WorldWideScience

Sample records for cell maturation induced

  1. Cannabinoids induce incomplete maturation of cultured human leukemia cells

    Energy Technology Data Exchange (ETDEWEB)

    Murison, G.; Chubb, C.B.H.; Maeda, S.; Gemmell, M.A.; Huberman, E.

    1987-08-01

    Monocyte maturation markers were induced in cultured human myeloblastic ML-2 leukemia cells after treatment for 1-6 days with 0.03-30 ..mu..M ..delta../sup 9/-tetrahydrocannabinol (THC), the major psychoactive component of marijuana. After a 2-day or longer treatment, 2- to 5-fold increases were found in the percentages of cells exhibiting reactivity with either the murine OKM1 monoclonal antibody of the Leu-M5 monoclonal antibody, staining positively for nonspecific esterase activity, and displaying a promonocyte morphology. The increases in these differentiation markers after treatment with 0.03-1 ..mu..M THC were dose dependent. At this dose range, THC did not cause an inhibition of cell growth. The THC-induced cell maturation was also characterized by specific changes in the patterns of newly synthesized proteins. The THC-induced differentiation did not, however, result in cells with a highly developed mature monocyte phenotype. However, treatment of these incompletely matured cells with either phorbol 12-myristate 13-acetate of 1..cap alpha..,25-dihydroxycholecalciferol, which are inducers of differentiation in myeloid leukemia cells (including ML-2 cells), produced cells with a mature monocyte morphology. The ML-2 cell system described here may be a useful tool for deciphering critical biochemical events that lead to the cannabinoid-induced incomplete cell differentiation of ML-2 cells and other related cell types. Findings obtained from this system may have important implications for studies of cannabinoid effects on normal human bone-marrow progenitor cells.

  2. Heat Shock Protein 96 Induces Maturation of Dendritic Cells

    Institute of Scientific and Technical Information of China (English)

    Chunxia Cao; Wei Yang; Yonglie Chu; Qingguang Liu; Liang Yu; Cheng'en Pan

    2006-01-01

    Objective: Heat shock protein (HSP) has the promiscuous abilities to chaperone and present a broad repertoire of tumor antigens to antigen presenting cells including DCs. In this report, we analyzed the modulation of immature DC by HSP 96 (gp96).Method: Murine bone marrow-derived DC was induced by GM-CSF plus IL-4, which aped the immunostimulatory effects of DC.Cocultured DC and gp96-peptide complexes (gp96-PC) or inactivated H22 cells, the expression of MHC class Ⅱ, CD40, CD80 was quantified by flow cytometry. The concentration of IL-12 and TNF- in culture supernatants were determined by ELISA.[51] Cr release assay was used to test specific cytotoxic T cell. Results: Our study demonstrated that the extent of DC maturation induced by gp96-PC, which was reflected in surface density of costimulatory and MHC Ⅱ molecules, was correlated with the secretion of IL-12 and with the T cellactivating potential in vitro. Conclusion: Heat shock protein 96 could be isolated and purified from H22 cells and could induce maturation of dendritic cell. Our findings might be relevance to the use of DC vaccine in therapy of human tumors.

  3. Apoptosis of matured T lymphocytes induced by mouse sertoli cells in cocultures in vitro

    Institute of Scientific and Technical Information of China (English)

    LIU Yang; LIN Zi-hao; ZHU Xiao-hai; LIU Shan-rong

    2001-01-01

    Objective: To study whether mouse sertoli cells can induce the apoptosis of matured T lymphocytes in cocultures in vitro. Methods: With TUNEL, DNA electrophoresis, eleetro-mierography and flow cytometry, we examined the apoptosis and its rates of mouse matured T lymphocytes in control group (T lymphocytes only), group A (T lymphocytes + culture medium of sertoli cells), group B (T lymphocytes + sertoli cells). Results: Under electro-micrography, chromatin condensation, karyopyknosis, karyorhexis and apoptotic body were observed in some T lymphocytes in 3 groups; some nucleuses were stained dark blue with TUNEL; a typical DNA ladder was found with DNA electrophoresis. The apoptotic rates of T lymphocytes in group A and B were significantly higher than that in control group (P<0.01). The apoptotic rate of T lymphocytes in group B was significantly higher than that in group A (P<0.01). Conclusion: In coculture condition in vitro,mouse sertoli cells can induce the apoptosis of matured T lymphocytes.

  4. Hypoxia alters cell cycle regulatory protein expression and induces premature maturation of oligodendrocyte precursor cells.

    Directory of Open Access Journals (Sweden)

    Ravi Shankar Akundi

    Full Text Available BACKGROUND: Periventricular white matter injury (PWMI is a common form of brain injury sustained by preterm infants. A major factor that predisposes to PWMI is hypoxia. Because oligodendrocytes (OLs are responsible for myelination of axons, abnormal OL development or function may affect brain myelination. At present our understanding of the influences of hypoxia on OL development is limited. To examine isolated effects of hypoxia on OLs, we examined the influences of hypoxia on OL development in vitro. METHODOLOGY/FINDINGS: Cultures of oligodendrocyte precursor cells (OPCs were prepared from mixed glial cultures and were 99% pure. OPCs were maintained at 21% O(2 or hypoxia (1% or 4% O(2 for up to 7 days. We observed that 1% O(2 lead to an increase in the proportion of myelin basic protein (MBP-positive OLs after 1 week in culture, and a decrease in the proportion of platelet-derived growth factor receptor alpha (PDGFRalpha-positive cells suggesting premature OL maturation. Increased expression of the cell cycle regulatory proteins p27(Kip1 and phospho-cdc2, which play a role in OL differentiation, was seen as well. CONCLUSIONS: These results show that hypoxia interferes with the normal process of OL differentiation by inducing premature OPC maturation.

  5. Tumor cells prevent mouse dendritic cell maturation induced by TLR ligands.

    Science.gov (United States)

    Idoyaga, Juliana; Moreno, José; Bonifaz, Laura

    2007-08-01

    Tumor cells can evade the immune system through several mechanisms, one of which is to block DC maturation. It has been suggested that signaling via Toll-like receptors (TLR) may be involved in the induction of prophylactic anti-cancer immunity and in the treatment of established tumors. In the present study we found that high numbers of tumor cells interfere with BMDC activation induced by the TLR ligands LPS and poly IC. Tumor cells blocked TLR3- and TLR4-mediated induction of MHCII and the co-stimulatory molecules CD40 and CD86, as well as the cytokines IL-12, TNF-alpha and IL-6. Importantly, tumor cells induced inhibitory molecules (B7-DC, B7-H1 and CD80) on spleen DC in vivo and on BMDC, even in the presence of TLR ligands. Moreover, after a long exposure with tumor cells, purified BMDC were unable to respond to a second challenge with TLR ligands. The failure of tumor exposed-BMDC to express co-stimulatory molecules and cytokines in the presence of TLR ligands has implications for the future development of DC-based cancer immune therapies using TLR ligands as adjuvants for the activation of DC.

  6. Lymphocytic choriomeningitis virus-induced immunosuppression: evidence for viral interference with T-cell maturation

    DEFF Research Database (Denmark)

    Thomsen, Allan Randrup; Bro-Jørgensen, K; Jensen, Birgitte Løkke

    1982-01-01

    Acute lymphocytic choriomeningitis virus (LCMV) infection is associated with general immunosuppression which develops during the second week of the infection and persists for several weeks. In the present study, the ability of LCMV-infected mice to mount a cytotoxic T-lymphocyte response was...... investigated in a transplantation assay, using LCMV-immunized mice as recipients. By this means it was possible to evaluate the T-cell responsiveness of the acutely infected mice separately. Our results revealed a marked depression of the T-cell function temporally related to immunosuppression in the intact...... that a numerical deficiency of immunocompetent T-cells due to viral interference with T-cell maturation plays an important role in LCMV-induced immunosuppression....

  7. Efficient and cost-effective generation of mature neurons from human induced pluripotent stem cells.

    Science.gov (United States)

    Badja, Cherif; Maleeva, Galyna; El-Yazidi, Claire; Barruet, Emilie; Lasserre, Manon; Tropel, Philippe; Binetruy, Bernard; Bregestovski, Piotr; Magdinier, Frédérique

    2014-12-01

    For years, our ability to study pathological changes in neurological diseases has been hampered by the lack of relevant models until the recent groundbreaking work from Yamanaka's group showing that it is feasible to generate induced pluripotent stem cells (iPSCs) from human somatic cells and to redirect the fate of these iPSCs into differentiated cells. In particular, much interest has focused on the ability to differentiate human iPSCs into neuronal progenitors and functional neurons for relevance to a large number of pathologies including mental retardation and behavioral or degenerative syndromes. Current differentiation protocols are time-consuming and generate limited amounts of cells, hindering use on a large scale. We describe a feeder-free method relying on the use of a chemically defined medium that overcomes the need for embryoid body formation and neuronal rosette isolation for neuronal precursors and terminally differentiated neuron production. Four days after induction, expression of markers of the neurectoderm lineage is detectable. Between 4 and 7 days, neuronal precursors can be expanded, frozen, and thawed without loss of proliferation and differentiation capacities or further differentiated. Terminal differentiation into the different subtypes of mature neurons found in the human brain were observed. At 6-35 days after induction, cells express typical voltage-gated and ionotrophic receptors for GABA, glycine, and acetylcholine. This specific and efficient single-step strategy in a chemically defined medium allows the production of mature neurons in 20-40 days with multiple applications, especially for modeling human pathologies.

  8. New model for the genesis and maturation of viroplasms induced by fijiviruses in insect vector cells.

    Science.gov (United States)

    Mao, Qianzhuo; Zheng, Shenglan; Han, Qingmei; Chen, Hongyan; Ma, Yuanyuan; Jia, Dongsheng; Chen, Qian; Wei, Taiyun

    2013-06-01

    Plant reoviruses are thought to replicate and assemble within cytoplasmic, nonmembranous structures called viroplasms. Here, we established continuous cell cultures of the white-backed planthopper (Sogatella furcifera Horváth) to investigate the mechanisms for the genesis and maturation of the viroplasm induced by Southern rice black-streaked dwarf virus (SRBSDV), a fijivirus in the family Reoviridae, during infection of its insect vector. Electron and confocal microscopy revealed that the viroplasm consisted of a granular region, where viral RNAs and nonstructural proteins P6 and P9-1 accumulated, and a filamentous region, where viral RNAs, progeny cores, viral particles, as well as nonstructural proteins P5 and P6 accumulated. Our results suggested that the filamentous viroplasm matrix was the site for the assembly of progeny virions. Because viral RNAs were produced by assembled core particles within the filamentous viroplasm matrix, we propose that these viral RNAs might be transported to the granular viroplasm matrix. P5 formed filamentous inclusions and P9-1 formed granular inclusions in the absence of viral infection, suggesting that the filamentous and granular viroplasm matrices were formed primarily by P5 and P9-1, respectively. P6 was apparently recruited in the whole viroplasm matrix by direct interaction with P9-1 and P5. Thus, the present results suggested that P5, P6, and P9-1 are collectively required for the genesis and maturation of the filamentous and granular viroplasm matrix induced by SRBSDV infection. Based on these results, we propose a new model to explain the genesis and maturation of the viroplasms induced by fijiviruses in insect vector cells.

  9. Proinsulin atypical maturation and disposal induces extensive defects in mouse Ins2+/Akita β-cells.

    Directory of Open Access Journals (Sweden)

    Qingxin Yuan

    Full Text Available Because of its low relative folding rate and plentiful manufacture in β-cells, proinsulin maintains a homeostatic balance of natively and plentiful non-natively folded states (i.e., proinsulin homeostasis, PIHO through the integration of maturation and disposal processes. PIHO is susceptible to genetic and environmental influences, and its disorder has been critically linked to defects in β-cells in diabetes. To explore this hypothesis, we performed polymerase chain reaction (PCR, metabolic-labeling, immunoblotting, and histological studies to clarify what defects result from primary disorder of PIHO in model Ins2(+/Akita β-cells. We used T antigen-transformed Ins2(+/Akita and control Ins2(+/+ β-cells established from Akita and wild-type littermate mice. In Ins2(+/Akita β-cells, we found no apparent defect at the transcriptional and translational levels to contribute to reduced cellular content of insulin and its precursor and secreted insulin. Glucose response remained normal in proinsulin biosynthesis but was impaired for insulin secretion. The size and number of mature insulin granules were reduced, but the size/number of endoplasmic reticulum, Golgi, mitochondrion, and lysosome organelles and vacuoles were expanded/increased. Moreover, cell death increased, and severe oxidative stress, which manifested as increased reactive oxygen species, thioredoxin-interacting protein, and protein tyrosine nitration, occurred in Ins2(+/Akita β-cells and/or islets. These data show the first clear evidence that primary PIHO imbalance induces severe oxidative stress and impairs glucose-stimulated insulin release and β-cell survival as well as producing other toxic consequences. The defects disclosed/clarified in model Ins2(+/Akita β-cells further support a role of the genetic and stress-susceptible PIHO disorder in β-cell failure and diabetes.

  10. Mycobacterium tuberculosislpdC, Rv0462, induces dendritic cell maturation and Th1 polarization

    International Nuclear Information System (INIS)

    Highlights: → Treatment with Rv0462 induces the expression of surface molecules and the production of cytokines in DCs. → Rv0462 induces the activation of MAPKs. → Rv0462-treated DCs enhances the proliferation of CD4+ T cells. -- Abstract: Mycobacterium tuberculosis, the etiological factor of pulmonary tuberculosis, causes significant morbidity and mortality worldwide. Activation of host immune responses for containment of mycobacterial infections involves participation of innate immune cells, such as dendritic cells (DCs). In this study, we demonstrated that the gene encoding lipoamide dehydrogenase C (lpdC) from M. tuberculosis, Rv0462, induce maturation and activation of DCs involved in the MAPKs signaling pathway. Moreover, Rv0462-treated DCs activated naive T cells, polarized CD4+ and CD8+ T cells to secrete IFN-γ in syngeneic mixed lymphocyte reactions, which would be expected to contribute to Th1 polarization of the immune response. Our results suggest that Rv0462 can contribute to the innate and adaptive immune responses during tuberculosis infection, and thus modulate the clinical course of tuberculosis.

  11. Human Vδ2+ γδ T cells differentially induce maturation, cytokine production and alloreactive T cell stimulation by dendritic cells and B cells

    OpenAIRE

    Andreea ePetrasca; Doherty, Derek G.

    2014-01-01

    Human γδ T cells expressing the Vγ9Vδ2 T cell receptor can induce maturation of dendritic (DC) into antigen-presenting cells (APC) and B cells into antibody-secreting plasma cells. Since B cells are capable of presenting antigens to T cells, we investigated if Vγ9Vδ2 T cells can influence antigen presentation by these cells. We report that Vδ2 T cells induced expression of CD86, HLA-DR and CD40 by B cells and stimulated the release of IL-4, IL-6, TNF-α, and IgG, IgA and IgM. Vγ9Vδ2 T cells al...

  12. Interferon-γ Added During Bacillus Calmette-Guerin Induced Dendritic Cell Maturation Stimulates Potent Th1 Immune Responses

    Directory of Open Access Journals (Sweden)

    Pestano Linda A

    2003-10-01

    Full Text Available Abstract Dendritic cells (DC are increasingly prepared in vitro for use in immunotherapy trials. Mature DC express high levels of surface molecules needed for T cell activation and are superior at antigen-presentation than immature DC. Bacillus Calmette-Guerin (BCG is one of several products known to induce DC maturation, and interferon (IFN-γ has been shown to enhance the activity of DC stimulated with certain maturation factors. In this study, we investigated the use of IFN-γ in combination with the powerful maturation agent, BCG. The treatment of immature DC with IFN-γ plus BCG led to the upregulation of CD54, CD80, and CD86 in comparison with BCG treatment alone. In MLR or recall immune responses, the addition of IFN-γ at the time of BCG-treatment did not increase the number of antigen-specific T cells but enhanced the development of IFN-γ-producing Th1 cells. In primary immune responses, on the other hand, BCG and IFN-γ co-treated DC stimulated higher proportions of specific T cells as well as IFN-γ secretion by these T cells. Thus the use of IFN-γ during BCG-induced DC maturation differentially affects the nature of recall versus naïve antigen-specific T-cell responses. IFN-γ co-treatment with BCG was found to induce IL-12 and, in some instances, inhibit IL-10 secretion by DC. These findings greatly enhance the potential of BCG-matured dendritic cells for use in cancer immunotherapy.

  13. Alcohol Increases Liver Progenitor Populations and Induces Disease Phenotypes in Human IPSC-Derived Mature Stage Hepatic Cells.

    Science.gov (United States)

    Tian, Lipeng; Deshmukh, Abhijeet; Prasad, Neha; Jang, Yoon-Young

    2016-01-01

    Alcohol consumption has long been a global problem affecting human health, and has been found to influence both fetal and adult liver functions. However, how alcohol affects human liver development and liver progenitor cells remains largely unknown. Here, we used human induced pluripotent stem cells (iPSCs) as a model to examine the effects of alcohol, on multi-stage hepatic cells including hepatic progenitors, early and mature hepatocyte-like cells derived from human iPSCs. While alcohol has little effect on endoderm development from iPSCs, it reduces formation of hepatic progenitor cells during early hepatic specification. The proliferative activities of early and mature hepatocyte-like cells are significantly decreased after alcohol exposure. Importantly, at a mature stage of hepatocyte-like cells, alcohol treatment increases two liver progenitor subsets, causes oxidative mitochondrial injury and results in liver disease phenotypes (i.e., steatosis and hepatocellular carcinoma associated markers) in a dose dependent manner. Some of the phenotypes were significantly improved by antioxidant treatment. This report suggests that fetal alcohol exposure may impair generation of hepatic progenitors at early stage of hepatic specification and decrease proliferation of fetal hepatocytes; meanwhile alcohol injury in post-natal or mature stage human liver may contribute to disease phenotypes. This human iPSC model of alcohol-induced liver injury can be highly valuable for investigating alcoholic injury in the fetus as well as understanding the pathogenesis and ultimately developing effective treatment for alcoholic liver disease in adults. PMID:27570479

  14. Farnesyl transferase inhibitors induce extended remissions in transgenic mice with mature B cell lymphomas

    Directory of Open Access Journals (Sweden)

    Refaeli Yosef

    2008-05-01

    Full Text Available Abstract Background We have used a mouse model based on overexpression of c-Myc in B cells genetically engineered to be self-reactive to test the hypothesis that farnesyl transferase inhibitors (FTIs can effectively treat mature B cell lymphomas. FTIs are undergoing clinical trials to treat both lymphoid and non-lymphoid malignancies and we wished to obtain evidence to support the inclusion of B cell lymphomas in future trials. Results We report that two FTIs, L-744,832 and SCH66336, blocked the growth of mature B cell lymphoma cells in vitro and in vivo. The FTI treatment affected the proliferation and survival of the transformed B cells to a greater extent than naïve B cells stimulated with antigen. In syngeneic mice transplanted with the transgenic lymphoma cells, L-744,832 treatment prevented the growth of the tumor cells and the morbidity associated with the resulting lymphoma progression. Tumors that arose from transplantation of the lymphoma cells regressed with as little as three days of treatment with L-744,832 or SCH66336. Treatment of these established lymphomas with L-744,832 for seven days led to long-term remission of the disease in approximately 25% of animals. Conclusion FTI treatment can block the proliferation and survival of self-reactive transformed B cells that overexpress Myc. In mice transplanted with mature B cell lymphomas, we found that FTI treatment led to regression of disease. FTIs warrant further consideration as therapeutic agents for mature B cell lymphomas and other lymphoid tumors.

  15. Cell alignment induced by anisotropic electrospun fibrous scaffolds alone has limited effect on cardiomyocyte maturation

    Directory of Open Access Journals (Sweden)

    Jingjia Han

    2016-05-01

    Full Text Available Enhancing the maturation of human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs will facilitate their applications in disease modeling and drug discovery. Previous studies suggest that cell alignment could enhance hPSC-CM maturation; however, the robustness of this approach has not been well investigated. To this end, we examined if the anisotropic orientation of hPSC-CMs imposed by the underlying aligned fibers within a 3D microenvironment could improve the maturation of hPSC-CMs. Enriched hPSC-CMs were cultured for two weeks on Matrigel-coated anisotropic (aligned and isotropic (random polycaprolactone (PCL fibrous scaffolds, as well as tissue culture polystyrenes (TCPs as a control. As expected, hPSC-CMs grown on the two types of fibrous scaffolds exhibited anisotropic and isotropic orientations, respectively. Similar to cells on TCPs, hPSC-CMs cultured on these scaffolds expressed CM-associated proteins and were pharmacologically responsive to adrenergic receptor agonists, a muscarinic agonist, and a gap junction uncoupler in a dose-dependent manner. Although hPSC-CMs grown on anisotropic fibrous scaffolds displayed the highest expression of genes encoding a number of sarcomere proteins, calcium handling proteins and ion channels, their calcium transient kinetics were slower than cells grown on TCPs. These results suggest that electrospun anisotropic fibrous scaffolds, as a single method, have limited effect on improving the maturation of hPSC-CMs.

  16. Matrine derivate MASM suppresses LPS-induced phenotypic and functional maturation of murine bone marrow-derived dendritic cells.

    Science.gov (United States)

    Xu, Jing; Qi, Yang; Xu, Wei-Heng; Liu, Ying; Qiu, Lie; Wang, Ke-Qi; Hu, Hong-Gang; He, Zhi-Gao; Zhang, Jun-Ping

    2016-07-01

    Dendritic cell (DC) maturation process is a crucial step for the development of T cell immune responses and immune tolerance. In this study, we evaluated MASM, a novel derivative of the natural compound matrine that possesses a significant anti-inflammatory and immune-regulating property, for its efficacy to inhibit lipopolysaccharides (LPS)-induced maturation of murine bone marrow-derived dendritic cells. Here we show that MASM profoundly suppresses LPS-induced phenotypic and functional DC maturation. MASM inhibited LPS-induced expression of costimulatory molecules CD80 and CD86 in a concentration-dependent manner. MASM also attenuated LPS-induced IL-12p70, TNF-α, IL-6 and NO release of DCs. The MASM-treated DCs were highly efficient at antigen capture via mannose receptor-mediated endocytosis but showed weak stimulatory capacity for allogeneic T cell proliferation. Furthermore, MASM inhibited LPS-induced PI3K/Akt, MAPK and NF-κB pathways. These novel findings provide new insight into the immunopharmacological role of MASM in impacting on the DCs.

  17. Potentially probiotic bacteria induce efficient maturation but differential cytokine production in human monocyte-derived dendritic cells

    Institute of Scientific and Technical Information of China (English)

    Sinikka Latvala; Taija E Pietil(a); Ville Veckman; Riina A Kekkonen; Soile Tynkkynen; Riitta Korpela; Ilkka Julkunen

    2008-01-01

    MM: To analyze the ability of nine different potentially probiotic bacteria to induce maturation and cytokine production in human monocyLe-derived dendritic cells (moDCs).METHODS: Cytokine production and maturation of moDCs in response to bacterial stimulation was analyzed with enzyme-linked immunosorbent assay (ELISA) and flow cytometric analysis (FACS),respectively.The kinetics of mRNA expression of cytokine genes was determined by Northern blotting.The involvement of different signaling pathways in cytokine gene expression was studied using specific pharmacological signaling inhibitors.RESULTS: All studied bacteria induced the maturation of moDCs in a dose-dependent manner.More detailed analysis with S.thermophilus THS,B.breve Bb99,and L.lactis subsp,cremoris ARH74 indicated that these bacteria induced the expression of moDC maturation markers HLA class II and CD86 as efficiently as pathogenic bacteria.However,these bacteria differed in their ability to induce moDC cytokine gene expression.S.therrnophilus induced the expression of pro-inflammatory (TNF-a,IL-12,IL-6,and CCL20)and Th1 type (IL-12 and IFN-y) cytokines,while B.breve and L.lactis were also potent inducers of antiinflammatory IL-10.Mitogen-activated protein kinase (MAPK) p38,phosphatidylinositol 3 (PI3) kinase,and nuclear factor-kappa B (NF-κB) signaling pathways were shown to be involved in bacteria-induced cytokine production.CONCLUSION: Our results indicate that potentially probiotic bacteria are able to induce moDC maturation,but their ability to induce cytokine gene expression varies significantly from one bacterial strain to another.

  18. Behavioral experience induces zif268 expression in mature granule cells but suppresses its expression in immature granule cells

    Directory of Open Access Journals (Sweden)

    Kylie A. Huckleberry

    2015-08-01

    Full Text Available Thousands of neurons are born each day in the dentate gyrus (DG, but many of these cells die before reaching maturity. Both death and survival of adult-born neurons are regulated by neuronal activity in DG. The immediate-early gene (IEG zif268 is an important mediator of these effects, as its expression is induced by neural activity and knockout of zif268 impairs survival of adult-born neurons (Veyrac et al., 2013. Despite the apparent importance of zif268 for adult neurogenesis, its behavior-induced expression has not been fully characterized in adult-born neurons. Here we characterize behavior-evoked expression of zif268 in mature and newborn dentate granule cells (DGCs. In the general granule cell population, zif268 expression peaked 1 hour after novel environment exposure and returned to baseline by 8 hours post-exposure. However, in the doublecortin-positive (DCX+ immature neurons, zif268 expression was suppressed relative to home cage for at least 8 hours post-exposure. We next determined that exposure to water maze training, an enriched environment, or a novel environment caused approximately equal suppression of zif268 expression in DCX+ cells and approximately equal activation of zif268 in the general DGC population and in 6-week-old adult-born neurons. Finally, we asked whether zif268 suppression varied as a function of age within the DCX+ population, which ranges in age from 0 to approximately 4 weeks. Novel environment exposure had no significant effect on zif268 expression in 2- or 4-week-old BrdU-labeled neurons, but it significantly suppressed zif268 expression in 3-week-old neurons. In summary, behavioral experience transiently activated expression of zif268 in mature DGCs but caused a more long-lasting suppression of zif268 expression in immature, adult-born DGCs. We hypothesize that zif268 suppression inhibits memory-related synaptic plasticity in immature DGCs or mediates learning-induced apoptosis of immature adult

  19. A novel polysaccharide from the seeds of Plantago asiatica L. induces dendritic cells maturation through toll-like receptor 4.

    Science.gov (United States)

    Huang, Danfei; Nie, Shaoping; Jiang, Leming; Xie, Mingyong

    2014-02-01

    In this study, we investigated the effect of a polysaccharide purified from the seeds of Plantago asiatica L. (PLP-2) on the phenotypic and functional maturation of murine bone marrow-derived dendritic cells (DCs) and relevant mechanisms. The results showed that PLP-2 increased the expression of maturation markers major histocompatibility complex II, CD86, CD80, and CD40 on DCs. Consistent with the changes in the phenotypic markers, functional assay for DCs maturation showed that PLP-2 decreased DCs endocytosis and increased intracellular interleukin (IL)-12 levels and allostimulatory activity. Furthermore, using a syngeneic T cell activation model, we found that PLP-2 treated DCs presented ovalbumin antigen to T cells more efficiently as demonstrated by increased T cell proliferation. In addition, the effects of PLP-2 on DCs were significantly impaired by treating the cells with anti-TLR4 antibody prior to PLP-2 treatment, implying direct interaction between PLP-2 and TLR4 on cell surface. These results suggested that PLP-2 may induce DCs maturation through TLR4. Our results may have important implications for our understanding on the molecular mechanisms of immunopotentiating action of the polysaccharides from plants.

  20. A novel polysaccharide from the seeds of Plantago asiatica L. induces dendritic cells maturation through toll-like receptor 4.

    Science.gov (United States)

    Huang, Danfei; Nie, Shaoping; Jiang, Leming; Xie, Mingyong

    2014-02-01

    In this study, we investigated the effect of a polysaccharide purified from the seeds of Plantago asiatica L. (PLP-2) on the phenotypic and functional maturation of murine bone marrow-derived dendritic cells (DCs) and relevant mechanisms. The results showed that PLP-2 increased the expression of maturation markers major histocompatibility complex II, CD86, CD80, and CD40 on DCs. Consistent with the changes in the phenotypic markers, functional assay for DCs maturation showed that PLP-2 decreased DCs endocytosis and increased intracellular interleukin (IL)-12 levels and allostimulatory activity. Furthermore, using a syngeneic T cell activation model, we found that PLP-2 treated DCs presented ovalbumin antigen to T cells more efficiently as demonstrated by increased T cell proliferation. In addition, the effects of PLP-2 on DCs were significantly impaired by treating the cells with anti-TLR4 antibody prior to PLP-2 treatment, implying direct interaction between PLP-2 and TLR4 on cell surface. These results suggested that PLP-2 may induce DCs maturation through TLR4. Our results may have important implications for our understanding on the molecular mechanisms of immunopotentiating action of the polysaccharides from plants. PMID:24316254

  1. Defined MicroRNAs Induce Aspects of Maturation in Mouse and Human Embryonic-Stem-Cell-Derived Cardiomyocytes

    Directory of Open Access Journals (Sweden)

    Desy S. Lee

    2015-09-01

    Full Text Available Pluripotent-cell-derived cardiomyocytes have great potential for use in research and medicine, but limitations in their maturity currently constrain their usefulness. Here, we report a method for improving features of maturation in murine and human embryonic-stem-cell-derived cardiomyocytes (m/hESC-CMs. We found that coculturing m/hESC-CMs with endothelial cells improves their maturity and upregulates several microRNAs. Delivering four of these microRNAs, miR-125b-5p, miR-199a-5p, miR-221, and miR-222 (miR-combo, to m/hESC-CMs resulted in improved sarcomere alignment and calcium handling, a more negative resting membrane potential, and increased expression of cardiomyocyte maturation markers. Although this could not fully phenocopy all adult cardiomyocyte characteristics, these effects persisted for two months following delivery of miR-combo. A luciferase assay demonstrated that all four miRNAs target ErbB4, and siRNA knockdown of ErbB4 partially recapitulated the effects of miR-combo. In summary, a combination of miRNAs induced via endothelial coculture improved ESC-CM maturity, in part through suppression of ErbB4 signaling.

  2. Retinoic acid and dexamethasone induce differentiation and maturation of somatotroph cells at different stages in vitro

    International Nuclear Information System (INIS)

    The purpose of this study was to investigate the role of retinoic acid (RA) and/or dexamethasone and growth hormone releasing hormone (GHRH) in the induction of somatotroph cell differentiation. Immunohistochemistry, radioimmunoassay, 3-(4,5-dimethylthiazol-1,2-y1)-2,5-diphenyltetrazolium bromide assay, and immune electron microscopy were employed to determine the effect of incubation with these constituents on the differentiation into somatotrophs of cells isolated from the rat embryonic pituitary gland. RA administration increased the proportion of growth hormone (GH) positive somatotroph cells and GH secretion in embryonic pituitary cells (P0.05). However, addition of GHRH to treatment with RA plus dexamethasone significantly increased both the proportion of somatotroph cells and the secretion of GH compared to treatment with RA or dexamethasone alone or RA plus dexamethasone (P<0.01). RA promoted the early differentiation of somatotroph cells, dexamethasone promoted the differentiation and maturation of somatotroph cells and in addition, RA, dexamethasone and GHRH together exerted synergistic effects that markedly promoted somatotroph cell differentiation, maturation and GH secretion. (author)

  3. Bacillus amyloliquefaciens SQR9 induces dendritic cell maturation and enhances the immune response against inactivated avian influenza virus

    Science.gov (United States)

    Huang, Lulu; Qin, Tao; Yin, YinYan; Gao, Xue; Lin, Jian; Yang, Qian; Yu, Qinghua

    2016-01-01

    The objective of this study was to evaluate the stimulatory effects of Bacillus amyloliquefaciens SQR9 on dendritic cells (DCs) and to verify its ability to enhance the immune response by modulating DC maturation. The results demonstrated that B. amyloliquefaciens SQR9 can adhere to the nasal epithelium and be taken up by DCs in the nasal mucosa, thereby inducing DC maturation and resulting in increased CD80, CD86, CD40 and MHCII expression and cytokine secretion. The frequencies of CD4+ and CD8+ T cells and CD69+ memory T cells were increased in spleens after nasal immunization with virus plus B. amyloliquefaciens SQR9 compared to immunization with inactivated H9N2 AIV alone. Moreover, the levels of sIgA in the nasal cavity, the trachea, and the lung and the levels of IgG, IgG1, and IgG2a in serum were significantly increased in mice administered WIV plus SQR9 compared to mice administered H9N2 WIV alone. The results of this study demonstrated that B. amyloliquefaciens SQR9 can stimulate DC maturation to effectively induce an immune response. In conclusion, an effective immune response may result from the uptake of H9N2 by DCs in the nasal mucosa, thereby stimulating DC maturation and migration to cervical lymph nodes to initiate immune response. PMID:26892720

  4. Soluble Jagged 1/Fc chimera protein induces the differentiation and maturation of bone marrow-derived dendritic cells

    Institute of Scientific and Technical Information of China (English)

    XING FeiYue; LIU Jing; YU Zhe; JI YuHua

    2008-01-01

    A soluble Jagged 1/Fc chimera protein (Jagged 1/Fc) was directly used to induce differentiation and maturation of bone marrow-derived dendritic cells (DCs) in mice in vitro. A model of inducing and am-plifying DCs in vitro was established. The effect of Jagged 1/Fc on morphology of DCs induced by both rmGM-CSF and rmlL-4 was observed under a confocal microscope. A fluorescein-labeled monoclonal antibody staining combined with flow cytometry was applied to detect the effect of Jagged 1/Fc on the expression of CD11c, MHC-Ⅱ, CD86, CD80 and CD40 molecules on the surface of DCs. The results showed that Jagged 1/Fc did not affect the morphological properties of DC differentiation induced by both rmGM-CSF and rmlL-4. But it could promote the differentiation and maturation of DCs induced by both. The effect of it was strikingly different in the expression profile of co-stimulating molecules and the morphologic properties of DCs from lipopolysaccharide (LPS). The levels of MHC-Ⅱ and CD40 molecule expression on the surface of DCs stimulated by Jagged 1/Fc were significantly lower than those stimulated by LPS, and the level of CD80 expression on the surface of DCs induced by Jagged 1/Fc was near to that induced by LPS. Jagged 1/Fc had no influence on the expression of CD86 mole-cule on the surface of DCs. Jagged 1/Fc when used alone could not maintain the growth, differentiation and maturation of DCs. All the findings indicate that Jagged 1/Fc influences the differentiation and maturation of DCs, which is not markedly similar to LPS, providing important evidence for its devel-opment and application as a novel immunosuppressant.

  5. Ectopic expression of neurogenin 2 alone is sufficient to induce differentiation of embryonic stem cells into mature neurons.

    Directory of Open Access Journals (Sweden)

    Eva C Thoma

    Full Text Available Recent studies show that combinations of defined key developmental transcription factors (TFs can reprogram somatic cells to pluripotency or induce cell conversion of one somatic cell type to another. However, it is not clear if single genes can define a cell̀s identity and if the cell fate defining potential of TFs is also operative in pluripotent stem cells in vitro. Here, we show that ectopic expression of the neural TF Neurogenin2 (Ngn2 is sufficient to induce rapid and efficient differentiation of embryonic stem cells (ESCs into mature glutamatergic neurons. Ngn2-induced neuronal differentiation did not require any additional external or internal factors and occurred even under pluripotency-promoting conditions. Differentiated cells displayed neuron-specific morphology, protein expression, and functional features, most importantly the generation of action potentials and contacts with hippocampal neurons. Gene expression analyses revealed that Ngn2-induced in vitro differentiation partially resembled neurogenesis in vivo, as it included specific activation of Ngn2 target genes and interaction partners. These findings demonstrate that a single gene is sufficient to determine cell fate decisions of uncommitted stem cells thus giving insights into the role of key developmental genes during lineage commitment. Furthermore, we present a promising tool to improve directed differentiation strategies for applications in both stem cell research and regenerative medicine.

  6. Short-term environmental enrichment exposure induces proliferation and maturation of doublecortin-positive cells in the prefrontal cortex

    Institute of Scientific and Technical Information of China (English)

    Chunling Fan; Mengqi Zhang; Lei Shang; Ngobe Akume Cynthia; Zhi Li; Zhenyu Yang; Dan Chen; Jufang Huang; Kun Xiong

    2014-01-01

    Previous studies have demonstrated that doublecortin-positive immature neurons exist pre-dominantly in the superficial layer of the cerebral cortex of adult mammals such as guinea pigs, and these neurons exhibit very weak properties of self-proliferation during adulthood under physiological conditions. To verify whether environmental enrichment has an impact on the proliferation and maturation of these immature neurons in the prefrontal cortex of adult guinea pigs, healthy adult guinea pigs were subjected to short-term environmental enrichment. Animals were allowed to play with various cognitive and physical stimulating objects over a period of 2 weeks, twice per day, for 60 minutes each. Immunolfuorescence staining results indicated that the number of doublecortin-positive cells in layer II of the prefrontal cortex was signiifcantly increased after short-term environmental enrichment exposure. In addition, these doublecortin-positive cells co-expressed 5-bromo-2-deoxyuridine (a marker of cell prolifera-tion), c-Fos (a marker of cell viability) and NeuN (a marker of mature neurons). Experimental ifndings showed that short-term environmental enrichment can induce proliferation, activation and maturation of doublecortin-positive cells in layer II of the prefrontal cortex of adult guinea pigs.

  7. Ascophyllan Purified from Ascophyllum nodosum Induces Th1 and Tc1 Immune Responses by Promoting Dendritic Cell Maturation

    Directory of Open Access Journals (Sweden)

    Wei Zhang

    2014-07-01

    Full Text Available Marine-derived sulfated polysaccharides have been shown to possess certain anti-virus, anti-tumor, anti-inflammatory and anti-coagulant activities. However, the in vivo immunomodulatory effects of marine-derived pure compounds have been less well characterized. In this study, we investigated the effect of ascophyllan, a sulfated polysaccharide purified from Ascophyllum nodosum, on the maturation of mouse dendritic cells (DCs in vitro and in vivo. Ascophyllan induced up-regulation of co-stimulatory molecules and production of pro-inflammatory cytokines in bone marrow-derived DCs (BMDCs. Moreover, in vivo administration of ascophyllan promotes up-regulation of CD40, CD80, CD86, MHC class I and MHC class II and production of IL-6, IL-12 and TNF-α in spleen cDCs. Interestingly, ascophyllan induced a higher degree of co-stimulatory molecule up-regulation and pro-inflammatory cytokine production than fucoidan, a marine-derived polysaccharide with well-defined effect for promoting DC maturation. Ascophyllan also promoted the generation of IFN-γ-producing Th1 and Tc1 cells in the presence of DCs in an IL-12-dependent manner. Finally, myeloid differentiation primary response 88 (MyD88 signaling pathway was essential for DC maturation induced by ascophyllan. Taken together, these results demonstrate that ascophyllan induces DC maturation, and consequently enhances Th1 and Tc1 responses in vivo. This knowledge could facilitate the development of novel therapeutic strategies to combat infectious diseases and cancer.

  8. Ascophyllan purified from Ascophyllum nodosum induces Th1 and Tc1 immune responses by promoting dendritic cell maturation.

    Science.gov (United States)

    Zhang, Wei; Du, Jiang-Yuan; Jiang, Zedong; Okimura, Takasi; Oda, Tatsuya; Yu, Qing; Jin, Jun-O

    2014-07-01

    Marine-derived sulfated polysaccharides have been shown to possess certain anti-virus, anti-tumor, anti-inflammatory and anti-coagulant activities. However, the in vivo immunomodulatory effects of marine-derived pure compounds have been less well characterized. In this study, we investigated the effect of ascophyllan, a sulfated polysaccharide purified from Ascophyllum nodosum, on the maturation of mouse dendritic cells (DCs) in vitro and in vivo. Ascophyllan induced up-regulation of co-stimulatory molecules and production of pro-inflammatory cytokines in bone marrow-derived DCs (BMDCs). Moreover, in vivo administration of ascophyllan promotes up-regulation of CD40, CD80, CD86, MHC class I and MHC class II and production of IL-6, IL-12 and TNF-α in spleen cDCs. Interestingly, ascophyllan induced a higher degree of co-stimulatory molecule up-regulation and pro-inflammatory cytokine production than fucoidan, a marine-derived polysaccharide with well-defined effect for promoting DC maturation. Ascophyllan also promoted the generation of IFN-γ-producing Th1 and Tc1 cells in the presence of DCs in an IL-12-dependent manner. Finally, myeloid differentiation primary response 88 (MyD88) signaling pathway was essential for DC maturation induced by ascophyllan. Taken together, these results demonstrate that ascophyllan induces DC maturation, and consequently enhances Th1 and Tc1 responses in vivo. This knowledge could facilitate the development of novel therapeutic strategies to combat infectious diseases and cancer. PMID:25026264

  9. Recombinant Lactobacillus plantarum induces immune responses to cancer testis antigen NY-ESO-1 and maturation of dendritic cells.

    Science.gov (United States)

    Mobergslien, Anne; Vasovic, Vlada; Mathiesen, Geir; Fredriksen, Lasse; Westby, Phuong; Eijsink, Vincent G H; Peng, Qian; Sioud, Mouldy

    2015-01-01

    Given their safe use in humans and inherent adjuvanticity, Lactic Acid Bacteria may offer several advantages over other mucosal delivery strategies for cancer vaccines. The objective of this study is to evaluate the immune responses in mice after oral immunization with Lactobacillus (L) plantarum WCFS1 expressing a cell-wall anchored tumor antigen NY-ESO-1. And to investigate the immunostimulatory potency of this new candidate vaccine on human dendritic cells (DCs). L. plantarum displaying NY-ESO-1 induced NY-ESO-1 specific antibodies and T-cell responses in mice. By contrast, L. plantarum displaying conserved proteins such as heat shock protein-27 and galectin-1, did not induce immunity, suggesting that immune tolerance to self-proteins cannot be broken by oral administration of L. plantarum. With respect to immunomodulation, immature DCs incubated with wild type or L. plantarum-NY-ESO-1 upregulated the expression of co-stimulatory molecules and secreted a large amount of interleukin (IL)-12, TNF-α, but not IL-4. Moreover, they upregulated the expression of immunosuppressive factors such as IL-10 and indoleamine 2,3-dioxygenase. Although L. plantarum-matured DCs expressed inhibitory molecules, they stimulated allogeneic T cells in-vitro. Collectively, the data indicate that L. plantarum-NY-ESO-1 can evoke antigen-specific immunity upon oral administration and induce DC maturation, raising the potential of its use in cancer immunotherapies.

