WorldWideScience

Sample records for cell mediated cytotoxicity

  1. Athymic nude rat. III natural cell mediated cytotoxicity.

    NARCIS (Netherlands)

    W.H. de Jong; P.A. Steerenberg; P.S. Ursem; A.D.M.E. Osterhaus (Albert); J.G. Vos (Joseph); E.J. Ruitenberg (Joost)

    1980-01-01

    textabstractHomozygous rnu/rnu and heterozygous +/rnu rats were investigated and compared with each other for the existence of natural cell-mediated cytotoxicity. Investigated were total, adherent, and nonadherent cell populations from spleen, peritoneal cavity, and mesenteric lymph node. The

  2. Studies on ADCC (antibody-dependent cell-mediated cytotoxicity) using sheep red blood cells as target cells, 2

    International Nuclear Information System (INIS)

    Ichikawa, Yukinobu; Takaya, Masatoshi; Arimori, Shigeru

    1979-01-01

    A non-specific cytotoxic mediator from effector cells (human peripheral blood leukocytes) was investigated in the ADCC (antibody-dependent cell-mediated cytotoxicity) system using antibody-coated sheep red blood cells (SRBC) as target cells. 51 Cr-labelled homologous (sheep) or heterologous (human) red blood cells were used as adjacent cells. Either crude lymphocyte fraction, phagocyte depleted fraction or granulocyte rich fraction separated from human peripheral leukocytes showed moderate cytotoxic effect on homologous adjacent cells, however no cytotoxic activity on heterologous adjacent cells was demonstrated in any leukocyte fraction. This suggests that the cytotoxic effects on homologous adjacent cells were resulted from the translocation of antibody molecules to adjacent cells from antibody-coated target cells. We concluded that the cytotoxic mechanism in this ADCC system was not mediated by non-specific soluble factors released from either human peripheral lymphocytes, monocytes or granulocytes. (author)

  3. Natural killer cell-mediated cytotoxicity is increased by a type II arabinogalactan from Anoectochilus formosanus.

    Science.gov (United States)

    Yang, Li-Chan; Lai, Ching-Yi; Lin, Wen-Chuan

    2017-01-02

    This study investigated the effects of a type II arabinogalactan from Anoectochilus formosanus (AGAF) on natural killer (NK) cell-mediated cytotoxicity and the possible underlying mechanisms. This study reported that sustained exposure to AGAF increased NK-92MI cell-mediated cytotoxicity in a time- and concentration-dependent manner, as characterized according to the cellular lactic dehydrogenase leakage from K562 leukemia cells. Additionally, antibody neutralization studies have reported that interferon (IFN)-γ, but not perforin or tumor necrosis factor-α, released by NK-92MI NK cells is crucial in enhancing cytotoxicity through an autocrine loop. In this study, AGAF was further demonstrated to induce IFN-γ expression, increasing the susceptibility to NK-92MI cell-mediated cytotoxicity through the toll-like receptor (TLR)-2, TLR4, extracellular signal-regulated kinase, p38 mitogen-activated protein kinase, and nuclear factor-κB pathways. A pharmacological study revealed that Janus kinase 2/signal transducers and activators of the signal transducers and of transcription 3 signaling are involved in IFN-γ-induced NK cell-mediated cytotoxicity. Copyright © 2016. Published by Elsevier Ltd.

  4. Cytotoxic T cells mediate pathology and metastasis in cutaneous leishmaniasis.

    Directory of Open Access Journals (Sweden)

    Fernanda O Novais

    Full Text Available Disease progression in response to infection can be strongly influenced by both pathogen burden and infection-induced immunopathology. While current therapeutics focus on augmenting protective immune responses, identifying therapeutics that reduce infection-induced immunopathology are clearly warranted. Despite the apparent protective role for murine CD8⁺ T cells following infection with the intracellular parasite Leishmania, CD8⁺ T cells have been paradoxically linked to immunopathological responses in human cutaneous leishmaniasis. Transcriptome analysis of lesions from Leishmania braziliensis patients revealed that genes associated with the cytolytic pathway are highly expressed and CD8⁺ T cells from lesions exhibited a cytolytic phenotype. To determine if CD8⁺ T cells play a causal role in disease, we turned to a murine model. These studies revealed that disease progression and metastasis in L. braziliensis infected mice was independent of parasite burden and was instead directly associated with the presence of CD8⁺ T cells. In mice with severe pathology, we visualized CD8⁺ T cell degranulation and lysis of L. braziliensis infected cells. Finally, in contrast to wild-type CD8⁺ T cells, perforin-deficient cells failed to induce disease. Thus, we show for the first time that cytolytic CD8⁺ T cells mediate immunopathology and drive the development of metastatic lesions in cutaneous leishmaniasis.

  5. Inhibition of natural killer cell-mediated cytotoxicity by lipids extracted from Mycobacterium bovis BCG

    NARCIS (Netherlands)

    Roozemond, R. C.; Halperin, M.; Das, P. K.

    1985-01-01

    Several studies have demonstrated an augmentation of natural killer (NK) cell-mediated cytotoxicity by various adjuvants including BCG. Inhibitory effects of BCG have also been reported, particularly for relatively high doses. Because the cell wall of Mycobacterium bovis BCG contains a high

  6. Cells that mediate NK like cytotoxicity are present in the human delayed type hypersensitivity response.

    Science.gov (United States)

    Tartof, D; Yung, C W; Curran, J J; Livingston, C; Thalji, Z

    1984-11-01

    By inducing delayed type hypersensitivity (DTH) responses under previously formed skin blisters we determined that cells which mediate natural killer (NK) like cytotoxicity are present in the DTH response in man. Similar levels of killing were not present in cells obtained from skin blisters not associated with positive DTH responses. The DTH response associated killer cell was found to be a mononuclear cell that had presumably undergone stimulation since it not only killed NK sensitive K-562 cells, but also NK resistant Daudi target cells.

  7. The phytoalexin camalexin mediates cytotoxicity towards aggressive prostate cancer cells via reactive oxygen species

    OpenAIRE

    Smith, Basil A.; Neal, Corey L.; Chetram, Mahandranauth; Vo, BaoHan; Mezencev, Roman; Hinton, Cimona; Odero-Marah, Valerie A.

    2012-01-01

    Camalexin is a phytoalexin that accumulates in various cruciferous plants upon exposure to environmental stress and plant pathogens. Besides moderate antibacterial and antifungal activity, camalexin was reported to also exhibit antiproliferative and cancer chemopreventive effects in breast cancer and leukemia. We studied the cytotoxic effects of camalexin treatment on prostate cancer cell lines and whether this was mediated by reactive oxygen species (ROS) generation. As models, we utilized L...

  8. Mechanism of arctigenin-mediated specific cytotoxicity against human lung adenocarcinoma cell lines.

    Science.gov (United States)

    Susanti, Siti; Iwasaki, Hironori; Inafuku, Masashi; Taira, Naoyuki; Oku, Hirosuke

    2013-12-15

    The lignan arctigenin (ARG) from the herb Arctium lappa L. possesses anti-cancer activity, however the mechanism of action of ARG has been found to vary among tissues and types of cancer cells. The current study aims to gain insight into the ARG mediated mechanism of action involved in inhibiting proliferation and inducing apoptosis in lung adenocarcinoma cells. This study also delineates the cancer cell specificity of ARG by comparison with its effects on various normal cell lines. ARG selectively arrested the proliferation of cancer cells at the G0/G1 phase through the down-regulation of NPAT protein expression. This down-regulation occurred via the suppression of either cyclin E/CDK2 or cyclin H/CDK7, while apoptosis was induced through the modulation of the Akt-1-related signaling pathway. Furthermore, a GSH synthase inhibitor specifically enhanced the cytotoxicity of ARG against cancer cells, suggesting that the intracellular GSH content was another factor influencing the susceptibility of cancer cells to ARG. These findings suggest that specific cytotoxicity of ARG against lung cancer cells was explained by its selective modulation of the expression of NPAT, which is involved in histone biosynthesis. The cytotoxicity of ARG appeared to be dependent on the intracellular GSH level. Copyright © 2013 Elsevier GmbH. All rights reserved.

  9. Interleukin-10 Attenuates Hypochlorous Acid-Mediated Cytotoxicity to HEI-OC1 Cochlear Cells

    Directory of Open Access Journals (Sweden)

    Martin Mwangi

    2017-10-01

    Full Text Available Inflammatory reaction plays a crucial role in the pathophysiology of acquired hearing loss such as ototoxicity and labyrinthitis. In our earlier work, we showed the pivotal role of otic fibrocytes in cochlear inflammation and the critical involvement of proinflammatory cytokines in cisplatin ototoxicity. We also demonstrated that otic fibrocytes inhibit monocyte chemoattractant protein 1 (CCL2 upregulation in response to interleukin-10 (IL-10 via heme oxygenase 1 (HMOX1 signaling, resulting in suppression of cochlear inflammation. However, it is still unclear how IL-10 affects inflammation-mediated cochlear injury. Here we aim to determine how hypochlorous acid, a model inflammation mediator affects cochlear cell viability and how IL-10 affects hypochlorous acid-mediated cochlear cell injury. NaOCl, a sodium salt of hypochlorous acid (HOCl was found to induce cytotoxicity of HEI-OC1 cells in a dose-dependent manner. Combination of hydrogen peroxide and myeloperoxidase augmented cisplatin cytotoxicity, and this synergism was inhibited by N-Acetyl-L-cysteine and ML-171. The rat spiral ligament cell line (RSL appeared to upregulate the antioxidant response element (ARE activities upon exposure to IL-10. RSL cells upregulated the expression of NRF2 (an ARE ligand and NR0B2 in response to CoPP (a HMOX1 inducer, but not to ZnPP (a HMOX1 inhibitor. Adenovirus-mediated overexpression of NR0B2 was found to suppress CCL2 upregulation. IL-10-positive cells appeared in the mouse stria vascularis 1 day after intraperitoneal injection of lipopolysaccharide (LPS. Five days after injection, IL-10-positive cells were observed in the spiral ligament, spiral limbus, spiral ganglia, and suprastrial area, but not in the stria vascularis. IL-10R1 appeared to be expressed in the mouse organ of Corti as well as HEI-OC1 cells. HEI-OC1 cells upregulated Bcl-xL expression in response to IL-10, and IL-10 was shown to attenuate NaOCl-induced cytotoxicity. In addition, HEI

  10. Role of NKG2D, DNAM-1 and natural cytotoxicity receptors in cytotoxicity toward rhabdomyosarcoma cell lines mediated by resting and IL-15-activated human natural killer cells.

    Science.gov (United States)

    Boerman, Gerharda H; van Ostaijen-ten Dam, Monique M; Kraal, Kathelijne C J M; Santos, Susy J; Ball, Lynne M; Lankester, Arjan C; Schilham, Marco W; Egeler, R Maarten; van Tol, Maarten J D

    2015-05-01

    Children with advanced stages (relapsed/refractory and stage IV) of rhabdomyosarcoma (RMS) have a poor prognosis despite intensive chemotherapy and autologous stem cell rescue, with 5-year survival rates ranging from 5 to 35 %. Development of new, additional treatment modalities is necessary to improve the survival rate. In this preclinical study, we investigated the potential of resting and cytokine-activated natural killer (NK) cells to lyse RMS cell lines, as well as the pathways involved, to explore the eventual clinical application of (activated) NK cell immunotherapy. RMS cell lines (n = 3 derived from embryonal RMS and n = 2 derived from alveolar RMS) were susceptible to cytolysis mediated by resting NK cells, and this susceptibility was significantly increased using IL-15-activated NK cells. Flow cytometry and cytolytic assays were used to define the activating and inhibitory pathways of NK cells involved in recognizing and lysing RMS cells. NKG2D and DNAM-1 receptor-ligand interactions were essential in cytolysis by resting NK cells, as simultaneous blocking of both pathways resulted in almost complete abrogation of the cytotoxicity. In contrast, combined blocking of DNAM-1 and NKG2D only led to partial reduction of the lytic activity of IL-15-activated NK cells. In this respect, residual lysis was, at least partly, mediated by pathways involving the natural cytotoxicity receptors NKp30 and NKp46. These findings support further exploration of NK cell-based immunotherapy as adjuvant modality in current treatment strategies of RMS.

  11. TCR down-regulation boosts T-cell-mediated cytotoxicity and protection against poxvirus infections

    DEFF Research Database (Denmark)

    Hansen, Ann Kathrine; Regner, Matthias; Bonefeld, Charlotte Menne

    2011-01-01

    Cytotoxic T (Tc) cells play a key role in the defense against virus infections. Tc cells recognize infected cells via the T-cell receptor (TCR) and subsequently kill the target cells by one or more cytotoxic mechanisms. Induction of the cytotoxic mechanisms is finely tuned by the activation signals...... from the TCR. To determine whether TCR down-regulation affects the cytotoxicity of Tc cells, we studied TCR down-regulation-deficient CD3¿LLAA mice. We found that Tc cells from CD3¿LLAA mice have reduced cytotoxicity due to a specific deficiency in exocytosis of lytic granules. To determine whether......-regulation critically increases Tc cell cytotoxicity and protection against poxvirus infection....

  12. Transmissible cytotoxicity of multiple myeloma cells by cord blood-derived NK cells is mediated by vesicle trafficking

    Science.gov (United States)

    Martin-Antonio, B; Najjar, A; Robinson, S N; Chew, C; Li, S; Yvon, E; Thomas, M W; Mc Niece, I; Orlowski, R; Muñoz-Pinedo, C; Bueno, C; Menendez, P; Fernández de Larrea, C; Urbano-Ispizua, A; Shpall, E J; Shah, N

    2015-01-01

    Natural killer cells (NK) are important effectors of anti-tumor immunity, activated either by the downregulation of HLA-I molecules on tumor cells and/or the interaction of NK-activating receptors with ligands that are overexpressed on target cells upon tumor transformation (including NKG2D and NKP30). NK kill target cells by the vesicular delivery of cytolytic molecules such as Granzyme-B and Granulysin activating different cell death pathways, which can be Caspase-3 dependent or Caspase-3 independent. Multiple myeloma (MM) remains an incurable neoplastic plasma-cell disorder. However, we previously reported the encouraging observation that cord blood-derived NK (CB-NK), a new source of NK, showed anti-tumor activity in an in vivo murine model of MM and confirmed a correlation between high levels of NKG2D expression by MM cells and increased efficacy of CB-NK in reducing tumor burden. We aimed to characterize the mechanism of CB-NK-mediated cytotoxicity against MM cells. We show a Caspase-3- and Granzyme-B-independent cell death, and we reveal a mechanism of transmissible cell death between cells, which involves lipid–protein vesicle transfer from CB-NK to MM cells. These vesicles are secondarily transferred from recipient MM cells to neighboring MM cells amplifying the initial CB-NK cytotoxicity achieved. This indirect cytotoxicity involves the transfer of NKG2D and NKP30 and leads to lysosomal cell death and decreased levels of reactive oxygen species in MM cells. These findings suggest a novel and unique mechanism of CB-NK cytotoxicity against MM cells and highlight the importance of lipids and lipid transfer in this process. Further, these data provide a rationale for the development of CB-NK-based cellular therapies in the treatment of MM. PMID:25168239

  13. Effect of radiation on cell-mediated cytotoxicity and lymphocyte subpopulations in patients with ovarian carcinoma

    International Nuclear Information System (INIS)

    Kohorn, E.I.; Mitchell, M.S.; Dwyer, J.M.; Knowlton, A.H.; Klein-Angerer, S.

    1978-01-01

    Lymphocyte subpopulations and cell-mediated cytotoxicity (CMI) were studied during radiation therapy in 16 patients with ovarian carcinoma. The total lymphocyte count became depressed in all patients. The depression was more marked among T cells, while the proportion of B cells remained unaffected. In patients with Stage I and II ovarian cancer, CMI was depressed significantly by radiotherapy after 7 days of treatment, remained low at 14 days but recovered despite continuation of radiation. This depression of CMI occurred at a delivered dose of 1,000 rads with subsequent recovery. Patients with Stage III ovarian cancer given pelvic and abdominal radiation were found to have no consistent depression of CMI, a finding similar to that in Stage III ovarian carcinoma patients given chemotherapy

  14. Na+entry through heteromeric TRPC4/C1 channels mediates (-)Englerin A-induced cytotoxicity in synovial sarcoma cells.

    Science.gov (United States)

    Muraki, Katsuhiko; Ohnishi, Kaori; Takezawa, Akiho; Suzuki, Hiroka; Hatano, Noriyuki; Muraki, Yukiko; Hamzah, Nurasyikin; Foster, Richard; Waldmann, Herbert; Nussbaumer, Peter; Christmann, Mathias; Bon, Robin S; Beech, David J

    2017-12-05

    The sesquiterpene (-)Englerin A (EA) is an organic compound from the plant Phyllanthus engleri which acts via heteromeric TRPC4/C1 channels to cause cytotoxicity in some types of cancer cell but not normal cells. Here we identified selective cytotoxicity of EA in human synovial sarcoma cells (SW982 cells) and investigated the mechanism. EA induced cation channel current (Icat) in SW982 cells with biophysical characteristics of heteromeric TRPC4/C1 channels. Inhibitors of homomeric TRPC4 channels were weak inhibitors of the Icat and EA-induced cytotoxicity whereas a potent inhibitor of TRPC4/C1 channels (Pico145) strongly inhibited Icat and cytotoxicity. Depletion of TRPC1 converted Icat into a current with biophysical and pharmacological properties of homomeric TRPC4 channels and depletion of TRPC1 or TRPC4 suppressed the cytotoxicity of EA. A Na + /K + -ATPase inhibitor (ouabain) potentiated EA-induced cytotoxicity and direct Na + loading by gramicidin-A caused Pico145-resistant cytotoxicity in the absence of EA. We conclude that EA has a potent cytotoxic effect on human synovial sarcoma cells which is mediated by heteromeric TRPC4/C1 channels and Na + loading.

  15. Enhancement of antibody-dependent cell mediated cytotoxicity: a new era in cancer treatment

    Directory of Open Access Journals (Sweden)

    Rajasekaran N

    2015-05-01

    Full Text Available Narendiran Rajasekaran,1,* Cariad Chester,1,* Atsushi Yonezawa,1,2 Xing Zhao,1,3 Holbrook E Kohrt1 1Division of Oncology, Stanford School of Medicine, Stanford University, Stanford, CA, USA; 2Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, Kyoto, Japan; 3Tissue Engineering and Stem Cells Research Center, Department of Immunology, Guiyang Medical University, Guiyang, Guizhou Province, People's Republic of China *These authors contributed equally to this work Abstract: The therapeutic efficacy of some anti-tumor monoclonal antibodies (mAbs depends on the capacity of the mAb to recognize the tumor-associated antigen and induce cytotoxicity via a network of immune effector cells. This process of antibody-dependent cell-mediated cytotoxicity (ADCC against tumor cells is triggered by the interaction of the fragment crystallizable (Fc portion of the mAb with the Fc receptors on effector cells like natural killer cells, macrophages, γδ T cells, and dendritic cells. By augmenting ADCC, the antitumor activity of mAbs can be significantly increased. Currently, identifying and developing therapeutic agents that enhance ADCC is a growing area of research. Combining existing tumor-targeting mAbs and ADCC-promoting agents that stimulate effector cells will translate to greater clinical responses. In this review, we discuss strategies for enhancing ADCC and emphasize the potential of combination treatments that include US Food and Drug Administration-approved mAbs and immunostimulatory therapeutics. Keywords: ADCC, NK cell, reovirus, TLR, CD137

  16. Cytochrome P450-mediated metabolism of triclosan attenuates its cytotoxicity in hepatic cells.

    Science.gov (United States)

    Wu, Yuanfeng; Chitranshi, Priyanka; Loukotková, Lucie; Gamboa da Costa, Gonçalo; Beland, Frederick A; Zhang, Jie; Fang, Jia-Long

    2017-06-01

    Triclosan is a widely used broad-spectrum anti-bacterial agent. The objectives of this study were to identify which cytochrome P450 (CYP) isoforms metabolize triclosan and to examine the effects of CYP-mediated metabolism on triclosan-induced cytotoxicity. A panel of HepG2-derived cell lines was established, each of which overexpressed a single CYP isoform, including CYP1A1, CYP1A2, CYP1B1, CYP2A6, CYP2A7, CYP2A13, CYP2B6, CYP2C8, CYP2C9, CYP2C18, CYP2C19, CYP2D6, CYP2E1, CYP3A4, CYP3A5, CYP3A7, CYP4A11, and CYP4B1. The extent of triclosan metabolism by each CYP was assessed by reversed-phase high-performance liquid chromatography with online radiochemical detection. Seven isoforms were capable of metabolizing triclosan, with the order of activity being CYP1A2 > CYP2B6 > CYP2C19 > CYP2D6 ≈ CYP1B1 > CYP2C18 ≈ CYP1A1. The remaining 11 isoforms (CYP2A6, CYP2A7, CYP2A13, CYP2C8, CYP2C9, CYP2E1, CYP3A4, CYP3A5, CYP3A7, CYP4A11, and CYP4B1) had little or no activity toward triclosan. Three metabolites were detected: 2,4-dichlorophenol, 4-chlorocatechol, and 5'-hydroxytriclosan. Consistent with the in vitro screening data, triclosan was extensively metabolized in HepG2 cells overexpressing CYP1A2, CYP2B6, CYP2C19, CYP2D6, and CYP2C18, and these cells were much more resistant to triclosan-induced cytotoxicity compared to vector cells, suggesting that CYP-mediated metabolism of triclosan attenuated its cytotoxicity. In addition, 2,4-dichlorophenol and 4-chlorocatechol were less toxic than triclosan to HepG2/vector cells. Conjugation of triclosan, catalyzed by human glucuronosyltransferases (UGTs) and sulfotransferases (SULTs), also occurred in HepG2/CYP-overexpressing cells and primary human hepatocytes, with a greater extent of conjugation being associated with higher cell viability. Co-administration of triclosan with UGT or SULT inhibitors led to greater cytotoxicity in HepG2 cells and primary human hepatocytes, indicating that glucuronidation and

  17. Cell cycle stage dependent variations in drug-induced topoisomerase II mediated DNA cleavage and cytotoxicity

    International Nuclear Information System (INIS)

    Estey, E.; Adlakha, R.C.; Hittelman, W.N.; Zwelling, L.A.

    1987-01-01

    The DNA cleavage produced by 4'-(9-acridinylamino)methanesulfon-m-anisidide (m-AMSA) in mammalian cells is putatively mediated by topoisomerase II. The authors found that in synchronized HeLa cells the frequency of such cleavage was 4-15-fold greater in mitosis than in S while the DNA of G 1 and G 2 cells exhibited an intermediate susceptibility to cleavage. The hypersensitivity of mitotic DNA to m-AMSA-induced cleavage was acquired relatively abruptly in late G 2 and was lost similarly abruptly in early G 1 . The susceptibility of mitotic cells to m-AMSA-induced DNA cleavage was not clearly paralleled by an increase in topoisomerase II activity in 350 mM NaCl extracts from mitotic cells compared to similar extracts from cells in G 1 , S, or G 2 . Furthermore, equal amounts of decatenating activity from cells in mitosis and S produced equal amounts of m-AMSA-induced cleavage of simian virus 40 (SV40) DNA; i.e., the interaction between m-AMSA and extractable enzyme was similar in mitosis and S. The DNA of mitotic cells was also hypersensitive to cleavage by 4'-demethylepipodophyllotoxin 4-(4,6-O-ethylidene-β-D-glucopyranoside) (etoposide), a drug that produces topoisomerase II mediated DNA cleavage without binding to DNA. Cell cycle stage dependent fluctuations in m-AMSA-induced DNA cleavage may result from fluctuations in the structure of chromatin per se that occur during the cell cycle. Surprisingly, cell cycle stage dependent differences in m-AMSA-induced DNA cleavage did not correlate with differences in the susceptibility to the cytotoxic effects of the drug. In fact, cells in S were most sensitive to these effects. These results are an exception to the previously observed parallel between the susceptibility of mammalian cells to drug-induced DNA cleavage and the susceptibility of the cells to drug-induced cytotoxicity and indicate the complexity of any relationship between the two phenomena

  18. CHARACTERISTICS OF SIGNALING PATHWAYS MEDIATING A CYTOTOXIC EFFECT OF DENDRITIC CELLS UPON ACTIVATED Т LYMPHOCYTES AND NK CELLS

    Directory of Open Access Journals (Sweden)

    T. V. Tyrinova

    2012-01-01

    Full Text Available Abstract. Cytotoxic/pro-apoptogenic effects of IFNα-induced dendritic cells (IFN-DCs directed against Т-lymphocytes and NK cells were investigated in healthy donors. Using an allogenic MLC system, it was revealed that IFN-DCs induce apoptosis of both activated CD4+ and CD8+ T-lymphocytes, and NK cells. Apoptosis of CD4+ and CD8+ T-lymphocytes induced by their interaction with IFN-DCs was mediated by various signaling pathways. In particular, activated CD4+Т-lymphocytes were most sensitive to TRAIL- и Fas/ FasL-transduction pathways, whereas activated CD8+ T-lymphocytes were induced to apoptosis via TNFα-mediated pathway. PD-1/B7-H1-signaling pathway also played a distinct role in cytotoxic activity of IFNDCs towards both types of T lymphocytes and activated NK cells. The pro-apoptogenic/cytotoxic activity of IFN-DC against activated lymphocytes may be regarded as a mechanism of a feedback regulation aimed at restriction of immune response and maintenance of immune homeostasis. Moreover, upregulation of proapoptogenic molecules on DCs under pathological conditions may lead to suppression of antigen-specific response, thus contributing to the disease progression.

  19. The phytoalexin camalexin mediates cytotoxicity towards aggressive prostate cancer cells via reactive oxygen species.

    Science.gov (United States)

    Smith, Basil A; Neal, Corey L; Chetram, Mahandranauth; Vo, BaoHan; Mezencev, Roman; Hinton, Cimona; Odero-Marah, Valerie A

    2013-07-01

    Camalexin is a phytoalexin that accumulates in various cruciferous plants upon exposure to environmental stress and plant pathogens. Besides moderate antibacterial and antifungal activity, camalexin was reported to also exhibit antiproliferative and cancer chemopreventive effects in breast cancer and leukemia. We studied the cytotoxic effects of camalexin treatment on prostate cancer cell lines and whether this was mediated by reactive oxygen species (ROS) generation. As models, we utilized LNCaP and its aggressive subline, C4-2, as well as ARCaP cells stably transfected with empty vector (Neo) control or constitutively active Snail cDNA that represents an epithelial to mesenchymal transition (EMT) model and displays increased cell migration and tumorigenicity. We confirmed previous studies showing that C4-2 and ARCaP-Snail cells express more ROS than LNCaP and ARCaP-Neo, respectively. Camalexin increased ROS, decreased cell proliferation, and increased apoptosis more significantly in C4-2 and ARCaP-Snail cells as compared to LNCaP and ARCaP-Neo cells, respectively, while normal prostate epithelial cells (PrEC) were unaffected. Increased caspase-3/7 activity and increased cleaved PARP protein shown by Western blot analysis was suggestive of increased apoptosis. The ROS scavenger N-acetyl cysteine (NAC) antagonized the effects of camalexin, whereas the addition of exogenous hydrogen peroxide potentiated the effects of camalexin, showing that camalexin is mediating its effects through ROS. In conclusion, camalexin is more potent in aggressive prostate cancer cells that express high ROS levels, and this phytoalexin has a strong potential as a novel therapeutic agent for the treatment of especially metastatic prostate cancer.

  20. Cytotoxic T lymphocyte-mediated cytolysis: an example of programmed cell death in the immune system

    International Nuclear Information System (INIS)

    Duke, R.C.

    1985-01-01

    Target cells are programmed to die following interaction with cytotoxic T lymphocytes (CTLs). Within minutes of exposure to CTL the target cell's nuclear DNA is fragmented. Target cell lysis, as measured by 51 Cr release, occurs about 60 minutes after induction of DNA fragmentation. DNA fragmentation results from the action of an endonuclease which cleaves DNA in the linker region between nucleosomes. The origin of this nuclease, whether transferred to the target by the CTL or endogenous to the target cell, has not been resolved. DNA fragmentation occurs only when appropriately sensitized CTL are used and is not merely the result of cell death because killing of target cells by extreme deviation from homeostasis, by interruption of energy production, or by lysis with antibody and complement does not induce DNA cleavage. When Triton X-100 is added to target cells which have interacted with CTL, the DNA fragments do not remain in association with the nucleus. This observation suggests that breakdown of overall nuclear structure is induced concomitantly with DNA fragmentation. Morphologically, disruption of nuclear structure and DNA fragmentation are observed as widespread chromatin condensation (apoptosis). Apoptosis is observed in metabolically active target cells and is not a consequence of cell death. A cell whose DNA is extensively fragmented is condemmed to die. Induction of oligonucleosome-sized DNA is also an early event in glucocorticoid-induced thymocyte death and death of T cells upon removal of growth factor. Several similarities exist between these systems and CTL-mediated cytolysis suggesting a final common biochemical pathway for all three types of cell death

  1. Arctigenin suppresses unfolded protein response and sensitizes glucose deprivation-mediated cytotoxicity of cancer cells.

    Science.gov (United States)

    Sun, Shengrong; Wang, Xiong; Wang, Changhua; Nawaz, Ahmed; Wei, Wen; Li, Juanjuan; Wang, Lijun; Yu, De-Hua

    2011-01-01

    The involvement of unfolded protein response (UPR) activation in tumor survival and resistance to chemotherapies suggests a new anticancer strategy targeting UPR pathway. Arctigenin, a natural product, has been recently identified for its antitumor activity with selective toxicity against cancer cells under glucose starvation with unknown mechanism. Here we found that arctigenin specifically blocks the transcriptional induction of two potential anticancer targets, namely glucose-regulated protein-78 (GRP78) and its analog GRP94, under glucose deprivation, but not by tunicamycin. The activation of other UPR pathways, e.g., XBP-1 and ATF4, by glucose deprivation was also suppressed by arctigenin. A further transgene experiment showed that ectopic expression of GRP78 at least partially rescued arctigenin/glucose starvation-mediated cell growth inhibition, suggesting the causal role of UPR suppression in arctigenin-mediated cytotoxicity under glucose starvation. These observations bring a new insight into the mechanism of action of arctigenin and may lead to the design of new anticancer therapeutics. © Georg Thieme Verlag KG Stuttgart · New York.

  2. Narcolepsy-Associated HLA Class I Alleles Implicate Cell-Mediated Cytotoxicity

    Science.gov (United States)

    Tafti, Mehdi; Lammers, Gert J.; Dauvilliers, Yves; Overeem, Sebastiaan; Mayer, Geert; Nowak, Jacek; Pfister, Corinne; Dubois, Valérie; Eliaou, Jean-François; Eberhard, Hans-Peter; Liblau, Roland; Wierzbicka, Aleksandra; Geisler, Peter; Bassetti, Claudio L.; Mathis, Johannes; Lecendreux, Michel; Khatami, Ramin; Heinzer, Raphaël; Haba-Rubio, José; Feketeova, Eva; Baumann, Christian R.; Kutalik, Zoltán; Tiercy, Jean-Marie

    2016-01-01

    Study Objectives: Narcolepsy with cataplexy is tightly associated with the HLA class II allele DQB1*06:02. Evidence indicates a complex contribution of HLA class II genes to narcolepsy susceptibility with a recent independent association with HLA-DPB1. The cause of narcolepsy is supposed be an autoimmune attack against hypocretin-producing neurons. Despite the strong association with HLA class II, there is no evidence for CD4+ T-cell-mediated mechanism in narcolepsy. Since neurons express class I and not class II molecules, the final effector immune cells involved might include class I-restricted CD8+ T-cells. Methods: HLA class I (A, B, and C) and II (DQB1) genotypes were analyzed in 944 European narcolepsy with cataplexy patients and in 4,043 control subjects matched by country of origin. All patients and controls were DQB1*06:02 positive and class I associations were conditioned on DQB1 alleles. Results: HLA-A*11:01 (OR = 1.49 [1.18–1.87] P = 7.0*10−4), C*04:01 (OR = 1.34 [1.10–1.63] P = 3.23*10−3), and B*35:01 (OR = 1.46 [1.13–1.89] P = 3.64*10−3) were associated with susceptibility to narcolepsy. Analysis of polymorphic class I amino-acids revealed even stronger associations with key antigen-binding residues HLA-A-Tyr9 (OR = 1.32 [1.15–1.52] P = 6.95*10−5) and HLA-C-Ser11 (OR = 1.34 [1.15–1.57] P = 2.43*10−4). Conclusions: Our findings provide a genetic basis for increased susceptibility to infectious factors or an immune cytotoxic mechanism in narcolepsy, potentially targeting hypocretin neurons. Citation: Tafti M, Lammers GJ, Dauvilliers Y, Overeem S, Mayer G, Nowak J, Pfister C, Dubois V, Eliaou JF, Eberhard HP, Liblau R, Wierzbicka A, Geisler P, Bassetti CL, Mathis J, Lecendreux M, Khatami R, Heinzer R, Haba-Rubio J, Feketeova E, Baumann CR, Kutalik Z, Tiercy JM. Narcolepsy-associated HLA class I alleles implicate cell-mediated cytotoxicity. SLEEP 2016;39(3):581–587. PMID:26518595

  3. Antigenic specificity of antibody-dependent cell-mediated cytotoxicity directed against human immunodeficiency virus in antibody-positive sera.

    OpenAIRE

    Koup, R A; Sullivan, J L; Levine, P H; Brewster, F; Mahr, A; Mazzara, G; McKenzie, S; Panicali, D

    1989-01-01

    Antibody-dependent cell-mediated cytotoxicity (ADCC) specific for human immunodeficiency virus (HIV) has been described for HIV-infected individuals. To determine the antigenic specificity of this immune response and to define its relationship to the disease state, an ADCC assay was developed using Epstein-Barr virus-transformed lymphoblastoid cell line targets infected with vaccinia virus vectors expressing HIV proteins. The vaccinia virus vectors induced appropriate HIV proteins (envelope g...

  4. Trichomonas vaginalis and Tritrichomonas foetus: interaction with fibroblasts and muscle cells - new insights into parasite-mediated host cell cytotoxicity

    Directory of Open Access Journals (Sweden)

    Ricardo Chaves Vilela

    2012-09-01

    Full Text Available Trichomonas vaginalis and Tritrichomonas foetus are parasitic, flagellated protists that inhabit the urogenital tract of humans and bovines, respectively. T. vaginalis causes the most prevalent non-viral sexually transmitted disease worldwide and has been associated with an increased risk for human immunodeficiency virus-1 infection in humans. Infections by T. foetus cause significant losses to the beef industry worldwide due to infertility and spontaneous abortion in cows. Several studies have shown a close association between trichomonads and the epithelium of the urogenital tract. However, little is known concerning the interaction of trichomonads with cells from deeper tissues, such as fibroblasts and muscle cells. Published parasite-host cell interaction studies have reported contradictory results regarding the ability of T. foetus and T. vaginalis to interact with and damage cells of different tissues. In this study, parasite-host cell interactions were examined by culturing primary human fibroblasts obtained from abdominal biopsies performed during plastic surgeries with trichomonads. In addition, mouse 3T3 fibroblasts, primary chick embryo myogenic cells and L6 muscle cells were also used as models of target cells. The parasite-host cell cultures were processed for scanning and transmission electron microscopy and were tested for cell viability and cell death. JC-1 staining, which measures mitochondrial membrane potential, was used to determine whether the parasites induced target cell damage. Terminal deoxynucleotidyltransferase-mediated dUTP nick end labelling staining was used as an indicator of chromatin damage. The colorimetric crystal violet assay was performed to ana-lyse the cytotoxicity induced by the parasite. The results showed that T. foetus and T. vaginalis adhered to and were cytotoxic to both fibroblasts and muscle cells, indicating that trichomonas infection of the connective and muscle tissues is likely to occur; such

  5. Effect of irradiation-induced intercellular adhesion molecule-1 expression on natural killer cell-mediated cytotoxicity toward human cancer cells.

    Science.gov (United States)

    Jeong, Jae-Uk; Uong, Tung Nguyen Thanh; Chung, Woong-Ki; Nam, Taek-Keun; Ahn, Sung-Ja; Song, Ju-Young; Kim, Sang-Ki; Shin, Dong-Jun; Cho, Eugene; Kim, Kyoung Won; Cho, Duck; Yoon, Mee Sun

    2018-03-20

    Irradiation enhances the adhesion between natural killer (NK) cells and target cells by up-regulating intercellular adhesion molecule-1 (ICAM-1) on target cells. Therefore, we investigated the effect of irradiation-induced ICAM-1 expression on human cancer cells on NK cell-mediated cytotoxicity. Expression levels of ICAM-1 on the target cell surface before and after irradiation of six human cancer cell lines (HL60, SKBR-3, T47D, HCT-116, U937 and U251) were analyzed by flow cytometry. Ex vivo expansion of NK cells from human peripheral blood mononuclear cells was performed by co-culture with irradiated K562 cells. The related adhesion molecule lymphocyte function-associated antigen 1 (LFA-1) on NK cells was analyzed by flow cytometry. An enzyme-linked immunosorbent assay was used to detect interferon-γ (IFN-γ), and WST-8 assays were performed to check NK cell cytotoxicity. Finally, blocking assays were performed using monoclonal antibodies against ICAM-1 or LFA-1. LFA-1 expression increased on NK cells after expansion (P cytotoxicity increased after irradiation of HL60 (P cytotoxicity against irradiated SKBR-3 (P cytotoxicity against irradiated HL60 (P cytotoxicity. Therefore, irradiation combined with NK cell therapy may improve the antitumor effects of NK cells. Copyright © 2018. Published by Elsevier Inc.

  6. Oxidative stress-mediated cytotoxicity of zirconia nanoparticles on PC12 and N2a cells

    Science.gov (United States)

    Asadpour, Elham; Sadeghnia, Hamid R.; Ghorbani, Ahmad; Sedaghat, Mehran; Boroushaki, Mohammad T.

    2016-01-01

    In recent years, there is a growing interest in the application of nanoparticles like zirconium dioxide (zirconia PC12 and N2a cells. In this study, cytotoxic effect of different concentrations of zirconia nanoparticles at three different time intervals were evaluated using MTT and ROS (reactive oxygen species) assays. Also, Lipid peroxidation, glutathione (GSH) content changes, and DNA damage were measured. Zirconia nanoparticles caused a significant reduction in cell viability and GSH content of the cells, and induce a significant increase in intracellular ROS and MDA content of PC12 and N2a cells. Moreover, it increases the percentage of DNA tail of treated cells as compared with control group. Zirconia nanoparticles have cytotoxic and genotoxic effects in PC12 and N2a cells in a time and concentration-dependent manner in concentration more than 31 µg/mL.

  7. Nickel (II)-induced cytotoxicity and apoptosis in human proximal tubule cells through a ROS- and mitochondria-mediated pathway

    International Nuclear Information System (INIS)

    Wang, Yi-Fen; Shyu, Huey-Wen; Chang, Yi-Chuang; Tseng, Wei-Chang; Huang, Yeou-Lih; Lin, Kuan-Hua; Chou, Miao-Chen; Liu, Heng-Ling; Chen, Chang-Yu

    2012-01-01

    Nickel compounds are known to be toxic and carcinogenic in kidney and lung. In this present study, we investigated the roles of reactive oxygen species (ROS) and mitochondria in nickel (II) acetate-induced cytotoxicity and apoptosis in the HK-2 human renal cell line. The results showed that the cytotoxic effects of nickel (II) involved significant cell death and DNA damage. Nickel (II) increased the generation of ROS and induced a noticeable reduction of mitochondrial membrane potential (MMP). Analysis of the sub-G1 phase showed a significant increase in apoptosis in HK-2 cells after nickel (II) treatment. Pretreatment with N-acetylcysteine (NAC) not only inhibited nickel (II)-induced cell death and DNA damage, but also significantly prevented nickel (II)-induced loss of MMP and apoptosis. Cell apoptosis triggered by nickel (II) was characterized by the reduced protein expression of Bcl-2 and Bcl-xL and the induced the protein expression of Bad, Bcl-Xs, Bax, cytochrome c and caspases 9, 3 and 6. The regulation of the expression of Bcl-2-family proteins, the release of cytochrome c and the activation of caspases 9, 3 and 6 were inhibited in the presence of NAC. These results suggest that nickel (II) induces cytotoxicity and apoptosis in HK-2 cells via ROS generation and that the mitochondria-mediated apoptotic signaling pathway may be involved in the positive regulation of nickel (II)-induced renal cytotoxicity.

  8. Nickel (II)-induced cytotoxicity and apoptosis in human proximal tubule cells through a ROS- and mitochondria-mediated pathway

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yi-Fen; Shyu, Huey-Wen [Department of Medical Laboratory Sciences and Biotechnology, Fooyin University, Kaohsiung, Taiwan (China); Chang, Yi-Chuang [Department of Nursing, Fooyin University, Kaohsiung, Taiwan (China); Tseng, Wei-Chang [Department of Medical Laboratory Sciences and Biotechnology, Fooyin University, Kaohsiung, Taiwan (China); Huang, Yeou-Lih [Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan (China); Lin, Kuan-Hua; Chou, Miao-Chen; Liu, Heng-Ling [Department of Medical Laboratory Sciences and Biotechnology, Fooyin University, Kaohsiung, Taiwan (China); Chen, Chang-Yu, E-mail: mt037@mail.fy.edu.tw [Department of Medical Laboratory Sciences and Biotechnology, Fooyin University, Kaohsiung, Taiwan (China)

    2012-03-01

    Nickel compounds are known to be toxic and carcinogenic in kidney and lung. In this present study, we investigated the roles of reactive oxygen species (ROS) and mitochondria in nickel (II) acetate-induced cytotoxicity and apoptosis in the HK-2 human renal cell line. The results showed that the cytotoxic effects of nickel (II) involved significant cell death and DNA damage. Nickel (II) increased the generation of ROS and induced a noticeable reduction of mitochondrial membrane potential (MMP). Analysis of the sub-G1 phase showed a significant increase in apoptosis in HK-2 cells after nickel (II) treatment. Pretreatment with N-acetylcysteine (NAC) not only inhibited nickel (II)-induced cell death and DNA damage, but also significantly prevented nickel (II)-induced loss of MMP and apoptosis. Cell apoptosis triggered by nickel (II) was characterized by the reduced protein expression of Bcl-2 and Bcl-xL and the induced the protein expression of Bad, Bcl-Xs, Bax, cytochrome c and caspases 9, 3 and 6. The regulation of the expression of Bcl-2-family proteins, the release of cytochrome c and the activation of caspases 9, 3 and 6 were inhibited in the presence of NAC. These results suggest that nickel (II) induces cytotoxicity and apoptosis in HK-2 cells via ROS generation and that the mitochondria-mediated apoptotic signaling pathway may be involved in the positive regulation of nickel (II)-induced renal cytotoxicity.

  9. Clinical Cancer Therapy by NK Cells via Antibody-Dependent Cell-Mediated Cytotoxicity

    Directory of Open Access Journals (Sweden)

    Kory L. Alderson

    2011-01-01

    Full Text Available Natural killer (NK cells are powerful effector cells that can be directed to eliminate tumor cells through tumor-targeted monoclonal antibodies (mAbs. Some tumor-targeted mAbs have been successfully applied in the clinic and are included in the standard of care for certain malignancies. Strategies to augment the antitumor response by NK cells have led to an increased understanding of how to improve their effector responses. Next-generation reagents, such as molecularly modified mAbs and mAb-cytokine fusion proteins (immunocytokines, ICs designed to augment NK-mediated killing, are showing promise in preclinical and some clinical settings. Continued research into the antitumor effects induced by NK cells and tumor-targeted mAbs suggests that additional intrinsic and extrinsic factors may influence the antitumor response. Therefore more research is needed that focuses on evaluating which NK cell and tumor criteria are best predictive of a clinical response and which combination immunotherapy regimens to pursue for distinct clinical settings.

  10. IFN-α primes T- and NK-cells for IL-15-mediated signaling and cytotoxicity

    DEFF Research Database (Denmark)

    Hansen, Mikkel L; Woetmann, Anders; Krejsgaard, Thorbjørn

    2011-01-01

    3 followed by a further increase in IL-15Rα expression. Moreover, IFN-α significantly increased the IL-15-induced cytotoxic activity of freshly isolated T and NK cells. Taken together, our data show that IFN-α boosts signaling and functional effects of IL-15, at least in part by fostering...

  11. Evaluation of IRES-mediated, cell-type-specific cytotoxicity of poliovirus using a colorimetric cell proliferation assay.

    Science.gov (United States)

    Yang, Xiaoyi; Chen, Eying; Jiang, Hengguang; Muszynski, Karen; Harris, Raymond D; Giardina, Steven L; Gromeier, Matthias; Mitra, Gautam; Soman, Gopalan

    2009-01-01

    PVS-RIPO is a recombinant oncolytic poliovirus designed for clinical application to target CD155 expressing malignant gliomas and other malignant diseases. PVS-RIPO does not replicate in healthy neurons and is therefore non-pathogenic in rodent and non-human primate models of poliomyelitis. A tetrazolium salt dye-based cellular assay was developed and qualified to define the cytotoxicity of virus preparations on susceptible cells and to explore the target cell specificity of PVS-RIPO. In this assay, PVS-RIPO inhibited proliferation of U87-MG astrocytoma cells in a dose-dependent manner. However, HEK293 cells were much less susceptible to cell killing by PVS-RIPO. In contrast, the Sabin type 1 live attenuated poliovirus vaccine strain (PV(1)S) was cytotoxic to both HEK293 and U87-MG cells. The correlation between expression of CD155 and cytotoxicity was also explored using six different cell lines. There was little or no expression of CD155 and PVS-RIPO-induced cytotoxicity in Jurkat and Daudi cells. HEK293 was the only cell line tested that showed CD155 expression and resistance to PVS-RIPO cytotoxicity. The results indicate that differential cytotoxicity measured by the colorimetric assay can be used to evaluate the cytotoxicity and cell-type specificity of recombinant strains of poliovirus and to demonstrate lot to lot consistency during the manufacture of viruses intended for clinical use.

  12. Induction of cell-mediated immunity against mycobacterium tuberculosis using DNA vaccines encoding cytotoxic and helper T-cell epitopes of the 38-kilodalton protein

    NARCIS (Netherlands)

    Fonseca, DPAJ; Benaissa-Trouw, B; Kraaijeveld, CA; Snippe, H; Verheul, AFM

    Cell-mediated immune responses are crucial in the protection against tuberculosis. In this study, we constructed DNA vaccines encoding cytotoxic T lymphocytes (CTL) and T helper cell (Th) epitopes of the 38-kDa lipoglycoprotein of Mycobacterium tuberculosis and analyzed and compared their

  13. Sinonasal T-cell expression of cytotoxic mediators granzyme B and perforin is reduced in patients with chronic rhinosinusitis.

    Science.gov (United States)

    Smith, Sarah E; Schlosser, Rodney J; Yawn, James R; Mattos, Jose L; Soler, Zachary M; Mulligan, Jennifer K

    2017-11-01

    CD8+ T cells and natural killer (NK) cells are cytotoxic cells that use granzyme B (GrB) and perforin. Defective cytotoxic function is known to play a role in dysregulated immune response as seen in chronic sinusitis, also referred to as chronic rhinosinusitis (CRS). However, to our knowledge, in the United States, neither GrB or perforin expression has been reported in patients with CRS. The aim of this study was to investigate sinonasal cytotoxic cells, their mediators, and cell-specific distribution of these mediators in patients with CRS with nasal polyp (CRSwNP) and in patients with CRS without nasal polyp (CRSsNP). Blood and sinus tissue samples were taken from patients with CRSsNP (n = 8) and CRSwNP (n = 8) at the time of surgery. Control subjects (n = 8) underwent surgery for cerebrospinal fluid leak repair or to remove non-hormone-secreting pituitary tumors. The cells were analyzed via flow cytometry by using CD8 expression to identify cytotoxic T cells and CD56 expression to identify NK cells. Intracellular GrB and perforin expression were analyzed with flow cytometry. We observed no significant differences in plasma or peripheral blood immune cell numbers or specific levels of GrB or perforin among the groups. In the sinonasal mucosa of the patients with CRSsNP and the patients with CRSwNP, there was a significant decrease in GrB and perforin levels (p < 0.05) despite similar or increased numbers of cytotoxic cells when compared with the controls. The overall decrease in GrB and perforin in the sinonasal mucosa of the patients with CRSsNP and the patients with CRSwNP was due to decreased T cell production. There was no difference in total NK cell count or expression of perforin or GrB among all the groups. Total levels of sinonasal GrB and perforin were decreased in the sinonasal mucosa of both the patients with CRSwNP and the patients with CRSsNP compared with the controls, whereas sinonasal CD8+ T cells, (but not NK cells,), intracellular stores of Gr

  14. NK-cell-dependent killing of colon carcinoma cells is mediated by natural cytotoxicity receptors (NCRs) and stimulated by parvovirus infection of target cells

    International Nuclear Information System (INIS)

    Bhat, Rauf; Rommelaere, Jean

    2013-01-01

    Investigating how the immune system functions during malignancies is crucial to developing novel therapeutic strategies. Natural killer (NK) cells, an important component of the innate immune system, play a vital role in immune defense against tumors and virus-infected cells. The poor survival rate in colon cancer makes it particularly important to develop novel therapeutic strategies. Oncolytic viruses, in addition to lysing tumor cells, may have the potential to augment antitumor immune responses. In the present study, we investigate the role of NK cells and how parvovirus H-1PV can modulate NK-cell mediated immune responses against colon carcinoma. Human NK cells were isolated from the blood of healthy donors. The cytotoxicity and antibody-mediated inhibition of NK cells were measured in chromium release assays. Phenotypic assessment of colon cancer and dendritic cells was done by FACS. The statistical significance of the results was calculated with Student’s t test (*p <0.05; **, p < 0.01; ***, p < 0.001). We show that IL-2-activated human NK cells can effectively kill colon carcinoma cells. Killing of colon carcinoma cells by NK cells was further enhanced upon infection of the former cells with parvovirus H-1PV. H-1PV has potent oncolytic activity against various tumors, yet its direct killing effect on colon carcinoma cells is limited. The cytotoxicity of NK cells towards colon carcinoma cells, both mock- and H-1PV-infected, was found to be mostly mediated by a combination of natural cytotoxicity receptors (NCRs), namely NKp30, 44, and 46. Colon carcinoma cells displayed low to moderate expression of NK cell ligands, and this expression was modulated upon H-1PV infection. Lysates of H-1PV-infected colon carcinoma cells were found to increase MHC class II expression on dendritic cells. Altogether, these data suggest that IL-2-activated NK cells actively kill colon carcinoma cells and that this killing is mediated by several natural cytotoxicity receptors

  15. Ursolic acid-mediated changes in glycolytic pathway promote cytotoxic autophagy and apoptosis in phenotypically different breast cancer cells.

    Science.gov (United States)

    Lewinska, Anna; Adamczyk-Grochala, Jagoda; Kwasniewicz, Ewa; Deregowska, Anna; Wnuk, Maciej

    2017-06-01

    Plant-derived pentacyclic triterpenotids with multiple biological activities are considered as promising candidates for cancer therapy and prevention. However, their mechanisms of action are not fully understood. In the present study, we have analyzed the effects of low dose treatment (5-20 µM) of ursolic acid (UA) and betulinic acid (BA) on breast cancer cells of different receptor status, namely MCF-7 (ER + , PR +/- , HER2 - ), MDA-MB-231 (ER - , PR - , HER2 - ) and SK-BR-3 (ER - , PR - , HER2 + ). UA-mediated response was more potent than BA-mediated response. Triterpenotids (5-10 µM) caused G0/G1 cell cycle arrest, an increase in p21 levels and SA-beta-galactosidase staining that was accompanied by oxidative stress and DNA damage. UA (20 µM) also diminished AKT signaling that affected glycolysis as judged by decreased levels of HK2, PKM2, ATP and lactate. UA-induced energy stress activated AMPK that resulted in cytotoxic autophagy and apoptosis. UA-mediated elevation in nitric oxide levels and ATM activation may also account for AMPK activation-mediated cytotoxic response. Moreover, UA-promoted apoptosis was associated with decreased pERK1/2 signals and the depolarization of mitochondrial membrane potential. Taken together, we have shown for the first time that UA at low micromolar range may promote its anticancer action by targeting glycolysis in phenotypically distinct breast cancer cells.

  16. Cell-mediated cytotoxicity in rainbow trout, Oncorhynchus mykiss, infected with viral haemorrhagic septicaemia virus

    DEFF Research Database (Denmark)

    Utke, K.; Bergmann, S.; Lorenzen, Niels

    2007-01-01

    classical MHC class I locus Onmy-UBA is identical in the rainbow trout clone C25 and in the permanent rainbow trout cell line RTG-2. This enabled us to develop an assay to measure antiviral cytotoxicity in rainbow trout using a system of MHC class I-matched effector and target cells. Peripheral blood...... leucocytes (PBL) isolated from low dose viral haemorrhagic septicaemia virus (VHSV)-infected rainbow trout killed MHC class I-matched and later also xenogeneic MHC class I-mismatched VHSV-infected cells. When compared to PBL from uninfected control fish PBL from infected fish showed a higher transcriptional...

  17. CXCR5+CD8+T cells present elevated capacity in mediating cytotoxicity toward autologous tumor cells through interleukin 10 in diffuse large B-cell lymphoma.

    Science.gov (United States)

    Tang, Jiahong; Zha, Jie; Guo, Xutao; Shi, Pengcheng; Xu, Bing

    2017-09-01

    Diffuse large B-cell lymphoma (DLBCL) is a common and aggressive subtype of non-Hodgkin's lymphomas, with limited treatment options in refractory and relapsed patients. Growing evidence supports the notion that CD8 + T cell immunity could be utilized to eliminate B cell lymphomas. CXCR5 + CD8 + T cell is a novel cell subtype and share CXCR5 expression with CD19 + tumor cells. In this study, we investigated the frequency and function of existing CXCR5 + CD8 + T cells in DLBCL patients. We found that DLBCL patients as a group demonstrated significantly higher level of CXCR5 + CD8 + T cells than healthy individuals, with huge variability in each patient. Using anti-CD3/CD28-stimulated CD8 + T cells as effector (E) cells and autologous CD19 + tumor cells as target (T) cells, at high E:T ratio, no difference between the intensities of CXCR5 + CD8 + T cell- and CXCR5 - CD8 + T cell-mediated cytotoxicity were observed. However, at intermediate and low E:T ratios, the CXCR5 + CD8 + T cells presented stronger cytotoxicity than CXCR5 - CD8 + T cells. The expressions of granzyme A, granzyme B, and perforin were significantly higher in CXCR5 + CD8 + T cells than in CXCR5 - CD8 + T cells, with no significant difference in the level of degranulation. Tumor cells in DLBCL were known to secrete high level of interleukin 10 (IL-10). We therefore blocked the IL-10/IL-10R pathway, and found that the expressions of granzyme A, granzyme B, and perforin by CXCR5 + CD8 + T cells were significantly elevated. Together, these results suggest that CXCR5 + CD8 + T cells are potential candidates of CD8 + T cell-based immunotherapies, could mediate elimination of autologous tumor cells in DLBCL patients, but are also susceptible to IL-10-mediated suppression. Copyright © 2017. Published by Elsevier B.V.

  18. Sticholysin II-mediated cytotoxicity involves the activation of regulated intracellular responses that anticipates cell death.

    Science.gov (United States)

    Soto, Carmen; Bergado, Gretchen; Blanco, Rancés; Griñán, Tania; Rodríguez, Hermis; Ros, Uris; Pazos, Fabiola; Lanio, María Eliana; Hernández, Ana María; Álvarez, Carlos

    2018-02-13

    Sticholysin II (StII) is a pore-forming toxin of biomedical interest that belongs to the actinoporin protein family. Sticholysins are currently under examination as an active immunomodulating component of a vaccinal platform against tumoral cells and as a key element of a nucleic acids delivery system to cell cytosol. These proteins form pores in the plasma membrane leading to ion imbalance and cell lysis. However, the intracellular mechanisms triggered by actinoporins upon binding to membranes and its consequences for cell death are barely understood. Here, we have examined the cytotoxicity and intracellular responses induced by StII upon binding to human B-cell lymphoma Raji in vitro. StII cytotoxicity involves a functional actin cytoskeleton, induces cellular swelling, lysis and the concomitant release of cytosol content. In addition, StII induces calcium release mainly from the Endoplasmic Reticulum, activates Mitogen-Activated Protein Kinase ERK and impairs mitochondrial membrane potential. Furthermore, StII stimulates the expression of receptor interacting protein kinase 1 (RIP1), normally related to different forms of regulated cell death such as apoptosis and necroptosis. In correspondence, necrostatin-1, an inhibitor of this kinase, reduces StII cytotoxicity. However, the mechanism of cell death activated by StII does not involve caspases activation, typical molecular features of apoptosis and pyroptosis. Our results suggest that, beyond pore-formation and cell lysis, StII-induced cytotoxicity could involve other regulated intracellular mechanisms connected to RIP1-MEK1/2 -ERK1/2- pathways. This opens new perspectives and challenges the general point of view that these toxins induce a completely unregulated mechanism of necrotic cell death. This study contributes to a better understanding of the molecular mechanisms involved in toxin-cell interaction and the implications for cell functioning, with connotation for the exploitations of these toxins in

  19. Reactive oxygen species-mediated apoptosis contributes to chemosensitization effect of saikosaponins on cisplatin-induced cytotoxicity in cancer cells

    Directory of Open Access Journals (Sweden)

    He Fan

    2010-12-01

    Full Text Available Abstract Background Saikosaponin-a and -d, two naturally occurring compounds derived from Bupleurum radix, have been shown to exert anti-cancer activity in several cancer cell lines. However, the effect of combination of saikosaponins with chemotherapeutic drugs has never been addressed. Thus, we investigated whether these two saikosaponins have chemosensitization effect on cisplatin-induced cancer cell cytotoxicity. Methods Two cervical cancer cell lines, HeLa and Siha, an ovarian cancer cell line, SKOV3, and a non-small cell lung cancer cell line, A549, were treated with saikosaponins or cisplatin individually or in combination. Cell death was quantitatively detected by the release of lactate dehydrogenase (LDH using a cytotoxicity detection kit. Cellular ROS was analyzed by flow cytometry. Apoptosis was evaluated by AO/EB staining, flow cytometry after Anexin V and PI staining, and Western blot for caspase activation. ROS scavengers and caspase inhibitor were used to determine the roles of ROS and apoptosis in the effects of saikosaponins on cisplatin-induced cell death. Results Both saikosaponin-a and -d sensitized cancer cells to cisplatin-induced cell death in a dose-dependent manner, which was accompanied with induction of reactive oxygen species (ROS accumulation. The dead cells showed typical apoptotic morphologies. Both early apoptotic and late apoptotic cells detected by flow cytometry were increased in saikosaponins and cisplatin cotreated cells, accompanied by activation of the caspase pathway. The pan-caspase inhibitor z-VAD and ROS scanvengers butylated hydroxyanisole (BHA and N-acetyl-L-cysteine (NAC dramatically suppressed the potentiated cytotoxicity achieved by combination of saikosaponin-a or -d and cisplatin. Conclusions These results suggest that saikosaponins sensitize cancer cells to cisplatin through ROS-mediated apoptosis, and the combination of saikosaponins with cisplatin could be an effective therapeutic strategy.

  20. Tyrosine kinase inhibitors as modulators of trastuzumab-mediated antibody-dependent cell-mediated cytotoxicity in breast cancer cell lines.

    Science.gov (United States)

    Collins, Denis M; Gately, Kathy; Hughes, Clare; Edwards, Connla; Davies, Anthony; Madden, Stephen F; O'Byrne, Kenneth J; O'Donovan, Norma; Crown, John

    2017-09-01

    Trastuzumab is an anti-HER2 monoclonal antibody (mAb) therapy capable of antibody-dependent cell-mediated cytotoxicity (ADCC) and used in the treatment of HER2+ breast cancer. Through interactions with FcƴR+ immune cell subsets, trastuzumab functions as a passive immunotherapy. The EGFR/HER2-targeting tyrosine kinase inhibitor (TKI) lapatinib and the next generation TKIs afatinib and neratinib, can alter HER2 levels, potentially modulating the ADCC response to trastuzumab. Using LDH-release assays, we investigated the impact of antigen modulation, assay duration and peripheral blood mononuclear cell (PBMC) activity on trastuzumab-mediated ADCC in breast cancer models of maximal (SKBR3) and minimal (MCF-7) target antigen expression to determine if modulating the ADCC response to trastuzumab using TKIs may be a viable approach for enhancing tumor immune reactivity. HER2 levels were determined in lapatinib, afatinib and neratinib-treated SKBR3 and MCF-7 using high content analysis (HCA). Trastuzumab-mediated ADCC was assessed following treatment with TKIs utilising a colorimetric LDH release-based protocol at 4 and 12h timepoints. PBMC activity was assessed against non-MHC-restricted K562 cells. A flow cytometry-based method (CFSE/7-AAD) was also used to measure trastuzumab-mediated ADCC in medium-treated SKBR3 and MCF-7. HER2 antigen levels were significantly altered by the three TKIs in both cell line models. The TKIs significantly reduced LDH levels directly in SKBR3 cells but not MCF-7. Lapatinib and neratinib augment trastuzumab-related ADCC in SKBR3 but the effect was not consistent with antigen expression levels and was dependent on volunteer PBMC activity (vs. K562). A 12h assay timepoint produced more consistent results. Trastuzumab-mediated ADCC (PBMC:target cell ratio of 10:1) was measured at 7.6±4.7% (T12) by LDH assay and 19±3.2 % (T12) using the flow cytometry-based method in the antigen-low model MCF-7. In the presence of effector cells with high

  1. Oxidative stress-mediated cytotoxicity of zirconia nanoparticles on PC12 and N2a cells

    Energy Technology Data Exchange (ETDEWEB)

    Asadpour, Elham [Shiraz University of Medical Sciences, Anesthesiology and Critical Care Research Center (Iran, Islamic Republic of); Sadeghnia, Hamid R. [Mashhad University of Medical Sciences, Department of Pharmacology, Faculty of Medicine (Iran, Islamic Republic of); Ghorbani, Ahmad [Mashhad University of Medical Sciences, Pharmacological Research Center of Medicinal Plants (Iran, Islamic Republic of); Sedaghat, Mehran, E-mail: m-sedaghat81@yahoo.com [Mashhad University of Medical Sciences, Department of Neurosurgery (Iran, Islamic Republic of); Boroushaki, Mohammad T., E-mail: boroushakimt@mums.ac.ir [Mashhad University of Medical Sciences, Department of Pharmacology, Faculty of Medicine (Iran, Islamic Republic of)

    2016-01-15

    In recent years, there is a growing interest in the application of nanoparticles like zirconium dioxide (zirconia <100 nm), for many purposes. Since a comprehensive study on the toxic effects of zirconia has not been done, we decided to investigate the effects of zirconia nanoparticles on cultured PC12 and N2a cells. In this study, cytotoxic effect of different concentrations of zirconia nanoparticles at three different time intervals were evaluated using MTT and ROS (reactive oxygen species) assays. Also, Lipid peroxidation, glutathione (GSH) content changes, and DNA damage were measured. Zirconia nanoparticles caused a significant reduction in cell viability and GSH content of the cells, and induce a significant increase in intracellular ROS and MDA content of PC12 and N2a cells. Moreover, it increases the percentage of DNA tail of treated cells as compared with control group. Zirconia nanoparticles have cytotoxic and genotoxic effects in PC12 and N2a cells in a time and concentration-dependent manner in concentration more than 31 µg/mL.

  2. Cancer cell specific cytotoxic gene expression mediated by ARF tumor suppressor promoter constructs

    Energy Technology Data Exchange (ETDEWEB)

    Kurayoshi, Kenta [Department of Bioscience, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337 (Japan); Ozono, Eiko [Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary, University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ (United Kingdom); Iwanaga, Ritsuko; Bradford, Andrew P. [Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO 80045 (United States); Komori, Hideyuki [Center for Stem Cell Biology, Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109 (United States); Ohtani, Kiyoshi, E-mail: btm88939@kwansei.ac.jp [Department of Bioscience, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337 (Japan)

    2014-07-18

    Highlights: • ARF promoter showed higher responsiveness to deregulated E2F activity than the E2F1 promoter. • ARF promoter showed higher cancer cell-specificity than E2F1 promoter to drive gene expression. • HSV-TK driven by ARF promoter showed higher cancer cell-specific cytotoxicity than that driven by E2F1 promoter. - Abstract: In current cancer treatment protocols, such as radiation and chemotherapy, side effects on normal cells are major obstacles to radical therapy. To avoid these side effects, a cancer cell-specific approach is needed. One way to specifically target cancer cells is to utilize a cancer specific promoter to express a cytotoxic gene (suicide gene therapy) or a viral gene required for viral replication (oncolytic virotherapy). For this purpose, the selected promoter should have minimal activity in normal cells to avoid side effects, and high activity in a wide variety of cancers to obtain optimal therapeutic efficacy. In contrast to the AFP, CEA and PSA promoters, which have high activity only in a limited spectrum of tumors, the E2F1 promoter exhibits high activity in wide variety of cancers. This is based on the mechanism of carcinogenesis. Defects in the RB pathway and activation of the transcription factor E2F, the main target of the RB pathway, are observed in almost all cancers. Consequently, the E2F1 promoter, which is mainly regulated by E2F, has high activity in wide variety of cancers. However, E2F is also activated by growth stimulation in normal growing cells, suggesting that the E2F1 promoter may also be highly active in normal growing cells. In contrast, we found that the tumor suppressor ARF promoter is activated by deregulated E2F activity, induced by forced inactivation of pRB, but does not respond to physiological E2F activity induced by growth stimulation. We also found that the deregulated E2F activity, which activates the ARF promoter, is detected only in cancer cell lines. These observations suggest that ARF promoter

  3. Dichlorophen and Dichlorovos mediated genotoxic and cytotoxic assessment on root meristem cells of Allium cepa

    Directory of Open Access Journals (Sweden)

    Sibhghatulla Shaikh

    2012-06-01

    Full Text Available Plants are direct recipients of agro – toxics and therefore important materials for assessing environmental chemicals for genotoxicity. The meristematic mitotic cell of Allium cepa is an efficient cytogenetic material for chromosome aberration assay on environmental pollutants. Onion root tips were grown on moistened filter paper in petri dish at room temperature. Germinated root tips were then exposed to three concentrations of each pesticide for 24 h. About 1 – 2 mm length of root tip was cut, fixed in cornoy’s fixative, hydrolyzed in warm 1 N HCL, stained with acetocarmine and squashed on glass slide. About 3000 cells were scored and classified into interphase and normal or aberrant division stage. Cytotoxicity was determined by comparing the mitotic index (MI of treated cells with that of the negative control. The MI of cells treated with Dichlorophen and Dichlorovos at one or more concentration was half or less than that of control are said to be cytotoxic. Genotoxicity was measured by comparing the number of cells/1000 in aberrant division stages at each dose with the negative control using Mann – Whitney U test. Both Dichlorophen and Dichlorovos are genotoxic at higher concentrations i.e. 0.001%, 0.002% and 0.028%, 0.056% inducing chromosome fragment, chromosome lagging and bridges, stick chromosome and multipolar anaphase.

  4. Au@Pt nanoparticles as catalase mimics to attenuate tumor hypoxia and enhance immune cell-mediated cytotoxicity

    Science.gov (United States)

    Liang, Hong; Wu, Ying; Ou, Xiang-Yu; Li, Jing-Ying; Li, Juan

    2017-11-01

    Hypoxic tumor microenvironment (TME) is closely linked to tumor progression, heterogeneity and immune suppression. Therefore, the development of effective methods to overcome hypoxia and substantially enhance the immunotherapy efficacy remains a desirable goal. Herein, we engineered a biocompatible Au core/Pt shell nanoparticles (Au@Pt NPs) to reoxygenate the TME by reacting with endogenous H2O2. Treatment with Au@Pt NPs appeared to improve oxygen in intracellular environments and decrease hypoxia-inducible factor-1α expression. Furthermore, the integration of high catalytic efficiency of Au@Pt NPs with cytokine-induced killer (CIK) cell immunotherapy, could lead to significantly improve the effect of CIK cell-mediated cytotoxicity. These results suggest great potential of Au@Pt NPs for regulation of the hypoxic TME and enhance immune cell mediated anti-tumor immunity.

  5. DNAM-1 mediates epithelial cell-specific cytotoxicity of aberrant intraepithelial lymphocyte lines from refractory celiac disease type II patients.

    Science.gov (United States)

    Tjon, Jennifer M-L; Kooy-Winkelaar, Yvonne M C; Tack, Greetje J; Mommaas, A Mieke; Schreurs, Marco W J; Schilham, Marco W; Mulder, Chris J; van Bergen, Jeroen; Koning, Frits

    2011-06-01

    In refractory celiac disease (RCD), intestinal epithelial damage persists despite a gluten-free diet. Characteristic for RCD type II (RCD II) is the presence of aberrant surface TCR-CD3(-) intraepithelial lymphocytes (IELs) that can progressively replace normal IELs and eventually give rise to overt lymphoma. Therefore, RCD II is considered a malignant condition that forms an intermediate stage between celiac disease (CD) and overt lymphoma. We demonstrate in this study that surface TCR-CD3(-) IEL lines isolated from three RCD II patients preferentially lyse epithelial cell lines. FACS analysis revealed that DNAM-1 was strongly expressed on the three RCD cell lines, whereas other activating NK cell receptors were not expressed on all three RCD cell lines. Consistent with this finding, cytotoxicity of the RCD cell lines was mediated mainly by DNAM-1 with only a minor role for other activating NK cell receptors. Furthermore, enterocytes isolated from duodenal biopsies expressed DNAM-1 ligands and were lysed by the RCD cell lines ex vivo. Although DNAM-1 on CD8(+) T cells and NK cells is known to mediate lysis of tumor cells, this study provides, to our knowledge, the first evidence that (pre)malignant cells themselves can acquire the ability to lyse epithelial cells via DNAM-1. This study confirms previous work on epithelial lysis by RCD cell lines and identifies a novel mechanism that potentially contributes to the gluten-independent tissue damage in RCD II and RCD-associated lymphoma.

  6. Ocaratuzumab, an Fc-engineered antibody demonstrates enhanced antibody-dependent cell-mediated cytotoxicity in chronic lymphocytic leukemia.

    Science.gov (United States)

    Cheney, Carolyn M; Stephens, Deborah M; Mo, Xiaokui; Rafiq, Sarwish; Butchar, Jonathan; Flynn, Joseph M; Jones, Jeffrey A; Maddocks, Kami; O'Reilly, Adrienne; Ramachandran, Abhijit; Tridandapani, Susheela; Muthusamy, Natarajan; Byrd, John C

    2014-01-01

    Chronic lymphocytic leukemia (CLL) is common in both developed and developing nations where the need for inexpensive and convenient administration of therapy is apparent. Ocaratuzumab is a novel Fc-engineered humanized IgG1 anti-CD20 monoclonal antibody (mAb) designed for effective antibody-dependent cell-mediated cytotoxicity (ADCC) at very low concentrations that may facilitate sub-cutaneous (vs. intravenous) dosing. Here, we report ocaratuzumab's potency against CLL cells. In vitro assessment of ocaratuzumab's direct cytotoxicity (DC), complement-dependent cytotoxicity (CDC), antibody-dependent cellular phagocytosis (ADCP), and ADCC was performed on CLL cells. Ocaratuzumab induced DC, CDC, and ADCP similarly to rituximab or ofatumumab (anti-CD20 mAbs). However, ocaratuzumab showed an advantage in NK cell-mediated ADCC over these antibodies. In allogeneic ADCC, [E:T (effector:target) ratios = 25:1, 12:1, 6:1], ocaratuzumab (10 µg/mL) improved ADCC by ~3-fold compared with rituximab or ofatumumab (P<0.001 all tested E:T ratios). Notably, the superiority of ocaratuzumab-induced ADCC was observed at low concentrations (0.1-10 ug/ml; P<0.03; allogeneic assays). In extended allogeneic ADCC E:T titration, ocaratuzumab (0.1 µg/mL) demonstrated 19.4% more cytotoxicity than rituximab (E:T = 0.38:1; P = 0.0066) and 21.5% more cytotoxicity than ofatumumab (E:T = 1.5:1; P = 0.0015). In autologous ADCC, ocaratuzumab (10 µg/mL) demonstrated ~1.5-fold increase in cytotoxicity compared with rituximab or ofatumumab at all E:T ratios tested (E:Ts = 25:1,12:1,6:1; all P<0.001). Obinutuzumab, a glyco-engineered anti-CD20 mAb, showed no improvement in ADCC activity compared with ocaratuzumab. The enhanced ADCC of ocaratuzumab suggests that it may be effective at low concentrations. If supported by clinical investigation, this feature could potentially allow for subcutaneous dosing at low doses that could expand the potential of administering chemoimmunotherapy in developing

  7. Cell-mediated immunity to Plasmodium falciparum infection: evidence against the involvement of cytotoxic lymphocytes

    DEFF Research Database (Denmark)

    Theander, T G; Andersen, B J; Pedersen, B K

    1988-01-01

    by either SPag or PPD in the presence of immune serum. Studies on subpopulations of PBMC indicated that the inhibitory cells resided among the adherent cell fraction. Furthermore we tested PBMC for cytotoxic activity against P. falciparum-infected autologous or heterologous erythrocytes. Experiments were......Blood mononuclear cells (PBMC) recognizing soluble malaria antigens (SPag) are present in the peripheral blood of individuals clinically immune to malaria, and they proliferate after exposure to such antigens. To test whether these cells have effector activity against Plasmodium falciparum, we...... stimulated PBMC from malaria-immune donors by SPag and purified protein derivative (PPD) in culture for 7 days. The PBMC were then co-incubated with P. falciparum for 48 h, and parasitaemia was determined by microscopy. Parasite growth was only significantly impaired after incubation with PBMC stimulated...

  8. Comparison of Antibody-Dependent Cell-Mediated Cytotoxicity and Virus Neutralization by HIV-1 Env-Specific Monoclonal Antibodies.

    Science.gov (United States)

    von Bredow, Benjamin; Arias, Juan F; Heyer, Lisa N; Moldt, Brian; Le, Khoa; Robinson, James E; Zolla-Pazner, Susan; Burton, Dennis R; Evans, David T

    2016-07-01

    Although antibodies to the human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein have been studied extensively for their ability to block viral infectivity, little data are currently available on nonneutralizing functions of these antibodies, such as their ability to eliminate virus-infected cells by antibody-dependent cell-mediated cytotoxicity (ADCC). HIV-1 Env-specific antibodies of diverse specificities, including potent broadly neutralizing and nonneutralizing antibodies, were therefore tested for ADCC against cells infected with a lab-adapted HIV-1 isolate (HIV-1NL4-3), a primary HIV-1 isolate (HIV-1JR-FL), and a simian-human immunodeficiency virus (SHIV) adapted for pathogenic infection of rhesus macaques (SHIVAD8-EO). In accordance with the sensitivity of these viruses to neutralization, HIV-1NL4-3-infected cells were considerably more sensitive to ADCC, both in terms of the number of antibodies and magnitude of responses, than cells infected with HIV-1JR-FL or SHIVAD8-EO ADCC activity generally correlated with antibody binding to Env on the surfaces of virus-infected cells and with viral neutralization; however, neutralization was not always predictive of ADCC, as instances of ADCC in the absence of detectable neutralization, and vice versa, were observed. These results reveal incomplete overlap in the specificities of antibodies that mediate these antiviral activities and provide insights into the relationship between ADCC and neutralization important for the development of antibody-based vaccines and therapies for combating HIV-1 infection. This study provides fundamental insights into the relationship between antibody-dependent cell-mediated cytotoxicity (ADCC) and virus neutralization that may help to guide the development of antibody-based vaccines and immunotherapies for the prevention and treatment of HIV-1 infection. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  9. Singlet oxygen mediated DNA degradation by copper nanoparticles: potential towards cytotoxic effect on cancer cells

    Directory of Open Access Journals (Sweden)

    Sengupta Tapas K

    2011-03-01

    Full Text Available Abstract The DNA degradation potential and anti-cancer activities of copper nanoparticles of 4-5 nm size are reported. A dose dependent degradation of isolated DNA molecules by copper nanoparticles through generation of singlet oxygen was observed. Singlet oxygen scavengers such as sodium azide and Tris [hydroxyl methyl] amino methane were able to prevent the DNA degradation action of copper nanoparticles confirming the involvement of activated oxygen species in the degradation process. Additionally, it was observed that the copper nanoparticles are able to exert cytotoxic effect towards U937 and Hela cells of human histiocytic lymphoma and human cervical cancer origins, respectively by inducing apoptosis. The growth characteristics of U937 and Hela cells were studied applying various concentrations of the copper nanoparticles.

  10. Singlet oxygen mediated DNA degradation by copper nanoparticles: potential towards cytotoxic effect on cancer cells.

    Science.gov (United States)

    Jose, Gregor P; Santra, Subhankar; Mandal, Swadhin K; Sengupta, Tapas K

    2011-03-25

    The DNA degradation potential and anti-cancer activities of copper nanoparticles of 4-5 nm size are reported. A dose dependent degradation of isolated DNA molecules by copper nanoparticles through generation of singlet oxygen was observed. Singlet oxygen scavengers such as sodium azide and Tris [hydroxyl methyl] amino methane were able to prevent the DNA degradation action of copper nanoparticles confirming the involvement of activated oxygen species in the degradation process. Additionally, it was observed that the copper nanoparticles are able to exert cytotoxic effect towards U937 and Hela cells of human histiocytic lymphoma and human cervical cancer origins, respectively by inducing apoptosis. The growth characteristics of U937 and Hela cells were studied applying various concentrations of the copper nanoparticles.

  11. Aberrantly glycosylated MUC1 is expressed on the surface of breast cancer cells and a target for antibody-dependent cell-mediated cytotoxicity

    DEFF Research Database (Denmark)

    Lavrsen, Kirstine; Madsen, Caroline B; Rasch, Morten G

    2013-01-01

    not covered by immunological tolerance in MUC1 humanized mice and man. The objective of this study was to determine if mouse antibodies to this Tn-MUC1 epitope induce antibody-dependent cellular cytotoxicity (ADCC) pivotal for their potential use in cancer immunotherapy. Binding affinity of mAb 5E5 directed...... to Tn-MUC1 was investigated using BiaCore. The availability of Tn-MUC1 on the surface of breast cancer cells was evaluated by immunohistochemistry, confocal microscopy, and flow cytometry, followed by in vitro assessment of antibody-dependent cellular cytotoxicity by mAb 5E5. Biacore analysis...... is expressed on the surface of breast cancer cells and a target for antibody-dependent cell-mediated cytotoxicity suggesting that antibodies targeting glycopeptide epitopes on mucins are strong candidates for cancer-specific immunotherapies....

