 mmol/L glucose increases the proportion of cells undergoing apoptosis. PSG-1, mPTP blocker, or caspase inhibition can reduce apoptosis and ROS generation. PSG-1 also increases mitochondrial Bcl-2 protein formation and mitochondrial membrane potential (ΔΨm) but inhibits Bax translocation, cytochrome c release, and caspase activation. In summary, vascular protection of PSG-1 can be mediated by a mitochondria-ROS pathway. ROS generation and mPTP induction are critical for high glucose-mediated apoptosis. PSG-1 ameliorates endothelial dysfunction by inhibiting oxidative stress and subsequent mitochondrial dysfunction.

  17. Dielectric breakdown of cell membranes. (United States)

    Zimmermann, U; Pilwat, G; Riemann, F


    With human and bovine red blood cells and Escherichia coli B, dielectric breakdown of cell membranes could be demonstrated using a Coulter Counter (AEG-Telefunken, Ulm, West Germany) with a hydrodynamic focusing orifice. In making measurements of the size distributions of red blood cells and bacteria versus increasing electric field strength and plotting the pulse heights versus the electric field strength, a sharp bend in the otherwise linear curve is observed due to the dielectric breakdown of the membranes. Solution of Laplace's equation for the electric field generated yields a value of about 1.6 V for the membrane potential at which dielectric breakdown occurs with modal volumes of red blood cells and bacteria. The same value is also calculated for red blood cells by applying the capacitor spring model of Crowley (1973. Biophys. J. 13:711). The corresponding electric field strength generated in the membrane at breakdown is of the order of 4 . 10(6) V/cm and, therefore, comparable with the breakdown voltages for bilayers of most oils. The critical detector voltage for breakdown depends on the volume of the cells. The volume-dependence predicted by Laplace theory with the assumption that the potential generated across the membrane is independent of volume, could be verified experimentally. Due to dielectric breakdown the red blood cells lose hemoglobin completely. This phenomenon was used to study dielectric breakdown of red blood cells in a homogeneous electric field between two flat platinum electrodes. The electric field was applied by discharging a high voltage storage capacitor via a spark gap. The calculated value of the membrane potential generated to produce dielectric breakdown in the homogeneous field is of the same order as found by means of the Coulter Counter. This indicates that mechanical rupture of the red blood cells by the hydrodynamic forces in the orifice of the Coulter Counter could also be excluded as a hemolysing mechanism. The detector

  18. Corrugated Membrane Fuel Cell Structures

    Energy Technology Data Exchange (ETDEWEB)

    Grot, Stephen [President, Ion Power Inc.


    One of the most challenging aspects of traditional PEM fuel cell stacks is the difficulty achieving the platinum catalyst utilization target of 0.2 gPt/kWe set forth by the DOE. Good catalyst utilization can be achieved with state-of-the-art catalyst coated membranes (CCM) when low catalyst loadings (<0.3 mg/cm2) are used at a low current. However, when low platinum loadings are used, the peak power density is lower than conventional loadings, requiring a larger total active area and a larger bipolar plate. This results in a lower overall stack power density not meeting the DOE target. By corrugating the fuel cell membrane electrode structure, Ion Power?s goal is to realize both the Pt utilization targets as well as the power density targets of the DOE. This will be achieved by demonstrating a fuel cell single cell (50 cm2) with a twofold increase in the membrane active area over the geometric area of the cell by corrugating the MEA structure. The corrugating structure must be able to demonstrate the target properties of < 10 mOhm-cm2 electrical resistance at > 20 psi compressive strength over the active area, in combination with offering at least 80% of power density that can be achieved by using the same MEA in a flat plate structure. Corrugated membrane fuel cell structures also have the potential to meet DOE power density targets by essentially packaging more membrane area into the same fuel cell volume as compared to conventional stack constructions.

  19. Amniotic membrane extract ameliorates benzalkonium chloride-induced dry eye in a murine model. (United States)

    Xiao, Xinye; Luo, Pingping; Zhao, Hui; Chen, Jingyao; He, Hui; Xu, Yuxue; Lin, Zhirong; Zhou, Yueping; Xu, Jianjiang; Liu, Zuguo


    Human amniotic membrane (AM) is avascular but contains various beneficial bioactive factors, its extract (AE) is also effective in treating many ocular surface disorders. In this study, we for the first time evaluated the therapeutic effects of AE on dry eye induced by benzalkonium chloride in a BALB/c mouse model. Topical application of AE (1.5 and 3 μg/eye/day) resulted in significantly longer tear break-up time on Day 3 and 6, lower fluorescein staining scores on Day 3, and lower inflammatory index on Day 6. AE reduced corneal epithelial K10 expression, inflammatory infiltration, and levels of TNF-α, IL-1β and IL-6 in BAC treated mice than that in the control mice. Moreover, decreased TUNEL positive cells in cornea and increased goblet cells in conjunctiva were also observed in AE treated corneas. Finally, AE induced more Ki-67 positive cells in corneal epithelium of dry eye mouse. Taken together, our data provide further support for BAC induced dry eye model as a valuable for dry eye study and suggest a great potential for AE as a therapeutic agent in the clinical treatment of dry eye.

  20. Mesenchymal Stem Cell-Like Cells Derived from Mouse Induced Pluripotent Stem Cells Ameliorate Diabetic Polyneuropathy in Mice

    Directory of Open Access Journals (Sweden)

    Tatsuhito Himeno


    Full Text Available Background. Although pathological involvements of diabetic polyneuropathy (DPN have been reported, no dependable treatment of DPN has been achieved. Recent studies have shown that mesenchymal stem cells (MSCs ameliorate DPN. Here we demonstrate a differentiation of induced pluripotent stem cells (iPSCs into MSC-like cells and investigate the therapeutic potential of the MSC-like cell transplantation on DPN. Research Design and Methods. For induction into MSC-like cells, GFP-expressing iPSCs were cultured with retinoic acid, followed by adherent culture for 4 months. The MSC-like cells, characterized with flow cytometry and RT-PCR analyses, were transplanted into muscles of streptozotocin-diabetic mice. Three weeks after the transplantation, neurophysiological functions were evaluated. Results. The MSC-like cells expressed MSC markers and angiogenic/neurotrophic factors. The transplanted cells resided in hindlimb muscles and peripheral nerves, and some transplanted cells expressed S100β in the nerves. Impairments of current perception thresholds, nerve conduction velocities, and plantar skin blood flow in the diabetic mice were ameliorated in limbs with the transplanted cells. The capillary number-to-muscle fiber ratios were increased in transplanted hindlimbs of diabetic mice. Conclusions. These results suggest that MSC-like cell transplantation might have therapeutic effects on DPN through secreting angiogenic/neurotrophic factors and differentiation to Schwann cell-like cells.

  1. Erythrocytes Membrane Alterations Reflecting Liver Damage in CCl₄-Induced Cirrhotic Rats: The Ameliorative Effect of Naltrexone

    Directory of Open Access Journals (Sweden)

    Fatemeh Sarhadi Kholari


    Full Text Available Cirrhosis is the consequence of chronic liver disease. Deleterious effects of oxidative stress on hepatocytes may be reflected in the erythrocyte membrane. Naltrexone (NTX has been shown to attenuate hepatocellular injury in fibrotic animal models. The aim of this study was to investigate the progressive effect of CCl4 on the liver and whether the improvement of liver cirrhosis can be monitored through alterations in the erythrocyte membrane. In this study, 84 male Wistar rats were divided into 4 groups and received reagents (i.p. as follows: 1- CCl₄, 2- NTX + CCl₄, 3- Mineral Oil (M, and 4- NTX + M. After 2, 6 and 8 weeks, the blood and liver tissue samples were collected. Plasma enzyme activities, the content of erythrocyte GSH and some membrane compositions, including protein carbonyl, protein sulfhydryl, and malondialdehyde were assessed. After 6 and 8 weeks, plasma enzyme activities and the content of protein carbonyl were higher in CCl4 group significantly, as compared to other groups (P<0.001. NTX significantly diminished protein carbonyl and plasma enzyme activities (P<0.001. GSH did not change until the 6th week. However, CCl4+NTX increased it significantly as compared to CCl₄ group (P<0.05. Protein sulfhydryl showed changes in NTX+CCl₄ group which indicated a significant increase in protein sulfhydryl content in a 6th week compared to CCl4 group (P<0.05. MDA did not show any significant alteration. CCl₄-induced cirrhosis is accompanied by increased content of oxidative stress markers, especially protein carbonyl of RBC membrane and plasma enzyme activities. This study shows that the progression of liver cirrhosis and the ameliorative effect of NTX can be followed through alterations of these markers.

  2. Paeoniflorin Ameliorates Experimental Autoimmune Encephalomyelitis via Inhibition of Dendritic Cell Function and Th17 Cell Differentiation (United States)

    Zhang, Han; Qi, Yuanyuan; Yuan, Yuanyang; Cai, Li; Xu, Haiyan; Zhang, Lili; Su, Bing; Nie, Hong


    Paeoniflorin (PF) is a monoterpene glycoside and exhibits multiple effects, including anti-inflammation and immunoregulation. To date, the effect of PF on multiple sclerosis (MS) has not been investigated. In this study, we investigated the effect of PF in experimental autoimmune encephalomyelitis (EAE), an animal model for MS. After administered with PF, the onset and clinical symptoms of EAE mice were significantly ameliorated, and the number of Th17 cells infiltrated in central nervous system (CNS) and spleen was also dramatically decreased. Instead of inhibiting the differentiation of Th17 cells directly, PF influenced Th17 cells via suppressing the expression of costimulatory molecules and the production of interlukin-6 (IL-6) of dendritic cells (DCs) in vivo and in vitro, which may be attributable to the inhibition of IKK/NF-κB and JNK signaling pathway. When naïve CD4+ T cells were co-cultured with PF-treated dendritic cells under Th17-polarizing condition, the percentage of Th17 cells and the phosphorylation of STAT3 were decreased, as well as the mRNA levels of IL-17, RORα, and RORγt. Our study provided insights into the role of PF as a unique therapeutic agent for the treatment of multiple sclerosis and illustrated the underlying mechanism of PF from a new perspective. PMID:28165507

  3. Chemical degradation mechanisms of membranes for alkaline membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Choe, Yoong-Kee [National Institute of Advanced Industrial Science and Technology, Umezono 1-1-1, Tsukuba (Japan); Henson, Neil J.; Kim, Yu Seung [Los Alamos National Laboratory, Los Alamos, NM (United States)


    Chemical degradation mechanisms of membranes for alkaline membrane fuel cells have been investigated using density functional theory (DFT). We have elucidated that the aryl-ether moiety of membranes is one of the weakest site against attack of hydroxide ions. The results of DFT calculations for hydroxide initiated aryl-ether cleavage indicated that the aryl-ether cleavage occurred prior to degradation of cationic functional group. Such a weak nature of the aryl-ether group arises from the electron deficiency of the aryl group as well as the low bond dissociation energy. The DFT results suggests that removal of the aryl-ether group in the membrane should enhance the stability of membranes under alkaline conditions. In fact, an ether fee poly(phenylene) membrane exhibits excellent stability against the attack from hydroxide ions.

  4. Bone marrow mesenchymal stem cells ameliorate inflammatory factor-induced dysfunction of INS-1 cells on chip. (United States)

    Sun, Yu; Yao, Zhina; Lin, Peng; Hou, Xinguo; Chen, Li


    Using a microfluidic chip, we have investigated whether bone marrow mesenchymal stem cells (BM-MSCs) could ameliorate IL-1β/IFN-γ-induced dysfunction of INS-1 cells. BM-MSCs were obtained from diabetes mellitus patients and their cell surface antigen expression profiles were analyzed by flow cytometric. INS-1 cells were cocultured with BM-MSCs on a microfluidic chip with persistent perfusion of medium containing 1 ng/mL IL-1β and 2.5 U/mL IFN-γ for 72 h. BM-MSCs could partially rescue INS-1 cells from cytokine-induced dysfunction and ameliorate the expression of insulin and PDX-1 gene in INS-1 cells. Thus BM-MSCs can be viewed as a promising stem cell source to depress inflammatory factor-induced dysfunction of pancreatic β cells in diabetic patients.

  5. In-membrane micro fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Omosebi, Ayokunle; Besser, Ronald


    An in-membrane micro fuel cell comprises an electrically-insulating membrane that is permissive to the flow of cations, such as protons, and a pair of electrodes deposited on channels formed in the membrane. The channels are arranged as conduits for fluids, and define a membrane ridge between the channels. The electrodes are porous and include catalysts for promoting the liberation of a proton and an electron from a chemical species and/or or the recombination of a proton and an electron with a chemical specie. The fuel cell may be provided a biosensor, an electrochemical sensor, a microfluidic device, or other microscale devices fabricated in the fuel cell membrane.

  6. [Germ cell membrane lipids in spermatogenesis]. (United States)

    Wang, Ting; Shi, Xiao; Quan, Song


    Spermatogenesis is a complex developmental process in which a diploid progenitor germ cell transforms into highly specialized spermatozoa. During spermatogenesis, membrane remodeling takes place, and cell membrane permeability and liquidity undergo phase-specific changes, which are all associated with the alteration of membrane lipids. Lipids are important components of the germ cell membrane, whose volume and ratio fluctuate in different phases of spermatogenesis. Abnormal lipid metabolism can cause spermatogenic dysfunction and consequently male infertility. Germ cell membrane lipids are mainly composed of cholesterol, phospholipids and glycolipids, which play critical roles in cell adhesion and signal transduction during spermatogenesis. An insight into the correlation of membrane lipids with spermatogenesis helps us to better understand the mechanisms of spermatogenesis and provide new approaches to the diagnosis and treatment of male infertility.

  7. Polymer electrolyte membrane assembly for fuel cells (United States)

    Yen, Shiao-Ping S. (Inventor); Kindler, Andrew (Inventor); Yavrouian, Andre (Inventor); Halpert, Gerald (Inventor)


    An electrolyte membrane for use in a fuel cell can contain sulfonated polyphenylether sulfones. The membrane can contain a first sulfonated polyphenylether sulfone and a second sulfonated polyphenylether sulfone, wherein the first sulfonated polyphenylether and the second sulfonated polyphenylether sulfone have equivalent weights greater than about 560, and the first sulfonated polyphenylether and the second sulfonated polyphenylether sulfone also have different equivalent weights. Also, a membrane for use in a fuel cell can contain a sulfonated polyphenylether sulfone and an unsulfonated polyphenylether sulfone. Methods for manufacturing a membrane electrode assemblies for use in fuel cells can include roughening a membrane surface. Electrodes and methods for fabricating such electrodes for use in a chemical fuel cell can include sintering an electrode. Such membranes and electrodes can be assembled into chemical fuel cells.

  8. Advanced composite polymer electrolyte fuel cell membranes

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, M.S.; Zawodzinski, T.A.; Gottesfeld, S.; Kolde, J.A.; Bahar, B.


    A new type of reinforced composite perfluorinated polymer electrolyte membrane, GORE-SELECT{trademark} (W.L. Gore & Assoc.), is characterized and tested for fuel cell applications. Very thin membranes (5-20 {mu}m thick) are available. The combination of reinforcement and thinness provides high membrane, conductances (80 S/cm{sup 2} for a 12 {mu}m thick membrane at 25{degrees}C) and improved water distribution in the operating fuel cell without sacrificing longevity or durability. In contrast to nonreinforced perfluorinated membranes, the x-y dimensions of the GORE-SELECT membranes are relatively unaffected by the hydration state. This feature may be important from the viewpoints of membrane/electrode interface stability and fuel cell manufacturability.

  9. Fuel cell and membrane therefore

    Energy Technology Data Exchange (ETDEWEB)

    Aindow, Tai-Tsui


    A fuel cell includes first and second flow field plates, and an anode electrode and a cathode electrode between the flow field plates. A polymer electrolyte membrane (PEM) is arranged between the electrodes. At least one of the flow field plates influences, at least in part, an in-plane anisotropic physical condition of the PEM that varies in magnitude between a high value direction and a low value direction. The PEM has an in-plane physical property that varies in magnitude between a high value direction and a low value direction. The PEM is oriented with its high value direction substantially aligned with the high value direction of the flow field plate.

  10. Amelioration of experimental autoimmune encephalomyelitis through transplantation of placental derived mesenchymal stem cells (United States)

    Jiang, Hong; Zhang, Yuanyuan; Tian, Kewei; Wang, Beibei; Han, Shu


    Placental derived mesenchymal stem cells (PMSCs) have been suggested as a possible source of cells to treat multiple sclerosis (MS) due to their immunomodulatory functions, lack of ethical concerns, and potential to differentiate into neurons and oligodendrocytes. To investigate whether PMSCs share similar characteristics with embryonic mesenchymal stem cells (EMSCs), and if transplanted PMSCs have the ability to integrate and replace degenerated neural cells, we transplanted rat PMSCs and EMSCs into the central nervous system (CNS) of Lewis rats with experimental autoimmune encephalomyelitis (EAE), an animal model of MS. Our findings demonstrated that transplanted PMSCs, similar to EMSCs, were effective in decreasing infiltrating inflammatory cells, preserving axons, and ameliorating demyelination, thereby improving the neurological functions of animals. Moreover, both PMSCs and EMSCs had the ability to migrate into inflamed tissues and express neural–glial lineage markers. These findings suggest that PMSCs may replace EMSCs as a source of cells in MS stem cell therapy. PMID:28186117

  11. Antigen-activated dendritic cells ameliorate influenza A infections (United States)

    Boonnak, Kobporn; Vogel, Leatrice; Orandle, Marlene; Zimmerman, Daniel; Talor, Eyal; Subbarao, Kanta


    Influenza A viruses cause significant morbidity and mortality worldwide. There is a need for alternative or adjunct therapies, as resistance to currently used antiviral drugs is emerging rapidly. We tested ligand epitope antigen presentation system (LEAPS) technology as a new immune-based treatment for influenza virus infection in a mouse model. Influenza-J-LEAPS peptides were synthesized by conjugating the binding ligand derived from the β2-microglobulin chain of the human MHC class I molecule (J-LEAPS) with 15 to 30 amino acid–long peptides derived from influenza virus NP, M, or HA proteins. DCs were stimulated with influenza-J-LEAPS peptides (influenza-J-LEAPS) and injected intravenously into infected mice. Antigen-specific LEAPS-stimulated DCs were effective in reducing influenza virus replication in the lungs and enhancing survival of infected animals. Additionally, they augmented influenza-specific T cell responses in the lungs and reduced the severity of disease by limiting excessive cytokine responses, which are known to contribute to morbidity and mortality following influenza virus infection. Our data demonstrate that influenza-J-LEAPS–pulsed DCs reduce virus replication in the lungs, enhance survival, and modulate the protective immune responses that eliminate the virus while preventing excessive cytokines that could injure the host. This approach shows promise as an adjunct to antiviral treatment of influenza virus infections. PMID:23934125

  12. Interaction of Defensins with Model Cell Membranes (United States)

    Sanders, Lori K.; Schmidt, Nathan W.; Yang, Lihua; Mishra, Abhijit; Gordon, Vernita D.; Selsted, Michael E.; Wong, Gerard C. L.


    Antimicrobial peptides (AMPs) comprise a key component of innate immunity for a wide range of multicellular organisms. For many AMPs, activity comes from their ability to selectively disrupt and lyse bacterial cell membranes. There are a number of proposed models for this action, but the detailed molecular mechanism of selective membrane permeation remains unclear. Theta defensins are circularized peptides with a high degree of selectivity. We investigate the interaction of model bacterial and eukaryotic cell membranes with theta defensins RTD-1, BTD-7, and compare them to protegrin PG-1, a prototypical AMP, using synchrotron small angle x-ray scattering (SAXS). The relationship between membrane composition and peptide induced changes in membrane curvature and topology is examined. By comparing the membrane phase behavior induced by these different peptides we will discuss the importance of amino acid composition and placement on membrane rearrangement.

  13. Anion permselective membrane. [For redox fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, S.S.; Hodgdon, R.B.


    Experimental anion permeselective membranes were improved and characterized for use as separators in a chemical redox, power storage cell being developed at the NASA Lewis Research Center. The goal of minimal Fe/sup +3/ ion transfer was achieved for each candidate membrane system. Minimal membrane resistivity was demonstrated by reduction of film thickness using synthetic backing materials but usefulness of thin membranes was limited by the scarcity of compatible fabrics. The most durable and useful backing fabrics were modacrylics. One membrane, a copolymer of 4 vinylpyridine and vinyl benzylchloride was outstanding in overall electrochemical and physical properties. Long term (1000 hrs) membrane chemical and thermal durability in redox environment was shown by three candidate polymers and two membranes. The remainder had good durability at ambient temperature. Manufacturing capability was demonstrated for large scale production of membrane sheets 5.5 ft/sup 2/ in area for two candidate systems.

  14. Membrane alterations in irreversibly sickled cells: hemoglobin--membrane interaction. (United States)

    Lessin, L S; Kurantsin-Mills, J; Wallas, C; Weems, H


    Irreversibly sickled cells (ISCs) are sickle erythrocytes which retain bipolar elongated shapes despite reoxygenation and owe their biophysical abnormalities to acquired membrane alterations. Freeze-etched membranes both of ISCs produced in vitro and ISCs isolated in vivo reveal microbodies fixed to the internal (PS) surface which obscure spectrin filaments. Intramembranous particles (IMPs) on the intramembrane (PF) surface aggregate over regions of subsurface microbodies. Electron microscopy of diaminobenzidine-treated of ISC ghosts show the microbodies to contain hemoglobin and/or hemoglobin derivatives. Scanning electron microscopy and freeze-etching demonstrate that membrane--hemoglobin S interaction in ISCs enhances the membrane loss by microspherulation. Membrane-bound hemoglobin is five times greater in in vivo ISCs than non-ISCs, and increases during ISC production, parallelling depletion of adenosine triphosphate. Polyacrylamide gel electrophoresis of ISC membranes shows the presence of high-molecular-weight heteropolymers in the pre--band 1 region, a decrease in band 4.1 and an increase in bands 7, 8, and globin. The role of cross-linked membrane protein polymers in the generation of ISCs is discussed and is synthesized in terms of a unified concept for the determinants of the genesis of ISCs.

  15. Mesenchymal stem cell transplantation ameliorates motor function deterioration of spinocerebellar ataxia by rescuing cerebellar Purkinje cells

    Directory of Open Access Journals (Sweden)

    Ma Wei-Hsien


    Full Text Available Abstract Background Spinocerebellar ataxia (SCA refers to a disease entity in which polyglutamine aggregates are over-produced in Purkinje cells (PCs of the cerebellum as well as other neurons in the central nervous system, and the formation of intracellular polyglutamine aggregates result in the loss of neurons as well as deterioration of motor functions. So far there is no effective neuroprotective treatment for this debilitating disease although numerous efforts have been made. Mesenchymal stem cells (MSCs possess multi-lineage differentiation potentials as well as immuno-modulatory properties, and are theoretically good candidates for SCA treatment. The purpose of this study is to investigate whether transplantation of human MSCs (hMSCs can rescue cerebellar PCs and ameliorate motor function deterioration in SCA in a pre-clinical animal model. Method Transgenic mice bearing poly-glutamine mutation in ataxin-2 gene (C57BL/6J SCA2 transgenic mice were serially transplanted with hMSCs intravenously or intracranially before and after the onset of motor function loss. Motor function of mice was evaluated by an accelerating protocol of rotarod test every 8 weeks. Immunohistochemical stain of whole brain sections was adopted to demonstrate the neuroprotective effect of hMSC transplantation on cerebellar PCs and engraftment of hMSCs into mice brain. Results Intravenous transplantation of hMSCs effectively improved rotarod performance of SCA2 transgenic mice and delayed the onset of motor function deterioration; while intracranial transplantation failed to achieve such neuroprotective effect. Immunohistochemistry revealed that intravenous transplantation was more effective in the preservation of the survival of cerebellar PCs and engraftment of hMSCs than intracranial injection, which was compatible to rotarod performance of transplanted mice. Conclusion Intravenous transplantation of hMSCs can indeed delay the onset as well as improve the motor

  16. AMIGO2 modulates T cell functions and its deficiency in mice ameliorates experimental autoimmune encephalomyelitis. (United States)

    Li, Zhilin; Khan, Mohd Moin; Kuja-Panula, Juha; Wang, Hongyun; Chen, Yu; Guo, Deyin; Chen, Zhi Jane; Lahesmaa, Riitta; Rauvala, Heikki; Tian, Li


    The immune function of AMIGO2 is currently unknown. Here, we revealed novel roles of AMIGO2 in modulating T-cell functions and EAE using Amigo2-knockout (AMG2KO) mice. Amigo2 was abundantly expressed by murine T helper (Th) cells. Its deficiency impaired transplanted T-cell infiltration into the secondary lymphoid organs and dampened Th-cell activation, but promoted splenic Th-cell proliferation and abundancy therein. AMG2KO Th cells had respectively elevated T-bet in Th1- and GATA-3 in Th2-lineage during early Th-cell differentiation, accompanied with increased IFN-γ and IL-10 but decreased IL-17A production. AMG2KO mice exhibited ameliorated EAE, dampened spinal T-cell accumulation, decreased serum IL-17A levels and enhanced splenic IL-10 production. Adoptive transfer of encephalitogenic AMG2KO T cells induced milder EAE and dampened spinal Th-cell accumulation and Tnf expression. Mechanistically, Amigo2-overexpression in 293T cells dampened NF-kB transcriptional activity, while Amigo2-deficiency enhanced Akt but suppressed GSK-3β phosphorylation and promoted nuclear translocations of NF-kB and NFAT1 in Th-cells. Collectively, our data demonstrate that AMIGO2 is important in regulating T-cell functions and EAE, and may be harnessed as a potential therapeutic target for multiple sclerosis.

  17. Tamarind seed coat ameliorates fluoride induced cytotoxicity, oxidative stress, mitochondrial dysfunction and apoptosis in A549 cells. (United States)

    Ameeramja, Jaishabanu; Panneerselvam, Lakshmikanthan; Govindarajan, Vimal; Jeyachandran, Sivakamavalli; Baskaralingam, Vaseeharan; Perumal, Ekambaram


    Fluoride (F) is an environmental contaminant and industrial pollutant. Molecular mechanisms remain unclear in F induced pulmonary toxicity even after numerous studies. Tamarind fruits act as defluoridating agents, but no study was conducted in in vitro systems. Hence, we aimed to assess the ameliorative impact of the tamarind seed coat extract (TSCE) against F toxicity utilizing lung epithelial cells, A549. Cells were exposed to sodium fluoride (NaF-5 mM) alone and in combination with TSCE (750 ng/ml) or Vitamin C (positive control) for 24 h and analyzed for F content, intracellular calcium ([Ca(2+)]i) level, oxidative stress, mitochondrial integrity and apoptotic markers. TSCE treatment prevented the F induced alterations in [Ca(2+)]i overload, F content, oxidant (reactive oxygen species generation, lipid peroxidation, protein carbonyl content and nitric oxide) and antioxidant (superoxide dismutase, catalase, glutathione peroxidase and glutathione) parameters. Further, TSCE modulates F activated changes in mitochondrial membrane potential, permeability transition pore opening, cytochrome-C release, Bax/Bcl-2 ratio, caspase-3 and PARP-1 expressions. In conclusion, our study demonstrated that TSCE as a potential protective agent against F toxicity, which can be utilized as a neutraceutical.

  18. The membrane disordering effect of ethanol on neural crest cells in vitro and the protective role of GM1 ganglioside. (United States)

    Chen, S Y; Yang, B; Jacobson, K; Sulik, K K


    The teratogenic effect of ethanol appears to be related to excessive cell death in selected cell populations including craniofacial neural crest. Because there is a large body of evidence suggesting that a primary site of action of ethanol is at the membrane level, the current study was designed to examine and attempt to ameliorate ethanol-induced neural crest cell membrane changes that proceed cell death. To this end, neural crest cells were grown as primary cultures from mouse cranial neural tube be explants. In these cultured cells, the relationships between changes in membrane lipid lateral mobility (a measure of membrane fluidity) as determined using the technique of fluorescence recovery after photobleaching (FRAP), ethanol-induced cell death, and the protective role of GM1 ganglioside were examined. A dose-response study showed that treatment with 50, 100, 150, or 200 mM ethanol respectively, for 24 h was positively correlated with membrane lipid lateral mobility and negatively correlated with cell viability. Pre- or co-treatment of the cells with GM1 ganglioside diminished the ethanol-induced increases in membrane fluidity and decreases in cell viability. The results of this study suggest that change in membrane fluidity can account, in part, for ethanol-induced neural crest cell death and that the protection conferred by GM1 ganglioside may result from membrane stabilization and subsequent preservation of the biophysical properties and biological function of the ethanol-exposed cell membranes.

  19. Resveratrol ameliorates renal damage, increases expression of heme oxygenase-1, and has anti-complement, anti-oxidative, and anti-apoptotic effects in a murine model of membranous nephropathy.

    Directory of Open Access Journals (Sweden)

    Chia-Chao Wu

    Full Text Available Idiopathic membranous nephropathy (MN is an autoimmune-mediated glomerulonephritis and a common cause of nephrotic syndrome in adults. There are limited available treatments for MN. We assessed the efficacy of resveratrol (RSV therapy for treatment of MN in a murine model of this disease.Murine MN was experimentally induced by daily subcutaneous administration of cationic bovine serum albumin, with phosphate-buffered saline used in control mice. MN mice were untreated or given RSV. Disease severity and pathogenesis was assessed by determination of metabolic and histopathology profiles, lymphocyte subsets, immunoglobulin production, oxidative stress, apoptosis, and production of heme oxygenase-1 (HO1.MN mice given RSV had significantly reduced proteinuria and a marked amelioration of glomerular lesions. RSV also significantly attenuated immunofluorescent staining of C3, although there were no changes of serum immunoglobulin levels or immunocomplex deposition in the kidneys. RSV treatment of MN mice also reduced the production of reactive oxygen species (ROS, reduced cell apoptosis, and upregulated heme oxygenase 1 (HO1. Inhibition of HO1 with tin protoporphyrin IX partially reversed the renoprotective effects of RSV. The HO1 induced by RSV maybe via Nrf2 signaling.Our results show that RSV increased the expression of HO1 and ameliorated the effects of membranous nephropathy in a mouse model due to its anti-complement, anti-oxidative, and anti-apoptotic effects. RSV appears to have potential as a treatment for MN.

  20. Advanced membrane electrode assemblies for fuel cells (United States)

    Kim, Yu Seung; Pivovar, Bryan S


    A method of preparing advanced membrane electrode assemblies (MEA) for use in fuel cells. A base polymer is selected for a base membrane. An electrode composition is selected to optimize properties exhibited by the membrane electrode assembly based on the selection of the base polymer. A property-tuning coating layer composition is selected based on compatibility with the base polymer and the electrode composition. A solvent is selected based on the interaction of the solvent with the base polymer and the property-tuning coating layer composition. The MEA is assembled by preparing the base membrane and then applying the property-tuning coating layer to form a composite membrane. Finally, a catalyst is applied to the composite membrane.

  1. Alternative membranes for polymer electrolyte fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Sahu, A.K.; Pitchumani, S.; Sridhar, P.; Shukla, A.K. [Central Electrochemical Research Inst., Karaikudi (India)


    Nafion, a perfluoro-sulfonated membrane, is utilized as a membrane electrolyte in polymer electrolyte fuel cells (PEFCs). However, to realize optimum PEFC performance, the Nafion membrane needs to be fully humidified, making the system quite costly. Therefore, in order to solve this problem, alternative membrane electrolytes that could operate under low humidity conditions are needed. This paper reported on composite Nafion membranes with ceramic/inorganic fillers such as silica and mesoporous zirconium phosphate (MZP). Silica was impregnated to the Nafion matrix by a unique water hydrolysis sol-gel route and casted as a composite membrane while MZP, a solid-super-acid-proton-conducting medium as well as water absorbing material was synthesized by a co-assembly technique and impregnated to the Nafion matrix to form a composite membrane. The performance of the PEFCs with Nafion membrane and composite membranes was tested with hydrogen/oxygen gas and hydrogen/air feeds at varying relative humidity (RH) values under ambient conditions. It was concluded that under RH value as low as 18 per cent, the PEFC with Nafion membrane delivers a peak-power density of only 130 mW/square centimeter.

  2. A novel bioactive membrane by cell electrospinning. (United States)

    Chen, Haiping; Liu, Yuanyuan; Hu, Qingxi


    Electrospinning permits fabrication of biodegradable matrices that can resemble the both scale and mechanical behavior of the native extracellular matrix. However, achieving high-cellular density and infiltration of cells within matrices with traditional technique remain challenging and time consuming. The cell electrospinning technique presented in this paper can mitigate the problems associated with these limitations. Cells encapsulated by the material in the cell electrospinning technique survived well and distributed homogenously within the nanofibrous membrane, and their vitality was improved to 133% after being cultured for 28 days. The electrospun nanofibrous membrane has a certain degradation property and favorable cell-membrane interaction that supports the active biocompatibility of the membrane. Its properties are helpful for supporting cell attachment and growth, maintaining phenotypic shape, and secreting an ample amount of extracellular matrix (ECM). This novel membrane may be a potential application within the field of tissue engineering. The ability of cell electrospinning to microintegrate cells into a biodegradable fibrous matrix embodies a novel tissue engineering approach that could be applied to fabricate a high cell density elastic tissue mimetic.

  3. Artificial cell membranes for diagnostics and therapeutics

    Energy Technology Data Exchange (ETDEWEB)

    Charych, D.; Nagy, J.O. [Lawrence Berkeley National Lab., CA (United States)


    Receptors on the membrane can recognize and bind extracellular molecules and convert that event into signals that elicit molecular changes within the cell. These two properties alone--molecular recognition and signal transduction--make the cell membrane an attractive model for designing novel biosensors or therapeutics. Natural cell membranes, however, are highly complex; mimicking the intricate choreography of the cell`s daily activities would be a daunting task. Instead, the authors turn to simpler, synthetic versions of the cell, where they can build in the components that give rise to specific activities and functions, one at a time. The process of forming artificial membranes is identical to that of forming natural membranes and is sometimes referred to as molecular self-assembly. From a practical point of view, the process is simple, because no external intervention is required--the molecules organize themselves into useful structures. The molecules that constitute the membranes are amphiphilic and therefore will spontaneously form lipid aggregates when mixed with water.

  4. Sterion membranes in Direct Methanol fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Linares, J. J.; Lobato, J.; Canizares, P.; Rodrigo, M. A.; Fernandez, A.


    Direct Methanol Fuel Cells (DMFCs) has been postulated as an alternative to traditional hydrogen fed Polymer Electrolyte Membrane Fuel Cells (H2-PEMFCs). Among their advantages, it can be pointed out the low cost of the fuel, simplicity of design, large availability, easy handling and distribution. However, there are still some challenges in this field, such as the development of electrocatalysts which can enhance the electrokinetics of methanol oxidation, the discovery of an electrolyte membrane with high conductivity and low methanol crossover at the same time and the production of methanol-tolerant electrocatalysts with high activity for oxygen reduction. So far, Nafion 117 has been the polymer membrane most widely used in DMFCs. Yet, it is well known that Nafion (Du Pont Inc.) membranes are not good barrier for methanol, so that the coulombic efficiency of Nafion-based DMFCs is significantly reduced by the chemical oxidation of methanol in the cathode. Recently, a new perfluorinated polymer with sulphonic acid groups (PFSA) has been developed, under the commercial name of Sterion (David Fuel Cell Components). As a difference as opposed to Nafion, this membrane is cast by the solution casting method, which provides a different sulphonic cluster configuration as compared to the extrusion cast Nafion membranes, which may give rise to different methanol crossover behaviour. In this work, it has been studied and analysed the suitability of Sterion in the DMFCs field. For that, it has been measured the methanol permeability of this membrane at different solute concentration and temperature, and its performance in an actual fuel cell at different operational conditions, such as methanol concentration, temperature and back pressure. Tests have been made using both oxygen and air in the cathode and half-cell potentials have been evaluated in some measurements in order to discriminate the contribution of both semi-reactions to the overall cell overvoltage. A lifetime

  5. Vitamin D Can Ameliorate Chlorhexidine Gluconate-Induced Peritoneal Fibrosis and Functional Deterioration through the Inhibition of Epithelial-to-Mesenchymal Transition of Mesothelial Cells

    Directory of Open Access Journals (Sweden)

    Yi-Che Lee


    Full Text Available Background. Peritoneal dialysis (PD can induce fibrosis and functional alterations in PD patients’ peritoneal membranes, due to long-term unphysiological dialysate exposure, partially occurring via triggering of epithelial-to-mesenchymal transition (EMT in peritoneal mesothelial cells (MCs. Vitamin D can ameliorate these negative effects; however, the mechanism remains unexplored. Therefore, we investigated its possible links to MCs EMT inhibition. Methods. Peritoneal fibrosis was established in Sprague-Dawley rats by chlorhexidine gluconate (CG intraperitoneal injection for 21 days, with and without 1α,25(OH2D3 treatment. Morphological and functional evaluation and western blot analysis of EMT marker were performed upon peritoneum tissue. In vitro study was also performed in a primary human peritoneal MC culture system; MCs were incubated with transforming growth factor-β1 (TGF-β1 in the absence or presence of 1α,25(OH2D3. EMT marker expression, migration activities, and cytoskeleton redistribution of MCs were determined. Results. 1α,25(OH2D3 ameliorated CG-induced morphological and functional deterioration in animal model, along with CG-induced upregulation of α-SMA and downregulation of E-cadherin expression. Meanwhile, 1α,25(OH2D3 also ameliorated TGF-β1-induced decrease in E-cadherin expression, increase in Snai1 and α-SMA expression, intracellular F-actin redistribution, and migration activity in vitro. Conclusion. 1α,25(OH2D3 can ameliorate CG-induced peritoneal fibrosis and attenuate functional deterioration through inhibiting MC EMT.

  6. Sesamin Ameliorates Advanced Glycation End Products-Induced Pancreatic β-Cell Dysfunction and Apoptosis

    Directory of Open Access Journals (Sweden)

    Xiang Kong


    Full Text Available Advanced glycation end products (AGEs, the direct modulators of β-cells, have been shown to cause insulin-producing β-cell dysfunction and apoptosis through increase of intracellular reactive oxygen species (ROS production. Sesamin has been demonstrated to possess antioxidative activity. This study was designed to investigate whether sesamin protects against AGEs-evoked β-cell damage via its antioxidant property. The effects of sesamin were examined in C57BL/6J mice and MIN6 cell line. In in vivo studies, mice were intraperitoneally injected with AGEs (120 mg/kg and orally treated with sesamin (160 mg/kg for four weeks. Intraperitoneal glucose tolerance and insulin releasing tests were performed. Insulin content, ROS generation and β-cell apoptosis in pancreatic islets were also measured. In in vitro studies, MIN6 cells were pretreated with sesamin (50 or 100 μM and then exposed to AGEs (200 mg/L for 24 h. Insulin secretion, β-cell death, ROS production as well as expression and activity of NADPH oxidase were determined. Sesamin treatment obviously ameliorated AGE-induced β-cell dysfunction and apoptosis both in vivo and in vitro. These effects were associated with decreased ROS production, down-regulated expression of p67phox and p22phox, and reduced NADPH oxidase activity. These results suggest that sesamin protects β-cells from damage caused by AGEs through suppressing NADPH oxidase-mediated oxidative stress.

  7. Sesamin Ameliorates Advanced Glycation End Products-Induced Pancreatic β-Cell Dysfunction and Apoptosis. (United States)

    Kong, Xiang; Wang, Guo-Dong; Ma, Ming-Zhe; Deng, Ru-Yuan; Guo, Li-Qun; Zhang, Jun-Xiu; Yang, Jie-Ren; Su, Qing


    Advanced glycation end products (AGEs), the direct modulators of β-cells, have been shown to cause insulin-producing β-cell dysfunction and apoptosis through increase of intracellular reactive oxygen species (ROS) production. Sesamin has been demonstrated to possess antioxidative activity. This study was designed to investigate whether sesamin protects against AGEs-evoked β-cell damage via its antioxidant property. The effects of sesamin were examined in C57BL/6J mice and MIN6 cell line. In in vivo studies, mice were intraperitoneally injected with AGEs (120 mg/kg) and orally treated with sesamin (160 mg/kg) for four weeks. Intraperitoneal glucose tolerance and insulin releasing tests were performed. Insulin content, ROS generation and β-cell apoptosis in pancreatic islets were also measured. In in vitro studies, MIN6 cells were pretreated with sesamin (50 or 100 μM) and then exposed to AGEs (200 mg/L) for 24 h. Insulin secretion, β-cell death, ROS production as well as expression and activity of NADPH oxidase were determined. Sesamin treatment obviously ameliorated AGE-induced β-cell dysfunction and apoptosis both in vivo and in vitro. These effects were associated with decreased ROS production, down-regulated expression of p67(phox) and p22(phox), and reduced NADPH oxidase activity. These results suggest that sesamin protects β-cells from damage caused by AGEs through suppressing NADPH oxidase-mediated oxidative stress.

  8. Stretching micropatterned cells on a PDMS membrane. (United States)

    Carpi, Nicolas; Piel, Matthieu


    Mechanical forces exerted on cells and/or tissues play a major role in numerous processes. We have developed a device to stretch cells plated on a PolyDiMethylSiloxane (PDMS) membrane, compatible with imaging. This technique is reproducible and versatile. The PDMS membrane can be micropatterned in order to confine cells or tissues to a specific geometry. The first step is to print micropatterns onto the PDMS membrane with a deep UV technique. The PDMS membrane is then mounted on a mechanical stretcher. A chamber is bound on top of the membrane with biocompatible grease to allow gliding during the stretch. The cells are seeded and allowed to spread for several hours on the micropatterns. The sample can be stretched and unstretched multiple times with the use of a micrometric screw. It takes less than a minute to apply the stretch to its full extent (around 30%). The technique presented here does not include a motorized device, which is necessary for applying repeated stretch cycles quickly and/or computer controlled stretching, but this can be implemented. Stretching of cells or tissue can be of interest for questions related to cell forces, cell response to mechanical stress or tissue morphogenesis. This video presentation will show how to avoid typical problems that might arise when doing this type of seemingly simple experiment.

  9. Enhanced killing activity of regulatory T cells ameliorates inflammation and autoimmunity. (United States)

    Askenasy, Nadir


    Regulatory T cells (Treg) are pivotal suppressor elements in immune homeostasis with potential therapeutic applications in inflammatory and autoimmune disorders. Using Treg as vehicles for targeted immunomodulation, a short-lived Fas-ligand (FasL) chimeric protein (killer Treg) was found efficient in preventing the progression of autoimmune insulitis in NOD mice, and amelioration of chronic colitis and graft versus host disease. The main mechanisms of disease suppression by killer Treg are: a) in the acute phase induction of apoptosis in effector cells at the site of inflammation decreases the pathogenic burden, and b) persistent increase in FoxP3⁺ Treg with variable CD25 co-expression induced by FasL sustains disease suppression over extended periods of time. Reduced sensitivity of Treg to receptor-mediated apoptosis under inflammatory conditions makes them optimal vehicles for targeted immunotherapy using apoptotic agents.

  10. Geometry and Topology of Cell Membranes (United States)

    Bouligand, Y.

    Cells are limited by a membrane which is a fluid bilayer of phospholipids to which are associated numerous components, such as cholesterol, polysaccharides, proteins and, among them, many enzymes. organelles within cells are made for a large part of similar bilayers including phospholipids and various molecules. The cell membrane forms architectures closely related to those observed in liquid crystalline phases given by water-lipid systems (purified amphiphilic molecules in presence of water and oily components). The cell is divided into a series of compartments with definite topological relations, which are rehandled more or less profoundly in diverse circumstances as endocytosis, exocytosis, mitosis etc. There are several geometric arrangements of membrane sets : parallel membranes, hexagonal packing of tubes, cubic systems made of tubes joining either three by three, or four by four, or six by six. There are other arrangements less directly related to liquid crysyalline structures (annulate lamellae, tubes and lamellae with nematic symmetries, randomly joining tubes). Comparisons of structures in cellular membranes and in water-lipid systems reveal important differences. If geometries are often similar, water percentage and scales are distinct and bilayers observed in vitro present a symmetry which is broken in cell membrane bilayers. The curvature effects observed in water-lipid systems mainly come from a density difference between polar heads and corresponding paraffinic chains within a monolayer, whereas, in biological membranes, the asymmetry lies between the two monolayers and their associated molecules. Both systems produce saddle-shaped bilayers arranging into cubic lattices separating two aqueous compartments. In water-lipid systems, the coupling at an interface of two different areas seems to predominate, whereas in biological membranes, mechanisms are different and probably originate from geometric properties of proteins included within bilayers.

  11. Cell membrane softening in human breast and cervical cancer cells (United States)

    Händel, Chris; Schmidt, B. U. Sebastian; Schiller, Jürgen; Dietrich, Undine; Möhn, Till; Kießling, Tobias R.; Pawlizak, Steve; Fritsch, Anatol W.; Horn, Lars-Christian; Briest, Susanne; Höckel, Michael; Zink, Mareike; Käs, Josef A.


    Biomechanical properties are key to many cellular functions such as cell division and cell motility and thus are crucial in the development and understanding of several diseases, for instance cancer. The mechanics of the cellular cytoskeleton have been extensively characterized in cells and artificial systems. The rigidity of the plasma membrane, with the exception of red blood cells, is unknown and membrane rigidity measurements only exist for vesicles composed of a few synthetic lipids. In this study, thermal fluctuations of giant plasma membrane vesicles (GPMVs) directly derived from the plasma membranes of primary breast and cervical cells, as well as breast cell lines, are analyzed. Cell blebs or GPMVs were studied via thermal membrane fluctuations and mass spectrometry. It will be shown that cancer cell membranes are significantly softer than their non-malignant counterparts. This can be attributed to a loss of fluid raft forming lipids in malignant cells. These results indicate that the reduction of membrane rigidity promotes aggressive blebbing motion in invasive cancer cells.

  12. Metric dynamics for membrane transformation through regulated cell proliferation


    Ito, Hiroshi C.


    This study develops an equation for describing three-dimensional membrane transformation through proliferation of its component cells regulated by morphogen density distributions on the membrane. The equation is developed in a two-dimensional coordinate system mapped on the membrane, referred to as the membrane coordinates. When the membrane expands, the membrane coordinates expand in the same manner so that the membrane is invariant in the coordinates. In the membrane coordinate system, the ...

  13. Shedding of cell membrane-bound proteoglycans. (United States)

    Nam, Eon Jeong; Park, Pyong Woo


    Membrane-bound proteoglycans function primarily as coreceptors for many glycosaminoglycan (GAG)-binding ligands at the cell surface. The majority of membrane-bound proteoglycans can also function as soluble autocrine or paracrine effectors as their extracellular domains, replete with all GAG chains, are enzymatically cleaved and released from the cell surface by ectodomain shedding. In particular, the ectodomain shedding of syndecans, a major family of cell surface heparan sulfate proteoglycans, is an important posttranslational mechanism that modulates diverse pathophysiological processes. Syndecan shedding is a tightly controlled process that regulates the onset, progression, and resolution of various infectious and noninfectious inflammatory diseases. This review describes methods to induce and measure the shedding of cell membrane-bound proteoglycans, focusing on syndecan shedding as a prototypic example.

  14. Electrically Conductive, Hydrophilic Porous Membrane for Fuel Cell Applications Project (United States)

    National Aeronautics and Space Administration — This Phase I effort seeks to produce a conductive polyethersulfone (PES) microporous membrane for fuel cell water management applications. This membrane will...

  15. Rapamycin ameliorates IgA nephropathy via cell cycle-dependent mechanisms. (United States)

    Tian, Jihua; Wang, Yanhong; Liu, Xinyan; Zhou, Xiaoshuang; Li, Rongshan


    IgA nephropathy is the most frequent type of glomerulonephritis worldwide. The role of cell cycle regulation in the pathogenesis of IgA nephropathy has been studied. The present study was designed to explore whether rapamycin ameliorates IgA nephropathy via cell cycle-dependent mechanisms. After establishing an IgA nephropathy model, rats were randomly divided into four groups. Coomassie Brilliant Blue was used to measure the 24-h urinary protein levels. Renal function was determined using an autoanalyzer. Proliferation was assayed via Proliferating Cell Nuclear Antigen (PCNA) immunohistochemistry. Rat mesangial cells were cultured and divided into the six groups. Methylthiazolyldiphenyl-tetrazolium bromide (MTT) and flow cytometry were used to detect cell proliferation and the cell cycle phase. Western blotting was performed to determine cyclin E, cyclin-dependent kinase 2, p27(Kip1), p70S6K/p-p70S6K, and extracellular signal-regulated kinase 1/2/p- extracellular signal-regulated kinase 1/2 protein expression. A low dose of the mammalian target of rapamycin (mTOR) inhibitor rapamycin prevented an additional increase in proteinuria, protected kidney function, and reduced IgA deposition in a model of IgA nephropathy. Rapamycin inhibited mesangial cell proliferation and arrested the cell cycle in the G1 phase. Rapamycin did not affect the expression of cyclin E and cyclin-dependent kinase 2. However, rapamycin upregulated p27(Kip1) at least in part via AKT (also known as protein kinase B)/mTOR. In conclusion, rapamycin can affect cell cycle regulation to inhibit mesangial cell proliferation, thereby reduce IgA deposition, and slow the progression of IgAN.

  16. Alternate Fuel Cell Membranes for Energy Independence

    Energy Technology Data Exchange (ETDEWEB)

    Storey, Robson, F.; Mauritz, Kenneth, A.; Patton, Derek, L.; Savin, Daniel, A.


    The overall objective of this project was the development and evaluation of novel hydrocarbon fuel cell (FC) membranes that possess high temperature performance and long term chemical/mechanical durability in proton exchange membrane (PEM) fuel cells (FC). The major research theme was synthesis of aromatic hydrocarbon polymers of the poly(arylene ether sulfone) (PAES) type containing sulfonic acid groups tethered to the backbone via perfluorinated alkylene linkages and in some cases also directly attached to the phenylene groups along the backbone. Other research themes were the use of nitrogen-based heterocyclics instead of acid groups for proton conduction, which provides high temperature, low relative humidity membranes with high mechanical/thermal/chemical stability and pendant moieties that exhibit high proton conductivities in the absence of water, and synthesis of block copolymers consisting of a proton conducting block coupled to poly(perfluorinated propylene oxide) (PFPO) blocks. Accomplishments of the project were as follows: 1) establishment of a vertically integrated program of synthesis, characterization, and evaluation of FC membranes, 2) establishment of benchmark membrane performance data based on Nafion for comparison to experimental membrane performance, 3) development of a new perfluoroalkyl sulfonate monomer, N,N-diisopropylethylammonium 2,2-bis(p-hydroxyphenyl) pentafluoropropanesulfonate (HPPS), 4) synthesis of random and block copolymer membranes from HPPS, 5) synthesis of block copolymer membranes containing high-acid-concentration hydrophilic blocks consisting of HPPS and 3,3'-disulfonate-4,4'-dichlorodiphenylsulfone (sDCDPS), 6) development of synthetic routes to aromatic polymer backbones containing pendent 1H-1,2,3-triazole moieties, 7) development of coupling strategies to create phase-separated block copolymers between hydrophilic sulfonated prepolymers and commodity polymers such as PFPO, 8) establishment of basic

  17. High temperature polymer electrolyte membrane fuel cells

    DEFF Research Database (Denmark)

    This book is a comprehensive review of high-temperature polymer electrolyte membrane fuel cells (PEMFCs). PEMFCs are the preferred fuel cells for a variety of applications such as automobiles, cogeneration of heat and power units, emergency power and portable electronics. The first 5 chapters...... of the book describe rationalization and illustration of approaches to high temperature PEM systems. Chapters 6 - 13 are devoted to fabrication, optimization and characterization of phosphoric acid-doped polybenzimidazole membranes, the very first electrolyte system that has demonstrated the concept...

  18. Cell Therapy Using Human Induced Pluripotent Stem Cell-Derived Renal Progenitors Ameliorates Acute Kidney Injury in Mice (United States)

    Toyohara, Takafumi; Mae, Shin-Ichi; Sueta, Shin-Ichi; Inoue, Tatsuyuki; Yamagishi, Yukiko; Kawamoto, Tatsuya; Kasahara, Tomoko; Hoshina, Azusa; Toyoda, Taro; Tanaka, Hiromi; Araoka, Toshikazu; Sato-Otsubo, Aiko; Takahashi, Kazutoshi; Sato, Yasunori; Yamaji, Noboru; Ogawa, Seishi; Yamanaka, Shinya


    Acute kidney injury (AKI) is defined as a rapid loss of renal function resulting from various etiologies, with a mortality rate exceeding 60% among intensive care patients. Because conventional treatments have failed to alleviate this condition, the development of regenerative therapies using human induced pluripotent stem cells (hiPSCs) presents a promising new therapeutic option for AKI. We describe our methodology for generating renal progenitors from hiPSCs that show potential in ameliorating AKI. We established a multistep differentiation protocol for inducing hiPSCs into OSR1+SIX2+ renal progenitors capable of reconstituting three-dimensional proximal renal tubule-like structures in vitro and in vivo. Moreover, we found that renal subcapsular transplantation of hiPSC-derived renal progenitors ameliorated the AKI in mice induced by ischemia/reperfusion injury, significantly suppressing the elevation of blood urea nitrogen and serum creatinine levels and attenuating histopathological changes, such as tubular necrosis, tubule dilatation with casts, and interstitial fibrosis. To our knowledge, few reports demonstrating the therapeutic efficacy of cell therapy with renal lineage cells generated from hiPSCs have been published. Our results suggest that regenerative medicine strategies for kidney diseases could be developed using hiPSC-derived renal cells. Significance This report is the first to demonstrate that the transplantation of renal progenitor cells differentiated from human induced pluripotent stem (iPS) cells has therapeutic effectiveness in mouse models of acute kidney injury induced by ischemia/reperfusion injury. In addition, this report clearly demonstrates that the therapeutic benefits come from trophic effects by the renal progenitor cells, and it identifies the renoprotective factors secreted by the progenitors. The results of this study indicate the feasibility of developing regenerative medicine strategy using iPS cells against renal diseases

  19. Mesenchymal stem cells transplantation mildly ameliorates experimental diabetic nephropathy in rats

    Institute of Scientific and Technical Information of China (English)

    ZHOU Hong; TIAN Hao-ming; LONG Yang; ZHANG Xiang-xun; ZHONG Li; DENG Li; CHEN Xiao-he; LI Xiu-qun


    Background Diabetic nephropathy is a common complication of diabetes mellitus.This study aimed to explore whether mesenchymal stem cells(MSCs)transplantation could attenuate diabetic nephropathy in experimental diabetic rats.Methods Sprague-Dawley rats received a single intraperitoneal injection of streptozotocin(STZ)(60 mg/kg).Diabetic rats were randomized to four groups:diabetes control group(DC),ciclosporin A group(CsA),MSC group,and MSC+CsA group(MSCA).Bone marrow mesenchymal stern cells were cultured,identified and labeled by 5-bromo-2'-deoxyuridine(BrdU)in vitro.Then they were transplanted to diabetic rats via introcardiac infusion.Ciclosporin A was administered daily at 5 mg/kg.At 1,2,4,8 weeks after transplantation,random blood glucose,urine albumin/creatinine ratio(Alb/Cr),endogenous creatinine clearance rate and renal mass index were tested.Renal morphology and labeled cells were examined.Results Cultured MSCs expressed mesenchymal cell phenotype,and could be multidifferentiated to osteogenic and adipogenic cells.Labeled MSCs could be detected in the kidney of nephropathic rats,mainly in renal interstitium,but they did not propagate after engrafting in kidney.Over the course of the experiment,MSCA group showed a significant decrease in blood glucose compared with MSC group,CsA group and DC group(P<0.05,respectively).The Alb/Cr in MSCA group and MSC group were significantly lower than CsA group and DC group(P<0.05).And the Alb/Cr in MSCA group showed a significant decrease compared with MSC group(0.74 vs 0.84,P<0.05).There was a significant difference in renal mass index between the MSCA group and DC group(5.66 vs 6.37,P<0.05).No significant difference was found in creatinine clearance rate among 4 groups(P>0.05).Treatment with MSC+CsA significantly ameliorated the morphology of diabetic kidney.Conclusion MSC could mildly ameliorate diabetic nephropathy by decreasing blood glucose,Alb/Cr ratio and renal mass index.

  20. Hereditary spherocytosis, elliptocytosis, and other red cell membrane disorders. (United States)

    Da Costa, Lydie; Galimand, Julie; Fenneteau, Odile; Mohandas, Narla


    Hereditary spherocytosis and elliptocytosis are the two most common inherited red cell membrane disorders resulting from mutations in genes encoding various red cell membrane and skeletal proteins. Red cell membrane, a composite structure composed of lipid bilayer linked to spectrin-based membrane skeleton is responsible for the unique features of flexibility and mechanical stability of the cell. Defects in various proteins involved in linking the lipid bilayer to membrane skeleton result in loss in membrane cohesion leading to surface area loss and hereditary spherocytosis while defects in proteins involved in lateral interactions of the spectrin-based skeleton lead to decreased mechanical stability, membrane fragmentation and hereditary elliptocytosis. The disease severity is primarily dependent on the extent of membrane surface area loss. Both these diseases can be readily diagnosed by various laboratory approaches that include red blood cell cytology, flow cytometry, ektacytometry, electrophoresis of the red cell membrane proteins, and mutational analysis of gene encoding red cell membrane proteins.

  1. Metformin ameliorates ionizing irradiation-induced long-term hematopoietic stem cell injury in mice (United States)

    Xu, Guoshun; Wu, Hongying; Zhang, Junling; Li, Deguan; Wang, Yueying; Wang, Yingying; Zhang, Heng; Lu, Lu; Li, Chengcheng; Huang, Song; Xing, Yonghua; Zhou, Daohong; Meng, Aimin


    Exposure to ionizing radiation (IR) increases the production of reactive oxygen species (ROS) not only by the radiolysis of water but also through IR-induced perturbation of the cellular metabolism and disturbance of the balance of reduction/oxidation reactions. Our recent studies showed that the increased production of intracellular ROS induced by IR contributes to IR-induced late effects, particularly in the hematopoietic system, because inhibition of ROS production with an antioxidant after IR exposure can mitigate IR-induced long-term bone marrow (BM) injury. Metformin is a widely used drug for the treatment of type 2 diabetes. Metformin also has the ability to regulate cellular metabolism and ROS production by activating AMP-activated protein kinase. Therefore, we examined whether metformin can ameliorate IR-induced long-term BM injury in a total-body irradiation (TBI) mouse model. Our results showed that the administration of metformin significantly attenuated TBI-induced increases in ROS production and DNA damage and upregulation of NADPH oxidase 4 expression in BM hematopoietic stem cells (HSCs). These changes were associated with a significant increase in BM HSC frequency, a considerable improvement in in vitro and in vivo HSC function, and complete inhibition of upregulation of p16Ink4a in HSCs after TBI. These findings demonstrate that metformin can attenuate TBI-induced long-term BM injury at least in part by inhibiting the induction of chronic oxidative stress in HSCs and HSC senescence. Therefore, metformin has the potential to be used as a novel radioprotectant to ameliorate TBI-induced long-term BM injury. PMID:26086617

  2. Membrane lipidome of an epithelial cell line

    DEFF Research Database (Denmark)

    Sampaio, Julio L; Gerl, Mathias J; Klose, Christian


    Tissue differentiation is an important process that involves major cellular membrane remodeling. We used Madin-Darby canine kidney cells as a model for epithelium formation and investigated the remodeling of the total cell membrane lipidome during the transition from a nonpolarized morphology...... to an epithelial morphology and vice versa. To achieve this, we developed a shotgun-based lipidomics workflow that enabled the absolute quantification of mammalian membrane lipidomes with minimal sample processing from low sample amounts. Epithelial morphogenesis was accompanied by a major shift from sphingomyelin...... to glycosphingolipid, together with an increase in plasmalogen, phosphatidylethanolamine, and cholesterol content, whereas the opposite changes took place during an epithelial-to-mesenchymal transition. Moreover, during polarization, the sphingolipids became longer, more saturated, and more hydroxylated as required...

  3. Lycopene Pretreatment Ameliorates Acute Ethanol Induced NAD+ Depletion in Human Astroglial Cells

    Directory of Open Access Journals (Sweden)

    Jade Guest


    Full Text Available Excessive alcohol consumption is associated with reduced brain volume and cognition. While the mechanisms by which ethanol induces these deleterious effects in vivo are varied most are associated with increased inflammatory and oxidative processes. In order to further characterise the effect of acute ethanol exposure on oxidative damage and NAD+ levels in the brain, human U251 astroglioma cells were exposed to physiologically relevant doses of ethanol (11 mM, 22 mM, 65 mM, and 100 mM for ≤ 30 minutes. Ethanol exposure resulted in a dose dependent increase in both ROS and poly(ADP-ribose polymer production. Significant decreases in total NAD(H and sirtuin 1 activity were also observed at concentrations ≥ 22 mM. Similar to U251 cells, exposure to ethanol (≥22 mM decreased levels of NAD(H in primary human astrocytes. NAD(H depletion in primary astrocytes was prevented by pretreatment with 1 μM of lycopene for 3.5 hours. Unexpectedly, in U251 cells lycopene treatment at concentrations ≥ 5 μM resulted in significant reductions in [NAD(H]. This study suggests that exposure of the brain to alcohol at commonly observed blood concentrations may cause transitory oxidative damage which may be at least partly ameliorated by lycopene.

  4. Delivery of Placenta-Derived Mesenchymal Stem Cells Ameliorates Ischemia Induced Limb Injury by Immunomodulation

    Directory of Open Access Journals (Sweden)

    Bo Zhang


    Full Text Available Background: Peripheral artery disease (PAD is a major health burden in the world. Stem cell-based therapy has emerged as an attractive treatment option in regenerative medicine. In this study, we sought to test the hypothesis that stem cell-based therapy can ameliorate ischemia induced limb injury. Methods: We isolated mesenchymal stem cells derived from human placentas (PMSCs and intramuscularly transplanted them into injured hind limbs. Treatment with PMSCs reduced acute muscle fibers apoptosis induced by ischemia. Results: PMSC treatment significantly enhanced regeneration of the injured hind limb by reducing fibrosis and enhancing running capacity when the animals were subjected to treadmill training. Mechanistically, injected PMSCs can modulate acute inflammatory responses by reducing neutrophil and macrophage infiltration following limb ischemia. ELISA assays further confirmed that PMSC treatment can also reduce pro-inflammatory cytokines, TNF-α and IL-6, and enhance anti-inflammatory cytokine, IL-10 at the injury sites. Conclusion: Taken together, our results demonstrated that PMSCs can be a potential effective therapy for treatment of PAD via immunomodulation.

  5. Membrane electrode assembly for a fuel cell (United States)

    Prakash, Surya (Inventor); Narayanan, Sekharipuram R. (Inventor); Atti, Anthony (Inventor); Olah, George (Inventor); Smart, Marshall C. (Inventor)


    A catalyst ink for a fuel cell including a catalytic material and poly(vinylidene fluoride). The ink may be applied to a substrate to form an electrode, or bonded with other electrode layers to form a membrane electrode assembly (MEA).

  6. Lithium. Effects on excitable cell membranes

    NARCIS (Netherlands)

    Ploeger, Egbert Johan


    LITHIUM: Effects on excitable cell membranes. Lithium salts have been used in the treatment of manic-depressive psychosis for many years but their mechanism of action is not well understood. Many workers assume that the action of lithium on catecholamine metabolism and/or on electrolyte distribution

  7. Dehydroepiandrosterone ameliorates H2O2-induced Leydig cells oxidation damage and apoptosis through inhibition of ROS production and activation of PI3K/Akt pathways. (United States)

    Ding, Xiao; Wang, Dian; Li, Longlong; Ma, Haitian


    Dehydroepiandrosterone (DHEA) is widely used as a nutritional supplement, and administration of DHEA produces a number of beneficial effects in the elderly. Many researchers have suggested that DHEA exerts it function after conversion into more biologically active hormones in peripheral target cells. The actions of DHEA in Leydig cells, a major target cell of DHEA biotransformation in males, are not clear. The present study found that DHEA increased cell viability and decreased reactive oxygen species (ROS) and malondialdehyde contents in H2O2-induced Leydig cells. DHEA significantly increased the activities of superoxide dismutase, catalase and peroxidase, and decreased the DNA damage in H2O2-induced Leydig cells. Apoptosis was significant decreased in H2O2-induced Leydig cells after DHEA treatment. DHEA inhibited the loss of mitochondrial membrane potential (ΔΨm) and the upregulation of the caspase-3 protein level induced by H2O2 in Leydig cells. DHEA also reversed the decrease in PI3K and p-Akt protein levels induced by H2O2. These data showed that DHEA could ameliorate H2O2-induced oxidative damage by increasing anti-oxidative enzyme activities, which resulted in reduced ROS content, and decreased apoptosis, mainly by preventing the loss of ΔΨm and inhibiting caspase-3 protein levels via activation of PI3K/Akt signaling pathways. These results increase our understanding of the molecular mechanism of the anti-ageing effect of DHEA.

  8. Selectivity of Direct Methanol Fuel Cell Membranes (United States)

    Aricò, Antonino S.; Sebastian, David; Schuster, Michael; Bauer, Bernd; D’Urso, Claudia; Lufrano, Francesco; Baglio, Vincenzo


    Sulfonic acid-functionalized polymer electrolyte membranes alternative to Nafion® were developed. These were hydrocarbon systems, such as blend sulfonated polyetheretherketone (s-PEEK), new generation perfluorosulfonic acid (PFSA) systems, and composite zirconium phosphate–PFSA polymers. The membranes varied in terms of composition, equivalent weight, thickness, and filler and were investigated with regard to their methanol permeation characteristics and proton conductivity for application in direct methanol fuel cells. The behavior of the membrane electrode assemblies (MEA) was investigated in fuel cell with the aim to individuate a correlation between membrane characteristics and their performance in a direct methanol fuel cell (DMFC). The power density of the DMFC at 60 °C increased according to a square root-like function of the membrane selectivity. This was defined as the reciprocal of the product between area specific resistance and crossover. The power density achieved at 60 °C for the most promising s-PEEK-based membrane-electrode assembly (MEA) was higher than the benchmark Nafion® 115-based MEA (77 mW·cm−2 vs. 64 mW·cm−2). This result was due to a lower methanol crossover (47 mA·cm−2 equivalent current density for s-PEEK vs. 120 mA·cm−2 for Nafion® 115 at 60 °C as recorded at OCV with 2 M methanol) and a suitable area specific resistance (0.15 Ohm cm2 for s-PEEK vs. 0.22 Ohm cm2 for Nafion® 115). PMID:26610582

  9. Selectivity of Direct Methanol Fuel Cell Membranes

    Directory of Open Access Journals (Sweden)

    Antonino S. Aricò


    Full Text Available Sulfonic acid-functionalized polymer electrolyte membranes alternative to Nafion® were developed. These were hydrocarbon systems, such as blend sulfonated polyetheretherketone (s-PEEK, new generation perfluorosulfonic acid (PFSA systems, and composite zirconium phosphate–PFSA polymers. The membranes varied in terms of composition, equivalent weight, thickness, and filler and were investigated with regard to their methanol permeation characteristics and proton conductivity for application in direct methanol fuel cells. The behavior of the membrane electrode assemblies (MEA was investigated in fuel cell with the aim to individuate a correlation between membrane characteristics and their performance in a direct methanol fuel cell (DMFC. The power density of the DMFC at 60 °C increased according to a square root-like function of the membrane selectivity. This was defined as the reciprocal of the product between area specific resistance and crossover. The power density achieved at 60 °C for the most promising s-PEEK-based membrane-electrode assembly (MEA was higher than the benchmark Nafion® 115-based MEA (77 mW·cm−2 vs. 64 mW·cm−2. This result was due to a lower methanol crossover (47 mA·cm−2 equivalent current density for s-PEEK vs. 120 mA·cm−2 for Nafion® 115 at 60 °C as recorded at OCV with 2 M methanol and a suitable area specific resistance (0.15 Ohm cm2 for s-PEEK vs. 0.22 Ohm cm2 for Nafion® 115.

  10. Interruption of Wnt signaling in Muller cells ameliorates ischemia-induced retinal neovascularization.

    Directory of Open Access Journals (Sweden)

    Kelu Kevin Zhou

    Full Text Available Retinal Müller cells are major producers of inflammatory and angiogenic cytokines which contribute to diabetic retinopathy (DR. Over-activation of the Wnt/β-catenin pathway has been shown to play an important pathogenic role in DR. However, the roles of Müller cell-derived Wnt/β-catenin signaling in retinal neovascularization (NV and DR remain undefined. In the present study, mice with conditional β-catenin knockout (KO in Müller cells were generated and subjected to oxygen-induced retinopathy (OIR and streptozotocin (STZ-induced diabetes. Wnt signaling was evaluated by measuring levels of β-catenin and expression of its target genes using immunoblotting. Retinal vascular permeability was measured using Evans blue as a tracer. Retinal NV was visualized by angiography and quantified by counting pre-retinal nuclei. Retinal pericyte loss was evaluated using retinal trypsin digestion. Electroretinography was performed to examine visual function. No abnormalities were detected in the β-catenin KO mice under normal conditions. In OIR, retinal levels of β-catenin and VEGF were significantly lower in the β-catenin KO mice than in littermate controls. The KO mice also had decreased retinal NV and vascular leakage in the OIR model. In the STZ-induced diabetic model, disruption of β-catenin in Müller cells attenuated over-expression of inflammatory cytokines and ameliorated pericyte dropout in the retina. These findings suggest that Wnt signaling activation in Müller cells contributes to retinal NV, vascular leakage and inflammation and represents a potential therapeutic target for DR.

  11. Microfluidic microbial fuel cells: from membrane to membrane free (United States)

    Yang, Yang; Ye, Dingding; Li, Jun; Zhu, Xun; Liao, Qiang; Zhang, Biao


    Microfluidic microbial fuel cells (MMFCs) are small carbon-neutral devices that use self-organized bacteria to degrade organic substrates and harness energy from the waste water. Conventional MMFCs have made great strides in the past decade and have overcome some limitations, such as high capital costs and low energy output. A co-laminar flow MFC has been first proposed in 2011 with the potential to be an attractively power source to niche applications. Co-laminar MFCs typically operate without any physical membranes separating the reactants, and bacterial ecosystems can be easily manipulated by regulating the inlet conditions. This paper highlights recent accomplishments in the development of co-laminar MFCs, emphasizing basic principles, mass transport and fluid dynamics including boundary layer theory, entrance conditions and mixing zone issues. Furthermore, the development of current techniques, major challenges and the potential research directions are discussed.