  10. Influenza Virus–induced Dendritic Cell Maturation Is Associated with the Induction of Strong T Cell Immunity to a Coadministered, Normally Nonimmunogenic Protein

    Science.gov (United States)

    Brimnes, Marie K.; Bonifaz, Laura; Steinman, Ralph M.; Moran, Thomas M.

    2003-01-01

    We evaluated the proposal that during microbial infection, dendritic cells (DCs) undergo maturation and present a mixture of peptides derived from the microbe as well as harmless environmental antigens. Mice were exposed to an aerosol of endotoxin free ovalbumin (OVA) in the absence or presence of influenza virus. In its absence, OVA failed to induce B and T cell responses and even tolerized, but with influenza, OVA-specific antibodies and CD8+ cytolytic T lymphocytes developed. With or without infection, OVA was presented selectively in the draining mediastinal lymph nodes, as assessed by the comparable proliferation of infused, CD8+ and CD4+, TCR transgenic T cells. In the absence of influenza, these OVA-specific T cells produced little IL-2, IL-4, IL-10, and IFN-γ, but with infection, both CD4+ and CD8+ T cells made high levels of IL-2 and IFN-γ. The OVA plus influenza-treated mice also showed accelerated recovery to a challenge with recombinant vaccinia OVA virus. CD11c+ DCs from the mediastinal lymph nodes of infected mice selectively stimulated both OVA- and influenza-specific T cells and underwent maturation, with higher levels of MHC class II, CD80, and CD86 molecules. The relatively slow (2–3 d) kinetics of maturation correlated closely to the time at which OVA inhalation elicited specific antibodies. Therefore respiratory infection can induce DC maturation and simultaneously B and T cell immunity to an innocuous antigen inhaled concurrently. PMID:12847140

  11. Non-catalytic site HIV-1 integrase inhibitors disrupt core maturation and induce a reverse transcription block in target cells.

    Directory of Open Access Journals (Sweden)

    Mini Balakrishnan

    Full Text Available HIV-1 integrase (IN is the target for two classes of antiretrovirals: i the integrase strand-transfer inhibitors (INSTIs and ii the non-catalytic site integrase inhibitors (NCINIs. NCINIs bind at the IN dimer interface and are thought to interfere primarily with viral DNA (vDNA integration in the target cell by blocking IN-vDNA assembly as well as the IN-LEDGF/p75 interaction. Herein we show that treatment of virus-producing cells, but not of mature virions or target cells, drives NCINI antiviral potency. NCINIs target an essential late-stage event in HIV replication that is insensitive to LEDGF levels in the producer cells. Virus particles produced in the presence of NCINIs displayed normal Gag-Pol processing and endogenous reverse transcriptase activity, but were defective at initiating vDNA synthesis following entry into the target cell. NCINI-resistant virus carrying a T174I mutation in the IN dimer interface was less sensitive to the compound-induced late-stage effects, including the reverse transcription block. Wild-type, but not T174I virus, produced in the presence of NCINIs exhibited striking defects in core morphology and an increased level of IN oligomers that was not observed upon treatment of mature cell-free particles. Collectively, these results reveal that NCINIs act through a novel mechanism that is unrelated to the previously observed inhibition of IN activity or IN-LEDGF interaction, and instead involves the disruption of an IN function during HIV-1 core maturation and assembly.

  12. Non-catalytic site HIV-1 integrase inhibitors disrupt core maturation and induce a reverse transcription block in target cells.

    Science.gov (United States)

    Balakrishnan, Mini; Yant, Stephen R; Tsai, Luong; O'Sullivan, Christopher; Bam, Rujuta A; Tsai, Angela; Niedziela-Majka, Anita; Stray, Kirsten M; Sakowicz, Roman; Cihlar, Tomas

    2013-01-01

    HIV-1 integrase (IN) is the target for two classes of antiretrovirals: i) the integrase strand-transfer inhibitors (INSTIs) and ii) the non-catalytic site integrase inhibitors (NCINIs). NCINIs bind at the IN dimer interface and are thought to interfere primarily with viral DNA (vDNA) integration in the target cell by blocking IN-vDNA assembly as well as the IN-LEDGF/p75 interaction. Herein we show that treatment of virus-producing cells, but not of mature virions or target cells, drives NCINI antiviral potency. NCINIs target an essential late-stage event in HIV replication that is insensitive to LEDGF levels in the producer cells. Virus particles produced in the presence of NCINIs displayed normal Gag-Pol processing and endogenous reverse transcriptase activity, but were defective at initiating vDNA synthesis following entry into the target cell. NCINI-resistant virus carrying a T174I mutation in the IN dimer interface was less sensitive to the compound-induced late-stage effects, including the reverse transcription block. Wild-type, but not T174I virus, produced in the presence of NCINIs exhibited striking defects in core morphology and an increased level of IN oligomers that was not observed upon treatment of mature cell-free particles. Collectively, these results reveal that NCINIs act through a novel mechanism that is unrelated to the previously observed inhibition of IN activity or IN-LEDGF interaction, and instead involves the disruption of an IN function during HIV-1 core maturation and assembly. PMID:24040198

  13. AKT induces erythroid-cell maturation of JAK2-deficient fetal liver progenitor cells and is required for Epo regulation of erythroid-cell differentiation.

    Science.gov (United States)

    Ghaffari, Saghi; Kitidis, Claire; Zhao, Wei; Marinkovic, Dragan; Fleming, Mark D; Luo, Biao; Marszalek, Joseph; Lodish, Harvey F

    2006-03-01

    AKT serine threonine kinase of the protein kinase B (PKB) family plays essential roles in cell survival, growth, metabolism, and differentiation. In the erythroid system, AKT is known to be rapidly phosphorylated and activated in response to erythropoietin (Epo) engagement of Epo receptor (EpoR) and to sustain survival signals in cultured erythroid cells. Here we demonstrate that activated AKT complements EpoR signaling and supports erythroid-cell differentiation in wild-type and JAK2-deficient fetal liver cells. We show that erythroid maturation of AKT-transduced cells is not solely dependent on AKT-induced cell survival or proliferation signals, suggesting that AKT transduces also a differentiation-specific signal downstream of EpoR in erythroid cells. Down-regulation of expression of AKT kinase by RNA interference, or AKT activity by expression of dominant negative forms, inhibits significantly fetal liver-derived erythroid-cell colony formation and gene expression, demonstrating that AKT is required for Epo regulation of erythroid-cell maturation.

  14. ERK1 and ERK2 are involved in recruitment and maturation of human mesenchymal stem cells induced to adipogenic differentiation

    Institute of Scientific and Technical Information of China (English)

    Elisabetta Donzelli; Caterina Lucchini; Elisa Ballarini; Arianna Scuteri; Fabrizio Carini; Giovanni Tredici; Mariarosaria Miloso

    2011-01-01

    Adipocytes' biology and the mechanisms that control adipogenesis have gained importance because of the need to develop therapeutic strategies to control obesity and the related pathologies. Human mesenchymal stem cells (hMSCs), undifferentiated stem cells present in the bone marrow that are physiological precursors of adipocytes, were induced to adipogenic differentiation. The molecular mechanisms on the basis of the adipogenesis were evaluated, focusing on the MAPKinases ERK1 and ERK2, which are involved in many biological and cellular processes. ERK1 and ERK2 phosphorylation was reduced with different timing and intensity for the two isoforms in treated hMSCs in comparison with control cells until day 10 and then at 14-28 days, it reached the level of untreated cultures. The total amount of ERK1 was also decreased up to day 10 and then was induced to the level of untreated cultures, whereas the expression of ERK2 was not changed following adipogenic induction. Treatment with the specific ERK1/2 inhibitor U0126 during the whole differentiation period hampered hMSCs' adipogenic differentiation, as lipid droplets appeared in very few cells and were reduced in number and size. When U0126 was administered only during the initial phase of differentiation, the number of hMSCs recruited to adipogenesis was reduced while, when it was administered later, hMSCs did not acquire a mature adipocytic phenotype. ERK1 and ERK2 are important for hMSC adipogenic differentiation since any alteration to the correct timing of their phosphorylation affects either the recruitment into the differentiation program and the extent of their maturation.

  15. Complement protein C1q induces maturation of human dendritic cells

    DEFF Research Database (Denmark)

    Cosmor, E; Bajtay, Z; Sándor, N;

    2007-01-01

    in the absence of antibodies, we undertook to investigate whether this complement protein has an impact on various functions of human DCs. Maturation of monocyte-derived immature DCs (imMDCs) cultured on immobilized C1q was followed by monitoring expression of CD80, CD83, CD86, MHCII and CCR7. The functional...

  16. Unconventional maturation of dendritic cells induced by particles from the laminated layer of larval Echinococcus granulosus.

    Science.gov (United States)

    Casaravilla, Cecilia; Pittini, Alvaro; Rückerl, Dominik; Seoane, Paula I; Jenkins, Stephen J; MacDonald, Andrew S; Ferreira, Ana M; Allen, Judith E; Díaz, Alvaro

    2014-08-01

    The larval stage of the cestode parasite Echinococcus granulosus causes hydatid disease in humans and livestock. This infection is characterized by the growth in internal organ parenchymae of fluid-filled structures (hydatids) that elicit surprisingly little inflammation in spite of their massive size and persistence. Hydatids are protected by a millimeter-thick layer of mucin-based extracellular matrix, termed the laminated layer (LL), which is thought to be a major factor determining the host response to the infection. Host cells can interact both with the LL surface and with materials that are shed from it to allow parasite growth. In this work, we analyzed the response of dendritic cells (DCs) to microscopic pieces of the native mucin-based gel of the LL (pLL). In vitro, this material induced an unusual activation state characterized by upregulation of CD86 without concomitant upregulation of CD40 or secretion of cytokines (interleukin 12 [IL-12], IL-10, tumor necrosis factor alpha [TNF-α], and IL-6). When added to Toll-like receptor (TLR) agonists, pLL-potentiated CD86 upregulation and IL-10 secretion while inhibiting CD40 upregulation and IL-12 secretion. In vivo, pLL also caused upregulation of CD86 and inhibited CD40 upregulation in DCs. Contrary to expectations, oxidation of the mucin glycans in pLL with periodate did not abrogate the effects on cells. Reduction of disulfide bonds, which are known to be important for LL structure, strongly diminished the impact of pLL on DCs without altering the particulate nature of the material. In summary, DCs respond to the LL mucin meshwork with a "semimature" activation phenotype, both in vitro and in vivo.

  17. Glycans from Fasciola hepatica Modulate the Host Immune Response and TLR-Induced Maturation of Dendritic Cells.

    Science.gov (United States)

    Rodríguez, Ernesto; Noya, Verónica; Cervi, Laura; Chiribao, María Laura; Brossard, Natalie; Chiale, Carolina; Carmona, Carlos; Giacomini, Cecilia; Freire, Teresa

    2015-12-01

    Helminths express various carbohydrate-containing glycoconjugates on their surface, and they release glycan-rich excretion/secretion products that can be very important in their life cycles, infection and pathology. Recent evidence suggests that parasite glycoconjugates could play a role in the evasion of the immune response, leading to a modified Th2-polarized immune response that favors parasite survival in the host. Nevertheless, there is limited information about the nature or function of glycans produced by the trematode Fasciola hepatica, the causative agent of fasciolosis. In this paper, we investigate whether glycosylated molecules from F. hepatica participate in the modulation of host immunity. We also focus on dendritic cells, since they are an important target of immune-modulation by helminths, affecting their activity or function. Our results indicate that glycans from F. hepatica promote the production of IL-4 and IL-10, suppressing IFNγ production. During infection, this parasite is able to induce a semi-mature phenotype of DCs expressing low levels of MHCII and secrete IL-10. Furthermore, we show that parasite glycoconjugates mediate the modulation of LPS-induced maturation of DCs since their oxidation restores the capacity of LPS-treated DCs to secrete high levels of the pro-inflammatory cytokines IL-6 and IL-12/23p40 and low levels of the anti-inflammatory cytokine IL-10. Inhibition assays using carbohydrates suggest that the immune-modulation is mediated, at least in part, by the recognition of a mannose specific-CLR that signals by recruiting the phosphatase Php2. The results presented here contribute to the understanding of the role of parasite glycosylated molecules in the modulation of the host immunity and might be useful in the design of vaccines against fasciolosis.

  18. Elevated level of pro inflammatory cytokine and chemokine expression in chicken bone marrow and monocyte derived dendritic cells following LPS induced maturation.

    Science.gov (United States)

    Kalaiyarasu, Semmannan; Bhatia, Sandeep; Mishra, Niranjan; Sood, Richa; Kumar, Manoj; SenthilKumar, D; Bhat, Sushant; Dass Prakash, M

    2016-09-01

    The study was designed to characterize and compare chicken bone marrow and peripheral blood monocyte derived dendritic cells (chBM-DC and chMoDC) and to evaluate inflammatory cytokine and chemokine alterations in response upon LPS stimulation. Typical morphology was observed in DCs from 48h of culture using recombinant chicken GM-CSF and IL-4. Maturation of DCs with LPS (1μg/ml) showed significant up regulation of mRNA of surface markers (CD40, CD80, CD83, CD86, MHC-II and DC-LAMP (CD208)), pro-inflammatory cytokines (IL-1β, IL-6, TNF-α (LITAF)), iNOS, chemokine CXCli2 and TLRs4 and 15. Basal level of TLR1 mRNA expression was higher followed by TLR15 in both DCs irrespective of their origin. Expression of iNOS and CXCLi2 mRNA in mature DCs of both origins were higher than other surface molecules and cytokines studied. Hence, its level of expression can also be used as an additional maturation marker for LPS induced chicken dendritic cell maturation along with CD83 and CD40. LPS matured DCs of both origins upregulated IL-12 and IFN-γ. Based on CD40 and CD83 mRNA expression, it was observed that LPS induced the maturation in both DCs, but chMoDCs responded better in expression of surface markers and inflammatory mediator genes. PMID:27344111

  19. Skin irritants and contact sensitizers induce Langerhans cell migration and maturation at irritant concentration

    NARCIS (Netherlands)

    Jacobs, J.J.L.; Lehé, C.L.; Hasegawa, H.; Elliott, G.R.; Das, P.K.

    2006-01-01

    Skin irritants and contact allergens reduce the number of Langerhans cells (LCs). It has been assumed that this reduction is due their migration to the draining lymph node (LN) for initiating immune sensitization in a host. Skin irritation, however, as opposed to contact allergy is not considered to

  20. Olig2 overexpression induces the in vitro differentiation of neural stem cells into mature oligodendrocytes

    NARCIS (Netherlands)

    Copray, Sjef; Balasubramaniyan, Veerakumar; Levenga, Josien; Liem, Robert; Boddeke, Erik; de Bruijn, Joost D.

    2006-01-01

    Differentiation induction of neural stem cells (NSCs) into oligodendrocytes during embryogenesis is the result of a complex interaction between local induction factors and intracellular transcription factors. At the early stage of differentiation, in particular, the helix-loop-helix transcription fa

  1. Cooperative transcription activation by Nurr1 and Pitx3 induces embryonic stem cell maturation to the midbrain dopamine neuron phenotype

    DEFF Research Database (Denmark)

    Martinat, Cecile; Bacci, Jean-Jacques; Leete, Thomas;

    2006-01-01

    Midbrain dopamine (DA) neurons play a central role in the regulation of voluntary movement, and their degeneration is associated with Parkinson's disease. Cell replacement therapies, and in particular embryonic stem (ES) cell-derived DA neurons, offer a potential therapeutic venue for Parkinson...... to the midbrain DA neuron phenotype in murine and human ES cell cultures.......'s disease. We sought to identify genes that can potentiate maturation of ES cell cultures to the midbrain DA neuron phenotype. A number of transcription factors have been implicated in the development of midbrain DA neurons by expression analyses and loss-of-function knockout mouse studies, including Nurr1...

  2. Danhong inhibits oxidized low-density lipoprotein-induced immune maturation of dentritic cells via a peroxisome proliferator activated receptor γ-mediated pathway.

    Science.gov (United States)

    Liu, Hongying; Wang, Shijun; Sun, Aijun; Huang, Dong; Wang, Wei; Zhang, Chunyu; Shi, Dazhuo; Chen, Keji; Zou, Yunzeng; Ge, Junbo

    2012-01-01

    Danhong injection (DHI), a Chinese Materia Medica standardized product extracted from Radix Salviae miltiorrhizae and Flos Carthami tinctorii, is effective in the treatment of atherosclerosis (AS)-related diseases. It is widely recognized that AS is a complex inflammatory disease of the arterial wall and the dendritic cells (DCs) is a major player in the pathogenesis of AS via mediating atherosclerotic antigen presenting and T lymphocytes. Here, we determined the effect and possible mechanism of DHI on oxidized low-density lipoprotein (ox-LDL)-induced maturation and immune function of DCs. Human monocyte-derived DCs were incubated with DHI or ciglitazone and were subsequently stimulated with ox-LDL to induce maturation. Similar to ciglitazone, a peroxisome proliferator activated receptor (PPAR) γ agonist, DHI, could significantly reduce ox-LDL-induced expressions of mature markers, enhance the endocytotic function, and inhibit secretions of cytokine on DCs. These effects of DHI could be partly reversed by silencing the PPARγ. In conclusion, DHI could inhibit ox-LDL-induced maturation of DCs partly through activating a PPARγ-mediated signaling pathway.

  3. Activation of natural killer T cells by alpha-galactosylceramide rapidly induces the full maturation of dendritic cells in vivo and thereby acts as an adjuvant for combined CD4 and CD8 T cell immunity to a coadministered protein.

    Science.gov (United States)

    Fujii, Shin-Ichiro; Shimizu, Kanako; Smith, Caroline; Bonifaz, Laura; Steinman, Ralph M

    2003-07-21

    The maturation of dendritic cells (DCs) allows these antigen-presenting cells to initiate immunity. We pursued this concept in situ by studying the adjuvant action of alpha-galactosylceramide (alphaGalCer) in mice. A single i.v. injection of glycolipid induced the full maturation of splenic DCs, beginning within 4 h. Maturation was manifest by marked increases in costimulator and major histocompatibility complex class II expression, interferon (IFN)-gamma production, and stimulation of the mixed leukocyte reaction. These changes were not induced directly by alphaGalCer but required natural killer T (NKT) cells acting independently of the MyD88 adaptor protein. To establish that DC maturation was responsible for the adjuvant role of alphaGalCer, mice were given alphaGalCer together with soluble or cell-associated ovalbumin antigen. Th1 type CD4+ and CD8+ T cell responses developed, and the mice became resistant to challenge with ovalbumin-expressing tumor. DCs from mice given ovalbumin plus adjuvant, but not the non-DCs, stimulated ovalbumin-specific proliferative responses and importantly, induced antigen-specific, IFN-gamma producing, CD4+ and CD8+ T cells upon transfer into naive animals. In the latter instance, immune priming did not require further exposure to ovalbumin, alphaGalCer, NKT, or NK cells. Therefore a single dose of alphaGalCer i.v. rapidly stimulates the full maturation of DCs in situ, and this accounts for the induction of combined Th1 CD4+ and CD8+ T cell immunity to a coadministered protein.

  4. Activation of Natural Killer T Cells by α-Galactosylceramide Rapidly Induces the Full Maturation of Dendritic Cells In Vivo and Thereby Acts as an Adjuvant for Combined CD4 and CD8 T Cell Immunity to a Coadministered Protein

    Science.gov (United States)

    Fujii, Shin-ichiro; Shimizu, Kanako; Smith, Caroline; Bonifaz, Laura; Steinman, Ralph M.

    2003-01-01

    The maturation of dendritic cells (DCs) allows these antigen-presenting cells to initiate immunity. We pursued this concept in situ by studying the adjuvant action of α-galactosylceramide (αGalCer) in mice. A single i.v. injection of glycolipid induced the full maturation of splenic DCs, beginning within 4 h. Maturation was manifest by marked increases in costimulator and major histocompatibility complex class II expression, interferon (IFN)-γ production, and stimulation of the mixed leukocyte reaction. These changes were not induced directly by αGalCer but required natural killer T (NKT) cells acting independently of the MyD88 adaptor protein. To establish that DC maturation was responsible for the adjuvant role of αGalCer, mice were given αGalCer together with soluble or cell-associated ovalbumin antigen. Th1 type CD4+ and CD8+ T cell responses developed, and the mice became resistant to challenge with ovalbumin-expressing tumor. DCs from mice given ovalbumin plus adjuvant, but not the non-DCs, stimulated ovalbumin-specific proliferative responses and importantly, induced antigen-specific, IFN-γ producing, CD4+ and CD8+ T cells upon transfer into naive animals. In the latter instance, immune priming did not require further exposure to ovalbumin, αGalCer, NKT, or NK cells. Therefore a single dose of αGalCer i.v. rapidly stimulates the full maturation of DCs in situ, and this accounts for the induction of combined Th1 CD4+ and CD8+ T cell immunity to a coadministered protein. PMID:12874260

  5. Glucocorticoid receptor translational isoforms underlie maturational stage-specific glucocorticoid sensitivities of dendritic cells in mice and humans

    OpenAIRE

    Cao, Yun; Bender, Ingrid K.; Konstantinidis, Athanasios K.; Shin, Soon Cheon; Jewell, Christine M.; Cidlowski, John A; Schleimer, Robert P.; Lu, Nick Z.

    2013-01-01

    Mature, but not immature, dendritic cells are sensitive to glucocorticoid-induced apoptosis.Mature, but not immature, dendritic cells express proapoptotic glucocorticoid receptor translational isoforms.

  6. Plasmodium falciparum-Infected Erythrocytes and β-Hematin Induce Partial Maturation of Human Dendritic Cells and Increase Their Migratory Ability in Response to Lymphoid Chemokines ▿ †

    Science.gov (United States)

    Giusti, Pablo; Urban, Britta C.; Frascaroli, Giada; Albrecht, Letusa; Tinti, Anna; Troye-Blomberg, Marita; Varani, Stefania

    2011-01-01

    Acute and chronic Plasmodium falciparum infections alter the immune competence of the host possibly through changes in dendritic cell (DC) functionality. DCs are the most potent activators of T cells, and migration is integral to their function. Mature DCs express lymphoid chemokine receptors (CCRs), expression of which enables them to migrate to the lymph nodes, where they encounter naïve T cells. The present study aimed to investigate the impact of the synthetic analog to malaria parasite pigment hemozoin, i.e., β-hematin, or infected erythrocytes (iRBCs) on the activation status of human monocyte-derived DCs and on their expression of CCRs. Human monocyte-derived DCs partially matured upon incubation with β-hematin as indicated by an increased expression of CD80 and CD83. Both β-hematin and iRBCs provoked the release of proinflammatory and anti-inflammatory cytokines, such as interleukin-6 (IL-6), IL-10, and tumor necrosis factor alpha, but not IL-12, and induced upregulation of the lymphoid chemokine receptor CXCR4, which was coupled to an increased migration to lymphoid ligands. Taken together, these results suggest that the partial and transient maturation of human myeloid DCs upon stimulation with malaria parasite-derived products and the increased IL-10 but lack of IL-12 secretion may lead to suboptimal activation of T cells. This may in turn lead to impaired adaptive immune responses and therefore insufficient clearance of the parasites. PMID:21464084

  7. Functional maturation of mouse CD4~+CD8~- thymocytes induced by medullary-type thymus epithelial cells

    Institute of Scientific and Technical Information of China (English)

    路力生; 陈慰峰

    1996-01-01

    Murine CD4+CD8- (CD4SP) thymocyte subset is a heterogeneous population, in which the Qa-2- cells are less functional, whereas the Qa-2+ cells are fully functional. Evidence is provided here that the transition from Qa-2- to Qa-2+ CD4SP thymocytes is an intrathymic process of differentiation induced by thymic medullary-type epithelial cells. The separated Qa-2-CD4SP could be induced to express Qa-2 molecules up to 84%- 89% of the total viable celb after cocultured for 3d with MTEC1 cells, a murine thymic medullary type epithelial cell line established in our laboratory. Kinetic study showed that both the percentage of Qa-2+ cells and the density of the expressed Qa-2 molecules on CD4SP thymocytes induced by MTEC1 were progressively increasing in 72-h cultures. The MTECl-induced Qa-2+CD4SP thymocytes were fully functional, which exhibited capabilities of proliferation and cytokine secretion in response to Con A stimulation as high as those of freshly isolated Qa-2+CD4SP thymocytes. The profile of cytokine

  8. Parathyroid Hormone Induces Bone Cell Motility and Loss of Mature Osteocyte Phenotype through L-Calcium Channel Dependent and Independent Mechanisms.

    Directory of Open Access Journals (Sweden)

    Matthew Prideaux

    Full Text Available Parathyroid Hormone (PTH can exert both anabolic and catabolic effects on the skeleton, potentially through expression of the PTH type1 receptor (PTH1R, which is highly expressed in osteocytes. To determine the cellular and molecular mechanisms responsible, we examined the effects of PTH on osteoblast to osteocyte differentiation using primary osteocytes and the IDG-SW3 murine cell line, which differentiate from osteoblast to osteocyte-like cells in vitro and express GFP under control of the dentin matrix 1 (Dmp1 promoter. PTH treatment resulted in an increase in some osteoblast and early osteocyte markers and a decrease in mature osteocyte marker expression. The gene expression profile of PTH-treated Day 28 IDG-SW3 cells was similar to PTH treated primary osteocytes. PTH treatment induced striking changes in the morphology of the Dmp1-GFP positive cells in IDG-SW3 cultures and primary cells from Dmp1-GFP transgenic mice. The cells changed from a more dendritic to an elongated morphology and showed increased cell motility. E11/gp38 has been shown to be important for cell migration, however, deletion of the E11/gp38/podoplanin gene had no effect on PTH-induced motility. The effects of PTH on motility were reproduced using cAMP, but not with protein kinase A (PKA, exchange proteins activated by cAMP (Epac, protein kinase C (PKC or phosphatidylinositol-4,5-bisphosphonate 3-kinase (Pi3K agonists nor were they blocked by their antagonists. However, the effects of PTH were mediated through calcium signaling, specifically through L-type channels normally expressed in osteoblasts but decreased in osteocytes. PTH was shown to increase expression of this channel, but decrease the T-type channel that is normally more highly expressed in osteocytes. Inhibition of L-type calcium channel activity attenuated the effects of PTH on cell morphology and motility but did not prevent the downregulation of mature osteocyte marker expression. Taken together, these

  9. IL-1β induces hypomyelination in the periventricular white matter through inhibition of oligodendrocyte progenitor cell maturation via FYN/MEK/ERK signaling pathway in septic neonatal rats.

    Science.gov (United States)

    Xie, Di; Shen, Fengcai; He, Shaoru; Chen, Mengmeng; Han, Qianpeng; Fang, Ming; Zeng, Hongke; Chen, Chunbo; Deng, Yiyu

    2016-04-01

    Neuroinflammation elicited by microglia plays a key role in periventricular white matter (PWM) damage (PWMD) induced by infectious exposure. This study aimed to determine if microglia-derived interleukin-1β (IL-1β) would induce hypomyelination through suppression of maturation of oligodendrocyte progenitor cells (OPCs) in the developing PWM. Sprague-Dawley rats (1-day old) were injected with lipopolysaccharide (LPS) (1 mg/kg) intraperitoneally, following which upregulated expression of IL-1β and IL-1 receptor 1 (IL-1R1 ) was observed. This was coupled with enhanced apoptosis and suppressed proliferation of OPCs in the PWM. The number of PDGFR-α and NG2-positive OPCs was significantly decreased in the PWM at 24 h and 3 days after injection of LPS, whereas it was increased at 14 days and 28 days. The protein expression of Olig1, Olig2, and Nkx2.2 was significantly reduced, and mRNA expression of Tcf4 and Axin2 was upregulated in the developing PWM after LPS injection. The expression of myelin basic protein (MBP) and 2',3'-cyclic-nucleotide 3"-phosphodiesterase (CNPase) was downregulated in the PWM at 14 days and 28 days after LPS injection; this was linked to reduction of the proportion of myelinated axons and thinner myelin sheath as revealed by electron microscopy. Primary cultured OPCs treated with IL-1β showed the failure of maturation and proliferation. Furthermore, FYN/MEK/ERK signaling pathway was involved in suppression of maturation of primary OPCs induced by IL-1β administration. Our results suggest that following LPS injection, microglia are activated and produce IL-1β in the PWM in the neonatal rats. Excess IL-1β inhibits the maturation of OPCs via suppression of FYN/MEK/ERK phosphorylation thereby leading to axonal hypomyelination.

  10. HMGB1-promoted and TLR2/4-dependent NK cell maturation and activation take part in rotavirus-induced murine biliary atresia.

    Directory of Open Access Journals (Sweden)

    Yinrong Qiu

    2014-03-01

    Full Text Available Recent studies show that NK cells play important roles in murine biliary atresia (BA, and a temporary immunological gap exists in this disease. In this study, we found high-mobility group box-1 (HMGB1 and TLRs were overexpressed in human and rotavirus-induced murine BA. The overexpressed HMGB1 released from the nuclei of rotavirus-infected cholangiocytes, as well as macrophages, activated hepatic NK cells via HMGB1-TLRs-MAPK signaling pathways. Immature NK cells had low cytotoxicity on rotavirus-injured cholangiocytes due to low expression of TLRs, which caused persistent rotavirus infection in bile ducts. HMGB1 up-regulated the levels of TLRs of NK cells and promoted NK cell activation in an age-dependent fashion. As NK cells gained increasing activation as mice aged, they gained increasing cytotoxicity on rotavirus-infected cholangiocytes, which finally caused BA. Adult NK cells eliminated rotavirus-infected cholangiocytes shortly after infection, which prevented persistent rotavirus infection in bile ducts. Moreover, adoptive transfer of mature NK cells prior to rotavirus infection decreased the incidence of BA in newborn mice. Thus, the dysfunction of newborn NK cells may, in part, participate in the immunological gap in the development of rotavirus induced murine BA.

  11. CD8 T cell response maturation defined by anentropic specificity and repertoire depth correlates with SIVΔnef-induced protection.

    Directory of Open Access Journals (Sweden)

    Sama Adnan

    2015-02-01

    Full Text Available The live attenuated simian immunodeficiency virus (LASIV vaccine SIVΔnef is one of the most effective vaccines in inducing protection against wild-type lentiviral challenge, yet little is known about the mechanisms underlying its remarkable protective efficacy. Here, we exploit deep sequencing technology and comprehensive CD8 T cell epitope mapping to deconstruct the CD8 T cell response, to identify the regions of immune pressure and viral escape, and to delineate the effect of epitope escape on the evolution of the CD8 T cell response in SIVΔnef-vaccinated animals. We demonstrate that the initial CD8 T cell response in the acute phase of SIVΔnef infection is mounted predominantly against more variable epitopes, followed by widespread sequence evolution and viral escape. Furthermore, we show that epitope escape expands the CD8 T cell repertoire that targets highly conserved epitopes, defined as anentropic specificity, and generates de novo responses to the escaped epitope variants during the vaccination period. These results correlate SIVΔnef-induced protection with expanded anentropic specificity and increased response depth. Importantly, these findings render SIVΔnef, long the gold standard in HIV/SIV vaccine research, as a proof-of-concept vaccine that highlights the significance of the twin principles of anentropic specificity and repertoire depth in successful vaccine design.

  12. Testosterone deficiency induced by progressive stages of diabetes mellitus impairs glucose metabolism and favors glycogenesis in mature rat Sertoli cells.

    Science.gov (United States)

    Rato, Luís; Alves, Marco G; Duarte, Ana I; Santos, Maria S; Moreira, Paula I; Cavaco, José E; Oliveira, Pedro F

    2015-09-01

    The incidence of type 2 diabetes mellitus and its prodromal stage, pre-diabetes, is rapidly increasing among young men, leading to disturbances in testosterone synthesis. However, the impact of testosterone deficiency induced by these progressive stages of diabetes on the metabolic behavior of Sertoli cells remains unknown. We evaluated the effects of testosterone deficiency associated with pre-diabetes and type 2 diabetes on Sertoli cells metabolism, by measuring (1) the expression and/or activities of glycolysis and glycogen metabolism-related proteins and (2) the metabolite secretion/consumption in Sertoli cells obtained from rat models of different development stages of the disease, to unveil the mechanisms by which testosterone deregulation may affect spermatogenesis. Glucose and pyruvate uptake were decreased in cells exposed to the testosterone concentration found in pre-diabetic rats (600nM), whereas the decreased testosterone concentrations found in type 2 diabetic rats (7nM) reversed this profile. Lactate production was not altered, although the expression and/or activity of lactate dehydrogenase and monocarboxylate transporter 4 were affected by progressive testosterone-deficiency. Sertoli cells exposed to type 2 diabetic conditions exhibited intracellular glycogen accumulation. These results illustrate that gradually reduced levels of testosterone, induced by progressive stages of diabetes mellitus, favor a metabolic reprogramming toward glycogen synthesis. Our data highlights a pivotal role for testosterone in the regulation of spermatogenesis metabolic support by Sertoli cells, particularly in individuals suffering from metabolic diseases. Such alterations may be in the basis of male subfertility/infertility associated with the progression of diabetes mellitus. PMID:26148570

  13. Addition of interferon-alpha to a standard maturation cocktail induces CD38 up-regulation and increases dendritic cell function

    DEFF Research Database (Denmark)

    Trepiakas, Redas; Pedersen, Anders Elm; Met, Ozcan;

    2009-01-01

    Monocyte-derived dendritic cells (DCs) are used as adjuvant cells in cancer immunotherapy and have shown promising results. In order to obtain full functional capacity, these DCs need to be maturated, and the current "gold standard" for this process is maturation with TNF-alpha, IL-1beta, IL-6...

  14. Immature, Semi-mature and Fully mature Dendritic Cells: Towards a DC-cancer cells interface that augments anticancer immunity

    Directory of Open Access Journals (Sweden)

    Aleksandra Maria Dudek

    2013-12-01

    Full Text Available Dendritic cells (DCs are the sentinel antigen-presenting cells of the immune system; such that their productive interface with the dying cancer cells is crucial for proper communication of the non-self status of cancer cells to the adaptive immune system. Efficiency and the ultimate success of such a communication hinges upon the maturation status of the DCs, attained following their interaction with cancer cells. Immature DCs facilitate tolerance towards cancer cells (observed for many apoptotic inducers while fully mature DCs can strongly promote anticancer immunity if they secrete the correct combinations of cytokines (observed when DCs interact with cancer cells undergoing immunogenic cell death (ICD. However, an intermediate population of DC maturation, called semi-mature DCs exists, which can potentiate either tolerogenicity or pro-tumourigenic responses (as happens in the case of certain chemotherapeutics and agents exerting ambivalent immune reactions. Specific combinations of DC phenotypic markers, DC-derived cytokines/chemokines, dying cancer cell-derived danger signals and other less characterized entities (e.g. exosomes can define the nature and evolution of the DC maturation state. In the present review, we discuss these different maturation states of DCs, how they might be attained and which anticancer agents or cell death modalities (e.g. tolerogenic cell death vs. ICD may regulate these states.

  15. Lactobacillus crispatus strain SJ-3C-US induces human dendritic cells (DCs) maturation and confers an anti-inflammatory phenotype to DCs.

    Science.gov (United States)

    Eslami, Solat; Hadjati, Jamshid; Motevaseli, Elahe; Mirzaei, Reza; Farashi Bonab, Samad; Ansaripour, Bita; Khoramizadeh, Mohammad Reza

    2016-08-01

    Lactobacillus crispatus is one of the most predominant species in the healthy vagina microbiota. Nevertheless, the interactions between this commensal bacterium and the immune system are largely unknown. Given the importance of the dendritic cells (DCs) in the regulation of the immunity, this study was performed to elucidate the influence of vaginal isolated L. crispatus SJ-3C-US from healthy Iranian women on DCs, either directly by exposure of DCs to ultraviolet-inactivated (UVI) and heat-killed (HK) L. crispatus SJ-3C-US or indirectly to its cell-free supernatant (CFS), and the outcomes of immune response. In this work we showed that L. crispatus SJ-3C-US induced strong dose-dependent activation of dendritic cells and production of high levels of IL-10, whereas IL-12p70 production was induced at low level in an inverse dose-dependent manner. This stimulation skewed T cells polarization toward CD4(+) CD25(+) FOXP3(+) Treg cells and production of IL-10 in a dose-dependent manner in mixed leukocyte reaction (MLR) test. The mode of bacterial inactivation did not affect the DCs activation pattern, upon encounter with L. crispatus SJ-3C-US. Moreover, while DCs stimulated with CFS showed moderate phenotypic maturation and IL-10 production, it failed to skew T cells polarization toward CD4(+) CD25(+) FOXP3(+) regulatory T cells (Treg) and production of IL-10. This study showed that L. crispatus SJ-3C-US confers an anti-inflammatory phenotype to DCs through up-regulation of anti-inflammatory/regulatory IL-10 cytokine production and induction of CD4(+) CD25(+) FOXP3(+) T cells at optimal dosage. Our findings suggest that L. crispatus SJ-3C-US could be a potent candidate as protective probiotic against human immune-mediated pathologies, such as chronic inflammation, vaginitis or pelvic inflammatory disease (PID). PMID:27245496

  16. Evaluation of the lipopolysaccharide-induced transcription of the human TREM-1 gene in vitamin D3-matured THP-1 macrophage-like cells.

    Science.gov (United States)

    Hosoda, Hiroshi; Tamura, Hiroshi; Nagaoka, Isao

    2015-11-01

    Triggering receptor expressed on myeloid cells-1 (TREM-1) plays a role in inflammation by augmenting inflammatory responses through the production of pro-inflammatory cytokines. TREM-1 is expressed in mature macrophages, and is upregulated by stimulation with bacterial components, such as lipopolysaccharide (LPS). In the present study, the regulatory mechanisms responsible for the transcription of the human TREM-1 gene were examined using a human monocytic cell line (THP-1 cells). Reverse transcription-polymerase chain reaction (RT-PCR) revealed that TREM-1 mRNA was constitutively expressed at a low level in resting cells, and that its expression was upregulated by treatment with vitamin D3 (VitD3), but not by LPS. Importantly, TREM-1 mRNA expression was further upregulated by stimulation of the VitD3‑treated THP-1 cells with LPS. In addition, a luciferase reporter assay revealed that the serum response element (SRE) was involved in VitD3-induced promoter activity, whereas the activator protein-1 (AP-1) sites participated in the VitD3- and LPS-induced promoter activity. Of note, the CCAAT-enhancer-binding protein (C/EBP) site contributed not only to basal, but also to VitD3- and LPS-induced promoter activity. Transfection with transcription factor oligodeoxynucleotide (ODN) decoys indicated that transcription factors of the C/EBP and AP-1 families are likely involved in the basal, as well as in the VitD3- and LPS-induced TREM-1 transcription. Western blot analysis indicated that, of the members of the C/EBP family, C/EBPα was constitutively expressed in resting cells; its expression was enhanced by treatment with VitD3 and was further increased by treatment with VitD3 and LPS. Moreover, the expression of c-Fos and c-Jun (members of the AP-1 family) was augmented by treatment with both VitD3 and LPS. These observations indicate that members of the C/EBP family participate not only in basal, but also in the VitD3- and LPS-induced promoter activity of the human

  17. Physiological maturation and drug responses of human induced pluripotent stem cell-derived cortical neuronal networks in long-term culture.

    Science.gov (United States)

    Odawara, A; Katoh, H; Matsuda, N; Suzuki, I

    2016-05-18

    The functional network of human induced pluripotent stem cell (hiPSC)-derived neurons is a potentially powerful in vitro model for evaluating disease mechanisms and drug responses. However, the culture time required for the full functional maturation of individual neurons and networks is uncertain. We investigated the development of spontaneous electrophysiological activity and pharmacological responses for over 1 year in culture using multi-electrode arrays (MEAs). The complete maturation of spontaneous firing, evoked responses, and modulation of activity by glutamatergic and GABAergic receptor antagonists/agonists required 20-30 weeks. At this stage, neural networks also demonstrated epileptiform synchronized burst firing (SBF) in response to pro-convulsants and SBF suppression using clinical anti-epilepsy drugs. Our results reveal the feasibility of long-term MEA measurements from hiPSC-derived neuronal networks in vitro for mechanistic analyses and drug screening. However, developmental changes in electrophysiological and pharmacological properties indicate the necessity for the international standardization of culture and evaluation procedures.

  18. Domoic Acid-Induced Neurotoxicity Is Mainly Mediated by the AMPA/KA Receptor: Comparison between Immature and Mature Primary Cultures of Neurons and Glial Cells from Rat Cerebellum

    Directory of Open Access Journals (Sweden)

    Helena T. Hogberg

    2011-01-01

    Full Text Available Domoic acid (DomA is a naturally occurring shellfish toxin that can induce brain damage in mammalians. Neonates have shown increased sensitivity to DomA-induced toxicity, and prenatal exposure has been associated with e.g. decreased brain GABA levels, and increased glutamate levels. Here, we evaluated DomA-induced toxicity in immature and mature primary cultures of neurons and glial cells from rat cerebellum by measuring the mRNA levels of selected genes. Moreover, we assessed if the induced toxicity was mediated by the activation of the AMPA/KA and/or the NMDA receptor. The expression of all studied neuronal markers was affected after DomA exposure in both immature and mature cultures. However, the mature cultures seemed to be more sensitive to the treatment, as the effects were observed at lower concentrations and at earlier time points than for the immature cultures. The DomA effects were completely prevented by the antagonist of the AMPA/KA receptor (NBQX, while the antagonist of the NMDA receptor (APV partly blocked the DomA-induced effects. Interestingly, the DomA-induced effect was also partly prevented by the neurotransmitter GABA. DomA exposure also affected the mRNA levels of the astrocytic markers in mature cultures. These DomA-induced effects were reduced by the addition of NBQX, APV, and GABA.

  19. The Polyunsaturated Fatty Acids Arachidonic Acid and Docosahexaenoic Acid Induce Mouse Dendritic Cells Maturation but Reduce T-Cell Responses In Vitro

    Science.gov (United States)

    Carlsson, Johan A.; Wold, Agnes E.; Sandberg, Ann-Sofie; Östman, Sofia M.