  12. Antibody-dependent cell-mediated cytotoxicity can be induced by MUC1 peptide vaccination of breast cancer patients.

    Science.gov (United States)

    Snijdewint, F G; von Mensdorff-Pouilly, S; Karuntu-Wanamarta, A H; Verstraeten, A A; Livingston, P O; Hilgers, J; Kenemans, P

    2001-07-01

    Human polymorphic epithelial mucin (PEM, MUC1) is a high molecular weight transmembrane glycoprotein expressed on the apical cell surface of glandular epithelium and is over-expressed and hypo-glycosylated in adenocarcinomas. The extracellular part of the molecule consists mainly of a variable number of 20 amino acid repeats that contain cryptic epitopes exposed in malignancy. The objective of our study was to determine whether humanized MUC1 MAbs and Abs induced by vaccination of breast cancer patients with MUC1 peptides can effect an antibody-dependent cell-mediated cytotoxicity (ADCC). An in vitro assay has been set up in which the breast tumor cell line ZR-75-1 is used as target and PBMC of healthy donors as effector cells. Different target and effector cells, as well as various MUC1 MAbs were tested to optimize the efficacy of the in vitro assay. The humanized MAb HuHMFG-1, which recognizes the PDTR sequence in the MUC1 tandem repeat, induced a strong cell-mediated cytotoxicity. Nine MUC1-expressing tumor cell lines, including 3 bone marrow-derived cell lines, as well as 2 MUC1-transfected cell lines were susceptible to different extent to MUC1 Ab-dependent killing. Large variations in the killing capacity of PBMC from healthy donors were found. The NK cells were the essential effector cells for the MUC1 Ab-dependent killing. Plasma samples with induced high levels of MUC1 Ab were obtained from breast cancer patients repeatedly immunized with a KLH-conjugated 33-mer or 106-mer MUC1 tandem repeat. Pre- and post-vaccinated plasma samples of these patients were compared in the ADCC assay and it could be clearly demonstrated that the induced MUC1 Abs can effect tumor cell killing. MUC1 Ab-dependent cell-mediated tumor cell killing may occur in vivo and the ADCC assay can be applied to monitor MUC1 vaccination trials. Copyright 2001 Wiley-Liss, Inc.

  13. Eosinophilia of dystrophin-deficient muscle is promoted by perforin-mediated cytotoxicity by T cell effectors

    Science.gov (United States)

    Cai, B.; Spencer, M. J.; Nakamura, G.; Tseng-Ong, L.; Tidball, J. G.

    2000-01-01

    Previous investigations have shown that cytotoxic T lymphocytes (CTLs) contribute to muscle pathology in the dystrophin-null mutant mouse (mdx) model of Duchenne muscular dystrophy through perforin-dependent and perforin-independent mechanisms. We have assessed whether the CTL-mediated pathology includes the promotion of eosinophilia in dystrophic muscle, and thereby provides a secondary mechanism through which CTLs contribute to muscular dystrophy. Quantitative immunohistochemistry confirmed that eosinophilia is a component of the mdx dystrophy. In addition, electron microscopic observations show that eosinophils traverse the basement membrane of mdx muscle fibers and display sites of close apposition of eosinophil and muscle membranes. The close membrane apposition is characterized by impingement of eosinophilic rods of major basic protein into the muscle cell membrane. Transfer of mdx splenocytes and mdx muscle extracts to irradiated C57 mice by intraperitoneal injection resulted in muscle eosinophilia in the recipient mice. Double-mutant mice lacking dystrophin and perforin showed less eosinophilia than was displayed by mdx mice that expressed perforin. Finally, administration of prednisolone, which has been shown previously to reduce the concentration of CTLs in dystrophic muscle, produced a significant reduction in eosinophilia. These findings indicate that eosinophilia is a component of the mdx pathology that is promoted by perforin-dependent cytotoxicity of effector T cells. However, some eosinophilia of mdx muscle is independent of perforin-mediated processes.

  14. Autophagy mediates cytotoxicity of human colorectal cancer cells treated with garcinielliptone FC.

    Science.gov (United States)

    Won, Shen-Jeu; Yen, Cheng-Hsin; Lin, Ting-Yu; Jiang-Shieh, Ya-Fen; Lin, Chun-Nan; Chen, Jyun-Ti; Su, Chun-Li

    2018-01-01

    The tautomeric pair of garcinielliptone FC (GFC) is a novel tautomeric pair of polyprenyl benzophenonoid isolated from the pericarps of Garcinia subelliptica Merr. (G. subelliptica, Clusiaceae), a tree with abundant sources of polyphenols. Our previous report demonstrated that GFC induced apoptosis on various types of human cancer cell lines including chemoresistant human colorectal cancer HT-29 cells. In the present study, we observed that many autophagy-related genes in GFC-treated HT-29 cells were up- and down-regulated using a cDNA microarray containing oncogenes and kinase genes. GFC-induced autophagy of HT-29 cells was confirmed by observing the formation of acidic vesicular organelles, LC3 puncta, and double-membrane autophagic vesicles using flow cytometry, confocal microscopy, and transmission electron microscopy, respectively. Inhibition of AKT/mTOR/P70S6K signaling as well as formation of Atg5-Atg12 and PI3K/Beclin-1 complexes were observed using Western blot. Administration of autophagy inhibitor (3-methyladenine and shRNA Atg5) and apoptosis inhibitor Z-VAD showed that the GFC-induced autophagy was cytotoxic form and GFC-induced apoptosis enhanced GFC-induced autophagy. Our data suggest the involvement of autophagy and apoptosis in GFC-induced anticancer mechanisms of human colorectal cancer. © 2017 Wiley Periodicals, Inc.

  15. Cytotoxicity of obacunone and obacunone glucoside in human prostate cancer cells involves Akt-mediated programmed cell death.

    Science.gov (United States)

    Murthy, Kotamballi N Chidambara; Jayaprakasha, Guddadarangavvanahally K; Patil, Bhimanagouda S

    2015-03-02

    Obacunone and obacunone glucoside (OG) are naturally occurring triterpenoids commonly found in citrus and other plants of the Rutaceae family. The current study reports the mechanism of cytotoxicity of citrus-derived obacunone and OG on human androgen-dependent prostate cancer LNCaP cells. Both limonoids exhibited time- and dose-dependent inhibition of cell proliferation, with more than 60% inhibition of cell viability at 100 μM, after 24 and 48 h. Analysis of fragmentation of DNA, activity of caspase-3, and cytosolic cytochrome-c in the cells treated with limonoids provided evidence for activation of programmed cell death by limonoids. Treatment of LNCaP cells with obacunone and OG resulted in dose-dependent changes in expression of proteins responsible for the induction of programmed cell death through the intrinsic pathway and down-regulation of Akt, a key molecule in cell signaling pathways. In addition, obacunone and OG also negatively regulated an inflammation-associated transcription factor, androgen receptor, and prostate-specific antigen, and activated proteins related to the cell cycle, confirming the ability of limonoids to induce cytotoxicity through multiple pathways. The results of this study provided, for the first time, an evidence of the cytotoxicity of obacunone and OG in androgen-dependent human prostate cancer cells. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  16. In vitro evaluation of inorganic and methyl mercury mediated cytotoxic effect on neural cells derived from different animal species.

    Science.gov (United States)

    Tong, Jing; Wang, Youwei; Lu, Yuanan

    2016-03-01

    To extend the current understanding of the mercury-mediated cytotoxic effect, five neural cell lines established from different animal species were comparatively analyzed using three different endpoint bioassays: thiazolyl blue tetrazolium bromide, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay (MTT), neutral red uptake assay (NRU), and Coomassie blue assay (CB). Following a 24-hr exposure to selected concentrations of mercury chloride (HgCl2) and methylmercury (II) chloride (MeHgCl), the cytotoxic effect on test cells was characterized by comparing their 50% inhibition concentration (IC50) values. Experimental results indicated that both these forms of mercury were toxic to all the neural cells, but at very different degrees. The IC50 values of MeHgCl among these cell lines ranged from 1.15±0.22 to 10.31±0.70μmol/L while the IC50 values for HgCl2 were much higher, ranging from 6.44±0.36 to 160.97±19.63μmol/L, indicating the more toxic nature of MeHgCl. The IC50 ratio between HgCl2 and MeHgCl ranged from 1.75 to 96.0, which confirms that organic mercury is much more toxic to these neural cells than inorganic mercury. Among these cell lines, HGST-BR and TriG44 derived from marine sea turtles showed a significantly high tolerance to HgCl2 as compared to the three mammalian neural cells. Among these neural cells, SK-N-SH represented the most sensitive cells to both chemical forms of mercury. Copyright © 2015. Published by Elsevier B.V.

  17. Cytotoxicity of obacunone and obacunone glucoside in human prostate cancer cells involves Akt-mediated programmed cell death

    International Nuclear Information System (INIS)

    Murthy, Kotamballi N. Chidambara; Jayaprakasha, G.K.; Patil, Bhimanagouda S

    2015-01-01

    Highlights: • Possible mechanism of inhibiting LNCaP cells proliferation by obacunone and obacunone glucoside is demonstrated for the first time. • Inhibition of LNCaP cells by limonoids though induction of programmed cell death, inhibition of cell signaling and inflammatory pathways. • Limonoids exhibited multi-mode inhibition of androgen expression in LNCaP cells. - Abstract: Obacunone and obacunone glucoside (OG) are naturally occurring triterpenoids commonly found in citrus and other plants of the Rutaceae family. The current study reports the mechanism of cytotoxicity of citrus-derived obacunone and OG on human androgen-dependent prostate cancer LNCaP cells. Both limonoids exhibited time- and dose-dependent inhibition of cell proliferation, with more than 60% inhibition of cell viability at 100 μM, after 24 and 48 h. Analysis of fragmentation of DNA, activity of caspase-3, and cytosolic cytochrome-c in the cells treated with limonoids provided evidence for activation of programmed cell death by limonoids. Treatment of LNCaP cells with obacunone and OG resulted in dose-dependent changes in expression of proteins responsible for the induction of programmed cell death through the intrinsic pathway and down-regulation of Akt, a key molecule in cell signaling pathways. In addition, obacunone and OG also negatively regulated an inflammation-associated transcription factor, androgen receptor, and prostate-specific antigen, and activated proteins related to the cell cycle, confirming the ability of limonoids to induce cytotoxicity through multiple pathways. The results of this study provided, for the first time, an evidence of the cytotoxicity of obacunone and OG in androgen-dependent human prostate cancer cells

  18. Oxaliplatin regulates expression of stress ligands in ovarian cancer cells and modulates their susceptibility to natural killer cell-mediated cytotoxicity.

    Science.gov (United States)

    Siew, Yin-Yin; Neo, Soek-Ying; Yew, Hui-Chuing; Lim, Shun-Wei; Ng, Yi-Cheng; Lew, Si-Min; Seetoh, Wei-Guang; Seow, See-Voon; Koh, Hwee-Ling

    2015-12-01

    Selected cytotoxic chemicals can provoke the immune system to recognize and destroy malignant tumors. Most of the studies on immunogenic cell death are focused on the signals that operate on a series of receptors expressed by dendritic cells to induce tumor antigen-specific T-cell responses. Here, we explored the effects of oxaliplatin, an immunogenic cell death inducer, on the induction of stress ligands and promotion of natural killer (NK) cell-mediated cytotoxicity in human ovarian cancer cells. The results indicated that treatment of tumor cells with oxaliplatin induced the production of type I interferons and chemokines and enhanced the expression of major histocompatibility complex class I-related chains (MIC) A/B, UL16-binding protein (ULBP)-3, CD155 and TNF-related apoptosis-inducing ligand (TRAIL)-R1/R2. Furthermore, oxaliplatin but not cisplatin treatment enhanced susceptibility of ovarian cancer cells to NK cell-mediated cytolysis. In addition, activated NK cells completely abrogated the growth of cancer cells that were pretreated with oxaliplatin. However, cancer cells pretreated with the same concentration of oxaliplatin alone were capable of potentiating regrowth over a period of time. These results suggest an advantage in combining oxaliplatin and NK cell-based therapy in the treatment of ovarian cancer. Further investigation on such potential combination therapy is warranted. © The Japanese Society for Immunology. 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. HIV-Specific Antibody-Dependent Cellular Cytotoxicity (ADCC) -Mediating Antibodies Decline while NK Cell Function Increases during Antiretroviral Therapy (ART)

    DEFF Research Database (Denmark)

    Skov Jensen, Sanne; Fomsgaard, Anders; Borggren, Marie

    2015-01-01

    Understanding alterations in HIV-specific immune responses during antiretroviral therapy (ART), such as antibody-dependent cellular cytotoxicity (ADCC), is important in the development of novel strategies to control HIV-1 infection. This study included 53 HIV-1 positive individuals. We evaluated...... during ART. These findings suggest improved cytotoxic function of the NK cells if initiating ART early during infection, while the levels of ADCC mediating antibodies declined during ART....

  20. Sensitive Detection of the Natural Killer Cell-Mediated Cytotoxicity of Anti-CD20 Antibodies and Its Impairment by B-Cell Receptor Pathway Inhibitors

    Directory of Open Access Journals (Sweden)

    Floyd Hassenrück

    2018-01-01

    Full Text Available The antibody-dependent cell-mediated cytotoxicity (ADCC of the anti-CD20 monoclonal antibodies (mAbs rituximab and obinutuzumab against the cell line Raji and isolated CLL cells and its potential impairment by kinase inhibitors (KI was determined via lactate dehydrogenase release or calcein retention, respectively, using genetically modified NK92 cells expressing CD16-176V as effector cells. Compared to peripheral blood mononuclear cells, recombinant effector cell lines showed substantial alloreactivity-related cytotoxicity without addition of mAbs but afforded determination of ADCC with reduced interassay variability. The cytotoxicity owing to alloreactivity was less susceptible to interference by KI than the ADCC of anti-CD20 mAbs, which was markedly diminished by ibrutinib, but not by idelalisib. Compared to rituximab, the ADCC of obinutuzumab against primary CLL cells showed approximately 30% higher efficacy and less interference with KI. Irreversible BTK inhibitors at a clinically relevant concentration of 1 μM only weakly impaired the ADCC of anti-CD20 mAbs, with less influence in combinations with obinutuzumab than with rituximab and by acalabrutinib than by ibrutinib or tirabrutinib. In summary, NK cell line-based assays permitted the sensitive detection of ADCC of therapeutic anti-CD20 mAbs against CLL cells and of the interference of KI with this important killing mechanism.

  1. CD4+ T cell-mediated cytotoxicity is associated with MHC class II expression on malignant CD19+ B cells in diffuse large B cell lymphoma.

    Science.gov (United States)

    Zhou, Yong; Zha, Jie; Lin, Zhijuan; Fang, Zhihong; Zeng, Hanyan; Zhao, Jintao; Luo, Yiming; Li, Zhifeng; Xu, Bing

    2018-01-15

    Diffuse large B cell lymphoma (DLBCL) is a common B cell malignancy with approximately 30% of patients present relapsed or refractory disease after first-line therapy. Research of further treatment options is needed. Cytotoxic CD4 + T cells express cytolytic molecules and have potential antitumor function. Here, we showed that the CD19 + cells from DLBCL patients presented significantly reduced expression of MHC II molecules than those from healthy controls. Three years after the first-line treatment, patients that presented relapsed disease had significantly lower MHC II expression on their CD19 + cells than patients who did not show recurrence. Examining cytotoxic CD4 + T cells show that DLBCL patients presented significantly elevated frequencies of granzyme A-, granzyme B-, and/or perforin-expressing cytotoxic CD4 + T cells. Also, frequency of cytotoxic CD4 + T cells in DLBCL patients was positively correlated with the MHC II expression level. Subsequently, the cytotoxic potential of CD4 + T cells against autologous CD19 + cells was investigated. We found that the cytotoxic potential of CD4 + T cells was highest in MHC II-high, intermediate in MHC II-mid, and lowest in MHC II-low patients. The percentage of MHC II-expressing viable CD19 + cells presented a significant reduction after longer incubation with cytotoxic CD4 + T cells, suggesting that cytotoxic CD4 + T cells preferentially eliminated MHC II-expressing CD19 + cells. Blocking MHC II on CD19 + cells significantly reduced the cytolytic capacity of CD4 + T cells. Despite these discoveries, the frequency of cytotoxic CD4 + T cells did not predict the clinical outcome of DLBCL patients. Together, these results demonstrated that cytotoxic CD4 + T cells presented an MHC II-dependent cytotoxic potential against autologous CD19 + cells and could potentially represent a future treatment option for DLBCL. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Biodiesel exhaust-induced cytotoxicity and proinflammatory mediator production in human airway epithelial cells.

    Science.gov (United States)

    Mullins, Benjamin J; Kicic, Anthony; Ling, Kak-Ming; Mead-Hunter, Ryan; Larcombe, Alexander N

    2016-01-01

    Increasing use of biodiesel has prompted research into the potential health effects of biodiesel exhaust exposure. Few studies directly compare the health consequences of mineral diesel, biodiesel, or blend exhaust exposures. Here, we exposed human epithelial cell cultures to diluted exhaust generated by the combustion of Australian ultralow-sulfur-diesel (ULSD), unprocessed canola oil, 100% canola biodiesel (B100), and a blend of 20% canola biodiesel mixed with 80% ULSD. The physicochemical characteristics of the exhaust were assessed and we compared cellular viability, apoptosis, and levels of interleukin (IL)-6, IL-8, and Regulated on Activation, Normal T cell Expressed and Secreted (RANTES) in exposed cultured cells. Different fuel types produced significantly different amounts of exhaust gases and different particle characteristics. All exposures resulted in significant apoptosis and loss of viability when compared with control, with an increasing proportion of biodiesel being correlated with a decrease in viability. In most cases, exposure to exhaust resulted in an increase in mediator production, with the greatest increases most often in response to B100. Exposure to pure canola oil (PCO) exhaust did not increase mediator production, but resulted in a significant decrease in IL-8 and RANTES in some cases. Our results show that canola biodiesel exhaust exposure elicits inflammation and reduces viability of human epithelial cell cultures in vitro when compared with ULSD exhaust exposure. This may be related to an increase in particle surface area and number in B100 exhaust when compared with ULSD exhaust. Exposure to PCO exhaust elicited the greatest loss of cellular viability, but virtually no inflammatory response, likely due to an overall increase in average particle size. © 2014 Wiley Periodicals, Inc.

  3. Concanavalin A-mediated in vitro activation of a secondary cytotoxic T-cell response in virus-primed splenocytes

    DEFF Research Database (Denmark)

    Thomsen, Allan Randrup; Jensen, B L

    1980-01-01

    In a recent report it was shown that what appeared to be secondary cytotoxic T cells could be obtained from lymphocytic choriomeningitis virus (LCMV)-primed splenocytes after stimulation in vitro with the non-specific T cell mitogen concanavalin A (Con A). The present experiments attempt to chara......In a recent report it was shown that what appeared to be secondary cytotoxic T cells could be obtained from lymphocytic choriomeningitis virus (LCMV)-primed splenocytes after stimulation in vitro with the non-specific T cell mitogen concanavalin A (Con A). The present experiments attempt...... to characterize further these effector cells and, in particular, to establish whether the Con A-activated cytotoxic effectors are qualitatively different from the secondary cytotoxic T cells induced by restimulation with the homologous antigen. It was found that: (1) in vitro activation with Con A could......, since no evidence was found to indicate a role for other cell types or soluble (cytotoxic or arming) factors; (4) cytotoxicity was specific with regard to both virus and 'self'. By comparison with previous data on LCMV-induced cytotoxic T cells, it is concluded that Con A induces the generation...

  4. The impact of HLA class I-specific killer cell immunoglobulin-like receptors on antibody-dependent natural killer cell-mediated cytotoxicity and organ allograft rejection

    Directory of Open Access Journals (Sweden)

    Raja Rajalingam

    2016-12-01

    Full Text Available Natural killer (NK cells of the innate immune system are cytotoxic lymphocytes that play important roles following transplantation of solid organs and hematopoietic stem cells. Recognition of self HLA class I molecules by inhibitory killer cell immunoglobulin-like receptors (KIR is involved in the calibration of NK cell effector capacities during a developmental stage, allowing the subsequent recognition and elimination of target cells with decreased expression of self HLA class I (due to virus infection or tumor transformation or HLA class I disparities (in the setting of allogeneic transplantation. NK cells expressing an inhibitory KIR binding self HLA can be activated when confronted with allografts lacking a ligand for the inhibitory receptor. Following the response of the adaptive immune system, NK cells can further destroy allograft endothelium by antibody-dependent cell-mediated cytotoxicity (ADCC, triggered through cross-linking of the CD16 Fc receptor by donor-specific antibodies bound to allograft. Upon recognizing allogeneic target cells, NK cells also secrete cytokines and chemokines that drive maturation of dendritic cells to promote cellular and humoral adaptive immune responses against the allograft. The cumulative activating and inhibitory signals generated by ligation of the receptors regulates mature NK cell killing of target cells and their production of cytokines and chemokines. This review summarizes the role of NK cells in allograft rejection and proposes mechanistic concepts that indicate a prominent role for KIR-HLA interactions in facilitating NK cells for Fc receptor-mediated ADCC effector function involved in antibody-mediated rejection of solid organ transplants.

  5. Monocytic MDSCs regulate macrophage-mediated xenogenic cytotoxicity.

    Science.gov (United States)

    Maeda, Akira; Eguchi, Hiroshi; Nakahata, Kengo; Lo, Pei-Chi; Yamanaka, Kazuaki; Kawamura, Takuji; Matsuura, Rei; Sakai, Rieko; Asada, Mayumi; Okuyama, Hiroomi; Miyagawa, Shuji

    2015-10-01

    Xenotransplantation is considered to be one of the most attractive strategies for overcoming the worldwide shortage of organs. However, many obstructions need to be overcome before it will achieve clinical use in patients. One such obstacle is the development of an effective immunosuppressive strategy. We previously reported that myeloid-derived suppressor cells (MDSCs), a heterogeneous population of progenitor and immature myeloid cells, suppress xenogenic CTL-mediated cytotoxicity. Because of their heterogeneous nature, MDSC can function via several suppressive mechanisms that disrupt both innate and adaptive immunity. Since macrophages play a pivotal role in the rejection of a xenograft, in this study, we evaluated the suppressive effects of MDSC against macrophage-mediated xenogenic rejection. To evaluate the effect of monocyte-derived MDSCs on xenogenic immune reactions, a CFSE(carboxyfluorescein diacetate, succinimidyl ester)assay was employed to assess cytotoxicity. While, in the absence of activation, primed MDSCs had no detectable effect on macrophage-induced cytotoxicity against SEC cells, LPS-activated MDSCs were found to significantly suppress xenogenic cytotoxicity. A CFSE cytotoxicity assay revealed that MDSCs significantly suppressed macrophage-induced cytotoxicity. Furthermore, an indoleamine 2,3 dioxygenase (IDO) inhibitor, 1-methyl tryptophan (1-MT), abolished the MDSC-induced suppression of macrophage-mediated xeno-rejection, indicating that MDSCs may suppress macrophage-mediated cytotoxicity in an IDO-dependent manner. These findings indicate that MDSCs have great potential for immunosuppressing macrophage-mediated xeno-rejection. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Cell-mediated immunity to herpes simplex in humans: lymphocyte cytotoxicity measured by 51Cr release from infected cells

    International Nuclear Information System (INIS)

    Russell, A.S.; Percy, J.S.; Kovithavongs, T.

    1975-01-01

    We assessed cell-mediated immunity to herpes simplex virus type 1 antigen in patients suffering from recurrent cold sores and in a series of healthy controls. Paradoxically, all those subject to recurrent herpetic infections had, without exception, evidence of cell-mediated immunity to herpes antigens. This was demonstrated by lymphocyte transformation and specific 51 Cr release from infected human amnion cells after incubation with peripheral blood mononuclear cells. Where performed, skin tests with herpes antigen were also positive. In addition, serum from these patients specifically sensitized herpes virus-infected cells to killing by nonimmune, control mononuclear cells. These tests were negative in the control patients except in a few cases, and it is suggested that these latter may be the asymptomatic herpes virus carriers previously recognized or that they may have experienced a genital infection. (U.S.)

  7. Natural killer (NK cell mediated antibody-dependent cellular cytotoxicity (ADCC in tumour immunotherapy with therapeutic antibodies

    Directory of Open Access Journals (Sweden)

    Ursula Jördis Eva Seidel

    2013-03-01

    Full Text Available In the last decade several therapeutic antibodies have been FDA and EMEA approved. Although their mechanisms of action in vivo is not fully elucidated, antibody-dependent cellular cytotoxicity (ADCC mediated by natural killer (NK cells is presumed to be a key effector function. A substantial role of ADCC has been demonstrated in vitro and in mouse tumour models. However, a direct in vivo effect of ADCC in tumour reactivity in humans remains to be shown. Several studies revealed a predictive value of FcγRIIIa-V158F polymorphism in monoclonal antibody treatment, indicating a potential effect of ADCC on outcome for certain indications. Furthermore, the use of therapeutic antibodies after allogeneic haematopoietic stem cell transplantation is an interesting option. Studying the role of the FcγRIIIa-V158F polymorphism and the influence of KIR-receptor-ligand incompatibility on ADCC in this approach may contribute to future transplantation strategies. Despite the success of approved second-generation antibodies in the treatment of several malignancies, efforts are made to further augment ADCC in vivo by antibody engineering. Here, we review currently used therapeutic antibodies for which ADCC has been suggested as effector function.

  8. NK cell cytotoxicity mediated by 2B4 and NTB-A is dependent on SAP acting downstream of receptor phosphorylation

    Directory of Open Access Journals (Sweden)

    Stephan eMeinke

    2013-01-01

    Full Text Available 2B4 (CD244 and NK-T-B-antigen (NTB-A, CD352 are activating receptors on human NK cells and belong to the family of SLAM-related receptors. Engagement of these receptors leads to phosphorylation of their cytoplasmic tails and recruitment of the adapter proteins SAP and EAT-2. X-linked lymphoproliferative syndrome (XLP is a severe immunodeficiency that results from mutations in the SAP gene. 2B4 and NTB-A-mediated cytotoxicity are abrogated in XLP NK cells. To elucidate the molecular basis for this defect we analyzed early signaling events in SAP knockdown cells. Similar to XLP NK cells, knockdown of SAP in primary human NK cells leads to a reduction of 2B4 and NTB-A-mediated cytotoxicity. We found that early signaling events such as raft recruitment and receptor phosphorylation are not affected by the absence of SAP, indicating the defect in the absence of SAP is downstream of these events. In addition, knockdown of EAT-2 does not impair 2B4 or NTB-A-mediated cytotoxicity. Surprisingly, EAT-2 recruitment to both receptors is abrogated in the absence of SAP, revealing a novel cooperativity between these adapters.

  9. Enhancement of antibody-dependent cell-mediated cytotoxicity by endowing IgG with FcαRI (CD89) binding.

    Science.gov (United States)

    Borrok, M Jack; Luheshi, Nadia M; Beyaz, Nurten; Davies, Gareth C; Legg, James W; Wu, Herren; Dall'Acqua, William F; Tsui, Ping

    2015-01-01

    Fc effector functions such as antibody-dependent cell-mediated cytotoxicity (ADCC) and antibody-dependent cell-mediated phagocytosis (ADCP) are crucial to the efficacy of many antibody therapeutics. In addition to IgG, antibodies of the IgA isotype can also promote cell killing through engagement of myeloid lineage cells via interactions between the IgA-Fc and FcαRI (CD89). Herein, we describe a unique, tandem IgG1/IgA2 antibody format in the context of a trastuzumab variable domain that exhibits enhanced ADCC and ADCP capabilities. The IgG1/IgA2 tandem Fc format retains IgG1 FcγR binding as well as FcRn-mediated serum persistence, yet is augmented with myeloid cell-mediated effector functions via FcαRI/IgA Fc interactions. In this work, we demonstrate anti-human epidermal growth factor receptor-2 antibodies with the unique tandem IgG1/IgA2 Fc can better recruit and engage cytotoxic polymorphonuclear (PMN) cells than either the parental IgG1 or IgA2. Pharmacokinetics of IgG1/IgA2 in BALB/c mice are similar to the parental IgG, and far surpass the poor serum persistence of IgA2. The IgG1/IgA2 format is expressed at similar levels and with similar thermal stability to IgG1, and can be purified via standard protein A chromatography. The tandem IgG1/IgA2 format could potentially augment IgG-based immunotherapeutics with enhanced PMN-mediated cytotoxicity while avoiding many of the problems associated with developing IgAs.

  10. Alpha7 nicotinic receptor mediated protection against ethanol-induced cytotoxicity in PC12 cells.

    Science.gov (United States)

    Li, Y; King, M A; Grimes, J; Smith, N; de Fiebre, C M; Meyer, E M

    1999-01-16

    Ethanol caused a concentration-dependent loss of PC12 cells over a 24 h interval, accompanied by an increase in intracellular calcium. The specific alpha7 nicotinic receptor partial agonist DMXB attenuated both of these ethanol-induced actions at a concentration (3 microM) found previously to protect against apoptotic and necrotic cell loss. The alpha7 nicotinic receptor antagonist methylylaconitine blocked the neuroprotective action of DMXB when applied with but not 30 min after the agonist. These results indicate that activation of alpha7 nicotinic receptors may be therapeutically useful in preventing ethanol-neurotoxicity. Copyright 1999 Elsevier Science B.V.

  11. T cell-mediated cytotoxicity against p53-protein derived peptides in bulk and limiting dilution cultures of healthy donors

    DEFF Research Database (Denmark)

    Röpke, M; Regner, M; Claesson, M H

    1995-01-01

    -I restricted epitopes for T cell recognition and p53-derived peptides have been suggested as targets for tumour-specific cytotoxic T lymphocytes (CTL). Our primary aim was to estimate the frequencies of p53-peptide reactive CTL precursors (CTLp) in peripheral blood from healthy young individuals. We selected...

  12. HIV-Specific Antibody-Dependent Cellular Cytotoxicity (ADCC) -Mediating Antibodies Decline while NK Cell Function Increases during Antiretroviral Therapy (ART).

    Science.gov (United States)

    Jensen, Sanne Skov; Fomsgaard, Anders; Borggren, Marie; Tingstedt, Jeanette Linnea; Gerstoft, Jan; Kronborg, Gitte; Rasmussen, Line Dahlerup; Pedersen, Court; Karlsson, Ingrid

    2015-01-01

    Understanding alterations in HIV-specific immune responses during antiretroviral therapy (ART), such as antibody-dependent cellular cytotoxicity (ADCC), is important in the development of novel strategies to control HIV-1 infection. This study included 53 HIV-1 positive individuals. We evaluated the ability of effector cells and antibodies to mediate ADCC separately and in combination using the ADCC-PanToxiLux assay. The ability of the peripheral blood mononuclear cells (PBMCs) to mediate ADCC was significantly higher in individuals who had been treated with ART before seroconversion, compared to the individuals initiating ART at a low CD4+ T cell count (ART-naïve individuals. The frequency of CD16 expressing natural killer (NK) cells correlated with both the duration of ART and Granzyme B (GzB) activity. In contrast, the plasma titer of antibodies mediating ADCC declined during ART. These findings suggest improved cytotoxic function of the NK cells if initiating ART early during infection, while the levels of ADCC mediating antibodies declined during ART.

  13. Trastuzumab mediates antibody-dependent cell-mediated cytotoxicity and phagocytosis to the same extent in both adjuvant and metastatic HER2/neu breast cancer patients.

    Science.gov (United States)

    Petricevic, Branka; Laengle, Johannes; Singer, Josef; Sachet, Monika; Fazekas, Judit; Steger, Guenther; Bartsch, Rupert; Jensen-Jarolim, Erika; Bergmann, Michael

    2013-12-12

    Monoclonal antibodies (mAb), such as trastuzumab are a valuable addition to breast cancer therapy. Data obtained from neoadjuvant settings revealed that antibody-dependent cell-mediated cytotoxicity (ADCC) is a major mechanism of action for the mAb trastuzumab. Conflicting results still call into question whether disease progression, prolonged treatment or concomitant chemotherapy influences ADCC and related immunological phenomena. We analyzed the activity of ADCC and antibody-dependent cell-mediated phagocytosis (ADCP) of peripheral blood mononuclear cells (PBMCs) from human epidermal growth factor receptor 2 (HER2/neu) positive breast cancer patients receiving trastuzumab therapy either in an adjuvant (n = 13) or metastatic (n = 15) setting as well as from trastuzumab treatment-naive (t-naive) HER2/neu negative patients (n = 15). PBMCs from healthy volunteers (n = 24) were used as controls. ADCC and ADCP activity was correlated with the expression of antibody binding Fc-gamma receptor (FcγR)I (CD64), FcγRII (CD32) and FcγRIII (CD16) on CD14+ (monocytes) and CD56+ (NK) cells, as well as the expression of CD107a+ (LAMP-1) on CD56+ cells and the total amount of CD4+CD25+FOXP3+ (Treg) cells. In metastatic patients, markers were correlated with progression-free survival (PFS). ADCC activity was significantly down regulated in metastatic, adjuvant and t-naive patient cohorts as compared to healthy controls. Reduced ADCC activity was inversely correlated with the expression of CD107a on CD56+ cells in adjuvant patients. ADCC and ADCP activity of the patient cohorts were similar, regardless of treatment duration or additional chemotherapy. PFS in metastatic patients inversely correlated with the number of peripheral Treg cells. The reduction of ADCC in patients as compared to healthy controls calls for adjuvant strategies, such as immune-enhancing agents, to improve the activity of trastuzumab. However, efficacy of trastuzumab-specific ADCC and ADCP appears not to

  14. Antitumour activity mediated by CD4+ cytotoxic T lymphocytes against MHC class II-negative mouse hepatocellular carcinoma induced by dendritic cell vaccine and interleukin-12.

    Science.gov (United States)

    Homma, Sadamu; Komita, Hideo; Sagawa, Yukiko; Ohno, Tsuneya; Toda, Gotaro

    2005-08-01

    When BALA/c mice with BNL hepatocellular carcinoma (HCC) were treated with dendritic cells fused with BNL cells (DC/BNL) and recombinant murine interleukin (IL)-12, tumour development was significantly suppressed, whereas treatment with either DC/BNL or IL-12 alone did not show a tumour-suppressive effect. Antitumour activity induced by DC/BNL + IL-12 was abrogated by depletion of CD4+ T cells, but not by depletion of CD8+ T cells or natural killer cells. Splenic CD4+ T cells and CD8+ T cells from DC/BNL-treated mice showed cytotoxic activity against BNL cells after 3 days of incubation with DC/BNL, although BNL cells do not express major histocompatibility complex (MHC) class II molecules even after treatment with interferon (INF)-gamma. Furthermore, CD4+ T cells killed syngeneic-irrelevant CT26 cells and even allogeneic Hepa1-6 cells. This cytotoxicity was blocked by concanamycin A, but not by an anti-Fas ligand (FasL) monoclonal antibody, indicating that cytotoxic activity was mediated by perforin. Immunofluorescence microscopy demonstrated that abundant CD4+ T cells and MHC class II-positive macrophages, but not CD8(+) T cells, had infiltrated tumour tissue in mice treated with DC/BNL + IL-12. Flow cytometric analysis of tumour-infiltrating cells in mice treated with DC/BNL + IL-12 showed increases in CD4+ T cells and MHC class II+ CD11b+ cells but not in CD8+ T cells or MHC class I+ CD11b+ cells. Our results suggest that, in BNL-bearing mice treated with DC/BNL + IL-12, tumour macrophages activated by INF-gamma produced by IL-12-stimulated T cells might present BNL tumour antigens and activate DC/BNL-primed CD4+ cytotoxic T lymphocytes (CTLs) in a MHC class II-dependent manner, leading to perforin-mediated bystander killing of neighbouring MHC class II-negative tumour cells.

  15. FOXO3a reactivation mediates the synergistic cytotoxic effects of rapamycin and cisplatin in oral squamous cell carcinoma cells

    International Nuclear Information System (INIS)

    Fang Liang; Wang Huiming; Zhou Lin; Yu Da

    2011-01-01

    FOXO3a, a well-known transcriptional regulator, controls a wide spectrum of biological processes. The Phosphoinositide-3-kinase (PI3K)/Akt signaling pathway inactivates FOXO3a via phosphorylation-induced nuclear exclusion and degradation. A loss or gain of FOXO3a activity has been correlated with efficiency of chemotherapies in various cancers including oral squamous cell carcinoma (OSCC). Therefore, in the current study, we have investigated the FOXO3a activity modulating and antitumor effects of rapamycin and cisplatin in OSCC cells. Cisplatin inhibited proliferation and induced apoptosis in a dose-dependent way in OSCC Tca8113 cells. Rapamycin alone had no effect on cell proliferation and apoptosis. Rapamycin downregulated the expression of S-phase kinase associated protein-2 (Skp2) and increased the FOXO3a protein stability but induced the upregulation of feedback Akt activation-mediated FOXO3a phosphorylation. Cisplatin decreased the phosphorylation of FOXO3a via Akt inhibition. Rapamycin combined with cisplatin as its feedback Akt activation inhibitor revealed the most dramatic FOXO3a nuclear localization and reactivation with the prevention of its feedback loop and exposed significant synergistic effects of decreased cell proliferation and increased apoptosis in vitro and decreased tumor size in vivo. Furthermore, the downstream effects of FOXO3a reactivation were found to be accumulation of p27 and Bim. In conclusion, rapamycin/cisplatin combination therapy boosts synergistic antitumor effects through the significant FOXO3a reactivation in OSCC cells. These results may represent a novel mechanism by which rapamycin/cisplatin combination therapy proves to be a potent molecular-targeted strategy for OSCC.

  16. Cytotoxicity of withasteroids: withametelin induces cell cycle arrest at G2/M phase and mitochondria-mediated apoptosis in non-small cell lung cancer A549 cells.

    Science.gov (United States)

    Rao, Poorna Chandra; Begum, Sajeli; Jahromi, Mohammad Ali Farboodniay; Jahromi, Zahra Hosseini; Sriram, Saketh; Sahai, Mahendra

    2016-09-01

    Considerable interest has been gained by withasteroids because of their structural uniqueness and wide spectrum of biological activities. However, limited systematic studies for proving their cytotoxic potential have so far been reported. Hence, an attempt was made to test the cytotoxicity of six withasteroids viz., withametelin (WM), withaphysalin D, withaphysalin E, 12-deoxywithastramonolide, Withaperuvin B, and physalolactone against A549, HT-29, and MDA-MB-231 cancer cell lines. Significant cytotoxic effect of WM against A549 cells (IC 50 value of 6.0 μM), MDA-MB-231 cells (IC 50 value of 7.6 μM), and HT-29 cells (IC 50 value of 8.2 μM) was observed. Withaperuvin B and physalolactone were found to be effective against MDA-MB-231 cells. The significantly active WM arrested the A549 cells at G2/M phase and downregulated the expression of G2/M regulatory proteins such as cdc2, cyclin B1, and cdc25C. Apoptosis induced by WM in A549 cells was associated with the generation of ROS and depletion of MMP. Furthermore, WM treatment resulted in Bax upregulation, Bcl-2 downregulation, translocation of cytochrome c to mitochondria, activation of caspase-9 and -3, and PARP cleavage corroborating the apoptosis induction through intrinsic apoptotic pathway. Thus, WM possessing broader cytotoxic effect is a promising lead molecule which has the potential to be developed as a new therapeutic agent for NSCLC.

  17. Oxidative Mechanisms of Monocyte-Mediated Cytotoxicity

    Science.gov (United States)

    Weiss, Stephen J.; Lobuglio, Albert F.; Kessler, Howard B.

    1980-01-01

    Human monocytes stimulated with phorbol myristate acetate were able to rapidly destroy autologous erythrocyte targets. Monocyte-mediated cytotoxicity was related to phorbol myristate acetate concentration and monocyte number. Purified preparations of lymphocytes were incapable of mediating erythrocyte lysis in this system. The ability of phorbol myristate acetate-stimulated monocytes to lyse erythrocyte targets was markedly impaired by catalase or superoxide dismutase but not by heat-inactivated enzymes or albumin. Despite a simultaneous requirement for superoxide anion and hydrogen peroxide in the cytotoxic event, a variety of hydroxyl radical and singlet oxygen scavengers did not effect cytolysis. However, tryptophan significantly inhibited cytotoxicity. The myeloperoxidase inhibitor cyanide enhanced erythrocyte destruction, whereas azide reduced it modestly. The inability of cyanide to reduce cytotoxicity coupled with the protective effect of superoxide dismutase suggests that cytotoxicity is independent of the classic myeloperoxidase system. We conclude that monocytes, stimulated with phorbol myristate acetate, generate superoxide anion and hydrogen peroxide, which together play an integral role in this cytotoxic mechanism.

  18. The anti-lung cancer activity of SEP is mediated by the activation and cytotoxicity of NK cells via TLR2/4 in vivo.

    Science.gov (United States)

    Ke, Mengyun; Wang, Hui; Zhang, Min; Tian, Yuwei; Wang, Yizhou; Li, Bing; Yu, Jie; Dou, Jie; Xi, Tao; Zhou, Changlin

    2014-05-01

    Strongylocentrotus nudus egg polysaccharide (SEP) has been reported to display antitumor activity. However, the effects of SEP and its underlying mechanism in the treatment of lung cancer remain unclear, particularly with an immunodeficient mouse model of human non-small cell lung cancer (NSCLC). In the present study, we investigated the anti-lung cancer effects of SEP and its underlying mechanism of action in both Lewis lung cancer (LLC)-bearing C57/BL6J mice and human NSCLC H460-bearing nude mice. Although SEP showed no inhibitory effects on tumor cells in vitro, it markedly stimulated the percentage of CD3-NK1.1(+) cells and natural killer (NK) cell cytotoxicity in the spleens of nude mice and C57/BL6J mice. In LLC-bearing mice, SEP not only inhibited tumor growth but also promoted NK-mediated cytotoxicity, the NK1.1(+) cell population, and IL-2 and IFN-γ secretion. SEP significantly suppressed H460 growth in nude mice, which was abrogated by the selective depletion of NK cells via the intraperitoneal injection of anti-asialo GM-1 antibodies. Furthermore, anti-TLR2/4 antibodies blocked both SEP and NK cell binding and SEP-induced perforin secretion. SEP-induced proliferation and IFN-γ secretion by NK cells in wild type mice were partially impaired in TLR2 or TLR4 knockout mice. These results suggest that SEP-promoted NK cytotoxicity, which was partially mediated via TLR2 and TLR4, was the main contributing factor to lung cancer inhibition in vivo and that SEP may be a potential immunotherapy candidate for the treatment of lung cancer. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Response rate of fibrosarcoma cells to cytotoxic drugs on the expression level correlates to the therapeutic response rate of fibrosarcomas and is mediated by regulation of apoptotic pathways

    International Nuclear Information System (INIS)

    Lehnhardt, Marcus; Mueller, Oliver; Klein-Hitpass, Ludger; Kuhnen, Cornelius; Homann, Heinz Herbert; Daigeler, Adrien; Steinau, Hans Ulrich; Roehrs, Sonja; Schnoor, Laura; Steinstraesser, Lars

    2005-01-01

    Because of the high resistance rate of fibrosarcomas against cytotoxic agents clinical chemotherapy of these tumors is not established. A better understanding of the diverse modes of tumor cell death following cytotoxic therapies will provide a molecular basis for new chemotherapeutic strategies. In this study we elucidated the response of a fibrosarcoma cell line to clinically used cytostatic agents on the level of gene expression. HT1080 fibrosarcoma cells were exposed to the chemotherapeutic agents doxorubicin, actinomycin D or vincristine. Total RNA was isolated and the gene expression patterns were analyzed by microarray analysis. Expression levels for 46 selected candidate genes were validated by quantitative real-time PCR. The analysis of the microarray data resulted in 3.309 (actinomycin D), 1.019 (doxorubicin) and 134 (vincristine) probesets that showed significant expression changes. For the RNA synthesis blocker actinomycin D, 99.4% of all differentially expressed probesets were under-represented. In comparison, probesets down-regulated by doxorubicin comprised only 37.4% of all genes effected by this agent. Closer analysis of the differentially regulated genes revealed that doxorubicin induced cell death of HT1080 fibrosarcoma cells mainly by regulating the abundance of factors mediating the mitochondrial (intrinsic) apoptosis pathway. Furthermore doxorubicin influences other pathways and crosstalk to other pathways (including to the death receptor pathway) at multiple levels. We found increased levels of cytochrome c, APAF-1 and members of the STAT-family (STAT1, STAT3), while Bcl-2 expression was decreased. Caspase-1, -3, -6, -8, and -9 were increased indicating that these proteases are key factors in the execution of doxorubicin mediated apoptosis. This study demonstrates that chemotherapy regulates the expression of apoptosis-related factors in fibrosarcoma cells. The number and the specific pattern of the genes depend on the used cytotoxic drug

  20. Role of NKG2D, DNAM-1 and natural cytotoxicity receptors in cytotoxicity toward rhabdomyosarcoma cell lines mediated by resting and IL-15-activated human natural killer cells

    NARCIS (Netherlands)

    Boerman, Gerharda H.; van Ostaijen-ten Dam, Monique M.; Kraal, Kathelijne C. J. M.; Santos, Susy J.; Ball, Lynne M.; Lankester, Arjan C.; Schilham, Marco W.; Egeler, R. Maarten; van Tol, Maarten J. D.

    2015-01-01

    Children with advanced stages (relapsed/refractory and stage IV) of rhabdomyosarcoma (RMS) have a poor prognosis despite intensive chemotherapy and autologous stem cell rescue, with 5-year survival rates ranging from 5 to 35 %. Development of new, additional treatment modalities is necessary to

  1. MEDI-563, a humanized anti-IL-5 receptor alpha mAb with enhanced antibody-dependent cell-mediated cytotoxicity function.

    Science.gov (United States)

    Kolbeck, Roland; Kozhich, Alexander; Koike, Masamichi; Peng, Li; Andersson, Cecilia K; Damschroder, Melissa M; Reed, Jennifer L; Woods, Robert; Dall'acqua, William W; Stephens, Geoffrey L; Erjefalt, Jonas S; Bjermer, Leif; Humbles, Alison A; Gossage, David; Wu, Herren; Kiener, Peter A; Spitalny, George L; Mackay, Charles R; Molfino, Nestor A; Coyle, Anthony J

    2010-06-01

    Peripheral blood eosinophilia and lung mucosal eosinophil infiltration are hallmarks of bronchial asthma. IL-5 is a critical cytokine for eosinophil maturation, survival, and mobilization. Attempts to target eosinophils for the treatment of asthma by means of IL-5 neutralization have only resulted in partial removal of airway eosinophils, and this warrants the development of more effective interventions to further explore the role of eosinophils in the clinical expression of asthma. We sought to develop a novel humanized anti-IL-5 receptor alpha (IL-5Ralpha) mAb with enhanced effector function (MEDI-563) that potently depletes circulating and tissue-resident eosinophils and basophils for the treatment of asthma. We used surface plasmon resonance to determine the binding affinity of MEDI-563 to FcgammaRIIIa. Primary human eosinophils and basophils were used to demonstrate antibody-dependent cell-mediated cytotoxicity. The binding epitope of MEDI-563 on IL-5Ralpha was determined by using site-directed mutagenesis. The consequences of MEDI-563 administration on peripheral blood and bone marrow eosinophil depletion was investigated in nonhuman primates. MEDI-563 binds to an epitope on IL-5Ralpha that is in close proximity to the IL-5 binding site, and it inhibits IL-5-mediated cell proliferation. MEDI-563 potently induces antibody-dependent cell-mediated cytotoxicity of both eosinophils (half-maximal effective concentration = 0.9 pmol/L) and basophils (half-maximal effective concentration = 0.5 pmol/L) in vitro. In nonhuman primates MEDI-563 depletes blood eosinophils and eosinophil precursors in the bone marrow. MEDI-563 might provide a novel approach for the treatment of asthma through active antibody-dependent cell-mediated depletion of eosinophils and basophils rather than through passive removal of IL-5. Copyright (c) 2010 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.

  2. Cytotoxicity of pyrrolizidine alkaloid in human hepatic parenchymal and sinusoidal endothelial cells: Firm evidence for the reactive metabolites mediated pyrrolizidine alkaloid-induced hepatotoxicity.

    Science.gov (United States)

    Yang, Mengbi; Ruan, Jianqing; Fu, Peter P; Lin, Ge

    2016-01-05

    Pyrrolizidine alkaloids (PAs) widely distribute in plants and can cause hepatic sinusoidal obstruction syndrome (HSOS), which typically presents as a primary sinusoidal endothelial cell damage. It is well-recognized that after ingestion, PAs undergo hepatic cytochromes P450 (CYPs)-mediated metabolic activation to generate dehydropyrrolizidine alkaloids (DHPAs), which are hydrolyzed to dehydroretronecine (DHR). DHPAs and DHR are reactive metabolites having same core pyrrole moiety, and can bind proteins to form pyrrole-protein adducts, which are believed as the primary cause for PA-induced HSOS. However, to date, the direct evidences supporting the toxicity of DHPAs and DHR in the liver, in particular in the sinusoidal endothelial cells, are lacking. Using human hepatic sinusoidal endothelial cells (HSEC) and HepG2 (representing hepatic parenchymal cells), cells that lack CYPs activity, this study determined the direct cytotoxicity of dehydromonocrotaline, a representative DHPA, and DHR, but no cytotoxicity of the intact PA (monocrotaline) in both cell lines, confirming that reactive metabolites mediate PA intoxication. Comparing with HepG2, HSEC had significantly lower basal glutathione (GSH) level, and was significantly more susceptible to the reactive metabolites with severer GSH depletion and pyrrole-protein adducts formation. The toxic potency of two reactive metabolites was also compared. DHPA was more reactive than DHR, leading to severer toxicity. In conclusion, our results unambiguously provided the first direct evidence for the critical role of DHPA and DHR in the reactive metabolites-mediated PA-induced hepatotoxicity, which occurs predominantly in HSEC due to severe GSH depletion and the significant formation of pyrrole-protein adducts in HSEC. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  3. SiRNA-mediated knockdown of CiGRP78 gene expression leads cell susceptibility to heavy metal cytotoxicity.

    Science.gov (United States)

    Zhong, Bin; Mao, Huiling; Fan, Qidi; Liu, Yong; Hu, Yousheng; Mi, Yichuan; Wu, Fan; Hu, Chengyu

    2014-12-01

    Heavy metal ion is one of the critical environmental pollutants accumulated in living organisms and causes toxic or carcinogenic effects once passed threshold levels. As an important member of Hsp70 (heat shock protein 70) family, the 78-kDa glucose-regulated protein (GRP78) can enhance cell survival rates remarkably under thermal stress. Recent studies also demonstrated that the expression of GRP78 enhances the cell survival under heavy metal stress. In this study, three most representative heavy metal ions, Pb(2+), Hg(2+) and Cd(2+), were used to stimulate Ctenopharyngodon idella kidney (CIK) cells. The results showed that cell viability under Pb(2+), Hg(2+) and Cd(2+) stress decreased significantly. The longer and the greater the concentrations of stimulation from heavy metal ions, the higher the rate of cell death was observed. Among them, Hg(2+) is the most hazardous to cells. Under the same stress condition, Hg(2+) resulted in 50% of cell death, Cd(2+) (or Pb(2+)) led to 45% (or 35%) of cell death, respectively. Western immunoblotting indicated that C. idella GRP78 (CiGRP78) protein expression level was enhanced obviously in CIK cells under Pb(2+), Hg(2+) and Cd(2+) stress, meaning CiGRP78 is involved in heavy metal cytotoxicity. To further study the role of CiGRP78 in cytoprotection, we designed the siRNA against CiGRP78 (from nucleotides +788 to +806) and transfected it into CIK cells to silence endogenous CiGRP78. The viability rate of CIK cells transfected with or without siRNA incubated with HgCl2 for 12h showed a significant decrease from 50% to 21%. Our results showed that CiGRP78 protects cells against heavy metal stimuli to some extent. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Relationship between laminin binding capacity and laminin expression on tumor cells sensitive or resistant to natural cell-mediated cytotoxicity

    International Nuclear Information System (INIS)

    Laybourn, K.A.; Varani, J.; Fligiel, S.E.G.; Hiserodt, J.C.

    1986-01-01

    Previous studies have identified the presence of laminin binding sites on murine NK and NC sensitive tumor cells by 125 I-laminin binding and laminin induced cell-cell aggregation. The finding that the addition of exogenous laminin inhibits NK/NC binding to sensitive tumor cells suggests laminin binding sites may serve as target antigens for NK cells. The present study extends earlier reports by analyzing a large panel of tumor cells for laminin binding capacity, laminin expression and sensitivity to NK/NC killing. The data indicate that all tumor cells which bind to NK/NC cells (8 lines tested) express laminin binding sites. All of these tumor cells were capable of competing for NK lysis of YAC-1 cells in cold target competition assays, and all bound enriched NK cells in direct single cell binding assays. In contrast, tumor cells expressing high levels of surface laminin (B16 melanomas, C57B1/6 fibrosarcomas, and RAS transfected 3T3 fibroblasts) but low levels of laminin binding capacity did not bind NK/NC cells and were resistant to lysis. These data support the hypothesis that expression of laminin/laminin binding sites may contribute to tumor cell sensitivity to NK/NC binding and/or killing

  5. Protective effects of lichen metabolites evernic and usnic acids against redox impairment-mediated cytotoxicity in central nervous system-like cells.

    Science.gov (United States)

    Fernández-Moriano, Carlos; Divakar, Pradeep Kumar; Crespo, Ana; Gómez-Serranillos, M Pilar

    2017-07-01

    Lichens species produce unique secondary metabolites that attract increasing pharmacological interest, including their redox modulatory activities. Current work evaluated for the first time the in vitro cytoprotective properties, based on the antioxidant activities, of the Parmeliaceae lichens Evernia prunastri and Usnea ghattensis and the mechanism of action of their major phenolic constituents: the evernic and usnic acids, respectively. In two models of central nervous system-like cells (U373-MG and SH-SY5Y cell lines), exogenous H 2 O 2 induced oxidative stress-mediated cytotoxicity. We first assessed their radical scavenging capacities (ORAC and DPPH tests) and the phenolic content of the extracts. At the optimal concentrations, pretreatments with evernic acid displayed significant protection against H 2 O 2 -induced cytotoxic damage in both models. It reversed the alterations in oxidative stress markers (including ROS generation, glutathione system and lipid peroxidation levels) and cellular apoptosis (caspase-3 activity). Such effects were in part mediated by a notable enhancement of the expression of intracellular phase-II antioxidant enzymes; a plausible involvement of the Nrf2 cytoprotective pathway is suggested. Usnic acid exerted similar effects, to some extent more moderate. Results suggest that lichen polyketides evernic and usnic acids merit further research as promising antioxidant candidates in the therapy of oxidative stress-related diseases, including the neurodegenerative disorders. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. From sabotage to camouflage: viral evasion of cytotoxic T lymphocyte and natural killer cell-mediated immunity.

    Science.gov (United States)

    Farrell, H E; Davis-Poynter, N J

    1998-06-01

    The outcome of a virus infection is strongly influenced by interactions between host immune defences and virus 'antidefence' mechanisms. For many viruses, their continued survival depends on the speed of their attack:their capacity to replicate and transmit to uninfected hosts prior to their elimination by an effective immune response. In contrast, the success of persistent viruses lies in their capacity for immunological subterfuge: the evasion of host defence mechanism by either mutation (covered elsewhere in this issue, by Gould and Bangham, pp. 331-338) or interference with the action of host cellular proteins that are important components of the immune response. This review will focus on the strategies employed by persistent viruses against two formidable host defences against virus infection: the CD8+ cytotoxic T lymphocyte (CTL) and natural killer (NK) cell responses.

  7. Photocatalytic activity against azo dye and cytotoxicity on MCF-7 cell lines of zirconium oxide nanoparticle mediated using leaves of Lagerstroemia speciosa.

    Science.gov (United States)

    Sai Saraswathi, V; Santhakumar, K

    2017-04-01

    Metal oxide nanoparticles are gaining interest in recent years. The present paper explains about the green synthesis of zirconium oxide nanoparticles (ZrO NPs) mediated from the leaves of Lagerstroemia speciosa. The prepared ZrO NPs were characterized by UV-vis spectroscopy, FT-IR, X-ray diffraction analysis (XRD), Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM), Energy Dispersive X-ray spectroscopy (EDX) and Thermogravimetric Analysis (TGA). The photocatalytic activity of ZrO NPs was studied for azo dye by exposing to sunlight. The azo dye was degraded up to 94.58%. Also the ZrO NPs were studied for in vitro cytotoxicity activity against breast cancer cell lines-MCF-7 and evaluated by MTT assay. The cell morphological changes were recorded by light microscope. The cells viability was seen at 500μg/mL when compared against control. Hence the research highlights, that the method was simple, eco-friendly towards environment by phytoremediation activity of the azo dye and cytotoxicity activity against MCF-7 cell lines. Hence the present paper may help to further explore the metal nanoparticle for its potential applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Inhibition of clone formation as an assay for T cell-mediated cytotoxicity: short-term kinetics and comparison with 51Cr release

    International Nuclear Information System (INIS)

    Lees, R.K.; MacDonald, H.R.; Sinclair, N.R.; University of Western Ontario London

    1977-01-01

    The short-term kinetics of T cell-mediated cytotoxicity was investigated using a cloning inhibition assay. Murine cytotoxic thymus-derived lymphocytes generated in vitro in mixed leukocyte cultures were incubated for various periods of time at 37degC with allogeneic mastocytoma target cells. The mixtures were then plated in soft agar, and mastocytoma clone formation was assessed after 5-7 days incubation. Using this technique, it was demonstrated that events leading to the loss of cloning ability could be detected after 1-3 min incubation at 37degC, and after 20-30 min, 95% of the clone forming cells had been inactivated. When these results were compared directly with those obtained using the conventional 51 Cr-release assay, it was found that the events leading to loss of cloning ability occurred more rapidly than indicated by the isotope assay. However, a modification of the 51 Cr-release assay involving EDTA addition gave comparable result to the cloning inhibition assay. These results raise the possibility that the events leading to 51 Cr-release of tumor target cells may be related in time to those leading to the loss of cloning ability

  9. The Effect of radiation on T-cell mitosis and natural killer cell mediated cytotoxicity in solid cancer patients

    International Nuclear Information System (INIS)

    Choi, Il Bong; Bahk, Yong Whee

    1986-01-01

    The present study has been conducted to investigate whether such tests can be used as a guideline in planning radiation therapy and in prognosticating radiation treatment of patients with a solid cancer. The first group consisted of 68 patients with solid tumors who received radiation therapy from May 1984 until July 1985 at the Department of Radiology, Catholic Medical College and these showed the following results of T-cell function change by the phytohemagglutinin (PHA) stimulation test and the response of the NK cell in vivo following radiation by NKMC test. Secondly the NKMC and PHA stimulation tests have been studied in 27 patients with solid tumors who did not receive radiation therapy (cancer control group) and thirdly 30 normal subjects were tested as normal control. (Author)

  10. Rhein Elicits In Vitro Cytotoxicity in Primary Human Liver HL-7702 Cells by Inducing Apoptosis through Mitochondria-Mediated Pathway

    Directory of Open Access Journals (Sweden)

    Guy-Armel Bounda

    2015-01-01

    Full Text Available Objective. To study rhein-induced apoptosis signaling pathway and to investigate its molecular mechanisms in primary human hepatic cells. Results. Cell viability of HL-7702 cells treated with rhein showed significant decrease in dose-dependent manner. Following rhein treatment (25 μM, 50 μM, and 100 μM for 12 h, the detection of apoptotic cells was significantly analyzed by flow cytometry and nuclear morphological changes by Hoechst 33258, respectively. Fatty degeneration studies showed upregulation level of the relevant hepatic markers (P < 0.01. Caspase activities expressed significant upregulation of caspase-3, caspase-9, and caspase-8. Moreover, apoptotic cells by rhein were significantly inhibited by Z-LEHD-FMK and Z-DEVD-FMK, caspase-9 inhibitor, and caspase-3 inhibitor, respectively. Overproduction of reactive oxygen species, lipid peroxidation, and loss of mitochondrial membrane potential were detected by fluorometry. Additionally, NAC, a ROS scavenger, significantly attenuated rhein-induced oxidative damage in HL-7702 cells. Furthermore, real-time qPCR results showed significant upregulation of p53, PUMA, Apaf-1, and Casp-9 and Casp-3 mRNA, with no significant changes of Fas and Cytochrome-c. Immunoblotting revealed significant Cytochrome-c release from mitochondria into cytosol and no change in Fas expression. Conclusion. Taken together, these observations suggested that rhein could induce apoptosis in HL-7702 cells via mitochondria-mediated signal pathway with involvement of oxidative stress mechanism.

  11. Minocycline enhances mitomycin C-induced cytotoxicity through down-regulating ERK1/2-mediated Rad51 expression in human non-small cell lung cancer cells.

    Science.gov (United States)

    Ko, Jen-Chung; Wang, Tai-Jing; Chang, Po-Yuan; Syu, Jhan-Jhang; Chen, Jyh-Cheng; Chen, Chien-Yu; Jian, Yun-Ting; Jian, Yi-Jun; Zheng, Hao-Yu; Chen, Wen-Ching; Lin, Yun-Wei

    2015-10-01

    Minocycline is a semisynthetic tetracycline derivative; it has anti-inflammatory and anti-cancer effects distinct from its antimicrobial function. However, the molecular mechanism of minocycline-induced cytotoxicity in non-small cell lung cancer (NSCLC) cells has not been identified. Rad51 plays a central role in homologous recombination and high levels of Rad51 expression are observed in chemo- or radioresistant carcinomas. Our previous studies have shown that the MKK1/2-ERK1/2 signal pathway maintains the expression of Rad51 in NSCLC cells. In this study, minocycline treatment inhibited cell viability and proliferation of two NSCLC cells, A549 and H1975. Treatment with minocycline decreased Rad51 mRNA and protein levels through MKK1/2-ERK1/2 inactivation. Furthermore, expression of constitutively active MKK1 (MKK1-CA) vectors significantly rescued the decreased Rad51 protein and mRNA levels in minocycline-treated NSCLC cells. However, combined treatment with MKK1/2 inhibitor U0126 and minocycline further decreased the Rad51 expression and cell viability of NSCLC cells. Knocking down Rad51 expression by transfection with small interfering RNA of Rad51 enhanced the cytotoxicity and cell growth inhibition of minocycline. Mitomycin C (MMC) is typically used as a first or second line regimen to treat NSCLC. Compared to a single agent alone, MMC combined with minocycline resulted in cytotoxicity and cell growth inhibition synergistically in NSCLC cells, accompanied with reduced activation of phospho-ERK1/2, and reduced Rad51 protein levels. Overexpression of MKK1-CA or Flag-tagged Rad51 could reverse the minocycline and MMC-induced synergistic cytotoxicity. These findings may have implications for the rational design of future drug regimens incorporating minocycline and MMC for the treatment of NSCLC. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Differential effects of IL-2 and IL-21 on expansion of the CD4+ CD25+ Foxp3+ T regulatory cells with redundant roles in natural killer cell mediated antibody dependent cellular cytotoxicity in chronic lymphocytic leukemia.

    Science.gov (United States)

    Gowda, Aruna; Ramanunni, Asha; Cheney, Carolyn; Rozewski, Darlene; Kindsvogel, Wayne; Lehman, Amy; Jarjoura, David; Caligiuri, Michael; Byrd, John C; Muthusamy, Natarajan

    2010-01-01

    CD4(+) CD25(+) regulatory T cells are expanded in solid and hematological malignancies including chronic lymphocytic leukemia (CLL). Several cytokines and co-stimulatory molecules are required for generation, survival and maintenance of their suppressive effect. We and others have shown direct cytotoxic effect of the novel common gamma chain cytokine interleukin (IL)-21 on primary B cells from CLL patients. Since members of this family of cytokines are known to exhibit their effects on diverse immune cells, we have examined the effects of IL-21 on CLL patient derived regulatory T cell (Treg) induction, expansion and the inhibitory effect on natural killer cells in vitro. We demonstrate here the expression of IL-21 receptor in CD4(+)CD25(High) regulatory cells from CLL patients. In contrast to IL-2, the IL-21 cytokine failed to mediate expansion of regulatory T cells or induced expression of Foxp3 in CD4(+)CD25(Intermediate) or CD4(+)CD25(Dim/-) T cells in whole blood derived from CLL patients. Interestingly, in contrast to their differential effects on expansion of the CD4(+)CD25(+)Foxp3(+)T cells, IL-2 and IL-21 exhibited a redundant role in Treg mediated suppression of NK cell mediated antibody dependent cytotoxicity function. Given the infusion related toxicities and pro-survival effect of IL-2 in CLL, these studies provide a rationale to explore IL-21 as an alternate gamma chain cytokine in CLL therapy.

  13. Sulforaphane synergistically enhances the cytotoxicity of arsenic trioxide in multiple myeloma cells via stress-mediated pathways

    Science.gov (United States)

    DOUDICAN, NICOLE A.; WEN, SHIH YA; MAZUMDER, AMITABHA; ORLOW, SETH J.

    2012-01-01

    Persistent paraprotein production in plasma cells necessitates a highly developed rough endoplasmic reticulum (ER) that is unusually susceptible to perturbations in protein synthesis. This biology is believed to account for the exquisite sensitivity of multiple myeloma (MM) to the proteasomal inhibitor bortezomib (BTZ). Despite remarkable response rates to BTZ in MM, BTZ carries the potential for serious side-effects and development of resistance. We, therefore, sought to identify therapeutic combinations that effectively disrupt proteostasis in order to provide new potential treatments for MM. We found that sulforaphane, a dietary isothiocyanate found in cruciferous vegetables, inhibits TNFα-induced Iκβ proteasomal degradation in a manner similar to BTZ. Like BTZ, sulforaphane synergistically enhances the cytotoxicity of arsenic trioxide (ATO), an agent with clinical activity in MM. ATO and sulforaphane co-treatment augmented apoptotic induction as demonstrated by cleavage of caspase-3, -4 and PARP. The enhanced apoptotic response was dependent upon production of reactive oxygen species (ROS) as demonstrated by glutathione depletion and partial inhibition of the apoptotic cascade after pretreatment with the radical scavenger N-acetyl-cysteine (NAC). Combination treatment resulted in enhanced ER stress signaling and activation of the unfolded protein response (UPR), indicative of perturbation of proteostasis. Specifically, combination treatment caused elevated expression of the molecular chaperone HSP90 (heat shock protein 90) along with increased PERK (protein kinase RNA-like endoplasmic reticulum kinase) and eIF2α phosphorylation and XBP1 (X-box binding protein 1) splicing, key indicators of UPR activation. Moreover, increased splicing of XBP1 was apparent upon combination treatment compared to treatment with either agent alone. Sulforaphane in combination with ATO effectively disrupts protein homeostasis through ROS generation and induction of ER stress to

  14. Tamoxifen enhances erlotinib-induced cytotoxicity through down-regulating AKT-mediated thymidine phosphorylase expression in human non-small-cell lung cancer cells.

    Science.gov (United States)

    Ko, Jen-Chung; Chiu, Hsien-Chun; Syu, Jhan-Jhang; Jian, Yi-Jun; Chen, Chien-Yu; Jian, Yun-Ting; Huang, Yi-Jhen; Wo, Ting-Yu; Lin, Yun-Wei

    2014-03-01

    Tamoxifen is a triphenylethylene nonsteroidal estrogen receptor (ER) antagonist used worldwide as an adjuvant hormone therapeutic agent in the treatment of breast cancer. However, the molecular mechanism of tamoxifen-induced cytotoxicity in non-small cell lung cancer (NSCLC) cells has not been identified. Thymidine phosphorylase (TP) is an enzyme of the pyrimidine salvage pathway which is upregulated in cancers. In this study, tamoxifen treatment inhibited cell survival in two NSCLC cells, H520 and H1975. Treatment with tamoxifen decreased TP mRNA and protein levels through AKT inactivation. Furthermore, expression of constitutively active AKT (AKT-CA) vectors significantly rescued the decreased TP protein and mRNA levels in tamoxifen-treated NSCLC cells. In contrast, combination treatment with PI3K inhibitors (LY294002 or wortmannin) and tamoxifen further decreased the TP expression and cell viability of NSCLC cells. Knocking down TP expression by transfection with small interfering RNA of TP enhanced the cytotoxicity and cell growth inhibition of tamoxifen. Erlotinib (Tarceva, OSI-774), an orally available small molecular inhibitor of epidermal growth factor receptor (EGFR) tyrosine kinase, is approved for clinical treatment of NSCLC. Compared to a single agent alone, tamoxifen combined with erlotinib resulted in cytotoxicity and cell growth inhibition synergistically in NSCLC cells, accompanied with reduced activation of phospho-AKT and phospho-ERK1/2, and reduced TP protein levels. These findings may have implications for the rational design of future drug regimens incorporating tamoxifen and erlotinib for the treatment of NSCLC. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Suppressor T cells, distinct from "veto cells," are induced by alloantigen priming and mediate transferable suppression of cytotoxic T lymphocyte responses in vivo

    DEFF Research Database (Denmark)

    Owens, T; Crispe, I N

    1985-01-01

    Primary and secondary cytotoxic T lymphocyte responses to minor alloantigens can be suppressed by priming host mice with a high dose (10(8) cells) of alloantigenic donor spleen cells (SC). Such suppression is antigen specific and transferable into secondary hosts with T cells. One interpretation...... of this is that antigen-specific host suppressor T cells (Ts) are activated. Alternatively, donor Lyt-2+ T cells, introduced in the priming inoculum, may inactivate host CTL precursors (CTLp) that recognize the priming (donor) alloantigens. Donor cells that act in this way are termed veto T cells. The experiments...... for the transfer of suppression of a secondary CTL response to B10 minors was of the host Thy-1 allotype, and so originated in the host spleen and was not introduced in the priming inoculum. Secondly, antigen-specific Ts generated in CBA female mice against B10 minors could act on CTL responses to an unequivocally...

  16. Genes related to cell-mediated cytotoxicity and interferon response are induced in the retina of European sea bass upon intravitreal infection with nodavirus.

    Science.gov (United States)

    Valero, Yulema; Boughlala, Bassima; Arizcun, Marta; Patel, Sonal; Fiksdal, Ingrid U; Esteban, M Ángeles; De Juan, Joaquín; Meseguer, José; Chaves-Pozo, Elena; Cuesta, Alberto

    2018-03-01

    Viral diseases are responsible for high rates of mortality and subsequent economic losses in modern aquaculture. The nervous necrosis virus (NNV) produces viral encephalopathy and retinopathy (VER), which affects the central nervous system, is considered one of the most serious viral diseases in marine aquaculture. Although some studies have localized NNV in the retina cells, none has dealt with immunity in the retina. Thus, for the first time, we intravitreally infected healthy specimens of European sea bass (Dicentrarchus labrax) with NNV with the aim of characterizing the immune response in the retina. Ultrastructural analysis detected important retinal injuries and structure degradation, including pycnosis, hydropic degeneration and vacuolization in some cell layers as well as myelin sheaths in the optic nerve fibres. Immunohistochemistry demonstrated that NNV replicated in the eyes. Regarding retinal immunity, NNV infection elicited the transcription of genes encoding proteins involved in the interferon (IFN) and cell-mediated cytotoxicity (CMC) responses as well as B and T cell markers, demonstrating that viral replication influences innate and adaptive responses. Further studies are needed to understand the retina immunity and whether the main retinal function, vision, is affected by nodavirus. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Selective recruitment of Th2-type cells and evasion from a cytotoxic immune response mediated by viral macrophage inhibitory protein-II.

    Science.gov (United States)

    Weber, K S; Gröne, H J; Röcken, M; Klier, C; Gu, S; Wank, R; Proudfoot, A E; Nelson, P J; Weber, C

    2001-08-01

    The viral CC chemokine macrophage inhibitory protein-II (vMIP-II) encoded by human herpes virus 8 (HHV-8) binds to multiple chemokine receptors, however, its ability to control the initial recruitment of specific leukocyte subtypes from the peripheral circulation has not been fully clarified. Here we show that vMIP-II blocks the firm arrest and transmigration of monocytes or Th1-like T lymphocytes triggered by RANTES immobilized on activated human microvascular endothelium (HMVEC) under flow conditions. The internalization of the receptors CCR1 and CCR5 that mediate arrest and transmigration of these cells in response to RANTES was prevented by vMIP-II, supporting its role as an antagonist of CCR1 and CCR5. In contrast, vMIP-II triggered the firm arrest of eosinophils and Th2-like T cells by engaging CCR3, as confirmed by its down-regulation. Immunohistochemical analysis of HHV-8-associated Kaposi's sarcoma lesions marked by vMIP-II expression and mononuclear cell infiltration revealed a predominance of Th2-type CCR3(+) lymphocytes over Th1-type CXCR3(+)/CCR5(+) leukocytes, indicating that as a CCR3 agonist vMIP-II can drive a Th2-type immune response in vivo. Thus, our data provide evidence for a immunomodulatory role of vMIP-II in directing inflammatory cell recruitment away from a Th1-type towards a Th2-type response and thereby facilitating evasion from cytotoxic reactions.

  18. ADIPOQ/adiponectin induces cytotoxic autophagy in breast cancer cells through STK11/LKB1-mediated activation of the AMPK-ULK1 axis.

    Science.gov (United States)

    Chung, Seung J; Nagaraju, Ganji Purnachandra; Nagalingam, Arumugam; Muniraj, Nethaji; Kuppusamy, Panjamurthy; Walker, Alyssa; Woo, Juhyung; Győrffy, Balázs; Gabrielson, Ed; Saxena, Neeraj K; Sharma, Dipali

    2017-08-03

    /adiponectin and BECN1 significantly correlates with increased overall survival in chemotherapy-treated breast cancer patients. Collectively, these data uncover that ADIPOQ/adiponectin induces autophagic cell death in breast cancer and provide in vitro and in vivo evidence for the integral role of STK11/LKB1-AMPK-ULK1 axis in ADIPOQ/adiponectin-mediated cytotoxic autophagy.

  19. Curcumin enhances the mitomycin C-induced cytotoxicity via downregulation of MKK1/2-ERK1/2-mediated Rad51 expression in non-small cell lung cancer cells

    International Nuclear Information System (INIS)

    Ko, Jen-Chung; Tsai, Min-Shao; Weng, Shao-Hsing; Kuo, Ya-Hsun; Chiu, Yu-Fan; Lin, Yun-Wei

    2011-01-01

    Curcumin (diferuloylmethane), a major active component of turmeric (Curcuma longa), has been reported to suppress the proliferation of a wide variety of tumor cells. Rad51 is a key protein in the homologous recombination (HR) pathway of DNA double-strand break repair, and HR represents a novel target for cancer therapy. A high expression of Rad51 has been reported in chemo- or radio-resistant carcinomas. Therefore, in the current study, we will examine whether curcumin could enhance the effects of mitomycin C (MMC), a DNA interstrand cross-linking agent, to induce cytotoxicity by decreasing Rad51 expression. Exposure of two human non-small lung cancer (NSCLC) cell lines (A549 and H1975) to curcumin could suppress MMC-induced MKK1/2-ERK1/2 signal activation and Rad51 protein expression. Enhancement of ERK1/2 activation by constitutively active MKK1/2 (MKK1/2-CA) increased Rad51 protein levels in curcumin and MMC co-treated human lung cells. Moreover, the synergistic cytotoxic effect induced by curcumin combined with MMC was decreased by MKK1-CA-mediated enhancement of ERK1/2 activation by a significant degree. In contrast, MKK1/2 inhibitor, U0126 was shown to augment the cytotoxicity of curcumin and MMC through downregulation of ERK1/2 activation and Rad51 expression. Depletion of endogenous Rad51 expression by siRad51 RNA transfection significantly enhanced MMC and/or curcumin induced cell death and cell growth inhibition. In contrast, an overexpression of Rad51 protected lung cancer cells from synergistic cytotoxic effects induced by curcumin and MMC. We concluded that Rad51 inhibition may be an additional action mechanism for enhancing the chemosensitization of MMC by curcumin in NSCLC. - Highlights: → Curcumin downregulates MKK-ERK-mediated Rad51 expression. → Curcumin enhances mitomycin C-induced cytotoxicity. → Rad51 protects cells from cytotoxic effects induced by curcumin and mitomycin C. → Rad51 inhibition enhances the chemosensitization of

  20. In vitro cytotoxicity of Artemisia vulgaris L. essential oil is mediated by a mitochondria-dependent apoptosis in HL-60 leukemic cell line.

    Science.gov (United States)

    Saleh, Ayman M; Aljada, Ahmad; Rizvi, Syed A A; Nasr, Amre; Alaskar, Ahmed S; Williams, Jack D

    2014-07-07

    The essential oil (EO) of Artemisia vulgaris L. has been traditionally used worldwide for treating a large number of diseases. Although major components in A. vulgaris EO have been shown to inhibit growth of different cancer cells, as pure compounds or part of other plants extracted oil, no information is known about its anti-proliferative activities. Therefore, the current investigation has evaluated the toxicity of the plant extracted oil from buds (AVO-b) and leaves (AVO-l) and characterized their growth inhibitory effects on cancer cells. AVO-b and AVO-l from A. vulgaris L. were extracted by hydrodistillation, and their effect on the viability of human HL-60 promyelocytic leukemia and various other cancer cell lines was tested using MTT assay. Flow cytometric analysis of apoptosis, DNA fragmentation assay, caspases enzymatic activities and Western blotting were used to determine the apoptotic pathway triggered by their action on HL-60 cells. Low concentrations of AVO-b and AVO-l inhibited the growth of HL-60 cells in a dose- and time-dependent manner. Employing flow cytometric, DNA fragmentation and caspase activation analyses, demonstrated that the cytotoxic effect of the oils is mediated by a caspase-dependent apoptosis. Kinetic studies in the presence and absence specific caspase inhibitors showed that activation of caspase-8 was dependent and subsequent to the activation of caspases-9 and -3. In addition, the essential oil caused a disruption of the mitochondrial transmembrane potential (ΔΨm), increased the release of cytochrome c to the cytosol, and altered the expression of certain members of Bcl-2 family (Bcl-2, Bax and Bid), Apaf-1 and XIAP. Interestingly, low doses of AVO-b and AVO-1 also induced apoptosis in various cancer cell lines, but not in noncancerous cells. The results demonstrate that the EO-induced apoptosis in HL-60 cells is mediated by caspase-dependent pathways, involving caspases-3, -9, and -8, which are initiated by Bcl-2/Bax

  1. CEA/CD3-bispecific T cell-engaging (BiTE) antibody-mediated T lymphocyte cytotoxicity maximized by inhibition of both PD1 and PD-L1.

    Science.gov (United States)

    Osada, Takuya; Patel, Sandip P; Hammond, Scott A; Osada, Koya; Morse, Michael A; Lyerly, H Kim

    2015-06-01

    Bispecific T cell-engaging (BiTE) antibodies recruit polyclonal cytotoxic T cells (CTL) to tumors. One such antibody is carcinoembryonic antigen (CEA) BiTE that mediates T cell/tumor interaction by simultaneously binding CD3 expressed by T cells and CEA expressed by tumor cells. A widely operative mechanism for mitigating cytotoxic T cell-mediated killing is the interaction of tumor-expressed PD-L1 with T cell-expressed PD-1, which may be partly reversed by PD-1/PD-L1 blockade. We hypothesized that PD-1/PD-L1 blockade during BiTE-mediated T cell killing would enhance CTL function. Here, we determined the effects of PD-1 and PD-L1 blockade during initial T cell-mediated killing of CEA-expressing human tumor cell lines in vitro, as well as subsequent T cell-mediated killing by T lymphocytes that had participated in tumor cell killing. We observed a rapid upregulation of PD-1 expression and diminished cytolytic function of T cells after they had engaged in CEA BiTE-mediated killing of tumors. T cell cytolytic activity in vitro could be maximized by administration of anti-PD-1 or anti-PD-L1 antibodies alone or in combination if applied prior to a round of T cell killing, but T cell inhibition could not be fully reversed by this blockade once the T cells had killed tumor. In conclusion, our findings demonstrate that dual blockade of PD-1 and PD-L1 maximizes T cell killing of tumor directed by CEA BiTE in vitro, is more effective if applied early, and provides a rationale for clinical use.