  12. Blend Concepts for Fuel Cell Membranes

    Institute of Scientific and Technical Information of China (English)

    J. Kerres


    @@ 1Introduction Direct methanol fuel cells (DMFC) are an alternative to lithium ion batteries as energy supply for mobile applications such as laptops, PDA's and cellphones. It would be advantageous if pure or highly concentrated methanol could be used as the fuel in these DMFC, due to the high energy density of meOH. However, most of the ionomer membranes used up to now as proton conductor in DMFC can not withstand pure or highly concentrated methanol due to extreme swelling or even dissolution under these conditions. Therefore it is required to prepare H+ -conducting membranes which remain dimensionally stable in pure or highly concentrated methanol. One way to approach this goal is to cross-link the ionomer membranes so that the swelling under the desired methanol-rich conditions is limited.

  13. Amelioration of oxidative stress in bio-membranes and macromolecules by non-toxic dye from Morinda tinctoria (Roxb.) roots. (United States)

    Bhakta, Dipita; Siva, Ramamoorthy


    Plant dyes have been in use for coloring and varied purposes since prehistoric times. A red dye found in the roots of plants belonging to genus Morinda is a well recognized coloring ingredient. The dye fraction obtained from the methanolic extract of the roots of Morinda tinctoria was explored for its role in attenuating damages caused by H(2)O(2)-induced oxidative stress. The antioxidant potential of the dye fraction was assessed through DPPH radical scavenging, deoxyribose degradation and inhibition of lipid peroxidation in mice liver. It was subsequently screened for its efficiency in extenuating damage incurred to biomembrane (using erythrocytes and their ghost membranes) and macromolecules (pBR322 DNA, lipids and proteins) from exposure to hydrogen peroxide. In addition, the non-toxic nature of the dye was supported by the histological evaluation conducted on the tissue sections from the major organs of Swiss Albino mice as well as effect on Hep3B cell line (human hepatic carcinoma). The LC-MS confirms the dye fraction to be morindone. Our study strongly suggests that morindone present in the root extracts of M. tinctoria, in addition to being a colorant, definitely holds promise in the pharmaceutical industry.

  14. Proton exchange membrane fuel cells modeling

    CERN Document Server

    Gao, Fengge; Miraoui, Abdellatif


    The fuel cell is a potential candidate for energy storage and conversion in our future energy mix. It is able to directly convert the chemical energy stored in fuel (e.g. hydrogen) into electricity, without undergoing different intermediary conversion steps. In the field of mobile and stationary applications, it is considered to be one of the future energy solutions.Among the different fuel cell types, the proton exchange membrane (PEM) fuel cell has shown great potential in mobile applications, due to its low operating temperature, solid-state electrolyte and compactness.This book pre

  15. Fuel cell membranes and crossover prevention (United States)

    Masel, Richard I.; York, Cynthia A.; Waszczuk, Piotr; Wieckowski, Andrzej


    A membrane electrode assembly for use with a direct organic fuel cell containing a formic acid fuel includes a solid polymer electrolyte having first and second surfaces, an anode on the first surface and a cathode on the second surface and electrically linked to the anode. The solid polymer electrolyte has a thickness t:.gtoreq..times..times..times..times. ##EQU00001## where C.sub.f is the formic acid fuel concentration over the anode, D.sub.f is the effective diffusivity of the fuel in the solid polymer electrolyte, K.sub.f is the equilibrium constant for partition coefficient for the fuel into the solid polymer electrolyte membrane, I is Faraday's constant n.sub.f is the number of electrons released when 1 molecule of the fuel is oxidized, and j.sub.f.sup.c is an empirically determined crossover rate of fuel above which the fuel cell does not operate.

  16. Virus-specific regulatory T cells ameliorate encephalitis by repressing effector T cell functions from priming to effector stages.

    Directory of Open Access Journals (Sweden)

    Jingxian Zhao


    Full Text Available Several studies have demonstrated the presence of pathogen-specific Foxp3+ CD4 regulatory T cells (Treg in infected animals, but little is known about where and how these cells affect the effector T cell responses and whether they are more suppressive than bulk Treg populations. We recently showed the presence of both epitope M133-specific Tregs (M133 Treg and conventional CD4 T cells (M133 Tconv in the brains of mice with coronavirus-induced encephalitis. Here, we provide new insights into the interactions between pathogenic Tconv and Tregs responding to the same epitope. M133 Tregs inhibited the proliferation but not initial activation of M133 Tconv in draining lymph nodes (DLN. Further, M133 Tregs inhibited migration of M133 Tconv from the DLN. In addition, M133 Tregs diminished microglia activation and decreased the number and function of Tconv in the infected brain. Thus, virus-specific Tregs inhibited pathogenic CD4 T cell responses during priming and effector stages, particularly those recognizing cognate antigen, and decreased mortality and morbidity without affecting virus clearance. These cells are more suppressive than bulk Tregs and provide a targeted approach to ameliorating immunopathological disease in infectious settings.

  17. Polyarylenethioethersulfone Membranes for Fuel Cells (Postprint) (United States)


    release; distribution unlimited. See additional restrictions described on inside pages STINFO COPY © 2007 The Electrochemical Society AIR...PAO Case Number: 88ABW-2007-1713; Clearance Date: 24 July 2007. © 2007 The Electrochemical Society . The U.S. Government is joint author of the to be a potential candidate for membranes in fuel cells. © 2007 The Electrochemical Society . DOI: 10.1149/1.2755881 All rights reserved

  18. Epigenetic intervention with a BET inhibitor ameliorates acute retinal ganglion cell death in mice (United States)

    Li, Jun; Zhao, Lei; Urabe, Go; Fu, Yingmei


    Purpose The bromo and extraterminal (BET) epigenetic “reader” family is becoming an appealing new therapeutic target for several common diseases, yet little is known of its role in retinal neurodegeneration. We explored the potential of BET inhibition in the protection of retinal ganglion cells (RGCs). Methods To test the therapeutic effect of JQ1, an inhibitor highly selective for the BET family of proteins, we used an acute RGC damage model induced by N-methyl-D-aspartic acid (NMDA) excitotoxicity. Adult C57BL/6 mice received an intravitreal injection of NMDA with (or without) JQ1 in one eye and vehicle control in the contralateral eye; RGC loss was assessed on retinal sections and whole mounts. Gene expression and apoptosis were analyzed by quantitative real time (RT)-PCR and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL), respectively. For counting RGCs, immunostaining of the marker protein BRN3A was performed on whole mounts. Results NMDA treatment eliminated RGCs (day 7 and day 14 post injection) and diminished the expression (mRNAs) of RGC-selective genes, including Thy1, Nrn1, Sncg, and Nfl (day 3 and day 7). In contrast, co-injection with JQ1 maintained the number and gene expression of RGCs at ~2 fold of the control (NMDA only, no JQ1), and it decreased NMDA-induced TUNEL-positive cells in the RGC layer by 35%. While NMDA treatment dramatically upregulated mRNAs of inflammatory cytokines (TNFα, IL-1β, MCP-1, RANTES) in retinal homogenates, co-injection with JQ1 suppressed their upregulation by ~50%. Conclusions Intravitreal injection of a BET inhibitor (JQ1) ameliorates NMDA-induced RGC death, revealing the RGC-protective potential of pharmacological blockage of the BET family. This new strategy of epigenetic intervention may be extended to other retinal degenerative conditions. PMID:28356707

  19. Rapamycin increases fetal hemoglobin and ameliorates the nociception phenotype in sickle cell mice. (United States)

    Khaibullina, Alfia; Almeida, Luis E F; Wang, Li; Kamimura, Sayuri; Wong, Edward C C; Nouraie, Mehdi; Maric, Irina; Albani, Sarah; Finkel, Julia; Quezado, Zenaide M N


    Fetal hemoglobin-inducing therapies are disease-modifying and ameliorate the pain phenotype in sickle cell disease (SCD). Rapamycin, a mammalian target of rapamycin (mTOR) inhibitor, increases HbF in erythroid precursor cells in vitro. We hypothesized that rapamycin would increase HbF levels and improve nociception phenotype in SCD mice. We used sine-wave electrical stimulation to examine nocifensive phenotype and evaluate myelinated [2000Hz (Aβ-fiber) and 250Hz (Aδ-fiber)] and unmyelinated (5Hz C-fibers)] sensory fiber function. Rapamycin significantly increased γ-globin mRNA and HbF levels [+2.3% (0.7, 3.9), mean increase (95% confidence interval, CI), p=0.006]. In homozygous (sickling) mice, long- (16 weeks), but not short-term (6 weeks), rapamycin treatment increased 2000Hz and 250Hz current thresholds in a pattern that varied according to sex. In male, but not female mice, rapamycin (compared with vehicle) was associated with increases in 2000Hz [21Units (7, 35), mean difference (95% CI), p=0.009 for sex∗treatment interaction] and 250Hz [9Units (1, 16), p=0.01] current thresholds. In rapamycin-treated homozygotes, HbF levels directly correlated with myelinated [2000Hz(Aβ-fiber, r=0.58, p=0.01) and 250Hz(Aδ-fiber, r=0.6, p=0.01)] but not unmyelinated sensory fiber current thresholds. These findings suggest that in SCD mice, rapamycin increases HbF and modulates current thresholds of myelinated fibers. Therefore, mTOR signaling might be implicated in the pathobiology of SCD.

  20. Cell membrane-camouflaged nanoparticles for drug delivery. (United States)

    Luk, Brian T; Zhang, Liangfang


    Nanoparticles can preferentially accumulate at sites of action and hold great promise to improve the therapeutic index of many drugs. While conventional methods of nanocarrier-mediated drug delivery have focused on primarily synthetic approaches, engineering strategies that combine synthetic nanoparticles with natural biomaterials have recently gained much attention. In particular, cell membrane-camouflaged nanoparticles are a new class of biomimetic nanoparticles that combine the unique functionalities of cellular membranes and engineering versatility of synthetic nanomaterials for effective delivery of therapeutic agents. Herein, we report on the recent progress on cell membrane-coated nanoparticles for drug delivery. In particular, we highlight three areas: (i) prolonging systemic circulation via cell membrane coating, (ii) cell-specific targeting via cell membrane coating, and (iii) applications of cell membrane coating for drug delivery. The cell membrane-camouflaged nanoparticle platform has emerged as a novel delivery strategy with the potential to improve the therapeutic efficacy for the treatment of a variety of diseases.

  1. High temperature polymer electrolyte membrane fuel cell

    Institute of Scientific and Technical Information of China (English)

    K.Scott; M. Mamlouk


    One of the major issues limiting the introduction of polymer electrolyte membrane fuel cells (PEMFCs) is the low temperature of operation which makes platinum-based anode catalysts susceptible to poisoning by the trace amount of CO, inevitably present in reformed fuel. In order to alleviate the problem of CO poisoning and improve the power density of the cell, operating at temperature above 100 ℃ is preferred. Nafion(R) -type perfluorosulfonated polymers have been typically used for PEMFC. However, the conductivity of Nafion(R) -type polymers is not high enough to be used for fuel cell operations at higher temperature ( > 90 ℃) and atmospheric pressure because they dehydrate under these condition.An additional problem which faces the introduction of PEMFC technology is that of supplying or storing hydrogen for cell operation,especially for vehicular applications. Consequently the use of alternative fuels such as methanol and ethanol is of interest, especially if this can be used directly in the fuel cell, without reformation to hydrogen. A limitation of the direct use of alcohol is the lower activity of oxidation in comparison to hydrogen, which means that power densities are considerably lower. Hence to improve activity and power output higher temperatures of operation are preferable. To achieve this goal, requires a new polymer electrolyte membrane which exhibits stability and high conductivity in the absence of liquid water.Experimental data on a polybenzimidazole based PEMFC were presented. A simple steady-state isothermal model of the fuel cell is also used to aid in fuel cell performance optimisation. The governing equations involve the coupling of kinetic, ohmic and mass transport. This paper also considers the advances made in the performance of direct methanol and solid polymer electrolyte fuel cells and considers their limitations in relation to the source and type of fuels to be used.

  2. N-Docosahexaenoylethanolamine ameliorates ethanol-induced impairment of neural stem cell neurogenic differentiation. (United States)

    Rashid, Mohammad Abdur; Kim, Hee-Yong


    Previous studies demonstrated that prenatal exposure to ethanol interferes with embryonic and fetal development, and causes abnormal neurodevelopment. Docosahexaenoic acid (DHA), an omega-3 polyunsaturated fatty acid highly enriched in the brain, was shown to be essential for proper brain development and function. Recently, we found that N-docosahexenoyethanolamine (synaptamide), an endogenous metabolite of DHA, is a potent PKA-dependent neurogenic factor for neural stem cell (NSC) differentiation. In this study, we demonstrate that ethanol at pharmacologically relevant concentrations downregulates cAMP signaling in NSC and impairs neurogenic differentiation. In contrast, synaptamide reverses ethanol-impaired NSC neurogenic differentiation through counter-acting on the cAMP production system. NSC exposure to ethanol (25-50 mM) for 4 days dose-dependently decreased the number of Tuj-1 positive neurons and PKA/CREB phosphorylation with a concomitant reduction of cellular cAMP. Ethanol-induced cAMP reduction was accompanied by the inhibition of G-protein activation and expression of adenylyl cyclase (AC) 7 and AC8, as well as PDE4 upregulation. In contrast to ethanol, synaptamide increased cAMP production, GTPγS binding, and expression of AC7 and AC8 isoforms in a cAMP-dependent manner, offsetting the ethanol-induced impairment in neurogenic differentiation. These results indicate that synaptamide can reduce ethanol-induced impairment of neuronal differentiation by counter-affecting shared targets in G-protein coupled receptor (GPCR)/cAMP signaling. The synaptamide-mediated mechanism observed in this study may offer a possible avenue for ameliorating the adverse impact of fetal alcohol exposure on neurodevelopment.

  3. Senescent mesenchymal cells accumulate in human fibrosis by a telomere-independent mechanism and ameliorate fibrosis through matrix metalloproteinases. (United States)

    Pitiyage, Gayani Nadika; Slijepcevic, Predrag; Gabrani, Aliya; Chianea, Yaghoub Gozaly; Lim, Kue Peng; Prime, Stephen Stewart; Tilakaratne, Wanninayake Mudiyanselage; Fortune, Farida; Parkinson, Eric Kenneth


    Fibrosis can occur in many organs, where it is a debilitating and preneoplastic condition. The senescence of activated fibroblasts has been proposed to ameliorate fibrosis via the innate immune system but its role in humans has not been investigated. The availability of oral submucous fibrosis (OSMF) biopsies at different stages of disease progression allowed us to test the hypothesis that senescent fibroblasts accumulate with the progression of human fibrosis in vivo, and also to examine the mechanism of senescence. We tested the hypothesis that senescent cells may ameliorate fibrosis by increasing the secretion of matrix metalloproteinases (MMPs). We have used a combination of in situ immunodetection techniques, drug treatments, fluorescence-activated cell sorting and enzyme-linked absorbance assays on tissue samples and fibroblast cultures. We report a novel panning technique, based on fibronectin adhesion rates, to enrich and deplete senescent cells from fibroblast populations. Senescent fibroblasts, as determined by the presence of senescence-associated heterochromatic foci, accumulated with OSMF progression (R(2) = 0.98) and possessed a reduced replicative lifespan in vitro. Unlike wounds, however, OSMF fibroblasts were quiescent in vivo and consistent with this observation, possessed functional telomeres of normal length. Senescence was associated in vivo and in vitro with oxidative damage, DNA damage foci and p16(INK4A) accumulation and required the production of reactive oxygen species (ROS), perhaps from damaged mitochondria, but not the continuous presence of the disease stimulus (areca nut and tobacco), the tissue environment or other cell types. Depletion of OSMF fibroblasts of senescent cells showed that these cells accounted for 25-83 times more MMP-1 and -2 than their pre-senescent counterparts. The results show that the accumulation of senescent fibroblasts in human fibrosis occurs by a telomere-independent mechanism involving ROS and may locally

  4. Membrane tension feedback on shape and motility of eukaryotic cells (United States)

    Winkler, Benjamin; Aranson, Igor S.; Ziebert, Falko


    In the framework of a phase field model of a single cell crawling on a substrate, we investigate how the properties of the cell membrane affect the shape and motility of the cell. Since the membrane influences the cell dynamics on multiple levels and provides a nontrivial feedback, we consider the following fundamental interactions: (i) the reduction of the actin polymerization rate by membrane tension; (ii) area conservation of the cell's two-dimensional cross-section vs. conservation of the circumference (i.e. membrane inextensibility); and (iii) the contribution from the membrane's bending energy to the shape and integrity of the cell. As in experiments, we investigate two pertinent observables - the cell's velocity and its aspect ratio. We find that the most important effect is the feedback of membrane tension on the actin polymerization. Bending rigidity has only minor effects, visible mostly in dynamic reshaping events, as exemplified by collisions of the cell with an obstacle.

  5. The RhoA/ROCK Pathway Ameliorates Adhesion and Inflammatory Infiltration Induced by AGEs in Glomerular Endothelial Cells. (United States)

    Rao, Jialing; Ye, Zengchun; Tang, Hua; Wang, Cheng; Peng, Hui; Lai, Weiyan; Li, Yin; Huang, Wanbing; Lou, Tanqi


    A recent study demonstrated that advanced glycation end products (AGEs) play a role in monocyte infiltration in mesangial areas in diabetic nephropathy. The Ras homolog gene family, member A Rho kinase (RhoA/ROCK) pathway plays a role in regulating cell migration. We hypothesized that the RhoA/ROCK pathway affects adhesion and inflammation in endothelial cells induced by AGEs. Rat glomerular endothelial cells (rGECs) were cultured with AGEs (80 μg/ml) in vitro. The ROCK inhibitor Y27632 (10 nmol/l) and ROCK1-siRNA were used to inhibit ROCK. We investigated levels of the intercellular adhesion molecule 1 (ICAM-1) and monocyte chemoattractant protein1 (MCP-1) in rGECs. Db/db mice were used as a diabetes model and received Fasudil (10 mg/kg/d, n = 6) via intraperitoneal injection for 12 weeks. We found that AGEs increased the expression of ICAM-1 and MCP-1 in rGECs, and the RhoA/ROCK pathway inhibitor Y27632 depressed the release of adhesion molecules. Moreover, blocking the RhoA/ROCK pathway ameliorated macrophage transfer to the endothelium. Reduced expression of adhesion molecules and amelioration of inflammatory cell infiltration in the glomerulus were observed in db/db mice treated with Fasudil. The RhoA/ROCK pathway plays a role in adhesion molecule expression and inflammatory cell infiltration in glomerular endothelial cells induced by AGEs.

  6. Benzothiazole Amphiphiles Ameliorate Amyloid β-Related Cell Toxicity and Oxidative Stress. (United States)

    Cifelli, Jessica L; Chung, Tim S; Liu, Haiyan; Prangkio, Panchika; Mayer, Michael; Yang, Jerry


    Oxidative stress from the increase of reactive oxygen species in cells is a common part of the normal aging process and is accelerated in patients with Alzheimer's disease (AD). Herein, we report the evaluation of three benzothiazole amphiphiles (BAMs) that exhibit improved biocompatibility without loss of biological activity against amyloid-β induced cell damage compared to a previously reported hexa(ethylene glycol) derivative of benzothiazole aniline (BTA-EG6). The reduced toxicity of these BAM agents compared to BTA-EG6 corresponded with their reduced propensity to induce membrane lysis. In addition, all of the new BAMs were capable of protecting differentiated SH-SY5Y neuroblastoma cells from toxicity and concomitant oxidative stress induced by AD-related aggregated Aβ (1-42) peptides. Binding and microscopy studies support that these BAM agents target Aβ and inhibit the interactions of catalase with Aβ in cells, which, in turn, can account for an observed inhibition of Aβ-induced increases in hydrogen peroxide in cells treated with these compounds. These results support that this family of benzothiazole amphiphiles may have therapeutic potential for treating cellular damage associated with AD and other Aβ-related neurologic diseases.

  7. Membrane Tether Formation on a Cell Surface with Reservoir

    Institute of Scientific and Technical Information of China (English)

    JIANG Yu-Qiang; GUO Hong-Lian; LIU Chun-Xiang; LI Zhao-Lin; CHENG Bing-Ying; ZHANG Dao-Zhong; JIA Suo-Tang


    @@ We propose a mathematical model to analyse the membrane tether formation process on a cell surface with reservoir. Based on the experimental results, the membrane reservoir density of breast cancer cell was obtained,p = 8.02. The membrane surface viscosity between membrane and environment η is 0.021(pN.s/μm3), and the static force F0 = 5.71 pN.

  8. Dendronized Polymer Architectures for Fuel Cell Membranes

    DEFF Research Database (Denmark)

    Nielsen, Mads Møller; Dimitrov, Ivaylo; Takamuku, S.


    Multi‐step synthetic pathways to low‐ion exchange capacity (IEC) polysulfone (PSU) with sulfonic acid functionalized aliphatic dendrons and sulfonated comb‐type PSU structures are developed and investigated in a comparative study as non‐fluorinated proton exchange membrane (PEM) candidates. In each...... evaluated as PEMs for use in fuel cells by proton conductivity measurements, and in the case of dendronized architectures: thermal stability. The proposed synthetic strategy facilitates exploration of a non‐fluorous system with various flexible side chains where IEC is tunable by the degree of substitution....

  9. Nanocomposite Membranes based on Perlfuorosulfonic Acid/Ceramic for Proton Exchange Membrane Fuel Cells

    Institute of Scientific and Technical Information of China (English)

    LI Qiong; WANG Guangjin; YE Hong; YAN Shilin


    Perlfuorosulfonic acid/ceramic nanocomposite membranes were investigated as electrolytes for polymer electrolyte membrane fuel cell applications under low relative humidity. Different nanosized ceramics (SiO2, ZrO2, TiO2) with diameters in the range of 2-6 nm were synthesized in situ in Nafion solution through a sol-gel process and the formed nanosized ceramics were well-dispersed in the solution. The nanocomposite membranes were formed through a casting process. The nanocomposite membrane showes enhanced water retention ability and improved proton conductivity compared to those of pure Naifon membrane. The mechanical strength of the formed nanocomposite membranes is slightly less than that of pure Naifon membrane. The experimental results demonstrate that the polymer ceramic nanocompsite membranes are potential electrolyte for fuel cells operating at elevated temperature.

  10. Plasma membranes from insect midgut cells

    Directory of Open Access Journals (Sweden)

    Walter R. Terra


    Full Text Available Plasma membranes from insect midgut cells are separated into apical and basolateral domains. The apical domain is usually modified into microvilli with a molecular structure similar to other animals. Nevertheless, the microvillar structure should differ in some insects to permit the traffic inside them of secretory vesicles that may budd laterally or pinch-off from the tips of microvilli. Other microvillar modifications are associated with proton-pumping or with the interplay with an ensheathing lipid membrane (the perimicrovilllar membrane observed in the midgut cells of hemipterans (aphids and bugs. The perimicrovillar membranes are thought to be involved in amino acid absorption from diluted diets. The microvillar and perimicrovillar membranes have densities (and protein content that depend on the insect taxon. The role played by the microvillar and perimicrovillar proteins in insect midgut physiology is reviewed here trying to provide a coherent picture of data and highlighting further research areas.As membranas plasmáticas das células intestinais dos insetos apresentam um domínio apical e outro basal. O domínio apical é geralmente modificado em microvilosidades com organização molecular similar a de outros animais, embora possam diferir naqueles insetos que apresentam vesículas secretoras em trânsito que brotam lateralmente ou destacam-se das extremidades das microvilosidades. Outras modificações microvilares estão associadas a bombeamento de prótons ou a interrelações com uma membrana lipídica (a membrana perimicrovilar que reveste as microvilosidades de células intestinais de hemípteros (pulgões e percevejos. Admite-se que as membranas perimicrovilares estejam envolvidas na absorção de aminoácidos a partir de dietas diluídas. As membranas microvilares e perimicrovilares tem densidades distintas (e conteúdo protéico que dependem do táxon do inseto. O papel desempenhado pelas proteínas microvilares e

  11. A Quaternary Polybenzimidazole Membrane for Intermediate Temperature Polymer Electrolyte Membrane Fuel Cells

    DEFF Research Database (Denmark)

    Xu, C.; Scott, K.; Li, Qingfeng


    A quaternary ammonium polybenzimidazole (QPBI) membrane was synthesized for applications in intermediate temperature (100–200 °C) hydrogen fuel cells. The QPBI membrane was imbibed with phosphoric acid to provide suitable proton conductivity. The proton conductivity of the membrane was 0.051 S cm–1...... at 150 °C with the PA acid loading level of 3.5 PRU (amount of H3PO4 per repeat unit of polymer QPBI). The QPBI membrane was characterized in terms of composition, structure and morphology by NMR, FTIR, SEM, and EDX. The fuel cell performance with the membrane gave peak power densities of 440 and 240 m...

  12. Synergistic antioxidant action of Phikud Navakot ameliorates hydrogen peroxide-induced stress in human endothelial cells

    Directory of Open Access Journals (Sweden)

    Nonthaneth Nalinratana


    Conclusion: Our findings demonstrate that the synergistic antioxidant action of PN ameliorates endothelial stress, which may provide some clues for understanding the traditional use of PN for the treatment of circulatory disorder. Additionally, the selection of a suitable solvent for the extraction of PN herbal combination is essential for maximal efficacy and safety.

  13. Amelioration of altered antioxidant status and membrane linked functions by vanadium and Trigonella in alloxan diabetic rat brains

    Indian Academy of Sciences (India)

    Mohammad Rizwan Siddiqui; Asia Taha; K Moorthy; Mohd Ejaz Hussain; S F Basir; Najma Zaheer Baquer


    Trigonella foenum graecum seed powder (TSP) and sodium orthovanadate (SOV) have been reported to have antidiabetic effects. However, SOV exerts hypoglycemic effects at relatively high doses with several toxic effects. We used low doses of vanadate in combination with TSP and evaluated their antidiabetic effects on antioxidant enzymes and membrane-linked functions in diabetic rat brains. In rats, diabetes was induced by alloxan monohydrate (15 mg/100 g body wt.) and they were treated with 2 IU insulin, 0.6 mg/ml SOV, 5% TSP and a combination of 0.2 mg/ml SOV with 5% TSP for 21 days. Blood glucose levels, activity of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), Na+/K+ ATPase, membrane lipid peroxidation and fluidity were determined in different fractions of whole brain after 21 days of treatment. Diabetic rats showed high blood glucose ( < 0.001), decreased activities of SOD, catalase and Na+/K+ ATPase ( < 0.01, < 0.001 and < 0.01), increased levels of GPx and MDA ( < 0.01 and < 0.001) and decreased membrane fluidity ( < 0.01). Treatment with different antidiabetic compounds restored the above-altered parameters. Combined dose of Trigonella and vanadate was found to be the most effective treatment in normalizing these alterations. Lower doses of vanadate could be used in combination with TSP to effectively counter diabetic alterations without any toxic effects.

  14. Focus on membrane differentiation and membrane domains in the prokaryotic cell. (United States)

    Boekema, Egbert J; Scheffers, Dirk-Jan; van Bezouwen, Laura S; Bolhuis, Henk; Folea, I Mihaela


    A summary is presented of membrane differentiation in the prokaryotic cell, with an emphasis on the organization of proteins in the plasma/cell membrane. Many species belonging to the Eubacteria and Archaea have special membrane domains and/or membrane proliferation, which are vital for different cellular processes. Typical membrane domains are found in bacteria where a specific membrane protein is abundantly expressed. Lipid rafts form another example. Despite the rareness of conventional organelles as found in eukaryotes, some bacteria are known to have an intricate internal cell membrane organization. Membrane proliferation can be divided into curvature and invaginations which can lead to internal compartmentalization. This study discusses some of the clearest examples of bacteria with such domains and internal membranes. The need for membrane specialization is highest among the heterogeneous group of bacteria which harvest light energy, such as photosynthetic bacteria and halophilic archaea. Most of the highly specialized membranes and domains, such as the purple membrane, chromatophore and chlorosome, are found in these autotrophic organisms. Otherwise the need for membrane differentiation is lower and variable, except for those structures involved in cell division. Microscopy techniques have given essential insight into bacterial membrane morphology. As microscopy will further contribute to the unraveling of membrane organization in the years to come, past and present technology in electron microscopy and light microscopy is discussed. Electron microscopy was the first to unravel bacterial morphology because it can directly visualize membranes with inserted proteins, which no other technique can do. Electron microscopy techniques developed in the 1950s and perfected in the following decades involve the thin sectioning and freeze fractioning of cells. Several studies from the golden age of these techniques show amazing examples of cell membrane morphology

  15. Treatment with 4-methylpyrazole modulated stellate cells and natural killer cells and ameliorated liver fibrosis in mice.

    Directory of Open Access Journals (Sweden)

    Hyon-Seung Yi

    Full Text Available Accumulating evidence suggests that retinol and its metabolites are closely associated with liver fibrogenesis. Recently, we demonstrated that genetic ablation of alcohol dehydrogenase 3 (ADH3, a retinol metabolizing gene that is expressed in hepatic stellate cells (HSCs and natural killer (NK cells, attenuated liver fibrosis in mice. In the current study, we investigated whether pharmacological ablation of ADH3 has therapeutic effects on experimentally induced liver fibrosis in mice.Liver fibrosis was induced by intraperitoneal injections of carbon tetrachloride (CCl4 or bile duct ligation (BDL for two weeks. To inhibit ADH3-mediated retinol metabolism, 10 μg 4-methylpyrazole (4-MP/g of body weight was administered to mice treated with CCl4 or subjected to BDL. The mice were sacrificed at week 2 to evaluate the regression of liver fibrosis. Liver sections were stained for collagen and α-smooth muscle actin (α-SMA. In addition, HSCs and NK cells were isolated from control and treated mice livers for molecular and immunological studies.Treatment with 4-MP attenuated CCl4- and BDL-induced liver fibrosis in mice, without any adverse effects. HSCs from 4-MP treated mice depicted decreased levels of retinoic acids and increased retinol content than HSCs from control mice. In addition, the expression of α-SMA, transforming growth factor-β1 (TGF-β1, and type I collagen α1 was significantly reduced in the HSCs of 4-MP treated mice compared to the HSCs from control mice. Furthermore, inhibition of retinol metabolism by 4-MP increased interferon-γ production in NK cells, resulting in increased apoptosis of activated HSCs.Based on our data, we conclude that inhibition of retinol metabolism by 4-MP ameliorates liver fibrosis in mice through activation of NK cells and suppression of HSCs. Therefore, retinol and its metabolizing enzyme, ADH3, might be potential targets for therapeutic intervention of liver fibrosis.

  16. Nanoporous Aluminium Oxide Membranes as Cell Interfaces

    Directory of Open Access Journals (Sweden)

    Dorothea Brüggemann


    Full Text Available Nanoporous anodic aluminium oxide (AAO has become increasingly important in biomedical applications over the past years due to its biocompatibility, increased surface area, and the possibility to tailor this nanomaterial with a wide range of surface modifications. AAO nanopores are formed in an inexpensive anodisation process of pure aluminium, which results in the self-assembly of highly ordered, vertical nanochannels with well-controllable pore diameters, depths, and interpore distances. Because of these outstanding properties AAO nanopores have become excellent candidates as nanostructured substrates for cell-interface studies. In this comprehensive review previous surveys on cell adhesion and proliferation on different AAO nanopore geometries and surface modifications are highlighted and summarised tabularly. Future applications of nanoporous alumina membranes in biotechnology and medicine are also outlined, for instance, the use of nanoporous AAO as implant modifications, coculture substrates, or immunoisolation devices.

  17. Cytocompatibility of Three Corneal Cell Types with Amniotic Membrane

    Institute of Scientific and Technical Information of China (English)

    CHENJian-su; CHENRui; XUJin-tang; DINGYong; ZHAOSong-bin; LISui-lian


    Rabbit limbal corneal epithelial cells, corneal endothelial cells and keratocytes were cultured on amniotic membrane. Phase contrast microscope examination was performed daily. Histological and scan electron microscopic examinations were carried out to observe the growth, arrangement and adhesion of cultivated cells. Results showed that three corneal cell types seeded on amniotic membrane grew well and had normal cell morphology. Cultured cells attached firmly on the surface of amniotic membrane. Corneal epithelial cells showed singular layer or stratification. Cell boundaries were formed and tightly opposed. Corneal endothelial cells showed cobblestone or polygonal morphologic characteristics that appeared uniform in size. The cellular arrangement was compact. Keratocytes elongated and showed triangle or dendritic morphology with many intercellular joints which could form networks. In conclusion, amniotic membrane has good scaffold property, diffusion effect and compatibility with corneal cells. The basement membrane side of amniotic membrane facilitated the growth of corneal epithelial cells and endothelial cells and cell junctions were tightly developed. The spongy layer of amniotic membrane facilitated the growth of keratocytes and intercellular joints were rich. Amniotic membrane is an ideal biomaterial for layering tissue engineered cornea.

  18. Estradiol pretreatment attenuated nicotine-induced endothelial cell apoptosis via estradiol functional membrane receptor. (United States)

    Wang, Li-li; Zhao, Jian-li; Lau, Wayne-Bond; Zhang, Yan-qing; Qiao, Zhong-dong; Wang, Ya-jing


    Cigarette smoking is highly associated with increased cardiovascular disease complications. The female population, however, manifests reduced cardiovascular morbidity. We define nicotine's effect upon human umbilical vein endothelial cells (HUVECs), determine whether estradiol might ameliorate endothelial dysfunction via its membrane estrogen receptor (mER), and attempt to elucidate the underlying mechanisms. Endothelial cells were pretreated with estradiol-BSA and measured resultant ion flux across the cells via the patch clamp technique to assess mER is functionality. Estradiol-BSA administration was associated with 30% decreased nicotine-induced apoptosis and also attenuated nicotine-activated phosphorylation of p38 and ERK. Pretreatment of estradiol-BSA triggered a low calcium influx, suggesting ahead low influx calcium played a critical role in the underlying protective mechanisms of estradiol. Furthermore, this estradiol-BSA protection against apoptosis remained effective in the presence of tamoxifen, an intracellular estrogen receptor (iER) inhibitor. Additionally, tamoxifen did not abolish estradiol-BSA's inhibitory effect upon p38 and ERK's activation, giving evidence to the obligatory role of p38 and ERK signaling in the estradiol-BSA's anti-apoptotic action via mER. Our study provides evidence that nicotine enhances endothelial cell apoptosis, but estrogen exerts anti-apoptotic effect through its functional membrane estrogen receptor. Clinically, the nicotine in cigarettes might contribute to endothelial dysfunction, whereas ambient estradiol may provide cellular protection against nicotine-induced injury through its functional membrane receptor via MAPK pathway downregulation.

  19. Exocytosis and endocytosis in neurodocrine cells: inseparable membranes !

    Directory of Open Access Journals (Sweden)

    Sébastien eHouy


    Full Text Available Although much has been learned concerning the mechanisms of secretory vesicle formation and fusion at donor and acceptor membrane compartments, relatively little attention has been paid towards understanding how cells maintain a homeostatic membrane balance through vesicular trafficking. In neurons and neuroendocrine cells, release of neurotransmitters, neuropeptides and hormones occurs through calcium-regulated exocytosis at the plasma membrane. To allow recycling of secretory vesicle components and to preserve organelles integrity, cells must initiate and regulate compensatory membrane uptake. This review relates the fate of secretory granule membranes after full fusion exocytosis in neuroendocrine cells. In particular, we focus on the potential role of lipids in preserving and sorting secretory granule membranes after exocytosis and we discuss the potential mechanisms of membrane retrieval.

  20. Fetal kidney stem cells ameliorate cisplatin induced acuterenal failure and promote renal angiogenesis

    Institute of Scientific and Technical Information of China (English)


    AIM To investigate whether fetal kidney stem cells(fKSC) ameliorate cisplatin induced acute renal failure(ARF) in rats and promote renal angiogenesis.METHODS: The fKSC were isolated from rat fetusesof gestation day 16 and expanded in vitro up to 3rdpassage. They were characterized for the expressionof mesenchymal and renal progenitor markers by flowcytometry and immunocytochemistry, respectively.The in vitro differentiation of fKSC towards epitheliallineage was evaluated by the treatment with specificinduction medium and their angiogenic potential bymatrigel induced tube formation assay. To study theeffect of fKSC in ARF, fKSC labeled with PKH26 wereinfused in rats with cisplatin induced ARF and, the bloodand renal tissues of the rats were collected at differenttime points. Blood biochemical parameters werestudied to evaluate renal function. Renal tissues wereevaluated for renal architecture, renal cell proliferationand angiogenesis by immunohistochemistry, renal cellapoptosis by terminal deoxynucleotidyl transferase nickendlabeling assay and early expression of angiogenicmolecules viz . vascular endothelial growth factor (VEGF),hypoxia-inducible factor (HIF)-1α and endothelial nitricoxide synthase (eNOS) by western blot.RESULTS: The fKSC expressed mesenchymal markersviz . CD29, CD44, CD73, CD90 and CD105 as well as renal progenitor markers viz . Wt1, Pax2 and Six2. Theyexhibited a potential to form CD31 and Von Willebrandfactor expressing capillary-like structures and could bedifferentiated into cytokeratin (CK)18 and CK19 positiveepithelial cells. Administration of fKSC in rats with ARF ascompared to administration of saline alone, resulted in asignificant improvement in renal function and histology onday 3 (2.33 ± 0.33 vs 3.50 ± 0.34, P 〈 0.05) and on day7 (0.83 ± 0.16 vs 2.00 ± 0.25, P 〈 0.05). The infusedPKH26 labeled fKSC were observed to engraft in damagedrenal tubules and showed increased proliferation andreduced

  1. Impedance study of membrane dehydration and compression in proton exchange membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Le Canut, Jean-Marc; Latham, Ruth; Merida, Walter; Harrington, David A. [Institute for Integrated Energy Systems, University of Victoria, Victoria, British Columbia (Canada)


    Electrochemical impedance spectroscopy (EIS) is used to measure drying and rehydration in proton exchange membrane fuel cells running under load. The hysteresis between forward and backward acquisition of polarization curves is shown to be largely due to changes in the membrane resistance. Drying tests are carried out with hydrogen and simulated reformate (hydrogen and carbon dioxide), and quasi-periodic drying and rehydration conditions are studied. The membrane hydration state is clearly linked to the high-frequency arc in the impedance spectrum, which increases in size for dry conditions indicating an increase in membrane resistance. Changes in impedance spectra as external compression is applied to the cell assembly show that EIS can separate membrane and interfacial effects, and that changes in membrane resistance dominate. Reasons for the presence of a capacitance in parallel with the membrane resistance are discussed. (author)

  2. Development of composite membranes of PVA-TEOS doped KOH for alkaline membrane fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Haryadi,, E-mail:; Sugianto, D.; Ristopan, E. [Department of Chemical Engineering, Politeknik Negeri Bandung Jl. Gegerkalong Hilir, Ds. Ciwaruga, Bandung West Java (Indonesia)


    Anion exchange membranes (AEMs) play an important role in separating fuel and oxygen (or air) in the Alkaline Membrane Fuel Cells. Preparation of hybrid organic inorganic materials of Polyvinylalcohol (PVA) - Tetraethylorthosilicate (TEOS) composite membrane doped KOH for direct alcohol alkaline fuel cell application has been investigated. The sol-gel method has been used to prepare the composite membrane of PVA-TEOS through crosslinking step and catalyzed by concentrated of hydrochloric acid. The gel solution was cast on the membrane plastic plate to obtain membrane sheets. The dry membranes were then doped by immersing in various concentrations of KOH solutions for about 4 hours. Investigations of the cross-linking process and the presence of hydroxyl group were conducted by FTIR as shown for frequency at about 1600 cm{sup −1} and 3300 cm{sup −1} respectively. The degree of swelling in ethanol decreased as the KOH concentration for membrane soaking process increased. The ion exchange capacity (IEC) of the membrane was 0.25meq/g. This composite membranes display significant ionic conductivity of 3.23 x 10{sup −2} S/cm in deionized water at room temperature. In addition, the morphology observation by scanning electron microscope (SEM) of the membrane indicates that soaking process of membrane in KOH increased thermal resistant.

  3. Oral administration of Nigella sativa oil ameliorates the effect of cisplatin on membrane enzymes, carbohydrate metabolism and oxidative damage in rat liver

    Directory of Open Access Journals (Sweden)

    Zeba Farooqui


    Full Text Available Cisplatin (CP is a potent anti-cancer drug widely used against solid tumors. However, it exhibits pronounced adverse effects including hepatotoxicity. Several strategies were attempted to prevent CP hepatotoxicity but were not found suitable for therapeutic application. Nigella sativa has been shown to prevent/reduce the progression of certain type of cardiovascular, kidney and liver diseases. Present study investigates whether N. sativa oil (NSO can prevent CP induced hepatotoxic effects. Rats were divided into four groups viz. control, CP, NSO and CPNSO. Animals in CPNSO and NSO group were administered NSO (2 ml/kg bwt, orally with or without single hepatotoxic dose of CP (6 mg/kg bwt, i.p. respectively. CP hepatotoxicity was recorded by increased serum ALT and AST activities. CP treatment caused oxidant/antioxidant imbalances as reflected by increased lipid peroxidation and decreased enzymatic and non-enzymatic antioxidants. Furthermore, the activities of various carbohydrate metabolism and membrane enzymes were altered by CP treatment. In contrast, NSO administration to CP treated rats, markedly ameliorated the CP elicited deleterious alterations in liver. Histopathological observations showed extensive liver damage in CP treated animals while greatly reduced tissue injury in CPNSO group. In conclusion, NSO appears to protect CP induced hepatotoxicity by improving energy metabolism and strengthening antioxidant defense mechanism.

  4. Atorvastatin ameliorates contrast medium-induced renal tubular cell apoptosis in diabetic rats via suppression of Rho-kinase pathway. (United States)

    Su, Jinzi; Zou, Wenbo; Cai, Wenqin; Chen, Xiuping; Wang, Fangbing; Li, Shuizhu; Ma, Wenwen; Cao, Yangming


    Contrast medium-induced acute kidney injury (CI-AKI) remains a leading cause of iatrogenic, drug-induced acute renal failure. This study aimed to investigate the protective effects of atorvastatin against renal tubular cell apoptosis in diabetic rats and the related mechanisms. CI-AKI was induced by intravenous administration of iopromide (12ml/kg) in streptozotocin-induced diabetic rats. Atorvastatin (ATO) was administered intragastrically at the dose of 5, 10 and 30mg/kg/d in different groups, respectively, for 5 days before iopromide injection. Renal function parameters, kidney histology, renal tubular cell apoptosis, the expression of apoptosis regulatory proteins, caspase-3 and Rho-associated protein kinase 1 (ROCK-1), and the phosphorylation of myosin phosphatase target subunit -1 (MYPT-1), were determined. Atorvastatin was shown to notably ameliorate contrast medium induced medullary damage, restore renal function, and suppress renal tubular apoptosis. Meanwhile, atorvastatin up-regulated the expression of Bcl-2, down-regulated the expression of Bax, caspase-3 and ROCK-1, restored the ratio of Bcl-2/Bax, and suppressed the phosphorylation of MYPT-1 in a dose-dependent manner. Thus, atorvastatin pretreatment could dose-dependently ameliorate the development of CI-AKI, which was partly attributed to its suppression of renal tubular cell apoptosis by inhibiting the Rho/ROCK pathway.

  5. Huangqin-Tang Ameliorates TNBS-Induced Colitis by Regulating Effector and Regulatory CD4(+) T Cells. (United States)

    Zou, Ying; Li, Wen-Yang; Wan, Zheng; Zhao, Bing; He, Zhi-Wei; Wu, Zhu-Guo; Huang, Guo-Liang; Wang, Jian; Li, Bin-Bin; Lu, Yang-Jia; Ding, Cong-Cong; Chi, Hong-Gang; Zheng, Xue-Bao


    Huangqin-Tang decoction (HQT) is a classic traditional Chinese herbal formulation that is widely used to ameliorate the symptoms of gastrointestinal disorders, including inflammatory bowel disease (IBD). This study was designed to investigate the therapeutic potential and immunological regulatory activity of HQT in experimental colitis in rats. Using an animal model of colitis by intrarectally administering 2,4,6-trinitrobenzenesulfonic acid (TNBS), we found that administration of HQT significantly inhibited the severity of TNBS-induced colitis in a dose-dependent manner. In addition, treatment with HQT produced better results than that with mesalazine, as shown by improvedweight loss bleeding and diarrhoea scores, colon length, and intestinal inflammation. As for potential immunological regulation of HQT action, the percentages of Th1 and Th17 cells were reduced, but those Th2 and Treg cells were enhanced in LPMCs after HQT treatment. Additionally, HQT lowered the levels of Th1/Th17-associated cytokines but increased production of Th2/Treg-associated cytokines in the colon and MLNs. Furthermore, we observed a remarkable suppression of the Th1/Th17-associated transcription factors T-bet and ROR-γt. However, expression levels of the Th2/Treg-associated transcription factors GATA-3 and Foxp3 were enhanced during treatment with HQT. Our results suggest that HQT has the therapeutic potential to ameliorate TNBS-induced colitis symptoms. This protective effect is possibly mediated by its effects on CD4(+) T cells subsets.

  6. Huangqin-Tang Ameliorates TNBS-Induced Colitis by Regulating Effector and Regulatory CD4+ T Cells

    Directory of Open Access Journals (Sweden)

    Ying Zou


    Full Text Available Huangqin-Tang decoction (HQT is a classic traditional Chinese herbal formulation that is widely used to ameliorate the symptoms of gastrointestinal disorders, including inflammatory bowel disease (IBD. This study was designed to investigate the therapeutic potential and immunological regulatory activity of HQT in experimental colitis in rats. Using an animal model of colitis by intrarectally administering 2,4,6-trinitrobenzenesulfonic acid (TNBS, we found that administration of HQT significantly inhibited the severity of TNBS-induced colitis in a dose-dependent manner. In addition, treatment with HQT produced better results than that with mesalazine, as shown by improvedweight loss bleeding and diarrhoea scores, colon length, and intestinal inflammation. As for potential immunological regulation of HQT action, the percentages of Th1 and Th17 cells were reduced, but those Th2 and Treg cells were enhanced in LPMCs after HQT treatment. Additionally, HQT lowered the levels of Th1/Th17-associated cytokines but increased production of Th2/Treg-associated cytokines in the colon and MLNs. Furthermore, we observed a remarkable suppression of the Th1/Th17-associated transcription factors T-bet and ROR-γt. However, expression levels of the Th2/Treg-associated transcription factors GATA-3 and Foxp3 were enhanced during treatment with HQT. Our results suggest that HQT has the therapeutic potential to ameliorate TNBS-induced colitis symptoms. This protective effect is possibly mediated by its effects on CD4+ T cells subsets.

  7. Neuroprotective effects of Cyperus rotundus on SIN-1 induced nitric oxide generation and protein nitration: ameliorative effect against apoptosis mediated neuronal cell damage. (United States)

    Hemanth Kumar, Kandikattu; Tamatam, Anand; Pal, Ajay; Khanum, Farhath


    Nitrosylation of tyrosine (3-nitro tyrosine, 3-NT) has been implicated in the pathophysiology of various disorders particularly neurodegenerative conditions and aging. Cyperus rotundus rhizome is being used as a traditional folk medicine to alleviate a variety of disorders including neuronal stress. The herb has recently found applications in food and confectionary industries also. In current study, we have explored the protective effects of C. rotundus rhizome extract (CRE) through its oxido-nitrosative and anti apoptotic mechanism to attenuate peroxynitrite (ONOO(-)) induced neurotoxicity using human neuroblastoma SH-SY5Y cells. Our results elucidate that pre-treatment of neurons with CRE ameliorates the mitochondrial and plasma membrane damage induced by 500 μM SIN-1 to 80% and 24% as evidenced by MTT and LDH assays. CRE inhibited NO generation by downregulating i-NOS expression. SIN-1 induced depletion of antioxidant enzyme status was also replenished by CRE which was confirmed by immunoblot analysis of SOD and CAT. The CRE pre-treatment efficiently potentiated the SIN-1 induced apoptotic biomarkers such as bcl-2 and caspase-3 which orchestrate the proteolytic damage of the cell. The ONOO(-) induced damage to cellular, nuclear and mitochondrial integrity was also restored by CRE. Furthermore, CRE pre-treatment also regulated the 3-NT formation which shows the potential of plant extract against tyrosine nitration. Taken together, our findings suggest that CRE might be developed as a preventive agent against ONOO(-) induced apoptosis.

  8. Treatment with garlic restores membrane thiol content and ameliorates lead induced early death of erythrocytes in mice. (United States)

    Sarkar, Avik; Sengupta, Dipanwita; Mandal, Samir; Sen, Gargi; Dutta Chowdhury, Kaustav; Chandra Sadhukhan, Gobinda


    Sequelae of chronic lead (Pb(2+) ) toxicity includes anemia that is partially due to early death of erythrocytes characterized by excess accumulation of ROS and downregulation of antioxidant system causing oxidative stress and externalization of phosphatidylserine. In this study, pathophysiological based therapeutic application of garlic was evaluated against erythrocyte death. Results suggest that garlic administration prevents oxidative stress, restored the antioxidant balance in erythrocytes of Pb(2+) exposed mice. Moreover, in vitro studies revealed that activity of both scramblase and aminophospholipid translocase could be changed by modifying the critical sulfhydryl groups in presence of dithiothreitol during Pb(2+) exposure. Data also indicated that garlic treatment in Pb(2+) exposed mice exhibited sharp decline in PS exposure and increase in erythrocyte membrane thiol group followed by increase in aminophospholipid translocase activity and decline in scramblase activity. Findings indicated that garlic has the ability to restore the lifespan of erythrocytes during Pb(2+) exposure.

  9. Membrane Fouling in Microfiltration used for Cell Harvesting

    Institute of Scientific and Technical Information of China (English)

    Tahereh Kaghazchi; Farzin Zokaee; Abbas Zare


    In the present study the membrane fouling in microfiltration used for cell harvesting in a deadend system has been investigated. Experimental results were analysed in terms of existing membrane filtration models and membrane resistances. The cake filtration model (CFM) and standard blocking model (SBM) have been considered in this study.Various membrane resistances were determined at different processing time, feed concentration and stirring speed. Resistances to permeation in this system include filter medium, pore blocking, adsorption, cake layer and concentration polarization.

  10. Membrane fouling in microfiltration used for cell harvesting (United States)

    Kaghazchi, Tahereh; Zokaee, Farzin; Zare, Abbas


    In the present study the membrane fouling in microfiltration used for cell harvesting in a deadend system has been investigated. Experimental results were analysed in terms of existing membrane filtration models and membrane resistances. The cake filtration model (CFM) and standard blocking model (SBM) have been considered in this study. Various membrane resistances were determined at different processing time, feed concentration and stirring speed. Resistances to permeation in this system include filter medium, pore blocking, adsorption, cake layer and concentration polarization.

  11. Norisoboldine ameliorates DSS-induced ulcerative colitis in mice through induction of regulatory T cells in colons. (United States)

    Lv, Qi; Qiao, Si-miao; Xia, Ying; Shi, Can; Xia, Yu-feng; Chou, Gui-xin; Wang, Zheng-tao; Dai, Yue; Wei, Zhi-feng


    Norisoboldine (NOR), the main active constituent of Radix Linderae, was previously demonstrated to ameliorate collagen-induced arthritis in rats through regulating the imbalance of T cells in intestines, which implied its therapeutic potential in inflammatory bowel disease. Here, we investigated the effect of NOR on ulcerative colitis (UC) induced by dextran sulfate sodium (DSS) in mice. Results showed that NOR (20, 40mg/kg) markedly reduced the symptoms of colitis, the levels of IL-1β and TNF-α, and the activation of ERK, p38 MAPK and NF-κB-p65. NOR only slightly decreased the levels of IFN-γ and IL-17A in mouse colons, but it dramatically increased the level of IL-10 at both protein and mRNA grades. Consistently, NOR increased the number of CD4(+)CD25(+)Foxp3(+) Treg cells more obviously than it decreased that of CD4(+)IL-17(+) Th17 cells in mesenteric lymph nodes (MLNs) and colonic lamina proprias (LPs) of colitis mice, and promoted the expression of Foxp3 mRNA in colon tissues. It could facilitate the in vitro differentiation of Treg cells from naive T cells and promote the phosphorylations of Smad2/3 in colon tissues of colitis mice. On the other hand, NOR did not affect the expressions of homing receptors CCR9 and α4β7 in SPs, and homing ligands CCL25 and Madcam-1 in MLNs and colonic LPs, suggesting that the increase of Treg cells in colons by NOR was not due to gut homing. In conclusion, NOR can ameliorate DSS-induced UC in mice, and the mechanisms involve reduction of pro-inflammatory cytokines and selective induction of Treg cells in colons.

  12. Hydrogen-Rich Water Ameliorates Total Body Irradiation-Induced Hematopoietic Stem Cell Injury by Reducing Hydroxyl Radical

    Directory of Open Access Journals (Sweden)

    Junling Zhang


    Full Text Available We examined whether consumption of hydrogen-rich water (HW could ameliorate hematopoietic stem cell (HSC injury in mice with total body irradiation (TBI. The results indicated that HW alleviated TBI-induced HSC injury with respect to cell number alteration and to the self-renewal and differentiation of HSCs. HW specifically decreased hydroxyl radical (OH∙ levels in the c-kit+ cells of 4 Gy irradiated mice. Proliferative bone marrow cells (BMCs increased and apoptotic c-kit+ cells decreased in irradiated mice uptaken with HW. In addition, the mean fluorescence intensity (MFI of γ-H2AX and percentage of 8-oxoguanine positive cells significantly decreased in HW-treated c-kit+ cells, indicating that HW can alleviate TBI-induced DNA damage and oxidative DNA damage in c-kit+ cells. Finally, the cell cycle (P21, cell apoptosis (BCL-XL and BAK, and oxidative stress (NRF2, HO-1, NQO1, SOD, and GPX1 proteins were significantly altered by HW in irradiated mouse c-kit+ cells. Collectively, the present results suggest that HW protects against TBI-induced HSC injury.

  13. Polybenzimidazole and sulfonated polyhedral oligosilsesquioxane composite membranes for high temperature polymer electrolyte membrane fuel cells

    DEFF Research Database (Denmark)

    Aili, David; Allward, Todd; Alfaro, Silvia Martinez


    Composite membranes based on poly(2,2′(m-phenylene)-5,5́bibenzimidazole) (PBI) and sulfonated polyhedral oligosilsesquioxane (S-POSS) with S-POSS contents of 5 and 10wt.% were prepared by solution casting as base materials for high temperature polymer electrolyte membrane fuel cells. With membranes...... humidified conditions in the 120-180°C temperature range. The conductivity improvements were also confirmed by in situ fuel cell tests at 160°C and further supported by the electrochemical impedance spectroscopy data based on the operating membrane electrode assemblies, demonstrating the technical...... feasibility of the novel electrolyte materials....

  14. Conductivity Measurements of Synthesized Heteropoly Acid Membranes for Proton Exchange Membrane Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Record, K.A.; Haley, B.T.; Turner, J.


    Fuel cell technology is receiving attention due to its potential to be a pollution free method of electricity production when using renewably produced hydrogen as fuel. In a Proton Exchange Membrane (PEM) fuel cell H2 and O2 react at separate electrodes, producing electricity, thermal energy, and water. A key component of the PEM fuel cell is the membrane that separates the electrodes. DuPont’s Nafion® is the most commonly used membrane in PEM fuel cells; however, fuel cell dehydration at temperatures near 100°C, resulting in poor conductivity, is a major hindrance to fuel cell performance. Recent studies incorporating heteropoly acids (HPAs) into membranes have shown an increase in conductivity and thus improvement in performance. HPAs are inorganic materials with known high proton conductivities. The primary objective of this work is to measure the conductivity of Nafion, X-Ionomer membranes, and National Renewable Energy Laboratory (NREL) Developed Membranes that are doped with different HPAs at different concentrations. Four-point conductivity measurements using a third generation BekkTech conductivity test cell are used to determine membrane conductivity. The effect of multiple temperature and humidification levels is also examined. While the classic commercial membrane, Nafion, has a conductivity of approximately 0.10 S/cm, measurements for membranes in this study range from 0.0030 – 0.58 S/cm, depending on membrane type, structure of the HPA, and the relative humidity. In general, the X-ionomer with H6P2W21O71 HPA gave the highest conductivity and the Nafion with the 12-phosphotungstic (PW12) HPA gave the lowest. The NREL composite membranes had conductivities on the order of 0.0013 – 0.025 S/cm.

  15. miR-196a Ameliorates Cytotoxicity and Cellular Phenotype in Transgenic Huntington’s Disease Monkey Neural Cells (United States)

    Carter, Richard L.; Prucha, Melinda S.; Yang, Jinjing; Parnpai, Rangsun; Chan, Anthony W. S.


    Huntington’s disease (HD) is an inherited neurodegenerative disorder caused by the expansion of polyglutamine (polyQ) tract that leads to motor, cognitive and psychiatric impairment. Currently there is no cure for HD. A transgenic HD nonhuman primate (HD-NHP) model was developed with progressive development of clinical and pathological features similar to human HD, which suggested the potential preclinical application of the HD-NHP model. Elevated expression of miR-196a was observed in both HD-NHP and human HD brains. Cytotoxicity and apoptosis were ameliorated by the overexpression of miR-196a in HD-NHP neural progenitor cells (HD-NPCs) and differentiated neural cells (HD-NCs). The expression of apoptosis related gene was also down regulated. Mitochondrial morphology and activity were improved as indicated by mitotracker staining and the upregulation of CBP and PGC-1α in HD-NPCs overexpressing miR-196a. Here we demonstrated the amelioration of HD cellular phenotypes in HD-NPCs and HD-NCs overexpressing miR-196a. Our results also suggested the regulatory role of miR-196a in HD pathogenesis that may hold the key for understanding molecular regulation in HD and developing novel therapeutics. PMID:27631085

  16. Thin Robust Anion Exchange Membranes for Fuel Cell Applications (United States)


    provide inexpensive compact power from a wider variety of fuels than is possible with a proton exchange membrane (PEM) fuel cell, has continued aqueous solution. Interestingly though, while the proton transfer events in the anion exchange membrane are more frequent as would be ECS...release; distribution is unlimited. (Invited) Thin Robust Anion Exchange Membranes for Fuel Cell Applications The views, opinions and/or findings

  17. Amelioration of the Fitness Costs of Antibiotic Resistance Due To Reduced Outer Membrane Permeability by Upregulation of Alternative Porins. (United States)

    Knopp, Michael; Andersson, Dan I


    The fitness cost of antibiotic resistance is a key parameter in determining the evolutionary success of resistant bacteria. Studies of the effect of antibiotic resistance on bacterial fitness are heavily biased toward target alterations. Here we investigated how the costs in the form of a severely impaired growth rate associated with resistance due to absence of two major outer membrane porins can be genetically compensated. We performed an evolution experiment with 16 lineages of a double mutant of Escherichia coli with the ompCF genes deleted, and reduced fitness and increased resistance to different classes of antibiotics, including the carbapenems ertapenem and meropenem. After serial passage for only 250 generations, the relative growth rate increased from 0.85 to 0.99 (susceptible wild type set to 1.0). Compensation of the costs followed two different adaptive pathways where upregulation of expression of alternative porins bypassed the need for functional OmpCF porins. The first compensatory mechanism involved mutations in the phoR and pstS genes, causing constitutive high-level expression of the PhoE porin. The second mechanism involved mutations in the hfq and chiX genes that disrupted Hfq-dependent small RNA regulation, causing overexpression of the ChiP porin. Although susceptibility was restored in compensated mutants with PhoE overexpression, evolved mutants with high ChiP expression maintained the resistance phenotype. Our findings may explain why porin composition is often altered in resistant clinical isolates and provide new insights into how bypass mechanisms may allow genetic adaptation to a common multidrug resistance mechanism.

  18. Estimation of membrane hydration status for active proton exchange membrane fuel cell systems by impedance measurement

    DEFF Research Database (Denmark)

    Török, Lajos; Sahlin, Simon Lennart; Kær, Søren Knudsen;


    , the membrane of which PEMFCs are made of tends to dry out when not in use. This increases the time interval required to start the system up and could lead to the destruction of the fuel cell. In this article a start-up time measurement setup is presented, which is part of a larger project, the membrane...... in this paper a correlation between the start-up time and relative humidity of the membrane can be derived....

  19. Cell volume and membrane stretch independently control K+ channel activity

    DEFF Research Database (Denmark)

    Bomholtz, Sofia Hammami; Willumsen, Niels J; Olsen, Hervør L;


    A number of potassium channels including members of the KCNQ family and the Ca(2+) activated IK and SK, but not BK, are strongly and reversibly regulated by small changes in cell volume. It has been argued that this general regulation is mediated through sensitivity to changes in membrane stretch....... To test this hypothesis we have studied the regulation of KCNQ1 and BK channels after expression in Xenopus oocytes. Results from cell-attached patch clamp studies (approximately 50 microm(2) macropatches) in oocytes expressing BK channels demonstrate that the macroscopic volume-insensitive BK current...... was not affected by membrane stretch. The results indicate that (1) activation of BK channels by local membrane stretch is not mimicked by membrane stress induced by cell swelling, and (2) activation of KCNQ1 channels by cell volume increase is not mediated by local tension in the cell membrane. We conclude...

  20. Cytotoxicity of bovine and porcine collagen membranes in mononuclear cells. (United States)

    Moura, Camilla Christian Gomes; Soares, Priscilla Barbosa Ferreira; Carneiro, Karine Fernandes; Souza, Maria Aparecida de; Magalhães, Denildo


    This study compared the cytotoxicity and the release of nitric oxide induced by collagen membranes in human mononuclear cells. Peripheral blood was collected from each patient and the separation of mononuclear cells was performed by Ficoll. Then, 2x10(5) cells were plated in 48-well culture plates under the membranes in triplicate. The polystyrene surface was used as negative control. Cell viability was assessed by measuring mitochondrial activity (MTT) at 4, 12 and 24 h, with dosage levels of nitrite by the Griess method for the same periods. Data had non-normal distribution and were analyzed by the Kruskal-Wallis test (pporcine membrane induced a higher release of nitrite compared with the control and bovine membrane, respectively (pporcine collagen membrane induces an increased production of proinflammatory mediators by mononuclear cells in the first hours of contact, decreasing with time.

  1. Durability of symmetrically and asymmetrically porous polybenzimidazole membranes for high temperature proton exchange membrane fuel cells (United States)

    Jheng, Li-Cheng; Chang, Wesley Jen-Yang; Hsu, Steve Lien-Chung; Cheng, Po-Yang


    Two types of porous polybenzimidazole (PBI) membranes with symmetric and asymmetric morphologies were fabricated by the template-leaching method and characterized by scanning electron microscope (SEM). Their physicochemical properties were compared in terms of acid-doping level, proton conductivity, mechanical strength, and oxidative stability. The durability of fuel cell operation is one of the most challenging for the PBI based membrane electrode assembly (MEA) used in high-temperature proton exchange membrane fuel cells (HT-PEMFCs). In the present work, we carried out a long-term steady-state fuel cell test to compare the effect of membrane structure on the cell voltage degradation. It has also been demonstrated that the asymmetrically porous PBI could bring some notable improvements on the durability of fuel cell operation, the fuel crossover problem, and the phosphoric acid leakage.

  2. Studying the Nucleated Mammalian Cell Membrane by Single Molecule Approaches (United States)

    Wang, Feng; Wu, Jiazhen; Gao, Jing; Liu, Shuheng; Jiang, Junguang; Jiang, Shibo; Wang, Hongda


    The cell membrane plays a key role in compartmentalization, nutrient transportation and signal transduction, while the pattern of protein distribution at both cytoplasmic and ectoplasmic sides of the cell membrane remains elusive. Using a combination of single-molecule techniques, including atomic force microscopy (AFM), single molecule force spectroscopy (SMFS) and stochastic optical reconstruction microscopy (STORM), to study the structure of nucleated cell membranes, we found that (1) proteins at the ectoplasmic side of the cell membrane form a dense protein layer (4 nm) on top of a lipid bilayer; (2) proteins aggregate to form islands evenly dispersed at the cytoplasmic side of the cell membrane with a height of about 10–12 nm; (3) cholesterol-enriched domains exist within the cell membrane; (4) carbohydrates stay in microdomains at the ectoplasmic side; and (5) exposed amino groups are asymmetrically distributed on both sides. Based on these observations, we proposed a Protein Layer-Lipid-Protein Island (PLLPI) model, to provide a better understanding of cell membrane structure, membrane trafficking and viral fusion mechanisms. PMID:24806512

  3. Correlation between membrane fluidity cellular development and stem cell differentiation

    KAUST Repository

    Noutsi, Pakiza


    Cell membranes are made up of a complex structure of lipids and proteins that diffuse laterally giving rise to what we call membrane fluidity. During cellular development, such as neuronal differentiation, cell membranes undergo dramatic structural changes induced by proteins such as ARC and Cofilin among others in the case of synaptic modification. In this study we used the generalized polarization (GP) property of fluorescent probe Laurdan using two-photon microscopy to determine membrane fluidity as a function of time and for various cell lines. A low GP value corresponds to a higher fluidity and a higher GP value is associated with a more rigid membrane. Four different cell lines were monitored such as hN2, NIH3T3, HEK293 and L6 cells. As expected, NIH3T3 cells have more rigid membrane at earlier stages of their development. On the other hand neurons tend to have the highest membrane fluidity early in their development emphasizing its correlation with plasticity and the need for this malleability during differentiation. This study sheds light on the involvement of membrane fluidity during neuronal differentiation and development of other cell lines.

  4. Nano thermo-hydrodynamics method for investigating cell membrane fluidity

    Institute of Scientific and Technical Information of China (English)


    As a barrier to compartmentalize cells,mem-branes form the interface between a cell and its surround-ings.The essential function of a membrane is to maintain a relatively stable environment in the cell,exchange sub-stances selectively and transfer energy and information continually from the outside.It is intriguing that above the phase transition temperature,the membrane lipid molecule will have three modes-lateral diffusion,rotational movement and flip-flop activity.These thermodynamic processes are vital to cell existence,growth,division,differentiation and are also responsible for hundreds of thousands of phenomena in life.Previously,species transport across the membrane was interpreted mainly from a phenomenological view using a lumped system model.Therefore,detailed flow processes occurred in the membrane domain and clues related to life mechanism were not sufficiently tackled.Such important issues can be clarifled by modeling nano scale thermal hydrodynamics over the gap space of a cell membrane.Previously observed complex membrane behaviors will be shown in this paper and explained by the thermally induced fluidic convections inside the membrane.A correlation between nano scale hydrodynamics,non-equilibrium thermodynamics and eell membrane activities is set up.The disclosed mechanisms are expected to provide a new viewpoint on the interaction between intracellular and extracellular processes through the membrane.

  5. Electron Spin Resonance Study of Fuel Cell Polymer Membrane Degradation

    Institute of Scientific and Technical Information of China (English)

    Alexander Panchenko; Elena Aleksandrova; Emil Roduner


    @@ 1Introduction The long term stability of the membrane is an important factor limiting the fuel cell lifetime. During extended use the membrane degrades, probably via reaction with hydroxyl and superoxide radicals which are regular intermediates of the oxygen reduction at the cathode. Only extremely stable membranes can withstand the aggressive chemical and physical environment in an operating fuel cell. Within a given set of operating conditions, intrinsic chemical and mechanical properties of the membrane as well as its water content impact its durability dramatically.

  6. Cell membrane fluid-mosaic structure and cancer metastasis. (United States)

    Nicolson, Garth L


    Cancer cells are surrounded by a fluid-mosaic membrane that provides a highly dynamic structural barrier with the microenvironment, communication filter and transport, receptor and enzyme platform. This structure forms because of the physical properties of its constituents, which can move laterally and selectively within the membrane plane and associate with similar or different constituents, forming specific, functional domains. Over the years, data have accumulated on the amounts, structures, and mobilities of membrane constituents after transformation and during progression and metastasis. More recent information has shown the importance of specialized membrane domains, such as lipid rafts, protein-lipid complexes, receptor complexes, invadopodia, and other cellular structures in the malignant process. In describing the macrostructure and dynamics of plasma membranes, membrane-associated cytoskeletal structures and extracellular matrix are also important, constraining the motion of membrane components and acting as traction points for cell motility. These associations may be altered in malignant cells, and probably also in surrounding normal cells, promoting invasion and metastatic colonization. In addition, components can be released from cells as secretory molecules, enzymes, receptors, large macromolecular complexes, membrane vesicles, and exosomes that can modify the microenvironment, provide specific cross-talk, and facilitate invasion, survival, and growth of malignant cells.

  7. Detecting Nanodomains in Living Cell Membrane by Fluorescence Correlation Spectroscopy (United States)

    He, Hai-Tao; Marguet, Didier


    Cell membranes actively participate in numerous cellular functions. Inasmuch as bioactivities of cell membranes are known to depend crucially on their lateral organization, much effort has been focused on deciphering this organization on different length scales. Within this context, the concept of lipid rafts has been intensively discussed over recent years. In line with its ability to measure diffusion parameters with great precision, fluorescence correlation spectroscopy (FCS) measurements have been made in association with innovative experimental strategies to monitor modes of molecular lateral diffusion within the plasma membrane of living cells. These investigations have allowed significant progress in the characterization of the cell membrane lateral organization at the suboptical level and have provided compelling evidence for the in vivo existence of raft nanodomains. We review these FCS-based studies and the characteristic structural features of raft nanodomains. We also discuss the findings in regards to the current view of lipid rafts as a general membrane-organizing principle.

  8. How the antimicrobial peptides destroy bacteria cell membrane: Translocations vs. membrane buckling (United States)

    Golubovic, Leonardo; Gao, Lianghui; Chen, Licui; Fang, Weihai


    In this study, coarse grained Dissipative Particle Dynamics simulation with implementation of electrostatic interactions is developed in constant pressure and surface tension ensemble to elucidate how the antimicrobial peptide molecules affect bilayer cell membrane structure and kill bacteria. We find that peptides with different chemical-physical properties exhibit different membrane obstructing mechanisms. Peptide molecules can destroy vital functions of the affected bacteria by translocating across their membranes via worm-holes, or by associating with membrane lipids to form hydrophilic cores trapped inside the hydrophobic domain of the membranes. In the latter scenario, the affected membranes are strongly corrugated (buckled) in accord with very recent experimental observations [G. E. Fantner et al., Nat. Nanotech., 5 (2010), pp. 280-285].

  9. Protein tyrosine phosphatase 1B deficiency ameliorates murine experimental colitis via the expansion of myeloid-derived suppressor cells.