    2015-01-01

    Long-chain polyunsaturated fatty acids (PUFAs) might regulate T-cell activation and lineage commitment. Here, we measured the effects of omega-3 (n-3), n-6 and n-9 fatty acids on the interaction between dendritic cells (DCs) and naïve T cells. Spleen DCs from BALB/c mice were cultured in vitro with ovalbumin (OVA) with 50 μM fatty acids; α-linolenic acid, arachidonic acid (AA), eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), linoleic acid or oleic acid and thereafter OVA-specific DO11.10 T cells were added to the cultures. Fatty acids were taken up by the DCs, as shown by gas chromatography analysis. After culture with arachidonic acid or DHA CD11c+ CD11b+ and CD11c+ CD11bneg DCs expressed more CD40, CD80, CD83, CD86 and PDL-1, while IAd remained unchanged. However, fewer T cells co-cultured with these DCs proliferated (CellTrace Violetlow) and expressed CD69 or CD25, while more were necrotic (7AAD+). We noted an increased proportion of T cells with a regulatory T cell (Treg) phenotype, i.e., when gating on CD4+ FoxP3+ CTLA-4+, CD4+ FoxP3+ Helios+ or CD4+ FoxP3+ PD-1+, in co-cultures with arachidonic acid- or DHA-primed DCs relative to control cultures. The proportion of putative Tregs was inversely correlated to T-cell proliferation, indicating a suppressive function of these cells. With arachidonic acid DCs produced higher levels of prostaglandin E2 while T cells produced lower amounts of IL-10 and IFNγ. In conclusion arachidonic acid and DHA induced up-regulation of activation markers on DCs. However arachidonic acid- and DHA-primed DCs reduced T-cell proliferation and increased the proportion of T cells expressing FoxP3, indicating that these fatty acids can promote induction of regulatory T cells. PMID:26619195

  20. CXCR4 engagement promotes dendritic cell survival and maturation

    International Nuclear Information System (INIS)

    It has been reported that human monocyte derived-dendritic cells (DCs) express CXCR4, responsible for chemotaxis to CXCL12. However, it remains unknown whether CXCR4 is involved in other functions of DCs. Initially, we found that CXCR4 was expressed on bone marrow-derived DCs (BMDCs). The addition of specific CXCR4 antagonist, 4-F-Benzoyl-TN14003, to the culture of mouse BMDCs decreased their number, especially the mature subset of them. The similar effect was found on the number of Langerhans cells (LCs) but not keratinocytes among epidermal cell suspensions. Since LCs are incapable of proliferating in vitro, these results indicate that CXCR4 engagement is important for not only maturation but also survival of DCs. Consistently, the dinitrobenzene sulfonic acid-induced, antigen-specific in vitro proliferation of previously sensitized lymph node cells was enhanced by CXCL12, and suppressed by CXCR4 antagonist. These findings suggest that CXCL12-CXCR4 engagement enhances DC maturation and survival to initiate acquired immune response

  1. Vesicle associated membrane protein (VAMP)-7 and VAMP-8, but not VAMP-2 or VAMP-3, are required for activation-induced degranulation of mature human mast cells.

    Science.gov (United States)

    Sander, Leif E; Frank, Simon P C; Bolat, Seza; Blank, Ulrich; Galli, Thierry; Bigalke, Hans; Bischoff, Stephan C; Lorentz, Axel

    2008-03-01

    Mediator release from mast cells (MC) is a crucial step in allergic and non-allergic inflammatory disorders. However, the final events in response to activation leading to membrane fusion and thereby facilitating degranulation have hitherto not been analyzed in human MC. Soluble N-ethyl-maleimide-sensitive factor attachment protein receptors (SNARE) represent a highly conserved family of proteins that have been shown to mediate intracellular membrane fusion events. Here, we show that mature MC isolated from human intestinal tissue express soluble N-ethylmaleide sensitive factor attachment protein (SNAP)-23, Syntaxin (STX)-1B, STX-2, STX-3, STX-4, and STX-6 but not SNAP-25. Furthermore, we found that primary human MC express substantial amounts of vesicle associated membrane protein (VAMP)-3, VAMP-7 and VAMP-8 and, in contrast to previous reports about rodent MC, only low levels of VAMP-2. Furthermore, VAMP-7 and VAMP-8 were found to translocate to the plasma membrane and interact with SNAP-23 and STX-4 upon activation. Inhibition of SNAP-23, STX-4, VAMP-7 or VAMP-8, but not VAMP-2 or VAMP-3, resulted in a markedly reduced high-affinity IgE receptor-mediated histamine release. In summary, our data show that mature human MC express a specific pattern of SNARE and that VAMP-7 and VAMP-8, but not VAMP-2, are required for rapid degranulation.

  2. The Influence of Ouabain on Human Dendritic Cells Maturation

    Directory of Open Access Journals (Sweden)

    C. R. Nascimento

    2014-01-01

    Full Text Available Although known as a Na,K-ATPase inhibitor, several other cellular and systemic actions have been ascribed to the steroid Ouabain (Oua. Particularly in the immune system, our group showed that Ouabain acts on decreasing lymphocyte proliferation, synergizing with glucocorticoids in spontaneous thymocyte apoptosis, and also lessening CD14 expression and blocking CD16 upregulation on human monocytes. However, Ouabain effects on dendritic cells (DCs were not explored so far. Considering the peculiar plasticity and the importance of DCs in immune responses, the aim of our study was to investigate DC maturation under Ouabain influence. To generate immature DCs, human monocytes were cultured with IL-4 and GM-CSF (5 days. To investigate Ouabain role on DC activation, DCs were stimulated with TNF-α for 48 h in the presence or absence of Ouabain. TNF-induced CD83 expression and IL-12 production were abolished in DCs incubated with 100 nM Ouabain, though DC functional capacity concerning lymphocyte activation remained unaltered. Nevertheless, TNF-α-induced antigen capture downregulation, another maturation marker, occurred even in the presence of Ouabain. Besides, Ouabain increased HLA-DR and CD86 expression, whereas CD80 expression was maintained. Collectively, our results suggest that DCs respond to Ouabain maturating into a distinct category, possibly contributing to the balance between immunity and tolerance.

  3. Manganese-induced integrin affinity maturation promotes recruitment of alpha V beta 3 integrin to focal adhesions in endothelial cells: evidence for a role of phosphatidylinositol 3-kinase and Src.

    Science.gov (United States)

    Dormond, Olivier; Ponsonnet, Lionel; Hasmim, Meriem; Foletti, Alessandro; Rüegg, Curzio

    2004-07-01

    Integrin activity is controlled by changes in affinity (i.e. ligand binding) and avidity (i.e. receptor clustering). Little is known, however, about the effect of affinity maturation on integrin avidity and on the associated signaling pathways. To study the effect of affinity maturation on integrin avidity, we stimulated human umbilical vein endothelial cells (HUVEC) with MnCl(2) to increase integrin affinity and monitored clustering of beta 1 and beta 3 integrins. In unstimulated HUVEC, beta 1 integrins were present in fibrillar adhesions, while alpha V beta 3 was detected in peripheral focal adhesions. Clustered beta 1 and beta 3 integrins expressed high affinity/ligand-induced binding site (LIBS) epitopes. MnCl(2)-stimulation promoted focal adhesion and actin stress fiber formation at the basal surface of the cells, and strongly enhanced mAb LM609 staining and expression of beta 3 high affinity/LIBS epitopes at focal adhesions. MnCl(2)-induced alpha V beta 3 clustering was blocked by a soluble RGD peptide, by wortmannin and LY294002, two pharmacological inhibitors of phosphatidylinositol 3-kinase (PI 3-K), and by over-expressing a dominant negative PI 3-K mutant protein. Conversely, over-expression of active PI 3-K and pharmacological inhibiton of Src with PP2 and CGP77675, enhanced basal and manganese-induced alpha V beta 3 clustering. Transient increased phosphorylation of protein kinase B/Akt, a direct target of PI 3K, occurred upon manganese stimulation. MnCl(2) did not alter beta 1 integrin distribution or beta1 high-affinity/LIBS epitope expression. Based on these results, we conclude that MnCl(2)-induced alpha V beta 3 integrin affinity maturation stimulates focal adhesion and actin stress fiber formation, and promotes recruitment of high affinity alpha V beta 3 to focal adhesions. Affinity-modulated alpha V beta 3 clustering requires PI3-K signaling and is negatively regulate by Src.

  4. In vivo Notch Reactivation in Differentiating Cochlear Hair Cells Induces Sox2 and Prox1 Expression but Does Not Disrupt Hair Cell Maturation

    OpenAIRE

    Liu, Zhiyong; Owen, Thomas; Fang, Jie; Srinivasan, R. Sathish; Zuo, Jian

    2012-01-01

    Notch signaling is active in mouse cochlear prosensory progenitors but declines in differentiating sensory hair cells (HCs). Overactivation of the Notch1 intracellular domain (NICD) in progenitors blocks HC fate commitment and/or differentiation. However, it is not known whether reactivation of NICD in differentiating HCs also interrupts their developmental program and reactivates its downstream targets. By analyzing Atoh1CreER+; Rosa26-NICDloxp/+ or Atoh1CreER+; Rosa26-NICDloxp/+; RBP-Jloxp/...

  5. Extensive remodeling of DC function by rapid maturation-induced transcriptional silencing

    Science.gov (United States)

    Seguín-Estévez, Queralt; Dunand-Sauthier, Isabelle; Lemeille, Sylvain; Iseli, Christian; Ibberson, Mark; Ioannidis, Vassilios; Schmid, Christoph D.; Rousseau, Philippe; Barras, Emmanuèle; Geinoz, Antoine; Xenarios, Ioannis; Acha-Orbea, Hans; Reith, Walter

    2014-01-01

    The activation, or maturation, of dendritic cells (DCs) is crucial for the initiation of adaptive T-cell mediated immune responses. Research on the molecular mechanisms implicated in DC maturation has focused primarily on inducible gene-expression events promoting the acquisition of new functions, such as cytokine production and enhanced T-cell-stimulatory capacity. In contrast, mechanisms that modulate DC function by inducing widespread gene-silencing remain poorly understood. Yet the termination of key functions is known to be critical for the function of activated DCs. Genome-wide analysis of activation-induced histone deacetylation, combined with genome-wide quantification of activation-induced silencing of nascent transcription, led us to identify a novel inducible transcriptional-repression pathway that makes major contributions to the DC-maturation process. This silencing response is a rapid primary event distinct from repression mechanisms known to operate at later stages of DC maturation. The repressed genes function in pivotal processes—including antigen-presentation, extracellular signal detection, intracellular signal transduction and lipid-mediator biosynthesis—underscoring the central contribution of the silencing mechanism to rapid reshaping of DC function. Interestingly, promoters of the repressed genes exhibit a surprisingly high frequency of PU.1-occupied sites, suggesting a novel role for this lineage-specific transcription factor in marking genes poised for inducible repression. PMID:25104025

  6. HIV and mature dendritic cells : Trojan exosomes riding the Trojan horse?

    OpenAIRE

    Nuria Izquierdo-Useros; Mar Naranjo-Gómez; Itziar Erkizia; Maria Carmen Puertas; Francesc E Borràs; Julià Blanco; Javier Martinez-Picado

    2010-01-01

    Exosomes are secreted cellular vesicles that can induce specific CD4(+) T cell responses in vivo when they interact with competent antigen-presenting cells like mature dendritic cells (mDCs). The Trojan exosome hypothesis proposes that retroviruses can take advantage of the cell-encoded intercellular vesicle traffic and exosome exchange pathway, moving between cells in the absence of fusion events in search of adequate target cells. Here, we discuss recent data supporting this hypothesis, whi...

  7. Highly efficient differentiation of human ES cells and iPS cells into mature pancreatic insulin-producing cells

    Institute of Scientific and Technical Information of China (English)

    Donghui Zhang; Wei Jiang; Meng Liu; Xin Sui; Xiaolei Yin; Song Chen; Yan Shi; Hongkui Deng

    2009-01-01

    Human pluripotent stem cells represent a potentially unlimited source of functional pancreatic endocrine lineage cells. Here we report a highly efficient approach to induce human embryonic stem (ES) cells and induced pluripotent stem (iPS) cells to differentiate into mature insulin-producing cells in a chemical-defined culture system. The differentiated human ES cells obtained by this approach comprised nearly 25% insulin-positive cells as assayed by flow cytometry analysis, which released insulin/C-peptide in response to glucose stimuli in a manner comparable to that of adult human islets. Most of these insulin-producing cells co-expressed mature β cell-specific markers such as NKX6-1 and PDX1, indicating a similar gene expression pattern to adult islet β cells in vivo. In this study, we also demonstrated that EGF facilitates the expansion of PDX1-positive pancreatic progenitors. Moreover, our protocol also succeeded in efficiently inducing human iPS cells to differentiate into insulin-producing cells. Therefore, this work not only provides a new model to study the mechanism of human pancreatic specialization and maturation in vitro, but also enhances the possibility of utilizing patient-specific iPS cells for the treatment of diabetes.

  8. Characterization of Green River Kerogen upon Induced Maturation

    Science.gov (United States)

    Alsinan, S.; Vanorio, T.

    2015-12-01

    The aim of this research is to investigate the effects of organic maturity on the elastic properties of kerogen, and then model its effect on the rock elastic responses. To fulfill this objective, we present a workflow that combines nano-scale Secondary Ion Mass Spectrometry (nanoSIMS), nanoindentation, SEM, ex situ maturation experiments, RockEval analysis and Self-Consistent modeling (SC). First, we used SEM and nanoSIMS to identify the organic rich-kerogen bodies. NanoSIMS provided maps of the secondary ion intensity distribution of H-, C- and O- which show a uniform distribution of these ions within the immature kerogen body. The measured H- /C- and O-/C- ionic intensity ratios range between 1.40 ±0.86 -1.69 ±0.61 and 0.77 ±0.72 - 1.04 ±0.44 respectively. Next, we used the nanoindentation technique to measure the elastic properties of an immature Green River kerogen, which had an average bulk modulus (K) of 3.11 ± 0.23 GPa. Then, we induced maturation using a High Temperature-High Pressure vessel that mimics reservoir conditions. Ex situ maturation resulted in a strong hydrocarbon smell, oil staining, and the expulsion of an oil-like viscous fluid. Geochemical analysis confirmed that the sample had successfully matured to the oil window. SEM time-lapse images show porosity (ϕ) development within the kerogen and surrounding matrix as a result of maturation. Once maturation was complete, we re-measured the elastic properties of the kerogen in the sample using the same nanoindentation technique. The average value of K of the mature kerogen (oil window) was 3.65 ±0.67 GPa. Therefore, we conclude that changes in the elastic properties of solid kerogen in the oil window are negligible. However, ϕ development within the kerogen, the shape of kerogen and its pores, and the presence of fluid can affect the composite rock stiffness. Therefore, we used SC modeling to investigate the effect of ϕ development within the kerogen associated with ex situ maturation, on

  9. Acute myeloid leukemia cells inhibit the differentiation and maturation of dendritic cells and induce the generation of regulatory T cells%急性髓系白血病细胞对树突状细胞分化、成熟和调节性T细胞生成的影响

    Institute of Scientific and Technical Information of China (English)

    Xingbing Wang; Xin Chen; Jun Liu; Zimin Sun; Shiang Huang

    2008-01-01

    Objective: To investigate the effects of soluble factors secreted by acute myeloid leukemia (AML) cells on the phenotypical and functional properties of DCs derived from normal mononuclear cells. Methods: Mononuclear cells were cultured with interleukin-4 (IL-4) and granulocyte-macrophage colony-stimulating factor (GM-CSF), in the presence or absence of 24 h culture supernatants from fresh primary AML cells, to generate immature DCs. The maturation of DCs was induced by cytokines IL-1beta, IL-6, tumor necrosis factor-alpha (TNF-alpha), and prostaglandin-2 (PGE-2). The phenotypic alterations of DCs and DCs-primed CD4+ T cells were evaluated using flow cytometry. Precursor frequency (PF) was calculated to monitor the allostimulatory effects of DCs on CD4+ and CD8+ T cells. Results:AML cell supernatant-treated DCs showed significantly lower expression of co-stimulatory molecules CD80 and CD86, and reduced response to cytokines IL-1beta, IL-6, TNF-alpha,and PGE-2. The allostimulatory effects of AML cell supernatant-treated DCs on CD4+ and CD8+ T cells were significantly lower than those of normal mature DCs [PF: (1.8±0.5)% vs. (5.2±1.6)% for CD4+ T cells, (2.1±0.6)% vs. (6.5±2.0)%for CD8+ T cells, P<0.01]. These AML supematant-induced DCs could also induce allogeneic CD4+ T cells to differentiate into CD4+CD25high T cells, which had immunophenotyping characteristics of regulatory T cells, i.e. they expressed Foxp3 but not active maker CD69. Conclusion: This study demonstrates that soluble factors secreted by AML cells can inhibit development and functions of DCs. In addition, AML supematant-induced DCs can induce the generation of CD4+CD25high T cells from CD4+T cells, which may be a mechanism of increased prevalence of CD4+CD25high regulatory T cells and immune dysfunction in AML patients.

  10. Mechanosensitivity of dental pulp stem cells is related to their osteogenic maturity

    DEFF Research Database (Denmark)

    Kraft, David C E; Bindslev, Dorthe A; Melsen, Birte;

    2010-01-01

    For engineering bone tissue, mechanosensitive cells are needed for bone (re)modelling. Local bone mass and architecture are affected by mechanical loading, which provokes a cellular response via loading-induced interstitial fluid flow. We studied whether human dental pulp-derived mesenchymal stem...... cells (PDSCs) portraying mature (PDSC-mature) or immature (PDSC-immature) bone cell characteristics are responsive to pulsating fluid flow (PFF) in vitro. We also assessed bone formation by PDSCs on hydroxyapatite-tricalcium phosphate granules after subcutaneous implantation in mice. Cultured PDSC...... expression was higher than in PDSC-immature. Implantation of PDSC-mature resulted in more osteoid deposition and lamellar bone formation than PDSC-immature. We conclude that PDSCs with a mature osteogenic phenotype are more responsive to pulsating fluid shear stress than osteogenically immature PDSCs...

  11. Inhibitory effects of apoptotic cell ingestion upon endotoxin-driven myeloid dendritic cell maturation.

    Science.gov (United States)

    Stuart, Lynda M; Lucas, Mark; Simpson, Cathy; Lamb, Jonathan; Savill, John; Lacy-Hulbert, Adam

    2002-02-15

    Dendritic cells (DCs) are the sentinels of the immune system, able to interact with both naive and memory T cells. The recent observation that DCs can ingest cells dying by apoptosis has raised the possibility that DCs may, in fact, present self-derived Ags, initiating both autoimmunity and tumor-specific responses, especially if associated with appropriate danger signals. Although the process of ingestion of apoptotic cells has not been shown to induce DC maturation, the exact fate of these phagocytosing DCs remains unclear. In this paper we demonstrate that DCs that ingest apoptotic cells are able to produce TNF-alpha but have a diminished ability to produce IL-12 in response to external stimuli, a property that corresponds to a failure to up-regulate CD86. By single-cell analysis we demonstrate that these inhibitory effects are restricted to those DCs that have engulfed apoptotic cells, with bystander DCs remaining unaffected. These changes were independent of the production of anti-inflammatory cytokines TGF-beta1 and IL-10 and corresponded with a diminished capacity to stimulate naive T cells. Thus, the ingestion of apoptotic cells is not an immunologically null event but is capable of modulating DC maturation. These results have important implications for our understanding of the role of clearance of dying cells by DCs not only in the normal resolution of inflammation but also in control of subsequent immune responses to apoptotic cell-derived Ags.

  12. A requirement for fatty acid oxidation in the hormone-induced meiotic maturation of mouse oocytes.

    Science.gov (United States)

    Valsangkar, Deepa; Downs, Stephen M

    2013-08-01

    We have previously shown that fatty acid oxidation (FAO) is required for AMP-activated protein kinase (PRKA)-induced maturation in vitro. In the present study, we have further investigated the role of this metabolic pathway in hormone-induced meiotic maturation. Incorporating an assay with (3)H-palmitic acid as the substrate, we first examined the effect of PRKA activators on FAO levels. There was a significant stimulation of FAO in cumulus cell-enclosed oocytes (CEO) treated with 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) and RSVA405. In denuded oocytes (DO), AICAR stimulated FAO only in the presence of carnitine, the molecule that facilitates fatty acyl CoA entry into the mitochondria. The carnitine palmitoyltransferase 1 activator C75 successfully stimulated FAO in CEO. All three of these activators trigger germinal vesicle breakdown. Meiotic resumption induced by follicle-stimulating hormone (FSH) or amphiregulin was completely inhibited by the FAO inhibitors etomoxir, mercaptoacetate, and malonyl CoA. Importantly, FAO was increased in CEO stimulated by FSH and epidermal growth factor, and this increase was blocked by FAO inhibitors. Moreover, compound C, a PRKA inhibitor, prevented the FSH-induced increase in FAO. Both carnitine and palmitic acid augmented hormonal induction of maturation. In a more physiological setting, etomoxir eliminated human chorionic gonadotropin (hCG)-induced maturation in follicle-enclosed oocytes. In addition, CEO and DO from hCG-treated mice displayed an etomoxir-sensitive increase in FAO, indicating that this pathway was stimulated during in vivo meiotic resumption. Taken together, our data indicate that hormone-induced maturation in mice requires a PRKA-dependent increase in FAO. PMID:23863407

  13. Induction of mast cell proliferation, maturation, and heparin synthesis by the rat c-kit ligand, stem cell factor

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, M.; Takeishi, Takashi; Geissler, E.N. (Beth Israel Hospital, Boston, MA (United States)); Thompson, H.; Metcalfe, D.D. (National Inst. of Health, Bethesda, MD (United States)); Langley, K.E.; Zsebo, K.M.; Galli, S.J. (Amgen, Inc., Thousand Oaks, CA (United States))

    1991-07-15

    The authors investigated the effects of a newly recognized multifunctional growth factor, the c-kit ligand stem cell factor (SCF), on mouse mast cell proliferation and phenotype. Recombinant rat SCF{sup 164} (rrSCF{sup 164}) induced the development of large numbers of dermal mast cells in normal mice in vivo. Many of these mast cells had features of connective tissue-type mast cells (CTMC), in that they were reactive both with the heparin-binding fluorescent dye berberine sulfate and with safranin. In vitro, rrSCF{sup 164} induced the proliferation of cloned interleukin 3 (IL-3)-dependent mouse mast cells and primary populations of IL-3-dependent, bone marrow-derived cultured mast cells (BMCMC), which represent immature mast cells, and purified peritoneal mast cells, which represent a type of mature CTMC> BMCMC maintained in rrSCF{sup 164} not only proliferated but also matured. These findings identify SCF as a single cytokine that can induce immature, IL-3-dependent mast cells to mature and to acquire multiple characteristics of CTMC. These findings also directly demonstrate that SCF can regulate the development of a cellular lineage expressing c-kit through effects on both proliferation and maturation.

  14. NKT cell-TCR expression activates conventional T cells in vivo, but is largely dispensable for mature NKT cell biology.

    Directory of Open Access Journals (Sweden)

    J Christoph Vahl

    Full Text Available Natural killer T (NKT cell development depends on recognition of self-glycolipids via their semi-invariant Vα14i-TCR. However, to what extent TCR-mediated signals determine identity and function of mature NKT cells remains incompletely understood. To address this issue, we developed a mouse strain allowing conditional Vα14i-TCR expression from within the endogenous Tcrα locus. We demonstrate that naïve T cells are activated upon replacement of their endogenous TCR repertoire with Vα14i-restricted TCRs, but they do not differentiate into NKT cells. On the other hand, induced TCR ablation on mature NKT cells did not affect their lineage identity, homeostasis, or innate rapid cytokine secretion abilities. We therefore propose that peripheral NKT cells become unresponsive to and thus are independent of their autoreactive TCR.

  15. Responsiveness of fetal rat brain cells to glia maturation factor during neoplastic transformation in cell culture

    DEFF Research Database (Denmark)

    Haugen, A; Laerum, O D; Bock, E

    1981-01-01

    The effect of partially purified extracts from adult pig brains containing a glia maturation protein factor (BE) has been investigated on neural cells during carcinogenesis. Pregnant BD IX-rats were given a single transplacental dose of the carcinogen ethylnitrosourea (EtNU) on the 18th day...... of gestation. The brains of the treated fetuses were transferred to cell culture and underwent neoplastic transformation with a characteristic sequence of phenotypic alterations which could be divided into five different stages. During the first 40 days after explantation (stage I & II) BE induced...

  16. TLR4-mediated podosome loss discriminates gram-negative from gram-positive bacteria in their capacity to induce dendritic cell migration and maturation.

    NARCIS (Netherlands)

    Helden, S.F.G. van; Dries, K. van den; Oud, M.M.; Raymakers, R.A.P.; Netea, M.G.; Leeuwen, F.N. van; Figdor, C.G.

    2010-01-01

    Chronic infections are caused by microorganisms that display effective immune evasion mechanisms. Dendritic cell (DC)-dependent T cell-mediated adaptive immunity is one of the mechanisms that have evolved to prevent the occurrence of chronic bacterial infections. In turn, bacterial pathogens have de

  17. Cord blood mesenchymal stem cells propel human dendritic cells to an intermediate maturation state and boost interleukin-12 production by mature dendritic cells.

    NARCIS (Netherlands)

    Berk, L.C.J. van den; Roelofs, H.; Huijs, T.; Siebers-Vermeulen, K.G.C.; Raymakers, R.A.P.; Kogler, G.; Figdor, C.G.; Torensma, R.

    2009-01-01

    Pathogen-derived entities force the tissue-resident dendritic cells (DCs) towards a mature state, followed by migration to the draining lymph node to present antigens to T cells. Bone marrow mesenchymal stem cells (MSCs) modulate the differentiation, maturation and function of DCs. In umbilical cord

  18. The fertilization—induced Ca2+ oscillation in mouse oocytes is cytoplasmic maturation dependent

    Institute of Scientific and Technical Information of China (English)

    DENGMANQI; FANGZHENSUN

    1996-01-01

    Mature eggs (at metaphase II stage) produce a series of Ca2+ oscillation at fertilization.To define whether the fertilization-induced Ca2+ oscillation is restrict to the metaphase II eggs and cell cycle dependent,mouse oocytes at prophase I (arrested at germinal vesicle stage),metaphase I,metaphase II,as well as the pronuclear embryos at interphase of the first mitotic division derived from fertilization of parthenogenetic activation were inseminated after removal of zona pellucida,The results show that the fertilization-induced Ca2+ oscillation is not specific to metaphase II eggs.This is supported by the fact that immature oocytes generated the Ca2+ oscillations at fertilization regardless of their nuclear progression from prophase I to metaphase I (in vitro matured) stage.More interestingly,it was first found that pronuclear embryos at interphase derived from parthenogenetic activation showed Ca2+ oscillations in response to fertilization while the zygotes at interphase did not after reinsemination or intracytoplasmic injection of sperm extracts which induce Ca2+ oscillations in MII eggs.This suggests that the ability of oocytes to generate Ca2+ oscillation in response to sperm penetration is not regulated in a cell cycle dependent manner but dependent on the cytoplasmic maturation.

  19. Genetic dissection of epidermal growth factor receptor signaling during luteinizing hormone-induced oocyte maturation.

    Directory of Open Access Journals (Sweden)

    Minnie Hsieh

    Full Text Available Recent evidence that luteinizing hormone (LH stimulation of ovulatory follicles causes transactivation of the epidermal growth factor receptor (EGFR has provided insights into the mechanisms of ovulation. However, the complete array of signals that promote oocyte reentry into the meiotic cell cycle in the follicle are still incompletely understood. To elucidate the signaling downstream of EGFR involved in oocyte maturation, we have investigated the LH responses in granulosa cells with targeted ablation of EGFR. Oocyte maturation and ovulation is disrupted when EGFR expression is progressively reduced. In granulosa cells from mice with either global or granulosa cell-specific disruption of EGFR signaling, LH-induced phosphorylation of MAPK3/1, p38MAPK, and connexin-43 is impaired. Although the LH-induced decrease in cGMP is EGFR-dependent in wild type follicles, LH still induces a decrease in cGMP in Egfr(delta/f Cyp19-Cre follicles. Thus compensatory mechanisms appear activated in the mutant. Spatial propagation of the LH signal in the follicle also is dependent on the EGF network, and likely is important for the control of signaling to the oocyte. Thus, multiple signals and redundant pathways contribute to regulating oocyte reentry into the cell cycle.

  20. Cord blood mesenchymal stem cells propel human dendritic cells to an intermediate maturation state and boost interleukin-12 production by mature dendritic cells.

    Science.gov (United States)

    van den Berk, Lieke C J; Roelofs, Helene; Huijs, Tonnie; Siebers-Vermeulen, Kim G C; Raymakers, Reinier A; Kögler, Gesine; Figdor, Carl G; Torensma, Ruurd

    2009-12-01

    Pathogen-derived entities force the tissue-resident dendritic cells (DCs) towards a mature state, followed by migration to the draining lymph node to present antigens to T cells. Bone marrow mesenchymal stem cells (MSCs) modulate the differentiation, maturation and function of DCs. In umbilical cord blood an immature MSC population was identified. Remarkably, these immature stem cells modulated DCs in a different way. Marker expression was unchanged during the differentiation of monocytes towards immature DCs (iDCs) when cocultured with cord blood MSC [unrestricted somatic stem cells (USSCs)]. The maturation to mature DCs (mDCs) was enhanced when DCs were co-cultured with USSC, as evidenced by the up-regulation of costimulatory molecules. Endocytosis of dextran by iDCs was hampered in the presence of USSCs, which is indicative for the maturation of iDCs. Despite this maturation, the migration of iDCs cocultured with USSCs appeared to be identical to iDCs cultured alone. However, USSCs increased the migration of mDCs towards CCL21 and boosted interleukin-12 production. So, USSCs mature iDCs, thereby redirecting the antigen-uptake phenotype towards a mature phenotype. Furthermore, DC maturation by lipopolysaccharide (LPS) or USSCs reflects two distinct pathways because migration was unaffected when iDCs were matured by coculture with USSCs, while it was strongly enhanced in the presence of LPS. DCs are able to discriminate the different MSC subtypes, resulting in diverse differentiation programmes.

  1. Endogenous laminin is required for human airway smooth muscle cell maturation

    Directory of Open Access Journals (Sweden)

    Tran Thai

    2006-09-01

    Full Text Available Abstract Background Airway smooth muscle (ASM contraction underlies acute bronchospasm in asthma. ASM cells can switch between a synthetic-proliferative phenotype and a contractile phenotype. While the effects of extracellular matrix (ECM components on modulation of ASM cells to a synthetic phenotype have been reported, the role of ECM components on maturation of ASM cells to a contractile phenotype in adult lung is unclear. As both changes in ECM components and accumulation of contractile ASM are features of airway wall remodelling in asthma, we examined the role of the ECM protein, laminin, in the maturation of contractile phenotype in human ASM cells. Methods Human ASM cells were made senescence-resistant by stable expression of human telomerase reverse transcriptase. Maturation to a contractile phenotype was induced by 7-day serum deprivation, as assessed by immunoblotting for desmin and calponin. The role of laminin on ASM maturation was investigated by comparing the effects of exogenous laminin coated on culture plates, and of soluble laminin peptide competitors. Endogenous expression of laminin chains during ASM maturation was also measured. Results Myocyte binding to endogenously expressed laminin was required for ASM phenotype maturation, as laminin competing peptides (YIGSR or GRGDSP significantly reduced desmin and calponin protein accumulation that otherwise occurs with prolonged serum deprivation. Coating of plastic cell culture dishes with different purified laminin preparations was not sufficient to further promote accumulation of desmin or calponin during 7-day serum deprivation. Expression of α2, β1 and γ1 laminin chains by ASM cells was specifically up-regulated during myocyte maturation, suggesting a key role for laminin-2 in the development of the contractile phenotype. Conclusion While earlier reports suggest exogenously applied laminin slows the spontaneous modulation of ASM to a synthetic phenotype, we show for the

  2. T Cells That Promote B-Cell Maturation in Systemic Autoimmunity

    OpenAIRE

    Weinstein, Jason S.; Hernandez, Sairy G.; Craft, Joe

    2012-01-01

    Follicular helper T (Tfh) cells play an essential role in helping B cells generate antibodies upon pathogen encounters. Such T-cell help classically occurs in germinal centers (GCs) located in B-cell follicles of secondary lymphoid organs, a site of immunoglobulin affinity maturation and isotype switching. B-cell maturation also occurs extrafollicularly, in the red pulp of the spleen and medullary cords in lymph nodes, with plasma cell formation and antibody production. Development of extrafo...

  3. Cigarette Smoke Decreases the Maturation of Lung Myeloid Dendritic Cells

    Science.gov (United States)

    Calero-Acuña, Carmen; Moreno-Mata, Nicolás; Gómez-Izquierdo, Lourdes; Sánchez-López, Verónica; López-Ramírez, Cecilia; Tobar, Daniela; López-Villalobos, José Luis; Gutiérrez, Cesar; Blanco-Orozco, Ana; López-Campos, José Luis

    2016-01-01

    Background Conflicting data exist on the role of pulmonary dendritic cells (DCs) and their maturation in patients with chronic obstructive pulmonary disease (COPD). Herein, we investigated whether disease severity and smoking status could affect the distribution and maturation of DCs in lung tissues of patients undergoing elective pneumectomy or lobectomy for suspected primary lung cancer. Materials and Methods A total of 75 consecutive patients were included. Spirometry testing was used to identify COPD. Lung parenchyma sections anatomically distant from the primary lesion were examined. We used flow cytometry to identify different DCs subtypes—including BDCA1-positive myeloid DCs (mDCs), BDCA3-positive mDCs, and plasmacytoid DCs (pDCs)—and determine their maturation markers (CD40, CD80, CD83, and CD86) in all participants. We also identified follicular DCs (fDCs), Langerhans DCs (LDCs), and pDCs in 42 patients by immunohistochemistry. Results COPD was diagnosed in 43 patients (16 current smokers and 27 former smokers), whereas the remaining 32 subjects were classified as non-COPD (11 current smokers, 13 former smokers, and 8 never smokers). The number and maturation of DCs did not differ significantly between COPD and non-COPD patients. However, the results of flow cytometry indicated that maturation markers CD40 and CD83 of BDCA1-positive mDCs were significantly decreased in smokers than in non-smokers (P = 0.023 and 0.013, respectively). Immunohistochemistry also revealed a lower number of LDCs in COPD patients than in non-COPD subjects. Conclusions Cigarette smoke, rather than airflow limitation, is the main determinant of impaired DCs maturation in the lung. PMID:27058955

  4. The role of phosphatidylinositol signaling pathway in regulating serotonin-induced oocyte maturation in Mercenaria mercenaria

    Institute of Scientific and Technical Information of China (English)

    WANG Qing; ZHANG Tao

    2011-01-01

    Serotonin (5-HT) has been found to stimulate meiotic maturation of oocytes in many molluscs. During maturation, several signaling pathways are involved, especially the phosphatidylinositol and cAMP pathways. In order to examine the possible role of the phosphatidylinositol signaling pathway in regulating oocyte maturation in Mercenaria mercenaria, the effects of the activator/inhibitor of phospholipase (PLC) and protein kinase C (PKC) on serotonin-induced maturation were studied. Results show that high-concentrations of neomycin (inhibitor of PLC) blocked oocyte maturation, while 9, 10-dimethyl- 1, 2-benzanthracene (DMBA, activator of PLC) promoted oocyte maturation in the presence of serotonin. It was also found that in the presence of serotonin, phorbol 12-myristate 13-acetate (PMA,activator of PKC) inhibited oocyte maturation, while sphingosine (inhibitor of PKC) stimulated oocyte maturation. These results indicate that serotonin-induced oocyte maturation requires the activation of the phosphatidylinositol pathway. Decrease of PLC inhibited serotonin-induced oocyte maturation, whereas a decrease of PKC stimulated the maturation. Thus, our study indicates that serotonin promotes maturation of M. mercenaria oocytes through PLC stimulated increase in calcium ion concentration via inositol-1,4, 5-trisphosphate (IP3) but not PKC.

  5. Human dendritic cell maturation and cytokine secretion upon stimulation with Bordetella pertussis filamentous haemagglutinin.

    Science.gov (United States)

    Dirix, Violette; Mielcarek, Nathalie; Debrie, Anne-Sophie; Willery, Eve; Alonso, Sylvie; Versheure, Virginie; Mascart, Françoise; Locht, Camille

    2014-07-01

    In addition to antibodies, Th1-type T cell responses are also important for long-lasting protection against pertussis. However, upon immunization with the current acellular vaccines, many children fail to induce Th1-type responses, potentially due to immunomodulatory effects of some vaccine antigens, such as filamentous haemagglutinin (FHA). We therefore analysed the ability of FHA to modulate immune functions of human monocyte-derived dendritic cells (MDDC). FHA was purified from pertussis toxin (PTX)-deficient or from PTX- and adenylate cyclase-deficient Bordetella pertussis strains, and residual endotoxin was neutralized with polymyxin B. FHA from both strains induced phenotypic maturation of human MDDC and cytokine secretion (IL-10, IL-12p40, IL-12p70, IL-23 and IL-6). To identify the FHA domains responsible for MDDC immunomodulation, MDDC were stimulated with FHA containing a Gly→Ala substitution at its RGD site (FHA-RAD) or with an 80-kDa N-terminal moiety of FHA (Fha44), containing its heparin-binding site. Whereas FHA-RAD induced maturation and cytokine production comparable to those of FHA, Fha44 did not induce IL-10 production, but maturated MDDC at least partially. Nevertheless, Fha44 induced the secretion of IL-12p40, IL-12p70, IL-23 and IL-6 by MDDC, albeit at lower levels than FHA. Thus, FHA can modulate MDDC responses in multiple ways, and IL-10 induction can be dissociated from the induction of other cytokines.

  6. Neural induction from ES cells portrays default commitment but instructive maturation.

    Directory of Open Access Journals (Sweden)

    Nibedita Lenka

    Full Text Available The neural induction has remained a debatable issue pertaining to whether it is a mere default process or it involves precise instructive cues. We have chosen the embryonic stem (ES cell model to address this issue. In a devised monoculture strategy, the cell-cell interaction availed through optimum cell plating density could define the niche for the attainment of efficient in vitro neurogenesis from the ES cells. The medium plating density was found ideal in generating optimum number of progenitors and also yielded about 80% mature neurons in a serum free culture set up barring any exogenous inducers. We could also demarcate and quantify the neural stem cells/progenitors among the heterogeneous cell population of differentiating ES cells using nestin intron II driven EGFP expression as a tool. The one week post-plating was determined to be the critical time window for optimum neural progenitor generation from ES cells that helped us further in purifying these cells and in demonstrating their proliferation and multipotent differentiation potential. Seeding cells at varying densities, we could decipher an interesting paradoxical scenario that interlinked both commitment and maturation with the initial plating density having a vital influence on neuronal maturation but not specification and the secretory factors were apparently playing a key role during this process. Thus it was comprehended that, the neural specification was a default process independent of exogenous factors and cellular interaction. Conversely, a defined number of cells at the specification stage itself seemed critical to provide an auto-/paracrine means of signaling threshold for the maturation process to materialize.

  7. Interaction of poxvirus intracellular mature virion proteins with the TPR domain of kinesin light chain in live infected cells revealed by two-photon-induced fluorescence resonance energy transfer fluorescence lifetime imaging microscopy.

    Science.gov (United States)

    Jeshtadi, Ananya; Burgos, Pierre; Stubbs, Christopher D; Parker, Anthony W; King, Linda A; Skinner, Michael A; Botchway, Stanley W

    2010-12-01

    Using two-photon-induced fluorescence lifetime imaging microscopy, we corroborate an interaction (previously demonstrated by yeast two-hybrid domain analysis) of full-length vaccinia virus (VACV; an orthopoxvirus) A36 protein with the cellular microtubule motor protein kinesin. Quenching of enhanced green fluorescent protein (EGFP), fused to the C terminus of VACV A36, by monomeric red fluorescent protein (mDsRed), fused to the tetratricopeptide repeat (TPR) domain of kinesin, was observed in live chicken embryo fibroblasts infected with either modified vaccinia virus Ankara (MVA) or wild-type fowlpox virus (FWPV; an avipoxvirus), and the excited-state fluorescence lifetime of EGFP was reduced from 2.5 ± 0.1 ns to 2.1 ± 0.1 ns due to resonance energy transfer to mDsRed. FWPV does not encode an equivalent of intracellular enveloped virion surface protein A36, yet it is likely that this virus too must interact with kinesin to facilitate intracellular virion transport. To investigate possible interactions between innate FWPV proteins and kinesin, recombinant FWPVs expressing EGFP fused to the N termini of FWPV structural proteins Fpv140, Fpv168, Fpv191, and Fpv198 (equivalent to VACV H3, A4, p4c, and A34, respectively) were generated. EGFP fusions of intracellular mature virion (IMV) surface protein Fpv140 and type II membrane protein Fpv198 were quenched by mDsRed-TPR in recombinant FWPV-infected cells, indicating that these virion proteins are found within 10 nm of mDsRed-TPR. In contrast, and as expected, EGFP fusions of the IMV core protein Fpv168 did not show any quenching. Interestingly, the p4c-like protein Fpv191, which demonstrates late association with preassembled IMV, also did not show any quenching.