  2. Down-regulation of ERK1/2 and AKT-mediated X-ray repair cross-complement group 1 protein (XRCC1) expression by Hsp90 inhibition enhances the gefitinib-induced cytotoxicity in human lung cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Tung, Chun-Liang [Department of Pathology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan (China); Jian, Yi-Jun [Department of Pathology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan (China); Department of Biochemical Science and Technology, National Chiayi University, 300 Syuefu Road, Chiayi 600, Taiwan (China); Syu, Jhan-Jhang; Wang, Tai-Jing; Chang, Po-Yuan; Chen, Chien-Yu; Jian, Yun-Ting [Department of Biochemical Science and Technology, National Chiayi University, 300 Syuefu Road, Chiayi 600, Taiwan (China); Lin, Yun-Wei, E-mail: linyw@mail.ncyu.edu.tw [Department of Biochemical Science and Technology, National Chiayi University, 300 Syuefu Road, Chiayi 600, Taiwan (China)

    2015-05-15

    Gefitinib (Iressa{sup R}, ZD1839) is a selective epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI) that blocks growth factor-mediated cell proliferation and extracellular signal-regulated kinases 1/2 (ERK1/2) and AKT signaling activation. It has been shown that inhibition of Hsp90 function can enhance antitumor activity of EGFR-TKI. XRCC1 is an important scaffold protein in base excision repair, which could be regulated by ERK1/2 and AKT pathways. However, the role of ERK1/2 and AKT-mediated XRCC1 expression in gefitinib alone or combination with an Hsp90 inhibitor-induced cytotoxicity in non-small cell lung cancer (NSCLC) cells has not been identified. In this study, gefitinib treatment decreased XRCC1 mRNA and protein expression through ERK1/2 and AKT inactivation in two NSCLC cells, A549 and H1975. Knocking down XRCC1 expression by transfection with small interfering RNA of XRCC1 enhanced the cytotoxicity and cell growth inhibition of gefitinib. Combining treatment of gefitinib with an Hsp90 inhibitor resulted in enhancing the reduction of XRCC1 protein and mRNA levels in gefitinib-exposed A549 and H1975 cells. Compared to a single agent alone, gefitinib combined with an Hsp90 inhibitor resulted in cytotoxicity and cell growth inhibition synergistically in NSCLC cells. Furthermore, transfection with constitutive active MKK1 or AKT vectors rescued the XRCC1 protein level as well as the cell survival suppressed by an Hsp90 inhibitor and gefitinib. These findings suggested that down-regulation of XRCC1 can enhance the sensitivity of gefitinib for NSCLC cells. - Highlights: • Gefitinib treatment decreased XRCC1 mRNA and protein expression in NSCLC cells. • Knocking down XRCC1 expression enhanced the cytotoxic effect of gefitinib. • Gefitinib combined with an Hsp90 inhibitor resulted in synergistically cytotoxicity.

  3. Comprehensive Cross-Clade Characterization of Antibody-Mediated Recognition, Complement-Mediated Lysis, and Cell-Mediated Cytotoxicity of HIV-1 Envelope-Specific Antibodies toward Eradication of the HIV-1 Reservoir.

    Science.gov (United States)

    Mujib, Shariq; Liu, Jun; Rahman, A K M Nur-Ur; Schwartz, Jordan A; Bonner, Phil; Yue, Feng Yun; Ostrowski, Mario A

    2017-08-15

    Immunotherapy with passive administration of broadly neutralizing HIV-1 envelope-specific antibodies (bnAbs) in the setting of established infection in vivo has yielded mixed results. The contribution of different antibodies toward the direct elimination of infected cells is poorly understood. In this study, we determined the ability of 12 well-characterized anti-HIV-1 neutralizing antibodies to recognize and eliminate primary CD4 T cells infected with HIV-1 belonging to clades A, B, C, and D, via antibody-dependent complement-mediated lysis (ADCML) and antibody-dependent cell-mediated cytotoxicity (ADCC), in vitro We further tested unique combinations of these antibodies to determine the optimal antibody cocktails to be tested in future clinical trials. We report that antibody binding to infected CD4 T cells is highly variable and correlates with ADCML and ADCC processes. Particularly, antibodies targeting the envelope glycan shield (2G12) and V1/V2 site (PG9, PG16, and PGT145) are best at recognizing HIV-1-infected CD4 T cells. However, only PG9 and PG16 and their combinations with other bnAbs sufficiently induced the elimination of HIV-1-infected CD4 T cells by ADCML, ADCC, or both. Notably, CD4 binding site antibodies VRC01, 3BNC117, and NIH45-46 G54W did not exhibit recognition of infected cells and were unable to induce their killing. Future trials geared toward the development of a cure for HIV/AIDS should incorporate V1/V2 antibodies for maximal clearance of infected cells. With the use of only primary immune cells, we conducted a comprehensive cross-clade physiological analysis to aid the direction of antibodies as therapeutics toward the development of a cure for HIV/AIDS. IMPORTANCE Several antibodies capable of neutralizing the majority of circulating HIV-1 strains have been identified to date and have been shown to prevent infection in animal models. However, the use of combinations of such broadly neutralizing antibodies (bnAbs) for the treatment and

  4. PDL1 Signals through Conserved Sequence Motifs to Overcome Interferon-Mediated Cytotoxicity

    Directory of Open Access Journals (Sweden)

    Maria Gato-Cañas

    2017-08-01

    Full Text Available PDL1 blockade produces remarkable clinical responses, thought to occur by T cell reactivation through prevention of PDL1-PD1 T cell inhibitory interactions. Here, we find that PDL1 cell-intrinsic signaling protects cancer cells from interferon (IFN cytotoxicity and accelerates tumor progression. PDL1 inhibited IFN signal transduction through a conserved class of sequence motifs that mediate crosstalk with IFN signaling. Abrogation of PDL1 expression or antibody-mediated PDL1 blockade strongly sensitized cancer cells to IFN cytotoxicity through a STAT3/caspase-7-dependent pathway. Moreover, somatic mutations found in human carcinomas within these PDL1 sequence motifs disrupted motif regulation, resulting in PDL1 molecules with enhanced protective activities from type I and type II IFN cytotoxicity. Overall, our results reveal a mode of action of PDL1 in cancer cells as a first line of defense against IFN cytotoxicity.

  5. Identification of nanoscale ingredients in commercial food products and their induction of mitochondrially mediated cytotoxic effects on human mesenchymal stem cells.

    Science.gov (United States)

    Athinarayanan, Jegan; Alshatwi, Ali A; Periasamy, Vaiyapuri S; Al-Warthan, Abdulrahman A

    2015-02-01

    Titanium dioxide (E171) and silicon dioxide (E551) are common additives found in food products, personal-care products, and many other consumer products used in daily life. Recent studies have reported that these food additives (manufactured E171 and E551) contain nanosized particles of less than 100 nm. However, the particle size distribution and morphology of added TiO2 and SiO2 particles are not typically stated on the package label. Furthermore, there is an increasing debate regarding health and safety concerns related to the use of synthetic food additives containing nanosized ingredients in consumer products. In this study, we identified the size and morphology of TiO2 and SiO2 particles in commercially available food products by using transmission electron microscope (TEM). In addition, the in vitro toxicological effects of E171 and E551 on human mesenchymal stem cells (hMSCs), an adult stem cell-based model, were assessed using the MTT assay and a flow cytometry-based JC-1 assay. Our TEM results confirmed the presence of nanoscale ingredients in food products, and the in vitro toxicology results indicated that the nanoscale E171 and E551 ingredients induced dose-dependent cytotoxicity, changes in cellular morphology, and the loss of mitochondrial trans-membrane potential in hMSCs. These preliminary results clearly demonstrated that the nanoscale E171 and E551 particles had adverse effects on hMSCs by inducing oxidative stress-mediated cell death. Accordingly, further studies are needed to identify the specific pathway involved, with an emphasis on differential gene expression in hMSCs. © 2015 Institute of Food Technologists®

  6. CERT depletion predicts chemotherapy benefit and mediates cytotoxic and polyploid‐specific cancer cell death through autophagy induction

    DEFF Research Database (Denmark)

    Lee, Alvin J. X.; Roylance, Rebecca; Sander, Jil

    2012-01-01

    to the death of CIN cancer cells. Using an integrative functional genomics approach, we find that CERT‐specific multidrug sensitization is associated with enhanced autophagosome–lysosome flux, resulting from the expression of LAMP2 following CERT silencing in colorectal and HER2+ breast cancer cell lines. Live...... cell microscopy analysis revealed that CERT depletion induces LAMP2‐dependent death of polyploid cells following exit from mitosis in the presence of paclitaxel. We find that CERT is relatively over‐expressed in HER2+ breast cancer and CERT protein expression acts as an independent prognostic variable...... and predictor of outcome in adjuvant chemotherapy‐treated patients with primary breast cancer. These data suggest that the induction of LAMP2‐dependent autophagic flux through CERT targeting may provide a rational approach to enhance multidrug sensitization and potentiate the death of polyploid cells following...

  7. The Cytotoxicity of the Ajoene Analogue BisPMB in WHCO1 Oesophageal Cancer Cells Is Mediated by CHOP/GADD153

    Directory of Open Access Journals (Sweden)

    Vuyolwethu Siyo

    2017-05-01

    Full Text Available Garlic is a food and medicinal plant that has been used in folk medicine since ancient times for its beneficial health effects, which include protection against cancer. Crushed garlic cloves contain an array of small sulfur-rich compounds such as ajoene. Ajoene is able to interfere with biological processes and is cytotoxic to cancer cells in the low micromolar range. BisPMB is a synthetic ajoene analogue that has been shown in our laboratory to have superior cytotoxicity to ajoene. In the current study we have performed a DNA microarray analysis of bisPMB-treated WHCO1 oesophageal cancer cells to identify pathways and processes that are affected by bisPMB. The most significantly enriched biological pathways as assessed by gene ontology, KEGG and ingenuity pathway analysis were those involving protein processing in the endoplasmic reticulum (ER and the unfolded protein response. In support of these pathways, bisPMB was found to inhibit global protein synthesis and lead to increased levels of ubiquitinated proteins. BisPMB also induced alternate splicing of the transcription factor XBP-1; increased the expression of the ER stress sensor GRP78 and induced expression of the ER stress marker CHOP/GADD153. CHOP expression was found to be central to the cytotoxicity of bisPMB as its silencing with siRNA rendered the cells resistant to bisPMB. The MAPK proteins, JNK and ERK1/2 were activated following bisPMB treatment. However JNK activation was not critical in the cytotoxicity of bisPMB, and ERK1/2 activation was found to play a pro-survival role. Overall the ajoene analogue bisPMB appears to induce cytotoxicity in WHCO1 cells by activating the unfolded protein response through CHOP/GADD153.

  8. A marked reduction in priming of cytotoxic CD8+ T cells mediated by stress-induced glucocorticoids involves multiple deficiencies in cross-presentation by dendritic cells.

    Science.gov (United States)

    Hunzeker, John T; Elftman, Michael D; Mellinger, Jennifer C; Princiotta, Michael F; Bonneau, Robert H; Truckenmiller, Mary E; Norbury, Christopher C

    2011-01-01

    Protracted psychological stress elevates circulating glucocorticoids, which can suppress CD8(+) T cell-mediated immunity, but the mechanisms are incompletely understood. Dendritic cells (DCs), required for initiating CTL responses, are vulnerable to stress/corticosterone, which can contribute to diminished CTL responses. Cross-priming of CD8(+) T cells by DCs is required for initiating CTL responses against many intracellular pathogens that do not infect DCs. We examined the effects of stress/corticosterone on MHC class I (MHC I) cross-presentation and priming and show that stress/corticosterone-exposed DCs have a reduced ability to cross-present OVA and activate MHC I-OVA(257-264)-specific T cells. Using a murine model of psychological stress and OVA-loaded β(2)-microglobulin knockout "donor" cells that cannot present Ag, DCs from stressed mice induced markedly less Ag-specific CTL proliferation in a glucocorticoid receptor-dependent manner, and endogenous in vivo T cell cytolytic activity generated by cross-presented Ag was greatly diminished. These deficits in cross-presentation/priming were not due to altered Ag donation, Ag uptake (phagocytosis, receptor-mediated endocytosis, or fluid-phase uptake), or costimulatory molecule expression by DCs. However, proteasome activity in corticosterone-treated DCs or splenic DCs from stressed mice was partially suppressed, which limits formation of antigenic peptide-MHC I complexes. In addition, the lymphoid tissue-resident CD11b(-)CD24(+)CD8α(+) DC subset, which carries out cross-presentation/priming, was preferentially depleted in stressed mice. At the same time, CD11b(-)CD24(+)CD8α(-) DC precursors were increased, suggesting a block in development of CD8α(+) DCs. Therefore, glucocorticoid-induced changes in both the cellular composition of the immune system and intracellular protein degradation contribute to impaired CTL priming in stressed mice.

  9. CD8+CD122+CD49dlow regulatory T cells maintain T-cell homeostasis by killing activated T cells via Fas/FasL-mediated cytotoxicity.

    Science.gov (United States)

    Akane, Kazuyuki; Kojima, Seiji; Mak, Tak W; Shiku, Hiroshi; Suzuki, Haruhiko

    2016-03-01

    The Fas/FasL (CD95/CD178) system is required for immune regulation; however, it is unclear in which cells, when, and where Fas/FasL molecules act in the immune system. We found that CD8(+)CD122(+) cells, which are mostly composed of memory T cells in comparison with naïve cells in the CD8(+)CD122(-) population, were previously shown to include cells with regulatory activity and could be separated into CD49d(low) cells and CD49d(high) cells. We established in vitro and in vivo experimental systems to evaluate the regulatory activity of CD122(+) cells. Regulatory activity was observed in CD8(+)CD122(+)CD49d(low) but not in CD8(+)CD122(+)CD49d(high) cells, indicating that the regulatory cells in the CD8(+)CD122(+) population could be narrowed down to CD49d(low) cells. CD8(+)CD122(-) cells taken from lymphoproliferation (lpr) mice were resistant to regulation by normal CD122(+) Tregs. CD122(+) Tregs taken from generalized lymphoproliferative disease (gld) mice did not regulate wild-type CD8(+)CD122(-) cells, indicating that the regulation by CD122(+) Tregs is Fas/FasL-dependent. CD122(+) Tregs taken from IL-10-deficient mice could regulate CD8(+)CD122(-) cells as equally as wild-type CD122(+) Tregs both in vitro and in vivo. MHC class I-missing T cells were not regulated by CD122(+) Tregs in vitro. CD122(+) Tregs also regulated CD4(+) cells in a Fas/FasL-dependent manner in vitro. These results suggest an essential role of Fas/FasL as a terminal effector of the CD122(+) Tregs that kill activated T cells to maintain immune homeostasis.

  10. Escape of HIV-1-infected dendritic cells from TRAIL-mediated NK cell cytotoxicity during NK-DC cross-talk--a pivotal role of HMGB1.

    Directory of Open Access Journals (Sweden)

    Marie-Thérèse Melki

    2010-04-01

    Full Text Available Early stages of Human Immunodeficiency Virus-1 (HIV-1 infection are associated with local recruitment and activation of important effectors of innate immunity, i.e. natural killer (NK cells and dendritic cells (DCs. Immature DCs (iDCs capture HIV-1 through specific receptors and can disseminate the infection to lymphoid tissues following their migration, which is associated to a maturation process. This process is dependent on NK cells, whose role is to keep in check the quality and the quantity of DCs undergoing maturation. If DC maturation is inappropriate, NK cells will kill them ("editing process" at sites of tissue inflammation, thus optimizing the adaptive immunity. In the context of a viral infection, NK-dependent killing of infected-DCs is a crucial event required for early elimination of infected target cells. Here, we report that NK-mediated editing of iDCs is impaired if DCs are infected with HIV-1. We first addressed the question of the mechanisms involved in iDC editing, and we show that cognate NK-iDC interaction triggers apoptosis via the TNF-related apoptosis-inducing ligand (TRAIL-Death Receptor 4 (DR4 pathway and not via the perforin pathway. Nevertheless, once infected with HIV-1, DC(HIV become resistant to NK-induced TRAIL-mediated apoptosis. This resistance occurs despite normal amounts of TRAIL released by NK cells and comparable DR4 expression on DC(HIV. The escape of DC(HIV from NK killing is due to the upregulation of two anti-apoptotic molecules, the cellular-Flice like inhibitory protein (c-FLIP and the cellular inhibitor of apoptosis 2 (c-IAP2, induced by NK-DC(HIV cognate interaction. High-mobility group box 1 (HMGB1, an alarmin and a key mediator of NK-DC cross-talk, was found to play a pivotal role in NK-dependent upregulation of c-FLIP and c-IAP2 in DC(HIV. Finally, we demonstrate that restoration of DC(HIV susceptibility to NK-induced TRAIL killing can be obtained either by silencing c-FLIP and c-IAP2 by specific

  11. Preferential cytotoxicity of ZnO nanoparticle towards cervical cancer cells induced by ROS-mediated apoptosis and cell cycle arrest for cancer therapy

    Energy Technology Data Exchange (ETDEWEB)

    Sirelkhatim, Amna, E-mail: amnasirelkhatim@yahoo.co.uk; Mahmud, Shahrom [Universiti Sains Malaysia (USM), Institute of Nano-Optoelectronics Research and Technology (INOR), School of Physics (Malaysia); Seeni, Azman [Universiti Sains Malaysia (USM), Advanced Medical and Dental Institute, Cluster of Integrative Medicine (Malaysia); Kaus, Noor Haida Mohd [Universiti Sains Malaysia (USM), School of Chemical Sciences (Malaysia)

    2016-08-15

    The present study aimed to synthesize multifunctional ZnO-NP samples, namely ZnO-20, ZnO-40, and ZnO-80 nm, using different approaches, to be used as efficient anticancer agents. Systematic characterizations revealed their particle sizes and demonstrated nanostructures of nanorods (ZnO-80 nm) and nanogranules (ZnO-20 and ZnO-40 nm). They exhibited significant (p < 0.05) toxicity to HeLa cancer cells. HeLa cell viabilities at 1 mM dose reduced to 37, 32, 15 %, by ZnO-80, ZnO-40, and ZnO-20 nm, respectively, at 48 h. However, the same dose exerted different effects of 79.6, 76, and 75 % on L929 normal cells at 48 h. Measurement of reactive oxygen species (ROS) showed a considerable ROS yields on HeLa cells by all samples with a pronounced percentage (50 %) displayed by ZnO-20 nm. Moreover, ROS-mediated apoptosis induction and blocked cell cycle progression in the S, G2/M, and G0/G1 phases significantly (p < 0.05). Apoptosis induction was further confirmed by DNA fragmentation and Hoechst–PI costained images viewed under fluorescence microscope. Additionally, morphological changes of HeLa cells visualized under light microscope showed assortment of cell death involved shrinkage, vacuolization and apoptotic bodies’ formation. Most importantly, results exposed the impact of size and morphology of ZnO samples on their toxicity to Hela cells mediated mainly by ROS production. ZnO-20 nm in disk form with its nanogranule shape and smallest particle size was the most toxic sample, followed by ZnO-40 nm and then ZnO-80 nm. An additional proposed mechanism contributed in the cell death herein was ZnO decomposition producing zinc ions (Zn{sup 2+}) into the acidic cancer microenvironment due to the smaller sizes of ZnO-NPs. This mechanism has been adopted in the literatures as a size-dependent phenomenon. The emerged findings were suggested to provide new platforms in the development of therapeutics as selective agents to the fatal cervical cancer, and to

  12. HER2/HER3 signaling regulates NK cell-mediated cytotoxicity via MHC class I chain-related molecule A and B expression in human breast cancer cell lines.

    Science.gov (United States)

    Okita, Riki; Mougiakakos, Dimitrios; Ando, Takashi; Mao, Yumeng; Sarhan, Dhifaf; Wennerberg, Erik; Seliger, Barbara; Lundqvist, Andreas; Mimura, Kousaku; Kiessling, Rolf

    2012-03-01

    Overexpression of the receptor tyrosine kinases HER2 and HER3 is associated with a poor prognosis in several types of cancer. Presently, HER2- as well as HER3-targeted therapies are in clinical practice or evaluated within clinical trials, including treatment with mAbs mediating growth inhibition and/or activation of Ab-induced innate or adaptive cellular immunity. A better understanding of how HER2/HER3 signaling in tumors influences cellular immune mechanisms is therefore warranted. In this study, we demonstrate that HER2/HER3 signaling regulates the expression of MHC class I-related chain A and B (MICA and MICB) in breast cancer cell lines. The MICA and MICB (MICA/B) molecules act as key ligands for the activating receptor NK group 2, member D (NKG2D) and promote NK cell-mediated recognition and cytolysis. Genetic silencing of HER3 but not HER2 downregulated the expression of MICA/B, and HER3 overexpression significantly enhanced MICA expression. Among the major pathways activated by HER2/HER3 signaling, the PI3K/AKT pathway was shown to predominantly regulate MICA/B expression. Treatment with the HER3-specific ligand neuregulin 1β promoted the expression in a process that was antagonized by pharmacological and genetic interference with HER3 but not by the ataxia-telangiectasia-mutated (ATM) and ATM and Rad3-related protein kinases inhibitor caffeine. These observations further emphasize that HER2/HER3 signaling directly, and not via genotoxic stress, regulates MICA/B expression. As anticipated, stimulating HER2/HER3 enhanced the NKG2D-MICA/B-dependent NK cell-mediated cytotoxicity. Taken together, we conclude that signaling via the HER2/HER3 pathway in breast carcinoma cell lines may lead to enhanced NKG2D-MICA/B recognition by NK cells and T cells.

  13. Analysis of the impact of extracellular acidity on the expression and activity of P-glycoprotein and on the P-glycoprotein-mediated cytotoxicity of daunorubicin in cancer cell by microfluidic chip technology.

    Science.gov (United States)

    Li, Yuan; Xiang, Jiao; Zhang, Sha-sha; Liu, Bei-zhong; Gong, Fang; Peng, Ming-qing

    2015-02-01

    To explore the impact of extracellular acidic environment on the expression and activity of P-glycoprotein (P-gp) and on the P-gp-mediated cytotoxicity of daunomycin in cancer cells by using microfluidic chip technology. The A549 cells cultured on a microfluidic chip were divided into experiment group and control group. The experiment group was exposed to an acidic cell culture medium (pH 6.6), while the control group was treated with a neutral cell culture medium (pH 7.4). The expression of P-gp was detected by cell immunofluorescense analysis and the activity of P-gp was evaluated by Rhodamine 123 efflux experiment. Meanwhile, the cytotoxicity of daunomycin was analyzed by cell live/dead fluorescence staining method. Microfluidic chip designed in this study could provide a suitable microenvironment for the growth of A549 cells and the A549 cells reached the confluence of 90% after inoculation for 72 h. Treatment of the acidic cell culture media on A549 cells did not make a significant difference on the expression level of P-gp. However, the activity of P-gp was significantly enhancement and peaked at 6 h after treatment with acidic cell culture media. Meanwhile, the cytotoxicity of daunomycin reduced significantly after treatment with acidic cell culture medium for 6 h,and a reversal effect was obtained when synergy with verapamil. Microfluidic chip technology can shorten the analysis time and reduce the reagent consumption. It can be used as a new technology platform for understanding the mechanisms of multi-drug resistance and for screening highly efficient multi-drug resistance reversal agents.

  14. Cytotoxicity study of Piper nigrum seed mediated synthesized SnO2nanoparticles towards colorectal (HCT116) and lung cancer (A549) cell lines.

    Science.gov (United States)

    Tammina, Sai Kumar; Mandal, Badal Kumar; Ranjan, Shivendu; Dasgupta, Nandita

    2017-01-01

    Different sized tetragonal tin oxide nanoparticles (SnO 2 NPs) were synthesized using Piper nigrum seed extract at three different calcination temperatures (300, 500, 900°C) and these nanoparticles (NPs) were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), dynamic light scattering (DLS) and Fourier transform infrared spectrophotometry (FT-IR). The optical properties were studied using UV-Vis and photoluminescence (PL) spectrophotometers. The generation of reactive oxygen species (ROS) was monitored by using a fluorescence spectrophotometer and fluorescence microscope. The cytotoxicity of the synthesized SnO 2 NPs was checked against the colorectal (HCT116) and lung (A549) cancer cell lines and the study results show that SnO 2 NPs were toxic against cancer cell lines depending on their size and dose. IC 50 values of SnO 2 NPs having average particle sizes of 8.85±3.5, 12.76±3.9 and 29.29±10.9nm are 165, 174 and 208μgL -1 against HCT116, while these values are 135, 157 and 187μgL -1 against A549 carcinoma cell lines, respectively. The generated ROS were responsible for the cytotoxicity of SnO 2 NPs to the studied cancer cells and smaller size NPs generated more ROS and hence showed higher cytotoxicity over larger size NPs. The results of this study suggest that the synthesized stable nanoparticles could be a potent therapeutic agent towards cancerous cell lines. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Altered effector function of peripheral cytotoxic cells in COPD

    Directory of Open Access Journals (Sweden)

    Corne Jonathan M

    2009-06-01

    Full Text Available Abstract Background There is mounting evidence that perforin and granzymes are important mediators in the lung destruction seen in COPD. We investigated the characteristics of the three main perforin and granzyme containing peripheral cells, namely CD8+ T lymphocytes, natural killer (NK; CD56+CD3- cells and NKT-like (CD56+CD3+ cells. Methods Peripheral blood mononuclear cells (PBMCs were isolated and cell numbers and intracellular granzyme B and perforin were analysed by flow cytometry. Immunomagnetically selected CD8+ T lymphocytes, NK (CD56+CD3- and NKT-like (CD56+CD3+ cells were used in an LDH release assay to determine cytotoxicity and cytotoxic mechanisms were investigated by blocking perforin and granzyme B with relevant antibodies. Results The proportion of peripheral blood NKT-like (CD56+CD3+ cells in smokers with COPD (COPD subjects was significantly lower (0.6% than in healthy smokers (smokers (2.8%, p +CD3- cells from COPD subjects were significantly less cytotoxic than in smokers (16.8% vs 51.9% specific lysis, p +CD3+ cells (16.7% vs 52.4% specific lysis, p +CD3- and NKT-like (CD56+CD3+ cells from smokers and HNS. Conclusion In this study, we show that the relative numbers of peripheral blood NK (CD56+CD3- and NKT-like (CD56+CD3+ cells in COPD subjects are reduced and that their cytotoxic effector function is defective.

  16. Cytotoxicity of VEGF121/rGel on vascular endothelial cells resulting in inhibition of angiogenesis is mediated via VEGFR-2

    Directory of Open Access Journals (Sweden)

    Hittelman Walter N

    2011-08-01

    Full Text Available Abstract Background The fusion protein VEGF121/rGel composed of the growth factor VEGF121 and the plant toxin gelonin targets the tumor neovasculature and exerts impressive anti-vascular effects. We have previously shown that VEGF121/rGel is cytotoxic to endothelial cells overexpressing VEGFR-2 but not to endothelial cells overexpressing VEGFR-1. In this study, we examined the basis for the specific toxicity of this construct and assessed its intracellular effects in vitro and in vivo. Methods We investigated the binding, cytotoxicity and internalization profile of VEGF121/rGel on endothelial cells expressing VEGFR-1 or VEGFR-2, identified its effects on angiogenesis models in vitro and ex vivo, and explored its intracellular effects on a number of molecular pathways using microarray analysis. Results Incubation of PAE/VEGFR-2 and PAE/VEGFR-1 cells with 125I-VEGF121/rGel demonstrated binding specificity that was competed with unlabeled VEGF121/rGel but not with unlabeled gelonin. Assessment of the effect of VEGF121/rGel on blocking tube formation in vitro revealed a 100-fold difference in IC50 levels between PAE/VEGFR-2 (1 nM and PAE/VEGFR-1 (100 nM cells. VEGF121/rGel entered PAE/VEGFR-2 cells within one hour of treatment but was not detected in PAE/VEGFR-1 cells up to 24 hours after treatment. In vascularization studies using chicken chorioallantoic membranes, 1 nM VEGF121/rGel completely inhibited bFGF-stimulated neovascular growth. The cytotoxic effects of VEGF121/rGel were not apoptotic since treated cells were TUNEL-negative with no evidence of PARP cleavage or alteration in the protein levels of select apoptotic markers. Microarray analysis of VEGF121/rGel-treated HUVECs revealed the upregulation of a unique "fingerprint" profile of 22 genes that control cell adhesion, apoptosis, transcription regulation, chemotaxis, and inflammatory response. Conclusions Taken together, these data confirm the selectivity of VEGF121/rGel for VEGFR-2

  17. Dual functions of silver nanoparticles in F9 teratocarcinoma stem cells, a suitable model for evaluating cytotoxicity- and differentiation-mediated cancer therapy

    Directory of Open Access Journals (Sweden)

    Han JW

    2017-10-01

    Full Text Available Jae Woong Han, Sangiliyandi Gurunathan, Yun-Jung Choi, Jin-Hoi Kim Department of Stem Cell and Regenerative Biotechnology, Humanized Pig Research Center (SRC, Konkuk University, Seoul, Republic of Korea Background: Silver nanoparticles (AgNPs exhibit strong antibacterial and anticancer activity owing to their large surface-to-volume ratios and crystallographic surface structure. Owing to their various applications, understanding the mechanisms of action, biological interactions, potential toxicity, and beneficial effects of AgNPs is important. Here, we investigated the toxicity and differentiation-inducing effects of AgNPs in teratocarcinoma stem cells. Materials and methods: AgNPs were synthesized and characterized using various analytical techniques such as UV–visible spectroscopy, X-ray diffraction, energy-dispersive X-ray spectroscopy, and transmission electron microscopy. The cellular responses of AgNPs were analyzed by a series of cellular and biochemical assays. Gene and protein expressions were analyzed by reverse transcription-quantitative polymerase chain reaction and western blotting, respectively. Results: The AgNPs showed typical crystalline structures and spherical shapes (average size =20 nm. High concentration of AgNPs induced cytotoxicity in a dose-dependent manner by increasing lactate dehydrogenase leakage and reactive oxygen species. Furthermore, AgNPs caused mitochondrial dysfunction, DNA fragmentation, increased expression of apoptotic genes, and decreased expression of antiapoptotic genes. Lower concentrations of AgNPs induced neuronal differentiation by increasing the expression of differentiation markers and decreasing the expression of stem cell markers. Cisplatin reduced the viability of F9 cells that underwent AgNPs-induced differentiation. Conclusion: The results showed that AgNPs caused differentially regulated cytotoxicity and induced neuronal differentiation of F9 cells in a concentration-dependent manner

  18. Dexmedetomidine Protects PC12 Cells from Lidocaine-Induced Cytotoxicity Through Downregulation of COL3A1 Mediated by miR-let-7b.

    Science.gov (United States)

    Wang, Qiong; She, Yingjun; Bi, Xiaobao; Zhao, Baisong; Ruan, Xiangcai; Tan, Yonghong

    2017-07-01

    Safety concerns of some local anesthetics, such as lidocaine, have been raised in recent years due to potential neurological impairment. Dexmedetomidine may protect humans from neurotoxicity, and miR-let-7b is activated by nerve injury; however, the roles of miR-let-7b and its target gene in lidocaine-induced cytotoxicity are not well known. Through bioinformatics and a luciferase reporter assay, COL3A1 was suggested as a direct target gene of miR-let-7b. Here, we confirmed by measuring mRNA and protein levels that miR-let-7b was downregulated and COL3A1 was upregulated in lidocaine-treated cells, an observation that was reversed by dexmedetomidine. Similar to miR-let-7b mimics or knockdown of COL3A1, dexmedetomidine treatment reduced the expression of COL3A1, suppressed cell apoptosis and cell migration/invasion ability, and induced cell cycle progression and cell proliferation in PC12 cells, effects that were reversed by the miR-let-7b inhibitor. Meanwhile, proteins involved in cell apoptosis, such as Bcl2 and caspase 3, were impacted as well. Taken together, dexmedetomidine may protect PC12 cells from lidocaine-induced cytotoxicity through miR-let-7b and COL3A1, while also increasing Bcl2 and inhibiting caspase 3. Therefore, miR-let-7b and COL3A1 might play critical roles in neuronal injury, and they are potential therapeutic targets.

  19. Cytotoxic effects of Urtica dioica radix on human colon (HT29) and gastric (MKN45) cancer cells mediated through oxidative and apoptotic mechanisms.

    Science.gov (United States)

    Ghasemi, S; Moradzadeh, M; Mousavi, S H; Sadeghnia, H R

    2016-10-15

    Defects in the apoptotic pathways are responsible for both the colorectal cancer pathogenesis and resistance to therapy. In this study, we examined the level of cellular oxidants, cytotoxicity and apoptosis induced by hydroalcoholic extract of U. dioica radix (0-2000 µg/mL) and oxaliplatin (0-1000 µg/mL, as positive control) in human gastric (MKN45) and colon (HT29) cancer, as well as normal human foreskin fibroblast (HFF) cells. Exposure to U. dioica or oxaliplatin showed a concentration dependent suppression in cell survival with IC50 values of 24.7, 249.9 and 857.5 µg/mL for HT29, MKN45 and HFF cells after 72 h treatment, respectively. ROS formation and lipid peroxidation were also concentration-dependently increased following treatment with U. dioica, similar to oxaliplatin. In addition, the number of apoptotic cells significantly increased concomitantly with concentration of U. dioica as compared with control cells, which is similar to oxaliplatin and serum-deprived cancer cells. In conclusion, the present study demonstrated that U. dioica inhibited proliferation of gastric and colorectal cancer cells while posing no significant toxic effect on normal cells. U. dioica not only increased levels of oxidants, but also induced concomitant increase of apoptosis. The precise signaling pathway by which U. dioica induce apoptosis needs further research.

  20. Taurine protects HK-2 cells from oxidized LDL-induced cytotoxicity via the ROS-mediated mitochondrial and p53-related apoptotic pathways

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Chun-Yu [Graduate Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan (China); Shen, Chao-Yu [School of Medical Imaging and Radiological Sciences, Chung Shan Medical University, Taichung, Taiwan (China); Department of Medical Imaging, Chung Shan Medical University Hospital, Taichung, Taiwan (China); School of Medicine, Chung Shan Medical University, Taichung, Taiwan (China); Kang, Chao-Kai [Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan, (China); Sher, Yuh-Pyng [Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan (China); Center for Molecular Medicine, China Medical University Hospital, Taichung 404, Taiwan (China); Sheu, Wayne H.-H. [Graduate Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan (China); Division of Endocrinology and Metabolism, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan (China); School of Medicine, National Yang Ming University, Taipei, Taiwan (China); School of Medicine, National Defense Medical Center, Taipei, Taiwan (China); Chang, Chia-Che, E-mail: chia_che@dragon.nchu.edu.tw [Graduate Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan (China); Agricultural Biotechnology Center, National Chung Hsing University, Taichung, Taiwan (China); Lee, Tsung-Han, E-mail: thlee@email.nchu.edu.tw [Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan, (China); Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan (China); Agricultural Biotechnology Center, National Chung Hsing University, Taichung, Taiwan (China); Department of Biological Science and Technology, China Medical University, Taichung, Taiwan (China)

    2014-09-15

    Oxidized LDL (oxLDL) induces a pro-oxidative environment and promotes apoptosis, causing the progression of renal diseases in humans. Taurine is a semi-essential amino acid in mammals and has been shown to be a potent endogenous antioxidant. The kidney plays a pivotal role in maintaining the balance of taurine. However, the mechanisms underlying the protective effects of taurine against oxLDL-induced injury in renal epithelial cells have not been clarified. In the present study, we investigated the anti-apoptotic effects of taurine on human proximal tubular epithelial (HK-2) cells exposed to oxLDL and explored the related mechanisms. We observed that oxLDL increased the contents of ROS and of malondialdehyde (MDA), which is a lipid peroxidation by-product that acts as an indicator of the cellular oxidation status. In addition, oxLDL induced cell death and apoptosis in HK-2 cells. Pretreatment with taurine at 100 μM significantly attenuated the oxLDL-induced cytotoxicity. We determined that oxLDL triggered the phosphorylation of ERK and, in turn, the activation of p53 and other apoptosis-related events, including calcium accumulation, destabilization of the mitochondrial permeability and disruption of the balance between pro-apoptotic Bax and anti-apoptotic Bcl-2 proteins. The malfunctions induced by oxLDL were effectively blocked by taurine. Thus, our results suggested that taurine exhibits potential therapeutic activity by preventing oxLDL-induced nephrotoxicity. The inhibition of oxLDL-induced epithelial apoptosis by taurine was at least partially due to its anti-oxidant activity and its ability to modulate the ERK and p53 apoptotic pathways. - Highlights: • Oxidized LDL induced cytotoxicity and apoptosis in HK-2 cells. • Pretreatment with taurine attenuated oxLDL-induced nephrotoxicity. • Taurine protected against renal damages through inhibition of ROS generation. • Taurine prevented apoptosis through modulation of the p53 phosphorylation.

  1. Taurine protects HK-2 cells from oxidized LDL-induced cytotoxicity via the ROS-mediated mitochondrial and p53-related apoptotic pathways

    International Nuclear Information System (INIS)

    Chang, Chun-Yu; Shen, Chao-Yu; Kang, Chao-Kai; Sher, Yuh-Pyng; Sheu, Wayne H.-H.; Chang, Chia-Che; Lee, Tsung-Han

    2014-01-01

    Oxidized LDL (oxLDL) induces a pro-oxidative environment and promotes apoptosis, causing the progression of renal diseases in humans. Taurine is a semi-essential amino acid in mammals and has been shown to be a potent endogenous antioxidant. The kidney plays a pivotal role in maintaining the balance of taurine. However, the mechanisms underlying the protective effects of taurine against oxLDL-induced injury in renal epithelial cells have not been clarified. In the present study, we investigated the anti-apoptotic effects of taurine on human proximal tubular epithelial (HK-2) cells exposed to oxLDL and explored the related mechanisms. We observed that oxLDL increased the contents of ROS and of malondialdehyde (MDA), which is a lipid peroxidation by-product that acts as an indicator of the cellular oxidation status. In addition, oxLDL induced cell death and apoptosis in HK-2 cells. Pretreatment with taurine at 100 μM significantly attenuated the oxLDL-induced cytotoxicity. We determined that oxLDL triggered the phosphorylation of ERK and, in turn, the activation of p53 and other apoptosis-related events, including calcium accumulation, destabilization of the mitochondrial permeability and disruption of the balance between pro-apoptotic Bax and anti-apoptotic Bcl-2 proteins. The malfunctions induced by oxLDL were effectively blocked by taurine. Thus, our results suggested that taurine exhibits potential therapeutic activity by preventing oxLDL-induced nephrotoxicity. The inhibition of oxLDL-induced epithelial apoptosis by taurine was at least partially due to its anti-oxidant activity and its ability to modulate the ERK and p53 apoptotic pathways. - Highlights: • Oxidized LDL induced cytotoxicity and apoptosis in HK-2 cells. • Pretreatment with taurine attenuated oxLDL-induced nephrotoxicity. • Taurine protected against renal damages through inhibition of ROS generation. • Taurine prevented apoptosis through modulation of the p53 phosphorylation

  2. PiggyBac-mediated cancer immunotherapy using EBV-specific cytotoxic T-cells expressing HER2-specific chimeric antigen receptor.

    Science.gov (United States)

    Nakazawa, Yozo; Huye, Leslie E; Salsman, Vita S; Leen, Ann M; Ahmed, Nabil; Rollins, Lisa; Dotti, Gianpietro; Gottschalk, Stephen M; Wilson, Matthew H; Rooney, Cliona M

    2011-12-01

    Epstein-Barr virus (EBV)-specific cytotoxic T lymphocytes (CTLs) can be modified to function as heterologous tumor directed effector cells that survive longer in vivo than tumor directed T cells without virus specificity, due to chronic stimulation by viral antigens expressed during persistent infection in seropositive individuals. We evaluated the nonviral piggyBac (PB) transposon system as a platform for modifying EBV-CTLs to express a functional human epidermal growth factor receptor 2-specific chimeric antigen receptor (HER2-CAR) thereby directing virus-specific, gene modified CTLs towards HER2-positive cancer cells. Peripheral blood mononuclear cells (PBMCs) were nucleofected with transposons encoding a HER2-CAR and a truncated CD19 molecule for selection followed by specific activation and expansion of EBV-CTLs. HER2-CAR was expressed in ~40% of T cells after CD19 selection with retention of immunophenotype, polyclonality, and function. HER2-CAR-modified EBV-CTLs (HER2-CTLs) killed HER2-positive brain tumor cell lines in vitro, exhibited transient and reversible increases in HER2-CAR expression following antigen-specific stimulation, and stably expressed HER2-CAR beyond 120 days. Adoptive transfer of PB-modified HER2-CTLs resulted in tumor regression in a murine xenograft model. Our results demonstrate that PB can be used to redirect virus-specific CTLs to tumor targets, which should prolong tumor-specific T cell survival in vivo producing more efficacious immunotherapy.

  3. The susceptibility to cytotoxic T lymphocyte mediated lysis of chemically induced sarcomas from immunodeficient and normal mice

    DEFF Research Database (Denmark)

    Svane, I M; Engel, A M; Thomsen, Allan Randrup

    1997-01-01

    the sensitivity to CTL mediated lysis and surface expression of the MHC class I molecule Ld of the tumour cells. Tumour cells incapable of in vitro presentation of viral antigen to specific cytotoxic T cells originated from tumours known from previous experiments to be readily accepted after transplantation...... tested for susceptibility to cytolysis by virus specific cytotoxic T cells. Tumour cells originating from tumours induced in immunocompetent C.B.-17 mice presented virus antigen more efficiently than tumour cells from immunodeficient SCID mice. No significant difference in virus antigen presentation...... was found between tumours from nude and nu/+ BALB/c mice. The sensitivity of target cells from the individual tumours to cytotoxic T lymphocyte (CTL) mediated lysis correlated negatively with their sensitivity to natural killer (NK) cell mediated lysis. There was a positive correlation between...

  4. Korean mistletoe lectin enhances natural killer cell cytotoxicity via upregulation of perforin expression.

    Science.gov (United States)

    Kim, Younghoon; Kim, Inbo; Park, Choon-Ho; Kim, Jong Bae

    2018-03-31

    Natural killer (NK) cells are crucial components of the innate immune system, providing the first line of defense against pathogens. In a previous study, we demonstrated prophylactic activity of water extract of Korean mistletoe (Viscum album coloratum) on tumor metastasis. However, the leading compound from water extract of Korean mistletoe was not clearly addressed. The purpose of this research was mainly focused on addressing the effect of Korean mistletoe lectin (KMLC) on NK cell cytotoxicity, and the ability of cytokine secretion as well as its signal transduction, mitogen-activated protein kinase (MAPK) pathway. KMLC was used to test NK cell-mediated cytotoxicity in vitro and in vivo. Non-isotope cytotoxicity assay (bis-N,N,N',N'-tetraacetic acid (BATDA) release assay) was performed to test the cytotoxicity of NK cells against target tumor cells. Receptor expression was checked by flow cytometry analysis and MAPK signal molecules were analyzed by immunoblotting. KMLC at 200 ng/mL increased the cytotoxicity of NK92 cells by 35% compared with untreated cells. KMLC-treated (at 100 ng/mL) mice splenocytes showed a 20% increase in cytotoxic activity. Also, the B chain, one of the subchains of KMLC, increases perforin expression. We demonstrated that the signal transduction controlling NK cell cytotoxicity was mediated by upregulation of the NKG2D receptor and expression of a cytotoxic effector molecule. These results suggested that KMLC possessed immunological activity, mediated by NK cell activation.

  5. Suppressor T cells, distinct from "veto cells," are induced by alloantigen priming and mediate transferable suppression of cytotoxic T lymphocyte responses in vivo

    DEFF Research Database (Denmark)

    Owens, T; Crispe, I N

    1985-01-01

    of this is that antigen-specific host suppressor T cells (Ts) are activated. Alternatively, donor Lyt-2+ T cells, introduced in the priming inoculum, may inactivate host CTL precursors (CTLp) that recognize the priming (donor) alloantigens. Donor cells that act in this way are termed veto T cells. The experiments...

  6. Identification of cytotoxic mediators and their putative role in the signaling pathways during docosahexaenoic acid (DHA)-induced apoptosis of cancer cells.

    Science.gov (United States)

    Das, Moitreyi; Das, Sumantra

    2016-12-01

    Docosahexaenoic acid (DHA), an important w-3 fatty acid exhibits differential behavior in cancer cells of neural origin when compared to that in normal healthy astrocytes. Treatment of C6 glioma and SH-SY5Y cell lines and primary astrocytes, representing the neoplastic cells and normal healthy cells respectively, with 100 µM DHA for 24 h showed significant loss of cell viability in the both the cancer cells as determined by MTT assay, whereas the primary astrocytes cultures were unaffected. Such loss of cell viability was due to apoptosis as confirmed by TUNEL staining and caspase-3 activation in cancer cells. Proteomic approach, employing 2-dimensional gel electrophoresis (2DE), difference gel electrophoresis (DIGE), and MALDI-TOF-TOF analysis identified six proteins which unlike in the astrocytes, were differently altered in the cancer cells upon exposure to DHA, suggesting their putative contribution in causing apoptosis in these cells. Of these, annexin A2, calumenin, pyruvate kinase M2 isoform, 14-3-3ζ were downregulated while aldo keto reductase-1B8 (AKR1B8) and glutathione-S-transferase P1 subunit (GSTP1) showed upregulation by DHA in the cancer cells. siRNA-mediated knockdown of AKR1B8 and GSTP1 inhibit DHA-induced apoptosis confirming their role in apoptotic process. Furthermore, western blot analysis identified upregulation of PPARα and the MAP kinases, JNK and p38 as well as increased ROS production selectively in the cell lines. Results suggest that DHA selectively induces apoptosis in the neural cell lines by regulating the expression of the above proteins to activate multiple apoptotic pathways which in association with excess ROS and activated MAPKs promote cell death.

  7. T-Cell Receptor (TCR) Clonotype-Specific Differences in Inhibitory Activity of HIV-1 Cytotoxic T-Cell Clones Is Not Mediated by TCR Alone.

    Science.gov (United States)

    Flerin, Nina C; Chen, Huabiao; Glover, Tynisha D; Lamothe, Pedro A; Zheng, Jian Hua; Fang, Justin W; Ndhlovu, Zaza M; Newell, Evan W; Davis, Mark M; Walker, Bruce D; Goldstein, Harris

    2017-03-15

    Functional analysis of T-cell responses in HIV-infected individuals has indicated that virus-specific CD8 + T cells with superior antiviral efficacy are well represented in HIV-1 controllers but are rare or absent in HIV-1 progressors. To define the role of individual T-cell receptor (TCR) clonotypes in differential antiviral CD8 + T-cell function, we performed detailed functional and mass cytometric cluster analysis of multiple CD8 + T-cell clones recognizing the identical HLA-B*2705-restricted HIV-1 epitope KK10 (KRWIILGLNK). Effective and ineffective CD8 + T-cell clones segregated based on responses to HIV-1-infected and peptide-loaded target cells. Following cognate peptide stimulation, effective HIV-specific clones displayed significantly more rapid TCR signal propagation, more efficient initial lytic granule release, and more sustained nonlytic cytokine and chemokine secretion than ineffective clones. To evaluate the TCR clonotype contribution to CD8 + T-cell function, we cloned the TCR α and β chain genes from one effective and two ineffective CD8 + T-cell clones from an elite controller into TCR-expressing lentivectors. We show that Jurkat/MA cells and primary CD8 + T cells transduced with lentivirus expressing TCR from one of the ineffective clones exhibited a level of activation by cognate peptide and inhibition of in vitro HIV-1 infection, respectively, that were comparable to those of the effective clonotype. Taken together, these data suggest that the potent antiviral capacity of some HIV-specific CD8 + T cells is a consequence of factors in addition to TCR sequence that modulate functionality and contribute to the increased antiviral capacity of HIV-specific CD8 + T cells in elite controllers to inhibit HIV infection. IMPORTANCE The greater ex vivo antiviral inhibitory activity of CD8 + T cells from elite controllers than from HIV-1 progressors supports the crucial role of effective HIV-specific CD8 + T cells in controlling HIV-1 replication. The

  8. Antibody dependent cellular phagocytosis (ADCP) and antibody dependent cellular cytotoxicity (ADCC) of breast cancer cells mediated by bispecific antibody, MDX-210.

    Science.gov (United States)

    Watanabe, M; Wallace, P K; Keler, T; Deo, Y M; Akewanlop, C; Hayes, D F

    1999-02-01

    MDX-210 is a bispecific antibody (BsAb) with specificity for both the proto-oncogene product of HER-2/neu (c-erbB-2) and FcgammaRI (CD64). HER-2/neu is overexpressed in malignant tissue of approximately 30% of patients with breast cancer, and FcgammaRI is expressed on human monocytes, macrophages, and IFN-gamma activated granulocytes. We investigated phagocytosis and cytolysis of cultured human breast cancer cells by human monocyte-derived macrophages (MDM) mediated by BsAb MDX-210, its partially humanized derivative (MDX-H210), and its parent MoAb 520C9 (anti-HER-2/neu) under various conditions. Purified monocytes were cultured with GM-CSF, M-CSF, or no cytokine for five or six days. Antibody dependent cellular phagocytosis (ADCP) and cytolysis (ADCC) assays were performed with the MDM and HER-2/neu positive target cells (SK-BR-3). ADCP was measured by two-color fluorescence flow cytometry using PKH2 (green fluorescent dye) and phycoerythrin-conjugated (red) monoclonal antibodies (MoAb) against human CD14 and CD11b. ADCC was measured with a non-radioactive LDH detection kit. Both BsAb MDX-210 (via FcgammaRI) and MoAb 520C9 (mouse IgG1, via FcgammaRII) mediated similar levels of ADCP and ADCC. ADCP mediated by BsAb MDX-H210 was identical to that mediated by BsAb MDX-210. Confocal microscopy demonstrated that dual-labeled cells represented true phagocytosis. Both ADCP and ADCC were higher when MDM were pre-incubated with GM-CSF than when incubated with M-CSF. BsAb MDX-210 is as active in vitro as the parent MoAb 520C9 in inducing both phagocytosis and cytolysis of MDM. MDX-210 and its partially humanized derivative, MDX-H210, mediated similar levels of ADCP. GM-CSF appears to superior to M-CSF in inducing MDM-mediated ADCC and ADCP. These studies support the ongoing clinical investigations of BsAb MDX-210 and its partially humanized derivative.

  9. Identification of the proteins related to SET-mediated hepatic cytotoxicity of trichloroethylene by proteomic analysis.

    Science.gov (United States)

    Ren, Xiaohu; Yang, Xifei; Hong, Wen-Xu; Huang, Peiwu; Wang, Yong; Liu, Wei; Ye, Jinbo; Huang, Haiyan; Huang, Xinfeng; Shen, Liming; Yang, Linqing; Zhuang, Zhixiong; Liu, Jianjun

    2014-05-16

    Trichloroethylene (TCE) is an effective solvent for a variety of organic materials. Since the wide use of TCE as industrial degreasing of metals, adhesive paint and polyvinyl chloride production, TCE has turned into an environmental and occupational toxicant. Exposure to TCE could cause severe hepatotoxicity; however, the toxic mechanisms of TCE remain poorly understood. Recently, we reported that SET protein mediated TCE-induced cytotoxicity in L-02 cells. Here, we further identified the proteins related to SET-mediated hepatic cytotoxicity of TCE using the techniques of DIGE (differential gel electrophoresis) and MALDI-TOF-MS/MS. Among the 20 differential proteins identified, 8 were found to be modulated by SET in TCE-induced cytotoxicity and three of them (cofilin-1, peroxiredoxin-2 and S100-A11) were validated by Western-blot analysis. The functional analysis revealed that most of the identified SET-modulated proteins are apoptosis-associated proteins. These data indicated that these proteins may be involved in SET-mediated hepatic cytotoxicity of TCE in L-02 cells. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  10. Carboxylation of multiwalled carbon nanotube attenuated the cytotoxicity by limiting the oxidative stress initiated cell membrane integrity damage, cell cycle arrestment, and death receptor mediated apoptotic pathway.

    Science.gov (United States)

    Liu, Zhenbao; Liu, Yanfei; Peng, Dongming

    2015-08-01

    In this study, the effects of carboxylated multiwalled carbon nanotubes (MWCNTs-COOH) on human normal liver cell line L02 was compared with that of pristine multiwalled carbon nanotubes (p-MWCNTs). It was shown that compared with MWCNTs-COOH, p-MWCNTs induced apoptosis, reduced the level of intracellular antioxidant glutathione more significantly, and caused severer cell membrane damage as demonstrated by lactate dehydrogenase leakage. Cell cycles were arrested by both MWCNTs, while p-MWCNTs induced higher ratio of G0/G1 phase arrestment as compared with MWCNTs-COOH. Caspase-8 was also activated after both MWCNTs exposure, indicating extrinsic apoptotic pathway was involved in the apoptosis induced by MWCNTs exposure, more importantly, MWCNTs-COOH significantly reduced the activation of caspase-8 as compared with p-MWCNTs. All these results suggested that MWCNTs-COOH might be safer for in vivo application as compared with p-MWCNTs. © 2015 Wiley Periodicals, Inc.

  11. The transcription factor Runx3 guards cytotoxic CD8+effector T cells against deviation towards follicular helper T cell lineage.

    Science.gov (United States)

    Shan, Qiang; Zeng, Zhouhao; Xing, Shaojun; Li, Fengyin; Hartwig, Stacey M; Gullicksrud, Jodi A; Kurup, Samarchith P; Van Braeckel-Budimir, Natalija; Su, Yao; Martin, Matthew D; Varga, Steven M; Taniuchi, Ichiro; Harty, John T; Peng, Weiqun; Badovinac, Vladimir P; Xue, Hai-Hui

    2017-08-01

    Activated CD8 + T cells differentiate into cytotoxic effector (T EFF ) cells that eliminate target cells. How T EFF cell identity is established and maintained is not fully understood. We found that Runx3 deficiency limited clonal expansion and impaired upregulation of cytotoxic molecules in T EFF cells. Runx3-deficient CD8 + T EFF cells aberrantly upregulated genes characteristic of follicular helper T (T FH ) cell lineage, including Bcl6, Tcf7 and Cxcr5. Mechanistically, the Runx3-CBFβ transcription factor complex deployed H3K27me3 to Bcl6 and Tcf7 genes to suppress the T FH program. Ablating Tcf7 in Runx3-deficient CD8 + T EFF cells prevented the upregulation of T FH genes and ameliorated their defective induction of cytotoxic genes. As such, Runx3-mediated Tcf7 repression coordinately enforced acquisition of cytotoxic functions and protected the cytotoxic lineage integrity by preventing T FH -lineage deviation.

  12. Residual oil fly ash induces cytotoxicity and mucin secretion by guinea pig tracheal epithelial cells via an oxidant-mediated mechanism.

    Science.gov (United States)

    Jiang, N; Dreher, K L; Dye, J A; Li, Y; Richards, J H; Martin, L D; Adler, K B

    2000-03-15

    Inhalation of ambient air particulate matter (PM) is associated with pulmonary injury and inflammation. Using primary cultures of guinea pig tracheal epithelial (GPTE) cells as an in vitro model of airway epithelium, we examined effects of exposure to suspensions of six different emission and ambient air PM samples: residual oil fly ash (ROFA) from an electrical power plant; fly ash from a domestic oil burning furnace (DOFA); ambient air dust from St. Louis (STL), Ottawa (OT), and Washington, DC (WDC); and volcanic ash from the eruption of Mount Saint Helens (MSH) in 1980. Effects of these particulates on cell viability (assessed via LDH assay), secretion of mucin (measured by a monoclonal antibody-based ELISA), and steady-state mRNA levels of the mucin gene MUC2 were determined. ROFA was the most toxic of the dusts tested, as it significantly increased LDH release following a 24-h incubation with 50 microg/cm(2) ROFA. ROFA also enhanced MUC2 mRNA after 4-h exposure, and mucin secretion after 8 h. ROFA-induced mucin secretion and cytotoxicity were attenuated by the oxidant scavenger, dimethylthiourea (DMTU). ROFA exposure also depleted cells of glutathione (GSH). Relatedly, depletion of intracellular GSH by treatment of the cells with buthionine sulfoxamine (BSO) also provoked mucin secretion, as well as enhancing the secretory effect of ROFA when the two agents were added together. L-NMA, the nitric oxide synthase (NOS) inhibitor, did not affect ROFA-induced mucin secretion. Of the soluble transition metals in ROFA (nickel, iron, vanadium), only vanadium individually, or combinations of the metals containing vanadium, provoked secretion. The results suggest ROFA enhances mucin secretion and generates toxicity in vitro to airway epithelium via a mechanism(s) involving generation of oxidant stress, perhaps related to depletion of cellular antioxidant capacity. Deleterious effects of inhalation of ROFA in the respiratory tract in vivo may relate to these cellular

  13. Arecoline is cytotoxic for human endothelial cells.

    Science.gov (United States)

    Ullah, Mafaz; Cox, Stephen; Kelly, Elizabeth; Boadle, Ross; Zoellner, Hans

    2014-11-01

    Oral submucous fibrosis is a pre-malignant fibrotic condition caused by areca nut use and involves reduced mucosal vascularity. Arecoline is the principal areca nut alkaloid and is cytotoxic for epithelium and fibroblasts. Endothelial cell cycle arrest is reported on exposure to arecoline, as is cytotoxicity for endothelial-lung carcinoma hybrid cells. We here describe cytotoxicity for primary human endothelial cultures from seven separate donors. Human umbilical vein endothelial cells were exposed to increasing concentrations of arecoline and examined by: phase-contrast microscopy, haemocytometer counts, transmission electron microscopy, lactate dehydrogenase release and the methyl-thiazol-tetrazolium assay. Vacuolation and detachment of endothelium were observed at and above arecoline concentrations of 333 μg/ml or more. Ultrastructural features of cellular stress were seen after 24-h treatment with 111 μg/ml arecoline and included reduced ribosomal studding of endoplasmic reticulum, increased autophagolysosomal structures, increased vacuolation and reduced mitochondrial cristae with slight swelling. Similar changes were seen at 4 h with arecoline at 333 μg/ml or above, but with more severe mitochondrial changes including increased electron density of mitochondrial matrix and greater cristal swelling, while by 24 h, these cells were frankly necrotic. Haemocytometer counts were paralleled by both lactate dehydrogenase release and the methyl-thiazol-tetrazolium assays. Arecoline is cytotoxic via necrosis for endothelium, while biochemical assays indicate no appreciable cellular leakage before death and detachment, as well as no clear effect on mitochondrial function in viable cells. Arecoline toxicity may thus contribute to reduced vascularity in oral submucous fibrosis. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. An Investigation of the Cytotoxicity and Caspase-Mediated Apoptotic Effect of Green Synthesized Zinc Oxide Nanoparticles Using Eclipta prostrata on Human Liver Carcinoma Cells

    Directory of Open Access Journals (Sweden)

    Ill-Min Chung

    2015-08-01

    Full Text Available Cancer is a leading cause of death worldwide and sustained focus is on the discovery and development of newer and better tolerated anticancer drugs, especially from plants. In the present study, a simple, eco-friendly, and inexpensive approach was followed for the synthesis of zinc oxide nanoparticles (ZnO NPs using the aqueous leaf extract of Eclipta prostrata. The synthesized ZnO NPs were characterized by UV-visible absorption spectroscopy, X-ray diffraction (XRD, Fourier transform infrared spectroscopy (FTIR, Scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDX, High-resolution transmission electron microscopy (HRTEM, and Selected area (electron diffraction (SAED. The HRTEM images confirmed the presence of triangle, radial, hexagonal, rod, and rectangle, shaped with an average size of 29 ± 1.3 nm. The functional groups for synthesized ZnO NPs were 3852 cm−1 for H-H weak peak, 3138 cm−1 for aromatic C-H extend, and 1648 cm−1 for Aromatic ring stretch. The 3-(4,5-Dimethylthiazol-2-yl-2,5-Diphenyltetrazolium Bromide (MTT, caspase and DNA fragmentation assays were carried out using various concentrations of ZnO NPs ranging from 1 to 100 mg/mL. The synthesized ZnO NPs showed dose dependent cytopathic effects in the Hep-G2 cell line. At 100 mg/mL concentration, the synthesized ZnO NPs exhibited significant cytotoxic effects and the apoptotic features were confirmed through caspase-3 activation and DNA fragmentation assays.

  15. Lack of dependence of 5-fluorodeoxyuridine-mediated radiosensitization on cytotoxicity

    International Nuclear Information System (INIS)

    Lawrence, T.S.; Davis, M.A.; Chang, E.Y.

    1995-01-01

    It has been proposed that fluoropyrimidine-mediated cytotoxicity and radiosensitization are closely correlated. We have shown that HT29 human colon cancer cells transfected with the E. coli dUTPase gene are resistant to 5-fluorodeoxyuridine (FdUrd)-mediated cytotoxicity, presumably through more effective elimination of dUTP. We used these cells to assess the association between radiosensitization and cytotoxicity produced by FdUrd. The radiation sensitivities of the clones expressing elevated dUTPase activity (dutE clones) were similar to those of untransfected HT29 cells or HT29 cells which has been transfected with only the expression vector for the E. coli gene (con clones). We found that FdUrd produced similar increases in radiation sensitivity regardless of dUTPase activity. Levels of dUTPase in the dutE clones remained elevated during the entire period of FdUrd exposure, demonstrating that the lack of difference between dutE and Con clones was not a reflection of down-regulation of dUTPase activity by FdUrd, Flow cytometry showed that all clones progressed past the G 1 /S-phase boundary and into early S phase during FdUrd treatment. These data suggest that the mechanisms of FdUrd-mediated cytotoxicity and radiosensitization are not closely linked. These findings, combined with our previous investigations, are consistent with the hypothesis that radiosensitization occurs in cells which progress past the G 1 /S-phase boundary in the presence of FdUrd. 24 refs., 2 figs., 2 tabs

  16. Epistatic role of base excision repair and mismatch repair pathways in mediating cisplatin cytotoxicity

    Science.gov (United States)

    Kothandapani, Anbarasi; Sawant, Akshada; Dangeti, Venkata Srinivas Mohan Nimai; Sobol, Robert W.; Patrick, Steve M.

    2013-01-01

    Base excision repair (BER) and mismatch repair (MMR) pathways play an important role in modulating cis-Diamminedichloroplatinum (II) (cisplatin) cytotoxicity. In this article, we identified a novel mechanistic role of both BER and MMR pathways in mediating cellular responses to cisplatin treatment. Cells defective in BER or MMR display a cisplatin-resistant phenotype. Targeting both BER and MMR pathways resulted in no additional resistance to cisplatin, suggesting that BER and MMR play epistatic roles in mediating cisplatin cytotoxicity. Using a DNA Polymerase β (Polβ) variant deficient in polymerase activity (D256A), we demonstrate that MMR acts downstream of BER and is dependent on the polymerase activity of Polβ in mediating cisplatin cytotoxicity. MSH2 preferentially binds a cisplatin interstrand cross-link (ICL) DNA substrate containing a mismatch compared with a cisplatin ICL substrate without a mismatch, suggesting a novel mutagenic role of Polβ in activating MMR in response to cisplatin. Collectively, these results provide the first mechanistic model for BER and MMR functioning within the same pathway to mediate cisplatin sensitivity via non-productive ICL processing. In this model, MMR participation in non-productive cisplatin ICL processing is downstream of BER processing and dependent on Polβ misincorporation at cisplatin ICL sites, which results in persistent cisplatin ICLs and sensitivity to cisplatin. PMID:23761438

  17. Paclitaxel-2'-Ethylcarbonate prodrug can circumvent P-glycoprotein-mediated cellular efflux to increase drug cytotoxicity.

    Science.gov (United States)

    Tanino, Tadatoshi; Nawa, Akihiro; Kondo, Eisaku; Kikkawa, Fumitaka; Daikoku, Tohru; Tsurumi, Tatsuya; Luo, Chenhong; Nishiyama, Yukihiro; Takayanagi, Yuki; Nishimori, Katuhiko; Ichida, Seiji; Wada, Tetsuyuki; Miki, Yasuyoshi; Iwaki, Masahiro

    2007-03-01

    The aim of the study was to investigate whether 2'-ethylcarbonate-linked paclitaxel (TAX-2'-Et) circumvents P-glycoprotein (P-gp)-mediated cellular efflux and cytotoxicity enhanced by TAX-2'-Et activation within human culture cells transfected with a rabbit liver carboxylesterase (Ra-CES) cDNA. TAX-2'-Et transport was characterized in a human colon carcinoma cell line (Caco-2) and paclitaxel (TAX)-resistant ovarian carcinoma cells (SKOV3/TAX60). Expression of P-gp, multidrug resistance protein (MRP) 2 and Ra-CES was detected by Western blotting. Cytotoxicity against Ra-CES-expressing cells and cellular amount of TAX produced were determined by MTT assay and using HPLC, respectively. Unlike rhodamine123 and TAX, TAX-2'-Et did not exhibit polarized transport in the Caco-2 cells in the absence or presence of verapamil. P-gp levels were expressed much higher in the SKOV3/ TAX60 cells than in the Caco-2 cells. MRP2 protein was not detectable in the SKOV3/TAX60 cells. Uptake by the SKOV3/TAX60 cells was similar in quantity to the amount internalized by P-gp-negative SKOV3 cells. In the SKOV3/TAX60 cells, cellular uptake of TAX-2'-Et was not altered regardless of the absence or presence of verapamil. The cytotoxicity to the untransfected SKOV3 cells induced by TAX-2'-Et was significantly lower than that induced by TAX. In the Ra-CES-expressing SKOV3 line, the EC50 value of TAX (10.6 nM) was approximately four-fold higher than that of TAX-2'-Et (2.5 nM). Transfection of Ra-CES into another TAX-resistant ovarian carcinoma cells (KOC-7c) conferred a high level of TAX-2'-Et cytotoxicity via prodrug activation. The intracellular levels of TAX produced from TAX-2'-Et in the Ra-CES-positive KOC-7c cells significantly increased compared with the levels seen in exposure of the untransfected KOC-7c cells to TAX. TAX-2'-Et can circumvent P-gp-associated cellular efflux of TAX. TAX-2'-Et is converted into TAX by the Ra-CES, supporting its potential use as a theoretical GDEPT strategy

  18. Sorafenib induces cathepsin B-mediated apoptosis of bladder cancer cells by regulating the Akt/PTEN pathway. The Akt inhibitor, perifosine, enhances the sorafenib-induced cytotoxicity against bladder cancer cells.

    Science.gov (United States)

    Amantini, Consuelo; Morelli, Maria Beatrice; Santoni, Matteo; Soriani, Alessandra; Cardinali, Claudio; Farfariello, Valerio; Eleuteri, Anna Maria; Bonfili, Laura; Mozzicafreddo, Matteo; Nabissi, Massimo; Cascinu, Stefano; Santoni, Giorgio

    2015-01-01

    Sorafenib, a tyrosine kinase inhibitor, has been demonstrated to exert anti-tumor effects. However, the molecular mechanisms underlying its effects on bladder cancer remain unknown. Here, we evaluated the mechanisms responsible for the sorafenib-induced anti-tumor effects on 5637 and T24 bladder cancer cells. We demonstrated that sorafenib reduces cell viability, stimulates lysosome permeabilization and induces apoptosis of bladder cancer cells. These effects are dependent by the activation of cathepsin B released from lysosomes. The sorafenib-increased cathepsin B activity induced the proteolysis of Bid into tBid that stimulates the intrinsic pathway of apoptosis characterized by mitochondrial membrane depolarization, oxygen radical generation and cytochrome c release. Moreover, we found that cathepsin B enzymatic activity, induced by sorafenib, is dependent on its dephosphorylation via PTEN activation and Akt inactivation. Pretreatment with orthovanadate rescued bladder cancer cells from apoptosis. In addition, the Akt inhibitor perifosine increased the sensitivity of bladder cancer cells to sorafenib-induced cytotoxicity. Overall, our results show that apoptotic cell death induced by sorafenib in bladder cancer cells is dependent on cathepsin B activity and involved PTEN and Akt signaling pathways. The Akt inhibitor perifosine increased the cytotoxic effects of sorafenib in bladder cancer cells.

  19. CYTOTOXICITY TESTING OF WOUND DRESSINGS USING METHYLCELLULOSE CELL-CULTURE

    NARCIS (Netherlands)

    VANLUYN, MJA; VANWACHEM, PB; NIEUWENHUIS, P; JONKMAN, MF

    1992-01-01

    Wound dressings may induce cytotoxic effects. In this study, we check several, mostly commercially available, wound dressings for cytotoxicity. We used our previously described, newly developed and highly sensitive 7 d methylcellulose cell culture with fibroblasts as the test system. Cytotoxicity is

  20. Evidence for abasic site sugar phosphate-mediated cytotoxicity in alkylating agent treated Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Michelle Heacock

    Full Text Available To better understand alkylating agent-induced cytotoxicity and the base lesion DNA repair process in Saccharomyces cerevisiae, we replaced the RAD27(FEN1 open reading frame (ORF with the ORF of the bifunctional human repair enzyme DNA polymerase (Pol β. The aim was to probe the effect of removal of the incised abasic site 5'-sugar phosphate group (i.e., 5'-deoxyribose phosphate or 5'-dRP in protection against methyl methanesulfonate (MMS-induced cytotoxicity. In S. cerevisiae, Rad27(Fen1 was suggested to protect against MMS-induced cytotoxicity by excising multinucleotide flaps generated during repair. However, we proposed that the repair intermediate with a blocked 5'-end, i.e., 5'-dRP group, is the actual cytotoxic lesion. In providing a 5'-dRP group removal function mediated by dRP lyase activity of Pol β, the effects of the 5'-dRP group were separated from those of the multinucleotide flap itself. Human Pol β was expressed in S. cerevisiae, and this partially rescued the MMS hypersensitivity observed with rad27(fen1-null cells. To explore this rescue effect, altered forms of Pol β with site-directed eliminations of either the 5'-dRP lyase or polymerase activity were expressed in rad27(fen1-null cells. The 5'-dRP lyase, but not the polymerase activity, conferred the resistance to MMS. These results suggest that after MMS exposure, the 5'-dRP group in the repair intermediate is cytotoxic and that Rad27(Fen1 protection against MMS in wild-type cells is due to elimination of the 5'-dRP group.

  1. Tumor Induced Inactivation of Natural Killer Cell Cytotoxic Function; Implication in Growth, Expansion and Differentiation of Cancer Stem Cells

    Directory of Open Access Journals (Sweden)

    Anahid Jewett, Han-Ching Tseng

    2011-01-01

    Full Text Available Accumulated evidence indicates that cytotoxic function of immune effectors is largely suppressed in the tumor microenvironment by a number of distinct effectors and their secreted factors. The aims of this review are to provide a rationale and a potential mechanism for immunosuppression in cancer and to demonstrate the significance of such immunosuppression in cellular differentiation and progression of cancer. To that end, we have recently shown that NK cells mediate significant cytotoxicity against primary oral squamous carcinoma stem cells (OSCSCs as compared to their more differentiated oral squamous carcinoma cells (OSCCs. In addition, human embryonic stem cells (hESCs, Mesenchymal Stem Cells (hMSCs, dental pulp stem cells (hDPSCs and induced pluripotent stem cells (hiPSCs were all significantly more susceptible to NK cell mediated cytotoxicity than their differentiated counterparts or parental cells from which they were derived. We have also reported that inhibition of differentiation or reversion of cells to a less-differentiated phenotype by blocking NFκB or targeted knock down of COX2 in primary monocytes in vivo significantly augmented NK cell function. Total population of monocytes and those depleted of CD16(+ subsets were able to substantially prevent NK cell mediated lysis of OSCSCs, MSCs and DPSCs. Taken together, our results suggest that stem cells are significant targets of the NK cell cytotoxicity. The concept of split anergy in NK cells and its contribution to tissue repair and regeneration and in tumor resistance and progression will be discussed in this review.

  2. Specific cytotoxic T cells are found in the nonrejected kidneys of blood-transfused rats

    International Nuclear Information System (INIS)

    Dallman, M.J.; Wood, K.J.; Morris, P.J.

    1987-01-01

    Preoperative, donor-specific blood transfusion leads to indefinite survival of rat renal allografts in the strain combinations used. 51 Cr-release assays have shown that the level of specific cytotoxic effector activity in the grafts of transfused (nonrejected kidney) animals is very high and may equal or exceed that seen in the grafts of untreated (rejected kidney) recipients. Such cytotoxicity demonstrates specificity for the alloantigens of the kidney, is T cell-mediated, and may persist within the transplant

  3. The generation of cytotoxic T cell epitopes and their generation for cancer immunotherapy

    NARCIS (Netherlands)

    Kessler, Jan

    2009-01-01

    Cytotoxic T cell epitopes are the targets for a T cell mediated immunotherapy of cancer. The thesis reports on their identification in the tumor associated proteins BCR-ABL and PRAME by the reverse immunology (prediction) strategy. An extended strategy is used, including the analysis of the

  4. Ginseng-berry-mediated gold and silver nanoparticle synthesis and evaluation of their in vitro antioxidant, antimicrobial, and cytotoxicity effects on human dermal fibroblast and murine melanoma skin cell lines

    Science.gov (United States)

    Jiménez Pérez, Zuly Elizabeth; Mathiyalagan, Ramya; Markus, Josua; Kim, Yeon-Ju; Kang, Hyun Mi; Abbai, Ragavendran; Seo, Kwang Hoon; Wang, Dandan; Soshnikova, Veronika; Yang, Deok Chun

    2017-01-01

    There has been a growing interest in the design of environmentally affable and biocompatible nanoparticles among scientists to find novel and safe biomaterials. Panax ginseng Meyer berries have unique phytochemical profile and exhibit beneficial pharmacological activities such as antihyperglycemic, antiobesity, antiaging, and antioxidant properties. A comprehensive study of the biologically active compounds in ginseng berry extract (GBE) and the ability of ginseng berry (GB) as novel material for the biosynthesis of gold nanoparticles (GBAuNPs) and silver nanoparticles (GBAgNPs) was conducted. In addition, the effects of GBAuNPs and GBAgNPs on skin cell lines for further potential biological applications are highlighted. GBAuNPs and GBAgNPs were synthesized using aqueous GBE as a reducing and capping agent. The synthesized nanoparticles were characterized for their size, morphology, and crystallinity. The nanoparticles were evaluated for antioxidant, anti-tyrosinase, antibacterial, and cytotoxicity activities and for morphological changes in human dermal fibroblast and murine melanoma skin cell lines. The phytochemicals contained in GBE effectively reduced and capped gold and silver ions to form GBAuNPs and GBAgNPs. The optimal synthesis conditions (ie, temperature and v/v % of GBE) and kinetics were investigated. Polysaccharides and phenolic compounds present in GBE were suggested to be responsible for stabilization and functionalization of nanoparticles. GBAuNPs and GBAgNPs showed increased scavenging activity against 2,2-diphenyl-1-picrylhydrazyl free radicals compared to GBE. GBAuNPs and GBAgNPs effectively inhibited mushroom tyrosinase, while GBAgNPs showed antibacterial activity against Escherichia coli and Staphylococcus aureus. In addition, GBAuNPs were nontoxic to human dermal fibroblast and murine melanoma cell lines, and GBAgNPs showed cytotoxic effect on murine melanoma cell lines. The current results evidently suggest that GBAgNPs can act as potential

  5. Split anergized natural killer cells halt inflammation by inducing stem cell differentiation, resistance to NK cell cytotoxicity and prevention of cytokine and chemokine secretion

    Science.gov (United States)

    Tseng, Han-Ching; Cacalano, Nicholas; Jewett, Anahid

    2015-01-01

    The mechanism of suppression of NK cytotoxicity in cancer patients is not clearly established. In this paper we provide evidence that anergized NK cells induce differentiation of healthy Dental Pulp Stem Cells (DPSCs) or transformed Oral Squamous Cancer Stem Cells (OSCSCs) resulting in cell growth inhibition, resistance to NK cell-mediated cytotoxicity and prevention of inflammatory mediators secretion. Induction of cytotoxicity resistance in differentiated cells correlated with increased CD54 and MHC class I surface expression and mediated by the combination of IFN-γ and TNF-α since antibodies to both, but not each cytokine alone, was able to inhibit resistance. In contrast, inhibition of cytokine and chemokine release was mediated by IFN-γ since the addition of anti-IFN-γ antibody, and not anti-TNF-α, restored secretion of inflammatory mediators in NK cell cultures with differentiated DPSCs and OSCSCs. There was a gradual and time dependent decrease in MHC class I and CD54 expression which correlated with the restoration of NK cell cytotoxicity, augmentation of cytokine secretion and increased cell growth from days 0–12 post NK removal. Continuous presence of NK cells is required for the maintenance of cell differentiation since the removal of NK cell-mediated function reverses the phenotype and function of differentiated cells to their stem-like cells. PMID:25860927

  6. Comparison of nanoparticle-mediated transfection methods for DNA expression plasmids: efficiency and cytotoxicity

    Science.gov (United States)

    2011-01-01

    Background Reproducibly high transfection rates with low methodology-induced cytotoxic side effects are essential to attain the required effect on targeted cells when exogenous DNA is transfected. Different approaches and modifications such as the use of nanoparticles (NPs) are being evaluated to increase transfection efficiencies. Several studies have focused on the attained transfection efficiency after NP-mediated approaches. However, data comparing toxicity of these novel approaches with conventional methods is still rare. Transfection efficiency and methodology-induced cytotoxicity were analysed after transfection with different NP-mediated and conventional approaches. Two eukaryotic DNA-expression-plasmids were used to transfect the mammalian cell line MTH53A applying six different transfection protocols: conventional transfection reagent (FuGENE HD, FHD), FHD in combination with two different sizes of stabilizer-free laser-generated AuNPs (PLAL-AuNPs_S1,_S2), FHD and commercially available AuNPs (Plano-AuNP), and two magnetic transfection protocols. 24 h post transfection efficiency of each protocol was analysed using fluorescence microscopy and GFP-based flow cytometry. Toxicity was assessed measuring cell proliferation and percentage of propidium iodide (PI%) positive cells. Expression of the respective recombinant proteins was evaluated by immunofluorescence. Results The addition of AuNPs to the transfection protocols significantly increased transfection efficiency in the pIRES-hrGFPII-eIL-12 transfections (FHD: 16%; AuNPs mean: 28%), whereas the magnet-assisted protocols did not increase efficiency. Ligand-free PLAL-AuNPs had no significant cytotoxic effect, while the ligand-stabilized Plano-AuNPs induced a significant increase in the PI% and lower cell proliferation. For pIRES-hrGFPII-rHMGB1 transfections significantly higher transfection efficiency was observed with PLAL-AuNPs (FHD: 31%; PLAL-AuNPs_S1: 46%; PLAL-AuNPs_S2: 50%), while the magnet

  7. Immune checkpoint inhibitors enhance cytotoxicity of cytokine-induced killer cells against human myeloid leukaemic blasts.

    Science.gov (United States)

    Poh, Su Li; Linn, Yeh Ching

    2016-05-01

    We studied whether blockade of inhibitory receptors on cytokine-induced killer (CIK) cells by immune checkpoint inhibitors could increase its anti-tumour potency against haematological malignancies. CIK cultures were generated from seven normal donors and nine patients with acute myeloid leukaemia (AML), acute lymphoblastic leukaemia (ALL) or multiple myeloma (MM). The inhibitory receptors B and T lymphocyte attenuator, CD200 receptor, lymphocyte activation gene-3 (LAG-3) and T cell immunoglobulin and mucin-domain-containing-3 (TIM-3) were present at variable percentages in most CIK cultures, while cytotoxic T lymphocyte-associated protein 4 (CTLA-4), programmed death-1 (PD-1) and killer cell immunoglobulin-like receptors (KIR2DL1/2/3) were expressed at low level in most cultures. Without blockade, myeloid leukaemia cells were susceptible to autologous and allogeneic CIK-mediated cytotoxicity. Blockade of KIR, LAG-3, PD-1 and TIM-3 but not CTLA-4 resulted in remarkable increase in killing against these targets, even in those with poor baseline cytotoxicity. ALL and MM targets were resistant to CIK-mediated cytotoxicity, and blockade of receptors did not increase cytotoxicity to a meaningful extent. Combination of inhibitors against two receptors did not further increase cytotoxicity. Interestingly, potentiation of CIK killing by blocking antibodies was not predicted by expression of receptors on CIK and their respective ligands on the targets. Compared to un-activated T and NK cells, blockade potentiated the cytotoxicity of CIK cells to a greater degree and at a lower E:T ratio, but without significant increase in cytotoxicity against normal white cell. Our findings provide the basis for clinical trial combining autologous CIK cells with checkpoint inhibitors for patients with AML.