    Directory of Open Access Journals (Sweden)

    Jing Zhang

    Full Text Available Protein tyrosine phosphatase 1B (PTP1B is a key molecule in modulating low-degree inflammatory conditions such as diabetes. The role of PTP1B in other chronic inflammations, however, remains unknown. Here, we report that PTP1B deficiency ameliorates Dextran Sulfate Sodium (DSS-induced murine experimental colitis via expanding CD11b(+Gr-1(+ myeloid-derived suppressor cells (MDSCs. Employing DSS-induced murine experimental colitis as inflammatory animal model, we found that, compared with wild-type littermates, PTP1B-null mice demonstrated greater resistance to DSS-induced colitis, as reflected by slower weight-loss, greater survival rates and decreased PMN and macrophage infiltration into the colon. The evidence collectively also demonstrated that the resistance of PTP1B-null mice to DSS-induced colitis is based on the expansion of MDSCs. First, PTP1B-null mice exhibited a greater frequency of MDSCs in the bone marrow (BM, peripheral blood and spleen when compared with wild-type littermates. Second, PTP1B levels in BM leukocytes were significantly decreased after cells were induced into MDSCs by IL-6 and GM-CSF, and the MDSC induction occurred more rapidly in PTP1B-null mice than in wild-type littermates, suggesting PTP1B as a negative regulator of MDSCs. Third, the adoptive transfer of MDSCs into mice with DSS-colitis significantly attenuated colitis, which accompanies with a decreased serum IL-17 level. Finally, PTP1B deficiency increased the frequency of MDSCs from BM cells likely through enhancing the activities of signal transducer and activator of transcription 3 (STAT3 and Janus kinase 2 (JAK2. In conclusion, our study provides the first evidences that PTP1B deficiency ameliorates murine experimental colitis via expanding MDSCs.

  10. Exploring the inhibitory effect of membrane tension on cell polarization. (United States)

    Wang, Weikang; Tao, Kuan; Wang, Jing; Yang, Gen; Ouyang, Qi; Wang, Yugang; Zhang, Lei; Liu, Feng


    Cell polarization toward an attractant is influenced by both physical and chemical factors. Most existing mathematical models are based on reaction-diffusion systems and only focus on the chemical process occurring during cell polarization. However, membrane tension has been shown to act as a long-range inhibitor of cell polarization. Here, we present a cell polarization model incorporating the interplay between Rac GTPase, filamentous actin (F-actin), and cell membrane tension. We further test the predictions of this model by performing single cell measurements of the spontaneous polarization of cancer stem cells (CSCs) and non-stem cancer cells (NSCCs), as the former have lower cell membrane tension. Based on both our model and the experimental results, cell polarization is more sensitive to stimuli under low membrane tension, and high membrane tension improves the robustness and stability of cell polarization such that polarization persists under random perturbations. Furthermore, our simulations are the first to recapitulate the experimental results described by Houk et al., revealing that aspiration (elevation of tension) and release (reduction of tension) result in a decrease in and recovery of the activity of Rac-GTP, respectively, and that the relaxation of tension induces new polarity of the cell body when a cell with the pseudopod-neck-body morphology is severed.

  11. The Flocculating Cationic Polypetide from Moringa oleifera Seeds Damages Bacterial Cell Membranes by Causing Membrane Fusion. (United States)

    Shebek, Kevin; Schantz, Allen B; Sines, Ian; Lauser, Kathleen; Velegol, Stephanie; Kumar, Manish


    A cationic protein isolated from the seeds of the Moringa oleifera tree has been extensively studied for use in water treatment in developing countries and has been proposed for use in antimicrobial and therapeutic applications. However, the molecular basis for the antimicrobial action of this peptide, Moringa oleifera cationic protein (MOCP), has not been previously elucidated. We demonstrate here that a dominant mechanism of MOCP antimicrobial activity is membrane fusion. We used a combination of cryogenic electron microscopy (cryo-EM) and fluorescence assays to observe and study the kinetics of fusion of membranes in liposomes representing model microbial cells. We also conducted cryo-EM experiments on E. coli cells where MOCP was seen to fuse the inner and outer membranes. Coarse-grained molecular dynamics simulations of membrane vesicles with MOCP molecules were used to elucidate steps in peptide adsorption, stalk formation, and fusion between membranes.

  12. Polymer Electrolyte Membrane Fuel Cell Performance of a Sulfonated Poly(Arylene Ether Benzimidazole Copolymer Membrane

    Directory of Open Access Journals (Sweden)

    Hasan Ferdi Gerçel


    Full Text Available Disodium-3,3′-disulfonate-4,4′-dichlorodiphenylsulfone (SDCDPS and 5,5′-bis[2-(4-hydroxyphenylbenzimidazole] (HPBI monomers were synthesized. Binding these monomers via nucleophilic aromatic polycondensation reaction, a sulfonated poly(arylene ether benzimidazole copolymer was synthesized. Structures of monomers and copolymer were confirmed by proton nuclear magnetic resonance spectroscopy (1H NMR and Fourier transform infrared (FTIR spectroscopy analyses. Proton exchange membrane was prepared by dissolving copolymer in dimethylacetamide (DMAc and casting onto a glass plate. Copolymer membrane was doped with sulfuric acid to ensure proton exchange character. Single cell performance of the copolymer membrane was tested in a polymer electrolyte membrane fuel cell test station. The highest power density of the membrane was measured as 23.7 mW cm−2 at 80°C. Thermogravimetric analysis (TGA showed that as the degree of disulfonation is increased thermal stability of the copolymer is increased.

  13. Membrane curvature in cell biology: An integration of molecular mechanisms. (United States)

    Jarsch, Iris K; Daste, Frederic; Gallop, Jennifer L


    Curving biological membranes establishes the complex architecture of the cell and mediates membrane traffic to control flux through subcellular compartments. Common molecular mechanisms for bending membranes are evident in different cell biological contexts across eukaryotic phyla. These mechanisms can be intrinsic to the membrane bilayer (either the lipid or protein components) or can be brought about by extrinsic factors, including the cytoskeleton. Here, we review examples of membrane curvature generation in animals, fungi, and plants. We showcase the molecular mechanisms involved and how they collaborate and go on to highlight contexts of curvature that are exciting areas of future research. Lessons from how membranes are bent in yeast and mammals give hints as to the molecular mechanisms we expect to see used by plants and protists.

  14. Coating nanoparticles with cell membranes for targeted drug delivery. (United States)

    Gao, Weiwei; Zhang, Liangfang


    Targeted delivery allows drug molecules to preferentially accumulate at the sites of action and thus holds great promise to improve therapeutic index. Among various drug-targeting approaches, nanoparticle-based delivery systems offer some unique strengths and have achieved exciting preclinical and clinical results. Herein, we aim to provide a review on the recent development of cell membrane-coated nanoparticle system, a new class of biomimetic nanoparticles that combine both the functionalities of cellular membranes and the engineering flexibility of synthetic nanomaterials for effective drug delivery and novel therapeutics. This review is particularly focused on novel designs of cell membrane-coated nanoparticles as well as their underlying principles that facilitate the purpose of drug targeting. Three specific areas are highlighted, including: (i) cell membrane coating to prolong nanoparticle circulation, (ii) cell membrane coating to achieve cell-specific targeting and (iii) cell membrane coating for immune system targeting. Overall, cell membrane-coated nanoparticles have emerged as a novel class of targeted nanotherapeutics with strong potentials to improve on drug delivery and therapeutic efficacy for treatment of various diseases.

  15. A Mushroom Extract Piwep from Phellinus igniarius Ameliorates Experimental Autoimmune Encephalomyelitis by Inhibiting Immune Cell Infiltration in the Spinal Cord

    Directory of Open Access Journals (Sweden)

    Lan Li


    Full Text Available The present study aimed to evaluate the therapeutic potential of a mushroom extract from Phellinus igniarius in an animal model of multiple sclerosis. The medicinal mushroom, Phellinus igniarius, contains biologically active compounds that modulate the human immune system. Experimental autoimmune encephalomyelitis (EAE was induced by immunization with myelin oligodendrocyte glycoprotein (MOG 35–55 in C57BL/6 female mice. A water-ethanol extract of Phellinus igniarius (Piwep was delivered intraperitoneally every other day for the entire experimental course. Three weeks after the initial immunization, demyelination and immune cell infiltration in the spinal cord were examined. Piwep injection profoundly decreased the daily incidence rate and clinical score of EAE. The Piwep-mediated inhibition of the clinical course of EAE was accompanied by suppression of demyelination and infiltration of encephalitogenic immune cells including CD4+ T cells, CD8+ T cells, macrophages, and B cells in the spinal cord. Piwep reduced expression of vascular cell adhesion molecule-1 (VCAM-1 in the spinal cord and integrin-α4 in the lymph node of EAE mice. Piwep also inhibited proliferation of lymphocytes and secretion of interferon-γ in the lymph node of EAE mice. The results suggest that a mushroom extract, Piwep, may have a high therapeutic potential for ameliorating multiple sclerosis progression.

  16. Improved Membrane Materials for PEM Fuel Cell Application

    Energy Technology Data Exchange (ETDEWEB)

    Kenneth A. Mauritz; Robert B. Moore


    The overall goal of this project is to collect and integrate critical structure/property information in order to develop methods that lead to significant improvements in the durability and performance of polymer electrolyte membrane fuel cell (PEMFC) materials. This project is focused on the fundamental improvement of PEMFC membrane materials with respect to chemical, mechanical and morphological durability as well as the development of new inorganically-modified membranes.

  17. Nanoscale cell membrane organization : a near-field optical view

    NARCIS (Netherlands)

    Koopman, Marjolein


    The cell plasma membrane of eukaryotic cells is a lipid bi-layer that separates the cell cytosol from the extracellular environment. The composition and organization of proteins and lipids within this bi-layer have a direct impact on many cellular processes, since they form the senses of the cell. T

  18. Homotypic fusion of endoplasmic reticulum membranes in plant cells

    Directory of Open Access Journals (Sweden)

    Junjie eHu


    Full Text Available The endoplasmic reticulum (ER is a membrane-bounded organelle whose membrane comprises a network of tubules and sheets. The formation of these characteristic shapes and maintenance of their continuity through homotypic membrane fusion appears to be critical for the proper functioning of the ER. The atlastins (ATLs, a family of ER-localized dynamin-like GTPases, have been identified as fusogens of the ER membranes in metazoans. Mutations of the ATL proteins in mammalian cells cause morphological defects in the ER, and purified Drosophila ATL mediates membrane fusion in vitro. Plant cells do not possess ATL, but a family of similar GTPases, named root hair defective 3 (RHD3, are likely the functional orthologs of ATLs. In this review, we summarize recent advances in our understanding of how RHD3 proteins play a role in homotypic ER fusion. We also discuss the possible physiological significance of forming a tubular ER network in plant cells.

  19. Puerarin ameliorates experimental alcoholic liver injury by inhibition of endotoxin gut leakage, Kupffer cell activation, and endotoxin receptors expression. (United States)

    Peng, Jing-Hua; Cui, Tuan; Huang, Fu; Chen, Liang; Zhao, Yu; Xu, Lin; Xu, Li-Li; Feng, Qin; Hu, Yi-Yang


    Puerarin, an isoflavone component extracted from Kudzu (Pueraria lobata), has been demonstrated to alleviate alcohol-related disorders. Our study examined whether puerarin ameliorates chronic alcoholic liver injury through inhibition of endotoxin gut leakage, the subsequent Kupffer cell activation, and endotoxin receptors expression. Rats were provided with the Liber-DeCarli liquid diet for 8 weeks. Puerarin (90 mg/kg or 180 mg/kg daily) was orally administered from the beginning of the third week until the end of the experiment. Chronic alcohol intake caused increased serum alanine aminotransferase, aspartate aminotransferase, hepatic gamma-glutamyl transpeptidase, and triglyceride levels as well as fatty liver and neutrophil infiltration in hepatic lobules as determined by biochemical and histologic assays. A significant increase of liver tumor necrosis factor α was detected by enzyme-linked immunosorbent assay. These pathologic effects correlated with increased endotoxin level in portal vein and upregulated protein expression of hepatic CD68, lipopolysaccharide-binding protein, CD14, Toll-like receptor 2, and Toll-like receptor 4. Meanwhile, the intestinal microvilli were observed to be sparse, shortened, and irregularity in distribution under the transmission electron microscope in conjunction with the downregulated intestinal zonula occludens-1 protein expression. These hepatic pathologic changes were significantly inhibited in puerarin-treated animals as were the endotoxin levels and hepatic CD68 and endotoxin receptors. Moreover, the pathologic changes in intestinal microvillus and the decreased intestinal zonula occludens-1 were also ameliorated with puerarin treatment. These results thus demonstrate that puerarin inhibition of endotoxin gut leakage, Kupffer cell activation, and endotoxin receptors expression is involved in the alleviation of chronic alcoholic liver injury in rats.

  20. Durability Issues of High Temperature Proton Exchange Membrane Fuel Cells Based on Acid Doped Polybenzimidazole Membranes

    DEFF Research Database (Denmark)

    To achieve high temperature operation of proton exchange membrane fuel cells (PEMFC), preferably under ambient pressure, phosphoric acid doped polybenzimidazole (PBI) membrane represents an effective approach, which in recent years has motivated extensive research activities with great progress....... As a critical concern, issues of long term durability of PBI based fuel cells are addressed in this talk, including oxidative degradation of the polymer, mechanical failures of the membrane, acid leaching out, corrosion of carbon support and sintering of catalysts particles. Excellent polymer durability has...... observed under continuous operation with hydrogen and air at 150-160oC, with a fuel cell performance degradation rate of 5-10 µV/h. Improvement of the membrane performance such as mechanical strength, swelling and oxidative stability has achieved by exploring the polymer chemistry, i.e. covalently...

  1. Toughness of membranes applied in polymer electrolyte fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Kiefer, J.; Brack, H.P.; Scherer, G.G. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)


    Since several years we apply the radiation-grafting technique to prepare polymeric membranes for application in polymer electrolyte fuel cells (PEFCs). Our investigations presented here focus on changes in toughness of these materials after the various synthesis steps and the importance of membrane toughness for their application in PEFCs. (author) 2 figs., 4 refs.

  2. Expression of basement membrane antigens in spindle cell melanoma. (United States)

    Prieto, V G; Woodruff, J M


    Spindle cell melanoma (SCM) is an uncommon form of melanoma that may be confused histologically with other tumors, including malignant peripheral nerve sheath tumors (MPNST). Tumors with neural differentiation and melanocytic nevi may both show basement membrane immunohistochemically and at the ultrastructural level. However, most ultrastructural studies of melanoma have failed to demonstrate well formed basement membrane around tumor cells. The presence of basement membrane has been used by some authors as evidence favoring MPNST, as opposed to SCM. To evaluate this distinction immunohistochemically, 22 primary and metastatic cutaneous melanomas having a spindle cell component (SCM) were studied using monoclonal antibodies against laminin and Type IV collagen. S100 protein and HMB45 antigen expression were also studied. All but one of the SCM were reactive for S100 protein in at least 25% of the cells. Thirteen of 20 tumors (65%) were focally reactive with HMB45. Laminin was expressed in 42% of the tumors (only membranous pattern in 3; cytoplasmic and membranous in 5). Seventeen tumors (77%) expressed type IV collagen (only membranous pattern in 7; cytoplasmic and membranous pattern in 10). Laminin and type IV collagen, known components of basement membrane, are often found in SCM. Therefore, their detection cannot be used to distinguish SCM from MPNST.


    Institute of Scientific and Technical Information of China (English)

    Perurnal Bhavani; Dharmalingam Sangeetha


    Sulphonated polystyrene ethylene butylene polystyrene (SPSEBS) prepared with 35% sulphonation was found to be highly elastic and enlarged up to 300%-400% of its initial length.It absorbed over 110% of water by weight.A major drawback of this membrane is its poor mechanical properties which are not adequate for use as polymer electrolytes in fuel cells.To overcome this,SPSEBS was blended with poly(vinylidene fluoride) (PVDF),a hydrophobic polymer.The blend membranes showed better mechanical properties than the base polymer.The effect of PVDF content on water uptake,ion exchange capacity and proton conductivity of the blend membranes was investigated.This paper presents the results of recent studies applied to develop an optimized in-house membrane electrode assembly (MEA) preparation technique combining catalyst ink spraying and assembly hot pressing.Easy steps were chosen in this preparation technique in order to simplify the method,aiming at cost reduction.The open circuit voltage for the cell with SPSEBS is 0.980 V which is higher compared to that of the cell with Nafion 117 (0.790 V).From this study,it is concluded that a polymer electrolyte membrane suitable for proton exchange membrane fuel cell (PEMFC) and direct methanol fuel cell (DMFC) application can be obtained by blending SPSEBS and PVDF in appropriate proportions.The methanol permeability and selectivity showed a strong influence on DMFC performance.

  4. Galectin-9 ameliorates Con A-induced hepatitis by inducing CD4(+CD25(low/int effector T-Cell apoptosis and increasing regulatory T cell number.

    Directory of Open Access Journals (Sweden)

    Kun Lv

    Full Text Available BACKGROUND: T cell-mediated liver damage is a key event in the pathogenesis of many chronic human liver diseases, such as liver transplant rejection, primary biliary cirrhosis, and sclerosing cholangitis. We and other groups have previously reported that galectin-9, one of the β-galactoside binding animal lectins, might be potentially useful in the treatment of T cell-mediated diseases. To evaluate the direct effect of galectin-9 on hepatitis induced by concanavalin A (Con A administration in mice and to clarify the mechanisms involved, we administered galectin-9 into mice, and evaluated its therapeutic effect on Con A-induced hepatitis. METHODOLOGY/PRINCIPAL FINDINGS: Galectin-9 was administrated i.v. to Balb/c mice 30 min before Con A injection. Compared with no treatment, galectin-9 pretreatment significantly reduced serum ALT and AST levels and improved liver histopathology, suggesting an ameliorated hepatitis. This therapeutic effect was not only attributable to a blunted Th1 immune response, but also to an increased number in regulatory T cells, as reflected in a significantly increased apoptosis of CD4(+CD25(low/int effector T cells and in reduced proinflammatory cytokine levels. CONCLUSION/SIGNIFICANCE: Our findings constitute the first preclinical data indicating that interfering with TIM-3/galectin-9 signaling in vivo could ameliorate Con A-induced hepatitis. This strategy may represent a new therapeutic approach in treating human diseases involving T cell activation.

  5. Galectin-9 Ameliorates Con A-Induced Hepatitis by Inducing CD4+CD25low/int Effector T-Cell Apoptosis and Increasing Regulatory T Cell Number (United States)

    Zhang, Mengying; Zhong, Min; Suo, Qifeng


    Background T cell-mediated liver damage is a key event in the pathogenesis of many chronic human liver diseases, such as liver transplant rejection, primary biliary cirrhosis, and sclerosing cholangitis. We and other groups have previously reported that galectin-9, one of the β-galactoside binding animal lectins, might be potentially useful in the treatment of T cell-mediated diseases. To evaluate the direct effect of galectin-9 on hepatitis induced by concanavalin A (Con A) administration in mice and to clarify the mechanisms involved, we administered galectin-9 into mice, and evaluated its therapeutic effect on Con A-induced hepatitis. Methodology/Principal Findings Galectin-9 was administrated i.v. to Balb/c mice 30 min before Con A injection. Compared with no treatment, galectin-9 pretreatment significantly reduced serum ALT and AST levels and improved liver histopathology, suggesting an ameliorated hepatitis. This therapeutic effect was not only attributable to a blunted Th1 immune response, but also to an increased number in regulatory T cells, as reflected in a significantly increased apoptosis of CD4+CD25low/int effector T cells and in reduced proinflammatory cytokine levels. Conclusion/Significance Our findings constitute the first preclinical data indicating that interfering with TIM-3/galectin-9 signaling in vivo could ameliorate Con A-induced hepatitis. This strategy may represent a new therapeutic approach in treating human diseases involving T cell activation. PMID:23118999

  6. Cell-free system for synthesizing membrane proteins cell free method for synthesizing membrane proteins (United States)

    Laible, Philip D; Hanson, Deborah K


    The invention provides an in vitro method for producing proteins, membrane proteins, membrane-associated proteins, and soluble proteins that interact with membrane-associated proteins for assembly into an oligomeric complex or that require association with a membrane for proper folding. The method comprises, supplying intracytoplasmic membranes from organisms; modifying protein composition of intracytoplasmic membranes from organism by modifying DNA to delete genes encoding functions of the organism not associated with the formation of the intracytoplasmic membranes; generating appropriate DNA or RNA templates that encode the target protein; and mixing the intracytoplasmic membranes with the template and a transcription/translation-competent cellular extract to cause simultaneous production of the membrane proteins and encapsulation of the membrane proteins within the intracytoplasmic membranes.

  7. Allogeneic Adipose-Derived Mesenchymal Stromal Cells Ameliorate Experimental Autoimmune Encephalomyelitis by Regulating Self-Reactive T Cell Responses and Dendritic Cell Function (United States)

    Gonzalez-Rey, Elena; Martin, Francisco; Oliver, F. Javier


    Multipotent mesenchymal stromal cells (MSCs) have emerged as a promising therapy for autoimmune diseases, including multiple sclerosis (MS). Administration of MSCs to MS patients has proven safe with signs of immunomodulation but their therapeutic efficacy remains low. The aim of the current study has been to further characterize the immunomodulatory mechanisms of adipose tissue-derived MSCs (ASCs) in vitro and in vivo using the EAE model of chronic brain inflammation in mice. We found that murine ASCs (mASCs) suppress T cell proliferation in vitro via inducible nitric oxide synthase (iNOS) and cyclooxygenase- (COX-) 1/2 activities. mASCs also prevented the lipopolysaccharide- (LPS-) induced maturation of dendritic cells (DCs) in vitro. The addition of the COX-1/2 inhibitor indomethacin, but not the iNOS inhibitor L-NAME, reversed the block in DC maturation implicating prostaglandin (PG) E2 in this process. In vivo, early administration of murine and human ASCs (hASCs) ameliorated myelin oligodendrocyte protein- (MOG35-55-) induced EAE in C57Bl/6 mice. Mechanistic studies showed that mASCs suppressed the function of autoantigen-specific T cells and also decreased the frequency of activated (CD11c+CD40high and CD11c+TNF-α+) DCs in draining lymph nodes (DLNs). In summary, these data suggest that mASCs reduce EAE severity, in part, through the impairment of DC and T cell function.

  8. Allogeneic Adipose-Derived Mesenchymal Stromal Cells Ameliorate Experimental Autoimmune Encephalomyelitis by Regulating Self-Reactive T Cell Responses and Dendritic Cell Function

    Directory of Open Access Journals (Sweden)

    Per Anderson


    Full Text Available Multipotent mesenchymal stromal cells (MSCs have emerged as a promising therapy for autoimmune diseases, including multiple sclerosis (MS. Administration of MSCs to MS patients has proven safe with signs of immunomodulation but their therapeutic efficacy remains low. The aim of the current study has been to further characterize the immunomodulatory mechanisms of adipose tissue-derived MSCs (ASCs in vitro and in vivo using the EAE model of chronic brain inflammation in mice. We found that murine ASCs (mASCs suppress T cell proliferation in vitro via inducible nitric oxide synthase (iNOS and cyclooxygenase- (COX- 1/2 activities. mASCs also prevented the lipopolysaccharide- (LPS- induced maturation of dendritic cells (DCs in vitro. The addition of the COX-1/2 inhibitor indomethacin, but not the iNOS inhibitor L-NAME, reversed the block in DC maturation implicating prostaglandin (PG E2 in this process. In vivo, early administration of murine and human ASCs (hASCs ameliorated myelin oligodendrocyte protein- (MOG35-55- induced EAE in C57Bl/6 mice. Mechanistic studies showed that mASCs suppressed the function of autoantigen-specific T cells and also decreased the frequency of activated (CD11c+CD40high and CD11c+TNF-α+ DCs in draining lymph nodes (DLNs. In summary, these data suggest that mASCs reduce EAE severity, in part, through the impairment of DC and T cell function.

  9. Total Lignans of Schisandra chinensis Ameliorates Aβ1-42-Induced Neurodegeneration with Cognitive Impairment in Mice and Primary Mouse Neuronal Cells. (United States)

    Zhao, Xu; Liu, Chunmei; Xu, Mengjie; Li, Xiaolong; Bi, Kaishun; Jia, Ying


    Lignan compounds extracted from Schisandra chinensis (Turcz.) Baill. have been reported to possess various biological activities, and have potential in the treatment of Alzheimer's disease. This study was designed to investigate the effects of total lignans of Schisandra chinensis (TLS) on cognitive function and neurodegeneration in the model of AD induced by Aβ1-42 in vivo and in vitro. It was found that intragastric infusion with TLS (50 and 200 mg/kg) to Aβ1-42-induced mice significantly increased the number of avoidances in the shuttle-box test and swimming time in the target quadrant in the Morris water maze test. TLS at dose of 200 mg/kg significantly restored the activities of total antioxidant capacity (T-AOC), as well as the level of malondialdehyde (MDA) both in the hippocampus and cerebral cortex in mice. Results of histopathological examination indicated that TLS noticeably ameliorated the neurodegeneration in the hippocampus in mice. On the other hand, TLS (100 μM) could protect the Aβ1-42-induced primary mouse neuronal cells by blocking the decrease of mitochondrial membrane potential (MMP), change the expressions of Bcl-2 (important regulator in the mitochondria apoptosis pathway). Moreover, TLS also decreased the activity of β-secretase 1 (BACE1), crucial protease contributes to the hydrolysis of amyloid precursor protein (APP), and inhibited the expression of JKN/p38, which involved in the MAPKs signaling pathways in both mice and primary mouse neuronal cells. In summary, TLS might protect against cognitive deficits and neurodegeneration by releasing the damage of oxidative stress, inhibiting the expression of BACE1 and the MAPKs inflammatory signaling pathways.

  10. Total Lignans of Schisandra chinensis Ameliorates Aβ1-42-Induced Neurodegeneration with Cognitive Impairment in Mice and Primary Mouse Neuronal Cells.

    Directory of Open Access Journals (Sweden)

    Xu Zhao

    Full Text Available Lignan compounds extracted from Schisandra chinensis (Turcz. Baill. have been reported to possess various biological activities, and have potential in the treatment of Alzheimer's disease. This study was designed to investigate the effects of total lignans of Schisandra chinensis (TLS on cognitive function and neurodegeneration in the model of AD induced by Aβ1-42 in vivo and in vitro. It was found that intragastric infusion with TLS (50 and 200 mg/kg to Aβ1-42-induced mice significantly increased the number of avoidances in the shuttle-box test and swimming time in the target quadrant in the Morris water maze test. TLS at dose of 200 mg/kg significantly restored the activities of total antioxidant capacity (T-AOC, as well as the level of malondialdehyde (MDA both in the hippocampus and cerebral cortex in mice. Results of histopathological examination indicated that TLS noticeably ameliorated the neurodegeneration in the hippocampus in mice. On the other hand, TLS (100 μM could protect the Aβ1-42-induced primary mouse neuronal cells by blocking the decrease of mitochondrial membrane potential (MMP, change the expressions of Bcl-2 (important regulator in the mitochondria apoptosis pathway. Moreover, TLS also decreased the activity of β-secretase 1 (BACE1, crucial protease contributes to the hydrolysis of amyloid precursor protein (APP, and inhibited the expression of JKN/p38, which involved in the MAPKs signaling pathways in both mice and primary mouse neuronal cells. In summary, TLS might protect against cognitive deficits and neurodegeneration by releasing the damage of oxidative stress, inhibiting the expression of BACE1 and the MAPKs inflammatory signaling pathways.

  11. Intraperitoneal but not intravenous cryopreserved mesenchymal stromal cells home to the inflamed colon and ameliorate experimental colitis.

    Directory of Open Access Journals (Sweden)

    Morgana T L Castelo-Branco

    Full Text Available BACKGROUND AND AIMS: Mesenchymal stromal cells (MSCs were shown to have immunomodulatory activity and have been applied for treating immune-mediated disorders. We compared the homing and therapeutic action of cryopreserved subcutaneous adipose tissue (AT-MSCs and bone marrow-derived mesenchymal stromal cells (BM-MSCs in rats with trinitrobenzene sulfonic acid (TNBS-induced colitis. METHODS: After colonoscopic detection of inflammation AT-MSCs or BM-MSCs were injected intraperitoneally. Colonoscopic and histologic scores were obtained. Density of collagen fibres and apoptotic rates were evaluated. Cytokine levels were measured in supernatants of colon explants. For cell migration studies MSCs and skin fibroblasts were labelled with Tc-99m or CM-DiI and injected intraperitonealy or intravenously. RESULTS: Intraperitoneal injection of AT-MSCs or BM-MSCs reduced the endoscopic and histopathologic severity of colitis, the collagen deposition, and the epithelial apoptosis. Levels of TNF-α and interleukin-1β decreased, while VEGF and TGF-β did not change following cell-therapy. Scintigraphy showed that MSCs migrated towards the inflamed colon and the uptake increased from 0.5 to 24 h. Tc-99m-MSCs injected intravenously distributed into various organs, but not the colon. Cm-DiI-positive MSCs were detected throughout the colon wall 72 h after inoculation, predominantly in the submucosa and muscular layer of inflamed areas. CONCLUSIONS: Intraperitoneally injected cryopreserved MSCs home to and engraft into the inflamed colon and ameliorate TNBS-colitis.

  12. Novel Membrane for Highly Efficient Fuel Cells Project (United States)

    National Aeronautics and Space Administration — Proton Exchange Membrane (PEM) fuel cells and electrolyzers are key technologies for NASA space systems utilizing hydrogen, oxygen, or water as reactants. In order...

  13. Novel High Temperature Membrane for PEM Fuel Cells Project (United States)

    National Aeronautics and Space Administration — The innovation proposed in this STTR program is a high temperature membrane to increase the efficiency and power density of PEM fuel cells. The NASA application is...

  14. Membrane Protein Mobility and Orientation Preserved in Supported Bilayers Created Directly from Cell Plasma Membrane Blebs. (United States)

    Richards, Mark J; Hsia, Chih-Yun; Singh, Rohit R; Haider, Huma; Kumpf, Julia; Kawate, Toshimitsu; Daniel, Susan


    Membrane protein interactions with lipids are crucial for their native biological behavior, yet traditional characterization methods are often carried out on purified protein in the absence of lipids. We present a simple method to transfer membrane proteins expressed in mammalian cells to an assay-friendly, cushioned, supported lipid bilayer platform using cell blebs as an intermediate. Cell blebs, expressing either GPI-linked yellow fluorescent proteins or neon-green fused transmembrane P2X2 receptors, were induced to rupture on glass surfaces using PEGylated lipid vesicles, which resulted in planar supported membranes with over 50% mobility for multipass transmembrane proteins and over 90% for GPI-linked proteins. Fluorescent proteins were tracked, and their diffusion in supported bilayers characterized, using single molecule tracking and moment scaling spectrum (MSS) analysis. Diffusion was characterized for individual proteins as either free or confined, revealing details of the local lipid membrane heterogeneity surrounding the protein. A particularly useful result of our bilayer formation process is the protein orientation in the supported planar bilayer. For both the GPI-linked and transmembrane proteins used here, an enzymatic assay revealed that protein orientation in the planar bilayer results in the extracellular domains facing toward the bulk, and that the dominant mode of bleb rupture is via the "parachute" mechanism. Mobility, orientation, and preservation of the native lipid environment of the proteins using cell blebs offers advantages over proteoliposome reconstitution or disrupted cell membrane preparations, which necessarily result in significant scrambling of protein orientation and typically immobilized membrane proteins in SLBs. The bleb-based bilayer platform presented here is an important step toward integrating membrane proteomic studies on chip, especially for future studies aimed at understanding fundamental effects of lipid interactions

  15. Hybrid proton-conducting membranes for polymer electrolyte fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Romero, Pedro [Institut de Ciencia de Materials de Barcelona (CSIC), Campus UAB, E-08193 Bellaterra (Barcelona) (Spain)]. E-mail:; Asensio, Juan Antonio [Institut de Ciencia de Materials de Barcelona (CSIC), Campus UAB, E-08193 Bellaterra (Barcelona) (Spain); Institut Quimic de Sarria, Universitat Ramon Llull, Via Augusta 390, E-08017 Barcelona (Spain); Borros, Salvador [Institut Quimic de Sarria, Universitat Ramon Llull, Via Augusta 390, E-08017 Barcelona (Spain)


    The synthesis and characterization of a novel hybrid organic-inorganic material formed by phosphomolybdic acid H{sub 3}PMo{sub 12}O{sub 40} (PMo{sub 12}) and poly(2,5-benzimidazole) (ABPBI) is reported. This material, composed of two proton-conducting components, can be cast in the form of membranes from methanesulfonic acid (MSA) solutions. Upon impregnation with phosphoric acid, the hybrid membranes present higher conductivity than the best ABPBI polymer membranes impregnated in the same conditions. These electrolyte membranes are stable up to 200 deg. C, and have a proton conductivity of 3 x 10{sup -2} S cm{sup -1} at 185 deg. C without humidification. These properties make them very good candidates as membranes for polymer electrolyte membrane fuel cells (PEMFC) at temperatures of 100-200 deg. C.

  16. Intravacuolar Membranes Regulate CD8 T Cell Recognition of Membrane-Bound Toxoplasma gondii Protective Antigen

    Directory of Open Access Journals (Sweden)

    Jodie Lopez


    Full Text Available Apicomplexa parasites such as Toxoplasma gondii target effectors to and across the boundary of their parasitophorous vacuole (PV, resulting in host cell subversion and potential presentation by MHC class I molecules for CD8 T cell recognition. The host-parasite interface comprises the PV limiting membrane and a highly curved, membranous intravacuolar network (IVN of uncertain function. Here, using a cell-free minimal system, we dissect how membrane tubules are shaped by the parasite effectors GRA2 and GRA6. We show that membrane association regulates access of the GRA6 protective antigen to the MHC I pathway in infected cells. Although insertion of GRA6 in the PV membrane is key for immunogenicity, association of GRA6 with the IVN limits presentation and curtails GRA6-specific CD8 responses in mice. Thus, membrane deformations of the PV regulate access of antigens to the MHC class I pathway, and the IVN may play a role in immune modulation.

  17. Allantoin ameliorates chemically-induced pancreatic β-cell damage through activation of the imidazoline I3 receptors

    Directory of Open Access Journals (Sweden)

    Marie Amitani


    Full Text Available Objective. Allantoin is the primary active compound in yams (Dioscorea spp.. Recently, allantoin has been demonstrated to activate imidazoline 3 (I3 receptors located in pancreatic tissues. Thus, the present study aimed to investigate the role of allantoin in the effect to improve damage induced in pancreatic β-cells by streptozotocin (STZ via the I3 receptors.Research Design and Methods. The effect of allantoin on STZ-induced apoptosis in pancreatic β-cells was examined using the ApoTox-Glo triplex assay, live/dead cell double staining assay, flow cytometric analysis, and Western blottings. The potential mechanism was investigated using KU14R: an I3 receptor antagonist, and U73122: a phospholipase C (PLC inhibitor. The effects of allantoin on serum glucose and insulin secretion were measured in STZ-treated rats.Results. Allantoin attenuated apoptosis and cytotoxicity and increased the viability of STZ-induced β-cells in a dose-dependent manner; this effect was suppressed by KU14R and U73112. Allantoin decreased the level of caspase-3 and increased the level of phosphorylated B-cell lymphoma 2 (Bcl-2 expression detected by Western blotting. The improvement in β-cells viability was confirmed using flow cytometry analysis. Daily injection of allantoin for 8 days in STZ-treated rats significantly lowered plasma glucose and increased plasma insulin levels. This action was inhibited by treatment with KU14R.Conclusion. Allantoin ameliorates the damage of β-cells induced by STZ. The blockade by pharmacological inhibitors indicated that allantoin can activate the I3 receptors through a PLC-related pathway to decrease this damage. Therefore, allantoin and related analogs may be effective in the therapy for β-cell damage.

  18. Elastic thickness compressibilty of the red cell membrane.


    Heinrich, V; Ritchie, K; Mohandas, N; Evans, E.


    We have used an ultrasensitive force probe and optical interferometry to examine the thickness compressibility of the red cell membrane in situ. Pushed into the centers of washed-white red cell ghosts lying on a coverglass, the height of the microsphere-probe tip relative to its closest approach on the adjacent glass surface revealed the apparent material thickness, which began at approximately 90 nm per membrane upon detection of contact (force approximately 1-2 pN). With further impingement...

  19. Proton Exchange Membrane Fuel Cells Applied for Transport Sector

    DEFF Research Database (Denmark)

    Hosseinzadeh, Elham; Rokni, Masoud


    A thermodynamic analysis of a PEMFC (proton exchange membrane fuel cell) is investigated. PEMFC may be the most promising technology for fuel cell automotive systems, which is operating at quite low temperatures, (between 60 to 80℃). In this study the fuel cell motive power part of a lift truck has...

  20. Catalyst Degradation in High Temperature Proton Exchange Membrane Fuel Cells Based on Acid Doped Polybenzimidazole Membranes

    DEFF Research Database (Denmark)

    Cleemann, Lars Nilausen; Buazar, F.; Li, Qingfeng;


    Degradation of carbon supported platinum catalysts is a major failure mode for the long term durability of high temperature proton exchange membrane fuel cells based on phosphoric acid doped polybenzimidazole membranes. With Vulcan carbon black as a reference, thermally treated carbon black...... and multi‐walled carbon nanotubes were used as supports for electrode catalysts and evaluated in accelerated durability tests under potential cycling at 150 °C. Measurements of open circuit voltage, area specific resistance and hydrogen permeation through the membrane were carried out, indicating little...... contribution of the membrane degradation to the performance losses during the potential cycling tests. As the major mechanism of the fuel cell performance degradation, the electrochemical active area of the cathodic catalysts showed a steady decrease in the cyclic voltammetric measurements, which was also...

  1. Stability and rupture of archaebacterial cell membrane: a model study. (United States)

    Li, Shuangyang; Zheng, Fengxian; Zhang, Xianren; Wang, Wenchuan


    It is known that the thermoacidophilic archaebacterium Sulfolobus acidocaldarius can grow in hot springs at 65-80 degrees C and live in acidic environments (pH 2-3); however, the origin of its unusual thermal stability remains unclear. In this work, using a vesicle as a model, we study the thermal stability and rupture of archaebacterial cell membrane. We perform a simulation investigation of the structure-property relationship of monolayer membrane formed by bolaform lipids and compare it with that of bilayer membrane formed by monopolar lipids. The origin of the unusually thermal stability of archaebacterial cell and the mechanism for its rupture are presented in molecular details.

  2. Hydroxyl pyridine containing polybenzimidazole membranes for proton exchange membrane fuel cells

    DEFF Research Database (Denmark)

    Yang, Jingshuai; Xu, Yixin; Zhou, Lu;


    -phenylene)-5,5'-bibenzimidazole] (mPBI) according to the TGA data. The hydroxyl pyridine groups in the OHPyPBI structure resulted in high proton conductivities of the phosphoric acid doped OHPyPBI membranes. This is because the hydroxyl pyridine groups not only increased the acid doping level of the membranes......, but also benefited the proton conduction, which was proved by the results of acid conductivities of the membranes with comparable acid doping levels. At an acid doping level of 8.6, i.e. 8.6mol acids per molar repeat unit of the polymer, the OHPyPBI membrane exhibited a proton conductivity of 0.102Scm-1...... at 180°C without humidifying. In addition, an improved tensile modulus at elevated temperatures was observed for acid doped OHPyPBI membranes. Fuel cell tests demonstrated the technical feasibility of acid doped OHPyPBI membranes for high temperature proton exchange membrane fuel cells. © 2013 Elsevier B.V....

  3. Spray deposition of Nafion membranes: Electrode-supported fuel cells (United States)

    Bayer, Thomas; Pham, Hung Cuong; Sasaki, Kazunari; Lyth, Stephen Matthew


    Fuel cells are a key technology for the successful transition towards a hydrogen society. In order to accelerate fuel cell commercialization, improvements in performance are required. Generally, polymer electrolyte membrane fuel cells (PEFCs) are membrane-supported; the electrocatalyst layer is sprayed onto both sides of the membrane, and sandwiched between carbon-based gas diffusion layers (GDLs). In this work we redesign the membrane electrode assembly (MEA) and fabricate an electrode-supported PEFC. First the electrocatalyst layer is sprayed onto the GDL, and then Nafion dispersion is sprayed over the top of this to form a thin membrane. This method has the advantage of simplifying the fabrication process, allowing the fabrication of extremely thin electrolyte layers (down to ∼10 μm in this case), and reducing the amount of ionomer required in the cell. Electrode-supported PEFCs operate at significantly increased power density compared to conventional membrane-supported PEFCs, with a maximum of 581 mW/cm2 at 80 °C (atmospheric pressure, air at the cathode). Impedance spectroscopy confirmed that the origin of the improved performance was an 80% reduction in the membrane resistance due the thinner Nafion layer. This novel fabrication method is a step towards cheaper, thinner, fully printable PEFCs with high power density and efficiency.

  4. Oxidative degradation of polybenzimidazole membranes as electrolytes for high temperature proton exchange membrane fuel cells

    DEFF Research Database (Denmark)

    Liao, J.H.; Li, Qingfeng; Rudbeck, H.C.


    Polybenzimidazole membranes imbibed with acid are emerging as a suitable electrolyte material for high-temperature polymer electrolyte fuel cells. The oxidative stability of polybenzimidazole has been identified as an important issue for the long-term durability of such cells. In this paper...

  5. 4-1BB Costimulation Ameliorates T Cell Exhaustion Induced by Tonic Signaling of Chimeric Antigen Receptors (United States)

    Long, Adrienne H.; Haso, Waleed M.; Shern, Jack F.; Wanhainen, Kelsey M.; Murgai, Meera; Ingaramo, Maria; Smith, Jillian P.; Walker, Alec J.; Kohler, M. Eric; Venkateshwara, Vikas R.; Kaplan, Rosandra N.; Patterson, George H.; Fry, Terry J.; Orentas, Rimas J.; Mackall, Crystal L.


    Chimeric antigen receptors (CARs) targeting CD19 have mediated dramatic anti-tumor responses in hematologic malignancies, but tumor regression has rarely occurred using CARs targeting other antigens. It remains unknown whether the impressive effects of CD19 CARs relate to greater susceptibility of hematologic malignancies to CAR therapies, or superior functionality of the CD19 CAR itself. We discovered that tonic CAR CD3ζ phosphorylation, triggered by antigen-independent clustering of CAR scFvs, can induce early exhaustion of CAR T cells that limits anti-tumor efficacy. Such activation is present to varying degrees in all CARs studied, with the exception of the highly effective CD19 CAR. We further identify that CD28 costimulation augments, while 4-1BB costimulation ameliorates, exhaustion induced by persistent CAR signaling. Our results provide biological explanations for the dramatic anti-tumor effects of CD19 CARs and for the observations that CD19.BBz CAR T cells are more persistent than CD19.28z CAR T cells in clinical trials. PMID:25939063

  6. The Senegal DNA haplotype is associated with the amelioration of anemia in African-American sickle cell anemia patients. (United States)

    Nagel, R L; Erlingsson, S; Fabry, M E; Croizat, H; Susuka, S M; Lachman, H; Sutton, M; Driscoll, C; Bouhassira, E; Billett, H H


    We have previously determined that in African sickle cell anemia (SS) patients three different beta-like globin gene cluster haplotypes are associated with different percent G gamma (one of the two types of non-alpha chains comprising hemoglobin F [HbF]), mean percent HbF, and percent dense cells. We report now that in adult New York SS patients, the presence of at least one chromosome with the Senegal haplotype is associated with higher Hb levels (1.2 g/dL higher) than is found for any other non-Senegal haplotype (P less than .004). The percent reticulocytes and the serum bilirubin levels were lower in these patients. When the effect of alpha-gene number was analyzed by examining a sample of SS patients with concomitant alpha-thalassemia, the same results were obtained. Because the HbF level is significantly higher among the Senegal haplotype carriers in this sample, the inhibitory effect on sickling of this Hb variant may be one of the reasons for the haplotype effect. We conclude that the Senegal beta-like globin gene cluster haplotype is associated with an amelioration of the hemolytic anemia that characterizes sickle cell disease.

  7. Effect of gas diffusion layer and membrane properties in an annular proton exchange membrane fuel cell (United States)

    Khazaee, I.; Ghazikhani, M.; Esfahani, M. Nasr


    A complete three-dimensional and single phase computational dynamics model for annular proton exchange membrane (PEM) fuel cell is used to investigate the effect of changing gas diffusion layer and membrane properties on the performances, current density and gas concentration. The proposed model is a full cell model, which includes all the parts of the PEM fuel cell, flow channels, gas diffusion electrodes, catalyst layers and the membrane. Coupled transport and electrochemical kinetics equations are solved in a single domain; therefore no interfacial boundary condition is required at the internal boundaries between cell components. This computational fluid dynamics code is used as the direct problem solver, which is used to simulate the two-dimensional mass, momentum and species transport phenomena as well as the electron- and proton-transfer process taking place in a PEMFC that cannot be investigated experimentally. The results show that by increasing the thickness and decreasing the porosity of GDL the performance of the cell enhances that it is different with planner PEM fuel cell. Also the results show that by decreasing the thickness of the membrane the performance of the cell increases.

  8. Graphene-Induced Pore Formation on Cell Membranes (United States)

    Duan, Guangxin; Zhang, Yuanzhao; Luan, Binquan; Weber, Jeffrey K.; Zhou, Royce W.; Yang, Zaixing; Zhao, Lin; Xu, Jiaying; Luo, Judong; Zhou, Ruhong


    Examining interactions between nanomaterials and cell membranes can expose underlying mechanisms of nanomaterial cytotoxicity and guide the design of safer nanomedical technologies. Recently, graphene has been shown to exhibit potential toxicity to cells; however, the molecular processes driving its lethal properties have yet to be fully characterized. We here demonstrate that graphene nanosheets (both pristine and oxidized) can produce holes (pores) in the membranes of A549 and Raw264.7 cells, substantially reducing cell viability. Electron micrographs offer clear evidence of pores created on cell membranes. Our molecular dynamics simulations reveal that multiple graphene nanosheets can cooperate to extract large numbers of phospholipids from the membrane bilayer. Strong dispersion interactions between graphene and lipid-tail carbons result in greatly depleted lipid density within confined regions of the membrane, ultimately leading to the formation of water-permeable pores. This cooperative lipid extraction mechanism for membrane perforation represents another distinct process that contributes to the molecular basis of graphene cytotoxicity. PMID:28218295

  9. Low cost, high temperature membranes for PEM fuel cells

    Energy Technology Data Exchange (ETDEWEB)



    This report details the results of a project to develop novel, low-cost high temperature membranes specifically for automotive fuel cell use. The specific aim of the project was to determine whether a polyaromatic hydrocarbon membrane could be developed that would give a performance (0.68V at 500 mAcm{sub -2}) competitive with an established perfluoronated sulfonic acid (PSA) membrane in a fuel cell at 120{sup o}C and relative humidity of less than 50%. The novel approach used in this project was to increase the concentration of sulphonic groups to a useful level without dissolution by controlling the molecular structure of the membrane through the design of the monomer repeat unit. The physicochemical properties of 70 polymers synthesised in order to determine the effects of controlled sequence distribution were identified using an array of analytical techniques. Appropriate membranes were selected for fuel cell testing and fabricated into membrane electrode assemblies. Most of the homopolymers tested were able to withstand low humidity environments without immediate catastrophic failure and some showed promise from accelerated durability results. The properties of a simple starting polymer structure were found to be enhanced by doping with sulphonated copper phthalocyanine, resulting in high temperature capacity from a potential cheap, simple and scaleable process. The accelerated and long-term durability of such a doped polymer membrane showed that polyaromatics could easily outperform fluoropolymers under high temperature (120{sup o}C) operating conditions.

  10. Polybenzimidazole Membranes Containing Benzimidazole Side Groups for High Temprature Polymer Electrolyte Membrane Fuel Cells

    DEFF Research Database (Denmark)

    Yang, Jingshuai; Li, Xueyuan; Xu, Yizin


    Polybenzimidazole (PBI) with a high molecular weight of 69,000 was first synthesized. It was afterwards grafted with benzimidazole pendant groups on the backbones. The acid doped benzimidaozle grafted PBI membranes were investigated and characterized including fuel cell tests at elevated temperat......Polybenzimidazole (PBI) with a high molecular weight of 69,000 was first synthesized. It was afterwards grafted with benzimidazole pendant groups on the backbones. The acid doped benzimidaozle grafted PBI membranes were investigated and characterized including fuel cell tests at elevated...... temperatures without humidification. At an acid doping level of 13.1 mol H3PO4 per average molar repeat unit, the PBI membranes with a benzimidazole grafting degree of 10.6% demonstrated a conductivity of 0.15 S cm-1 and a H2-air fuel cell peak power density of 378 mW cm-2 at 180 oC at ambient pressure without...

  11. Amelioration of Sickle Cell Pain after Parathyroidectomy in Two Patients with Concurrent Hyperparathyroidism: An Interesting Finding

    Directory of Open Access Journals (Sweden)

    John Muthu


    Full Text Available Patients with sickle cell disease have high morbidity and healthcare utilization due to repeated painful crises. Some coexisting conditions which cause pain similar to sickle cell disease may go undiagnosed in these patients. We report two adults with concurrent hyperparathyroidism who experienced significant improvement in sickle cell pain following parathyroidectomy thereby pointing to hyperparathyroidism as the principal causative factor for their pain. Meticulous evaluation for parathyroid disorders can be rewarding in sickle cell disease.

  12. Transplantation of fetal liver epithelial progenitor cells ameliorates experimental liver fibrosis in mice

    Institute of Scientific and Technical Information of China (English)

    Jin-Fang Zheng; Li-Jian Liang; Chang-Xiong Wu; Jin-Song Chen; Zhen-Sheng Zhang


    AIM: To investigate the effect of transplanted fetal liver epithelial progenitor (FLEP) cells on liver fibrosis in mice.METHODS: FLEP cells were isolated from embryonal day (ED) 14 BALB/c mice and transplanted into female syngenic BALB/c mice (n = 60). After partial hepatectomy (PH), diethylnitrosamine (DEN) was administered to induce liver fibrosis. Controls received FLEP cells and non-supplemented drinking water, the model group received DEN-spiked water, and the experimental group received FLEP cells and DEN.Mice were killed after 1, 2, and 3 mo, and alanine aminotransferase (ALT), aspartate aminotransferase (AST), hyaluronic acid (HA), and laminin (LN) in serum,and hydroxyproline (Hyp) content in liver were assessed.Alpha-smooth muscle actin (α-SMA) of liver was tested by immunohistochemistry. Transplanted male mice FLEP cells were identified by immunocytochemistry for sry (sex determination region for Y chromosome) protein.RESULTS: Serum ALT, AST, HA, and LN were markedly reduced by transplanted FLEP cells. Liver Hyp content and α-SMA staining in mice receiving FLEP cells were lower than that of the model group, which was consistent with altered liver pathology. Transplanted cells proliferated and differentiated into hepatocytes and bile duct epithelial cells with 30%-50% repopulation in the liver fibrosis induced by DEN after 3 mo.CONCLUSION: Transplanted FLEP cells proliferate and differentiate into hepatocytes and bile duct epithelial cells with high repopulation capacity in the fiberized liver induced by DEN, which restores liver function and reduces liver fibrosis.

  13. A desmoplakin point mutation with enhanced keratin association ameliorates pemphigus vulgaris autoantibody-mediated loss of cell cohesion. (United States)

    Dehner, Carina; Rötzer, Vera; Waschke, Jens; Spindler, Volker


    Desmoplakin (DP) serves to anchor intermediate filaments in desmosomal complexes. Recent data suggest that a specific DP point mutation (S2849G) exhibits increased keratin filament association and fosters Ca(2+) insensitivity of desmosomes in keratinocytes, presumably by rendering DP inaccessible for protein kinase C (PKC) phosphorylation. Previously, we have reported that depletion of the desmosomal adhesion molecule desmoglein (Dsg)3 induced by autoantibodies from patients with the blistering skin disease pemphigus vulgaris (PV) IgG is reduced in maturated desmosomes and dependent on PKC signaling. We investigated the role of DP-S2849G for loss of cell cohesion mediated by PV-IgG. In cell dissociation assays, expression of green fluorescent protein-tagged DP-S2849G (DP-S2849G-GFP) increased cell cohesion in two different human keratinocyte cell lines and ameliorated loss of cell adhesion induced by pemphigus autoantibodies. Depletion of Dsg3 was inhibited by DP-S2849G-GFP in the cytoskeletal (Triton X-100 insoluble) fraction, and keratin filament retraction, a hallmark of PV, was efficiently blocked similar to treatment with the PKC inhibitor Bim-X. We found that DP is phosphorylated after incubation with PV-IgG in a PKC-dependent manner and that DP-S2849G-GFP expression prevents DP phosphorylation and increases association of PKC-α with PKC scaffold receptor for activated C-kinase 1. Taken together, our data indicate that DP phosphorylation at S2849 represents an important mechanism in pemphigus pathogenesis, which, by reversing Ca(2+) insensitivity, promotes Dsg3 depletion.

  14. Kallikrein transduced mesenchymal stem cells protect against anti-GBM disease and lupus nephritis by ameliorating inflammation and oxidative stress.

    Directory of Open Access Journals (Sweden)

    Yajuan Li

    Full Text Available Previously we have shown that kallikreins (klks play a renoprotective role in nephrotoxic serum induced nephritis. In this study, we have used mesenchymal stem cells (MSCs as vehicles to deliver klks into the injured kidneys and have measured their therapeutic effect on experimental antibody induced nephritis and lupus nephritis. Human KLK-1 (hKLK1 gene was transduced into murine MSCs using a retroviral vector to generate a stable cell line, hKLK1-MSC, expressing high levels of hKLK1. 129/svj mice subjected to anti-GBM induced nephritis were transplanted with 10(6 hKLK1-MSCs and hKLK1 expression was confirmed in the kidneys. Compared with vector-MSCs injected mice, the hKLK1-MSCs treated mice showed significantly reduced proteinuria, blood urea nitrogen (BUN and ameliorated renal pathology. Using the same strategy, we treated lupus-prone B6.Sle1.Sle3 bicongenic mice with hKLK1-MSCs and demonstrated that hKLK1-MSCs delivery also attenuated lupus nephritis. Mechanistically, hKLK1-MSCs reduced macrophage and T-lymphocyte infiltration into the kidney by suppressing the expression of inflammation cytokines. Moreover, hKLK1 transduced MSCs were more resistant to oxidative stress-induced apoptosis. These findings advance genetically modified MSCs as potential gene delivery tools for targeting therapeutic agents to the kidneys in order to modulate inflammation and oxidative stress in lupus nephritis.

  15. Amelioration of Hyperbilirubinemia in Gunn Rats after Transplantation of Human Induced Pluripotent Stem Cell-Derived Hepatocytes

    Directory of Open Access Journals (Sweden)

    Yong Chen


    Full Text Available Hepatocyte transplantation has the potential to cure inherited liver diseases, but its application is impeded by a scarcity of donor livers. Therefore, we explored whether transplantation of hepatocyte-like cells (iHeps differentiated from human induced pluripotent stem cells (iPSCs could ameliorate inherited liver diseases. iPSCs reprogrammed from human skin fibroblasts were differentiated to iHeps, which were transplanted into livers of uridinediphosphoglucuronate glucuronosyltransferase-1 (UGT1A1-deficient Gunn rats, a model of Crigler-Najjar syndrome 1 (CN1, where elevated unconjugated bilirubin causes brain injury and death. To promote iHep proliferation, 30% of the recipient liver was X-irradiated before transplantation, and hepatocyte growth factor was expressed. After transplantation, UGT1A1+ iHep clusters constituted 2.5%–7.5% of the preconditioned liver lobe. A decline of serum bilirubin by 30%–60% and biliary excretion of bilirubin glucuronides indicated that transplanted iHeps expressed UGT1A1 activity, a postnatal function of hepatocytes. Therefore, iHeps warrant further exploration as a renewable source of hepatocytes for treating inherited liver diseases.

  16. Synaptic and Golgi membrane recycling in cochlear hair cells. (United States)

    Siegel, J H; Brownell, W E


    Membrane recycling in the mechanoreceptive sensory cells of the mammalian cochlea was studied by observing membrane-bound horseradish peroxidase (HRP) reaction product following brief in vivo exposure to the enzyme. In the inner hair cell (IHC), peroxidase was taken up into coated vesicles and became incorporated into synaptic vesicles surrounding presynaptic bodies, but much HRP was also transported to the apical zone where reaction product appeared in all components of the Golgi complex. Neither the subsurface cisternae nor a tubular network associated with clusters of mitochondria were labelled. Outer hair cells (OHCs) showed considerably less membrane-bound reaction product than IHCs, indicating less rapid plasmalemmal recycling. Most membrane-bound reaction product was contained in coated vesicles and small vacuoles in the synaptic zone, but was occasionally seen in multivesicular bodies in the most apical zone. No labelled organelles were detected in the large central region of the OHC. A diffuse staining of the cytoplasm, particularly pronounced in OHCs, often interfered with the evaluation of membrane-bound reaction product in OHCs. This staining pattern could be qualitatively reproduced in both IHCs and OHCs by incubating fixed segments of the organ of Corti in oxidized diaminobenzidine. The presence of labelled synaptic vesicles associated with presynaptic bodies of IHCs and OHCs suggests that they are formed from membrane retrieved from the plasmalemma. We found no evidence that the subsurface cisternae of IHCs or the laminated cisternae of OHCs are derived from the cell surface as they never contained reaction product.

  17. 3D visualization of membrane failures in fuel cells (United States)

    Singh, Yadvinder; Orfino, Francesco P.; Dutta, Monica; Kjeang, Erik


    Durability issues in fuel cells, due to chemical and mechanical degradation, are potential impediments in their commercialization. Hydrogen leak development across degraded fuel cell membranes is deemed a lifetime-limiting failure mode and potential safety issue that requires thorough characterization for devising effective mitigation strategies. The scope and depth of failure analysis has, however, been limited by the 2D nature of conventional imaging. In the present work, X-ray computed tomography is introduced as a novel, non-destructive technique for 3D failure analysis. Its capability to acquire true 3D images of membrane damage is demonstrated for the very first time. This approach has enabled unique and in-depth analysis resulting in novel findings regarding the membrane degradation mechanism; these are: significant, exclusive membrane fracture development independent of catalyst layers, localized thinning at crack sites, and demonstration of the critical impact of cracks on fuel cell durability. Evidence of crack initiation within the membrane is demonstrated, and a possible new failure mode different from typical mechanical crack development is identified. X-ray computed tomography is hereby established as a breakthrough approach for comprehensive 3D characterization and reliable failure analysis of fuel cell membranes, and could readily be extended to electrolyzers and flow batteries having similar structure.

  18. Human salivary gland stem cells ameliorate hyposalivation of radiation-damaged rat salivary glands. (United States)

    Jeong, Jaemin; Baek, Hyunjung; Kim, Yoon-Ju; Choi, Youngwook; Lee, Heekyung; Lee, Eunju; Kim, Eun Sook; Hah, Jeong Hun; Kwon, Tack-Kyun; Choi, Ik Joon; Kwon, Heechung


    Salivary function in mammals may be defective for various reasons, such as aging, Sjogren's syndrome or radiation therapy in head and neck cancer patients. Recently, tissue-specific stem cell therapy has attracted public attention as a next-generation therapeutic reagent. In the present study, we isolated tissue-specific stem cells from the human submandibular salivary gland (hSGSCs). To efficiently isolate and amplify hSGSCs in large amounts, we developed a culture system (lasting 4-5 weeks) without any selection. After five passages, we obtained adherent cells that expressed mesenchymal stem cell surface antigen markers, such as CD44, CD49f, CD90 and CD105, but not the hematopoietic stem cell markers, CD34 and CD45, and that were able to undergo adipogenic, osteogenic and chondrogenic differentiation. In addition, hSGSCs were differentiated into amylase-expressing cells by using a two-step differentiation method. Transplantation of hSGSCs to radiation-damaged rat salivary glands rescued hyposalivation and body weight loss, restored acinar and duct cell structure, and decreased the amount of apoptotic cells. These data suggest that the isolated hSGSCs, which may have characteristics of mesenchymal-like stem cells, could be used as a cell therapy agent for the damaged salivary gland.

  19. Anion selective membrane. [ion exchange resins and ion exchange membrane electrolytes for electrolytic cells (United States)

    Alexander, S. S.; Geoffroy, R. R.; Hodgdon, R. B.


    Experimental anion permselective membranes were prepared and tested for their suitability as cell separators in a chemical redox power storage system being developed at NASA-Lewis Research Center. The goals of long-term (1000 hr) oxidative and thermal stability at 80 C in FeCl3 and CrCl3 electrolytes were met by most of the weak base and strong base amino exchange groups considered in the program. Good stability is exhibited by several of the membrane substrate resins. These are 'styrene' divinylbenzene copolymer and PVC film. At least four membrane systems produce strong flexible films with electrochemical properties (resistivity, cation transfer) superior to those of the 103QZL, the most promising commercial membrane. The physical and chemical properties of the resins are listed.


    Directory of Open Access Journals (Sweden)

    S. Mulijani


    Full Text Available Microbial fuel cell (MFC represents a major bioelectrochemical system that converts biomass spontaneously into electricity through the activity of microorganisms. The MFC consists of anode and cathode compartments. Microorganisms in MFC liberate electrons while the electron donor is consumed. The produced electron is transmitted to the anode surface, but the generated protons must pass through the proton exchange membrane (PEM to reach the cathode compartment. PEM, as a key factor, affects electricity generation in MFCs. The study attempted to investigate if the sulfonated polystyrene (SPS membrane can be used as a PEM in the application on MFC. SPS membrane has been characterized using Fourier transform infrared spectrophotometer (FTIR, scanning electron microscope (SEM and conductivity. The result of the conductivity (σ revealed that the membrane has a promising application for MFC.

  1. Cell Membrane-Cloaked Nanoparticles for Targeted Therapeutics (United States)

    Luk, Brian Tsengchi

    The advent of nanoparticle-based delivery systems has made a significant impact on clinical patient outcomes. In recent decades, myriad nanoparticle-based therapeutic agents have been developed for the treatment and management of ailments such as cancer, diabetes, pain, bacterial infections, and asthma, among many others. Nanotherapeutics offer many distinct advantages over conventional free drug formulations. For example, nanoparticles are able to accumulate at tumor sites by extravasation through leaky vasculature at tumor sites via the enhanced permeability and retention (EPR) effect; nanoparticles can also be tailored to have desirable characteristics, such as prolonged circulation in the blood stream, improved drug encapsulation, and sustained or triggered drug release. Currently, a growing number of nanoformulations with favorable pharmacological profiles and promising efficacy are being used in clinical trials for the treatment of various cancers. Building on the success of these encouraging clinical results, new engineering strategies have emerged that combine synthetic nanoparticles with natural biomaterials to create nature-inspired biomimetic delivery systems. The work presented in this dissertation focuses on the biointerfacing between synthetic and natural materials, namely in the manifestation of cell membrane-coated nanoparticles. By exploiting the natural functionalities of source cell membranes, cell membrane-cloaked nanoparticles have huge potential in the delivery of therapeutic agents for a variety of applications. The first portion of this thesis will focus on understanding the fundamentals underlying cell membrane coating on synthetic nanoparticles. First introduced in 2011, cell membrane-cloaked nanoparticles showed immediate promise in drug delivery applications, but further understanding was necessary to be able to harness the full potential of the membrane coating platform. The first section provides further insight into the interfacial

  2. Direct Cytoskeleton Forces Cause Membrane Softening in Red Blood Cells (United States)

    Rodríguez-García, Ruddi; López-Montero, Iván; Mell, Michael; Egea, Gustavo; Gov, Nir S.; Monroy, Francisco


    Erythrocytes are flexible cells specialized in the systemic transport of oxygen in vertebrates. This physiological function is connected to their outstanding ability to deform in passing through narrow capillaries. In recent years, there has been an influx of experimental evidence of enhanced cell-shape fluctuations related to metabolically driven activity of the erythroid membrane skeleton. However, no direct observation of the active cytoskeleton forces has yet been reported to our knowledge. Here, we show experimental evidence of the presence of temporally correlated forces superposed over the thermal fluctuations of the erythrocyte membrane. These forces are ATP-dependent and drive enhanced flickering motions in human erythrocytes. Theoretical analyses provide support for a direct force exerted on the membrane by the cytoskeleton nodes as pulses of well-defined average duration. In addition, such metabolically regulated active forces cause global membrane softening, a mechanical attribute related to the functional erythroid deformability. PMID:26083919

  3. Membrane Mechanics of Endocytosis in Cells with Turgor

    CERN Document Server

    Dmitrieff, Serge


    Endocytosis is an essential process by which cells internalize a piece of plasma membrane and material from the outside. In cells with turgor, pressure opposes membrane defor- mations, and increases the amount of force that has to be generated by the endocytic machinery. To determine this force, and calculate the shape of the membrane, we used physical theory to model an elastic surface under pressure. Accurate fits of experimental profiles are obtained assuming that the coated membrane is highly rigid and preferentially curved at the endocytic site. The forces required from the actin machinery peaks at the onset of deformation, indicating that once invagination has been initiated, endocytosis is unlikely to stall before completion. Coat proteins do not lower the initiation force but may affect the process by the curvature they induce. In the presence of isotropic curvature inducers, pulling the tip of the invagination can trigger the formation of a neck at the base of the invagination. Hence direct neck cons...

  4. Nonlinear electro-mechanobiological behavior of cell membrane during electroporation

    KAUST Repository

    Deng, Peigang


    A nonlinear electroporation (EP) model is proposed to study the electro-mechanobiological behavior of cell membrane during EP, by taking the nonlinear large deformation of the membrane into account. The proposed model predicts the critical transmembrane potential and the activation energy for EP, the equilibrium pore size, and the resealing process of the pore. Single-cell EP experiments using a micro EP chip were conducted on chicken red blood cells at different temperatures to determine the activation energy and the critical transmembrane potential for EP. The experimental results are in good agreement with the theoretical predictions. © 2012 American Institute of Physics.

  5. Cell-penetrating peptides for drug delivery across membrane barriers

    DEFF Research Database (Denmark)

    Foged, Camilla; Nielsen, Hanne Moerck


    During the last decade, cell-penetrating peptides have been investigated for their ability to overcome the plasma membrane barrier of mammalian cells for the intracellular or transcellular delivery of cargoes as diverse as low molecular weight drugs, imaging agents, oligonucleotides, peptides......-penetrating peptides as transmembrane drug delivery agents, according to the recent literature, and discusses critical issues and future challenges in relation to fully understanding the fundamental principles of the cell-penetrating peptide-mediated membrane translocation of cargoes and the exploitation......, proteins and colloidal carriers such as liposomes and polymeric nanoparticles. Their ability to cross biological membranes in a non-disruptive way without apparent toxicity is highly desired for increasing drug bioavailability. This review provides an overview of the application of cell...

  6. Membrane transport of anandamide through resealed human red blood cell membranes

    DEFF Research Database (Denmark)

    Bojesen, I.N.; Hansen, Harald S.


    of unidirectional flux from inside to outside is 0.361 ± 0.023 s. The rate constant of unidirectional flux from the membrane to BSA in the medium ([BSA]) increases with the square root of [BSA] in accordance with the theory of an unstirred layer around ghosts. Anandamide passed through the red blood cell membrane......The use of resealed red blood cell membranes (ghosts) allows the study of the transport of a compound in a nonmetabolizing system with a biological membrane. Transmembrane movements of anandamide (N-arachidonoylethanolamine, arachidonoylethanolamide) have been studied by exchange efflux experiments...... at 0°C and pH 7.3 with albumin-free and albumin-filled human red blood cell ghosts. The efflux kinetics is biexponential and is analyzed in terms of compartment models. The distribution of anandamide on the membrane inner to outer leaflet pools is determined to be 0.275 ± 0.023, and the rate constant...

  7. A boron phosphate-phosphoric acid composite membrane for medium temperature proton exchange membrane fuel cells (United States)

    Mamlouk, M.; Scott, K.


    A composite membrane based on a non-stoichiometric composition of BPO4 with excess of PO4 (BPOx) was synthesised and characterised for medium temperature fuel cell use (120-180 °C). The electrolyte was characterised by FTIR, SS-NMR, TGA and XRD and showed that the B-O is tetrahedral, in agreement with reports in the literature that boron phosphorus oxide compounds at B:P < 1 are exclusively built of borate and phosphate tetrahedra. Platinum micro electrodes were used to study the electrolyte compatibility and stability towards oxygen reduction at 150 °C and to obtain kinetic and mass transport parameters. The conductivities of the pure BPOx membrane electrolyte and a Polybenzimidazole (PBI)-4BPOx composite membrane were 7.9 × 10-2 S cm-1 and 4.5 × 10-2 S cm-1 respectively at 150 °C, 5%RH. Fuel cell tests showed a significant enhancement in performance of BPOx over that of typical 5.6H3PO4-PBI membrane electrolyte. The enhancement is due to the improved ionic conductivity (3×), a higher exchange current density of the oxygen reduction (30×) and a lower membrane gas permeability (10×). Fuel cell current densities at 0.6 V were 706 and 425 mA cm-2 for BPOx and 5.6H3PO4-PBI, respectively, at 150 °C with O2 (atm).

  8. Phosphoric acid doped imidazolium polysulfone membranes for high temperature proton exchange membrane fuel cells

    DEFF Research Database (Denmark)

    Yang, Jingshuai; Li, Qingfeng; Jensen, Jens Oluf;


    A novel acid–base polymer membrane is prepared by doping of imidazolium polysulfone with phosphoric acid for high temperature proton exchange membrane fuel cells. Polysulfone is first chloromethylated, followed by functionalization of the chloromethylated polysulfone with alkyl imidazoles i.......e. methyl (MePSU), ethyl (EtPSU) and butyl (BuPSU) imidazoliums, as revealed by 1H NMR spectra. The imidazolium polysulfone membranes are then doped with phosphoric acid and used as a proton exchange membrane electrolyte in fuel cells. An acid doping level of about 10–11mol H3PO4 per mole of the imidazolium...... group is achieved in 85wt% H3PO4 at room temperature. The membranes exhibit a proton conductivity of 0.015–0.022Scm−1 at 130–150°C under 15mol% water vapor in air, and a tensile strength of 5–6MPa at 130°C under ambient humidity. Fuel cell tests show an open circuit voltage as high as 0.96V and a peak...

  9. Development of new membrane materials for direct methanol fuel cells

    NARCIS (Netherlands)

    Yildirim, Mustafa Hakan


    Development of new membrane materials for direct methanol fuel cells Direct methanol fuel cells (DMFCs) can convert the chemical energy of a fuel directly into electrical energy with high efficiency and low emission of pollutants. DMFCs can be used as the power sources to portable electronic devices

  10. Modeling Of Proton Exchange Membrane Fuel Cell Systems

    DEFF Research Database (Denmark)

    Nielsen, Mads Pagh

    The objective of this doctoral thesis was to develop reliable steady-state and transient component models suitable to asses-, develop- and optimize proton exchange membrane (PEM) fuel cell systems. Several components in PEM fuel cell systems were characterized and modeled. The developed component...