  8. Influence of low dose irradiation on differentiation, maturation and T-cell activation of human dendritic cells

    Energy Technology Data Exchange (ETDEWEB)

    Jahns, Jutta [Department of Radiotherapy and Radiation Oncology, University of Leipzig, Stephanstrasse 21, 04103 Leipzig (Germany); Anderegg, Ulf; Saalbach, Anja [Department for Dermatology, Venerology and Allergology, University of Leipzig, Johannisallee 30, 04103 Leipzig (Germany); Rosin, Britt; Patties, Ina; Glasow, Annegret [Department of Radiotherapy and Radiation Oncology, University of Leipzig, Stephanstrasse 21, 04103 Leipzig (Germany); Kamprad, Manja [Institute for Clinical Immunology and Transfusion Medicine, University of Leipzig, Johannisallee 30, 04103 Leipzig (Germany); Scholz, Markus [Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Haertelstr. 16-18, 04103 Leipzig (Germany); Hildebrandt, Guido, E-mail: Guido.Hildebrandt@uni-rostock.de [Department of Radiotherapy and Radiation Oncology, University of Rostock, Suedring 75, 18059 Rostock (Germany); Department of Radiotherapy and Radiation Oncology, University of Leipzig, Stephanstrasse 21, 04103 Leipzig (Germany)

    2011-05-10

    Ionizing irradiation could act directly on immune cells and may induce bystander effects mediated by soluble factors that are released by the irradiated cells. This is the first study analyzing both the direct effect of low dose ionizing radiation (LDIR) on the maturation and cytokine release of human dendritic cells (DCs) and the functional consequences for co-cultured T-cells. We showed that irradiation of DC-precursors in vitro does not influence surface marker expression or cytokine profile of immature DCs nor of mature DCs after LPS treatment. There was no difference of single dose irradiation versus fractionated irradiation protocols on the behavior of the mature DCs. Further, the low dose irradiation did not change the capacity of the DCs to stimulate T-cell proliferation. But the irradiation of the co-culture of DCs and T-cells revealed significantly lower proliferation of T-cells with higher doses. Summarizing the data from approx. 50 DC preparations there is no significant effect of low dose ionizing irradiation on the cytokine profile, surface marker expression and maturation of DCs in vitro although functional consequences cannot be excluded.

  9. Maturation, proliferation and apoptosis of seminal tubule cells at puberty after administration of estradiol, follicle stimulating hormone or both

    Institute of Scientific and Technical Information of China (English)

    Renata Walczak-Jedrzejowska; Jolanta Slowikowska-Hilczer; Katarzyna Marchlewska; Krzysztof Kula

    2008-01-01

    Aim: To assess proliferative and apoptotic potential of the seminiferous epithelium cells in relation to Sertoli cell maturation in newborn rats under the influence of estradiol, follicle stimulating hormone (FSH) or both agents given together. Methods: From postnatal day (PND) 5 to 15 male rats were daily injected with 12.5 μg of 17β-estradiol benzoate (EB) or 7.5 IU of human purified FSH (hFSH) or EB + hFSH or solvents (control). On postnatal day 16, autopsy was performed. Sertoli cell maturation/function was assessed by morphometry. Proliferation of the semini- ferous epithelium cells was quantitatively evaluated using immunohistochemical labeling against proliferating cell nuclear antigen and apoptosis using the TUNEL method. Results: Although EB inhibited Sertoli cell maturation and hFSH was not effective, a pronounced acceleration of Sertoli cell maturation occurred after EB + hFSH. Whereas hFSH stimulated Sertoli cell proliferation, EB or EB + hFSH inhibited Sertoli cell proliferation. All treatments signifi- cantly stimulated germ cell proliferation. Apoptosis of Sertoli cells increased 9-fold and germ cells 2-fold after EB, and was not affected by hFSH but was inhibited after EB + hFSH. Conclusion: At puberty, estradiol inhibits Sertoli cell maturation, increases Sertoli and germ cell apoptosis but stimulates germ cell proliferation. Estradiol in synergism with FSH, but neither of the hormones alone, accelerates Sertoli cell maturation associated with an increase in germ cell survival. Estradiol and FSH cooperate to induce seminal tubule maturation and trigger first spermatogenesis. (Asian J Androl 2008 Jul; 10: 585-592)

  10. Tumour tissue microenvironment can inhibit dendritic cell maturation in colorectal cancer.

    Directory of Open Access Journals (Sweden)

    Adriana J Michielsen

    Full Text Available Inflammatory mediators in the tumour microenvironment promote tumour growth, vascular development and enable evasion of anti-tumour immune responses, by disabling infiltrating dendritic cells. However, the constituents of the tumour microenvironment that directly influence dendritic cell maturation and function are not well characterised. Our aim was to identify tumour-associated inflammatory mediators which influence the function of dendritic cells. Tumour conditioned media obtained from cultured colorectal tumour explant tissue contained high levels of the chemokines CCL2, CXCL1, CXCL5 in addition to VEGF. Pre-treatment of monocyte derived dendritic cells with this tumour conditioned media inhibited the up-regulation of CD86, CD83, CD54 and HLA-DR in response to LPS, enhancing IL-10 while reducing IL-12p70 secretion. We examined if specific individual components of the tumour conditioned media (CCL2, CXCL1, CXCL5 could modulate dendritic cell maturation or cytokine secretion in response to LPS. VEGF was also assessed as it has a suppressive effect on dendritic cell maturation. Pre-treatment of immature dendritic cells with VEGF inhibited LPS induced upregulation of CD80 and CD54, while CXCL1 inhibited HLA-DR. Interestingly, treatment of dendritic cells with CCL2, CXCL1, CXCL5 or VEGF significantly suppressed their ability to secrete IL-12p70 in response to LPS. In addition, dendritic cells treated with a combination of CXCL1 and VEGF secreted less IL-12p70 in response to LPS compared to pre-treatment with either cytokine alone. In conclusion, tumour conditioned media strongly influences dendritic cell maturation and function.

  11. Tumour tissue microenvironment can inhibit dendritic cell maturation in colorectal cancer.

    LENUS (Irish Health Repository)

    Michielsen, Adriana J

    2011-01-01

    Inflammatory mediators in the tumour microenvironment promote tumour growth, vascular development and enable evasion of anti-tumour immune responses, by disabling infiltrating dendritic cells. However, the constituents of the tumour microenvironment that directly influence dendritic cell maturation and function are not well characterised. Our aim was to identify tumour-associated inflammatory mediators which influence the function of dendritic cells. Tumour conditioned media obtained from cultured colorectal tumour explant tissue contained high levels of the chemokines CCL2, CXCL1, CXCL5 in addition to VEGF. Pre-treatment of monocyte derived dendritic cells with this tumour conditioned media inhibited the up-regulation of CD86, CD83, CD54 and HLA-DR in response to LPS, enhancing IL-10 while reducing IL-12p70 secretion. We examined if specific individual components of the tumour conditioned media (CCL2, CXCL1, CXCL5) could modulate dendritic cell maturation or cytokine secretion in response to LPS. VEGF was also assessed as it has a suppressive effect on dendritic cell maturation. Pre-treatment of immature dendritic cells with VEGF inhibited LPS induced upregulation of CD80 and CD54, while CXCL1 inhibited HLA-DR. Interestingly, treatment of dendritic cells with CCL2, CXCL1, CXCL5 or VEGF significantly suppressed their ability to secrete IL-12p70 in response to LPS. In addition, dendritic cells treated with a combination of CXCL1 and VEGF secreted less IL-12p70 in response to LPS compared to pre-treatment with either cytokine alone. In conclusion, tumour conditioned media strongly influences dendritic cell maturation and function.

  12. TLR-independent induction of dendritic cell maturation and adaptive immunity by negative-strand RNA viruses.

    Science.gov (United States)

    López, Carolina B; Moltedo, Bruno; Alexopoulou, Lena; Bonifaz, Laura; Flavell, Richard A; Moran, Thomas M

    2004-12-01

    TLR signaling leads to dendritic cell (DC) maturation and immunity to diverse pathogens. The stimulation of TLRs by conserved viral structures is the only described mechanism leading to DC maturation after a virus infection. In this report, we demonstrate that mouse myeloid DCs mature normally after in vivo and in vitro infection with Sendai virus (SeV) in the absence of TLR3, 7, 8, or 9 signaling. DC maturation by SeV requires virus replication not necessary for TLR-mediated triggering. Moreover, DCs deficient in TLR signaling efficiently prime for Th1 immunity after infection with influenza or SeV, generating IFN-gamma-producing T cells, CTLs and antiviral Abs. We have previously demonstrated that SeV induces DC maturation independently of the presence of type I IFN, which has been reported to mature DCs in a TLR-independent manner. The data presented here provide evidence for the existence of a novel intracellular pathway independent of TLR-mediated signaling responsible for live virus triggering of DC maturation and demonstrate its critical role in the onset of antiviral immunity. The revelation of this pathway should stimulate invigorating research into the mechanism for virus-induced DC maturation and immunity.

  13. Commonly used prophylactic vaccines as an alternative for synthetically produced TLR ligands to mature monocyte-derived dendritic cells.

    Science.gov (United States)

    Schreibelt, Gerty; Benitez-Ribas, Daniel; Schuurhuis, Danita; Lambeck, Annechien J A; van Hout-Kuijer, Maaike; Schaft, Niels; Punt, Cornelis J A; Figdor, Carl G; Adema, Gosse J; de Vries, I Jolanda M

    2010-07-29

    Currently dendritic cell (DC)-based vaccines are explored in clinical trials, predominantly in cancer patients. Murine studies showed that only maturation with Toll-like receptor (TLR) ligands generates mature DCs that produce interleukin-12 and promote optimal T-cell help. Unfortunately, the limited availability of clinical-grade TLR ligands significantly hampers the translation of these findings into DC-based vaccines. Therefore, we explored 15 commonly used preventive vaccines as a possible source of TLR ligands. We have identified a cocktail of the vaccines BCG-SSI, Influvac, and Typhim that contains TLR ligands and is capable of optimally maturing DCs. These DCs (vaccine DCs) showed high expression of CD80, CD86, and CD83 and secreted interleukin-12. Although vaccine DCs exhibited an impaired migratory capacity, this could be restored by addition of prostaglandin E(2) (PGE(2); vaccine PGE(2) DCs). Vaccine PGE(2) DCs are potent inducers of T-cell proliferation and induce Th1 polarization. In addition, vaccine PGE(2) DCs are potent inducers of tumor antigen-specific CD8(+) effector T cells. Finally, vaccine PGE(2)-induced DC maturation is compatible with different antigen-loading strategies, including RNA electroporation. These data thus identify a new clinical application for a mixture of commonly used preventive vaccines in the generation of Th1-inducing clinical-grade mature DCs.

  14. PKCδ and θ possibly mediate FSH-induced mouse oocyte maturation via NOX-ROS-TACE cascade signaling pathway.

    Directory of Open Access Journals (Sweden)

    Qian Chen

    Full Text Available In mammals, gonadotropins stimulate oocyte maturation via the epidermal growth factor (EGF network, and the protein kinase C (PKC signaling pathway mediates this process. Tumor necrosis factor-α converting enzyme (TACE is an important protein responding to PKC activation. However, the detailed signaling cascade between PKC and TACE in follicle-stimulating hormone (FSH-induced oocyte maturation in vitro remains unclear. In this study, we found that rottlerin (mallotoxin, MTX, the inhibitor of PKC δ and θ, blocked FSH-induced maturation of mouse cumulus-oocyte complexes (COCs in vitro. We further clarified the relationship between two molecules downstream of PKC δ and θ and TACE in COCs: nicotinamide adenine dinucleotide phosphate (NADPH oxidase (NOX and its products, reactive oxygen species (ROS. We proved that the respective inhibitors of NOX, ROS and TACE could block FSH-stimulated oocyte maturation dose-dependently, but these inhibitory effects could be reversed partially by amphiregulin (Areg, an EGF family member. Notably, inhibition of PKC δ and θ prevented FSH-induced translocation of two cytosolic components of NOX, p47phox and p67phox, to the plasma membrane in cumulus cells. Moreover, FSH-induced TACE activity in cumulus cells was decreased markedly by inhibition of NOX and ROS. In conclusion, PKC δ and θ possibly mediate FSH-induced meiotic resumption in mouse COCs via NOX-ROS-TACE signaling pathway.

  15. Spontaneous loss and alteration of antigen receptor expression in mature CD4+ T cells

    International Nuclear Information System (INIS)

    The T-cell receptor CD3 (TCR/CD3) complex plays a central role in antigen recognition and activation of mature T cells, and therefore abnormalities in the expression of the complex should induce unresponsiveness of T cells to antigen stimulus. Using flow cytometry, we detected and enumerated variant cells with loss or alteration of surface TCR/CD3 expression among human mature CD4+ T cells. The presence of variant CD4+ T cells was demonstrated by isolating and cloning them from peripheral blood, and their abnormalities can be accounted for by alterations in TCR expression such as defects of protein expression and partial protein deletion. The variant frequency in peripheral blood increased with aging in normal donors and was highly elevated in patients with ataxia telangiectasia, an autosomal recessive inherited disease with defective DNA repair and variable T-cell immunodeficiency. These findings suggest that such alterations in TCR expression are induced by somatic mutagenesis of TCR genes and can be important factors related to age-dependent and genetic disease-associated T-cell dysfunction. (author)

  16. Psychosocial resources, aging, and natural killer cell terminal maturity.

    Science.gov (United States)

    Segerstrom, Suzanne C; Al-Attar, Ahmad; Lutz, Charles T

    2012-12-01

    Psychosocial factors may influence aspects of immunological aging. The present study tested the hypothesis that psychosocial resources correlate with the expression of the cell surface maker CD57 on natural killer (NK) immune cells. CD57 is a marker of terminal maturation and senescence in this cell subset. The study further tested the relative contribution of specific resources in the social, psychological, financial, and status-skill domains, given the potential differential value of different resources for younger and older adults, and the contribution of relative versus absolute resources. Younger (n = 38) and older (n = 34) women completed measures of relative and absolute resources and had blood drawn. Examined both between groups and within the older women, older age and fewer total relative resources were associated with more CD57 expression on NK cells. One SD in resources was the equivalent of 5 years of aging among the older women. Among the specific resource types, a preponderance of financial resources, both relative and absolute, was associated with less CD57 expression on NK cells, and these relationships did not significantly vary between younger and older women. There was no evidence that depressive symptoms mediated the effects of resources on CD57 expression on NK cells. These findings provide support for the hypothesis that the sense that one has substantial resources, particularly with regard to finances and possessions, may retard age-associated aspects of the microenvironment in which NK cells develop and mature, independent of effects on distress, and this process may begin in younger adulthood. PMID:22708535

  17. Rex Rabbit Somatic Cell Nuclear Transfer with In Vitro-Matured Oocytes.

    Science.gov (United States)

    Liu, Yong; Wang, Huili; Lu, Jinhua; Miao, Yiliang; Cao, Xinyan; Zhang, Ling; Wu, Xiaoqing; Wu, Fengrui; Ding, Biao; Wang, Rong; Luo, Mingjiu; Li, Wenyong; Tan, Jinghe

    2016-06-01

    Somatic cell nuclear transfer (SCNT) requires large numbers of matured oocytes. In vitro-matured (IVM) oocytes have been used in SCNT in many animals. We investigated the use of IVM oocytes in Rex rabbit SCNT using Rex rabbit ovaries obtained from a local abattoir. The meiotic ability of oocytes isolated from follicles of different diameters was studied. Rex rabbit SCNT was optimized for denucleation, activation, and donor cell synchronization. Rex rabbit oocytes grew to the largest diameter (110 μm) when the follicle diameter was 1.0 mm. Oocytes isolated from 0.7-mm follicles acquired maturation ability. More than 90% of these oocytes matured after IVC for 18 h. The developmental potential of oocytes isolated from >1-mm follicles was greater than that of oocytes isolated from 0.7- to 1.0-mm follicles. The highest activation rates for IVM Rex rabbit oocytes were seen after treatment with 2.5 μM ionomycin for 5 min followed by 2 mM 6-dimethylaminopurine (6-DMAP) and 5 μg/mL cycloheximide (CHX) for 1 h. Ionomycin induced the chromatin of IVM oocytes to protrude from the oocyte surface, promoting denucleation. Fetal fibroblast cells (FFCs) and cumulus cells (CCs) were more suitable for Rex rabbit SCNT than skin fibroblast cells (SFCs) (blastocyst rate was 35.6 ± 2.2% and 38.0 ± 6.0% vs. 19.7 ± 3.1%). The best fusion condition was a 2DC interval for 1 sec, 1.6 kV/cm voltages, and 40 μsec duration in 0.28 M mannitol. In conclusion, the in vitro maturation of Rex rabbit oocytes and SCNT procedures were studied systematically and optimized in this study. PMID:27159389

  18. Composition of MHC class II-enriched lipid microdomains is modified during maturation of primary dendritic cells.

    Science.gov (United States)

    Setterblad, Niclas; Roucard, Corinne; Bocaccio, Claire; Abastado, Jean-Pierre; Charron, Dominique; Mooney, Nuala

    2003-07-01

    Dendritic cells (DCs) are the most potent antigen presenting cells. Major histocompatibility complex (MHC) class II molecule expression changes with maturation; immature DCs concentrate MHC class II molecules intracellularly, whereas maturation increases surface expression of MHC class II and costimulatory molecules to optimize antigen presentation. Signal transduction via MHC class II molecules localized in lipid microdomains has been described in B lymphocytes and in the THP-1 monocyte cell line. We have characterized MHC class II molecules throughout human DC maturation with particular attention to their localization in lipid-rich microdomains. Only immature DCs expressed empty MHC class II molecules, and maturation increased the level of peptide-bound heterodimers. Ligand binding to surface human leukocyte antigen (HLA)-DR induced rapid internalization in immature DCs. The proportion of cell-surface detergent-insoluble glycosphingolipid-enriched microdomain-clustered HLA-DR was higher in immature DCs despite the higher surface expression of HLA-DR in mature DCs. Constituents of HLA-DR containing microdomains included the src kinase Lyn and the cytoskeletal protein tubulin in immature DCs. Maturation modified the composition of the HLA-DR-containing microdomains to include protein kinase C (PKC)-delta, Lyn, and the cytoskeletal protein actin, accompanied by the loss of tubulin. Signaling via HLA-DR redistributed HLA-DR and -DM and PKC-delta as well as enriching the actin content of mature DC microdomains. The increased expression of HLA-DR as a result of DC maturation was therefore accompanied by modification of the spatial organization of HLA-DR. Such regulation could contribute to the distinct responses induced by ligand binding to MHC class II molecules in immature versus mature DCs.

  19. XIAP inhibits mature Smac-induced apoptosis by degrading it through ubiquitination in NSCLC

    Science.gov (United States)

    Qin, Sida; Yang, Chengcheng; Zhang, Boxiang; Li, Xiang; Sun, Xin; Li, Gang; Zhang, Jing; Xiao, Guodong; Gao, Xiao; Huang, Guanghong; Wang, Peili; Ren, Hong

    2016-01-01

    X-linked inhibitor of apoptosis protein (XIAP) and second mitochondrial-derived activator of caspase (Smac) are two important prognostic biomarkers for cancer. They are negatively correlated in many types of cancer. However, their relationship is still unknown in lung cancer. In the present study, we found that there was a negative correlation between Smac and XIAP at the level of protein but not mRNA in NSCLC patients. However, XIAP overexpression had no effect on degrading endogenous Smac in lung cancer cell lines. Therefore, we constructed plasmids with full length of Smac (fSmac) and mature Smac (mSmac) which located in cytoplasm instead of original mitochondrial location, and was confirmed by immunofluorescence. Subsequently, we found that mSmac rather than fSmac was degraded by XIAP and inhibited cell viability. CHX chase assay and ubiquitin assay were performed to illustrate XIAP degraded mSmac through ubiquitin pathway. Overexpression of XIAP partially reverted apoptotic induction and cell viability inhibition by mSmac, which was due to inhibiting caspase-3 activation. In nude mouse xenograft experiments, mSmac inhibited Ki-67 expression and slowed down lung cancer growth, while XIAP partially reversed the effect of mSmac by degrading it. In conclusion, XIAP inhibits mature Smac-induced apoptosis by degrading it through ubiquitination in NSCLC. PMID:27498621

  20. Chronic alcohol consumption enhances iNKT cell maturation and activation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hui, E-mail: hzhang@wsu.edu; Zhang, Faya; Zhu, Zhaohui; Luong, Dung; Meadows, Gary G.

    2015-01-15

    Alcohol consumption exhibits diverse effects on different types of immune cells. NKT cells are a unique T cell population and play important immunoregulatory roles in different types of immune responses. The effects of chronic alcohol consumption on NKT cells remain to be elucidated. Using a mouse model of chronic alcohol consumption, we found that alcohol increases the percentage of NKT cells, especially iNKT cells in the thymus and liver, but not in the spleen or blood. Alcohol consumption decreases the percentage of NK1.1{sup −} iNKT cells in the total iNKT cell population in all of the tissues and organs examined. In the thymus, alcohol consumption increases the number of NK1.1{sup +}CD44{sup hi} mature iNKT cells but does not alter the number of NK1.1{sup −} immature iNKT cells. A BrdU incorporation assay shows that alcohol consumption increases the proliferation of thymic NK1.1{sup −} iNKT cells, especially the NK1.1{sup −}CD44{sup lo} Stage I iNKT cells. The percentage of NKG2A{sup +} iNKT cells increases in all of the tissues and organs examined; whereas CXCR3{sup +} iNKT cells only increases in the thymus of alcohol-consuming mice. Chronic alcohol consumption increases the percentage of IFN-γ-producing iNKT cells and increases the blood concentration of IFN-γ and IL-12 after in vivo α-galactosylceramide (αGalCer) stimulation. Consistent with the increased cytokine production, the in vivo activation of iNKT cells also enhances the activation of dendritic cells (DC) and NK, B, and T cells in the alcohol-consuming mice. Taken together the data indicate that chronic alcohol consumption enhances iNKT cell maturation and activation, which favors the Th1 immune response. - Highlights: • Chronic alcohol consumption increases iNKT cells in the thymus and liver • Chronic alcohol consumption enhances thymic Stage I iNKT cell proliferation • Chronic alcohol consumption enhances iNKT cell maturation in thymus and periphery • Chronic alcohol

  1. Temperature Cycles Induce Early Maturation in Channel Catfish

    Science.gov (United States)

    A major impediment in improvement of channel catfish by selective breeding is that a high percent of fish do not spawn until the third year. If the generation time could be shortened, genetic improvement could be achieved at a faster rate. The conditions that lead to sexual maturation in fish have...

  2. Ficus carica polysaccharides promote the maturation and function of dendritic cells.

    Science.gov (United States)

    Tian, Jie; Zhang, Yue; Yang, Xiaomin; Rui, Ke; Tang, Xinyi; Ma, Jie; Chen, Jianguo; Xu, Huaxi; Lu, Liwei; Wang, Shengjun

    2014-01-01

    Various polysaccharides purified from plants are considered to be biological response modifiers and have been shown to enhance immune responses. Ficus carica L. is a Chinese traditional plant and has been widely used in Asian countries for its anti-tumor properties. Ficus carica polysaccharides (FCPS), one of the most essential and effective components in Ficus carica L., have been considered to be a beneficial immunomodulator and may be used in immunotherapy. However, the immunologic mechanism of FCPS is still unclear. Dectin-1 is a non-toll-like pattern recognition receptor, predominately expressed on dendritic cells (DCs). Activation of DCs through dectin-1 signaling can lead to the maturation of DC, thus inducing both innate and adaptive immune responses against tumor development and microbial infection. In our study, we found that FCPS could effectively stimulate DCs, partially through the dectin-1/Syk pathway, and promote their maturation, as shown by the up-regulation of CD40, CD80, CD86, and major histocompatibility complex II (MHCII). FCPS also enhanced the production of cytokines by DCs, including IL-12, IFN-γ, IL-6, and IL-23. Moreover, FCPS-treated DCs showed an enhanced capability to stimulate T cells and promote T cell proliferation. Altogether, these results demonstrate that FCPS are able to activate and maturate DCs, thereby up-regulating the immunostimulatory capacity of DCs, which leads to enhanced T cell responses.

  3. Ficus carica Polysaccharides Promote the Maturation and Function of Dendritic Cells

    Directory of Open Access Journals (Sweden)

    Jie Tian

    2014-07-01

    Full Text Available Various polysaccharides purified from plants are considered to be biological response modifiers and have been shown to enhance immune responses. Ficus carica L. is a Chinese traditional plant and has been widely used in Asian countries for its anti-tumor properties. Ficus carica polysaccharides (FCPS, one of the most essential and effective components in Ficus carica L., have been considered to be a beneficial immunomodulator and may be used in immunotherapy. However, the immunologic mechanism of FCPS is still unclear. Dectin-1 is a non-toll-like pattern recognition receptor, predominately expressed on dendritic cells (DCs. Activation of DCs through dectin-1 signaling can lead to the maturation of DC, thus inducing both innate and adaptive immune responses against tumor development and microbial infection. In our study, we found that FCPS could effectively stimulate DCs, partially through the dectin-1/Syk pathway, and promote their maturation, as shown by the up-regulation of CD40, CD80, CD86, and major histocompatibility complex II (MHCII. FCPS also enhanced the production of cytokines by DCs, including IL-12, IFN-γ, IL-6, and IL-23. Moreover, FCPS-treated DCs showed an enhanced capability to stimulate T cells and promote T cell proliferation. Altogether, these results demonstrate that FCPS are able to activate and maturate DCs, thereby up-regulating the immunostimulatory capacity of DCs, which leads to enhanced T cell responses.

  4. Influence of Skin Epithelial cells and Human Umbilical VEIN CELLS Conditioned Media on Maturation of Type 1 Dendritic Cells(DC1

    Directory of Open Access Journals (Sweden)

    M Ganjybakhsh

    2011-06-01

    Full Text Available Introduction: Dendritic cells have a high potential in presentation of antigens and can be generated and manipulated in invitro culture conditions. Dendritic cells(DC are therefore used in cancer immunotherapy, in prevention of graft rejection, treatment of allergy, autoimmune diseases and certain infectious diseases. Methods: Dendritic cell was generated in two stages. IN the first stage, monocyte cells were converted to immature DC affected GM-CSF and IL-4 .In the second stage, dendritic cells were maturated in the presence of supernatant skin epithelial cells(A375 and human umbilical vein endothelial cells(HUVEC and maturation factors. The ability of phagocytosis, expression phenotype, stimulation of T lymphocytes and cytokines was studied. Results: Mature Dendritic cells decreased their power of phagocytosis and increased expression of their surface markers. The ability of T cells stimulation and cytokine production(IL-12 increased . Conclusion: Mixture condition medium of epithelial cells and human skin umbilical vein endothelium cells induces maturation of monocyte-derived DCs. This condition medium improves their phenotype and their functions. The mentioned condition medium generates DC1 and Th1 in vitro.

  5. HIV and mature dendritic cells: Trojan exosomes riding the Trojan horse?

    Directory of Open Access Journals (Sweden)

    Nuria Izquierdo-Useros

    2010-03-01

    Full Text Available Exosomes are secreted cellular vesicles that can induce specific CD4(+ T cell responses in vivo when they interact with competent antigen-presenting cells like mature dendritic cells (mDCs. The Trojan exosome hypothesis proposes that retroviruses can take advantage of the cell-encoded intercellular vesicle traffic and exosome exchange pathway, moving between cells in the absence of fusion events in search of adequate target cells. Here, we discuss recent data supporting this hypothesis, which further explains how DCs can capture and internalize retroviruses like HIV-1 in the absence of fusion events, leading to the productive infection of interacting CD4(+ T cells and contributing to viral spread through a mechanism known as trans-infection. We suggest that HIV-1 can exploit an exosome antigen-dissemination pathway intrinsic to mDCs, allowing viral internalization and final trans-infection of CD4(+ T cells. In contrast to previous reports that focus on the ability of immature DCs to capture HIV in the mucosa, this review emphasizes the outstanding role that mature DCs could have promoting trans-infection in the lymph node, underscoring a new potential viral dissemination pathway.

  6. The effect of Propionibacterium acnes on maturation of dendritic cells derived from acne patients' peripherial blood mononuclear cells.

    Science.gov (United States)

    Michalak-Stoma, Anna; Tabarkiewicz, Jacek; Olender, Alina; Juszkiewicz-Borowiec, Maria; Stoma, Filip; Pietrzak, Aldona; Pozarowski, Piotr; Bartkowiak-Emeryk, Małgorzata

    2008-01-01

    Propionibacterium acnes (P. acnes) has been implicated in the pathogenesis of acne vulgaris which is the most common cutaneous disorder. It has a proinflammatory activity and takes part in immune reactions modulating the Th1/Th2 cellular response. The exposure of dendritic cells (DCs) to whole bacteria, their components, cytokines or other inflammatory stimuli and infectious agents induces differentiation from immature DCs into antigen-presenting mature DCs. The aim of the study was to evaluate the capability of P. acnes to induce the maturation of DCs. We stimulated monocyte derived dendritic cells (Mo-DCs) from acne patients with various concetrations of heat-killed P. acnes (10(6)-10(8) bacteria/ml) cultured from acne lesions. The results showed an increase in CD80+/CD86+/DR+ and CD83+/CD1a+/DR+ cells percentage depending on the concetration of P. acnes. The expression of CD83 and CD80 (shown as the mean fluorescence intensity - MFI) increased with higher concetrations of P. acnes. There were also significant correlations between MFI of CD83, CD80, CD86 and concetration of P. acnes. The study showed that P. acnes in the concetration of 10(8) bacteria/ml is most effective in the induction of Mo-DCs maturation. Futher studies concerning the influence on the function of T cells are needed.

  7. The effect of Propionibacterium acnes on maturation of dendritic cells derived from acne patients' peripherial blood mononuclear cells.

    Directory of Open Access Journals (Sweden)

    Maria Juszkiewicz-Borowiec

    2009-01-01

    Full Text Available Propionibacterium acnes (P. acnes has been implicated in the pathogenesis of acne vulgaris which is the most common cutaneous disorder. It has a proinflammatory activity and takes part in immune reactions modulating the Th1/Th2 cellular response. The exposure of dendritic cells (DCs to whole bacteria, their components, cytokines or other inflammatory stimuli and infectious agents induces differentiation from immature DCs into antigen-presenting mature DCs. The aim of the study was to evaluate the capability of P. acnes to induce the maturation of DCs. We stimulated monocyte derived dendritic cells (Mo-DCs from acne patients with various concetrations of heat-killed P. acnes (10(6-10(8 bacteria/ml cultured from acne lesions. The results showed an increase in CD80+/CD86+/DR+ and CD83+/CD1a+/DR+ cells percentage depending on the concetration of P. acnes. The expression of CD83 and CD80 (shown as the mean fluorescence intensity - MFI increased with higher concetrations of P. acnes. There were also significant correlations between MFI of CD83, CD80, CD86 and concetration of P. acnes. The study showed that P. acnes in the concetration of 10(8 bacteria/ml is most effective in the induction of Mo-DCs maturation. Futher studies concerning the influence on the function of T cells are needed.

  8. Coordinate reduction in cell proliferation and cell death in mouse olfactory epithelium from birth to maturity

    NARCIS (Netherlands)

    Fung, KM; Peringa, J; Venkatachalam, S; Lee, VMY; Trojanowski, JQ

    1997-01-01

    We investigated cell proliferation and cell death in the olfactory epithelium (OE) of mice from birth to maturity using bromodeoxyuridine and terminal deoxynucleotidyl transferase nick end labeling. We show that cell death events and proliferative activity diminish concomitantly with age in the OE.

  9. Piperlongumine Suppresses Dendritic Cell Maturation by Reducing Production of Reactive Oxygen Species and Has Therapeutic Potential for Rheumatoid Arthritis.

    Science.gov (United States)

    Xiao, Youjun; Shi, Maohua; Qiu, Qian; Huang, Mingcheng; Zeng, Shan; Zou, Yaoyao; Zhan, Zhongping; Liang, Liuqin; Yang, Xiuyan; Xu, Hanshi

    2016-06-15

    Piperlongumine (PLM) is a natural product from the plant Piper longum that inhibits platelet aggregation, atherosclerosis plaque formation, and tumor cell growth. It has potential value in immunomodulation and the management of autoimmune diseases. In this study, we investigated the role of PLM in regulating the differentiation and maturation of dendritic cells (DCs), a critical regulator of immune tolerance, and evaluated its clinical effects in a rheumatoid arthritis mouse model. We found that PLM treatment reduced LPS-induced murine bone marrow-derived DC maturation, characterized by reduced expression of CD80/86, secretion of MCP-1, IL-12p70, IL-6, TNFα, IFN-γ, and IL-23, and reduced alloproliferation of T cells; however, PLM does not affect cell differentiation. Furthermore, PLM reduced intracellular reactive oxygen species (ROS) production by DCs and inhibited the activation of p38, JNK, NF-κB, and PI3K/Akt signaling pathways. Conversely, PLM increased the expression of GSTP1 and carbonyl reductase 1, two enzymes that counteract ROS effects. ROS inhibition by exogenous N-acetyl-l-cysteine suppressed DC maturation. PLM treatment improved the severity of arthritis and reduced in vivo splenic DC maturation, collagen-specific CD4(+) T cell responses, and ROS production in mice with collagen-induced arthritis. Taken together, these results suggest that PLM inhibits DC maturation by reducing intracellular ROS production and has potential as a therapeutic agent for rheumatoid arthritis.

  10. Piperlongumine Suppresses Dendritic Cell Maturation by Reducing Production of Reactive Oxygen Species and Has Therapeutic Potential for Rheumatoid Arthritis.

    Science.gov (United States)

    Xiao, Youjun; Shi, Maohua; Qiu, Qian; Huang, Mingcheng; Zeng, Shan; Zou, Yaoyao; Zhan, Zhongping; Liang, Liuqin; Yang, Xiuyan; Xu, Hanshi

    2016-06-15

    Piperlongumine (PLM) is a natural product from the plant Piper longum that inhibits platelet aggregation, atherosclerosis plaque formation, and tumor cell growth. It has potential value in immunomodulation and the management of autoimmune diseases. In this study, we investigated the role of PLM in regulating the differentiation and maturation of dendritic cells (DCs), a critical regulator of immune tolerance, and evaluated its clinical effects in a rheumatoid arthritis mouse model. We found that PLM treatment reduced LPS-induced murine bone marrow-derived DC maturation, characterized by reduced expression of CD80/86, secretion of MCP-1, IL-12p70, IL-6, TNFα, IFN-γ, and IL-23, and reduced alloproliferation of T cells; however, PLM does not affect cell differentiation. Furthermore, PLM reduced intracellular reactive oxygen species (ROS) production by DCs and inhibited the activation of p38, JNK, NF-κB, and PI3K/Akt signaling pathways. Conversely, PLM increased the expression of GSTP1 and carbonyl reductase 1, two enzymes that counteract ROS effects. ROS inhibition by exogenous N-acetyl-l-cysteine suppressed DC maturation. PLM treatment improved the severity of arthritis and reduced in vivo splenic DC maturation, collagen-specific CD4(+) T cell responses, and ROS production in mice with collagen-induced arthritis. Taken together, these results suggest that PLM inhibits DC maturation by reducing intracellular ROS production and has potential as a therapeutic agent for rheumatoid arthritis. PMID:27183580

  11. Glial cell line-derived neurotrophic factor promotes barrier maturation and wound healing in intestinal epithelial cells in vitro.

    Science.gov (United States)

    Meir, Michael; Flemming, Sven; Burkard, Natalie; Bergauer, Lisa; Metzger, Marco; Germer, Christoph-Thomas; Schlegel, Nicolas

    2015-10-15

    Recent data suggest that neurotrophic factors from the enteric nervous system are involved in intestinal epithelial barrier regulation. In this context the glial cell line-derived neurotrophic factor (GDNF) was shown to affect gut barrier properties in vivo directly or indirectly by largely undefined processes in a model of inflammatory bowel disease (IBD). We further investigated the potential role and mechanisms of GDNF in the regulation of intestinal barrier functions. Immunostaining of human gut specimen showed positive GDNF staining in enteric neuronal plexus and in enterocytes. In Western blots of the intestinal epithelial cell lines Caco2 and HT29B6, significant amounts of GDNF were detected, suggesting that enterocytes represent an additional source of GDNF. Application of recombinant GDNF on Caco2 and HT29B6 cells for 24 h resulted in significant epithelial barrier stabilization in monolayers with immature barrier functions. Wound-healing assays showed a significantly faster closure of the wounded areas after GDNF application. GDNF augmented cAMP levels and led to significant inactivation of p38 MAPK in immature cells. Activation of p38 MAPK signaling by SB-202190 mimicked GDNF-induced barrier maturation, whereas the p38 MAPK activator anisomycin blocked GDNF-induced effects. Increasing cAMP levels had adverse effects on barrier maturation, as revealed by permeability measurements. However, increased cAMP augmented the proliferation rate in Caco2 cells, and GDNF-induced proliferation of epithelial cells was abrogated by the PKA inhibitor H89. Our data show that enterocytes represent an additional source of GDNF synthesis. GDNF contributes to wound healing in a cAMP/PKA-dependent manner and promotes barrier maturation in immature enterocytes cells by inactivation of p38 MAPK signaling.

  12. Comparison of two in vitro dendritic cell maturation models for screening contact sensitizers using a panel of methacrylates.

    NARCIS (Netherlands)

    Rustemeyer, T.; Preuss, M; Blomberg - van der Flier, von B.M.E.; Das, PK; Scheper, R.J.

    2003-01-01

    Allergen-induced emigration and maturation of dendritic cells (DC) are pivotal steps in sparking off allergic contact dermatitis. In vitro models, reflecting these steps, may provide tools for assessment of sensitizing capacities of putative contact allergens. Here, we evaluated the applicability of

  13. Hydrostatic Pressure Affects In Vitro Maturation of Oocytes and Follicles and Increases Granulosa Cell Death

    Directory of Open Access Journals (Sweden)

    Isac Karimi

    2013-01-01

    Full Text Available Objective: This study examines the effects of hydrostatic pressure on in vitro maturation (IVM of oocytes derived from in vitro grown follicles.Materials and Methods: In this experimental study, preantral follicles were isolated from 12-day-old female NMRI mice. Each follicle was cultured individually in Alpha Minimal Essential Medium (α-MEM under mineral oil for 12 days. Then, follicles were induced for IVM and divided into two groups, control and experiment. In the experiment group follicles were subjected to 20 mmHg pressure for 30 minutes and cultured for 24-48 hours. We assessed for viability and IVM of the oocytes. The percentage of apoptosis in cumulus cells was determined by the TUNEL assay. A comparison between groups was made using the student’s t test.Results: The percentage of metaphase II oocytes (MII increased in hydrostatic pressure-treated follicles compared to controls (p<0.05. Cumulus cell viability reduced in hydrostatic pressure-treated follicles compared to controls (p<0.05. Exposure of follicles to pressure increased apoptosis in cumulus cells compared to controls (p<0.05.Conclusion: Hydrostatic pressure, by inducing apoptosis in cumulus cells, participates in the cumulus oocyte coupled relationship with oocyte maturation.

  14. Lipid body formation during maturation of human mast cells.

    Science.gov (United States)

    Dichlberger, Andrea; Schlager, Stefanie; Lappalainen, Jani; Käkelä, Reijo; Hattula, Katarina; Butcher, Sarah J; Schneider, Wolfgang J; Kovanen, Petri T

    2011-12-01

    Lipid droplets, also called lipid bodies (LB) in inflammatory cells, are important cytoplasmic organelles. However, little is known about the molecular characteristics and functions of LBs in human mast cells (MC). Here, we have analyzed the genesis and components of LBs during differentiation of human peripheral blood-derived CD34(+) progenitors into connective tissue-type MCs. In our serum-free culture system, the maturing MCs, derived from 18 different donors, invariably developed triacylglycerol (TG)-rich LBs. Not known heretofore, the MCs transcribe the genes for perilipins (PLIN)1-4, but not PLIN5, and PLIN2 and PLIN3 display different degrees of LB association. Upon MC activation and ensuing degranulation, the LBs were not cosecreted with the cytoplasmic secretory granules. Exogenous arachidonic acid (AA) enhanced LB genesis in Triacsin C-sensitive fashion, and it was found to be preferentially incorporated into the TGs of LBs. The large TG-associated pool of AA in LBs likely is a major precursor for eicosanoid production by MCs. In summary, we demonstrate that cultured human MCs derived from CD34(+) progenitors in peripheral blood provide a new tool to study regulatory mechanisms involving LB functions, with particular emphasis on AA metabolism, eicosanoid biosynthesis, and subsequent release of proinflammatory lipid mediators from these cells.

  15. Regulation of recombinant human insulin-induced maturational events in Clarias batrachus (L.) oocytes in vitro.

    Science.gov (United States)

    Hajra, Sudip; Das, Debabrata; Ghosh, Pritha; Pal, Soumojit; Nath, Poulomi; Maitra, Sudipta

    2016-04-01

    Regulation of insulin-mediated resumption of meiotic maturation in catfish oocytes was investigated. Insulin stimulation of post-vitellogenic oocytes promotes the synthesis of cyclin B, histone H1 kinase activation and a germinal vesicle breakdown (GVBD) response in a dose-dependent and duration-dependent manner. The PI3K inhibitor wortmannin abrogates recombinant human (rh)-insulin action on histone H1 kinase activation and meiotic G2-M1 transition in denuded and follicle-enclosed oocytes in vitro. While the translational inhibitor cycloheximide attenuates rh-insulin action, priming with transcriptional blocker actinomycin D prevents insulin-stimulated maturational response appreciably, albeit in low amounts. Compared with rh-insulin, human chorionic gonadotrophin (hCG) stimulation of follicle-enclosed oocytes in vitro triggers a sharp increase in 17α,20β-dihydroxy-4-pregnen-3-one (17α,20β-DHP) secreted in the incubation medium at 12 h. Interestingly, the insulin, but not the hCG-induced, maturational response shows less susceptibility to steroidogenesis inhibitors, trilostane or dl-aminoglutethimide. In addition, priming with phosphodiesterase inhibitor, 3-isobutyl-1-methylxanthine (IBMX) or cell-permeable dbcAMP or adenylyl cyclase activator forskolin reverses the action of insulin on meiotic G2-M1 transition. Conversely, the adenylyl cyclase inhibitor, SQ 22536, or PKA inhibitor H89 promotes the resumption of meiosis alone and further potentiates the GVBD response in the presence of rh-insulin. Furthermore, insulin-mediated meiotic maturation involves the down-regulation of endogenous protein kinase A (PKA) activity in a manner sensitive to PI3K activation, suggesting potential involvement of a cross-talk between cAMP/PKA and insulin-mediated signalling cascade in catfish oocytes in vitro. Taken together, these results suggest that rh-insulin regulation of the maturational response in C. batrachus oocytes involves down-regulation of PKA, synthesis of cyclin

  16. Allogeneic Mature Human Dendritic Cells Generate Superior Alloreactive Regulatory T Cells in the Presence of IL-15.

    Science.gov (United States)

    Litjens, Nicolle H R; Boer, Karin; Zuijderwijk, Joke M; Klepper, Mariska; Peeters, Annemiek M A; Prens, Errol P; Verschoor, Wenda; Kraaijeveld, Rens; Ozgur, Zeliha; van den Hout-van Vroonhoven, Mirjam C; van IJcken, Wilfred F J; Baan, Carla C; Betjes, Michiel G H

    2015-06-01

    Expansion of Ag-specific naturally occurring regulatory T cells (nTregs) is required to obtain sufficient numbers of cells for cellular immunotherapy. In this study, different allogeneic stimuli were studied for their capacity to generate functional alloantigen-specific nTregs. A highly enriched nTreg fraction (CD4(+)CD25(bright)CD127(-) T cells) was alloantigen-specific expanded using HLA-mismatched immature, mature monocyte-derived dendritic cells (moDCs), or PBMCs. The allogeneic mature moDC-expanded nTregs were fully characterized by analysis of the demethylation status within the Treg-specific demethylation region of the FOXP3 gene and the expression of both protein and mRNA of FOXP3, HELIOS, CTLA4, and cytokines. In addition, the Ag-specific suppressive capacity of these expanded nTregs was tested. Allogeneic mature moDCs and skin-derived DCs were superior in inducing nTreg expansion compared with immature moDCs or PBMCs in an HLA-DR- and CD80/CD86-dependent way. Remarkably, the presence of exogenous IL-15 without IL-2 could facilitate optimal mature moDC-induced nTreg expansion. Allogeneic mature moDC-expanded nTregs were at low ratios (highly demethylated at the Treg-specific demethylation region within the FOXP3 gene and highly expressed of FOXP3, HELIOS, and CTLA4. A minority of the expanded nTregs produced IL-10, IL-2, IFN-γ, and TNF-α, but few IL-17-producing nTregs were found. Next-generation sequencing of mRNA of moDC-expanded nTregs revealed a strong induction of Treg-associated mRNAs. Human allogeneic mature moDCs are highly efficient stimulator cells, in the presence of exogenous IL-15, for expansion of stable alloantigen-specific nTregs with superior suppressive function. PMID:25917092

  17. Broad and Largely Concordant Molecular Changes Characterize Tolerogenic and Immunogenic Dendritic Cell Maturation in Thymus and Periphery.