  8. Differences in Granule Morphology yet Equally Impaired Exocytosis among Cytotoxic T Cells and NK Cells from Chediak-Higashi Syndrome Patients.

    Science.gov (United States)

    Chiang, Samuel C C; Wood, Stephanie M; Tesi, Bianca; Akar, Himmet Haluk; Al-Herz, Waleed; Ammann, Sandra; Belen, Fatma Burcu; Caliskan, Umran; Kaya, Zühre; Lehmberg, Kai; Patiroglu, Turkan; Tokgoz, Huseyin; Ünüvar, Ayşegül; Introne, Wendy J; Henter, Jan-Inge; Nordenskjöld, Magnus; Ljunggren, Hans-Gustaf; Meeths, Marie; Ehl, Stephan; Krzewski, Konrad; Bryceson, Yenan T

    2017-01-01

    Chediak-Higashi syndrome (CHS) is caused by autosomal recessive mutations in LYST , resulting in enlarged lysosomal compartments in multiple cell types. CHS patients display oculocutaneous albinism and may develop life-threatening hemophagocytic lymphohistiocytosis (HLH). While NK cell-mediated cytotoxicity has been reported to be uniformly defective, variable defects in T cell-mediated cytotoxicity has been observed. The latter has been linked to the degree of HLH susceptibility. Since the discrepancies in NK cell- and T cell-mediated cellular cytotoxicity might result from differences in regulation of cytotoxic granule release, we here evaluated perforin-containing secretory lysosome size and number in freshly isolated lymphocytes from CHS patients and furthermore compared their exocytic capacities. Whereas NK cells from CHS patients generally contained a single, gigantic perforin-containing granule, cytotoxic T cells predominantly contained several smaller granules. Nonetheless, in a cohort of 21 CHS patients, cytotoxic T cell and NK cell granule exocytosis were similarly impaired upon activating receptor stimulation. Mechanistically, polarization of cytotoxic granules was defective in cytotoxic lymphocytes from CHS patients, with EEA1, a marker of early endosomes, mislocalizing to lysosomal structures. The results leads to the conclusion that lysosome enlargement corresponds to loss of distinct organelle identity in the endocytic pathway, which on a subcellular level more adversely affects NK cells than T cells. Hence, vesicular size or numbers do not per se dictate the impairment of lysosomal exocytosis in the two cell types studied.

  9. Differences in Granule Morphology yet Equally Impaired Exocytosis among Cytotoxic T Cells and NK Cells from Chediak–Higashi Syndrome Patients

    Science.gov (United States)

    Chiang, Samuel C. C.; Wood, Stephanie M.; Tesi, Bianca; Akar, Himmet Haluk; Al-Herz, Waleed; Ammann, Sandra; Belen, Fatma Burcu; Caliskan, Umran; Kaya, Zühre; Lehmberg, Kai; Patiroglu, Turkan; Tokgoz, Huseyin; Ünüvar, Ayşegül; Introne, Wendy J.; Henter, Jan-Inge; Nordenskjöld, Magnus; Ljunggren, Hans-Gustaf; Meeths, Marie; Ehl, Stephan; Krzewski, Konrad; Bryceson, Yenan T.

    2017-01-01

    Chediak–Higashi syndrome (CHS) is caused by autosomal recessive mutations in LYST, resulting in enlarged lysosomal compartments in multiple cell types. CHS patients display oculocutaneous albinism and may develop life-threatening hemophagocytic lymphohistiocytosis (HLH). While NK cell-mediated cytotoxicity has been reported to be uniformly defective, variable defects in T cell-mediated cytotoxicity has been observed. The latter has been linked to the degree of HLH susceptibility. Since the discrepancies in NK cell- and T cell-mediated cellular cytotoxicity might result from differences in regulation of cytotoxic granule release, we here evaluated perforin-containing secretory lysosome size and number in freshly isolated lymphocytes from CHS patients and furthermore compared their exocytic capacities. Whereas NK cells from CHS patients generally contained a single, gigantic perforin-containing granule, cytotoxic T cells predominantly contained several smaller granules. Nonetheless, in a cohort of 21 CHS patients, cytotoxic T cell and NK cell granule exocytosis were similarly impaired upon activating receptor stimulation. Mechanistically, polarization of cytotoxic granules was defective in cytotoxic lymphocytes from CHS patients, with EEA1, a marker of early endosomes, mislocalizing to lysosomal structures. The results leads to the conclusion that lysosome enlargement corresponds to loss of distinct organelle identity in the endocytic pathway, which on a subcellular level more adversely affects NK cells than T cells. Hence, vesicular size or numbers do not per se dictate the impairment of lysosomal exocytosis in the two cell types studied. PMID:28458669

  10. Attenuated RANKL-induced cytotoxicity by Portulaca oleracea ethanol extract enhances RANKL-mediated osteoclastogenesis.

    Science.gov (United States)

    Erkhembaatar, Munkhsoyol; Choi, Eun-Joo; Lee, Hak-Yong; Lee, Choong Hun; Lee, Young-Rae; Kim, Min Seuk

    2015-07-14

    Portulaca oleracea (PO) has been widely used as traditional medicine because of its pharmacological activities. However, the effects of PO on osteoclasts that modulate bone homeostasis are still elusive. In this study, we examined the effects of PO ethanol extract (POEE) on receptor activator of nuclear factor-κB ligand (RANKL)-mediated Ca(2+) mobilization, nuclear factor of activated T-cell c1 (NFATc1) amplification, tartrate-resistant acid phosphatase-positive (TRAP+) multinucleated cell (MNC) formation, and cytotoxicity. Our results demonstrated that POEE suppressed RANKL-induced Ca(2+) oscillations by inhibition of Ca(2+) release from internal Ca(2+) stores, resulting in reduction of NFATc1 amplification. Notably, POEE attenuated RANKL-mediated cytotoxicity and cleavage of polyadenosine 5'-diphosphate-ribose polymerase (PARP), resulted in enhanced formation of TRAP+ MNCs. These results present in vitro effects of POEE on RANKL-mediated osteoclastogenesis and suggest the possible use of PO in treating bone disorders, such as osteopetrosis.

  11. Glycan elongation beyond the mucin associated Tn antigen protects tumor cells from immune-mediated killing

    DEFF Research Database (Denmark)

    Madsen, Caroline B; Lavrsen, Kirstine; Steentoft, Catharina

    2013-01-01

    and pancreatic cancer cell lines T47D and Capan-1 increases sensitivity to both NK cell mediated antibody-dependent cellular-cytotoxicity (ADCC) and cytotoxic T lymphocyte (CTL)-mediated killing. In addition, we investigated the association between total cell surface expression of MUC1/MUC16 and NK or CTL...

  12. Behçet disease-associated MHC class I residues implicate antigen binding and regulation of cell-mediated cytotoxicity.

    Science.gov (United States)

    Ombrello, Michael J; Kirino, Yohei; de Bakker, Paul I W; Gül, Ahmet; Kastner, Daniel L; Remmers, Elaine F

    2014-06-17

    The HLA protein, HLA-B*51, encoded by HLA-B in MHC, is the strongest known genetic risk factor for Behçet disease (BD). Associations between BD and other factors within the MHC have been reported also, although strong regional linkage disequilibrium complicates their confident disentanglement from HLA-B*51. In the current study, we examined a combination of directly obtained and imputed MHC-region SNPs, directly obtained HLA-B locus types, and imputed classical HLA types with their corresponding polymorphic amino acid residues for association with BD in 1,190 cases and 1,257 controls. SNP mapping with logistic regression of the MHC identified the HLA-B/MICA region and the region between HLA-F and HLA-A as independently associated with BD (P MHC class I (MHC-I) amino acid residues, including anchor residues that critically define the selection and binding of peptides to MHC-I molecules, residues known to influence MHC-I-killer immunoglobulin-like receptor interactions, and a residue located in the signal peptide of HLA-B. The locations of these variants collectively implicate MHC-I peptide binding in the pathophysiology of BD. Furthermore, several lines of evidence suggest a role for altered regulation of cellular cytotoxicity in BD pathogenesis.

  13. Natural CD8{sup +}25{sup +} regulatory T cell-secreted exosomes capable of suppressing cytotoxic T lymphocyte-mediated immunity against B16 melanoma

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Yufeng; Zhang, Xueshu; Zhao, Tuo; Li, Wei; Xiang, Jim, E-mail: jim.xiang@saskcancer.ca

    2013-08-16

    Highlights: •CD8{sup +}25{sup +} regulatory T cells secrete tolerogenic exosomes. •CD8{sup +}25{sup +} regulatory T cell-derived exosomes exhibit immunosuppressive effect. •CD8{sup +}25{sup +} regulatory T cell-derived exosomes inhibit antitumor immunity. -- Abstract: Natural CD4{sup +}25{sup +} and CD8{sup +}25{sup +} regulatory T (Tr) cells have been shown to inhibit autoimmune diseases. Immune cells secrete exosomes (EXOs), which are crucial for immune regulation. However, immunomodulatory effect of natural Tr cell-secreted EXOs is unknown. In this study, we purified natural CD8{sup +}25{sup +} Tr cells from C57BL/6 mouse naive CD8{sup +} T cells, and in vitro amplified them with CD3/CD28 beads. EXOs (EXO{sub Tr}) were purified from Tr cell’s culture supernatants by differential ultracentrifugation and analyzed by electron microscopy, Western blot and flow cytometry. Our data showed that EXO{sub Tr} had a “saucer” or round shape with 50–100 nm in diameter, contained EXO-associated markers LAMP-1 and CD9, and expressed natural Tr cell markers CD25 and GITR. To assess immunomodulatory effect, we i.v. immunized C57BL/6 mice with ovalbumin (OVA)-pulsed DCs (DC{sub OVA}) plus Tr cells or EXO{sub Tr}, and then assessed OVA-specific CD8{sup +} T cell responses using PE-H-2K{sup b}/OVA tetramer and FITC-anti-CD8 antibody staining by flow cytometry and antitumor immunity in immunized mice with challenge of OVA-expressing BL6–10{sub OVA} melanoma cells. We demonstrated that DC{sub OVA}-stimulated CD8{sup +} T cell responses and protective antitumor immunity significantly dropped from 2.52% to 1.08% and 1.81% (p < 0.05), and from 8/8 to 2/8 and 5/8 mice DC{sub OVA} (p < 0.05) in immunized mice with co-injection of Tr cells and EXO{sub Tr}, respectively. Our results indicate that natural CD8{sup +}25{sup +} Tr cell-released EXOs, alike CD8{sup +}25{sup +} Tr cells, can inhibit CD8{sup +} T cell responses and antitumor immunity. Therefore, EXOs derived from

  14. Correlation between luminescence intensity and cytotoxicity in cell-based cytotoxicity assay using luciferase.

    Science.gov (United States)

    Wakuri, S; Yamakage, K; Kazuki, Y; Kazuki, K; Oshimura, M; Aburatani, S; Yasunaga, M; Nakajima, Y

    2017-04-01

    The luciferase reporter assay has become one of the conventional methods for cytotoxicity evaluation. Typically, the decrease of luminescence expressed by a constitutive promoter is used as an index of cytotoxicity. However, to our knowledge, there have been no reports of the correlation between cytotoxicity and luminescence intensity. In this study, to accurately verify the correlation between them, beetle luciferase was stably expressed in human hepatoma HepG2 cells harboring the multi-integrase mouse artificial chromosome vector. We showed that the cytotoxicity assay using luciferase does not depend on the stability of luciferase protein and the kind of constitutive promoter. Next, HepG2 cells in which green-emitting beetle luciferase was expressed under the control of CAG promoter were exposed to 58 compounds. The luminescence intensity and cytotoxicity curves of cells exposed to 48 compounds showed similar tendencies, whereas those of cells exposed to 10 compounds did not do so, although the curves gradually approached each other with increasing exposure time. Finally, we demonstrated that luciferase expressed under the control of a constitutive promoter can be utilized both as an internal control reporter for normalizing a test reporter and for monitoring cytotoxicity when two kinds of luciferases are simultaneously used in the cytotoxicity assay. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Evaluation of a UCMK/dCK fusion enzyme for gemcitabine-mediated cytotoxicity

    International Nuclear Information System (INIS)

    Johnson, Adam J.; Brown, Melissa N.; Black, Margaret E.

    2011-01-01

    Highlights: ► Goal was to enhance dFdC cytotoxicity by the creation of a UCMK/dCK fusion enzyme. ► The UCMK/dCK fusion enzyme possesses both native activities. ► The fusion renders cells equally sensitive to dFdC relative to dCK expression alone. ► Dual activities of fusion not sufficient to augment cell dFdC sensitivity in vitro. ► Data may warrant the implementation of UCMK mutagenesis studies. -- Abstract: While gemcitabine (2′-2′-difluoro-2′-deoxycytidine, dFdC) displays wide-ranging antineoplastic activity as a single agent, variable response rates and poor intracellular metabolism often limit its clinical efficacy. In an effort to enhance dFdC cytotoxicity and help normalize response rates, we created a bifunctional fusion enzyme that combines the enzymatic activities of deoxycytidine kinase (dCK) and uridine/cytidine monophosphate kinase (UCMK) in a single polypeptide. Our goal was to evaluate whether the created fusion could induce beneficial, functional changes toward dFdC, expedite dFdC conversion to its active antimetabolites and consequently amplify cell dFdC sensitivity. While kinetic analyses revealed the UCMK/dCK fusion enzyme to possess both native activities, the fusion rendered cells sensitive to the cytotoxic effects of dFdC at the same level as dCK expression alone. These results suggest that increased wild-type UCMK expression does not provide a significant enhancement in dFdC-mediated cytotoxicity and may warrant the implementation of studies aimed at engineering UCMK variants with improved activity toward gemcitabine monophosphate.

  16. Quantifying biomass changes of single CD8+ T cells during antigen specific cytotoxicity.

    Directory of Open Access Journals (Sweden)

    Thomas A Zangle

    Full Text Available Existing approaches that quantify cytotoxic T cell responses rely on bulk or surrogate measurements which impede the direct identification of single activated T cells of interest. Single cell microscopy or flow cytometry methodologies typically rely on fluorescent labeling, which limits applicability to primary cells such as human derived T lymphocytes. Here, we introduce a quantitative method to track single T lymphocyte mediated cytotoxic events within a mixed population of cells using live cell interferometry (LCI, a label-free microscopy technique that maintains cell viability. LCI quantifies the mass distribution within individual cells by measuring the phase shift caused by the interaction of light with intracellular biomass. Using LCI, we imaged cytotoxic T cells killing cognate target cells. In addition to a characteristic target cell mass decrease of 20-60% over 1-4 h following attack by a T cell, there was a significant 4-fold increase in T cell mass accumulation rate at the start of the cytotoxic event and a 2-3 fold increase in T cell mass relative to the mass of unresponsive T cells. Direct, label-free measurement of CD8+ T and target cell mass changes provides a kinetic, quantitative assessment of T cell activation and a relatively rapid approach to identify specific, activated patient-derived T cells for applications in cancer immunotherapy.

  17. Cytotoxicity of Sambucus ebulus on cancer cell lines and protective ...

    African Journals Online (AJOL)

    Regarding the traditional utilization of Sambucus ebulus, Iranian native botany and its active ingredients (e.g. ebulitin and ebulin 1), cytotoxicity of ethyl acetate ... cytotoxic agent on liver and colon cancer cells and suggest that vitamins C and E may protect normal cells, when SEE were used in cancer therapy in future.

  18. induced acute cytotoxicity in human cervical epithelial carcinoma cells

    African Journals Online (AJOL)

    Molecular basis of arsenite (As +3 )-induced acute cytotoxicity in human cervical epithelial carcinoma cells. ... Libyan Journal of Medicine ... Methods: After performing cytotoxic assays on a human epithelial carcinoma cell line, expression analysis was done by quantitative polymerase chain reaction, western blotting, and ...

  19. Treatment with 5-Aza-2'-Deoxycytidine Induces Expression of NY-ESO-1 and Facilitates Cytotoxic T Lymphocyte-Mediated Tumor Cell Killing.

    Science.gov (United States)

    Klar, Agnes S; Gopinadh, Jakka; Kleber, Sascha; Wadle, Andreas; Renner, Christoph

    2015-01-01

    NY-ESO-1 belongs to the cancer/testis antigen (CTA) family and represents an attractive target for cancer immunotherapy. Its expression is induced in a variety of solid tumors via DNA demethylation of the promoter of CpG islands. However, NY-ESO-1 expression is usually very low or absent in some tumors such as breast cancer or multiple myeloma. Therefore, we established an optimized in vitro treatment protocol for up-regulation of NY-ESO-1 expression by tumor cells using the hypomethylating agent 5-aza-2'-deoxycytidine (DAC). We demonstrated de novo induction of NY-ESO-1 in MCF7 breast cancer cells and significantly increased expression in U266 multiple myeloma cells. This effect was time- and dose-dependent with the highest expression of NY-ESO-1 mRNA achieved by the incubation of 10 μM DAC for 72 hours. NY-ESO-1 activation was also confirmed at the protein level as shown by Western blot, flow cytometry, and immunofluorescence staining. The detection and quantification of single NY-ESO-1 peptides presented at the tumor cell surface in the context of HLA-A*0201 molecules revealed an increase of 100% and 50% for MCF7 and U266 cells, respectively. Moreover, the enhanced expression of NY-ESO-1 derived peptides at the cell surface was accompanied by an increased specific lysis of MCF7 and U266 cells by HLA-A*0201/NY-ESO-1(157-165) peptide specific chimeric antigen receptor (CAR) CD8+ T cells. In addition, the killing activity of CAR T cells correlated with the secretion of higher IFN-gamma levels. These results indicate that NY-ESO-1 directed immunotherapy with specific CAR T cells might benefit from concomitant DAC treatment.

  20. Treatment with 5-Aza-2'-Deoxycytidine Induces Expression of NY-ESO-1 and Facilitates Cytotoxic T Lymphocyte-Mediated Tumor Cell Killing.

    Directory of Open Access Journals (Sweden)

    Agnes S Klar

    Full Text Available NY-ESO-1 belongs to the cancer/testis antigen (CTA family and represents an attractive target for cancer immunotherapy. Its expression is induced in a variety of solid tumors via DNA demethylation of the promoter of CpG islands. However, NY-ESO-1 expression is usually very low or absent in some tumors such as breast cancer or multiple myeloma. Therefore, we established an optimized in vitro treatment protocol for up-regulation of NY-ESO-1 expression by tumor cells using the hypomethylating agent 5-aza-2'-deoxycytidine (DAC.We demonstrated de novo induction of NY-ESO-1 in MCF7 breast cancer cells and significantly increased expression in U266 multiple myeloma cells. This effect was time- and dose-dependent with the highest expression of NY-ESO-1 mRNA achieved by the incubation of 10 μM DAC for 72 hours. NY-ESO-1 activation was also confirmed at the protein level as shown by Western blot, flow cytometry, and immunofluorescence staining. The detection and quantification of single NY-ESO-1 peptides presented at the tumor cell surface in the context of HLA-A*0201 molecules revealed an increase of 100% and 50% for MCF7 and U266 cells, respectively. Moreover, the enhanced expression of NY-ESO-1 derived peptides at the cell surface was accompanied by an increased specific lysis of MCF7 and U266 cells by HLA-A*0201/NY-ESO-1(157-165 peptide specific chimeric antigen receptor (CAR CD8+ T cells. In addition, the killing activity of CAR T cells correlated with the secretion of higher IFN-gamma levels.These results indicate that NY-ESO-1 directed immunotherapy with specific CAR T cells might benefit from concomitant DAC treatment.

  1. Assay development and multivariate scoring for high-content discovery of chemoprotectants of endoplasmic-reticulum-stress-mediated amylin-induced cytotoxicity in pancreatic beta cells.

    Science.gov (United States)

    Law, Courtney J; Ashcroft, Harriet A; Zheng, Weifan; Sexton, Jonathan Z

    2014-09-01

    The underlying pathogenesis of type-II diabetes mellitus is in the dysfunction and selective loss of pancreatic islet β-cells, which ultimately leads to underproduction of endogenous insulin. Amylin, a 37-amino-acid human hormone that is cosecreted with insulin, helps regulate gastric emptying and maintain blood glucose homeostasis through improved postprandial satiety. It is hypothesized that amylin protofibrils cause selective loss of pancreatic β-cells in a manner similar to amyloid β aggregation in Alzheimer's disease. β-Cell death occurs in vitro when isolated human or rodent β-cells are exposed to micromolar concentrations of amylin, but the exact mechanism of selective β-cell loss in vivo remains unknown. Therefore, pursuing small-molecule drug discovery for chemoprotectants of amylin-induced β-cell toxicity is a viable phenotypic target that can lead to potential pharmacotherapies for the preservation of β-cell mass, delaying insulin dependence and allowing additional opportunities for lifestyle intervention. Additionally, chronic endoplasmic reticulum (ER) stress induced by chronic hyperglycemia and hyperlipidemia is a potentiating factor of amylin-induced β-cell loss. Herein, we describe a high-content/high-throughput screening (HTS) assay for the discovery of small molecules that are chemoprotective of amylin-induced, ER-stress-potentiated β-cell loss. We also put forth a general method for construction of a robust well-level multivariate scoring system using partial least squares regression analysis to improve high-content assay performance and to streamline the association of complex high-content data into HTS activity databases where univariate responses are typical.

  2. IFN-α augments natural killer-mediated antibody-dependent cellular cytotoxicity of HIV-1-infected autologous CD4+ T cells regardless of major histocompatibility complex class 1 downregulation.

    Science.gov (United States)

    Tomescu, Costin; Tebas, Pablo; Montaner, Luis J

    2017-03-13

    We have previously shown that IFN-α stimulation augments direct natural killer (NK) cell lysis of autologous CD4 primary T cells infected with certain HIV-1 isolates based upon major histocompatibility complex class 1 (MHC-1) downregulation capacity. Here, we investigated if antibody-dependent cellular cytotoxicity (ADCC) could trigger lysis of HIV-1 isolates that were resistant to direct NK lysis and if IFN-α prestimulation of NK cells could further enhance ADCC. Using broadly neutralizing monoclonal antibodies against gp120 (VRC01 or PGV04) or plasma from HIV-1-infected patients (ART-suppressed or elite controller) to trigger ADCC, we measured NK cell chromium release cytotoxicity against HIV-1-infected autologous CD4 primary T cells and NK cell CD107a degranulation against gp120-coated CD4 T cells. Total or NK-depleted peripheral blood mononuclear cells were used as effectors in the presence or absence of IFN-α prestimulation. Plasma from HIV-1-infected patients and monoclonal antibodies against gp120 could trigger NK-dependent ADCC lysis of viral isolates that were resistant to direct NK cell lysis following IFN-α stimulation. In contrast, viral isolates that exhibited potent MHC-I downregulation capacity could be lysed by NK cells through either IFN-α stimulated direct cytotoxicity or through ADCC. When utilized in combination, IFN-α prestimulation significantly augmented ADCC lysis of HIV-1-infected target cells and increased NK cell CD107a degranulation against gp120-coated ADCC targets (P cytotoxicity depending on MHC downregulation status.

  3. Analysis of the Effects of Cell Stress and Cytotoxicity on In ...

    Science.gov (United States)

    Chemical toxicity can arise from disruption of specific biomolecular functions or through more generalized cell stress and cytotoxicity-mediated processes. Here, concentration-dependent responses of 1063 chemicals including pharmaceuticals, natural products, pesticidals, consumer, and industrial chemicals across a diverse battery of 821 in vitro assay endpoints from 7 high-throughput assay technology platforms were analyzed in order to better distinguish between these types of activities. Both cell-based and cell-free assays showed a rapid increase in the frequency of responses at concentrations where cell stress / cytotoxicity responses were observed in cell-based assays. Chemicals that were positive on at least two viability/cytotoxicity assays within the concentration range tested (typically up to 100 M) activated a median of 12% of assay endpoints while those that were not cytotoxic in this concentration range activated 1.3% of the assays endpoints. The results suggest that activity can be broadly divided into: (1) specific biomolecular interactions against one or more targets (e.g., receptors or enzymes) at concentrations below which overt cytotoxicity-associated activity is observed; and (2) activity associated with cell stress or cytotoxicity, which may result from triggering of specific cell stress pathways, chemical reactivity, physico-chemical disruption of proteins or membranes, or broad low-affinity non-covalent interactions. Chemicals showing a g

  4. Fucoxanthin Enhances Cisplatin-Induced Cytotoxicity via NFκB-Mediated Pathway and Downregulates DNA Repair Gene Expression in Human Hepatoma HepG2 Cells

    Directory of Open Access Journals (Sweden)

    Cheng-Ling Liu

    2013-01-01

    Full Text Available Cisplain, a platinum-containing anticancer drug, has been shown to enhance DNA repair and to inhibit cell apoptosis, leading to drug resistance. Thus, the combination of anticancer drugs with nutritional factors is a potential strategy for improving the efficacy of cisplatin chemotherapy. In this study, we investigated the anti-proliferative effects of a combination of fucoxanthin, the major non-provitamin A carotenoid found in Undaria Pinnatifida, and cisplatin in human hepatoma HepG2 cells. We found that fucoxanthin (1–10 μΜ pretreatment for 24 h followed by cisplatin (10 μΜ for 24 h significantly decreased cell proliferation, as compared with cisplatin treatment alone. Mechanistically, we showed that fucoxanthin attenuated cisplatin-induced NFκB expression and enhanced the NFκB-regulated Bax/Bcl-2 mRNA ratio. Cisplatin alone induced mRNA expression of excision repair cross complementation 1 (ERCC1 and thymidine phosphorylase (TP through phosphorylation of ERK, p38 and PI3K/AKT pathways. However, fucoxanthin pretreatment significantly attenuated cisplatin-induced ERCC1 and TP mRNA expression, leading to improvement of chemotherapeutic efficacy of cisplatin. The results suggest that a combined treatment with fucoxanthin and cisplatin could lead to a potentially important new therapeutic strategy against human hepatoma cells.

  5. The role of cyclooxygenase in n-6 and n-3 polyunsaturated fatty acid mediated effects on cell proliferation, PGE2 synthesis and cytotoxicity in human colorectal carcinoma cell lines

    NARCIS (Netherlands)

    Dommels, Y.E.M.; Haring, M.M.G.; Keestra, N.G.M.; Alink, G.M.; Bladeren, P.J. van; Ommen, B. van

    2003-01-01

    This study was conducted to investigate the role of the enzyme cyclooxygenase (COX) and its prostaglandin product PGE2 in n-6 and n-3 polyunsaturated fatty acid (PUFA)-mediated effects on cellular proliferation of two human colorectal carcinoma cell lines. The long chain PUFAs eicosapentaenoic acid

  6. The role of cyclooxygenase in n-6 and n-3 polyunsaturated fatty acid mediated effects on cell proliferation, PGE2 synthesis and cytotoxicity in human colorectal carcinoma cell lines

    NARCIS (Netherlands)

    Dommels, Y.E.M.; Haring, M.M.G.; Keestra, N.G.M.; Alink, G.M.; Bladeren, van P.J.; Ommen, van B.

    2003-01-01

    This study was conducted to investigate the role of the enzyme cyclooxygenase (COX) and its prostaglandin product PGE(2) in n-6 and n-3 polyunsaturated fatty acid (PUFA)-mediated effects on cellular proliferation of two human colorectal carcinoma cell lines. The long chain PUFAs eicosapentaenoic

  7. Oxidative stress-mediated cytotoxicity and apoptosis induction by TiO2 nanofibers in HeLa cells

    DEFF Research Database (Denmark)

    Ramkumar, Kunga Mohan; Manjula, Chinnasamy; GnanaKumar, Georgepeter

    2012-01-01

    Titanium dioxide nanoparticles are increasingly being used in pharmaceutical and cosmetic products. The high aspect ratio of fibrous nanomaterials, such as carbon nanotubes and TiO2 nanofibers (TiO2NFs), similar to the one used in this study makes them an attractive structural material and has...... attracted a lot of attention due to their possible negative health effects as suggested by their morphological similarities with asbestos. In the present study, therefore, toxicity of TiO2NFs was evaluated in human cervical adenocarcinoma HeLa cells. The TEM and XRD analyses showed that TiO2NFs used...

  8. The adaptor molecule SAP plays essential roles during invariant NKT cell cytotoxicity and lytic synapse formation.

    Science.gov (United States)

    Das, Rupali; Bassiri, Hamid; Guan, Peng; Wiener, Susan; Banerjee, Pinaki P; Zhong, Ming-Chao; Veillette, André; Orange, Jordan S; Nichols, Kim E

    2013-04-25

    The adaptor molecule signaling lymphocytic activation molecule-associated protein (SAP) plays critical roles during invariant natural killer T (iNKT) cell ontogeny. As a result, SAP-deficient humans and mice lack iNKT cells. The strict developmental requirement for SAP has made it difficult to discern its possible involvement in mature iNKT cell functions. By using temporal Cre recombinase-mediated gene deletion to ablate SAP expression after completion of iNKT cell development, we demonstrate that SAP is essential for T-cell receptor (TCR)-induced iNKT cell cytotoxicity against T-cell and B-cell leukemia targets in vitro and iNKT-cell-mediated control of T-cell leukemia growth in vivo. These findings are not restricted to the murine system: silencing RNA-mediated suppression of SAP expression in human iNKT cells also significantly impairs TCR-induced cytolysis. Mechanistic studies reveal that iNKT cell killing requires the tyrosine kinase Fyn, a known SAP-binding protein. Furthermore, SAP expression is required within iNKT cells to facilitate their interaction with T-cell targets and induce reorientation of the microtubule-organizing center to the immunologic synapse (IS). Collectively, these studies highlight a novel and essential role for SAP during iNKT cell cytotoxicity and formation of a functional IS.

  9. Cytotoxic effects of delfin insecticide ( Bacillus thuringiensis ) on cell ...

    African Journals Online (AJOL)

    Cytotoxic effects of delfin insecticide ( Bacillus thuringiensis ) on cell behaviour, phagocytosis, contractile vacuole activity and macronucleus in a protozoan ciliate Paramecium caudatum. ... macronucleus, fragmentation, vacuolization and complete diffusion of macronucleus were observed and were dose dependent.

  10. Enhanced cytotoxicity of natural killer cells following the acquisition of chimeric antigen receptors through trogocytosis.

    Directory of Open Access Journals (Sweden)

    Fu-Nan Cho

    Full Text Available Natural killer (NK cells have the capacity to target tumors and are ideal candidates for immunotherapy. Viral vectors have been used to genetically modify in vitro expanded NK cells to express chimeric antigen receptors (CARs, which confer cytotoxicity against tumors. However, use of viral transduction methods raises the safety concern of viral integration into the NK cell genome. In this study, we used trogocytosis as a non-viral method to modify NK cells for immunotherapy. A K562 cell line expressing high levels of anti-CD19 CARs was generated as a donor cell to transfer the anti-CD19 CARs onto NK cells via trogocytosis. Anti-CD19 CAR expression was observed in expanded NK cells after these cells were co-cultured for one hour with freeze/thaw-treated donor cells expressing anti-CD19 CARs. Immunofluorescence analysis confirmed the localization of the anti-CD19 CARs on the NK cell surface. Acquisition of anti-CD19 CARs via trogocytosis enhanced NK cell-mediated cytotoxicity against the B-cell acute lymphoblastic leukemia (B-ALL cell lines and primary B-ALL cells derived from patients. To our knowledge, this is the first report that describes the increased cytotoxicity of NK cells following the acquisition of CARs via trogocytosis. This novel strategy could be a potential valuable therapeutic approach for the treatment of B-cell tumors.

  11. Enhanced cytotoxicity of natural killer cells following the acquisition of chimeric antigen receptors through trogocytosis.

    Science.gov (United States)

    Cho, Fu-Nan; Chang, Tsung-Hsien; Shu, Chih-Wen; Ko, Ming-Chin; Liao, Shuen-Kuei; Wu, Kang-Hsi; Yu, Ming-Sun; Lin, Shyh-Jer; Hong, Ying-Chung; Chen, Chien-Hsun; Hung, Chien-Hui; Chang, Yu-Hsiang

    2014-01-01

    Natural killer (NK) cells have the capacity to target tumors and are ideal candidates for immunotherapy. Viral vectors have been used to genetically modify in vitro expanded NK cells to express chimeric antigen receptors (CARs), which confer cytotoxicity against tumors. However, use of viral transduction methods raises the safety concern of viral integration into the NK cell genome. In this study, we used trogocytosis as a non-viral method to modify NK cells for immunotherapy. A K562 cell line expressing high levels of anti-CD19 CARs was generated as a donor cell to transfer the anti-CD19 CARs onto NK cells via trogocytosis. Anti-CD19 CAR expression was observed in expanded NK cells after these cells were co-cultured for one hour with freeze/thaw-treated donor cells expressing anti-CD19 CARs. Immunofluorescence analysis confirmed the localization of the anti-CD19 CARs on the NK cell surface. Acquisition of anti-CD19 CARs via trogocytosis enhanced NK cell-mediated cytotoxicity against the B-cell acute lymphoblastic leukemia (B-ALL) cell lines and primary B-ALL cells derived from patients. To our knowledge, this is the first report that describes the increased cytotoxicity of NK cells following the acquisition of CARs via trogocytosis. This novel strategy could be a potential valuable therapeutic approach for the treatment of B-cell tumors.

  12. CD16A activation of NK cells promotes NK cell proliferation and memory-like cytotoxicity against cancer cells.

    Science.gov (United States)

    Pahl, Jens H W; Koch, Joachim; Gotz, Jana-Julia; Arnold, Annette; Reusch, Uwe; Gantke, Thorsten; Rajkovic, Erich; Treder, Martin S; Cerwenka, Adelheid

    2018-03-07

    CD16A is a potent cytotoxicity receptor on human NK cells, which can be exploited by therapeutic bispecific antibodies. So far, the effects of CD16A-mediated activation on NK cell effector functions beyond classical antibody-dependent cytotoxicity have remained poorly elucidated. Here, we investigated NK cell responses after exposure to therapeutic antibodies such as the tetravalent bispecific antibody AFM13 (CD30/CD16A), designed for the treatment of Hodgkin lymphoma and other CD30+ lymphomas. Our results reveal that CD16A engagement enhanced subsequent IL2 and IL15¬-driven NK cell proliferation and expansion. This effect involved the up-regulation of CD25 (IL2Ralpha) and CD132 (gammac) on NK cells, resulting in increased sensitivity to low-dose IL2 or to IL15. CD16A engagement initially induced NK cell cytotoxicity. The lower NK cell reactivity observed one day after CD16A engagement could be recovered by re-culture in IL2 or IL15. After re-culture in IL2 or IL15, these CD16A-experienced NK cells exerted more vigorous IFNgamma production upon re-stimulation with tumor cells or cytokines. Importantly, after re-culture, CD16A-experienced NK cells also exerted increased cytotoxicity towards different tumor targets, mainly through the activating NK cell receptor NKG2D. Our findings uncover a role for CD16A engagement in priming NK cell responses to re-stimulation by cytokines and tumor cells, indicative of a memory-like functionality. Our study suggests that combination of AFM13 with IL2 or IL15 may boost NK cell anti-tumor activity in patients by expanding tumor-reactive NK cells and enhancing NK cell reactivity, even upon repeated tumor encounters. Copyright ©2018, American Association for Cancer Research.

  13. Spontaneous and natural cytotoxicity receptor-mediated cytotoxicity are effector functions of distinct natural killer subsets in hepatitis C virus-infected chimpanzees.

    Science.gov (United States)

    Verstrepen, B E; Nieuwenhuis, I G; Mooij, P; Bogers, W M; Boonstra, A; Koopman, G

    2016-07-01

    In humans, CD16 and CD56 are used to identify functionally distinct natural killer (NK) subsets. Due to ubiquitous CD56 expression, this marker cannot be used to distinguish between NK cell subsets in chimpanzees. Therefore, functional analysis of distinct NK subsets during hepatitis C virus (HCV) infection has never been performed in these animals. In the present study an alternative strategy was used to identify four distinct NK subsets on the basis of the expression of CD16 and CD94. The expression of activating and inhibiting surface receptors showed that these subsets resemble human NK subsets. CD107 expression was used to determine degranulation of the different subsets in naive and HCV-infected chimpanzees. In HCV-infected chimpanzees increased spontaneous cytotoxicity was observed in CD94(high/dim) CD16(pos) and CD94(low) CD16(pos) subsets. By contrast, increased natural cytotoxicity receptor (NCR)- mediated degranulation after NKp30 and NKp44 triggering was demonstrated in the CD94(dim) CD16(neg) subset. Our findings suggest that spontaneous and NCR-mediated cytotoxicity are effector functions of distinct NK subsets in HCV-infected chimpanzees. © 2016 British Society for Immunology.

  14. Cytotoxicity of atropine to human corneal endothelial cells by inducing mitochondrion-dependent apoptosis.

    Science.gov (United States)

    Wen, Qian; Fan, Ting-Jun; Tian, Cheng-Lei

    2016-07-01

    Atropine, a widely used topical anticholinergic drug, might have adverse effects on human corneas in vivo. However, its cytotoxic effect on human corneal endothelium (HCE) and its possible mechanisms are unclear. Here, we investigated the cytotoxicity of atropine and its underlying cellular and molecular mechanisms using an in vitro model of HCE cells and verified the cytotoxicity using cat corneal endothelium (CCE) in vivo. Our results showed that atropine at concentrations above 0.3125 g/L could induce abnormal morphology and viability decline in a dose- and time-dependent manner in vitro. The cytotoxicity of atropine was proven by the induced density decrease and abnormality of morphology and ultrastructure of CCE cells in vivo. Meanwhile, atropine could also induce dose- and time-dependent elevation of plasma membrane permeability, G1 phase arrest, phosphatidylserine externalization, DNA fragmentation, and apoptotic body formation of HCE cells. Moreover, 2.5 g/L atropine could also induce caspase-2/-3/-9 activation, mitochondrial transmembrane potential disruption, downregulation of anti-apoptotic Bcl-2 and Bcl-xL, upregulation of pro-apoptotic Bax and Bad, and upregulation of cytoplasmic cytochrome c and apoptosis-inducing factor. In conclusion, atropine above 1/128 of its clinical therapeutic dosage has a dose- and time-dependent cytotoxicity to HCE cells in vitro which is confirmed by CCE cells in vivo, and its cytotoxicity is achieved by inducing HCE cell apoptosis via a death receptor-mediated mitochondrion-dependent signaling pathway. Our findings provide new insights into the cytotoxicity and apoptosis-inducing effect of atropine which should be used with great caution in eye clinic. © 2016 by the Society for Experimental Biology and Medicine.

  15. Cytotoxic activities of amentoflavone against human breast and cervical cancers are mediated by increasing of PTEN expression levels due to peroxisomes proliferate-activated receptor {gamma} activation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eunjung; Shin, Soyoung; Lee, Jeeyoung; Lee, So Jung; Kim, Jinkyoung; Yoon, Doyoung; Kim, Yangmee [Konkuk Univ., Seoul (Korea, Republic of); Woo, Eunrhan [Chosun Univ., Gwangju (Korea, Republic of)

    2012-07-15

    Human peroxisomes proliferate-activated receptor gamma (hPPAR{gamma}) has been implicated in numerous pathologies, including obesity, diabetes, and cancer. Previously, we verified that amentoflavone is an activator of hPPAR{gamma} and probed the molecular basis of its action. In this study, we investigated the mechanism of action of amentoflavone in cancer cells and demonstrated that amentoflavone showed strong cytotoxicity against MCF-7 and HeLa cancer cell lines. We showed that hPPAR{gamma} expression in MCF-7 and HeLa cells is specifically stimulated by amentoflavone, and suggested that amentoflavone-induced cytotoxic activities are mediated by activation of hPPAR{gamma} in these two cancer cell lines. Moreover, amentoflavone increased PTEN levels in these two cancer cell lines, indicating that the cytotoxic activities of amentoflavone are mediated by increasing of PTEN expression levels due to hPPAR{gamma} activation.

  16. Cytotoxic activities of amentoflavone against human breast and cervical cancers are mediated by increasing of PTEN expression levels due to peroxisomes proliferate-activated receptor γ activation

    International Nuclear Information System (INIS)

    Lee, Eunjung; Shin, Soyoung; Lee, Jeeyoung; Lee, So Jung; Kim, Jinkyoung; Yoon, Doyoung; Kim, Yangmee; Woo, Eunrhan

    2012-01-01

    Human peroxisomes proliferate-activated receptor gamma (hPPARγ) has been implicated in numerous pathologies, including obesity, diabetes, and cancer. Previously, we verified that amentoflavone is an activator of hPPARγ and probed the molecular basis of its action. In this study, we investigated the mechanism of action of amentoflavone in cancer cells and demonstrated that amentoflavone showed strong cytotoxicity against MCF-7 and HeLa cancer cell lines. We showed that hPPARγ expression in MCF-7 and HeLa cells is specifically stimulated by amentoflavone, and suggested that amentoflavone-induced cytotoxic activities are mediated by activation of hPPARγ in these two cancer cell lines. Moreover, amentoflavone increased PTEN levels in these two cancer cell lines, indicating that the cytotoxic activities of amentoflavone are mediated by increasing of PTEN expression levels due to hPPARγ activation

  17. MODERATE CYTOTOXICITY OF PROANTHOCYANIDINS TO HUMAN TUMOR-CELL LINES

    NARCIS (Netherlands)

    KOLODZIEJ, H; HABERLAND, C; WOERDENBAG, HJ; KONINGS, AWT

    In the present study the cytotoxicity of 16 proanthocyanidins was evaluated in GLC(4), a human small cell lung carcinoma cell line, and in COLO 320, a human colorectal cancer cell line, using the microculture tetrazolium (MTT) assay. With IC50 values ranging from 18 to >200 mu m following continuous

  18. Cytotoxicity against MCF-7 breast cancer cell line and interaction ...

    African Journals Online (AJOL)

    N6-furfuryladenine (kinetin) is a cytokinin growth factor with several biological effects observed in human cells and fruit flies. Kinetin exists naturally in the DNA of almost all organisms tested so far, including human cells and various plants. The cytotoxicity effect of kinetin on MCF-7 breast cancer cell lines was measured by ...

  19. Role of Calcium and Mitochondria in MeHg-Mediated Cytotoxicity

    Directory of Open Access Journals (Sweden)

    Daniel Roos

    2012-01-01

    Full Text Available Methylmercury (MeHg mediated cytotoxicity is associated with loss of intracellular calcium (Ca2+ homeostasis. The imbalance in Ca2+ physiology is believed to be associated with dysregulation of Ca2+ intracellular stores and/or increased permeability of the biomembranes to this ion. In this paper we summarize the contribution of glutamate dyshomeostasis in intracellular Ca2+ overload and highlight the mitochondrial dysfunctions induced by MeHg via Ca2+ overload. Mitochondrial disturbances elicited by Ca2+ may involve several molecular events (i.e., alterations in the activity of the mitochondrial electron transport chain complexes, mitochondrial proton gradient dissipation, mitochondrial permeability transition pore (MPTP opening, thiol depletion, failure of energy metabolism, reactive oxygen species overproduction that could culminate in cell death. Here we will focus on the role of oxidative stress in these phenomena. Additionally, possible antioxidant therapies that could be effective in the treatment of MeHg intoxication are briefly discussed.

  20. Efficient Reduction of Antibacterial Activity and Cytotoxicity of Fluoroquinolones by Fungal-Mediated N-Oxidation.

    Science.gov (United States)

    Rusch, Marina; Spielmeyer, Astrid; Meißner, Jessica; Kietzmann, Manfred; Zorn, Holger; Hamscher, Gerd

    2017-04-19

    Extensive usage of fluoroquinolone antibiotics in livestock results in their occurrence in manure and subsequently in the environment. Fluoroquinolone residues may promote bacterial resistance and are toxic to plants and aquatic organisms. Moreover, fluoroquinolones may enter the food chain through plant uptake, if manure is applied as fertilizer. Thus, the presence of fluoroquinolones in the environment may pose a threat to human and ecological health. In this study, the biotransformation of enrofloxacin, marbofloxacin, and difloxacin by the fungus X. longipes (Xylaria) was investigated. The main metabolites were unequivocally identified as the respective N-oxides by mass spectrometry and nuclear magnetic resonance spectroscopy. Fungal-mediated N-oxidation of fluoroquinolones led to a 77-90% reduction of the initial antibacterial activity. In contrast to their respective parent compounds, N-oxides showed low cytotoxic potential and had a reduced impact on cell proliferation. Thus, biotransformation by X. longipes may represent an effective method for inactivating fluoroquinolones.

  1. Antigen-specific B cells reactivate an effective cytotoxic T cell response against phagocytosed Salmonella through cross-presentation.

    Science.gov (United States)

    de Wit, Jelle; Souwer, Yuri; Jorritsma, Tineke; Klaasse Bos, Hanny; ten Brinke, Anja; Neefjes, Jacques; van Ham, S Marieke

    2010-09-27

    The eradication of facultative intracellular bacterial pathogens, like Salmonella typhi, requires the concerted action of both the humoral immune response and the cytotoxic CD8(+) T cell response. Dendritic cells (DCs) are considered to orchestrate the cytotoxic CD8(+) T cell response via cross-presentation of bacterial antigens onto MHC class I molecules. Cross-presentation of Salmonella by DCs however, is accompanied by the induction of apoptosis in the DCs. Besides antibody production, B cells are required to clear Salmonella infection for other unknown reasons. Here we show that Salmonella-specific B cells that phagocytose Salmonella upon BCR-ligation reactivate human memory CD8(+) T cells via cross-presentation yielding a Salmonella-specific cytotoxic T cell response. The reactivation of CD8(+) T cells is dependent on CD4(+) T cell help. Unlike the DCs, B cell-mediated cross-presentation of Salmonella does not coincide with apoptosis. B cells form a new player in the activation of the cytotoxic effector arm of the immune response and the generation of effective adaptive immunity in Salmonella infection.

  2. Heterogeneity of Human Breast Cancer Cell Clones with respect to Cytotoxic Susceptibility detected by Cytotoxic T-Lymphocytes and Natural Killer Cells

    OpenAIRE

    Sato, Takashi; Sato, Noriyuki; Cho, Junmin; Takahashi, Shuji; Toda, Kazunori; Asaishi, Kazuaki; Hirata, Koichi; Kikuchi, Kokichi

    1991-01-01

    Clonal heterogeneity of human breast cancer cells, HMC-1, with respect to the cytotoxic susceptibility against autologous cytotoxic T-lymphocytes (CTL), TcHMC-1, and natural killer- (NK) cells was demonstrated in a ??Cr release cytotoxicity assay. We have established 8 tumor cell clones, HMC-1-1 through HMC-1-8, from HMC-1 cells and autologous TcHMC-1 clone that showed high cytotoxic activity as well. In the cytotoxicity assays, HMC-1-8 clone showed significantly high cytotoxic susceptibility...

  3. Interleukin-17A Promotes CD8+ T Cell Cytotoxicity To Facilitate West Nile Virus Clearance.

    Science.gov (United States)

    Acharya, Dhiraj; Wang, Penghua; Paul, Amber M; Dai, Jianfeng; Gate, David; Lowery, Jordan E; Stokic, Dobrivoje S; Leis, A Arturo; Flavell, Richard A; Town, Terrence; Fikrig, Erol; Bai, Fengwei

    2017-01-01

    CD8 + T cells are crucial components of immunity and play a vital role in recovery from West Nile virus (WNV) infection. Here, we identify a previously unrecognized function of interleukin-17A (IL-17A) in inducing cytotoxic-mediator gene expression and promoting CD8 + T cell cytotoxicity against WNV infection in mice. We find that IL-17A-deficient (Il17a -/- ) mice are more susceptible to WNV infection and develop a higher viral burden than wild-type (WT) mice. Interestingly, the CD8 + T cells isolated from Il17a -/- mice are less cytotoxic and express lower levels of cytotoxic-mediator genes, which can be restored by supplying recombinant IL-17A in vitro and in vivo Importantly, treatment of WNV-infected mice with recombinant IL-17A, as late as day 6 postinfection, significantly reduces the viral burden and increases survival, suggesting a therapeutic potential for IL-17A. In conclusion, we report a novel function of IL-17A in promoting CD8 + T cell cytotoxicity, which may have broad implications in other microbial infections and cancers. Interleukin-17A (IL-17A) and CD8 + T cells regulate diverse immune functions in microbial infections, malignancies, and autoimmune diseases. IL-17A is a proinflammatory cytokine produced by diverse cell types, while CD8 + T cells (known as cytotoxic T cells) are major cells that provide immunity against intracellular pathogens. Previous studies have demonstrated a crucial role of CD8 + T cells in recovery from West Nile virus (WNV) infection. However, the role of IL-17A during WNV infection remains unclear. Here, we demonstrate that IL-17A protects mice from lethal WNV infection by promoting CD8 + T cell-mediated clearance of WNV. In addition, treatment of WNV-infected mice with recombinant IL-17A reduces the viral burden and increases survival of mice, suggesting a potential therapeutic. This novel IL-17A-CD8 + T cell axis may also have broad implications for immunity to other microbial infections and cancers, where CD8 + T cell

  4. Flow cytometric assay detecting cytotoxicity against human endogenous retrovirus antigens expressed on cultured multiple sclerosis cells

    DEFF Research Database (Denmark)

    Møller-Larsen, A; Brudek, T; Petersen, T

    2013-01-01

    expressing increased amounts of human endogenous retrovirus antigens. MS patients also have increased antibody levels to these antigens. The target cells are spontaneously growing peripheral blood mononuclear cells (PBMCs) of B cell lineage, expressing human endogenous retrovirus HERV epitopes...... on their surface. Polyclonal antibodies against defined peptides in the Env- and Gag-regions of the HERVs were raised in rabbits and used in antibody-dependent cell-mediated cytotoxicity (ADCC) -assays. Rituximab® (Roche), a chimeric monoclonal antibody against CD20 expressed primarily on B cells, was used...

  5. Role of the Nrf2-heme oxygenase-1 pathway in silver nanoparticle-mediated cytotoxicity

    International Nuclear Information System (INIS)

    Kang, Su Jin; Ryoo, In-geun; Lee, Young Joon; Kwak, Mi-Kyoung

    2012-01-01

    Silver nanoparticles (nano-Ag) have been widely used in various commercial products including textiles, electronic appliances and biomedical products. However, there remains insufficient information on the potential risk of nano-Ag to human health and environment. In the current study, we have investigated the role of NF-E2-related factor 2 (Nrf2) transcription factor in nano-Ag-induced cytotoxicity. When Nrf2 expression was blocked using interring RNA expression in ovarian carcinoma cell line, nano-Ag treatment showed a substantial decrease in cell viability with concomitant increases in apoptosis and DNA damage compared to the control cells. Target gene analysis revealed that the expression of heme oxygenase-1 (HO-1) was highly elevated by nano-Ag in nonspecific shRNA expressing cells, while Nrf2 knockdown cells (NRF2i) did not increase HO-1 expression. The role of HO-1 in cytoprotection against nano-Ag was reinforced by results using pharmacological inducer of HO-1: cobalt protoporphyrin-mediated HO-1 activation in the NRF2i cells prevented nano-Ag-mediated cell death. Similarly, pharmacological or genetic inhibition of HO-1 in nonspecific control cells exacerbated nano-Ag toxicity. As the upstream signaling mechanism, nano-Ag required the phosphoinositide 3-kinase (PI3K) and p38MAPK signaling cascades for HO-1 induction. The treatment with either PI3K inhibitor or p38MAPK inhibitor suppressed HO-1 induction and intensified nano-Ag-induced cell death. Taken together, these results suggest that Nrf2-dependent HO-1 up-regulation plays a protective role in nano-Ag-induced DNA damage and consequent cell death. In addition, nano-Ag-mediated HO-1 induction is associated with the PI3K and p38MAPK signaling pathways. -- Highlights: ► Role of Nrf2 signaling in silver nanoparticle toxicity. ► Silver nanoparticle toxicity is increased by Nrf2 blockade. ► Nrf2-dependent HO-1 induction protects cells from silver nanoparticle toxicity. ► PI3K and p38MAPK cascades are

  6. UVA radiation augments cytotoxic activity of psoralens in melanoma cells.

    Science.gov (United States)

    Wrześniok, Dorota; Beberok, Artur; Rok, Jakub; Delijewski, Marcin; Hechmann, Anna; Oprzondek, Martyna; Rzepka, Zuzanna; Bacler-Żbikowska, Barbara; Buszman, Ewa

    2017-07-01

    Melanoma is an aggressive form of skin cancer. The aim of the study was to evaluate the influence of UVA radiation and psoralens: 5-methoxypsoralen (5-MOP) or 8-methoxypsoralen (8-MOP) on melanoma cells viability. The amelanotic C32 and melanotic COLO829 human melanoma cell lines were exposed to increasing concentrations of psoralens (0.1-100 μM) in the presence or absence of UVA radiation. Cell viability was evaluated by the WST-1 assay. We demonstrated that 8-MOP, in contrast to 5-MOP, has no cytotoxic effect on both melanoma cell lines. Simultaneous exposure of cells to 8-MOP and UVA radiation caused significant cytotoxic response in C32 cells where the EC 50 value was estimated to be 131.0 μM (UVA dose: 1.3 J/cm 2 ) and 105.3 μM (UVA dose: 2.6 J/cm 2 ). The cytotoxicity of 5-MOP on both C32 and COLO829 cells was significantly augmented by UVA radiation - the EC 50 was estimated to be 22.7 or 7.9 μM (UVA dose: 1.3 J/cm 2 ) and 24.2 or 7.0 μM (UVA dose: 2.6 J/cm 2 ), respectively. The demonstrated high cytotoxic response after simultaneous exposure of melanoma cells to psoralens and UVA radiation in vitro suggests the usefulness of PUVA therapy to treat melanoma in vivo.

  7. Combined fluorimetric caspase 3/7 assay and bradford protein determination for assessment of polycation-mediated cytotoxicity

    DEFF Research Database (Denmark)

    Larsen, Anna K; Hall, Arnaldur; Lundsgart, Henrik

    2013-01-01

    and design of safe and efficient nucleic acid delivery systems. Numerous methods are presently available to detect and delineate cytotoxicity and cell death-mediated signals in cell cultures. Activation of caspases is part of the classical apoptosis program and increased caspase activity is therefore a well......Cationic polyplexes and lipoplexes are widely used as artificial systems for nucleic acid delivery into the cells, but they can also induce cell death. Mechanistic understanding of cell toxicity and biological side effects of these cationic entities is essential for optimization strategies......-established hallmark of programmed cell death. Additional methods to monitor cell death-related signals must, however, also be carried out to fully define the type of cell toxicity in play. These may include methods that detect plasma membrane damage, loss of mitochondrial membrane potential, phosphatidylserine...

  8. Analysis of the Effects of Cell Stress and Cytotoxicity on In Vitro Assay Activity Across a Diverse Chemical and Assay Space

    Data.gov (United States)

    U.S. Environmental Protection Agency — Chemical toxicity can arise from disruption of specific biomolecular functions or through more generalized cell stress and cytotoxicity-mediated processes. Here,...

  9. Generation of cytotoxic T lymphocytes specific for human cytomegalovirus using dendritic cells in vitro.

    Science.gov (United States)

    Cho, H I; Han, H; Kim, C C; Kim, T G

    2001-01-01

    For the adoptive immunotherapy in immunodeficient bone marrow transplant recipients to prevent and treat human cytomegalovirus (HCMV)-associated diseases, HCMV-pulsed dendritic cells (DCs) were used as antigen-presenting cells for the induction of cytotoxic T lymphocytes (CTLs) specific to HCMV antigens in vitro. The antiviral CTL responses induced by HCMV-pulsed DCs were as highly efficient as those induced by HCMV-infected dermal fibroblasts, and endogenous viral gene expression was not required to induce virus-specific T-cell lines. The strong cytotoxic activity against HCMV-pp65, known as HCMV major antigen, was identified using autologous B lymphoblastoid cell line expressing pp65 antigen. The cytotoxic activity toward HCMV-infected target cells was found to be mediated primarily by CD8+ T cells, although both CD8+ cells and CD4+ cells were able to lyse autologous virus-infected target cells. The CTLs contained a mixture of effector cells that recognized virus peptides in the context of major histocompatibility complex. This system may be useful for defining the cellular immune response to HCMV and for the treatment of HCMV infection in immunocompromised patients.

  10. Human Milk Oligosaccharides Protect Bladder Epithelial Cells Against Uropathogenic Escherichia coli Invasion and Cytotoxicity

    Science.gov (United States)

    Lin, Ann E.; Autran, Chloe A.; Espanola, Sophia D.; Bode, Lars; Nizet, Victor

    2014-01-01

    The invasive pathogen uropathogenic Escherichia coli (UPEC) is the primary cause of urinary tract infections (UTIs). Recurrent infection that can progress to life-threatening renal failure has remained as a serious global health concern in infants. UPEC adheres to and invades bladder epithelial cells to establish infection. Studies have detected the presence of human milk oligosaccharides (HMOs) in urine of breast-fed, but not formula-fed, neonates. We investigated the mechanisms HMOs deploy to elicit protection in human bladder epithelial cells infected with UPEC CFT073, a prototypic urosepsis-associated strain. We found a significant reduction in UPEC internalization into HMO-pretreated epithelial cells without observing any significant effect in UPEC binding to these cells. This event coincides with a rapid decrease in host cell cytotoxicity, recognized by LIVE/DEAD staining and cell detachment, but independent of caspase-mediated or mitochondrial-mediated programmed cell death pathways. Further investigation revealed HMOs, and particularly the sialic acid-containing fraction, reduced UPEC-mediated MAPK and NF-κB activation. Collectively, our results indicate that HMOs can protect bladder epithelial cells from deleterious cytotoxic and proinflammatory effects of UPEC infection, and may be one contributing mechanism underlying the epidemiological evidence of reduced UTI incidence in breast-fed infants. PMID:23990566

  11. Evaluation of mutagenicity and metabolism-mediated cytotoxicity of the naphthoquinone 5-methoxy-3,4-dehydroxanthomegnin from Paepalanthus latipes

    Directory of Open Access Journals (Sweden)

    Rodrigo R. Kitagawa

    Full Text Available A large number of quinones have been associated with antitumor, antibacterial, antimalarial, and antifungal activities. Results of previous studies of 5-methoxy-3,4-dehydroxanthomegnin, a naphthoquinone isolated from Paepalanthus latipes Silveira, Eriocaulaceae, revealed antitumor, antibacterial, immunomodulatory, and antioxidant activities. In this study, we assessed the mutagenicity and metabolism-mediated cytotoxicity of 5-methoxy-3,4-dehydroxanthomegnin by using the Ames test and a microculture neutral red assay incorporating an S9 fraction (hepatic microsomal fraction and cofactors, respectively. We also evaluated the mutagenic activity in Salmonella typhimurium strains TA100, TA98, TA102, and TA97a, as well as the cytotoxic effect on McCoy cells with and without metabolic activation in both tests. Results indicated that naphthoquinone does not cause mutations by substitution or by addition and deletion of bases in the deoxyribonucleic acid sequence with and without metabolic activation. As previously demonstrated, the in vitro cytotoxicity of 5-methoxy-3,4-dehydroxanthomegnin to McCoy cells showed a significant cytotoxic index (CI50 of 11.9 μg/ml. This index was not altered by addition of the S9 fraction, indicating that the S9 mixture failed to metabolically modify the compound. Our results, allied with more specific biological assays in the future, would contribute to the safe use of 5-methoxy-3,4-dehydroxanthomegnin, compound that has showed in previous studies beneficial properties as a potential anticancer drug.

  12. Cell specific cytotoxicity and uptake of graphene nanoribbons.

    Science.gov (United States)

    Mullick Chowdhury, Sayan; Lalwani, Gaurav; Zhang, Kevin; Yang, Jeong Y; Neville, Kayla; Sitharaman, Balaji

    2013-01-01

    The synthesis of oxidized graphene nanoribbons (O-GNR) via longitudinal unzipping of carbon nanotubes opens avenues for their further development for a variety of biomedical applications. Evaluation of the cyto- and bio-compatibility is necessary to develop any new material for in vivo biomedical applications. In this study, we report the cytotoxicity screening of O-GNRs water-solubilized with PEG-DSPE (1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[amino(polyethylene glycol)]), using six different assays, in four representative cell lines; Henrietta Lacks cells (HeLa) derived from cervical cancer tissue, National Institute of Health 3T3 mouse fibroblast cells (NIH-3T3), Sloan Kettering breast cancer cells (SKBR3) and Michigan cancer foundation-7 breast cancer cells (MCF7). These cell lines significantly differed in their response to O-GNR-PEG-DSPE formulations; assessed and evaluated using various endpoints (lactate dehydrogenase (LDH) release, cellular metabolism, lysosomal integrity and cell proliferation) for cytotoxicity. In general, all the cells showed a dose-dependent (10-400 μg/ml) and time-dependent (12-48 h) decrease in cell viability. However, the degree of cytotoxicity was significantly lower in MCF7 or SKBR3 cells compared to HeLa cells. These cells were 100% viable upto 48 h, when incubated at 10 μg/ml O-GNR-PEG-DSPE concentration, and showed decrease in cell viability above this concentration with ~78% of cells viable at the highest concentration (400 μg/ml). In contrast, significant cell death (5-25% cell death depending on the time point, and the assay) was observed for HeLa cells even at a low concentration of 10 μg/ml. The decrease in cell viability was steep with increase in concentration with the CD(50) values ≥ 100 μg/ml depending on the assay, and time point. Transmission electron microscopy of the various cells treated with the O-GNR solutions show higher uptake of the O-GNR-PEG-DSPEs into HeLa cells compared to other cell types

  13. Functional cell mediated lympholysis I. Description of the assay

    International Nuclear Information System (INIS)

    Goeken, N.E.; Thompson, J.S.

    1981-01-01

    The anamnestic response by human bi-directional (BD) mixed lymphocyte cultures (MLC) to restimulation by cells of the original stimulating type is generally strikingly reduced as compared to that of standard one-way cultures. This difference was shown not to be related to a change in kinetics nor was it due to exhaustion of the media or soluble factors since fresh media did not ameliorate the effect nor were supernatants from BD cultures found to be suppressive. The relative inhibition was also not reversed by removal of the allogeneic cells by phenotype specific antiserum. Cytotoxic tests with donor and responder specific antisera revealed that the cells bearing that phenotype were dramatically reduced in BD as compared to one-way cultures. Thus, the diminished secondary response appears to be due to cytotoxic elimination of the responder cells. This allogeneic cytotoxicity is dependent on non-T, phagocytic, adherent cells. The phenomenon is called Functional Cell Mediated Lympholysis (F-CML). (author)

  14. Myricitrin protects against peroxynitrite-mediated DNA damage and cytotoxicity in astrocytes.

    Science.gov (United States)

    Chen, Wei; Zhuang, Jingjing; Li, Ya; Shen, Yang; Zheng, Xiaodong

    2013-11-15

    Peroxynitrite, a potent oxidising and nitrating species, has been implicated in the pathogenesis of neurodegenerative diseases. This study was undertaken to investigate the protective effect of myricitrin on peroxynitrite-mediated toxicity and the underlying mechanism. Our results showed that the presence of myricitrin was found to significantly inhibit peroxynitrite-mediated DNA damage. EPR spectroscopy demonstrated that myricitrin potently diminished the DMPO-hydroxyl radical adduct signal from peroxynitrite. Further study showed that glutathione (GSH) depletion caused by peroxynitrite can be effectively prevented by pre-incubation of astrocytes with myricitrin. Moreover, co-incubation of astrocytes with myricitrin and buthionine sulfoximine (BSO) eliminated the myricitrin-induced GSH increase. In contrast, co-incubation of myricitrin with BSO slightly protected astrocytes against cytotoxicity and DNA damage mediated by peroxynitrite. These results revealed that myricitrin can protect against peroxynitrite-induced DNA damage and cytotoxicity, which might have implications for myricitrin-mediated neuroprotection. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Zinc oxide nanoparticles mediated cytotoxicity, mitochondrial membrane potential and level of antioxidants in presence of melatonin.

    Science.gov (United States)

    Sruthi, S; Millot, N; Mohanan, P V

    2017-10-01

    Zinc oxide nanoparticles (ZnO NPs) are widely used in a variety of products and are currently being investigated for biomedical applications. However, they have the potential to interact with macromolecules like proteins, lipids and DNA within the cells which makes the safe biomedical application difficult. The toxicity of the ZnO NP is mainly attributed reactive oxygen species (ROS) generation. Different strategies like iron doping, polymer coating and external supply of antioxidants have been evaluated to minimize the toxic potential of ZnO NPs. Melatonin is a hormone secreted by the pineal gland with great antioxidant properties. The melatonin is known to protect cells from ROS inducing external agents like lipopolysaccharides. In the present study, the protective effect of melatonin on ZnO NPs mediated toxicity was evaluated using C6 glial cells. The Cytotoxicity, mitochondrial membrane potential and free radical formation were measured to study the effect of melatonin. Antioxidant assays were done on mice brain slices, incubated with melatonin and ZnO NPs. The results of the study reveal that, instead of imparting a protective effect, the melatonin pre-treatment enhanced the toxicity of ZnO NPs. Melatonin increased antioxidant enzymes in brain slices. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Characterization of V. cholerae T3SS-dependent cytotoxicity in cultured intestinal epithelial cells.

    Science.gov (United States)

    Miller, Kelly A; Chaand, Mudit; Gregoire, Stacy; Yoshida, Takeshi; Beck, Lisa A; Ivanov, Andrei I; Dziejman, Michelle

    2016-12-01

    AM-19226 is a pathogenic, non-O1/non-O139 serogroup strain of Vibrio cholerae that uses a Type 3 Secretion System (T3SS) mediated mechanism to colonize host tissues and disrupt homeostasis, causing cholera. Co-culturing the Caco2-BBE human intestinal epithelial cell line with AM-19226 in the presence of bile results in rapid mammalian cell death that requires a functional T3SS. We examined the role of bile, sought to identify the mechanism, and evaluated the contributions of T3SS translocated effectors in in vitro cell death. Our results suggest that Caco2-BBE cytotoxicity does not proceed by apoptotic or necrotic mechanisms, but rather displays characteristics consistent with osmotic lysis. Cell death was preceded by disassembly of epithelial junctions and reorganization of the cortical membrane skeleton, although neither cell death nor cell-cell disruption required VopM or VopF, two effectors known to alter actin dynamics. Using deletion strains, we identified a subset of AM-19226 Vops that are required for host cell death, which were previously assigned roles in protein translocation and colonization, suggesting that they function other than to promote cytotoxicity. The collective results therefore suggest that cooperative Vop activities are required to achieve cytotoxicity in vitro, or alternatively, that translocon pores destabilize the membrane in a bile dependent manner. © 2016 John Wiley & Sons Ltd.

  17. Characterization of V. cholerae T3SS-dependent cytotoxicity in cultured intestinal epithelial cells

    Science.gov (United States)

    Miller, Kelly A.; Chaand, Mudit; Gregoire, Stacy; Yoshida, Takeshi; Beck, Lisa; Ivanov, Andrei I.; Dziejman, Michelle

    2016-01-01

    Summary AM-19226 is a pathogenic, non-O1/non-O139 serogroup strain of Vibrio cholerae that uses a Type 3 Secretion System (T3SS) mediated mechanism to colonize host tissues and disrupt homeostasis, causing cholera. Co-culturing the Caco2-BBE human intestinal epithelial cell line with AM-19226 in the presence of bile results in rapid mammalian cell death that requires a functional T3SS. We examined the role of bile, sought to identify the mechanism, and evaluated the contributions of T3SS translocated effectors in in vitro cell death. Our results suggest that Caco2-BBE cytotoxicity does not proceed by apoptotic or necrotic mechanisms, but rather displays characteristics consistent with osmotic lysis. Cell death was preceded by disassembly of epithelial junctions and reorganization of the cortical membrane skeleton, although neither cell death nor cell-cell disruption required VopM or VopF, two effectors known to alter actin dynamics. Using deletion strains, we identified a subset of AM-19226 Vops that are required for host cell death, which were previously assigned roles in protein translocation and colonization, suggesting that they function other than to promote cytotoxicity. The collective results therefore suggest that cooperative Vop activities are required to achieve cytotoxicity in vitro, or alternatively, that translocon pores destabilize the membrane in a bile dependent manner. PMID:27302486

  18. Evaluation of cell cytotoxic effect on herbal extracts mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yong Soo; Gwon, Hui Jeong; Choi, Bo Ram; Lim, Youn Mook; Nho, Young Chang [Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of)

    2009-12-15

    Herbal extracts (HE) such as Houttuynia cordata Thunb., Eucommia ulimoides, Plantago asiatica var., Morus alba L., and Ulmus davidiana var., are known to suppress an atopic dermatitis like skin lesions. In this study, to evaluate the cell cytotoxicity effect on L929, HaCaT and HMC-1 cell by the HE, the herbs were extracted with distilled water (at 75 .deg. C) and then the HE mixtures were freeze-dried for 5 days and sterilized with {gamma}-rays. The cytotoxicity was measured by Cell Counting Kit-8 (CCK-8) assay. The result showed that the HE mixtures did not significantly affect cell viability and had no toxicity on the cells. These findings indicate that the HE mixtures can be used as a potential therapeutic agent.

  19. Cytotoxity of cell free filtrates of campylobacter jejuni isolated in ...

    African Journals Online (AJOL)

    Culture filtrates of Campylobacter jejuni strains isolated from clinical specimens in Lagos Nigeria were tested for toxic activity. Two out of five filtrates tested manifested cytopathic effect on BHK cells. The effects were mainly cytotoxic and cytotonic. Toxic activity of C. jejuni filtrates was much lower than toxic activity elicited by ...

  20. The CD39 molecule defines distinct cytotoxic subsets within alloactivated human CD8-positive cells.

    Science.gov (United States)

    Gouttefangeas, C; Mansur, I; Schmid, M; Dastot, H; Gélin, C; Mahouy, G; Boumsell, L; Bensussan, A

    1992-10-01

    Lymphocyte activation induces or increases the expression of several surface structures, none of which is characteristic of an activated cell subset. In particular, structures such as CD45RO, CD25, CD26, CD49b, CD54, CD71 are expressed by the vast majority of lymphocytes at various times following in vitro activation. CD39 molecules were originally identified on activated B lymphocytes and have recently been described on activated T cell clones. In the present report, we have characterized phenotypically and functionally defined cell subsets generated during an in vitro allostimulation. Results indicated that the percentage of CD39+ cells reached a maximum at day 6 and remained stable thereafter. We demonstrate that CD39 expression allows the identification within the allosensitized CD8+ cytotoxic cells of distinct subsets of cells mediating allo cytotoxic T lymphocyte or natural killer (NK)-like reactivity. More precisely, CD8+CD39+ alloactivated cells mainly mediate specific killer activity, whereas CD8+CD39- alloactivated cells predominantly exhibit NK-like reactivity. Further, we show a high functional correlation associated with the lack of CD39 expression on NK-like alloactivated CD8+ cells, while there is no association with CD56 or CD57 NK-associated structures.

  1. Betalains increase vitexin-2-O-xyloside cytotoxicity in CaCo-2 cancer cells.

    Science.gov (United States)

    Farabegoli, F; Scarpa, E S; Frati, A; Serafini, G; Papi, A; Spisni, E; Antonini, E; Benedetti, S; Ninfali, P

    2017-03-01

    Vitexin-2-O-xyloside (XVX) from Beta vulgaris var. cicla L. (BVc) seeds, betaxanthin (R1) and betacyanin (R2) fractions from Beta vulgaris var. rubra L. (BVr) roots were combined and tested for cytotoxicity in CaCo-2 colon cancer cells. XVX was the most cytotoxic molecule, but the combination of XVX with R1 and R2 significantly prolonged its cytotoxicity. Cytotoxicity was mediated by the intrinsic apoptotic pathway, as shown by an increase in Bcl2-like protein 4, cleaved Poly ADP-Ribosyl Polymerase 1 and cleaved Caspase 3 levels with a parallel decrease in anti-apoptotic protein B-cell leukemia/lymphoma 2 levels. R1 and R2, used alone or in combination, reduced oxidative stress triggered by H 2 O 2 in CaCo-2 cells. Betalains dampened cyclooxygenase-2 and interleukin-8 mRNA expression after lipopolysaccharide induction in CaCo-2, showing an anti-inflammatory action. Our results support the use of a cocktail of R1, R2 and XVX as a chemopreventive tool against colon cancer. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Klebsiella pneumoniae triggers a cytotoxic effect on airway epithelial cells

    Directory of Open Access Journals (Sweden)

    Llobet-Brossa Enrique

    2009-08-01

    Full Text Available Abstract Background Klebsiella pneumoniae is a capsulated Gram negative bacterial pathogen and a frequent cause of nosocomial infections. Despite its clinical relevance, little is known about the features of the interaction between K. pneumoniae and lung epithelial cells on a cellular level, neither about the role of capsule polysaccharide, one of its best characterised virulence factors, in this interaction. Results The interaction between Klebsiella pneumoniae and cultured airway epithelial cells was analysed. K. pneumoniae infection triggered cytotoxicity, evident by cell rounding and detachment from the substrate. This effect required the presence of live bacteria and of capsule polysaccharide, since it was observed with isolates expressing different amounts of capsule and/or different serotypes but not with non-capsulated bacteria. Cytotoxicity was analysed by lactate dehydrogenase and formazan measurements, ethidium bromide uptake and analysis of DNA integrity, obtaining consistent and complementary results. Moreover, cytotoxicity of non-capsulated strains was restored by addition of purified capsule during infection. While a non-capsulated strain was avirulent in a mouse infection model, capsulated K. pneumoniae isolates displayed different degrees of virulence. Conclusion Our observations allocate a novel role to K. pneumoniae capsule in promotion of cytotoxicity. Although this effect is likely to be associated with virulence, strains expressing different capsule levels were not equally virulent. This fact suggests the existence of other bacterial requirements for virulence, together with capsule polysaccharide.

  3. Phototoxicity and cytotoxicity of fullerol in human lens epithelial cells

    International Nuclear Information System (INIS)

    Roberts, Joan E.; Wielgus, Albert R.; Boyes, William K.; Andley, Usha; Chignell, Colin F.

    2008-01-01

    The water-soluble, hydroxylated fullerene [fullerol, nano-C 60 (OH) 22-26 ] has several clinical applications including use as a drug carrier to bypass the blood ocular barriers. We have assessed fullerol's potential ocular toxicity by measuring its cytotoxicity and phototoxicity induced by UVA and visible light in vitro with human lens epithelial cells (HLE B-3). Accumulation of nano-C 60 (OH) 22-26 in the cells was confirmed spectrophotometrically at 405 nm and cell viability estimated using MTS and LDH assays. Fullerol was cytotoxic to HLE B-3 cells maintained in the dark at concentrations higher than 20 μM. Exposure to either UVA or visible light in the presence of > 5 μM fullerol-induced phototoxic damage. When cells were pretreated with non-toxic antioxidants: 20 μM lutein, 1 mM N-acetyl cysteine, or 1 mM L-ascorbic acid prior to irradiation, only the singlet oxygen quencher-lutein significantly protected against fullerol photodamage. Apoptosis was observed in lens cells treated with fullerol whether or not the cells were irradiated, in the order UVA > visible light > dark. Dynamic light scattering (DLS) showed that in the presence of the endogenous lens protein α-crystallin, large aggregates of fullerol were reduced. In conclusion, fullerol is both cytotoxic and phototoxic to human lens epithelial cells. Although the acute toxicity of water-soluble nano-C 60 (OH) 22-26 is low, these compounds are retained in the body for long periods, raising concern for their chronic toxic effect. Before fullerols are used to deliver drugs to the eye, they should be tested for photo- and cytotoxicity in vivo

  4. Real-time impedimetric monitoring of Poly(ethylenimine)s-mediated cytotoxicity during gene transfection

    DEFF Research Database (Denmark)

    Caviglia, Claudia; Carminati, Marco; Heiskanen, Arto

    Poly(ethylenimine)s (PEIs) are able to condense DNA and RNA into stable toroidal and globular nanostructures (polyplexes) and are among the most efficient and promising synthetic transfectants, but they induce severe cytotoxicity. The mechanisms of PEI-mediated cytotoxicity have not been fully...... delineated but PEI toxicity appears to predominantly depend on membrane perturbing effects in cellular compartments in which they accumulate. Electrochemical Impedance Spectroscopy (EIS) is used as a non-invasive biophysical approach for the investigation of the electrical properties of biological materials...

  5. Idarubicin induces mTOR-dependent cytotoxic autophagy in leukemic cells

    Energy Technology Data Exchange (ETDEWEB)

    Ristic, Biljana [Institute of Microbiology and Immunology, School of Medicine, University of Belgrade, Dr. Subotica 1, 11000 Belgrade (Serbia); Bosnjak, Mihajlo [Institute of Histology and Embryology, School of Medicine, University of Belgrade, Belgrade (Serbia); Arsikin, Katarina [Institute of Microbiology and Immunology, School of Medicine, University of Belgrade, Dr. Subotica 1, 11000 Belgrade (Serbia); Mircic, Aleksandar; Suzin-Zivkovic, Violeta [Institute of Histology and Embryology, School of Medicine, University of Belgrade, Belgrade (Serbia); Bogdanovic, Andrija [Clinic for Hematology, Clinical Centre of Serbia, School of Medicine, University of Belgrade, Belgrade (Serbia); Perovic, Vladimir [Institute of Microbiology and Immunology, School of Medicine, University of Belgrade, Dr. Subotica 1, 11000 Belgrade (Serbia); Martinovic, Tamara; Kravic-Stevovic, Tamara; Bumbasirevic, Vladimir [Institute of Histology and Embryology, School of Medicine, University of Belgrade, Belgrade (Serbia); Trajkovic, Vladimir, E-mail: vtrajkovic@med.bg.ac.rs [Institute of Microbiology and Immunology, School of Medicine, University of Belgrade, Dr. Subotica 1, 11000 Belgrade (Serbia); Harhaji-Trajkovic, Ljubica, E-mail: buajk@yahoo.com [Institute for Biological Research, University of Belgrade, Belgrade, Despot Stefan Blvd. 142, 11000 Belgrade (Serbia)

    2014-08-01

    We investigated if the antileukemic drug idarubicin induces autophagy, a process of programmed cellular self-digestion, in leukemic cell lines and primary leukemic cells. Transmission electron microscopy and acridine orange staining demonstrated the presence of autophagic vesicles and intracellular acidification, respectively, in idarubicin-treated REH leukemic cell line. Idarubicin increased punctuation/aggregation of microtubule-associated light chain 3B (LC3B), enhanced the conversion of LC3B-I to autophagosome-associated LC3B-II in the presence of proteolysis inhibitors, and promoted the degradation of the selective autophagic target p62, thus indicating the increase in autophagic flux. Idarubicin inhibited the phosphorylation of the main autophagy repressor mammalian target of rapamycin (mTOR) and its downstream target p70S6 kinase. The treatment with the mTOR activator leucine prevented idarubicin-mediated autophagy induction. Idarubicin-induced mTOR repression was associated with the activation of the mTOR inhibitor AMP-activated protein kinase and down-regulation of the mTOR activator Akt. The suppression of autophagy by pharmacological inhibitors or LC3B and beclin-1 genetic knockdown rescued REH cells from idarubicin-mediated oxidative stress, mitochondrial depolarization, caspase activation and apoptotic DNA fragmentation. Idarubicin also caused mTOR inhibition and cytotoxic autophagy in K562 leukemic cell line and leukocytes from chronic myeloid leukemia patients, but not healthy controls. By demonstrating mTOR-dependent cytotoxic autophagy in idarubicin-treated leukemic cells, our results warrant caution when considering combining idarubicin with autophagy inhibitors in leukemia therapy. - Highlights: • Idarubicin induces autophagy in leukemic cell lines and primary leukemic cells. • Idarubicin induces autophagy by inhibiting mTOR in leukemic cells. • mTOR suppression by idarubicin is associated with AMPK activation and Akt blockade.