  11. Application of Proton Exchange Membrane Fuel Cell for Lift Trucks

    DEFF Research Database (Denmark)

    Hosseinzadeh, Elham; Rokni, Masoud


    In this study a general PEMFC (Proton Exchange Membrane Fuel Cell) model has been developed to take into account the effect of pressure losses, water crossovers, humidity aspects and voltage over potentials in the cells. The model is zero dimensional and it is assumed to be steady state. The effect...

  12. Signal amelioration of electrophoretically deposited whole-cell biosensors using external electric fields

    Energy Technology Data Exchange (ETDEWEB)

    Ben-Yoav, Hadar, E-mail: [Department of Physical Electronics, School of Electrical Engineering, Faculty of Engineering, Tel Aviv University, Tel-Aviv 69978 (Israel); Amzel, Tal [Department of Physical Electronics, School of Electrical Engineering, Faculty of Engineering, Tel Aviv University, Tel-Aviv 69978 (Israel); Sternheim, Marek [Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel-Aviv, 69978 (Israel); Belkin, Shimshon [Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem, 91904 (Israel); Rubin, Adi [Department of Molecular Microbiology and Biotechnology, Faculty of Life Sciences, Tel Aviv University, Tel-Aviv, 69978 (Israel); Shacham-Diamand, Yosi [Department of Physical Electronics, School of Electrical Engineering, Faculty of Engineering, Tel Aviv University, Tel-Aviv 69978 (Israel); Freeman, Amihay [Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel-Aviv, 69978 (Israel)


    Highlights: > We present an electrochemical whole-cell biochip that can apply electric fields. > We examine the integration of cells on a biochip using electrophoretic deposition. > The effect of electric fields on the whole-cell biosensor has been demonstrated. > Relatively short DC electric pulse improves the performance of whole-cell biosensors. > Prolonged AC electric fields deteriorated the whole-cell biosensor performance. - Abstract: This paper presents an integrated whole-cell biochip system where functioning cells are deposited on the solid micro-machined surfaces while specially designed indium tin oxide electrodes that can be used to apply controllable electric fields during various stages; for example during cell deposition. The electrodes can be used also for sensing currents associated with the sensing mechanisms of electrochemical whole-cell biosensors. In this work a new approach integrating live bacterial cells on a biochip using electrophoretic deposition is presented. The biomaterial deposition technique was characterized under various driving potentials and chamber configurations. An analytical model of the electrophoretic deposition kinetics was developed and presented here. The deposited biomass included genetically engineered bacterial cells that may respond to toxic material exposure by expressing proteins that react with specific analytes generating electrochemically active byproducts. In this study the effect of external electric fields on the whole-cell biochips has been successfully developed and tested. The research hypothesis was that by applying electric fields on bacterial whole-cells, their permeability to the penetration of external analytes can be increased. This effect was tested and the results are shown here. The effect of prolonged and short external electric fields on the bioelectrochemical signal generated by sessile bacterial whole-cells in response to the presence of toxins was studied. It was demonstrated that relatively

  13. Theory on Plasmon Modes of the Cell Membranes

    CERN Document Server

    Nhan, T T; Ngo, V Thanh; Viet, N A


    Considering the plasmon oscillation of each layer of the cell membranes as a quasi-particle, we introduce a simple model for the membrane collective charge excitations, take into account the surface effective potential of the plasmon-plasmon interaction between two layers. By using the useful Bogoliubov transformation method, we easily obtained the expressions of the frequencies of plasmon oscillations as a function of wave-number $k$ and membrane thickness $d$, magnitude of these frequencies is in the order of $\\sqrt{kd}$. Our results are in good agreement with ones obtained by E. Manousakis.

  14. Towards Extrusion of Ionomers to Process Fuel Cell Membranes

    Directory of Open Access Journals (Sweden)

    Jean-Yves Sanchez


    Full Text Available While Proton Exchange Membrane Fuel Cell (PEMFC membranes are currently prepared by film casting, this paper demonstrates the feasibility of extrusion, a solvent-free alternative process. Thanks to water-soluble process-aid plasticizers, duly selected, it was possible to extrude acidic and alkaline polysulfone ionomers. Additionally, the feasibility to extrude composites was demonstrated. The impact of the plasticizers on the melt viscosity was investigated. Following the extrusion, the plasticizers were fully removed in water. The extrusion was found to impact neither on the ionomer chains, nor on the performances of the membrane. This environmentally friendly process was successfully validated for a variety of high performance ionomers.

  15. Nanodomain stabilization dynamics in plasma membranes of biological cells (United States)

    Das, Tamal; Maiti, Tapas K.; Chakraborty, Suman


    We discover that a synergistically amplifying role of stabilizing membrane proteins and continuous lipid recycling can explain the physics governing the stability, polydispersity, and dynamics of lipid raft domains in plasma membranes of biological cells. We establish the conjecture using a generalized order parameter based on theoretical formalism, endorsed by detailed scaling arguments and domain mapping. Quantitative agreements with morphological distributions of raft complexes, as obtained from Förster resonance energy transfer based visualization, support the present theoretical conjecture.

  16. Coenzyme Q10 suppresses Th17 cells and osteoclast differentiation and ameliorates experimental autoimmune arthritis mice. (United States)

    Jhun, JooYeon; Lee, Seung Hoon; Byun, Jae-Kyeong; Jeong, Jeong-Hee; Kim, Eun-Kyung; Lee, Jennifer; Jung, Young-Ok; Shin, Dongyun; Park, Sung Hwan; Cho, Mi-La


    Coenzyme Q10 (CoQ10) is a lipid-soluble antioxidant synthesized in human body. This enzyme promotes immune system function and can be used as a dietary supplement. Rheumatoid arthritis (RA) is an autoimmune disease leading to chronic joint inflammation. RA results in severe destruction of cartilage and disability. This study aimed to investigate the effect of CoQ10 on inflammation and Th17 cell proliferation on an experimental rheumatoid arthritis (RA) mice model. CoQ10 or cotton seed oil as control was orally administrated once a day for seven weeks to mice with zymosan-induced arthritis (ZIA). Histological analysis of the joints was conducted using immunohistochemistry. Germinal center (GC) B cells, Th17 cells and Treg cells of the spleen tissue were examined by confocal microscopy staining. mRNA expression was measured by real-time PCR and protein levels were estimated by enzyme-linked immunosorbent assay (ELISA). Flow cytometric analysis (FACS) was used to evaluate Th17 cells and Treg cells. CoQ10 mitigated the severity of ZIA and decreased serum immunoglobulin concentrations. CoQ10 also reduced RANKL-induced osteoclastogenesis, inflammatory mediators and oxidant factors. Th17/Treg axis was reciprocally controlled by CoQ10 treatment. Moreover, CoQ10 treatment on normal mouse and human cells cultured in Th17 conditions decreased the number of Th17 cells and enhanced the number of Treg cells. CoQ10 alleviates arthritis in mice with ZIA declining inflammation, Th17 cells and osteoclast differentiation. These findings suggest that CoQ10 can be a potential therapeutic substance for RA.

  17. Insulin receptor-overexpressing β-cells ameliorate hyperglycemia in diabetic rats through Wnt signaling activation.

    Directory of Open Access Journals (Sweden)

    Mi-Hyun Kim

    Full Text Available To investigate the therapeutic efficacy and mechanism of β-cells with insulin receptor (IR overexpression on diabetes mellitus (DM, rat insulinoma (INS-1 cells were engineered to stably express human insulin receptor (INS-IR cells, and subsequently transplanted into streptozotocin- induced diabetic rats. Compared with INS-1 cells, INS-IR cells showed improved β-cell function, including the increase in glucose utilization, calcium mobilization, and insulin secretion, and exhibited a higher rate of cell proliferation, and maintained lower levels of blood glucose in diabetic rats. These results were attributed to the increase of β-catenin/PPARγ complex bindings to peroxisome proliferator response elements in rat glucokinase (GK promoter and the prolongation of S-phase of cell cycle by cyclin D1. These events resulted from more rapid and higher phosphorylation levels of insulin-signaling intermediates, including insulin receptor substrate (IRS-1/IRS-2/phosphotylinositol 3 kinase/v-akt murine thymoma viral oncogene homolog (AKT 1, and the consequent enhancement of β-catenin nuclear translocation and Wnt responsive genes including GK and cyclin D1. Indeed, the higher functionality and proliferation shown in INS-IR cells were offset by β-catenin, cyclin D1, GK, AKT1, and IRS-2 gene depletion. In addition, the promotion of cell proliferation and insulin secretion by Wnt signaling activation was shown by 100 nM insulin treatment, and to a similar degree, was shown in INS-IR cells. In this regard, this study suggests that transferring INS-IR cells into diabetic animals is an effective and feasible DM treatment. Accordingly, the method might be a promising alternative strategy for treatment of DM given the adverse effects of insulin among patients, including the increased risk of modest weight gain and hypoglycemia. Additionally, this study demonstrates that the novel mechanism of cross-talk between insulin and Wnt signaling plays a primary role in

  18. Scalable nanostructured membranes for solid-oxide fuel cells. (United States)

    Tsuchiya, Masaru; Lai, Bo-Kuai; Ramanathan, Shriram


    The use of oxide fuel cells and other solid-state ionic devices in energy applications is limited by their requirement for elevated operating temperatures, typically above 800°C (ref. 1). Thin-film membranes allow low-temperature operation by reducing the ohmic resistance of the electrolytes. However, although proof-of-concept thin-film devices have been demonstrated, scaling up remains a significant challenge because large-area membranes less than ~ 100 nm thick are susceptible to mechanical failure. Here, we report that nanoscale yttria-stabilized zirconia membranes with lateral dimensions on the scale of millimetres or centimetres can be made thermomechanically stable by depositing metallic grids on them to function as mechanical supports. We combine such a membrane with a nanostructured dense oxide cathode to make a thin-film solid-oxide fuel cell that can achieve a power density of 155 mW cm⁻² at 510 °C. We also report a total power output of more than 20 mW from a single fuel-cell chip. Our large-area membranes could also be relevant to electrochemical energy applications such as gas separation, hydrogen production and permeation membranes.

  19. High-throughput functional genomics identifies genes that ameliorate toxicity due to oxidative stress in neuronal HT-22 cells: GFPT2 protects cells against peroxide. (United States)

    Zitzler, Jürgen; Link, Dieter; Schäfer, Rolf; Liebetrau, Wolfgang; Kazinski, Michael; Bonin-Debs, Angelika; Behl, Christian; Buckel, Peter; Brinkmann, Ulrich


    We describe a novel genetic screen that is performed by transfecting every individual clone of an expression clone collection into a separate population of cells in a high-throughput mode. We combined high-throughput functional genomics with experimental validation to discover human genes that ameliorate cytotoxic responses of neuronal HT-22 cells upon exposure to oxidative stress. A collection of 5,000 human cDNAs in mammalian expression vectors were individually transfected into HT-22 cells, which were then exposed to H(2)O(2). Five genes were found that are known to be involved in pathways of detoxification of peroxide (catalase, glutathione peroxidase-1, peroxiredoxin-1, peroxiredoxin-5, and nuclear factor erythroid-derived 2-like 2). The presence of those genes in our "hit list" validates our screening platform. In addition, a set of candidate genes was found that has not been previously described as involved in detoxification of peroxide. One of these genes, which was consistently found to reduce H(2)O(2) -induced toxicity in HT-22, was GFPT2. This gene is expressed at significant levels in the central nervous system (CNS) and encodes glutamine-fructose-6-phosphate transaminase (GFPT) 2, a rate-limiting enzyme in hexosamine biosynthesis. GFPT has recently also been shown to ameliorate the toxicity of methylmercury in Saccharomyces cerevisiae. Methylmercury causes neuronal cell death in part by protein modification as well as enhancing the production of reactive oxygen species (ROS). The protective effect of GFPT2 against H(2)O(2) toxicity in neuronal HT-22 cells may be similar to its protection against methylmercury in yeast. Thus, GFPT appears to be conserved among yeast and men as a critical target of methylmercury and ROS-induced cytotoxicity.

  20. Hydrogen sulfide inhalation ameliorates allergen induced airway hypereactivity by modulating mast cell activation. (United States)

    Roviezzo, Fiorentina; Bertolino, Antonio; Sorrentino, Rosalinda; Terlizzi, Michela; Matteis, Maria; Calderone, Vincenzo; Mattera, Valentina; Martelli, Alma; Spaziano, Giuseppe; Pinto, Aldo; D'Agostino, Bruno; Cirino, Giuseppe


    Compelling evidence suggests that hydrogen sulfide represents an important gaseous transmitter in the mammalian respiratory system. In the present study, we have evaluated the role of mast cells in hydrogen sulfide-induced effects on airways in a mouse model of asthma. Mice were sensitized to ovalbumin and received aerosol of a hydrogen sulfide donor (NaHS; 100 ppm) starting at day 7 after ovalbumin challenge. Exposure to hydrogen sulfide abrogated ovalbumin-induced bronchial hypereactivity as well as the increase in lung resistance. Concomitantly, hydrogen sulfide prevented mast cell activity as well as FGF-2 and IL-13 upregulation. Conversely, pulmonary inflammation and the increase in plasmatic IgE levels were not affected by hydrogen sulfide. A lack of hydrogen sulfide effects in mast cell deficient mice occurred. Primary fibroblasts harvested from ovalbumin-sensitized mice showed an increased proliferation rate that was inhibited by hydrogen sulfide aerosol. Furthermore, ovalbumin-induced transdifferentiation of pulmonary fibroblasts into myofibroblasts was reversed. Finally, hydrogen sulfide did abrogate in vitro the degranulation of the mast cell-like RBL-2H3 cell line. Similarly to the in vivo experiments the inhibitory effect was present only when the cells were activated by antigen exposure. In conclusion, inhaled hydrogen sulfide improves lung function and inhibits bronchial hyper-reactivity by modulating mast cells and in turn fibroblast activation.

  1. Understanding the transport processes in polymer electrolyte membrane fuel cells (United States)

    Cheah, May Jean

    Polymer electrolyte membrane (PEM) fuel cells are energy conversion devices suitable for automotive, stationary and portable applications. An engineering challenge that is hindering the widespread use of PEM fuel cells is the water management issue, where either a lack of water (resulting in membrane dehydration) or an excess accumulation of liquid water (resulting in fuel cell flooding) critically reduces the PEM fuel cell performance. The water management issue is addressed by this dissertation through the study of three transport processes occurring in PEM fuel cells. Water transport within the membrane is a combination of water diffusion down the water activity gradient and the dragging of water molecules by protons when there is a proton current, in a phenomenon termed electro-osmotic drag, EOD. The impact of water diffusion and EOD on the water flux across the membrane is reduced due to water transport resistance at the vapor/membrane interface. The redistribution of water inside the membrane by EOD causes an overall increase in the membrane resistance that regulates the current and thus EOD, thereby preventing membrane dehydration. Liquid water transport in the PEM fuel cell flow channel was examined at different gas flow regimes. At low gas Reynolds numbers, drops transitioned into slugs that are subsequently pushed out of the flow channel by the gas flow. The slug volume is dependent on the geometric shape, the surface wettability and the orientation (with respect to gravity) of the flow channel. The differential pressure required for slug motion primarily depends on the interfacial forces acting along the contact lines at the front and the back of the slug. At high gas Reynolds number, water is removed as a film or as drops depending on the flow channel surface wettability. The shape of growing drops at low and high Reynolds number can be described by a simple interfacial energy minimization model. Under flooding conditions, the fuel cell local current

  2. Paclitaxel ameliorates fibrosis in hepatic stellate cells via inhibition of TGF-β/Smad activity

    Institute of Scientific and Technical Information of China (English)


    AIM: To investigated if paclitaxel can attenuate hepatic fi brosis in rat hepatic stellate cells (RHSCs). METHODS: RHSCs were cultured in vitro and randomly assigned to four groups: normal control group (treated only with Dulbecco's Modified Eagle's Medium), Taxol group (200 nmol/L paclitaxel was added to the cell culture), transforming growth factor (TGF)-β group (5 ng/mL recombinant human TGF-β1 was added to the cell culture), and TGF-β + Taxol group. TGF-β signaling cascade and status of various extracel...

  3. Estimation of membrane hydration status for standby proton exchange membrane fuel cell systems by impedance measurement

    DEFF Research Database (Denmark)

    Bidoggia, Benoit; Rugholt, Mark; Nielsen, Morten Busk;


    Fuel cells are getting growing interest in both backup systems and electric vehicles. Although these systems are characterized by long periods of inactivity, they must be able to start at any instant in the shortest time. However, the membrane of which PEMFCs are made tends to dry out when...

  4. Metformin ameliorates insulin resistance in L6 rat skeletal muscle cells through upregulation of SIRT3

    Institute of Scientific and Technical Information of China (English)

    Song Yuping; Shi Jingli; Wu Ying; Han Chong; Zou Junjie; Shi Yongquan; Liu Zhimin


    Background SIRT3 is an important regulator in cell metabolism,and recent studies have shown that it may be involved in the pharmacological effects of mefformin.However,the molecular mechanisms underlying this process are unclear.Methods The effects of SIRT3 on the regulation of oxidative stress and insulin resistance in skeletal muscle were evaluated in vitro.Differentiated L6 skeletal muscle cells were treated with 750 μmol/L palmitic acid to induce insulin resistance.SIRT3 was knocked down and overexpressed in L6 cells.SIRT3,nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) p65,c-Jun N-terminal kinase 1 (JNK1),and superoxide dismutase 2 (SOD2) were evaluated by Western blotting.Results Over expression of SIRT3 increased glucose uptake and decreased ROS production in L6-IR cells as well as in L6 cells.Knock-down of SIRT3 induced increased production of ROS while decreased glucose uptake in both L6 and L6-IR cells,and these effects were reversed by N-acetyl-L-cysteine (NAC).Metformin increased the expression of SIRT3 (1.5-fold) and SOD2 (2-fold) while down regulating NF-κB p65 (1.5-fold) and JNK1 (1.5-fold).Knockdown of SIRT3 (P<0.05)reversed the metformin-induced decreases in NF-κB p65 and JNK1 and the mefformin-induced increase in SOD2 (P<0.05).Conclusions Upregulated SIRT3 is involved in the pharmacological mechanism by which mefformin promotes glucose uptake.Additionally,SIRT3 may function as an important regulator of oxidative stress and a new alternative approach for targeting insulin resistance-related diseases.

  5. Indole prevents Escherichia coli cell division by modulating membrane potential. (United States)

    Chimerel, Catalin; Field, Christopher M; Piñero-Fernandez, Silvia; Keyser, Ulrich F; Summers, David K


    Indole is a bacterial signalling molecule that blocks E. coli cell division at concentrations of 3-5 mM. We have shown that indole is a proton ionophore and that this activity is key to the inhibition of division. By reducing the electrochemical potential across the cytoplasmic membrane of E. coli, indole deactivates MinCD oscillation and prevents formation of the FtsZ ring that is a prerequisite for division. This is the first example of a natural ionophore regulating a key biological process. Our findings have implications for our understanding of membrane biology, bacterial cell cycle control and potentially for the design of antibiotics that target the cell membrane.

  6. Nafion®/ODF-silica composite membranes for medium temperature proton exchange membrane fuel cells

    KAUST Repository

    Treekamol, Yaowapa


    A series of composite membranes were prepared by dispersing fluorinated polyoxadiazole oligomer (ODF)-functionalized silica nanoparticles in a Nafion matrix. Both melt-extrusion and solvent casting processes were explored. Ion exchange capacity, conductivity, water uptake and dimensional stability, thermal stability and morphology were characterized. The inclusion of functionalized nanoparticles proved advantageous, mainly due to a physical crosslinking effect and better water retention, with functionalized nanoparticles performing better than the pristine silica particles. For the same filler loading, better nanoparticle dispersion was achieved for solvent-cast membranes, resulting in higher proton conductivity. Filler agglomeration, however,was more severe for solvent-castmembranes at loadings beyond 5wt.%. The composite membranes showed excellent thermal stability, allowing for operation in medium temperature PEM fuel cells. Fuel cell performance of the compositemembranesdecreaseswithdecreasing relativehumidity, but goodperformance values are still obtained at 34% RHand 90 °C,with the best results obtained for solvent castmembranes loaded with 10 wt.% ODF-functionalized silica. Hydrogen crossover of the composite membranes is higher than that forpureNafion membranes,possiblydue toporosityresulting fromsuboptimalparticle- matrixcompatibility. © 2013 Crown Copyright and Elsevier BV. All rights reserved.

  7. Effects of chronic kidney disease on blood cells membrane properties. (United States)

    Kaderjakova, Z; Lajdova, I; Horvathova, M; Morvova, M; Sikurova, L


    Chronic kidney disease (CKD) is progressive loss of renal function associated among others with increased intracellular calcium concentration. The purpose of this study was to identify the effects of CKD on cell membrane properties such as human red blood cell Ca(2+) ATPase activity, lymphocyte plasma membrane P2X(7) receptor expression and function. This could help us in elucidating the origin of increased calcium concentration in blood cells. We found out Ca(2+) ATPase activity is decreased in early stage CKD patients resulting in altered calcium removal from cytoplasm. By means of flow cytometry we assessed that P2X(7) receptor expression on lymphocyte membrane is 1.5 fold increased for CKD patients. Moreover, we detected an increased uptake of ethidium bromide through this receptor in CKD at basal conditions. It means CKD lymphocyte membranes contain more receptors which are more permeable thus allowing increased calcium influx from extracellular milieu. Finally, we can state alterations in blood cell membranes are closely linked to CKD and may be responsible for intracellular calcium accumulation.

  8. Antigen-Specific IgG ameliorates allergic airway inflammation via Fcγ receptor IIB on dendritic cells

    Directory of Open Access Journals (Sweden)

    Karasuyama Hajime


    Full Text Available Abstract Background There have been few reports on the role of Fc receptors (FcRs and immunoglobulin G (IgG in asthma. The purpose of this study is to clarify the role of inhibitory FcRs and antigen presenting cells (APCs in pathogenesis of asthma and to evaluate antigen-transporting and presenting capacity by APCs in the tracheobronchial mucosa. Methods In FcγRIIB deficient (KO and C57BL/6 (WT mice, the effects of intratracheal instillation of antigen-specific IgG were analysed using the model with sensitization and airborne challenge with ovalbumin (OVA. Thoracic lymph nodes instilled with fluorescein-conjugated OVA were analysed by fluorescence microscopy. Moreover, we analysed the CD11c+ MHC class II+ cells which intaken fluorescein-conjugated OVA in thoracic lymph nodes by flow cytometry. Also, lung-derived CD11c+ APCs were analysed by flow cytometry. Effects of anti-OVA IgG1 on bone marrow dendritic cells (BMDCs in vitro were also analysed. Moreover, in FcγRIIB KO mice intravenously transplanted dendritic cells (DCs differentiated from BMDCs of WT mice, the effects of intratracheal instillation of anti-OVA IgG were evaluated by bronchoalveolar lavage (BAL. Results In WT mice, total cells and eosinophils in BAL fluid reduced after instillation with anti-OVA IgG1. Anti-OVA IgG1 suppressed airway inflammation in hyperresponsiveness and histology. In addition, the number of the fluorescein-conjugated OVA in CD11c+ MHC class II+ cells of thoracic lymph nodes with anti-OVA IgG1 instillation decreased compared with PBS. Also, MHC class II expression on lung-derived CD11c+ APCs with anti-OVA IgG1 instillation reduced. Moreover, in vitro, we showed that BMDCs with anti-OVA IgG1 significantly decreased the T cell proliferation. Finally, we demonstrated that the lacking effects of anti-OVA IgG1 on airway inflammation on FcγRIIB KO mice were restored with WT-derived BMDCs transplanted intravenously. Conclusion Antigen-specific IgG ameliorates

  9. Mast cell synapses and exosomes: membrane contacts for information exchange

    Directory of Open Access Journals (Sweden)

    Amanda eCarroll-Portillo


    Full Text Available In addition to their central role in allergy, mast cells are involved in a wide variety of cellular interactions during homeostasis and disease. In this review, we discuss the ability of mast cells to extend their mechanisms for intercellular communication beyond the release of soluble mediators. These include formation of mast cell synapses on antigen presenting surfaces, as well as cell-cell contacts with dendritic cells and T cells. Release of membrane-bound exosomes also provide for the transfer of antigen, mast cell proteins and RNA to other leukocytes. With the recognition of the extended role mast cells have during immune modulation, further investigation of the processes in which mast cells are involved is necessary. This reopens mast cell research to exciting possibilities, demonstrating it to be an immunological frontier.

  10. Superresolution measurement on the minute fluctuation of cell membrane

    Institute of Scientific and Technical Information of China (English)

    LI Jing; HUANG Yaoxiong; ZHAO Haiyan; TU Mei; CHEN Wenxin


    A novel method for measuring the minute fluctuation of cell membrane is developed by modifying the super-resolution theory, increasing dimension in Fourier space, enhancing brightness gradient and utilizing maximum adaptive weighted averaging filter (MAWA) in obstructing noise. The application of the method in studying aspergillus flavus cell (AFC) and red blood cell and the new findings from the study show that it is a useful tool.

  11. Intravenous Cardiac Stem Cell-Derived Exosomes Ameliorate Cardiac Dysfunction in Doxorubicin Induced Dilated Cardiomyopathy

    Directory of Open Access Journals (Sweden)

    Adam C. Vandergriff


    Full Text Available Despite the efficacy of cardiac stem cells (CSCs for treatment of cardiomyopathies, there are many limitations to stem cell therapies. CSC-derived exosomes (CSC-XOs have been shown to be responsible for a large portion of the regenerative effects of CSCs. Using a mouse model of doxorubicin induced dilated cardiomyopathy, we study the effects of systemic delivery of human CSC-XOs in mice. Mice receiving CSC-XOs showed improved heart function via echocardiography, as well as decreased apoptosis and fibrosis. In spite of using immunocompetent mice and human CSC-XOs, mice showed no adverse immune reaction. The use of CSC-XOs holds promise for overcoming the limitations of stem cells and improving cardiac therapies.


    Institute of Scientific and Technical Information of China (English)

    Ming-ming Zong; Yong-kuan Gong


    The surface design used for improving biocompatibility is one of the most important issues for the fabrication of medical devices. For mimicking the ideal surface structure of cell outer membrane, a large number of polymers bearing phosphorylcholine (PC) groups have been employed to modify the surfaces of biomaterials and medical devices. It has been demonstrated that the biocompatibility of the modified materials whose surface is required to interact with a living organism has been obviously improved by introducing PC groups. In this review, the fabrication strategies of cell outer membrane mimetic surfaces and their resulted biocompatibilities were summarized.

  13. Microstructured Electrolyte Membranes to Improve Fuel Cell Performance (United States)

    Wei, Xue

    Fuel cells, with the advantages of high efficiency, low greenhouse gas emission, and long lifetime are a promising technology for both portable power and stationary power sources. The development of efficient electrolyte membranes with high ionic conductivity, good mechanical durability and dense structure at low cost remains a challenge to the commercialization of fuel cells. This thesis focuses on exploring novel composite polymer membranes and ceramic electrolytes with the microstructure engineered to improve performance in direct methanol fuel cells (DMFCs) and solid oxide fuel cells (SOFCs), respectively. Polymer/particle composite membranes hold promise to meet the demands of DMFCs at lower cost. The structure of composite membranes was controlled by aligning proton conducting particles across the membrane thickness under an applied electric field. The field-induced structural changes caused the membranes to display an enhanced water uptake, proton conductivity, and methanol permeability in comparison to membranes prepared without an applied field. Although both methanol permeability and proton conductivity are enhanced by the applied field, the permeability increase is relatively lower than the proton conductivity improvement, which results in enhanced proton/methanol selectivity and improved DMFC performance. Apatite ceramics are a new class of fast ion conductors being studied as alternative SOFC electrolytes in the intermediate temperature range. An electrochemical/hydrothermal deposition method was developed to grow fully dense apatite membranes containing well-developed crystals with c-axis alignment to promote ion conductivity. Hydroxyapatite seed crystals were first deposited onto a metal substrate electrochemically. Subsequent ion substitution during the hydrothermal growth process promoted the formation of dense, fully crystalline films with microstructure optimal for ion transport. The deposition parameters were systematically investigated, such as

  14. Flavivirus cell entry and membrane fusion

    NARCIS (Netherlands)

    Smit, Jolanda M.; Moesker, Bastiaan; Rodenhuis-Zybert, Izabela; Wilschut, Jan


    Flaviviruses, such as dengue virus and West Nile virus, are enveloped viruses that infect cells through receptor-mediated endocytosis and fusion from within acidic endosomes. The cell entry process of flaviviruses is mediated by the viral E glycoprotein. This short review will address recent advance

  15. Ameliorated Chrysotille—induced DNA Damage in Human Embryo Lung Cells by Surface Modification of Chrysotile With Rare Earth Compounds

    Institute of Scientific and Technical Information of China (English)



    Objective:In view of the fact that asbestos is not only a key occupational hazard,but also an important enviromental pollutant,it is necessary to develop a proper method to decrease the carcinogenectiy of asbestos fibers.This study was designed to determine if the surface modification of chrysotile asbestos fiber(CAF)with rare earth compounds(REC) can ameliorate CAF-induced DNA damages in human embryo lung(HEL)cells,Methods:After incubation with REC solution at different concentrations at room temperature for 1h,natural and REC-pretreated CAF was added to cell culture at various doses.At the selected time as the experiment designed ,DNA damages of the HEL cells were detected by Unscheduled DNA Synthesis(UDS) and Single Cell Gel Electrophoresis(SCGE) assays.Results:The UDS induced by natural CAF was elevated with the increase of CAF doses,There was a good dose-response relationship between the UDS and the amount of CAF in the mdeium and the coefficient of correlation(R) was 0.958 at P<0.05,In REC-pretreated CAF groups,the use declined with the increase of REC doses.Both catalase(CAT) and dimethylsulfoxide(DMSO)also reduced the CAF-induced enhancement of UDS.In SCGE assay,CAF induced DNA chain breakage and the magnitude of DNA chain breakage increased in a dosedependent manner and the coefficient of correlation(R))was 0.992 at P<0.01,while REC-pretreated CAF significantly decreased the induction of DNA chain breakage in a dose-dependent manner(r=0.989,P<0.05).Conclusion:It can be concluded that CAF-induced DNA damages in HEL cells may be partly mediated by oxygen derivatives,and the surface modification of CAF with REC might hide critical sites on the fiber surface ,thereby reducing the fiber-mediated production of oxygen derivation and lowering the CAF-induced UDS and DNA chani breakage in HEL cells.

  16. Ameliorated Chrysotile-induced DNA Damage in Human Embryo Lung Cells by Surface Modification of Chrysotile With Rare Earth Compounds

    Institute of Scientific and Technical Information of China (English)


    Objective In view of the fact that asbestos is not only a key occupational hazard, but also an important environmental pollutant, it is necessary to develop a proper method to decrease the carcinogenecity of asbestos fibers. This study was designed to determine if the surface modification of chrysotile asbestos fiber (CAF) with rare earth compounds (REC) can ameliorate CAF-induced DNA damages in human embryo lung (HEL) cells. Methods After incubation with REC solution at different concentrations at room temperature for 1 h, natural and REC-pretreated CAF was added to cell culture at various doses. At the selected time as the experiment designed, DNA damages of the HEL cells were detected by Unscheduled DNA Synthesis (UDS) and Single Cell Gel Electrophoresis (SCGE) assays. Results The UDS induced by natural CAF was elevated with the increase of CAF doses. There was a good dose-response relationship between the UDS and the amount of CAF in the medium and the coefficient of correlation (R) was 0.958 at P<0.05. In REC-pretreated CAF groups, the UDS declined with the increase of REC doses. Both catalase (CAT) and dimethylsulfoxide (DMSO) also reduced the CAF-induced enhancement of UDS. In SCGE assay, CAF induced DNA chain breakage and the magnitude of DNA chain breakage increased in a dose-dependent manner and the coefficient of correlation (R) was 0.992 at p<0.01, while REC-pretreated CAF significantly decreased the induction of DNA chain breakage in a dose-dependent manner(r=0.989, p<0.05). Conclusion It can be concluded that CAF-induced DNA damages in HEL cells may be partly mediated by oxygen derivatives, and the surface modification of CAF with REC might hide critical sites on the fiber surface, thereby reducing the fiber-mediated production of oxygen derivation and lowering the CAF-induced UDS and DNA chain breakage in HEL cells.

  17. Role of membranes and membrane reactors in the hydrogen supply of fuel cells for transports

    Energy Technology Data Exchange (ETDEWEB)

    Julbe, A.; Guizard, Ch. [Institut Europeen des Membranes, UMII, Lab. des Materiaux et des Procedes Membranaires, CNRS UMR 5635, 34 - Montpellier (France)


    Production, storage and supply of high-purity hydrogen as a clean and efficient fuel is central to fuel cells technology, in particular in vehicle traction. Actually, technologies for handling liquefied or gaseous hydrogen in transports are not available so that a number of alternative fuels are considered with the aim of in-situ generation of hydrogen through catalytic processes. The integrated concept of membrane reactors (MRs) can greatly benefit to these technologies. Particular emphasis is put on inorganic membranes and their role in MRs performance for H{sub 2} production.

  18. Proton Exchange Membranes for Fuel Cells Challenges and Recent Developments

    Institute of Scientific and Technical Information of China (English)

    Qingfeng Li; Jens Oluf Jensen; Pernille P. Noyé; Chao Pan; Niels J. Bjerrum


    @@ 1Introduction The current technology of proton exchange membrane fuel cells (PEMFC) is based on perfluorosulfonic acid (PFSA) membranes (e. g. Nafion(R)) as electrolyte. It operates on pure hydrogen and oxygen/air at typically 80℃ with high power density and long-term durability. For the membranes to be conductive, a minimum threshold of absorbed water molecules is about 6 to 7 mole per sulfonic site. The highest conductivity is only obtained under fully hydrated conductions, i.e. 21 - 22 mole water per sulfonic acid site. In other words, the proton conductivity is achieved by the locally liquid-like hydrophilic domain of the nanostructure.This strong dependence of conductivity on the water content in membranes limits the operational temperatureof PEMFC below 100℃.

  19. Pycnogenol Ameliorates Asthmatic Airway Inflammation and Inhibits the Function of Goblet Cells. (United States)

    Liu, Zhaoe; Han, Bo; Chen, Xing; Wu, Qiaoling; Wang, Lijun; Li, Gang


    Pycnogenol(®) (PYC) is utilized in the treatment of various diseases ranging from chronic inflammation to circulatory diseases, but its efficacy and functional mechanism in pediatric asthma continue to remain obscure. Therefore, the purpose of this study was to investigate the effectiveness and molecular mechanism of PYC on regulation of asthmatic airway inflammation. We found that PYC with tail intravenous injection of 50 mg/kg or intragastric administration of 100 mg/kg all reduced ovalbumin (OVA)-induced airway injury. Pharmacokinetics of PYC was evaluated by high-performance liquid chromatography assay, indicating that PYC was quickly absorbed into the blood after intragastric administration, and PYC metabolism was later improved gradually with increase of time after PYC administration. PYC has a higher bioavailability of 71.96%, and it was more easily absorbed by the body. PYC inhibited the number of total inflammatory cells and levels of interleukin (IL)-4, IL-5, IL-9, and IL-13 in bronchoalveolar lavage fluid of OVA-induced mice. PYC inhibited IL-13 secretion from the Th2 cells, thereby causing a reduction in expression of the signaling molecules in JAK/STAT6 pathway in airway epithelial cells. STAT6 silence suppressed IL-13-increased acetylcholine level. STAT6 overexpression promoted expression of goblet cell metaplasia-associated molecules (FOXA3, SPDEF, and Muc5ac). PYC suppressed OVA-induced expression of FOXA3, SPDEF, and Muc5ac in lung. Our findings indicate that PYC has a higher bioavailability and it prevents emergence of OVA-induced airway injury and airway inflammation in mice by inhibiting IL-13/JAK/STAT6 pathway and blocking release of acetylcholine to reduce goblet cell metaplasia.

  20. Neutron diffraction of cell membranes (myelin). (United States)

    Parsons, D F; Akers, C K


    Small-angle neutron diffraction (wavelength 4.05 angstroms) of human and rabbit sciatic nerve has been carried out by means of the Brookhaven high flux beam reactor with an automated slit camera. Most of the free water of the nerves was substituted in order to minimize incoherent scatter of hydrogen atoms. The differences in amplitude and phase shifts between neutrons and x-rays resulted in a neutron diffraction pattern that was completely different from the x-ray pattern. The neutron pattern consisted of a single peak of about 89-angstrom spacing in the region examined (up to 6-angstrom spacing). The strong third, fourth, and fifth order reflections (about 60, 45, and 36 angstroms) seen in the x-ray pattern were suppressed. The neutron data indicated a strong scattering from one portion of the membrane.

  1. Solid alkaline membrane fuel cell : what are they advantages and drawbacks compared to proton exchange membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Coutanceau, C.; Baranton, S.; Simoes, M. [Univ. de Poitiers, Poitiers (France). Laboratoire de Catalyse en Chimie Organique, UMR CNRS


    Low temperature fuel cells such as proton exchange membrane fuel cells (PEMFCs) and direct alcohol fuel cells (DAFCs) are promising power sources for portable electronics and transportation applications. However, these fuel cells require high amounts of platinum at the anodes to achieve high cell performance. Although alkaline membrane fuel cells (AFCs) may be an alternative to PEMFCs, the technology of low temperature fuel cells is less developed than that of fuel cells working with a solid acid electrolyte. Interest in solid alkaline membrane fuel cells (SAMFCs) has increased in recent years because it is easier to activate the oxidation and reduction reactions in alkaline medium than in acidic medium. Fewer platinum based catalysts are needed due to higher electrode kinetics. The development of hydroxyl conductive membrane makes this technology available, but the fuel to be used in the system must be considered. Pure hydrogen or hydrogen-rich gases offer high electric efficiency, but their production, storage, and distribution are not sufficient for a large-scale development. This paper discussed the relatively good electroreactivity of polyols such as glycerol and ethylene glycol in a SAMFC, as well as sodium borohydride (NaBH{sub 4}) as an alternative. The working principle of SAMFCs was also presented along with considerations regarding the electrochemical reactions occurring at the electrodes, and requirements concerning the catalysts, the triple phase boundary in the electrode and the anionic membrane. Palladium based catalysts were found to be an interesting alternative to platinum in SAMFCs. In situ FTIR measurements and oxidation products analysis was used to determine the electrooxidation pathways of alcohol and NaBH{sub 4}in alkaline medium. The study also included a comparison with oxidation mechanisms in acid medium. 8 refs.

  2. Preconditioning L6 Muscle Cells with Naringin Ameliorates Oxidative Stress and Increases Glucose Uptake


    R. Dhanya; K B Arun; Nisha, V. M.; H P Syama; Nisha, P.; T R Santhosh Kumar; Jayamurthy, P.


    Enhanced oxidative stress contributes to pathological changes in diabetes and its complications. Thus, strategies to reduce oxidative stress may alleviate these pathogenic processes. Herein, we have investigated Naringin mediated regulation of glutathione (GSH) & intracellular free radical levels and modulation of glucose uptake under oxidative stress in L6 cell lines. The results from the study demonstrated a marked decrease in glutathione with a subsequent increase in free radical levels, w...

  3. Allogeneic guinea pig mesenchymal stem cells ameliorate neurological changes in experimental colitis


    Stavely, Rhian; Robinson, Ainsley M.; Miller, Sarah; Boyd, Richard; Sakkal, Samy; Nurgali, Kulmira


    Background The use of mesenchymal stem cells (MSCs) to treat inflammatory bowel disease (IBD) is of great interest because of their immunomodulatory properties. Damage to the enteric nervous system (ENS) is implicated in IBD pathophysiology and disease progression. The most commonly used model to study inflammation-induced changes to the ENS is 2,4,6-trinitrobenzene-sulfonate acid (TNBS)-induced colitis in guinea pigs; however, no studies using guinea pig MSCs in colitis have been performed. ...

  4. PIG7 promotes leukemia cell chemosensitivity via lysosomal membrane permeabilization. (United States)

    Liu, Jiazhuo; Peng, Leiwen; Niu, Ting; Wu, Yu; Li, Jianjun; Wang, Fangfang; Zheng, Yuhuan; Liu, Ting


    PIG7 localizes to lysosomal membrane in leukemia cells. Our previous work has shown that transduction of pig7 into a series of leukemia cell lines did not result in either apoptosis or differentiation of most tested cell lines. Interestingly, it did significantly sensitize these cell lines to chemotherapeutic drugs. Here, we further investigated the mechanism underlying pig7-induced improved sensitivity of acute leukemia cells to chemotherapy. Our results demonstrated that the sensitization effect driven by exogenous pig7 was more effective in drug-resistant leukemia cell lines which had lower endogenous pig7 expression. Overexpression of pig7 did not directly activate the caspase apoptotic pathway, but decreased the lysosomal stability. The expression of pig7 resulted in lysosomal membrane permeabilization (LMP) and lysosomal protease (e.g. cathepsin B, D, L) release. Moreover, we also observed increased reactive oxygen species (ROS) and decreased mitochondrial membrane potential (ΔΨm) induced by pig7. Some autophagy markers such as LC3I/II, ATG5 and Beclin-1, and necroptosis maker MLKL were also stimulated. However, intrinsic antagonism such as serine/cysteine protease inhibitors Spi2A and Cystatin C prevented downstream effectors from triggering leukemia cells, which were only on the "verge of apoptosis". When combined with chemotherapy, LMP increased and more proteases were released. Once this process was beyond the limit of intrinsic antagonism, it induced programmed cell death cooperatively via caspase-independent and caspase-dependent pathways.

  5. Electrospun fiber membranes enable proliferation of genetically modified cells

    Directory of Open Access Journals (Sweden)

    Borjigin M


    Full Text Available Mandula Borjigin*, Chris Eskridge*, Rohina Niamat, Bryan Strouse, Pawel Bialk, Eric B KmiecDepartment of Chemistry, Delaware State University, Dover, DE, USA *These authors contributed equally to this work Abstract: Polycaprolactone (PCL and its blended composites (chitosan, gelatin, and lecithin are well-established biomaterials that can enrich cell growth and enable tissue engineering. However, their application in the recovery and proliferation of genetically modified cells has not been studied. In the study reported here, we fabricated PCL-biomaterial blended fiber membranes, characterized them using physicochemical techniques, and used them as templates for the growth of genetically modified HCT116-19 colon cancer cells. Our data show that the blended polymers are highly miscible and form homogenous electrospun fiber membranes of uniform texture. The aligned PCL nanofibers support robust cell growth, yielding a 2.5-fold higher proliferation rate than cells plated on standard plastic plate surfaces. PCL-lecithin fiber membranes yielded a 2.7-fold higher rate of proliferation, while PCL-chitosan supported a more modest growth rate (1.5-fold higher. Surprisingly, PCL-gelatin did not enhance cell proliferation when compared to the rate of cell growth on plastic surfaces. Keywords: nanofibers, PCL-biomaterial blends, miscibility, gene editing, cell proliferation

  6. Lentiviral gene therapy of murine hematopoietic stem cells ameliorates the Pompe disease phenotype. (United States)

    van Til, Niek P; Stok, Merel; Aerts Kaya, Fatima S F; de Waard, Monique C; Farahbakhshian, Elnaz; Visser, Trudi P; Kroos, Marian A; Jacobs, Edwin H; Willart, Monique A; van der Wegen, Pascal; Scholte, Bob J; Lambrecht, Bart N; Duncker, Dirk J; van der Ploeg, Ans T; Reuser, Arnold J J; Verstegen, Monique M; Wagemaker, Gerard


    Pompe disease (acid alpha-glucosidase deficiency) is a lysosomal glycogen storage disorder characterized in its most severe early-onset form by rapidly progressive muscle weakness and mortality within the first year of life due to cardiac and respiratory failure. Enzyme replacement therapy prolongs the life of affected infants and supports the condition of older children and adults but entails lifelong treatment and can be counteracted by immune responses to the recombinant enzyme. We have explored the potential of lentiviral vector-mediated expression of human acid alpha-glucosidase in hematopoietic stem cells (HSCs) in a Pompe mouse model. After mild conditioning, transplantation of genetically engineered HSCs resulted in stable chimerism of approximately 35% hematopoietic cells that overexpress acid alpha-glucosidase and in major clearance of glycogen in heart, diaphragm, spleen, and liver. Cardiac remodeling was reversed, and respiratory function, skeletal muscle strength, and motor performance improved. Overexpression of acid alpha-glucosidase did not affect overall hematopoietic cell function and led to immune tolerance as shown by challenge with the human recombinant protein. On the basis of the prominent and sustained therapeutic efficacy without adverse events in mice we conclude that ex vivo HSC gene therapy is a treatment option worthwhile to pursue.

  7. Regulatory T cell transfer ameliorates lymphedema and promotes lymphatic vessel function (United States)

    Gousopoulos, Epameinondas; Proulx, Steven T.; Bachmann, Samia B.; Scholl, Jeannette; Dionyssiou, Dimitris; Demiri, Efterpi; Halin, Cornelia; Dieterich, Lothar C.


    Secondary lymphedema is a common postcancer treatment complication, but the underlying pathological processes are poorly understood and no curative treatment exists. To investigate lymphedema pathomechanisms, a top-down approach was applied, using genomic data and validating the role of a single target. RNA sequencing of lymphedematous mouse skin indicated upregulation of many T cell–related networks, and indeed depletion of CD4+ cells attenuated lymphedema. The significant upregulation of Foxp3, a transcription factor specifically expressed by regulatory T cells (Tregs), along with other Treg-related genes, implied a potential role of Tregs in lymphedema. Indeed, increased infiltration of Tregs was identified in mouse lymphedematous skin and in human lymphedema specimens. To investigate the role of Tregs during disease progression, loss-of-function and gain-of-function studies were performed. Depletion of Tregs in transgenic mice with Tregs expressing the primate diphtheria toxin receptor and green fluorescent protein (Foxp3-DTR-GFP) mice led to exacerbated edema, concomitant with increased infiltration of immune cells and a mixed TH1/TH2 cytokine profile. Conversely, expansion of Tregs using IL-2/anti–IL-2 mAb complexes significantly reduced lymphedema development. Therapeutic application of adoptively transferred Tregs upon lymphedema establishment reversed all of the major hallmarks of lymphedema, including edema, inflammation, and fibrosis, and also promoted lymphatic drainage function. Collectively, our results reveal that Treg application constitutes a potential new curative treatment modality for lymphedema. PMID:27734032

  8. Optical Trapping Techniques Applied to the Study of Cell Membranes (United States)

    Morss, Andrew J.

    Optical tweezers allow for manipulating micron-sized objects using pN level optical forces. In this work, we use an optical trapping setup to aid in three separate experiments, all related to the physics of the cellular membrane. In the first experiment, in conjunction with Brian Henslee, we use optical tweezers to allow for precise positioning and control of cells in suspension to evaluate the cell size dependence of electroporation. Theory predicts that all cells porate at a transmembrane potential VTMof roughly 1 V. The Schwann equation predicts that the transmembrane potential depends linearly on the cell radius r, thus predicting that cells should porate at threshold electric fields that go as 1/r. The threshold field required to induce poration is determined by applying a low voltage pulse to the cell and then applying additional pulses of greater and greater magnitude, checking for poration at each step using propidium iodide dye. We find that, contrary to expectations, cells do not porate at a constant value of the transmembrane potential but at a constant value of the electric field which we find to be 692 V/cm for K562 cells. Delivering precise dosages of nanoparticles into cells is of importance for assessing toxicity of nanoparticles or for genetic research. In the second experiment, we conduct nano-electroporation—a novel method of applying precise doses of transfection agents to cells—by using optical tweezers in conjunction with a confocal microscope to manipulate cells into contact with 100 nm wide nanochannels. This work was done in collaboration with Pouyan Boukany of Dr. Lee's group. The small cross sectional area of these nano channels means that the electric field within them is extremely large, 60 MV/m, which allows them to electrophoretically drive transfection agents into the cell. We find that nano electroporation results in excellent dose control (to within 10% in our experiments) compared to bulk electroporation. We also find that

  9. Transplantation of autologous adipose-derived stem cells ameliorates cardiac function in rabbits with myocardial infarction

    Institute of Scientific and Technical Information of China (English)

    ZHANG Duan-zhen; GAI Lu-yue; LIU Hong-wei; JIN Qin-hua; HUANG Jian-hua; ZHU Xian-yang


    Background Adipose-derived stem cells (ADSCs) are capable of differentiating into cardiomyogenic and endothelial cells in vitro. We tested the hypothesis that transplantation of ADSCs into myocardial scar may regenerate infracted myocardium and restore cardiac function.Methods ADSCs were isolated from the fatty tissue of New Zealand white rabbits and cultured in Iscove's modified dulbecco's medium. Three weeks after ligation of left anterior descending coronary artery of rabbits, either a graft of untreated ADSCs (UASCs, n=14), 5-azacytidine-pretreated ADSCs (AASCs, n=13), or phosphate buffer saline (n=13)were injected into the infarct region. Transmural scar size, cardiac function, and immunohistochemistry were performed 5 weeks after cell transplantation.Results ADSCs in culture demonstrated a fibroblast-like appearance and expressed CD29, CD44 and CD105. Five weeks after cell transplantation, transmural scar size in AASC-implanted hearts was smaller than that of the other hearts.Many ADSCs were differentiated into cardiomyocytes. The AASCs in the prescar appeared more myotube-like. AASCs in the middle of the scar and UASCs, in contrast, were poorly differentiated. Some ADSCs were differentiated into endothelial cells and participate in vessel-like structures formation. All the ADSC-implanted hearts had a greater capillary density in the infarct region than did the control hearts. Statistical analyses revealed significant improvement in left ventricular ejection fraction, myocardial performance index, end-diastolic pressure, and peak +dP/dt, in two groups of ADSC-implanted hearts relative to the control hearts. AASC-implanted hearts had higher peak -dP/dt values than did control, higher ejection fraction and peak +dP/dtvalues than did UASC-implanted hearts.Conclusions ADSCs transplanted into the myocardial scar tissue formed cardiac islands and vessel-like structures,induced angiogenesis and improved cardiac function. 5-Azacytidine pretreatment before

  10. Extracellular heme uptake and the challenges of bacterial cell membranes. (United States)

    Smith, Aaron D; Wilks, Angela


    In bacteria, the fine balance of maintaining adequate iron levels while preventing the deleterious effects of excess iron has led to the evolution of sophisticated cellular mechanisms to obtain, store, and regulate iron. Iron uptake provides a significant challenge given its limited bioavailability and need to be transported across the bacterial cell wall and membranes. Pathogenic bacteria have circumvented the iron-availability issue by utilizing the hosts' heme-containing proteins as a source of iron. Once internalized, iron is liberated from the porphyrin enzymatically for cellular processes within the bacterial cell. Heme, a lipophilic and toxic molecule, poses a significant challenge in terms of transport given its chemical reactivity. As such, pathogenic bacteria have evolved sophisticated membrane transporters to coordinate, sequester, and transport heme. Recent advances in the biochemical and structural characterization of the membrane-bound heme transport proteins are discussed in the context of ligand coordination, protein-protein interaction, and heme transfer.

  11. AMPK agonists ameliorate sodium and fluid transport and inflammation in cystic fibrosis airway epithelial cells. (United States)

    Myerburg, Michael M; King, J Darwin; Oyster, Nicholas M; Fitch, Adam C; Magill, Amy; Baty, Catherine J; Watkins, Simon C; Kolls, Jay K; Pilewski, Joseph M; Hallows, Kenneth R


    The metabolic sensor AMP-activated kinase (AMPK) inhibits both the cystic fibrosis (CF) transmembrane conductance regulator (CFTR) Cl(-) channel and epithelial Na(+) channel (ENaC), and may inhibit secretion of proinflammatory cytokines in epithelia. Here we have tested in primary polarized CF and non-CF human bronchial epithelial (HBE) cells the effects of AMPK activators, metformin and 5-aminoimidazole-4-carboxamide-1-beta-D-riboside (AICAR), on various parameters that contribute to CF lung disease: ENaC-dependent short-circuit currents (I(sc)), airway surface liquid (ASL) height, and proinflammatory cytokine secretion. AMPK activation after overnight treatment with either metformin (2-5 mM) or AICAR (1 mM) substantially inhibited ENaC-dependent I(sc) in both CF and non-CF airway cultures. Live-cell confocal images acquired 60 minutes after apical addition of Texas Red-dextran-containing fluid revealed significantly greater ASL heights after AICAR and metformin treatment relative to controls, suggesting that AMPK-dependent ENaC inhibition slows apical fluid reabsorption. Both metformin and AICAR decreased secretion of various proinflammatory cytokines, both with and without prior LPS stimulation. Finally, prolonged exposure to more physiologically relevant concentrations of metformin (0.03-1 mM) inhibited ENaC currents and decreased proinflammatory cytokine levels in CF HBE cells in a dose-dependent manner. These findings suggest that novel therapies to activate AMPK in the CF airway may be beneficial by blunting excessive sodium and ASL absorption and by reducing excessive airway inflammation, which are major contributors to CF lung disease.

  12. Intra-por tal transplantation of bone marrow stromal cells ameliorates liver ifbrosis in mice

    Institute of Scientific and Technical Information of China (English)

    Jin-Fang Zheng; Li-Jian Liang


    BACKGROUND: Bone marrow cells can differentiate into hepatocytes in a suitable microenvironment. This study was undertaken to investigate the effects of transplanted bone marrow stromal cells (BMSCs) on liver ifbrosis in mice. METHODS: BMSCs were harvested and cultured from male BALB/c mice, then transplanted into female syngenic BALB/c mice via the portal vein. After partial hepatectomy, diethylnitrosamine (DEN) was administered to induce liver ifbrosis. Controls received BMSCs and non-supplemented drinking water, the model group received DEN with their water, and the experimental group received BMSCs and DEN. Mice were killed after 3 months, and ALT, AST, hyaluronic acid (HA), and laminin (LN) in serum and hydroxyproline (Hyp) in the liver were assessed. Alpha-smooth muscle actin (α-SMA) in the liver was assessed by immunohistochemistry. Bone marrow-derived hepatocytes were identiifed by lfuorescent in situ hybridization (FISH) in liver sections. RESULTS: BMSCs were shown to differentiate into hepatocyte-like phenotypes after hepatocyte growth factor treatment in vitro. Serum ALT, AST, HA, and LN were markedly reduced by transplanted BMSCs. Liver Hyp content andα-SMA staining in mice receiving BMSCs were lower than in the model group, consistent with altered liver pathology. FISH analysis revealed the presence of donor-derived hepatocytes in the injured liver after cross-gender mouse BMSC transplantation. After three months, about 10%of cells in the injured liver were bone marrow-derived. CONCLUSION: BMSCs transplanted via the portal vein can convert into hepatocytes to repair liver injury induced by DEN, restore liver function, and reduce liver ifbrosis.

  13. Durable, Low-cost, Improved Fuel Cell Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Chris Roger; David Mountz; Wensheng He; Tao Zhang


    The development of low cost, durable membranes and membranes electrode assemblies (MEAs) that operate under reduced relative humidity (RH) conditions remain a critical challenge for the successful introduction of fuel cells into mass markets. It was the goal of the team lead by Arkema, Inc. to address these shortages. Thus, this project addresses the following technical barriers from the fuel cells section of the Hydrogen Fuel Cells and Infrastructure Technologies Program Multi-Year Research, Development and Demonstration Plan: (A) Durability (B) Cost Arkema’s approach consisted of using blends of polyvinylidenefluoride (PVDF) and proprietary sulfonated polyelectrolytes. In the traditional approach to polyelectrolytes for proton exchange membranes (PEM), all the required properties are “packaged” in one macromolecule. The properties of interest include proton conductivity, mechanical properties, durability, and water/gas transport. This is the case, for example, for perfluorosulfonic acid-containing (PFSA) membranes. However, the cost of these materials is high, largely due to the complexity and the number of steps involved in their synthesis. In addition, they suffer other shortcomings such as mediocre mechanical properties and insufficient durability for some applications. The strength and originality of Arkema’s approach lies in the decoupling of ion conductivity from the other requirements. Kynar® PVDF provides an exceptional combination of properties that make it ideally suited for a membrane matrix (Kynar® is a registered trademark of Arkema Inc.). It exhibits outstanding chemical resistance in highly oxidative and acidic environments. In work with a prior grant, a membrane known as M41 was developed by Arkema. M41 had many of the properties needed for a high performance PEM, but had a significant deficiency in conductivity at low RH. In the first phase of this work, the processing parameters of M41 were explored as a means to increase its proton

  14. Difference in Membrane Repair Capacity Between Cancer Cell Lines and a Normal Cell Line. (United States)

    Frandsen, Stine Krog; McNeil, Anna K; Novak, Ivana; McNeil, Paul L; Gehl, Julie


    Electroporation-based treatments and other therapies that permeabilize the plasma membrane have been shown to be more devastating to malignant cells than to normal cells. In this study, we asked if a difference in repair capacity could explain this observed difference in sensitivity. Membrane repair was investigated by disrupting the plasma membrane using laser followed by monitoring fluorescent dye entry over time in seven cancer cell lines, an immortalized cell line, and a normal primary cell line. The kinetics of repair in living cells can be directly recorded using this technique, providing a sensitive index of repair capacity. The normal primary cell line of all tested cell lines exhibited the slowest rate of dye entry after laser disruption and lowest level of dye uptake. Significantly, more rapid dye uptake and a higher total level of dye uptake occurred in six of the seven tested cancer cell lines (p normal cell line (98 % viable cells) was higher than in the three tested cancer cell lines (81-88 % viable cells). These data suggest more effective membrane repair in normal, primary cells and supplement previous explanations why electroporation-based therapies and other therapies permeabilizing the plasma membrane are more effective on malignant cells compared to normal cells in cancer treatment.

  15. Endothelial progenitor cell transplantation ameliorates elastin breakdown in a Kawasaki disease mouse model

    Institute of Scientific and Technical Information of China (English)

    CHEN Zhi; DU Zhong-dong; LIU Jun-feng; LU Dun-xiang; LI Li; GUAN Yun-qian; WAN Sui-gui


    Background Coronary artery damage from Kawasaki disease (KD) is closely linked to the dysfunction of endothelial progenitor cells (EPCs).The aim of the present study was to evaluate the therapeutic effect of EPCs transplantation in KD model.Methods Lactobacillus casei cell wall extract (LCWE)-induced KD model in C57BL/6 mice was established.The model mice were injected intravenously with bone marrow-derived in vitro expanded EPCs.Histological evaluation,number of circulating EPCs and the function of bone marrow EPCs were examined at day 56.Results Inflammation was found around the coronary artery of the model mice after 14 days,Elastin breakdown was observed after 56 days.CM-Dil labeled EPCs incorporated into vessel repairing foci was found.At day 56,the number of peripheral EPCs in the KD model group was lower than in EPCs transplanted and control group.The functional index of bone marrow EPCs from the KD model group decreased in proliferation,adhesion and migration.Increased number of circulating EPCs and improved function were observed on the EPCs transplanted group compared with model group.Conclusion Exogenously administered EPCs,which represent a novel strategy could prevent the dysfunction of EPCs,accelerate the repair of coronary artery endothelium lesion and decrease the occurrence of aneurysm.

  16. Etanercept-Synthesising Mesenchymal Stem Cells Efficiently Ameliorate Collagen-Induced Arthritis (United States)

    Park, Narae; Rim, Yeri Alice; Jung, Hyerin; Kim, Juryun; Yi, Hyoju; Kim, Youngkyun; Jang, Yeonsue; Jung, Seung Min; Lee, Jennifer; Kwok, Seung-Ki; Park, Sung-Hwan; Ju, Ji Hyeon


    Mesenchymal stem cells (MSCs) have multiple properties including anti-inflammatory and immunomodulatory effects in various disease models and clinical treatments. These beneficial effects, however, are sometimes inconsistent and unpredictable. For wider and proper application, scientists sought to improve MSC functions by engineering. We aimed to invent a novel method to produce synthetic biological drugs from engineered MSCs. We investigated the anti-arthritic effect of engineered MSCs in a collagen-induced arthritis (CIA) model. Biologics such as etanercept are the most successful drugs used in anti-cytokine therapy. Biologics are made of protein components, and thus can be theoretically produced from cells including MSCs. MSCs were transfected with recombinant minicircles encoding etanercept (trade name, Enbrel), which is a tumour necrosis factor α blocker currently used to treat rheumatoid arthritis. We confirmed minicircle expression in MSCs in vitro based on GFP. Etanercept production was verified from the conditioned media. We confirmed that self-reproduced etanercept was biologically active in vitro. Arthritis subsided more efficiently in CIA mice injected with mcTNFR2MSCs than in those injected with conventional MSCs or etanercept only. Although this novel strategy is in a very early conceptual stage, it seems to represent a potential alternative method for the delivery of biologics and engineering MSCs. PMID:28084468

  17. The Phytoalexin Resveratrol Ameliorates Ochratoxin A Toxicity in Human Embryonic Kidney (HEK293) Cells. (United States)

    Raghubeer, Shanel; Nagiah, Savania; Phulukdaree, Alisa; Chuturgoon, Anil


    Ochratoxin A (OTA) is a nephrotoxic mycotoxin produced by Aspergillus and Penicillium fungi. It contaminates human and animal food products, and chronic exposure is associated with renal fibrosis in humans (Balkan endemic nephropathy). Resveratrol, a phytoalexin, possesses anti-cancer and antioxidant properties. We investigated the mechanism of cellular oxidative stress induced by OTA, and the effect of resveratrol in human embryonic kidney (HEK293) cells over 24 and 48 h. Cells were exposed to OTA [IC50 = 1.5 μM (24 h) and 9.4 μM (48 h) determined using MTT assay] and 25 μM resveratrol. Glutathione was quantified by luminometry and gene expression of Nrf2 and OGG1 was determined by qPCR. Protein expression of Nrf2, LonP1, SIRT3, and pSIRT1 was assessed by Western blot, DNA damage (comet assay), and intracellular reactive oxygen species (flow cytometry). At 24 h, resveratrol increased mRNA expression of the DNA repair enzyme, OGG1 (P < 0.05), whereas OTA and OTA+resveratrol significantly decreased OGG1 expression (P < 0.05). OGG1 expression increased during 48-h exposure to resveratrol and OTA+resveratrol (P < 0.05). Comet tail lengths doubled in 48-h OTA-treated cells, whereas at both time periods, OTA+resveratrol yielded shorter comet tails (P < 0.0001). During 24- and 48-h exposure, OTA, resveratrol, and OTA+resveratrol significantly decreased mRNA expression of Nrf2 (P < 0.05). Luminometry analysis of GSH revealed an increase by OTA+resveratrol for 24 and 48 h (P < 0.05 and P < 0.001, respectively). Western blot analysis showed decreased Nrf2 protein expression during 24-h exposure, but increased Nrf2 expression during 48 h. LonP1 protein expression increased during 24-h exposure to OTA (P < 0.05) and OTA+resveratrol (P < 0.0011) and during 48-h exposure to resveratrol (P < 0.0005).

  18. Binding of white spot syndrome virus to Artemia sp. cell membranes. (United States)

    Feng, Shuying; Li, Guangda; Feng, Wenpo; Huang, Jie


    Using differential velocity centrifugation, cell membranes of Artemia sp. were prepared, and their binding to white spot syndrome virus (WSSV) was analyzed in vitro. The results indicated that WSSV can specifically bind to Artemia cell membranes, and that WSSV receptor very likely existed in this membrane, which suggested that Artemia sp. may be a reservoir of WSSV. This study investigated the specific WSSV binding site by performing competitive inhibition experiments using shrimp gill cell membranes to bind WSSV to Artemia cell membranes. The results showed that shrimp gill cell membranes had a distinct inhibition effect on the specific binding of Artemia cell membranes to WSSV. Thus, potentially similar WSSV receptors or binding sites existed on Artemia sp. cell membranes and shrimp gill cell membranes. Taken together, these findings may provide experimental basis for the development of an effective approach to controlling WSSV, and theoretical basis for the study of WSSV receptors.

  19. Lipid signalling dynamics at the β-cell plasma membrane. (United States)

    Wuttke, Anne


    Pancreatic β-cells are clustered in islets of Langerhans and secrete insulin in response to increased concentrations of circulating glucose. Insulin in turn acts on liver, muscle and fat tissue to store energy and normalize the blood glucose level. Inappropriate insulin release may lead to impaired glucose tolerance and diabetes. In addition to glucose, other nutrients, neural stimuli and hormonal stimuli control insulin secretion. Many of these signals are perceived at the plasma membrane, which is also the site where insulin granules undergo exocytosis. Therefore, it is not surprising that membrane lipids play an important role in the regulation of insulin secretion. β-cells release insulin in a pulsatile fashion. Signalling lipids integrate the nutrient and neurohormonal inputs to fine-tune, shape and co-ordinate the pulsatility. An important group of signalling lipids are phosphoinositides and their downstream messengers. This MiniReview will discuss new insights into lipid signalling dynamics in β-cells obtained from live-cell imaging experiments with fluorescent translocation biosensors. The plasma membrane concentration of several phosphoinositides and of their downstream messengers changes rapidly upon nutrient or neurohormonal stimulation. Glucose induces the most complex spatio-temporal patterns, typically involving oscillations of messenger concentrations, which sometimes are locally restricted. The tightly controlled levels of lipid messengers can mediate specific binding of downstream effectors to the plasma membrane, contributing to the appropriate regulation of insulin secretion.

  20. Characterisation of cell-wall polysaccharides from mandarin segment membranes

    NARCIS (Netherlands)

    Coll-Almela, L.; Saura-Lopez, D.; Laencina-Sanchez, J.; Schols, H.A.; Voragen, A.G.J.; Ros-García, J.M.


    In an attempt to develop a process of enzymatic peeling of mandarin segments suitable for use on an industrial scale, the cell wall fraction of the segment membrane of Satsuma mandarin fruits was extracted to obtain a chelating agent-soluble pectin fraction (ChSS), a dilute sodium hydroxide-soluble

  1. Hereditary red cell membrane disorders and laboratory diagnostic testing. (United States)

    King, M-J; Zanella, A


    This overview describes two groups of nonimmune hereditary hemolytic anemias caused by defects in membrane proteins located in distinct layers of the red cell membrane. Hereditary spherocytosis (HS), hereditary elliptocytosis (HE), and hereditary pyropoikilocytosis (HPP) represent disorders of the red cell cytoskeleton. Hereditary stomatocytoses represents disorders of cation permeability in the red cell membrane. The current laboratory screening tests for HS are the osmotic fragility test, acid glycerol lysis time test (AGLT), cryohemolysis test, and eosin-5'-maleimide (EMA)-binding test. For atypical HS, SDS-polyacrylamide gel electrophoresis of erythrocyte membrane proteins is carried out to confirm the diagnosis. The diagnosis of HE/HPP is based on abnormal red cell morphology and the detection of protein 4.1R deficiency or spectrin variants using gel electrophoresis. None of screening tests can detect all HS cases. Some testing centers (a survey of 25 laboratories) use a combination of tests (e.g., AGLT and EMA). No specific screening test for hereditary stomatocytoses is available. The preliminary diagnosis is based on presenting a compensated hemolytic anemia, macrocytosis, and a temperature or time dependent pseudohyperkalemia in some patients. Both the EMA-binding test and the osmotic fragility test may help in differential diagnosis of HS and hereditary stomatocytosis.

  2. Stimulated-healing of proton exchange membrane fuel cell catalyst

    NARCIS (Netherlands)

    Latsuzbaia, R.; Negro, E.; Koper, G.J.M.


    Platinum nanoparticles, which are used as catalysts in Proton Exchange Membrane Fuel Cells (PEMFC), tend to degrade after long-term operation. We discriminate the following mechanisms of the degradation: poisoning, migration and coalescence, dissolution, and electrochemical Ostwald ripening. There a

  3. Blockage of caspase-1 activation ameliorates bone marrow inflammation in mice after hematopoietic stem cell transplantation. (United States)

    Qiao, Jianlin; Wu, Jinyan; Li, Yuanyuan; Xia, Yuan; Chu, Peipei; Qi, Kunming; Yan, Zhiling; Yao, Haina; Liu, Yun; Xu, Kailin; Zeng, Lingyu


    Conditioning regimens before hematopoietic stem cell transplantation (HSCT), cause damage to bone marrow and inflammation. Whether inflammasomes are involved in bone marrow inflammation remains unclear. The study aims to evaluate the role of inflammasomes in bone marrow inflammation after HSCT. On days 7, 14, 21 and 28 after HSCT, mice were sacrificed for analysis of bone marrow inflammation, pro-inflammatory cytokines secretion, inflammasomes expression and caspase-1 activation. Bone marrow inflammation with neutrophils and macrophages infiltration was observed after HSCT. Secretion of IL-1β, IL-18, TNF-α and IL-6 were elevated, with increased caspase-1 activation and inflammasomes expression. Caspase-1 inhibitor administration after HSCT significantly reduced infiltration of neutrophils and macrophages into bone marrow and increased the numbers of megakaryocytes and platelets. In conclusion, inflammasomes activation is involved in bone marrow inflammation after HSCT and caspase-1 inhibition attenuates bone marrow inflammation and promoted hematopoietic reconstitution, suggesting targeting caspase-1 might be beneficial for improving HSCT outcomes.

  4. LPS nephropathy in mice is ameliorated by IL-2 independently of regulatory T cells activity.

    Directory of Open Access Journals (Sweden)

    Roberta Bertelli

    Full Text Available Immunosuppressive regulatory T cells (Tregs have been hypothesized to exert a protective role in animal models of spontaneous (Buffalo/Mna and/or drug induced (Adriamycin nephrotic syndrome. In this study, we thought to define whether Tregs can modify the outcome of LPS nephropathy utilizing IL-2 as inducer of tissue and circulating Tregs. LPS (12 mg/Kg was given as single shot in C57BL/6, p2rx7⁻/⁻ and Foxp3EGFP; free IL-2 (18.000 U or, in alternative, IL-2 coupled with JES6-1 mAb (IL-2/anti-IL-2 were injected before LPS. Peripheral and tissue Tregs/total CD4+ cell ratio, urinary parameters and renal histology were evaluated for 15 days. IL-2 administration to wild type mice had no effect on peripheral Tregs number, whereas a significant increase was induced by the IL-2/anti-IL-2 immunocomplex after 5 days. Spleen and lymph nodes Tregs were comparably increased. In p2rx7⁻/⁻ mice, IL-2/anti-IL-2 treatment resulted in increase of peripheral Tregs but did not modify the spleen and lymph nodes quota. LPS induced comparable and transient proteinuria in both wild type and p2rx7⁻/⁻ mice. Proteinuria was inhibited by co-infusion of human IL-2, with reduction at each phase of the disease (24 -48 and 72 hours whereas IL-2/anti-IL-2 produced weaker effects. In all mice (wild type and p2rx7⁻/⁻ and irrespective of treatment (IL-2, IL-2/anti-IL-2, LPS was associated with progressive signs of renal pathologic involvement resulting in glomerulosclerosis. In conclusion, IL-2 plays a transient protective effect on proteinuria induced by LPS independent of circulating or tissue Tregs but does not modify the outcome of renal degenerative renal lesions.