    Science.gov (United States)

    Ardouin, Laurence; Luche, Hervé; Chelbi, Rabie; Carpentier, Sabrina; Shawket, Alaa; Montanana Sanchis, Frédéric; Santa Maria, Camille; Grenot, Pierre; Alexandre, Yannick; Grégoire, Claude; Fries, Anissa; Vu Manh, Thien-Phong; Tamoutounour, Samira; Crozat, Karine; Tomasello, Elena; Jorquera, Audrey; Fossum, Even; Bogen, Bjarne; Azukizawa, Hiroaki; Bajenoff, Marc; Henri, Sandrine; Dalod, Marc; Malissen, Bernard

    2016-08-16

    Dendritic cells (DCs) are instrumental in the initiation of T cell responses, but how thymic and peripheral tolerogenic DCs differ globally from Toll-like receptor (TLR)-induced immunogenic DCs remains unclear. Here, we show that thymic XCR1(+) DCs undergo a high rate of maturation, accompanied by profound gene-expression changes that are essential for central tolerance and also happen in germ-free mice. Those changes largely overlap those occurring during tolerogenic and, more unexpectedly, TLR-induced maturation of peripheral XCR1(+) DCs, arguing against the commonly held view that tolerogenic DCs undergo incomplete maturation. Interferon-stimulated gene (ISG) expression was among the few discriminators of immunogenic and tolerogenic XCR1(+) DCs. Tolerogenic XCR1(+) thymic DCs were, however, unique in expressing ISGs known to restrain virus replication. Therefore, a broad functional convergence characterizes tolerogenic and immunogenic XCR1(+) DC maturation in the thymus and periphery, maximizing antigen presentation and signal delivery to developing and to conventional and regulatory maturecells. PMID:27533013

  18. Studies on the physiological function of spermine in the process of progesterone induced toad oocyte maturation

    Institute of Scientific and Technical Information of China (English)

    LIRUNSHENG; JIAKETSO

    1992-01-01

    Spermidine or spermine but not putrescine inhibited progesterone induced Bufo bufo gargarizans oocyte maturation.The ID50 for spermine inhibition via intra -oocyte microinjection on maturation induced by progesterone was 6.8mM(100nl).Spermine could inhibit MPF induced toad oocyte maturation with a much higher ID50.A 55 kD protein was dephosphorylated during the process of progesterone induced oocyte maturation .Spermine selectively promoted the level of phosphorylation of this protein in both progesterone-stimulated and hormone-untreated oocytes.The extent of its dephosphorylation was fairly Correlated with the percentage of GVBD in the hormone stimulated oocytes.The level of endogenous spermine was reduced by 28% between the perod of 0.40 GVBD50 and 0.60 GVBD50,at which 55 kD protein was dephosphorylated.Spermine inhibited progesterone-stimulated protein synthesis in almost the same dose dependent manner as its inhititory effect on the hormone-induced maturation,The endogenous spermine regulated 55 kD protein dephosphorylation which may trigger the increase of protein dephosphorylation which may trigger the increase of protein synthesis and in turn promote the activation of MPF,It is possible that 55 kD protein may be one of the components of messenger ribonucleoprotein(mRNP) particles.

  19. Induced Maturation and Spawning by Sex Pheromones in Female Mudskipper(Boleophthalmus pectinirostris)

    Institute of Scientific and Technical Information of China (English)

    Zhao Weihong; Hong Wanshu; Zhang Qiyong; Jiang Xinxin; Wu Dingxun

    2003-01-01

    Maturation of the 4th phase oocytes of mudskipper is induced in vitro by sex pheromones, the extract of ovary, testis and seminal vesicle, oxytocini and deoxycorticosterone ( DOC ). Maturation rates ofoocytes are related to pheromones and their dosages. The single use of prostaglandin E1(PGE 1) is not effective in the induction of maturation, but the combination of PGE1 with HCG promotes oocyte maturation rates.Maturation is induced by injections of the extract of the ovary at dosages of 0.01 cm3/a fish,seminal vesicle extract at dosages of 0.1 cm3/a fish, testis extract at dosage of 0.1 cm3/a fish, or PGE1 at dosage of 10μ g/fish, respectively. Among them, seminal vesicle extract is the most effective in the induction of maturation. The artificial nests, with the extract of the ovary,testis or seminal vesicle inside, attract more heterosexual mudskippers than homosexual mudskippers to enter. Especially, the extract of seminal vesicle is the most effective in attracting females. Female mudskippers could be induced to spawn by the extracts of ovary,testis and seminal vesicle placed inside both the ceramic and sponge nests. More spawned eggs and higher fertilization rates are observed in the ceramic nests than in the sponge ones.

  20. Myocardin Overexpression Is Sufficient for Promoting the Development of a Mature Smooth Muscle Cell-Like Phenotype from Human Embryonic Stem Cells

    OpenAIRE

    Linda Raphel; Amarnath Talasila; Christine Cheung; Sanjay Sinha

    2012-01-01

    BACKGROUND: Myocardin is thought to have a key role in smooth muscle cell (SMC) development by acting on CArG-dependent genes. However, it is unclear whether myocardin-induced SMC maturation and increases in agonist-induced calcium signalling are also associated with increases in the expression of non-CArG-dependent SMC-specific genes. Moreover, it is unknown whether myocardin promotes SMC development from human embryonic stem cells. METHODOLOGY/PRINCIPAL: Findings The effects of adenoviral-m...

  1. Glucocorticoid receptor translational isoforms underlie maturational stage-specific glucocorticoid sensitivities of dendritic cells in mice and humans.

    Science.gov (United States)

    Cao, Yun; Bender, Ingrid K; Konstantinidis, Athanasios K; Shin, Soon Cheon; Jewell, Christine M; Cidlowski, John A; Schleimer, Robert P; Lu, Nick Z

    2013-02-28

    Although glucocorticoids are a profoundly important class of anti-inflammatory and immunosuppressive agents, their actions in dendritic cells (DCs) are not well understood. We found that dexamethasone, a potent glucocorticoid, selectively induced apoptosis in mature, but not in immature, DCs in healthy mice, in mice with experimental airway inflammation, and in vitro in bone marrow–derived DCs. Distinct glucocorticoid receptor (GR) translational isoforms expressed in immature and mature DCs probably contribute to the DC maturational stage-specific glucocorticoid sensitivity. The GR-D isoforms were the predominant isoforms in immature DCs, whereas the proapoptotic GR-A isoform was the main isoform in mature DCs. Ectopic expression of the GR-A isoform in immature DCs increased glucocorticoid sensitivity and RU486, a selective GR antagonist, inhibited the glucocorticoid sensitivity of mature DCs. Furthermore, the distinct expression pattern of GR isoforms in immature and mature murine DCs was also observed in human monocyte–derived DCs. These studies suggest that glucocorticoids may spare immature DCs and suppress mature DCs and inflammation via differential expression of GR translational isoforms. PMID:23297131

  2. Maturation of Lesions Induced by Myocardial Cavitation-Enabled Therapy.

    Science.gov (United States)

    Lu, Xiaofang; Miller, Douglas L; Dou, Chunyan; Zhu, Yiying I; Fabiilli, Mario L; Owens, Gabe E; Kripfgans, Oliver D

    2016-07-01

    Myocardial contrast echocardiography at enhanced therapeutic parameters may be a novel means of tissue reduction therapy, as for hypertrophic cardiomyopathy. Dahl/SS rats were anesthetized and treated with high-amplitude pulsed ultrasound guided by 10-MHz ultrasound images. Contrast microbubbles were infused via the tail vein during intermittent pulse-burst exposure at 4 MPa. A sham group, a low-impact group (group A, 5 cycle pulses with Gaussian modulation and 1:4 trigger for 5 min) and a high-impact group (group B, 10 cycle pulses with 4-ms square modulation and 1:8 trigger for 10 min) were tested. The higher exposure used in group B yielded more substantial injury than the lower exposure in group A. Treated rats in both groups A and B had significant increases in wall thickness measured by echocardiography the next day, which returned to normal by the end of 6 wk. Six weeks after ultrasound exposure, heart tissue samples exhibited tissue fibrosis in Masson's trichrome stained histology. Maturation of lesions involved fibrosis replacement, preserving structural tissue integrity. This study indicates that myocardial injury noted previously progresses into permanent loss of myocardial tissue that may be sufficient for possible hypertrophic cardiomyopathy therapy. More research is needed to define the treatment parameters required for symptomatic relief for hypertrophic cardiomyopathy. PMID:27087693

  3. M-CSF potently augments RANKL-induced resorption activation in mature human osteoclasts.

    Directory of Open Access Journals (Sweden)

    Jason M Hodge

    Full Text Available Macrophage-CSF (M-CSF is critical for osteoclast (OC differentiation and is reported to enhance mature OC survival and motility. However, its role in the regulation of bone resorption, the main function of OCs, has not been well characterised. To address this we analysed short-term cultures of fully differentiated OCs derived from human colony forming unit-granulocyte macrophages (CFU-GM. When cultured on dentine, OC survival was enhanced by M-CSF but more effectively by receptor activator of NFκB ligand (RANKL. Resorption was entirely dependent on the presence of RANKL. Co-treatment with M-CSF augmented RANKL-induced resorption in a concentration-dependent manner with a (200-300% stimulation at 25 ng/mL, an effect observed within 4-6 h. M-CSF co-treatment also increased number of resorption pits and F-actin sealing zones, but not the number of OCs or pit size, indicating stimulation of the proportion of OCs activated. M-CSF facilitated RANKL-induced activation of c-fos and extracellular signal-regulated kinase (ERK 1/2 phosphorylation, but not NFκB nor nuclear factor of activated T-cells, cytoplasmic-1 (NFATc1. The mitogen-activated protein kinase kinase (MEK 1 inhibitor PD98059 partially blocked augmentation of resorption by M-CSF. Our results reveal a previously unidentified role of M-CSF as a potent stimulator of mature OC resorbing activity, possibly mediated via ERK upstream of c-fos.

  4. Rab3D is critical for secretory granule maturation in PC12 cells.

    Directory of Open Access Journals (Sweden)

    Tanja Kögel

    Full Text Available Neuropeptide- and hormone-containing secretory granules (SGs are synthesized at the trans-Golgi network (TGN as immature secretory granules (ISGs and complete their maturation in the F-actin-rich cell cortex. This maturation process is characterized by acidification-dependent processing of cargo proteins, condensation of the SG matrix and removal of membrane and proteins not destined to mature secretory granules (MSGs. Here we addressed a potential role of Rab3 isoforms in these maturation steps by expressing their nucleotide-binding deficient mutants in PC12 cells. Our data show that the presence of Rab3D(N135I decreases the restriction of maturing SGs to the F-actin-rich cell cortex, blocks the removal of the endoprotease furin from SGs and impedes the processing of the luminal SG protein secretogranin II. This strongly suggests that Rab3D is implicated in the subcellular localization and maturation of ISGs.

  5. MUC5B silencing reduces chemo-resistance of MCF-7 breast tumor cells and impairs maturation of dendritic cells.

    Science.gov (United States)

    García, Enrique P; Tiscornia, Inés; Libisch, Gabriela; Trajtenberg, Felipe; Bollati-Fogolín, Mariela; Rodríguez, Ernesto; Noya, Verónica; Chiale, Carolina; Brossard, Natalie; Robello, Carlos; Santiñaque, Federico; Folle, Gustavo; Osinaga, Eduardo; Freire, Teresa

    2016-05-01

    Mucins participate in cancer progression by regulating cell growth, adhesion, signaling, apoptosis or chemo-resistance to drugs. The secreted mucin MUC5B, the major component of the respiratory tract mucus, is aberrantly expressed in breast cancer, where it could constitute a cancer biomarker. In this study we evaluated the role of MUC5B in breast cancer by gene silencing the MUC5B expression with short hairpin RNA on MCF-7 cells. We found that MUC5B-silenced MCF-7 cells have a reduced capacity to grow, adhere and form cell colonies. Interestingly, MUC5B knock-down increased the sensitivity to death induced by chemotherapeutic drugs. We also show that MUC5B silencing impaired LPS-maturation of DCs, and production of cytokines. Furthermore, MUC5B knock-down also influenced DC-differentiation and activation since it resulted in an upregulation of IL-1β, IL-6 and IL-10, cytokines that might be involved in cancer progression. Thus, MUC5B could enhance the production of LPS-induced cytokines, suggesting that the use of MUC5B-based cancer vaccines combined with DC-maturation stimuli, could favor the induction of an antitumor immune response.

  6. KLF4 regulation in intestinal epithelial cell maturation

    International Nuclear Information System (INIS)

    The Krueppel-like factor 4 (KLF4) transcription factor suppresses tumorigenesis in gastrointestinal epithelium. Thus, its expression is decreased in gastric and colon cancers. Moreover, KLF4 regulates both differentiation and growth that is likely fundamental to its tumor suppressor activity. We dissected the expression of Klf4 in the normal mouse intestinal epithelium along the crypt-villus and cephalo-caudal axes. Klf4 reached its highest level in differentiated cells of the villus, with levels in the duodenum > jejunum > ileum, in inverse relation to the representation of goblet cells in these regions, the lineage previously linked to KLF4. In parallel, in vitro studies using HT29cl.16E and Caco2 colon cancer cell lines clarified that KLF4 increased coincident with differentiation along both the goblet and absorptive cell lineages, respectively, and that KLF4 levels also increased during differentiation induced by the short chain fatty acid butyrate, independently of cell fate. Moreover, we determined that lower levels of KLF4 expression in the proliferative compartment of the intestinal epithelium are regulated by the transcription factors TCF4 and SOX9, an effector and a target, respectively, of β-catenin/Tcf signaling, and independently of CDX2. Thus, reduced levels of KLF4 tumor suppressor activity in colon tumors may be driven by elevated β-catenin/Tcf signaling

  7. Growth dynamics and cytoskeleton organization during stem maturation and gravity-induced stem bending in Zea mays L

    Science.gov (United States)

    Collings, D. A.; Winter, H.; Wyatt, S. E.; Allen, N. S.; Davies, E. (Principal Investigator)

    1998-01-01

    Characterization of gravitropic bending in the maize stem pulvinus, a tissue that functions specifically in gravity responses, demonstrates that the pulvinus is an ideal system for studying gravitropism. Gravistimulation during the second of three developmental phases of the pulvinus induces a gradient of cell elongation across the non-growing cells of the pulvinus, with the most elongation occurring on the lower side. This cell elongation is spatially and temporally separated from normal internodal cell elongation. The three characterized growth phases in the pulvinus correspond closely to a specialized developmental sequence in which structural features typical of cells not fully matured are retained while cell maturation occurs in surrounding internodal and nodal tissue. For example, the lignification of supporting tissue and rearrangement of transverse microtubules to oblique that occur in the internode when cell elongation ceases are delayed for up to 10 d in the adjacent cells of the pulvinus, and only occurs as a pulvinus loses its capacity to respond to gravistimulation. Gravistimulation does not modify this developmental sequence. Neither wall lignification nor rearrangement of transverse microtubules occurs in the rapidly elongating lower side or non-responsive upper side of the pulvinus until the pulvinus loses the capacity to bend further. Gravistimulation does, however, lead to the formation of putative pit fields within the expanding cells of the pulvinus.

  8. Resveratrol ameliorates the maturation process of β-cell-like cells obtained from an optimized differentiation protocol of human embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Daniela Pezzolla

    Full Text Available Human embryonic stem cells (hESCs retain the extraordinary capacity to differentiate into different cell types of an adult organism, including pancreatic β-cells. For this particular lineage, although a lot of effort has been made in the last ten years to achieve an efficient and reproducible differentiation protocol, it was not until recently that this aim was roughly accomplished. Besides, several studies evidenced the impact of resveratrol (RSV on insulin secretion, even though the mechanism by which this polyphenol potentiates glucose-stimulated insulin secretion (GSIS is still not clear. The aim of this study was to optimize an efficient differentiation protocol that mimics in vivo pancreatic organogenesis and to investigate whether RSV may improve the final maturation step to obtain functional insulin-secreting cells. Our results indicate that treatment of hESCs (HS-181 with activin-A induced definitive endoderm differentiation as detected by the expression of SOX17 and FOXA2. Addition of retinoic acid (RA, Noggin and Cyclopamine promoted pancreatic differentiation as indicated by the expression of the early pancreatic progenitor markers ISL1, NGN3 and PDX1. Moreover, during maturation in suspension culture, differentiating cells assembled in islet-like clusters, which expressed specific endocrine markers such as PDX1, SST, GCG and INS. Similar results were confirmed with the human induced Pluripotent Stem Cell (hiPSC line MSUH-001. Finally, differentiation protocols incorporating RSV treatment yielded numerous insulin-positive cells, induced significantly higher PDX1 expression and were able to transiently normalize glycaemia when transplanted in streptozotocin (STZ induced diabetic mice thus promoting its survival. In conclusion, our strategy allows the efficient differentiation of hESCs into pancreatic endoderm capable of generating β-cell-like cells and demonstrates that RSV improves the maturation process.

  9. Mature adipocytes may be a source of stem cells for tissue engineering

    International Nuclear Information System (INIS)

    Adipose tissue contains a large portion of stem cells. These cells appear morphologically like fibroblasts and are primarily derived from the stromal cell fraction. Mature (lipid-filled) adipocytes possess the ability to become proliferative cells and have been shown to produce progeny cells that possess the same morphological (fibroblast-like) appearance as the stem cells from the stromal fraction. A closer examination of mature adipocyte-derived progeny cells may prove to be an emerging area of growth/metabolic physiology that may modify present thinking about adipose tissue renewal capabilities. Knowledge of these cells may also prove beneficial in cell-based therapies for tissue repair, regeneration, or engineering

  10. The Specification and Maturation of Nociceptive Neurons from Human Embryonic Stem Cells.

    Science.gov (United States)

    Boisvert, Erin M; Engle, Sandra J; Hallowell, Shawn E; Liu, Ping; Wang, Zhao-Wen; Li, Xue-Jun

    2015-11-19

    Nociceptive neurons play an essential role in pain sensation by transmitting painful stimuli to the central nervous system. However, investigations of nociceptive neuron biology have been hampered by the lack of accessibility of human nociceptive neurons. Here, we describe a system for efficiently guiding human embryonic stem cells into nociceptive neurons by first inducing these cells to the neural lineage. Subsequent addition of retinoic acid and BMP4 at specific time points and concentrations yielded a high population of neural crest progenitor cells (AP2α(+), P75(+)), which further differentiated into nociceptive neurons (TRKA(+), Nav1.7(+), P2X3(+)). The overexpression of Neurogenin 1 (Neurog1) promoted the neurons to express genes related to sensory neurons (Peripherin, TrkA) and to further mature into TRPV1(+) nociceptive neurons. Importantly, the overexpression of Neurog1 increased the response of these neurons to capsaicin stimulation, a hallmark of mature functional nociceptive neurons. Taken together, this study reveals the important role that Neurog1 plays in generating functional human nociceptive neurons.

  11. Design of tumor-specific immunotherapies using dendritic cells - effect of bromelain on dendritic cell maturation

    OpenAIRE

    Karlsen, Marie

    2009-01-01

    Immunotherapy using dendritic cells (DC) has shown promising results in clinical trials, but few relevant successes are recorded. Therefore, the choice of an appropriate DC population is critical for the outcome of this treatment. The DC used today in immunotherapy are often matured with a cytokine cocktail consisting of TNF-α, IL-1β, IL-6 and PGE2. These cells have deficits in their cytokine production, and also their migratory capacity in vivo needs improvement. After being introduced to br...

  12. Baicalin induced dendritic cell apoptosis in vitro

    Directory of Open Access Journals (Sweden)

    Huahua eZhang

    2011-03-01

    Full Text Available This study was aimed to investigate the effects of Baicalin (BA, a major flavonoid constituent found in the herb Baikal skullcap, on dendritic cells (DCs. DCs were generated by culturing murine bone marrow cells for 6 days with granulocyte-macrophage colony-stimulating factor and interleukin-4, and lipopolysaccharide (LPS was added on day 5 to stimulate DCs maturation. The expression levels of DC maturity markers (CD80/CD86 were assessed by flow cytometry using direct immunofluorescence method. Interleukin-12 (IL-12 levels in the culture supernatants were assayed by ELISA. Apoptosis of DCs was analyzed by flow cytometry after Annexin V/propidium iodide staining. The mitochondrial membrane potential changes were measured by using the J-aggregate forming lipophilic cation 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolcarbocyanine iodide (JC-1. Exposure of DCs to BA (2-50 microM during bone marrow cell differentiation showed no effects on the up-regulation of CD80/CD86 expression on DCs in response to LPS stimulation, but reduced DCs recovery by inducing apoptosis, and significantly inhibited the release of IL-12 to culture supernatants. BA induced DC apoptosis in a time- and dose-dependent way, and immature DCs were more sensitive for BA-induced apoptosis than mature DC. BA also induced mitochondrial membrane potential changes in DCs. These results demonstrate that BA induces selective apoptosis in immature DCs possibly through mitochondria-mediated pathway.

  13. Sertoli cell only syndrome: Status of sertoli cell maturation and function

    Directory of Open Access Journals (Sweden)

    Manish Jain

    2012-01-01

    Full Text Available Background of the study: Mature and functional Sertoli cells are essential for the survival of germ cells in testes. In Sertoli cell only syndrome (SCOS, there is no germ cells. Then, question arises whether absence of germ cells in SCOS secondary to Sertoli cells immaturity or mal function. Sertoli cells maturational and functional status is unclear in SCOS. This study investigated status of maturation and function of Sertoli cells in patients with SCOS. Materials and Methods: The present study was comprised of 37 cases of SCOS and 50 normal control males. Detailed clinical examination and investigation were carried out as per pre-determined proforma. Semen analysis, hormonal analysis (FSH, LH, testosterone, etc., and fine needle aspiration cytology (FNAC of testes (bilateral were performed. Fluorescence in situ hybridization (FISH with XY probes was carried out in addition to conventional chromosome analysis to find out chromosomal abnormalities, in particular sex chromosome aneuploidy, including mosaicism. Yq microdeletion status was also investigated. The anti-mullerian hormone (AMH, inhibin B, and seminal lactate were estimated by ELISA methods. Results: The study did not find any case of high AMH. About 78% cases had low inhibin B, and 60% had low AMH. FSH was high in about 78% cases. Low level of lactate was found in 49% cases. There was one case of high level of inhibin B. There were 6 (16.2% cases of chromosomal abnormality (2 mosaic Klinefelter and 4 Klinefelter syndrome and 4 (10.8% cases of Yq microdeletion. Conclusion: We conclude that Sertoli cell immaturity does not play any role in SCOS (no case of high AMH. It seems, in majority cases, Sertoli cells are functionally- and/or numerically-deficient (low inhibin B, AMH and lactate. However, in about 22% cases, Sertoli cell function and/or number remains normal (normal inhibin B, AMH. Inhibin B and FSH seems best predictor/marker of Sertoli cell function.

  14. Kinetic modeling reveals a common death niche for newly formed and mature B cells.

    Directory of Open Access Journals (Sweden)

    Gitit Shahaf

    Full Text Available BACKGROUND: B lymphocytes are subject to elimination following strong BCR ligation in the absence of appropriate second signals, and this mechanism mediates substantial cell losses during late differentiation steps in the bone marrow and periphery. Mature B cells may also be eliminated through this mechanism as well as through normal turnover, but the population containing mature cells destined for elimination has not been identified. Herein, we asked whether the transitional 3 (T3 subset, which contains most newly formed cells undergoing anergic death, could also include mature B cells destined for elimination. METHODOLOGY/PRINCIPAL FINDINGS: To interrogate this hypothesis and its implications, we applied mathematical models to previously generated in vivo labeling data. Our analyses reveal that the death rate of T3 B cells is far higher than the death rates of all other splenic B cell subpopulations. Further, the model, in which the T3 pool includes both newly formed and mature primary B cells destined for apoptotic death, shows that this cell loss may account for nearly all mature B cell turnover. CONCLUSIONS/SIGNIFICANCE: This finding has implications for the mechanism of normal mature B cell turnover.

  15. Yttrium Y 90 Basiliximab and Combination Chemotherapy Before Stem Cell Transplant in Treating Patients With Mature T-cell Non-Hodgkin Lymphoma

    Science.gov (United States)

    2016-10-11

    Mature T-Cell and NK-Cell Non-Hodgkin Lymphoma; Recurrent Mature T- and NK-Cell Non-Hodgkin Lymphoma; Refractory Mature T-Cell and NK-Cell Non-Hodgkin Lymphoma; Recurrent Cutaneous T-Cell Non-Hodgkin Lymphoma; Refractory Cutaneous T-Cell Non-Hodgkin Lymphoma

  16. Direct Induction and Functional Maturation of Forebrain GABAergic Neurons from Human Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Alfred Xuyang Sun

    2016-08-01

    Full Text Available Gamma-aminobutyric acid (GABA-releasing interneurons play an important modulatory role in the cortex and have been implicated in multiple neurological disorders. Patient-derived interneurons could provide a foundation for studying the pathogenesis of these diseases as well as for identifying potential therapeutic targets. Here, we identified a set of genetic factors that could robustly induce human pluripotent stem cells (hPSCs into GABAergic neurons (iGNs with high efficiency. We demonstrated that the human iGNs express neurochemical markers and exhibit mature electrophysiological properties within 6–8 weeks. Furthermore, in vitro, iGNs could form functional synapses with other iGNs or with human-induced glutamatergic neurons (iENs. Upon transplantation into immunodeficient mice, human iGNs underwent synaptic maturation and integration into host neural circuits. Taken together, our rapid and highly efficient single-step protocol to generate iGNs may be useful to both mechanistic and translational studies of human interneurons.

  17. Direct Induction and Functional Maturation of Forebrain GABAergic Neurons from Human Pluripotent Stem Cells.

    Science.gov (United States)

    Sun, Alfred Xuyang; Yuan, Qiang; Tan, Shawn; Xiao, Yixin; Wang, Danlei; Khoo, Audrey Tze Ting; Sani, Levena; Tran, Hoang-Dai; Kim, Paul; Chiew, Yong Seng; Lee, Kea Joo; Yen, Yi-Chun; Ng, Huck Hui; Lim, Bing; Je, Hyunsoo Shawn

    2016-08-16

    Gamma-aminobutyric acid (GABA)-releasing interneurons play an important modulatory role in the cortex and have been implicated in multiple neurological disorders. Patient-derived interneurons could provide a foundation for studying the pathogenesis of these diseases as well as for identifying potential therapeutic targets. Here, we identified a set of genetic factors that could robustly induce human pluripotent stem cells (hPSCs) into GABAergic neurons (iGNs) with high efficiency. We demonstrated that the human iGNs express neurochemical markers and exhibit mature electrophysiological properties within 6-8 weeks. Furthermore, in vitro, iGNs could form functional synapses with other iGNs or with human-induced glutamatergic neurons (iENs). Upon transplantation into immunodeficient mice, human iGNs underwent synaptic maturation and integration into host neural circuits. Taken together, our rapid and highly efficient single-step protocol to generate iGNs may be useful to both mechanistic and translational studies of human interneurons. PMID:27498872

  18. Simian virus 40 inhibits differentiation and maturation of rhesus macaque DC-SIGN+-dendritic cells

    Directory of Open Access Journals (Sweden)

    Changyong G

    2010-09-01

    Full Text Available Abstract Dendritic cells (DC are the initiators and modulators of the immune responses. Some species of pathogenic microorganisms have developed immune evasion strategies by controlling antigen presentation function of DC. Simian virus 40 (SV40 is a DNA tumor virus of rhesus monkey origin. It can induce cell transformation and tumorigenesis in many vertebrate species, but often causes no visible effects and persists as a latent infection in rhesus monkeys under natural conditions. To investigate the interaction between SV40 and rhesus monkey DC, rhesus monkey peripheral blood monocyte-derived DC were induced using recombinant human Interleukin-4 (rhIL-4 and infective SV40, the phenotype and function of DC-specific intracellular adhesion molecule-3 grabbing nonintegrin (DC-SIGN+ DC were analyzed by flow cytometry (FCM and mixed lymphocyte reaction (MLR. Results showed that SV40 can down-regulate the expression of CD83 and CD86 on DC and impair DC-induced activation of T cell proliferation. These findings suggest that SV40 might also cause immune suppression by influencing differentiation and maturation of DC.

  19. Soluble forms of VEGF receptor-1 and -2 promote vascular maturation via mural cell recruitment.

    Science.gov (United States)

    Lorquet, Sophie; Berndt, Sarah; Blacher, Silvia; Gengoux, Emily; Peulen, Olivier; Maquoi, Erik; Noël, Agnès; Foidart, Jean-Michel; Munaut, Carine; Péqueux, Christel

    2010-10-01

    Two soluble forms of vascular endothelial growth factor (VEGF) receptors, sVEGFR-1 and sVEGFR-2, are physiologically released and overproduced in some pathologies. They are known to act as anti-VEGF agents. Here we report that these soluble receptors contribute to vessel maturation by mediating a dialogue between endothelial cells (ECs) and mural cells that leads to blood vessel stabilization. Through a multidisciplinary approach, we provide evidence that these soluble VEGF receptors promote mural cell migration through a paracrine mechanism involving interplay in ECs between VEGF/VEGFR-2 and sphingosine-1-phosphate type-1 (S1P)/S1P1 pathways that leads to endothelial nitric oxyde synthase (eNOS) activation. This new paradigm is supported by the finding that sVEGFR-1 and -2 perform the following actions: 1) induce an eNOS-dependent outgrowth of a mural cell network in an ex vivo model of angiogenesis, 2) increase the mural cell coverage of neovessels in vitro and in vivo, 3) promote mural cell migration toward ECs, and 4) stimulate endothelial S1P1 overproduction and eNOS activation that promote the migration and the recruitment of neighboring mural cells. These findings provide new insights into mechanisms regulating physiological and pathological angiogenesis and vessel stabilization.

  20. Fisheries-induced evolutionary changes in maturation reaction norms in North Sea sole Solea solea

    NARCIS (Netherlands)

    Mollet, F.M.; Kraak, S.B.M.; Rijnsdorp, A.D.

    2007-01-01

    Age and size at maturation decreased in several commercially exploited fish stocks, which, according to life history theory, may be due to fisheries-induced evolutionary change. However, the observed changes may also represent a plastic response to environmental variability. To disentangle phenotypi

  1. The role of DCs in the immunopathogenesis of chronic HBV infection and the methods of inducing DCs maturation.

    Science.gov (United States)

    Sun, Hai-Hua; Zhou, Dong-Fang; Zhou, Jun-Ying

    2016-01-01

    Chronic hepatitis B virus (HBV) infection is the result of an inadequate immune response towards the virus. Dendritic cells (DCs), as the most efficient professional antigen-presenting cells (APCs), possess the strongest antigen presenting the effect in the body and can stimulate the initial T cell activation and proliferation. DCs of patients with chronic HBV infection are impaired, resulting in more tolerogenic rather than immunogenic responses, which may contribute to viral persistence. Recently, numerous methods have been developed to induce DCs maturation. To date, recombinant human granulocyte-macrophage colony stimulating factor (rhGM-CSF) combined with interleukin-4 (rhIL-4) has been a classic culture combination to DCs. The recently classified type III interferon group interferon-λ (IFN-λ) displays antiviral, antitumor, and immunoregulatory activity. In our laboratory, we demonstrate that IFN-λ1 combined with rhGM-CSF and rhIL-4 can significantly increase the expression of DC surface molecules and the secretion of interleukin-12 (IL-12) and interferon-γ (IFN-γ) in patients with chronic hepatitis B infection. In this review, we emphasize on the role of DCs in the immunopathogenesis of chronic HBV infection. Importantly, we systematic review that the latest update in the current status of knowledge on the methods of inducing DCs maturation in anti-HBV immunity. What's more, we conclude that IFN-λ1 combined with GM-CSF and IL-4 can induce DCs maturation, which could become a possibility to be applied to the autologus dendritic cell vaccine to treat chronic hepatitis B. PMID:26104380

  2. Modulation of T-bet and Eomes during Maturation of Peripheral Blood NK Cells Does Not Depend on Licensing/Educating KIR.

    Science.gov (United States)

    Pradier, Amandine; Simonetta, Federico; Waldvogel, Sophie; Bosshard, Carine; Tiercy, Jean-Marie; Roosnek, Eddy

    2016-01-01

    Peripheral natural killer (NK) cells upregulate T-bet and downregulate Eomes, the key transcription factors regulating NK cell maturation and function during the last maturation steps toward terminally differentiated effector cells. During this process, NK cells acquire killer immunoglobulin-like receptors (KIR) and effector functions, such as cytotoxicity and target cell-induced cytokine production. Inhibitory KIR are pivotal in the control of effector functions, but whether they also modulate T-bet/Eomes expression is unknown. We have measured T-bet/Eomes levels, KIR expression, and effector functions of maturing CD94(neg)CD56(dim)NK cells using CD57 as surface marker for maturation. Our cohort consisted of 23 healthy blood donors (HBD) homozygous for the KIR A haplotype that contains only inhibitory KIR2DL1 (ligand HLA-C2), KIR2DL3 (ligand HLA-C1), and KIR3DL1 (ligand HLA-Bw4). We confirm that during maturation of NK cells, the number of KIR increases, levels of T-bet/Eomes are modulated, and that cells acquire effector functions, such as cytotoxicity (CD107) and target cell-induced cytokine production (TNF-α). Because maturation was associated with the increase of the number of KIR as well as with the modulation of T-bet/Eomes, the number of KIR correlated with the extent of T-bet/Eomes modulation. However, whether the KIR were triggered by their cognate HLA ligands or not had no impact on T-bet and Eomes expression, indicating that modulation of T-box transcription factors during NK cell maturation does not depend on signals conveyed by KIR. We discuss the relevance of this finding in the context of models of NK cell maturation while cautioning that results obtained in a perhaps quite heterogeneous cohort of HBD are not necessarily conclusive. PMID:27605928

  3. Plasma cell maturity as a predictor of prognosis in multiple myeloma.

    Science.gov (United States)

    Iriyama, Noriyoshi; Miura, Katsuhiro; Hatta, Yoshihiro; Uchino, Yoshihito; Kurita, Daisuke; Takahashi, Hiromichi; Sakagami, Hitomi; Sakagami, Masashi; Kobayashi, Yujin; Nakagawa, Masaru; Ohtake, Shimon; Iizuka, Yoshikazu; Takei, Masami

    2016-08-01

    In this study, the impact of plasma cell maturity on the prognoses of multiple myeloma (MM) patients in the era of novel agents was investigated. Myeloma cell maturity was classified via immunophenotyping: myeloma cells showing mature plasma cell 1 (MPC-1)-positive and CD49e-positive cells were considered mature type; MPC-1-positive and CD49e-negative cells were considered intermediate type; and MPC-1-negative cells were considered immature type. This study included 87 newly diagnosed MM patients who were initially treated with bortezomib and/or chemotherapy. Myeloma cell maturity was a critical factor affecting overall survival (OS) in the cohort, with median OS not reached in mature-type, 50 months in intermediate-type, and 20 months in immature-type cells. Multivariate analysis showed that immature type and stage III according to the International Staging System were both independent prognostic factors affecting OS. The findings of this study demonstrate the clinical importance of myeloma cell classification according to immunophenotyping using MPC-1 and CD49e antibodies to determine patient prognosis in this era of novel therapeutic agents. PMID:27383407

  4. ROS-induced autophagy in cancer cells assists in evasion from determinants of immunogenic cell death

    NARCIS (Netherlands)

    Garg, A.D.; Dudek, A.M.D.; Ferreira, G.B.; Verfaillie, T.; Vandenabeele, P.; Krysko, D.V.; Mathieu, C.; Agostinis, P.

    2013-01-01

    Calreticulin surface exposure (ecto-CALR), ATP secretion, maturation of dendritic cells (DCs) and stimulation of T cells are prerequisites for anticancer therapy-induced immunogenic cell death (ICD). Recent evidence suggests that chemotherapy-induced autophagy may positively regulate ICD by favoring

  5. Casein kinase G may be the target of spermine during progesterone-induced oocyte maturation

    Institute of Scientific and Technical Information of China (English)

    LIRUNSHENG; JIAKETSO

    1993-01-01

    Casein kinase G (CKG) with more than 2500-fold enrichraent was purified from Bufo bufo gargarizans ovaries. The catalytic activity of the enzyme was found to be associated with its 42 kD subunit, and its 26 kD subunit was found to be the major tsrget for the enzyme autophos phorylation. Each fuU-grown oocyte contained 1.9 units of CKG corresponding to an intracellular concentration of 93 nM. After injecting an amount of 0,38 units of the enzyme into the oocyte, approximately 50% of the progesterone-induoed maturation was inhibited. The inhibitory effect was enhanced in oocytes pretreated with spermine, which was consistent with the results that the enzyme was activated in vitro in the presence of spermine, The MPF-induced oocyte maturation was delayed and even prohibited in the kinase-microinjected oocytes. A 55 kD oocyte protein was identified as an suhstrate of CKG both in vivo and in vitro, and the enhancement of the 55 kD protein phosphory[ation was associated with kinase inhibition on maturation and on protein synthesis in kinase-microinjected oocytes. As the endogenous spermine level decreased in the course of progesteroneinduced oocyte maturation. 55 kD protein was dephosphorylated, Heparin, a specific inhibitor of CKG, potentiated the progesterone-induced oocyte maturation. Altogether the experimental reSults indicated Strongly that CKG may be the physiological target of spermine.

  6. Biological features of an early-maturity mutant of sweet sorghum induced by carbon ions irradiation and its genetic polymorphism

    Science.gov (United States)

    Dong, Xicun; Li, Wenjian

    2012-08-01

    It is well known that heavy ions irradiation is characterized by a high linear energy transfer (LET) and relative biological effectiveness (RBE). These characters are believed to increase mutation frequency and mutation spectrum of plants or mammalian cells irradiated by heavy ions. Here we describe an early-maturity mutant of sweet sorghum induced by carbon ion irradiation. The growth period of this mutant was shortened by about 20 days compared to the wild type. The proline content of the mutant was increased by 11.05% while the malondialdehyde content was significantly lower than that of wild type. In addition, the RAPD analysis indicated that the percentage of polymorphism between the mutant KFJT-1 and the control KFJT-CK reached 5.26%. The gain of early-maturity might solve the problem in the northwest region of China where seeds of sweet sorghum cannot be mature because of early frost. The early-maturity mutant may be important for future space cultivation.

  7. Inhibition of Progenitor Dendritic Cell Maturation by Plasma from Patients with Peripartum Cardiomyopathy: Role in Pregnancy-associated Heart Disease

    Directory of Open Access Journals (Sweden)

    Jane E. Ellis

    2005-01-01

    Full Text Available Dendritic cells (DCs play dual roles in innate and adaptive immunity based on their functional maturity, and both innate and adaptive immune responses have been implicated in myocardial tissue remodeling associated with cardiomyopathies. Peripartum cardiomyopathy (PPCM is a rare disorder which affects women within one month antepartum to five months postpartum. A high occurrence of PPCM in central Haiti (1 in 300 live births provided the unique opportunity to study the relationship of immune activation and DC maturation to the etiology of this disorder. Plasma samples from two groups (n = 12 of age- and parity-matched Haitian women with or without evidence of PPCM were tested for levels of biomarkers of cardiac tissue remodeling and immune activation. Significantly elevated levels of GM-CSF, endothelin-1, proBNP and CRP and decreased levels of TGF- were measured in PPCM subjects relative to controls. Yet despite these findings, in vitro maturation of normal human cord blood derived progenitor dendritic cells (CBDCs was significantly reduced (p < 0.001 in the presence of plasma from PPCM patients relative to plasma from post-partum control subjects as determined by expression of CD80, CD86, CD83, CCR7, MHC class II and the ability of these matured CBDCs to induce allo-responses in PBMCs. These results represent the first findings linking inhibition of DC maturation to the dysregulation of normal physiologic cardiac tissue remodeling during pregnancy and the pathogenesis of PPCM.