  6. Immunomodulatory Effect of Rhaphidophora korthalsii on Natural Killer Cell Cytotoxicity

    Directory of Open Access Journals (Sweden)

    Swee Keong Yeap

    2012-01-01

    Full Text Available The in vivo immunomodulatory effect of ethanolic extracts from leaves of Rhaphidophora korthalsii was determined via immune cell proliferation, T/NK cell phenotyping, and splenocyte cytotoxicity of BALB/c mice after 5 consecutive days of i.p. administration at various concentrations. Splenocyte proliferation index, cytotoxicity, peripheral blood T/NK cell population, and plasma cytokine (IL-2 and IFN-γ in mice were assessed on day 5 and day 15. High concentration of extract (350 μg/mice/day for 5 consecutive days was able to stimulate immune cell proliferation, peripheral blood NK cell population, IL-2, and IFN- γ cytokines, as well as splenocyte cytotoxicity against Yac-1 cell line. Unlike rIL-2 which degraded rapidly, the stimulatory effect from the extract managed to last until day 15. These results suggested the potential of this extract as an alternative immunostimulator, and they encourage further study on guided fractionation and purification to identify the active ingredients that contribute to this in vitro and in vivo immunomodulatory activity.

  7. Cytotoxicity and Effects on Cell Viability of Nickel Nanowires

    KAUST Repository

    Rodriguez, Jose E.

    2013-05-01

    Recently, magnetic nanoparticles are finding an increased use in biomedical applications and research. Nanobeads are widely used for cell separation, biosensing and cancer therapy, among others. Due to their properties, nanowires (NWs) are gaining ground for similar applications and, as with all biomaterials, their cytotoxicity is an important factor to be considered before conducting biological studies with them. In this work, the cytotoxic effects of nickel NWs (Ni NWs) were investigated in terms of cell viability and damage to the cellular membrane. Ni NWs with an average diameter of 30-34 nm were prepared by electrodeposition in nanoporous alumina templates. The templates were obtained by a two-step anodization process with oxalic acid on an aluminum substrate. Characterization of NWs was done using X-Ray diffraction (XRD) and energy dispersive X-Ray analysis (EDAX), whereas their morphology was observed with scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Cell viability studies were carried out on human colorectal carcinoma cells HCT 116 by the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) cell proliferation colorimetric assay, whereas the lactate dehydrogenase (LDH) homogenous membrane fluorimetric assay was used to measure the degree of cell membrane rupture. The density of cell seeding was calculated to obtain a specific cell number and confluency before treatment with NWs. Optical readings of the cell-reduced MTT products were measured at 570 nm, whereas fluorescent LDH membrane leakage was recorded with an excitation wavelength of 525 nm and an emission wavelength of 580 - 640 nm. The effects of NW length, cell exposure time, as well as NW:cell ratio, were evaluated through both cytotoxic assays. The results show that cell viability due to Ni NWs is affected depending on both exposure time and NW number. On the other hand, membrane rupture and leakage was only significant at later exposure times. Both

  8. Assay of mast cell mediators

    DEFF Research Database (Denmark)

    Rådinger, Madeleine; Jensen, Bettina M; Swindle, Emily

    2015-01-01

    Mediator release from activated mast cells is a major initiator of the symptomology associated with allergic disorders such as anaphylaxis and asthma. Thus, methods to monitor the generation and release of such mediators have widespread applicability in studies designed to understand the processes...... regulating mast cell activation and for the identification of therapeutic approaches to block mast cell-driven disease. In this chapter, we discuss approaches used for the determination of mast cell degranulation, lipid-derived inflammatory mediator production, and cytokine/chemokine gene expression as well...

  9. Analysis of cytotoxic T cell epitopes in relation to cancer

    DEFF Research Database (Denmark)

    Stranzl, Thomas

    kill the infected cells. The focus of my PhD project has been on improving a method for CTL epitope pathway prediction, on analyzing the epitope density in the alternative cancer exome, and on a study investigating minor histocompatibility antigens (mHags) associated with leukemia. Part I......The human immune system is a highly adaptable system, defending our bodies against pathogens and tumor cells. Cytotoxic T cells (CTL) are cells of the adaptive immune system, capable of inducing a programmed cell death and thus able to eliminate infected or tumor cells. CTLs discriminate between...... healthy and infected cells based on peptide fragments presented on the cells surface. All nucleated cells present these peptide fragments in complex with Major Histocompatibility Complex (MHC) class I molecules. Peptides that are recognized by CTLs are called epitopes and induce the CTLs to subsequently...

  10. Virus-specific HLA-restricted lysis of herpes simplex virus-infected human monocytes and macrophages mediated by cytotoxic T lymphocytes

    International Nuclear Information System (INIS)

    Torpey, D.J. III.

    1987-01-01

    Freshly-isolated peripheral blood human monocytes and 5 day in vitro cultured macrophages were infected with herpes simplex virus type 1 (HSV-1), labeled with 51 Cr, and used as target cells in a 12-14 hour cell-mediated cytotoxicity assay. Mononuclear leukocytes (MNL) from HSV-1 non-immune individuals, whether unstimulated or stimulated with HSV-1 antigen, did not mediate significant lysis of either target cell. HSV-immune MNL, both freshly-isolated and cultured for 5 days without antigen, demonstrated only low levels of natural killer (NK) cell-mediate lysis. MNL from HSV-immune individuals incubated for 5 days in vitro with HSV-1 antigen mediated significant virus-specific lysis of both target cells. Mean virus-specific lysis of autologous monocytes was 8.5(/+-/2.0)% compared to a three-fold greater virus-specific lysis of autologous macrophages. Greater than 70% of this lytic activity was mediated by Leu-11-negative, T3-positive cytotoxic T lymphocytes (CTL). Allogeneic target cells lacking a common HLA determinant were not significantly lysed while T8-positive CTL mediated infrequent lysis of target cells sharing a common HLA-A and/or HLA-B determinant. T4-positive lymphocytes were demonstrated to be the predominant cell mediating lysis of autologous target cells and allogeneic target cells sharing both HLA-A and/or HLA-B plus HLA-DR determinants with the CTL; the T4-positive cell was the sole CTL mediator of lysis of allogeneic target cells having a common HLA-DR determinant

  11. Gangliosides inhibit bee venom melittin cytotoxicity but not phospholipase A2-induced degranulation in mast cells

    International Nuclear Information System (INIS)

    Nishikawa, Hirofumi; Kitani, Seiichi

    2011-01-01

    Sting accident by honeybee causes severe pain, inflammation and allergic reaction through IgE-mediated anaphylaxis. In addition to this hypersensitivity, an anaphylactoid reaction occurs by toxic effects even in a non-allergic person via cytolysis followed by similar clinical manifestations. Auto-injectable epinephrine might be effective for bee stings, but cannot inhibit mast cell lysis and degranulation by venom toxins. We used connective tissue type canine mast cell line (CM-MC) for finding an effective measure that might inhibit bee venom toxicity. We evaluated degranulation and cytotoxicity by measurement of β-hexosaminidase release and MTT assay. Melittin and crude bee venom induced the degranulation and cytotoxicity, which were strongly inhibited by mono-sialoganglioside (G M1 ), di-sialoganglioside (G D1a ) and tri-sialoganglioside (G T1b ). In contrast, honeybee venom-derived phospholipase A 2 induced the net degranulation directly without cytotoxicity, which was not inhibited by G M1 , G D1a and G T1b . For analysis of distribution of Gα q and Gα i protein by western blotting, lipid rafts were isolated by using discontinuous sucrose gradient centrifuge. Melittin disrupted the localization of Gα q and Gα i at lipid raft, but gangliosides stabilized the rafts. As a result from this cell-based study, bee venom-induced anaphylactoid reaction can be explained with melittin cytotoxicity and phospholipase A 2 -induced degranulation. Taken together, gangliosides inhibit the effect of melittin such as degranulation, cytotoxicity and lipid raft disruption but not phospholipase A 2 -induced degranulation in mast cells. Our study shows a potential of gangliosides as a therapeutic tool for anaphylactoid reaction by honeybee sting.

  12. Gangliosides inhibit bee venom melittin cytotoxicity but not phospholipase A(2)-induced degranulation in mast cells.

    Science.gov (United States)

    Nishikawa, Hirofumi; Kitani, Seiichi

    2011-05-01

    Sting accident by honeybee causes severe pain, inflammation and allergic reaction through IgE-mediated anaphylaxis. In addition to this hypersensitivity, an anaphylactoid reaction occurs by toxic effects even in a non-allergic person via cytolysis followed by similar clinical manifestations. Auto-injectable epinephrine might be effective for bee stings, but cannot inhibit mast cell lysis and degranulation by venom toxins. We used connective tissue type canine mast cell line (CM-MC) for finding an effective measure that might inhibit bee venom toxicity. We evaluated degranulation and cytotoxicity by measurement of β-hexosaminidase release and MTT assay. Melittin and crude bee venom induced the degranulation and cytotoxicity, which were strongly inhibited by mono-sialoganglioside (G(M1)), di-sialoganglioside (G(D1a)) and tri-sialoganglioside (G(T1b)). In contrast, honeybee venom-derived phospholipase A(2) induced the net degranulation directly without cytotoxicity, which was not inhibited by G(M1), G(D1a) and G(T1b). For analysis of distribution of Gα(q) and Gα(i) protein by western blotting, lipid rafts were isolated by using discontinuous sucrose gradient centrifuge. Melittin disrupted the localization of Gα(q) and Gα(i) at lipid raft, but gangliosides stabilized the rafts. As a result from this cell-based study, bee venom-induced anaphylactoid reaction can be explained with melittin cytotoxicity and phospholipase A(2)-induced degranulation. Taken together, gangliosides inhibit the effect of melittin such as degranulation, cytotoxicity and lipid raft disruption but not phospholipase A(2)-induced degranulation in mast cells. Our study shows a potential of gangliosides as a therapeutic tool for anaphylactoid reaction by honeybee sting. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Selective cytotoxicity of transformed cells but not normal cells by a sialoglycopeptide growth regulator in the presence of tumor necrosis factor

    Science.gov (United States)

    Woods, K. M.; Fattaey, H.; Johnson, T. C.; Chapes, S. K.; Spooner, B. S. (Principal Investigator)

    1994-01-01

    The tumor necrosis factor-alpha (TNF)-resistant, SV40-transformed, murine fibroblast cell lines, F5b and F5m, became sensitive to TNF-mediated cytolysis after treatment with a biologically active 18 kDa peptide fragment (SGP) derived from a 66-kDa parental cell surface sialoglycoprotein. Neither TNF nor the SGP alone exhibited cytotoxicity to the two SV40-transformed cell lines. However, Balb/c 3T3 cells, incubated with SGP alone or with SGP and TNF, were not killed. Therefore, SGP can selectively sensitize cells for TNF alpha-mediated cytotoxicity. This selective sensitization may be due to the previously documented ability of the SGP to selectively mediate cell cycle arrest.

  14. Listeriolysin O mediates cytotoxicity against human brain microvascular

    Science.gov (United States)

    Penetration of the brain microvascular endothelial layer is one of the routes L. monocytogenes use to breach the blood-brain barrier. Because host factors in the blood severely limit direct invasion of human brain microvascular endothelial cells (HBMECs) by L. monocytogenes, alternative mechanisms m...

  15. Cytotoxicity of CD56bright NK cells towards autologous activated CD4+ T cells is mediated through NKG2D, LFA-1 and TRAIL and dampened via CD94/NKG2A

    DEFF Research Database (Denmark)

    Nielsen, Natasja; Ødum, Niels; Ursø, Birgitte

    2012-01-01

    In mouse models of chronic inflammatory diseases, Natural Killer (NK) cells can play an immunoregulatory role by eliminating chronically activated leukocytes. Indirect evidence suggests that NK cells may also be immunoregulatory in humans. Two subsets of human NK cells can be phenotypically disti...

  16. Targeted Cytotoxic Therapy Kills Persisting HIV Infected Cells During ART

    Science.gov (United States)

    Denton, Paul W.; Long, Julie M.; Wietgrefe, Stephen W.; Sykes, Craig; Spagnuolo, Rae Ann; Snyder, Olivia D.; Perkey, Katherine; Archin, Nancie M.; Choudhary, Shailesh K.; Yang, Kuo; Hudgens, Michael G.; Pastan, Ira; Haase, Ashley T.; Kashuba, Angela D.; Berger, Edward A.; Margolis, David M.; Garcia, J. Victor

    2014-01-01

    Antiretroviral therapy (ART) can reduce HIV levels in plasma to undetectable levels, but rather little is known about the effects of ART outside of the peripheral blood regarding persistent virus production in tissue reservoirs. Understanding the dynamics of ART-induced reductions in viral RNA (vRNA) levels throughout the body is important for the development of strategies to eradicate infectious HIV from patients. Essential to a successful eradication therapy is a component capable of killing persisting HIV infected cells during ART. Therefore, we determined the in vivo efficacy of a targeted cytotoxic therapy to kill infected cells that persist despite long-term ART. For this purpose, we first characterized the impact of ART on HIV RNA levels in multiple organs of bone marrow-liver-thymus (BLT) humanized mice and found that antiretroviral drug penetration and activity was sufficient to reduce, but not eliminate, HIV production in each tissue tested. For targeted cytotoxic killing of these persistent vRNA+ cells, we treated BLT mice undergoing ART with an HIV-specific immunotoxin. We found that compared to ART alone, this agent profoundly depleted productively infected cells systemically. These results offer proof-of-concept that targeted cytotoxic therapies can be effective components of HIV eradication strategies. PMID:24415939

  17. Cytotoxic effects of air freshener biocides in lung epithelial cells.

    Science.gov (United States)

    Kwon, Jung-Taek; Lee, Mimi; Seo, Gun-Baek; Kim, Hyun-Mi; Shim, Ilseob; Lee, Doo-Hee; Kim, Taksoo; Seo, Jung Kwan; Kim, Pilje; Choi, Kyunghee

    2013-09-01

    This study evaluated the cytotoxicity of mixtures of citral (CTR) and either benzisothiazolinone (BIT, Mix-CTR-BIT) or triclosan (TCS, Mix-CTR-TCS) in human A549 lung epithelial cells. We investigated the effects of various mix ratios of these common air freshener ingredients on cell viability, cell proliferation, reactive oxygen species (ROS) generation, and DNA damage. Mix-CTR-BIT and Mix-CTR-TCS significantly decreased the viability of lung epithelial cells and inhibited cell growth in a dose-dependent manner. In addition, both mixtures increased ROS generation, compared to that observed in control cells. In particular, cell viability, growth, and morphology were affected upon increase in the proportion of BIT or TCS in the mixture. However, comet analysis showed that treatment of cells with Mix-CTR-BIT or Mix-CTR-TCS did not increase DNA damage. Taken together, these data suggested that increasing the content of biocides in air fresheners might induce cytotoxicity, and that screening these compounds using lung epithelial cells may contribute to hazard assessment.

  18. Cytotoxic Effect of Lipophilic Bismuth Dimercaptopropanol Nanoparticles on Epithelial Cells.

    Science.gov (United States)

    Rene, Hernandez-Delgadillo; Badireddy, Appala Raju; José, Martínez-Sanmiguel Juan; Francisco, Contreras-Cordero Juan; Israel, Martinez-Gonzalez Gustavo; Isela, Sánchez-Nájera Rosa; Chellam, Shankararaman; Claudio, Cabral-Romero

    2016-01-01

    Bismuth nanoparticles have many interesting properties to be applied in biomedical and medicinal sectors, however their safety in humans have not been comprehensively investigated. The objective of this research was to determine the cytotoxic effect of bismuth dimercaptopropanol nanoparticles (BisBAL NPs) on epithelial cells. The nanoparticles are composed of 18.7 nm crystallites on average and have a rhombohedral structure, agglomerating into chains-like or clusters of small nanoparticles. Based on MTT viability assay and fluorescence microscopy, cytotoxicity was not observed on monkey kidney cells after growing with 5 µM of BisBAL NPs for 24 h. Employing same techniques, identical results were obtained with human epithelial cells (HeLa), showing a not strain-dependent phenomenon. The absence of toxic effects on epithelial cells growing with BisBAL NPs was corroborated with long-time experiments (24-72 hrs.), showing no difference in comparison with growing control (cells without nanoparticles). Further, genotoxicity assays, comet assay and fluorescent microscopy and electrophoresis in bromide-stained agarose gel revealed no damage to genomic DNA of MA104 cells after 24 h. of exposition to BisBAL NPs. Finally, the effect of bismuth nanoparticles on protein synthesis was studied in cells growing with BisBAL NPs for 24 h. SDS-PAGE assays showed no difference between treated and untreated cells, suggesting that BisBAL NPs did not interfere with protein synthesis. Hence BisBAL NPs do not appear to exert cytotoxic effects suggesting their biological compatibility with epithelial cells.

  19. Chaperone protein HYPK interacts with the first 17 amino acid region of Huntingtin and modulates mutant HTT-mediated aggregation and cytotoxicity

    Energy Technology Data Exchange (ETDEWEB)

    Choudhury, Kamalika Roy [Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064 (India); Centre for Neuroscience, Indian Institute of Science, Bangalore 560012 (India); Bhattacharyya, Nitai P., E-mail: nitai_sinp@yahoo.com [Biomedical Genomics Centre, PG Polyclinic Building, 5, Suburbun Hospital Road, Kolkata 700020 (India)

    2015-01-02

    Highlights: • HYPK reduces mutant HTT-mediated aggregate formation and cytotoxicity. • Interaction of HYPK with HTT requires N-terminal 17 amino acid of HTT (HTT-N17). • Deletion of HTT-N17 leads to SDS-soluble, smaller, nuclear aggregates. • These smaller aggregates do not associate with HYPK and are more cytotoxic. • Maybe, interaction of HYPK with amphipathic HTT-N17 block HTT aggregate formation. - Abstract: Huntington’s disease is a polyglutamine expansion disorder, characterized by mutant HTT-mediated aggregate formation and cytotoxicity. Many reports suggests roles of N-terminal 17 amino acid domain of HTT (HTT-N17) towards subcellular localization, aggregate formation and subsequent pathogenicity induced by N-terminal HTT harboring polyQ stretch in pathogenic range. HYPK is a HTT-interacting chaperone which can reduce N-terminal mutant HTT-mediated aggregate formation and cytotoxicity in neuronal cell lines. However, how HYPK interacts with N-terminal fragment of HTT remained unknown. Here we report that specific interaction of HYPK with HTT-N17 is crucial for the chaperone activity of HYPK. Deletion of HTT-N17 leads to formation of tinier, SDS-soluble nuclear aggregates formed by N-terminal mutant HTT. The increased cytotoxicity imparted by these tiny aggregates might be contributed due to loss of interaction with HYPK.

  20. Myrtus comunis and Eucalyptus camaldulensis cytotoxicity on breast cancer cells

    Directory of Open Access Journals (Sweden)

    Hrubik Jelena D.

    2012-01-01

    Full Text Available In vitro cytotoxicity of methanol, ethyl acetate, n-buthanol, and water extracts of Myrtus communis L. and Eucalyptus camaldulensis Dehnh. was examined against two human breast cancer cell lines (MCF 7 and MDA-MB-231 using MTT and SRB assays. The results showed significant cytotoxic potential of examined extracts, with IC50 values ranging from 7 to 138 μg/ml for M. communis and 3-250 μg/ml for E. camaldulensis. The two plants generally expressed similar activity, and no significant difference in cell line’s sensitivity towards extracts was observed. The results indicate to M. communis and E. camaldulensis as candidates for thorough chemical analyses for identification of active compounds, and eventually for attention in the process of discovery of new natural products in the control of cancer. [Projekat Ministarstva nauke Republike Srbije, br. 173037 i br. 172058

  1. Emergence of cytotoxic resistance in cancer cell populations*

    Directory of Open Access Journals (Sweden)

    Lorenzi Tommaso

    2015-01-01

    Full Text Available We formulate an individual-based model and an integro-differential model of phenotypic evolution, under cytotoxic drugs, in a cancer cell population structured by the expression levels of survival-potential and proliferation-potential. We apply these models to a recently studied experimental system. Our results suggest that mechanisms based on fundamental laws of biology can reversibly push an actively-proliferating, and drug-sensitive, cell population to transition into a weakly-proliferative and drug-tolerant state, which will eventually facilitate the emergence of more potent, proliferating and drug-tolerant cells.

  2. Rapid bioreduction of trivalent aurum using banana stem powder and its cytotoxicity against MCF-7 and HEK-293 cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Arunkumar, Pichaimani [Bharathidasan University, Cancer Genetics and Nanomedicine Laboratory, Department of Biomedical Science, School of Basic Medical Sciences (India); Vedagiri, Hemamalini [Bharathidasan University, Department of Biotechnology (India); Premkumar, Kumpati, E-mail: pkumpati@hotmail.com [Bharathidasan University, Cancer Genetics and Nanomedicine Laboratory, Department of Biomedical Science, School of Basic Medical Sciences (India)

    2013-03-15

    Bioreduction of metal ions for the synthesis of nanoparticles of well-defined shape and size has been a great challenge in the field of nanotechnology. In this study, we explored the reduction potential of banana stem powder (BSP) for the synthesis of gold nanoparticles (GNP). The kinetics of GNP synthesis was monitored using UV-Vis spectroscopy. The synthesized GNP was characterized using dynamic light scattering (DLS), transmission electron microscopy, and fourier transform infrared spectroscopy. In addition, the cytotoxic potential of the synthesized GNP was investigated using human breast cancer (MCF-7) and normal human embryonic kidney (HEK-293) cell lines, as evaluated by changes in cell morphology, cell viability (MTT), and metabolic activity. BSP exhibited a strong reduction of Au(III) to Au (0) at room temperature within 5 min of reaction time. The synthesized GNP was found to be spherical with an average diameter of 30 nm by DLS analysis. The cytotoxicity analysis reveals a direct dose-response relationship, indicating that the cytotoxicity increases with increasing concentrations of the GNP. Significant cytotoxicity was observed in cancer cells (MCF-7) compared to normal cells (HEK-293). Also the cellular uptake of GNP was more pronounced in MCF-7 cells than HEK-293 cells as evidenced by zeta potential, implicating the possible reason for differential cytotoxicity. Thus the present study demonstrates the importance of these unique, less time-consuming, and stable BSP-mediated GNP as potential drug delivery vehicles in the application of anticancer therapy.

  3. Semi-automated limit-dilution assay and clonal expansion of all T-cell precursors of cytotoxic lymphocytes

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, A.; Chen, W.F.; Scollay, R.; Shortman, K. (Walter and Eliza Hall Inst. of Medical Research, Parkville (Australia))

    1982-08-13

    A limit-dilution microculture system is described, where almost all precursor T cells of the cytotoxic lineage (CTL-p) develop into extended clones of cytotoxic T cells (CTL), which are then detected with a new radio-autographic /sup 111/In-release assay. The principle is to polyclonally activate all T cells with concanavalin A, to expand the resultant clones over an 8-9 day period in cultures saturated with growth factors, then to detect all clones with cytotoxic function by phytohaemagglutinin mediated lysis of P815 tumour cells. The key variables for obtaining high cloning efficiency are the use of flat-bottomed 96-well culture trays, the use of appropriately irradiated spleen filler cells, and the inclusion of a T-cell growth factor supplement. Cultures are set up at input levels of around one T cell per well. Forty percent of T cells then form CTL clones readily detected by the cytotoxic assay. The lytic activity of the average clone is equivalent to 3000 CTL, but clone size appears to be much larger. The precursor cells are predominantly if not entirely from the Lyt 2/sup +/ T-cell subclass and almost all cells of this subclass form cytolytic clones. Analysis of the frequency of positive cultures shows a good fit to the expected Poisson distribution, with no evidence of the CTL-p frequency estimates being distorted by helper or suppressor effects.

  4. Semi-automated limit-dilution assay and clonal expansion of all T-cell precursors of cytotoxic lymphocytes

    International Nuclear Information System (INIS)

    Wilson, A.; Chen, W.-F.; Scollay, R.; Shortman, K.

    1982-01-01

    A limit-dilution microculture system is described, where almost all precursor T cells of the cytotoxic lineage (CTL-p) develop into extended clones of cytotoxic T cells (CTL), which are then detected with a new radio-autographic 111 In-release assay. The principle is to polyclonally activate all T cells with concanavalin A, to expand the resultant clones over an 8-9 day period in cultures saturated with growth factors, then to detect all clones with cytotoxic function by phytohaemagglutinin mediated lysis of P815 tumour cells. The key variables for obtaining high cloning efficiency are the use of flat-bottomed 96-well culture trays, the use of appropriately irradiated spleen filler cells, and the inclusion of a T-cell growth factor supplement. Cultures are set up at input levels of around one T cell per well. Forty percent of T cells then form CTL clones readily detected by the cytotoxic assay. The lytic activity of the average clone is equivalent to 3000 CTL, but clone size appears to be much larger. The precursor cells are predominantly if not entirely from the Lyt 2 + T-cell subclass and almost all cells of this subclass form cytolytic clones. Analysis of the frequency of positive cultures shows a good fit to the expected Poisson distribution, with no evidence of the CTL-p frequency estimates being distorted by helper or suppressor effects. (Auth.)

  5. Cytotoxicity of modified glass ionomer cement on odontoblast cells.

    Science.gov (United States)

    Chen, Song; Mestres, Gemma; Lan, Weihua; Xia, Wei; Engqvist, Håkan

    2016-07-01

    Recently a modified glass ionomer cement (GIC) with enhanced bioactivity due to the incorporation of wollastonite or mineral trioxide aggregate (MTA) has been reported. The aim of this study was to evaluate the cytotoxic effect of the modified GIC on odontoblast-like cells. The cytotoxicity of a conventional GIC, wollastonite modified GIC (W-mGIC), MTA modified GIC (M-mGIC) and MTA cement has been evaluated using cement extracts, a culture media modified by the cement. Ion concentration and pH of each material in the culture media were measured and correlated to the results of the cytotoxicity study. Among the four groups, conventional GIC showed the most cytotoxicity effect, followed by W-mGIC and M-mGIC. MTA showed the least toxic effect. GIC showed the lowest pH (6.36) while MTA showed the highest (8.62). In terms of ion concentration, MTA showed the largest Ca(2+) concentration (467.3 mg/L) while GIC showed the highest concentration of Si(4+) (19.9 mg/L), Al(3+) (7.2 mg/L) and Sr(2+) (100.3 mg/L). Concentration of F(-) was under the detection limit (0.02 mg/L) for all samples. However the concentrations of these ions are considered too low to be toxic. Our study showed that the cytotoxicity of conventional GIC can be moderated by incorporating calcium silicate based ceramics. The modified GIC might be promising as novel dental restorative cements.

  6. Cytotoxicity of resin-based luting cements to pulp cells.

    Science.gov (United States)

    Pontes, Elaine Cristina Voltolini; Soares, Diana Gabriela; Hebling, Josimeri; Costa, Carlos Alberto De Souza

    2014-10-01

    To evaluate the cytotoxicity of components released from different types of luting cements to two cell lines obtained from pulp tissue. Three types of luting cements were evaluated, distributed into the following groups: G1--negative control (no treatment); G2--resin-modified glass-ionomer cement (Rely X Luting 2); G3--self-adhesive resin cement (Rely X U200); and G4--conventional resin cement (Rely X ARC). Standardized cylindrical specimens (14 mm diameter and 1 mm thick) prepared with the dental materials were immersed in culture medium (DMEM) for 24 hours to obtain the extracts (DMEM + components released from the cements). Then, the extracts were applied to cultured odontoblast-like MDPC-23 cells or human dental pulp cells (HDPCs). Finally, cell viability (MTT assay), cell death (Annexin/PI) (Kruskal-Wallis/Mann-Whitney; α = 5%) and cell morphology (SEM) were assessed. Cements' components in contact with cells (SEM/EDS) and pH of the extracts were also evaluated. The resin-modified glass-ionomer cement (G2) caused the most intense toxic effect to the two cell lines; the cell viability reduction was around 95.8% and 89.4% for MDPC-23 cells and HDPCs, respectively, which was statistically significantly different compared with that of the negative control group (G1). Also, a high quantity of particles leached from this ionomeric cement was found on the cells, which showed intense morphological alterations. In the G2 group, 100% necrosis was observed for both cell lines, and an acidic pH was detected on the extract. Conversely, Rely X U200 (G3) and Rely X ARC (G4), which presented low solubility and no alteration in pH, caused only slight cytotoxicity to the cultured cells.

  7. alpha-Mangostin enhances betulinic acid cytotoxicity and inhibits cisplatin cytotoxicity on HCT 116 colorectal carcinoma cells.

    Science.gov (United States)

    Aisha, Abdalrahim F A; Abu-Salah, Khalid M; Ismail, Zhari; Majid, Amin Malik Shah Abdul

    2012-03-08

    Despite the progress in colon cancer treatment, relapse is still a major obstacle. Hence, new drugs or drug combinations are required in the battle against colon cancer. α-Mangostin and betulinic acid (BA) are cytotoxic compounds that work by inducing the mitochondrial apoptosis pathway, and cisplatin is one of the most potent broad spectrum anti-tumor agents. This study aims to investigate the enhancement of BA cytotoxicity by α-mangostin, and the cytoprotection effect of α-mangostin and BA on cisplatin-induced cytotoxicity on HCT 116 human colorectal carcinoma cells. Cytotoxicity was investigated by the XTT cell proliferation test, and the apoptotic effects were investigated on early and late markers including caspases-3/7, mitochondrial membrane potential, cytoplasmic shrinkage, and chromatin condensation. The effect of α-mangostin on four signalling pathways was also investigated by the luciferase assay. α-Mangostin and BA were more cytotoxic to the colon cancer cells than to the normal colonic cells, and both compounds showed a cytoprotective effect against cisplatin-induced cytotoxicity. On the other hand, α-mangostin enhanced the cytotoxic and apoptotic effects of BA. Combination therapy hits multiple targets, which may improve the overall response to the treatment, and may reduce the likelihood of developing drug resistance by the tumor cells. Therefore, α-mangostin and BA may provide a novel combination for the treatment of colorectal carcinoma. The cytoprotective effect of the compounds against cisplatin-induced cytotoxicity may find applications as chemopreventive agents against carcinogens, irradiation and oxidative stress, or to neutralize cisplatin side effects.

  8. Cytotoxicity of Selected Nanoparticles on Human Dental Pulp Stem Cells.

    Science.gov (United States)

    Tabari, Kasra; Hosseinpour, Sepanta; Parashos, Peter; Kardouni Khozestani, Parisa; Rahimi, Hossein Mohammad

    2017-01-01

    Nanoparticles are being increasingly applied in dentistry due to their antimicrobial and mechanical properties. This in vitro study aimed to assess and compare the cytotoxicity of four metal oxide nanoparticles (TiO 2 , SiO 2 , ZnO, and Al 2 O 3 ) on human dental pulp stem cells. Four suspension with different concentrations (25, 50, 75, 100 µg/mL) of each nanoparticle were prepared and placed into cavities of three 96-well plates (containing 1×10 4 cells per well that were seeded 24 earlier). All specimens were incubated in a humidified incubator with 5% CO 2 at 37 ° C. Mosmann's Tetrazolium Toxicity (MTT) assay was used to determine in vitro cytotoxicity of test materials on pulpal stem cells. Cell viability was determined at 24, 48, and 72 h after exposure. Data comparisons were performed using a general linear model for repeated measures and Tukey's post hoc test. The level of significance was set at 0.05. The tested nanoparticles showed variable levels of cytotoxicity and were dose and time dependant. The minimum cell viability was observed in ZnO followed by TiO 2 , SiO 2 and Al 2 O 3 . The results demonstrated that cell viability and morphological modifications occurred at the concentration range of 25 to 100 µg/mL and in all nanoparticles. The higher concentration and longer duration of exposure increased cellular death. Our results highlight the need for a more discrete use of nanoparticles for biomedical applications.

  9. Optimization of cytotoxicity assay by real-time, impedance-based cell analysis.

    Science.gov (United States)

    Ramis, G; Martínez-Alarcón, L; Quereda, J J; Mendonça, L; Majado, M J; Gomez-Coelho, K; Mrowiec, A; Herrero-Medrano, J M; Abellaneda, J M; Pallares, F J; Ríos, A; Ramírez, P; Muñoz, A

    2013-12-01

    This paper presents an optimized procedure for assessing an immune-mediated cytotoxicity, produced after the addition of human and baboon serum to transgenic porcine fibroblasts. This procedure is performed with the xCELLigence Real-Time Cell Analyzer (RTCA). The xCELLigence system measures the impedance variations in the culture media of a 96-well microelectronic plate, and shows the changes in cell number and morphology in a real-time plot. However, different factors need to be optimized before developing an RTCA assay. Thus, we studied the influence of several variables, such as the number of cells seeded, the time the cells were allowed to grow before the tests, the serum concentration and the addition of rabbit complement. The findings were confirmed by the WST-1 classical cytotoxicity test. The results showed that 7.5 × 10(3) cells seeded per well produced the adequate CI in 10 h. The area under the curve and the CImin versus concentration values showed a very high correlation index (r(2) = 0.966 and r(2) = 0.92 for the first 50 h after challenge, respectively), proving that CI variations are directly proportional to the quantity of serum added. The addition of complement resulted in lower CImin values. Therefore, both the cytolysis level with and without exogenous complement addition had to be assessed. There was a high correlation between the relative cytotoxicity assessed by WST-1 and the CI obtained by RTCA when exogenous complement was not added (r(2) = 0.827; p < 0.001). The correlation was average when rabbit complement was added (r(2) = 0.523; p = 0.046). In conclusion, culture conditions have an important influence on RTCA cytotoxicity assays.

  10. Molecular basis of arsenite (As+3-induced acute cytotoxicity in human cervical epithelial carcinoma cells

    Directory of Open Access Journals (Sweden)

    Muhammad Nauman Arshad

    2015-04-01

    Full Text Available Background: Rapid industrialization is discharging toxic heavy metals into the environment, disturbing human health in many ways and causing various neurologic, cardiovascular, and dermatologic abnormalities and certain types of cancer. The presence of arsenic in drinking water from different urban and rural areas of the major cities of Pakistan, for example, Lahore, Faisalabad, and Kasur, was found to be beyond the permissible limit of 10 parts per billion set by the World Health Organization. Therefore the present study was initiated to examine the effects of arsenite (As+3 on DNA biosynthesis and cell death. Methods: After performing cytotoxic assays on a human epithelial carcinoma cell line, expression analysis was done by quantitative polymerase chain reaction, western blotting, and flow cytometry. Results: We show that As+3 ions have a dose- and time-dependent cytotoxic effect through the activation of the caspase-dependent apoptotic pathway. In contrast to previous research, the present study was designed to explore the early cytotoxic effects produced in human cells during exposure to heavy dosage of As+3 (7.5 µg/ml. Even treatment for 1 h significantly increased the mRNA levels of p21 and p27 and caspases 3, 7, and 9. It was interesting that there was no change in the expression levels of p53, which plays an important role in G2/M phase cell cycle arrest. Conclusion: Our results indicate that sudden exposure of cells to arsenite (As+3 resulted in cytotoxicity and mitochondrial-mediated apoptosis resulting from up-regulation of caspases.

  11. In vitro cytotoxicity of nanoparticles in mammalian germline stem cells.

    Science.gov (United States)

    Braydich-Stolle, Laura; Hussain, Saber; Schlager, John J; Hofmann, Marie-Claude

    2005-12-01

    Gametogenesis is a complex biological process that is particularly sensitive to environmental insults such as chemicals. Many chemicals have a negative impact on the germline, either by directly affecting the germ cells, or indirectly through their action on the somatic nursing cells. Ultimately, these effects can inhibit fertility, and they may have negative consequences for the development of the offspring. Recently, nanomaterials such as nanotubes, nanowires, fullerene derivatives (buckyballs), and quantum dots have received enormous national attention in the creation of new types of analytical tools for biotechnology and the life sciences. Despite the wide application of nanomaterials, there is a serious lack of information concerning their impact on human health and the environment. Thus, there are limited studies available on toxicity of nanoparticles for risk assessment of nanomaterials. The purpose of this study was to assess the suitability of a mouse spermatogonial stem cell line as a model to assess nanotoxicity in the male germline in vitro. The effects of different types of nanoparticles on these cells were evaluated by light microscopy, and by cell proliferation and standard cytotoxicity assays. Our results demonstrate a concentration-dependent toxicity for all types of particles tested, whereas the corresponding soluble salts had no significant effect. Silver nanoparticles were the most toxic while molybdenum trioxide (MoO(3)) nanoparticles were the least toxic. Our results suggest that this cell line provides a valuable model with which to assess the cytotoxicity of nanoparticles in the germ line in vitro.

  12. Methylcellulose cell culture as a new cytotoxicity test system for biomaterials

    OpenAIRE

    van Luyn, M.J.A.; van Wachem, P.B.; Nieuwenhuis, P.; Olde-Damink, L.; ten Hoopen, Hermina W.M.; Feijen, Jan

    1991-01-01

    The cytotoxicity of biomaterials can be testedin vitro using various culture systems. Liquid culture systems may detect cytotoxicity of a material either by culture of cells with extracts or with the material itself. In the latter instance, renewing the medium will remove possible released cytotoxic products. The agar-overlay test is a short term semi-solid culture system in which the possible cytotoxicity of biomaterials is identified only by the presence of cell free zones. The aim of this ...

  13. Tracking the elusive cytotoxic T cell response in pigs

    DEFF Research Database (Denmark)

    Jungersen, Gregers; Nielsen, Morten; Overgaard, Nana Haahr

    Quantitative and qualitative assessment of antigen-specific cytotoxic T cell (CTL) responses in pigs is not a straightforward process. Through the years we have developed a series of reagents, tools and protocols to characterize peptide-specific CTL responses in pigs. The most common recombinant...... SLA heavy chains were produced and peptide binding motifs were determined by assays measuring the affinity and stability of the peptide-SLA complex (pSLA) interaction. These results have been used to train neural networks to predict the binding of any pSLA (http...... developed a protocol for intraperitoneal delivery of peptides formulated in poly(I:C)/MMG-decorated liposomes (CAF09) to investigate the influence of peptide dose on the generation of CTL vs. antibody responses. Finally, the induced CTL killing was assessed by an in vivo cytotoxicity assay, where purified...

  14. Cytotoxicity of synthetic cannabinoids on primary neuronal cells of the forebrain: the involvement of cannabinoid CB{sub 1} receptors and apoptotic cell death

    Energy Technology Data Exchange (ETDEWEB)

    Tomiyama, Ken-ichi; Funada, Masahiko, E-mail: mfunada@ncnp.go.jp

    2014-01-01

    The abuse of herbal products containing synthetic cannabinoids has become an issue of public concern. The purpose of this paper was to evaluate the acute cytotoxicity of synthetic cannabinoids on mouse brain neuronal cells. Cytotoxicity induced by synthetic cannabinoid (CP-55,940, CP-47,497, CP-47,497-C8, HU-210, JWH-018, JWH-210, AM-2201, and MAM-2201) was examined using forebrain neuronal cultures. These synthetic cannabinoids induced cytotoxicity in the forebrain cultures in a concentration-dependent manner. The cytotoxicity was suppressed by preincubation with the selective CB{sub 1} receptor antagonist AM251, but not with the selective CB{sub 2} receptor antagonist AM630. Furthermore, annexin-V-positive cells were found among the treated forebrain cells. Synthetic cannabinoid treatment induced the activation of caspase-3, and preincubation with a caspase-3 inhibitor significantly suppressed the cytotoxicity. These synthetic cannabinoids induced apoptosis through a caspase-3-dependent mechanism in the forebrain cultures. Our results indicate that the cytotoxicity of synthetic cannabinoids towards primary neuronal cells is mediated by the CB{sub 1} receptor, but not by the CB{sub 2} receptor, and further suggest that caspase cascades may play an important role in the apoptosis induced by these synthetic cannabinoids. In conclusion, excessive synthetic cannabinoid abuse may present a serious acute health concern due to neuronal damage or deficits in the brain. - Highlights: • Synthetic cannabinoids (classical cannabinoids, non-classical cannabinoids, and aminoalkylindole derivatives) induce cytotoxicity in mouse forebrain cultures. • Synthetic cannabinoid-induced cytotoxicity towards forebrain cultures is mediated by the CB{sub 1} receptor, but not by the CB{sub 2} receptor, and involves caspase-dependent apoptosis. • A high concentration of synthetic cannabinoids may be toxic to neuronal cells that express CB{sub 1} receptors.

  15. Cytotoxicity of synthetic cannabinoids on primary neuronal cells of the forebrain: the involvement of cannabinoid CB1 receptors and apoptotic cell death

    International Nuclear Information System (INIS)

    Tomiyama, Ken-ichi; Funada, Masahiko

    2014-01-01

    The abuse of herbal products containing synthetic cannabinoids has become an issue of public concern. The purpose of this paper was to evaluate the acute cytotoxicity of synthetic cannabinoids on mouse brain neuronal cells. Cytotoxicity induced by synthetic cannabinoid (CP-55,940, CP-47,497, CP-47,497-C8, HU-210, JWH-018, JWH-210, AM-2201, and MAM-2201) was examined using forebrain neuronal cultures. These synthetic cannabinoids induced cytotoxicity in the forebrain cultures in a concentration-dependent manner. The cytotoxicity was suppressed by preincubation with the selective CB 1 receptor antagonist AM251, but not with the selective CB 2 receptor antagonist AM630. Furthermore, annexin-V-positive cells were found among the treated forebrain cells. Synthetic cannabinoid treatment induced the activation of caspase-3, and preincubation with a caspase-3 inhibitor significantly suppressed the cytotoxicity. These synthetic cannabinoids induced apoptosis through a caspase-3-dependent mechanism in the forebrain cultures. Our results indicate that the cytotoxicity of synthetic cannabinoids towards primary neuronal cells is mediated by the CB 1 receptor, but not by the CB 2 receptor, and further suggest that caspase cascades may play an important role in the apoptosis induced by these synthetic cannabinoids. In conclusion, excessive synthetic cannabinoid abuse may present a serious acute health concern due to neuronal damage or deficits in the brain. - Highlights: • Synthetic cannabinoids (classical cannabinoids, non-classical cannabinoids, and aminoalkylindole derivatives) induce cytotoxicity in mouse forebrain cultures. • Synthetic cannabinoid-induced cytotoxicity towards forebrain cultures is mediated by the CB 1 receptor, but not by the CB 2 receptor, and involves caspase-dependent apoptosis. • A high concentration of synthetic cannabinoids may be toxic to neuronal cells that express CB 1 receptors

  16. Cytotoxic actions of palytoxin on aortic smooth muscle cells in culture.

    Science.gov (United States)

    Sheridan, Robert E; Deshpande, Sharad S; Adler, Michael

    2005-01-01

    Palytoxin (PTX), isolated from a zoanthid of the genus Palythoa, is the most potent marine toxin known. Intoxication by PTX leads to vasoconstriction, hemorrhage, ataxia, muscle weakness, ventricular fibrillation, pulmonary hypertension, ischemia and death. In this study, clonal A7r5 rat aortic smooth muscle cells were used to study the mechanism of PTX-mediated cytotoxicity. A7r5 cells exposed to PTX for > or = 15 min exhibited surface granularities, vacuoles and rounding. These alterations culminated in a loss of viability as indicated by marked increases in the release of lactate dehydrogenase. Electrophysiological recording from A7r5 cells disclosed a profound membrane depolarization and an increase in conductance to Na+ and K+. PTX-mediated cytotoxicity could not be reversed by washout or by the addition of 10 microM verapamil but was antagonized by 100 microM ouabain or by removal of extracellular Na+ or Ca2+. In light of the involvement of vascular smooth muscle in PTX poisoning, A7r5 cells could serve as a useful model to test specific drugs for treatment of PTX intoxication. 2005 John Wiley & Sons, Ltd.

  17. A chimeric fusion of the hASH1 and EZH2 promoters mediates high and specific reporter and suicide gene expression and cytotoxicity in small cell lung cancer cells

    DEFF Research Database (Denmark)

    Poulsen, T.T.; Pedersen, N.; Juel, H.

    2008-01-01

    Transcriptionally targeted gene therapy is a promising experimental modality for treatment of systemic malignancies such as small cell lung cancer (SCLC). We have identified the human achaete-scute homolog 1 (hASH1) and enhancer of zeste homolog 2 (EZH2) genes as highly upregulated in SCLC compared...

  18. A chimeric fusion of the hASH1 and EZH2 promoters mediates high and specific reporter and suicide gene expression and cytotoxicity in small cell lung cancer cells

    DEFF Research Database (Denmark)

    Poulsen, T.T.; Pedersen, N.; Juel, H.

    2008-01-01

    Transcriptionally targeted gene therapy is a promising experimental modality for treatment of systemic malignancies such as small cell lung cancer (SCLC). We have identified the human achaete-scute homolog 1 (hASH1) and enhancer of zeste homolog 2 (EZH2) genes as highly upregulated in SCLC compar...

  19. Natural killer cell cytotoxicity and antibody-dependent cellular cytotoxicity to herpes simplex virus-infected cells in human pregnancy.

    Science.gov (United States)

    Gonik, B; Loo, L S; West, S; Kohl, S

    1987-01-01

    Natural killer cell (NKC) cytotoxicity and antibody-dependent cellular cytotoxicity (ADCC) represent the ability of human leukocyte effector cells to destroy target cells in the absence and presence of antibody, respectively. Since these immune systems play a pivotal role in the body's primary lines of defense against a variety of pathogens including herpes simplex virus (HSV), a study was undertaken to evaluate the influence of pregnancy on these systems. Eleven uncomplicated gravidas were followed serially through each trimester and compared to 11 nonpregnant female controls. Mononuclear cells were acquired by Ficoll-Hypaque centrifugation of heparinized blood. Chang liver cells infected with HSV-I were utilized as target cells in a 51Cr release assay. Mean NKC values in the pregnant patients were uniformly lower than in the controls. No similar decreases in ADCC activity were observed in a comparison between the two study populations. These data support previous observations suggesting that pregnancy represents a relatively immunocompromised state. Differences apparently exist between NKC and ADCC effector cell populations with regard to the influence of pregnancy. Although these physiologic alterations in immunoregulation may help support the fetoplacental allograph, detrimental conditions may exist regarding susceptibility to various pathogens such as HSV.

  20. Cytotoxicity and genotoxicity of urban particulate matter in mammalian cells.

    Science.gov (United States)

    Dumax-Vorzet, Audrey F; Tate, M; Walmsley, Richard; Elder, Rhod H; Povey, Andrew C

    2015-09-01

    Ambient air particulate matter (PM)-associated reactive oxygen species (ROS) have been linked to a variety of altered cellular outcomes. In this study, three different PM samples from diesel exhaust particles (DEPs), urban dust standard reference material SRM1649a and air collected in Manchester have been tested for their ability to oxidise DNA in a cell-free assay, to increase intracellular ROS levels and to induce CYP1A1 gene expression in mammalian cells. In addition, the cytotoxicity and genotoxicity of PM were assessed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and alkaline comet assay, respectively. All PM samples catalysed the Fenton reaction in a cell-free assay, but only DEP resulted in the generation of ROS as measured by dichlorodihydrofluorescein diacetate oxidation in mammalian cells. However, there was no evidence that increased ROS was a consequence of polycyclic aromatic hydrocarbon metabolism via CYP1A1 induction as urban dust, the Manchester dust samples but not DEP-induced CYP1A1 expression. Urban dust was more cytotoxic in murine embryonic fibroblasts (MEFs) than the other PM samples and also induced expression of GADD45a in the GreenScreen Human Cell assay without S9 activation suggesting the presence of a direct-acting genotoxicant. Urban dust and DEP produced comparable levels of DNA damage, as assessed by the alkaline comet assay, in MEFs at higher levels than those induced by Manchester PM. In conclusion, results from the cytotoxic and genotoxic assays are not consistent with ROS production being the sole determinant of PM-induced toxicity. This suggests that the organic component can contribute significantly to this toxicity and that further work is required to better characterise the extent to which ROS and organic components contribute to PM-induced toxicity. © The Author 2015. Published by Oxford University Press on behalf of the UK Environmental Mutagen Society.

  1. Predictive models of cytotoxicity as mediated by exposure to chemicals or drugs.

    Science.gov (United States)

    Moon, H; Cong, M

    2016-06-01

    Predicting cytotoxicity is a challenging task because of the complex biological mechanisms behind it. Cytotoxicity due to toxin - biologically produced poison - is known to play a substantial role in a disease process. Two objectives in this research are to derive robust general predictive cytotoxicity models to minimize unnecessary toxicity. The first objective is to build accurate predictive statistical models for cytotoxicity data based on lymphoblastoid cell lines obtained from in vitro studies. This could be an important step for accomplishing a goal in biomedecial/biophamarceutical research, by obtaining the best medical outcomes by minimizing toxicity in regard to a person's genetic profile. The second objective is to build predictive models to predict population-level cytotoxicity for unknown compounds based on chemical structural features. These two objectives were accomplished by a proposed variable selection process, the random forests, and the least absolute shrinkage and selection operator method. We achieved an excellent prediction result with the random forests algorithm using SNP markers from the proposed approach, having the smallest root mean squared error among the teams which participated in the DREAM Toxicogenetics Challenge. Since chemical compounds for drugs have great influence on human health, the predictive statistical models for these objectives could be helpful to government agencies in relevant decision-making.

  2. Glycoengineering of therapeutic antibodies enhances monocyte/macrophage-mediated phagocytosis and cytotoxicity.

    Science.gov (United States)

    Herter, Sylvia; Birk, Martina C; Klein, Christian; Gerdes, Christian; Umana, Pablo; Bacac, Marina

    2014-03-01

    Therapeutic Abs possess several clinically relevant mechanisms of action including perturbation of tumor cell signaling, activation of complement-dependent cytotoxicity, Ab-dependent cellular cytotoxicity (ADCC), Ab-dependent cellular phagocytosis (ADCP), and induction of adaptive immunity. In view of the important role of phagocytic lineage cells in the mechanism of action of therapeutic Abs, we analyzed FcγR receptor-dependent effector functions of monocytes and macrophages triggered by glycoengineered (GE) Abs (having enhanced FcγRIIIa [CD16a] binding affinity) versus their wild-type (WT) counterparts under different experimental conditions. We first defined the precise FcγR repertoire on classical and nonclassical intermediate monocytes--M1 and M2c macrophage populations. We further show that WT and GE Abs display comparable binding and induce similar effector functions (ADCC and ADCP) in the absence of nonspecific, endogenous IgGs. However, in the presence of these IgGs (i.e., in a situation that more closely mimics physiologic conditions), GE Abs display significantly superior binding and promote stronger monocyte and macrophage activity. These data show that in addition to enhancing CD16a-dependent NK cell cytotoxicity, glycoengineering also enhances monocyte and macrophage phagocytic and cytotoxic activities through enhanced binding to CD16a under conditions that more closely resemble the physiologic setting.

  3. The effect of vitamin B6 deficiency on cytotoxic immune responses of T cells, antibodies, and natural killer cells, and phagocytosis by macrophages.

    Science.gov (United States)

    Ha, C; Miller, L T; Kerkvliet, N I

    1984-05-01

    The effect of vitamin B6 on cytotoxic immune responses of T cells, natural killer (NK) cells, cytotoxic antibody production, and macrophage phagocytosis was assessed in 5-week-old female C57B1/6 mice. Mice were fed 20% casein diets with pyridoxine (PN) added at 7, 1, 0.1, or 0 mg/kg diet, which represents 700, 100, 10, and 0% of requirement, respectively. Compared to mice fed 7 or 1 mg PN diet, animals fed 0 or 0.1 mg PN diet showed significantly reduced primary splenic and peritoneal T-cell-mediated cytotoxicity (CMC). Animals fed 0 mg PN diet also showed significantly depressed secondary T CMC of splenic and peritoneal lymphocytes against P815 tumor cells. Complement-dependent antibody-mediated cytotoxicity against P815 cells, phagocytosis of SRBC by macrophages, and native and interferon-induced NK cell activities against YAC cells were not affected by the level of vitamin B6 intake. The percentage of macrophages present in the peritoneal exudate cells was increased in animals fed the 0 mg PN diet. The immune responses were not enhanced or altered by the excess intake of vitamin B6 (7 mg PN). It appears that vitamin B6 is an essential nutrient for maintenance of normal T-cell function in vivo.

  4. Selective cytotoxic effect of 1-O-undecylglycerol in human melanoma cells

    Directory of Open Access Journals (Sweden)

    Marian Hernández-Colina

    2016-04-01

    Full Text Available Context: 1-O-alkylglycerols are ether-linked glycerols derived from shark liver oil and found in small amounts in human milk. Previous studies showed antineoplastic activity for this family of compounds, structurally related to alkylphospholipids, but the activity of linear chain synthetic alkylglycerols in cancer cell lines is less documented. Melanoma is a high incidence cancer, highly resistant to potential treatments. Finding new anti-cancer compounds to improve melanoma prognosis is a relevant research issue. Aims: To study the cytotoxic effect of 1-O-undecylglycerol in primary cultured normal fibroblasts and A375 human melanoma cell line. Methods: Cells were treated with different concentrations of 1-O-undecylglycerol and viability assessed by MTT assay. Morphological changes were visualized by DAPI and acridine orange-ethidium bromide staining. Mitochondrial membrane potential was evaluated, and gene expression of P53 and BcL-2 was semi-quantified. Results: 1-O-undecylglycerol decreased viability of A375 cells and exerted very low cytotoxicity on primary cultured normal fibroblasts. Necrosis appeared in A375 cells but not in fibroblasts, and no apoptotic changes were visualized in DAPI staining experiments. After 24 h fibroblasts and melanoma cells developed mitochondrial potential changes similar to valinomycin. The gene expression of P53 and BcL-2 decreased in treated cells. Conclusions: 1-O-undecylglycerol exhibited selective cytotoxic activity in A375 melanoma cells when compared with primary cultured fibroblast. Its toxicity is mediated by necrosis that may be related with mitochondrial events and decrease in P53 and BcL-2 expression. The results suggest that UDG could be a useful strategy to combine with other chemotherapeutic agents in melanoma treatment.

  5. Role of T-bet, the master regulator of Th1 cells, in the cytotoxicity of murine CD4+T cells.

    Science.gov (United States)

    Eshima, Koji; Misawa, Kana; Ohashi, Chihiro; Iwabuchi, Kazuya

    2018-03-25

    Although CD4 + T cells are generally regarded as helper T cells, some activated CD4 + T cells exert cytotoxicity. Since CD4 + cytotoxic T lymphocytes (CTLs) often secrete IFN-γ, CTL activity among CD4 + T cells may be attributable to Th1 cells, where a T-box family molecule, T-bet serves as the "master regulator". However, although the essential contribution of T-bet to the expression of IFN-γ has been well-documented, it remains unclear if T-bet is involved in CD4 + T cell-mediated cytotoxicity. In this study, in order to investigate the ability of T-bet to confer cytolytic activity on CD4 + T cells, we introduced the T-bet gene into non-cytocidal CD4 + T cell lines and analyzed their cytolytic function. We observed up-regulation of FasL (CD178) in T-bet-transfected CD4 + T cells, but not in untransfected parental cells, which provided the transfectant with cytotoxicity. In one cell line, T-bet transduction also induced perforin gene expression, and T-bet-transfectants efficiently killed Fas - target cells. Although T-bet repressed the up-regulation of CD40L (CD154), which controls FasL-mediated cytolysis, the level of CD40L expression on in vitro-differentiated Th1 cells was similar to that on Th2 cells, suggesting the existence of a compensatory mechanism. These results collectively indicate that T-bet may be involved in the expression of genes, such as FasL and perforin, that confer cytotoxicity on Th1 cells. © 2018 The Societies and John Wiley & Sons Australia, Ltd.

  6. The Genotoxic and Cytotoxic Effects of Bisphenol-A (BPA) in MCF-7 Cell Line and Amniocytes.

    Science.gov (United States)

    Aghajanpour-Mir, Seyed Mohsen; Zabihi, Ebrahim; Akhavan-Niaki, Haleh; Keyhani, Elahe; Bagherizadeh, Iman; Biglari, Sajjad; Behjati, Farkhondeh

    2016-01-01

    Bisphenol-A (BPA) is an industrial xenoestrogen used widely in our living environment. Recently, several studies suggested that BPA has destructive effects on DNA and chromosomes in normal body cells via estrogen receptors (ER). Therefore, BPA could be considered as an important mediator in many diseases such as cancer. However, there are still many controversial issues which need clarification. In this study, we investigated the BPA-induced chromosomal damages in MCF-7 cell line, ER-positive and negative amniocyte cells. Cytotoxicity and genotoxicity effects of BPA were also compared between these three cell groups. Expression of estrogen receptors was determined using immunocytochemistry technique. The cell cytotoxicity of BPA was measured by MTT assay. Classic cytogenetic technique was carried out for the investigation of chromosome damage. BPA, in addition to cytotoxicity, had remarkable genotoxicity at concentrations close to the traceable levels in tissues or biological fluids. Although some differences were observed in the amount of damages between ER-positive and negative fetal cells, interestingly, these differences were not significant. The present study showed that BPA could lead to chromosomal aberrations in both ER-dependent and independent pathways at some concentrations or in cell types yet not reported. Also, BPA could probably be considered as a facilitator for some predisposed cells to be cancerous by raising the chromosome instability levels. Finally, estrogen receptor seems to have a different role in cytotoxicity and genotoxicity effects.

  7. Microwave-induced Apoptosis and Cytotoxicity of NK Cells through ERK1/2 Signaling.

    Science.gov (United States)

    Zhao, Li; Li, Jing; Hao, Yan Hui; Gao, Ya Bing; Wang, Shui Ming; Zhang, Jing; Dong, Ji; Zhou, Hong Mei; Liu, Shu Chen; Peng, Rui Yun

    2017-05-01

    To investigate microwave-induced morphological and functional injury of natural killer (NK) cells and uncover their mechanisms. NK-92 cells were exposed to 10, 30, and 50 mW/cm2 microwaves for 5 min. Ultrastructural changes, cellular apoptosis and cell cycle regulation were detected at 1 h and 24 h after exposure. Cytotoxic activity was assayed at 1 h after exposure, while perforin and NKG2D expression were detected at 1 h, 6 h, and 12 h after exposure. To clarify the mechanisms, phosphorylated ERK (p-ERK) was detected at 1 h after exposure. Moreover, microwave-induced cellular apoptosis and cell cycle regulation were analyzed after blockade of ERK signaling by using U0126. Microwave-induced morphological and ultrastructural injury, dose-dependent apoptosis (P microwave exposure. Moreover, significant apoptosis was still detected at 24 h after 50 mW/cm2 microwave exposure (P microwave exposure model, microwaves impaired the cytotoxic activity of NK-92 cells at 1 h and down regulated perforin protein both at 1 h and 6 h after exposure (P microwave-induced apoptosis (P Microwave dose-dependently induced morphological and functional injury in NK-92 cells, possibly through ERK-mediated regulation of apoptosis and perforin expression. Copyright © 2017 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.

  8. In vitro cytotoxicity and genotoxicity studies of gold nanoparticles-mediated photo-thermal therapy versus 5-fluorouracil

    Energy Technology Data Exchange (ETDEWEB)

    Gomaa, Iman E., E-mail: iman.gomaa@guc.edu.eg; Abdel Gaber, Sara A. [German University in Cairo (GUC), Faculty of Pharmacy and Biotechnology (Egypt); Bhatt, Samarth; Liehr, Thomas [Friedrich Schiller University, Jena University Hospital, Institute of Human Genetics (Germany); Glei, Michael [Friedrich Schiller University, Faculty of Biology and Pharmacy, Institute of Nutrition (Germany); El-Tayeb, Tarek A. [Cairo University, The National Institute for Laser Enhanced Sciences (NILES) (Egypt); Abdel-Kader, Mahmoud H. [German University in Cairo (GUC), Faculty of Pharmacy and Biotechnology (Egypt)

    2015-02-15

    This study evaluates tumour cell-killing efficacy of metallic gold nanoparticles (AuNPs)-mediated photo-thermal therapy (PTT) in comparison to 5-fluorouracil (5-FU) as a standard chemotherapeutic drug. It also focuses on the possible genetic abnormalities of both drugs in normal blood lymphocytes. Both 5-FU and light-activated spherical AuNPs of 15± nm diameter were used to target MCF-7 breast cancer cell line. Alkaline comet assay, standard karyotyping and multiplex fluorescent in situ hybridization were applied in order to investigate the respective possible genotoxic and mutagenic side effects that might result from the application of each therapeutic modality. Results showed that the LC25 of AuNPs-mediated PTT was achieved at a concentration of 100 µM for 12-h incubation and exposure to light energy of 50 J/cm{sup 2}, while the same cytotoxic effect was obtained by incubating the MCF-7 cells with the same concentration of the chemotherapeutic drug 5-FU for 24 h. On the other hand, AuNPs showed insignificant genotoxic effect of DNA damage represented by 4.6 % in comparison to 18.58 % exerted by 5-FU. The chromosomal studies resulted in normal karyotypes for cells treated with AuNPs-mediated PTT, while those treated with 5-FU showed several types of numerical as well as structural chromosomal aberrations. In conclusion, compared to 5-FU, light-activated AuNPs-mediated PTT provides considerable efficacy in breast cancer cells killing with no genetic side effects under the proposed experimental conditions.

  9. Methylcellulose cell culture as a new cytotoxicity test system for biomaterials

    NARCIS (Netherlands)

    van Luyn, M.J.A.; van Wachem, P.B.; Nieuwenhuis, P.; Olde-Damink, L.; ten Hoopen, Hermina W.M.; Feijen, Jan

    1991-01-01

    The cytotoxicity of biomaterials can be testedin vitro using various culture systems. Liquid culture systems may detect cytotoxicity of a material either by culture of cells with extracts or with the material itself. In the latter instance, renewing the medium will remove possible released cytotoxic

  10. A new class of pluripotent stem cell cytotoxic small molecules.

    Directory of Open Access Journals (Sweden)

    Mark Richards

    Full Text Available A major concern in Pluripotent Stem Cell (PSC-derived cell replacement therapy is the risk of teratoma formation from contaminating undifferentiated cells. Removal of undifferentiated cells from differentiated cultures is an essential step before PSC-based cell therapies can be safely deployed in a clinical setting. We report a group of novel small molecules that are cytotoxic to PSCs. Our data indicates that these molecules are specific and potent in their activity allowing rapid eradication of undifferentiated cells. Experiments utilizing mixed PSC and primary human neuronal and cardiomyocyte cultures demonstrate that up to a 6-fold enrichment for specialized cells can be obtained without adversely affecting cell viability and function. Several structural variants were synthesized to identify key functional groups and to improve specificity and efficacy. Comparative microarray analysis and ensuing RNA knockdown studies revealed involvement of the PERK/ATF4/DDIT3 ER stress pathway. Surprisingly, cell death following ER stress induction was associated with a concomitant decrease in endogenous ROS levels in PSCs. Undifferentiated cells treated with these molecules preceding transplantation fail to form teratomas in SCID mice. Furthermore, these molecules remain non-toxic and non-teratogenic to zebrafish embryos suggesting that they may be safely used in vivo.

  11. Deoxynivalenol induces cytotoxicity and genotoxicity in animal primary cell culture.

    Science.gov (United States)

    Singh, Shweta; Banerjee, Subham; Chattopadhyay, Pronobesh; Borthakur, Sashin Kumar; Veer, Vijay

    2015-03-01

    Deoxynivalenol (DON), a mycotoxin produced by Fusarium graminearum, is widely found as a contaminant of food. DON is responsible for a wide range of toxic activities, including gastro-intestinal, lymphoid, bone-marrow and cardiotoxicity. But, the complete explorations of toxicity in terms of hepatotoxicity, nephrotoxicity, cytotoxicity and genotoxicity as well have not been documented well. Again, the mechanisms through which DON damages the DNA and promotes cellular toxicity are not well established. Considering the above fact, this research article is focused on the effects of DON-induced toxicities on experimental animal model as well as its effects on cellular level via various toxicological investigations. DON treatment showed cytotoxicity and DNA damage. Further, flow cytometric analysis of hepatocytes showed cellular apoptosis, suggesting that DON-induced hepatotoxicity is, may be partly, mediated by apoptosis. Moreover, significant differences were found in each haematology and clinical chemistry value, either (p > 0.05). No abnormality of any organ was found during histopathological examination. Hence, it can be concluded that DON induces oxidative DNA damage and increases the formation of centromere positive micronuclei due to aneugenic activity.

  12. A novel andrographolide derivative AL-1 exerts its cytotoxicity on K562 cells through a ROS-dependent mechanism.

    Science.gov (United States)

    Zhu, Yong-Yang; Yu, Guangchuang; Zhang, Ye; Xu, Zheng; Wang, Yu-Qiang; Yan, Guang-Rong; He, Qing-Yu

    2013-01-01

    Andrographolide-lipoic acid conjugate (AL-1) is a new in-house synthesized chemical entity, which was derived by covalently linking andrographolide with lipoic acid. However, its anti-cancer effect and cytotoxic mechanism remains unknown. In this study, we found that AL-1 could significantly inhibit cell viability of human leukemia K562 cells by inducing G2/M arrest and apoptosis in a dose-dependent manner. Thirty-one AL-1-regulated protein alterations were identified by proteomics analysis. Gene ontology and ingenuity pathway analysis revealed that a cluster of proteins of oxidative redox state and apoptotic cell death-related proteins, such as PRDX2, PRDX3, PRDX6, TXNRD1, and GLRX3, were regulated by AL-1. Functional studies confirmed that AL-1 induced apoptosis of K562 cells through a ROS-dependent mechanism, and anti-oxidant, N-acetyl-L-cysteine, could completely block AL-1-induced cytotoxicity, implicating that ROS generation played a vital role in AL-1 cytotoxicity. Accumulated ROS resulted in oxidative DNA damage and subsequent G2/M arrest and mitochondrial-mediated apoptosis. The current work reveals that a novel andrographolide derivative AL-1 exerts its anticancer cytotoxicity through a ROS-dependent DNA damage and mitochondrial-mediated apoptosis mechanism. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Cytotoxicity of monodispersed chitosan nanoparticles against the Caco-2 cells

    Energy Technology Data Exchange (ETDEWEB)

    Loh, Jing Wen [Laboratory for Drug Delivery, Pharmacy, Characterisation and Analysis, University of Western Australia (Australia); Saunders, Martin [Centre for Microscopy, Characterisation and Analysis, University of Western Australia (Australia); Lim, Lee-Yong, E-mail: lee.lim@uwa.edu.au [Laboratory for Drug Delivery, Pharmacy, Characterisation and Analysis, University of Western Australia (Australia); School of Biomedical, Biomolecular and Chemical Sciences, 35 Stirling Hwy, Crawley 6009 (Australia)

    2012-08-01

    Published toxicology data on chitosan nanoparticles (NP) often lack direct correlation to the in situ size and surface characteristics of the nanoparticles, and the repeated NP assaults as experienced in chronic use. The aim of this paper was to breach these gaps. Chitosan nanoparticles synthesized by spinning disc processing were characterised for size and zeta potential in HBSS and EMEM at pHs 6.0 and 7.4. Cytotoxicity against the Caco-2 cells was evaluated by measuring the changes in intracellular mitochondrial dehydrogenase activity, TEER and sodium fluorescein transport data and cell morphology. Cellular uptake of NP was observed under the confocal microscope. Contrary to established norms, the collective data suggest that the in vitro cytotoxicity of NP against the Caco-2 cells was less influenced by positive surface charges than by the particle size. Particle size was in turn determined by the pH of the medium in which the NP was dispersed, with the mean size ranging from 25 to 333 nm. At exposure concentration of 0.1%, NP of 25 ± 7 nm (zeta potential 5.3 ± 2.8 mV) was internalised by the Caco-2 cells, and the particles were observed to inflict extensive damage to the intracellular organelles. Concurrently, the transport of materials along the paracellular pathway was significantly facilitated. The Caco-2 cells were, however, capable of recovering from such assaults 5 days following NP removal, although a repeat NP exposure was observed to produce similar effects to the 1st exposure, with the cells exhibiting comparable resiliency to the 2nd assault. -- Highlights: ► Chitosan nanoparticles reduced mitochondrial dehydrogenase activity. ► Cellular uptake of chitosan nanoparticles was observed. ► Chitosan nanoparticles inflicted extensive damage to the cell morphology. ► The transport of materials along the paracellular pathway was facilitated.

  14. Cytotoxicity of luteolin in primary rat hepatocytes: the role of CYP3A-mediated ortho-benzoquinone metabolite formation and glutathione depletion.

    Science.gov (United States)

    Shi, Fuguo; Zhao, Peng; Li, Xiaobing; Pan, Hong; Ma, Shiping; Ding, Li

    2015-11-01

    Luteolin (LUT), an active ingredient in traditional Chinese medicines and an integral part of the human diet, has shown promising pharmacological activities with a great potential for clinical use. The purpose of this study was to evaluate the role of cytochrome P450 (CYP450)-mediated reactive ortho-benzoquinone metabolites formation and glutathione (GSH) depletion in LUT-induced cytotoxicity in primary rat hepatocytes. A reactive ortho-benzoquinone metabolite was identified by liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) in rat liver microsomes (RLMs) and rat hepatocytes. Using a specific chemical inhibitor method, the CYP3A subfamily was found to be responsible for the reactive metabolite formation in RLMs. Induction of CYP3A by dexamethasone enhanced LUT-induced cytotoxicity, whereas inhibition of CYP3A by ketoconazole (Keto) decreased the cytotoxicity. The cytotoxicity and cell apoptosis induced by LUT were related to the amount of reactive metabolite formation. Furthermore, Keto inhibited the LUT-induced GSH exhaustion. The cytotoxicity was significantly enhanced by pretreatment with L-buthionine sulfoximine to deplete the intracellular GSH. A time course experiment showed that GSH depletion by LUT was not via oxidation of GSH and occurred prior to the increase in 2', 7'-dichlorofluorescein in hepatocytes. Collectively, these data suggest that CYP3A-mediated reactive metabolite formation plays a critical role in LUT-induced hepatotoxicity, and the direct GSH depletion is an initiating event in LUT-mediated cytotoxicity in primary rat hepatocytes. Copyright © 2015 John Wiley & Sons, Ltd.

  15. Cytotoxicity of nanostructured vanadium oxide on human cells in vitro.

    Science.gov (United States)

    Rhoads, Laura S; Silkworth, William T; Roppolo, Megan L; Whittingham, M Stanley

    2010-02-01

    Vanadium oxide nanostructures have potential uses for electrochemistry and catalysis, yet little is known about their toxicology. In this study, cultured human colon carcinoma cells (Caco-2) were exposed to vanadium oxide and their viability assessed with the neutral red assay. Cells exposed to either vanadium oxide (powdered form) or ethylene diamine intercalated vanadium oxide (enH(2))V(7)O(16) demonstrated no significant reduction in viability after twenty-four hours, yet cells exposed to vanadium oxide nanotubes demonstrated a significant loss in viability after four hours. The physical size and structure of the nanotubes may play an important role in their cytotoxic effects, and the safety of using such nanomaterials must be considered.

  16. Epitope targeting and viral inoculum are determinants of Nef-mediated immune evasion of HIV-1 from cytotoxic T lymphocytes.

    Science.gov (United States)

    Chen, Diana Y; Balamurugan, Arumugam; Ng, Hwee L; Cumberland, William G; Yang, Otto O

    2012-07-05

    The impact of HIV-1 Nef-mediated HLA-I down-regulation on CD8(+) cytotoxic T lymphocytes (CTLs) varies by epitope, but the determining factors have not been elucidated. In the present study, we investigated the impact of Nef on the antiviral efficiency of HIV-1-specific CTLs targeting 17 different epitopes to define properties that determine susceptibility to Nef. The impact of Nef was not correlated with the presenting HLA-I type or functional avidity of CTLs, but instead was related directly to the kinetics of infected cell clearance. Whereas Gag-specific CTLs generally were less susceptible to Nef than those targeting other proteins, this was determined by the ability to eliminate infected cells before de novo synthesis of viral proteins, which was also observed for CTLs targeting a Nef epitope. This very early clearance of infected cells depended on virus inoculum, and the required inoculum varied by epitope. These results suggest that whereas Gag-specific CTLs are more likely to recognize infected cells before Nef-mediated HLA-I down-regulation, this varies depending on the specific epitope and virus inoculum. Reduced susceptibility to Nef therefore may contribute to the overall association of Gag-specific CTL responses to better immune control if a sufficient multiplicity of infection is attained in vivo, but this property is not unique to Gag.

  17. Ultrastructural studies of time-course and cellular specificity of interleukin-1 mediated islet cytotoxicity

    DEFF Research Database (Denmark)

    Mandrup-Poulsen, T; Egeberg, J; Nerup, J

    1987-01-01

    Previous electron-microscopic studies of isolated islets of Langerhans exposed to the monokine interleukin-1 for 7 days have indicated that interleukin-1 is cytotoxic to all islet cells. To study the time-course and possible cellular specificity of interleukin-1 cytotoxicity to islets exposed...... to interleukin-1 for short time periods, isolated rat or human islets were incubated with or without 25 U/ml highly purified human interleukin-1 for 24 h. Samples of rat islets were taken after 5 min, 30 min, 1, 2, 4, 6, 8, 10, 12, 16, 20 and 24 h and samples of human islets after 5 min, 30 min and 24 h...... of incubation and examined by electron microscopy in a blinded fashion. Already after 30 min, accumulation of opaque intracytoplasmic bodies without apparent surrounding membranes, and autophagic vacuoles were seen in about 20% of the beta cells examined in rat islets exposed to interleukin-1. After 16 h...

  18. Cytotoxic drug sensitivity testing of tumor cells from patients with ovarian carcinoma using the fluorometric microculture cytotoxicity assay (FMCA).

    Science.gov (United States)

    Csoka, K; Larsson, R; Tholander, B; Gerdin, E; de la Torre, M; Nygren, P

    1994-08-01

    The automated fluorometric microculture cytotoxicity assay (FMCA) is based on the measurement of fluorescence generated from cellular hydrolysis of fluorescein diacetate (FDA) to fluorescein by viable cells after a 72-hr culture period in microtiter plates. The FMCA was adopted for chemosensitivity testing of tumor cells from patients with ovarian carcinoma. Thirty-seven samples of solid tumors and malignant effusions were obtained from 35 patients at diagnosis or relapse. Tumor cells from solid samples and effusions were prepared by enzymatic digestion and centrifugation, respectively, followed by Percoll or Ficoll purification. The fluorescence was proportional to the number of cells/well and considerably higher in tumor cells than in contaminating normal cells. The effect of up to 19 cytotoxic drugs was successfully assessed in 70% of the samples and there was a good correlation between drug sensitivity data reported by the FMCA and the DiSC assay performed in parallel. The overall drug sensitivity pattern in vitro corresponded well to the clinical experience. The effect of cisplatin varied considerably between patients and resistance was found also in cases not previously exposed to cytotoxic drugs. The FMCA is a rapid and simple method that seems to report clinically relevant cytotoxic drug sensitivity data in ovarian carcinomas. In the future, this method may contribute to optimizing chemotherapy by assisting in individualized drug selection and new drug development.

  19. Hexavalent chromium is cytotoxic and genotoxic to American alligator cells.

    Science.gov (United States)

    Wise, Sandra S; Wise, Catherine; Xie, Hong; Guillette, Louis J; Zhu, Cairong; Wise, John Pierce; Wise, John Pierce

    2016-02-01

    Metals are a common pollutant in the aquatic ecosystem. With global climate change, these levels are anticipated to rise as lower pH levels allow sediment bound metals to be released. The American alligator (Alligator mississippiensis) is an apex predator in the aquatic ecosystem and is considered a keystone species; as such it serves as a suitable monitor for localized pollution. One metal of increasing concern is hexavalent chromium (Cr(VI)). It is present in the aquatic environment and is a known human carcinogen and reproductive toxicant. We measured the cytotoxicity and genotoxicity of Cr(VI) in American alligator cells derived from scute tissue. We found that particulate and soluble Cr(VI) are both cytotoxic and genotoxic to alligator cells in a concentration-dependent manner. These data suggest that alligators may be used as a model for assessing the effects of environmental Cr(VI) contamination as well as for other metals of concern. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Cytomegalovirus-Infected Cells Resist T Cell Mediated Killing in an HLA-Recognition Independent Manner.

    Science.gov (United States)

    Proff, Julia; Walterskirchen, Christian; Brey, Charlotte; Geyeregger, Rene; Full, Florian; Ensser, Armin; Lehner, Manfred; Holter, Wolfgang

    2016-01-01

    In order to explore the potential of HLA-independent T cell therapy for human cytomegalovirus (HCMV) infections, we developed a chimeric antigen receptor (CAR) directed against the HCMV encoded glycoprotein B (gB), which is expressed at high levels on the surface of infected cells. T cells engineered with this anti-gB CAR recognized HCMV-infected cells and released cytokines and cytotoxic granules. Unexpectedly, and in contrast to analogous approaches for HIV, Hepatitis B or Hepatitis C virus, we found that HCMV-infected cells were resistant to killing by the CAR-modified T cells. In order to elucidate whether this phenomenon was restricted to the use of CARs, we extended our experiments to T cell receptor (TCR)-mediated recognition of infected cells. To this end we infected fibroblasts with HCMV-strains deficient in viral inhibitors of antigenic peptide presentation and targeted these HLA-class I expressing peptide-loaded infected cells with peptide-specific cytotoxic T cells (CTLs). Despite strong degranulation and cytokine production by the T cells, we again found significant inhibition of lysis of HCMV-infected cells. Impairment of cell lysis became detectable 1 day after HCMV infection and gradually increased during the following 3 days. We thus postulate that viral anti-apoptotic factors, known to inhibit suicide of infected host cells, have evolved additional functions to directly abrogate T cell cytotoxicity. In line with this hypothesis, CAR-T cell cytotoxicity was strongly inhibited in non-infected fibroblasts by expression of the HCMV-protein UL37x1, and even more so by additional expression of UL36. Our data extend the current knowledge on Betaherpesviral evasion from T cell immunity and show for the first time that, beyond impaired antigen presentation, infected cells are efficiently protected by direct blockade of cytotoxic effector functions through viral proteins.

  1. Cloning and expression analysis of nonspecific cytotoxic cell receptor 1 (Ls-NCCRP1) from red snapper (Lutjanus sanguineus).

    Science.gov (United States)

    Cai, Jia; Wei, Shina; Wang, Bei; Huang, Yucong; Tang, Jufen; Lu, Yishan; Wu, Zaohe; Jian, Jichang

    2013-09-01

    It is well known that nonspecific cytotoxic cells (NCCs) are kinds of natural killer cell mediated innate immune responses in teleosts. The nonspecific cytotoxic cell receptor protein 1 (NCCRP-1) is an important cell surface protein on NCC, which serves crucial functions in target cell recognition and cytotoxicity activation. In the present study, a nonspecific cytotoxic cell receptor protein NCCRP-1 (Ls-NCCRP1) was cloned from red snapper, Lutjanus sanguineus. The Ls-NCCRP1 cDNA is composed of 986bp with a 43bp of 5'-UTR, 702bp open reading frame (ORF) and 241bp 3'-UTR, encoding a polypeptide of 233 amino acids (GenBank accession no: ADK32635). Phylogenetic analysis revealed that Ls-NCCRP1 showed highest similarity to sea bream NCCRP-1. Quantitative real-time PCR (qRT-PCR) analysis showed that Ls-NCCRP1 had relatively high expression level in the head kidney, spleen and liver. After Vibrio alginolyticus infection, transcripts of Ls-NCCRP1 increased and reached its peak at 4h p.i. These results indicated that Ls-NCCRP1 may play an important role in innate immune response to bacteria. © 2013.