  5. How to Evaluate the Electric Noise in a Cell Membrane? (United States)

    Bier, M.


    There has been considerable public anxiety about possible health effects of electromagnetic radiation emitted by high voltage power lines. Power frequencies (60 Hz in the US, 50 Hz in many other countries) are sufficiently slow for the associated electric fields to distribute themselves across the highly resistive cell membranes. To assess the ambient power frequency fields, researchers have compared the voltage that these fields induce across cell membranes to the strength of the electric noise that the membranes generate themselves through Brownian motion. However, there has been disagreement among researchers on how to evaluate this equilibrium membrane electric noise. I will review the different approaches and present an {ITALIC ab initio} modeling of membrane electric fields. I will show that different manifestations of Brownian noise lead to an electric noise intensity that is many times larger than what conventional estimates have yielded. Next, the legitimacy of gauging a nonequilibrium external signal against internal equilibrium noise is questioned and a more meaningful criterion is proposed. Finally, an estimate will be derived of the nonequilibrium noise intensity due to the driven ion traffic through randomly opening and closing ion channels.

  6. Porous silicon membrane for micro fuel cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Torres, N.; Duch, M.; Santander, J.; Sabate, N.; Esquivel, J.P.; Tarancon, A.; Cane, C. [Consejo Superior de Investigaciones Cientificas, Barcelona (Spain). Centro National de Microelectronica


    Significant advances have been made in the field of microsystems to offer a wide variety of applications for these devices. However, improvements in powering these devices are needed in order to obtain an autonomous power supply without increasing either the size or the cost of the devices. A promising solution involves the use of micro fuel cells instead of standard batteries, due to their easy portability, high autonomy and fast and inexpensive fuel refilling. Research in this area is based mainly on hybrid approaches consisting of microfabricated silicon parts assembled together with a Nafion thin film as a proton exchange membrane. However, higher functionality of these devices would be achieved by integrating these power sources within the microsystems to be powered. The development of specific technologies based on standard fabrication processes has to be approached and the electrode and the electrolyte will have to be developed with fabrication techniques compatible with microelectronic technologies. Porous silicon has proved to be a promising material to replace traditional Nafion-based proton exchange membranes, as this material provides a porous matrix that can be functionalized for further proton exchange behaviour. This paper presented a study that used different anodization conditions and types of silicon material to characterize the anodization process in bulk silicon. The obtained results were used to fabricate porous membranes suitable for applicability as electrolyte-frame in proton exchange membrane micro fuel cells. It was concluded that further work is needed involving pore filling with a 5 per cent Nafion solution to provide the membrane with a proton exchange capability. Moreover, a proton conductivity characterization of the membrane will be carried out as well as a complete implementation of this membrane in a final device. 10 refs., 1 tab., 6 figs.

  7. Design & development of innovative proton exchange membrane fuel cells


    Carton, James


    The research undertaken in this thesis is concerned with the design and development of Proton Exchange Membrane (PEM) fuel cells and provides a body of information for continued PEM fuel cell development, which will ideally aid in the future commercialisation of these electrochemical devices. Through a combination of numerical analysis, computational fluid dynamic modelling and experimental work, effective flow plate designs, flow field configurations and materials are analysed and new inn...

  8. Chronic treatment with qiliqiangxin ameliorates aortic endothelial cell dysfunction in diabetic rats. (United States)

    Chen, Fei; Wu, Jia-Le; Fu, Guo-Sheng; Mou, Yun; Hu, Shen-Jiang


    Qiliqiangxin (QL), a traditional Chinese medicine, has been shown to be beneficial for chronic heart failure. However, whether QL can also improve endothelial cell function in diabetic rats remains unknown. Here, we investigated the effect of QL treatment on endothelial dysfunction by comparing the effect of QL to that of benazepril (Ben) in diabetic Sprague-Dawley rats for 8 weeks. Cardiac function was evaluated by echocardiography and catheterization. Assays for acetylcholine-induced, endothelium-dependent relaxation (EDR), sodium nitroprusside-induced endothelium-independent relaxation, serum nitric oxide (NO), and nitric oxide synthase (NOS) as well as histological analyses were performed to assess endothelial function. Diabetic rats showed significantly inhibited cardiac function and EDR, decreased expression of serum NO and phosphorylation at Ser(1177) on endothelial NOS (eNOS), and impaired endothelial integrity after 8 weeks. Chronic treatment for 8 weeks with either QL or Ben prevented the inhibition of cardiac function and EDR and the decrease in serum NO and eNOS phosphorylation caused by diabetes. Moreover, either QL or Ben suppressed inducible NOS (iNOS) protein levels as well as endothelial necrosis compared with the diabetic rats. Additionally, QL prevented the increase in angiotensin-converting enzyme 1 and angiotensin II receptor type 1 in diabetes. Thus, chronic administration of QL improved serum NO production, EDR, and endothelial integrity in diabetic rat aortas, possibly through balancing eNOS and iNOS activity and decreasing renin-angiotensin system expression.

  9. Preconditioning L6 Muscle Cells with Naringin Ameliorates Oxidative Stress and Increases Glucose Uptake.

    Directory of Open Access Journals (Sweden)

    R Dhanya

    Full Text Available Enhanced oxidative stress contributes to pathological changes in diabetes and its complications. Thus, strategies to reduce oxidative stress may alleviate these pathogenic processes. Herein, we have investigated Naringin mediated regulation of glutathione (GSH & intracellular free radical levels and modulation of glucose uptake under oxidative stress in L6 cell lines. The results from the study demonstrated a marked decrease in glutathione with a subsequent increase in free radical levels, which was reversed by the pretreatment of Naringin. We also observed that the increased malondialdehyde level, the marker of lipid peroxidation on induction of oxidative stress was retrieved on Naringin pretreatment. Addition of Naringin (100 μM showed approximately 40% reduction in protein glycation in vitro. Furthermore, we observed a twofold increase in uptake of fluorescent labeled glucose namely 2-(N-(7-Nitrobenz-2-oxa-1,3-diazol-4-ylAmino-2-Deoxyglucose (2-NBDG on Naringin treatment in differentiated L6 myoblast. The increased uptake of 2-NBDG by L6 myotubes may be attributed due to the enhanced translocation of GLUT4. Our results demonstrate that Naringin activate GSH synthesis through a novel antioxidant defense mechanism against excessive Reactive Oxygen Species (ROS production, contributing to the prevention of oxidative damage in addition to its effect on glycemic control.

  10. Preconditioning L6 Muscle Cells with Naringin Ameliorates Oxidative Stress and Increases Glucose Uptake. (United States)

    Dhanya, R; Arun, K B; Nisha, V M; Syama, H P; Nisha, P; Santhosh Kumar, T R; Jayamurthy, P


    Enhanced oxidative stress contributes to pathological changes in diabetes and its complications. Thus, strategies to reduce oxidative stress may alleviate these pathogenic processes. Herein, we have investigated Naringin mediated regulation of glutathione (GSH) & intracellular free radical levels and modulation of glucose uptake under oxidative stress in L6 cell lines. The results from the study demonstrated a marked decrease in glutathione with a subsequent increase in free radical levels, which was reversed by the pretreatment of Naringin. We also observed that the increased malondialdehyde level, the marker of lipid peroxidation on induction of oxidative stress was retrieved on Naringin pretreatment. Addition of Naringin (100 μM) showed approximately 40% reduction in protein glycation in vitro. Furthermore, we observed a twofold increase in uptake of fluorescent labeled glucose namely 2-(N-(7-Nitrobenz-2-oxa-1,3-diazol-4-yl)Amino)-2-Deoxyglucose (2-NBDG) on Naringin treatment in differentiated L6 myoblast. The increased uptake of 2-NBDG by L6 myotubes may be attributed due to the enhanced translocation of GLUT4. Our results demonstrate that Naringin activate GSH synthesis through a novel antioxidant defense mechanism against excessive Reactive Oxygen Species (ROS) production, contributing to the prevention of oxidative damage in addition to its effect on glycemic control.

  11. SIRT1 ameliorates age-related senescence of mesenchymal stem cells via modulating telomere shelterin

    Directory of Open Access Journals (Sweden)

    Huiqiang eChen


    Full Text Available Age-related mesenchymal stem cells (MSCs senescence, which impairs its tissue repair capacity in vivo and hence compromises the effects of MSCs-based therapy in clinical applications, is closely related to aging and aging-related diseases. Here, we demonstrated the effect of SIRT1, a NAD+-dependent deacetylase, on age-related MSCs senescence. Knockdown of SIRT1 in young MSCs induces cellular senescence and inhibits cellular proliferation ability whereas overexpression of SIRT1 in aged MSCs reversed the cellular senescence and regained its proliferation capacity, suggesting that SIRT1 could modulate age-induced MSCs senescence. Aging-related proteins, P16 and P21, might be involved in SIRT1-mediated anti-aging effect on MSCs. SIRT1 could positively modulate age-related DNA damage in MSCs. In addition, SIRT1 could induce telomerase reverse transcriptase (TERT expression and consequently enhance telomerase activity, however, no significant change was observed in telomere length. Moreover, SIRT1 could positively regulate TPP1, an important member of telomere shelterin, expression. Together, these results demonstrate that SIRT1 dampens age-related MSCs senescence, which was correlated with the up-regulation of TPP1 expression, telomerase activity and down-regulation of DNA damage.

  12. Time-dependent cell membrane damage under mechanical tension: Experiments and modeling


    Lu, Bo; Chang, Jay Han-Chieh; Tai, Yu-Chong


    This paper reports a study of cancer cell membrane damage during filtration caused by cell membrane tension. The membrane tension was induced when cells were captured on a microfabricated parylene-C filter during the constant-pressure-driven filtration. This work includes both experiments and modeling to explore the underlying biomechanics of the cell membrane damage. The developed model not only agrees with our time-dependent cell damage data, but also fits well with previous results on red ...

  13. Chemical Imaging of the Cell Membrane by NanoSIMS

    Energy Technology Data Exchange (ETDEWEB)

    Weber, P K; Kraft, M L; Frisz, J F; Carpenter, K J; Hutcheon, I D


    The existence of lipid microdomains and their role in cell membrane organization are currently topics of great interest and controversy. The cell membrane is composed of a lipid bilayer with embedded proteins that can flow along the two-dimensional surface defined by the membrane. Microdomains, known as lipid rafts, are believed to play a central role in organizing this fluid system, enabling the cell membrane to carry out essential cellular processes, including protein recruitment and signal transduction. Lipid rafts are also implicated in cell invasion by pathogens, as in the case of the HIV. Therefore, understanding the role of lipid rafts in cell membrane organization not only has broad scientific implications, but also has practical implications for medical therapies. One of the major limitations on lipid organization research has been the inability to directly analyze lipid composition without introducing artifacts and at the relevant length-scales of tens to hundreds of nanometers. Fluorescence microscopy is widely used due to its sensitivity and specificity to the labeled species, but only the labeled components can be observed, fluorophores can alter the behavior of the lipids they label, and the length scales relevant to imaging cell membrane domains are between that probed by fluorescence resonance energy transfer (FRET) imaging (<10 nm) and the diffraction limit of light. Topographical features can be imaged on this length scale by atomic force microscopy (AFM), but the chemical composition of the observed structures cannot be determined. Immuno-labeling can be used to study the distribution of membrane proteins at high resolution, but not lipid composition. We are using imaging mass spectrometry by secondary ion mass spectrometry (SIMS) in concert with other high resolution imaging methods to overcome these limitations. The experimental approach of this project is to combine molecule-specific stable isotope labeling with high-resolution SIMS using a

  14. Durability aspects of polymer electrolyte membrane fuel cells (United States)

    Sethuraman, Vijay Anand

    In order for the successful adoption of proton exchange membrane (PEM) fuel cell technology, it is imperative that durability is understood, quantified and improved. A number of mechanisms are known to contribute to PEMFC membrane electrode assembly (MEA) performance degradation. In this dissertation, we show, via experiments, some of the various processes that degrade the proton exchange membrane in a PEM fuel cell; and catalyst poisoning due to hydrogen sulfide (H2S) and siloxane. The effect of humidity on the chemical stability of two types of membranes, [i.e., perfluorosulfonic acid type (PFSA, NafionRTM 112) and biphenyl sulfone hydrocarbon type, (BPSH-35)] was studied by subjecting the MEAs to open-circuit voltage (OCV) decay and potential cycling tests at elevated temperatures and low inlet gas relative humidities. The BPSH-35 membranes showed poor chemical stability in ex situ Fenton tests compared to that of NafionRTM membranes. However, under fuel cell conditions, BPSH-35 MEAs outperformed NafionRTM 112 MEAs in both the OCV decay and potential cycling tests. For both membranes, (i) at a given temperature, membrane degradation was more pronounced at lower humidities and (ii) at a given relative humidity operation, increasing the cell temperature accelerated membrane degradation. Mechanical stability of these two types of membranes was also studied using relative humidity (RH) cycling. Hydrogen peroxide (H2O2) formation rates in a proton exchange membrane (PEM) fuel cell were estimated by studying the oxygen reduction reaction (ORR) on a rotating ring disc electrode (RRDE). Fuel cell conditions were replicated by depositing a film of Pt/Vulcan XC-72 catalyst onto the disk and by varying the temperature, dissolved O2 concentration and the acidity levels in HClO4. The HClO4 acidity was correlated to ionomer water activity and hence fuel cell humidity. H 2O2 formation rates showed a linear dependence on oxygen concentration and square dependence on water

  15. Membrane protein synthesis in cell-free systems: from bio-mimetic systems to bio-membranes. (United States)

    Sachse, Rita; Dondapati, Srujan K; Fenz, Susanne F; Schmidt, Thomas; Kubick, Stefan


    When taking up the gauntlet of studying membrane protein functionality, scientists are provided with a plethora of advantages, which can be exploited for the synthesis of these difficult-to-express proteins by utilizing cell-free protein synthesis systems. Due to their hydrophobicity, membrane proteins have exceptional demands regarding their environment to ensure correct functionality. Thus, the challenge is to find the appropriate hydrophobic support that facilitates proper membrane protein folding. So far, various modes of membrane protein synthesis have been presented. Here, we summarize current state-of-the-art methodologies of membrane protein synthesis in biomimetic-supported systems. The correct folding and functionality of membrane proteins depend in many cases on their integration into a lipid bilayer and subsequent posttranslational modification. We highlight cell-free systems utilizing the advantages of biological membranes.

  16. Defining the optimal window for cranial transplantation of human induced pluripotent stem cell-derived cells to ameliorate radiation-induced cognitive impairment. (United States)

    Acharya, Munjal M; Martirosian, Vahan; Christie, Lori-Ann; Riparip, Lara; Strnadel, Jan; Parihar, Vipan K; Limoli, Charles L


    Past preclinical studies have demonstrated the capability of using human stem cell transplantation in the irradiated brain to ameliorate radiation-induced cognitive dysfunction. Intrahippocampal transplantation of human embryonic stem cells and human neural stem cells (hNSCs) was found to functionally restore cognition in rats 1 and 4 months after cranial irradiation. To optimize the potential therapeutic benefits of human stem cell transplantation, we have further defined optimal transplantation windows for maximizing cognitive benefits after irradiation and used induced pluripotent stem cell-derived hNSCs (iPSC-hNSCs) that may eventually help minimize graft rejection in the host brain. For these studies, animals given an acute head-only dose of 10 Gy were grafted with iPSC-hNSCs at 2 days, 2 weeks, or 4 weeks following irradiation. Animals receiving stem cell grafts showed improved hippocampal spatial memory and contextual fear-conditioning performance compared with irradiated sham-surgery controls when analyzed 1 month after transplantation surgery. Importantly, superior performance was evident when stem cell grafting was delayed by 4 weeks following irradiation compared with animals grafted at earlier times. Analysis of the 4-week cohort showed that the surviving grafted cells migrated throughout the CA1 and CA3 subfields of the host hippocampus and differentiated into neuronal (∼39%) and astroglial (∼14%) subtypes. Furthermore, radiation-induced inflammation was significantly attenuated across multiple hippocampal subfields in animals receiving iPSC-hNSCs at 4 weeks after irradiation. These studies expand our prior findings to demonstrate that protracted stem cell grafting provides improved cognitive benefits following irradiation that are associated with reduced neuroinflammation.

  17. Do adipose tissue-derived mesenchymal stem cells ameliorate Parkinson's disease in rat model? (United States)

    Ahmed, Hh; Salem, Am; Atta, Hm; Ghazy, Ma; Aglan, Ha


    Parkinson's disease (PD) is a common neurodegenerative disorder in middle-aged and elderly people. This study aimed to elucidate the role of mesenchymal stem cells (MSCs) in management of PD in ovariectomized rat model. MSCs were excised from adipose tissue of both the omentum and the inguinal fat pad of male rats, grown, and propagated in culture; then characterized morphologically; and by the detection of surface markers gene expression. In this study, 40 ovariectomized animals were classified into 5 groups; group 1 was ovariectomized control, groups 2 to 5 were subcutaneously administered with rotenone for 14 days after 1 month of ovariectomy for induction of PD. Group 2 was left untreated; groups 3, 4, and 5 were treated with Sinemet(®), Cerebrolysin(®), and a single dose of adipose tissue-derived MSCs (ADMSCs), respectively. Y-chromosome gene (sry) was assessed by polymerase chain reaction (PCR) in brain tissue of the female rats. Serum transforming growth factor β (TGF-β), monocyte chemoattractant protein 1 (MCP-1), and brain-derived neurotrophic factor (BDNF) levels were assayed using enzyme-linked immunosorbent assay technique. Brain dopamine level was assayed fluorometrically, while brain tyrosine hydroxylase (TH) gene expression was detected by semiquantitative real-time PCR. The PD group showed significant increase in serum TGF-β and MCP-1 levels associated with significant decrease in serum BDNF, brain dopamine, and brain TH gene expression levels. In contrast, all treatments produce significant decrease in serum TGF-β and MCP-1 levels in concomitant with significant increase in serum BDNF, brain dopamine, and brain TH gene expression levels. In conclusion, the observed improvements in the studied biomarkers due to ADMSCs infusion might be attributed to their immunomodulatory, anti-inflammatory, and neurotrophic effects.

  18. Cinnamon ameliorates experimental allergic encephalomyelitis in mice via regulatory T cells: implications for multiple sclerosis therapy. (United States)

    Mondal, Susanta; Pahan, Kalipada


    Upregulation and/or maintenance of regulatory T cells (Tregs) during an autoimmune insult may have therapeutic efficacy in autoimmune diseases. Although several immunomodulatory drugs and molecules are available, most present significant side effects over long-term use. Cinnamon is a commonly used natural spice and flavoring material used for centuries throughout the world. Here, we have explored a novel use of cinnamon powder in protecting Tregs and treating the disease process of experimental allergic encephalomyelitis (EAE), an animal model of MS. Oral feeding of cinnamon (Cinnamonum verum) powder suppresses clinical symptoms of relapsing-remitting EAE in female PLP-TCR transgenic mice and adoptive transfer mouse model. Cinnamon also inhibited clinical symptoms of chronic EAE in male C57/BL6 mice. Dose-dependent study shows that cinnamon powder at a dose of 50 mg/kg body wt/d or higher significantly suppresses clinical symptoms of EAE in mice. Accordingly, oral administration of cinnamon also inhibited perivascular cuffing, maintained the integrity of blood-brain barrier and blood-spinal cord barrier, suppressed inflammation, normalized the expression of myelin genes, and blocked demyelination in the central nervous system of EAE mice. Interestingly, cinnamon treatment upregulated Tregs via reduction of nitric oxide production. Furthermore, we demonstrate that blocking of Tregs by neutralizing antibodies against CD25 abrogates cinnamon-mediated protection of EAE. Taken together, our results suggest that oral administration of cinnamon powder may be beneficial in MS patients and that no other existing anti-MS therapies could be so economical and trouble-free as this approach.

  19. Cannabinoid receptor-2 (CB2) agonist ameliorates colitis in IL-10{sup −/−} mice by attenuating the activation of T cells and promoting their apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Udai P.; Singh, Narendra P. [Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC 29208 (United States); Singh, Balwan [National Primate Research Center, Emory University, Atlanta GA 30329 (United States); Price, Robert L. [Department of Cell and Developmental Biology, University of South Carolina, Columbia, SC 29208 (United States); Nagarkatti, Mitzi [Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC 29208 (United States); Nagarkatti, Prakash S., E-mail: [Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC 29208 (United States)


    Inflammatory bowel disease (IBD) is a chronic intestinal inflammation caused by hyperactivated effector immune cells that produce pro-inflammatory cytokines. Recent studies have shown that the cannabinoid system may play a critical role in mediating protection against intestinal inflammation. However, the effect of cannabinoid receptor induction after chronic colitis progression has not been investigated. Here, we investigate the effect of cannabinoid receptor-2 (CB2) agonist, JWH-133, after chronic colitis in IL-10{sup −/−} mice. JWH-133 effectively attenuated the overall clinical score, and reversed colitis-associated pathogenesis and decrease in body weight in IL-10{sup −/−} mice. After JWH-133 treatment, the percentage of CD4{sup +} T cells, neutrophils, mast cells, natural killer (NK1.1) cells, and activated T cells declined in the intestinal lamina propria (LP) and mesenteric lymph nodes (MLN) of mice with chronic colitis. JWH-133 was also effective in ameliorating dextran sodium sulfate (DSS)-induced colitis. In this model, JWH-133 reduced the number and percentage of macrophages and IFN-γ expressing cells that were induced during colitis progression. Treatment with aminoalkylindole 6-iodo-pravadoline (AM630), a CB2 receptor antagonist, reversed the colitis protection provided by JWH-133 treatment. Also, activated T cells were found to undergo apoptosis following JWH-133 treatment both in-vivo and in-vitro. These findings suggest that JWH-133 mediates its effect through CB2 receptors, and ameliorates chronic colitis by inducing apoptosis in activated T cells, reducing the numbers of activated T cells, and suppressing induction of mast cells, NK cells, and neutrophils at sites of inflammation in the LP. These results support the idea that the CB2 receptor agonists may serve as a therapeutic modality against IBD. -- Highlights: ► JWH-133, a cannnabinoid receptor-2 agonist ameliorates experimental colitis. ► JWH-133 suppressed inflammation and


    Directory of Open Access Journals (Sweden)

    Ya. A. Udalova


    Full Text Available Affine chromatography was used to isolate Lec antibodies from the sera of a healthy female donor with the high titers of these anti- bodies, which were labeled with biotin. The study enrolled 51 patients with primary breast cancer (BC. Antigen expression was found by immunohistochemistry and flow cytometry. With these two techniques being used, the detection rate of Lec expression in BC cells was 65% (33/51; the antigen was most frequently found by flow cytometry as compared with immunohistochemistry: 72 and 58% of cases, respectively.

  1. A polybenzimidazole/ionic-liquid-graphite-oxide composite membrane for high temperature polymer electrolyte membrane fuel cells (United States)

    Xu, Chenxi; Liu, Xiaoteng; Cheng, Jigui; Scott, Keith


    Graphite oxide is successfully functionalised by 3-aminopropyltriethoxysilane ionic liquid and used as a filler material in a polybenzimidazole (PBI) membrane for high temperature proton exchange membrane fuel cells. The ionic-liquid-graphite-oxide/polybenzimidazole (ILGO/PBI) composite membrane exhibits an appropriate level of proton conductivity when imbibed with phosphoric acid at low phosphoric acid loading, which promotes its use in fuel cells by avoiding acid leakage and materials corrosion. The ionic conductivities of the ILGO/PBI membranes at 175 °C are 0.035 S cm-1 and 0.025 S cm-1 at per repeat units of 3.5 and 2.0, respectively. The fuel cell performance of ILGO/PBI membranes exhibits a maximum power density of 320 mW cm-2 at 175 °C, which is higher than that of a pristine PBI membrane.

  2. 3-bromopyruvate ameliorate autoimmune arthritis by modulating Th17/Treg cell differentiation and suppressing dendritic cell activation. (United States)

    Okano, Takaichi; Saegusa, Jun; Nishimura, Keisuke; Takahashi, Soshi; Sendo, Sho; Ueda, Yo; Morinobu, Akio


    Recent studies have shown that cellular metabolism plays an important role in regulating immune cell functions. In immune cell differentiation, both interleukin-17-producing T (Th17) cells and dendritic cells (DCs) exhibit increased glycolysis through the upregulation of glycolytic enzymes, such as hexokinase-2 (HK2). Blocking glycolysis with 2-deoxyglucose was recently shown to inhibit Th17 cell differentiation while promoting regulatory T (Treg) cell generation. However, 2-DG inhibits all isoforms of HK. Thus, it is unclear which isoform has a critical role in Th17 cell differentiation and in rheumatoid arthritis (RA) pathogenesis. Here we demonstrated that 3-bromopyruvate (BrPA), a specific HK2 inhibitor, significantly decreased the arthritis scores and the histological scores in SKG mice, with a significant increase in Treg cells, decrease in Th17 cells, and decrease in activated DCs in the spleen. In vitro, BrPA facilitated the differentiation of Treg cells, suppressed Th17 cells, and inhibited the activation of DCs. These results suggested that BrPA may be a therapeutic target of murine arthritis. Although the role of IL-17 is not clarified in the treatment of RA, targeting cell metabolism to alter the immune cell functions might lead to a new therapeutic strategy for RA.

  3. Rapamycin ameliorates experimental autoimmune uveoretinitis by inhibiting Th1/Th2/Th17 cells and upregulating CD4+CD25+ Foxp3 regulatory T cells

    Institute of Scientific and Technical Information of China (English)

    Li-Fei; Yuan; Guang-Da; Li; Xin-Jun; Ren; Hong; Nian; Xiao-Rong; Li; Xiao-Min; Zhang


    · AIM: To determine the effects of rapamycin on experimental autoimmune uveoretinitis(EAU) and investigate of role of rapamycin on T cell subsets in the disease.·METHODS: EAU was induced in rats using peptides1169 to 1191 of the interphotoreceptor binding protein(IRBP). Rapamycin(0.2 mg/kg/d) was administrated by intraperitoneal injection for a consecutive 7d after immunization. Th1/Th2/Th17 cytokines, TGF-β1, and IL-6produced by lymphocyteswere measured by ELISA, while Th17 cells and CD4 +CD25 + regulatory T cells(Tregs)from rat spleen were detected by flow cytometry.·RESULTS: Intraperitoneal treatment immediately after immunization dramatically ameliorated the clinical course of EAU. Clinical responses were associated with reduced retinal inflammatory cell infiltration and tissue destruction. Rapamycin induced suppression of Th1/Th2/Th17 cytokines, including IFN-γ, IL-2, IL-17, IL-4, and IL-10 release from T lymphocytes of EAU rats, in vitro.Rapamycin also significantly increased TGF-β1production but had no effect on IL-6 productionof T lymphocytes from EAU rats in vitro. Furthermore,rapamycin decreased the ratio of Th17 cells/CD4 +T cells and upregulated Tregs in EAU, as detected by flow cytometry.·CONCLUSION: Rapamycin effectively interferes with T cell mediated autoimmune uveitis by inhibiting antigen-specific T cell functions and enhancing Tregs in EAU.Rapamycin is a promising new alternative as an adjunct corticosteroid-sparing agent for treating uveitis.

  4. Mass Spectrometry of Polymer Electrolyte Membrane Fuel Cells. (United States)

    Johánek, Viktor; Ostroverkh, Anna; Fiala, Roman; Rednyk, Andrii; Matolín, Vladimír


    The chemical analysis of processes inside fuel cells under operating conditions in either direct or inverted (electrolysis) mode and their correlation with potentiostatic measurements is a crucial part of understanding fuel cell electrochemistry. We present a relatively simple yet powerful experimental setup for online monitoring of the fuel cell exhaust (of either cathode or anode side) downstream by mass spectrometry. The influence of a variety of parameters (composition of the catalyst, fuel type or its concentration, cell temperature, level of humidification, mass flow rate, power load, cell potential, etc.) on the fuel cell operation can be easily investigated separately or in a combined fashion. We demonstrate the application of this technique on a few examples of low-temperature (70°C herein) polymer electrolyte membrane fuel cells (both alcohol- and hydrogen-fed) subjected to a wide range of conditions.

  5. Mass Spectrometry of Polymer Electrolyte Membrane Fuel Cells (United States)

    Ostroverkh, Anna; Fiala, Roman; Rednyk, Andrii; Matolín, Vladimír


    The chemical analysis of processes inside fuel cells under operating conditions in either direct or inverted (electrolysis) mode and their correlation with potentiostatic measurements is a crucial part of understanding fuel cell electrochemistry. We present a relatively simple yet powerful experimental setup for online monitoring of the fuel cell exhaust (of either cathode or anode side) downstream by mass spectrometry. The influence of a variety of parameters (composition of the catalyst, fuel type or its concentration, cell temperature, level of humidification, mass flow rate, power load, cell potential, etc.) on the fuel cell operation can be easily investigated separately or in a combined fashion. We demonstrate the application of this technique on a few examples of low-temperature (70°C herein) polymer electrolyte membrane fuel cells (both alcohol- and hydrogen-fed) subjected to a wide range of conditions. PMID:28042492

  6. Mass Spectrometry of Polymer Electrolyte Membrane Fuel Cells

    Directory of Open Access Journals (Sweden)

    Viktor Johánek


    Full Text Available The chemical analysis of processes inside fuel cells under operating conditions in either direct or inverted (electrolysis mode and their correlation with potentiostatic measurements is a crucial part of understanding fuel cell electrochemistry. We present a relatively simple yet powerful experimental setup for online monitoring of the fuel cell exhaust (of either cathode or anode side downstream by mass spectrometry. The influence of a variety of parameters (composition of the catalyst, fuel type or its concentration, cell temperature, level of humidification, mass flow rate, power load, cell potential, etc. on the fuel cell operation can be easily investigated separately or in a combined fashion. We demonstrate the application of this technique on a few examples of low-temperature (70°C herein polymer electrolyte membrane fuel cells (both alcohol- and hydrogen-fed subjected to a wide range of conditions.

  7. Analysis of Water Management in Proton Exchange Membrane Fuel Cells

    Institute of Scientific and Technical Information of China (English)


    A two-dimensional, steady-state, isothermal water-management model for a complete proton exchange membrane fuel cell (PEMFC) was developed. The model includes the transport in the diffusion layer and the proton exchange membrane (PEM) with a pseudo-homogeneous model for the cathode catalyst layer. The predicted fuel cell performance with variable cathode porosities compares well with experimental results. The model is then used to investigate the effects of some structural parameters, such as the rib size, the interdigitated flow field, and various operating conditions including the gas flow rate, the cell temperature and pressure, humidification, and the relative humidity at the inlet. Water management is best achieved by tuning the anode operating conditions.

  8. Gold Nanoparticles-Enhanced Proton Exchange Membrane (PEM) Fuel Cell (United States)

    Li, Hongfei; Pan, Cheng; Liu, Ping; Zhu, Yimei; Adzic, Radoslav; Rafailovich, Miriam

    Proton exchange membrane fuel cells have drawn great attention and been taken as a promising alternated energy source. One of the reasons hamper the wider application of PEM fuel cell is the catalytic poison effect from the impurity of the gas flow. Haruta has predicted that gold nanoparticles that are platelet shaped and have direct contact with the metal oxide substrate to be the perfect catalysts of the CO oxidization, yet the synthesis method is difficult to apply in the Fuel Cell. In our approach, thiol-functionalized gold nanoparticles were synthesized through two-phase method developed by Brust et al. We deposit these Au particles with stepped surface directly onto the Nafion membrane in the PEM fuel cell by Langmuir-Blodgett method, resulting in over 50% enhancement of the efficiency of the fuel cell. DFT calculations were conducted to understand the theory of this kind of enhancement. The results indicated that only when the particles were in direct surface contact with the membrane, where AuNPs attached at the end of the Nafion side chains, it could reduce the energy barrier for the CO oxidation that could happen at T<300K.

  9. Inorganic-organic Composite Membranes with Novel Microstructure for High Temperature Proton Exchange Membrane Fuel Cells

    Institute of Scientific and Technical Information of China (English)

    Zhigang Ma; Jiandong Gao; Jing Guo; Zhenghua Deng; Jishuan Suo


    Nowadays,more and more fossil fuels are consumed and air pollurion has become a threat to the survival of people.Therefore,we need some other power sources to provide energy without damaging the environment.Proton exchange membrane fuel cells(PEMFCs)have received wide attention due to their advantages Such as high energy density and zero emission[1].Particularly, direct methanol fuel cells (DMFCs)were considered as the most suitable energy sources for electric vehicles(EVs)and portable electronics.

  10. Inferring maps of forces inside cell membrane microdomains

    CERN Document Server

    Masson, J -B; Tuerkcan, S; Voisinne, G; Popoff, M R; Vergassola, M; Alexandrou, A


    Mapping of the forces on biomolecules in cell membranes has spurred the development of effective labels, e.g. organic fluorophores and nanoparticles, to track trajectories of single biomolecules. Standard methods use particular statistics, namely the mean square displacement, to analyze the underlying dynamics. Here, we introduce general inference methods to fully exploit information in the experimental trajectories, providing sharp estimates of the forces and the diffusion coefficients in membrane microdomains. Rapid and reliable convergence of the inference scheme is demonstrated on trajectories generated numerically. The method is then applied to infer forces and potentials acting on the receptor of the $\\epsilon$-toxin labeled by lanthanide-ion nanoparticles. Our scheme is applicable to any labeled biomolecule and results show show its general relevance for membrane compartmentation.

  11. Development of structured polymer electrolyte membranes for fuel cell applications (United States)

    Gasa, Jeffrey

    The objective of this research was to explore structure-property relationships to develop the understanding needed for introduction of superior PEM materials. Polymer electrolyte membranes based on sulfonated poly(ether ketone ketone) (SPEKK) were fabricated using N-methyl pyrrolidone as casting solvent. The membranes were characterized in terms of properties that were relevant to fuel cell applications, such as proton conductivity, methanol permeability, and swelling properties, among others. It was found in this study that the proton conductivity of neat SPEKK membranes could reach the conductivity of commercial membranes such as NafionRTM. However, when the conductivity of SPEKK was comparable to NafionRTM, the swelling of SPEKK in water was quite excessive. The swelling problem was remedied by modifying the microstructure of SPEKK using different techniques. One of them involved blending of lightly sulfonated PEKK with highly acidic particles (sulfonated crosslinked polystyrene-SXLPS). Low sulfonation level of SPEKK was used to reduce the swelling of the membrane in water and the role of the highly acidic particles was to enhance the proton conductivity of the membrane. Because of the residual crystallinity in SPEKK with low sulfonation levels (IEC sulfone)) to act as mechanical reinforcement. It was found that miscibility behavior of the blends had a significant impact on the transport and swelling properties of these blends, which could be explained by the blend microstructure. The miscibility behavior was found to be strongly dependent on the sulfonation level of SPEKK. The conductivities of the blends were enhanced by as much as two orders of magnitude when the morphology was modified by electric field. The last approach was ionic crosslinking of the sulfonate groups in SPEKK using divalent cations, specifically barium ions. The crosslinking treatment has greatly improved the thermal stability of the membranes in both dry and wet conditions.

  12. Deoxygenation affects tyrosine phosphoproteome of red cell membrane from patients with sickle cell disease. (United States)

    Siciliano, Angela; Turrini, Franco; Bertoldi, Mariarita; Matte, Alessandro; Pantaleo, Antonella; Olivieri, Oliviero; De Franceschi, Lucia


    Sickle cell disease (SCD) is a worldwide distributed hereditary red cell disorder related to the production of a defective form of hemoglobin, hemoglobin S (HbS). One of the hallmarks of SCD is the presence of dense, dehydrate highly adhesive sickle red blood cells (RBCs) that result from persistent membrane damage associated with HbS polymerization, abnormal activation of membrane cation transports and generation of distorted and rigid red cells with membrane perturbation and cytoskeleton dysfunction. Although modulation of phosphorylation state of the proteins from membrane and cytoskeleton networks has been proposed to participate in red cell homeostasis, much still remains to be investigated in normal and diseased red cells. Here, we report that tyrosine (Tyr-) phosphoproteome of sickle red cells was different from normal controls and was affected by deoxygenation. We found proteins, p55 and band 4.1, from the junctional complex, differently Tyr-phosphorylated in SCD RBCs compared to normal RBCs under normoxia and modulated by deoxygenation, while band 4.2 was similarly Tyr-phosphorylated in both conditions. In SCD RBCs we identified the phosphopeptides for protein 4.1R located in the protein FERM domain (Tyr-13) and for alpha-spectrin located near or in a linker region (Tyr-422 and Tyr-1498) involving protein areas crucial for their functions in the context of red cell membrane properties, suggesting that Tyr-phosphorylation may be part of the events involved in maintaining membrane mechanical stability in SCD red cells.

  13. Creating transient cell membrane pores using a standard inkjet printer. (United States)

    Owczarczak, Alexander B; Shuford, Stephen O; Wood, Scott T; Deitch, Sandra; Dean, Delphine


    Bioprinting has a wide range of applications and significance, including tissue engineering, direct cell application therapies, and biosensor microfabrication. Recently, thermal inkjet printing has also been used for gene transfection. The thermal inkjet printing process was shown to temporarily disrupt the cell membranes without affecting cell viability. The transient pores in the membrane can be used to introduce molecules, which would otherwise be too large to pass through the membrane, into the cell cytoplasm. The application being demonstrated here is the use of thermal inkjet printing for the incorporation of fluorescently labeled g-actin monomers into cells. The advantage of using thermal ink-jet printing to inject molecules into cells is that the technique is relatively benign to cells. Cell viability after printing has been shown to be similar to standard cell plating methods. In addition, inkjet printing can process thousands of cells in minutes, which is much faster than manual microinjection. The pores created by printing have been shown to close within about two hours. However, there is a limit to the size of the pore created (~10 nm) with this printing technique, which limits the technique to injecting cells with small proteins and/or particles. A standard HP DeskJet 500 printer was modified to allow for cell printing. The cover of the printer was removed and the paper feed mechanism was bypassed using a mechanical lever. A stage was created to allow for placement of microscope slides and coverslips directly under the print head. Ink cartridges were opened, the ink was removed and they were cleaned prior to use with cells. The printing pattern was created using standard drawing software, which then controlled the printer through a simple print command. 3T3 fibroblasts were grown to confluence, trypsinized, and then resuspended into phosphate buffered saline with soluble fluorescently labeled g-actin monomers. The cell suspension was pipetted into the

  14. Nature of the elements transporting long-chain fatty acids through the red cell membrane

    DEFF Research Database (Denmark)

    Bojesen, Inge Norby; Bojesen, Eigil


    Docosahexaenoic acid, linoleic acid, red cell membrane, transporting elements, transport kinetics, fatty acid transport......Docosahexaenoic acid, linoleic acid, red cell membrane, transporting elements, transport kinetics, fatty acid transport...

  15. Modeling and Simulation for Fuel Cell Polymer Electrolyte Membrane

    Directory of Open Access Journals (Sweden)

    Takahiro Hayashi


    Full Text Available We have established methods to evaluate key properties that are needed to commercialize polyelectrolyte membranes for fuel cell electric vehicles such as water diffusion, gas permeability, and mechanical strength. These methods are based on coarse-graining models. For calculating water diffusion and gas permeability through the membranes, the dissipative particle dynamics–Monte Carlo approach was applied, while mechanical strength of the hydrated membrane was simulated by coarse-grained molecular dynamics. As a result of our systematic search and analysis, we can now grasp the direction necessary to improve water diffusion, gas permeability, and mechanical strength. For water diffusion, a map that reveals the relationship between many kinds of molecular structures and diffusion constants was obtained, in which the direction to enhance the diffusivity by improving membrane structure can be clearly seen. In order to achieve high mechanical strength, the molecular structure should be such that the hydrated membrane contains narrow water channels, but these might decrease the proton conductivity. Therefore, an optimal design of the polymer structure is needed, and the developed models reviewed here make it possible to optimize these molecular structures.

  16. Modified SPEEK membranes for direct ethanol fuel cell

    KAUST Repository

    Maab, Husnul


    Membranes with low ethanol crossover were prepared aiming their application for direct ethanol fuel cell (DEFC). They were based on (1) sulfonated poly(ether ether ketone) (SPEEK) coated with carbon molecular sieves (CMS) and (2) on SPEEK/PI homogeneous blends. The membranes were characterized concerning their water and ethanol solution uptake, water and ethanol permeability in pervaporation experiments and their performance in DEFC tests. The ethanol permeabilities for the CMS-coated (180 nm and 400 nm thick layers) SPEEK were 8.5 and 3.1 x 10(-10) kg m s(-1) m(-2) and for the homogeneous SPEEK/PI blends membranes with 10, 20 and 30 wt.% of PI were 4.4, 1.0 and 0.4 x 10(-10) kg m s(-1) m(-2) respectively, which is 2- to 50-fold lower than that for plain SPEEK (19 x 10(-10) kg m s(-1) m(-2)). Particularly the SPEEK/PI membranes had substantially better performance than Nafion 117 membranes in DEFC tests at 60 degrees C and 90 degrees C. (C) 2010 Elsevier B.V. All rights reserved.

  17. Modified SPEEK membranes for direct ethanol fuel cell (United States)

    Maab, Husnul; Nunes, Suzana Pereira

    Membranes with low ethanol crossover were prepared aiming their application for direct ethanol fuel cell (DEFC). They were based on (1) sulfonated poly(ether ether ketone) (SPEEK) coated with carbon molecular sieves (CMS) and (2) on SPEEK/PI homogeneous blends. The membranes were characterized concerning their water and ethanol solution uptake, water and ethanol permeability in pervaporation experiments and their performance in DEFC tests. The ethanol permeabilities for the CMS-coated (180 nm and 400 nm thick layers) SPEEK were 8.5 and 3.1 × 10 -10 kg m s -1 m -2 and for the homogeneous SPEEK/PI blends membranes with 10, 20 and 30 wt.% of PI were 4.4, 1.0 and 0.4 × 10 -10 kg m s -1 m -2 respectively, which is 2- to 50-fold lower than that for plain SPEEK (19 × 10 -10 kg m s -1 m -2). Particularly the SPEEK/PI membranes had substantially better performance than Nafion 117 ® membranes in DEFC tests at 60 °C and 90 °C.

  18. Linoleic acid derivative DCP-LA ameliorates stress-induced depression-related behavior by promoting cell surface 5-HT1A receptor translocation, stimulating serotonin release, and inactivating GSK-3β. (United States)

    Kanno, Takeshi; Tanaka, Akito; Nishizaki, Tomoyuki


    Impairment of serotonergic neurotransmission is the major factor responsible for depression and glycogen synthase kinase 3β (GSK-3β) participates in serotonergic transmission-mediated signaling networks relevant to mental illnesses. In the forced-swim test to assess depression-like behavior, the immobility time for mice with restraint stress was significantly longer than that for nonstressed control mice. Postsynaptic cell surface localization of 5-HT1A receptor, but not 5-HT2A receptor, in the hypothalamus for mice with restraint stress was significantly reduced as compared with that for control mice, which highly correlated to prolonged immobility time, i.e., depression-like behavior. The linoleic acid derivative 8-[2-(2-pentyl-cyclopropylmethyl)-cyclopropyl]-octanoic acid (DCP-LA) restored restraint stress-induced reduction of cell surface 5-HT1A receptor and improved depression-like behavior in mice with restraint stress. Moreover, DCP-LA stimulated serotonin release from hypothalamic slices and cancelled restraint stress-induced reduction of GSK-3β phosphorylation at Ser9. Taken together, the results of the present study indicate that DCP-LA could ameliorate depression-like behavior by promoting translocation of 5-HT1A receptor to the plasma membrane on postsynaptic cells, stimulating serotonin release, and inactivating GSK-3β.

  19. Rigid proteins and softening of biological membranes-with application to HIV-induced cell membrane softening. (United States)

    Agrawal, Himani; Zelisko, Matthew; Liu, Liping; Sharma, Pradeep


    A key step in the HIV-infection process is the fusion of the virion membrane with the target cell membrane and the concomitant transfer of the viral RNA. Experimental evidence suggests that the fusion is preceded by considerable elastic softening of the cell membranes due to the insertion of fusion peptide in the membrane. What are the mechanisms underpinning the elastic softening of the membrane upon peptide insertion? A broader question may be posed: insertion of rigid proteins in soft membranes ought to stiffen the membranes not soften them. However, experimental observations perplexingly appear to show that rigid proteins may either soften or harden membranes even though conventional wisdom only suggests stiffening. In this work, we argue that regarding proteins as merely non-specific rigid inclusions is flawed, and each protein has a unique mechanical signature dictated by its specific interfacial coupling to the surrounding membrane. Predicated on this hypothesis, we have carried out atomistic simulations to investigate peptide-membrane interactions. Together with a continuum model, we reconcile contrasting experimental data in the literature including the case of HIV-fusion peptide induced softening. We conclude that the structural rearrangements of the lipids around the inclusions cause the softening or stiffening of the biological membranes.

  20. Highly charged proton-exchange membrane. Sulfonated poly(ether sulfone)-silica polyelectrolyte composite membranes for fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Shahi, Vinod K. [Electro-Membrane Processes Division, Central Salt and Marine Chemicals Research Institute, Bhavnagar-364002, Gujarat (India)


    Sulfonation of poly(ether sulfone) was carried out with chlorosulphonic acid in chloroform and its composite proton-exchange membrane was prepared using aminopropyltriethoxysilane as inorganic precursor by sol-gel in acidic medium. These membranes were further subjected to phosphorylation with phosphorous acid for introducing phosphonic acid functionality at inorganic segment. Extent of sulphonation was estimated by {sup 1}H-NMR spectroscopy while introduction of phosphonic acid groups was confirmed by FTIR spectroscopy and ion-exchange capacity studies. Different membranes, with varied silica content without and with phosphorylation, were characterized for their thermal and mechanical stabilities, physicochemical and electrochemical properties using thermogravimetric analysis (TGA), dynamic mechanical analysis (DMA), scanning electron microscopy (SEM), aq. methanol uptake studies, proton conductivity and methanol permeability measurements. The silica content in the membrane matrix and effect of phosphorylation was optimized as a function of membrane properties. Activation energy required for the proton transport across the membrane was also estimated and found to be comparable with Nafion 117 membrane. From the frictional interpretation and estimation of selectivity parameter it was observed that SPS-Si composite phosphorylated membrane with 20% silica content (SPS-Si(P)/20) resulted in the best proton-exchange membrane, which exhibited quite higher selectivity parameter in comparison to Nafion 117 for direct methanol fuel cell applications. Also, current-voltage polarization characteristics of SPS-Si(P)/20 membrane measured in direct methanol fuel cell, were found to be comparable to the Nafion 117 membrane. (author)

  1. Membraner

    DEFF Research Database (Denmark)

    Bach, Finn


    Notatet giver en kort introduktion til den statiske virkemåde af membraner og membrankonstruktioner......Notatet giver en kort introduktion til den statiske virkemåde af membraner og membrankonstruktioner...

  2. Oxidative degradation of polybenzimidazole membranes as electrolytes for high temperature proton exchange membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Liao, J.H. [The State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022 (China); Energy and Materials Science Group, Department of Chemistry, Kemitorvet 207, Technical University of Denmark, DK-2800 Kgs. Lyngby (Denmark); Li, Q.F.; Jensen, J.O.; Bjerrum, N.J. [Energy and Materials Science Group, Department of Chemistry, Kemitorvet 207, Technical University of Denmark, DK-2800 Kgs. Lyngby (Denmark); Rudbeck, H.C. [Danish Power Systems ApS, Raadhusvej 59, DK 2920 Charlottenlund (Denmark); Chromik, A.; Kerres, J. [Institute for Chemical Process Engineering, University of Stuttgart, D-70199 Stuttgart (Germany); Xing, W. [The State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022 (China)


    Polybenzimidazole membranes imbibed with acid are emerging as a suitable electrolyte material for high-temperature polymer electrolyte fuel cells. The oxidative stability of polybenzimidazole has been identified as an important issue for the long-term durability of such cells. In this paper the oxidative degradation of the polymer membrane was studied under the Fenton test conditions by the weight loss, intrinsic viscosity, size exclusion chromatography, scanning electron microscopy and Fourier transform infrared spectroscopy. During the Fenton test, significant weight losses depending on the initial molecular weight of the polymer were observed. At the same time, viscosity and SEC measurements revealed a steady decrease in molecular weight. The degradation of acid doped PBI membranes under Fenton test conditions is proposed to start by the attack of hydroxyl radicals at the carbon atom linking imidazole ring and benzenoid ring, which may eventually lead to the imidazole ring opening and formation of small molecules and terminal groups for further oxidation by an endpoint oxidation. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Near-critical fluctuations and cytoskeleton-assisted phase separation lead to subdiffusion in cell membranes

    CERN Document Server

    Ehrig, Jens; Schwille, Petra


    We address the relationship between membrane microheterogeneity and anomalous subdiffusion in cell membranes by carrying out Monte Carlo simulations of two-component lipid membranes. We find that near-critical fluctuations in the membrane lead to transient subdiffusion, while membrane-cytoskeleton interaction strongly affects phase separation, enhances subdiffusion, and eventually leads to hop diffusion of lipids. Thus, we present a minimum realistic model for membrane rafts showing the features of both microscopic phase separation and subdiffusion.

  4. The organochlorine herbicide chloridazon interacts with cell membranes. (United States)

    Suwalsky, M; Benites, M; Villena, F; Norris, B; Quevedo, L


    Chloridazon is a widely used organochlorine herbicide. In order to evaluate its perturbing effect on cell membranes it was made to interact with human erythrocytes, frog adrenergic neuroepithelial synapse and molecular models. These consisted in multilayers of dimyristoylphosphatidylethanolamine (DMPE) and of dimyristoylphosphatidyltidylcholine (DMPC), representative of phospholipid classes located in the inner and outer monolayers of the erythrocyte membrane, respectively. X-ray diffraction showed that chloridazon interacted preferentially with DMPC multilayers. Scanning electron microscopy revealed that 0.1 mM chloridazon induced erythrocyte crenation. According to the bilayer couple hypothesis, this is due to the preferential insertion of chloridazon in the phosphatidylcholine-rich external moiety of the red cell membrane. Electrophysiological measurements showed that nerve stimulation was followed immediately by a transient increase in short-circuit current (SCC) and in the potential difference (PD) of the neuroepithelial synapse. Increasing concentrations of chloridazon caused a dose-dependent and reversible decrease of the responses of both parameters to 76% of their control values. The pesticide induced a similar (28%) significant time-dependent decrease in the basal values of the SCC and of PD. These results are in accordance with a perturbing effect of chloridazon on the phospholipid moiety of the nerve fibre membrane leading to interference with total ion transport across the nerve skin junction.

  5. Multi-layer graphene membrane based memory cell (United States)

    Siahlo, Andrei I.; Popov, Andrey M.; Poklonski, Nikolai A.; Lozovik, Yurii E.; Vyrko, Sergey A.; Ratkevich, Sergey V.


    The scheme and operational principles of the nanoelectromechanical memory cell based on the bending of a multi-layer graphene membrane by the electrostatic force are proposed. An analysis of the memory cell total energy as a function of the memory cell sizes is used to determine the sizes corresponding to a bistable memory cell with the conducting ON and non-conducting OFF states and to calculate the switching voltage between the OFF and ON states. It is shown that a potential barrier between the OFF and ON states is huge for practically all sizes of a bistable memory cell which excludes spontaneous switching and allows the proposed memory cell to be used for long-term archival storage.

  6. Proton exchange membrane fuel cell technology for transportation applications

    Energy Technology Data Exchange (ETDEWEB)

    Swathirajan, S. [General Motors R& D Center, Warren, MI (United States)


    Proton Exchange Membrane (PEM) fuel cells are extremely promising as future power plants in the transportation sector to achieve an increase in energy efficiency and eliminate environmental pollution due to vehicles. GM is currently involved in a multiphase program with the US Department of Energy for developing a proof-of-concept hybrid vehicle based on a PEM fuel cell power plant and a methanol fuel processor. Other participants in the program are Los Alamos National Labs, Dow Chemical Co., Ballard Power Systems and DuPont Co., In the just completed phase 1 of the program, a 10 kW PEM fuel cell power plant was built and tested to demonstrate the feasibility of integrating a methanol fuel processor with a PEM fuel cell stack. However, the fuel cell power plant must overcome stiff technical and economic challenges before it can be commercialized for light duty vehicle applications. Progress achieved in phase I on the use of monolithic catalyst reactors in the fuel processor, managing CO impurity in the fuel cell stack, low-cost electrode-membrane assembles, and on the integration of the fuel processor with a Ballard PEM fuel cell stack will be presented.

  7. Solid Polymer Fuel Cells. Electrode and membrane performance studies

    Energy Technology Data Exchange (ETDEWEB)

    Moeller-Holst, S.


    This doctoral thesis studies aspects of fuel cell preparation and performance. The emphasis is placed on preparation and analysis of low platinum-loading solid polymer fuel cell (SPEC) electrodes. A test station was built and used to test cells within a wide range of real operating conditions, 40-150{sup o}C and 1-10 bar. Preparation and assembling equipment for single SPFCs was designed and built, and a new technique of spraying the catalyst layer directly onto the membrane was successfully demonstrated. Low Pt-loading electrodes (0.1 mg Pt/cm{sup 2}) prepared by the new technique exhibited high degree of catalyst utilization. The performance of single cells holding these electrodes is comparable to state-of-the-art SPFCs. Potential losses in single cell performance are ascribed to irreversibilities by analysing the efficiency of the Solid Oxide Fuel Cell by means of the second law of thermodynamics. The water management in membranes is discussed for a model system and the results are relevant to fuel cell preparation and performance. The new spray deposition technique should be commercially interesting as it involves few steps as well as techniques that are adequate for larger scale production. 115 refs., 43 figs., 18 tabs.

  8. Sterol-Rich Membrane Domains Define Fission Yeast Cell Polarity. (United States)

    Makushok, Tatyana; Alves, Paulo; Huisman, Stephen Michiel; Kijowski, Adam Rafal; Brunner, Damian


    Cell polarization is crucial for the functioning of all organisms. The cytoskeleton is central to the process but its role in symmetry breaking is poorly understood. We study cell polarization when fission yeast cells exit starvation. We show that the basis of polarity generation is de novo sterol biosynthesis, cell surface delivery of sterols, and their recruitment to the cell poles. This involves four phases occurring independent of the polarity factor cdc42p. Initially, multiple, randomly distributed sterol-rich membrane (SRM) domains form at the plasma membrane, independent of the cytoskeleton and cell growth. These domains provide platforms on which the growth and polarity machinery assembles. SRM domains are then polarized by the microtubule-dependent polarity factor tea1p, which prepares for monopolar growth initiation and later switching to bipolar growth. SRM polarization requires F-actin but not the F-actin organizing polarity factors for3p and bud6p. We conclude that SRMs are key to cell polarization.


    Yang, Tao; Wang, Lu; Sun, Ruiqiang; Chen, Hongguang; Zhang, Hongtao; Yu, Yang; Wang, Yanyan; Wang, Guolin; Yu, Yonghao; Xie, Keliang


    Gastrointestinal barrier dysfunction is associated with the severity and prognosis of sepsis. Hydrogen gas (H2) can ameliorate multiple organ damage in septic animals. Ras homolog gene family member A (RhoA) and mammalian diaphanous-related formin 1 (mDia1) are important to regulate tight junction (TJ) and adherens junction (AJ), both of which determine the integrity of the intestinal barrier. This study was aimed to investigate whether H2 could modulate lipopolysaccharide (LPS)-stimulated dysfunction of the intestinal barrier and whether RhoA-mDia1 signaling is involved. Caco-2 cells were exposed to different concentrations of LPS (1 μg/mL-1 mg/mL). The permeability of the intestinal barrier was evaluated by transepithelial resistance (TER) and fluorescein-isothiocyanate-dextran flux. Expression and distribution of occludin and E-cadherin were analyzed by Western blot and immunofluorescence. RhoA activity was measured by G-Lisa assay, and mDia1 expression was assessed by Western blot. LPS (100 μg/mL) decreased TER and increased fluorescein-isothiocyanate-dextran flux, which were alleviated by H2-rich medium. Also, H2 down-regulated LPS-induced oxidative stress. Moreover, H2 improved the down-regulated expression and redistribution of occludin and E-cadherin caused by LPS. Additionally, H2 alleviated LPS-caused RhoA activation, and the beneficial effects of H2 on barrier were counteracted by RhoA agonist CN03. Rho inhibitor C3 exoenzyme mitigated LPS-induced barrier breakdown. Furthermore, H2-rich medium increased mDia1 expression, and mDia1 knockdown abolished protections of H2 on barrier permeability. mDia1 knockdown eliminated H2-induced benefits for occludin and E-cadherin. These findings suggest that H2 improves LPS-induced hyperpermeability of the intestinal barrier and disruptions of TJ and AJ by moderating RhoA-mDia1 signaling.

  10. Study of the effect of membrane thickness on microcapsule strength, permeability, and cell proliferation. (United States)

    Ma, Ying; Zhang, Ying; Wang, Yu; Wang, Qiuyan; Tan, Mingqian; Liu, Yang; Chen, Li; Li, Na; Yu, Weiting; Ma, Xiaojun


    Cell microencapsulation is one of the promising strategies for in vitro production of proteins or in vivo delivery of therapeutic products. Membrane thickness controls microcapsule strength and permeability, which may in return affect cell growth and metabolism. In this study, the strength, permeability, and encapsulated Chinese hamster ovary cell proliferation and metabolism of four groups of microcapsules with different membrane thicknesses were investigated. It was found that increasing membrane thickness increases microcapsule strength, whereas decreases membrane permeability. During the first 6 days, cells within microcapsules with 10 μm thickness membrane proliferated fast and could reach a cell density of 1.9 × 10(7) cells/mL microcapsule with 92% cell density. A cell density of 5.5 × 10(7) cells/mL microcapsule with >85% cell density was achieved within microcapsules with 15 μm membrane thickness and these microcapsules kept over 88% integrity ratio after 11 days, which was much higher than that of microcapsules with 10 μm membrane thickness. Membrane with more than 20 μm thickness was not suited for encapsulated cell culture owing to low-protein diffusion rate. These results indicated that cells survived shortly within the thinnest membrane thickness. There was a specific membrane thickness more suitable for cell growth for a long-time culture. These findings will be useful for preparing microcapsules with the desired membrane thickness for microencapsulated cell culture dependent on various purposes.

  11. Evaluation of stem cell components in retrocorneal membranes. (United States)

    Lee, Seok Hyun; Kim, Kyoung Woo; Kim, Mi Kyung; Chun, Yeoun Sook; Kim, Jae Chan


    The purpose of this study was to elucidate the origin and cellular composition of retrocorneal membranes (RCMs) associated with chemical burns using immunohistochemical staining for primitive cell markers. Six cases of RCMs were collected during penetrating keratoplasty. We examined RCMs with hematoxylin and eosin (H&E), periodic acid-Schiff (PAS) staining and immunohistochemical analysis using monoclonal antibodies against hematopoietic stem cells (CD34, CD133, c-kit), mesenchymal stem cells (beta-1-integrin, TGF-β, vimentin, hSTRO-1), fibroblasts (FGF-β, α-smooth muscle actin), and corneal endothelial cells (type IV collagen, CD133, VEGF, VEGFR1). Histologic analysis of RCMs revealed an organized assembly of spindle-shaped cells, pigment-laden cells, and thin collagenous matrix structures. RCMs were positive for markers of mesenchymal stem cells including beta-1-integrin, TGF-β, vimentin, and hSTRO-1. Fibroblast markers were also positive, including FGF-β and α-smooth muscle actin (SMA). In contrast, immunohistochemical staining was negative for hematopoietic stem cell markers including CD34, CD133 and c-kit as well as corneal endothelial cell markers such as type IV collagen, CD133 except VEGF and VEGFR1. Pigment-laden cells did not stain with any antibodies. The results of this study suggest that RCMs consist of a thin collagen matrix and fibroblast-like cells and may be a possible neogenetic structure produced from a lineage of bone marrow-derived mesenchymal stem cells.

  12. Collaboration between primitive cell membranes and soluble catalysts. (United States)

    Adamala, Katarzyna P; Engelhart, Aaron E; Szostak, Jack W


    One widely held model of early life suggests primitive cells consisted of simple RNA-based catalysts within lipid compartments. One possible selective advantage conferred by an encapsulated catalyst is stabilization of the compartment, resulting from catalyst-promoted synthesis of key membrane components. Here we show model protocell vesicles containing an encapsulated enzyme that promotes the synthesis of simple fatty acid derivatives become stabilized to Mg(2+), which is required for ribozyme activity and RNA synthesis. Thus, protocells capable of such catalytic transformations would have enjoyed a selective advantage over other protocells in high Mg(2+) environments. The synthetic transformation requires both the catalyst and vesicles that solubilize the water-insoluble precursor lipid. We suggest that similar modified lipids could have played a key role in early life, and that primitive lipid membranes and encapsulated catalysts, such as ribozymes, may have acted in conjunction with each other, enabling otherwise-impossible chemical transformations within primordial cells.

  13. Membrane associated qualitative differences in cell ultrastructure of chemically and high pressure cryofixed plant cells. (United States)

    Zechmann, Bernd; Müller, Maria; Zellnig, Günther


    Membrane contrast can sometimes be poor in biological samples after high pressure freezing (HPF) and freeze substitution (FS). The addition of water to the FS-medium has been shown to improve membrane contrast in animal tissue and yeast. In the present study we tested the effects of 1% and 5% water added to the FS-medium (2% osmium with 0.2% uranyl acetate in anhydrous acetone) on the quality and visibility of membranes in high pressure frozen leaf samples of Cucurbita pepo L. plants and compared them to chemically fixed cells (3% glutaraldehyde post-fixed with 1% osmium tetroxide). The addition of water to the FS-medium drastically decreased the amounts of well preserved cells and did not significantly improve the quality nor visibility of membranes. In samples that were freeze substituted in FS-media containing 1% and 5% water the width of thylakoid membranes was found to be significantly increased of about 20% and the perinuclear space was up to 76% wider in comparison to what was found in samples which were freeze substituted without water. No differences were found in the thickness of membranes between chemically and cryofixed cells that were freeze substituted in the FS-medium without water. Nevertheless, in chemically fixed cells the intrathylakoidal space was about 120% wider than in cryofixed cells that were freeze substituted with or without water. The present results demonstrate that the addition of water to the FS-medium does not improve membrane contrast but changes the width of thylakoid membranes and the perinuclear space in the present plant material. The addition of water to the FS-medium is therefore not as essential for improved membrane contrast in the investigated plant samples as it was observed in cells of animal tissues and yeast cells.

  14. The insecticide DDT decreases membrane potential and cell input resistance of cultured human liver cells. (United States)

    Schefczik, K; Buff, K


    The resting membrane potential, Em, and the cell input resistance, Rinp, of cultured human Chang liver cells were measured using the single electrode 'double-pulse' current clamp technique, following exposure of the cells to the insecticide DDT (20 microM). In control (unexposed) cells, the mean Em was -24 mV, and the mean Rinp was 30 M omega. Neither parameter was significantly impaired after 1 h of cell exposure to DDT. But after 7 and 48 h, the Em was depolarized by 15 and 25 mV, respectively, in parallel with a decrease of the cell input resistance. The strongly time-delayed effect of DDT on Chang liver cell membranes may indicate a mode of interaction different from excitable membranes.

  15. Polybenzimidazole membranes for zero gap alkaline electrolysis cells

    DEFF Research Database (Denmark)

    Kraglund, Mikkel Rykær; Aili, David; Christensen, Erik;

    Membranes of m-PBI doped in KOH (aq), 15-35 wt%, show high ionic conductivity in the temperature range 20-80 ºC. In electrolysis cells with nickel foam electrodes m-PBI membranesprovide low internal resistance. With a 60 µm membraneat 80ºC in 20 wt% KOH,1000 mA/cm2 is achieved at 2.25....

  16. Islet-like cell aggregates generated from human adipose tissue derived stem cells ameliorate experimental diabetes in mice.

    Directory of Open Access Journals (Sweden)

    Vikash Chandra

    Full Text Available BACKGROUND: Type 1 Diabetes Mellitus is caused by auto immune destruction of insulin producing beta cells in the pancreas. Currently available treatments include transplantation of isolated islets from donor pancreas to the patient. However, this method is limited by inadequate means of immuno-suppression to prevent islet rejection and importantly, limited supply of islets for transplantation. Autologous adult stem cells are now considered for cell replacement therapy in diabetes as it has the potential to generate neo-islets which are genetically part of the treated individual. Adopting methods of islet encapsulation in immuno-isolatory devices would eliminate the need for immuno-suppressants. METHODOLOGY/PRINCIPAL FINDINGS: In the present study we explore the potential of human adipose tissue derived adult stem cells (h-ASCs to differentiate into functional islet like cell aggregates (ICAs. Our stage specific differentiation protocol permit the conversion of mesodermic h-ASCs to definitive endoderm (Hnf3β, TCF2 and Sox17 and to PDX1, Ngn3, NeuroD, Pax4 positive pancreatic endoderm which further matures in vitro to secrete insulin. These ICAs are shown to produce human C-peptide in a glucose dependent manner exhibiting in-vitro functionality. Transplantation of mature ICAs, packed in immuno-isolatory biocompatible capsules to STZ induced diabetic mice restored near normoglycemia within 3-4 weeks. The detection of human C-peptide, 1155±165 pM in blood serum of experimental mice demonstrate the efficacy of our differentiation approach. CONCLUSIONS: h-ASC is an ideal population of personal stem cells for cell replacement therapy, given that they are abundant, easily available and autologous in origin. Our findings present evidence that h-ASCs could be induced to differentiate into physiologically competent functional islet like cell aggregates, which may provide as a source of alternative islets for cell replacement therapy in type 1 diabetes.

  17. Binding of /sup 18/F by cell membranes and cell walls of Streptococcus mutans

    Energy Technology Data Exchange (ETDEWEB)

    Yotis, W.W.; Zeb, M.; McNulty, J.; Kirchner, F.; Reilly, C.; Glendenin, L.


    The binding of /sup 18/F to isolated cell membranes and cell walls of Streptococcus mutans GS-5 or other bacteria was assayed. The attachment of /sup 18/F to these cell envelopes proceeded slowly and reached equilibrium within 60 min. /sup 18/F binding was stimulated by Ca/sup 2 +/ (1 mM). The binding of /sup 18/F to cellular components was dependent upon the pH, as well as the amount of /sup 18/F and dose of the binder employed. The binding of /sup 18/F by cell walls prepared from fluoride-sensitive and fluoride-resistant cells of S. salivarius and S. mutans did not differ significantly. The pretreatment of cell walls or cell membranes for 60 min at 30 degrees C with 1 mg of RNase, DNase, or trypsin per ml did not influence the binding of /sup 18/F by the walls and membranes of S. mutans GS-5. However, prior exposure of cell membranes to sodium dodecyl sulfate caused a significant reduction in the number of /sup 18/F atoms bound by the membranes. In saturated assay systems, cell membranes of S. mutans GS-5 bound 10(15) to 10(16) atoms of /sup 18/F per mg (dry weight), whereas cell walls from S. mutans GS-5, FA-1, and HS-6 or Actinomyces viscosus T14V and T14AV bound 10(12) to 10(13) atoms of /sup 18/F per mg (dry weight). /sup 18/F in this quantity (10(12) to 10(13) atoms) cannot be detected with the fluoride electrode. The data provide, for the first time, a demonstration of /sup 18/F binding by cell membranes and walls of oral flora.

  18. Polymer Electrolyte Membrane (PEM) Fuel Cells Modeling and Optimization (United States)

    Zhang, Zhuqian; Wang, Xia; Shi, Zhongying; Zhang, Xinxin; Yu, Fan


    Performance of polymer electrolyte membrane (PEM) fuel cells is dependent on operating parameters and designing parameters. Operating parameters mainly include temperature, pressure, humidity and the flow rate of the inlet reactants. Designing parameters include reactants distributor patterns and dimensions, electrodes dimensions, and electrodes properties such as porosity, permeability and so on. This work aims to investigate the effects of various designing parameters on the performance of PEM fuel cells, and the optimum values will be determined under a given operating condition.A three-dimensional steady-state electrochemical mathematical model was established where the mass, fluid and thermal transport processes are considered as well as the electrochemical reaction. A Powell multivariable optimization algorithm will be applied to investigate the optimum values of designing parameters. The objective function is defined as the maximum potential of the electrolyte fluid phase at the membrane/cathode interface at a typical value of the cell voltage. The robustness of the optimum design of the fuel cell under different cell potentials will be investigated using a statistical sensitivity analysis. By comparing with the reference case, the results obtained here provide useful tools for a better design of fuel cells.

  19. Water Soluble Polymers as Proton Exchange Membranes for Fuel Cells

    Directory of Open Access Journals (Sweden)

    Bing-Joe Hwang


    Full Text Available The relentless increase in the demand for useable power from energy-hungry economies continues to drive energy-material related research. Fuel cells, as a future potential power source that provide clean-at-the-point-of-use power offer many advantages such as high efficiency, high energy density, quiet operation, and environmental friendliness. Critical to the operation of the fuel cell is the proton exchange membrane (polymer electrolyte membrane responsible for internal proton transport from the anode to the cathode. PEMs have the following requirements: high protonic conductivity, low electronic conductivity, impermeability to fuel gas or liquid, good mechanical toughness in both the dry and hydrated states, and high oxidative and hydrolytic stability in the actual fuel cell environment. Water soluble polymers represent an immensely diverse class of polymers. In this comprehensive review the initial focus is on those members of this group that have attracted publication interest, principally: chitosan, poly (ethylene glycol, poly (vinyl alcohol, poly (vinylpyrrolidone, poly (2-acrylamido-2-methyl-1-propanesulfonic acid and poly (styrene sulfonic acid. The paper then considers in detail the relationship of structure to functionality in the context of polymer blends and polymer based networks together with the effects of membrane crosslinking on IPN and semi IPN architectures. This is followed by a review of pore-filling and other impregnation approaches. Throughout the paper detailed numerical results are given for comparison to today’s state-of-the-art Nafion® based materials.