  8. Nitric oxide acts through different signaling pathways in maturation of cumulus cell-enclosed mouse oocytes

    Directory of Open Access Journals (Sweden)

    M Abbasi

    2009-03-01

    Full Text Available ABSTRACT Background: Nitric oxide (NO have a dual action in mouse oocyte meiotic maturation which depends on its concentration, but the mechanisms by which it influences oocyte maturation has not been exactly clarified. In this study different signaling mechanisms which exist for in vitro maturation of meiosis was examined in cumulus cell-enclosed oocytes (CEOs after injection of pregnant mare's serum gonadotropin (PMSG to immature female mice. Methods: The CEOs were cultured in spontaneous maturation and hypoxanthine (HX arrested model. Results: Sodium nitroprusside (SNP, an NO donor, 10mM delayed germinal vesicle breakdown (GVBD significantly during the first 5 hrs of incubation and inhibited the formation of first polar body (PB1 at the end of 24 hrs of incubation. SNP (10-5M stimulated the meiotic maturation of oocytes significantly by overcoming the inhibition of HX. Sildenafil (a cGMP stimulator, 100 nM, had a significant inhibitory effects on both spontaneous meiotic maturation and HX-arrested meiotic maturation. Forskolin (an adenylate cyclase stimulator, 6µM and SNP (10mM had the same effects on GVBD. Forskolin reversed the SNP (10-5M stimulated meiotic maturation. Conclusion: These results suggest that differences in pathways are present between SNP-inhibited spontaneous meiotic maturation and SNP-stimulated meiotic maturation in mouse oocytes

  9. Status epilepticus increases mature granule cells in the molecular layer of the dentate gyrus in rats

    Institute of Scientific and Technical Information of China (English)

    Zhaoliang Liang; Fei Gao; Fajun Wang; Xiaochen Wang; Xinyu Song; Kejing Liu; Ren-Zhi Zhan

    2013-01-01

    Enhanced neurogenesis in the dentate gyrus of the hippocampus following seizure activity, especially status epilepticus, is associated with ectopic residence and aberrant integration of newborn granule cells. Hilar ectopic granule cells may be detrimental to the stability of dentate circuitry by means of their electrophysiological properties and synaptic connectivity. We hypothesized that status epilepticus also increases ectopic granule cells in the molecular layer. Status epilepticus was induced in male Sprague-Dawley rats by intraperitoneal injection of pilocarpine. Immunostaining showed that many doublecortin-positive cells were present in the molecular layer and the hilus 7 days after the induction of status epilepticus. At least 10 weeks after status epilepticus, the estimated number of cells positive for both prospero homeobox protein 1 and neuron-specific nuclear protein in the hilus was significantly increased. A similar trend was also found in the molecular layer. These findings indicate that status epilepticus can increase the numbers of mature and ectopic newborn granule cells in the molecular layer.

  10. Induced pluripotent stem cells

    Institute of Scientific and Technical Information of China (English)

    Siddhartha Bhowmik; LI Yong

    2011-01-01

    Induced pluripotent stem (iPS) cells are a recent development which has brought a promise of great therapeutic values. The previous technique of somatic cell nuclear transfer (SCNT) has been ineffective in humans. Recent discoveries show that human fibroblasts can be reprogrammed by a transient over expression of a small number of genes; they can undergo induced pluripotency. iPS were first produced in 2006. By 2008, work was underway to remove the potential oncogenes from their structure. In 2009, protein iPS (piPS) cells were discovered. Surface markers and reporter genes play an important role in stem cell research. Clinical applications include generation of self renewing stem cells, tissue replacement and many more. Stem cell therapy has the ability to dramatically change the treatment of human diseases.

  11. Self-assembling peptide for co-delivery of HIV-1 CD8+ T cells epitope and Toll-like receptor 7/8 agonists R848 to induce maturation of monocyte derived dendritic cell and augment polyfunctional cytotoxic T lymphocyte (CTL) response.

    Science.gov (United States)

    Ding, Yong; Liu, Jun; Lu, Sheng; Igweze, Justice; Xu, Wen; Kuang, Da; Zealey, Chris; Liu, Daheng; Gregor, Alex; Bozorgzad, Ardalan; Zhang, Lei; Yue, Elizabeth; Mujib, Shariq; Ostrowski, Mario; Chen, P

    2016-08-28

    Peptide based vaccine that incorporates one or several highly conserved CD8+ T cells epitopes to induce potent cytotoxic T lymphocyte (CTL) response is desirable for some infectious diseases, such as HIV-1 (human immunodeficiency virus-1), and cancers. However, the CD8+ T cells epitope is often weakly immunogenic, and thus requires a specific adjuvant or delivery system to enhance the efficiency. Here we investigated the use of self-assembling peptide EAK16-II based platform to achieve the co-delivery of CD8+ T cells epitope and TLR7/8 agonists (R848 or R837) for augmenting DCs maturation and HIV-1 specific CTL response. HIV-1 CTL epitope SL9 was conjugated with EAK16-II to obtain SL9-EAK16-II, which further spontaneously co-assembled with R848 or R837 in aqueous solution, forming co-assembled nanofibers. Fluorescence spectra and calorimetrical titration revealed the interaction between SL9-EAK16-II assemblies and R848 or R837 via hydrogen bonding and hydrophobic interaction, with the binding affinity (dissociation constant Kd) of 0.62μM or 0.53μM, respectively. Ex vivo generated DCs from HIV-1+ patients pulsed with the SL9-EAK16-II/R848 nanofibers stimulated significantly more polyfunctional SL9 specific CTLs, compared to the DCs pulsed with SL9 alone or the mixture of SL9 and TLR agonist. Furthermore, the nanofibers elicited stronger SL9 specific CTL response in vaccinated mice. Our findings suggest the self-assembling peptide EAK16-II might be used as a new delivery system for peptide based vaccines. PMID:27297778

  12. pH-induced stability switching of the bacteriophage HK97 maturation pathway.

    Science.gov (United States)

    May, Eric R; Arora, Karunesh; Brooks, Charles L

    2014-02-26

    Many viruses undergo large-scale conformational changes during their life cycles. Blocking the transition from one stage of the life cycle to the next is an attractive strategy for the development of antiviral compounds. In this work, we have constructed an icosahedrally symmetric, low-energy pathway for the maturation transition of bacteriophage HK97. By conducting constant-pH molecular dynamics simulations on this pathway, we identify which residues are contributing most significantly to shifting the stability between the states along the pathway under differing pH conditions. We further analyze these data to establish the connection between critical residues and important structural motifs which undergo reorganization during maturation. We go on to show how DNA packaging can induce spontaneous reorganization of the capsid during maturation. PMID:24495192

  13. Molecular signatures of maturing dendritic cells: implications for testing the quality of dendritic cell therapies

    Directory of Open Access Journals (Sweden)

    Wang Ena

    2010-01-01

    Full Text Available Abstract Background Dendritic cells (DCs are often produced by granulocyte-macrophage colony-stimulating factor (GM-CSF and interleukin-4 (IL-4 stimulation of monocytes. To improve the effectiveness of DC adoptive immune cancer therapy, many different agents have been used to mature DCs. We analyzed the kinetics of DC maturation by lipopolysaccharide (LPS and interferon-γ (IFN-γ induction in order to characterize the usefulness of mature DCs (mDCs for immune therapy and to identify biomarkers for assessing the quality of mDCs. Methods Peripheral blood mononuclear cells were collected from 6 healthy subjects by apheresis, monocytes were isolated by elutriation, and immature DCs (iDCs were produced by 3 days of culture with GM-CSF and IL-4. The iDCs were sampled after 4, 8 and 24 hours in culture with LPS and IFN-γ and were then assessed by flow cytometry, ELISA, and global gene and microRNA (miRNA expression analysis. Results After 24 hours of LPS and IFN-γ stimulation, DC surface expression of CD80, CD83, CD86, and HLA Class II antigens were up-regulated. Th1 attractant genes such as CXCL9, CXCL10, CXCL11 and CCL5 were up-regulated during maturation but not Treg attractants such as CCL22 and CXCL12. The expression of classical mDC biomarker genes CD83, CCR7, CCL5, CCL8, SOD2, MT2A, OASL, GBP1 and HES4 were up-regulated throughout maturation while MTIB, MTIE, MTIG, MTIH, GADD45A and LAMP3 were only up-regulated late in maturation. The expression of miR-155 was up-regulated 8-fold in mDCs. Conclusion DCs, matured with LPS and IFN-γ, were characterized by increased levels of Th1 attractants as opposed to Treg attractants and may be particularly effective for adoptive immune cancer therapy.

  14. Nestin-expressing cells in the developing, mature and noise-exposed cochlear epithelium

    OpenAIRE

    Watanabe, Reiko; Morell, Maria H.; Miller, Josef M.; Kanicki, Ariane; O'Shea, K. Sue; Altschuler, Richard A.; Raphael, Yehoash

    2011-01-01

    The auditory sensory epithelium in non-mammalian vertebrates can replace lost hair cells by transdifferentiation of supporting cells, but this regenerative ability is lost in the mammalian cochlea. Future cell-based treatment of hearing loss may depend on stem cell transplantation or on transdifferentiation of endogenous cells in the cochlea. For both approaches, identification of cells with stem cell features within the mature cochlea may be useful. Here we use a Nestin-β-gal mouse to examin...

  15. Attenuated Leishmania induce pro-inflammatory mediators and influence leishmanicidal activity by p38 MAPK dependent phagosome maturation in Leishmania donovani co-infected macrophages.

    Science.gov (United States)

    Banerjee, Somenath; Bose, Dipayan; Chatterjee, Nabanita; Das, Subhadip; Chakraborty, Sreeparna; Das, Tanya; Saha, Krishna Das

    2016-01-01

    Promastigote form of Leishmania, an intracellular pathogen, delays phagosome maturation and resides inside macrophages. But till date limited study has been done to manipulate the phagosomal machinery of macrophages to restrict Leishmania growth. Attenuated Leishmania strain exposed RAW 264.7 cells showed a respiratory burst and enhanced production of pro-inflammatory mediators. The augmentation of pro-inflammatory activity is mostly attributed to p38 MAPK and p44/42 MAPK. In our study, these activated macrophages are found to induce phagosome maturation when infected with pathogenic Leishmania donovani. Increased co-localization of carboxyfluorescein succinimidyl ester labeled pathogenic L. donovani with Lysosome was found. Moreover, increased co-localization was observed between pathogenic L. donovani and late phagosomal markers viz. Rab7, Lysosomal Associated Membrane Protein 1, Cathepsin D, Rab9, and V-ATPase which indicate phagosome maturation. It was also observed that inhibition of V-type ATPase caused significant hindrance in attenuated Leishmania induced phagosome maturation. Finally, it was confirmed that p38 MAPK is the key player in acidification and maturation of phagosome in attenuated Leishmania strain pre-exposed macrophages. To our knowledge, this study for the first time reported an approach to induce phagosome maturation in L. donovani infected macrophages which could potentiate short-term prophylactic response in future. PMID:26928472

  16. α-fetoprotein involvement during glucocorticoid-induced precocious maturation in rat colon

    Institute of Scientific and Technical Information of China (English)

    Min Chen; Peng Sun; Xiao-Yan Liu; Dan Dong; Jun Du; Luo Gu; Ying-Bin Ge

    2011-01-01

    AIM: To investigate the role of α-fetoprotein (AFP), a cancer-associated fetal glycoprotein, in glucocorticoidinduced precocious maturation in rat colon. METHODS: Colons from suckling Sprague-Dawley rats were used in this study. Corticosterone acetate at a dose of 100 μg/g body weight was given to normal pups on days 7, 9 and 11 after birth to induce hypercorticoidism. Control animals were injected with identical volumes of normal saline. Some rats receiving corticosterone 7 d after birth were also treated with mifepristone (RU38486), a glucocorticoid cytoplasm receptor antagonist to investigate the effects of glucocorticoids (GCs). The morphological changes of the crypt depth and villous height of the villous zone in colon were observed as indices of colon maturation. Expression levels of AFP in colons were detected by reverse transcriptase polymerase chain reaction and Western blotting. To identify the cellular localization of AFP in developing rat colons, double-immunofluorescent staining was performed using antibodies to specific mesenchymal cell marker and AFP. RESULTS: Corticosterone increased the crypt depth and villous height in the colon of 8- and 10-d-old rats with hypercorticoidism compared with that in the control animals (120% in 8-d-old rats and 118% in 10-d-old rats in villous height, P = 0.021; 145% in 8-d-old rats and 124% in 10-d-old rats in crypt depth, P = 0.017). These increases were accompanied by an increase of AFP expression in both mRNA and protein (2.5-folds in 8-dold and 2.5-folds in 10-d-old rats higher than in control animals, P = 0.035; 1.8-folds in 8-d-old and 1.3-folds in 10-d-old rats higher than in control animals, P = 0.023). Increased crypt depth and villous height and increased expression of AFP in the colon of rats with hypercorticoidism were blocked by mifepristone. Both had positive staining for AFP or vimentin, and overlapped in mesenchymal cells at each tested colon.

  17. The presence of centrioles and centrosomes in ovarian mature cystic teratoma cells suggests human parthenotes developed in vitro can differentiate into mature cells without a sperm centriole

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Bo Yon, E-mail: boyonlee@gmail.com [Department of Obstetrics and Gynecology, Kyung Hee University Hospital, Kyung Hee University, School of Medicine, Seoul (Korea, Republic of); Shim, Sang Woo; Kim, Young Sun; Kim, Seung Bo [Department of Obstetrics and Gynecology, Kyung Hee University Hospital, Kyung Hee University, School of Medicine, Seoul (Korea, Republic of)

    2011-11-18

    Highlights: Black-Right-Pointing-Pointer The sperm centriole is the progenitor of centrosomes in all somatic cells. Black-Right-Pointing-Pointer Centrioles and centrosomes exist in parthenogenetic ovarian teratoma cells. Black-Right-Pointing-Pointer Without a sperm centriole, parthenogenetic oocytes produce centrioles and centrosomes. Black-Right-Pointing-Pointer Parthenogenetic human oocytes can develop and differentiate into mature cells. -- Abstract: In most animals, somatic cell centrosomes are inherited from the centriole of the fertilizing spermatozoa. The oocyte centriole degenerates during oogenesis, and completely disappears in metaphase II. Therefore, the embryos generated by in vitro parthenogenesis are supposed to develop without any centrioles. Exceptional acentriolar and/or acentrosomal developments are possible in mice and in some experimental cells; however, in most animals, the full developmental potential of parthenogenetic cells in vitro and the fate of their centrioles/centrosomes are not clearly understood. To predict the future of in vitro human parthenogenesis, we explored the centrioles/centrosomes in ovarian mature cystic teratoma cells by immunofluorescent staining and transmission electron microscopy. We confirmed the presence of centrioles and centrosomes in these well-known parthenogenetic ovarian tumor cells. Our findings clearly demonstrate that, even without a sperm centriole, parthenotes that develop from activated oocytes can produce their own centrioles/centrosomes, and can even develop into the well-differentiated mature tissue.

  18. Semi-mature MyD88-silenced bone marrow dendritic cells prolong the allograft survival in a rat model of intestinal transplantation

    Institute of Scientific and Technical Information of China (English)

    YANG Xiao-jun; MENG Song; Zhu Chun-fu; JIANG Hong; WU Wen-xi

    2011-01-01

    Background Semi-mature dendritic cells (DCs) may induce tolerance rather than immunity.However,little is known about the regulatory mechanism by which these DCs induce transplant tolerance.Myeloid differentiation factor 88 (MyD88) is a key adaptor of Toil-like receptor signaling,which plays a critical role in DC maturation.Activation of MyD88-silenced immature DCs results in the generation of semi-mature DCs.We explored the possibility of using these DCs to induce intestinal transplant tolerance in rats.Methods MyD88 expression was silenced in bone marrow DCs (F344 rats) using small interfering RNAs for 24 hours,at which point,lipopolysaccharide (LPS) was added to the culture for another 48 hours.These cells were analyzed for their in vitro and in vivo tolerizing capacities.Results Semi-mature DCs expressing moderate levels of MHC class Ⅱ and low levels of co-stimulatory molecules were found to produce interleukin (IL)-10,while IL-12 production was decreased.In vitro co-culture with completely allogeneic T cells from Wistar rats led to a significant decrease in alloreactive T-cell responses.In vivo,the transfer of semi-mature DCs (1×106 ceils) followed by the transplantation of fully mismatched intestinal grafts (F344 rats) led to significantly prolonged survival compared to rats receiving immature and mature DCs.Serum from semi-mature DC-treated rats contained lower concentrations of the pro-inflammatory cytokines IL-2 and interferon-Y 5 days after transplantation.Conclusion Semi-mature DCs may promote inducible allograft tolerance and this study suggests a new strategy by which to facilitate the induction of transplant tolerance.

  19. Osteopontin promotes dendritic cell maturation and function in response to HBV antigens

    Directory of Open Access Journals (Sweden)

    Cui GY

    2015-06-01

    HBV antigens. In addition, OPN deficiency in DCs reduced the HBV antigen-induced inflammatory response in the liver of mice. Importantly, OPN administration significantly promoted the maturation of DCs from CHB patients in vitro.Conclusion: These findings suggested that OPN could improve the maturation and functioning of DCs in the immune response to HBV antigens, which might be useful to further improve the effect of DC vaccine. Keywords: osteopontin, dendritic cells, hepatitis B virus

  20. TCR sequencing facilitates diagnosis and identifies mature T cells as the cell of origin in CTCL.

    Science.gov (United States)

    Kirsch, Ilan R; Watanabe, Rei; O'Malley, John T; Williamson, David W; Scott, Laura-Louise; Elco, Christopher P; Teague, Jessica E; Gehad, Ahmed; Lowry, Elizabeth L; LeBoeuf, Nicole R; Krueger, James G; Robins, Harlan S; Kupper, Thomas S; Clark, Rachael A

    2015-10-01

    Early diagnosis of cutaneous T cell lymphoma (CTCL) is difficult and takes on average 6 years after presentation, in part because the clinical appearance and histopathology of CTCL can resemble that of benign inflammatory skin diseases. Detection of a malignant T cell clone is critical in making the diagnosis of CTCL, but the T cell receptor γ (TCRγ) polymerase chain reaction (PCR) analysis in current clinical use detects clones in only a subset of patients. High-throughput TCR sequencing (HTS) detected T cell clones in 46 of 46 CTCL patients, was more sensitive and specific than TCRγ PCR, and successfully discriminated CTCL from benign inflammatory diseases. HTS also accurately assessed responses to therapy and facilitated diagnosis of disease recurrence. In patients with new skin lesions and no involvement of blood by flow cytometry, HTS demonstrated hematogenous spread of small numbers of malignant T cells. Analysis of CTCL TCRγ genes demonstrated that CTCL is a malignancy derived from mature T cells. There was a maximal T cell density in skin in benign inflammatory diseases that was exceeded in CTCL, suggesting that a niche of finite size may exist for benign T cells in skin. Last, immunostaining demonstrated that the malignant T cell clones in mycosis fungoides and leukemic CTCL localized to different anatomic compartments in the skin. In summary, HTS accurately diagnosed CTCL in all stages, discriminated CTCL from benign inflammatory skin diseases, and provided insights into the cell of origin and location of malignant CTCL cells in skin. PMID:26446955

  1. Closing in on Mass Production of Mature Human Beta Cells.

    Science.gov (United States)

    Kieffer, Timothy J

    2016-06-01

    Human pluripotent stem cell differentiation protocols based on mimicking developmental pathways are getting close to generating fully fledged pancreatic endocrine cells, including insulin-producing beta cells. However, challenges remain in identifying pathways to trigger the attainment of robust glucose responsiveness that occurs postnatally in beta cells. PMID:27257758

  2. Thidiazuron-induced high-frequency plant regeneration from leaf explants of Paulownia tomentosa mature trees

    OpenAIRE

    CORREDOIRA, E.; Ballester, A.; Viéitez Martín, Ana María

    2008-01-01

    Attempts were made to study the effect of thidiazuron (TDZ) on adventitious shoot induction and plant development in Paulownia tomentosa explants derived from mature trees. Media with different concentrations of TDZ in combination with an auxin were used to induce adventitious shoot-buds in two explant types: basal leaf halves with the petiole attached (leaf explant) and intact petioles. Optimal shoot regeneration was obtained in leaf explants cultured on induction medium containing TDZ (22.7...

  3. Electroporated Antigen-Encoding mRNA Is Not a Danger Signal to Human Mature Monocyte-Derived Dendritic Cells

    Directory of Open Access Journals (Sweden)

    Stefanie Hoyer

    2015-01-01

    Full Text Available For therapeutic cancer vaccination, the adoptive transfer of mRNA-electroporated dendritic cells (DCs is frequently performed, usually with monocyte-derived, cytokine-matured DCs (moDCs. However, DCs are rich in danger-sensing receptors which could recognize the exogenously delivered mRNA and induce DC activation, hence influencing the DCs’ immunogenicity. Therefore, we examined whether electroporation of mRNA with a proper cap and a poly-A tail of at least 64 adenosines had any influence on cocktail-matured moDCs. We used 16 different RNAs, encoding tumor antigens (MelanA, NRAS, BRAF, GNAQ, GNA11, and WT1, and variants thereof. None of those RNAs induced changes in the expression of CD25, CD40, CD83, CD86, and CD70 or the secretion of the cytokines IL-8, IL-6, and TNFα of more than 1.5-fold compared to the control condition, while an mRNA encoding an NF-κB-activation protein as positive control induced massive secretion of the cytokines. To determine whether mRNA electroporation had any effect on the whole transcriptome of the DCs, we performed microarray analyses of DCs of 6 different donors. None of 60,000 probes was significantly different between mock-electroporated DCs and MelanA-transfected DCs. Hence, we conclude that no transcriptional programs were induced within cocktail-matured DCs by electroporation of single tumor-antigen-encoding mRNAs.

  4. Stimulated mast cells promote maturation of myocardial microvascular endothelial cell neovessels by modulating the angiopoietin-Tie-2 signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Z.H. [Division of Cardiology, Shanghai Sixth People' s Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China, Division of Cardiology, Shanghai Sixth People’s Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai (China); Yancheng People' s First Hospital, Division of Cardiology, Yancheng, Jiangsu, China, Division of Cardiology, Yancheng People’s First Hospital, Yancheng, Jiangsu (China); Zhu, W.; Tao, J.P.; Zhang, Q.Y.; Wei, M. [Division of Cardiology, Shanghai Sixth People' s Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China, Division of Cardiology, Shanghai Sixth People’s Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai (China)

    2013-10-22

    Angiopoietin (Ang)-1 and Ang-2 interact in angiogenesis to activate the Tie-2 receptor, which may be involved in new vessel maturation and regression. Mast cells (MCs) are also involved in formation of new blood vessels and angiogenesis. The present study was designed to test whether MCs can mediate angiogenesis in myocardial microvascular endothelial cells (MMVECs). Using a rat MMVEC and MC co-culture system, we observed that Ang-1 protein levels were very low even though its mRNA levels were increased by MCs. Interestingly, MCs were able to enhance migration, proliferation, and capillary-like tube formation, which were associated with suppressed Ang-2 protein expression, but not Tie-2 expression levels. These MCs induced effects that could be reversed by either tryptase inhibitor [N-tosyl-L-lysine chloromethyl ketone (TLCK)] or chymase inhibitor (N-tosyl-L-phenylalanyl chloromethyl ketone), with TLCK showing greater effects. In conclusion, our data indicated that MCs can interrupt neovessel maturation via suppression of the Ang-2/Tie-2 signaling pathway.

  5. MicroRNA-Mediated Down-Regulation of M-CSF Receptor Contributes to Maturation of Mouse Monocyte-Derived Dendritic Cells

    OpenAIRE

    Riepsaame, Joey; van Oudenaren, Adri; den Broeder, Berlinda J. H.; Van Ijcken, Wilfred F J; Pothof, Joris; Pieter J.M. Leenen

    2013-01-01

    Dendritic cell (DC) maturation is a tightly regulated process that requires coordinated and timed developmental cues. Here we investigate whether microRNAs are involved in this process. We identify microRNAs in mouse GM-CSF-generated, monocyte-related DC (GM-DC) that are differentially expressed during both spontaneous and LPS-induced maturation and characterize M-CSF receptor (M-CSFR), encoded by the Csf1r gene, as a key target for microRNA-mediated regulation in the final step toward mature...

  6. Silencing of the glucocorticoid-induced leucine zipper improves the immunogenicity of clinical-grade dendritic cells

    DEFF Research Database (Denmark)

    Cathelin, Dominique; Met, Özcan; Svane, Inge Marie

    2013-01-01

    The maturation cocktail composed of interleukin (IL)-6, IL-1β, tumor necrosis factor-α and prostaglandin E2 is considered the "gold standard" for inducing the maturation of dendritic cells (DCs) for use in cancer immunotherapy. Nevertheless, although this maturation cocktail induces increased...

  7. Energy metabolism in intestinal epithelial cells during maturation along the crypt-villus axis

    Science.gov (United States)

    Yang, Huansheng; Wang, Xiaocheng; Xiong, Xia; Yin, Yulong

    2016-01-01

    Intestinal epithelial cells continuously migrate and mature along crypt-villus axis (CVA), while the changes in energy metabolism during maturation are unclear in neonates. The present study was conducted to test the hypothesis that the energy metabolism in intestinal epithelial cells would be changed during maturation along CVA in neonates. Eight 21-day-old suckling piglets were used. Intestinal epithelial cells were isolated sequentially along CVA, and proteomics was used to analyze the changes in proteins expression in epithelial cells along CVA. The identified differentially expressed proteins were mainly involved in cellular process, metabolic process, biological regulation, pigmentation, multicellular organizational process and so on. The energy metabolism in intestinal epithelial cells of piglets was increased from the bottom of crypt to the top of villi. Moreover, the expression of proteins related to the metabolism of glucose, most of amino acids, and fatty acids was increased in intestinal epithelial cells during maturation along CVA, while the expression of proteins related to glutamine metabolism was decreased from crypt to villus tip. The expression of proteins involved in citrate cycle was also increased intestinal epithelial cells during maturation along CVA. Moreover, dietary supplementation with different energy sources had different effects on intestinal structure of weaned piglets. PMID:27558220

  8. Cdk5 regulates accurate maturation of newborn granule cells in the adult hippocampus.

    Directory of Open Access Journals (Sweden)

    Sebastian Jessberger

    2008-11-01

    Full Text Available Newborn granule cells become functionally integrated into the synaptic circuitry of the adult dentate gyrus after a morphological and electrophysiological maturation process. The molecular mechanisms by which immature neurons and the neurites extending from them find their appropriate position and target area remain largely unknown. Here we show that single-cell-specific knockdown of cyclin-dependent kinase 5 (cdk5 activity in newborn cells using a retrovirus-based strategy leads to aberrant growth of dendritic processes, which is associated with an altered migration pattern of newborn cells. Even though spine formation and maturation are reduced in cdk5-deficient cells, aberrant dendrites form ectopic synapses onto hilar neurons. These observations identify cdk5 to be critically involved in the maturation and dendrite extension of newborn neurons in the course of adult neurogenesis. The data presented here also suggest a mechanistic dissociation between accurate dendritic targeting and subsequent synapse formation.

  9. Immunomodulatory Effects of Four Leishmania infantum Potentially Excreted/Secreted Proteins on Human Dendritic Cells Differentiation and Maturation.

    Directory of Open Access Journals (Sweden)

    Wafa Markikou-Ouni

    Full Text Available Leishmania parasites and some molecules they secrete are known to modulate innate immune responses through effects on dendritic cells (DCs and macrophages. Here, we characterized four Leishmania infantum potentially excreted/secreted recombinant proteins (LipESP identified in our laboratory: Elongation Factor 1 alpha (LiEF-1α, a proteasome regulatory ATPase (LiAAA-ATPase and two novel proteins with unknown functions, which we termed LiP15 and LiP23, by investigating their effect on in vitro differentiation and maturation of human DCs and on cytokine production by DCs and monocytes. During DCs differentiation, LipESP led to a significant decrease in CD1a. LiP23 and LiEF-1α, induced a decrease of HLA-DR and an increase of CD86 surface expression, respectively. During maturation, an up-regulation of HLA-DR and CD80 was found in response to LiP15, LiP23 and LiAAA-ATPase, while an increase of CD40 expression was only observed in response to LiP15. All LipESP induced an over-expression of CD86 with significant differences between proteins. These proteins also induced significant IL-12p70 levels in immature DCs but not in monocytes. The LipESP-induced IL-12p70 production was significantly enhanced by a co-treatment with IFN-γ in both cell populations. TNF-α and IL-10 were induced in DCs and monocytes with higher levels observed for LiP15 and LiAAA-ATPase. However, LPS-induced cytokine production during DC maturation or in monocyte cultures was significantly down regulated by LipESP co-treatment. Our findings suggest that LipESP strongly interfere with DCs differentiation suggesting a possible involvement in mechanisms established by the parasite for its survival. These proteins also induce DCs maturation by up-regulating several costimulatory molecules and by inducing the production of proinflammatory cytokines, which is a prerequisite for T cell activation. However, the reduced ability of LipESP-stimulated DCs and monocytes to respond to

  10. Immunomodulatory Effects of Four Leishmania infantum Potentially Excreted/Secreted Proteins on Human Dendritic Cells Differentiation and Maturation.

    Science.gov (United States)

    Markikou-Ouni, Wafa; Drini, Sima; Bahi-Jaber, Narges; Chenik, Mehdi; Meddeb-Garnaoui, Amel

    2015-01-01

    Leishmania parasites and some molecules they secrete are known to modulate innate immune responses through effects on dendritic cells (DCs) and macrophages. Here, we characterized four Leishmania infantum potentially excreted/secreted recombinant proteins (LipESP) identified in our laboratory: Elongation Factor 1 alpha (LiEF-1α), a proteasome regulatory ATPase (LiAAA-ATPase) and two novel proteins with unknown functions, which we termed LiP15 and LiP23, by investigating their effect on in vitro differentiation and maturation of human DCs and on cytokine production by DCs and monocytes. During DCs differentiation, LipESP led to a significant decrease in CD1a. LiP23 and LiEF-1α, induced a decrease of HLA-DR and an increase of CD86 surface expression, respectively. During maturation, an up-regulation of HLA-DR and CD80 was found in response to LiP15, LiP23 and LiAAA-ATPase, while an increase of CD40 expression was only observed in response to LiP15. All LipESP induced an over-expression of CD86 with significant differences between proteins. These proteins also induced significant IL-12p70 levels in immature DCs but not in monocytes. The LipESP-induced IL-12p70 production was significantly enhanced by a co-treatment with IFN-γ in both cell populations. TNF-α and IL-10 were induced in DCs and monocytes with higher levels observed for LiP15 and LiAAA-ATPase. However, LPS-induced cytokine production during DC maturation or in monocyte cultures was significantly down regulated by LipESP co-treatment. Our findings suggest that LipESP strongly interfere with DCs differentiation suggesting a possible involvement in mechanisms established by the parasite for its survival. These proteins also induce DCs maturation by up-regulating several costimulatory molecules and by inducing the production of proinflammatory cytokines, which is a prerequisite for T cell activation. However, the reduced ability of LipESP-stimulated DCs and monocytes to respond to lipopolysaccharide (LPS

  11. Determination of Mother Centriole Maturation in CPAP-Depleted Cells Using the Ninein Antibody

    OpenAIRE

    Lee, Miseon; Rhee, Kunsoo

    2015-01-01

    Background Mutations in centrosomal protein genes have been identified in a number of genetic diseases in brain development, including microcephaly. Centrosomal P4.1-associated protein (CPAP) is one of the causal genes implicated in primary microcephaly. We previously proposed that CPAP is essential for mother centriole maturation during mitosis. Methods We immunostained CPAP-depleted cells using the ninein antibody, which selectively detects subdistal appendages in mature mother centrioles. ...

  12. Effects of TLR agonists on maturation and function of 3-day dendritic cells from AML patients in complete remission

    Directory of Open Access Journals (Sweden)

    Merk Martina

    2011-09-01

    Full Text Available Abstract Background Active dendritic cell (DC immunization protocols are rapidly gaining interest as therapeutic options in patients with acute myeloid leukemia (AML. Here we present for the first time a GMP-compliant 3-day protocol for generation of monocyte-derived DCs using different synthetic Toll-like receptor (TLR agonists in intensively pretreated patients with AML. Methods Four different maturation cocktails were compared for their impact on cell recovery, phenotype, cytokine secretion, migration, and lymphocyte activation in 20 AML patients and 25 healthy controls. Results Maturation cocktails containing the TLR7/8 agonists R848 or CL075, with and without the addition of the TLR3 agonist poly(I:C, induced DCs that had a positive costimulatory profile, secreted high levels of IL-12(p70, showed chemotaxis to CCR7 ligands, had the ability to activate NK cells, and efficiently stimulated antigen-specific CD8+ T cells. Conclusions Our results demonstrate that this approach translates into biologically improved DCs, not only in healthy controls but also in AML patients. This data supports the clinical application of TLR-matured DCs in patients with AML for activation of innate and adaptive immune responses.

  13. Adipose progenitor cells reside among the mature adipocytes: morphological research using an organotypic culture system.

    Science.gov (United States)

    Anayama, Hisashi; Fukuda, Ryo; Yamate, Jyoji

    2015-11-01

    The precise localization and biological characteristics of the adipose progenitor cells are still a focus of debate. In this study, the localization of the adipose progenitor cells was determined using an organotypic culture system of adipose tissue slices. The tissue slices of subcutaneous white adipose tissue from rats were placed on a porous membrane and cultured at the interface between air and the culture medium for up to 5 days with or without adipogenic stimulation. The structure of adipose tissue components was sufficiently preserved during the culture and, following adipogenic stimulation with insulin, dexamethasone, and 3-isobutyl-1-methylxanthine, numerous multilocular adipocytes appeared in the interstitium among the mature adipocytes. Histomorphological 3-D observation using confocal laser microscopy revealed the presence of small mesenchymal cells containing little or no fat residing in the perivascular region and on the mature adipocytes and differentiation from the pre-existing mesenchymal cells to multilocular adipocytes. Immunohistochemistry demonstrated that these cells were initially present within the fibronectin-positive extracellular matrix (ECM). The adipose differentiation of the mesenchymal cells was confirmed by the enhanced expression of C/EBP-β suggesting adipose differentiation and the concurrent advent of CD105-expressing mesenchymal cells within the interstitium of the mature adipocytes. Based on the above, the mesenchymal cells embedded in the ECM around the mature adipocytes were confirmed to be responsible for adipogenesis because the transition of the mesenchymal cells to the stem state contributed to the increase in the number of adipocytes in rat adipose tissue.

  14. Repeated treatment with oxytocin promotes hippocampal cell proliferation, dendritic maturation and affects socio-emotional behavior.

    Science.gov (United States)

    Sánchez-Vidaña, Dalinda Isabel; Chan, Ngai-Man Jackie; Chan, Alan H L; Hui, Katy K Y; Lee, Sylvia; Chan, Hoi-Yi; Law, Yuen Shan; Sze, Mei Yi; Tsui, Wai-Ching Sarah; Fung, Timothy K H; Lau, Benson Wui-Man; Lai, Cynthia Y Y

    2016-10-01

    Rewarding social behaviors including positive social interactions and sexual behaviors are shown to regulate adult neurogenesis, but the underlying biological mechanisms remain elusive. Oxytocin, a neurohypophysial hormone secreted after exposure to social interaction or sexual behaviors, has a profound role in the formation of social bonding and regulation of emotional distress. While the acute effect of oxytocin was usually studied, relatively scarce evidence showed the behavioral consequence of repeated oxytocin treatment. The purpose of the current study was to investigate the effect of repeated oxytocin treatment on hippocampal cell proliferation, dendritic maturation of new born neurons and social/emotional behaviors. Adult male Sprague-Dawley rats received treatment with either vehicle or oxytocin (1mg/kg) daily for two weeks. Behavioral tests revealed that oxytocin increased social behaviors and reduced the anxiety- and depression-like behaviors. Cell proliferation, differentiation and the dendritic complexity of new born neurons in the hippocampus were promoted by oxytocin treatment. Depression- and anxiety-like behaviors were induced by repeated treatment of corticosterone (40mg/kg) for two weeks while oxytocin treatment reversed the behavioral disturbances. Suppression of cell proliferation caused by corticosterone was reverted by oxytocin treatment in which cell proliferation, cell differentiation, and dendritic complexity increased. The present findings reveal that oxytocin not only enhances cell proliferation, but also promotes the development of the new neurons which is associated with the induction of positive emotional and social behaviors. The results also suggest that oxytocin may be a potential therapeutic agent for treatment of emotional and social dysfunction. PMID:27418343

  15. Cortical bone growth and maturational changes in dwarf rats induced by recombinant human growth hormone

    Science.gov (United States)

    Martinez, D. A.; Orth, M. W.; Carr, K. E.; Vanderby, R. Jr; Vailas, A. C.

    1996-01-01

    The growth hormone (GH)-deficient dwarf rat was used to investigate recombinant human (rh) GH-induced bone formation and to determine whether rhGH facilitates simultaneous increases in bone formation and bone maturation during rapid growth. Twenty dwarf rats, 37 days of age, were randomly assigned to dwarf plus rhGH (GH; n = 10) and dwarf plus vehicle (n = 10) groups. The GH group received 1.25 mg rhGH/kg body wt two times daily for 14 days. Biochemical, morphological, and X-ray diffraction measurements were performed on the femur middiaphysis. rhGH stimulated new bone growth in the GH group, as demonstrated by significant increases (P GH group (P < 0.05). Our findings suggest that the processes regulating new collagen accretion, bone collagen maturation, and mean hydroxyapatite crystal size may be independently regulated during rapid growth.

  16. Nonspreading Rift Valley Fever Virus Infection of Human Dendritic Cells Results in Downregulation of CD83 and Full Maturation of Bystander Cells

    OpenAIRE

    Nadia Oreshkova; Paul J Wichgers Schreur; Lotte Spel; Rianka P M Vloet; Moormann, Rob J. M.; Marianne Boes; Jeroen Kortekaas

    2015-01-01

    Vaccines based on nonspreading Rift Valley fever virus (NSR) induce strong humoral and robust cellular immune responses with pronounced Th1 polarisation. The present work was aimed to gain insight into the molecular basis of NSR-mediated immunity. Recent studies have demonstrated that wild-type Rift Valley fever virus efficiently targets and replicates in dendritic cells (DCs). We found that NSR infection of cultured human DCs results in maturation of DCs, characterized by surface upregulatio...

  17. A rare case report of squamous-cell carcinoma arising from mature cystic teratoma of ovary

    OpenAIRE

    KALAMPOKAS, E.; BOUTAS, I.; KAIRI-VASILATOU, E.; SALAKOS, N.; PANOULIS, K.; ARAVANTINOS, L.; DAMASKOS, C.; KALAMPOKAS, T.; DELIGEOROGLOU, E.

    2014-01-01

    The most frequent ovarian germ cell tumors are mature cystic teratomas (MCTs), composing 10–25% of all ovarian neoplasms. MCTs have the potential of undergoing malignant transformation, typically in postmenopausal women, with a frequency of 0.17–3%, with squamous cell carcinoma being the most common malignant tumor arising from MCT.

  18. RESEARCHES REGARDING THE INFLUENCE OF THE NUMBER OF CUMULAR CELLS LAYER OVER THE OOCYTE MATURATION EFFICIENCY

    Directory of Open Access Journals (Sweden)

    V. CARABĂ

    2013-07-01

    Full Text Available During the experiments we have carried out with imature oocyte collected from the ovarian follicles, we found a variety of oocyte-cumulus complexes. We got the following experiment in order to understand the role of cumular cells on the achievement of the cytoplasma and oocyte nucleus maturation. We select the oocytecumulus complexes collected both from cows and sows according to the number of cumular cell layers and we watched their development to the blastocyst stade. Thus, we achieved three groups of COC (oocyte-cumulus complexes. One group was made of oocyte without cumular cells, the second group had a layer of cumular cells and the third group had many layers of cumular cells. we performed an incubation of all these types of COC in TCM-199 enriched with 20% of bovine fetal serum. Because only 1,2 oocyte of the ones who lack the cumular cells layer had maturation signs during cultivation in the thermostat versus 55 and 115, respectively, of the ones that had many cellular layers, presents a solid evidence that cumular cells are indispensable for the maturation and even to the fecundation process. The cumular cells perform a decisive role on the cytoplasma and oocyte nucleus maturation process.

  19. Characterization of monocyte-derived dendritic cells maturated with IFN-alpha

    DEFF Research Database (Denmark)

    Svane, I M; Nikolajsen, K; Walter, M R;

    2006-01-01

    Dendritic cells (DC) are promising candidates for cancer immunotherapy. These cells can be generated from peripheral blood monocytes cultured with granulocyte macrophage-colony stimulating factor (GM-CSF) and interleukin-4 (IL-4). In order to obtain full functional capacity, maturation is required...

  20. Functional maturation of growth hormone cells in the anterior pituitary gland of the fetus

    OpenAIRE

    Nogami, Haruo; Hisano, Setsuji

    2008-01-01

    Recent studies have disclosed the molecular mechanisms responsible for the phenotype determination of the anterior pituitary cell types. However, as far as growth hormone (GH) cells are concerned, particular extra-cellular cues are required for the initiation of GH and GH-releasing hormone (GHRH)-receptor gene production in addition to the expression of the cell type specific transcription factor, pit-1. The glucocorticoids play a principal role in the functional maturation of nascent GH cell...

  1. Comparative effects of mature coconut water (Cocos nucifera) and glibenclamide on some biochemical parameters in alloxan induced diabetic rats

    OpenAIRE

    P. P. Preetha; V. Girija Devi; Rajamohan, T.

    2013-01-01

    In the present study, comparative effects of mature coconut water (Cocos nucifera L., Arecaceae) and glibenclamide in alloxan induced diabetic rats were evaluated. Diabetes mellitus was induced in Sprague-Dawly rats using alloxan monohydrate (150 mg kg-1 body weight). Treatment with lyophilized form of mature coconut water and glibenclamide in diabetic rats reduced the blood glucose and glycated hemoglobin along with improvement in plasma insulin level. Elevated levels of liver function enzym...