  2. Postincubation with aclarubicin reverses topoisomerase II mediated DNA cleavage, strand breaks, and cytotoxicity induced by VP-16

    DEFF Research Database (Denmark)

    Petersen, L N; Jensen, P B; Sørensen, B S

    1994-01-01

    In previous studies, we found that VP-16 (etoposide) induced cytotoxicity and protein-concealed strand break formation was prevented in a small cell lung cancer (SCLC) cell line, when the cells were incubated with aclarubicin prior to treatment with VP-16. In the present work, we studied the effect...... of adding aclarubicin to the cell suspension after VP-16. In a clonogenic assay, we found that the cytotoxicity induced by VP-16 in SCLC cells was inhibited when cells were postincubated with aclarubicin. The addition of aclarubicin at any time in relation to VP-16 was able to stop further cytotoxicity...... induced by the topoisomerase II (topo-II) targeting drug. Aclarubicin was also found to antagonize the cytotoxicity induced by VM-26 (teniposide), and m-AMSA. With the alkaline elution technique we found that postincubating the cells with aclarubicin inhibited VP-16-induced DNA strand break formation...

  3. Platinum anticancer agents and antidepressants: desipramine enhances platinum-based cytotoxicity in human colon cancer cells.

    Science.gov (United States)

    Kabolizadeh, Peyman; Engelmann, Brigitte J; Pullen, Nicholas; Stewart, Jennifer K; Ryan, John J; Farrell, Nicholas P

    2012-01-01

    A unique synergistic effect on platinum drug cytotoxicity is noted in the presence of the tricyclic antidepressant desipramine. Desipramine is used for treating neuropathic pain, particularly in prostate cancer patients. The clinically used drugs cisplatin (cis-[PtCl(2)(NH(3))(2)]), oxaliplatin [1,2-diaminocyclohexaneoxalatoplatinum(II)], and the cationic trinuclear agent BBR3464 [{trans-PtCl(NH(3))(2)}(2)-μ-(trans-Pt(NH(3))(2)(H(2)N(CH(2))(6)NH(2))(2))](4+), which has undergone evaluation in phase II clinical trials for activity in lung and ovarian cancers, were evaluated. Surprisingly, desipramine greatly augments the cytotoxicity of all the platinum-based chemotherapeutics in HCT116 colorectal carcinoma cell lines. Desipramine enhanced cellular accumulation of cisplatin, but had no effect on the accumulation of oxaliplatin or BBR3464, suggesting that enhanced accumulation could not be a consistent means by which desipramine altered the platinum-drug-mediated cytotoxicity. The desipramine/cisplatin combination resulted in increased levels of p53 as well as mitochondrial damage, caspase activation, and poly(ADP ribose) polymerase cleavage, suggesting that desipramine may synergize with cisplatin more than with other platinum chemotherapeutics partly by activating distinct apoptotic pathways. The study argues that desipramine may be a means of enhancing chemoresponsiveness of platinum drugs and the results warrant further investigation. The results emphasize the importance of understanding the differential pharmacological action of adjuvants employed in combinations with cancer chemotherapeutics. © SBIC 2011

  4. Non-major histocompatibility complex-restricted cytotoxic activity of blood mononuclear cells stimulated with secreted mycobacterial proteins and other mycobacterial antigens

    DEFF Research Database (Denmark)

    Ravn, P; Pedersen, B K

    1994-01-01

    Several observations indicate that non-major histocompatibility complex (MHC)-restricted cytotoxicity, mediated for example by natural killer cells and lymphokine-activated killer cells, may serve as an important antimicrobial defense mechanism. The purpose of the present study was to investigate...

  5. Cytotoxic Effect of a Novel Synthesized Carbazole Compound on A549 Lung Cancer Cell Line.

    Directory of Open Access Journals (Sweden)

    Refilwe P Molatlhegi

    Full Text Available Increased death rates due to lung cancer have necessitated the search for potential novel anticancer compounds such as carbazole derivatives. Carbazoles are aromatic heterocyclic compounds with anticancer, antibacterial and anti-inflammatory activity. The study investigated the ability of the novel carbazole compound (Z-4-[9-ethyl-9aH-carbazol-3-yl amino] pent-3-en-2-one (ECAP to induce cytotoxicity of lung cancer cells and its mechanism of action. ECAP was synthesized as a yellow powder with melting point of 240-247 °C. The 3-(4,5-dimethythiazol-2-yl-2,5-diphenyl tetrazolium bromide (MTT, lipid peroxidation and comet assays were used to assess the cytotoxic effect of the compound on A549 lung cancer cells. Protein expression was determined using western blots, apoptosis was measured by luminometry (caspase-3/7, -8 and -9 assay and flow cytometry was used to measure phosphatidylserine (PS externalisation. ECAP induced a p53 mediated apoptosis of lung cancer cells due to a significant reduction in the expression of antioxidant defence proteins (Nrf2 and SOD, Hsp70 (p < 0.02 and Bcl-2 (p < 0.0006, thereby up-regulating reactive oxygen species (ROS production. This resulted in DNA damage (p < 0.0001, up-regulation of Bax expression and caspase activity and induction of apoptosis in lung cancer cells. The results show the anticancer potential of ECAP on lung cancer.

  6. 2. Cell-mediatedImmunity

    Indian Academy of Sciences (India)

    Admin

    Cell-mediated Immunity sma hmed', Banishree Saha', nand Patwardhan°,. Shwetha Shivaprasad and Dipankar Nandis. Our immune system, by and large, does a fine job in protect- ing us from opportunistic and infectious microbes, potential carcinogens and allergens. It is therefore crucial to under- stand the organization ...

  7. A Morphological identification cell cytotoxicity assay using cytoplasm-localized fluorescent probe (CLFP) to distinguish living and dead cells.

    Science.gov (United States)

    Lai, Fangfang; Shen, Zhengwei; Wen, Hui; Chen, Jialing; Zhang, Xiang; Lin, Ping; Yin, Dali; Cui, Huaqing; Chen, Xiaoguang

    2017-01-08

    Cell cytotoxicity assays include cell activity assays and morphological identification assays. Currently, all frequently used cytotoxicity assays belong to cell activity assays but suffer from detection limitations. Morphological identification of cell death remains as the gold standard, although the method is difficult to scale up. At present there is no generally accepted morphological identification based cell cytotoxicity assay. In this study, we applied previous developed cell cytoplasm-localized fluorescent probe (CLFP) to display cell morphologies. Under fluorescence microscopy, the fluorescence morphology and intensity of living cells are distinct from dead cells. Based on these characters we extracted the images of living cells from series of samples via computational analysis. Thus, a novel cell morphological identification cytotoxicity assay (CLFP assay) is developed. The performance of the CLFP assay was similar to cell activity assay (MTT assay), but the accuracy of the CLFP assay was superior when measuring the cytotoxicity of active compounds. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Sorafenib enhances proteasome inhibitor-mediated cytotoxicity via inhibition of unfolded protein response and keratin phosphorylation

    Energy Technology Data Exchange (ETDEWEB)

    Honma, Yuichi; Harada, Masaru, E-mail: msrharada@med.uoeh-u.ac.jp

    2013-08-15

    Hepatocellular carcinoma (HCC) is highly resistant to conventional systemic therapies and prognosis for advanced HCC patients remains poor. Recent studies of the molecular mechanisms responsible for tumor initiation and progression have identified several potential molecular targets in HCC. Sorafenib is a multi-kinase inhibitor shown to have survival benefits in advanced HCC. It acts by inhibiting the serine/threonine kinases and the receptor type tyrosine kinases. In preclinical experiments sorafenib had anti-proliferative activity in hepatoma cells and it reduced tumor angiogenesis and increased apoptosis. Here, we demonstrate for the first time that the cytotoxic mechanisms of sorafenib include its inhibitory effects on protein ubiquitination, unfolded protein response (UPR) and keratin phosphorylation in response to endoplasmic reticulum (ER) stress. Moreover, we show that combined treatment with sorafenib and proteasome inhibitors (PIs) synergistically induced a marked increase in cell death in hepatoma- and hepatocyte-derived cells. These observations may open the way to potentially interesting treatment combinations that may augment the effect of sorafenib, possibly including drugs that promote ER stress. Because sorafenib blocked the cellular defense mechanisms against hepatotoxic injury not only in hepatoma cells but also in hepatocyte-derived cells, we must be careful to avoid severe liver injury. -- Graphical abstract: Display Omitted -- Highlights: •We examined the cytotoxic mechanisms of sorafenib in hepatoma cells. •Sorafenib induces cell death via apoptotic and necrotic fashion. •Sorafenib inhibits protein ubiquitination and unfolded protein response. •Autophagy induced by sorafenib may affect its cytotoxicity. •Sorafenib inhibits keratin phosphorylation and cytoplasmic inclusion formation.

  9. Cyclosporine A and palmitic acid treatment synergistically induce cytotoxicity in HepG2 cells

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Yi, E-mail: yi.luo@pfizer.com; Rana, Payal; Will, Yvonne

    2012-06-01

    Immunosuppressant cyclosporine A (CsA) treatment can cause severe side effects. Patients taking immunosuppressant after organ transplantation often display hyperlipidemia and obesity. Elevated levels of free fatty acids have been linked to the etiology of metabolic syndromes, nonalcoholic fatty liver and steatohepatitis. The contribution of free fatty acids to CsA-induced toxicity is not known. In this study we explored the effect of palmitic acid on CsA-induced toxicity in HepG2 cells. CsA by itself at therapeutic exposure levels did not induce detectible cytotoxicity in HepG2 cells. Co-treatment of palmitic acid and CsA resulted in a dose dependent increase in cytotoxicity, suggesting that fatty acid could sensitize cells to CsA-induced cytotoxicity at the therapeutic doses of CsA. A synergized induction of caspase-3/7 activity was also observed, indicating that apoptosis may contribute to the cytotoxicity. We demonstrated that CsA reduced cellular oxygen consumption which was further exacerbated by palmitic acid, implicating that impaired mitochondrial respiration might be an underlying mechanism for the enhanced toxicity. Inhibition of c-Jun N-terminal kinase (JNK) attenuated palmitic acid and CsA induced toxicity, suggesting that JNK activation plays an important role in mediating the enhanced palmitic acid/CsA-induced toxicity. Our data suggest that elevated FFA levels, especially saturated FFA such as palmitic acid, may be predisposing factors for CsA toxicity, and patients with underlying diseases that would elevate free fatty acids may be susceptible to CsA-induced toxicity. Furthermore, hyperlipidemia/obesity resulting from immunosuppressive therapy may aggravate CsA-induced toxicity and worsen the outcome in transplant patients. -- Highlights: ► Palmitic acid and cyclosporine (CsA) synergistically increased cytotoxicity. ► The impairment of mitochondrial functions may contribute to the enhanced toxicity. ► Inhibition of JNK activity attenuated

  10. Induction of cytotoxicity and production of inflammatory mediators in raw264.7 macrophages by spores grown on six different plasterboards.

    Science.gov (United States)

    Murtoniemi, T; Nevalainen, A; Suutari, M; Toivola, M; Komulainen, H; Hirvonen, M R

    2001-03-01

    Dampness and microbial growth in buildings are associated with respiratory symptoms in the occupants, but details of the phenomenon are not sufficiently understood. The current study examined the effects of growth conditions provided by six plasterboards on cytotoxicity and inflammatory potential of the spores of Streptomyces californicus, Penicillium spinulosum, Aspergillus versicolor, and Stachybotrys chartarum. The microbes were isolated from mold problem buildings and thereafter grown on six different plasterboards. The spores were harvested, applied to RAW264.7 macrophages (10(4), 10(5), 10(6) spores/10(6) cells), and evaluated 24 h after exposure for the ability to cause cytotoxicity and to stimulate production of nitric oxide (NO), interleukin-1 beta (IL-1beta), tumor necrosis factor alpha (TNFalpha) and interleukin-6 (IL-6). The data indicate clear differences between spores of different microbes in their ability to induce the production of these inflammatory mediators and to cause cell death in macrophages. Also, for each microbe, the induction ability specifically depended on the brand of plasterboard. The spores of Streptomyces californicus collected from all plasterboards were the most potent at inducing NO and cytokine production. Cytotoxicity caused by P. spinulosum and Streptomyces californicus spores was consistent with NO, IL-1beta and IL-6 production induced by those microbes. However, the production of these inflammatory mediators by the spores of Stachybotrys chartarum was not parallel to their ability to cause cell death. The low productions of NO and cytokines were associated with high cytotoxicity caused by the spores of the A. versicolor. These data suggest that growth condition of microbes on different plasterboards affect the ability of microbial spores to induce inflammatory responses and cytotoxicity in macrophages.

  11. Evaluation of the Cytotoxic and Autophagic Effects of Atorvastatin on Mcf-7 Breast Cancer Cells.

    Science.gov (United States)

    Martinez, Tuğba Alarcon; Zeybek, Naciye Dilara; Müftüoğlu, Sevda

    2018-02-27

    Recently, cytotoxic effects of statins on breast cancer cells have been reported. However, the mechanism of anti-proliferative effects is currently unknown. Autophagy is a non-apoptotic programmed cell death, which is characterized by degradation of cytoplasmic components and with a role in cancer pathogenesis. To investigate the anti-proliferative effects of atorvastatin was on MCF-7 human breast adenocarcinoma cells in aspect of autophagy and apoptosis. Cell culture study. Cell viability was analyzed using WST-1 cell proliferation assay. Apoptosis was determined by TUNEL method, whereas autophagy was assessed by Beclin-1 and LC3B immunofluorescence staining. Ultrastructural analysis of cells was performed by electron microscopy. Atorvastatin reduced MCF-7 cell proliferation in a dose- and time-dependent manner inducing TUNEL, Beclin-1, and LC3B positive cells. Moreover, ultrastructural analysis showed apoptotic, autophagic and necrotic morphological changes in treatment groups. Statistically significant increase in apoptotic index was detected with increased concentrations of atorvastatin at 24h and 48h (p<0.05). The anti-proliferative effects of atorvastatin on breast cancer cells is mediated by induction of apoptosis and autophagy which shows statins as a potential treatment option for breast cancer.

  12. Cytotoxic activity of marine algae against cancerous cells

    Directory of Open Access Journals (Sweden)

    Élica A. C. Guedes

    2013-09-01

    Full Text Available This paper presents an investigation on the cytotoxic activity in human tumor cell from dichloromethane, chloroform, methanol, ethanol, water extracts, and hexane and chloroform fractions from green, brown and red algae collected at Riacho Doce Beach, north coast of Alagoas, Brazil, against the cancer cells K562 (chronic myelocytic leukemia, HEp-2 (laryngeal epidermoid carcinoma and NCI-H292 (human lung mucoepidermoid carcinoma through the MTT colorimetric method. The dichloromethane extract and chloroform fraction of Hypnea musciformis showed the best cytotoxic activity against K562 (3.8±0.2 µg.mL-1 and 6.4±0.4 µg.mL-1, respectively. Dichloromethane extracts of Dictyota dichotoma (16.3±0.3 µg.mL-1 and the chloroform fraction of H. musciformis (6.0±0.03 µg.mL-1 and chloroform fraction of P. gymnospora (8.2±0.4 were more active against HEp-2 as well as ethanol extracts of P. gymnospora (15.9±2.8 µg.mL-1 and chloroform fraction of H. musciformis (15.0±1.3 µg.mL-1 against the cell NCI-H292. The constituents with higher anticancer action are present in the extracts of dichloromethane and chloroform and in the chloroform fraction of H. musciformis, Digenea simplex, P. gymnospora, and D.dichotoma. In the case of the seaweed S. vulgare, the anticancer constituents are present in the aqueous extract.

  13. Methyl 6-Amino-6-deoxy-d-pyranoside-Conjugated Platinum(II) Complexes for Glucose Transporter (GLUT)-Mediated Tumor Targeting: Synthesis, Cytotoxicity, and Cellular Uptake Mechanism.

    Science.gov (United States)

    Li, Taoli; Gao, Xiangqian; Yang, Liu; Shi, Yunli; Gao, Qingzhi

    2016-05-19

    Methyl 6-aminodeoxy-d-pyranoside-derived platinum(II) glycoconjugates were designed and synthesized based on the clinical drug oxaliplatin for glucose transporter (GLUT)-mediated tumor targeting. In addition to a substantial improvement in water solubility, the conjugates exhibited cytotoxicity similar to or higher than that of oxaliplatin in six different human cancer cell lines. GLUT-mediated transport of the complexes was investigated with a cell-based fluorescence competition assay and GLUT-inhibitor-mediated cytotoxicity analysis in a GLUT-overexpressing human colorectal adenocarcinoma (HT29) cell line. The antitumor effect of the aminodeoxypyranoside-conjugated platinum(II) complexes was found to depend significantly on the GLUT inhibitor, and the cellular uptake of the molecules was regulated by GLUT-mediated transport. The results from this study demonstrate the potential advantages of aminodeoxypyranosides as sugar motifs for glycoconjugation for Warburg-effect-targeted drug design. These fundamental results also support the potential of aminodeoxypyranoside-conjugated platinum(II) complexes as lead compounds for further preclinical evaluation. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Cytotoxicity evaluation of silica nanoparticles using fish cell lines.

    Science.gov (United States)

    Vo, Nguyen T K; Bufalino, Mary R; Hartlen, Kurtis D; Kitaev, Vladimir; Lee, Lucy E J

    2014-01-01

    Nanoparticles (NPs) have extensive industrial, biotechnological, and biomedical/pharmaceutical applications, leading to concerns over health risks to humans and biota. Among various types of nanoparticles, silica nanoparticles (SiO2 NPs) have become popular as nanostructuring, drug delivery, and optical imaging agents. SiO2 NPs are highly stable and could bioaccumulate in the environment. Although toxicity studies of SiO2 NPs to human and mammalian cells have been reported, their effects on aquatic biota, especially fish, have not been significantly studied. Twelve adherent fish cell lines derived from six species (rainbow trout, fathead minnow, zebrafish, goldfish, haddock, and American eel) were used to comparatively evaluate viability of cells by measuring metabolic impairment using Alamar Blue. Toxicity of SiO2 NPs appeared to be size-, time-, temperature-, and dose-dependent as well as tissue-specific. However, dosages greater than 100 μg/mL were needed to achieve 24 h EC50 values (effective concentrations needed to reduce cell viability by 50%). Smaller SiO2 NPs (16 nm) were relatively more toxic than larger sized ones (24 and 44 nm) and external lining epithelial tissue (skin, gills)-derived cells were more sensitive than cells derived from internal tissues (liver, brain, intestine, gonads) or embryos. Higher EC50 values were achieved when toxicity assessment was performed at higher incubation temperatures. These findings are in overall agreement with similar human and mouse cell studies reported to date. Thus, fish cell lines could be valuable for screening emerging contaminants in aquatic environments including NPs through rapid high-throughput cytotoxicity bioassays.

  15. Adjuvant antiproliferative and cytotoxic effect of aloin in irradiated HeLaS3 cells

    International Nuclear Information System (INIS)

    Niciforovic, A.; Adzic, M.; Vucic, V.; Radojcic, M.B.

    2006-01-01

    Naturally occurring phytoanthracycline, aloin, was used to radiosensitize HeLaS3 human cervix carcinoma cells. The results indicated that the cytotoxic adjuvant effect of aloin was synergistic with IR at all drug concentrations and comparable to the cytotoxicity of 5-10Gy IR alone. Radiosensitization of HeLaS3 cells was achieved by 60μM aloin which reduced IC 50 dose of IR from 3.4- to 2Gy. The cell damage by both agents compromised cell capacity to conduct programmed cell death by apoptosis, and led to the synergic cytotoxic cell death by necrosis. (author)

  16. Effects of retinoic acid-inducible gene-I-like receptors activations and ionizing radiation cotreatment on cytotoxicity against human non-small cell lung cancer in vitro.

    Science.gov (United States)

    Yoshino, Hironori; Iwabuchi, Miyu; Kazama, Yuka; Furukawa, Maho; Kashiwakura, Ikuo

    2018-04-01

    Retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs) are pattern-recognition receptors that recognize pathogen-associated molecular patterns and induce antiviral immune responses. Recent studies have demonstrated that RLR activation induces antitumor immunity and cytotoxicity against different types of cancer, including lung cancer. However a previous report has demonstrated that ionizing radiation exerts a limited effect on RLR in human monocytic cell-derived macrophages, suggesting that RLR agonists may be used as effective immunostimulants during radiation therapy. However, it is unclear whether ionizing radiation affects the cytotoxicity of RLR agonists against cancer cells. Therefore, in the present study the effects of cotreatment with ionizing radiation and RLR agonists on cytotoxicity against human non-small cell lung cancer cells A549 and H1299 was investigated. Treatment with RLR agonist poly(I:C)/LyoVec™ [poly(I:C)] exerted cytotoxic effects against human non-small cell lung cancer. The cytotoxic effects of poly(I:C) were enhanced by cotreatment with ionizing radiation, and poly(I:C) pretreatment resulted in the radiosensitization of non-small cell lung cancer. Furthermore, cotreatment of A549 and H1299 cells with poly(I:C) and ionizing radiation effectively induced apoptosis in a caspase-dependent manner compared with treatment with poly(I:C) or ionizing radiation alone. These results indicate that RLR agonists and ionizing radiation cotreatment effectively exert cytotoxic effects against human non-small cell lung cancer through caspase-mediated apoptosis.

  17. Cytotoxicity screening of essential oils in cancer cell lines

    Directory of Open Access Journals (Sweden)

    Pollyanna Francielli de Oliveira

    Full Text Available Abstract This study evaluated the cytotoxicity activity of the essential oils of Tagetes erecta L., Asteraceae (TE-OE, Tetradenia riparia (Hochst. Codd, Lamiaceae (TR-OE, Bidens sulphurea (Cav. Sch. Bip., Asteraceae (BS-OE, and Foeniculum vulgare Mill., Apiaceae (FV-OE, traditionally used in folk medicine, against the tumor cell lines murine melanoma (B16F10, human colon carcinoma (HT29, human breast adenocarcinoma (MCF-7, human cervical adenocarcinoma (HeLa, human hepatocellular liver carcinoma (HepG2, and human glioblastoma (MO59J, U343, and U251. Normal hamster lung fibroblasts (V79 cells were included as control. The cells were treated with essential oil concentrations ranging from 3.12 to 400 µg/ml for 24 h. The cytotoxic activity was evaluated using the XTT assay; results were expressed as IC50, and the selectivity index was calculated. The results were compared with those achieved for classic chemotherapeutic agents. TE-OE was the most promising among the evaluated oils: it afforded the lowest IC50 values for B16F10 cells (7.47 ± 1.08 µg/ml and HT29 cells (6.93 ± 0.77 µg/ml, as well as selectivity indices of 2.61 and 2.81, respectively. The major BS-EO, FV-EO and TE-EO chemical constituents were identified by gas chromatography mass spectrometry as being (E-caryophyllene (10.5%, germacrene D (35.0% and 2,6-di-tert-butyl-4-methylphenol (43.0% (BS-EO; limonene (21.3% and (E-anethole (70.2% (FV-EO; limonene (10.4%, dihydrotagetone (11.8%, α-terpinolene (18.1% and (E-ocimenone (13.0% (TE-EO; and fenchone (6.1%, dronabinol (11.0%, aromadendrene oxide (14.7% and (E,E–farnesol (15.0% (TR-EO. 2,6-di-tert-butyl-4-methylphenol (43.0%, (E-anethole (70.2% and α-terpinolene (18.1%, respectively. These results suggest that TE-OE may be used to treat cancer without affecting normal cells.

  18. Cytotoxic Effects of Fascaplysin against Small Cell Lung Cancer Cell Lines

    Science.gov (United States)

    Hamilton, Gerhard

    2014-01-01

    Fascaplysin, the natural product of a marine sponge, exhibits anticancer activity against a broad range of tumor cells, presumably through interaction with DNA, and/or as a highly selective cyclin-dependent kinase 4 (CDK4) inhibitor. In this study, cytotoxic activity of fascaplysin against a panel of small cell lung cancer (SCLC) cell lines and putative synergism with chemotherapeutics was investigated. SCLC responds to first-line chemotherapy with platinum-based drugs/etoposide, but relapses early with topotecan remaining as the single approved therapeutic agent. Fascaplysin was found to show high cytotoxicity against SCLC cells and to induce cell cycle arrest in G1/0 at lower and S-phase at higher concentrations, respectively. The compound generated reactive oxygen species (ROS) and induced apoptotic cell death in the chemoresistant NCI-H417 SCLC cell line. Furthermore, fascaplysin revealed marked synergism with the topoisomerase I-directed camptothecin and 10-hydroxy-camptothecin. The Poly(ADP-ribose)-Polymerase 1 (PARP1) inhibitor BYK 204165 antagonized the cytotoxic activity of fascaplysin, pointing to the involvement of DNA repair in response to the anticancer activity of the drug. In conclusion, fascaplysin seems to be suitable for treatment of SCLC, based on high cytotoxic activity through multiple routes of action, affecting topoisomerase I, integrity of DNA and generation of ROS. PMID:24608973

  19. Cytotoxic Effects of Fascaplysin against Small Cell Lung Cancer Cell Lines

    Directory of Open Access Journals (Sweden)

    Gerhard Hamilton

    2014-03-01

    Full Text Available Fascaplysin, the natural product of a marine sponge, exhibits anticancer activity against a broad range of tumor cells, presumably through interaction with DNA, and/or as a highly selective cyclin-dependent kinase 4 (CDK4 inhibitor. In this study, cytotoxic activity of fascaplysin against a panel of small cell lung cancer (SCLC cell lines and putative synergism with chemotherapeutics was investigated. SCLC responds to first-line chemotherapy with platinum-based drugs/etoposide, but relapses early with topotecan remaining as the single approved therapeutic agent. Fascaplysin was found to show high cytotoxicity against SCLC cells and to induce cell cycle arrest in G1/0 at lower and S-phase at higher concentrations, respectively. The compound generated reactive oxygen species (ROS and induced apoptotic cell death in the chemoresistant NCI-H417 SCLC cell line. Furthermore, fascaplysin revealed marked synergism with the topoisomerase I-directed camptothecin and 10-hydroxy-camptothecin. The Poly(ADP-ribose-Polymerase 1 (PARP1 inhibitor BYK 204165 antagonized the cytotoxic activity of fascaplysin, pointing to the involvement of DNA repair in response to the anticancer activity of the drug. In conclusion, fascaplysin seems to be suitable for treatment of SCLC, based on high cytotoxic activity through multiple routes of action, affecting topoisomerase I, integrity of DNA and generation of ROS.

  20. Autophagy plays a critical role in ChLym-1-induced cytotoxicity of non-hodgkin's lymphoma cells.

    Directory of Open Access Journals (Sweden)

    Jiajun Fan

    Full Text Available Autophagy is a critical mechanism in both cancer therapy resistance and tumor suppression. Monoclonal antibodies have been documented to kill tumor cells via apoptosis, antibody-dependent cellular cytotoxicity (ADCC and complement-dependent cytotoxicity (CDC. In this study, we report for the first time that chLym-1, a chimeric anti-human HLA-DR monoclonal antibody, induces autophagy in Raji Non-Hodgkin's Lymphoma (NHL cells. Interestingly, inhibition of autophagy by pharmacological inhibitors (3-methyladenine and NH4Cl or genetic approaches (siRNA targeting Atg5 suppresses chLym-1-induced growth inhibition, apoptosis, ADCC and CDC in Raji cells, while induction of autophagy could accelerate cytotoxic effects of chLym-1 on Raji cells. Furthermore, chLym-1-induced autophagy can mediate apoptosis through Caspase 9 activation, demonstrating the tumor-suppressing role of autophagy in antilymphoma effects of chLym-1. Moreover, chLym-1 can activate several upstream signaling pathways of autophagy including Akt/mTOR and extracellular signal-regulated kinase 1/2 (Erk1/2. These results elucidate the critical role of autophagy in cytotoxicity of chLym-1 antibody and suggest a potential therapeutic strategy of NHL therapy by monoclonal antibody chLym-1 in combination with autophagy inducer.

  1. Polycation-mediated integrated cell death processes

    DEFF Research Database (Denmark)

    Parhamifar, Ladan; Andersen, Helene; Wu, Linping

    2014-01-01

    standard. PEIs are highly efficient transfectants, but depending on their architecture and size they induce cytotoxicity through different modes of cell death pathways. Here, we briefly review dynamic and integrated cell death processes and pathways, and discuss considerations in cell death assay design...

  2. Synthesis and cytotoxicity of some biurets against human breast cancer T47D cell line.

    Science.gov (United States)

    Fouladdel, Shamileh; Khalaj, Ali; Adibpour, Neda; Azizi, Ebrahim

    2010-10-01

    Design, synthesis and cytotoxicity of several known and novel biurets against human breast cancer T47D cell line in comparison to doxorubicin are described. Biurets incorporating 2-methyl quinoline-4-yl and benzo[d]thiazol-2-ylthio moieties showed higher cytotoxicity and decreased cell viability in a concentration- and time-dependent manner. Copyright © 2010 Elsevier Ltd. All rights reserved.

  3. PHA-induced cytotoxicity of human lymphocytes against adherent hela-cells

    NARCIS (Netherlands)

    Huges-Law, G.; de Gast, G. C.; The, T. Hauw

    The conditions for a phytohaemagglutinin(PHA)-induced cytotoxicity test of human peripheral blood lymphocytes were investigated. [3H]thymidine prelabelled HeLa cells were used as target cells. Stimulation with 10 μl PHA/ml during 24 h gave the best measure of lymphocyte cytotoxic capacity.

  4. High-Throughput Flow Cytometric Method for the Simultaneous Measurement of CAR-T Cell Characterization and Cytotoxicity against Solid Tumor Cell Lines.

    Science.gov (United States)

    Martinez, Emily M; Klebanoff, Samuel D; Secrest, Stephanie; Romain, Gabrielle; Haile, Samuel T; Emtage, Peter C R; Gilbert, Amy E

    2018-04-01

    High-throughput flow cytometry is an attractive platform for the analysis of adoptive cellular therapies such as chimeric antigen receptor T cell therapy (CAR-T) because it allows for the concurrent measurement of T cell-dependent cellular cytotoxicity (TDCC) and the functional characterization of engineered T cells with respect to percentage of CAR transduction, T cell phenotype, and measurement of T cell function such as activation in a single assay. The use of adherent tumor cell lines can be challenging in these flow-based assays. Here, we present the development of a high-throughput flow-based assay to measure TDCC for a CAR-T construct co-cultured with multiple adherent tumor cell lines. We describe optimal assay conditions (such as adherent cell dissociation techniques to minimize impact on cell viability) that result in robust cytotoxicity assays. In addition, we report on the concurrent use of T cell transduction and activation antibody panels (CD25) that provide further dissection of engineered T cell function. In conclusion, we present the development of a high-throughput flow cytometry method allowing for in vitro interrogation of solid tumor, targeting CAR-T cell-mediated cytotoxicity, CAR transduction, and engineered T cell characterization in a single assay.

  5. Inhibition of allogeneic cytotoxic T cell (CD8+) proliferation via polymer-induced Treg (CD4+) cells.

    Science.gov (United States)

    Kang, Ning; Toyofuku, Wendy M; Yang, Xining; Scott, Mark D

    2017-07-15

    T cell-mediated immune rejection remains a barrier to successful transplantation. Polymer-based bioengineering of cells may provide an effective means of preventing allorecognition and the proliferation of cytotoxic (CD8 + ) T lymphocytes (CTL). Using MHC-disparate murine splenocytes modified with succinimidyl valerate activated methoxypoly(ethylene glycol) [SVA-mPEG] polymers, the effects of leukocyte immunocamouflage on CD8 + and CD4 + alloproliferation and T regulatory (Treg) cell induction were assessed in a mixed lymphocyte reaction (MLR) model. Polymer-grafting effectively camouflaged multiple leukocyte markers (MHC class I and II, TCR and CD3) essential for effective allorecognition. Consequent to the polymer-induced immunocamouflage of the cell membrane, both CD8 + and CD4 + T cell alloproliferation were significantly inhibited in a polymer dose-dependent manner. The loss of alloproliferation correlated with the induction of Treg cells (CD4 + CD25 + Foxp3 + ). The Tregs, surprisingly, arose primarily via differentiation of naive, non-proliferating, CD4 + cells. Of biologic importance, the polymer-induced Treg were functional and exhibited potent immunosuppressive activity on allogeneic CTL proliferation. These results suggest that immunocamouflage-mediated attenuation of alloantigen-TCR recognition can prevent the tissue destructive allogeneic CD8 + T cell response, both directly and indirectly, through the generation/differentiation of functional Tregs. Immunocamouflage induced tolerance could be clinically valuable in attenuating T cell-mediated transplant rejection and in the treatment of autoimmune diseases. While our previous studies have demonstrated that polymer-grafting to MHC disparate leukocytes inhibits CD4 + cell proliferation, the effects of PEGylation on the alloproliferation of CD8 + cytotoxic T cells (CTL) was not examined. As shown here, PEGylation of allogeneic leukocytes prevents the generation of the CTL response responsible for acute

  6. TRPC1 protects human SH-SY5Y cells against salsolinol-induced cytotoxicity by inhibiting apoptosis

    OpenAIRE

    Bollimuntha, Sunitha; Ebadi, Manuchair; Singh, Brij B.

    2006-01-01

    Salsolinol, an endogenous neurotoxin, may be involved in the pathogenesis of Parkinson's disease. In this study, we sought to determine whether salsolinol-induced cytotoxicity in SH-SY5Y human neuroblastoma cells, a cloned cell line which expresses dopaminergic activity, could be prevented by overexpressing a Ca2+ channel, transient receptor potential (TRPC1) protein. Exposure of SH-SY5Y cells to 500 μM salsolinol for 12 h resulted in a significant decrease in thapsigargin or carbachol-mediat...

  7. Mogoltacin enhances vincristine cytotoxicity in human transitional cell carcinoma (TCC) cell line.

    Science.gov (United States)

    Behnam Rassouli, F; Matin, M M; Iranshahi, M; Bahrami, A R; Neshati, V; Mollazadeh, S; Neshati, Z

    2009-03-01

    Bladder cancer is the second common cancer of the genitourinary system throughout the world and intravesical chemotherapy is usually used to reduce tumour recurrence and progression. Human transitional cell carcinoma (TCC) is an epithelial-like adherent cell line originally established from primary bladder carcinoma. Here we report the effect of mogoltacin, a sesquiterpene coumarin from Ferula badrakema on TCC cells. Mogoltacin was isolated from the fruits of F. badrakema, using silica gel column chromatography and preparative thin layer chromatography. Mogoltacin did not have any significant cytotoxicity effect on neoplastic TCC cells at 16, 32, 64, 128, 200 and 600 microg ml(-1) concentrations. In order to analyse its combination effect, TCC cells were cultured in the presence of various combining concentrations of mogoltacin and vincristine. Cells were then observed for morphological changes (by light microscopy) and cytotoxicity using MTT assay. The effect of mogoltacin on vincristine toxicity was studied after 24, 48 and 72 h of drug administration. The results of MTT assay showed that mogoltacin can significantly enhance the cytotoxicity of vincristine and confirmed the morphological observations. Results revealed that combination of 40 microg ml(-1) vincristine with 16 microg ml(-1) mogoltacin increased the cytotoxicity of vincristine after 48 h by 32.8%.

  8. To the mechanism of spermine-FBS cytotoxicity toward K562 human myelogenous leukemia cells.

    Science.gov (United States)

    Juranić, Z; Joksimović, J; Spuzić, I; Sami, I; Juranić, I

    1994-01-01

    The effects of several compounds acting through adenylate cyclase system and/or influencing prostaglandin biosynthesis on spermine-FBS cytotoxicity to human myelogenous leukemia K562 cells were studied. Salbutamol, a beta 2-adrenoceptor agonist inhibited to a certain extent spermine-FBS cytotoxic action to K562 cells, and propranolol, a beta 2-adrenoceptor antagonist, did not affect this inhibition. Aminophylline, an inhibitor of cyclic nucleotide phosphodiesterase, acted suppressing spermine-FBS cytotoxicity to K562 cells. Pretreatment of the cells with dexamethasone did not significantly alter salbutamol-related inhibition of spermine-FBS cytotoxicity. Indomethacin, an inhibitor of cyclooxygenases directly involved in prostaglandin biosynthesis, did not interfere with protective terbutaline effects against spermine-FBS cytotoxicity to K562 cells during the 24-hour period.

  9. Antigen-Specific B Cells Reactivate an Effective Cytotoxic T Cell Response against Phagocytosed Salmonella through Cross-Presentation

    NARCIS (Netherlands)

    de Wit, Jelle; Souwer, Yuri; Jorritsma, Tineke; Klaasse Bos, Hanny; ten Brinke, Anja; Neefjes, Jacques; van Ham, S. Marieke

    2010-01-01

    Background: The eradication of facultative intracellular bacterial pathogens, like Salmonella typhi, requires the concerted action of both the humoral immune response and the cytotoxic CD8(+) T cell response. Dendritic cells (DCs) are considered to orchestrate the cytotoxic CD8(+) T cell response

  10. Concanavalin A-induced activation of lymphocytic choriomeningitis virus memory lymphocytes into specifically cytotoxic T cells

    DEFF Research Database (Denmark)

    Marker, O; Thomsen, Allan Randrup; Andersen, G T

    1977-01-01

    When spleen cells, which have been primed to Lymphocytic Choriomeningitis (LCM) virus during a primary infection several months previously, are stimulated in vitro with Con A. highly specific secondary cytotoxic effector cells are generated. The degree of cytotoxicity revealed by such Con A-stimu......-stimulated cells is higher than that of non-incubated spleen cells harvested nine days following the primary infection, and the effect is totally inhibited by anti-theta serum plus complement treatment of the effector cells immediately before the cytotoxic test....

  11. Cytotoxic Effect Of Verapamil On Human Embryonic Kidney Cell Line

    Directory of Open Access Journals (Sweden)

    Jamil L Ahmad

    2015-08-01

    Full Text Available Introduction The link between long term use of verapamil and cancer development has been suggested in literature many years back. However there are numerous controversies surrounding this association with several epidemiological studies in the positive negative and non-association between verapamil and cancer development. Aim To investigate in mechanistic terms the link between chronic use of a calcium channel blocker verapamil and cancer development using human embryonic kidney HEK293 cell line. Method Trypan blue dye exclusion cell counting and 3-amp615314 5-Dimethylthiazol-2-ylamp61533-2 5-diphenyl-tetrazolium bromide MTT assays were used to determine the proliferative as well as cytotoxic effects of verapamil. Results Verapamil had a growth inhibitory rather than proliferative effect on HEK293 cells and the growth inhibition was found to be significant p0.05. Conclusion The long term use of verapamil is associated with cellular growth inhibition and this possibly explained the rationale behind its use as part of combination chemotherapy for some human cancers.

  12. Evidence that 5-hydroxytryptamine3 receptors mediate cytotoxic drug and radiation-evoked emesis

    International Nuclear Information System (INIS)

    Miner, W.D.; Sanger, G.J.; Turner, D.H.

    1987-01-01

    The involvement of 5-hydroxytryptamine (5-HT) 5-HT 3 receptors in the mechanisms of severe emesis evoked by cytotoxic drugs or by total body irradiation have been studied in ferrets. Anti-emetic compounds tested were domperidone (a dopamine antagonist), metoclopramide (a gastric motility stimulant and dopamine antagonist at conventional doses, a 5-HT 3 receptor antagonist at higher doses) and BRL 24924 (a potent gastric motility stimulant and a 5-HT 3 receptor antagonist). Domperidone or metoclopramide prevented apomorphine-evoked emesis, whereas BRL 24924 did not. Similar doses of domperidone did not prevent emesis evoked by cis-platin or by total body irradiation, whereas metoclopramide or BRL 24924 greatly reduced or prevented these types of emesis. Metoclopramide and BRL 24924 also prevented emesis evoked by a combination of doxorubicin and cyclophosphamide. These results are discussed in terms of a fundamental role for 5-HT 3 receptors in the mechanisms mediating severely emetogenic cancer treatment therapies. (author)

  13. Cytotoxic compounds against cancer cells from Bombyx mori inoculated with Cordyceps militaris.

    Science.gov (United States)

    Qiu, Weitao; Wu, Jing; Choi, Jae-Hoon; Hirai, Hirofumi; Nishida, Hiroshi; Kawagishi, Hirokazu

    2017-06-01

    Two compounds, 3'-deoxyinosine and cordycepin, were isolated from Bombyx mori inoculated with Cordyceps militaris. In the bioassay examining cytotoxicity against cancer cells, both compounds showed toxicity against A549, PANC-1, and MCF-7 cancer cells.

  14. Dendritic cells decreased the concomitant expanded Tregs and Tregs related IL-35 in cytokine-induced killer cells and increased their cytotoxicity against leukemia cells.

    Directory of Open Access Journals (Sweden)

    Ying Pan

    Full Text Available Regulatory T cells (Tregs are potent immunosuppressive cells and essential for inducing immune tolerance. Recent studies have reported that Tregs and Tregs related cytokines can inhibit the antitumor activity of cytokine-induced killer (CIK cells, but dendritic cells co-cultured CIK (DC-CIK cells can be used for induction of a specific immune response by blocking of Tregs and TGF-β, IL-10. As a novel identified cytokine, IL-35 is specially produced by Tregs and plays an essential role in immune regulation. However, it remains unknown whether IL-35 roles in tumor immunotherapy mediated by CIK and DC-CIK cells. In this study, we cultured CIK and DC-CIK cells from the same healthy adult samples, and investigated their phenotype, proliferation, cytotoxic activity against leukemia cell lines K562 and NB4 by FCM and CCK-8, measured IL-35, TGF-β and IL-10 protein by ELISA, detected Foxp3, IL-35 and IL-35 receptor mRNA by Real-time PCR, respectively. We found Tregs and IL-35 concomitantly expanded by a time-dependent way during the generation of CIK cells, but DC significantly down-regulated the expression of them and simultaneously up-regulated the proliferation ability as well as cytotoxic activity of CIK cells against leukemia cell lines. Therefore, our data suggested that DC decreased concomitant expanded Tregs and Tregs related IL-35 in CIK cells and might contribute to improve their cytotoxicity against leukemia cells in vitro.

  15. Spred2 is involved in imatinib-induced cytotoxicity in chronic myeloid leukemia cells

    International Nuclear Information System (INIS)

    Liu, Xiao-Yun; Yang, Yue-Feng; Wu, Chu-Tse; Xiao, Feng-Jun; Zhang, Qun-Wei; Ma, Xiao-Ni; Li, Qing-Fang; Yan, Jun; Wang, Hua; Wang, Li-Sheng

    2010-01-01

    Spreds, a recently established class of negative regulators of the Ras-ERK (extracellular signal-regulated kinase) pathway, are involved in hematogenesises, allergic disorders and tumourigenesis. However, their role in hematologic neoplasms is largely unknown. Possible effects of Spreds on other signal pathways closely related to Ras-ERK have been poorly investigated. In this study, we investigated the in vitro effects of Spred2 on chronic myeloid leukemia (CML) cells. In addition to inhibiting the well-established Ras-ERK cascade, adenovirus-mediated Spred2 over-expression inhibits constitutive and stem cell factor (SCF)-stimulated sphingosine kinase-1 (SPHK1) and Mcl-1 expression, as well as inhibiting proliferation and inducing apoptosis in CML cells. In K562 cells and primary CML cells, imatinib induces endogenous Spred2 expression. Spred2 silencing by stable RNA interference partly protects K562 cells against imatinib-induced apoptosis. Together, these data implicate Spred2 in imatinib-induced cytotoxicity in CML cells, possibly by inhibiting the Ras-ERK cascade and the pro-survival signaling molecules SPHK1 and Mcl-1. These findings reveal potential targets for selective therapy of CML.

  16. Spred2 is involved in imatinib-induced cytotoxicity in chronic myeloid leukemia cells

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiao-Yun; Yang, Yue-Feng; Wu, Chu-Tse; Xiao, Feng-Jun; Zhang, Qun-Wei [Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing 100850 (China); Ma, Xiao-Ni [Lanzhou University of Technology, Lanzhou 730050 (China); Li, Qing-Fang; Yan, Jun [Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing 100850 (China); Wang, Hua, E-mail: wanghualjh@gmail.com [Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing 100850 (China); Wang, Li-Sheng, E-mail: wangls@nic.bmi.ac.cn [Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing 100850 (China)

    2010-03-19

    Spreds, a recently established class of negative regulators of the Ras-ERK (extracellular signal-regulated kinase) pathway, are involved in hematogenesises, allergic disorders and tumourigenesis. However, their role in hematologic neoplasms is largely unknown. Possible effects of Spreds on other signal pathways closely related to Ras-ERK have been poorly investigated. In this study, we investigated the in vitro effects of Spred2 on chronic myeloid leukemia (CML) cells. In addition to inhibiting the well-established Ras-ERK cascade, adenovirus-mediated Spred2 over-expression inhibits constitutive and stem cell factor (SCF)-stimulated sphingosine kinase-1 (SPHK1) and Mcl-1 expression, as well as inhibiting proliferation and inducing apoptosis in CML cells. In K562 cells and primary CML cells, imatinib induces endogenous Spred2 expression. Spred2 silencing by stable RNA interference partly protects K562 cells against imatinib-induced apoptosis. Together, these data implicate Spred2 in imatinib-induced cytotoxicity in CML cells, possibly by inhibiting the Ras-ERK cascade and the pro-survival signaling molecules SPHK1 and Mcl-1. These findings reveal potential targets for selective therapy of CML.

  17. The aryl hydrocarbon receptor: differential contribution to T helper 17 and T cytotoxic 17 cell development.

    Directory of Open Access Journals (Sweden)

    Mark D Hayes

    Full Text Available The aryl hydrocarbon receptor (AhR has been shown to be required for optimal Thelper (Th 17 cell activation. Th17 cells provide immunity against extracellular pathogens and are implicated in autoimmune diseases. Herein, the role of the AhR in cytokine production by Th17, and by the analogous population of T cytotoxic (Tc17 cells, has been examined. Lymph node Tc (CD8(+ and Th (CD4(+ cells were isolated by negative selection from naive AhR(+/- and AhR(-/- mice and polarised to Tc1/Th1 or Tc17/Th17 phenotypes with appropriate cytokines. Cell differentiation was assessed as a function of mRNA and protein (ELISA and flow cytometry expression for interferon (IFN-γ and for key Th17 cytokines. In AhR(+/- mice, Th17 cells displayed an exclusive IL-17 profile, which was markedly inhibited by a selective AhR antagonist to levels observed in AhR knockout mice. Addition of the natural AhR agonist 6-formylindolo[3,2-b]carbazole (FICZ markedly enhanced Th17 cell activity in the heterozygotes. In contrast, Tc17 cells polarised into 3 distinct subsets: producing either IL-17 or IFN-γ alone, or both cytokines. Blocking AhR was also detrimental to Tc17 development, with reduced responses recorded in AhR(-/- mice and antagonist-mediated reduction of IL-17 expression in the heterozygotes. However, Tc17 cells were largely refractory to exogenous FICZ, presumably because Tc17 cells express baseline AhR mRNA, but unlike Th17 cells, there is no marked up-regulation during polarisation. Thus, Th17 cell development is more dependent upon AhR activation than is Tc17 cell development, suggesting that endogenous AhR ligands play a much greater role in driving Th17 cell responses.

  18. Lactic Acid Bacteria from Kefir Increase Cytotoxicity of Natural Killer Cells to Tumor Cells.

    Science.gov (United States)

    Yamane, Takuya; Sakamoto, Tatsuji; Nakagaki, Takenori; Nakano, Yoshihisa

    2018-03-27

    The Japanese fermented beverage, homemade kefir, contains six lactic acid bacteria: Lactococcus. lactis subsp. Lactis , Lactococcus . lactis subsp. Cremoris , Lactococcus. Lactis subsp. Lactis biovar diacetylactis , Lactobacillus plantarum , Leuconostoc meseuteroides subsp. Cremoris and Lactobacillus casei . In this study, we found that a mixture of the six lactic acid bacteria from kefir increased the cytotoxicity of human natural killer KHYG-1 cells to human chronic myelogenous leukemia K562 cells and colorectal tumor HCT116 cells. Furthermore, levels of mRNA expression and secretion of IFN-γ (interferon gamma) increased in KHYG-1 cells that had been treated with the six lactic acid bacteria mixture from kefir. The results suggest that the six lactic acid bacteria mixture from kefir has strong effects on natural immunity and tumor cell cytotoxicity.

  19. Dopamine-mediated oxidation of methionine 127 in α-synuclein causes cytotoxicity and oligomerization of α-synuclein.

    Directory of Open Access Journals (Sweden)

    Kazuhiro Nakaso

    Full Text Available Parkinson's disease (PD is a neurodegenerative disorder characterized by the selective loss of dopaminergic neurons and the presence of Lewy bodies. Many recent studies focused on the interaction between α-synuclein (α-syn and dopamine in the pathogenesis of PD, and fluorescent anisotropy suggested that the C-terminal region of α-syn may be a target for modification by dopamine. However, it is not well understood why PD-related pathogenesis occurs selectively in dopaminergic neurons. We investigated the interaction between dopamine and α-syn with regard to cytotoxicity. A soluble oligomer was formed by co-incubating α-syn and dopamine in vitro. To clarify the effect of dopamine on α-syn in cells, we generated PC12 cells expressing human α-syn, as well as the α-syn mutants, M116A, Y125D, M127A, S129A, and M116A/M127A, in a tetracycline-inducible manner (PC12-TetOFF-α-syn. Overexpression of wildtype α-syn in catecholaminergic PC12 cells decreased cell viability in long-term cultures, while a competitive inhibitor of tyrosine hydroxylase blocked this vulnerability, suggesting that α-syn-related cytotoxicity is associated with dopamine metabolism. The vulnerabilities of all mutant cell lines were lower than that of wildtype α-syn-expressing cells. Moreover, α-syn containing dopamine-mediated oxidized methionine (Met(O was detected in PC12-TetOFF-α-syn. Met(O was lower in methionine mutant cells, especially in the M127A or M116A/M127A mutants, but also in the Y125D and S129A mutants. Co-incubation of dopamine and the 125YEMPS129 peptide enhanced the production of H2O2, which may oxidize methionine residues and convert them to Met(O. Y125- or S129-lacking peptides did not enhance the dopamine-related production of H2O2. Our results suggest that M127 is the major target for oxidative modification by dopamine, and that Y125 and S129 may act as enhancers of this modification. These results may describe a mechanism of dopaminergic neuron

  20. Correlation of visual in vitro cytotoxicity ratings of biomaterials with quantitative in vitro cell viability measurements.

    Science.gov (United States)

    Bhatia, Sujata K; Yetter, Ann B

    2008-08-01

    Medical devices and implanted biomaterials are often assessed for biological reactivity using visual scores of cell-material interactions. In such testing, biomaterials are assigned cytotoxicity ratings based on visual evidence of morphological cellular changes, including cell lysis, rounding, spreading, and proliferation. For example, ISO 10993 cytotoxicity testing of medical devices allows the use of a visual grading scale. The present study compared visual in vitro cytotoxicity ratings to quantitative in vitro cytotoxicity measurements for biomaterials to determine the level of correlation between visual scoring and a quantitative cell viability assay. Biomaterials representing a spectrum of biological reactivity levels were evaluated, including organo-tin polyvinylchloride (PVC; a known cytotoxic material), ultra-high molecular weight polyethylene (a known non-cytotoxic material), and implantable tissue adhesives. Each material was incubated in direct contact with mouse 3T3 fibroblast cell cultures for 24 h. Visual scores were assigned to the materials using a 5-point rating scale; the scorer was blinded to the material identities. Quantitative measurements of cell viability were performed using a 3-(4,5-dimethylthiozol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) colorimetric assay; again, the assay operator was blinded to material identities. The investigation revealed a high degree of correlation between visual cytotoxicity ratings and quantitative cell viability measurements; a Pearson's correlation gave a correlation coefficient of 0.90 between the visual cytotoxicity score and the percent viable cells. An equation relating the visual cytotoxicity score and the percent viable cells was derived. The results of this study are significant for the design and interpretation of in vitro cytotoxicity studies of novel biomaterials.

  1. Metabolite profiles of Stachybotrys isolates from water-damaged buildings and their induction of inflammatory mediators and cytotoxicity in macrophages

    DEFF Research Database (Denmark)

    Nielsen, Kristian Fog; Huttunen, K.; Hyvarinen, A.

    2002-01-01

    The metabolite profiles of 20 Stachybotrys spp. isolates from Finnish water-damaged buildings were compared with their biological activities. Effects of purified compounds on cytotoxicity and production of inflammatory mediators such as nitric oxide, IL-6 and TNFalpha in murine RAW264.7 macrophage...

  2. Cell cycle dependency of 67gallium uptake and cytotoxicity in human cell lines of hematological malignancies.

    Science.gov (United States)

    Van Leeuwen-Stok, E A; Jonkhoff, A R; Visser-Platier, A W; Dräger, L M; Teule, G J; Huijgens, P C; Schuurhuis, G J

    1998-11-01

    67Gallium (67Ga) is a radionuclide which accumulates in hematological malignancies and is used for diagnostic imaging. We investigated in this in vitro study the cell cycle dependency of cellular uptake and cytotoxicity of 67Ga. Cell cycle synchronization of cells was achieved by counterflow centrifugal elutriation and the use of cytostatic drugs. The human lymphoma cell lines U-937 and U-715 were used and in elutriation experiments we also used the leukemic cell line HL-60. The transferrin receptor (CD71) expression, 67Ga uptake and cell proliferation inhibition were the parameters measured. We also studied cytotoxicity in various schedules for combination of 67Ga and drugs and the residual proliferative capacity was measured. The CD71 expression in the three cell lines increased from 106-177% on S phase cells and from 118-233% on G2M cells, as compared to the G0/G1 cell fraction. The 67Ga uptake varied from 108-127% for S cells and 128-139% for G2M cells. The drugs chosen induced cell cycle phase accumulation in S and/or G2M phase during preincubation. 67Ga preincubation induced accumulation in the G2M phase. Almost all combinations of 67Ga and drugs resulted in a non-interactive effect, except for methotrexate which resulted in an antagonistic effect. No preferential effect of any of the incubation schemes was seen. CD71 expression and 67Ga uptake were increased in S and G2M cells. Combination of 67Ga with drugs which arrest cells in these cell cycle phases did not result in a change in cytotoxicity. However, these results implicate that 67Ga and the cytostatic drugs tested except for methotrexate might be used together or sequentially in therapy.

  3. Sustained Release and Cytotoxicity Evaluation of Carbon Nanotube-Mediated Drug Delivery System for Betulinic Acid

    Directory of Open Access Journals (Sweden)

    Julia M. Tan

    2014-01-01

    Full Text Available Carbon nanotubes (CNTs have been widely utilized as a novel drug carrier with promising future applications in biomedical therapies due to their distinct characteristics. In the present work, carboxylic acid-functionalized single-walled carbon nanotubes (f-SWCNTs were used as the starting material to react with anticancer drug, BA to produce f-SWCNTs-BA conjugate via π-π stacking interaction. The conjugate was extensively characterized for drug loading capacity, physicochemical properties, surface morphology, drug releasing characteristics, and cytotoxicity evaluation. The results indicated that the drug loading capacity was determined to be around 20 wt% and this value has been verified by thermogravimetric analysis. The binding of BA onto the surface of f-SWCNTs was confirmed by FTIR and Raman spectroscopies. Powder XRD analysis showed that the structure of the conjugate was unaffected by the loading of BA. The developed conjugate was found to release the drug in a controlled manner with a prolonged release property. According to the preliminary in vitro cytotoxicity studies, the conjugate was not toxic in a standard fibroblast cell line, and anticancer activity was significantly higher in A549 than HepG2 cell line. This study suggests that f-SWCNTs could be developed as an efficient drug carrier to conjugate drugs for pharmaceutical applications in cancer chemotherapies.

  4. L-Arginine Increases Cytotoxicity in Irradiated Ehrlich Carcinoma Cell Line: Possible Potential Role of Nitric Oxide

    International Nuclear Information System (INIS)

    Noaman, E.

    2008-01-01

    Cancer cells possess nitric oxide syntheses (NOS) which metabolize L-Arginine (L-Arg) for producing nitric oxide (NO) The present study investigates the relations between NO and ionizing radiation in the Ehrlich ascites carcinoma (EAC) cell line. NOS activity was stimulated by exposure of cells to L-Arg just after irradiation. L-Arg (5 m M) supply led to an increase in ionizing radiation induced cytotoxicity (% of viability 18± 3 %) whereas, neither L-Arg itself nor ionizing irradiation caused cell death at the doses used in this study. Also, cells were treated either with L-Thio citrulline (L-Thio), an irreversible inhibitor of NOS or with exogenous superoxide dismutase (SOD) and catalase. L-Thio and SOD prevented L-Arg mediated deleterious effects on Irradiated cells, whereas catalase was ineffective. Intracellular antioxidant enzyme activity was also determined. Ionizing radiation + L-Arg stress altered the activity of catalase (66 % decrease) and glutathione peroxidase (83 % decrease). Our findings demonstrated that L-Arg induces increase the radiation-mediated deleterious effects in Ehrlich ascites carcinoma cells cytotoxicity and that the ratio NO/ O 2 plays a key role in these processes. NO could participate the deleterious effect of irradiation, in conjugation with others reactive oxygen species (ROS) produced during the oxidation of intracellular components by ionizing radiation (dose 6 Gy)

  5. Attenuation of tumor necrosis factor-induced endothelial cell cytotoxicity and neutrophil chemiluminescence

    International Nuclear Information System (INIS)

    Zheng, H.; Crowley, J.J.; Chan, J.C.; Hoffmann, H.; Hatherill, J.R.; Ishizaka, A.; Raffin, T.A.

    1990-01-01

    Our laboratory has previously shown that the administration of tumor necrosis factor (TNF), a cytokine produced by activated mononuclear cells, to guinea pigs produces a syndrome similar to gram-negative sepsis or ARDS. Pentoxifylline (PTX), a methylxanthine, protects against TNF-induced and sepsis-induced acute lung injury in vivo. We now report on in vitro cellular studies of PMN-mediated cellular injury and its attenuation. We studied TNF-induced bovine pulmonary artery endothelial cell (EC) cytotoxicity both with and without PMN. A 51Cr release assay was used to measure EC damage. Further, we investigated PMN function in response to TNF by measuring chemiluminescence. Agents that attenuate EC damage and PMN activation were evaluated in the above assays. Results revealed that TNF causes EC injury (p less than 0.05) and PMN increase TNF-induced EC injury. Furthermore, PTX, aminophylline (AMPH), caffeine, and forskolin attenuate TNF-induced EC cytotoxicity only in the presence of PMN (p less than 0.05). Of interest, dibutyryl cAMP (DBcAMP) protects EC from TNF-induced injury both with and without PMN. Agents that may increase cAMP levels in PMN (PTX, DBcAMP, forskolin, isobutyl methylxanthine, and terbutaline) significantly attenuate TNF-induced PMN chemiluminescence (p less than 0.05). We conclude that TNF causes EC damage and PMN increase this damage. Furthermore, PTX, AMPH, caffeine, and forskolin can attenuate TNF-induced EC injury in the presence of PMN, whereas DBcAMP attenuates TNF-induced EC injury with and without PMN. In addition, agents that may increase intracellular cAMP levels in PMN can attenuate TNF-induced PMN chemiluminescence. Thus, these agents likely attenuate TNF-induced PMN-mediated EC injury through their inhibitory effects on PMN

  6. Investigation of internalization and cytotoxicity of 125I-[Tyr3]-octreotide in NCI-H446 cell line

    International Nuclear Information System (INIS)

    Sun Junjie; Fan Wo; Xu Yujie; Zhang Youjiu; Zhu Ran; Hu Mingjiang

    2004-01-01

    Objective: To investigate the [Tyr 3 ]-octreotide (TOC) internalizing capacity of NCI-H446 cell line, and the cytotoxicity of 125 I-TOC in NCI-H446 cell line. To assess the therapeutic radiopharmaceutical potentiality of 125 I-TOC for the somatostatin receptor (SSTR) positive tumor. Methods: NCI-H446 cells were incubated together with 125 I-TOC for different periods of time, the amount of internalized 125 I-TOC and the 125 I-TOC bound on the cellular nucleus were detected with γ counter, respectively. The viability of the cells was analyzed by a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay at different time points with various doses of 125 I-TOC, free 125 I and TOC. Results: 125 I-TOC was internalized into the nucleus and bound on the nucleus in a time-dependent manner. 125 I-TOC bound on the nucleus increased to the highest level at 24 h, the amount of nucleus bound 125 I-TOC at 24 h was 7 times higher than that at 0.5 h. Cytotoxicity of 125 I-TOC in SSTR positive NCI-H446 cells was also dose- and time-dependent. The supreme effect of cytotoxicity was found at 96 h with 74 kBq 125 I-TOC, the survival ratio of cells was reduced to (44.8 ± 7.2)%. Conclusions: 125 I-TOC can be internalized into SSTR positive cells mediated by SSTR. The NCI-H446 cells can be killed by Auger electron emitting from 125 I-TOC. Effect of cytotoxicity showed dose- and time-dependent

  7. Cytotoxicity of anthraquinones from the roots of Pentas schimperi towards multi-factorial drug-resistant cancer cells.

    Science.gov (United States)

    Kuete, Victor; Donfack, Arno R Nanfack; Mbaveng, Armelle T; Zeino, Maen; Tane, Pierre; Efferth, Thomas

    2015-08-01

    Multidrug resistance in cancer represents a major problem in chemotherapy. The present study was designed to assess the cytotoxicity of anthraquinones from Pentas schimperi, namely damnacanthal (1), damnacanthol (2), 3-hydroxy-2-hydroxymethyl anthraquinone (3) and schimperiquinone B (4) against nine drug-sensitive and multidrug resistant (MDR) cancer cell lines. The resazurin reduction assay was used to evaluate the cytotoxicity of the above compounds, whilst caspase-Glo assay was used to detect the activation of caspases enzymes by compounds 1 and 2. Cell cycle, mitochondrial membrane potential (MMP) and levels of reactive oxygen species were all analyzed via flow cytometry. Anthraquinones 1 and 2 displayed cytotoxic effects with IC50 values below 81 μM on all the nine tested cancer cell lines whilst 3 and 4 displayed selective activities. The recorded IC50 values for compounds 1 and 2 ranged from 3.12 μM and 12.18 μM (towards leukemia CCRF-CEM cells) and from 30.32 μM and 80.11 μM (towards gliobastoma U87MG.ΔEGFR cells) respectively, and from 0.20 μM (against CCRF-CEM cells) to 195.12 μM (against CEM/ADR5000 cells) for doxorubicin. Compounds 1 and 2 induced apoptosis in CCRF-CEM leukemia cells, mediated by the disruption of the MMP and increase in ROS production. Anthraquinones from Pentas schimperi and mostly 1 and 2 are potential cytotoxic natural products that deserve more investigations to develop novel antineoplastic drugs against multifactorial drug resistant cancers.

  8. Cytotoxicity of the methanol extracts of Elephantopus mollis, Kalanchoe crenata and 4 other Cameroonian medicinal plants towards human carcinoma cells.

    Science.gov (United States)

    Kuete, Victor; Fokou, Fabrice W; Karaosmanoğlu, Oğuzhan; Beng, Veronique P; Sivas, Hülya

    2017-05-25

    Cancer still constitutes one of the major health concerns globally, causing serious threats on patients, their families, and the healthcare system. In this study, the cytotoxicity of the methanol extract of Elephantopus mollis whole plant (EMW), Enantia chlorantha bark (ECB), Kalanchoe crenata leaves (KCL), Lophira alata bark (LAB), Millettia macrophylla leaves (MML) and Phragmanthera capitata leaves (PCL) towards five human solid cancer cell lines and normal CRL2120 fibroblasts, was evaluated. Extracts were subjected to qualitative chemical screening of their secondary metabolite contents using standard methods. The cytotoxicity of samples was evaluated using neutral red uptake (NR) assay meanwhile caspase activation was detected by caspase-Glo assay. Flow cytometry was used to analyze the cell cycle distribution and the mitochondrial membrane potential (MMP) whilst spectrophotometry was used to measure the levels of reactive oxygen species (ROS). Phytochemical analysis revealed the presence of polyphenols, triterpenes and sterols in all extracts. The IC 50 values of the best samples ranged from 3.29 μg/mL (towards DLD-1 colorectal adenocarcinoma cells) to 24.38 μg/mL (against small lung cancer A549 cells) for EMW, from 2.33 μg/mL (mesothelioma SPC212 cells) to 28.96 μg/mL (HepG2 hepatocarcinoma) for KCL, and from 0.04 μg/mL (towards SPC212 cells) to 0.55 μg/mL (towards A549 cells) for doxorubicin. EMW induced apoptosis in MCF-7 cells mediated by MMP loss and increased ROS production whilst KCL induced apoptosis via ROS production. This study provides evidences of the cytotoxicity of the tested plant extract and highlights the good activity of Elephantopus mollis and Kalanchoe crenata. They deserve more exploration to develop novel cytotoxic drugs.

  9. High-dose survival in the lymphocytic choriomeningitis virus infection is accompanied by suppressed DTH but unaffected T-cell cytotoxicity

    DEFF Research Database (Denmark)

    Marker, O; Thomsen, Allan Randrup; Volkert, M

    1985-01-01

    in mice infected with these doses of virus. In the high-dose mice we found generally higher organ virus titres and serum interferon titres than in the low-dose mice. Since we could demonstrate that virus-specific T-cell cytotoxicity in spleen, peripheral blood, and meningeal exudate was similar after...... intracerebral infection with large and small virus doses, and since the LCMV infection in the brain qualitatively and quantitatively was independent of the size of virus inoculum, the explanation for the survival of the high-dose animals is obviously not lack of possibilities for interaction between cytotoxic T...... after infection with high doses of virus suggest a central role for Td function also in virus clearance. Finally, our results indicate the existence of two subsets of K,D region-restricted T cells, one mediating cytotoxicity and the other mediating DTH. This possibility is discussed....

  10. The susceptibility to cytotoxic T lymphocyte mediated lysis of chemically induced sarcomas from immunodeficient and normal mice

    DEFF Research Database (Denmark)

    Svane, I M; Engel, A M; Thomsen, Allan Randrup

    1997-01-01

    tested for susceptibility to cytolysis by virus specific cytotoxic T cells. Tumour cells originating from tumours induced in immunocompetent C.B.-17 mice presented virus antigen more efficiently than tumour cells from immunodeficient SCID mice. No significant difference in virus antigen presentation...

  11. METHYLCELLULOSE CELL-CULTURE AS A NEW CYTOTOXICITY TEST SYSTEM FOR BIOMATERIALS

    NARCIS (Netherlands)

    VANLUYN, MJA; VANWACHEM, PB; NIEUWENHUIS, P; DAMINK, LO; TENHOOPEN, H; FEIJEN, J

    The cytotoxicity of biomaterials can be tested in vitro using various culture systems. Liquid culture systems may detect cytotoxicity of a material either by culture of cells with extracts or with the material itself. In the latter instance, renewing the medium will remove possible released

  12. Spleen cells of whole body x-irradiated W/Fu rats enhance tumor growth in vivo and non-specific cytotoxicity in vitro

    International Nuclear Information System (INIS)

    Moroson, H.; Schechter, M.; Herskovic, T.; Kurzman, I.; Rotman, M.; Friedenberg, R.

    1980-01-01

    This study was designed to investigate the influence of spleen cells of normal Wistar/Furth (W/Fu) rats obtained after whole body x-irradiation (WBI) upon mammary carcinoma growth in vivo, and cell mediated cytotoxicity against several target cells in vitro. The ME/H mammary carcinoma employed here originally arose spontaneously in a W/Fu rat, metastasizing to the retroperitoneal lymph node and lungs. It was found that surviving non-adherent spleen cells taken two days after 500R WBI cause enhanced tumor growth and metastases development in a Winn assay compared with nonadherent spleen cells from unirradiated controls. These cells were also enriched in granulocytes compared with controls. While the level of nonspecific cell mediated cytotoxicity was variable, it increased significantly following WBI of the spleen cell donor. Our results indicate that there are apparently two opposing effects shown by non-adherent spleen cells surviving WBI of normal W/Fu rats: enhancement of in vivo tumor growth; and enhancement of in vitro cell mediated cytotoxicity. A possible mechanism to explain these contrasting results is suggested

  13. Radotinib induces high cytotoxicity in c-KIT positive acute myeloid leukemia cells.

    Science.gov (United States)

    Heo, Sook-Kyoung; Noh, Eui-Kyu; Kim, Jeong Yi; Jo, Jae-Cheol; Choi, Yunsuk; Koh, SuJin; Baek, Jin Ho; Min, Young Joo; Kim, Hawk

    2017-06-05

    Previously, we reported that radotinib, a BCR-ABL1 tyrosine kinase inhibitor, induced cytotoxicity in acute myeloid leukemia (AML) cells. However, the effects of radotinib in the subpopulation of c-KIT-positive AML cells were unclear. We observed that low-concentration radotinib had more potent cytotoxicity in c-KIT-positive cells than c-KIT-negative cells from AML patients. To address this issue, cell lines with high c-KIT expression, HEL92.1.7, and moderate c-KIT expression, H209, were selected. HEL92.1.7 cells were grouped into intermediate and high c-KIT expression populations. The cytotoxicity of radotinib against the HEL92.1.7 cell population with intermediate c-KIT expression was not different from that of the population with high c-KIT expression. When H209 cells were grouped into c-KIT expression-negative and c-KIT expression-positive populations, radotinib induced cytotoxicity in the c-KIT-positive population, but not the c-KIT-negative population. Thus, radotinib induces cytotoxicity in c-KIT-positive cells, regardless of the c-KIT expression intensity. Therefore, radotinib induces significant cytotoxicity in c-KIT-positive AML cells, suggesting that radotinib is a potential target agent for the treatment of c-KIT-positive malignancies including AML. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Evaluation of the cytotoxicity of geosmin and 2-methylisoborneol using cultured human, monkey, and dog cells.

    Science.gov (United States)

    Mochida, Kyo

    2009-03-01

    The cytotoxicity of musty odor-emitting substances, geosmin (GM) and 2-methylisoborneol, at a concentration of 10 ng/L - 300 mg/L was investigated using cultured mammalian cells. These two compounds exhibited no cytotoxicity in either the colony-formation of human KB cells or WST-1 assays of human-, monkey-, and dog-derived cells. These results suggest that the maximum concentration (700 ng/L) of GM found in the water of Lake Shinji is not toxic.

  15. Vulnerability of cultured canine lung tumor cells to NK cell-mediated cytolysis

    International Nuclear Information System (INIS)

    Haley, P.J.; Kohr, J.M.; Kelly, G.; Muggenburg, B.A.; Guilmette, B.A.

    1988-01-01

    Five cell lines, designated as canine lung epithelial cell (CLEP), derived from radiation induced canine lung tumors and canine thyroid adeno-carcinoma (CTAC) cells were compared for their susceptibility to NK cell-mediated cytolysis using peripheral blood lymphocytes from normal, healthy Beagle dogs as effector cells. Effector cells and chromium 51 radiolabeled target cells were incubated for 16 h at ratios of 12.5:1, 25:1, 50:1, and 100:1. Increasing cytolysis was observed for all cell lines as the effector-to-target-cell ratios increased from 12.5:1 to 100:1. The percent cytotoxicity was significantly less for all lung tumor cell lines as compared to CTAC at the 100:1 ratio. One lung tumor cell line, CLEP-9, had 85% of the lytic vulnerability of the CTAC cell line and significantly greater susceptibility to NK cell-mediated lysis than all of the other lung tumor cell lines. Susceptibility to NK cell cytolysis did not correlate with in vivo malignant behavior of the original tumor. These data suggest that cultured canine lung tumor cells are susceptible to NK cell cytolytic activity in vitro and that at least one of these cell lines (CLEP-9) is a candidate for substitution of the standard canine NK cell target, CTAC, in NK cell assays. The use of lung tumor cells in NK cell assays may provide greater insight into the control of lung tumors by immune mechanisms. (author)

  16. Cytotoxicity of municipal solid waste incinerator ash wastes toward mammalian kidney cell lines.

    Science.gov (United States)

    Huang, Wu-Jang; Tsai, Jia-Lin; Liao, Ming-Huei

    2008-05-01

    In this study, three municipal solid waste incinerator (MSWI) ash wastes-bottom ash, scrubber residue, and baghouse ash-were extracted using a toxicity characteristic leaching procedure (TCLP) extractant. These so-called final TCLP extracts were applied to African green monkey kidney cells (Vero), baby hamster kidney cells (BHK-21), and pig kidney cells (PK-15), multi-well absorption reader analysis was performed to test how the cytotoxicity of the incineration ashes would affect the digestive systems of animals. Ion-coupled plasma analyses indicated that the baghouse ash extract possessed the highest pH and heavy metal concentration, its cytotoxicity was also the highest. In contrast, the bottom ash and the scrubber residue exhibited very low cytotoxicities. The cytotoxicities of mixtures of baghouse ash and scrubber residue toward the three tested cell lines increased as the relative ratio of the baghouse ash increased, especially for the Vero cells. The slight cytotoxicity of the scrubber residue arose mainly from the presence of Cr species, whereas the high cytotoxicity of the baghouse ash resulted from its high content of heavy metals and alkali ions. In addition, it appears that the dissolved total organic carbon content of these ash wastes can reduce the cytotoxicity of ash wastes that collect in animal cells.

  17. CD3+CD4negCD8neg (double negative) T lymphocytes and NKT cells as the main cytotoxic-related-CD107a+ cells in lesions of cutaneous leishmaniasis caused by Leishmania (Viannia) braziliensis.

    Science.gov (United States)

    Ferraz, Raquel; Cunha, Clarissa F; Pimentel, Maria Inês F; Lyra, Marcelo R; Pereira-Da-Silva, Tatiana; Schubach, Armando O; Da-Cruz, Alda Maria; Bertho, Alvaro Luiz

    2017-05-03

    Cutaneous leishmaniasis (CL) is caused by Leishmania (Viannia) braziliensis, which infects dermal macrophages and dendritic cells, causing an intense immune-mediated-tissue inflammation and a skin ulcer with elevated borders that can heal spontaneously or after antimonial therapy. The resolution of lesions depends on an adaptive immune response, and cytotoxic cells seem to have a fundamental role in this process. The aim of this study is to better understand the role of cytotoxicity mediated mechanisms that occur during the immune response in the CL lesion milieu, considering distinct cytotoxic-related CD107a + cells, such as CD8 + , CD4 + , CD4 neg CD8 neg (double-negative, DN) and CD4 + CD8 + (double-positive, DP) T lymphocytes, as well as NK and NKT cells. Lesion derived cells were assessed for T cell subpopulations and NK cells, as well as CD107a expression by flow cytometry. In addition, cytometric bead array (CBA) was used to quantify cytokines and granzyme B concentrations in supernatants from macerated lesions. Flow cytometry analyses revealed that NKT cells are the major CD107a-expressing cell population committed to cytotoxicity in CL lesion, although we also observed high frequencies of CD4 + and DN T cells expressing CD107a. Analysing the pool of CD107a + -cell populations, we found a higher distribution of DN T cells (44%), followed by approximately 25% of NKT cells. Interestingly, NK and CD8 + T cells represented only 3 and 4% of the total-CD107a + -cell pool, respectively. The cytotoxicity activity that occurs in the lesion milieu of CL patients seems to be dominated by DN T and NKT cells. These findings suggest the need for a reevaluation of the role of classical-cytotoxic NK and CD8 + T cells in the pathogenesis of CL, implicating an important role for other T cell subpopulations.

  18. In vitro evaluation of the cytotoxicity and cellular uptake of CMCht/PAMAM dendrimer nanoparticles by glioblastoma cell models

    Energy Technology Data Exchange (ETDEWEB)

    Pojo, M., E-mail: martapojo@ecsaude.uminho.pt; Cerqueira, S. R.; Mota, T.; Xavier-Magalhaes, A.; Ribeiro-Samy, S. [University of Minho, Life and Health Sciences Research Institute (ICVS), School of Health Sciences (Portugal); Mano, J. F.; Oliveira, J. M., E-mail: miguel.oliveira@dep.uminho.pt; Reis, R. L. [ICVS/3Bs, PT Government Associated Laboratory (Portugal); Sousa, N.; Costa, B. M.; Salgado, A. J. [University of Minho, Life and Health Sciences Research Institute (ICVS), School of Health Sciences (Portugal)

    2013-05-15

    Glioblastoma (GBM) is simultaneously the most common and most malignant subtype tumor of the central nervous system. These are particularly dramatic diseases ranking first among all human tumor types for tumor-related average years of life lost and for which curative therapies are not available. Recently, the use of nanoparticles as drug delivery systems (DDS) for tumor treatment has gained particular interest. In an attempt to evaluate the potential of carboxymethylchitosan/poly(amidoamine) (CMCht/PAMAM) dendrimer nanoparticles as a DDS, we aimed to evaluate its cytotoxicity and internalization efficiency in GBM cell models. CMCht/PAMAM-mediated cytotoxicity was evaluated in a GBM cell line (U87MG) and in human immortalized astrocytes (hTERT/E6/E7) by MTS and double-stranded DNA quantification. CMCht/PAMAM internalization was assessed by double fluorescence staining. Both cells lines present similar internalization kinetics when exposed to a high dose (400 {mu}g/mL) of these nanoparticles. However, the internalization rate was higher in tumor GBM cells as compared to immortalized astrocytes when cells were exposed to lower doses (200 {mu}g/mL) of CMCht/PAMAM for short periods (<24 h). After 48 h of exposure, both cell lines present {approx}100% of internalization efficiency for the tested concentrations. Importantly, short-term exposures (1, 6, 12, 24, and 48 h) did not show cytotoxicity, and long-term exposures (7 days) to CMCht/PAMAM induced only low levels of cytotoxicity in both cell lines ({approx}20% of decrease in metabolic activity). The high efficiency and rate of internalization of CMCht/PAMAM we show here suggest that these nanoparticles may be an attractive DDS for brain tumor treatment in the future.