  20. Graphene-doped electrospun nanofiber membrane electrodes and proton exchange membrane fuel cell performance (United States)

    Wei, Meng; Jiang, Min; Liu, Xiaobo; Wang, Min; Mu, Shichun


    A rational electrode structure can allow proton exchange membrane (PEM) fuel cells own high performance with a low noble metal loading and an optimal transport pathway for reaction species. In this study, we develop a graphene doped polyacrylonitile (PAN)/polyvinylident fluoride (PVDF) (GPP) electrospun nanofiber electrode with improved electrical conductivity and high porosity, which could enhance the triple reaction boundary and promote gas and water transport throughout the porous electrode. Thus the increased electrochemical active surface area (ECSA) of Pt catalysts and fuel cell performance can be expected. As results, the ECSA of hot-pressed electrospun electrodes with 2 wt% graphene oxide (GO) is up to 84.3 m2/g, which is greatly larger than that of the conventional electrode (59.5 m2/g). Significantly, the GPP nanofiber electrospun electrode with Pt loading of 0.2 mg/cm2 exhibits higher fuel cell voltage output and stability than the conventional electrode.

  1. Quantitative analysis of cell surface membrane proteins using membrane-impermeable chemical probe coupled with 18O labeling

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Haizhen; Brown, Roslyn N.; Qian, Weijun; Monroe, Matthew E.; Purvine, Samuel O.; Moore, Ronald J.; Gritsenko, Marina A.; Shi, Liang; Romine, Margaret F.; Fredrickson, Jim K.; Pasa-Tolic, Ljiljana; Smith, Richard D.; Lipton, Mary S.


    We report a mass spectrometry-based strategy for quantitative analysis of cell surface membrane proteome changes. The strategy includes enrichment of surface membrane proteins using a membrane-impermeable chemical probe followed by stable isotope 18O labeling and LC-MS analysis. We applied this strategy for enriching membrane proteins expressed by Shewanella oneidensis MR-1, a gram-negative bacterium with known metal-reduction capability via extracellular electron transfer between outer membrane proteins and environmental electron receptors. LC/MS/MS analysis resulted in the identification of about 79% membrane proteins among all proteins identified from the enriched sample. To illustrate the quantification of membrane proteome changes, enriched membrane protein samples from wild-type and mutant cells (generated from deletion of a type II secretion protein, GspD) were further labeled with 16O and 18O at the peptide level prior to LC-MS analysis. A chemical-probe-labeled pure protein has also been used as an internal standard for normalization purpose. The quantitative data revealed reduced abundances of many outer membrane proteins such as OmcA and MtrC in ΔgspD mutant cells, which agreed well with previously published studies.

  2. Quantitative analysis of cell surface membrane proteins using membrane-impermeable chemical probe coupled with 18O labeling (United States)

    Zhang, Haizhen; Brown, Roslyn N.; Qian, Wei-Jun; Monroe, Matthew E.; Purvine, Samuel O.; Moore, Ronald J.; Gritsenko, Marina A.; Shi, Liang; Romine, Margaret F; Fredrickson, James K.; Paša-Tolić, Ljiljana; Smith, Richard D.; Lipton, Mary S.


    We report a mass spectrometry-based strategy for quantitative analysis of cell surface membrane proteome changes. The strategy includes enrichment of surface membrane proteins using a membrane-impermeable chemical probe followed by stable isotope 18O labeling and LC-MS analysis. We applied this strategy for enriching membrane proteins expressed by Shewanella oneidensis MR-1, a gram-negative bacterium with known metal-reduction capability via extracellular electron transfer between outer membrane proteins and extracellular electron receptors. LC/MS/MS analysis resulted in the identification of about 400 proteins with 79% of them being predicted to be membrane localized. Quantitative aspects of the membrane enrichment were shown by peptide level 16O and 18O labeling of proteins from wild-type and mutant cells (generated from deletion of a type II secretion protein, GspD) prior to LC-MS analysis. Using a chemical probe labeled pure protein as an internal standard for normalization, the quantitative data revealed reduced abundances in ΔgspD mutant cells of many outer membrane proteins including the outer membrane c-cype cytochromes OmcA and MtrC, in agreement with previously investigation demonstrating that these proteins are substrates of the type II secretion system. PMID:20380418

  3. Quantitative analysis of cell surface membrane proteins using membrane-impermeable chemical probe coupled with 18O labeling. (United States)

    Zhang, Haizhen; Brown, Roslyn N; Qian, Wei-Jun; Monroe, Matthew E; Purvine, Samuel O; Moore, Ronald J; Gritsenko, Marina A; Shi, Liang; Romine, Margaret F; Fredrickson, James K; Pasa-Tolić, Ljiljana; Smith, Richard D; Lipton, Mary S


    We report a mass spectrometry-based strategy for quantitative analysis of cell surface membrane proteome changes. The strategy includes enrichment of surface membrane proteins using a membrane-impermeable chemical probe followed by stable isotope (18)O labeling and LC-MS analysis. We applied this strategy for enriching membrane proteins expressed by Shewanella oneidensis MR-1, a Gram-negative bacterium with known metal-reduction capability via extracellular electron transfer between outer membrane proteins and extracellular electron receptors. LC/MS/MS analysis resulted in the identification of about 400 proteins with 79% of them being predicted to be membrane localized. Quantitative aspects of the membrane enrichment were shown by peptide level (16)O and (18)O labeling of proteins from wild-type and mutant cells (generated from deletion of a type II secretion protein, GspD) prior to LC-MS analysis. Using a chemical probe labeled pure protein as an internal standard for normalization, the quantitative data revealed reduced abundances in Delta gspD mutant cells of many outer membrane proteins including the outer membrane c-type cytochromes OmcA and MtrC, in agreement with a previous report that these proteins are substrates of the type II secretion system.

  4. Orally administered lactoperoxidase ameliorates dextran sulfate sodium-induced colitis in mice by up-regulating colonic interleukin-10 and maintaining peripheral regulatory T cells. (United States)

    Shin, Kouichirou; Horigome, Ayako; Yamauchi, Koji; Yaeshima, Tomoko; Iwatsuki, Keiji


    We previously demonstrated orally administered bovine lactoperoxidase (LPO) ameliorated dextran sulfate sodium-induced colitis in mice. Here, we examine the mechanism of action of LPO. Three days after colitis induction, expression of interferon-gamma mRNA in colonic tissue was significantly decreased in mice administered LPO; while mRNA expression of interleukin (IL)-10 and regulatory T cell (Treg) marker, Foxp3, were significantly increased. The proportion of CD4+CD25+ Tregs in peripheral CD4+ T cells was also significantly elevated when LPO was administered. Nine days after colitis induction, the severity of colitis symptoms, including body weight loss and colon shortening, was reduced and expression of IL-10 mRNA was increased in mice administered LPO. The proportion of CD4+CD25+ Tregs in peripheral leukocytes was also significantly elevated when LPO was administered. These results suggest LPO ameliorates colitis by up-regulating colonic anti-inflammatory cytokines and maintaining peripheral regulatory T cells.

  5. Dynamic analysis of magnetic nanoparticles crossing cell membrane (United States)

    Pedram, Maysam Z.; Shamloo, Amir; Ghafar-Zadeh, Ebrahim; Alasty, Aria


    Nowadays, nanoparticles (NPs) are used in a variety of biomedical applications including brain disease diagnostics and subsequent treatments. Among the various types of NPs, magnetic nanoparticles (MNPs) have been implemented by many research groups for an array of life science applications. In this paper, we studied MNPs controlled delivery into the endothelial cells using a magnetic field. Dynamics equations of MNPs were defined in the continuous domain using control theory methods and were applied to crossing the cell membrane. This study, dedicated to clinical and biomedical research applications, offers a guideline for the generation of a magnetic field required for the delivery of MNPs.

  6. A hybrid microbial fuel cell membrane bioreactor with a conductive ultrafiltration membrane biocathode for wastewater treatment

    KAUST Repository

    Malaeb, Lilian


    A new hybrid, air-biocathode microbial fuel cell-membrane bioreactor (MFC-MBR) system was developed to achieve simultaneous wastewater treatment and ultrafiltration to produce water for direct reclamation. The combined advantages of this system were achieved by using an electrically conductive ultrafiltration membrane as both the cathode and the membrane for wastewater filtration. The MFC-MBR used an air-biocathode, and it was shown to have good performance relative to an otherwise identical cathode containing a platinum catalyst. With 0.1 mm prefiltered domestic wastewater as the feed, the maximum power density was 0.38 W/m2 (6.8 W/m3) with the biocathode, compared to 0.82 W/m2 (14.5 W/m3) using the platinum cathode. The permeate quality from the biocathode reactor was comparable to that of a conventional MBR, with removals of 97% of the soluble chemical oxygen demand, 97% NH3-N, and 91% of total bacteria (based on flow cytometry). The permeate turbidity was <0.1 nephelometric turbidity units. These results show that a biocathode MFC-MBR system can achieve high levels of wastewater treatment with a low energy input due to the lack of a need for wastewater aeration. © 2013 American Chemical Society.

  7. Cell Surface and Membrane Engineering: Emerging Technologies and Applications

    Directory of Open Access Journals (Sweden)

    Christopher T. Saeui


    Full Text Available Membranes constitute the interface between the basic unit of life—a single cell—and the outside environment and thus in many ways comprise the ultimate “functional biomaterial”. To perform the many and often conflicting functions required in this role, for example to partition intracellular contents from the outside environment while maintaining rapid intake of nutrients and efflux of waste products, biological membranes have evolved tremendous complexity and versatility. This article describes how membranes, mainly in the context of living cells, are increasingly being manipulated for practical purposes with drug discovery, biofuels, and biosensors providing specific, illustrative examples. Attention is also given to biology-inspired, but completely synthetic, membrane-based technologies that are being enabled by emerging methods such as bio-3D printers. The diverse set of applications covered in this article are intended to illustrate how these versatile technologies—as they rapidly mature—hold tremendous promise to benefit human health in numerous ways ranging from the development of new medicines to sensitive and cost-effective environmental monitoring for pathogens and pollutants to replacing hydrocarbon-based fossil fuels.

  8. Fault tolerance control for proton exchange membrane fuel cell systems (United States)

    Wu, Xiaojuan; Zhou, Boyang


    Fault diagnosis and controller design are two important aspects to improve proton exchange membrane fuel cell (PEMFC) system durability. However, the two tasks are often separately performed. For example, many pressure and voltage controllers have been successfully built. However, these controllers are designed based on the normal operation of PEMFC. When PEMFC faces problems such as flooding or membrane drying, a controller with a specific design must be used. This paper proposes a unique scheme that simultaneously performs fault diagnosis and tolerance control for the PEMFC system. The proposed control strategy consists of a fault diagnosis, a reconfiguration mechanism and adjustable controllers. Using a back-propagation neural network, a model-based fault detection method is employed to detect the PEMFC current fault type (flooding, membrane drying or normal). According to the diagnosis results, the reconfiguration mechanism determines which backup controllers to be selected. Three nonlinear controllers based on feedback linearization approaches are respectively built to adjust the voltage and pressure difference in the case of normal, membrane drying and flooding conditions. The simulation results illustrate that the proposed fault tolerance control strategy can track the voltage and keep the pressure difference at desired levels in faulty conditions.

  9. Lowering the platinum loading of high temperature polymer electrolyte membrane fuel cells with acid doped polybenzimidazole membranes

    DEFF Research Database (Denmark)

    Fernandez, Santiago Martin; Li, Qingfeng; Jensen, Jens Oluf


    Membrane electrode assemblies (MEAs) with ultra-low Pt loading electrodes were prepared for high temperature polymer electrolyte membrane fuel cells (HT-PEMFCs) based on acid doped polybenzimidazole. With no electrode binders or ionomers, the triple phase boundary of the catalyst layer...

  10. Better Proton-Conducting Polymers for Fuel-Cell Membranes (United States)

    Narayan, Sri; Reddy, Prakash


    Polyoxyphenylene triazole sulfonic acid has been proposed as a basis for development of improved proton-conducting polymeric materials for solid-electrolyte membranes in hydrogen/air fuel cells. Heretofore, the proton-conducting membrane materials of choice have been exemplified by a family of perfluorosulfonic acid-based polymers (Nafion7 or equivalent). These materials are suitable for operation in the temperature of 75 to 85 C, but in order to reduce the sizes and/or increase the energy-conversion efficiencies of fuel-cell systems, it would be desirable to increase temperatures to as high as 120 C for transportation applications, and to as high as 180 C for stationary applications. However, at 120 C and at relative humidity values below 50 percent, the loss of water from perfluorosulfonic acid-based polymer membranes results in fuel-cell power densities too low to be of practical value. Therefore, membrane electrolyte materials that have usefully high proton conductivity in the temperature range of 180 C at low relative humidity and that do not rely on water for proton conduction at 180 C would be desirable. The proposed polyoxyphenylene triazole sulfonic acid-based materials have been conjectured to have these desirable properties. These materials would be free of volatile or mobile acid constituents. The generic molecular structure of these materials is intended to exploit the fact, demonstrated in previous research, that materials that contain ionizable acid and base groups covalently attached to thermally stable polymer backbones exhibit proton conduction even in the anhydrous state.

  11. Membrane currents of spiking cells isolated from turtle retina. (United States)

    Lasater, E M; Witkovsky, P


    We examined the membrane properties of spiking neurons isolated from the turtle (Pseudemys scripta) retina. The cells were maintained in culture for 1-7 days and were studied with the whole cell patch clamp technique. We utilized cells whose perikaryal diameters were greater than 15 microns since Kolb (1982) reported that ganglion cell perikarya in Pseudemys retina are 13-25 microns, whereas amacrine perikarya are less than 14 microns in diameter. We identified 5 currents in the studied cells: (1) a transient sodium current (INa) blocked by TTX, (2) a sustained calcium current (ICa) blocked by cobalt and enhanced by Bay-K 8644, (3) a calcium-dependent potassium current (IK(Ca)), (4) an A-type transient potassium current (IA) somewhat more sensitive to 4-AP than TEA, (5) a sustained potassium current (IK) more sensitive to TEA than 4-AP. The estimated average input resistance of the cells at -70 mV was 720 +/- 440 M omega. When all active currents were blocked, the membrane resistance between -130 and +20 mV was 2.5 G omega. When examined under current clamp, some cells produced multiple spikes to depolarizing steps of 0.1-0.3 nA, whereas other cells produced only a single spike irrespective of the strength of the current pulse. Most single spikers had an outward current that rose to a peak relatively slowly, whereas multiple spikers tend to have a more rapidly activating outward current. Under current clamp, 4-AP slowed the repolarization phase of the spike thus broadening it, but did not always abolish the ability to produce multiple spikes. TEA induced a depolarized plateau following the initial spike which precluded further spikes. It thus appears that the spiking patterns of the retinal cells are shaped primarily by the kinetics of INa, IK and IA and to a lesser extent by IK(Ca).

  12. Mathematical and Computational Modeling of Polymer Exchange Membrane Fuel Cells (United States)

    Ulusoy, Sehribani

    In this thesis a comprehensive review of fuel cell modeling has been given and based on the review, a general mathematical fuel cell model has been developed in order to understand the physical phenomena governing the fuel cell behavior and in order to contribute to the efforts investigating the optimum performance at different operating conditions as well as with different physical parameters. The steady state, isothermal model presented here accounts for the combined effects of mass and species transfer, momentum conservation, electrical current distribution through the gas channels, the electrodes and the membrane, and the electrochemical kinetics of the reactions in the anode and cathode catalyst layers. One of the important features of the model is that it proposes a simpler modified pseudo-homogeneous/agglomerate catalyst layer model which takes the advantage of the simplicity of pseudo-homogenous modeling while taking into account the effects of the agglomerates in the catalyst layer by using experimental geometric parameters published. The computation of the general mathematical model can be accomplished in 3D, 2D and 1D with the proper assumptions. Mainly, there are two computational domains considered in this thesis. The first modeling domain is a 2D Membrane Electrode Assembly (MEA) model including the modified agglomerate/pseudo-homogeneous catalyst layer modeling with consistent treatment of water transport in the MEA while the second domain presents a 3D model with different flow filed designs: straight, stepped and tapered. COMSOL Multiphysics along with Batteries and Fuel Cell Module have been used for 2D & 3D model computations while ANSYS FLUENT PEMFC Module has been used for only 3D two-phase computation. Both models have been validated with experimental data. With 2D MEA model, the effects of temperature and water content of the membrane as well as the equivalent weight of the membrane on the performance have been addressed. 3D COMSOL simulation

  13. New proton conducting membranes for fuel cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Sukumar, P.R.


    In order to synthesize proton-conducting materials which retain acids in the membrane during fuel cell operating conditions, the synthesis of poly(vinylphosphonic acid) grafted polybenzimidazole (PVPA grafted PBI) and the fabrication of multilayer membranes are mainly focussed in this dissertation. Synthesis of PVPA grafted PBI membrane can be done according to ''grafting through'' method. In ''grafting through'' method (or macromonomer method), monomer (e.g., vinylphosphonic acid) is radically copolymerized with olefin group attached macromonomer (e.g., allyl grafted PBI and vinylbenzyl grafted PBI). This approach is inherently limited to synthesize graft-copolymer with well-defined architectural and structural parameters. The incorporation of poly(vinylphosphonic acid) into PBI lead to improvements in proton conductivity up to 10-2 S/cm. Regarding multilayer membranes, the proton conducting layer-by-layer (LBL) assembly of polymers by various strong acids such as poly(vinylphosphonic acid), poly(vinylsulfonic acid) and poly(styrenesulfonic acid) paired with basic polymers such as poly(4-vinylimidazole) and poly(benzimidazole), which are appropriate for Proton Exchange Membrane Fuel Cell applications have been described. Proton conductivity increases with increasing smoothness of the film and the maximum measured conductivity was 10-4 S/cm at 25A C. Recently, anhydrous proton-conducting membranes with flexible structural backbones, which show proton-conducting properties comparable to Nafion have been focus of current research. The flexible backbone of polymer chains allow for a high segmental mobility and thus, a sufficiently low glass transition temperature (Tg), which is an essential factor to reach highly conductive systems. Among the polymers with a flexible chain backbone, poly(vinylphosphonic acid), poly(vinylbenzylphosphonic acid), poly(2-vinylbenzimidazole), poly(4-styrenesulfonic acid), poly(4-vinylimidazole), poly

  14. Splenic B cells from Hymenolepis diminuta-infected mice ameliorate colitis independent of T cells and via cooperation with macrophages. (United States)

    Reyes, José L; Wang, Arthur; Fernando, Maria R; Graepel, Rabea; Leung, Gabriella; van Rooijen, Nico; Sigvardsson, Mikael; McKay, Derek M


    Helminth parasites provoke multicellular immune responses in their hosts that can suppress concomitant disease. The gut lumen-dwelling tapeworm Hymenolepis diminuta, unlike other parasites assessed as helminth therapy, causes no host tissue damage while potently suppressing murine colitis. With the goal of harnessing the immunomodulatory capacity of infection with H. diminuta, we assessed the putative generation of anti-colitic regulatory B cells following H. diminuta infection. Splenic CD19(+) B cells isolated from mice infected 7 [HdBc(7(d))] and 14 d (but not 3 d) previously with H. diminuta and transferred to naive mice significantly reduced the severity of dinitrobenzene sulfonic acid (DNBS)-, oxazolone-, and dextran-sodium sulfate-induced colitis. Mechanistic studies with the DNBS model, revealed the anti-colitic HdBc(7(d)) was within the follicular B cell population and its phenotype was not dependent on IL-4 or IL-10. The HdBc(7(d)) were not characterized by increased expression of CD1d, CD5, CD23, or IL-10 production, but did spontaneously, and upon LPS plus anti-CD40 stimulation, produce more TGF-β than CD19(+) B cells from controls. DNBS-induced colitis in RAG1(-/-) mice was inhibited by administration of HdBc(7(d)), indicating a lack of a requirement for T and B cells in the recipient; however, depletion of macrophages in recipient mice abrogated the anti-colitic effect of HdBc(7(d)). Thus, in response to H. diminuta, a putatively unique splenic CD19(+) B cell with a functional immunoregulatory program is generated that promotes the suppression of colitis dominated by TH1, TH2, or TH1-plus-TH2 events, and may do so via the synthesis of TGF-β and the generation of, or cooperation with, a regulatory macrophage.

  15. Polymer Materials for Fuel Cell Membranes :Sulfonated Poly(ether sulfone) for Universal Fuel Cell Operations

    Institute of Scientific and Technical Information of China (English)

    Hyoung-Juhn Kim


    @@ 1Introduction Polymer electrolyte fuel cells (PEFCs) have been spotlighted because they are clean and highly efficient power generation system. Proton exchange membrane fuel cells (PEMFCs), which use reformate gases or pure H2 for a fuel, have been employed for automotives and residential usages. Also, liquid-feed fuel cells such as direct methanol fuel cell (DMFC) and direct formic acid fuel cell (DFAFC) were studied for portable power generation.

  16. The mechanism of the NH4 ion oscillatory transport across the excitable cell membrane

    Directory of Open Access Journals (Sweden)

    Radenović Čedomir N.


    Full Text Available This paper presents results on typical oscillations of the membrane potential induced by the excitation of the cell membrane by different concentrations of the NH4Cl solution. The existence of four classes of oscillations of the membrane potential and several different single and local impulses rhythmically occurring were determined. It is known that the oscillatory processes of the membrane potential are in direct dependence on oscillatory transport processes of NH4 and Cl ions across the excitable cell membrane. A hypothesis on a possible mechanism of oscillatory transport processes of NH4 and Cl ions across the excitable cell membrane is also presented.

  17. Fetal Kidney Cells Can Ameliorate Ischemic Acute Renal Failure in Rats through Their Anti-Inflammatory, Anti-Apoptotic and Anti-Oxidative Effects. (United States)

    Gupta, Ashwani Kumar; Jadhav, Sachin H; Tripathy, Naresh Kumar; Nityanand, Soniya


    Fetal kidney cells may contain multiple populations of kidney stem cells and thus appear to be a suitable cellular therapy for the treatment of acute renal failure (ARF) but their biological characteristics and therapeutic potential have not been adequately explored. We have culture expanded fetal kidney cells derived from rat fetal kidneys, characterized them and evaluated their therapeutic effect in an ischemia reperfusion (IR) induced rat model of ARF. The fetal kidney cells grew in culture as adherent spindle shaped/polygonal cells and expressed CD29, CD44, CD73, CD90, CD105, CD24 and CD133 markers. Administration of PKH26 labeled fetal kidney cells in ARF rats resulted in a significant decrease in the levels of blood urea nitrogen, creatinine, and neutrophil gelatinase-associated lipocalin and decreased tubular necrosis in the kidney tissues (pkidney cells were observed to engraft around injured tubular cells, and there was increased proliferation and decreased apoptosis of tubular cells in the kidneys (pkidney tissues of ARF rats treated with fetal kidney cells had a higher gene expression of renotropic growth factors (VEGF-A, IGF-1, BMP-7 and bFGF) and anti-inflammatory cytokine (IL10); up regulation of anti-oxidative markers (HO-1 and NQO-1); and a lower Bax/Bcl2 ratio as compared to saline treated rats (pkidney cells express mesenchymal and renal progenitor markers, and ameliorate ischemic ARF predominantly by their anti-apoptotic, anti-inflammatory and anti-oxidative effects.

  18. Graptopetalum paraguayense ameliorates chemical-induced rat hepatic fibrosis in vivo and inactivates stellate cells and Kupffer cells in vitro.

    Directory of Open Access Journals (Sweden)

    Li-Jen Su

    Full Text Available BACKGROUND: Graptopetalum paraguayense (GP is a folk herbal medicine with hepatoprotective effects that is used in Taiwan. The aim of this study was to evaluate the hepatoprotective and antifibrotic effects of GP on experimental hepatic fibrosis in both dimethylnitrosamine (DMN- and carbon tetrachloride (CCl(4-induced liver injury rats. METHODS: Hepatic fibrosis-induced rats were fed with the methanolic extract of GP (MGP by oral administration every day. Immunohistochemistry, biochemical assays, and Western blot analysis were performed. The effects of MGP on the expression of fibrotic markers and cytokines in the primary cultured hepatic stellate cells (HSCs and Kupffer cells, respectively, were evaluated. RESULTS: Oral administration of MGP significantly alleviated DMN- or CCl(4-induced liver inflammation and fibrosis. High levels of alanine transaminase, aspartate transaminase, bilirubin, prothrombin activity and mortality rates also decreased in rats treated with MGP. There were significantly decreased hydroxyproline levels in therapeutic rats compared with those of the liver-damaged rats. Collagen I and alpha smooth muscle actin (α-SMA expression were all reduced by incubation with MGP in primary cultured rat HSCs. Furthermore, MGP induced apoptotic cell death in activated HSCs. MGP also suppressed lipopolysaccharide-stimulated rat Kupffer cell activation by decreasing nitric oxide, tumor necrosis factor-α and interleukin-6 production, and increasing interleukin-10 expression. CONCLUSIONS: The results show that the administration of MGP attenuated toxin-induced hepatic damage and fibrosis in vivo and inhibited HSC and Kupffer cell activation in vitro, suggesting that MGP might be a promising complementary or alternative therapeutic agent for liver inflammation and fibrosis.

  19. Dual Split Protein (DSP) Assay to Monitor Cell-Cell Membrane Fusion. (United States)

    Nakane, Shuhei; Matsuda, Zene


    Fusion between viral and cellular membranes is the essential first step in infection of enveloped viruses. This step is mediated by viral envelope glycoproteins (Env) that recognize cellular receptors. The membrane fusion between the effector cells expressing viral Env and the target cells expressing its receptors can be monitored by several methods. We have recently developed a pair of chimeric reporter protein composed of split Renilla luciferase (RL) and split GFP. We named this reporter dual split protein (DSP), since it recovers both RL and GFP activities upon self reassociation. By using DSP, pore formation and content mixing between the effector and target cells can be monitored upon the recovery of RL and GFP activities after the membrane fusion. This quick assay provides quantitative as well as spatial information about membrane fusion mediated by viral Env.

  20. Protonic conductors for proton exchange membrane fuel cells: An overview

    Directory of Open Access Journals (Sweden)

    Jurado Ramon Jose


    Full Text Available At present, Nation, which is a perfluorinated polymer, is one of the few materials that deliver the set of chemical and mechanical properties required to perform as a good electrolyte in proton exchange membrane fuel cells (PEMFCs. However, Nation presents some disadvantages, such as limiting the operational temperature of the fuel system (So°C, because of its inability to retain water at higher temperatures and also suffers chemical crossover. In addition to these restrictions, Nation membranes are very expensive. Reducing costs and using environmentally friendly materials are good reasons to make a research effort in this field in order to achieve similar or even better fuel-cell performances. Glass materials of the ternary system SiO2-ZrO2-P2O5, hybrid materials based on Nation, and nanopore ceramic membranes based on SiO2 TiO2, Al2O3, etc. are considered at present, as promising candidates to replace Nation as the electrolyte in PEMFCs. These types of materials are generally prepared by sol-gel processes in order to tailor their channel-porous structure and pore size. In this communication, the possible candidates in the near future as electrolytes (including other polymers different than Nation in PEMFCs are briefly reviewed. Their preparation methods, their electrical transport properties and conduction mechanisms are considered. The advantages and disadvantages of these materials with respect to Nation are also discussed.

  1. The Mechanism of Budding of Retroviruses from Cell Membranes

    Directory of Open Access Journals (Sweden)

    Andrew Pincetic


    Full Text Available Retroviruses have evolved a mechanism for the release of particles from the cell membrane that appropriates cellular protein complexes, referred to as ESCRT-I, -II, -III, normally involved in the biogenesis of multivesicular bodies. Three different classes of late assembly (L domains encoded in Gag, with core sequences of PPXY, PTAP, and YPXL, recruit different components of the ESCRT machinery to form a budding complex for virus release. Here, we highlight recent progress in identifying the role of different ESCRT complexes in facilitating budding, ubiquitination, and membrane targeting of avian sarcoma and leukosis virus (ASLV and human immunodeficiency virus, type 1 (HIV-1. These findings show that retroviruses may adopt parallel budding pathways by recruiting different host factors from common cellular machinery for particle release.

  2. Nanocomposite membranes based on polybenzimidazole and ZrO2 for high-temperature proton exchange membrane fuel cells. (United States)

    Nawn, Graeme; Pace, Giuseppe; Lavina, Sandra; Vezzù, Keti; Negro, Enrico; Bertasi, Federico; Polizzi, Stefano; Di Noto, Vito


    Owing to the numerous benefits obtained when operating proton exchange membrane fuel cells at elevated temperature (>100 °C), the development of thermally stable proton exchange membranes that demonstrate conductivity under anhydrous conditions remains a significant goal for fuel cell technology. This paper presents composite membranes consisting of poly[2,2'-(m-phenylene)-5,5'-bibenzimidazole] (PBI4N) impregnated with a ZrO2 nanofiller of varying content (ranging from 0 to 22 wt %). The structure-property relationships of the acid-doped and undoped composite membranes have been studied using thermogravimetric analysis, differential scanning calorimetry, dynamic mechanical analysis, wide-angle X-ray scattering, infrared spectroscopy, and broadband electrical spectroscopy. Results indicate that the level of nanofiller has a significant effect on the membrane properties. From 0 to 8 wt %, the acid uptake as well as the thermal and mechanical properties of the membrane increase. As the nanofiller level is increased from 8 to 22 wt % the opposite effect is observed. At 185 °C, the ionic conductivity of [PBI4N(ZrO2 )0.231 ](H3 PO4 )13 is found to be 1.04×10(-1)  S cm(-1) . This renders membranes of this type promising candidates for use in high-temperature proton exchange membrane fuel cells.

  3. Water free proton conducting membranes based on poly-4-vinylpyridinebisulfate for fuel cells (United States)

    Narayanan, Sekharipuram R. (Inventor); Yen, Shiao-Pin S. (Inventor)


    Disclosed are methods for forming a water-free electrolyte membrane useful in fuel cells. Also provided is a water-free electrolyte membrane comprising a quaternized amine salt including poly-4-vinylpyridinebisulfate, a poly-4-vinylpyridinebisulfate silica composite, and a combination thereof and a fuel cell comprising the membrane.


    Energy Technology Data Exchange (ETDEWEB)

    L.G. Marianowski


    The objectives of this program were: (a) to develop and demonstrate a new polymer electrolyte membrane fuel cell (PEMFC) system that operates up to 160 C temperatures and at ambient pressures for stationary power applications, and (b) to determine if the GTI-molded composite graphite bipolar separator plate could provide long term operational stability at 160 C or higher. There are many reasons that fuel cell research has been receiving much attention. Fuel cells represent environmentally friendly and efficient sources of electrical power generation that could use a variety of fuel sources. The Gas Technology Institute (GTI), formerly Institute of Gas Technology (IGT), is focused on distributed energy stationary power generation systems. Currently the preferred method for hydrogen production for stationary power systems is conversion of natural gas, which has a vast distribution system in place. However, in the conversion of natural gas into a hydrogen-rich fuel, traces of carbon monoxide are produced. Carbon monoxide present in the fuel gas will in time cumulatively poison, or passivate the active platinum catalysts used in the anodes of PEMFC's operating at temperatures of 60 to 80 C. Various fuel processors have incorporated systems to reduce the carbon monoxide to levels below 10 ppm, but these require additional catalytic section(s) with sensors and controls for effective carbon monoxide control. These CO cleanup systems must also function especially well during transient load operation where CO can spike 300% or more. One way to circumvent the carbon monoxide problem is to operate the fuel cell at a higher temperature where carbon monoxide cannot easily adsorb onto the catalyst and poison it. Commercially available polymer membranes such as Nafion{trademark} are not capable of operation at temperatures sufficiently high to prevent this. Hence this project investigated a new polymer membrane alternative to Nafion{trademark} that is capable of operation at

  5. Heat sources in proton exchange membrane (PEM) fuel cells (United States)

    Ramousse, Julien; Lottin, Olivier; Didierjean, Sophie; Maillet, Denis

    In order to model accurately heat transfer in PEM fuel cell, a particular attention had to be paid to the assessment of heat sources in the cell. Although the total amount of heat released is easily computed from its voltage, local heat sources quantification and localization are not simple. This paper is thus a discussion about heat sources/sinks distribution in a single cell, for which many bold assumptions are encountered in the literature. The heat sources or sinks under consideration are: (1) half-reactions entropy, (2) electrochemical activation, (3) water sorption/desorption at the GDL/membrane interfaces, (4) Joule effect in the membrane and (5) water phase change in the GDL. A detailed thermodynamic study leads to the conclusion that the anodic half-reaction is exothermic (Δ Sr ev a = - 226 J mo l-1 K-1) , instead of being athermic as supposed in most of the thermal studies. As a consequence, the cathodic half-reaction is endothermic (Δ Sr ev c = + 62.8 J mo l-1 K-1) , which results in a heat sink at the cathode side, proportional to the current. In the same way, depending on the water flux through the membrane, sorption can create a large heat sink at one electrode and an equivalent heat source at the other. Water phase change in the GDL - condensation/evaporation - results in heat sources/sinks that should also be taken into account. All these issues are addressed in order to properly set the basis of heat transfer modeling in the cell.

  6. Triggering of erythrocyte cell membrane scrambling by salinomycin. (United States)

    Bissinger, Rosi; Malik, Abaid; Jilani, Kashif; Lang, Florian


    Salinomycin, a polyether ionophore antibiotic effective against a variety of pathogens, has been shown to trigger apoptosis of cancer cells and cancer stem cells. The substance is thus considered for the treatment of malignancy. Salinomycin compromises tumour cell survival at least in part by interference with mitochondrial function. Erythrocytes lack mitochondria but may undergo apoptosis-like suicidal cell death or eryptosis, which is characterized by scrambling of the cell membrane with phosphatidylserine exposure at the erythrocyte surface. Signalling involved in the triggering of eryptosis includes activation of oxidant-sensitive Ca(2+) permeable cation channels with subsequent increase in cytosolic Ca(2+) activity ([Ca(2+)]i). This study explored whether salinomycin stimulates eryptosis. Phosphatidylserine-exposing erythrocytes were identified by measurement of annexin-V binding, cell volume was estimated from forward scatter, haemolysis determined from haemoglobin release, [Ca(2+)]i quantified utilizing Fluo3-fluorescence and oxidative stress from 2',7' dichlorodihydrofluorescein diacetate (DCFDA) fluorescence in flow cytometry. A 48-hr exposure to salinomycin (5-100 nM) was followed by a significant increase in Fluo3-fluorescence, DCFDA fluorescence and annexin-V binding, as well as a significant decrease in forward scatter (at 5-10 nM, but not at 50 and 100 nM). The annexin-V binding after salinomycin treatment was significantly blunted but not abrogated in the nominal absence of extracellular Ca(2+) or in the presence of antioxidant n-acetyl cysteine (1 mM). Salinomycin triggers cell membrane scrambling, an effect at least partially due to oxidative stress and entry of extracellular Ca(2+).

  7. Triggering of Erythrocyte Cell Membrane Scrambling by Emodin

    Directory of Open Access Journals (Sweden)

    Morena Mischitelli


    Full Text Available Background/Aims: The natural anthraquinone derivative emodin (1,3,8-trihydroxy-6-methylanthraquinone is a component of several Chinese medicinal herbal preparations utilized for more than 2000 years. The substance has been used against diverse disorders including malignancy, inflammation and microbial infection. The substance is effective in part by triggering suicidal death or apoptosis. Similar to apoptosis of nucleated cells erythrocytes may enter suicidal erythrocyte death or eryptosis, characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine translocation to the erythrocyte surface. Signaling involved in the triggering of eryptosis include increase of cytosolic Ca2+ activity ([Ca2+]i, oxidative stress and ceramide. The present study aimed to test, whether emodin induces eryptosis and, if so, to elucidate underlying cellular mechanisms. Methods: Phosphatidylserine abundance at the cell surface was estimated from annexin-V-binding, cell volume from forward scatter, [Ca2+]i from Fluo3-fluorescence, ROS formation from DCFDA dependent fluorescence, and ceramide abundance utilizing specific antibodies. Results: Exposure of human erythrocytes for 48 hours to emodin (≥ 10 µM significantly increased the percentage of annexin-V-binding cells, and at higher concentrations (≥ 50 µM significantly increased forward scatter. Emodin significantly increased Fluo3-fluorescence (≥ 10 µM, DCFDA fluorescence (75 µM and ceramide abundance (75 µM. The effect of emodin on annexin-V-binding was significantly blunted but not abolished by removal of extracellular Ca2+. Conclusions: Emodin triggers phospholipid scrambling of the erythrocyte cell membrane, an effect at least in part due to stimulation of Ca2+ entry and paralleled by oxidative stress and ceramide appearance at the erythroctye surface.

  8. ACME: automated cell morphology extractor for comprehensive reconstruction of cell membranes.

    Directory of Open Access Journals (Sweden)

    Kishore R Mosaliganti

    Full Text Available The quantification of cell shape, cell migration, and cell rearrangements is important for addressing classical questions in developmental biology such as patterning and tissue morphogenesis. Time-lapse microscopic imaging of transgenic embryos expressing fluorescent reporters is the method of choice for tracking morphogenetic changes and establishing cell lineages and fate maps in vivo. However, the manual steps involved in curating thousands of putative cell segmentations have been a major bottleneck in the application of these technologies especially for cell membranes. Segmentation of cell membranes while more difficult than nuclear segmentation is necessary for quantifying the relations between changes in cell morphology and morphogenesis. We present a novel and fully automated method to first reconstruct membrane signals and then segment out cells from 3D membrane images even in dense tissues. The approach has three stages: 1 detection of local membrane planes, 2 voting to fill structural gaps, and 3 region segmentation. We demonstrate the superior performance of the algorithms quantitatively on time-lapse confocal and two-photon images of zebrafish neuroectoderm and paraxial mesoderm by comparing its results with those derived from human inspection. We also compared with synthetic microscopic images generated by simulating the process of imaging with fluorescent reporters under varying conditions of noise. Both the over-segmentation and under-segmentation percentages of our method are around 5%. The volume overlap of individual cells, compared to expert manual segmentation, is consistently over 84%. By using our software (ACME to study somite formation, we were able to segment touching cells with high accuracy and reliably quantify changes in morphogenetic parameters such as cell shape and size, and the arrangement of epithelial and mesenchymal cells. Our software has been developed and tested on Windows, Mac, and Linux platforms and is

  9. Process for recycling components of a PEM fuel cell membrane electrode assembly (United States)

    Shore, Lawrence [Edison, NJ


    The membrane electrode assembly (MEA) of a PEM fuel cell can be recycled by contacting the MEA with a lower alkyl alcohol solvent which separates the membrane from the anode and cathode layers of the assembly. The resulting solution containing both the polymer membrane and supported noble metal catalysts can be heated under mild conditions to disperse the polymer membrane as particles and the supported noble metal catalysts and polymer membrane particles separated by known filtration means.

  10. Investigation of interaction between the drug and cell membrane by capillary electrophoresis

    Institute of Scientific and Technical Information of China (English)


    By introducing cell membrane into electrophoretic buffer as pseudo-stationary phase,a novel capillary electrophoresis method was established to explore the interaction between drugs and cell membrane,where the interaction between citalopram and rabbit red blood cell membrane was used as an example. A series of concentrations of cell membrane were suspended into the running buffer by peak-shift method. The binding constant of citalopram to rabbit red blood cell membrane of 0.977 g-1·L was obtained after treatment of Scatchard plot. This method could provide not only a new way for the investigation on the interactions between drugs and cell membrane,but also a new approach for high throughput screening of the drug membrane permeability,biological activity,and evaluating drugs in vivo.

  11. Cell dualism: presence of cells with alternative membrane potentials in growing populations of bacteria and yeasts. (United States)

    Ivanov, Volodymyr; Rezaeinejad, Saeid; Chu, Jian


    It is considered that all growing cells, for exception of acidophilic bacteria, have negatively charged inside cytoplasmic membrane (Δψ⁻-cells). Here we show that growing populations of microbial cells contain a small portion of cells with positively charged inside cytoplasmic membrane (Δψ⁺-cells). These cells were detected after simultaneous application of the fluorescent probes for positive membrane potential (anionic dye DIBAC⁻) and membrane integrity (propidium iodide, PI). We found in exponentially growing cell populations of Escherichia coli and Saccharomyces cerevisiae that the content of live Δψ⁻-cells was 93.6 ± 1.8 % for bacteria and 90.4 ± 4.0 % for yeasts and the content of live Δψ⁺-cells was 0.9 ± 0.3 % for bacteria and 2.4 ± 0.7 % for yeasts. Hypothetically, existence of Δψ⁺-cells could be due to short-term, about 1 min for bacteria and 5 min for yeasts, change of membrane potential from negative to positive value during the cell cycle. This change has been shown by the reversions of K⁺, Na⁺, and Ca²⁺ ions fluxes across the cell membrane during synchronous yeast culture. The transformation of Δψ(⁻-cells to Δψ⁺-cells can be explained by slow influx of K⁺ ions into Δψ⁻-cell to the trigger level of K⁺ concentration ("compression of potassium spring"), which is forming "alternative" Δψ⁺-cell for a short period, following with fast efflux of K⁺ ions out of Δψ⁺-cell ("release of potassium spring") returning cell to normal Δψ⁻ state. We anticipate our results to be a starting point to reveal the biological role of cell dualism in form of Δψ⁻- and Δψ⁺- cells.

  12. Ionic Liquids and New Proton Exchange Membranes for Fuel Cells (United States)

    Belieres, Jean-Philippe


    There is currently a great surge of activity in fuel cell research as laboratories across the world seek to take advantage of the high energy capacity provided by &el cells relative to those of other portable electrochemical power systems. Much of this activity is aimed at high temperature fie1 cells, and a vital component of such &el cells must be the availability of a high temperature stable proton-permeable membrane. NASA Glenn Research Center is greatly involved in developing this technology. Other approaches to the high temperature fuel cell involve the use of single- component or almost-single-component electrolytes that provide a path for protons through the cell. A heavily researched case is the phosphoric acid fuel cell, in which the electrolyte is almost pure phosphoric acid and the cathode reaction produces water directly. The phosphoric acid fie1 cell delivers an open circuit voltage of 0.9 V falling to about 0.7 V under operating conditions at 170 C. The proton transport mechanism is mainly vehicular in character according to the viscosity/conductance relation. Here we describe some Proton Transfer Ionic Liquids (PTILs) with low vapor pressure and high temperature stability that have conductivities of unprecedented magnitude for non-aqueous systems. The first requirement of an ionic liquid is that, contrary to experience with most liquids consisting of ions, it must have a melting point that is not much above room temperature. The limit commonly suggested is 100 C. PTILs constitute an interesting class of non-corrosive proton-exchange electrolyte, which can serve well in high temperature (T = 100 - 250 C) fuel cell applications. We will present cell performance data showing that the open circuit voltage output, and the performance of a simple H2(g)Pt/PTIL/Pt/O2(g) fuel cell may be superior to those of the equivalent phosphoric acid electrolyte fuel cell both at ambient temperature and temperatures up to and above 200 C. My work at NASA Glenn Research

  13. A theory for the membrane potential of cells

    CERN Document Server

    Endresen, L P; Endresen, Lars Petter; Hall, Kevin


    We give an explicit formula for the membrane potential of cells in terms of the intracellular and extracellular ionic concentrations, and derive equations for the ionic currents that flow through channels, exchangers and electrogenic pumps based on simple energy considerations and conservation laws. We demonstrate that the work done by the pump is equal to the potential energy of the cell plus the energy loss due to the downhill ionic fluxes through the channels and the exchanger. Our equations predict osmotic pressure variations. The theory is illustrated in a simple model of spontaneously active cells in the cardiac pacemaker. The simulated action potential and the five currents in the model are in excellent agreement with experiments. The model predicts the experimental observed intracellular ionic concentration of potassium, calcium and sodium. We do not see any drift of the values for the concentrations in a long time simulation, instead we can obtain the same asymptotic values starting with equal intrac...

  14. A hydrogen-oxygen fuel cell using an ion-exchange membrane as an electrolyte

    NARCIS (Netherlands)

    Duin, P.J. van; Kruissink, C.A.


    Using an acidic type of water leached ion exchange membrane, cell current outputs of the order of 100 mA▪cm-2 at 0,6 V cell voltage have been obtained; the removal of produced water largely limits the cell performance. Cells using the alkaline type of membrane exhibit much smaller current densities,

  15. Nafion and modified-Nafion membranes for polymer electrolyte fuel cells: An overview

    Indian Academy of Sciences (India)

    A K Sahu; S Pitchumani; P Sridhar; A K Shukla


    Polymer electrolyte fuel cells (PEFCs) employ membrane electrolytes for proton transport during the cell reaction. The membrane forms a key component of the PEFC and its performance is controlled by several physical parameters, viz. water up-take, ion-exchange capacity, proton conductivity and humidity. The article presents an overview on Nafion membranes highlighting their merits and demerits with efforts on modified-Nafion membranes.

  16. Tandem cathode for proton exchange membrane fuel cells

    DEFF Research Database (Denmark)

    Siahrostami, Samira; Björketun, Mårten E.; Strasser, Peter


    The efficiency of proton exchange membrane fuel cells is limited mainly by the oxygen reduction reaction at the cathode. The large cathodic overpotential is caused by correlations between binding energies of reaction intermediates in the reduction of oxygen to water. This work introduces a novel...... reaction intermediate each, and they occur on different catalyst surfaces. As a result they can be optimized independently and the fundamental problem associated with the four-electron catalysis is avoided. A combination of density functional theory calculations and published experimental data is used...

  17. 2011 Alkaline Membrane Fuel Cell Workshop Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Pivovar, B.


    A workshop addressing the current state-of-the-art in alkaline membrane fuel cells (AMFCs) was held May 8-9, 2011, at the Crystal Gateway Marriott in Arlington, Virginia. This workshop was the second of its kind, with the first being held December 11-13, 2006, in Phoenix, Arizona. The 2011 workshop and associated workshop report were created to assess the current state of AMFC technology (taking into account recent advances), investigate the performance potential of AMFC systems across all possible power ranges and applications, and identify the key research needs for commercial competitiveness in a variety of areas.

  18. Ultrasonic Bonding of Membrane-Electrode-Assemblies of Fuel Cells

    Directory of Open Access Journals (Sweden)

    Dung-An Wang


    Full Text Available Ultrasonic bonding has a great potential for manufacturing of membrane electrode assemblies (MEAs of fuel cells (FCs due to its short process cycle time and low energy consumption.  Before introduction of the bonding process into the industry, a detailed and elaborate investigation of the effects of the processing parameters on the bonding quality is necessary.  We develop a finite element model of the ultrasonic bonding for MEAs of FCs.  The model can be used as a computational framework for initial evaluation of the effectiveness of ultrasonic boding for MEAs of FCs.

  19. Indole prevents Escherichia coli cell division by modulating membrane potential


    Chimerel, Catalin; Field, Christopher M.; Piñero-Fernandez, Silvia; Keyser, Ulrich F.; Summers, David K.


    Indole is a bacterial signalling molecule that blocks E. coli cell division at concentrations of 3–5 mM. We have shown that indole is a proton ionophore and that this activity is key to the inhibition of division. By reducing the electrochemical potential across the cytoplasmic membrane of E. coli, indole deactivates MinCD oscillation and prevents formation of the FtsZ ring that is a prerequisite for division. This is the first example of a natural ionophore regulating a key biological proces...

  20. Cordyceps militaris fruit body extract ameliorates membranous glomerulonephritis by attenuating oxidative stress and renal inflammation via the NF-κB pathway. (United States)

    Song, Jingjing; Wang, Yingwu; Liu, Chungang; Huang, Yan; He, Liying; Cai, Xueying; Lu, Jiahui; Liu, Yan; Wang, Di


    Membranous glomerulonephritis (MGN) is a common pathogenesis of nephritic syndrome in adult patients. Nuclear factor kappa B (NF-κB) serves as the main transcription factor for the inflammatory response mediated nephropathy. Cordyceps militaris, containing various pharmacological components, has been used as a kind of crude drug and folk tonic food for improving immunity and reducing inflammation. The current study aims to investigate the renoprotective activity of Cordyceps militaris aqueous extract (CM) in the cationic bovine serum albumin (C-BSA)-induced rat model of membranous glomerulonephritis. Significant renal dysfunction was observed in MGN rats; comparatively, 4-week CM administration strongly decreased the levels of 24 h urine protein, total cholesterol, triglyceride, blood urea nitrogen and serum creatinine, and increased the levels of serum albumin and total serum protein. Strikingly, recovery of the kidney histological architecture was noted in CM-treated MGN rats. A significant improvement in the glutathione peroxidase and superoxide dismutase levels, and a reduced malondialdehyde concentration were observed in the serum and kidney of CM-treated rats. Altered levels of inflammatory cytokines including interleukins, monocyte chemoattractant protein-1, intercellular adhesion molecule 1, vascular adhesion molecule 1, tumor necrosis factor-α, 6-keto-prostaglandin F1α, and nuclear transcriptional factor subunit NF-κB p65 reverted to normal levels upon treatment with CM. The present data suggest that CM protects rats against membranous glomerulonephritis via the normalization of NF-κB activity, thereby inhibiting oxidative damage and reducing inflammatory cytokine levels, which further provide experimental evidence in support of the clinical use of CM as an effective renoprotective agent.

  1. The Molecular Structure of Human Red Blood Cell Membranes from Highly Oriented, Solid Supported Multi-Lamellar Membranes (United States)

    Himbert, Sebastian; Alsop, Richard J.; Rose, Markus; Hertz, Laura; Dhaliwal, Alexander; Moran-Mirabal, Jose M.; Verschoor, Chris P.; Bowdish, Dawn M. E.; Kaestner, Lars; Wagner, Christian; Rheinstädter, Maikel C.


    We prepared highly oriented, multi-lamellar stacks of human red blood cell (RBC) membranes applied on silicon wafers. RBC ghosts were prepared by hemolysis and applied onto functionalized silicon chips and annealed into multi-lamellar RBC membranes. High resolution X-ray diffraction was used to determine the molecular structure of the stacked membranes. We present direct experimental evidence that these RBC membranes consist of nanometer sized domains of integral coiled-coil peptides, as well as liquid ordered (lo) and liquid disordered (ld) lipids. Lamellar spacings, membrane and hydration water layer thicknesses, areas per lipid tail and domain sizes were determined. The common drug aspirin was added to the RBC membranes and found to interact with RBC membranes and preferably partition in the head group region of the lo domain leading to a fluidification of the membranes, i.e., a thinning of the bilayers and an increase in lipid tail spacing. Our results further support current models of RBC membranes as patchy structures and provide unprecedented structural details of the molecular organization in the different domains.

  2. Study of the effect of membrane thickness on microcapsule strength, permeability, and cell proliferation

    DEFF Research Database (Denmark)

    Ma, Ying; Zhang, Ying; Wang, Yu;


    Cell microencapsulation is one of the promising strategies for in vitro production of proteins or in vivo delivery of therapeutic products. Membrane thickness controls microcapsule strength and permeability, which may in return affect cell growth and metabolism. In this study, the strength......, permeability, and encapsulated Chinese hamster ovary cell proliferation and metabolism of four groups of microcapsules with different membrane thicknesses were investigated. It was found that increasing membrane thickness increases microcapsule strength, whereas decreases membrane permeability. During...... the first 6 days, cells within microcapsules with 10 μm thickness membrane proliferated fast and could reach a cell density of 1.9 × 10(7) cells/mL microcapsule with 92% cell density. A cell density of 5.5 × 10(7) cells/mL microcapsule with >85% cell density was achieved within microcapsules with 15 μm...

  3. Elisidepsin Interacts Directly with Glycosylceramides in the Plasma Membrane of Tumor Cells to Induce Necrotic Cell Death.

    Directory of Open Access Journals (Sweden)

    José Manuel Molina-Guijarro

    Full Text Available Plasma membrane integrity is essential for cell life. Any major break on it immediately induces the death of the affected cell. Different molecules were described as disrupting this cell structure and thus showing antitumor activity. We have previously defined that elisidepsin (Irvalec®, PM02734 inserts and self-organizes in the plasma membrane of tumor cells, inducing a rapid loss of membrane integrity, cell permeabilization and necrotic death. Here we show that, in sensitive HCT-116 colorectal cells, all these effects are consequence of the interaction of elisidepsin with glycosylceramides in the cell membrane. Of note, an elisidepsin-resistant subline (HCT-116-Irv presented reduced levels of glycosylceramides and no accumulation of elisidepsin in the plasma membrane. Consequently, drug treatment did not induce the characteristic necrotic cell death. Furthermore, GM95, a mutant derivative from B16 mouse melanoma cells lacking ceramide glucosyltransferase (UGCG activity and thus the synthesis of glycosylceramides, was also resistant to elisidepsin. Over-expression of UGCG gene in these deficient cells restored glycosylceramides synthesis, rendering them sensitive to elisidepsin, at a similar level than parental B16 cells. These results indicate that glycosylceramides act as membrane targets of elisidepsin, facilitating its insertion in the plasma membrane and the subsequent membrane permeabilization that leads to drug-induced cell death. They also indicate that cell membrane lipids are a plausible target for antineoplastic therapy.

  4. Elisidepsin Interacts Directly with Glycosylceramides in the Plasma Membrane of Tumor Cells to Induce Necrotic Cell Death (United States)

    Molina-Guijarro, José Manuel; García, Carolina; Macías, Álvaro; García-Fernández, Luis Francisco; Moreno, Cristina; Reyes, Fernando; Martínez-Leal, Juan Fernando; Fernández, Rogelio; Martínez, Valentín; Valenzuela, Carmen; Lillo, M. Pilar; Galmarini, Carlos M.


    Plasma membrane integrity is essential for cell life. Any major break on it immediately induces the death of the affected cell. Different molecules were described as disrupting this cell structure and thus showing antitumor activity. We have previously defined that elisidepsin (Irvalec®, PM02734) inserts and self-organizes in the plasma membrane of tumor cells, inducing a rapid loss of membrane integrity, cell permeabilization and necrotic death. Here we show that, in sensitive HCT-116 colorectal cells, all these effects are consequence of the interaction of elisidepsin with glycosylceramides in the cell membrane. Of note, an elisidepsin-resistant subline (HCT-116-Irv) presented reduced levels of glycosylceramides and no accumulation of elisidepsin in the plasma membrane. Consequently, drug treatment did not induce the characteristic necrotic cell death. Furthermore, GM95, a mutant derivative from B16 mouse melanoma cells lacking ceramide glucosyltransferase (UGCG) activity and thus the synthesis of glycosylceramides, was also resistant to elisidepsin. Over-expression of UGCG gene in these deficient cells restored glycosylceramides synthesis, rendering them sensitive to elisidepsin, at a similar level than parental B16 cells. These results indicate that glycosylceramides act as membrane targets of elisidepsin, facilitating its insertion in the plasma membrane and the subsequent membrane permeabilization that leads to drug-induced cell death. They also indicate that cell membrane lipids are a plausible target for antineoplastic therapy. PMID:26474061

  5. Characteristics and performance of membrane electrode assemblies with operating conditions in polymer electrolyte membrane fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Yong-Hun [School of Advanced Materials Engineering, Kookmin University, 861-1 Jeongneung-dong, Seongbuk-gu, Seoul 136-702 (Korea, Republic of); Yoo, Sung Jong [Fuel Cell Center, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of); Park, In-Su; Jeon, Tae-Yeol; Cho, Yoon-Hwan; Lim, Ju Wan [World Class University (WCU) program of Chemical Convergence for Energy and Environment, School of Chemical and Biological Engineering, College of Engineering, Seoul National University (SNU), Seoul (Korea, Republic of); Kwon, Oh Joong [Department of Energy and Chemical Engineering, University of Incheon, 12-1 Songdo-dong, Yeonsu-gu, Incheon 406-772 (Korea, Republic of); Yoon, Won-Sub [School of Advanced Materials Engineering, Kookmin University, 861-1 Jeongneung-dong, Seongbuk-gu, Seoul 136-702 (Korea, Republic of); Sung, Yung-Eun, E-mail: [World Class University (WCU) program of Chemical Convergence for Energy and Environment, School of Chemical and Biological Engineering, College of Engineering, Seoul National University (SNU), Seoul (Korea, Republic of)


    The degradation behavior of a membrane-electrode assembly (MEA) was investigated in accelerated degradation tests under constant voltage (0.8 V and 0.7 V) and load cycling (from open circuit voltage to 0.35 V) conditions. Changes in the structural and electrochemical characteristics of MEA after the durability tests give information as to the degradation mechanism of MEAs. The results of cyclic voltammogram and postmortem analysis by X-ray diffraction and high resolution-transmission electron microscopy indicate that the cathode catalyst layers of the MEAs showed no extreme degradation under constant voltage mode, whereas MEAs under repetition of load cycling mode showed very severe degradation after 280 h. However, the single cell performance of the MEA under repetition of load cycling mode was higher than under constant voltage mode. In addition, although the Pt band in the membrane of the MEA under repetition of load cycling mode was observed by field emission scanning electron microscopy, it did not affect the ohmic resistance.

  6. Crucial Role of Mesangial Cell-derived Connective Tissue Growth Factor in a Mouse Model of Anti-Glomerular Basement Membrane Glomerulonephritis (United States)

    Toda, Naohiro; Mori, Kiyoshi; Kasahara, Masato; Ishii, Akira; Koga, Kenichi; Ohno, Shoko; Mori, Keita P.; Kato, Yukiko; Osaki, Keisuke; Kuwabara, Takashige; Kojima, Katsutoshi; Taura, Daisuke; Sone, Masakatsu; Matsusaka, Taiji; Nakao, Kazuwa; Mukoyama, Masashi; Yanagita, Motoko; Yokoi, Hideki


    Connective tissue growth factor (CTGF) coordinates the signaling of growth factors and promotes fibrosis. Neonatal death of systemic CTGF knockout (KO) mice has hampered analysis of CTGF in adult renal diseases. We established 3 types of CTGF conditional KO (cKO) mice to investigate a role and source of CTGF in anti-glomerular basement membrane (GBM) glomerulonephritis. Tamoxifen-inducible systemic CTGF (Rosa-CTGF) cKO mice exhibited reduced proteinuria with ameliorated crescent formation and mesangial expansion in anti-GBM nephritis after induction. Although CTGF is expressed by podocytes at basal levels, podocyte-specific CTGF (pod-CTGF) cKO mice showed no improvement in renal injury. In contrast, PDGFRα promoter-driven CTGF (Pdgfra-CTGF) cKO mice, which predominantly lack CTGF expression by mesangial cells, exhibited reduced proteinuria with ameliorated histological changes. Glomerular macrophage accumulation, expression of Adgre1 and Ccl2, and ratio of M1/M2 macrophages were all reduced both in Rosa-CTGF cKO and Pdgfra-CTGF cKO mice, but not in pod-CTGF cKO mice. TGF-β1-stimulated Ccl2 upregulation in mesangial cells and macrophage adhesion to activated mesangial cells were decreased by reduction of CTGF. These results reveal a novel mechanism of macrophage migration into glomeruli with nephritis mediated by CTGF derived from mesangial cells, implicating the therapeutic potential of CTGF inhibition in glomerulonephritis. PMID:28191821

  7. Evidence for Transfer of Membranes from Mesenchymal Stem Cells to HL-1 Cardiac Cells. (United States)

    Boomsma, Robert A; Geenen, David L


    This study examined the interaction of mouse bone marrow mesenchymal stem cells (MSC) with cardiac HL-1 cells during coculture by fluorescent dye labeling and then flow cytometry. MSC were layered onto confluent HL-1 cell cultures in a 1 : 4 ratio. MSC gained gap junction permeant calcein from HL-1 cells after 4 hours which was partially reduced by oleamide. After 20 hours, 99% MSC gained calcein, unaffected by oleamide. Double-labeling HL-1 cells with calcein and the membrane dye DiO resulted in transfer of both calcein and DiO to MSC. When HL-1 cells were labeled with calcein and MSC with DiO, MSC gained calcein while HL-1 cells gained DiO. Very little fusion was observed since more than 90% Sca-1 positive MSC gained DiO from HL-1 cells while less than 9% gained gap junction impermeant CMFDA after 20 hours with no Sca-1 transfer to HL-1 cells. Time dependent transfer of membrane DiD was observed from HL-1 cells to MSC (100%) and vice versa (50%) after 20 hours with more limited transfer of CMFDA. These results demonstrate that MSC and HL-1 cells exchange membrane components which may account for some of the beneficial effect of MSC in the heart after myocardial infarction.

  8. Kaempferol ameliorates aflatoxin B1 (AFB1) induced hepatocellular carcinoma through modifying metabolizing enzymes, membrane bound ATPases and mitochondrial TCA cycle enzymes

    Institute of Scientific and Technical Information of China (English)

    Kulanthaivel Langeswaran; Rajendran Revathy; Subbaraj Gowtham Kumar; Shanmugam Vijayaprakash


    Objective: The present study was aimed to scrutinize the anticancer consequence of kaempferol against aflatoxin B1 induced hepatocarcinogenesis. Epidemiological studies of the incidence of liver cancer in the population, where dietary aflatoxin exposure is high, have provided much circumstantial evidence for the development of aflatoxin B1 induced primary liver cancer in humans. Methods:In the present investigation, aflatoxin B1 (2 mg/kg body weight i.p) was used as a hepatocarcinogen to induce hepatocellular carcinoma in experimental animals. Results: In the present analysis, on treatment with bioflavonoid kaempferol (100 mg/kg body weight p.o) the nucleic acids levels were brought back to normal and also the altered levels of biological enzymes such as membrane bound ATPase, carbohydrate metabolizing enzymes and mitochondrial TCA cycle enzymes levels (P<0.01).Conclusions:Membrane bound ATPase, carbohydrate metabolizing enzymes and mitochondrial TCA cycle enzymes were modulated by kaempferol evaluated on aflatoxin B1 induced primary liver carcinogenesis.

  9. A Mathematical Model for Predicting the Life of PEM Fuel Cell Membranes Subjected to Hydration Cycling

    CERN Document Server

    Burlatsky, S F; O'Neill, J; Atrazhev, V V; Varyukhin, A N; Dmitriev, D V; Erikhman, N S


    Under typical PEM fuel cell operating conditions, part of membrane electrode assembly is subjected to humidity cycling due to variation of inlet gas RH and/or flow rate. Cyclic membrane hydration/dehydration would cause cyclic swelling/shrinking of the unconstrained membrane. In a constrained membrane, it causes cyclic stress resulting in mechanical failure in the area adjacent to the gas inlet. A mathematical modeling framework for prediction of the lifetime of a PEM FC membrane subjected to hydration cycling is developed in this paper. The model predicts membrane lifetime as a function of RH cycling amplitude and membrane mechanical properties. The modeling framework consists of three model components: a fuel cell RH distribution model, a hydration/dehydration induced stress model that predicts stress distribution in the membrane, and a damage accrual model that predicts membrane life-time. Short descriptions of the model components along with overall framework are presented in the paper. The model was used...

  10. Force balance and membrane shedding at the Red Blood Cell surface


    Sens, Pierre; Gov, Nir


    During the aging of the red-blood cell, or under conditions of extreme echinocytosis, membrane is shed from the cell plasma membrane in the form of nano-vesicles. We propose that this process is the result of the self-adaptation of the membrane surface area to the elastic stress imposed by the spectrin cytoskeleton, via the local buckling of membrane under increasing cytoskeleton stiffness. This model introduces the concept of force balance as a regulatory process at the cell membrane, and qu...

  11. The Effect of Platinum Electrocatalyst on Membrane Degradation in Polymer Electrolyte Fuel Cells. (United States)

    Bodner, Merit; Cermenek, Bernd; Rami, Mija; Hacker, Viktor


    Membrane degradation is a severe factor limiting the lifetime of polymer electrolyte fuel cells. Therefore, obtaining a deeper knowledge is fundamental in order to establish fuel cells as competitive product. A segmented single cell was operated under open circuit voltage with alternating relative humidity. The influence of the catalyst layer on membrane degradation was evaluated by measuring a membrane without electrodes and a membrane-electrode-assembly under identical conditions. After 100 h of accelerated stress testing the proton conductivity of membrane samples near the anode and cathode was investigated by means of ex situ electrochemical impedance spectroscopy. The membrane sample near the cathode inlet exhibited twofold lower membrane resistance and a resulting twofold higher proton conductivity than the membrane sample near the anode inlet. The results from the fluoride ion analysis have shown that the presence of platinum reduces the fluoride emission rate; which supports conclusions drawn from the literature.

  12. Characteristics of Gintonin-Mediated Membrane Depolarization of Pacemaker Activity in Cultured Interstitial Cells of Cajal

    Directory of Open Access Journals (Sweden)

    Byung Joo Kim


    Full Text Available Background/Aims: Ginseng regulates gastrointestinal (GI motor activity but the underlying components and molecular mechanisms are unknown. We investigated the effect of gintonin, a novel ginseng-derived G protein-coupled lysophosphatidic acid (LPA receptor ligand, on the pacemaker activity of the interstitial cells of Cajal (ICC in murine small intestine and GI motility. Materials and Methods: Enzymatic digestion was used to dissociate ICC from mouse small intestines. The whole-cell patch-clamp configuration was used to record pacemaker potentials and currents from cultured ICC in the absence or presence of gintonin. In vivo effects of gintonin on gastrointestinal (GI motility were investigated by measuring the intestinal transit rate (ITR of Evans blue in normal and streptozotocin (STZ-induced diabetic mice. Results: We investigated the effects of gintonin on pacemaker potentials and currents in cultured ICC from mouse small intestine. Gintonin caused membrane depolarization in current clamp mode but this action was blocked by Ki16425, an LPA1/3 receptor antagonist, and by the addition of GDPβS, a GTP-binding protein inhibitor, into the ICC. To study the gintonin signaling pathway, we examined the effects of U-73122, an active PLC inhibitor, and chelerythrine and calphostin, which inhibit PKC. All inhibitors blocked gintonin actions on pacemaker potentials, but not completely. Gintonin-mediated depolarization was lower in Ca2+-free than in Ca2+-containing external solutions and was blocked by thapsigargin. We found that, in ICC, gintonin also activated Ca2+-activated Cl- channels (TMEM16A, ANO1, but not TRPM7 channels. In vivo, gintonin (10-100 mg/kg, p.o. not only significantly increased the ITR in normal mice but also ameliorated STZ-induced diabetic GI motility retardation in a dose-dependent manner. Conclusions: Gintonin-mediated membrane depolarization of pacemaker activity and ANO1 activation are coupled to the stimulation of GI

  13. Penetration of living cell membranes with fortified carbon nanotube tips. (United States)

    Vakarelski, Ivan U; Brown, Scott C; Higashitani, Ko; Moudgil, Brij M


    We have fabricated robust nanosurgical needles suitable for single cell operations by modifying multiwalled carbon nanotube (MCNT)-terminated atomic force microscopy (AFM) tips. Extra-long MCNT AFM tips were prepared and fortified with molecular layers of carbon to overcome mechanical instabilities and then coated with an outer shell of gold to promote chemical versatility. The terminal diameters of the final fabricated tips were approximately 30-40 nm, and the MCNT probes were several micrometers in length. We illustrate the capability of these modified MCNT tips to carry nanoparticulate payloads and to penetrate the plasma membrane of living pleural mesothelial cells at the smallest indentation depths (100-200 nm) and lowest penetration forces (100-200 pN) currently reported for these procedures.

  14. Cell-Culture Reactor Having a Porous Organic Polymer Membrane (United States)

    Koontz, Steven L. (Inventor)


    A method for making a biocompatible polymer article using a uniform atomic oxygen treatment is disclosed. The substrate may be subsequently optionally grated with a compatibilizing compound. Compatibilizing compounds may include proteins, phosphory1choline groups, platelet adhesion preventing polymers, albumin adhesion promoters, and the like. The compatibilized substrate may also have a living cell layer adhered thereto. The atomic oxygen is preferably produced by a flowing afterglow microwave discharge, wherein the substrate resides in a sidearm out of the plasma. Also, methods for culturing cells for various purposes using the various membranes are disclosed as well. Also disclosed are porous organic polymers having a distributed pore chemistry (DPC) comprising hydrophilic and hydrophobic regions, and a method for making the DPC by exposing the polymer to atomic oxygen wherein the rate of hydrophilization is greater than the rate of mass loss.

  15. New hybrid model of proton exchange membrane fuel cell

    Institute of Scientific and Technical Information of China (English)

    WANG Rui-min; CAO Guang-yi; ZHU Xin-jian


    Model and simulation are good tools for design optimization of fuel cell systems. This paper proposes a new hybrid model of proton exchange membrane fuel cell (PEMFC). The hybrid model includes physical component and black-box component. The physical component represents the well-known part of PEMFC, while artificial neural network (ANN) component estimates the poorly known part of PEMFC. The ANN model can compensate the performance of the physical model. This hybrid model is implemented on Matlab/Simulink software. The hybrid model shows better accuracy than that of the physical model and ANN model. Simulation results suggest that the hybrid model can be used as a suitable and accurate model for PEMFC.

  16. Intravital multiphoton photoconversion with a cell membrane dye. (United States)

    Turcotte, Raphaël; Wu, Juwell W; Lin, Charles P


    Photoconversion, an irreversible shift in a fluorophore emission spectrum after light exposure, is a powerful tool for marking cellular and subcellular compartments and tracking their dynamics in vivo. This paper reports on the photoconversion properties of Di-8-ANEPPS, a commercially available membrane dye. When illuminated with near-infrared femtosecond laser pulses, Di-8-ANEPPS undergoes multiphoton photoconversion as indicated by the supralinear dependence of the conversion rate ρpc on the incident power (ρpc∝Iexc2.27), and by the ability to photoconvert a thin optical section in a three-dimensional matrix. The characteristic emission spectrum changed from red to blue, and ratiometric analysis on single cells in vitro revealed a 65-fold increase in the blue to red wavelength ratio after photoconversion. The spectral shift is preserved in vivo for hours, making Di-8-ANEPPS a useful dye for intravital cell marking and tracking applications.

  17. Composite materials for polymer electrolyte membrane microbial fuel cells. (United States)

    Antolini, Ermete


    Recently, the feasibility of using composite metal-carbon, metal-polymer, polymer-carbon, polymer-polymer and carbon-carbon materials in microbial fuel cells (MFCs) has been investigated. These materials have been tested as MFC anode catalyst (microorganism) supports, cathode catalysts and membranes. These hybrid materials, possessing the properties of each component, or even with a synergistic effect, would present improved characteristics with respect to the bare components. In this paper we present an overview of the use of these composite materials in microbial fuel cells. The characteristics of the composite materials as well as their effect on MFC performance were compared with those of the individual component and/or the conventionally used materials.