  2. RESEARCHES REGARDING THE INFLUENCE OF THE NUMBER OF CUMULAR CELLS LAYER OVER THE OOCYTE MATURATION EFFICIENCY

    Directory of Open Access Journals (Sweden)

    V. CARABĂ

    2009-05-01

    Full Text Available During the experiments we have carried out with imature oocyte collected from the ovarian follicles, wefound a variety of oocyte-cumulus complexes. We got the following experiment in order to understand therole of cumular cells on the achievement of the cytoplasma and oocyte nucleus maturation. We select theoocyte-cumulus complexes collected both from cows and sows according to the number of cumular celllayers and we watched their development to the blastocyst stade. Thus, we achieved three groups of COC(oocyte-cumulus complexes.One group was made of oocyte without cumular cells, the second group had a layer of cumular cells andthe third group had many layers of cumular cells. we performed an incubation of all these types of COCin TCM-199 enriched with 20% of bovine fetal serum. Because only 1,2 oocyte of the ones who lack thecumular cells layer had maturation signs during cultivation in the thermostat versus 55 and 115,respectively, of the ones that had many cellular layers, presents a solid evidence that cumular cells areindispensable for the maturation and even to the fecundation process. The cumular cells perform adecisive role on the cytoplasma and oocyte nucleus maturation process.

  3. A temporal role of type I interferon signaling in CD8+ T cell maturation during acute West Nile virus infection.

    Directory of Open Access Journals (Sweden)

    Amelia K Pinto

    2011-12-01

    Full Text Available A genetic absence of the common IFN-α/β signaling receptor (IFNAR in mice is associated with enhanced viral replication and altered adaptive immune responses. However, analysis of IFNAR(-/- mice is limited for studying the functions of type I IFN at discrete stages of viral infection. To define the temporal functions of type I IFN signaling in the context of infection by West Nile virus (WNV, we treated mice with MAR1-5A3, a neutralizing, non cell-depleting anti-IFNAR antibody. Inhibition of type I IFN signaling at or before day 2 after infection was associated with markedly enhanced viral burden, whereas treatment at day 4 had substantially less effect on WNV dissemination. While antibody treatment prior to infection resulted in massive expansion of virus-specific CD8(+ T cells, blockade of type I IFN signaling starting at day 4 induced dysfunctional CD8(+ T cells with depressed cytokine responses and expression of phenotypic markers suggesting exhaustion. Thus, only the later maturation phase of anti-WNV CD8(+ T cell development requires type I IFN signaling. WNV infection experiments in BATF3(-/- mice, which lack CD8-α dendritic cells and have impaired priming due to inefficient antigen cross-presentation, revealed a similar effect of blocking IFN signaling on CD8(+ T cell maturation. Collectively, our results suggest that cell non-autonomous type I IFN signaling shapes maturation of antiviral CD8(+ T cell response at a stage distinct from the initial priming event.

  4. Gamma rays induced variability in mature embryos of avocado (Persea americana Mill)

    International Nuclear Information System (INIS)

    Induced mutation and biotechnology techniques are current approaches used in plant breeding. At present work, the induced mutation and embryo zygotic culture techniques were used in order to characterize the radiosensitivity of avocado commercial varieties, Hass and California. The induced diversity in plant material was also evaluated in morphological seedling descriptors as: height seedling, diameter seedling neck, leaves number, length of principal root and secondary root number. The obtained results showed high susceptibility of both varieties to gamma rays. California was the higher sensitivity variety. Percentage of entire shoot induction showed clear dependence of radiation dose in both varieties. Thus dose range for mutagenesis was determined. In general, variation of morphological seedling descriptors not was clearly agreed to increase of radiation dose. In addition, the results suggested that variation in morphological seedling descriptors also could be depending of genotypes. The useful of mature embryo culture of avocado for improvement of breeding approaches in this crop, was discussed

  5. Comparisons of methods measuring fiber maturity and fineness of Upland cotton fibers containing different degree of fiber cell wall development.

    Science.gov (United States)

    Fiber maturity and fineness are important physical properties of cotton fibers affecting qualities of fibers and yarns. A number of direct and indirect methods are used for measuring fiber maturity and fineness from mature fibers that are thick secondary cell walls composed of almost pure cellulose....

  6. Weaning triggers a maturation step of pancreatic β cells

    DEFF Research Database (Denmark)

    Stolovich-Rain, Miri; Enk, Jonatan; Vikesa, Jonas;

    2015-01-01

    to enter the cell division cycle in response to a diabetogenic injury or increased glycolysis. The potential of β cells for compensatory proliferation is acquired following premature weaning to normal chow, but not to a diet mimicking maternal milk. In addition, weaning coincides with enhanced glucose......-stimulated oxidative phosphorylation and insulin secretion from islets. Transcriptome analysis reveals that weaning increases the expression of genes involved in replication licensing, suggesting a mechanism for increased responsiveness to the mitogenic activity of high glucose. We propose that weaning triggers...

  7. Lactobacilli differentially modulate expression of cytokines and maturation surface markers in murine dendritic cells

    DEFF Research Database (Denmark)

    Christensen, Hanne Risager; Frøkiær, Hanne; Pestka, J.J.

    2002-01-01

    in the capacity to induce IL-12 and TNF-a production in the DC. Similar but less pronounced differences were observed among lactobacilli in the induction of IL-6 and IL-10. Although all strains up-regulated surface MHC class II and B7-2 (CD86), which is indicative of DC maturation, those lactobacilli...

  8. Loss of sensitivity to ACTH of adrenocortical cells isolated from maturing domestic fowl.

    Science.gov (United States)

    Carsia, R V; Scanes, C G; Malamed, S

    1985-07-01

    Maturation of domestic fowl corticosteroidogenesis was evaluated using purified adrenocortical cells. Basal corticosterone production decreased steadily from 2 days to 26 weeks after hatching. However, maximally stimulated corticosterone production was not changed. In contrast, the half-maximal steroidogenic concentrations (ED50 values or effective doses for 50% maximal effect) of ACTH analogs increased approximately 40 times by 26 weeks, but the ED50 values of 8-bromo-cyclic AMP and pregnenolone were not changed. This suggests that adrenocortical cell sensitivity to ACTH decreases with maturation of the domestic fowl.

  9. IL-12 directs further maturation of ex vivo differentiated NK cells with improved therapeutic potential.

    Directory of Open Access Journals (Sweden)

    Dorit Lehmann

    Full Text Available The possibility to modulate ex vivo human NK cell differentiation towards specific phenotypes will contribute to a better understanding of NK cell differentiation and facilitate tailored production of NK cells for immunotherapy. In this study, we show that addition of a specific low dose of IL-12 to an ex vivo NK cell differentiation system from cord blood CD34(+ stem cells will result in significantly increased proportions of cells with expression of CD62L as well as KIRs and CD16 which are preferentially expressed on mature CD56(dim peripheral blood NK cells. In addition, the cells displayed decreased expression of receptors such as CCR6 and CXCR3, which are typically expressed to a lower extent by CD56(dim than CD56(bright peripheral blood NK cells. The increased number of CD62L and KIR positive cells prevailed in a population of CD33(+NKG2A(+ NK cells, supporting that maturation occurs via this subtype. Among a series of transcription factors tested we found Gata3 and TOX to be significantly downregulated, whereas ID3 was upregulated in the IL-12-modulated ex vivo NK cells, implicating these factors in the observed changes. Importantly, the cells differentiated in the presence of IL-12 showed enhanced cytokine production and cytolytic activity against MHC class I negative and positive targets. Moreover, in line with the enhanced CD16 expression, these cells exhibited improved antibody-dependent cellular cytotoxicity for B-cell leukemia target cells in the presence of the clinically applied antibody rituximab. Altogether, these data provide evidence that IL-12 directs human ex vivo NK cell differentiation towards more mature NK cells with improved properties for potential cancer therapies.

  10. Dendritic cell maturation and cross-presentation: timing matters!

    Science.gov (United States)

    Alloatti, Andrés; Kotsias, Fiorella; Magalhaes, Joao Gamelas; Amigorena, Sebastian

    2016-07-01

    As a population, dendritic cells (DCs) appear to be the best cross-presenters of internalized antigens on major histocompatibility complex class I molecules in the mouse. To do this, DCs have developed a number of unique and dedicated means to control their endocytic and phagocytic pathways: among them, the capacity to limit acidification of their phagosomes, to prevent proteolytic degradation, to delay fusion of phagosomes to lysosomes, to recruit ER proteins to phagosomes, and to export phagocytosed antigens to the cytosol. The regulation of phagocytic functions, and thereby of antigen processing and presentation by innate signaling, represents a critical level of integration of adaptive and innate immune responses. Understanding how innate signals control antigen cross-presentation is critical to define effective vaccination strategies for CD8(+) T-cell responses.

  11. Mature cystic teratoma with malignant transformation of teratomatous urothelial cells: Rare case presentation

    OpenAIRE

    Senjuti Dasgupta; Debdas Bose; Nirmal Kumar Bhattacharyya; Pranab Kumar Biswas

    2015-01-01

    The occurrence of malignancies in somatic elements of mature cystic teratoma of ovary is rare. The malignancies that may be encountered in dermoid cyst include squamous cell carcinoma, adenocarcinoma, adenosquamous carcinoma, melanoma, sarcoma, carcinoid, and germ cell neoplasms. The development of transitional cell carcinoma (TCC) in dermoid cyst is extremely rare with only four such cases having been reported in literature so far. Here we report the fifth case of such an occurrence in a 50-...

  12. Implant Surface Design Regulates Mesenchymal Stem Cell Differentiation and Maturation.

    Science.gov (United States)

    Boyan, B D; Cheng, A; Olivares-Navarrete, R; Schwartz, Z

    2016-03-01

    Changes in dental implant materials, structural design, and surface properties can all affect biological response. While bulk properties are important for mechanical stability of the implant, surface design ultimately contributes to osseointegration. This article reviews the surface parameters of dental implant materials that contribute to improved cell response and osseointegration. In particular, we focus on how surface design affects mesenchymal cell response and differentiation into the osteoblast lineage. Surface roughness has been largely studied at the microscale, but recent studies have highlighted the importance of hierarchical micron/submicron/nanosurface roughness, as well as surface roughness in combination with surface wettability. Integrins are transmembrane receptors that recognize changes in the surface and mediate downstream signaling pathways. Specifically, the noncanonical Wnt5a pathway has been implicated in osteoblastic differentiation of cells on titanium implant surfaces. However, much remains to be elucidated. Only recently have studies been conducted on the differences in biological response to implants based on sex, age, and clinical factors; these all point toward differences that advocate for patient-specific implant design. Finally, challenges in implant surface characterization must be addressed to optimize and compare data across studies. An understanding of both the science and the biology of the materials is crucial for developing novel dental implant materials and surface modifications for improved osseointegration.

  13. T-cell maturation in the human thymus and tonsil: peanut agglutinin binding T lymphocytes in thymus and tonsil differ in maturation stage.

    NARCIS (Netherlands)

    Schuurman, H J; Brekelmans, Pieter; Daemen, Toos; Broekhuizen, Roel; Kater, L

    1983-01-01

    The finding of peanut agglutinin (PNA) binding capacity, supposed to be a marker of immature lymphocytes, within the T-cell population of the human thymus (58%) and tonsil (10%) prompted the comparison of maturation stages of PNA binding (PNA+) and nonbinding (PNA-) T cells in both organs. The proli

  14. Chondrogenic differentiation of mouse embryonic stem cells promoted by mature chondrocytes

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In order to direct embryonic stem (ES) cells to differentiate into chondrocytes, a chondrogenic envi-ronment provided by mature chondrocytes was investigated. Flk-1 positive cells sorted from pre-differentiated mouse ES cells were mixed with adult porcine articular chondrocytes, seeded on biodegradable scaffolds, and then implanted subcutaneously into nude mice. The cell-scaffold com-plexes formed cartilage tissues after 4 weeks, which was demonstrated by histology and anti-type II collagen antibody staining. Positive staining of mouse Major Histocompatibility Complex class I molecules confirmed that part of the chondrocytes were derived from mouse ES cells. The current study established a new approach for directing ES cell differentiation.

  15. Chondrogenic differentiation of mouse embryonic stem cells promoted by mature chondrocytes

    Institute of Scientific and Technical Information of China (English)

    XIE Feng; ZHANG WenJie; CHEN FanFan; ZHOU GuangDong; CUI Lei; LIU Wei; CAO YiLin

    2008-01-01

    In order to direct embryonic stem (ES) cells to differentiate into chondrocytes, a chondrogenic envi-ronment provided by mature chondrocytes was investigated. FIk-1 positive cells sorted from pre-differentiated mouse ES cells were mixed with adult porcine articular chondrocytes, seeded on biodegradable scaffolds, and then implanted subcutaneously into nude mice. The cell-scaffold com-plexes formed cartilage tissues after 4 weeks, which was demonstrated by histology and anti-type Ⅱ collagen antibody staining. Positive staining of mouse Major Histocompatibility Complex class Ⅰ molecules confirmed that part of the chondrocytes were derived from mouse ES cells. The current study established a new approach for directing ES cell differentiation.

  16. Urocortin 3 marks mature human primary and embryonic stem cell-derived pancreatic alpha and beta cells.

    Directory of Open Access Journals (Sweden)

    Talitha van der Meulen

    Full Text Available The peptide hormone Urocortin 3 (Ucn 3 is abundantly and exclusively expressed in mouse pancreatic beta cells where it regulates insulin secretion. Here we demonstrate that Ucn 3 first appears at embryonic day (E 17.5 and, from approximately postnatal day (p 7 and onwards throughout adult life, becomes a unifying and exclusive feature of mouse beta cells. These observations identify Ucn 3 as a potential beta cell maturation marker. To determine whether Ucn 3 is similarly restricted to beta cells in humans, we conducted comprehensive immunohistochemistry and gene expression experiments on macaque and human pancreas and sorted primary human islet cells. This revealed that Ucn 3 is not restricted to the beta cell lineage in primates, but is also expressed in alpha cells. To substantiate these findings, we analyzed human embryonic stem cell (hESC-derived pancreatic endoderm that differentiates into mature endocrine cells upon engraftment in mice. Ucn 3 expression in hESC-derived grafts increased robustly upon differentiation into mature endocrine cells and localized to both alpha and beta cells. Collectively, these observations confirm that Ucn 3 is expressed in adult beta cells in both mouse and human and appears late in beta cell differentiation. Expression of Pdx1, Nkx6.1 and PC1/3 in hESC-derived Ucn 3(+ beta cells supports this. However, the expression of Ucn 3 in primary and hESC-derived alpha cells demonstrates that human Ucn 3 is not exclusive to the beta cell lineage but is a general marker for both the alpha and beta cell lineages. Ucn 3(+ hESC-derived alpha cells do not express Nkx6.1, Pdx1 or PC1/3 in agreement with the presence of a separate population of Ucn 3(+ alpha cells. Our study highlights important species differences in Ucn 3 expression, which have implications for its utility as a marker to identify mature beta cells in (reprogramming strategies.

  17. Midostaurin (PKC412) modulates differentiation and maturation of human myeloid dendritic cells.

    Science.gov (United States)

    Huang, Yu-Chuen; Shieh, Hui-Ru; Chen, Yu-Jen

    2010-09-01

    Midostaurin, a tyrosine kinase inhibitor, has been shown efficacy against acute myeloid leukemia and various other malignancies in clinical trials. Prior studies indicate midostaurin affects the function of immune cells such as lymphocytes and macrophages. To understand the effect of midostaurin on human myeloid dendritic cells (DCs), we conducted an ex vivo study using immature DCs differentiated from CD14(+) monocytes and further maturated using lipopolysaccharide. Addition of midostaurin to a culture of starting CD14(+) monocytes markedly and dose-dependently reduced DC recovery. Mature DCs differentiating in the presence of midostaurin had fewer, shorter cell projections than those differentiating in the absence of midostaurin. Changes in morphological features characteristic of apoptotic cells were also evident. Moreover, midostaurin affected DC differentiation and maturation patterns; CD83 expression levels decreased, whereas CD14 and CD80 expressions increased. Additionally, DCs derived in the presence of midostaurin possessed a lower endocytotic capacity and less allostimulatory activity on naive CD4(+)CD45(+)RA(+) T cell proliferation than those derived in its absence, suggesting that midostaurin redirects DC differentiation toward a less mature stage and that this effect is not solely due to its cytotoxicity. Whether this effect underlies immune suppression or tolerance to disease treatments with unwanted immune reactions needs further evaluation. PMID:20685248

  18. HAIR CELL-LIKE CELL GENERATION INDUCED BY NATURE CULTURE OF ADULT RAT AUDITORY EPITHELIUM

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Hair cells are the mechanosensory cells thatconvert sound and motion signals into electrical i m-pulses in cochlear and vestibular end organs of innerear.Although mature mammals nor mally do notgenerate new hair cells,recentin vivoandin vitrostudies have demonstrated mitotic activity and i m-mature-looking hair cells in mammalian vestibularepithelia after exposure to ototoxic drugs[1-3],sug-gesting that vestibular hair cell regeneration inmammals may be inducible.However,the possibil-ity of auditory hair ce...

  19. Effect of growth factors on oocyte maturation and allocations of inner cell mass and trophectoderm cells of cloned bovine embryos.

    Science.gov (United States)

    Arat, Sezen; Caputcu, Arzu Tas; Cevik, Mesut; Akkoc, Tolga; Cetinkaya, Gaye; Bagis, Haydar

    2016-08-01

    This study was conducted to determine the additive effects of exogenous growth factors during in vitro oocyte maturation (IVM) and the sequential culture of nuclear transfer (NT) embryos. Oocyte maturation and culture of reconstructed embryos derived from bovine granulosa cells were performed in culture medium supplemented with either epidermal growth factor (EGF) alone or a combination of EGF with insulin-like growth factor-I (IGF-I). The maturation rates of oocytes matured in the presence of EGF or the EGF + IGF-I combination were significantly higher than those of oocytes matured in the presence of only fetal calf serum (FCS) (P 0.05). IGF-I alone or in combination with EGF in sequential embryo culture medium significantly increased the ratio of inner cell mass (ICM) to total blastocyst cells (P media of cloned bovine embryos increased the ICM without changing the total cell number. These unknown and uncontrolled effects of growth factors can alter the allocation of ICM and trophectoderm cells (TE) in NT embryos. A decrease in TE cell numbers could be a reason for developmental abnormalities in embryos in the cloning system. PMID:26444069

  20. Cell surface antigens detected on mature and leukemic granulocytic populations by cytotoxicity testing.

    Science.gov (United States)

    Drew, S I; Carter, B M; Terasaki, P I; Naiem, F; Nathanson, D S; Abromowitz, B; Gale, R P

    1978-08-01

    Using a microcytotoxicity assay, the serological reactivity of human granulocytes, namely neutrophils and eosinophils, and chronic myeloid leukemia (CML) cells and cultured CML cell lines (K562, NALM-1) were examined. Mature granulocyte forms and cord granulocytes are readily lysed by specific granulocyte cytotoxins that do not react with random T and B lymphocytes, monocytes, red blood cells, or platelets. Furthermore, certain antisera were preferentially cytotoxic for eosinophil-enriched populations. Granulocytotoxin detected antigens on one of three CML blast cell populations tested and K562, but failed to react with NALM-1. By cytotoxicity, mature granulocytes were poor targets for B2-microglobulin and the appropriate HLA antisera although both sera types are absorbed with granulocytes. Furthermore, granulocytes did not possess B-lymphocytes (Ia-like) or blood group A, B, and Rh (D) antigens. Except for K562, both HLA and heterologous B-lymphocyte antisera were cytotoxic for the CML blast cell populations tested.

  1. Steroidogenic and maturation-inducing potency of native gonadotropic hormones in female chub mackerel, Scomber japonicus

    Directory of Open Access Journals (Sweden)

    Ohga Hirofumi

    2012-09-01

    Full Text Available Abstract Background The gonadotropins (GtHs, follicle-stimulating hormone (FSH and luteinizing hormone (LH are produced in the pituitary gland and regulates gametogenesis through production of gonadal steroids. However, respective roles of two GtHs in the teleosts are still incompletely characterized due to technical difficulties in the purification of native GtHs. Methods Native FSH and LH were purified from the pituitaries of adult chub mackerel, Scomber japonicus by anion-exchange chromatography and immunoblotting using specific antisera. The steroidogenic potency of the intact chub mackerel FSH (cmFSH and LH (cmLH were evaluated in mid- and late-vitellogenic stage follicles by measuring the level of gonadal steroids, estradiol-17beta (Ε2 and 17,20beta-dihydroxy-4-pregnen-3-one (17,20beta-P. In addition, we evaluated the maturation-inducing potency of the GtHs on same stage follicles. Results Both cmFSH and cmLH significantly stimulated E2 production in mid-vitellogenic stage follicles. In contrast, only LH significantly stimulated the production of 17,20beta-P in late-vitellogenic stage follicles. Similarly, cmLH induced final oocyte maturation (FOM in late-vitellogenic stage follicles. Conclusions Present results indicate that both FSH and LH may regulate vitellogenic processes, whereas only LH initiates FOM in chub mackerel.

  2. Golgi enlargement in Arf-depleted yeast cells is due to altered dynamics of cisternal maturation

    Science.gov (United States)

    Bhave, Madhura; Papanikou, Effrosyni; Iyer, Prasanna; Pandya, Koushal; Jain, Bhawik Kumar; Ganguly, Abira; Sharma, Chandrakala; Pawar, Ketakee; Austin, Jotham; Day, Kasey J.; Rossanese, Olivia W.; Glick, Benjamin S.; Bhattacharyya, Dibyendu

    2014-01-01

    ABSTRACT Regulation of the size and abundance of membrane compartments is a fundamental cellular activity. In Saccharomyces cerevisiae, disruption of the ADP-ribosylation factor 1 (ARF1) gene yields larger and fewer Golgi cisternae by partially depleting the Arf GTPase. We observed a similar phenotype with a thermosensitive mutation in Nmt1, which myristoylates and activates Arf. Therefore, partial depletion of Arf is a convenient tool for dissecting mechanisms that regulate Golgi structure. We found that in arf1Δ cells, late Golgi structure is particularly abnormal, with the number of late Golgi cisternae being severely reduced. This effect can be explained by selective changes in cisternal maturation kinetics. The arf1Δ mutation causes early Golgi cisternae to mature more slowly and less frequently, but does not alter the maturation of late Golgi cisternae. These changes quantitatively explain why late Golgi cisternae are fewer in number and correspondingly larger. With a stacked Golgi, similar changes in maturation kinetics could be used by the cell to modulate the number of cisternae per stack. Thus, the rates of processes that transform a maturing compartment can determine compartmental size and copy number. PMID:24190882

  3. Comparison of clinical grade type 1 polarized and standard matured dendritic cells for cancer immunotherapy

    DEFF Research Database (Denmark)

    Hansen, Morten; Hjortø, Gertrud Malene; Donia, Marco;

    2013-01-01

    Monocyte-derived dendritic cells (DCs) used for immunotherapy e.g. against cancer are commonly matured by pro-inflammatory cytokines (TNF-α, IL-1β, IL-6) and prostaglandin E2 although the absence of Toll-like receptor mediated activation prevents secretion of IL-12 from DCs and subsequent efficie...

  4. Global discovery of erythroid long noncoding RNAs reveals novel regulators of red cell maturation

    NARCIS (Netherlands)

    Alvarez-Dominguez, Juan R; Hu, Wenqian; Yuan, Bingbing; Shi, Jiahai; Park, Staphany S; Gromatzky, Austin A; van Oudenaarden, Alexander; Lodish, Harvey F

    2014-01-01

    Erythropoiesis is regulated at multiple levels to ensure the proper generation of mature red cells under multiple physiological conditions. To probe the contribution of long noncoding RNAs (lncRNAs) to this process, we examined >1 billion RNA-seq reads of polyadenylated and nonpolyadenylated RNA fro

  5. Interferon γ Stimulates Cellular Maturation of Dendritic Cell Line DC2.4 Leading to Induction of Efficient Cytotoxic T Cell Responses and Antitumor Immunity

    Institute of Scientific and Technical Information of China (English)

    Tianpei He; Chaoke Tang; Shulin Xu; Terence Moyana; Jim Xiang

    2007-01-01

    Dendritic cells (DCs) are the most potent antigen-presenting cells (APCs) for the initiation of antigen (Ag)-specific immune responses. In most studies, mature DCs are generated from bone marrow cells or peripheral monocytes; in either case, the harvested cells are then cultured in medium containing recombinant GM-CSF, IL-4 and TNF-α for 7-10 days and stimulated with lipopolysaccharide (LPS). However, this approach is time-consuming and expensive. There is another less cost approach of using immobilized DC cell lines, which can easily grow in the medium. A disadvantage with the immobilized DC cell lines, however, is that they are immature DCs and lack expression of MHC class Ⅱ and costimulatory CD40 and CD80 molecules. This, therefore, limits their capacity for inducing efficient antitumor immunity. In the current study, we investigated the possible efficacy of various stimuli (IL-1β,IFN-γ, TNF-α, CpG and LPS) in converting the immature dendritic cell line DC2.4 to mature DCs. Our findings were quite interesting since we demonstrated for the first time that IFN-γ was able to stimulate the maturation of DC2.4 cells. The IFN-γ-activated ovalbumin (OVA)-pulsed DC2.4 cells have capacity to upregulate MHC class Ⅱ,CD40, CD80 and CCR7, and to more efficiently stimulate in vitro and in vivo OVA-specific CD8+ T cell responses and antitumor immunity. Therefore, IFN-γ-activated immortal DC2.4 cells may prove to be useful in the study of DC biology and antitumor immunity.

  6. Suppressors of Cytokine Signaling (SOCS) in T cell differentiation, maturation, and function

    OpenAIRE

    Douglas C Palmer; Restifo, Nicholas P

    2009-01-01

    Cytokines are key modulators of T cell biology but their influence can be attenuated by suppressors of cytokine signaling (SOCS), a family of proteins comprised of eight members, SOCS1-7 and CIS. SOCS proteins regulate cytokine signals that control the polarization of CD4+ T cells into Th1, Th2, Th17, and T regulatory cell lineages, the maturation of CD8+ T cells from naïve to “stem-cell memory” (Tscm), central memory (Tcm), and effector memory (Tem) states, and the activation of these lympho...

  7. Immunophenotyping of mature T/NK cell neoplasm presenting as leukemia

    Directory of Open Access Journals (Sweden)

    S Gujral

    2010-01-01

    Full Text Available Introduction : Mature T/NK cell lymphomas (MTNKL presenting as leukemia are rare and show considerable overlapping of clinical, morphological and immunophenotypic features. AIM: Critical analysis of the morphology and immunophenotypic profile of MTNKL. Materials and Methods : We reviewed 380 consecutive cases of mature lymphoid neoplasm that presented as leukemia and were diagnosed on morphology and immunophenotyping of bone marrow and/or peripheral blood samples. Results : Peripheral blood and bone marrow involvement was seen in all cases. MTNKL constituted 4% (nine cases of all mature lymphoid neoplasms presenting as leukemia. It included four cases of T-large granular leukemia (T-LGL, two of T-cell prolymphocytic leukemia small cell variant (T-PLL, two of adult T-cell leukemia/lymphoma (ATLL and one of primary cutaneous gamma delta T-cell lymphoma (PCGDTCL. T-LGL revealed CD4-/CD8+ phenotype in three, and CD4+/CD8+ phenotype in one case. CD56 was absent in all the cases of T-LGL. One case of T- PLL small cell variant showed CD4+/CD8- phenotype, while the other revealed CD4-/CD8+ phenotype. Both cases of ATLL showed CD4+/CD8+/CD25+ phenotype. The single case of PCGDTCL showed CD4-/CD8- phenotype pattern. CD3 and CD5 were expressed in all MTNKL. CD7 was absent in three cases of T-LGL. TCRα/β was performed in three cases of T-LGL and was positive in all. TCRα/β was also seen in both the cases of T-PLL small variant. However, TCRα/β was seen in the single case of PCGDTCL. Conclusion : Mature nodal T/NK cell neoplasms are rare and MTNKL presenting as leukemia are even rarer. There is an overlap between the immunophenotypic profiles of different MTNKL subtypes and elaborate T/NK cell panels are required for their evaluation.

  8. RESEARCHES REGARDING THE INFLUENCE OF THE NUMBER OF CUMULAR CELLS LAYER OVER THE OOCYTE MATURATION EFFICIENCY

    OpenAIRE

    CARABĂ V.; I. VINTILĂ; ALEXANDRA IVAN; ADA TELEA; D. MĂNDIŢĂ

    2009-01-01

    During the experiments we have carried out with imature oocyte collected from the ovarian follicles, we found a variety of oocyte-cumulus complexes. We got the following experiment in order to understand the role of cumular cells on the achievement of the cytoplasma and oocyte nucleus maturation. We select the oocytecumulus complexes collected both from cows and sows according to the number of cumular cell layers and we watched their development to the blastocyst stade. Thus, we achieved thre...

  9. Breast regression protein-39 (BRP-39) promotes dendritic cell maturation in vitro and enhances Th2 inflammation in murine model of asthma

    OpenAIRE

    Xu, Qian; Chai, Shou-jie; Qian, Ying-Ying; Zhang, Min; Wang, Kai

    2012-01-01

    Aim: To determine the roles of breast regression protein-39 (BRP-39) in regulating dendritic cell maturation and in pathology of acute asthma. Methods: Mouse bone marrow-derived dendritic cells (BMDCs) were prepared, and infected with adenovirus over-expressing BRP-39. Ovalbumin (OVA)-induced murine model of acute asthma was made in female BALB/c mice by sensitizing and challenging with chicken OVA and Imject Alum. The transfected BMDCs were adoptively transferred into OVA-treated mice via in...

  10. Effect of ovarian hormones on maturation of dendritic cells from peripheral blood monocytes in dogs.

    Science.gov (United States)

    Wijewardana, Viskam; Sugiura, Kikuya; Wijesekera, Daluthgamage Patsy H; Hatoya, Shingo; Nishimura, Toshiya; Kanegi, Ryoji; Ushigusa, Takahiro; Inaba, Toshio

    2015-07-01

    Previously, we reported that ovarian hormones affect the immune response against E. coli isolated from the dogs affected with pyometra. In order to investigate mechanisms underlying the immune modulation, we examined the effects of ovarian hormones on the generation of dendritic cells (DCs), the most potent antigen presenting cell. DCs were differentiated from peripheral blood monocytes (PBMOs) using a cytokine cocktail. Both estrogen receptor and progesterone receptors were expressed by the PBMOs and immature DCs. When various ovarian hormones were added to the culture for the DC differentiation, progesterone significantly decreased the expression of DC maturation markers, such as CD1a, CD80 and CD86, on mature DCs. Conversely, the addition of estrogen to the cultures increased the expression of CD86, but not other maturation makers. Furthermore, DCs differentiated in the presence of progesterone did not stimulate allogeneic mononuclear cells in PB. Taken together, these results indicate that progesterone diminishes the maturation of DCs, leading to decreased immune responses against invading pathogens. PMID:25715707

  11. Changes in homologous and heterologous gap junction contacts during maturation-inducing hormone-dependent meiotic resumption in ovarian follicles of Atlantic croaker

    Science.gov (United States)

    Bolamba, D.; Patino, R.; Yoshizaki, G.; Thomas, P.

    2003-01-01

    Homologous (granulosa cell-granulosa cell) gap junction (GJ) contacts increase in ovarian follicles of Atlantic croaker (Micropogonias undulatus) during the early (first) stage of maturation, but their profile during the second stage [i.e., during maturation-inducing hormone (MIH)-mediated meiotic resumption] is unknown. The profile of homologous GJ contacts during the second stage of maturation in croaker follicles was examined in this study and compared to that of heterologous (granulosa cell-oocyte) GJ, for which changes have been previously documented. Follicles were incubated with human chorionic gonadotropin to induce maturational competence (first stage), and then with MIH to induce meiotic resumption. The follicles were collected for examination immediately before and after different durations of MIH exposure until the oocyte had reached the stage of germinal vesicle breakdown (GVBD; index of meiotic resumption). Ultrathin sections were observed by transmission electron microscopy, and homologous and heterologous GJ contacts were quantified along a 100-??m segment of granulosa cell-zona radiata complex per follicle (three follicles/time/fish, n=3 fish). Relatively high numbers of both types of GJ were observed before and after the first few hours of MIH exposure (up to the stage of oil droplet coalescence). GJ numbers declined during partial yolk globule coalescence (at or near GVBD) and were just under 50% of starting values after the completion of GVBD (Pobservations that GVBD temporally correlates with declining heterologous GJ contacts, and for the first time in teleosts show that there is a parallel decline in homologous GJ. The significance of the changes in homologous and heterologous GJ is uncertain and deserves further study. ?? 2003 Elsevier Science (USA). All rights reserved.

  12. DNAM-1 Expression Marks an Alternative Program of NK Cell Maturation

    Directory of Open Access Journals (Sweden)

    Ludovic Martinet

    2015-04-01

    Full Text Available Natural killer (NK cells comprise a heterogeneous population of cells important for pathogen defense and cancer surveillance. However, the functional significance of this diversity is not fully understood. Here, we demonstrate through transcriptional profiling and functional studies that the activating receptor DNAM-1 (CD226 identifies two distinct NK cell functional subsets: DNAM-1+ and DNAM-1− NK cells. DNAM-1+ NK cells produce high levels of inflammatory cytokines, have enhanced interleukin 15 signaling, and proliferate vigorously. By contrast, DNAM-1− NK cells that differentiate from DNAM-1+ NK cells have greater expression of NK-cell-receptor-related genes and are higher producers of MIP1 chemokines. Collectively, our data reveal the existence of a functional program of NK cell maturation marked by DNAM-1 expression.

  13. Effect of sericin supplementation in maturation medium on cumulus cell expansion, oocyte nuclear maturation, and subsequent embryo development in Sanjabi ewes during the breeding season.

    Science.gov (United States)

    Aghaz, F; Hajarian, H; Shabankareh, H Karami; Abdolmohammadi, A

    2015-12-01

    The purpose of this study was to evaluate the effect of sericin with different concentrations (0% [control], 0.1%, 0.5%, 1.0%, and 2.5%) added to the IVM medium on cumulus cell expansion, oocyte nuclear maturation, and subsequent embryo development in Sanjabi ewes during the breeding season. The resumption of meiosis was assessed by the frequency of germinal vesicle breakdown and the first polar body extrusion. After IVF with fresh ram semen, presumptive zygotes were cultured 8 days in potassium simplex optimization medium supplemented by amino acids, and the percentages developing to the two-cell and blastocyst stages were measured as the indicators of early embryonic developmental competence. More cumulus-oocyte complexes matured with 0.5% sericin underwent germinal vesicle breakdown and reached metaphase II stage compared with the control cumulus-oocyte complexes matured without sericin (P ≤ 0.05). The present findings indicated that supplementation with 0.5% sericin during the maturation culture may improve the nuclear maturation and the cumulus cell expansion. Furthermore, the percentage of blastocysts obtained from 0.5% and 0.1% sericin (37.8 ± 1.76% and 34.8 ± 1.09%, respectively) was higher (P ≤ 0.05) than that of the control medium (29.60 ± 1.67%). However, addition of 1% and 2.5% of sericin to the IVM medium oocytes had a negative effect on nuclear maturation and cumulus cell expansion. Furthermore, the percentage of cleavage and blastocyst rate was significantly lower in the 1% and 2.5% sericin groups than in the control group. These findings showed that supplementation of IVM medium with 0.5% sericin may improve the meiotic competence of oocytes and early embryonic development in Sanjabi ewes during the breeding season. PMID:26411362

  14. Commonly used prophylactic vaccines as an alternative for synthetically produced TLR ligands to mature monocyte-derived dendritic cells.

    NARCIS (Netherlands)

    Schreibelt, G.; Benitez-Ribas, D.; Schuurhuis, D.; Lambeck, A.J.A.; Hout-Kuijer, M.A. van; Schaft, N.; Punt, C.J.A.; Figdor, C.G.; Adema, G.J.; Vries, I.J.M. de

    2010-01-01

    Currently dendritic cell (DC)-based vaccines are explored in clinical trials, predominantly in cancer patients. Murine studies showed that only maturation with Toll-like receptor (TLR) ligands generates mature DCs that produce interleukin-12 and promote optimal T-cell help. Unfortunately, the limite

  15. Enhancer mutations of Akv murine leukemia virus inhibit the induction of mature B-cell lymphomas and shift disease specificity towards the more differentiated plasma cell stage

    International Nuclear Information System (INIS)

    This study investigates the role of the proviral transcriptional enhancer for B-lymphoma induction by exogenous Akv murine leukemia virus. Infection of newborn inbred NMRI mice with Akv induced 35% plasma cell proliferations (PCPs) (consistent with plasmacytoma), 33% diffuse large B-cell lymphomas, 25% follicular B-cell lymphomas and few splenic marginal zone and small B-cell lymphomas. Deleting one copy of the 99-bp proviral enhancer sequence still allowed induction of multiple B-cell tumor types, although PCPs dominated (77%). Additional mutation of binding sites for the glucocorticoid receptor, Ets, Runx, or basic helix-loop-helix transcription factors in the proviral U3 region, however, shifted disease induction to almost exclusively PCPs, but had no major influence on tumor latency periods. Southern analysis of immunoglobulin rearrangements and ecotropic provirus integration patterns showed that many of the tumors/cell proliferations induced by each virus were polyclonal. Our results indicate that enhancer mutations weaken the ability of Akv to induce mature B-cell lymphomas prior to the plasma cell stage, whereas development of plasma cell proliferations is less dependent of viral enhancer strength

  16. Matured Hop Bittering Components Induce Thermogenesis in Brown Adipose Tissue via Sympathetic Nerve Activity.

    Directory of Open Access Journals (Sweden)

    Yumie Morimoto-Kobayashi

    Full Text Available Obesity is the principal symptom of metabolic syndrome, which refers to a group of risk factors that increase the likelihood of atherosclerosis. In recent decades there has been a sharp rise in the incidence of obesity throughout the developed world. Iso-α-acids, the bitter compounds derived from hops in beer, have been shown to prevent diet-induced obesity by increasing lipid oxidation in the liver and inhibition of lipid absorption from the intestine. Whereas the sharp bitterness induced by effective dose of iso-α-acids precludes their acceptance as a nutrient, matured hop bittering components (MHB appear to be more agreeable. Therefore, we tested MHB for an effect on ameliorating diet-induced body fat accumulation in rodents. MHB ingestion had a beneficial effect but, compared to iso-α-acids and despite containing structurally similar compounds, acted via different mechanisms to reduce body fat accumulation. MHB supplementation significantly reduced body weight gain, epididymal white adipose tissue weight, and plasma non-esterified free fatty acid levels in diet-induced obese mice. We also found that uncoupling protein 1 (UCP1 expression in brown adipose tissue (BAT was significantly increased in MHB-fed mice at both the mRNA and protein levels. In addition, MHB administration in rats induced the β-adrenergic signaling cascade, which is related to cAMP accumulation in BAT, suggesting that MHB could modulate sympathetic nerve activity innervating BAT (BAT-SNA. Indeed, single oral administration of MHB elevated BAT-SNA in rats, and this elevation was dissipated by subdiaphragmatic vagotomy. Single oral administration of MHB maintained BAT temperature at a significantly higher level than in control rats. Taken together, these findings indicate that MHB ameliorates diet-induced body fat accumulation, at least partly, by enhancing thermogenesis in BAT via BAT-SNA activation. Our data suggests that MHB is a useful tool for developing functional

  17. Microrna-221 and microrna-222 modulate differentiation and maturation of skeletal muscle cells.

    Directory of Open Access Journals (Sweden)

    Beatrice Cardinali

    Full Text Available BACKGROUND: MicroRNAs (miRNAs are a class of small non-coding RNAs that have recently emerged as important regulators of gene expression. They negatively regulate gene expression post-transcriptionally by translational repression and target mRNA degradation. miRNAs have been shown to play crucial roles in muscle development and in regulation of muscle cell proliferation and differentiation. METHODOLOGY/PRINCIPAL FINDINGS: By comparing miRNA expression profiling of proliferating myoblasts versus differentiated myotubes, a number of modulated miRNAs, not previously implicated in regulation of myogenic differentiation, were identified. Among these, miR-221 and miR-222 were strongly down-regulated upon differentiation of both primary and established myogenic cells. Conversely, miR-221 and miR-222 expression was restored in post-mitotic, terminally differentiated myotubes subjected to Src tyrosine kinase activation. By the use of specific inhibitors we provide evidence that expression of miR-221 and miR-222 is under the control of the Ras-MAPK pathway. Both in myoblasts and in myotubes, levels of the cell cycle inhibitor p27 inversely correlated with miR-221 and miR-222 expression, and indeed we show that p27 mRNA is a direct target of these miRNAs in myogenic cells. Ectopic expression of miR-221 and miR-222 in myoblasts undergoing differentiation induced a delay in withdrawal from the cell cycle and in myogenin expression, followed by inhibition of sarcomeric protein accumulation. When miR-221 and miR-222 were expressed in myotubes undergoing maturation, a profound alteration of myofibrillar organization was observed. CONCLUSIONS/SIGNIFICANCE: miR-221 and miR-222 have been found to be modulated during myogenesis and to play a role both in the progression from myoblasts to myocytes and in the achievement of the fully differentiated phenotype. Identification of miRNAs modulating muscle gene expression is crucial for the understanding of the circuits

  18. Development of a new protocol for 2-day generation of mature dendritic cells from human monocytes

    Directory of Open Access Journals (Sweden)

    Obermaier Bianca

    2003-01-01

    Full Text Available We developed a new 2-day protocol for the generation of dendritic cells (DCs from human monocytes in vitro. First, we demonstrated that 24 hours of culture with GM-CSF and IL-4 are sufficient to generate immature DCs capable of antigen uptake. We then compared two different strategies for DC maturation: proinflammatory mediators were either added together with GM-CSF and IL-4 from the beginning of cell culture or added after 24 hours of differentiation with GM-CSF and IL-4. After 48 hours of total culture period, expression of activation markers was more pronounced in cells generated by the 2-step differentiation and activation method. Our new protocol for 2-day DC differentiation reduces labor, cost and time and also reliably renders high numbers of mature and viable DCs.