  19. In vitro cytotoxicity and induction of apoptosis by silica nanoparticles in human HepG2 hepatoma cells

    Directory of Open Access Journals (Sweden)

    Lu X

    2011-09-01

    Full Text Available Xun Lu2,3, Jiangchao Qian1, Huanjun Zhou2,3, Qi Gan2,3, Wei Tang1, Jingxiong Lu3, Yuan Yuan1,2, Changsheng Liu1–31State Key Laboratory of Bioreactor Engineering, 2Key Laboratory for Ultrafine Materials of Ministry of Education, 3Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, People’s Republic of ChinaBackground: Silica nanoparticles have been discovered to exert cytotoxicity and induce apoptosis in normal human cells. However, until now, few studies have investigated the cytotoxicity of silica nanoparticles in tumor cells.Methods: This study investigated the cytotoxicity of 7–50 nm silica nanoparticles in human HepG2 hepatoma cells, using normal human L-02 hepatocytes as a control. Cell nucleus morphology changes, cellular uptake, and expression of procaspase-9, p53, Bcl-2, and Bax, as well as the activity of caspase-3, and intracellular reactive oxygen species and glutathione levels in the silica nanoparticle-treated cells, were analyzed.Results: The antitumor activity of the silica nanoparticles was closely related to particle size, and the antiproliferation activity decreased in the order of 20 nm > 7 nm > 50 nm. The silica nanoparticles were also cytotoxic in a dose- and time-dependent manner. However, the silica nanoparticles showed only slight toxicity in the L-02 control cells, Moreover, in HepG2 cells, oxidative stress and apoptosis were induced after exposure to 7–20 nm silica nanoparticles. Expression of p53 and caspase-3 increased, and expression of Bcl-2 and procaspase-9 decreased in a dose-dependent manner, whereas the expression of Bax was not significantly changed.Conclusion: A mitochondrial-dependent pathway triggered by oxidative stress mediated by reactive oxygen species may be involved in apoptosis induced by silica nanoparticles, and hence cytotoxicity in human HepG2 hepatic cancer cells.Keywords: silica nanoparticles

  20. Comparison of mammalian and fish cell line cytotoxicity: impact of endpoint and exposure duration

    International Nuclear Information System (INIS)

    Guelden, Michael; Moerchel, Sabine; Seibert, Hasso

    2005-01-01

    Comparisons of acute toxic concentrations of chemicals to fish in vivo and cytotoxic concentrations to fish cell lines in vitro reveal rather good correlations of the toxic potencies in vitro and in vivo, but a clearly lower sensitivity of the fish cells. To examine whether the low sensitivity is specific for fish cells, cytotoxic potencies of reference chemicals from the Multicenter Evaluation of In Vitro Cytotoxicity program (MEIC) reported for the fish cell lines R1 and RTG-2 were compared with those obtained with the mouse Balb/c 3T3 cell line. Cytotoxic potencies (EC 50 values) for MEIC reference chemicals were determined with exponentially growing Balb/c 3T3 cells using three different test protocols. To assess both endpoints, cell proliferation and cell survival, EC 50 values were measured for the decrease in final cell protein after 24 and 72 h of exposure and for the reduction of cell protein increase during 24 h of exposure. EC 50 values obtained with the fish cell lines R1 and RTG-2 using cell survival as endpoint were taken from the MEIC data base. The comparison of cytotoxic potencies shows that, in general, the fish cell lines and the mammalian cell line are almost equally sensitive towards the cytotoxic action of chemicals. The mammalian cell line assay, however, becomes considerably more sensitive, by factors of 3.4-8.5, than the fish cell line assays, if cell growth instead of cell survival is used as endpoint. It is concluded, that cell proliferation might be a better endpoint than cell survival and that mammalian cell lines might be suited to assess fish acute toxicity

  1. Size-dependent cytotoxicity of Fe3O4 nanoparticles induced by biphasic regulation of oxidative stress in different human hepatoma cells.

    Science.gov (United States)

    Xie, Yuexia; Liu, Dejun; Cai, Chenlei; Chen, Xiaojing; Zhou, Yan; Wu, Liangliang; Sun, Yongwei; Dai, Huili; Kong, Xianming; Liu, Peifeng

    2016-01-01

    The application of Fe3O4 nanoparticles (NPs) has made great progress in the diagnosis of disease and in the drug delivery system for cancer therapy, but the relative mechanisms of potential toxicity induced by Fe3O4 have not kept pace with its development in the application, which has hampered its further clinical application. In this article, we used two kinds of human hepatoma cell lines, SK-Hep-1 and Hep3B, to investigate the cytotoxic effects and the involved mechanisms of small Fe3O4 NPs with different diameters (6 nm, 9 nm, and 14 nm). Results showed that the size of NPs effectively influences the cytotoxicity of hepatoma cells: 6 nm Fe3O4 NPs exhibited negligible cytotoxicity and 9 nm Fe3O4 NPs affected cytotoxicity via cellular mitochondrial dysfunction and by inducing necrosis mediated through the mitochondria-dependent intracellular reactive oxygen species generation. Meanwhile, 14 nm Fe3O4 NPs induced cytotoxicity by impairing the integrity of plasma membrane and promoting massive lactate dehydrogenase leakage. These results explain the detailed mechanism of different diameters of small Fe3O4 NPs-induced cytotoxicity. We anticipate that this study will provide different insights into the cytotoxicity mechanism of Fe3O4 NPs, so as to make them safer to use in clinical application.

  2. Δ8-Tetrahydrocannabinol induces cytotoxicity in macrophage J774-1 cells: Involvement of cannabinoid receptor 2 and p38 MAPK

    International Nuclear Information System (INIS)

    Yamaori, Satoshi; Ishii, Hirosuke; Chiba, Kenzo; Yamamoto, Ikuo; Watanabe, Kazuhito

    2013-01-01

    Tetrahydrocannabinol (THC), a psychoactive component of marijuana, is known to exert cytotoxicity in immune cells. In the present study, we examined the cytotoxicity of Δ 8 -THC in mouse macrophage J774-1 cells and a possible involvement of cannabinoid receptors and stress-responsive mitogen-activated protein kinases (MAPKs) in the cytotoxic process. J774-1 cells were treated with Δ 8 -THC (0–20 μM) for up to 6 h. As measured by the MTT and LDH assays, Δ 8 -THC induced cell death of J774-1 cells in a concentration- and/or exposure time-dependent manner. Δ 8 -THC-induced cell damage was associated with vacuole formation, cell swelling, chromatin condensation, and nuclear fragmentation. The cytotoxic effect of Δ 8 -THC was significantly prevented by a caspase-1 inhibitor Ac-YVAD-cmk but not a caspase-3 inhibitor z-DEVD-fmk. The pretreatment with SR144528, a CB 2 receptor-selective antagonist, effectively suppressed Δ 8 -THC-induced cytotoxicity in J774-1 cells, which exclusively expressed CB 2 receptors as indicated by real-time polymerase chain reaction analysis. In contrast, AM251, a CB 1 receptor-selective antagonist, did not affect the cytotoxicity. Pertussis toxin and α-tocopherol significantly attenuated Δ 8 -THC-induced cytotoxicity suggesting that G i/o protein coupling signal transduction and oxidative stress are responsible for the cytotoxicity. Δ 8 -THC stimulated the phosphorylation of p38 MAPK and c-Jun N-terminal kinase (JNK) in J774-1 cells, which were effectively antagonized by the pretreatment with SR144528. In addition, SB203580, a p38 MARK inhibitor, significantly attenuated the cytotoxic effect of Δ 8 -THC, whereas SP600125, a JNK inhibitor, significantly enhanced the cytotoxicity. These results suggest that the cytotoxicity of Δ 8 -THC to J774-1 cells is exerted mediated through the CB 2 receptor followed by the activation of p38 MAPK

  3. IN VITRO CYTOTOXICITY OF BTEX METABOLITES IN HELA CELL LINES

    Science.gov (United States)

    Fuel leakage from underground storage tanks is a major source of groundwater contamination. Although the toxicity of regulated compounds such as benzene, toluene, ethylbenzene, and xylene (BTEX) are well recognized, the cytotoxicity of their metabolites has not been studied exte...

  4. Heparan sulfate chains potentiate cadmium cytotoxicity in cultured vascular endothelial cells.

    Science.gov (United States)

    Fujiwara, Yasuyuki; Yamamoto, Chika; Yoshida, Eiko; Kumagai, Yoshito; Kaji, Toshiyuki

    2016-02-01

    The monolayer of vascular endothelial cells, which is rich in heparan sulfate chains, is an important target of cadmium cytotoxicity. To investigate the effects of heparan sulfate chains on cadmium cytotoxicity, bovine aortic endothelial cells were cultured in the presence of cadmium, with or without exogenous heparan sulfate. The following results were obtained: (1) Heparan sulfate chains potentiated cadmium cytotoxicity. (2) Such a potentiation did not occur in bovine aortic smooth muscle cells. (3) Heparin chains as well as heparan sulfate chains potentiated cadmium cytotoxicity, while other glycosaminoglycan chains failed to exhibit such an activity. (4) The disaccharide units of heparan sulfate chains did not potentiate cadmium cytotoxicity in the endothelial cells. (5) Heparan sulfate chains did not potentiate mercury and arsenite cytotoxicity. (6) Fibroblast growth factor-2 (FGF-2) also potentiated cadmium cytotoxicity in the endothelial cells. (7) Heparan sulfate chains significantly increased intracellular cadmium accumulation by inducing the expression of metallothionein. Taken together, these results suggest that heparan sulfate chains activate FGF-2, which in turn elevates the expression and/or activity of metal transporter(s) that facilitate cadmium influx from the extracellular space into the cytoplasm.

  5. Adjuvant antiproliferative and cytotoxic effect of aloin in irradiated HeLaS3 cells

    Science.gov (United States)

    Nićiforović, A.; Adžić, M.; Zarić, B.; Radojčić, M. B.

    2007-09-01

    Naturally occurring phytoanthracycline, aloin, was used to radiosensitize HeLaS3 human cervix carcinoma cells. The results indicated that the cytotoxic adjuvant effect of aloin was synergistic with gammaionizing radiation at all drug concentrations and comparable to the cytotoxicity of 5-10 Gy ionizing radiation alone. Radiosensitization of HeLaS3 cells was achieved by 60 μM aloin, which reduced the IC50 dose of ionizing radiation from 3.4 to 2 Gy. Ionizing radiation and aloin alone or in combination are shown to cause perturbation of the HeLaS3 cell-cycle and increase the percentage of cells in the DNA synthesis (S) phase of the cell cycle. While either of the agents applied alone causes programmed cell death by apoptosis, the simultaneous cell damage by both agents through the altered redox balance compromised cell capacity to conduct this program and led to synergic cytotoxic cell death by necrosis.

  6. Amphotericin B, an Anti-Fungal Medication, Directly Increases the Cytotoxicity of NK Cells

    Science.gov (United States)

    Kim, Nayoung; Choi, Ji-Wan; Park, Hye-Ran; Kim, Inki; Kim, Hun Sik

    2017-01-01

    Immunomodulatory drugs (IMiDs) present one example of immunomodulatory agents that improve cancer immunotherapy. Based on the cytotoxic activity of natural killer (NK) cells against cancer cells, a high throughput screening method for the identification of novel immunomodulatory molecules with the potential to stimulate NK cell cytotoxicity against cancer cells was designed and tested using an approved drug library. Among the primary hit compounds, the anti-fungal drug amphotericin B (AMP-B) increased the cytotoxicity of NK cell line and human primary NK cells in a direct manner. The increase in NK cell activity was related to increased formation of NK-target cell conjugates and the subsequent granule polarization toward target cells. The results of the present study indicate that AMP-B could serve a dual function as an anti-fungal and immunomodulatory drug. PMID:28608807

  7. Dimethyl fumarate is highly cytotoxic in KRAS mutated cancer cells but spares non-tumorigenic cells.

    Science.gov (United States)

    Bennett Saidu, Nathaniel Edward; Bretagne, Marie; Mansuet, Audrey Lupo; Just, Pierre-Alexandre; Leroy, Karen; Cerles, Olivier; Chouzenoux, Sandrine; Nicco, Carole; Damotte, Diane; Alifano, Marco; Borghese, Bruno; Goldwasser, François; Batteux, Frédéric; Alexandre, Jérôme

    2018-02-06

    KRAS mutation, one of the most common molecular alterations observed in adult carcinomas, was reported to activate the anti-oxidant program driven by the transcription factor NRF2 (Nuclear factor-erythroid 2-related factor 2). We previously observed that the antitumoral effect of Dimethyl fumarate (DMF) is dependent of NRF2 pathway inhibition. We used in vitro methods to examine the effect of DMF on cell death and the activation of the NRF2/DJ-1 antioxidant pathway. We report here that DMF is preferentially cytotoxic against KRAS mutated cancer cells. This effect was observed in patient-derived cancer cell lines harbouring a G12V KRAS mutation, compared with cell lines without such a mutation. In addition, KRAS*G12V over-expression in the human Caco-2 colon cancer cell line significantly promoted DMF-induced cell death, as well as DMF-induced- reactive oxygen species (ROS) formation and -glutathione (GSH) depletion. Moreover, in contrast to malignant cells, our data confirms that the same concentration of DMF has no significant cytotoxic effects on non-tumorigenic human ARPE-19 retinal epithelial, murine 3T3 fibroblasts and primary mice bone marrow cells; but is rather associated with NRF2 activation, decreased ROS and increased GSH levels. Furthermore, DJ-1 down-regulation experiments showed that this protein does not play a protective role against NRF2 in non-tumorigenic cells, as it does in malignant ones. This, interestingly, could be at the root of the differential effect of DMF observed between malignant and non-tumorigenic cells. Our results suggest for the first time that the dependence on NRF2 observed in mutated KRAS malignant cells makes them more sensitive to the cytotoxic effect of DMF, which thus opens up new prospects for the therapeutic applications of DMF.

  8. Dimethyl fumarate is highly cytotoxic in KRAS mutated cancer cells but spares non-tumorigenic cells

    Science.gov (United States)

    Bennett Saidu, Nathaniel Edward; Bretagne, Marie; Mansuet, Audrey Lupo; Just, Pierre-Alexandre; Leroy, Karen; Cerles, Olivier; Chouzenoux, Sandrine; Nicco, Carole; Damotte, Diane; Alifano, Marco; Borghese, Bruno; Goldwasser, François; Batteux, Frédéric; Alexandre, Jérôme

    2018-01-01

    KRAS mutation, one of the most common molecular alterations observed in adult carcinomas, was reported to activate the anti-oxidant program driven by the transcription factor NRF2 (Nuclear factor-erythroid 2-related factor 2). We previously observed that the antitumoral effect of Dimethyl fumarate (DMF) is dependent of NRF2 pathway inhibition. We used in vitro methods to examine the effect of DMF on cell death and the activation of the NRF2/DJ-1 antioxidant pathway. We report here that DMF is preferentially cytotoxic against KRAS mutated cancer cells. This effect was observed in patient-derived cancer cell lines harbouring a G12V KRAS mutation, compared with cell lines without such a mutation. In addition, KRAS*G12V over-expression in the human Caco-2 colon cancer cell line significantly promoted DMF-induced cell death, as well as DMF-induced- reactive oxygen species (ROS) formation and -glutathione (GSH) depletion. Moreover, in contrast to malignant cells, our data confirms that the same concentration of DMF has no significant cytotoxic effects on non-tumorigenic human ARPE-19 retinal epithelial, murine 3T3 fibroblasts and primary mice bone marrow cells; but is rather associated with NRF2 activation, decreased ROS and increased GSH levels. Furthermore, DJ-1 down-regulation experiments showed that this protein does not play a protective role against NRF2 in non-tumorigenic cells, as it does in malignant ones. This, interestingly, could be at the root of the differential effect of DMF observed between malignant and non-tumorigenic cells. Our results suggest for the first time that the dependence on NRF2 observed in mutated KRAS malignant cells makes them more sensitive to the cytotoxic effect of DMF, which thus opens up new prospects for the therapeutic applications of DMF. PMID:29507676

  9. Follicular lymphoma: in vitro effects of combining lymphokine-activated killer (LAK) cell-induced cytotoxicity and rituximab- and obinutuzumab-dependent cellular cytotoxicity (ADCC) activity.

    Science.gov (United States)

    García-Muñoz, Ricardo; López-Díaz-de-Cerio, Ascensión; Feliu, Jesus; Panizo, Angel; Giraldo, Pilar; Rodríguez-Calvillo, Mercedes; Grande, Carlos; Pena, Esther; Olave, Mayte; Panizo, Carlos; Inogés, Susana

    2016-04-01

    Follicular lymphoma (FL) is a disease of paradoxes-incurable but with a long natural history. We hypothesized that a combination of lymphokine-activated killer (LAK) cells and monoclonal antibodies might provide a robust synergistic treatment and tested this hypothesis in a phase II clinical trial (NCT01329354). In this trial, in addition to R-CHOP, we alternated the administration of only rituximab with rituximab and autologous LAK cells that were expanded ex vivo. Our objective was to determine the in vitro capability of LAK cells generated from FL patients to produce cytotoxicity against tumor cell lines and to determine rituximab- and obinutuzumab-induced cytotoxicity via antibody-dependent cellular cytotoxicity (ADCC) activity. We analyzed the LAK cell-induced cytotoxicity and rituximab (R)- and obinutuzumab (GA101)-induced ADCC activity. We show that LAK cells generated from FL patients induce cytotoxicity against tumor cell lines. R and GA101 enhance cytolysis through ADCC activity of LAK cells. Impaired LAK cell cytotoxicity and ADCC activity were detected in 50 % of patients. Percentage of NK cells in LAK infusions were correlated with the R- and GA101-induced ADCC. Our results indicate that the combination of R or GA101 and LAK cells should be an option as frontline maintenance therapy in patients with FL.

  10. Proper design of silica nanoparticles combines high brightness, lack of cytotoxicity and efficient cell endocytosis

    Science.gov (United States)

    Rampazzo, Enrico; Voltan, Rebecca; Petrizza, Luca; Zaccheroni, Nelsi; Prodi, Luca; Casciano, Fabio; Zauli, Giorgio; Secchiero, Paola

    2013-08-01

    Silica-based luminescent nanoparticles (SiNPs) show promising prospects in nanomedicine in light of their chemical properties and versatility. In this study, we have characterized silica core-PEG shell SiNPs derivatized with PEG moieties (NP-PEG), with external amino- (NP-PEG-amino) or carboxy-groups (NP-PEG-carbo), both in cell cultures as well as in animal models. By using different techniques, we could demonstrate that these SiNPs were safe and did not exhibit appreciable cytotoxicity in different relevant cell models, of normal or cancer cell types, growing either in suspension (JVM-2 leukemic cell line and primary normal peripheral blood mononuclear cells) or in adherence (human hepatocarcinoma Huh7 and umbilical vein endothelial cells). Moreover, by multiparametric flow cytometry, we could demonstrate that the highest efficiency of cell uptake and entry was observed with NP-PEG-amino, with a stable persistence of the fluorescence signal associated with SiNPs in the loaded cell populations both in vitro and in vivo settings suggesting this as an innovative method for cell traceability and detection in whole organisms. Finally, experiments performed with the endocytosis inhibitor Genistein clearly suggested the involvement of a caveolae-mediated pathway in SiNP endocytosis. Overall, these data support the safe use of these SiNPs for diagnostic and therapeutic applications.Silica-based luminescent nanoparticles (SiNPs) show promising prospects in nanomedicine in light of their chemical properties and versatility. In this study, we have characterized silica core-PEG shell SiNPs derivatized with PEG moieties (NP-PEG), with external amino- (NP-PEG-amino) or carboxy-groups (NP-PEG-carbo), both in cell cultures as well as in animal models. By using different techniques, we could demonstrate that these SiNPs were safe and did not exhibit appreciable cytotoxicity in different relevant cell models, of normal or cancer cell types, growing either in suspension (JVM-2

  11. The Human Antibody Fragment DIATHIS1 Specific for CEACAM1 Enhances Natural Killer Cell Cytotoxicity Against Melanoma Cell Lines In Vitro

    Science.gov (United States)

    Dupuis, Maria L.; Soriani, Alessandra; Ricci, Biancamaria; Dominici, Sabrina; Moricoli, Diego; Ascione, Alessandro; Santoni, Angela; Magnani, Mauro; Cianfriglia, Maurizio

    2015-01-01

    Several lines of evidence show that de novo expression of carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) is strongly associated with reduced disease-free survival of patients affected by metastatic melanoma. Previously published investigations report that homophilic interactions between CEACAM1 expressed on natural killer (NK) cells and tumors inhibit the NK cell-mediated killing independently of major histocompatibility complex class I recognition. This biological property can be physiologically relevant in metastatic melanoma because of the increased CEACAM1 expression observed on NK cells from some patients. Moreover, this inhibitory mechanism in many cases might hinder the efficacy of immunotherapeutic treatments of CEACAM1+ malignancies because of tumor evasion by activated effector cells. In the present study, we designed an in vitro experimental model showing that the human single-chain variable fragment (scFv) DIATHIS1 specific for CEACAM1 is able to enhance the lytic machinery of NK cells against CEACAM1+ melanoma cells. The coincubation of the scFv DIATHIS1 with CEACAM1+ melanoma cells and NK-92 cell line significantly increases the cell-mediated cytotoxicity. Moreover, pretreatment of melanoma cells with scFv DIATHIS1 promotes the activation and the degranulation capacity of in vitro–expanded NK cells from healthy donors. It is interesting to note that the melanoma cell line MelC and the primary melanoma cells STA that respond better to DIATHIS1 treatment, express higher relative levels of CEACAM1-3L and CEACAM1-3S splice variants isoforms compared with Mel501 cells that are less responsive to DIATHIS1-induced NK cell–mediated cytotoxicity. Taken together, our results suggest that the fully human antibody fragment DIATHIS1 originated by biopanning approach from a phage antibody library may represent a relevant biotechnological platform to design and develop completely human antimelanoma therapeutics of biological origin. PMID

  12. Salinomycin enhances cisplatin-induced cytotoxicity in human lung cancer cells via down-regulation of AKT-dependent thymidylate synthase expression.

    Science.gov (United States)

    Ko, Jen-Chung; Zheng, Hao-Yu; Chen, Wen-Ching; Peng, Yi-Shuan; Wu, Chia-Hung; Wei, Chia-Li; Chen, Jyh-Cheng; Lin, Yun-Wei

    2016-12-15

    Salinomycin, a polyether antibiotic, acts as a highly selective potassium ionophore and has anticancer activity on various cancer cell lines. Cisplatin has been proved as chemotherapy drug for advanced human non-small cell lung cancer (NSCLC). Thymidylate synthase (TS) is a key enzyme in the pyrimidine salvage pathway, and increased expression of TS is thought to be associated with resistance to cisplatin. In this study, we showed that salinomycin (0.5-2μg/mL) treatment down-regulating of TS expression in an AKT inactivation manner in two NSCLC cell lines, human lung adenocarcinoma A549 and squamous cell carcinoma H1703 cells. Knockdown of TS using small interfering RNA (siRNA) or inhibiting AKT activity with PI3K inhibitor LY294002 enhanced the cytotoxicity and cell growth inhibition of salinomycin. A combination of cisplatin and salinomycin resulted in synergistic enhancement of cytotoxicity and cell growth inhibition in NSCLC cells, accompanied with reduced activation of phospho-AKT, and TS expression. Overexpression of a constitutive active AKT (AKT-CA) expression vector reversed the salinomycin and cisplatin-induced synergistic cytotoxicity. In contrast, pretreatment with LY294002 further decreased the cell viability in salinomycin and cisplatin cotreated cells. Our findings suggested that the down-regulation of AKT-mediated TS expression by salinomycin enhanced the cisplatin-induced cytotoxicity in NSCLC cells. These results may provide a rationale to combine salinomycin with cisplatin for lung cancer treatment. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Erythropoietin protects myocardin-expressing cardiac stem cells against cytotoxicity of tumor necrosis factor-{alpha}

    Energy Technology Data Exchange (ETDEWEB)

    Madonna, Rosalinda [The Center for Cardiovascular Biology and Atherosclerosis Research, The University of Texas Health Science Center at Houston, Texas (United States); Institute of Cardiology, and Center of Excellence on Aging, ' G. d' Annunzio' University, Chieti (Italy); Shelat, Harnath; Xue, Qun; Willerson, James T. [The Center for Cardiovascular Biology and Atherosclerosis Research, The University of Texas Health Science Center at Houston, Texas (United States); The Texas Heart Institute at St. Luke' s Episcopal Hospital, Houston, Texas (United States); De Caterina, Raffaele [Institute of Cardiology, and Center of Excellence on Aging, ' G. d' Annunzio' University, Chieti (Italy); Geng, Yong-Jian, E-mail: yong-jian.geng@uth.tmc.edu [The Center for Cardiovascular Biology and Atherosclerosis Research, The University of Texas Health Science Center at Houston, Texas (United States); The Texas Heart Institute at St. Luke' s Episcopal Hospital, Houston, Texas (United States)

    2009-10-15

    Cardiac stem cells are vulnerable to inflammation caused by infarction or ischemic injury. The growth factor, erythropoietin (Epo), ameliorates the inflammatory response of the myocardium to ischemic injury. This study was designed to assess the role of Epo in regulation of expression and activation of the cell death-associated intracellular signaling components in cardiac myoblasts stimulated with the proinflammatory cytokine tumor necrosis factor (TNF)-{alpha}. Cardiac myoblasts isolated from canine embryonic hearts characterized by expression of myocardin A, a promyogenic transcription factor for cardiovascular muscle development were pretreated with Epo and then exposed to TNF-{alpha}. Compared to untreated cells, the Epo-treated cardiac myoblasts exhibited better morphology and viability. Immunoblotting revealed lower levels of active caspase-3 and reductions in iNOS expression and NO production in Epo-treated cells. Furthermore, Epo pretreatment reduced nuclear translocation of NF-{kappa}B and inhibited phosphorylation of inhibitor of kappa B (I{kappa}B) in TNF-{alpha}-stimulated cardiac myoblasts. Thus, Epo protects cardiac myocyte progenitors or myoblasts against the cytotoxic effects of TNF-{alpha} by inhibiting NF-{kappa}B-mediated iNOS expression and NO production and by preventing caspase-3 activation.

  14. Cytotoxic activity and induction of inflammatory mediators of the methanol:chloroform extract of Fusarium moniliforme.

    Science.gov (United States)

    Lagunes-Castro, María de la Soledad; Trigos, Ángel; López-Monteon, Aracely; Mendoza, Guillermo; Ramos-Ligonio, Angel

    2015-01-01

    Fusarium moniliforme is a phytopathogenic facultative fungus with a cosmopolitan distribution in all types of climates, and has a wide host range, including, among others, bean, rice, wheat and sorghum crops. There is a current lack of knowledge regarding the potential of these fungi, so it is considered to be of great importance to obtain information related to the biological activity of extracts and secondary metabolites. An evaluation of the role of methanol:chloroform extract of F. moniliforme in the production of inflammatory cytokines and their cytotoxic activity. The production of nitric oxide was analyzed by the Griess method, the production of cytokines using ELISA, and the effects of the extract on cell cycle and induction of apoptosis by flow cytometry. The extract of F. moniliforme was seen to be able to stimulate nitric oxide (NO) production in J774A.1 cells, as well as to produce cytokines such as, IL-1β, IL-6, and TNF-α. It was also observed that the extract of F. moniliforme produces activity on cell cycle modulation and apoptosis when tested in carcinogenic cell lines. The results obtained from this study open the possibility of obtaining and identifying metabolites of the extract of F. moniliforme that can be evaluated for possible use in cancer therapy. Copyright © 2013 Revista Iberoamericana de Micología. Published by Elsevier Espana. All rights reserved.

  15. Reduced LAK cytotoxicity of peripheral blood mononuclear cells in patients with bladder cancer

    DEFF Research Database (Denmark)

    Hermann, G G; Petersen, K R; Steven, K

    1990-01-01

    The cytotoxicity of unstimulated peripheral blood mononuclear cells (US-PBMC), phytohemagglutinin (PHA)-stimulated PBMC (PS-PBMC) and interleukin-2 (IL-2)-activated PBMC (LAK cells) was assessed in patients with noninvasive and invasive transitional-cell bladder cancer and compared with those...... determined in healthy controls. The differences in the cytotoxicities were correlated with specific changes in the subsets of peripheral blood mononuclear cells (PBMC). PBMC from 37 patients and 13 healthy controls were tested against the bladder cancer cell line T24 in 51Cr-release assays. The PBMC subsets...... were analyzed using monoclonal antibodies against T cells, natural killer (NK) -cells, monocytes, and activation markers. The cytotoxicities of US-PBMC, PS-PBMC, and LAK cells were all significantly lower in the cancer patients than in the controls (P less than 0.05). The percentages of PBMC positive...

  16. Characterization of the recognition of tumor cells by the natural cytotoxicity receptor, NKp44.

    NARCIS (Netherlands)

    Hershkovitz, O.; Jivov, S.; Bloushtain, N.; Zilka, A.; Landau, G.; Bar-Ilan, A.; Lichtenstein, R.G.; Campbell, K.S.; Kuppevelt, A.H.M.S.M. van; Porgador, A.

    2007-01-01

    NKp44 is a natural cytotoxicity receptor expressed by human NK cells upon activation. In this study, we demonstrate that cell surface heparan sulfate proteoglycans (HSPGs), expressed by target cells, are involved in the recognition of tumor cells by NKp44. NKp44 showed heparan sulfate-dependent

  17. A modified short-term cytotoxicity test

    International Nuclear Information System (INIS)

    Rees, R.C.; Platts, A.A.

    1983-01-01

    Using whole blood from normal subjects, the authors have observed natural killing of K562 cells in a 4 h 51 Cr-release assay comparable with that shown by separated PBMC and whole blood depleted of serum components. Separated plasma was not toxic towards K562 targets, and failed to potentiate the level of PBMC cytotoxicity through ADCC. The presence of red blood cells did not influence natural killing. The natural cytotoxicity of whole blood was augmented by interferon and depressed by prostaglandins E1 and E2. Studies with appropriate control blood fractions show that cytotoxicity tests with whole blood provide results reflecting natural cell-mediated cytotoxicity. (Auth.)

  18. Suppression of autophagy exacerbates Mefloquine-mediated cell death.

    Science.gov (United States)

    Shin, Ji Hyun; Park, So Jung; Jo, Yoon Kyung; Kim, Eun Sung; Kang, Hee; Park, Ji-Ho; Lee, Eunjoo H; Cho, Dong-Hyung

    2012-05-02

    Mefloquine is an effective treatment drug for malaria. However, it can cause several adverse side effects, and the precise mechanism associated with the adverse neurological effects of Mefloquine is not clearly understood. In this study, we investigated the effect of Mefloquine on autophagy in neuroblastoma cells. Mefloquine treatment highly induced the formation of autophagosomes and the conversion of LC3I into LC3II. Moreover, Mefloquine-induced autophagy was efficiently suppressed by an autophagy inhibitor and by down regulation of ATG6. The autophagy was also completely blocked in ATG5 deficient mouse embryonic fibroblast cells. Moreover, suppression of autophagy significantly intensified Mefloquine-mediated cytotoxicity in SH-SY5Y cells. Our findings suggest that suppression of autophagy may exacerbate Mefloquine toxicity in neuroblastoma cells. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  19. Inhibition of sulfur mustard-induced cytotoxicity and inflammation by the macrolide antibiotic roxithromycin in human respiratory epithelial cells

    Directory of Open Access Journals (Sweden)

    Barker Peter E

    2007-05-01

    Full Text Available Abstract Background Sulfur mustard (SM is a potent chemical vesicant warfare agent that remains a significant military and civilian threat. Inhalation of SM gas causes airway inflammation and injury. In recent years, there has been increasing evidence of the effectiveness of macrolide antibiotics in treating chronic airway inflammatory diseases. In this study, the anti-cytotoxic and anti-inflammatory effects of a representative macrolide antibiotic, roxithromycin, were tested in vitro using SM-exposed normal human small airway epithelial (SAE cells and bronchial/tracheal epithelial (BTE cells. Cell viability, expression of proinflammatory cytokines including interleukin (IL-1β, IL-6, IL-8 and tumor necrosis factor (TNF, and expression of inducible nitric oxide synthase (iNOS were examined, since these proinflammatory cytokines/mediators are import indicators of tissue inflammatory responses. We suggest that the influence of roxithromycin on SM-induced inflammatory reaction could play an important therapeutic role in the cytotoxicity exerted by this toxicant. Results MTS assay and Calcein AM/ethidium homodimer (EthD-1 fluorescence staining showed that roxithromycin decreased SM cytotoxicity in both SAE and BTE cells. Also, roxithromycin inhibited the SM-stimulated overproduction of the proinflammatory cytokines IL-1β, IL-6, IL-8 and TNF at both the protein level and the mRNA level, as measured by either enzyme-linked immunosorbent assay (ELISA or real-time RT-PCR. In addition, roxithromycin inhibited the SM-induced overexpression of iNOS, as revealed by immunocytochemical analysis using quantum dots as the fluorophore. Conclusion The present study demonstrates that roxithromycin has inhibitory effects on the cytotoxicity and inflammation provoked by SM in human respiratory epithelial cells. The decreased cytotoxicity in roxithromycin-treated cells likely depends on the ability of the macrolide to down-regulate the production of proinflammatory

  20. Inhibition of sulfur mustard-induced cytotoxicity and inflammation by the macrolide antibiotic roxithromycin in human respiratory epithelial cells

    Science.gov (United States)

    Gao, Xiugong; Ray, Radharaman; Xiao, Yan; Barker, Peter E; Ray, Prabhati

    2007-01-01

    Background Sulfur mustard (SM) is a potent chemical vesicant warfare agent that remains a significant military and civilian threat. Inhalation of SM gas causes airway inflammation and injury. In recent years, there has been increasing evidence of the effectiveness of macrolide antibiotics in treating chronic airway inflammatory diseases. In this study, the anti-cytotoxic and anti-inflammatory effects of a representative macrolide antibiotic, roxithromycin, were tested in vitro using SM-exposed normal human small airway epithelial (SAE) cells and bronchial/tracheal epithelial (BTE) cells. Cell viability, expression of proinflammatory cytokines including interleukin (IL)-1β, IL-6, IL-8 and tumor necrosis factor (TNF), and expression of inducible nitric oxide synthase (iNOS) were examined, since these proinflammatory cytokines/mediators are import indicators of tissue inflammatory responses. We suggest that the influence of roxithromycin on SM-induced inflammatory reaction could play an important therapeutic role in the cytotoxicity exerted by this toxicant. Results MTS assay and Calcein AM/ethidium homodimer (EthD-1) fluorescence staining showed that roxithromycin decreased SM cytotoxicity in both SAE and BTE cells. Also, roxithromycin inhibited the SM-stimulated overproduction of the proinflammatory cytokines IL-1β, IL-6, IL-8 and TNF at both the protein level and the mRNA level, as measured by either enzyme-linked immunosorbent assay (ELISA) or real-time RT-PCR. In addition, roxithromycin inhibited the SM-induced overexpression of iNOS, as revealed by immunocytochemical analysis using quantum dots as the fluorophore. Conclusion The present study demonstrates that roxithromycin has inhibitory effects on the cytotoxicity and inflammation provoked by SM in human respiratory epithelial cells. The decreased cytotoxicity in roxithromycin-treated cells likely depends on the ability of the macrolide to down-regulate the production of proinflammatory cytokines and

  1. Cytotoxic Activity of Selected Iranian Traditional Medicinal Plants on Colon, Colorectal and Breast Cancer Cell Lines

    Directory of Open Access Journals (Sweden)

    Leila Mohammad Taghizadeh Kashani

    2014-11-01

    Full Text Available Background: Many natural products from plants have been recognized to exert anticancer activity. In this study, ethanolic extracts of selected medicinal herbs from Iranian flora including Alyssum homolocarpum Fisch. (from seeds, Urtica dioica L. (from aerial parts, Cichorium intybus L. (from roots and Solanum nigrum L. (from fruits, were evaluated for their cytotoxic effect on different cell lines.Methods: Cytotoxic effect of these extracts was studied on three different cancer cell lines; colon carcinoma (HT-29, colorectal adenocarcinoma (Caco-2 and breast ductal carcinoma (T47D. In addition, Swiss mouse embryo fibroblasts (NIH 3T3 were used as normal nonmalignant cells. MTT assay (3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide was utilized for calculating the cytotoxicity of extracts on cell lines.Results: Results showed the potent cytotoxic activity of U. dioica ethanolic extract against T47D cell line with IC50 value of 46.14±4.55 µg/ml. Other extracts showed poor activity with IC50>100 µg/ml.Conclusions: Cytotoxic activity recorded in the present study revealed high potential antiproliferative activity of U. dioica ethanolic extract against T47D cell line. The real IC50 values of this extract may be considerably lower than the IC50 measured in our study if its pharmacological active compounds become pure. The results emphasize the importance of studies on U. dioica ethanolic extract to characterize potential components as cytotoxic natural medicines.

  2. Rhinovirus infection induces cytotoxicity and delays wound healing in bronchial epithelial cells

    Directory of Open Access Journals (Sweden)

    Constantopoulos Andreas G

    2005-10-01

    Full Text Available Abstract Background Human rhinoviruses (RV, the most common triggers of acute asthma exacerbations, are considered not cytotoxic to the bronchial epithelium. Recent observations, however, have questioned this knowledge. The aim of this study was to evaluate the ability of RV to induce epithelial cytotoxicity and affect epithelial repair in-vitro. Methods Monolayers of BEAS-2B bronchial epithelial cells, seeded at different densities were exposed to RV serotypes 1b, 5, 7, 9, 14, 16. Cytotoxicity was assessed chromatometrically. Epithelial monolayers were mechanically wounded, exposed or not to RV and the repopulation of the damaged area was assessed by image analysis. Finally epithelial cell proliferation was assessed by quantitation of proliferating cell nuclear antigen (PCNA by flow cytometry. Results RV1b, RV5, RV7, RV14 and RV16 were able to induce considerable epithelial cytotoxicity, more pronounced in less dense cultures, in a cell-density and dose-dependent manner. RV9 was not cytotoxic. Furthermore, RV infection diminished the self-repair capacity of bronchial epithelial cells and reduced cell proliferation. Conclusion RV-induced epithelial cytotoxicity may become considerable in already compromised epithelium, such as in the case of asthma. The RV-induced impairment on epithelial proliferation and self-repair capacity may contribute to the development of airway remodeling.

  3. Evidence that 5-hydroxytryptamine/sub 3/ receptors mediate cytotoxic drug and radiation-evoked emesis

    Energy Technology Data Exchange (ETDEWEB)

    Miner, W.D.; Sanger, G.J.; Turner, D.H.

    1987-08-01

    The involvement of 5-hydroxytryptamine (5-HT) 5-HT/sub 3/ receptors in the mechanisms of severe emesis evoked by cytotoxic drugs or by total body irradiation have been studied in ferrets. Anti-emetic compounds tested were domperidone (a dopamine antagonist), metoclopramide (a gastric motility stimulant and dopamine antagonist at conventional doses, a 5-HT/sub 3/ receptor antagonist at higher doses) and BRL 24924 (a potent gastric motility stimulant and a 5-HT/sub 3/ receptor antagonist). Domperidone or metoclopramide prevented apomorphine-evoked emesis, whereas BRL 24924 did not. Similar doses of domperidone did not prevent emesis evoked by cis-platin or by total body irradiation, whereas metoclopramide or BRL 24924 greatly reduced or prevented these types of emesis. Metoclopramide and BRL 24924 also prevented emesis evoked by a combination of doxorubicin and cyclophosphamide. These results are discussed in terms of a fundamental role for 5-HT/sub 3/ receptors in the mechanisms mediating severely emetogenic cancer treatment therapies.

  4. p53-independent structure-activity relationships of 3-ring mesogenic compounds' activity as cytotoxic effects against human non-small cell lung cancer lines.

    Science.gov (United States)

    Fukushi, Saori; Yoshino, Hironori; Yoshizawa, Atsushi; Kashiwakura, Ikuo

    2016-07-25

    We recently demonstrated the cytotoxicity of liquid crystal precursors (hereafter referred to as "mesogenic compounds") in the human non-small cell lung cancer (NSCLC) cell line A549 which carry wild-type p53. p53 mutations are observed in 50 % of NSCLC and contribute to their resistance to chemotherapy. To develop more effective and cancer-specific agents, in this study, we investigated the structure-activity relationships of mesogenic compounds with cytotoxic effects against multiple NSCLC cells. The pharmacological effects of mesogenic compounds were examined in human NSCLC cells (A549, LU99, EBC-1, and H1299) and normal WI-38 human fibroblast. Analyses of the cell cycle, cell-death induction, and capsases expression were performed. The 3-ring compounds possessing terminal alkyl and hydroxyl groups (compounds C1-C5) showed cytotoxicity in NSCLC cells regardless of the p53 status. The compounds C1 and C3, which possess a pyrimidine at the center of the core, induced G2/M arrest, while the compounds without a pyrimidine (C2, C4, and C5) caused G1 arrest; all compounds produced caspase-mediated cell death. These events occurred in a p53-independent manner. Furthermore, it was suggested that compounds induced cell death through p53-independent DNA damage-signaling pathway. Compounds C2, C4, and C5 did not show strong cytotoxicity in WI-38 cells, whereas C1 and C3 did. However, the cytotoxicity of compound C1 against WI-38 cells was improved by modulating the terminal alkyl chain lengths of the compound. We showed the p53-indepdent structure-activity relationships of mesogenic compounds related to the cytotoxic effects. These structure-activity relationships will be helpful in the development of more effective and cancer-specific agents.

  5. Histone deacetylase inhibitors impair the elimination of HIV-infected cells by cytotoxic T-lymphocytes.

    Science.gov (United States)

    Jones, Richard Brad; O'Connor, Rachel; Mueller, Stefanie; Foley, Maria; Szeto, Gregory L; Karel, Dan; Lichterfeld, Mathias; Kovacs, Colin; Ostrowski, Mario A; Trocha, Alicja; Irvine, Darrell J; Walker, Bruce D

    2014-08-01

    Resting memory CD4+ T-cells harboring latent HIV proviruses represent a critical barrier to viral eradication. Histone deacetylase inhibitors (HDACis), such as suberanilohydroxamic acid (SAHA), romidepsin, and panobinostat have been shown to induce HIV expression in these resting cells. Recently, it has been demonstrated that the low levels of viral gene expression induced by a candidate HDACi may be insufficient to cause the death of infected cells by viral cytopathic effects, necessitating their elimination by immune effectors, such as cytotoxic T-lymphocytes (CTL). Here, we study the impact of three HDACis in clinical development on T-cell effector functions. We report two modes of HDACi-induced functional impairment: i) the rapid suppression of cytokine production from viable T-cells induced by all three HDACis ii) the selective death of activated T-cells occurring at later time-points following transient exposures to romidepsin or, to a lesser extent, panobinostat. As a net result of these factors, HDACis impaired CTL-mediated IFN-γ production, as well as the elimination of HIV-infected or peptide-pulsed target cells, both in liquid culture and in collagen matrices. Romidepsin exerted greater inhibition of antiviral function than SAHA or panobinostat over the dose ranges tested. These data suggest that treatment with HDACis to mobilize the latent reservoir could have unintended negative impacts on the effector functions of CTL. This could influence the effectiveness of HDACi-based eradication strategies, by impairing elimination of infected cells, and is a critical consideration for trials where therapeutic interruptions are being contemplated, given the importance of CTL in containing rebound viremia.

  6. Histone deacetylase inhibitors impair the elimination of HIV-infected cells by cytotoxic T-lymphocytes.

    Directory of Open Access Journals (Sweden)

    Richard Brad Jones

    2014-08-01

    Full Text Available Resting memory CD4+ T-cells harboring latent HIV proviruses represent a critical barrier to viral eradication. Histone deacetylase inhibitors (HDACis, such as suberanilohydroxamic acid (SAHA, romidepsin, and panobinostat have been shown to induce HIV expression in these resting cells. Recently, it has been demonstrated that the low levels of viral gene expression induced by a candidate HDACi may be insufficient to cause the death of infected cells by viral cytopathic effects, necessitating their elimination by immune effectors, such as cytotoxic T-lymphocytes (CTL. Here, we study the impact of three HDACis in clinical development on T-cell effector functions. We report two modes of HDACi-induced functional impairment: i the rapid suppression of cytokine production from viable T-cells induced by all three HDACis ii the selective death of activated T-cells occurring at later time-points following transient exposures to romidepsin or, to a lesser extent, panobinostat. As a net result of these factors, HDACis impaired CTL-mediated IFN-γ production, as well as the elimination of HIV-infected or peptide-pulsed target cells, both in liquid culture and in collagen matrices. Romidepsin exerted greater inhibition of antiviral function than SAHA or panobinostat over the dose ranges tested. These data suggest that treatment with HDACis to mobilize the latent reservoir could have unintended negative impacts on the effector functions of CTL. This could influence the effectiveness of HDACi-based eradication strategies, by impairing elimination of infected cells, and is a critical consideration for trials where therapeutic interruptions are being contemplated, given the importance of CTL in containing rebound viremia.

  7. Targeting Multiple Tumors Using T-Cells Engineered to Express a Natural Cytotoxicity Receptor 2-Based Chimeric Receptor

    Directory of Open Access Journals (Sweden)

    Vasyl Eisenberg

    2017-09-01

    Full Text Available Recent developments in cancer treatment are demonstrating the increasing and powerful potential of immunotherapeutic strategies. In this regard, the adoptive transfer of tumor-specific T-lymphocytes approaches can lead to tumor regression in cancer patients. More recently, the use of T-cells genetically engineered to express cancer-specific receptors such as the anti-CD19 chimeric antigen receptor (CAR continues to show promise for the treatment of hematological malignancies. Still, there is a crucial need to develop efficient CAR-T cell approaches for the treatment of solid tumors. It has been shown that other lymphocytes such as natural killer (NK cells can demonstrate potent antitumor function—nonetheless, their use in immunotherapy is rather limited due to difficulties in expanding these cells to therapeutically relevant numbers and to suppression by endogenous inhibitory mechanisms. Cancer recognition by NK cells is partly mediated by molecules termed natural cytotoxicity receptors (NCRs. In the present study, we hypothesize that it is possible to endow T-cells with an NK recognition pattern, providing them with a mean to recognize tumor cells, in a non-MHC restricted way. To test this, we genetically modified human T-cells with different chimeric receptors based on the human NCR2 molecule and then assessed their antitumor activity in vitro and in vivo. Our results show that expression in primary lymphocytes of an NCR2-derived CAR, termed s4428z, confers T-cells with the ability to specifically recognize heterogeneous tumors and to mediate tumor cytotoxicity in a mouse model. This study demonstrates the benefit of combining tumor recognition capability of NK cells with T cell effectiveness to improve cancer immunotherapy.

  8. Cytotoxicity of arctigenin and matairesinol against the T-cell lymphoma cell line CCRF-CEM.

    Science.gov (United States)

    Su, Shan; Cheng, Xinlai; Wink, Michael

    2015-09-01

    Arctigenin and matairesinol possess a diversity of bioactivities. Here we investigated the cytotoxicity of arctigenin and matairesinol against a T-cell lymphoma cell line CCRF-CEM and the underlying mechanisms that have not been explored before. The cytotoxic activity was investigated using MTT assay. The cell cycle arrest and reactive oxygen species (ROS) accumulation were determined by flow cytometric analysis. The apoptosis induction was assessed using Annexin V/Propidium Iodide assay. The gene quantification analysis was measured through real-time polymerase chain reaction. Arctigenin and matairesinol exhibited significant antiproliferative activity against CCRF-CEM cells after 72 h treatment with IC50 values of 1.21 ± 0.15 μm and 4.27 ± 0.41 μm, respectively. In addition, both lignans arrest CCRF-CEM cells in the S phase. Furthermore, they could induce apoptosis in CCRF-CEM cells in a concentration- and time-dependent manner. Interestingly, the lignans differentially regulated the expression of several key genes involved in apoptosis pathways, including Bax, Bad and caspase-9. Moreover, both lignans could increase ROS levels in CCRF-CEM cells. Our study provides an insight into the potential of arctigenin and matairesinol as good candidates for the development of novel agents against T-cell lymphoma. © 2015 Royal Pharmaceutical Society.

  9. High folic acid intake reduces natural killer cell cytotoxicity in aged mice.

    Science.gov (United States)

    Sawaengsri, Hathairat; Wang, Junpeng; Reginaldo, Christina; Steluti, Josiane; Wu, Dayong; Meydani, Simin Nikbin; Selhub, Jacob; Paul, Ligi

    2016-04-01

    Presence of unmetabolized folic acid in plasma, which is indicative of folic acid intake beyond the metabolic capacity of the body, is associated with reduced natural killer (NK) cell cytotoxicity in postmenopausal women ≥50years. NK cells are cytotoxic lymphocytes that are part of the innate immune system critical for surveillance and defense against virus-infected and cancer cells. We determined if a high folic acid diet can result in reduced NK cell cytotoxicity in an aged mouse model. Female C57BL/6 mice (16-month-old) were fed an AIN-93M diet with the recommended daily allowance (1× RDA, control) or 20× RDA (high) folic acid for 3months. NK cytotoxicity was lower in splenocytes from mice fed a high folic acid diet when compared to mice on control diet (Pcytotoxicity in high folic acid fed mice could be due to their lower mature cytotoxic/naïve NK cell ratio (P=.03) when compared to the control mice. Splenocytes from mice on high folic acid diet produced less interleukin (IL)-10 when stimulated with lipopolysaccharide (Pcytotoxicity between dietary groups was abolished when the splenocytes were supplemented with exogenous IL-10 prior to assessment of the NK cytotoxicity, suggesting that the reduced NK cell cytotoxicity of the high folic acid group was at least partially due to reduced IL-10 production. This study demonstrates a causal relationship between high folic acid intake and reduced NK cell cytotoxicity and provides some insights into the potential mechanisms behind this relationship. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Effect of radiotherapy on lymphocyte cytotoxicity against allogeneic lung cancer cells in patients with bronchogenic carcinoma

    International Nuclear Information System (INIS)

    Toyohira, Ken; Yasumoto, Kosei; Manabe, Hideo; Ohta, Mitsuo; Terashima, Hiromi

    1979-01-01

    Cytotoxicity of peripheral blood lymphocytes against allogeneic target cells of bronchogenic carcinoma was examined by a microcytotoxicity test before, during, and after radiotherapy in primary lung cancer patients. Before the treatment, cytotoxicity was depressed only slightly in patients in stage III and strikingly in those in stage IV, as compared to the values in patients at earlier stages of lung cancer such as stages I and II. Local irradiation scarcely affected cytotoxicity at stages II and III, but augmented remarkably at stage IV. The number of peripheral blood lymphocytes decreased profoundly during and after radiotherapy in all cases of stages II, III, and IV. Although radiotherapy exhibited various effects on the cytotoxic activity of lymphocytes and the number of peripheral blood lymphocytes, only the cytotoxic activity at the end of radiotherapy correlated well with the reduction in tumor size. (author)

  11. Comparative mammalian cell cytotoxicity of wastewater with elevated bromide and iodide after chlorination, chloramination, or ozonation.

    Science.gov (United States)

    Dong, Shengkun; Nguyen, Thanh H; Plewa, Michael J

    2017-08-01

    Recycling wastewater is becoming more common as communities around the world try to better control their water resources against an increased frequency of either prolonged droughts or intense flooding. For communities in coastal areas, wastewaters may contain elevated levels of bromide (Br - ) and iodide (I - ) from seawater intrusion or high mineral content of source waters. Disinfection of such wastewater is mandatory to prevent the spread of pathogens, however little is known about the toxicity of wastewater after disinfection in the presence of Br - and I - . In this study we compared the induction of chronic cytotoxicity in mammalian cells in samples of municipal secondary wastewater effluent amended with elevated levels of Br - /I - after disinfection by chlorine, chloramines or ozone to identify which disinfection process generated wastewater with the lowest level of adverse biological response. Chlorination increased mammalian cell cytotoxicity by 5 times as compared to non-disinfected controls. Chloramination produced disinfected wastewater that expressed 6.3 times more cytotoxicity than the non-disinfected controls and was 1.3 times more cytotoxic than the chlorinated samples. Ozonation produced wastewater with cytotoxicity comparable to the non-disinfected controls and was at least 4 times less cytotoxic than the chlorine disinfected wastewaters. These results indicate that compared to chlorination and chloramination, ozonation of wastewater with high Br - /I - levels yielded the lowest mammalian cell cytotoxicity, suggesting its potential as a more favorable method to disinfect wastewater with minimizing the biological toxicity in mind. Copyright © 2017. Published by Elsevier B.V.

  12. In vitro cytotoxicity of silver nanoparticles and zinc oxide nanoparticles to human epithelial colorectal adenocarcinoma (Caco-2) cells

    International Nuclear Information System (INIS)

    Song, Yijuan; Guan, Rongfa; Lyu, Fei; Kang, Tianshu; Wu, Yihang; Chen, Xiaoqiang

    2014-01-01

    Highlights: • The characterization of Ag NPs and ZnO NPs. • The various morphologies of Caco-2 cells stained with AO/EB. • The viability of Caco-2 cells after Ag NPs and ZnO NPs exposure. • The cytotoxicity of Ag NPs and ZnO NPs on Caco-2 cells by oxidative stress assays. - Abstract: With the increasing applications of silver nanoparticles (Ag NPs) and zinc oxide nanoparticles (ZnO NPs) in foods and cosmetics, the concerns about the potential toxicities to human have been raised. The aims of this study are to observe the cytotoxicity of Ag NPs and ZnO NPs to human epithelial colorectal adenocarcinoma (Caco-2) cells in vitro, and to discover the toxicity mechanism of nanoparticles on Caco-2 cells. Caco-2 cells were exposed to 10, 25, 50, 100, 200 μg/mL of Ag NPs and ZnO NPs (90 nm). AO/EB double staining was used to characterize the morphology of the treated cells. The cell counting kit-8 (CCK-8) assay was used to detect the proliferation of the cells. Reactive oxygen species (ROS), superoxide dismutase (SOD) and glutathione (GSH) assay were used to explore the oxidative damage of Caco-2 cells. The results showed that Ag NPs and ZnO NPs (0–200 μg/mL) had highly significant effect on the Caco-2 cells activity. ZnO NPs exerted higher cytotoxicity than Ag NPs in the same concentration range. ZnO NPs have dose-depended toxicity. The LD 50 of ZnO NPs in Caco-2 cells is 0.431 mg/L. Significant depletion of SOD level, variation in GSH level and release of ROS in cells treated by ZnO NPs were observed, which suggests that cytotoxicity of ZnO NPs in intestine cells might be mediated through cellular oxidative stress. While Caco-2 cells treated with Ag NPs at all experimental concentrations showed no cellular oxidative damage. Moreover, the cells’ antioxidant capacity increased, and reached the highest level when the concentration of Ag NPs was 50 μg/mL. Therefore, it can be concluded that Ag NPs are safer antibacterial material in food packaging materials than

  13. In vitro cytotoxicity of silver nanoparticles and zinc oxide nanoparticles to human epithelial colorectal adenocarcinoma (Caco-2) cells

    Energy Technology Data Exchange (ETDEWEB)

    Song, Yijuan [Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, China Jiliang University, Hangzhou 310018 (China); Guan, Rongfa, E-mail: rongfaguan@163.com [Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, China Jiliang University, Hangzhou 310018 (China); Lyu, Fei [Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014 (China); Kang, Tianshu; Wu, Yihang [Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, China Jiliang University, Hangzhou 310018 (China); Chen, Xiaoqiang [Hubei University of Technology, Wuhan 430068 (China)

    2014-11-15

    Highlights: • The characterization of Ag NPs and ZnO NPs. • The various morphologies of Caco-2 cells stained with AO/EB. • The viability of Caco-2 cells after Ag NPs and ZnO NPs exposure. • The cytotoxicity of Ag NPs and ZnO NPs on Caco-2 cells by oxidative stress assays. - Abstract: With the increasing applications of silver nanoparticles (Ag NPs) and zinc oxide nanoparticles (ZnO NPs) in foods and cosmetics, the concerns about the potential toxicities to human have been raised. The aims of this study are to observe the cytotoxicity of Ag NPs and ZnO NPs to human epithelial colorectal adenocarcinoma (Caco-2) cells in vitro, and to discover the toxicity mechanism of nanoparticles on Caco-2 cells. Caco-2 cells were exposed to 10, 25, 50, 100, 200 μg/mL of Ag NPs and ZnO NPs (90 nm). AO/EB double staining was used to characterize the morphology of the treated cells. The cell counting kit-8 (CCK-8) assay was used to detect the proliferation of the cells. Reactive oxygen species (ROS), superoxide dismutase (SOD) and glutathione (GSH) assay were used to explore the oxidative damage of Caco-2 cells. The results showed that Ag NPs and ZnO NPs (0–200 μg/mL) had highly significant effect on the Caco-2 cells activity. ZnO NPs exerted higher cytotoxicity than Ag NPs in the same concentration range. ZnO NPs have dose-depended toxicity. The LD{sub 50} of ZnO NPs in Caco-2 cells is 0.431 mg/L. Significant depletion of SOD level, variation in GSH level and release of ROS in cells treated by ZnO NPs were observed, which suggests that cytotoxicity of ZnO NPs in intestine cells might be mediated through cellular oxidative stress. While Caco-2 cells treated with Ag NPs at all experimental concentrations showed no cellular oxidative damage. Moreover, the cells’ antioxidant capacity increased, and reached the highest level when the concentration of Ag NPs was 50 μg/mL. Therefore, it can be concluded that Ag NPs are safer antibacterial material in food packaging materials

  14. Cytotoxicity of methanol extracts of 10 Cameroonian medicinal plants towards multi-factorial drug-resistant cancer cell lines.

    Science.gov (United States)

    Kuete, Victor; Tchinda, Cedric F; Mambe, Flora T; Beng, Veronique P; Efferth, Thomas

    2016-08-02

    Cancer chemotherapy is still hampered by clinical failures due to multi-drug resistance (MDR) of tumor cells. In the present study, we have investigated the cytotoxicity of 20 methanol extracts from 10 medicinal plants against the sensitive leukemia CCRF-CEM cells. The most cytotoxic extracts were then further tested on a panel of 8 human cancer cell lines, including various MDR phenotypes. The cytotoxicity of the 20 methanol extracts from 10 Cameroonian medicinal plants was determined using a resazurin reduction assay. Meanwhile, flow cytometry was used to measure cell cycle, apoptosis, mitochondrial membrane potential (MMP), and reactive oxygen species (ROS). In the preliminary assay using CCRF-CEM cells, 12 extracts from five plants displayed IC50 values below 80 μg/mL, namely Albizia adianthifolia, Alchornea cordifolia, Alchornea laxiflora, Pennisetum purpureum, and Spathodea campanulata. the four best extracts were from two plants: Albizia adianthifolia roots (AAR) and bark (AAB) as well as Alchornea cordifolia leaves (ACL) and bark (ACB) had respective IC50 values of 0.98 μg/mL, 1.45 μg/mL, 8.02 μg/mL and 12.57 μg/mL in CCRF-CEM cells. They were further tested in 8 other cell lines as well as in normal AML12 hepatocytes. IC50 values ranging from 2.71 μg/mL (towards glioblastoma U87MG.ΔEGFR cells) to 10.30 μg/mL (towards breast adenocarcinoma MDA-MB-231-BCRP cells) for AAB, from 3.43 μg/mL (towards U87MG cells) to 10.77 μg/mL (towards colon carcinoma HCT116 (p53 (-/-) ) cells) for AAR and from 0.11 μg/mL (towards CCRF-CEM cells) to 108 μg/mL (towards leukemia CEM/ADR5000 cells) for doxorubicin (as control drug) were obtained. ACL and ACB extracts displayed selective activities. AAR and ACL extracts induced apoptosis in CCRF-CEM cells, through caspases activation and loss of MMP, while apoptotic cell death was mediated by MMP diruption and increase ROS production for ACL. Some of the tested plants namely Albizia adianthifolia, Alchornea

  15. Metabolic-induced cytotoxicity of diosbulbin B in CYP3A4-expressing cells.

    Science.gov (United States)

    Jiang, Ji-Zong; Yang, Bao-Hua; Ji, Li-Li; Yang, Li; Mao, Yu-Chang; Hu, Zhuo-Han; Wang, Zheng-Tao; Wang, Chang-Hong

    2017-02-01

    As a candidate antitumor agent, diosbulbin B (DB) can induce serious liver toxicity and other adverse reactions. DB is mainly metabolized by CYP3A4 in vitro and in vivo, but the cytotoxicity and anti-tumor mechanisms of DB have yet to be clarified. This study aimed to determine whether the cytotoxicity and anti-tumor effects of DB are related to the metabolism-induced activation of CYP3A4 in various cell models, including CYP-free NIH3T3 cells, primary rat hepatocytes, HepG2 and L02 cells of high CYP3A4 expression and wild-type. Results showed that DB did not markedly decrease the viability of NIH3T3 cells. DB metabolites, obtained from the metabolism by mouse liver microsomes, did not elicit cytotoxicity on NIH3T3 cells either. By contrast, DB could induce significant cytotoxicity on primary rat hepatocytes. The DB induced cytotoxicity on HepG2 or L02 cells with high CYP3A4 expression were stronger than those on wild-type cells. As a metabolic biomarker, the metabolite conjugate (M31) of DB with GSH was detected in the incubation system. A higher amount of M31 was generated in the transfected HepG2 and L02 cells than in the wild-type cells at different time points. Ketoconazole, however, could restrain DB induced cytotoxicity on primary rat hepatocytes and in CYP3A4 transfected HepG2 and L02 cells. Therefore, the cytotoxicity of DB was closely related to CYP3A4-metabolized reactive DB metabolites. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. A Novel Method for Assessment of Natural Killer Cell Cytotoxicity Using Image Cytometry.

    Science.gov (United States)

    Somanchi, Srinivas S; McCulley, Kelsey J; Somanchi, Anitha; Chan, Leo L; Lee, Dean A

    2015-01-01

    Natural killer (NK) cells belong to the innate arm of the immune system and though activated NK cells can modulate immune responses through the secretion of cytokines, their primary effector function is through target cell lysis. Accordingly, cytotoxicity assays are central to studying NK cell function. The 51Chromium release assay, is the "gold standard" for cytotoxicity assay, however, due to concerns over toxicity associated with the use and disposal of radioactive compounds there is a significant interest in non-radioactive methods. We have previously used the calcein release assay as a non-radioactive alternative for studying NK cell cytotoxicity. In this study, we show that the calcein release assay varies in its dynamic range for different tumor targets, and that the entrapped calcein could remain unreleased within apoptotic bodies of lysed tumor targets or incompletely released resulting in underestimation of percent specific lysis. To overcome these limitations, we developed a novel cytotoxicity assay using the Cellometer Vision Image Cytometer and compared this method to standard calcein release assay for measuring NK cell cytotoxicity. Using tumor lines K562, 721.221, and Jurkat, we demonstrate here that image cytometry shows significantly higher percent specific lysis of the target cells compared to the standard calcein release assay within the same experimental setup. Image cytometry is able to accurately analyze live target cells by excluding dimmer cells and smaller apoptotic bodies from viable target cell counts. The image cytometry-based cytotoxicity assay is a simple, direct and sensitive method and is an appealing option for routine cytotoxicity assay.

  17. Role of the sodium-dependent phosphate co-transporters and of the phosphate complexes of uranyl in the cytotoxicity of uranium in LLC-PK1 cells

    International Nuclear Information System (INIS)

    Muller, D.; Houpert, P.; Cambar, J.; Henge-Napoli, M-H.

    2006-01-01

    Although uranium is a well-characterized nephrotoxic agent, very little is known at the cellular and molecular level about the mechanisms underlying the uptake and toxicity of this element in proximal tubule cells. The aim of this study was thus to characterize the species of uranium that are responsible for its cytotoxicity and define the mechanism which is involved in the uptake of the cytotoxic fraction of uranium using two cell lines derived from kidney proximal (LLC-PK 1 ) and distal (MDCK) tubule as in vitro models. Treatment of LLC-PK 1 cells with colchicine, cytochalasin D, concanavalin A and PMA increased the sodium-dependent phosphate co-transport and the cytotoxicity of uranium. On the contrary, replacement of the extra-cellular sodium with N-methyl-D-glucamine highly reduced the transport of phosphate and the cytotoxic effect of uranium. Uranium cytotoxicity was also dependent upon the extra-cellular concentration of phosphate and decreased in a concentration-dependent manner by 0.1-10 mM phosphonoformic acid, a competitive inhibitor of phosphate uptake. Consistent with these observations, over-expression of the rat proximal tubule sodium-dependent phosphate co-transporter NaPi-IIa in stably transfected MDCK cells significantly increased the cytotoxicity of uranium, and computer modeling of uranium speciation showed that uranium cytotoxicity was directly dependent on the presence of the phosphate complexes of uranyl UO 2 (PO 4 ) - and UO 2 (HPO 4 ) aq . Taken together, these data suggest that the cytotoxic fraction of uranium is a phosphate complex of uranyl whose uptake is mediated by a sodium-dependent phosphate co-transporter system

  18. Cellular Adjuvant Properties, Direct Cytotoxicity of Re-differentiated Vα24 Invariant NKT-like Cells from Human Induced Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Shuichi Kitayama

    2016-02-01

    Full Text Available Vα24 invariant natural killer T (iNKT cells are a subset of T lymphocytes implicated in the regulation of broad immune responses. They recognize lipid antigens presented by CD1d on antigen-presenting cells and induce both innate and adaptive immune responses, which enhance effective immunity against cancer. Conversely, reduced iNKT cell numbers and function have been observed in many patients with cancer. To recover these numbers, we reprogrammed human iNKT cells to pluripotency and then re-differentiated them into regenerated iNKT cells in vitro through an IL-7/IL-15-based optimized cytokine combination. The re-differentiated iNKT cells showed proliferation and IFN-γ production in response to α-galactosylceramide, induced dendritic cell maturation and downstream activation of both cytotoxic T lymphocytes and NK cells, and exhibited NKG2D- and DNAM-1-mediated NK cell-like cytotoxicity against cancer cell lines. The immunological features of re-differentiated iNKT cells and their unlimited availability from induced pluripotent stem cells offer a potentially effective immunotherapy against cancer.

  19. Extracellular acidic pH modulates oxygen-dependent cytotoxic responses mediated by polymorphonuclear leucocytes and monocytes.

    Science.gov (United States)

    Geffner, J R; Trevani, A S; Minnucci, F; Palermo, M S; Maugeri, N; Isturiz, M A

    1993-01-01

    In the present study, we compared the ability of human neutrophils and monocytes to display oxygen-dependent cytotoxic responses at pH 7.4 and 6.2. Our results show that cytotoxicity induced by immune complexes (IC), zymosan, N-formyl-methionyl-leucyl-phenylalanine (FMLP) and concanavalin A (Con A) were markedly increased when they were carried out at pH 6.2 instead of pH 7.4. Cytotoxicity induced by phorbol myristate acetate (PMA), on the contrary, was significantly decreased at pH 6.2. It is noteworthy that cytotoxic responses induced by IC, zymosan and Con A were also increased when, 2 h after effector cell stimulation at pH 6.2, cytotoxicity was measured at pH 7.4. Finally, when we examined possible mechanisms involved in the augmentation of cytotoxicity, we observed that the oxidative response of IC-stimulated neutrophils, measured as chemiluminescence emission, was not increased at pH 6.2, on the contrary, it was significantly decreased. The relevance of these results is discussed. PMID:8419078

  20. Antigen entrapped in the escheriosomes leads to the generation of CD4(+) helper and CD8(+) cytotoxic T cell response.

    Science.gov (United States)

    Syed, Faisal M; Khan, Masood A; Nasti, Tahseen H; Ahmad, Nadeem; Mohammad, Owais

    2003-06-02

    In previous study, we demonstrated the potential of Escherichia coli (E. coli) lipid liposomes (escheriosomes) to undergo membrane-membrane fusion with cytoplasmic membrane of the target cells including professional antigen presenting cells. Our present study demonstrates that antigen encapsulated in escheriosomes could be successfully delivered simultaneously to the cytosolic as well as endosomal processing pathways of antigen presenting cells, leading to the generation of both CD4(+) T-helper and CD8(+) cytotoxic T cell response. In contrast, encapsulation of same antigen in egg phosphatidyl-choline (egg PC) liposomes, just like antigen-incomplete Freund's adjuvant (IFA) complex, has inefficient access to the cytosolic pathway of MHC I-dependent antigen presentation and failed to generate antigen-specific CD8(+) cytotoxic T cell response. However, both egg PC liposomes as well as escheriosomes-encapsulated antigen elicited strong humoral immune response in immunized animals but antibody titre was significantly higher in the group of animals immunized with escheriosomes-encapsulated antigen. These results imply usage of liposome-based adjuvant as potential candidate vaccine capable of eliciting both cell-mediated as well as humoral immune responses. Furthermore, antigen entrapped in escheriosomes stimulates antigen-specific CD4(+) T cell proliferation and also enhances the level of IL-2, IFN-gamma and IL-4 in the immunized animals.

  1. Comparative Mammalian Cell Cytotoxicity of Wastewaters for Agricultural Reuse after Ozonation.

    Science.gov (United States)

    Dong, Shengkun; Lu, Jinfeng; Plewa, Michael J; Nguyen, Thanh H

    2016-11-01

    Reusing wastewater in agriculture is becoming increasingly common, which necessitates disinfection to ensure reuse safety. However, disinfectants can react with wastewater constituents to form disinfection byproducts (DBPs), many of which are toxic and restrict the goal of safe reuse. Our objective was to benchmark the induction of mammalian cell cytotoxicity after ozonation against chlorination for three types of real wastewaters: municipal secondary effluent and two sources of minimally treated swine farm wastewaters. A new method to evaluate samples of suspected high cytotoxicity was devised. For the secondary effluent, ozonation reduced the cytotoxicity by as much as 10 times; chlorination lowered the cytotoxicity only when followed by dechlorination. The swine farm wastewaters were up to 2000 times more cytotoxic than the secondary effluent, and the highest reduction in cytotoxicity was 17 times as achieved by ozonation. These results indicate that secondary effluent is preferred over swine wastewaters for agricultural reuse regardless of the tested disinfectants. Ozonation consistently reduced the cytotoxicity of both the full strength and the organic extracts of all tested wastewaters more than chlorination. The only significant correlation was observed in the secondary wastewater between total haloacetonitriles and cytotoxicity. While the association of reduced toxicity with the modification or reduction of specific compound(s) is unclear, regulated DBPs may not be the primary forcing agents.

  2. Differential Cytotoxic Potential of Silver Nanoparticles in Human Ovarian Cancer Cells and Ovarian Cancer Stem Cells

    Directory of Open Access Journals (Sweden)

    Yun-Jung Choi

    2016-12-01

    Full Text Available The cancer stem cell (CSC hypothesis postulates that cancer cells are composed of hierarchically-organized subpopulations of cells with distinct phenotypes and tumorigenic capacities. As a result, CSCs have been suggested as a source of disease recurrence. Recently, silver nanoparticles (AgNPs have been used as antimicrobial, disinfectant, and antitumor agents. However, there is no study reporting the effects of AgNPs on ovarian cancer stem cells (OvCSCs. In this study, we investigated the cytotoxic effects of AgNPs and their mechanism of causing cell death in A2780 (human ovarian cancer cells and OvCSCs derived from A2780. In order to examine these effects, OvCSCs were isolated and characterized using positive CSC markers including aldehyde dehydrogenase (ALDH and CD133 by fluorescence-activated cell sorting (FACS. The anticancer properties of the AgNPs were evaluated by assessing cell viability, leakage of lactate dehydrogenase (LDH, reactive oxygen species (ROS, and mitochondrial membrane potential (mt-MP. The inhibitory effect of AgNPs on the growth of ovarian cancer cells and OvCSCs was evaluated using a clonogenic assay. Following 1–2 weeks of incubation with the AgNPs, the numbers of A2780 (bulk cells and ALDH+/CD133+ colonies were significantly reduced. The expression of apoptotic and anti-apoptotic genes was measured by real-time quantitative reverse transcriptase polymerase chain reaction (qRT-PCR. Our observations showed that treatment with AgNPs resulted in severe cytotoxicity in both ovarian cancer cells and OvCSCs. In particular, AgNPs showed significant cytotoxic potential in ALDH+/CD133+ subpopulations of cells compared with other subpopulation of cells and also human ovarian cancer cells (bulk cells. These findings suggest that AgNPs can be utilized in the development of novel nanotherapeutic molecules for the treatment of ovarian cancers by specific targeting of the ALDH+/CD133+ subpopulation of cells.

  3. Natural mineral particles are cytotoxic to rainbow trout gill epithelial cells in vitro.

    Directory of Open Access Journals (Sweden)

    Christian Michel

    Full Text Available Worldwide increases in fluvial fine sediment are a threat to aquatic animal health. Fluvial fine sediment is always a mixture of particles whose mineralogical composition differs depending on the sediment source and catchment area geology. Nonetheless, whether particle impact in aquatic organisms differs between mineral species remains to be investigated. This study applied an in vitro approach to evaluate cytotoxicity and uptake of four common fluvial mineral particles (quartz, feldspar, mica, and kaolin; concentrations: 10, 50, 250 mg L(-1 in the rainbow trout epithelial gill cell line RTgill-W1. Cells were exposed for 24, 48, 72, and 96 h. Cytotoxicity assays for cell membrane integrity (propidium iodide assay, oxidative stress (H2DCF-DA assay, and metabolic activity (MTT assay were applied. These assays were complemented with cell counts and transmission electron microscopy. Regardless of mineral species, particles ≤ 2 µm in diameter were taken up by the cells, suggesting that particles of all mineral species came into contact and interacted with the cells. Not all particles, however, caused strong cytotoxicity: Among all assays the tectosilicates quartz and feldspar caused sporadic maximum changes of 0.8-1.2-fold compared to controls. In contrast, cytotoxicity of the clay particles was distinctly stronger and even differed between the two particle types: mica induced concentration-dependent increases in free radicals, with consistent 1.6-1.8-fold-changes at the 250 mg L(-1 concentration, and a dilated endoplasmic reticulum. Kaolin caused concentration-dependent increases in cell membrane damage, with consistent 1.3-1.6-fold increases at the 250 mg L(-1 concentration. All effects occurred in the presence or absence of 10% fetal bovine serum. Cell numbers per se were marginally affected. Results indicate that (i. natural mineral particles can be cytotoxic to gill epithelial cells, (ii. their cytotoxic potential differs between mineral

  4. Selenium and vitamin E enriched diet increases NK cell cytotoxicity in cattle

    Directory of Open Access Journals (Sweden)

    Andréia O. Latorre

    2014-11-01

    Full Text Available A number of studies has shown that antioxidants, fatty acids and trace minerals may modulate different immune cell activities, and that their deficiency may be associated with diseases and impaired immune responses. In innate immunity, natural killer (NK cells have a central role, killing virally infected and cancerous cells, and also secreting cytokines that shape adaptive immune responses. Thus, the aim of this study was to evaluate the effect of enriched diets in selenium plus vitamin E and/or canola oil on complete blood count and on NK cell cytotoxicity from blood lymphocytes of Nellore bulls. Bulls that received selenium plus vitamin E had (P=0.0091 higher NK cell cytotoxicity than control bulls. This result positively correlated with serum selenium levels. To the best of our knowledge, this is the first study that showed immunostimulatory effects of selenium plus vitamin E on NK cell cytotoxicity of Nellore bulls.

  5. Cytotoxicity of Thymus vulgaris essential oil towards human oral cavity squamous cell carcinoma.

    Science.gov (United States)

    Sertel, Serkan; Eichhorn, Tolga; Plinkert, Peter K; Efferth, Thomas

    2011-01-01

    Oral cavity squamous cell carcinoma (OCSCC) accounts for 2% to 3% of all malignancies and has a high mortality rate. The majority of anticancer drugs are of natural origin. However, it is unknown whether the medicinal plant Thymus vulgaris L. (thyme) is cytotoxic towards head and neck squamous cell carcinoma (HNSCC). Cytotoxicity of thyme essential oil was investigated on the HNSCC cell line, UMSCC1. The IC₅₀ of thyme essential oil extract was 369 μg/ml. Moreover, we performed pharmacogenomics analyses. Genes involved in the cell cycle, cell death and cancer were involved in the cytotoxic activity of thyme essential oil at the transcriptional level. The three most significantly regulated pathways by thyme essential oil were interferon signaling, N-glycan biosynthesis and extracellular signal-regulated kinase 5 (ERK5) signaling. Thyme essential oil inhibits human HNSCC cell growth. Based on pharmacogenomic approaches, novel insights into the molecular mode of anticancer activity of thyme are presented.

  6. Nitrobenzylthioinosine (NBT), a nucleoside transport inhibitor, protects against Shiga toxin cytotoxicity in human microvascular endothelial cells.

    Science.gov (United States)

    Ohmi, K; Kiyokawa, N; Sekino, T; Suzuki, T; Mimori, K; Taguchi, T; Nakajima, H; Katagiri, Y U; Fujimoto, J; Nakao, H; Takeda, T

    2001-01-01

    Infections with Shiga toxin (Stx)-producing Escherichia coli (STEC) cause microvascular endothelial cell damage, resulting in hemorrhagic colitis and hemolytic uremic syndrome. The prevention of endothelial cell damage is therefore a crucial step in overcoming this disorder. Here, we report that nitrobenzylthioinosine (NBT), a nucleoside transport inhibitor, has a protective effect against the cytotoxicity of Stxs in human microvascular endothelial cells (HMVECs). The relative viability of cells treated with 1.5-15 pM of Stx1 was reduced to 10-20% of that without Stx1. However, the viability of cells treated with NBT (10-100 microM) remained higher than 80%, even in the presence of Stx1. NBT also protected against Stx1 cytotoxicity in sodium butyrate-treated hypersensitive HMVECs. The protective effect of NBT against Stx cytotoxicity may be due to the depletion of ATP in the cells, thereby inhibiting the entry of Stx1.

  7. Cytotoxic and apoptotic effects of chalcone derivatives of 2-acetyl thiophene on human colon adenocarcinoma cells.

    Science.gov (United States)

    de Vasconcelos, Alana; Campos, Vinicius Farias; Nedel, Fernanda; Seixas, Fabiana Kömmling; Dellagostin, Odir A; Smith, Kevin R; de Pereira, Cláudio Martin Pereira; Stefanello, Francieli Moro; Collares, Tiago; Barschak, Alethéa Gatto

    2013-06-01

    Recent studies report that chalcones exhibit cytotoxicity to human cancer cell lines. Typically, the form of cell death induced by these compounds is apoptosis. In the context of the discovery of new anticancer agents and in light of the antitumour potential of several chalcone derivatives, in the present study, we synthesized and tested the cytotoxicity of six chalcone derivatives on human colon adenocarcinoma cells. Six derivatives of 3-phenyl-1-(thiophen-2-yl) prop-2-en-1-one were prepared and characterized on the basis of their (1) H and (13) C NMR spectra. HT-29 cells were treated with synthesized chalcones on two concentrations by three different incubation times. Cells were evaluated by cell morphology, Tetrazolium dye (MTT) colorimetric assay, live/dead, flow cytometry (annexin V) and gene expression analyses to determine the cytotoxic way. Chalcones 3-(4-bromophenyl)-1-(thiophen-2-yl)prop-2-en-1-one (C06) and 3-(2-nitrophenyl)-1-(thiophen-2-yl)prop-2-en-1-one (C09) demonstrated higher cytotoxicity than other chalcones as shown by cell morphology, live/dead and MTT assays. In addition, C06 induced apoptosis on flow cytometry annexin V assay. These data were confirmed by a decreased expression of anti-apoptotic genes and increased pro-apoptotic genes. Our findings indicate in summary that the cytotoxic activity of chalcone C06 on colorectal carcinoma cells occurs by apoptosis. Copyright © 2012 John Wiley & Sons, Ltd.