  18. Lactobacillus rhamnosus GR-1 Ameliorates Escherichia coli-Induced Inflammation and Cell Damage via Attenuation of ASC-Independent NLRP3 Inflammasome Activation. (United States)

    Wu, Qiong; Liu, Ming-Chao; Yang, Jun; Wang, Jiu-Feng; Zhu, Yao-Hong


    Escherichia coli is a major environmental pathogen causing bovine mastitis, which leads to mammary tissue damage and cell death. We explored the effects of the probiotic Lactobacillus rhamnosus GR-1 on ameliorating E. coli-induced inflammation and cell damage in primary bovine mammary epithelial cells (BMECs). Increased Toll-like receptor 4 (TLR4), NOD1, and NOD2 mRNA expression was observed following E. coli challenge, but this increase was attenuated by L. rhamnosus GR-1 pretreatment. Immunofluorescence and Western blot analyses revealed that L. rhamnosus GR-1 pretreatment decreased the E. coli-induced increases in the expression of the NOD-like receptor family member pyrin domain-containing protein 3 (NLRP3) and the serine protease caspase 1. However, expression of the adaptor protein apoptosis-associated speck-like protein (ASC, encoded by the Pycard gene) was decreased during E. coli infection, even with L. rhamnosus GR-1 pretreatment. Pretreatment with L. rhamnosus GR-1 counteracted the E. coli-induced increases in interleukin-1β (IL-1β), -6, -8, and -18 and tumor necrosis factor alpha mRNA expression but upregulated IL-10 mRNA expression. Our data indicate that L. rhamnosus GR-1 reduces the adhesion of E. coli to BMECs, subsequently ameliorating E. coli-induced disruption of cellular morphology and ultrastructure and limiting detrimental inflammatory responses, partly via promoting TLR2 and NOD1 synergism and attenuating ASC-independent NLRP3 inflammasome activation. Although the residual pathogenic activity of L. rhamnosus, the dosage regimen, and the means of probiotic supplementation in cattle remain undefined, our data enhance our understanding of the mechanism of action of this candidate probiotic, allowing for development of specific probiotic-based therapies and strategies for preventing pathogenic infection of the bovine mammary gland.

  19. Pyro-electrification of polymer membranes for cell patterning (United States)

    Rega, R.; Gennari, O.; Mecozzia, L.; Grilli, S.; Pagliarulo, V.; Ferraro, P.


    In the recent years, much attention has been devoted to the possibility of charging polymer-based materials, due to their potential in developing large-scale and inexpensive flexible thin-film technology. The availability of localized electrostatic fields is in of great interest for a huge amount of applications such as distribution of biomolecules and cells from the liquid phase. Here we report a voltage-free pyro-electrification (PE) process able to induce permanent dipoles into polymer layers; the lithium niobate (LN) crystal is the key component that plays the multi-purpose role of sustaining, heating and poling the polymer layer that is then peeled-off easily in order to have a free-standing charged membrane. The results show the fascinating application for the living cell patterning. It well known that cell behaviour is affected by chemical and topographical cues of substrate. In fact, polymers, such as polystyrene (PS) and poly(methyl methacrylate) (PMMA), are naturally cytophobic and require specific functionalization treatments in order to promote cell adhesion. Through our proposal technique, it's possible to obtain spontaneous organization and a driven growth of SH-SY5Y cells that is solely dictated by the nature of the charge polymer surface, opening, in this way, the innovative chance to manipulate and transfer biological samples on a free-standing polymer layer [1].

  20. Nafion/Silicon Oxide Composite Membrane for High Temperature Proton Exchange Membrane Fuel Cell

    Institute of Scientific and Technical Information of China (English)


    Nafion/Silicon oxide composite membranes were produced via in situ sol-gel reaction of tetraethylorthosilicate (TEOS) in Nafion membranes. The physicochemical properties of the membranes were studied by FT-IR, TG-DSC and tensile strength. The results show that the silicon oxide is compatible with the Nafion membrane and the thermo stability of Nafion/Silicon oxide composite membrane is higher than that of Nafion membrane. Furthermore, the tensile strength of Nafion/Silicon oxide composite membrane is similar to that of the Nafion membrane. The proton conductivity of Nafion/Silicon oxide composite membrane is higher than that of Nafion membrane. When the Nafion/Silicon oxide composite membrane was employed as an electrolyte in H2/O2 PEMFC, a higher current density value (1 000 mA/cm2 at 0.38 V) than that of the Nafion 1135 membrane (100 mA/cm2 at 0.04 V) was obtained at 110 ℃.

  1. Development of a living membrane comprising a functional human renal proximal tubule cell monolayer on polyethersulfone polymeric membrane

    NARCIS (Netherlands)

    Schophuizen, Carolien M S; De Napoli, Ilaria E; Jansen, Jitske; Teixeira, Sandra; Wilmer, Martijn J; Hoenderop, Joost G J; Van den Heuvel, Lambert P W; Masereeuw, R.; Stamatialis, Dimitrios


    The need for improved renal replacement therapies has stimulated innovative research for the development of a cell-based renal assist device. A key requirement for such a device is the formation of a "living membrane", consisting of a tight kidney cell monolayer with preserved functional organic ion

  2. Continuous monitoring of membrane protein micro-domain association during cell signaling

    CERN Document Server

    Huang, Heng


    Central to understanding membrane bound cell signaling is to quantify how the membrane ultra-structure consisting of transient spatial domains modulates signaling and how the signaling influences this ultra-structure. Yet, measuring the association of membrane proteins with domains in living, intact cells poses considerable challenges. Here, we describe a non-destructive method to quantify protein-lipid domain and protein cytoskeleton interactions in single, intact cells enabling continuous monitoring of the protein domains interaction over time during signaling.

  3. Quantum theory analysis on microscopic mechanism of the interaction of laser with cell membrane

    Institute of Scientific and Technical Information of China (English)

    XU Lin; ZHANG Can-bang; WANG Sheng-yu; LI Ling; WANG Rui-li; ZHOU Ling-yun


    On the basis of liquid crystal model with the electric dipole moment of cell membrane,the microscopic mechanism of the electricity and thermology effects of interaction of laser with cell membrane is researched by electromagnetic, quantum mechanics and quantum statistics. We derive the formulas on the polarization effects and "temperature-rising effect" of laser-cell membrane interaction. The results of the theoretical research can explain some experiments.

  4. Sampling membrane potential, membrane resistance and electrode resistance with a glass electrode impaled into a single cell. (United States)

    Schiebe, M; Jaeger, U


    A method is demonstrated to measure membrane resistances and membrane potentials of single cells during impalement by a single glass microelectrode. The intention was to develop a procedure which would provide data almost continuously. Therefore, a frequency-dependent voltage divider network has been chosen to represent the basic electrical properties of the electrode and cell membrane, and used to explore its voltage response to a current stimulus, consisting of two rectangular pulses of different widths. It can be shown that the resolution of the method can be improved by inverting this stimulus so that each polarization becomes a relaxation and vice versa. In order to generate, analyze and display this signal continuously, a device has been designed which has been called 'Electrophysiological Monitor, (E1M2)'. E1M2 provides a current stimulus as input into a standard bridge network and can analyze the summed response of the electrode and cell by a set of sample-hold amplifiers. It then decodes and displays the data continuously, as membrane potential (Em), input resistance of the cell (Rinp) and the electrode resistance (Re) respectively. From Rinp the membrane resistance (Rm) can be deduced. The validity of the method has been examined by measuring these parameters in frog muscle cells. Technical design considerations, the accuracy and possible pitfalls with the suggested procedure are discussed.

  5. Influence of Silica/Sulfonated Polyether-Ether Ketone as Polymer Electrolyte Membrane for Hydrogen Fueled Proton Exchange Membrane Fuel Cells

    Directory of Open Access Journals (Sweden)

    Sri Handayani


    Full Text Available The operation of non-humidified condition of proton exchange membrane fuel cell (PEMFC using composite sPEEK-silica membrane is reported. Sulfonated membrane of PEEK is known as hydrocarbon polyelectrolyte membrane for PEMFC and direct methanol fuel cell (DMFC. The state of the art of fuel cells is based on the perluorosulfonic acid membrane (Nafion. Nafion has been the most used in both PEMFC and DMFC due to good performance although in low humidified condition showed poor current density. Here we reported the effect of silica in hydrocarbon sPEEK membrane that contributes for a better water management system inside the cell, and showed 0.16 W/cm2 of power density which is 78% higher than that of non-silica modified [Keywords: composite membrane, polyether-ether ketone, silica, proton exchange membrane fuel cell].

  6. Enhancement of the fuel cell performance of a high temperature proton exchange membrane fuel cell running with titanium composite polybenzimidazole-based membranes (United States)

    Lobato, Justo; Cañizares, Pablo; Rodrigo, Manuel A.; Úbeda, Diego; Pinar, F. Javier


    The fuel cell performance of a composite PBI-based membrane with TiO2 has been studied. The behaviour of the membrane has been evaluated by comparison with the fuel cell performance of other PBI-based membranes, all of which were cast from the same polymer with the same molecular weight. The PBI composite membrane incorporating TiO2 showed the best performance and reached 1000 mW cm-2 at 175 °C. Moreover, this new titanium composite PBI-based membrane also showed the best stability during the preliminary long-term test under our operation conditions. Thus, the slope of the increase in the ohmic resistance of the composite membrane was 0.041 mΩ cm2 h-1 and this is five times lower than that of the standard PBI membrane. The increased stability was due to the high phosphoric acid retention capacity - as confirmed during leaching tests, in which the Ti-based composite PBI membrane retained 5 mol of H3PO4/PBI r.u. whereas the PBI standard membrane only retained 1 mol H3PO4/PBI r.u. Taking into account the results obtained in this study, the TiO2-PBI based membranes are good candidates as electrolytes for high temperature PEMFCs.

  7. Glucosamine-induced Sp1 O-GlcNAcylation ameliorates hypoxia-induced SGLT dysfunction in primary cultured renal proximal tubule cells. (United States)

    Suh, Han Na; Lee, Yu Jin; Kim, Mi Ok; Ryu, Jung Min; Han, Ho Jae


    The aim of this study is to determine whether GlcN could recover the endoplasmic reticulum (ER) stress-induced dysfunction of Na(+) /glucose cotransporter (SGLT) in renal proximal tubule cells (PTCs) under hypoxia. With the rabbit model, the renal ischemia induced tubulointerstitial abnormalities and decreased SGLTs expression in tubular brush-border, which were recovered by GlcN. Thus, the protective mechanism of GlcN against renal ischemia was being examined by using PTCs. Hypoxia decreased the level of protein O-GlcNAc and the expression of O-GlcNAc transferase (OGT) while increased O-GlcNAcase (OGA) and these were reversed by GlcN. Hypoxia also decreased the expression of SGLTs (SGLT1 and 2) and [(14) C]-α-methyl-D-glucopyranoside (α-MG) uptake which were recovered by GlcN and PUGNAc (OGA inhibitor). Hypoxia enhanced reactive oxygen species (ROS) and then ER stress proteins, glucose-regulated protein 78 (GRP78), and C/EBP-homologous protein (CHOP). However, the expression of GRP78 increased till 6 h and then decreased whereas CHOP increased gradually. Moreover, decreased GRP78 and increased CHOP were reversed by NAC (antioxidant) and GlcN. GlcN ameliorated hypoxia-induced decrease of O-GlcNAc modification of Sp1 but OGT or Sp1 siRNAs blocked the recovery effect of GlcN on SGLT expression and α-MG uptake. In addition, hypoxia-decreased GRP78 and HIF-1α expression was reversed by GlcN but OGT siRNA or Sp1 siRNA ameliorated the effect of GlcN. When PTCs were transfected with GRP78 siRNA or HIF-1α siRNA, SGLT expression and α-MG uptake was decreased. Taken together, these data suggest that GlcN-induced O-GlcNAc modified Sp1 with stimulating GRP78 and HIF-1α activity ameliorate hypoxia-induced SGLT dysfunction in renal PTCs. J. Cell. Physiol. 229: 1557-1568, 2014. © 2014 Wiley Periodicals, Inc.

  8. Lipid-protein interactions in plasma membranes of fiber cells isolated from the human eye lens. (United States)

    Raguz, Marija; Mainali, Laxman; O'Brien, William J; Subczynski, Witold K


    The protein content in human lens membranes is extremely high, increases with age, and is higher in the nucleus as compared with the cortex, which should strongly affect the organization and properties of the lipid bilayer portion of intact membranes. To assess these effects, the intact cortical and nuclear fiber cell plasma membranes isolated from human lenses from 41- to 60-year-old donors were studied using electron paramagnetic resonance spin-labeling methods. Results were compared with those obtained for lens lipid membranes prepared from total lipid extracts from human eyes of the same age group [Mainali, L., Raguz, M., O'Brien, W. J., and Subczynski, W. K. (2013) Biochim. Biophys. Acta]. Differences were considered to be mainly due to the effect of membrane proteins. The lipid-bilayer portions of intact membranes were significantly less fluid than lipid bilayers of lens lipid membranes, prepared without proteins. The intact membranes were found to contain three distinct lipid environments termed the bulk lipid domain, boundary lipid domain, and trapped lipid domain. However, the cholesterol bilayer domain, which was detected in cortical and nuclear lens lipid membranes, was not detected in intact membranes. The relative amounts of bulk and trapped lipids were evaluated. The amount of lipids in domains uniquely formed due to the presence of membrane proteins was greater in nuclear membranes than in cortical membranes. Thus, it is evident that the rigidity of nuclear membranes is greater than that of cortical membranes. Also the permeability coefficients for oxygen measured in domains of nuclear membranes were significantly lower than appropriate coefficients measured in cortical membranes. Relationships between the organization of lipids into lipid domains in fiber cells plasma membranes and the organization of membrane proteins are discussed.

  9. Modelling membrane hydration and water balance of a pem fuel cell

    DEFF Research Database (Denmark)

    Liso, Vincenzo; Nielsen, Mads Pagh


    Polymer electrolyte membrane (PEM) fuel cells requires an appropriate hydration in order to ensure high efficiency and long durability. As water is essential for promoting proton conductivity in the membrane, it is important to control membrane water hydration to avoid flooding. In this study we...

  10. Two-dimensional simulation of polymer electrolyte membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Hum, B.; Li, X. [Waterloo Univ., ON (Canada). Dept. of Mechanical Engineering


    Polymer electrolyte membrane (PEM) fuel cells have fast startup, are highly energy efficient and have high power density, rendering them very suitable for use in zero-emission vehicles and on-site power cogeneration. Before the PEM fuel cell can reach widespread commercial use, the performance has to be improved regarding the minimization of all transport resistances. This can be done by considering the electrochemical reactions in the catalyst layers along with the physical transport of reactant gas flows, product and process water, heat and the charged particles in the individual cells and stacks. This paper presents the results of a two-dimensional numerical simulation of a steady, isothermal, fully humidified PEM fuel cell which was conducted to examine what happens in the catalyst layers. The finite volume method was used together with the alternating direction implicit algorithm. It was determined that the cathode catalyst layer has more pronounced changes in potential, reaction rate and current density generation compared to the anode catalyst layer. This is because of the large cathode activation overpotential and the low diffusion coefficient of oxygen. It was demonstrated that catalyst layers, by nature, are 2 dimensional, particularly in areas of low reactant concentrations. Maximum power density is limited by the depletion of one of the reactants in the catalyst layer. Both the fuel and oxidant supply must be managed simultaneously for optimal cell performance. It was concluded that cell performance is not greatly affected by flow direction. It was noted that this analysis can also be used for more complex cell design, such as cross flow between reactant streams and practical serpentine flow channel design. 11 refs., 2 tabs., 10 figs.


    Energy Technology Data Exchange (ETDEWEB)

    Shamsuddin Ilias


    Fuel cells are electrochemical devices that convert the available chemical free energy directly into electrical energy, without going through heat exchange process. Of all different types of fuel cells, the Proton Exchange Membrane Fuel Cell (PEMFC) is one of the most promising power sources for stand-alone utility and electric vehicle applications. Platinum (Pt) Catalyst is used for both fuel and air electrodes in PEMFCs. However, carbon monoxide (CO) contamination of H{sub 2} greatly affects electro catalysts used at the anode of PEMFCs and decreases cell performance. The irreversible poisoning of the anode can occur even in CO concentrations as low as few parts per million (ppm). In this work, we have synthesized several novel elctrocatalysts (Pt/C, Pt/Ru/C, Pt/Mo/C, Pt/Ir and Pt/Ru/Mo) for PEMFCs. These catalysts have been tested for CO tolerance in the H{sub 2}/air fuel cell, using CO concentrations in the H{sub 2} fuel that varies from 10 to 100 ppm. The performance of the electrodes was evaluated by determining the cell potential against current density. The effects of catalyst composition and electrode film preparation method on the performance of PEM fuel cell were also studied. It was found that at 70 C and 3.5 atm pressure at the cathode, Pt-alloy catalyst (10 wt% Pt/Ru/C, 20 wt% Pt/Mo/C) were more CO tolerant than the 20 wt% Pt/C catalyst alone. It was also observed that spraying method was better than the brushing technique for the preparation of electrode film.

  12. Membrane cholesterol regulates lysosome-plasma membrane fusion events and modulates Trypanosoma cruzi invasion of host cells.

    Directory of Open Access Journals (Sweden)

    Bárbara Hissa

    Full Text Available BACKGROUND: Trypomastigotes of Trypanosoma cruzi are able to invade several types of non-phagocytic cells through a lysosomal dependent mechanism. It has been shown that, during invasion, parasites trigger host cell lysosome exocytosis, which initially occurs at the parasite-host contact site. Acid sphingomyelinase released from lysosomes then induces endocytosis and parasite internalization. Lysosomes continue to fuse with the newly formed parasitophorous vacuole until the parasite is completely enclosed by lysosomal membrane, a process indispensable for a stable infection. Previous work has shown that host membrane cholesterol is also important for the T. cruzi invasion process in both professional (macrophages and non-professional (epithelial phagocytic cells. However, the mechanism by which cholesterol-enriched microdomains participate in this process has remained unclear. METHODOLOGY/PRINCIPAL FINDING: In the present work we show that cardiomyocytes treated with MβCD, a drug able to sequester cholesterol from cell membranes, leads to a 50% reduction in invasion by T. cruzi trypomastigotes, as well as a decrease in the number of recently internalized parasites co-localizing with lysosomal markers. Cholesterol depletion from host membranes was accompanied by a decrease in the labeling of host membrane lipid rafts, as well as excessive lysosome exocytic events during the earlier stages of treatment. Precocious lysosomal exocytosis in MβCD treated cells led to a change in lysosomal distribution, with a reduction in the number of these organelles at the cell periphery, and probably compromises the intracellular pool of lysosomes necessary for T. cruzi invasion. CONCLUSION/SIGNIFICANCE: Based on these results, we propose that cholesterol depletion leads to unregulated exocytic events, reducing lysosome availability at the cell cortex and consequently compromise T. cruzi entry into host cells. The results also suggest that two different pools of

  13. Effect of cell-membrane composition on the growth and composition of a nonlytic enveloped mycoplasmavirus

    Energy Technology Data Exchange (ETDEWEB)

    Putzrath, R.M.; Cadden, S.P.; Maniloff, J.


    The effect of host cell membrane composition on viral growth and membrane composition was studied using MVL2, an enveloped nonlytic mycoplasmavirus. MVL2 contains seven proteins, with molecular weights of 67,800; 63,600; 60,900; 58,000; 52,400; 20,600; and 19,100. Cells grown in a medium which altered the fatty acid composition of the cell membrane lipids gave rise to viruses with similarly altered lipids. Near the lower limit of the membrane lipid phase transition cell growth was reduced, but no effect on viral adsorption or maturation could be found.

  14. Infectious rotavirus enters cells by direct cell membrane penetration, not by endocytosis

    Energy Technology Data Exchange (ETDEWEB)

    Kaljot, K.T.; Shaw, R.D.; Greenberg, H.B. (Stanford Univ. School of Medicine, CA (USA) Palo Alto Veterans Administration Medical Center, CA (USA)); Rubin, D.H. (Univ. of Pennsylvania, Philadelphia (USA))


    Rotaviruses are icosahedral viruses with a segmented, double-stranded RNA genome. They are the major cause of severe infantile infectious diarrhea. Rotavirus growth in tissue culture is markedly enhanced by pretreatment of virus with trypsin. Trypsin activation is associated with cleavage of the viral hemagglutinin (viral protein 3 (VP3); 88 kilodaltons) into two fragments (60 and 28 kilodaltons). The mechanism by which proteolytic cleavage leads to enhanced growth is unknown. To determine whether trypsin treatment affected rotavirus internalization, the authors studied the kinetics of entry of infectious rhesus rotavirus (RRV) into MA104 cells. Trypsin-activated RRV was internalized with a half-time of 3 to 5 min, while nonactivated virus disappeared from the cell surface with a half-time of 30 to 50 min. In contrast to trypsin-activated RRV, loss of nonactivated RRV from the cell surface did not result in the appearance of infection, as measured by plaque formation. Purified trypsin-activated RRV added to cell monolayers at pH 7.4 mediated {sup 51}Cr, ({sup 14}C)choline, and ({sup 3}H)inositol released from prelabeled MA104 cells. This release could be specifically blocked by neutralizing antibodies to VP3. These results suggest that MA104 cell infection follows the rapid entry of trypsin-activated RRV by direct cell membrane penetration. Cell membrane penetration of infectious RRV is initiated by trypsin cleavage of VP3. Neutralizing antibodies can inhibit this direct membrane penetration.

  15. Homeostatic restitution of cell membranes. Nuclear membrane lipid biogenesis and transport of protein from cytosol to intranuclear spaces.

    Directory of Open Access Journals (Sweden)

    Amalia Slomiany, Maria Grabska, Bronislaw L. Slomiany


    Full Text Available Our studies on homeostatic restitution of cellular and subcellular membranes showed that vesicular intracellular transport is engaged in systematic and coordinated replacement of lipids and proteins in the membranes of the secretory, non-dividing epithelial cells (Slomiany et al., J. Physiol. Pharmacol. 2004; 55: 837-860. In this report, we present evidence on the homeostatic restitution of lipids in the biomembranes that constitute nuclear envelopes. We investigated nuclear membranes lipid synthesis by employing purified intact nuclei (IN, the outer nuclear membrane (ONM, the inner nuclear membrane (INM and the cell cytosol (CC. In contrast to Endoplasmic Reticulum (ER which in the presence of CC generates new biomembrane that forms ER vesicles transporting ER products to Golgi, the IN, ONM and INM are not producing transport vesicles. Instead, the newly synthesized lipids remain in the nuclear membranes. The membranes (INM, ONM of IN incubated with CC become enriched with newly synthesized phosphatidylcholine (PC, phosphatidylinositol (PI, phosphatidylinositol phosphates (PIPs and phosphatidic acid (PA. The incubation of separated ONM and INM with CC also enriched the membranes with IN specific lipids identified above. Moreover, the incubation of IN or its membranes with CC afforded retention of numerous CC proteins on the nuclear membrane. Here, we concentrated on 30kDa CC protein that displayed affinity to nuclear membrane PIP2. The 30kDa CC protein bound to PIP2 of IN, INM, and ONM. With IN, initially the PIP2-30kDa CC protein complex was detected on ONM, after 30-120 min of incubation, was found on INM and in nuclear contents. At the same time when the 30 kDa protein was released from INM and found in nuclear contents, the PIP2 of INM and ONM became undetectable, while the lipid extract from the membrane displaced from IN contained labeled PI only. Since ONM is an uninterrupted continuum of ER and INM, we speculate that the synthesis of

  16. Narrow-Band Ultraviolet B Phototherapy Ameliorates Acute Graft-Versus-Host Disease of the Intestine by Expansion of Regulatory T Cells. (United States)

    Hashimoto, Akari; Sato, Tsutomu; Iyama, Satoshi; Yoshida, Masahiro; Ibata, Soushi; Tatekoshi, Ayumi; Kamihara, Yusuke; Horiguchi, Hiroto; Murase, Kazuyuki; Kawano, Yutaka; Takada, Kohichi; Miyanishi, Koji; Kobune, Masayoshi; Ichimiya, Shingo; Kato, Junji


    Narrowband ultraviolet B (NB-UVB) has been widely used in dermatological phototherapy. As for the application of NB-UVB phototherapy to graft-versus-host disease (GVHD), we previously reported that it was highly efficacious for cutaneous lesions of acute GVHD (aGVHD) and that expansion of regulatory T (Treg) cells induced by NB-UVB might be one of the mechanisms. In order to examine whether NB-UVB irradiation through expansion of Treg cells is effective for the treatment of not only cutaneous aGVHD but also aGVHD of inner organs such as the intestine or liver, we conducted experiments in which a murine lethal aGVHD model, characterized by severe involvement of the intestine, was irradiated with NB-UVB. We found that NB-UVB irradiation improved the clinical score and survival rate. The pathological score of aGVHD was improved in all affected organs: intestine, liver, and skin. In the serum of mice irradiated with NB-UVB, the levels of Treg cells-associated cytokines such as transforming growth factor beta (TGFβ) and interleukin-10 (IL-10) were elevated. The numbers of infiltrating Treg cells in inflamed tissue of the intestine and those in spleen were increased in mice treated with NB-UVB. This is the first report demonstrating that NB-UVB phototherapy has the ability to ameliorate intestinal aGVHD through the expansion of Treg cells.

  17. Measurement of the cell membrane capacitance and conductance of colonic crypt cells of the rat using the patch clamp technique

    CERN Document Server

    Schill, C


    Using the patch clamp technique the membrane capacitance and membrane conductance of colonic crypt cells of the rat was measured. The influence of the intracellular agonists Ca++, cAMP and of osmotic changes on the membrane capacitance and conductance was studied.

  18. FOS-1 promotes basement-membrane removal during anchor-cell invasion in C. elegans. (United States)

    Sherwood, David R; Butler, James A; Kramer, James M; Sternberg, Paul W


    Cell invasion through basement membranes is crucial during morphogenesis and cancer metastasis. Here, we genetically dissect this process during anchor-cell invasion into the vulval epithelium in C. elegans. We have identified the fos transcription factor ortholog fos-1 as a critical regulator of basement-membrane removal. In fos-1 mutants, the gonadal anchor cell extends cellular processes normally toward vulval cells, but these processes fail to remove the basement membranes separating the gonad from the vulval epithelium. fos-1 is expressed in the anchor cell and controls invasion cell autonomously. We have identified ZMP-1, a membrane-type matrix metalloproteinase, CDH-3, a Fat-like protocadherin, and hemicentin, a fibulin family extracellular matrix protein, as transcriptional targets of FOS-1 that promote invasion. These results reveal a key genetic network that controls basement-membrane removal during cell invasion.

  19. Endogenously generated amyloid β increases membrane fluidity in neural 2a cells

    Institute of Scientific and Technical Information of China (English)

    NIU Ying; SHENG BaiYang; SONG Bo; LIU LingLing; ZHANG XiuFang; ZHAO NanMing; GONG YanDao


    The effect of endogenously generated amyloid β on membrane fluidity was investigated in Neural 2a cells stably expressing Swedish mutant amyloid precursor protein (APPswe). Membrane fluidity was studied by fluorescence polarizability using 1,6-Diphenyl-1,3,5-Hexatriene (DPH) as the fluorescence probe. It was found that the membrane fluidity in APPswe cells was significantly higher than that in its wild type counterparts. Alleviating the effect of amyloid β either by y secretase activity inhibition or by amyloid antibody treatment decreased membrane fluidity, which indicated an important role of amyloid β in increasing membrane fluidity. Treatment using amyloid β channel blocker, tromethamine and NA4 suggested that channel formed by amyloid β on the cell membrane is a way through which amyloid β takes its membrane fluidizing effect.

  20. Purinergically induced membrane fluidization in ciliary cells: characterization and control by calcium and membrane potential. (United States)

    Alfahel, E; Korngreen, A; Parola, A H; Priel, Z


    To examine the role of membrane dynamics in transmembrane signal transduction, we studied changes in membrane fluidity in mucociliary tissues from frog palate and esophagus epithelia stimulated by extracellular ATP. Micromolar concentrations of ATP induced strong changes in fluorescence polarization, possibly indicating membrane fluidization. This effect was dosage dependent, reaching a maximum at 10-microM ATP. It was dependent on the presence of extracellular Ca2+ (or Mg2+), though it was insensitive to inhibitors of voltage-gated calcium channels. It was inhibited by thapsigargin and by ionomycin (at low extracellular Ca2+ concentration), both of which deplete Ca2+ stores. It was inhibited by the calcium-activated potassium channel inhibitors quinidine, charybdotoxin, and apamine and was reduced considerably by replacement of extracellular Na+ with K+. Hyperpolarization, or depolarization, of the mucociliary membrane induced membrane fluidization. The degree of membrane fluidization depended on the degree of hyperpolarization or depolarization of the ciliary membrane potential and was considerably lower than the effect induced by extracellular ATP. These results indicate that appreciable membrane fluidization induced by extracellular ATP depends both on an increase in intracellular Ca2+, mainly from its internal stores, and on hyperpolarization of the membrane. Calcium-dependent potassium channels couple the two effects. In light of recent results on the enhancement of ciliary beat frequency, it would appear that extracellular ATP-induced changes both in ciliary beat frequency and in membrane fluidity are triggered by similar signal transduction pathways.

  1. S4(13)-PV cell-penetrating peptide induces physical and morphological changes in membrane-mimetic lipid systems and cell membranes: implications for cell internalization. (United States)

    Cardoso, Ana M S; Trabulo, Sara; Cardoso, Ana L; Lorents, Annely; Morais, Catarina M; Gomes, Paula; Nunes, Cláudia; Lúcio, Marlene; Reis, Salette; Padari, Kärt; Pooga, Margus; Pedroso de Lima, Maria C; Jurado, Amália S


    The present work aims to gain insights into the role of peptide-lipid interactions in the mechanisms of cellular internalization and endosomal escape of the S4(13)-PV cell-penetrating peptide, which has been successfully used in our laboratory as a nucleic acid delivery system. A S4(13)-PV analogue, S4(13)-PVscr, displaying a scrambled amino acid sequence, deficient cell internalization and drug delivery inability, was used in this study for comparative purposes. Differential scanning calorimetry, fluorescence polarization and X-ray diffraction at small and wide angles techniques showed that both peptides interacted with anionic membranes composed of phosphatidylglycerol or a mixture of this lipid with phosphatidylethanolamine, increasing the lipid order, shifting the phase transition to higher temperatures and raising the correlation length between the bilayers. However, S4(13)-PVscr, in contrast to the wild-type peptide, did not promote lipid domain segregation and induced the formation of an inverted hexagonal lipid phase instead of a cubic phase in the lipid systems assayed. Electron microscopy showed that, as opposed to S4(13)-PVscr, the wild-type peptide induced the formation of a non-lamellar organization in membranes of HeLa cells. We concluded that lateral phase separation and destabilization of membrane lamellar structure without compromising membrane integrity are on the basis of the lipid-driven and receptor-independent mechanism of cell entry of S4(13)-PV peptide. Overall, our results can contribute to a better understanding of the role of peptide-lipid interactions in the mechanisms of cell-penetrating peptide membrane translocation, helping in the future design of more efficient cell-penetrating peptide-based drug delivery systems.

  2. Short term exercise induces PGC-1α, ameliorates inflammation and increases mitochondrial membrane proteins but fails to increase respiratory enzymes in aging diabetic hearts.

    Directory of Open Access Journals (Sweden)

    Amy Botta

    Full Text Available PGC-1α, a transcriptional coactivator, controls inflammation and mitochondrial gene expression in insulin-sensitive tissues following exercise intervention. However, attributing such effects to PGC-1α is counfounded by exercise-induced fluctuations in blood glucose, insulin or bodyweight in diabetic patients. The goal of this study was to investigate the role of PGC-1α on inflammation and mitochondrial protein expressions in aging db/db mice hearts, independent of changes in glycemic parameters. In 8-month-old db/db mice hearts with diabetes lasting over 22 weeks, short-term, moderate-intensity exercise upregulated PGC-1α without altering body weight or glycemic parameters. Nonetheless, such a regimen lowered both cardiac (macrophage infiltration, iNOS and TNFα and systemic (circulating chemokines and cytokines inflammation. Curiously, such an anti-inflammatory effect was also linked to attenuated expression of downstream transcription factors of PGC-1α such as NRF-1 and several respiratory genes. Such mismatch between PGC-1α and its downstream targets was associated with elevated mitochondrial membrane proteins like Tom70 but a concurrent reduction in oxidative phosphorylation protein expressions in exercised db/db hearts. As mitochondrial oxidative stress was predominant in these hearts, in support of our in vivo data, increasing concentrations of H2O2 dose-dependently increased PGC-1α expression while inhibiting expression of inflammatory genes and downstream transcription factors in H9c2 cardiomyocytes in vitro. We conclude that short-term exercise-induced oxidative stress may be key in attenuating cardiac inflammatory genes and impairing PGC-1α mediated gene transcription of downstream transcription factors in type 2 diabetic hearts at an advanced age.

  3. Cell invasion through basement membrane: the anchor cell breaches the barrier. (United States)

    Hagedorn, Elliott J; Sherwood, David R


    Cell invasion through basement membrane (BM) is a specialized cellular behavior critical to many normal developmental events, immune surveillance, and cancer metastasis. A highly dynamic process, cell invasion involves a complex interplay between cell-intrinsic elements that promote the invasive phenotype, and cell-cell and cell-BM interactions that regulate the timing and targeting of BM transmigration. The intricate nature of these interactions has made it challenging to study cell invasion in vivo and model in vitro. Anchor cell invasion in Caenorhabditis elegans is emerging as an important experimental paradigm for comprehensive analysis of BM invasion, revealing the gene networks that specify invasive behavior and the interactions that occur at the cell-BM interface.

  4. Durable Catalysts for High Temperature Proton Exchange Membrane Fuel Cells

    DEFF Research Database (Denmark)

    Durability of proton exchange membrane fuel cells (PEMFCs) is recognized as one of the most important issues to be addressed before the commercialization. The failure mechanisms are not well understood, however, degradation of carbon supported noble metal catalysts is identified as a major failure...... corrosion, in turn, triggers the agglomeration of platinum particles resulting in reduction of the active surface area and catalytic activity. This is a major mechanism of the catalyst degradation and a key challenge to the PEMFC long-term durability. High temperature PEMFC, on the other hand, has attached...... significant attention in recent years because of its potential advantages such as high CO tolerance, easy cooling, better heat utilization and possible integration with fuel processing units. However, the high temperature obviously aggravates the carbon corrosion and catalyst degradation. Based on thermally...

  5. Segmented polymer electrolyte membrane fuel cells - A review

    Energy Technology Data Exchange (ETDEWEB)

    Perez, Luis C.; Brandao, Lucia; Mendes, Adelio [LEPAE, Chemical Engineering Department, Faculty of Engineering, University of Porto, Rua Roberto Frias, 4200-465 Porto (Portugal); Sousa, Jose M. [LEPAE, Chemical Engineering Department, Faculty of Engineering, University of Porto, Rua Roberto Frias, 4200-465 Porto (Portugal); Chemistry Department, University of Tras-os-Montes e Alto Douro, Apartado 202, 5001-911 Vila-Real Codex (Portugal)


    A complex interaction of many design, assembling and operating parameters as well as the properties of the materials used in the construction of polymer electrolyte membrane fuel cells (PEMFC) result in an uneven electrochemical performance over the MEA active area. For more than one decade, segmented PEMFC (SFC) have been used to study the factors responsible for that uneven performance. This paper reviews relevant literature related to SFC published since 1998 focusing on the three most important SFC design techniques: (1) printed circuit board, (2) resistors network and (3) Hall effect sensors. First, the three techniques are described and fundamental considerations for its design, construction and electrochemical characterization are provided. After that, the effect of most important parameters on the current density distribution is highlighted. Finally, representative results combining current density distribution measurements with other analytical techniques for distributed analysis are presented. (author)

  6. Experimental Investigation and Discussion on the Mechanical Endurance Limit of Nafion Membrane Used in Proton Exchange Membrane Fuel Cell

    Directory of Open Access Journals (Sweden)

    Yang Xiao


    Full Text Available As a solution of high efficiency and clean energy, fuel cell technologies, especially proton exchange membrane fuel cell (PEMFC, have caught extensive attention. However, after decades of development, the performances of PEMFCs are far from achieving the target from the Department of Energy (DOE. Thus, further understanding of the degradation mechanism is needed to overcome this obstacle. Due to the importance of proton exchange membrane in a PEMFC, the degradation of the membrane, such as hygrothermal aging effect on its properties, are particularly necessary. In this work, a thick membrane (Nafion N117, which is always used as an ionic polymer for the PEMFCs, has been analyzed. Experimental investigation is performed for understanding the mechanical endurance of the bare membranes under different loading conditions. Tensile tests are conducted to compare the mechanical property evolution of two kinds of bare-membrane specimens including the dog-bone and the deeply double edge notched (DDEN types. Both dog-bone and DDEN specimens were subjected to a series of degradation tests with different cycling times and wide humidity ranges. The tensile tests are repeated for both kinds of specimens to assess the strain-stress relations. Furthermore, Fourier transform infrared spectroscopy (FT-IR, X-ray diffraction (XRD and Scanning electron microscope (SEM observation and water absorption measurement were conducted to speculate the cause of this variation. The initial cracks along with the increasing of bound water content were speculated as the primary cause.

  7. Meninges: from protective membrane to stem cell niche. (United States)

    Decimo, Ilaria; Fumagalli, Guido; Berton, Valeria; Krampera, Mauro; Bifari, Francesco


    Meninges are a three tissue membrane primarily known as coverings of the brain. More in depth studies on meningeal function and ultrastructure have recently changed the view of meninges as a merely protective membrane. Accurate evaluation of the anatomical distribution in the CNS reveals that meninges largely penetrate inside the neural tissue. Meninges enter the CNS by projecting between structures, in the stroma of choroid plexus and form the perivascular space (Virchow-Robin) of every parenchymal vessel. Thus, meninges may modulate most of the physiological and pathological events of the CNS throughout the life. Meninges are present since the very early embryonic stages of cortical development and appear to be necessary for normal corticogenesis and brain structures formation. In adulthood meninges contribute to neural tissue homeostasis by secreting several trophic factors including FGF2 and SDF-1. Recently, for the first time, we have identified the presence of a stem cell population with neural differentiation potential in meninges. In addition, we and other groups have further described the presence in meninges of injury responsive neural precursors. In this review we will give a comprehensive view of meninges and their multiple roles in the context of a functional network with the neural tissue. We will highlight the current literature on the developmental feature of meninges and their role in cortical development. Moreover, we will elucidate the anatomical distribution of the meninges and their trophic properties in adult CNS. Finally, we will emphasize recent evidences suggesting the potential role of meninges as stem cell niche harbouring endogenous precursors that can be activated by injury and are able to contribute to CNS parenchymal reaction.

  8. Membrane dynamics

    DEFF Research Database (Denmark)

    Bendix, Pól Martin


    Current topics include membrane-protein interactions with regard to membrane deformation or curvature sensing by BAR domains. Also, we study the dynamics of membrane tubes of both cells and simple model membrane tubes. Finally, we study membrane phase behavior which has important implications...... for the lateral organization of membranes as wells as for physical properties like bending, permeability and elasticity...

  9. Spatial proton exchange membrane fuel cell performance under bromomethane poisoning (United States)

    Reshetenko, Tatyana V.; Artyushkova, Kateryna; St-Pierre, Jean


    The poisoning effects of 5 ppm CH3Br in the air on the spatial performance of a proton exchange membrane fuel cell (PEMFC) were studied using a segmented cell system. The presence of CH3Br caused performance loss from 0.650 to 0.335 V at 1 A cm-2 accompanied by local current density redistribution. The observed behavior was explained by possible bromomethane hydrolysis with the formation of Br-. Bromide and bromomethane negatively affected the oxygen reduction efficiency over a wide range of potentials because of their adsorption on Pt, which was confirmed by XPS. Moreover, the PEMFC exposure to CH3Br led to a decrease in the anode and cathode electrochemical surface area (∼52-57%) due to the growth of Pt particles through agglomeration and Ostwald ripening. The PEMFC did not restore its performance after stopping bromomethane introduction to the air stream. However, the H2/N2 purge of the anode/cathode and CV scans almost completely recovered the cell performance. The observed final loss of ∼50 mV was due to an increased activation overpotential. PEMFC exposure to CH3Br should be limited to concentrations much less than 5 ppm due to serious performance loss and lack of self-recovery.

  10. Ferulic Acid Induces Th1 Responses by Modulating the Function of Dendritic Cells and Ameliorates Th2-Mediated Allergic Airway Inflammation in Mice

    Directory of Open Access Journals (Sweden)

    Chen-Chen Lee


    Full Text Available This study investigated the immunomodulatory effects of ferulic acid (FA on antigen-presenting dendritic cells (DCs in vitro and its antiallergic effects against ovalbumin- (OVA- induced Th2-mediated allergic asthma in mice. The activation of FA-treated bone marrow-derived DCs by lipopolysaccharide (LPS stimulation induced a high level of interleukin- (IL- 12 but reduced the expression levels of the proinflammatory cytokines IL-1β, IL-6, and tumor necrosis factor- (TNF- α. Compared to control-treated DCs, FA significantly enhanced the expressions of Notch ligand Delta-like 4 (Dll4, MHC class II, and CD40 molecules by these DCs. Furthermore, these FA-treated DCs enhanced T-cell proliferation and Th1 cell polarization. In animal experiments, oral administration of FA reduced the levels of OVA-specific immunoglobulin E (IgE and IgG1 and enhanced IgG2a antibody production in serum. It also ameliorated airway hyperresponsiveness and attenuated eosinophilic pulmonary infiltration in dose-dependent manners. In addition, FA treatment inhibited the production of eotaxin, Th2 cytokines (IL-4, IL-5, and IL-13, and proinflammatory cytokines but promoted the Th1 cytokine interferon- (IFN- γ production in bronchoalveolar lavage fluid (BALF and the culture supernatant of spleen cells. These findings suggest that FA exhibits an antiallergic effect via restoring Th1/Th2 imbalance by modulating DCs function in an asthmatic mouse model.

  11. Assessment of Membrane Fluidity Fluctuations during Cellular Development Reveals Time and Cell Type Specificity

    KAUST Repository

    Noutsi, Pakiza


    Cell membrane is made up of a complex structure of lipids and proteins that diffuse laterally giving rise to what we call membrane fluidity. During cellular development, such as differentiation cell membranes undergo dramatic fluidity changes induced by proteins such as ARC and Cofilin among others. In this study we used the generalized polarization (GP) property of fluorescent probe Laurdan using two-photon microscopy to determine membrane fluidity as a function of time and for various cell lines. A low GP value corresponds to a higher fluidity and a higher GP value is associated with a more rigid membrane. Four different cell lines were monitored such as hN2, NIH3T3, HEK293 and L6 cells. Membrane fluidity was measured at 12h, 72h and 92 h. Our results show significant changes in membrane fluidity among all cell types at different time points. GP values tend to increase significantly within 92 h in hN2 cells and 72 h in NIH3T3 cells and only at 92 h in HEK293 cells. L6 showed a marked decrease in membrane fluidity at 72 h and starts to increase at 92 h. As expected, NIH3T3 cells have more rigid membrane at earlier time points. On the other hand, neurons tend to have the highest membrane fluidity at early time points emphasizing its correlation with plasticity and the need for this malleability during differentiation. This study sheds light on the involvement of membrane fluidity during neuronal differentiation and development of other cell lines.

  12. Assessment of Membrane Fluidity Fluctuations during Cellular Development Reveals Time and Cell Type Specificity.

    Directory of Open Access Journals (Sweden)

    Pakiza Noutsi

    Full Text Available Cell membrane is made up of a complex structure of lipids and proteins that diffuse laterally giving rise to what we call membrane fluidity. During cellular development, such as differentiation cell membranes undergo dramatic fluidity changes induced by proteins such as ARC and Cofilin among others. In this study we used the generalized polarization (GP property of fluorescent probe Laurdan using two-photon microscopy to determine membrane fluidity as a function of time and for various cell lines. A low GP value corresponds to a higher fluidity and a higher GP value is associated with a more rigid membrane. Four different cell lines were monitored such as hN2, NIH3T3, HEK293 and L6 cells. Membrane fluidity was measured at 12h, 72h and 92 h. Our results show significant changes in membrane fluidity among all cell types at different time points. GP values tend to increase significantly within 92 h in hN2 cells and 72 h in NIH3T3 cells and only at 92 h in HEK293 cells. L6 showed a marked decrease in membrane fluidity at 72 h and starts to increase at 92 h. As expected, NIH3T3 cells have more rigid membrane at earlier time points. On the other hand, neurons tend to have the highest membrane fluidity at early time points emphasizing its correlation with plasticity and the need for this malleability during differentiation. This study sheds light on the involvement of membrane fluidity during neuronal differentiation and development of other cell lines.

  13. Nanoporous gold membranes: From morphological control to fuel cell catalysis (United States)

    Ding, Yi

    stable, low Pt usage, and better tolerance to CO poisoning. We incorporated it as a membrane electrode into a working proton exchange membrane fuel cells (PEMFC). Preliminary results show that Pt/NPG has very good fuel cell performance at a very low platinum loading.

  14. Performance of polymer nano composite membrane electrode assembly using Alginate as a dopant in polymer electrolyte membrane fuel cell (United States)

    Mulijani, S.


    Polymer membrane and composite polymer for membrane electrode assembly (MEAs) are synthesized and studied for usage in direct methanol fuel cell (DMFC). In this study, we prepared 3 type of MEAs, polystyrene (PS), sulfonated polystyrene (SPS) and composite polymer SPS-alginat membrane via catalyst hot pressed method. The performance and properties of prepared MEAs were evaluated and analyzed by impedance spectrometry and scanning electron microscopy (SEM). The result showed that, water up take of MEA composite polymer SPS-alginate was obtained higher than that in SPS and PS. The proton conductivity of MEA-SPS-alginate was also higher than that PS and PSS. SEM characterization revealed that the intimate contact between the carbon catalyst layers (CL) and the membranes, and the uniformly porous structure correlate positively with the MEAs prepared by hot pressed method, exhibiting high performances for DMFC.

  15. Performance of polymer nano composite membrane electrode assembly using Alginate as a dopant in polymer electrolyte membrane fuel cell (United States)

    Mulijani, S.


    Polymer membrane and composite polymer for membrane electrode assembly (MEAs) are synthesized and studied for usage in direct methanol fuel cell (DMFC). In this study, we prepared 3 type of MEAs, polystyrene (PS), sulfonated polystyrene (SPS) and composite polymer SPS-alginat membrane via catalyst hot pressed method. The performance and properties of prepared MEAs were evaluated and analyzed by impedance spectrometry and scanning electron microscopy (SEM). The result showed that, water up take of MEA composite polymer SPS-alginate was obtained higher than that in SPS and PS. The proton conductivity of MEA-SPS-alginate was also higher than that PS and PSS. SEM characterization revealed that the intimate contact between the carbon catalyst layers (CL) and the membranes, and the uniformly porous structure correlate positively with the MEAs prepared by hot pressed method, exhibiting high performances for DMFC.

  16. In situ single molecule imaging of cell membranes: linking basic nanotechniques to cell biology, immunology and medicine. (United States)

    Pi, Jiang; Jin, Hua; Yang, Fen; Chen, Zheng W; Cai, Jiye


    The cell membrane, which consists of a viscous phospholipid bilayer, different kinds of proteins and various nano/micrometer-sized domains, plays a very important role in ensuring the stability of the intracellular environment and the order of cellular signal transductions. Exploring the precise cell membrane structure and detailed functions of the biomolecules in a cell membrane would be helpful to understand the underlying mechanisms involved in cell membrane signal transductions, which could further benefit research into cell biology, immunology and medicine. The detection of membrane biomolecules at the single molecule level can provide some subtle information about the molecular structure and the functions of the cell membrane. In particular, information obtained about the molecular mechanisms and other information at the single molecule level are significantly different from that detected from a large amount of biomolecules at the large-scale through traditional techniques, and can thus provide a novel perspective for the study of cell membrane structures and functions. However, the precise investigations of membrane biomolecules prompts researchers to explore cell membranes at the single molecule level by the use of in situ imaging methods, as the exact conformation and functions of biomolecules are highly controlled by the native cellular environment. Recently, the in situ single molecule imaging of cell membranes has attracted increasing attention from cell biologists and immunologists. The size of biomolecules and their clusters on the cell surface are set at the nanoscale, which makes it mandatory to use high- and super-resolution imaging techniques to realize the in situ single molecule imaging of cell membranes. In the past few decades, some amazing imaging techniques and instruments with super resolution have been widely developed for molecule imaging, which can also be further employed for the in situ single molecule imaging of cell membranes. In

  17. Multiphase transport in polymer electrolyte membrane fuel cells (United States)

    Gauthier, Eric D.

    Polymer electrolyte membrane fuel cells (PEMFCs) enable efficient conversion of fuels to electricity. They have enormous potential due to the high energy density of the fuels they utilize (hydrogen or alcohols). Power density is a major limitation to wide-scale introduction of PEMFCs. Power density in hydrogen fuel cells is limited by accumulation of water in what is termed fuel cell `flooding.' Flooding may occur in either the gas diffusion layer (GDL) or within the flow channels of the bipolar plate. These components comprise the electrodes of the fuel cell and balance transport of reactants/products with electrical conductivity. This thesis explores the role of electrode materials in the fuel cell and examines the fundamental connection between material properties and multiphase transport processes. Water is generated at the cathode catalyst layer. As liquid water accumulates it will utilize the largest pores in the GDL to go from the catalyst layer to the flow channels. Water collects to large pores via lateral transport at the interface between the GDL and catalyst layer. We have shown that water may be collected in these large pores from several centimeters away, suggesting that we could engineer the GDL to control flooding with careful placement and distribution of large flow-directing pores. Once liquid water is in the flow channels it forms slugs that block gas flow. The slugs are pushed along the channel by a pressure gradient that is dependent on the material wettability. The permeable nature of the GDL also plays a major role in slug growth and allowing bypass of gas between adjacent channels. Direct methanol fuel cells (DMFCs) have analogous multiphase flow issues where carbon dioxide bubbles accumulate, `blinding' regions of the fuel cell. This problem is fundamentally similar to water management in hydrogen fuel cells but with a gas/liquid phase inversion. Gas bubbles move laterally through the porous GDL and emerge to form large bubbles within the

  18. Influence of preparative procedures on the membrane viscoelasticity of human red cell ghosts. (United States)

    Nash, G B; Tran-Son-Tay, R; Meiselman, H J


    The effects of systematic variations in the preparative procedures on the membrane viscoelastic properties of resealed human red blood cell ghosts have been investigated. Ghosts, prepared by hypotonic lysis at 0 degrees C and resealing at 37 degrees C, were subjected to: measurement of the time constant for extensional recovery (tc); measurement of the membrane shear elastic modulus (mu) via three separate techniques; determination of the membrane viscosity (eta m) via a cone-plate Rheoscope. Membrane viscosity was also determined as eta m = mu X tc. Compared to intact cells, ghosts had shorter tc, regardless of their residual hemoglobin concentration (up to 21.6 g/dl). However, prolonged exposure to hypotonic media did increase their recovery time toward the intact cell value. The shear elastic modulus, as judged by micropipette aspiration of membrane tongues (mu p), was similar for all ghosts and intact cells. This result, taken with the tc data, indicates that ghosts have reduced membrane viscosity. Rheoscopic analysis also showed that eta m was reduced for ghosts, with the degree of reduction (approx. 50%) agreeing well with that estimated by the product mu p X tc. However, flow channel and pipette elongation estimates indicated that the ghost membrane elastic modulus was somewhat elevated compared to intact cells. We conclude that: ghosts have reduced membrane viscosity; ghosts have membrane rigidities close to intact cells, except possibly when the membrane is subjected to very large strains; the reduction in eta m is not directly related to the loss of hemoglobin; prolonged exposure of ghosts to low-ionic strength media increases the membrane viscosity toward its initial cellular level. These data indicate that the mechanical characteristics of ghost membranes can be varied by changing the methods of preparation and thus have potential application to further studies of the structural determinants of red cell membrane viscoelasticity.

  19. Water Management Membrane for Fuel Cells and Electrolyzers Project (United States)

    National Aeronautics and Space Administration — Development of an improved water management membrane for a static vapor feed electrolyzer that produces sub-saturated H2 and O2 is proposed. This improved membrane...

  20. A microfluidic platform for probing single cell plasma membranes using optically trapped Smart Droplet Microtools (SDMs). (United States)

    Lanigan, Peter M P; Ninkovic, Tanja; Chan, Karen; de Mello, Andrew J; Willison, Keith R; Klug, David R; Templer, Richard H; Neil, Mark A A; Ces, Oscar


    We recently introduced a novel platform based upon optically trapped lipid coated oil droplets (Smart Droplet Microtools-SDMs) that were able to form membrane tethers upon fusion with the plasma membrane of single cells. Material transfer from the plasma membrane to the droplet via the tether was seen to occur. Here we present a customised version of the SDM approach based upon detergent coated droplets deployed within a microfluidic format. These droplets are able to differentially solubilise the plasma membrane of single cells with spatial selectivity and without forming membrane tethers. The microfluidic format facilitates separation of the target cells from the bulk SDM population and from downstream analysis modules. Material transfer from the cell to the SDM was monitored by tracking membrane localized EGFP.

  1. Effects of nitrogen ion implantation on Ca2+ concentration and membrane potential of pollen cell

    Institute of Scientific and Technical Information of China (English)


    The effects of low energy nitrogen ion implantation on Ca2+ concentration and membrane potential of lily (lilium davidii Duch) pollen cell have been studied. The results showed that the Ca2+ concentration was increased when pollen grain was implanted by nitrogen ion with energy 100keV and dose 1013 ions/cra2. However, the increase of Ca2+ concentration was partly inhibited by the addition of Ca2+channel inhibitor depending on dose. And nitrogen ion implantation caused depolarization of pollen cell membrane potential. In other words, membrane potential was increased,but the effect decreased by adding Ca2+ channel inhibitor.However, it was still significantly higher than the membrane potential of control cells. It was indicated that the depolarization of cell membrane potential opened the calcium channel on the membrane that caused the increasing of intraceilular calcium concentration. This might be an earlier step of the effect of low energy nitrogen ion implantation on pollen germination.

  2. Cell-free synthesis of membrane proteins: tailored cell models out of microsomes. (United States)

    Fenz, Susanne F; Sachse, Rita; Schmidt, Thomas; Kubick, Stefan


    Incorporation of proteins in biomimetic giant unilamellar vesicles (GUVs) is one of the hallmarks towards cell models in which we strive to obtain a better mechanistic understanding of the manifold cellular processes. The reconstruction of transmembrane proteins, like receptors or channels, into GUVs is a special challenge. This procedure is essential to make these proteins accessible to further functional investigation. Here we describe a strategy combining two approaches: cell-free eukaryotic protein expression for protein integration and GUV formation to prepare biomimetic cell models. The cell-free protein expression system in this study is based on insect lysates, which provide endoplasmic reticulum derived vesicles named microsomes. It enables signal-induced translocation and posttranslational modification of de novo synthesized membrane proteins. Combining these microsomes with synthetic lipids within the electroswelling process allowed for the rapid generation of giant proteo-liposomes of up to 50 μm in diameter. We incorporated various fluorescent protein-labeled membrane proteins into GUVs (the prenylated membrane anchor CAAX, the heparin-binding epithelial growth factor like factor Hb-EGF, the endothelin receptor ETB, the chemokine receptor CXCR4) and thus presented insect microsomes as functional modules for proteo-GUV formation. Single-molecule fluorescence microscopy was applied to detect and further characterize the proteins in the GUV membrane. To extend the options in the tailoring cell models toolbox, we synthesized two different membrane proteins sequentially in the same microsome. Additionally, we introduced biotinylated lipids to specifically immobilize proteo-GUVs on streptavidin-coated surfaces. We envision this achievement as an important first step toward systematic protein studies on technical surfaces.

  3. Translocation of annexin Ⅰ from cellular membrane to the nuclear membrane in human esophageal squamous cell carcinoma

    Institute of Scientific and Technical Information of China (English)

    Yu Liu; Xiao-Hang Zhao; Hui-Xin Wang; Ning Lu; You-Sheng Mao; Fang Liu; Ying Wang; Hai-Rong Zhang; Kun Wang; Min Wu


    AIM: To investigate the alteration of the annexin I subcellular localization in esophageal squamous cell carcinoma (ESCC)and the correlation between the translocation and the tumorigenesis of ESCC.METHODS: The protein localization of annexin I was detected in both human ESCC tissues and cell line via the indirect immunofiuorescence strategy.RESULTS: In the normal esophageal epithelia the annexin I was mainly located on the plasma membrane and formed a consecutive typical trammels net. Annexin I protein also expressed dispersively in cytoplasm and the nuclei without specific localization on the nuclear membrane. In esophageal cancer annexin I decreased very sharply with scattered disappearance on the cellular membrane, however it translocated and highly expressed on the nuclear membrane,which was never found in normal esophageal epithelia. In cultured esophageal cancer cell line annexin I protein was also focused on the nuclear membrane, which was consistent with the result from esophageal cancer tissues.CONCLUSION: This observation suggests that the translocation of annexin I protein in ESCC may correlate with the tumorigenesis of the esophageal cancer.

  4. Self-assembly and function of primitive cell membranes. (United States)

    Pohorille, Andrew; Deamer, David


    We describe possible pathways for separating amphiphilic molecules from organic material on the early earth to form membrane-bound structures required for the start of cellular life. We review properties of the first membranes and their function as permeability barriers. Finally, we discuss the emergence of protein-mediated ion transport across membranes, which facilitated many other cellular functions.

  5. Fabrication Method for Laboratory-Scale High-Performance Membrane Electrode Assemblies for Fuel Cells. (United States)

    Sassin, Megan B; Garsany, Yannick; Gould, Benjamin D; Swider-Lyons, Karen E


    Custom catalyst-coated membranes (CCMs) and membrane electrode assemblies (MEAs) are necessary for the evaluation of advanced electrocatalysts, gas diffusion media (GDM), ionomers, polymer electrolyte membranes (PEMs), and electrode structures designed for use in next-generation fuel cells, electrolyzers, or flow batteries. This Feature provides a reliable and reproducible fabrication protocol for laboratory scale (10 cm(2)) fuel cells based on ultrasonic spray deposition of a standard Pt/carbon electrocatalyst directly onto a perfluorosulfonic acid PEM.

  6. Both Freshly Prepared and Frozen-Stored Amniotic Membrane Cells Express the Complement Inhibitor CD59

    Directory of Open Access Journals (Sweden)

    Ágnes Füst


    Full Text Available Amniotic membrane proved to be very effective tool in the treatment of a number of ocular surface diseases. The amniotic membrane, however, has to be stored before its transplantation onto the ocular surface followed by mandatory serologic control in order to exclude the transmission of certain viruses. Therefore it is most important to study if cryopreservation of the membrane affects cell surface expression of the molecules. We measured cell surface expression of CD59, a membrane-bound complement inhibitor on the cells of freshly prepared and cryopreserved amniotic membrane. Cells of amniotic membrane were separated mechanically. Epithelial and mesenchymal cells were identified by the intracellular expression of nanog and the cell surface ICAM1 positivity, respectively. Multicolor flow cytometric immunophenotyping was used for determination of the CD59 expression. CellQuest-Pro software program (Becton Dickinson was used both for measurements and analysis. CD59-positive cells could be detected in all investigated samples and in all investigated cell types, although the expression level of CD59 differed. CD59 was expressed both on freshly prepared and frozen-stored samples. Higher level of CD59 was detected on ICAM1+ mesenchymal cells than on nanog+ epithelial cells. Our findings indicate that amniotic membranes maintain their complement inhibiting capacity after cryopreservation.

  7. NAD+ biosynthesis ameliorates a zebrafish model of muscular dystrophy.

    Directory of Open Access Journals (Sweden)

    Michelle F Goody

    Full Text Available Muscular dystrophies are common, currently incurable diseases. A subset of dystrophies result from genetic disruptions in complexes that attach muscle fibers to their surrounding extracellular matrix microenvironment. Cell-matrix adhesions are exquisite sensors of physiological conditions and mediate responses that allow cells to adapt to changing conditions. Thus, one approach towards finding targets for future therapeutic applications is to identify cell adhesion pathways that mediate these dynamic, adaptive responses in vivo. We find that nicotinamide riboside kinase 2b-mediated NAD+ biosynthesis, which functions as a small molecule agonist of muscle fiber-extracellular matrix adhesion, corrects dystrophic phenotypes in zebrafish lacking either a primary component of the dystrophin-glycoprotein complex or integrin alpha7. Exogenous NAD+ or a vitamin precursor to NAD+ reduces muscle fiber degeneration and results in significantly faster escape responses in dystrophic embryos. Overexpression of paxillin, a cell adhesion protein downstream of NAD+ in this novel cell adhesion pathway, reduces muscle degeneration in zebrafish with intact integrin receptors but does not improve motility. Activation of this pathway significantly increases organization of laminin, a major component of the extracellular matrix basement membrane. Our results indicate that the primary protective effects of NAD+ result from changes to the basement membrane, as a wild-type basement membrane is sufficient to increase resilience of dystrophic muscle fibers to damage. The surprising result that NAD+ supplementation ameliorates dystrophy in dystrophin-glycoprotein complex- or integrin alpha7-deficient zebrafish suggests the existence of an additional laminin receptor complex that anchors muscle fibers to the basement membrane. We find that integrin alpha6 participates in this pathway, but either integrin alpha7 or the dystrophin-glycoprotein complex is required in conjunction

  8. Design and Development of Membrane Electrode Assembly for Proton Exchange Membrane Fuel Cell (United States)

    Kasat, Harshal Anil

    This work aimed to characterize and optimize the variables that influence the Gas Diffusion Layer (GDL) preparation using design of experiment (DOE) approach. In the process of GDL preparation, the quantity of carbon support and Teflon were found to have significant influence on the Proton Exchange Membrane Fuel Cell (PEMFC). Characterization methods like surface roughness, wetting characteristics, microstructure surface morphology, pore size distribution, thermal conductivity of GDLs were examined using laser interferometer, Goniometer, SEM, porosimetry and thermal conductivity analyzer respectively. The GDLs were evaluated in single cell PEMFC under various operating conditions of temperature and relative humidity (RH) using air as oxidant. Electrodes were prepared with different PUREBLACKRTM and poly-tetrafluoroethylene (PTFE) content in the diffusion layer and maintaining catalytic layer with a Pt-loading (0.4 mg cm-2). In the study, a 73.16 wt.% level of PB and 34 wt.% level of PTFE was the optimal compositions for GDL at 70°C for 70% RH under air atmosphere. For most electrochemical processes the oxygen reduction is very vita reaction. Pt loading in the electrocatalyst contributes towards the total cost of electrochemical devices. Reducing the Pt loading in electrocatalysts with high efficiency is important for the development of fuel cell technologies. To this end, this thesis work reports the approach to lower down the Pt loading in electrocatalyst based on N-doped carbon nanotubes derived from Zeolitic Imidazolate Frameworks (ZIF-67) for oxygen reduction. This electrocatalyst perform with higher electrocatalytic activity and stability for oxygen reduction in fuel cell testing. The electrochemical properties are mainly due to the synergistic effect from N-doped carbon nanotubes derived from ZIF and Pt loading. The strategy with low Pt loading forecasts in emerging highly active and less expensive electrocatalysts in electrochemical energy devices. This

  9. Tetrandrine ameliorates collagen-induced arthritis in mice by restoring the balance between Th17 and Treg cells via the aryl hydrocarbon receptor. (United States)

    Yuan, Xusheng; Tong, Bei; Dou, Yannong; Wu, Xin; Wei, Zhifeng; Dai, Yue


    Tetrandrine is an alkaloid constituent of the root of Stephania tetrandra S. Moore. The long-term clinical uses of tetrandrine for treatments of rheumatalgia and arthralgia as well as the inhibition of rat adjuvant-induced arthritis imply that tetrandrine may have therapeutic potential in rheumatoid arthritis (RA). Here, we explored its anti-RA mechanism in collagen-induced arthritis (CIA) in relation to the balance between T helper (Th) 17 cells and regulatory T (Treg) cells. DBA/1 mice were immunized with chicken type II collagen and were orally administered tetrandrine for 14 consecutive days. Then, the mice were sacrificed, their joints were removed for histological analysis, and spleens and mesenteric lymph nodes (MLNs) were removed to examine the Th17 and Treg cells. Tetrandrine markedly alleviated the severity of arthritis, reduced the serum levels of pro-inflammatory cytokines, and restored the Th17/Treg balance, as demonstrated by the serum levels of their related cytokines (IL-17 and IL-10) and the proportion of each cell type. Tetrandrine inhibited Th17 cell differentiation and induced Treg cell differentiation in vitro . Notably, aryl hydrocarbon receptor (AhR) was proven to play a crucial role in tetrandrine-mediated T cell differentiation. The correlation between AhR activation, regulation of Th17/Treg and amelioration of arthritis by tetrandrine was verified in the CIA mice. Moreover, tetrandrine might be a ligand of AhR because it facilitated the expression of the AhR target gene cytochrome P450 1A1 (CYP1A1) and the activation of its downstream signaling pathways. Taken together, tetrandrine exerts its anti-arthritis efficacy by restoring Th17/Treg balance via AhR.

  10. Fundamental study of mechanical and chemical degradation mechanisms of PEM fuel cell membranes (United States)

    Yoon, Wonseok

    One of the important factors determining the lifetime of polymer electrolyte membrane fuel cells (PEMFCs) is membrane degradation and failure. The lack of effective mitigation methods is largely due to the currently very limited understanding of the underlying mechanisms for mechanical and chemical degradations of fuel cell membranes. In order to understand degradation of membranes in fuel cells, two different experimental approaches were developed; one is fuel cell testing under open circuit voltage (OCV) with bi-layer configuration of the membrane electrode assemblies (MEAs) and the other is a modified gas phase Fenton's test. Accelerated degradation tests for polymer electrolyte membrane (PEM) fuel cells are frequently conducted under open circuit voltage (OCV) conditions at low relative humidity (RH) and high temperature. With the bi-layer MEA technique, it was found that membrane degradation is highly localized across thickness direction of the membrane and qualitatively correlated with location of platinum (Pt) band through mechanical testing, Infrared (IR) spectroscopy, fluoride emission, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy dispersive spectroscopy (EDS) measurement. One of the critical experimental observations is that mechanical behavior of membranes subjected to degradation via Fenton's reaction exhibit completely different behavior with that of membranes from the OCV testing. This result led us to believe that other critical factors such as mechanical stress may affect on membrane degradation and therefore, a modified gas phase Fenton's test setup was developed to test the hypothesis. Interestingly, the results showed that mechanical stress directly accelerates the degradation rate of ionomer membranes, implying that the rate constant for the degradation reaction is a function of mechanical stress in addition to commonly known factors such as temperature and humidity. Membrane degradation induced by

  11. Nafion®/H-ZSM-5 composite membranes with superior performance for direct methanol fuel cells

    NARCIS (Netherlands)

    Yildirim, Mustafa Hakan; Curos, Anna Roca; Motuzas, Julius; Julbe, Anne; Stamatialis, Dimitrios; Wessling, Matthias


    Solution cast composite direct methanol fuel cell membranes (DEZ) based on DE2020 Nafion® dispersion and in-house prepared H-ZSM-5 zeolites with different Si/Al ratios were prepared and thoroughly characterized for direct methanol fuel cell (DMFC) applications. All composite membranes have indeed l

  12. (poly)Phosphoinositide phosphorylation is a marker for plasma membrane in Friend erythroleukaemic cells

    NARCIS (Netherlands)

    Rawyler, A.J.; Roelofsen, B.; Wirtz, K.W.A.; Kamp, J.A.F. op den


    Upon subcellular fractionation of (murine) Friend erythroleukaemic cells (FELCs), purified plasma membranes were identified by their high enrichment in specific marker enzymes and typical plasma membrane lipids. When FELCs were incubated for short periods with 32Pi before cell fractionation, the lip

  13. Enzymatic Oxidation of Cholesterol: Properties and Functional Effects of Cholestenone in Cell Membranes

    DEFF Research Database (Denmark)

    Neuvonen, M.; Manna, M.; Mokkila, S.


    of cholestenone using simulations and cell biological experiments and assessed the functional effects of cholestenone in human cells. Atomistic simulations predicted that cholestenone reduces membrane order, undergoes faster flip-flop and desorbs more readily from membranes than cholesterol. In primary human...

  14. Cellular reactions of osteoblast-like cells to a novel nanocomposite membrane for guided bone regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Meng Yao [State Key Laboratory of Oral Diseases, West China Stomatology Hospital, Sichuan University, Chengdu 610041 (China); Department of Orthodontics, West China Stomatology Hospital, Sichuan University, Chengdu 610041 (China); Liu Man [State Key Laboratory of Oral Diseases, West China Stomatology Hospital, Sichuan University, Chengdu 610041 (China); Stomatology Health Care Center, Shenzhen Maternity and Child Healthcare Hospital, Shenzhen 518048 (China); Wang Shaoan [State Key Laboratory of Oral Diseases, West China Stomatology Hospital, Sichuan University, Chengdu 610041 (China); Mo Anchun [State Key Laboratory of Oral Diseases, West China Stomatology Hospital, Sichuan University, Chengdu 610041 (China)], E-mail:; Huang, Cui [State Key Laboratory of Oral Diseases, West China Stomatology Hospital, Sichuan University, Chengdu 610041 (China); Zuo Yi; Li Jidong [Research Center for Nano-biomaterials, Sichuan University, Chengdu 610041 (China)


    This study investigated the bioactivity and biocompatibility of hydroxyapatite nanoparticles (n-HA)/Polyamide-66 (PA66) nanocomposite membrane and expanded-polytetrafluoroethylene (e-PTFE) membrane (as control) to MG63 osteoblast-like cells. The attachment and proliferation of the cells on the porous surface of nHA/PA66 membrane and the surface of e-PTFE membrane were evaluated by scanning electron microscope (SEM) observation and the MTT assay. The bioactivity of the cells on the surface of the two membranes was evaluated by testing cell viability and alkaline phosphatase (ALP) activities. The results suggested that the bioresponse of MG63 osteoblast-like cells on the porous surface of nHA/PA66 membrane was better than the bioresponse on the opposite surface of e-PTFE membrane. Because of a better cell attachment manner, there is a potential utilization of the guided bone regeneration (GBR) membrane to substitute nHA/PA66 membrane for e-PTFE membra0008.