  8. Role of receptor-mediated endocytosis, endosomal acidification and cathepsin D in cholera toxin cytotoxicity.

    Science.gov (United States)

    El Hage, Tatiana; Merlen, Clémence; Fabrega, Sylvie; Authier, François

    2007-05-01

    Using the in situ liver model system, we have recently shown that, after cholera toxin binding to hepatic cells, cholera toxin accumulates in a low-density endosomal compartment, and then undergoes endosomal proteolysis by the aspartic acid protease cathepsin-D [Merlen C, Fayol-Messaoudi D, Fabrega S, El Hage T, Servin A, Authier F (2005) FEBS J272, 4385-4397]. Here, we have used a subcellular fractionation approach to address the in vivo compartmentalization and cytotoxic action of cholera toxin in rat liver parenchyma. Following administration of a saturating dose of cholera toxin to rats, rapid endocytosis of both cholera toxin subunits was observed, coincident with massive internalization of both the 45 kDa and 47 kDa Gsalpha proteins. These events coincided with the endosomal recruitment of ADP-ribosylation factor proteins, especially ADP-ribosylation factor-6, with a time course identical to that of toxin and the A subunit of the stimulatory G protein (Gsalpha) translocation. After an initial lag phase of 30 min, these constituents were linked to NAD-dependent ADP-ribosylation of endogenous Gsalpha, with maximum accumulation observed at 30-60 min postinjection. Assessment of the subsequent postendosomal fate of internalized Gsalpha revealed sustained endolysosomal transfer of the two Gsalpha isoforms. Concomitantly, cholera toxin increased in vivo endosome acidification rates driven by the ATP-dependent H(+)-ATPase pump and in vitro vacuolar acidification in hepatoma HepG2 cells. The vacuolar H(+)-ATPase inhibitor bafilomycin and the cathepsin D inhibitor pepstatin A partially inhibited, both in vivo and in vitro, the cAMP response to cholera toxin. This cathepsin D-dependent action of cholera toxin under the control of endosomal acidity was confirmed using cellular systems in which modification of the expression levels of cathepsin D, either by transfection of the cathepsin D gene or small interfering RNA, was followed by parallel changes in the cytotoxic

  9. Phytochemicals and Cytotoxicity ofLaunaea procumbenson Human Cancer Cell Lines.

    Science.gov (United States)

    Rawat, Preeti; Saroj, Lokesh M; Kumar, Anil; Singh, Tryambak D; Tewari, S K; Pal, Mahesh

    2016-07-01

    The plant Launaea procumbens belongs to the family Asteraceae and traditionally used in the treatment rheumatism, kidney, liver dysfunctions and eye diseases. In the present study Phytochemical analysis and fractions of methanolic extract of L. procumbens leaves were tested in vitro for their cytotoxicity. Phytochemical analysis and cytotoxic activity of methanolic extract and fractions of Launaea procumbens against four cancer cell lines K562, HeLa, MIA-Pa-Ca-2 and MCF-2 by SRB assay. Powdered leaves of Launaea procumbens were extracted sequentially with hexane, ethyl acetate, butanol and water by cold extraction. Phytochemical analysis and cytotoxicity assay were carried out for these fractions using SRB assay against four human cancer cell lines, namely leukemia (K562), cervix (HeLa), pancreatic (MIA-Pa-Ca-2) and breast (MCF-7). Ethyl acetate extract exerts potent cytotoxicity against human leukemia (K562), cervix (HeLa) and breast (MCF-7) cell lines IC 50 value of 25.30±0.50, 19.80±0.10 and 36.90±4.90 μg/ml respectively. Moderately cytotoxic effect found in hexane extract IC 50 value of 41±8 and 48.20±0.50 μg/ml against leukemia (K562), and breast (MCF-7) cancer cell line respectively. The Chemical composition analyzed by GC-MS showed considerable differences in solvent fractions of Launaea procumbens . This study revealed the cytotoxic potential of ethyl acetate and hexane fractions of L. procumbens leaves on different cancer cell lines. Ethyl acetate and Hexane fractions of Launaea procumbens plant exhibit cytotoxicity. Among the different fractions Ethyl acetate showed relatively higher cytotoxicity.Ethyl acetate found more cytotoxic against leukemia (K 562), cervix (HeLa) and breast (MCF-7) cancer cell lines. Moderete cytotoxicity found in hexane fraction against leukemia (K 562) and breast (MCF-7) cancer cell line.GC-MS results showed L. procumbens is a rich source of 1-H- pyrazole, 1-H-imidazole, β -amyrin, α -amyrin and lupeol. These compounds

  10. Cytotoxic effects of delfin insecticide (Bacillus thuringiensis) on cell ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-08-04

    Aug 4, 2008 ... The freshwater protozoan ciliate Paramecium caudatum was used to assess the potential cytotoxic effects and functional activities ... Leaking of cytoplasmic contents was also observed. A significant depletion of .... ppm of delfin was prepared using distilled water as aqueous diluent. After preliminary rough ...

  11. Cytotoxicity of yellow sand in lung epithelial cells

    Indian Academy of Sciences (India)

    Unknown

    NIER, 4Department of Occupational and Environmental Medicine, College of Medicine,. The Catholic University of Korea, Seoul, Korea. †Corresponding author (Fax, 82-2-782-6017; Email, nglim@catholic.ac.kr). The present study was carried out to observe the cytotoxicity of yellow sand in comparison with silica and.

  12. Cytotoxicity of Sambucus ebulus on cancer cell lines and protective ...

    African Journals Online (AJOL)

    DR. TONUKARI NYEROVWO

    2013-05-22

    May 22, 2013 ... Isolation and identification of potent anti-tumor compounds from medicinal plants, has motivated researchers to screen plant species for anti-tumor effects. Regarding the traditional utilization of. Sambucus ebulus, Iranian native botany and its active ingredients (e.g. ebulitin and ebulin 1), cytotoxicity of ethyl ...

  13. CuO nanoparticles induce cytotoxicity and apoptosis in human K562 cancer cell line via mitochondrial pathway, through reactive oxygen species and P53.

    Science.gov (United States)

    Shafagh, Maryam; Rahmani, Fatemeh; Delirezh, Norouz

    2015-10-01

    This study focused on determining cytotoxic effects of copper oxide nanoparticles (CuO NPs) on chronic myeloid leukemia (CML) K562 cell line in a cell-specific manner and its possible mechanism of cell death. We investigated the cytotoxicity of CuO NPs against K562 cell line (cancerous cell) and peripheral blood mononuclear cell (normal cell). The toxicity was evaluated using cell viability, oxidative stress and apoptosis detection. In addition, the expression levels of P53, Caspase 3, Bcl-2, and Bax genes in K562 cells were studied by reverse transcription polymerase chain reaction (RT-PCR) analysis. CuO NPs exerted distinct effects on cell viability via selective killing of cancer cells in a dose-dependent manner while not impacting normal cells in MTT assay. The dose-dependent cytotoxicity of CuO NPs against K562 cells was shown through reactive oxygen species (ROS) generation. The CuO NPs induced apoptosis was confirmed through acridine orange and propidium iodide double staining. Tumor suppressor gene P53 was up regulated due to CuO NPs exposure, and increase in Bax/Bcl-2 ratio suggested mitochondria-mediated pathway is involved in CuO NPs induced apoptosis. We also observed that Caspase 3 gene expression remained unchanged up to 24 hr exposure. These molecular alterations provide an insight into CuO NPs-caused inhibition of growth, generation of ROS, and apoptotic death of K562 cells.

  14. Electroporation enhances mitomycin C cytotoxicity on T24 bladder cancer cell line

    DEFF Research Database (Denmark)

    Vasquez, Juan Luis; Gehl, Julie; Hermann, Gregers G

    2012-01-01

    improves the cytotoxicity of mitomycin. In two cell lines, T24 (bladder cancer cell line) and DC3F (Chinese hamster fibroblast), exposure to different concentrations of mitomycin (0.01-2000μM) was tested with and without electroporation (6 pulses of 1kV/cm, duration: 99μs, frequency: 1Hz). Cell viability...

  15. Clustered Ergot Alkaloids Modulate Cell-mediated Cytotoxicity

    Czech Academy of Sciences Publication Activity Database

    Křen, Vladimír; Fišerová, Anna; Weignerová, Lenka; Stibor, I.; Halada, Petr; Přikrylová, Věra; Sedmera, Petr; Pospíšil, Miloslav

    2002-01-01

    Roč. 10, - (2002), s. 415-424 ISSN 0968-0896 R&D Projects: GA AV ČR IAA4020901; GA ČR GA310/98/0347 Institutional research plan: CEZ:AV0Z5020903 Keywords : clustered * ergot * alkaloids Subject RIV: EE - Microbiology, Virology Impact factor: 2.043, year: 2002

  16. Suppression of natural killer cell cytotoxicity in postpartum women: time course and potential mechanisms.

    Science.gov (United States)

    Groer, Maureen W; El-Badri, Nagwa; Djeu, Julie; Williams, S Nicole; Kane, Bradley; Szekeres, Karoly

    2014-07-01

    Little is known about the recovery of the immune system from normal pregnancy and whether the postpartum period is a uniquely adapted immune state. This report extends previous observations from our group of decreased natural killer (NK) cell cytotoxicity in the postpartum period. NK cytotoxicity was measured from 1 week through 9 months postpartum. In addition, NK cytotoxicity was assayed in the presence or absence of pooled plasmas collected from either postpartum or nonpostpartum women. Samples of cells were stained for inhibitory receptors and analyzed by flow cytometry. NK cytotoxicity remained decreased in postpartum women compared to controls through the first 6 postpartum months, returned to normal levels by 9 months, and remained normal at 12 months. NK cytotoxicity during the first 6 months was further inhibited by the addition of pooled plasma to NK cultures from postpartum women, but the addition of pooled plasma from the control group did not affect that group's NK cultures. There were differences in inhibitory receptor staining between the two groups, with decreased CD158a and CD158b and increased NKG2A expression on postpartum NK cells during the first 3 postpartum months. These data suggest that NK cytotoxicity postpartum inhibition lasts 6 months and is influenced by unidentified postpartum plasma components. The effect may also involve receptors on NK cells. © The Author(s) 2013.

  17. Genipin-induced inhibition of uncoupling protein-2 sensitizes drug-resistant cancer cells to cytotoxic agents.

    Directory of Open Access Journals (Sweden)

    Ryan J Mailloux

    2010-10-01

    Full Text Available Uncoupling protein-2 (UCP2 is known to suppress mitochondrial reactive oxygen species (ROS production and is employed by drug-resistant cancer cells to mitigate oxidative stress. Using the drug-sensitive HL-60 cells and the drug-resistant MX2 subline as model systems, we show that genipin, a UCP2 inhibitor, sensitizes drug-resistant cells to cytotoxic agents. Increased MX2 cell death was observed upon co-treatment with genipin and different doses of menadione, doxorubicin, and epirubicin. DCFH-DA fluorimetry revealed that the increase in MX2 cell death was accompanied by enhanced cellular ROS levels. The drug-induced increase in ROS was linked to genipin-mediated inhibition of mitochondrial proton leak. State 4 and resting cellular respiratory rates were higher in the MX2 cells in comparison to the HL-60 cells, and the increased respiration was readily suppressed by genipin in the MX2 cells. UCP2 accounted for a remarkable 37% of the resting cellular oxygen consumption indicating that the MX2 cells are functionally reliant on this protein. Higher amounts of UCP2 protein were detected in the MX2 versus the HL-60 mitochondria. The observed effects of genipin were absent in the HL-60 cells pointing to the selectivity of this natural product for drug-resistant cells. The specificity of genipin for UCP2 was confirmed using CHO cells stably expressing UCP2 in which genipin induced an ∼22% decrease in state 4 respiration. These effects were absent in empty vector CHO cells expressing no UCP2. Thus, the chemical inhibition of UCP2 with genipin sensitizes multidrug-resistant cancer cells to cytotoxic agents.

  18. Cytotoxicity of Selected Medicinal and Nonmedicinal Plant Extracts to Microbial and Cervical Cancer Cells

    Directory of Open Access Journals (Sweden)

    Gary M. Booth

    2012-01-01

    Full Text Available This study investigated the cytotoxicity of 55 species of plants. Each plant was rated as medicinal, or nonmedicinal based on the existing literature. About 79% of the medicinal plants showed some cytotoxicity, while 75% of the nonmedicinal plants showed bioactivity. It appears that Asteraceae, Labiatae, Pinaceae, and Chenopodiaceae were particularly active against human cervical cancer cells. Based on the literature, only three of the 55 plants have been significantly investigated for cytotoxicity. It is clear that there is much toxicological work yet to be done with both medicinal and nonmedicinal plants.

  19. Environmentally persistent free radicals amplify ultrafine particle mediated cellular oxidative stress and cytotoxicity

    Directory of Open Access Journals (Sweden)

    Balakrishna Shrilatha

    2009-04-01

    Full Text Available Abstract Background Combustion generated particulate matter is deposited in the respiratory tract and pose a hazard to the lungs through their potential to cause oxidative stress and inflammation. We have previously shown that combustion of fuels and chlorinated hydrocarbons produce semiquinone-type radicals that are stabilized on particle surfaces (i.e. environmentally persistent free radicals; EPFRs. Because the composition and properties of actual combustion-generated particles are complex, heterogeneous in origin, and vary from day-to-day, we have chosen to use surrogate particle systems. In particular, we have chosen to use the radical of 2-monochlorophenol (MCP230 as the EPFR because we have previously shown that it forms a EPFR on Cu(IIO surfaces and catalyzes formation of PCDD/F. To understand the physicochemical properties responsible for the adverse pulmonary effects of combustion by-products, we have exposed human bronchial epithelial cells (BEAS-2B to MCP230 or the CuO/silica substrate. Our general hypothesis was that the EPFR-containing particle would have greater toxicity than the substrate species. Results Exposure of BEAS-2B cells to our combustion generated particle systems significantly increased reactive oxygen species (ROS generation and decreased cellular antioxidants resulting in cell death. Resveratrol treatment reversed the decline in cellular glutathione (GSH, glutathione peroxidase (GPx, and superoxide dismutase (SOD levels for both types of combustion-generated particle systems. Conclusion The enhanced cytotoxicity upon exposure to MCP230 correlated with its ability to generate more cellular oxidative stress and concurrently reduce the antioxidant defenses of the epithelial cells (i.e. reduced GSH, SOD activity, and GPx. The EPFRs in MCP230 also seem to be of greater biological concern due to their ability to induce lipid peroxidation. These results are consistent with the oxidizing nature of the CuO/silica ultrafine

  20. Cytokine-dependent induction of CD4+ T cells with cytotoxic potential during influenza virus infection.

    Science.gov (United States)

    Hua, Laiqing; Yao, Shuyu; Pham, Duy; Jiang, Li; Wright, Jeffrey; Sawant, Deepali; Dent, Alexander L; Braciale, Thomas J; Kaplan, Mark H; Sun, Jie

    2013-11-01

    Recent evidence has identified the role of granzyme B- and perforin-expressing CD4(+) T cells with cytotoxic potential in antiviral immunity. However, the in vivo cytokine cues and downstream pathways governing the differentiation of these cells are unclear. Here, we have identified that CD4(+) T cells with cytotoxic potential are specifically induced at the site of infection during influenza virus infection. The development of CD4(+) T cells with cytotoxic potential in vivo was dependent on the cooperation of the STAT2-dependent type I interferon signaling and the interleukin-2/interleukin-2 receptor alpha pathway for the induction of the transcription factors T-bet and Blimp-1. We showed that Blimp-1 promoted the binding of T-bet to the promoters of cytolytic genes in CD4(+) T cells and was required for the cytolytic function of the in vitro- and in vivo-generated CD4(+) T cells with cytotoxic potential. Thus, our data define the molecular basis of regulation of the in vivo development of this functionally cytotoxic Th subset during acute respiratory virus infection. The potential implications for the functions of these cells are discussed.

  1. Esters of Bendamustine Are by Far More Potent Cytotoxic Agents than the Parent Compound against Human Sarcoma and Carcinoma Cells.

    Directory of Open Access Journals (Sweden)

    Stefan Huber

    Full Text Available The alkylating agent bendamustine is approved for the treatment of hematopoietic malignancies such as non-Hodgkin lymphoma, chronic lymphocytic leukemia and multiple myeloma. As preliminary data on recently disclosed bendamustine esters suggested increased cytotoxicity, we investigated representative derivatives in more detail. Especially basic esters, which are positively charged under physiological conditions, were in the crystal violet and the MTT assay up to approximately 100 times more effective than bendamustine, paralleled by a higher fraction of early apoptotic cancer cells and increased expression of p53. Analytical studies performed with bendamustine and representative esters revealed pronounced cellular accumulation of the derivatives compared to the parent compound. In particular, the pyrrolidinoethyl ester showed a high enrichment in tumor cells and inhibition of OCT1- and OCT3-mediated transport processes, suggesting organic cation transporters to be involved. However, this hypothesis was not supported by the differential expression of OCT1 (SLC22A1 and OCT3 (SLC22A3, comparing a panel of human cancer cells. Bendamustine esters proved to be considerably more potent cytotoxic agents than the parent compound against a broad panel of human cancer cell types, including hematologic and solid malignancies (e.g. malignant melanoma, colorectal carcinoma and lung cancer, which are resistant to bendamustine. Interestingly, spontaneously immortalized human keratinocytes, as a model of "normal" cells, were by far less sensitive than tumor cells against the most potent bendamustine esters.

  2. Cytotoxic Indole Alkaloids against Human Leukemia Cell Lines from the Toxic Plant Peganum harmala

    Directory of Open Access Journals (Sweden)

    Chunhua Wang

    2015-11-01

    Full Text Available Bioactivity-guided fractionation was used to determine the cytotoxic alkaloids from the toxic plant Peganum harmala. Two novel indole alkaloids, together with ten known ones, were isolated and identified. The novel alkaloids were elucidated to be 2-(indol-3-ylethyl-α-L-rhamnopyranosyl-(1 → 6-β-D-glucopyranoside (2 and 3-hydroxy-3-(N-acetyl-2-aminoethyl-6-methoxyindol-2-one (3. The cytotoxicity against human leukemia cells was assayed for the alkaloids and some of them showed potent activity. Harmalacidine (compound 8, HMC exhibited the highest cytotoxicity against U-937 cells with IC50 value of 3.1 ± 0.2 μmol/L. The cytotoxic mechanism of HMC was targeting the mitochondrial and protein tyrosine kinase signaling pathways (PTKs-Ras/Raf/ERK. The results strongly demonstrated that the alkaloids from Peganum harmala could be a promising candidate for the therapy of leukemia.

  3. Cytotoxic activity of water extracts of Trichilia hirta leaves on human tumor cells

    International Nuclear Information System (INIS)

    Hernandez Sosa, Edgar; Mora Gonzalez, Nestor; Morris Quevedo, Humberto J

    2013-01-01

    Trichilia hirta L. (Meliaceae) is traditionally used by patients suffering from cancer as an antitumoral resource. Therefore, the objectives of this study were to evaluate the cytotoxic activity of water extracts of Trichilia hirta leaves on tumour cells and identify through a phytochemical screening the principal families of phytocomponents contained in these extracts. The cytotoxic activity of these extracts was also evaluated on human melanoma cells (SK-mel-3) and human breast carcinoma (T-47D). The African green monkey kidney (AGMK) cells Cercopithecus aethiops (Vero) were used as a non-tumour cells control. The results showed the presence of triterpenes/steroids, saponins, coumarins, reductor sugars, phenols and tannins, flavonoids and carbohydrates/glycosides in the extracts. The water leaf extracts showed cytotoxic activity mainly on tumour cells, which contributes to explain the referred recovery by patients suffering form cancer that traditionally consume these extracts

  4. Cellular uptake and cytotoxicity of positively charged chitosan gold nanoparticles in human lung adenocarcinoma cells

    International Nuclear Information System (INIS)

    Choi, Seon Young; Jang, Soo Hwa; Park, Jin; Jeong, Saeromi; Park, Jin Ho; Ock, Kwang Su; Lee, Kangtaek; Yang, Sung Ik; Joo, Sang-Woo; Ryu, Pan Dong; Lee, So Yeong

    2012-01-01

    Cellular uptake, cytotoxicity, and mechanisms of cytotoxicity of the positively charged Au nanoparticles (NPs) were examined in A549 cells, which are one of the most characterized pulmonary cellular systems. Positively charged Au NPs were prepared by chemical reduction using chitosan. The dimension and surface charge of Au NPs were examined by transmission electron microscopy (TEM), dynamic light scattering, and zeta potential measurements. The uptake of Au NPs into A549 cells was also monitored using TEM and dark-field microscopy (DFM) and z-stack confocal microRaman spectroscopy. DFM live cell imaging was also performed to monitor the entry of chitosan Au NPs in real time. The cytotoxic assay, using both methylthiazol tetrazolium and lactate dehydrogenase assays revealed that positively charged Au NPs decreased cell viability. Flow cytometry, DNA fragmentation, real-time PCR, and western blot analysis suggest that positively charged chitosan Au NPs provoke cell damage through both apoptotic and necrotic pathways.

  5. Cellular uptake and cytotoxicity of positively charged chitosan gold nanoparticles in human lung adenocarcinoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Seon Young; Jang, Soo Hwa [Seoul National University, Laboratory of Veterinary Pharmacology, College of Veterinary Medicine and Institute for Veterinary Science (Korea, Republic of); Park, Jin; Jeong, Saeromi; Park, Jin Ho; Ock, Kwang Su [Soongsil University, Department of Chemistry (Korea, Republic of); Lee, Kangtaek [Yonsei University, Department of Chemical and Biomolecular Engineering (Korea, Republic of); Yang, Sung Ik [Kyung Hee University, College of Environment and Applied Chemistry (Korea, Republic of); Joo, Sang-Woo, E-mail: sjoo@ssu.ac.kr [Soongsil University, Department of Chemistry (Korea, Republic of); Ryu, Pan Dong; Lee, So Yeong, E-mail: leeso@snu.ac.kr [Seoul National University, Laboratory of Veterinary Pharmacology, College of Veterinary Medicine and Institute for Veterinary Science (Korea, Republic of)

    2012-12-15

    Cellular uptake, cytotoxicity, and mechanisms of cytotoxicity of the positively charged Au nanoparticles (NPs) were examined in A549 cells, which are one of the most characterized pulmonary cellular systems. Positively charged Au NPs were prepared by chemical reduction using chitosan. The dimension and surface charge of Au NPs were examined by transmission electron microscopy (TEM), dynamic light scattering, and zeta potential measurements. The uptake of Au NPs into A549 cells was also monitored using TEM and dark-field microscopy (DFM) and z-stack confocal microRaman spectroscopy. DFM live cell imaging was also performed to monitor the entry of chitosan Au NPs in real time. The cytotoxic assay, using both methylthiazol tetrazolium and lactate dehydrogenase assays revealed that positively charged Au NPs decreased cell viability. Flow cytometry, DNA fragmentation, real-time PCR, and western blot analysis suggest that positively charged chitosan Au NPs provoke cell damage through both apoptotic and necrotic pathways.

  6. Pyruvate diminishes the cytotoxic activity of ascorbic acid in several tumor cell lines in vitro.

    Science.gov (United States)

    Rodemeister, Sandra; Hill, Katharina

    2017-11-25

    The anticancer potential of ascorbic acid (AA) has been controversially discussed for decades. Although the cytotoxic effect of pharmacologic concentrations of ascorbic acid has already been successfully demonstrated in numerous studies in vitro, it could not be verified to the same extent in vivo. We propose that the ubiquitous metabolite pyruvate diminishes the effect of AA by reacting with its presumable cytotoxic mediator hydrogen peroxide (H 2 O 2 ). MTT assays confirm that co-incubation with 1.4 mM pyruvate abolishes the cytotoxic effect of pharmacologic concentrations of AA in all cancer cell lines tested (human melanoma (WM451-Lu), breast (MCF-7) and hypopharyngeal cancer cells (FaDu)). We further investigated whether pyruvate diminishes the anticancer effect of AA by interfering with the generation of H 2 O 2 . Therefore, we analyzed the concentration of AFR, a proposed intermediate in the AA-dependent formation of H 2 O 2, by electron paramagnetic resonance spectroscopy, during incubation with AA and pyruvate in WM451-Lu cells as a model system. In addition, we measured H 2 O 2 concentration by indirect detection with Clark-type oxygen electrode. AFR concentration was not significantly influenced by pyruvate, whereas H 2 O 2 concentration was significantly reduced. In parallel, pyruvate concentrations of the stimulation medium declined with increasing AA and consequently H 2 O 2 concentrations. In summary, pyruvate diminishes the cytotoxic activity of ascorbic acid in vitro. The AFR concentration measured remains unaffected by pyruvate whereas the H 2 O 2 concentration is reduced; confirming that pyruvate directly reacts with AA-induced H 2 O 2 , without influencing its formation. However, further experiments are needed to elucidate the complex mechanisms being responsible for the reduced efficacy of AA in vivo. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. A Combined Nutritional and Immunological Intervention to Activate Natural Cytotoxicity Against Breast Cancer Cells In Vitro and In Vivo

    Science.gov (United States)

    2008-07-01

    intervention to activate natural cytotoxicity against breast cancer cells in vitro and in vivo PRINCIPAL...NUMBER activate natural cytotoxicity against breast cancer cells in vitro and in vivo 5b. GRANT NUMBER W81XWH-07-1-0478 5c. PROGRAM ELEMENT...TERMS Breast cancer cells ; immunological activation; retinoic acid; natural killer T cells; 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF

  8. Cytotoxicity and genotoxicity assessment of Euphorbia hirta in MCF-7 cell line model using comet assay

    OpenAIRE

    Kwan Yuet Ping; Ibrahim Darah; Yeng Chen; Sreenivasan Sasidharan

    2013-01-01

    Objective: To evaluate the cytotoxicity and genotoxicity activity of Euphorbia hirta (E. hirta) in MCF-7 cell line model using comet assay. Methods: The cytotoxicity of E. hirta extract was investigated by employing brine shrimp lethality assay and the genotoxicity of E. hirta was assessed by using Comet assay. Results: Both toxicity tests exhibited significant toxicity result. In the comet assay, the E. hirta extract exhibited genotoxicity effects against MCF-7 DNA in a time-dependent m...

  9. Inhibition of Ebola virus glycoprotein-mediated cytotoxicity by targeting its transmembrane domain and cholesterol.

    Science.gov (United States)

    Hacke, Moritz; Björkholm, Patrik; Hellwig, Andrea; Himmels, Patricia; Ruiz de Almodóvar, Carmen; Brügger, Britta; Wieland, Felix; Ernst, Andreas M

    2015-07-09

    The high pathogenicity of the Ebola virus reflects multiple concurrent processes on infection. Among other important determinants, Ebola fusogenic glycoprotein (GP) has been associated with the detachment of infected cells and eventually leads to vascular leakage and haemorrhagic fever. Here we report that the membrane-anchored GP is sufficient to induce the detachment of adherent cells. The results show that the detachment induced through either full-length GP1,2 or the subunit GP2 depends on cholesterol and the structure of the transmembrane domain. These data reveal a novel molecular mechanism in which GP regulates Ebola virus assembly and suggest that cholesterol-reducing agents could be useful as therapeutics to counteract GP-mediated cell detachment.

  10. Cytotoxicity of protein corona-graphene oxide nanoribbons on human epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Mbeh, Doris A. [Laboratory for Innovation and Analysis of Bio-Performance, École Polytechnique, C.P. 6079, Succursale Centre-ville, Montréal, Québec H3C 3A7 (Canada); Akhavan, Omid, E-mail: oakhavan@sharif.edu [Department of Physics, Sharif University of Technology, P.O. Box 11155-9161, Tehran (Iran, Islamic Republic of); Institute for Nanoscience and Nanotechnology, Sharif University of Technology, P.O. Box 14588-89694, Tehran (Iran, Islamic Republic of); Javanbakht, Taraneh [Laboratory for Innovation and Analysis of Bio-Performance, École Polytechnique, C.P. 6079, Succursale Centre-ville, Montréal, Québec H3C 3A7 (Canada); Mahmoudi, Morteza [Department of Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences (Iran, Islamic Republic of); Yahia, L’Hocine [Laboratory for Innovation and Analysis of Bio-Performance, École Polytechnique, C.P. 6079, Succursale Centre-ville, Montréal, Québec H3C 3A7 (Canada)

    2014-11-30

    Highlights: • Graphene oxide nanoribons (GONRs) were synthesized by unzipping of multi-walled carbon nanotubes. • GONRs were functionalized by the albumin originated from the two different protein sources. • Concentration-dependent cytotoxicity of the functionalized GONRs was investigated on human epithelial cells. - Abstract: Graphene oxide nanoribbons (GONRs) were synthesized using an oxidative unzipping of multi-walled carbon nanotubes. The interactions of the GONRs with various concentrations of fetal bovine serum or human plasma serum indicated that the GONRs were functionalized substantially by the albumin originated from the two different protein sources. Then, concentration-dependent cytotoxicity of the protein-functionalized GONRs on human epithelial cells was studied. Although the GONRs with concentrations ≤50 μg/mL did not exhibit significant cytotoxicity on the cells (with the cell viability >85%), the concentration of 100 μg/mL exhibited significant cytotoxicity including prevention of cell proliferation and induction of cell apoptosis. These results can provide more in-depth understanding about cytotoxic effects of graphene nanostructures which can be functionalized by the proteins of media.

  11. Antiadhesive and cytotoxic effect of Iranian Vipera lebetina snake venom on lung epithelial cancer cells.

    Science.gov (United States)

    Oghalaie, Akbar; Kazemi-Lomedasht, Fatemeh; Zareinejad, Mohammad Reza; Shahbazzadeh, Delavar

    2017-01-01

    Cancer is one of the major health problems worldwide. Hence, finding potent therapeutics from natural sources seems necessary. Snake venom of Vipera lebetina contains potential component with anticancer activities such as antiproliferation, migration, invasion, adhesion, and angiogenesis effect. Evaluation of cytotoxic and antiadhesive effect of V. lebetina venom on lung epithelial cancer tumor cell (TC-1) was the main aim of this study. Here, we purified snake venom of V. lebetina by fast protein liquid chromatography (FPLC) using Sephacryl S-200 hr column. The fractions collected and evaluated by SDS-PAGE analysis. The cytotoxicity and antiadhesive effect of crude venom and fractions on TC-1 cells were demonstrated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and adhesion assay, respectively. Our results showed six fractions in FPLC diagram. V. lebetina crude venom and fractions showed dose-dependent cytotoxic effect on TC-1 cells. Fractions 2 and 5 showed high cytotoxic effect with high IC50 value (IC50 = 6 μg/ml for fraction 2 and IC50 = 7.3 μg/ml for fraction 5). Fractions 2 and 5 selected for analysis antiadhesive effect on TC-1 cells. Furthermore, our results showed that both fractions 2 and 5 had antiadhesive effect on TC-1 cells. Because of potent cytotoxic and antiadhesive effect of V. lebetina fractions on lung epithelial cancer cell line, it could be promising tools for further analysis as anticancer therapeutic development.

  12. Antiadhesive and cytotoxic effect of Iranian Vipera lebetina snake venom on lung epithelial cancer cells

    Directory of Open Access Journals (Sweden)

    Akbar Oghalaie

    2017-01-01

    Full Text Available Background: Cancer is one of the major health problems worldwide. Hence, finding potent therapeutics from natural sources seems necessary. Snake venom of Vipera lebetina contains potential component with anticancer activities such as antiproliferation, migration, invasion, adhesion, and angiogenesis effect. Evaluation of cytotoxic and antiadhesive effect of V. lebetina venom on lung epithelial cancer tumor cell (TC-1 was the main aim of this study. Materials and Methods: Here, we purified snake venom of V. lebetina by fast protein liquid chromatography (FPLC using Sephacryl S-200 hr column. The fractions collected and evaluated by SDS-PAGE analysis. The cytotoxicity and antiadhesive effect of crude venom and fractions on TC-1 cells were demonstrated using 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide and adhesion assay, respectively. Results: Our results showed six fractions in FPLC diagram. V. lebetina crude venom and fractions showed dose-dependent cytotoxic effect on TC-1 cells. Fractions 2 and 5 showed high cytotoxic effect with high IC50 value (IC50 = 6 μg/ml for fraction 2 and IC50 = 7.3 μg/ml for fraction 5. Fractions 2 and 5 selected for analysis antiadhesive effect on TC-1 cells. Furthermore, our results showed that both fractions 2 and 5 had antiadhesive effect on TC-1 cells. Conclusion: Because of potent cytotoxic and antiadhesive effect of V. lebetina fractions on lung epithelial cancer cell line, it could be promising tools for further analysis as anticancer therapeutic development.

  13. Melatonin Cytotoxicity Is Associated to Warburg Effect Inhibition in Ewing Sarcoma Cells.

    Directory of Open Access Journals (Sweden)

    Ana M Sanchez-Sanchez

    Full Text Available Melatonin kills or inhibits the proliferation of different cancer cell types, and this is associated with an increase or a decrease in reactive oxygen species, respectively. Intracellular oxidants originate mainly from oxidative metabolism, and cancer cells frequently show alterations in this metabolic pathway, such as the Warburg effect (aerobic glycolysis. Thus, we hypothesized that melatonin could also regulate differentially oxidative metabolism in cells where it is cytotoxic (Ewing sarcoma cells and in cells where it inhibits proliferation (chondrosarcoma cells. Ewing sarcoma cells but not chondrosarcoma cells showed a metabolic profile consistent with aerobic glycolysis, i.e. increased glucose uptake, LDH activity, lactate production and HIF-1α activation. Melatonin reversed Ewing sarcoma metabolic profile and this effect was associated with its cytotoxicity. The differential regulation of metabolism by melatonin could explain why the hormone is harmless for a wide spectrum of normal and only a few tumoral cells, while it kills specific tumor cell types.

  14. Restoring Natural Killer Cell Cytotoxicity After Hyperthermia Alone or Combined with Radiotherapy.

    Science.gov (United States)

    Hietanen, Tenho; Kapanen, Mika; Kellokumpu-Lehtinen, Pirkko-Liisa

    2016-02-01

    The aim of the present study was to investigate in vitro the effect of hypo- and hyperthermia alone or in combination with irradiation on natural killer cell (NK) cytotoxicity, recovery of this function and the possibility of preventing damage to or enhancing cytotoxicity recovery using interferons (IFNs) α, β, and γ and interleukin-2 (IL-2). We used non-selected NK cells and measured their cytotoxicity using the (51)Cr release assay. Temperatures ranging from 31-45°C and thermal treatment times from 0-180 min were assessed. IFNs were applied at concentrations from 0-1,000 IU/ml and IL-2 from 0-450 IU/ml. The range of irradiation dose was from 0-30 Gy. We detected no significant differences in cytotoxicity at temperatures from 31-37°C. The most significant decrease in cytotoxicity was observed between 41 and 42°C (p=0.0010), and heating NK cells at 42°C for 180 min almost completely abolished this function. NK cell cytotoxicity largely recovered during the first 24 h, depending on the heating time. IFN-α, β, and γ demonstrated no concentration-dependent ability to aid in recovery when used before or after the thermal treatment. In contrast, IL-2 restored cytotoxicity in a concentration- and incubation time-dependent manner and was equally active when used before, during or after heating. NK cells were heated at 42°C for various times and then irradiated with a single dose or first irradiated and then heated; however, no statistically significant differences were observed (p=0.520). An approach of IL-2 treatment followed by radiation and heating was the most effective in restoring NK cytotoxicity (p=0.000). NK cell cytotoxicity is impaired in vitro at 42°C and above, with possible partial recovery. IL-2, but not IFNs, was able to restore NK cell cytotoxicity in a concentration-dependent manner. IL-2 can also reverse the damage caused by combined hyperthermia and irradiation. Copyright© 2016 International Institute of Anticancer Research (Dr. John G

  15. Cell type-dependent uptake, localization, and cytotoxicity of 1.9 nm gold nanoparticles

    Science.gov (United States)

    Coulter, Jonathan A; Jain, Suneil; Butterworth, Karl T; Taggart, Laura E; Dickson, Glenn R; McMahon, Stephen J; Hyland, Wendy B; Muir, Mark F; Trainor, Coleman; Hounsell, Alan R; O’Sullivan, Joe M; Schettino, Giuseppe; Currell, Fred J; Hirst, David G; Prise, Kevin M

    2012-01-01

    Background This follow-up study aims to determine the physical parameters which govern the differential radiosensitization capacity of two tumor cell lines and one immortalized normal cell line to 1.9 nm gold nanoparticles. In addition to comparing the uptake potential, localization, and cytotoxicity of 1.9 nm gold nanoparticles, the current study also draws on comparisons between nanoparticle size and total nanoparticle uptake based on previously published data. Methods We quantified gold nanoparticle uptake using atomic emission spectroscopy and imaged intracellular localization by transmission electron microscopy. Cell growth delay and clonogenic assays were used to determine cytotoxicity and radiosensitization potential, respectively. Mechanistic data were obtained by Western blot, flow cytometry, and assays for reactive oxygen species. Results Gold nanoparticle uptake was preferentially observed in tumor cells, resulting in an increased expression of cleaved caspase proteins and an accumulation of cells in sub G1 phase. Despite this, gold nanoparticle cytotoxicity remained low, with immortalized normal cells exhibiting an LD50 concentration approximately 14 times higher than tumor cells. The surviving fraction for gold nanoparticle-treated cells at 3 Gy compared with that of untreated control cells indicated a strong dependence on cell type in respect to radiosensitization potential. Conclusion Gold nanoparticles were most avidly endocytosed and localized within cytoplasmic vesicles during the first 6 hours of exposure. The lack of significant cytotoxicity in the absence of radiation, and the generation of gold nanoparticle-induced reactive oxygen species provide a potential mechanism for previously reported radiosensitization at megavoltage energies. PMID:22701316

  16. The cytotoxicity and genotoxicity of soluble and particulate cobalt in human lung fibroblast cells

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Leah J.; Holmes, Amie L. [Wise Laboratory of Environmental and Genetic Toxicology, University of Southern Maine, 96 Falmouth St., P.O. Box 9300, Portland, ME 04101-9300 (United States); Maine Center for Environmental Toxicology and Health, University of Southern Maine, 96 Falmouth St., P.O. Box 9300, Portland, ME 04101-9300 (United States); Department of Applied Medical Science, University of Southern Maine, 96 Falmouth St., P.O. Box 9300, Portland, ME 04101-9300 (United States); Kandpal, Sanjeev Kumar; Mason, Michael D. [Department of Chemical and Biological Engineering, University of Maine, Orono, ME (United States); Zheng, Tongzhang [Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT (United States); Wise, John Pierce, E-mail: John.Wise@usm.maine.edu [Wise Laboratory of Environmental and Genetic Toxicology, University of Southern Maine, 96 Falmouth St., P.O. Box 9300, Portland, ME 04101-9300 (United States); Maine Center for Environmental Toxicology and Health, University of Southern Maine, 96 Falmouth St., P.O. Box 9300, Portland, ME 04101-9300 (United States); Department of Applied Medical Science, University of Southern Maine, 96 Falmouth St., P.O. Box 9300, Portland, ME 04101-9300 (United States)

    2014-08-01

    Cobalt exposure is increasing as cobalt demand rises worldwide due to its use in enhancing rechargeable battery efficiency, super-alloys, and magnetic products. Cobalt is considered a possible human carcinogen with the lung being a primary target. However, few studies have considered cobalt-induced toxicity in human lung cells. Therefore, in this study, we sought to determine the cytotoxicity and genotoxicity of particulate and soluble cobalt in human lung cells. Cobalt oxide and cobalt chloride were used as representative particulate and soluble cobalt compounds, respectively. Exposure to both particulate and soluble cobalt induced a concentration-dependent increase in cytotoxicity, genotoxicity, and intracellular cobalt ion levels. Based on intracellular cobalt ion levels, we found that soluble cobalt was more cytotoxic than particulate cobalt while particulate and soluble cobalt induced similar levels of genotoxicity. However, soluble cobalt induced cell cycle arrest indicated by the lack of metaphases at much lower intracellular cobalt concentrations compared to cobalt oxide. Accordingly, we investigated the role of particle internalization in cobalt oxide-induced toxicity and found that particle-cell contact was necessary to induce cytotoxicity and genotoxicity after cobalt exposure. These data indicate that cobalt compounds are cytotoxic and genotoxic to human lung fibroblasts, and solubility plays a key role in cobalt-induced lung toxicity. - Highlights: • Particulate and soluble cobalt are cytotoxic and genotoxic to human lung cells. • Soluble cobalt induces more cytotoxicity compared to particulate cobalt. • Soluble and particulate cobalt induce similar levels of genotoxicity. • Particle-cell contact is required for particulate cobalt-induced toxicity.

  17. Betulinic acid-induced cytotoxicity in human breast tumor cell lines MCF-7 and T47D and its modification by tocopherol.

    Science.gov (United States)

    Tiwari, Reeta; Puthli, Abhay; Balakrishnan, S; Sapra, B K; Mishra, K P

    2014-10-01

    Betulinic acid (BA) has been shown to cause apoptosis in neuroblastoma and melanoma cell lines. We evaluated the cytotoxicity of BA in two breast cancer cell lines MCF-7 and T47D differing in their p53 status. Treatment with BA resulted in a dose dependent inhibition of cell proliferation and induction of apoptosis. This indicates p53-independent apoptotic pathway, because response of both p53 mutant and wild type cell line were found unaffected after treatment with pifithrin-α, an inhibitor of p53. Cells were significantly protected when treated by tocopherol suggesting involvement of membrane centered lipid peroxidation-mediated mechanism in BA-induced apoptosis.

  18. [Cytotoxicity and genotoxicity of human cells exposed in vitro to glyphosate].

    Science.gov (United States)

    Monroy, Claudia Milena; Cortés, Andrea Carolina; Sicard, Diana Mercedes; de Restrepo, Helena Groot

    2005-09-01

    Glyphosate is a broad-spectrum non-selective herbicide, used to eliminate unwanted weeds in agricultural and forest settings. Herbicide action is achieved through inhibition of aromatic amino acid biosynthesis in plant cells. Since this is not a conserved mechanism between human and plant cells, glyphosate is considered to be a low health risk substance for humans. However, the occurrence of possible harmful side effects of glyphosate use is not well documented and controversial. Toxicity and genotoxicity studies indicate that glyphosate is not harmful, although several investigations suggest that it can alter various cellular processes in animals. Therfore this has potential as a health and environmental risk factor in areas where glyphosate is widely used. The present study evaluated glyphosate cytotoxic and genotoxic effects in normal human cells (GM38) and human fibrosarcoma (HT1080) cells. Acute and chronic cytotoxicity were determined through the exposure of cultured cells to graded concentrations of glyphosate, and cell viability analysis was performed with crystal violet and Trypan blue staining. Genotoxicity was determined using the comet assay and data significance was evaluated with Dunnet's test. For chronic cytotoxicity a dose-dependent effect was observed in both GM38 and HT1080 cells after treatment with 5.2-8.5 mM and 0.9-3.0 mM glyphosate, respectively. In the acute cytotoxicity study, GM38 cells exposed to 4.0-7.0 mM glyphosate and HT1080 cells exposed to 4.5-5.8 mM glyphosate, had cell viability counts higher than 80%. Genotoxic effects were evidenced in GM38 cells at glyphosate concentrations of 4.0-6.5 mM and in HT1080 cells at glyphosate concentrations of 4.75 -5.75 mM. The levels of cytotoxicity and genotoxicity of glyphosate occurring in mammalian cells suggested that its mechanism of action is not limited to plant cells.

  19. Conformational targeting of fibrillar polyglutamine proteins in live cells escalates aggregation and cytotoxicity.

    Directory of Open Access Journals (Sweden)

    Erik Kvam

    2009-05-01

    Full Text Available Misfolding- and aggregation-prone proteins underlying Parkinson's, Huntington's and Machado-Joseph diseases, namely alpha-synuclein, huntingtin, and ataxin-3 respectively, adopt numerous intracellular conformations during pathogenesis, including globular intermediates and insoluble amyloid-like fibrils. Such conformational diversity has complicated research into amyloid-associated intracellular dysfunction and neurodegeneration. To this end, recombinant single-chain Fv antibodies (scFvs are compelling molecular tools that can be selected against specific protein conformations, and expressed inside cells as intrabodies, for investigative and therapeutic purposes.Using atomic force microscopy (AFM and live-cell fluorescence microscopy, we report that a human scFv selected against the fibrillar form of alpha-synuclein targets isomorphic conformations of misfolded polyglutamine proteins. When expressed in the cytoplasm of striatal cells, this conformation-specific intrabody co-localizes with intracellular aggregates of misfolded ataxin-3 and a pathological fragment of huntingtin, and enhances the aggregation propensity of both disease-linked polyglutamine proteins. Using this intrabody as a tool for modulating the kinetics of amyloidogenesis, we show that escalating aggregate formation of a pathologic huntingtin fragment is not cytoprotective in striatal cells, but rather heightens oxidative stress and cell death as detected by flow cytometry. Instead, cellular protection is achieved by suppressing aggregation using a previously described intrabody that binds to the amyloidogenic N-terminus of huntingtin. Analogous cytotoxic results are observed following conformational targeting of normal or polyglutamine-expanded human ataxin-3, which partially aggregate through non-polyglutamine domains.These findings validate that the rate of aggregation modulates polyglutamine-mediated intracellular dysfunction, and caution that molecules designed to

  20. Circulating blocking factors of lymphoid-cell cytotoxicity in x-ray-induced rat small-bowel adenocarcinoma

    International Nuclear Information System (INIS)

    Stevens, R.H.; Brooks, G.P.; Osborne, J.W.

    1979-01-01

    Circulating blocking factors capable of abrogating cell-mediated immune responses measured by in vitro lymphoid-cell cytotoxicity were identified in the sera of Holtzman outbred rats 6 to 9 months after a single exposure of only the temporarily exteriorized, hypoxic ileum and jejunum to 1700 to 2000 R of X radiation. Such factors were found to exist in the serum of every animal exposed to the ionizing radiation regardless of whether a visibly identifiable small-bowel adenocarcinoma existed or subsequently would develop. Protection of cultured x-ray-induced rat small-bowel cancer cells from destruction by tumor-sensitized lymphoid cells as measured by the release of lactoperoxidase-catalyzed radioiodinated membrane proteins from the tumor target cells was conferred by the action of the blocking factors at both effector and target cell levels. The results of this study demonstrate that exposure of only the rat small intestine to ionizing radiation leads to elaboration of circulating factors identifiable several months postirradiation which will block cell-mediated immune responses directed against cancer cells developing in the exposed tissue

  1. The neuropeptide alpha-melanocyte-stimulating hormone is critically involved in the development of cytotoxic CD8+ T cells in mice and humans.

    Directory of Open Access Journals (Sweden)

    Karin Loser

    Full Text Available BACKGROUND: The neuropeptide alpha-melanocyte-stimulating hormone is well known as a mediator of skin pigmentation. More recently, it has been shown that alpha-melanocyte-stimulating hormone also plays pivotal roles in energy homeostasis, sexual function, and inflammation or immunomodulation. Alpha-melanocyte-stimulating hormone exerts its antiinflammatory and immunomodulatory effects by binding to the melanocortin-1 receptor, and since T cells are important effectors during immune responses, we investigated the effects of alpha-melanocyte-stimulating hormone on T cell function. METHODOLOGY/PRINCIPAL FINDINGS: T cells were treated with alpha-melanocyte-stimulating hormone, and subsequently, their phenotype and function was analyzed in a contact allergy as well as a melanoma model. Furthermore, the relevance of alpha-melanocyte-stimulating hormone-mediated signaling for the induction of cytotoxicity was assessed in CD8(+ T cells from melanoma patients with functional and nonfunctional melanocortin-1 receptors. Here we demonstrate that the melanocortin-1 receptor is expressed by murine as well as human CD8(+ T cells, and we furthermore show that alpha-melanocyte-stimulating hormone/melanocortin-1 receptor-mediated signaling is critical for the induction of cytotoxicity in human and murine CD8(+ T cells. Upon adoptive transfer, alpha-melanocyte-stimulating hormone-treated murine CD8(+ T cells significantly reduced contact allergy responses in recipient mice. Additionally, the presented data indicate that alpha-melanocyte-stimulating hormone via signaling through a functional melanocortin-1 receptor augmented antitumoral immunity by up-regulating the expression of cytotoxic genes and enhancing the cytolytic activity in tumor-specific CD8(+ T cells. CONCLUSIONS/SIGNIFICANCE: Together, these results point to an important role of alpha-melanocyte-stimulating hormone in MHC class I-restricted cytotoxicity. Therefore, treatment of contact allergies or

  2. Andrographolide sensitizes the cytotoxicity of human colorectal carcinoma cells toward cisplatin via enhancing apoptosis pathways in vitro and in vivo.

    Science.gov (United States)

    Lin, Hui-Hsuan; Shi, Ming-Der; Tseng, Hsien-Chun; Chen, Jing-Hsien

    2014-05-01

    Andrographolide (Andro), a diterpenoid lactone isolated from a traditional herbal medicine Andrographis paniculata, has been shown to suppress the growth and invasion of human colorectal carcinoma (CRC) Lovo cells, and trigger apoptosis in vitro. The potential of Andro as a chemotherapeutic agent in CRC was evaluated by investigating its cytotoxic effects as a single agent or in coadministration with cisplatin (CDDP). Andro potentiated the cytotoxic effect of CDDP in Lovo cells through apoptosis. The molecular mechanism for these favorable cellular response was further investigated by analyzing the apoptotic profiles, protein levels, and mRNA expression patterns of several key genes after treatments of Andro or/and CDDP. Molecular results indicated that the effect of Andro alone might be mediated via both intrinsic and extrinsic apoptotic pathways in Lovo cells. The addition of Andro to CDDP induced synergistic apoptosis, which could be corroborated to the changes in protein and mRNA levels of Bax and Bcl-2, and the increased Fas/FasL association in these cells, resulting in increased release of cytochrome c, and activation of caspases. Pretreatment of Nok-1 monoclonal antibody, a Fas signaling inhibitor, or Bax inhibitor peptide V5 repressed the Andro-induced cleavage of procaspase and the sensitization to CDDP-induced apoptosis. Finally, the combination therapy of Andro with CDDP was evidenced by its synergistic inhibition on the growth of Lovo cells in xenograft tumor studies. The results indicate that Andro, in combination with chemotherapeutics, is likely to represent a potential therapeutic strategy for CRC.

  3. Cytotoxicity and apoptosis induced by alfalfa (Medicago sativa) leaf extracts in sensitive and multidrug-resistant tumor cells.

    Science.gov (United States)

    Gatouillat, Grégory; Magid, Abdulmagid Alabdul; Bertin, Eric; Okiemy-Akeli, Marie-Genevieve; Morjani, Hamid; Lavaud, Catherine; Madoulet, Claudie

    2014-01-01

    Alfalfa (Medicago sativa) has been used to cure a wide variety of ailments. However, only a few studies have reported its anticancer effects. In this study, extracts were obtained from alfalfa leaves and their cytotoxic effects were assessed on several sensitive and multidrug-resistant tumor cells lines. Using the mouse leukaemia P388 cell line and its doxorubicin-resistant counterpart (P388/DOX), we showed that the inhibition of cell growth induced by alfalfa leaf extracts was mediated through the induction of apoptosis, as evidenced by DNA fragmentation analysis. The execution of programmed cell death was achieved via the activation of caspase-3, leading to PARP cleavage. Fractionation of toluene extract (To-1), the most active extract obtained from crude extract, led to the identification of 3 terpene derivatives and 5 flavonoids. Among them, (-)-medicarpin, (-)-melilotocarpan E, millepurpan, tricin, and chrysoeriol showed cytotoxic effects in P388 as well as P388/DOX cells. These results demonstrate that alfalfa leaf extract may have interesting potential in cancer chemoprevention and therapy.

  4. Receptor for advanced glycation end products (RAGE)-mediated cytotoxicity of 3-hydroxypyridinium derivatives.

    Science.gov (United States)

    Murakami, Yoto; Fujino, Takayuki; Hasegawa, Toshiki; Kurachi, Ryotaro; Miura, Aya; Daikoh, Takumi; Usui, Teruyuki; Hayase, Fumitaka; Watanabe, Hirohito

    2018-02-01

    Advanced glycation end products (AGEs) formed from glyceraldehyde (Gcer) and glycolaldehyde (Gcol) are involved in the pathogenesis of diabetic complications, via interactions with a receptor for AGEs (RAGE). In this study, we aimed to elucidate the RAGE-binding structure in Gcer and Gcol-derived AGEs and identify the minimal moiety recognized by RAGE. Among Gcer and Gcol-derived AGEs, GLAP (glyceraldehyde-derived pyridinium) and GA-pyridine elicited toxicity in PC12 neuronal cells. The toxic effects of GLAP and GA-pyridine were suppressed in the presence of anti-RAGE antibody or the soluble form of RAGE protein. Furthermore, the cytotoxicity test using GLAP analog compounds indicated that the 3-hydroxypyridinium (3-HP) structure is sufficient for RAGE-dependent toxicity. Surface plasmon resonance analysis showed that 3-HP derivatives directly interact with RAGE. These results indicate that GLAP and GA-pyridine are RAGE-binding epitopes, and that 3-HP, a common moiety of GLAP and GA-pyridine, is essential for the interaction with RAGE.

  5. Comparison of five different in vitro assays for assessment of sodium metavanadate cytotoxicity in Chinese hamster ovary cells (CHO-K1 line).

    Science.gov (United States)

    Zwolak, Iwona

    2015-08-01

    This investigation was undertaken to compare five different in vitro cytotoxicity assays for their power in revealing vanadium-mediated toxicity in Chinese hamster ovary (CHO)-K1 cells. The cells were exposed to sodium metavanadate (NaVO(3)) in the range of 10-1000 µM for 24 h and thereafter the cytotoxic effects of NaVO(3) were measured by colorimetric in vitro assays: the neutral red (NR) test, the 2,3-bis[2-methoxy-4-nitro-5-sulfophenyl]-2H-tetrazolium-5-carboxyanilide inner salt (XTT) assay, the resazurin assay, the sulforhodamine B (SR-B) assay, and by microscopic assessment of cell viability using the trypan blue (TB) staining method. Among the assays used, the NR test was the most sensitive, since it revealed metavanadate cytotoxicity at the lowest NaVO(3) dose (=50 µM). Also, NaVO(3) cytotoxicity expressed as inhibitory concentration (IC) showed the lowest values for the NR test. Three other tests XTT, resazurin, and SR-B assays showed intermediate sensitivity revealing the cytotoxicity of NaVO(3) at 100 µM. The corresponding IC10 and IC50 values calculated for the XTT, resazurin, and SR-B tests were similar. The TB staining method was the least sensitive, since it recorded metavanadate cytotoxicity at the highest NaVO(3) concentration tested (=600 µM). Based on the cytotoxicity end points measured with the above assays, it can be concluded that lysosomal/Golgi apparatus damage (measured by NR assay) may be the primary effect of NaVO(3) on CHO-K1 cells. The disintegration of mitochondria (assessed with the XTT and resazurin assays) probably follows lysosomal impairment. Plasma membrane permeability (staining with TB) occurs at a late stage of NaVO(3)-induced cytotoxicity on CHO-K1 cells. The results obtained in this research work show that the NR test can be recommended as a very sensitive assay for the assessment of NaVO(3) cytotoxicity in the CHO-K1 cell culture model. Considering the convenience of assay performance along with adequate sensitivity

  6. Cytotoxic Vibrio T3SS1 Rewires Host Gene Expression to Subvert Cell Death Signaling and Activate Cell Survival Networks

    Science.gov (United States)

    De Nisco, Nicole J.; Kanchwala, Mohammed; Li, Peng; Fernandez, Jessie; Xing, Chao; Orth, Kim

    2017-01-01

    Bacterial effectors are potent manipulators of host signaling pathways. The marine bacterium Vibrio parahaemolyticus (V. para), delivers effectors into host cells through two type three secretion systems (T3SS). The ubiquitous T3SS1 is vital for V. para survival in the environment, whereas T3SS2 causes acute gastroenteritis in human hosts. Although the natural host is undefined, T3SS1 effectors attack highly conserved cellular processes and pathways to orchestrate non-apoptotic cell death. Much is known about how T3SS1 effectors function in isolation, but we wanted to understand how their concerted action globally affects host cell signaling. To assess the host response to T3SS1, we compared gene expression changes over time in primary fibroblasts infected with V. para that have a functional T3SS1 (T3SS1+) to those in cells infected with V. para lacking T3SS1 (T3SS1−). Overall, the host transcriptional response to both T3SS1+ and T3SS1− V. para was rapid, robust, and temporally dynamic. T3SS1 re-wired host gene expression by specifically altering the expression of 398 genes. Although T3SS1 effectors target host cells at the posttranslational level to cause cytotoxicity, network analysis indicated that V. para T3SS1 also precipitates a host transcriptional response that initially activates cell survival and represses cell death networks. The increased expression of several key pro-survival transcripts mediated by T3SS1 was dependent on a host signaling pathway that is silenced later in infection by the posttranslational action of T3SS1. Taken together, our analysis reveals a complex interplay between roles of T3SS1 as both a transcriptional and posttranslational manipulator of host cell signaling. PMID:28512145

  7. Lucidumol C, a new cytotoxic lanostanoid triterpene from Ganoderma lingzhi against human cancer cells.

    Science.gov (United States)

    Amen, Yhiya M; Zhu, Qinchang; Tran, Hai-Bang; Afifi, Mohamed S; Halim, Ahmed F; Ashour, Ahmed; Mira, Amira; Shimizu, Kuniyoshi

    2016-07-01

    A new oxygenated lanostane-type triterpene, named lucidumol C, together with six known compounds, was isolated from the chloroform extract of the fruiting bodies of Ganoderma lingzhi. Structures were established based on extensive spectroscopic and chemical studies. Potential cytotoxic activities of the isolated compounds were evaluated against human colorectal carcinoma (HCT-116, Caco-2), human liver carcinoma (HepG2), and human cervical carcinoma (HeLa) cell lines using WST-1 reagent. Selectivity was evaluated using normal human fibroblast cells (TIG-1 and HF19). Among the compounds, lucidumol C showed potent selective cytotoxicity against HCT-116 cells with an IC50 value of 7.86 ± 4.56 µM and selectivity index (SI) >10 with remarkable cytotoxic activities against Caco-2, HepG2 and HeLa cell lines.

  8. Cytotoxic activity of ethanolic extract of the marine sponge Aaptos suberitoides against T47D cell

    Science.gov (United States)

    Nurhayati, Awik Puji Dyah; Prastiwi, Rarastoeti; Sukardiman, Wahyuningsih, Tri

    2018-04-01

    Aaptos suberitoides marine sponge produce many kinds of secondary metabolites. The purpose of this study were to examine the cytotoxic, proliferation inhibition and apoptosis induction of marine sponge A.suberitoides. The sponge was extracted with 96 % ethanol. Ethanol extract cytotoxicity assay were performed with MTT method (Microculture Tetrazolium) against to cell line of T47D. The proliferation inhibition were done by doubling time. The apoptosis induction by observing the treated cell morphology after staining with acrydine orange. The results show that cytotoxic activity of the ethanol extract was 153.109 µg/mL, inhibits cell proliferation cell lines of T47D at 24 hours of incubation and apoptosis induction.

  9. Cytotoxic activity and G1 cell cycle arrest of a Dienynone from Echinacea pallida.

    Science.gov (United States)

    Chicca, Andrea; Adinolfi, Barbara; Pellati, Federica; Orlandini, Giulia; Benvenuti, Stefania; Nieri, Paola

    2010-03-01

    In the present study, a further investigation of the cytotoxic activity of an acetylenic constituent of Echinacea pallida roots, namely, pentadeca-(8 Z,13 Z)-dien-11-yn-2-one, was performed, revealing a concentration-dependent cytotoxicity on several human cancer cell lines, including leukemia (Jurkat and HL-60), breast carcinoma (MCF-7), and melanoma (MeWo) cells. As part of its mechanism of action, the ability of this constituent to arrest the cell cycle in the G1 phase was demonstrated on HL-60 cells. Furthermore, a stability test of the target compound over 72 h was carried out, indicating that the cytotoxic activity can be attributed mainly to the genuine, not oxidized, molecule. (c) Georg Thieme Verlag KG Stuttgart . New York.

  10. Additive cytotoxic effects of radiation and mTOR inhibitors in a cervical cancer cell line.

    Science.gov (United States)

    Assad, Daniele Xavier; Borges, Gabriel Alvares; Avelino, Samuel Ramalho; Guerra, Eliete Neves Silva

    2018-02-01

    The PI3K/AKT/mTOR signaling pathway is frequently activated in HPV-positive cervical squamous cell cancer (CC). This study investigated the biological effects of mTOR inhibitors associated with radiotherapy in a CC cell line (HeLa). A human keratinocyte cell line (HaCaT) was used as control. Temsirolimus, everolimus, resveratrol, curcumin and epigallocatechin gallate (EGCG) were the mTOR inhibitors assessed. The 50% cell cytotoxicity rate (CC 50 ) for each treatment was determined by MTT cell viability assay. Cells were pre-treated with mTOR inhibitors at CC 50 followed by radiotherapy (RT) at 2Gy. Cell death profile after treatment with temsirolimus, resveratrol and curcumin was assessed with flow cytometry. Everolimus, temsirolimus, EGCG, resveratrol and curcumin were cytotoxic to HeLa. Radiation induced a statistically significant (p<0.01) supra-additive cytotoxic effect in the cervical cancer cell line when combined with mTOR inhibitors. After a 24-h treatment, EGCG and resveratrol were more cytotoxic to HeLa cells than to HaCaT cells. After 48h of treatment, resveratrol, curcumin and everolimus were more cytotoxic to HeLa cells when compared to HaCaT cells. After 24h, temsirolimus induced late apoptosis or necrosis in HeLa cells. Based on these data, new studies with mTOR inhibitors as treatment options for cervical cancer are recommended, mainly combined to radiotherapy. Copyright © 2017 Elsevier GmbH. All rights reserved.

  11. Cytotoxicity Effects of Amoora rohituka and chittagonga on Breast and Pancreatic Cancer Cells

    Directory of Open Access Journals (Sweden)

    Leo L. Chan

    2011-01-01

    Full Text Available Chemotherapeutic agents for cancer are highly toxic to healthy tissues and hence alternative medicine avenues are widely researched. Majority of the recent studies on alternative medicine suggested that Amoora rohituka possesses considerable antitumor and antibacterial properties. In this work, rohituka and chittagonga, fractionated with petroleum ether, dichloromethane, and ethanol, were explored for their anticancer potential against two breast cancer (MCF-7 and HTB-126 and three pancreatic cancer (Panc-1, Mia-Paca2, and Capan1. The human foreskin fibroblast, Hs68, was also included. Cytotoxicity of each extract was analyzed using the MTT assay and label-free photonic crystal biosensor assay. A concentration series of each extract was performed on the six cell lines. For MCF-7 cancer cells, the chittagonga (Pet-Ether and CH2Cl2 and rohituka (Pet-Ether extracts induced cytotoxicity; the chittagonga (EtoAC and rohituka (MeOH extracts did not induce cytotoxicity. For HTB126, Panc-1, Mia-Paca2, and Capan-1 cancer cells, only the chittagonga CH2Cl2 extract showed a significant cytotoxic effect. The extracts were not cytotoxic to normal fibroblast Hs68 cells, which may be correlated to the specificity of Amoora extracts in targeting cancerous cells. Based on these results, further examination of the potential anticancer properties Amoora species and the identification of the active ingredients of these extracts is warranted.

  12. Cell-autonomous cytotoxicity of type I interferon responseviainduction of endoplasmic reticulum stress.

    Science.gov (United States)

    Mihailidou, Chrysovalantou; Papavassiliou, Athanasios G; Kiaris, Hippokratis

    2017-12-01

    The interaction of IFN with specific membrane receptors that transduce death-inducing signals is considered to be the principle mechanism of IFN-induced cytotoxicity. In this study, the classic non-cell-autonomous cytotoxicity of IFN was augmented by cell-autonomous mechanisms that operated independently of the interaction of IFN with its receptors. Cells primed to produce IFN by 5-azacytidine (5-aza) underwent endoplasmic reticulum (ER) stress. The chemical chaperones tauroursodeoxycholate (TUDCA) and 4-phenylbutyrate (4-PBA), as well as the iron chelator ciclopirox (CPX), which reduces ER stress, alleviated the cytotoxicity of 5-aza. Ablation of CCAAT-enhancer-binding protein homologous protein (CHOP), the major ER stress-associated proapoptotic transcription factor, protected fibroblasts from 5-aza only when the cytotoxicity was examined cell autonomously. In a medium-transfer experiment in which the cell-autonomous effects of 5-aza was dissociated, CHOP ablation was incapable of modulating cytotoxicity; however, neutralization of IFN receptor was highly effective. Also the levels of caspase activation showed a distinct profile between the cell-autonomous and the medium-transfer experiments. We suggest that besides the classic paracrine mechanism, cell-autonomous mechanisms that involve induction of ER stress also participate. These results have implications in the development of anti-IFN-based therapies and expand the class of pathologic states that are viewed as protein-misfolding diseases.-Mihailidou, C., Papavassiliou, A. G., Kiaris, H. Cell-autonomous cytotoxicity of type I interferon response via induction of endoplasmic reticulum stress. © FASEB.

  13. Expression of cytotoxic mediators (perforin, granzyme B, FAS, and FAS-l in renal allograft biopsies

    Directory of Open Access Journals (Sweden)

    Therezinha Gauri Leitão

    2006-12-01

    Full Text Available Objectives: To analyze the in situ expression of perforin, granzymeB, FAS-L and FAS in renal allograft biopsies by means ofimmunohistochemistry and correlate these findings with the degreeof histologic rejection and allograft outcome. Methods: Ninety-sixallograft biopsies were divided into three groups: acute rejection (n= 56, chronic rejection (n = 31, and cases with stable renal function(no rejection; n = 9. The expression of perforin, granzyme B, FAS-L,and FAS was evaluated by immunohistochemistry. Results: Asignificantly higher expression of perforin and granzyme B wasobserved in acute rejection biopsies (4.83 ± 0.65 and 30.05 ± 7.93cells/mm2 compared to chronic rejection biopsies (0.71 ± 0.13 and11.4 ± 3.84 cells/mm2; p < 0.001, and p <0.05, respectively, but thiswas not the case for FAS-L (24.44 ± 5.56 in acute rejection versus 18.87± 6.83 in chronic rejection. Perforin, granzyme B, and FAS-L expressionwas significantly higher in the acute rejection group compared to the norejection and control groups. FAS expression was similar in all groups. Amodest correlation between perforin expression and the severity of ARwas observed (r = 0.28, p = 0.05. Perforin was the most reliable markerfor acute rejection diagnosis, with 80% sensitivity and 84.3% specificity.Conclusion: The in situ expression of perforin, granzyme B, and FAS-Lin AR reflects the presence of an active cytotoxic process. Additionalallograft biopsies are necessary in order to evaluate the usefulness ofthese markers for allograft rejection monitoring.

  14. Oncolytic Group B Adenovirus Enadenotucirev Mediates Non-apoptotic Cell Death with Membrane Disruption and Release of Inflammatory Mediators

    Directory of Open Access Journals (Sweden)

    Arthur Dyer

    2017-03-01

    Full Text Available Enadenotucirev (EnAd is a chimeric group B adenovirus isolated by bioselection from a library of adenovirus serotypes. It replicates selectively in and kills a diverse range of carcinoma cells, shows effective anticancer activity in preclinical systems, and is currently undergoing phase I/II clinical trials. EnAd kills cells more quickly than type 5 adenovirus, and speed of cytotoxicity is dose dependent. The EnAd death pathway does not involve p53, is predominantly caspase independent, and appears to involve a rapid fall in cellular ATP. Infected cells show early loss of membrane integrity; increased exposure of calreticulin; extracellular release of ATP, HSP70, and HMGB1; and influx of calcium. The virus also causes an obvious single membrane blister reminiscent of ischemic cell death by oncosis. In human tumor biopsies maintained in ex vivo culture, EnAd mediated release of pro-inflammatory mediators such as TNF-α, IL-6, and HMGB1. In accordance with this, EnAd-infected tumor cells showed potent stimulation of dendritic cells and CD4+ T cells in a mixed tumor-leukocyte reaction in vitro. Whereas many viruses have evolved for efficient propagation with minimal inflammation, bioselection of EnAd for rapid killing has yielded a virus with a short life cycle that combines potent cytotoxicity with a proinflammatory mechanism of cell death.

  15. Cytotoxicity and genotoxicity assessment of Euphorbia hirta in MCF-7 cell line model using comet assay.

    Science.gov (United States)

    Ping, Kwan Yuet; Darah, Ibrahim; Chen, Yeng; Sasidharan, Sreenivasan

    2013-09-01

    To evaluate the cytotoxicity and genotoxicity activity of Euphorbia hirta (E. hirta) in MCF-7 cell line model using comet assay. The cytotoxicity of E. hirta extract was investigated by employing brine shrimp lethality assay and the genotoxicity of E. hirta was assessed by using Comet assay. Both toxicity tests exhibited significant toxicity result. In the comet assay, the E. hirta extract exhibited genotoxicity effects against MCF-7 DNA in a time-dependent manner by increasing mean percentage of DNA damage. The extract of E. hirta showed significant toxicity against brine shrimp with an LC₅₀ value of 620.382 µg/mL (24 h). Comparison with positive control potassium dichromate signifies that cytotoxicity exhibited by the methanol extract might have moderate activity. The present work confirmed the cytotoxicity and genotoxicity of E. hirta. However, the observed toxicity of E. hirta extracts needs to be confirmed in additional studies.

  16. A novel method for producing target cells and assessing cytotoxic T lymphocyte activity in outbred hosts

    Directory of Open Access Journals (Sweden)

    Bendinelli Mauro

    2009-03-01

    Full Text Available Abstract Background Cytotoxic T lymphocytes play a crucial role in the immunological control of microbial infections and in the design of vaccines and immunotherapies. Measurement of cytotoxic T lymphocyte activity requires that the test antigen is presented by target cells having the same or compatible class I major hystocompatibility complex antigens as the effector cells. Conventional assays use target cells labeled with 51chromium and infer cytotoxic T lymphocyte activity by measuring the isotope released by the target cells lysed following incubation with antigen-specific cytotoxic T lymphocytes. This assay is sensitive but needs manipulation and disposal of hazardous radioactive reagents and provides a bulk estimate of the reporter released, which may be influenced by spontaneous release of the label and other poorly controllable variables. Here we describe a novel method for producing target in outbred hosts and assessing cytotoxic T lymphocyte activity by flow cytometry. Results The method consists of culturing skin fibroblasts, immortalizing them with a replication defective clone of simian virus 40, and finally transducing them with a bicistronic vector encoding the target antigen and the reporter green fluorescent protein. When used in a flow cytometry-based assay, the target cells obtained with this method proved valuable for assessing the viral envelope protein specific cytotoxic T lymphocyte activity in domestic cats acutely or chronically infected with feline immunodeficiency virus, a lentivirus similar to human immunodeficiency virus and used as animal model for AIDS studies. Conclusion Given the versatility of the bicistronic vector used, its ability to deliver multiple and large transgenes in target cells, and its extremely wide cell specificity when pseudotyped with the vesicular stomatitis virus envelope protein, the method is potentially exploitable in many animal species.

  17. Cytotoxicity and genotoxicity in liver cells induced by cobalt nanoparticles and ions.

    Science.gov (United States)

    Liu, Y K; Deng, X X; Yang, H L

    2016-10-01

    The cytotoxicity induced by cobalt ions (Co 2+ ) and cobalt nanoparticles (Co-NPs) which released following the insertion of a total hip prosthesis, has been reported. However, little is known about the underlying mechanisms. In this study, we investigate the toxic effect of Co 2+ and Co-NPs on liver cells, and explain further the potential mechanisms. Co-NPs were characterised for size, shape, elemental analysis, and hydrodynamic diameter, and were assessed by Transmission Electron Microscope, Scanning Electron Microscope, Energy Dispersive X-ray Spectroscopy and Dynamic Light Scattering. BRL-3A cells were used in this study. Cytotoxicity was evaluated by MTT and lactate dehydrogenase release assay. In order to clarify the potential mechanisms, reactive oxygen species, Bax/Bcl-2 mRNA expression, IL-8 mRNA expression and DNA damage were assessed on BRL-3A cells after Co 2+ or Co-NPs treatment. Results showed cytotoxic effects of Co 2+ and Co-NPs were dependent upon time and dosage, and the cytotoxicity of Co-NPs was greater than that of Co 2+ . In addition, Co-NPs elicited a significant (p cytotoxicity and genotoxicity in BRL-3A cells than Co 2+ . Cell membrane damage, oxidative stress, immune inflammation and DNA damage may play an important role in the effects of Co-NPs on liver cells.Cite this article: Y. K. Liu, X. X. Deng, H.L. Yang. Cytotoxicity and genotoxicity in liver cells induced by cobalt nanoparticles and ions. Bone Joint Res 2016;5:461-469. DOI: 10.1302/2046-3758.510.BJR-2016-0016.R1. © 2016 Yang et al.

  18. Effect of ginseng polysaccharides on NK cell cytotoxicity in immunosuppressed mice.

    Science.gov (United States)

    Sun, Yaoyao; Guo, Mofei; Feng, Yuanjie; Zheng, Huifang; Lei, Ping; Ma, Xiande; Han, Xiaowei; Guan, Hongquan; Hou, Diandong

    2016-12-01

    The aim of the present study was to investigate the effects of Ginseng polysaccharides (GPS) on natural killer (NK) cell cytotoxicity in immunosuppressed mice. Cyclophosphamide (Cy) was used to construct an immunosuppressed mouse model. The mice in each group were submitted to gavages with 200 or 400 mg/kg GPS every day for 10 days. Magnetic-activated cell sorting was used to isolate spleen NK cells, and the NK cell cytotoxicity, blood distribution, expression levels of perforin and granzyme, and the mRNA expression levels of interferon (IFN)-γ were detected. Compared with the normal control group, the cytotoxicity and proportion of NK cells in the blood, and the expression levels of perforin, granzyme and IFN-γ mRNA in the Cy model group were significantly reduced (Pcytotoxicity and proportion of NK cells in the whole blood, and the expression levels of perforin and granzyme in the NK cells in the Cy + low-dose GPS and Cy + high-dose GPS groups were significantly increased (P0.05). Compared with the normal control group, the cytotoxicity and proportion of NK cells in the whole blood, and the expression levels of perforin in the Cy + low-dose GPS and the Cy + high-dose GPS groups were significantly lower (P0.05). These results suggested that GPS promotes NK cell cytotoxicity in immunosuppressed mice by increasing the number of NK cells in the whole blood and upregulating the expression of perforin and granzyme. Thus, the present study investigated the molecular mechanism underlying NK cell activation by GPS, the research showed that GPS have a wide application prospects in the treatment of cancer and immunodeficiency diseases.

  19. miR-146a down-regulation alleviates H2O2-induced cytotoxicity of PC12 cells by regulating MCL1/JAK/STAT pathway : miR-146a down-regulation relieves H2O2-induced PC12 cells cytotoxicity by MCL1/JAK/STAT.

    Science.gov (United States)

    Yang, Xuecheng; Mao, Xin; Ding, Xuemei; Guan, Fengju; Jia, Yuefeng; Luo, Lei; Li, Bin; Tan, Hailin; Cao, Caixia

    2018-02-26

    Oxidative stress and miRNAs have been confirmed to play an important role in neurological diseases. The study aimed to explore the underlying effect and mechanisms of miR-146a in H 2 O 2 -induced injury of PC12 cells. Here, PC12 cells were stimulated with 200 μM of H 2 O 2 to construct oxidative injury model. Cell injury was evaluated on the basis of the changes in cell viability, migration, invasion, apoptosis, and DNA damage. Results revealed that miR-146a expression was up-regulated in H 2 O 2 -induced PC12 cells. Functional analysis showed that down-regulation of miR-146a alleviated H 2 O 2 -induced cytotoxicity in PC12 cells. Dual-luciferase reporter and western blot assay verified that MCL1 was a direct target gene of miR-146a. Moreover, anti-miR-146a-mediated suppression on cell cytotoxicity was abated following MCL1 knockdown in H 2 O 2 -induced PC12 cells. Furthermore, MCL1 activated JAK/STAT signaling pathway and MCL1 overexpression attenuated H 2 O 2 -induced cytotoxicity in PC12 cells by JAK/STAT signaling pathway. In conclusion, this study suggested that suppression of miR-146a abated H 2 O 2 -induced cytotoxicity in PC12 cells via regulating MCL1/JAK/STAT pathway.

  20. The Serine Protease EspC from Enteropathogenic Escherichia coli Regulates Pore Formation and Cytotoxicity Mediated by the Type III Secretion System.

    Directory of Open Access Journals (Sweden)

    Julie Guignot

    2015-07-01

    Full Text Available Type III secretion systems (T3SSs are specialized macromolecular machines critical for bacterial virulence, and allowing the injection of bacterial effectors into host cells. The T3SS-dependent injection process requires the prior insertion of a protein complex, the translocon, into host cell membranes consisting of two-T3SS hydrophobic proteins, associated with pore-forming activity. In all described T3SS to date, a hydrophilic protein connects one hydrophobic component to the T3SS needle, presumably insuring the continuum between the hollow needle and the translocon. In the case of Enteropathogenic Escherichia coli (EPEC, the hydrophilic component EspA polymerizes into a filament connecting the T3SS needle to the translocon composed of the EspB and EspD hydrophobic proteins. Here, we identify EspA and EspD as targets of EspC, a serine protease autotransporter of Enterobacteriaceae (SPATE. We found that in vitro, EspC preferentially targets EspA associated with EspD, but was less efficient at proteolyzing EspA alone. Consistently, we found that EspC did not regulate EspA filaments at the surface of primed bacteria that was devoid of EspD, but controlled the levels of EspD and EspA secreted in vitro or upon cell contact. While still proficient for T3SS-mediated injection of bacterial effectors and cytoskeletal reorganization, an espC mutant showed increased levels of cell-associated EspA and EspD, as well as increased pore formation activity associated with cytotoxicity. EspP from enterohaemorrhagic E. coli (EHEC also targeted translocator components and its activity was interchangeable with that of EspC, suggesting a common and important function of these SPATEs. These findings reveal a novel regulatory mechanism of T3SS-mediated pore formation and cytotoxicity control during EPEC/EHEC infection.

  1. The Serine Protease EspC from Enteropathogenic Escherichia coli Regulates Pore Formation and Cytotoxicity Mediated by the Type III Secretion System.

    Science.gov (United States)

    Guignot, Julie; Segura, Audrey; Tran Van Nhieu, Guy

    2015-07-01

    Type III secretion systems (T3SSs) are specialized macromolecular machines critical for bacterial virulence, and allowing the injection of bacterial effectors into host cells. The T3SS-dependent injection process requires the prior insertion of a protein complex, the translocon, into host cell membranes consisting of two-T3SS hydrophobic proteins, associated with pore-forming activity. In all described T3SS to date, a hydrophilic protein connects one hydrophobic component to the T3SS needle, presumably insuring the continuum between the hollow needle and the translocon. In the case of Enteropathogenic Escherichia coli (EPEC), the hydrophilic component EspA polymerizes into a filament connecting the T3SS needle to the translocon composed of the EspB and EspD hydrophobic proteins. Here, we identify EspA and EspD as targets of EspC, a serine protease autotransporter of Enterobacteriaceae (SPATE). We found that in vitro, EspC preferentially targets EspA associated with EspD, but was less efficient at proteolyzing EspA alone. Consistently, we found that EspC did not regulate EspA filaments at the surface of primed bacteria that was devoid of EspD, but controlled the levels of EspD and EspA secreted in vitro or upon cell contact. While still proficient for T3SS-mediated injection of bacterial effectors and cytoskeletal reorganization, an espC mutant showed increased levels of cell-associated EspA and EspD, as well as increased pore formation activity associated with cytotoxicity. EspP from enterohaemorrhagic E. coli (EHEC) also targeted translocator components and its activity was interchangeable with that of EspC, suggesting a common and important function of these SPATEs. These findings reveal a novel regulatory mechanism of T3SS-mediated pore formation and cytotoxicity control during EPEC/EHEC infection.

  2. Cytotoxic CD4 T Cells: Differentiation, Function, and Application to Dengue Virus Infection

    Directory of Open Access Journals (Sweden)

    Yuan Tian

    2016-12-01

    Full Text Available Dengue virus (DENV has spread through most tropical and subtropical areas of the world and represents a serious public health problem. The control of DENV infection has not yet been fully successful due to lack of effective therapeutics or vaccines. Nevertheless, a better understanding of the immune responses against DENV infection may reveal new strategies for eliciting and improving antiviral immunity. T cells provide protective immunity against various viral infections by generating effector cells that cooperate to eliminate antigens and memory cells that can survive for long periods with enhanced abilities to control recurring pathogens. Following activation, CD8 T cells can migrate to sites of infection and kill infected cells, whereas CD4 T cells contribute to the elimination of pathogens by t