  15. Changes of Saccharomyces cerevisiae cell membrane components and promotion to ethanol tolerance during the bioethanol fermentation. (United States)

    Dong, Shi-Jun; Yi, Chen-Feng; Li, Hao


    During bioethanol fermentation process, Saccharomyces cerevisiae cell membrane might provide main protection to tolerate accumulated ethanol, and S. cerevisiae cells might also remodel their membrane compositions or structure to try to adapt to or tolerate the ethanol stress. However, the exact changes and roles of S. cerevisiae cell membrane components during bioethanol fermentation still remains poorly understood. This study was performed to clarify changes and roles of S. cerevisiae cell membrane components during bioethanol fermentation. Both cell diameter and membrane integrity decreased as fermentation time lasting. Moreover, compared with cells at lag phase, cells at exponential and stationary phases had higher contents of ergosterol and oleic acid (C18:1) but lower levels of hexadecanoic (C16:0) and palmitelaidic (C16:1) acids. Contents of most detected phospholipids presented an increase tendency during fermentation process. Increased contents of oleic acid and phospholipids containing unsaturated fatty acids might indicate enhanced cell membrane fluidity. Compared with cells at lag phase, cells at exponential and stationary phases had higher expressions of ACC1 and HFA1. However, OLE1 expression underwent an evident increase at exponential phase but a decrease at following stationary phase. These results indicated that during bioethanol fermentation process, yeast cells remodeled membrane and more changeable cell membrane contributed to acquiring higher ethanol tolerance of S. cerevisiae cells. These results highlighted our knowledge about relationship between the variation of cell membrane structure and compositions and ethanol tolerance, and would contribute to a better understanding of bioethanol fermentation process and construction of industrial ethanologenic strains with higher ethanol tolerance.

  16. Long-term testing of a high-temperature proton exchange membrane fuel cell short stack operated with improved polybenzimidazole-based composite membranes (United States)

    Pinar, F. Javier; Cañizares, Pablo; Rodrigo, Manuel A.; Úbeda, Diego; Lobato, Justo


    In this work, the feasibility of a 150 cm2 high-temperature proton exchange membrane fuel cell (HT-PEMFC) stack operated with modified proton exchange membranes is demonstrated. The short fuel cell stack was manufactured using a total of three 50 cm2 membrane electrode assemblies (MEAs). The PEM technology is based on a polybenzimidazole (PBI) membrane. The obtained results were compared with those obtained using a HT-PEMFC stack with unmodified membranes. The membranes were cast from a PBI polymer synthesized in the laboratory, and the modified membranes contained 2 wt.% micro-sized TiO2 as a filler. Long-term tests were performed in both constant and dynamic loading modes. The fuel cell stack with 2 wt.% TiO2 composite PBI membranes exhibited an irreversible voltage loss of less than 2% after 1100 h of operation. In addition, the acid loss was reduced from 2% for the fuel cell stack with unmodified membranes to 0.6% for the fuel cell stack with modified membranes. The results demonstrate that introducing filler into the membranes enhances the durability and stability of this type of fuel cell technology. Moreover, the fuel cell stack system also exhibits very rapid and stable power and voltage output responses under dynamic load regimes.

  17. High temperature proton exchange membranes based on polybenzimidazoles for fuel cells

    DEFF Research Database (Denmark)

    Li, Qingfeng; Jensen, Jens Oluf; Savinell, Robert F


    To achieve high temperature operation of proton exchange membrane fuel cells (PEMFC), preferably under ambient pressure, acid–base polymer membranes represent an effective approach. The phosphoric acid-doped polybenzimidazole membrane seems so far the most successful system in the field. It has...... in recent years motivated extensive research activities with great progress. This treatise is devoted to updating the development, covering polymer synthesis, membrane casting, physicochemical characterizations and fuel cell technologies. To optimize the membrane properties, high molecular weight polymers...... with synthetically modified or N-substituted structures have been synthesized. Techniques for membrane casting from organic solutions and directly from acid solutions have been developed. Ionic and covalent cross-linking as well as inorganic–organic composites has been explored. Membrane characterizations...

  18. Fluctuations of coupled fluid and solid membranes with application to red blood cells (United States)

    Auth, Thorsten; Safran, S. A.; Gov, Nir S.


    The fluctuation spectra and the intermembrane interaction of two membranes at a fixed average distance are investigated. Each membrane can either be a fluid or a solid membrane, and in isolation, its fluctuations are described by a bare or a wave-vector-dependent bending modulus, respectively. The membranes interact via their excluded-volume interaction; the average distance is maintained by an external, homogeneous pressure. For strong coupling, the fluctuations can be described by a single, effective membrane that combines the elastic properties. For weak coupling, the fluctuations of the individual, noninteracting membranes are recovered. The case of a composite membrane consisting of one fluid and one solid membrane can serve as a microscopic model for the plasma membrane and cytoskeleton of the red blood cell. We find that, despite the complex microstructure of bilayers and cytoskeletons in a real cell, the fluctuations with wavelengths λ≳400nm are well described by the fluctuations of a single, polymerized membrane (provided that there are no inhomogeneities of the microstructure). The model is applied to the fluctuation data of discocytes (“normal” red blood cells), a stomatocyte, and an echinocyte. The elastic parameters of the membrane and an effective temperature that quantifies active, metabolically driven fluctuations are extracted from the experiments.

  19. Hydroalcoholic extract of cyperus rotundus ameliorates H2O2-induced human neuronal cell damage via its anti-oxidative and anti-apoptotic machinery. (United States)

    Kumar, K Hemanth; Khanum, Farhath


    Hydrogen peroxide (H(2)O(2)), a major reactive oxygen species produced during oxidative stress, has been implicated in the pathophysiology of various neurodegenerative conditions. Cyperus rotundus is a traditional medicinal herb that has recently found applications in food and confectionary industries. In the current study, the neuroprotective effects of Cyperus rotundus rhizome extract (CRE) through its antioxidant and anti-apoptotic machinery to attenuate H(2)O(2)-induced cell damage on human neuroblastoma SH-SY5Y cells have been explored. The results obtained demonstrate that pretreatment of cells with CRE for 2 h before administration of H(2)O(2) for 24 h ameliorates the cytotoxicity induced by H(2)O(2) as evidenced by MTT and LDH assays. CRE exhibited potent antioxidant activity by regulating the enzymes/proteins levels such as SOD, CAT, GPx, GR, HSP-70, Caspase-3, and Bcl-2. The pretreatment restored H(2)O(2)-induced cellular, nuclear, and mitochondrial morphologies as well as increased the expression of Brain derived nerve growth factor (BDNF). The anti-oxidant and anti-apoptotic potentials of the plant extract may account for its high content of phenolics, flavonoids, and other active principles. Taken together, our findings suggest that CRE might be developed as an agent for neurodegeneration prevention or therapy.

  20. Melatonin ameliorates high fat diet-induced diabetes and stimulates glycogen synthesis via a PKCzeta-Akt-GSK3beta pathway in hepatic cells. (United States)

    Shieh, Jiunn-Min; Wu, Hung-Tsung; Cheng, Kai-Chun; Cheng, Juei-Tang


    Low levels of melatonin in circulation had been reported to be related to the development of diabetes. Melatonin administration in animals increases hepatic glycogen content to lower blood glucose. However, the signaling pathway for these effects is still unclear. The present study shows that intraperitoneal injection of 10 mg/kg melatonin ameliorated glucose utilization and insulin sensitivity in high fat diet-induced diabetic mice with an increase in hepatic glycogen and improvement in liver steatosis. We used HepG2 cells to investigate the signaling pathways for the melatonin-stimulated hepatic glycogen increment. Treatment of HepG2 cells with 1 nm melatonin markedly increased glycogen synthesis which was blocked by the melatonin receptor antagonist luzindole. In addition, melatonin increased the phosphorylation of subcellular signals at the level of protein kinase C zeta (PKCzeta), Akt, and glycogen synthase kinase 3beta (GSK3beta) while the increase in glycogen synthesis induced by melatonin was inhibited by PKCzeta pseudo-peptide. However, 3',5'-cyclic adenosine monophosphate-activated protein kinase (AMPK) was not influenced by melatonin treatment. Taken together, melatonin improves glucose intolerance and insulin resistance in high fat diet-induced diabetic mice and stimulates glycogen synthesis via a PKCzeta-Akt-GSK3beta pathway in HepG2 cells.

  1. C8-glycosphingolipids preferentially insert into tumor cell membranes and promote chemotherapeutic drug uptake. (United States)

    Cordeiro Pedrosa, Lília R; van Cappellen, Wiggert A; Steurer, Barbara; Ciceri, Dalila; ten Hagen, Timo L M; Eggermont, Alexander M M; Verheij, Marcel; Goñi, Felix María; Koning, Gerben A; Contreras, F-Xabier


    Insufficient drug delivery into tumor cells limits the therapeutic efficacy of chemotherapy. Co-delivery of liposome-encapsulated drug and synthetic short-chain glycosphingolipids (SC-GSLs) significantly improved drug bioavailability by enhancing intracellular drug uptake. Investigating the mechanisms underlying this SC-GSL-mediated drug uptake enhancement is the aim of this study. Fluorescence microscopy was used to visualize the cell membrane lipid transfer intracellular fate of fluorescently labeled C6-NBD-GalCer incorporated in liposomes in tumor and non-tumor cells. Additionally click chemistry was applied to image and quantify native SC-GSLs in tumor and non-tumor cell membranes. SC-GSL-mediated flip-flop was investigated in model membranes to confirm membrane-incorporation of SC-GSL and its effect on membrane remodeling. SC-GSL enriched liposomes containing doxorubicin (Dox) were incubated at 4°C and 37°C and intracellular drug uptake was studied in comparison to standard liposomes and free Dox. SC-GSL transfer to the cell membrane was independent of liposomal uptake and the majority of the transferred lipid remained in the plasma membrane. The transfer of SC-GSL was tumor cell-specific and induced membrane rearrangement as evidenced by a transbilayer flip-flop of pyrene-SM. However, pore formation was measured, as leakage of hydrophilic fluorescent probes was not observed. Moreover, drug uptake appeared to be mediated by SC-GSLs. SC-GSLs enhanced the interaction of doxorubicin (Dox) with the outer leaflet of the plasma membrane of tumor cells at 4°C. Our results demonstrate that SC-GSLs preferentially insert into tumor cell plasma membranes enhancing cell intrinsic capacity to translocate amphiphilic drugs such as Dox across the membrane via a biophysical process.

  2. The surface charge of a cell lipid membrane

    CERN Document Server

    Pekker, M


    In this paper the problem of surface charge of the lipid membrane is considered. It is shown that the membrane surface is negatively charged. Negative ions are in potential wells formed by the dipole heads of membrane phospholipids. The binding energy of the ion with the membrane surface is much greater than its thermal energy. A self-consistent model of the potential in solution is developed, and a stationary charge density on the membrane surface is found. The estimates given in the paper show that the potential difference across the membrane of the unexcited axon (resting potential) can be explained by the difference in surface densities of the bound charges on the inner and outer surfaces of the membrane.

  3. Investigation of membrane electrode assemblies (MEAs) for efficient and optimum performance of polymer electrolyte membrane (PEM) fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Okafor, A.C.; Mogbo, H.M.C. [Missouri Univ. of Science and Technology, Rolla, MO (United States). Dept. of Mechanical and Aerospace Engineering


    The core component of a proton exchange membrane (PEM) fuel cell is the membrane electrode assembly (MEA) which includes an assembled stack of ion exchange membrane reaction catalysts, and the electrodes that converts hydrogen ions into electricity. This study investigated various MEAs in an effort to improve fuel cell performance and durability. First, a literature review of different commercially available and innovative PEM fuel cell MEAs was conducted. The best performing MEAs were then investigated in terms of fuel cell output voltage, operating temperature, thermal and chemical stability, methanol permeability, proton conductivity, and hydrogen crossover. The selected MEAs based on their high output voltage, ability to withstand chemical/radical attacks, overall fuel cell performance, and other excellent physical properties were identified as phosphoric acid-doped polybenzimidazole (PBI/H{sub 3}PO{sub 4}), disulfonated poly(sulfide sulfone)s (SPSSF), and Nafion 212. Finally, in-house designed and manufactured bipolar plates of different materials and flow field configurations are being used to validate these 3 identified MEAs in a single fuel cell and 3 fuel cell stacks.

  4. Cell degeneration and mitosis in the buccopharyngeal and branchial membranes in the mouse embryo. (United States)

    Poelmann, R E; Dubois, S V; Hermsen, C; Smits-van Prooije, A E; Vermeij-Keers, C


    The frequencies of cell degeneration and mitosis were investigated in the rupturing buccopharyngeal membrane (BPM) and in the persistent first branchial membrane (BM). In the BPM, cell degeneration starts many hours before rupture is visible, but mitotic figures are absent. In the BM this situation is reversed: mitotic figures are regularly observed, but a degenerating cell only occasionally. It is concluded that the ratio between the numbers of degenerating and dividing cells regulates the fate of both the BPM and the BM.

  5. Membrane crystallinity and fuel crossover in direct ethanol fuel cells with Nafion composite membranes containing phosphotungstic acid

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hongjun; Lee, Sunghwan; Kim, Suran; Oh, Chungik; Ryu, Jeongjae; Kim, Jaegyu; Park, Eugene; Hong, Seungbum; No, Kwangsoo


    Interest has been growing in direct ethanol fuel cells (DEFCs) due to their non-toxicity, low cost and potential contribution to energy issues in third world countries. A reduction in fuel cross-over is of key importance to enhance the performance of DEFCs that operate at low temperatures (<100 °C). We report on the effect of the addition of phosphotungstic acid (PWA) in Nafion membrane on the ethanol-crossover for DEFC application. A set of PWANafion composite membranes (PWA 0, 5, 10, 15, 20 wt%) was prepared by solution casting and their microstructures, diffraction patterns and permeability were systematically characterized. The significant reduction in ethanol-crossover was observed with increasing PWA concentration in PWA-Nafion membranes, which was mainly attributed to an improvement in crystallinity of the membrane. PWA provides additional nucleation sites during solidification leading to higher crystallinity, which is supported by the membrane permeability tests. These PWA-Nafion composites were implemented in proto-type DEFC devices as a membrane and the maximum power density achieved was 22% higher than that of commercial Nafion-117 device.

  6. Wrapping of a deformable nanoparticle by the cell membrane: Insights into the flexibility-regulated nanoparticle-membrane interaction (United States)

    Tang, Huayuan; Zhang, Hongwu; Ye, Hongfei; Zheng, Yonggang


    Although many researches have been conducted on the interaction of the cell membrane with the rigid nanoparticle (NP), relatively little is known about the interaction of the membrane with the deformable NP, which is a promising kind of drug delivery carrier. In this paper, we investigate the wrapping of a deformable NP by the membrane, with particular attention paid to the location of the NP. Phase diagrams with respect to the normalized NP-membrane adhesion strength and the bending stiffness ratio between the NP and membrane are presented. The results show that the NP is easier to be fully wrapped but harder to be shallowly wrapped when the NP locates outside than inside the vesicle. For the system with an outside NP, there are three distinct stages separated by two critical bending stiffness ratios as the NP becomes softer. Moreover, the critical normalized adhesion strength required for a deformable NP to be fully wrapped is the same as that for a rigid NP when the bending stiffness ratio is higher than a critical value, which is different from the wrapping behavior by an initially flat membrane. In addition, a larger vesicle size facilitates the full wrapping configuration when the NP is inside, whereas it prohibits it when the NP is outside. These results are consistent with the previous research and can provide guidelines for the design of drug delivery systems based on the flexibility-tunable NPs.

  7. Performance enhancement of polymer electrolyte membrane fuel cells by dual-layered membrane electrode assembly structures with carbon nanotubes. (United States)

    Jung, Dong-Won; Kim, Jun-Ho; Kim, Se-Hoon; Kim, Jun-Bom; Oh, Eun-Suok


    The effect of dual-layered membrane electrode assemblies (d-MEAs) on the performance of a polymer electrolyte membrane fuel cell (PEMFC) was investigated using the following characterization techniques: single cell performance test, electrochemical impedance spectroscopy (EIS), and cyclic voltammetry (CV). It has been shown that the PEMFC with d-MEAs has better cell performance than that with typical mono-layered MEAs (m-MEAs). In particular, the d-MEA whose inner layer is composed of multi-walled carbon nanotubes (MWCNTs) showed the best fuel cell performance. This is due to the fact that the d-MEAs with MWCNTs have the highest electrochemical surface area and the lowest activation polarization, as observed from the CV and EIS test.

  8. Phosphatidic acid phosphatase and phospholipdase A activities in plasma membranes from fusing muscle cells. (United States)

    Kent, C; Vagelos, P R


    Plasma membrane from fusing embryonic muscle cells were assayed for phospholipase A activity to determine if this enzyme plays a role in cell fusion. The membranes were assayed under a variety of conditions with phosphatidylcholine as the substrate and no phospholipase A activity was found. The plasma membranes did contain a phosphatidic acid phosphatase which was optimally active in the presence of Triton X-100 and glycerol. The enzyme activity was constant from pH 5.2 to 7.0, and did not require divalent cations. Over 97% of the phosphatidic acid phosphatase activity was in the particulate fraction. The subcellular distribution of the phosphatidic acid phosphatase was the same as the distributions of the plasma membrane markers, (Na+ + k+)-ATPase and the acetylcholine receptor, which indicates that this phosphatase is located exclusively in the plasma membranes. There was no detectable difference in the phosphatidic acid phosphatase activities of plasma membranes from fusing and non-fusing cells.

  9. Hydrostatic pressure decreases membrane fluidity and lipid desaturase expression in chondrocyte progenitor cells. (United States)

    Montagne, Kevin; Uchiyama, Hiroki; Furukawa, Katsuko S; Ushida, Takashi


    Membrane biomechanical properties are critical in modulating nutrient and metabolite exchange as well as signal transduction. Biological membranes are predominantly composed of lipids, cholesterol and proteins, and their fluidity is tightly regulated by cholesterol and lipid desaturases. To determine whether such membrane fluidity regulation occurred in mammalian cells under pressure, we investigated the effects of pressure on membrane lipid order of mouse chondrogenic ATDC5 cells and desaturase gene expression. Hydrostatic pressure linearly increased membrane lipid packing and simultaneously repressed lipid desaturase gene expression. We also showed that cholesterol mimicked and cholesterol depletion reversed those effects, suggesting that desaturase gene expression was controlled by the membrane physical state itself. This study demonstrates a new effect of hydrostatic pressure on mammalian cells and may help to identify the molecular mechanisms involved in hydrostatic pressure sensing in chondrocytes.

  10. Protection of Tregs, suppression of Th1 and Th17 cells, and amelioration of experimental allergic encephalomyelitis by a physically-modified saline.

    Directory of Open Access Journals (Sweden)

    Susanta Mondal

    Full Text Available In multiple sclerosis (MS and other autoimmune diseases, the autoreactive T cells overcome the resistance provided by the regulatory T cells (Tregs due to a decrease in the number of Foxp3-expressing Tregs. Therefore, upregulation and/or maintenance of Tregs during an autoimmune insult may have therapeutic efficacy in autoimmune diseases. Although several immunomodulatory drugs and molecules are available, most present significant side effects over long-term use. Here we have undertaken an innovative approach to upregulate Tregs and achieve immunomodulation. RNS60 is a 0.9% saline solution generated by subjecting normal saline to Taylor-Couette-Poiseuille (TCP flow under elevated oxygen pressure. RNS60, but not NS (normal saline, RNS10.3 (TCP-modified saline without excess oxygen and PNS60 (saline containing excess oxygen without TCP modification, was found to upregulate Foxp3 and enrich Tregs in MBP-primed T cells. Moreover, RNS60, but not NS, RNS10.3 and PNS60, inhibited the production of nitric oxide (NO and the expression of iNOS in MBP-primed splenocytes. Incubation of the cells with an NO donor abrogated the RNS60-mediated upregulation of Foxp3. These results suggest that RNS60 boosts Tregs via suppression of NO production. Consistent to the suppressive activity of Tregs towards autoreactive T cells, RNS60, but not NS, RNS10.3, or PNS60, suppressed the differentiation of Th17 and Th1 cells and shifted the balance towards a Th2 response. Finally, RNS60 treatment exhibited immunomodulation and ameliorated adoptive transfer of experimental allergic encephalomyelitis, an animal model of MS, via Tregs. These results describe a novel immunomodulatory property of RNS60 and suggest its exploration for therapeutic intervention in MS and other autoimmune disorders.

  11. Protection of Tregs, suppression of Th1 and Th17 cells, and amelioration of experimental allergic encephalomyelitis by a physically-modified saline. (United States)

    Mondal, Susanta; Martinson, Jeffrey A; Ghosh, Supurna; Watson, Richard; Pahan, Kalipada


    In multiple sclerosis (MS) and other autoimmune diseases, the autoreactive T cells overcome the resistance provided by the regulatory T cells (Tregs) due to a decrease in the number of Foxp3-expressing Tregs. Therefore, upregulation and/or maintenance of Tregs during an autoimmune insult may have therapeutic efficacy in autoimmune diseases. Although several immunomodulatory drugs and molecules are available, most present significant side effects over long-term use. Here we have undertaken an innovative approach to upregulate Tregs and achieve immunomodulation. RNS60 is a 0.9% saline solution generated by subjecting normal saline to Taylor-Couette-Poiseuille (TCP) flow under elevated oxygen pressure. RNS60, but not NS (normal saline), RNS10.3 (TCP-modified saline without excess oxygen) and PNS60 (saline containing excess oxygen without TCP modification), was found to upregulate Foxp3 and enrich Tregs in MBP-primed T cells. Moreover, RNS60, but not NS, RNS10.3 and PNS60, inhibited the production of nitric oxide (NO) and the expression of iNOS in MBP-primed splenocytes. Incubation of the cells with an NO donor abrogated the RNS60-mediated upregulation of Foxp3. These results suggest that RNS60 boosts Tregs via suppression of NO production. Consistent to the suppressive activity of Tregs towards autoreactive T cells, RNS60, but not NS, RNS10.3, or PNS60, suppressed the differentiation of Th17 and Th1 cells and shifted the balance towards a Th2 response. Finally, RNS60 treatment exhibited immunomodulation and ameliorated adoptive transfer of experimental allergic encephalomyelitis, an animal model of MS, via Tregs. These results describe a novel immunomodulatory property of RNS60 and suggest its exploration for therapeutic intervention in MS and other autoimmune disorders.

  12. Cat amniotic membrane multipotent cells are nontumorigenic and are safe for use in cell transplantation

    Directory of Open Access Journals (Sweden)

    Vidane AS


    Full Text Available Atanasio S Vidane,1 Aline F Souza,1 Rafael V Sampaio,1 Fabiana F Bressan,2 Naira C Pieri,1 Daniele S Martins,2 Flavio V Meirelles,2 Maria A Miglino,1 Carlos E Ambrósio2 1Department of Surgery, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil; 2Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo, São Paulo, Brazil Abstract: Amnion-derived mesenchymal stem cells (AMSCs are multipotent cells with an enhanced ability to differentiate into multiple lineages. AMSCs can be acquired through noninvasive methods, and therefore are exempt from the typical ethical issues surrounding stem cell use. The objective of this study was to isolate and characterize AMSCs from a cat amniotic membrane for future application in regenerative medicine. The cat AMSCs were harvested after mechanical and enzymatic digestion of amnion. In culture medium, the cat AMSCs adhered to a plastic culture dish and displayed a fibroblast-like morphology. Immunophenotyping assays were positive for the mesenchymal stem cell-specific markers CD73 and CD90 but not the hematopoietic markers CD34, CD45, and CD79. Under appropriate conditions, the cat AMSCs differentiated into osteogenic, chondrogenic, and adipogenic cell lineages. One advantage of cat AMSCs was nonteratogenicity, assessed 4 weeks post injection of undifferentiated AMSCs into immunodeficient mice. These findings suggest that cat amniotic membranes may be an important and useful source of mesenchymal stem cells for clinical applications, especially for cell or tissue replacement in chronic and degenerative diseases. Keywords: amnion, cats, cell differentiation, fetal membranes, mesenchymal cells

  13. [Radiation-induced changes in structural state of membranes of human blood cells]. (United States)

    Burlakova, E B; Atkarskaia, M V; Fatkullina, L D; Andreev, S G


    To evaluate radiation-induced changes in the structural state of the membranes, blood samples of healthy donors were subjected to gamma radiation in the range of small (1-10 cGy) and medium doses (50 cGy-2 Gy). After irradiation, the microviscosity of lipid membranes of red and white blood cells was measured by ESR spin probe method. At doses exceeding 1 cGy, statistically significant changes of the degree of spontaneous erythrocyte hemolysis and of the lymphocyte plasma membrane microviscosity were observed. Under identical irradiation conditions, the stability of lymphocyte membranes was less as compared to erythrocyte membranes.

  14. Computational modeling study on polymer electrolyte membranes for fuel cell applications (United States)

    Choe, Yoong-Kee; Tsuchida, Eiji


    Properties of polymer electrolyte membranes (PEMs) for use in polymer electrolyte membrane fuel cells (PEFCs) were investigated using the first-principles molecular dynamics simulations. One important issue in PEMs is how to improve the proton conductivity of PEMs under low hydration conditions. Results of the simulation show that perfluorinated type membranes such as Nafion exhibit excellent hydrophilic/hydrophobic phase separation while a hydrocarbon membrane has a relatively poor phase separation property. We found that such a poor phase separation behavior of a hydrocarbon membrane arise from hydrophilic functional groups attached to the PEMs.

  15. Red Blood Cell Susceptibility to Pneumolysin: CORRELATION WITH MEMBRANE BIOCHEMICAL AND PHYSICAL PROPERTIES. (United States)

    Bokori-Brown, Monika; Petrov, Peter G; Khafaji, Mawya A; Mughal, Muhammad K; Naylor, Claire E; Shore, Angela C; Gooding, Kim M; Casanova, Francesco; Mitchell, Tim J; Titball, Richard W; Winlove, C Peter


    This study investigated the effect of the biochemical and biophysical properties of the plasma membrane as well as membrane morphology on the susceptibility of human red blood cells to the cholesterol-dependent cytolysin pneumolysin, a key virulence factor of Streptococcus pneumoniae, using single cell studies. We show a correlation between the physical properties of the membrane (bending rigidity and surface and dipole electrostatic potentials) and the susceptibility of red blood cells to pneumolysin-induced hemolysis. We demonstrate that biochemical modifications of the membrane induced by oxidative stress, lipid scrambling, and artificial cell aging modulate the cell response to the toxin. We provide evidence that the diversity of response to pneumolysin in diabetic red blood cells correlates with levels of glycated hemoglobin and that the mechanical properties of the red blood cell plasma membrane are altered in diabetes. Finally, we show that diabetic red blood cells are more resistant to pneumolysin and the related toxin perfringolysin O relative to healthy red blood cells. Taken together, these studies indicate that the diversity of cell response to pneumolysin within a population of human red blood cells is influenced by the biophysical and biochemical status of the plasma membrane and the chemical and/or oxidative stress pre-history of the cell.

  16. Cell membrane and cell junctions in differentiation of preimplanted mouse embryos. (United States)

    Izquierdo, L; Fernández, S; López, T


    Cell membrane and cell junctions in differentiation of preimplanted mouse embryos, (membrana celular y uniones celulares en la diferenciación del embrión de ratón antes de la implantación). Arch. Biol. Med. Exper. 10: 130-134, 1976. The development of cell junctions that seal the peripheral blastomeres could be a decisive step in the differentiation of morulae into blastocysts. The appearance of these junctions is studied by electron microscopy of late morulae and initial blastocysts. Zonulae occludentes as well as impermeability to lanthanum emulsion precedes the appearance of the blastocel and hence might be considered as one of its necessary causes.

  17. Electropermeabilization mediates a stable insertion of glycophorin A with Chinese hamster ovary cell membranes. (United States)

    el Ouagari, K; Benoist, H; Sixou, S; Teissie, J


    Electropulsation allowed us to incorporate glycophorin A, an integral membrane protein, into mammalian nucleated cell membranes (Chinese hamster ovary cells). The induction of stable protein association is effective only when the field intensity is higher than its threshold value, creating membrane permeabilization to small molecules. Under controlled conditions, cell viability was only slightly altered by this treatment. Pulse number and duration controlled both the number of modified cells and incorporated molecules. The phenomena was temperature dependent. An average of 5 x 10(4) molecules/cell was bound. About 80% of cells in the pulsed population were observed to incorporate glycophorin. The protein incorporation was shown to be stable 48 h after electroassociation. Electrically bound proteins were shared between the cells after each division. As enhanced binding is detected if glycophorin is added after the pulses, it is the long-lived alteration of the membrane mediated by the pulses which supports the association.

  18. Liposome-based engineering of cells to package hydrophobic compounds in membrane vesicles for tumor penetration. (United States)

    Lee, Junsung; Kim, Jiyoung; Jeong, Moonkyoung; Lee, Hyoungjin; Goh, Unbyeol; Kim, Hyaeyeong; Kim, Byungji; Park, Ji-Ho


    Natural membrane vesicles (MVs) derived from various types of cells play an essential role in transporting biological materials between cells. Here, we show that exogenous compounds are packaged in the MVs by engineering the parental cells via liposomes, and the MVs mediate autonomous intercellular migration of the compounds through multiple cancer cell layers. Hydrophobic compounds delivered selectively to the plasma membrane of cancer cells using synthetic membrane fusogenic liposomes were efficiently incorporated into the membrane of MVs secreted from the cells and then transferred to neighboring cells via the MVs. This liposome-mediated MV engineering strategy allowed hydrophobic photosensitizers to significantly penetrate both spheroids and in vivo tumors, thereby enhancing the therapeutic efficacy. These results suggest that innate biological transport systems can be in situ engineered via synthetic liposomes to guide the penetration of chemotherapeutics across challenging tissue barriers in solid tumors.

  19. Estimation of Membrane Hydration Status for Standby Proton Exchange Membrane Fuel Cell Systems by Impedance Measurement: First Results on Variable Temperature Stack Characterization

    DEFF Research Database (Denmark)

    Bidoggia, Benoit; Kær, Søren Knudsen


    Fuel cells are getting growing interest in both backup systems and electric vehicles. Although these systems are characterized by periods of standby, they must be able to start at any instant in the shortest possible time. However, the membranes of which proton exchange membrane fuel cells are made...... way for estimating the hydration status and the temperature of its membrane before the system is started up. A summarizing table with the complete characterization of the fuel cell stack is included in this article....

  20. Effects of an antibacterial membrane on osteoblast-like cells in vitro

    Directory of Open Access Journals (Sweden)

    Ye J


    Full Text Available Jun Ye1, Qianqian Yao1, Anchun Mo2, Jing Nie2, Wenwen Liu1, Cui Ye1, Xianji Chen11State Key Laboratory of Oral Diseases, 2Department of Oral Implant, West China College of Stomatology, Sichuan University, Chengdu, People's Republic of ChinaAbstract: Infection around membranes is often found in guided bone regeneration (GBR. The excellent antibacterial properties of Ag-nHA-nTiO2/polyamide-66 (PA66 nanocomposite membranes have been demonstrated previously. The aim of this study was to observe the microstructure of an Ag-nHA-nTiO2/PA66 membrane and its effects on osteoblast-like cells in vitro. An Ag-nHA-nTiO2/PA66 membrane was used in the experimental group, and both nHA/PA66 and expanded poly tetrafluroethylene (e-PTFE membranes were set as control. MG63 osteoblast-like cells were cultured on the three kinds of membrane and tissue culture polystyrene (TCP. The microstructure of the above membranes and the cells adhered on them were detected by scanning electronic microscope (SEM. Cell proliferation was determined by 3-(4,5-Dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay, cell viability with a cell viability analyzer, and alkaline phosphatase (ALP activity and Ca2+ concentration of osteoblast-like cell matrix by enzyme-linked immunosorbent assay. SEM showed that both Ag-nHA-nTiO2/PA66 membranes and nHA/PA66 membranes were composed of porous obverse face and smooth opposite face. The e-PTFE membranes showed elliptic surface structure with many tiny lined cracks. The MG63 cells adhered and proliferated well on all three kinds of membranes. Though cell viability on Ag-nHA-nTiO2/PA66 membranes was significantly lower than that of the control groups (P < 0.05, MTT values, ALP activity, and Ca2+ concentration did not differ significantly among the three kinds of membranes (P > 0.05. From these findings, it can be concluded that Ag-nHA-nTiO2/PA66 membranes are as biocompatible as nHA/PA66 membranes and TCP, thus may be applied safely in

  1. Dysferlin and other non-red cell proteins accumulate in the red cell membrane of Diamond-Blackfan Anemia patients.

    Directory of Open Access Journals (Sweden)

    Esther N Pesciotta

    Full Text Available Diamond Blackfan Anemia (DBA is a congenital anemia usually caused by diverse mutations in ribosomal proteins. Although the genetics of DBA are well characterized, the mechanisms that lead to macrocytic anemia remain unclear. We systematically analyzed the proteomes of red blood cell membranes from multiple DBA patients to determine whether abnormalities in protein translation or erythropoiesis contribute to the observed macrocytosis or alterations in the mature red blood cell membrane. In depth proteome analysis of red cell membranes enabled highly reproducible identification and quantitative comparisons of 1100 or more proteins. These comparisons revealed clear differences between red cell membrane proteomes in DBA patients and healthy controls that were consistent across DBA patients with different ribosomal gene mutations. Proteins exhibiting changes in abundance included those known to be increased in DBA such as fetal hemoglobin and a number of proteins not normally found in mature red cell membranes, including proteins involved in the major histocompatibility complex class I pathway. Most striking was the presence of dysferlin in the red blood cell membranes of DBA patients but absent in healthy controls. Immunoblot validation using red cell membranes isolated from additional DBA patients and healthy controls confirmed a distinct membrane protein signature specific to patients with DBA.

  2. Modeling of durability of polyelectrolyte membrane of O2/H2 fuel cell

    CERN Document Server

    Atrazhev, Vadim V


    In this paper, we discuss critical aspects of the mechanisms and features of polymer proton exchange membrane (PEM) degradation in low-temperature H2/O2 fuel cell. In this paper, we focused on chemical mechanism of OH radical generation and their distribution in operational fuel cell. According to the current concept, free radicals are generated from hydrogen and oxygen crossover gases at the surface of Pt particles that precipitated in the membrane. We explicitly calculate Pt precipitation rate and electrochemical potential distribution in the membrane that controls it. Based on radical generation rate and Pt distribution we calculate degradation rate of the membrane taking advantage of simple kinetics equations.

  3. Measurement of the permeability and resealing time constant of the electroporated mammalian cell membranes

    Energy Technology Data Exchange (ETDEWEB)

    Shirakashi, Ryo [Tokyo Univ., Inst. of Industrial Science, Tokyo (Japan); Sukhorukov, Vladimir L.; Zimmermann, Ulrich [Wuerzburg Univ. Biozentrum, Lehrstuhl fuer Biotechnologie, Wuerzburg (Germany); Tanasawa, Ichiro [Nihon Univ., Dept. of Mechanical Engineering, Koriyama (Japan)


    In this study a new method is presented for measuring the transient permeability of mammalian cell membranes to sugar and electrolyte molecules based on the volumetric response of cells subjected to electroporation. The time constant of membrane resealing was determined independently by flow cytometry using a fluorescent dye as the reporter molecule. The volumetric and dye uptake data were analyzed with a model relating the cell volume changes to the solute transport across the reversibly permeabilized cell membrane. The experimental approach developed here might be useful for estimating the amount of electroinjected molecules, which are difficult to measure directly. (Author)

  4. Ameliorative effects of human adipose tissue-derived mesenchymal stem cells on myelin basic protein-induced experimental autoimmune encephalomyelitis in Lewis rats

    Institute of Scientific and Technical Information of China (English)

    Myung-Soon Ko; Hyeong-geun Park; Young-Min Yun; Jeong Chan Ra; Taekyun Shin; Kyoung-Kap Lee


    Mesenchymal stem cells have been previously shown to exert an immunomodulatory function. The present study sought to investigate the effects of multipotential human adipose tissue-derived mesenchymal stem cells (hAdMSCs) on disease progression and cytokine expression in Lewis rats with experimental autoimmune encephalomyelitis (EAE) induced by myelin basic protein. The duration of EAE paralysis in the group treated on day 7 postimmunization with 5 × 106 hAdMSCs was significantly reduced compared with the vehicle-treated controls and the 1 × 106 hAdMSC- treated group. The duration of EAE paralysis in the groups treated with 5 × 106 hAdMSCs on both day 1 and day 7 postimmunization was significantly reduced compared with the vehicle-treated controls and the groups treated with 5 × 106 hAdMSCs on both day 7 and day 10 postimmunization. The mRNA expression of interleukin-10 and indoleamine 2, 3-dioxygenase was significantly decreased in the hAdMSC-treated group compared with the vehicle-treated group. These findings suggest that the ameliorative effects of hAdMSCs on EAE symptoms operate in a dose- and time-dependent manner and can be mediated in part by the ample production of anti-inflammatory cytokines.

  5. 1,4-Dihydropyridines Active on the SIRT1/AMPK Pathway Ameliorate Skin Repair and Mitochondrial Function and Exhibit Inhibition of Proliferation in Cancer Cells. (United States)

    Valente, Sergio; Mellini, Paolo; Spallotta, Francesco; Carafa, Vincenzo; Nebbioso, Angela; Polletta, Lucia; Carnevale, Ilaria; Saladini, Serena; Trisciuoglio, Daniela; Gabellini, Chiara; Tardugno, Maria; Zwergel, Clemens; Cencioni, Chiara; Atlante, Sandra; Moniot, Sébastien; Steegborn, Clemens; Budriesi, Roberta; Tafani, Marco; Del Bufalo, Donatella; Altucci, Lucia; Gaetano, Carlo; Mai, Antonello


    Modulators of sirtuins are considered promising therapeutic targets for the treatment of cancer, cardiovascular, metabolic, inflammatory, and neurodegenerative diseases. Here we prepared new 1,4-dihydropyridines (DHPs) bearing changes at the C2/C6, C3/C5, C4, or N1 position. Tested with the SIRTainty procedure, some of them displayed increased SIRT1 activation with respect to the prototype 3a, high NO release in HaCat cells, and ameliorated skin repair in a mouse model of wound healing. In C2C12 myoblasts, two of them improved mitochondrial density and functions. All the effects were reverted by coadministration of compound C (9), an AMPK inhibitor, or of EX-527 (10), a SIRT1 inhibitor, highlighting the involvement of the SIRT1/AMPK pathway in the action of DHPs. Finally, tested in a panel of cancer cells, the water-soluble form of 3a, compound 8, displayed antiproliferative effects in the range of 8-35 μM and increased H4K16 deacetylation, suggesting a possible role for SIRT1 activators in cancer therapy.

  6. Low-cost polyvinyl alcohol hydrogel membrane electrolyte for PEM fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Sahai, Y. [Ohio State Univ., Columbus, OH (United States). Dept. of Materials Science and Engineering


    This paper presented a newly developed polyvinyl alcohol (PVA) chemical hydrogel membrane electrolyte (PCHME) for use in proton exchange membrane (PEM) fuel cells. The method of PCHME preparation was described along with its properties. The membrane is much less expensive than the commonly used Nafion membrane. A direct borohydride fuel cell (DBFC) using a polyvinyl alcohol (PVA) chemical hydrogel membrane electrolyte and a nickel-based composite anode was assembled in order to test the performance of the new membrane. The cathode catalysts were carbon-supported platinum and sputtered gold. Oxygen, air, and acidified hydrogen peroxide were used as oxidants in the DBFC. Performance characteristics of the PCHME-based DBFC were obtained at different temperatures and compared with similar DBFCs using Nafion membrane electrolytes under the same operating conditions. The peak power density of the PCHME-based DBFC was somewhat higher than that of the Nafion membrane electrolyte based DBFC at 60 degrees C. The borohydride-oxygen fuel cell with PCHME yielded a maximum peak power density of 242 mW cm{sup -2} at 60 degrees C. It was concluded that the membrane presents an inexpensive alternative to widely used polymer membrane electrolytes.

  7. Cell-based capacitance sensor for analysis of EGFR expression on cell membrane (United States)

    Shin, Dong-Myeong; Shin, Yong-Cheol; Ha, Ji Hye; Lee, Jong-Ho; Han, Dong-Wook; Kim, Jong-Man; Kim, Hyung Kook; Hwang, Yoon-Hwae


    Cancer cells have many kinds of cancer biomarkers. Among them, the epidermal growth factor (EGF) receptors can show a possibility for a cancer marker because the over-expression of EGF receptor is related with fibrous, colorectal, cervical and gastric tumorigenesis. We fabricated the capacitance sensor with a gap area of 50 μm × 200 μm by using photolithography and lift-off method. Using the capacitance sensor, we investigated the time dependent capacitance changes of different kinds of fibrous cells, such as HT1080 fibrosarcoma, L-929 fibroblast cell line and nHDF dermal fibroblast primary cell. We found that when we put the EGF, the capacitance decreased due to the immobilization of EGF to EGF receptor on the cell membrane. The quantitative determination of EGF receptor level for various fibrous cells was carried out and the results showed good correlation with conventional method. Based on our results, we suggest that the capacitance sensor can measure the expression level of the EGF receptor on cell membrane and be a good candidate as a cancer diagnosis.

  8. Arsenic (V) induces a fluidization of algal cell and liposome membranes. (United States)

    Tuan, Le Quoc; Huong, Tran Thi Thanh; Hong, Pham Thi Anh; Kawakami, Tomonori; Shimanouchi, Toshinori; Umakoshi, Hiroshi; Kuboi, Ryoichi


    Arsenate is one of the most poisonous elements for living cells. When cells are exposed to arsenate, their life activities are immediately affected by various biochemical reactions, such as the binding of arsenic to membranes and the substitution of arsenic for phosphate or the choline head of phospholipids in the biological membranes. The effects of arsenate on the life activities of algae Chlorella vulgaris were investigated at various concentrations and exposure times. The results demonstrated that the living activities of algal cells (10(10)cells/L) were seriously affected by arsenate at a concentration of more than 7.5mg As/L within 24h. Algal cells and the artificial membranes (liposomes) were exposed to arsenate to evaluate its effects on the membrane fluidization. In the presence of arsenate, the membranes were fluidized due to the binding and substitution of arsenate groups for phosphates or the choline head on the their membrane surface. This fluidization of the biological membranes was considered to enhance the transport of toxicants across the membrane of algal cells.

  9. Evaluation of drug-muscarinic receptor affinities using cell membrane chromatography and radioligand binding assay in guinea pig jejunum membrane

    Institute of Scientific and Technical Information of China (English)

    Bing-xiang YUAN; Jin HOU; Lang-chong HE; Guang-de YANG


    Aim: To study if cell membrane chromatography (CMC) could reflect drug-receptor interaction and evaluate the affinity and competitive binding to muscarinic acetylcholine receptor (mAChR). Methods: The cell membrane stationary phase(CMSP) was prepared by immobilizing guinea pig jejunum cell membrane on the surface of a silica carrier, and was used for the rapid on-line chromatographic evaluation of ligand binding affinities to mAChR. The affinity to mAChR was also evaluated from radioligand binding assays (RBA) using the same jejunum membrane preparation. Results: The capacity factor (k') profiles in guinea pig jejunum CMSP were: (-)QNB (15.4)>(+)QNB (11.5)>atropine (5.35)>pirenzepine(5.26)>4-DAMP (4.45)>AF-DX 116 (4.18)>pilocarpine (3.93)>acetylcholine(1.31). These results compared with the affinity rank orders obtained from radioligand binding assays indicated that there wasa positive correlation (r2=0.8525, P<0.0001) between both data sets. Conclusion: The CMC method can be used to evaluate drug-receptor affinities for drug candidates.

  10. Imaging lipid domains in cell membranes: the advent of super-resolution fluorescence microscopy

    Directory of Open Access Journals (Sweden)

    Dylan Myers Owen


    Full Text Available The lipid bilayer of model membranes, liposomes reconstituted from cell lipids, and plasma membrane vesicles and spheres can separate into two distinct liquid phases to yield lipid domains with liquid-ordered and liquid-disordered properties. These observations are the basis of the lipid raft hypothesis that postulates the existence of cholesterol-enriched ordered-phase lipid domains in cell membranes that could regulate protein mobility, localization and interaction. Here we review the evidence that nano-scaled lipid complexes and meso-scaled lipid domains exist in cell membranes and how new fluorescence microscopy techniques that overcome the diffraction limit provide new insights into lipid organization in cell membranes.

  11. Adhesion and receptor clustering stabilizes lateral heterogeneity in cell plasma membranes (United States)

    Veatch, Sarah


    The thermodynamic properties of plasma membrane lipids play a vital role in many functions that initiate at the mammalian cell surface. Some functions are thought to occur, at least in part, because plasma membrane lipids have a tendency to separate into two distinct liquid phases, called liquid-ordered and liquid-disordered. We find that isolated cell plasma membranes are poised near a miscibility critical point separating these two liquid phases, and postulate that critical composition fluctuations provide the physical basis of functional membrane heterogeneity in intact cells. In this talk I will describe several possible mechanisms through which dynamic fluctuations can be stabilized in super-critical membranes, and will present some preliminary evidence suggesting that these structures can be visualized in intact cells using quantitative super-resolution fluorescence localization imaging.

  12. Killer Treg cells ameliorate inflammatory insulitis in non-obese diabetic mice through local and systemic immunomodulation. (United States)

    Kaminitz, Ayelet; Yolcu, Esma S; Mizrahi, Keren; Shirwan, Haval; Askenasy, Nadir


    Treg cells endowed with enhanced killing activity through decoration with Fas-ligand (FasL) protein (killer Treg) have been effective in delay of hyperglycemia in prediabetic non-obese diabetic (NOD) mice. In this study, we assessed the therapeutic efficacy of these cells, harvested from age-matched euglycemic NOD donors, on the course of disease in new-onset diabetics. One dose of 4 × 10(6) killer Treg cells stabilized blood glucose associated with increased insulin levels in 5 of 9 mice and partially reversed the severity of islet inflammation, whereas naive Treg cells did not modulate the course of disease significantly. Killer Treg cells were shown to operate through induction of cell apoptosis within the pancreatic lymph nodes, resulting in reduced efficiency of adoptive disease transfer to NOD/SCID recipients. A second mechanism of action consisted of increased fractions of CD4(+)CD25(-)FoxP3(+) T cells in the pancreas and all lymphoid organs. Immunomodulation with FasL rather than Treg cells enhanced the expression of CD25 and FoxP3 in the thymus, suggesting a possible contribution of thymic output to prolonged stabilization of the glucose levels. Autologous Treg cells evolve as excellent vehicles for targeted delivery of FasL as an immunomodulatory protein, which delete pathogenic cells at the site of inflammation and induce systemic dominance of suppressor subsets.

  13. The silica-doped sulfonated poly(fluorenyl ether ketone)s membrane using hydroxypropyl methyl cellulose as dispersant for high temperature proton exchange membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Y.F.; Wang, S.J.; Xiao, M.; Bian, S.G.; Meng, Y.Z. [State Key Laboratory of Optoelectronic Materials and Technologies, Institute of Optoelectronic and Functional Composite Materials, Sun Yat-sen University, Xingangxi Road, Guangzhou 510275 (China)


    The sulfonated poly(fluorenyl ether ketone)s (SPFEK) membranes doped with SiO{sub 2} and dispersed by hydroxypropyl methyl cellulose (HPMC) were prepared and investigated for polymer electrolyte membrane fuel cells (PEMFCs) used at high temperature and low relative humidity (RH). The above membrane was prepared by solution dispersion of SPFEK and SiO{sub 2} using HPMC as dispersant. The physio-chemical properties of the hybrid membrane were studied by means of scanning electron microscope (SEM), ion-exchange capacity (IEC), proton conductivity, and single cell performance tests. The hybrid membranes dispersed by HPMC were well dispersed when compared with common organic/inorganic hybrid membranes. The hybrid membranes showed superior characteristics as a proton exchange membrane (PEM) for PEMFC application, such as high ionic exchange content (IEC) of 1.51 equiv/g, high temperature operation properties, and the satisfactory ability of anti-H{sub 2} crossover. The single cell performances of the hybrid membranes were examined in a 5 cm{sup 2} commercial single cell at both 80 C and 120 C under different relative humidity (RH) conditions. The hybrid membrane dispersed by HPMC gave the best performance of 260 mW/cm{sup 2} under conditions of 0.4 V, 120 C, 50% RH and ambient pressure. The results demonstrated HPMC being an efficient dispersant for the organic/inorganic hybrid membrane used for PEM fuel cell. (author)

  14. The structure and function of cell membranes examined by atomic force microscopy and single-molecule force spectroscopy. (United States)

    Shan, Yuping; Wang, Hongda


    The cell membrane is one of the most complicated biological complexes, and long-term fierce debates regarding the cell membrane persist because of technical hurdles. With the rapid development of nanotechnology and single-molecule techniques, our understanding of cell membranes has substantially increased. Atomic force microscopy (AFM) has provided several unprecedented advances (e.g., high resolution, three-dimensional and in situ measurements) in the study of cell membranes and has been used to systematically dissect the membrane structure in situ from both sides of membranes; as a result, novel models of cell membranes have recently been proposed. This review summarizes the new progress regarding membrane structure using in situ AFM and single-molecule force spectroscopy (SMFS), which may shed light on the study of the structure and functions of cell membranes.

  15. Vascular endothelial cell membranes differentiate between stretch and shear stress through transitions in their lipid phases. (United States)

    Yamamoto, Kimiko; Ando, Joji


    Vascular endothelial cells (ECs) respond to the hemodynamic forces stretch and shear stress by altering their morphology, functions, and gene expression. However, how they sense and differentiate between these two forces has remained unknown. Here we report that the plasma membrane itself differentiates between stretch and shear stress by undergoing transitions in its lipid phases. Uniaxial stretching and hypotonic swelling increased the lipid order of human pulmonary artery EC plasma membranes, thereby causing a transition from the liquid-disordered phase to the liquid-ordered phase in some areas, along with a decrease in membrane fluidity. In contrast, shear stress decreased the membrane lipid order and increased membrane fluidity. A similar increase in lipid order occurred when the artificial lipid bilayer membranes of giant unilamellar vesicles were stretched by hypotonic swelling, indicating that this is a physical phenomenon. The cholesterol content of EC plasma membranes significantly increased in response to stretch but clearly decreased in response to shear stress. Blocking these changes in the membrane lipid order by depleting membrane cholesterol with methyl-β-cyclodextrin or by adding cholesterol resulted in a marked inhibition of the EC response specific to stretch and shear stress, i.e., phosphorylation of PDGF receptors and phosphorylation of VEGF receptors, respectively. These findings indicate that EC plasma membranes differently respond to stretch and shear stress by changing their lipid order, fluidity, and cholesterol content in opposite directions and that these changes in membrane physical properties are involved in the mechanotransduction that activates membrane receptors specific to each force.

  16. Biocompatibility Assessment of PLCL-Sericin Copolymer Membranes Using Wharton’s Jelly Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Kewalin Inthanon


    Full Text Available Stem cells based tissue engineering requires biocompatible materials, which allow the cells to adhere, expand, and differentiate in a large scale. An ideal biomaterial for clinical application should be free from mammalian products which cause immune reactivities and pathogen infections. We invented a novel biodegradable poly(L-lactic-co-ε-caprolactone-sericin (PLCL-SC copolymer membrane which was fabricated by electrospinning. Membranes with concentrations of 2.5 or 5% (w/v SC exhibited qualified texture characteristics with a noncytotoxic release profile. The hydrophilic properties of the membranes were 35–40% higher than those of a standard PLCL and commercial polystyrene (PS. The improved characteristics of the membranes were due to an addition of new functional amide groups, C=O, N–H, and C–N, onto their surfaces. Degradation of the membranes was controllable, depending on the content proportion of SC. Results of thermogram indicated the superior stability and crystallinity of the membranes. These membranes enhanced human Wharton’s jelly mesenchymal stem cells (hWJMSC proliferation by increasing cyclin A and also promoted cell adhesion by upregulating focal adhesion kinase (FAK. On the membranes, hWJMSC differentiated into a neuronal lineage with the occurrence of nestin. These data suggest that PLCL-SC electrospun membrane represents some properties which will be useful for tissue engineering and medical applications.

  17. Performance Degradation Tests of Phosphoric Acid Doped Polybenzimidazole Membrane Based High Temperature Polymer Electrolyte Membrane Fuel Cells

    DEFF Research Database (Denmark)

    Zhou, Fan; Araya, Samuel Simon; Grigoras, Ionela


    Degradation tests of two phosphoric acid (PA) doped PBI membrane based HT-PEM fuel cells were reported in this paper to investigate the effects of start/stop and the presence of methanol in the fuel to the performance degradation of the HT-PEM fuel cell. Continuous tests with pure dry H2...... and methanol containing H2 which was composed of H2, steam and methanol as the fuel were performed on both single cells. After the continuous tests, 12-h-startup/12-h-shutdown dynamic tests were performed on the first single cell with H2 as the fuel and on the second single cell with methanol containing H2...... as the fuel. Along with the degradation tests, electrochemical techniques such as polarization curves and electrochemical impedance spectroscopy (EIS) were employed to study the degradation mechanisms of the fuel cells. The results of the tests showed that both single cells experienced an increase...

  18. Bacillus thuringiensis membrane-damaging toxins acting on mammalian cells. (United States)

    Celandroni, Francesco; Salvetti, Sara; Senesi, Sonia; Ghelardi, Emilia


    Bacillus thuringiensis is widely used as a biopesticide in forestry and agriculture, being able to produce potent species-specific insecticidal toxins and considered nonpathogenic to other animals. More recently, however, repeated observations are documenting the association of this microorganism with various infectious diseases in humans, such as food-poisoning-associated diarrheas, periodontitis, bacteremia, as well as ocular, burn, and wound infections. Similar to B. cereus, B. thuringiensis produces an array of virulence factors acting against mammalian cells, such as phosphatidylcholine- and phosphatidylinositol-specific phospholipase C (PC-PLC and PI-PLC), hemolysins, in particular hemolysin BL (HBL), and various enterotoxins. The contribution of some of these toxins to B. thuringiensis pathogenicity has been studied in animal models of infection, following intravitreous, intranasal, or intratracheal inoculation. These studies lead to the speculation that the activities of PC-PLC, PI-PLC, and HBL are responsible for most of the pathogenic properties of B. thuringiensis in nongastrointestinal infections in mammals. This review summarizes data regarding the biological activity, the genetic basis, and the structural features of these membrane-damaging toxins.

  19. Simulation of nanostructured electrodes for polymer electrolyte membrane fuel cells (United States)

    Rao, Sanjeev M.; Xing, Yangchuan

    Aligned carbon nanotubes (CNTs) with Pt uniformly deposited on them are being considered in fabricating the catalyst layer of polymer electrolyte membrane (PEM) fuel cell electrodes. When coated with a proton conducting polymer (e.g., Nafion) on the Pt/CNTs, each Pt/CNT acts as a nanoelectrode and a collection of such nanoelectrodes constitutes the proposed nanostructured electrodes. Computer modeling was performed for the cathode side, in which both multicomponent and Knudsen diffusion were taken into account. The effect of the nanoelectrode lengths was also studied with catalyst layer thicknesses of 2, 4, 6, and 10 μm. It was observed that shorter lengths produce better electrode performance due to lower diffusion barriers and better catalyst utilization. The effect of spacing between the nanoelectrodes was studied. Simulation results showed the need to have sufficiently large gas pores, i.e., large spacing, for good oxygen transport. However, this is at the cost of obtaining large electrode currents due to reduction of the number of nanoelectrodes per unit geometrical area of the nanostructured electrode. An optimization of the nanostructured electrodes was obtained when the spacing was at about 400 nm that produced the best limiting current density.

  20. Amniotic membrane and amniotic fluid-derived cells: potential tools for regenerative medicine? (United States)

    Parolini, Ornella; Soncini, Maddalena; Evangelista, Marco; Schmidt, Dörthe


    Human amniotic membranes and amniotic fluid have attracted increasing attention in recent years as a possible reserve of stem cells that may be useful for clinical application in regenerative medicine. Many studies have been conducted to date in terms of the differentiation potential of these cells, with several reports demonstrating that cells from both the amniotic fluid and membrane display high plasticity. In addition, cells from the amniotic membrane have also been shown to display immunomodulatory characteristics both in vivo and in vitro, which could make them useful in an allotransplantation setting. Here, we provide an overview comparing the latest findings regarding the stem characteristics of cells from both the amniotic membrane and amniotic fluid, as well as on the potential utility of these cells for future clinical application in regenerative medicine.

  1. Facilitated Anion Transport Induces Hyperpolarization of the Cell Membrane That Triggers Differentiation and Cell Death in Cancer Stem Cells. (United States)

    Soto-Cerrato, Vanessa; Manuel-Manresa, Pilar; Hernando, Elsa; Calabuig-Fariñas, Silvia; Martínez-Romero, Alicia; Fernández-Dueñas, Víctor; Sahlholm, Kristoffer; Knöpfel, Thomas; García-Valverde, María; Rodilla, Ananda M; Jantus-Lewintre, Eloisa; Farràs, Rosa; Ciruela, Francisco; Pérez-Tomás, Ricardo; Quesada, Roberto


    Facilitated anion transport potentially represents a powerful tool to modulate various cellular functions. However, research into the biological effects of small molecule anionophores is still at an early stage. Here we have used two potent anionophore molecules inspired in the structure of marine metabolites tambjamines to gain insight into the effect induced by these compounds at the cellular level. We show how active anionophores, capable of facilitating the transmembrane transport of chloride and bicarbonate in model phospholipid liposomes, induce acidification of the cytosol and hyperpolarization of plasma cell membranes. We demonstrate how this combined effect can be used against cancer stem cells (CSCs). Hyperpolarization of cell membrane induces cell differentiation and loss of stemness of CSCs leading to effective elimination of this cancer cell subpopulation.

  2. Construction of a dead-end type micro- to R.O. membrane test cell and performance test with the laboratory- made and commercial membranes

    Directory of Open Access Journals (Sweden)

    Darunee Bhongsuwan


    Full Text Available A dead-end type membrane stirred cell for an RO filtration test has been designed and constructed. Magnetic stirring system is applied to overcome a pressure-induced concentration polarization occurred over a membrane surface in the test cell. A high pressure N2 tank is used as a pressure source.Feed container is designed for 2.5 l feed solution and a stirred cell volume is 0.5 l . The test cell holds a magnetic stirrer freely moved over the membrane surface. All units are made of stainless steel. A porous SS316L disc is used as a membrane support. The dead-end stirred cell is tested to work properly in an operating pressure ranged 0 - 400 psi. It means that the dead-end cell can be used to test a membrane of different filtration modes, from micro- to Reverse Osmosis filtration. Tests performed at 400 psi for 3 hours are safe but tests at a 500 psi increase leakage possibility. The cell is used to test the performance of both commercial and laboratory-made membranes. It shows that the salt rejection efficiency of the nano- and RO membranes, NTR759HR and LES90, determined by using the new test cell, is closely similar to those reported from the manufacture. Result of the tests for our own laboratory-made membrane shows a similar performance to the nanofiltration membrane LES90.

  3. Translocation mechanism of C60 and C60 derivations across a cell membrane (United States)

    Liang, Lijun; Kang, Zhengzhong; Shen, Jia-Wei


    Carbon-based nanoparticles (NPs) such as fullerenes and nanotubes have been extensively studied for drug delivery in recent years. The permeation process of fullerene and its derivative molecules through membrane is essential to the utilization of fullerene-based drug delivery system, but the mechanism and the dynamics of permeation through cell membrane are still unclear. In this study, coarse-grained molecular dynamics simulations were performed to investigate the permeation process of functionalized fullerene molecules (ca. 0.72 nm) through the membrane. Our results show that single functionalized fullerene molecule in such nanoscale could permeate the lipid membrane in micro-second time scale. Pristine C60 molecules prefer to aggregate into several small clusters while C60OH15 molecules could aggregate into one big cluster to permeate through the lipid membrane. After permeation of C60 or its derivatives into membrane, all C60 and C60OH15 molecules disaggregated and monodispersed in the lipid membrane.

  4. High Proton Conducting SPEEK/SiO2/PWA Composite Membranes for Direct Methanol Fuel Cells

    Institute of Scientific and Technical Information of China (English)

    ZHANG Gaowen; JIANG Jiuxin; LIU Jianing


    Sulfonated polyether ether ketone (SPEEK) based composite membranes for direct methanol fuel cell (DMFC) application were prepared by sol-gel reaction of tetraethoxysilane (TEOS) in the SPEEK matrix and the incorporation of phosphotungstic acid (PWA). The conductivity of the developed membranes was determined by impedance spectroscopy and the methanol permeability through the membranes was obtained from diffuseness experiments. The SEM images show that the addition of SiO2 and the covalent cross-linking structure lead to fine PWA particles and more uniformly dispersion. The swelling of composite membranes remains in the range of 5%-8% at 30-90 ℃ and the effusion of PWA reduces significantly. The composite membranes show a good balance in higher proton conductivity and lower methanol permeation. The cell with composite membrane has higher open circuit voltage(0.728 V) and higher peak power density(45 mW/cm2) than that with Nation 117.

  5. Advances in the high performance polymer electrolyte membranes for fuel cells. (United States)

    Zhang, Hongwei; Shen, Pei Kang


    This critical review tersely and concisely reviews the recent development of the polymer electrolyte membranes and the relationship between their properties and affecting factors like operation temperature. In the first section, the advantages and shortcomings of the corresponding polymer electrolyte membrane fuel cells are analyzed. Then, the limitations of Nafion membranes and their alternatives to large-scale commercial applications are discussed. Secondly, the concepts and approaches of the alternative proton exchange membranes for low temperature and high temperature fuel cells are described. The highlights of the current scientific achievements are given for various aspects of approaches. Thirdly, the progress of anion exchange membranes is presented. Finally, the perspectives of future trends on polymer electrolyte membranes for different applications are commented on (400 references).

  6. Detection of anti-liver cell membrane antibody using a human hepatocellular carcinoma cell line

    Energy Technology Data Exchange (ETDEWEB)

    Lobo-Yeo, A.; McSorley, C.; McFarlane, B.M.; Mieli-Vergani, G.; Mowat, A.P.; Vergani, D.


    A radioimmunometric technique for the detection of autoantibodies to liver membrane antigens has been developed using Alexander cells, a human hepatocellular carcinoma cell line. After incubation of Alexander cells with serum, antimembrane antibodies were detected by addition of /sup 125/I-labeled Protein A. Binding ratios in 15 children with uncontrolled autoimmune chronic active hepatitis and in seven children with primary sclerosing cholangitis were significantly higher than in 18 age-matched normal controls. Nine patients with inactive autoimmune chronic active hepatitis, 13 with alpha 1-antitrypsin deficiency and five with fulminant hepatic failure had ratios similar to controls. In nine patients with Wilson's disease, there was a modest but significant increase in binding ratio. In four children with autoimmune chronic active hepatitis, binding ratios fell during effective immunosuppressive therapy. Sera from patients with systemic lupus erythematosus or rheumatoid arthritis gave normal results, excluding that binding derives from Fc-mediated immune complex capture. A positive correlation was found between Alexander cell binding values and anti-liver-specific protein antibody titers, suggesting that the two assays detect antibodies against shared antigenic determinants. The Alexander cell assay is a simple, rapid and sensitive technique to detect antibody to liver cell membrane antigens.

  7. Tracking single cells in live animals using a photoconvertible near-infrared cell membrane label.

    Directory of Open Access Journals (Sweden)

    Alicia L Carlson

    Full Text Available We describe a novel photoconversion technique to track individual cells in vivo using a commercial lipophilic membrane dye, DiR. We show that DiR exhibits a permanent fluorescence emission shift (photoconversion after light exposure and does not reacquire the original color over time. Ratiometric imaging can be used to distinguish photoconverted from non-converted cells with high sensitivity. Combining the use of this photoconvertible dye with intravital microscopy, we tracked the division of individual hematopoietic stem/progenitor cells within the calvarium bone marrow of live mice. We also studied the peripheral differentiation of individual T cells by tracking the gain or loss of FoxP3-GFP expression, a marker of the immune suppressive function of CD4(+ T cells. With the near-infrared photoconvertible membrane dye, the entire visible spectral range is available for simultaneous use with other fluorescent proteins to monitor gene expression or to trace cell lineage commitment in vivo with high spatial and temporal resolution.

  8. Colitic scid mice fed Lactobacillus spp. show an ameliorated gut histopathology and an altered cytokine profile by local T cells

    DEFF Research Database (Denmark)

    Møller, Peter Lange; Pærregaard, Anders; Gad, Monika;


    Scid mice transplanted with CD4 T blast cells develop colitis. We investigated if the disease was influenced in colitic mice treated with antibiotic and fed Lactobacillus spp.......Scid mice transplanted with CD4 T blast cells develop colitis. We investigated if the disease was influenced in colitic mice treated with antibiotic and fed Lactobacillus spp....

  9. Cell Membrane Capsules for Encapsulation of Chemotherapeutic and Cancer Cell Targeting in Vivo. (United States)

    Peng, Li-Hua; Zhang, Yuan-Hong; Han, Li-Jie; Zhang, Chen-Zhen; Wu, Jia-He; Wang, Xia-Rong; Gao, Jian-Qing; Mao, Zheng-Wei


    Systemic administration of chemotherapeutic agents can cause indiscriminate drug distribution and severe toxicity. Until now, encapsulation and targeting of drugs have typically relied on synthetic vehicles, which cannot minimize the clearance by the renal system and may also increase the risk of chemical side effects. Cell membrane capsules (CMCs) provide a generic and far more natural approach to the challenges of drug encapsulation and delivery in vivo. Here aptamer AS1411, which can recognize and bind overexpressed nucleolin on a cancer cell membrane, was chemically conjugated onto CMCs. As a result, AS1411 modified CMCs showed enhanced ingestion in certain cancer cells in vitro and accumulation in mouse cancer xenografts in vivo. Chemotherapeutics and contrast agents with therapeutically significant concentrations can be packaged into CMCs by reversible permeating their plasma membranes. The systematic administration of cancer targeting CMCs loaded with doxorubicin hydrochloride can significantly inhibit tumor growth in mouse xenografts, with significantly reduced toxicity compared to free drug. These findings suggest that cancer targeting CMCs may have considerable benefits in drug delivery and cancer treatment.

  10. How Does Carbon Dioxide Permeate Cell Membranes?A discussion of concepts, results and methods.

    Directory of Open Access Journals (Sweden)

    Volker eEndeward


    Full Text Available We review briefly how the thinking about the permeation of gases, especially CO2, across cell and artificial lipid membranes has evolved during the last hundred years. We then describe how the recent finding of a drastic effect of cholesterol on CO2 permeability of both biological and artificial membranes fundamentally alters the long-standing idea that CO2 – as well as other gases – permeates all membranes with great ease. This requires revision of the widely accepted paradigm that membranes never offer a serious diffusion resistance to CO2 or other gases. Earlier observations of CO2-impermeable membranes can now be explained by the high cholesterol content of some membranes. Thus, cholesterol is a membrane component that nature can use to adapt membrane CO2 permeability to the functional needs of the cell. Since cholesterol serves many other cellular functions, it cannot be reduced indefinitely. We show, however, that cells that possess a high metabolic rate and/or a high rate of O2 and CO2 exchange, do require very high CO2 permeabilities that may not be achievable merely by reduction of membrane cholesterol. The article then discusses the alternative possibility of raising the CO2 permeability of a membrane by incorporating protein CO2 channels. The highly controversial issue of gas and CO2 channels is systematically and critically reviewed. It is concluded that a majority of the results considered to be reliable, is in favour of the concept of existence and functional relevance of protein gas channels. The effect of intracellular carbonic anhydrase, which has recently been proposed as an alternative mechanism to a membrane CO2 channel, is analysed quantitatively and the idea considered untenable. After a brief review of the knowledge on permeation of O2 and NO through membranes, we present a summary of the 18O method used to measure the CO2 permeability of membranes and discuss quantitatively critical questions that may be addressed to

  11. Accumulation of raft lipids in T-cell plasma membrane domains engaged in TCR signalling

    DEFF Research Database (Denmark)

    Zech, Tobias; Ejsing, Christer S.; Gaus, Katharina;


    domains were also enriched in plasmenyl phosphatidylethanolamine and phosphatidylserine. Modulating the T-cell lipidome with polyunsaturated fatty acids impaired the plasma membrane condensation at TCR signalling foci and resulted in a perturbed molecular lipid composition. These results correlate...... and saturated phosphatidylcholine species as compared with control plasma membrane fragments. This provides, for the first time, direct evidence that TCR activation domains comprise a distinct molecular lipid composition reminiscent of liquid-ordered raft phases in model membranes. Interestingly, TCR activation...

  12. Characterization of PEM fuel cell membrane-electrode-assemblies by electrochemical methods and microanalysis

    Energy Technology Data Exchange (ETDEWEB)

    Borup, R.L.; Vanderborgh, N.E.


    Hydrogen adsorption/desorption and CO oxidation are used to evaluate the active Pt surface area of fuel cell membrane electrode assemblies. The membrane electrode assemblies are evaluated for useful catalyst life and are examined for relative CO and CO{sub 2} tolerance. The electrochemical measurements combined with microanalysis of membrane electrode assemblies, including SEM and EDS allow a greater understanding and optimization of process variables.

  13. The novel role of peroxiredoxin-2 in red cell membrane protein homeostasis and senescence. (United States)

    Matté, Alessandro; Pantaleo, Antonella; Ferru, Emanuela; Turrini, Franco; Bertoldi, Mariarita; Lupo, Francesca; Siciliano, Angela; Ho Zoon, Chae; De Franceschi, Lucia


    Peroxiredoxin-2 (Prx2), a typical two-cysteine peroxiredoxin, is the third most abundant protein in red cells. Although progress has been made in the functional characterization of Prx2, its role in red cell membrane protein homeostasis is still under investigation. Here, we studied Prx2(-/-) mouse red cells. The absence of Prx2 promotes (i) activation of the oxidative-induced Syk pathway; (ii) increased band 3 Tyr phosphorylation, with clustered band 3; and (iii) increased heat shock protein (HSP27 and HSP70) membrane translocation. This was associated with enhanced in vitro erythrophagocytosis of Prx2(-/-) red cells and reduced Prx2(-/-) red cell survival, indicating the possible role of Prx2 membrane recruitment in red cell aging and in the clearance of oxidized hemoglobin and damaged proteins through microparticles. Indeed, we observed an increased release of microparticles from Prx2(-/-) mouse red cells. The mass spectrometric analysis of erythroid microparticles found hemoglobin chains, membrane proteins, and HSPs. To test these findings, we treated Prx2(-/-) mice with antioxidants in vivo. We observed that N-acetylcysteine reduced (i) Syk activation, (ii) band 3 clusterization, (iii) HSP27 membrane association, and (iv) erythroid microparticle release, resulting in increased Prx2(-/-) mouse red cell survival. Thus, we propose that Prx2 may play a cytoprotective role in red cell membrane protein homeostasis and senescence.

  14. Blockade of CD47 ameliorates autoimmune inflammation in CNS by suppressing IL-1-triggered infiltration of pathogenic Th17