  19. Rapamycin Modulates the Maturation of Rat Bone Marrow-derived Dendritic Cells

    Institute of Scientific and Technical Information of China (English)

    Yingjun DING; Xiang CHENG; Tingting TANG; Rui YAO; Yong CHEN; Jiangjiao XIE; Xian YU; Yuhua LIAO

    2008-01-01

    The purpose of the study was to observe the effect of rapamycin (RAPA) on the differentiation and maturation of rat bone marrow-derived dendritic cells (BMDCs) in vitro. BMDCs from Wistar rats were cultured with granulocyte-macrophage colony-stimulating factor plus interleukin-4in the presence or absence of RAPA (20 ng/mL), and stimulated with lipopolysaccharide (LPS) for 24h before cells and supernatants were collected. Surface phenotype of BMDCs was flow-cytometrically detected to determine the expression of maturation markers, MHC class Ⅱ and CD86. Supematants were analyzed for the production of IL-12 and IFN-γ cytokines by using ELISA.BMDCs were co-cultured with T cells from Lewis rats and mixed lymphocyte reaction was assessed by MTT method. The morphology of BMDCs stimulated with LPS remained immature after RAPA pretreatment. RAPA significantly decreased the CD86 expression, impaired the IL-12 and IFN-γproduction of BMDCs stimulated with LPS, and inhibited the proliferation of allogeneic T cells. In conclusion, RAPA can inhibit the maturation of BMDCs stimulated with LPS in terms of the morphology, surface phenotype, cytokine production, and ability of BMDCs to stimulate the proliferation of allogeneic T cells in vitro.

  20. Cortical bone growth and maturational changes in dwarf rats induced by recombinant human growth hormone

    Science.gov (United States)

    Martinez, D. A.; Orth, M. W.; Carr, K. E.; Vanderby, R. Jr; Vailas, A. C.

    1996-01-01

    The growth hormone (GH)-deficient dwarf rat was used to investigate recombinant human (rh) GH-induced bone formation and to determine whether rhGH facilitates simultaneous increases in bone formation and bone maturation during rapid growth. Twenty dwarf rats, 37 days of age, were randomly assigned to dwarf plus rhGH (GH; n = 10) and dwarf plus vehicle (n = 10) groups. The GH group received 1.25 mg rhGH/kg body wt two times daily for 14 days. Biochemical, morphological, and X-ray diffraction measurements were performed on the femur middiaphysis. rhGH stimulated new bone growth in the GH group, as demonstrated by significant increases (P growth.

  1. Cell signalling pathways underlying induced pluripotent stem cell reprogramming

    Institute of Scientific and Technical Information of China (English)

    Kate; Hawkins; Shona; Joy; Tristan; Mc; Kay

    2014-01-01

    Induced pluripotent stem(i PS) cells, somatic cells reprogrammed to the pluripotent state by forced expression of defined factors, represent a uniquely valuable resource for research and regenerative medicine. However, this methodology remains inefficient due to incomplete mechanistic understanding of the reprogramming process. In recent years, various groups have endeavoured to interrogate the cell signalling that governs the reprogramming process, including LIF/STAT3, BMP, PI3 K, FGF2, Wnt, TGFβ and MAPK pathways, with the aim of increasing our understanding and identifying new mechanisms of improving safety, reproducibility and efficiency. This has led to a unified model of reprogramming that consists of 3 stages: initiation, maturation and stabilisation. Initiation of reprogramming occurs in almost all cells that receive the reprogramming transgenes; most commonly Oct4, Sox2, Klf4 and c Myc, and involves a phenotypic mesenchymal-to-epithelial transition. The initiation stage is also characterised by increased proliferation and a metabolic switch from oxidative phosphorylation to glycolysis. The maturation stage is considered the major bottleneck within the process, resulting in very few "stabilisation competent" cells progressing to the final stabilisation phase. To reach this stage in both mouse and human cells, pre-i PS cells must activate endogenous expression of the core circuitry of pluripotency, comprising Oct4, Sox2, and Nanog, and thus reach a state of transgene independence. By the stabilisation stage, i PS cells generally use the same signalling networks that govern pluripotency in embryonic stem cells. These pathways differ between mouse and human cells although recent work has demonstrated that this is context dependent. As i PS cell generation technologies move forward, tools are being developed to interrogate the process in more detail, thus allowing a greater understanding of this intriguing biological phenomenon.

  2. Acceleration of Functional Maturation and Differentiation of Neonatal Porcine Islet Cell Monolayers Shortly In Vitro Cocultured with Microencapsulated Sertoli Cells

    Directory of Open Access Journals (Sweden)

    Francesca Mancuso

    2010-01-01

    Full Text Available The limited availability of cadaveric human donor pancreata as well as the incomplete success of the Edmonton protocol for human islet allografts fasten search for new sources of insulin the producing cells for substitution cell therapy of insulin-dependent diabetes mellitus (T1DM. Starting from isolated neonatal porcine pancreatic islets (NPIs, we have obtained cell monolayers that were exposed to microencapsulated monolayered Sertoli cells (ESCs for different time periods (7, 14, 21 days. To assess the development of the cocultured cell monolayers, we have studied either endocrine cell phenotype differentiation markers or c-kit, a hematopoietic stem cell marker, has recently been involved with growth and differentiation of β-cell subpopulations in human as well as rodent animal models. ESC which were found to either accelerate maturation and differentiation of the NPIs β-cell phenotype or identify an islet cell subpopulation that was marked positively for c-kit. The insulin/c-kit positive cells might represent a new, still unknown functionally immature β-cell like element in the porcine pancreas. Acceleration of maturation and differentiation of our NPI cell monolayers might generate a potential new opportunity to develop insulin-producing cells that may suite experimental trials for cell therapy of T1DM.

  3. Functional and morphological maturation of implanted neonatal cardiomyocytes as a comparator for cell therapy.

    Science.gov (United States)

    Sato, Motoki; Carr, Carolyn A; Stuckey, Daniel J; Ishii, Hikaru; Kanda, Gaelle Kikonda; Terracciano, Cesare M N; Siedlecka, Urszula; Tatton, Louise; Watt, Suzanne M; Martin-Rendon, Enca; Clarke, Kieran; Harding, Sian E

    2010-07-01

    Knowledge of the rate of development of immature cardiomyocytes after implantation into a host heart is important for studies using cell therapy. To assess this functionally, we have implanted rat neonatal cardiomyocytes (NCMs) in normal and infarcted rat heart and re-isolated them for functional assessment. Maturation of implanted bone marrow stromal cells (BMSCs) was compared under similar conditions. NCMs from green fluorescent protein (GFP) transgenic rats were implanted into adult normal or infarcted rat hearts and re-isolated after 1, 2, or 4 weeks by standard enzymatic digestion. BMSCs labeled with DiI and iron oxide were implanted into rats with myocardial infarction and cells re-isolated 1, 2, 5, 6, and 16 weeks later. GFP-labeled myocytes approaching the adult morphology were detected 2 weeks after implantation of NCMs, but were significantly shorter than adult host myocytes and had reduced contractility. By 4 weeks after implantation, re-isolated GFP-labeled myocytes were close to the adult phenotype in contractile characteristics, although still significantly shorter. Infarction of the host did not alter the rate of maturation of implanted cells. After implantation of BMSCs, small numbers of functional DiI-labeled myocytes were re-isolated from 4/11 animals but were more mature than expected from the NCM studies. This adds evidence that BMSC-derived cardiomyocytes were not a result of transdifferentiation. The maturation rate of implanted NCMs represents a benchmark against which to evaluate the likely rate of formation of fully functional cardiomyocytes from implanted cells. PMID:20053126

  4. Role for a novel Usher protein complex in hair cell synaptic maturation.

    Directory of Open Access Journals (Sweden)

    Marisa Zallocchi

    Full Text Available The molecular mechanisms underlying hair cell synaptic maturation are not well understood. Cadherin-23 (CDH23, protocadherin-15 (PCDH15 and the very large G-protein coupled receptor 1 (VLGR1 have been implicated in the development of cochlear hair cell stereocilia, while clarin-1 has been suggested to also play a role in synaptogenesis. Mutations in CDH23, PCDH15, VLGR1 and clarin-1 cause Usher syndrome, characterized by congenital deafness, vestibular dysfunction and retinitis pigmentosa. Here we show developmental expression of these Usher proteins in afferent spiral ganglion neurons and hair cell synapses. We identify a novel synaptic Usher complex comprised of clarin-1 and specific isoforms of CDH23, PCDH15 and VLGR1. To establish the in vivo relevance of this complex, we performed morphological and quantitative analysis of the neuronal fibers and their synapses in the Clrn1-/- mouse, which was generated by incomplete deletion of the gene. These mice showed a delay in neuronal/synaptic maturation by both immunostaining and electron microscopy. Analysis of the ribbon synapses in Ames waltzer(av3J mice also suggests a delay in hair cell synaptogenesis. Collectively, these results show that, in addition to the well documented role for Usher proteins in stereocilia development, Usher protein complexes comprised of specific protein isoforms likely function in synaptic maturation as well.

  5. Intracellular overexpression of HIV-1 Nef impairs differentiation and maturation of monocytic precursors towards dendritic cells.

    Directory of Open Access Journals (Sweden)

    Yan Guo

    Full Text Available Nef functions as an immunosuppressive factor critical for HIV-1 replication, survival and development of AIDS following HIV-1 infection. What effects Nef exerts on differentiation and maturation of monocytes towards dendritic cells (DCs remains greatly controversial. In this study, we used THP-1 (human monocytic leukemia cell line as monocytic DC precursors to investigate how overexpression of HIV-1 Nef influences the processes of differentiation and maturation of dendritic cells. In striking contrast to negative controls, our results showed that morphological and phenotypical changes (CD11c, CD14, CD40, CD80, CD83, CD86, and HLA-DR occurred on recombinant THP-1 expressing HIV-1 Nef (short for Nef upon co-stimulation of GM-CSF/IL-4 or GM-CSF/IL-4/TNF-α/ionomycin. Moreover, CD4, CCR5, and CXCR4 were also down-regulated on Nef. It might be hypothesized that Nef prevents superinfection and signal transduction in HIV-1 infected monocytes. Collectively, our study demonstrates that long-lasting expression of Nef at high levels indeed retards differentiation and maturation of dendritic cells in terms of phenotype and morphology. We are hopeful that potentially, stable expression of intracellular Nef in vivo may function as a subtle mode to support long-lasting HIV-1 existence.

  6. Engineered Microenvironments for the Maturation and Observation of Human Embryonic Stem Cell Derived Cardiomyocytes

    Science.gov (United States)

    Salick, Max R.

    The human heart is a dynamic system that undergoes substantial changes as it develops and adapts to the body's growing needs. To better understand the physiology of the heart, researchers have begun to produce immature heart muscle cells, or cardiomyocytes, from pluripotent stem cell sources with remarkable efficiency. These stem cell-derived cardiomyocytes hold great potential in the understanding and treatment of heart disease; however, even after prolonged culture, these cells continue to exhibit an immature phenotype, as indicated by poor sarcomere organization and calcium handling, among other features. The lack of maturation that is observed in these cardiomyocytes greatly limits their applicability towards drug screening, disease modeling, and cell therapy applications. The mechanical environment surrounding a cell has been repeatedly shown to have a large impact on that cell's behavior. For this reason, we have implemented micropatterning methods to mimic the level of alignment that occurs in the heart in vivo in order to study how this alignment may help the cells to produce a more mature sarcomere phenotype. It was discovered that the level of sarcomere organization of a cardiomyocyte can be strongly influenced by the micropattern lane geometry on which it adheres. Steps were taken to optimize this micropattern platform, and studies of protein organization, gene expression, and myofibrillogenesis were conducted. Additionally, a set of programs was developed to provide quantitative analysis of the level of sarcomere organization, as well as to assist with several other tissue engineering applications.

  7. Genetic 'risk' for atopy is associated with delayed postnatal maturation of T-cell competence.

    Science.gov (United States)

    Holt, P G; Clough, J B; Holt, B J; Baron-Hay, M J; Rose, A H; Robinson, B W; Thomas, W R

    1992-12-01

    Recent in vitro studies suggest that IgE production in adults is co-ordinately regulated by negative signals from gamma IFN-producing CD4+ T-helper-1 (TH-1) and positive signals from IL-4 producing (TH-2) T-cells. Additionally, seroepidemiological evidence has pinpointed infancy as the period of maximum lifetime risk for T-cell sensitization to ubiquitous environmental antigens. The present study sought to elucidate the relationship between these observations, by examination of CD4+ T-cell function in normal children and those genetically at 'high risk' for atopy, spanning the age range (up to 4 years) in which IgE responses to environmental allergens is typically manifest. Immunocompetent T-cell precursor frequencies (determined by cloning at limiting dilution) were markedly reduced in 'high risk' children relative to normals (0.53 +/- 0.29 vs 0.26 +/- 0.19; P = 0.0025). Consistent with reports from other laboratories employing bulk T-cell culture techniques, the gamma IFN producing capacity of CD4+ T-cell clones from both groups of children were markedly reduced relative to adults, and was lowest in the high risk group (P early childhood occur against a background of maturational 'deficiency' in CD4+ T-cell function, and suggests the possibility that variations in the rate of postnatal maturation of T-cell competence may be a contributing factor in the development of differing patterns of immunological responsiveness to environmental allergens. PMID:1486538

  8. Dendritic cell derived IL-2 inhibits survival of terminally mature cells via an autocrine signaling pathway.

    Science.gov (United States)

    Balachander, Akhila; Nabti, Sabrina; Sobota, Radoslaw M; Foo, Shihui; Zolezzi, Francesca; Lee, Bernett T K; Poidinger, Michael; Ricciardi-Castagnoli, Paola

    2015-05-01

    DCs are crucial for sensing pathogens and triggering immune response. Upon activation by pathogen-associated molecular pattern (PAMP) ligands, GM-CSF myeloid DCs (GM-DCs) secrete several cytokines, including IL-2. DC IL-2 has been shown to be important for innate and adaptive immune responses; however, IL-2 importance in DC physiology has never been demonstrated. Here, we show that autocrine IL-2 signaling is functional in murine GM-DCs in an early time window after PAMPs stimulation. IL-2 signaling selectively activates the JAK/STAT5 pathway by assembling holo-receptor complexes at the cell surface. Using the sensitivity of targeted mass spectrometry, we show conclusively that GM-DCs express CD122, the IL-2 receptor β-chain, at steady state. In myeloid DCs, this cytokine pathway inhibits survival of PAMP-matured GM-DCs which is crucial for maintaining immune tolerance and preventing autoimmunity. Our findings suggest that immune regulation by this novel autocrine signaling pathway can potentially be used in DC immunotherapy. PMID:25652593

  9. Giardia duodenalis stimulates partial maturation of bovine dendritic cells associated with altered cytokine secretion and induction of T-cell proliferation.

    Science.gov (United States)

    Grit, G H; Devriendt, B; Van Coppernolle, S; Geurden, T; Hope, J; Vercruysse, J; Cox, E; Geldhof, P; Claerebout, E

    2014-04-01

    Giardia duodenalis is an important intestinal parasite in animals and humans. The role of dendritic cells (DC) in the initiation of the immune response against G. duodenalis is poorly documented. The aim of this study was to test the hypothesis that G. duodenalis interferes with bovine DC function. Therefore, the effect of trophozoites and excretion/secretion products on bovine monocyte-derived dendritic cells (MoDC) was investigated. We assessed MoDC maturation and cytokine production of G. duodenalis-stimulated MoDC and the ability of these MoDC to take up antigen and induce lymphocyte proliferation. Little or no upregulation of maturation markers CD40 and CD80 was measured, but MHCII expression was increased after stimulation with low parasite concentrations. A dose-dependent decrease in ovalbumin uptake was observed in G. duodenalis-stimulated MoDC. In addition, stimulated MoDC induced proliferation of CD3(-) , γδ-T-cells and TCRαβ(+) CD4(+) and CD8(+) T-cells. Increased transcription of TGF-β was shown in CD4(+) T cells, and increased TNF-α, TGF-β, IL-10 and IL-4 were seen in γδ-T-cells. We found no evidence that G. duodenalis has a regulatory or inhibitory effect on bovine MoDC. MoDC stimulated with G. duodenalis are functionally active and able to induce proliferation of T cells that produce both pro- and anti-inflammatory cytokines.

  10. Gene expression profiling in multipotent DFAT cells derived from mature adipocytes

    International Nuclear Information System (INIS)

    Highlights: → Adipocyte dedifferentiation is evident in a significant decrease in typical genes. → Cell proliferation is strongly related to adipocyte dedifferentiation. → Dedifferentiated adipocytes express several lineage-specific genes. → Comparative analyses using publicly available datasets boost the interpretation. -- Abstract: Cellular dedifferentiation signifies the withdrawal of cells from a specific differentiated state to a stem cell-like undifferentiated state. However, the mechanism of dedifferentiation remains obscure. Here we performed comparative transcriptome analyses during dedifferentiation in mature adipocytes (MAs) to identify the transcriptional signatures of multipotent dedifferentiated fat (DFAT) cells derived from MAs. Using microarray systems, we explored similarly expressed as well as significantly differentially expressed genes in MAs during dedifferentiation. This analysis revealed significant changes in gene expression during this process, including a significant reduction in expression of genes for lipid metabolism concomitantly with a significant increase in expression of genes for cell movement, cell migration, tissue developmental processes, cell growth, cell proliferation, cell morphogenesis, altered cell shape, and cell differentiation. Our observations indicate that the transcriptional signatures of DFAT cells derived from MAs are summarized in terms of a significant decrease in functional phenotype-related genes and a parallel increase in cell proliferation, altered cell morphology, and regulation of the differentiation of related genes. A better understanding of the mechanisms involved in dedifferentiation may enable scientists to control and possibly alter the plasticity of the differentiated state, which may lead to benefits not only in stem cell research but also in regenerative medicine.

  11. Gene expression profiling in multipotent DFAT cells derived from mature adipocytes

    Energy Technology Data Exchange (ETDEWEB)

    Ono, Hiromasa [Laboratory of Cell and Tissue Biology, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-8510 (Japan); Database Center for Life Science (DBCLS), Research Organization of Information and Systems (ROIS), Faculty of Engineering Bldg.12 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032 (Japan); Oki, Yoshinao [Laboratory of Cell and Tissue Biology, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-8510 (Japan); Bono, Hidemasa [Database Center for Life Science (DBCLS), Research Organization of Information and Systems (ROIS), Faculty of Engineering Bldg.12 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032 (Japan); Kano, Koichiro, E-mail: kkano@brs.nihon-u.ac.jp [Laboratory of Cell and Tissue Biology, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-8510 (Japan)

    2011-04-15

    Highlights: {yields} Adipocyte dedifferentiation is evident in a significant decrease in typical genes. {yields} Cell proliferation is strongly related to adipocyte dedifferentiation. {yields} Dedifferentiated adipocytes express several lineage-specific genes. {yields} Comparative analyses using publicly available datasets boost the interpretation. -- Abstract: Cellular dedifferentiation signifies the withdrawal of cells from a specific differentiated state to a stem cell-like undifferentiated state. However, the mechanism of dedifferentiation remains obscure. Here we performed comparative transcriptome analyses during dedifferentiation in mature adipocytes (MAs) to identify the transcriptional signatures of multipotent dedifferentiated fat (DFAT) cells derived from MAs. Using microarray systems, we explored similarly expressed as well as significantly differentially expressed genes in MAs during dedifferentiation. This analysis revealed significant changes in gene expression during this process, including a significant reduction in expression of genes for lipid metabolism concomitantly with a significant increase in expression of genes for cell movement, cell migration, tissue developmental processes, cell growth, cell proliferation, cell morphogenesis, altered cell shape, and cell differentiation. Our observations indicate that the transcriptional signatures of DFAT cells derived from MAs are summarized in terms of a significant decrease in functional phenotype-related genes and a parallel increase in cell proliferation, altered cell morphology, and regulation of the differentiation of related genes. A better understanding of the mechanisms involved in dedifferentiation may enable scientists to control and possibly alter the plasticity of the differentiated state, which may lead to benefits not only in stem cell research but also in regenerative medicine.

  12. The effects of cichorium intybus extract on the maturation and activity of dendritic cells

    OpenAIRE

    Karimi, Mohammad Hossein; Ebrahimnezhad, Salimeh; Namayandeh, Mandana; Amirghofran, Zahra

    2014-01-01

    Background Cichorium intybus is a medicinal plant commonly used in traditional medicine for its benefits in immune-madiated disorders. There are several evidences showing that C. intybus can modulate immune responses. In the present study we have investigated the effects of the ethanolic root extract of this plant on the immune system by targeting dendritic cells (DCs). For this purpose, phenotypic and functional maturity of murine DCs after treatment with the extract was analyzed by flow cyt...

  13. The first trimester human placenta is a site for terminal maturation of primitive erythroid cells

    OpenAIRE

    Van Handel, Ben; Sacha L Prashad; Hassanzadeh-Kiabi, Nargess; Huang, Andy; Magnusson, Mattias; Atanassova, Boriana; Chen, Angela; Hamalainen, Eija I.; Mikkola, Hanna K. A.

    2010-01-01

    Embryonic hematopoiesis starts via the generation of primitive red blood cells (RBCs) that satisfy the embryo's immediate oxygen needs. Although primitive RBCs were thought to retain their nuclei, recent studies have shown that primitive RBCs in mice enucleate in the fetal liver. It has been unknown whether human primitive RBCs enucleate, and what hematopoietic site might support this process. Our data indicate that the terminal maturation and enucleation of human primitive RBCs occurs in fir...

  14. Expression of tryptophan 2,3-dioxygenase in mature granule cells of the adult mouse dentate gyrus

    Directory of Open Access Journals (Sweden)

    Ohira, Koji

    2010-09-01

    Full Text Available Abstract New granule cells are continuously generated in the dentate gyrus of the adult hippocampus. During granule cell maturation, the mechanisms that differentiate new cells not only describe the degree of cell differentiation, but also crucially regulate the progression of cell differentiation. Here, we describe a gene, tryptophan 2,3-dioxygenase (TDO, whose expression distinguishes stem cells from more differentiated cells among the granule cells of the adult mouse dentate gyrus. The use of markers for proliferation, neural progenitors, and immature and mature granule cells indicated that TDO was expressed in mature cells and in some immature cells. In mice heterozygous for the alpha-isoform of calcium/calmodulin-dependent protein kinase II, in which dentate gyrus granule cells fail to mature normally, TDO immunoreactivity was substantially downregulated in the dentate gyrus granule cells. Moreover, a 5-bromo-2'-deoxyuridine labeling experiment revealed that new neurons began to express TDO between 2 and 4 wk after the neurons were generated, when the axons and dendrites of the granule cells developed and synaptogenesis occurred. These findings indicate that TDO might be required at a late-stage of granule cell development, such as during axonal and dendritic growth, synaptogenesis and its maturation.

  15. IL-1α induces CD11b(low) alveolar macrophage proliferation and maturation during granuloma formation.

    Science.gov (United States)

    Huaux, François; Lo Re, Sandra; Giordano, Giulia; Uwambayinema, Francine; Devosse, Raynal; Yakoub, Yousof; Panin, Nadtha; Palmai-Pallag, Mihaly; Rabolli, Virginie; Delos, Monique; Marbaix, Etienne; Dauguet, Nicolas; Couillin, Isabelle; Ryffel, Bernhard; Renauld, Jean-Christophe; Lison, Dominique

    2015-04-01

    Macrophages play a central role in immune and tissue responses of granulomatous lung diseases induced by pathogens and foreign bodies. Circulating monocytes are generally viewed as central precursors of these tissue effector macrophages. Here, we provide evidence that granulomas derive from alveolar macrophages serving as a local reservoir for the expansion of activated phagocytic macrophages. By exploring lung granulomatous responses to silica particles in IL-1-deficient mice, we found that the absence of IL-1α, but not IL-1β, was associated with reduced CD11b(high) phagocytic macrophage accumulation and fewer granulomas. This defect was associated with impaired alveolar clearance and resulted in the development of pulmonary alveolar proteinosis (PAP). Reconstitution of IL-1α(-/-) mice with recombinant IL-1α restored lung clearance functions and the pulmonary accumulation of CD11b(high) phagocytic macrophages. Mechanistically, IL-1α induced the proliferation of CD11b(low) alveolar macrophages and differentiated these cells into CD11b(high) macrophages which perform critical phagocytic functions and organize granuloma. We newly discovered here that IL-1α triggers lung responses requiring macrophage proliferation and maturation from tissue-resident macrophages. PMID:25421226

  16. Accumulation of cytolytic CD8{sup +} T cells in B16-melanoma and proliferation of mature T cells in TIS21-knockout mice after T cell receptor stimulation

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Min Sook [Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, 164, World cul-ro, Yeongtong-gu, Suwon, Gyeonggi-do 443-380 (Korea, Republic of); Woo, Min-Yeong [Department of Microbiology, Ajou University School of Medicine, 164, World cul-ro, Yeongtong-gu, Suwon, Gyeonggi-do 443-380 (Korea, Republic of); Department of Biomedical Sciences, The Graduate School, Ajou University (Korea, Republic of); Kwon, Daeho [Department of Microbiology, Kwandong University College of Medicine, Gangneung, Gangwon-do 210-701 (Korea, Republic of); Hong, Allen E. [Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, 164, World cul-ro, Yeongtong-gu, Suwon, Gyeonggi-do 443-380 (Korea, Republic of); Song, Kye Yong [Department of Pathology, Chung-Ang University College of Medicine, Dongjak-gu, Seoul 156-756 (Korea, Republic of); Park, Sun [Department of Microbiology, Ajou University School of Medicine, 164, World cul-ro, Yeongtong-gu, Suwon, Gyeonggi-do 443-380 (Korea, Republic of); Lim, In Kyoung [Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, 164, World cul-ro, Yeongtong-gu, Suwon, Gyeonggi-do 443-380 (Korea, Republic of)

    2014-10-01

    In vivo and in vitro effects of TIS21 gene on the mature T cell activation and antitumor activities were explored by employing MO5 melanoma orthograft and splenocytes isolated from the TIS21-knockout (KO) mice. Proliferation and survival of mature T cells were significantly increased in the KO than the wild type (WT) cells, indicating that TIS21 inhibits the rate of mature T cell proliferation and its survival. In MO5 melanoma orthograft model, the KO mice recruited much more CD8{sup +} T cells into the tumors at around day 14 after tumor cell injection along with reduced tumor volumes compared with the WT. The increased frequency of granzyme B{sup +} CD8{sup +} T cells in splenocytes of the KO mice compared with the WT may account for antitumor-immunity of TIS21 gene in the melanoma orthograft. In contrast, reduced frequencies of CD107a{sup +} CD8{sup +} T cells in the splenocytes of KO mice may affect the loss of CD8{sup +} T cell infiltration in the orthograft at around day 19. These results indicate that TIS21 exhibits antiproliferative and proapoptotic effects in mature T cells, and differentially affects the frequencies of granzyme B{sup +} CD8{sup +} T-cells and CD107a{sup +} CD8{sup +} T-cells, thus transiently regulating in vivo anti-tumor immunity. - Highlights: • Constitutive expression of TIS21 in splenocytes and upregulation by TCR stimulation. • Proliferation of mature T-cells in spleen of TIS21KO mice after TCR stimulation. • Inhibition of cell death in mature T-cells of TIS21KO mice compared with the wild type. • Inhibition of melanoma growth in TIS21KO mice and CD8{sup +} T cell infiltration in tumor. • Reduction of CD 107{sup +}CD8{sup +} T cells, but increased granzyme B{sup +} CD8{sup +} T cells in TIS21KO mice.

  17. IL-1β inhibits ILC3 while favoring NK-cell maturation of umbilical cord blood CD34(+) precursors.

    Science.gov (United States)

    Ambrosini, Paolo; Loiacono, Fabrizio; Conte, Romana; Moretta, Lorenzo; Vitale, Chiara; Mingari, Maria Cristina

    2015-07-01

    NK cells are innate lymphocytes characterized by the expression of nuclear factor interleukin 3 regulated (NFIL3 or E4BP4), eomesodermin (EOMES) transcription factors (TFs), and by the ability to exert cytolytic activity and release IFN-γ. In the haploidentical-hematopoietic stem cell transplantation (haplo-HSCT) setting, CD34(+) donor derived NK cells play a major role in the control of leukemic relapses. Therefore, it is important to better define cytokines that influence NK-cell differentiation from CD34(+) precursors. We analyzed the effects of IL-1β on NK-cell differentiation from umbilical cord blood (UCB) CD34(+) cells. While IL-1β inhibited CD161(+) CD56(+) cell proliferation, an increased expression of LFA-1, CD94/NKG2A, KIRs, and perforin on CD56(+) cells was detected. In addition, within the CD161(+) CD56(+) IL-1RI(+) LFA-1(-) cell fraction (representing group 3 innate lymphoid cells, ILC3-like cells), a significant increase of EOMES, NKp46, and CD94/NKG2A receptors, cytolytic granules, and IFN-γ was detected. This increase was paralleled by a decrease of related orphan receptors (RORγt) TF, NKp44 expression, and IL-22 production. These data suggest that IL-1β inhibits ILC3- while favoring NK-cell maturation. Since in haplo-HSCT conditioning regimen, infections or residual leukemia cells may induce IL-1β production, this may influence the NK/ILC3 development from donor-derived CD34(+) precursors. PMID:25847448

  18. Regulation of cathepsins S and L by cystatin F during maturation of dendritic cells.

    Science.gov (United States)

    Magister, Spela; Obermajer, Nataša; Mirković, Bojana; Svajger, Urban; Renko, Miha; Softić, Adaleta; Romih, Rok; Colbert, Jeff D; Watts, Colin; Kos, Janko

    2012-05-01

    In dendritic cells (DCs) cysteine cathepsins play a key role in antigen processing, invariant chain (Ii) cleavage and regulation of cell adhesion after maturation stimuli. Cystatin F, a cysteine protease inhibitor, is present in DCs in endosomal/lysosomal vesicles and thus has a potential to modulate cathepsin activity. In immature DCs cystatin F colocalizes with cathepsin S. After induction of DC maturation however, it is translocated into lysosomes and colocalizes with cathepsin L. The inhibitory potential of cystatin F depends on the properties of the monomer. We showed that the full-length monomeric cystatin F was a 12-fold stronger inhibitor of cathepsin S than the N-terminally processed cystatin F, whereas no significant difference in inhibition was observed for cathepsins L, H and X. Therefore, the role of cystatin F in regulating the main cathepsin S function in DCs, i.e. the processing of Ii, may depend on the form of the monomer present in endosomal/lysosomal vesicles. On the other hand, intact and truncated monomeric cystatin F are both potent inhibitors of cathepsin L and it is likely that cystatin F could regulate its activity in maturing, adherent DCs, controlling the processing of procathepsin X, which promotes cell adhesion via activation of Mac-1 (CD11b/CD18) integrin receptor.

  19. Jak3 is involved in dendritic cell maturation and CCR7-dependent migration.

    Directory of Open Access Journals (Sweden)

    Ana Rivas-Caicedo

    Full Text Available BACKGROUND: CCR7-mediated signalling is important for dendritic cell maturation and homing to the lymph nodes. We have previously demonstrated that Jak3 participates in the signalling pathway of CCR7 in T lymphocytes. METHODOLOGY AND PRINCIPAL FINDINGS: Here, we used Jak3(-/- mice to analyze the role of Jak3 in CCR7-mediated dendritic cells migration and function. First, we found no differences in the generation of DCs from Jak3(-/- bone marrow progenitors, when compared to wild type cells. However, phenotypic analysis of the bone marrow derived DCs obtained from Jak3(-/- mice showed reduced expression of co-stimulatory molecules compared to wild type (Jak3(+/+. In addition, when we analyzed the migration of Jak3(-/- and Jak3(+/+ mature DCs in response to CCL19 and CCL21 chemokines, we found that the absence of Jak3 results in impaired chemotactic responses both in vitro and in vivo. Moreover, lymphocyte proliferation and contact hypersensitivity experiments showed that DC-mediated T lymphocyte activation is reduced in the absence of Jak3. CONCLUSION/SIGNIFICANCE: Altogether, our data provide strong evidence that Jak3 is important for DC maturation, migration and function, through a CCR7-mediated signalling pathway.

  20. Maturation and upregulation of functions of murine dendritic cells (DCs) under the influence of purified aromatic-turmerone (AR).

    Science.gov (United States)

    Yonggang, Tan; Yiming, Meng; Heying, Zhang; Cheng, Sun; Qiushi, Wang; Xianghong, Yang; Wei, Zheng; Huawei, Zhou; Shan, Fengping

    2012-10-01

    The aim of this work is to evaluate the effects of purified aromatic-turmerone (ar-turmerione, AR) on murine dendritic cells (DCs). These impacts of AR on DCs from bone marrow derived DCs(BMDCs) were assessed with use of conventional scanning electron microscopy (SEM), fluorescence activated cell sorting (FACS), transmission electron microscopy (TEM), cytochemistry assay, FITC-dextran, bio-assay and enzyme linked immunosorbent assay (ELISA). We found that AR induced phenotypic maturation as evidenced by increased expression of CD86, CD40, CD83, CD80 and major histocompatibility complex II (MHC II). The functional tests showed the activity of acidic phosphatase (ACP) inside the DCs were downregulated after treatment with AR (which occurs when phagocytosis of DCs were decreased). Finally, we proved that AR increased the production of IL-12 and tumor necrosis factor α (TNF-α). These data suggested that AR could promote phenotypic and functional maturation of DCs and this adjuvant-like activity may have potential therapeutic value. It is therefore concluded that AR could exert positive modulation on murine DCs.

  1. The effects of 6-gingerol on proliferation, differentiation, and maturation of osteoblast-like MG-63 cells

    Energy Technology Data Exchange (ETDEWEB)

    Fan, J.Z.; Yang, X.; Bi, Z.G. [Department of Orthopedic Surgery, First Affiliated Hospital, Harbin Medicine University, Harbin (China)

    2015-04-28

    We investigated whether 6-gingerol affects the maturation and proliferation of osteoblast-like MG63 cells in vitro. Osteoblast-like MG63 cells were treated with 6-gingerol under control conditions, and experimental inflammation was induced by tumor necrosis factor-α (TNF-α). Expression of different osteogenic markers and cytokines was analyzed by real-time PCR, Western blotting, and enzyme-linked immunosorbent assay. In addition, alkaline phosphatase (ALP) enzyme activity and biomineralization as markers for differentiation were measured. Treatment with 6-gingerol resulted in insignificant effects on the proliferation rate. 6-Gingerol induced the differentiation of osteoblast-like cells with increased transcription levels of osteogenic markers, upregulated ALP enzyme activity, and enhanced mineralized nodule formation. Stimulation with TNF-α led to enhanced interleukin-6 and nuclear factor-κB expression and downregulated markers of osteoblastic differentiation. 6-Gingerol reduced the degree of inflammation in TNF-α-treated MG-63 cells. In conclusion, 6-gingerol stimulated osteoblast differentiation in normal physiological and inflammatory settings, and therefore, 6-gingerol represents a promising agent for treating osteoporosis or bone inflammation.

  2. Purkinje cell maturation participates in the control of oligodendrocyte differentiation: role of sonic hedgehog and vitronectin.

    Science.gov (United States)

    Bouslama-Oueghlani, Lamia; Wehrlé, Rosine; Doulazmi, Mohamed; Chen, Xiao Ru; Jaudon, Fanny; Lemaigre-Dubreuil, Yolande; Rivals, Isabelle; Sotelo, Constantino; Dusart, Isabelle

    2012-01-01

    Oligodendrocyte differentiation is temporally regulated during development by multiple factors. Here, we investigated whether the timing of oligodendrocyte differentiation might be controlled by neuronal differentiation in cerebellar organotypic cultures. In these cultures, the slices taken from newborn mice show very few oligodendrocytes during the first week of culture (immature slices) whereas their number increases importantly during the second week (mature slices). First, we showed that mature cerebellar slices or their conditioned media stimulated oligodendrocyte differentiation in immature slices thus demonstrating the existence of diffusible factors controlling oligodendrocyte differentiation. Using conditioned media from different models of slice culture in which the number of Purkinje cells varies drastically, we showed that the effects of these differentiating factors were proportional to the number of Purkinje cells. To identify these diffusible factors, we first performed a transcriptome analysis with an Affymetrix array for cerebellar cortex and then real-time quantitative PCR on mRNAs extracted from fluorescent flow cytometry sorted (FACS) Purkinje cells of L7-GFP transgenic mice at different ages. These analyses revealed that during postnatal maturation, Purkinje cells down-regulate Sonic Hedgehog and up-regulate vitronectin. Then, we showed that Sonic Hedgehog stimulates the proliferation of oligodendrocyte precursor cells and inhibits their differentiation. In contrast, vitronectin stimulates oligodendrocyte differentiation, whereas its inhibition with blocking antibodies abolishes the conditioned media effects. Altogether, these results suggest that Purkinje cells participate in controlling the timing of oligodendrocyte differentiation in the cerebellum through the developmentally regulated expression of diffusible molecules such as Sonic Hedgehog and vitronectin. PMID:23155445

  3. Purkinje cell maturation participates in the control of oligodendrocyte differentiation: role of sonic hedgehog and vitronectin.

    Directory of Open Access Journals (Sweden)

    Lamia Bouslama-Oueghlani

    Full Text Available Oligodendrocyte differentiation is temporally regulated during development by multiple factors. Here, we investigated whether the timing of oligodendrocyte differentiation might be controlled by neuronal differentiation in cerebellar organotypic cultures. In these cultures, the slices taken from newborn mice show very few oligodendrocytes during the first week of culture (immature slices whereas their number increases importantly during the second week (mature slices. First, we showed that mature cerebellar slices or their conditioned media stimulated oligodendrocyte differentiation in immature slices thus demonstrating the existence of diffusible factors controlling oligodendrocyte differentiation. Using conditioned media from different models of slice culture in which the number of Purkinje cells varies drastically, we showed that the effects of these differentiating factors were proportional to the number of Purkinje cells. To identify these diffusible factors, we first performed a transcriptome analysis with an Affymetrix array for cerebellar cortex and then real-time quantitative PCR on mRNAs extracted from fluorescent flow cytometry sorted (FACS Purkinje cells of L7-GFP transgenic mice at different ages. These analyses revealed that during postnatal maturation, Purkinje cells down-regulate Sonic Hedgehog and up-regulate vitronectin. Then, we showed that Sonic Hedgehog stimulates the proliferation of oligodendrocyte precursor cells and inhibits their differentiation. In contrast, vitronectin stimulates oligodendrocyte differentiation, whereas its inhibition with blocking antibodies abolishes the conditioned media effects. Altogether, these results suggest that Purkinje cells participate in controlling the timing of oligodendrocyte differentiation in the cerebellum through the developmentally regulated expression of diffusible molecules such as Sonic Hedgehog and vitronectin.

  4. Suppression of dendritic cells' maturation and functions by daidzein, a phytoestrogen

    Energy Technology Data Exchange (ETDEWEB)

    Yum, Min Kyu; Jung, Mi Young [School of Life Sciences and Biotechnology, Korea University, Seoul 136-701 (Korea, Republic of); Cho, Daeho [Department of Life Science, Sookmyung Women' s University, Seoul 140-742 (Korea, Republic of); Kim, Tae Sung, E-mail: tskim@korea.ac.kr [School of Life Sciences and Biotechnology, Korea University, Seoul 136-701 (Korea, Republic of)

    2011-12-15

    Isoflavones are ubiquitous compounds in foods and in the environment in general. Daidzein and genistein, the best known of isoflavones, are structurally similar to 17{beta}-estradiol and known to exert estrogenic effects. They also evidence a broad variety of biological properties, including antioxidant, anti-carcinogenic, anti-atherogenic and anti-osteoporotic activities. Previously, daidzein was reported to increase the phagocytic activity of peritoneal macrophages and splenocyte proliferation, and to inhibit nitric oxide (NO) production in macrophages. However, its potential impacts on immune response in dendritic cells (DCs), antigen-presenting cells that link innate and adaptive immunity, have yet to be clearly elucidated. In this study, we evaluated the effects of isoflavones on the maturation and activation of DCs. Isoflavones (formononetin, daidzein, equol, biochanin A, genistein) were found to differentially affect the expression of CD86, a costimulatory molecule, on lipopolysaccharide (LPS)-stimulated DCs. In particular, daidzein significantly and dose-dependently inhibited the expression levels of maturation-associated cell surface markers including CD40, costimulatory molecules (CD80, CD86), and major histocompatibility complex class II (I-A{sup b}) molecule on LPS-stimulated DCs. Daidzein also suppressed pro-inflammatory cytokine production such as IL-12p40, IL-6 and TNF-{alpha}, whereas it didn't affect IL-10 and IL-1{beta} expression. Furthermore, daidzein enhanced endocytosis and inhibited the allo-stimulatory ability of LPS-stimulated DCs on T cells, indicating that daidzein treatment can inhibit the functional maturation of DCs. These results demonstrate that daidzein may exhibit immunosuppressive activity by inhibiting the maturation and activation of DCs. -- Highlights: Black-Right-Pointing-Pointer Daidzein inhibited expression of maturation-associated cell surface markers in DCs. Black-Right-Pointing-Pointer Daidzein suppressed expression

  5. The IL-2/IL-2-Receptor Complex in the Maturation of Rat T-Cell Progenitors

    OpenAIRE

    Alberto Varas; Teresa Romo; Eva Jiménez; Luis Alonso; Angeles Vicente; Agustín G. Zapata

    1998-01-01

    On the basis of both the interleukin-2-receptor (IL-2R) α-chain expression on 16-day-old fetal rat thymocytes and the occurrence of interleukin-2 (IL-2) mRNA-containing cells early during rat thymus ontogeny, we have investigated the possible role of IL-2/IL-2R complex in rat T-cell maturation. For this purpose, we analyzed the effects of the addition of either recombinant rat IL- 2 or anti-CD25 (OX-39)-blocking monoclonal antibodies to fetal thymus organ cultures (FTOC), established from 16-...

  6. Coiling and maturation of a high-performance fibre in hagfish slime gland thread cells

    Science.gov (United States)

    Winegard, Timothy; Herr, Julia; Mena, Carlos; Lee, Betty; Dinov, Ivo; Bird, Deborah; Bernards, Mark; Hobel, Sam; van Valkenburgh, Blaire; Toga, Arthur; Fudge, Douglas

    2014-04-01

    The defensive slime of hagfishes contains thousands of intermediate filament protein threads that are manufactured within specialized gland thread cells. The material properties of these threads rival those of spider dragline silks, which makes them an ideal model for biomimetic efforts to produce sustainable protein materials, yet how the thread is produced and organized within the cell is not well understood. Here we show how changes in nuclear morphology, size and position can explain the three-dimensional pattern of thread coiling in gland thread cells, and how the ultrastructure of the thread changes as very young thread cells develop into large cells with fully mature coiled threads. Our model provides an explanation for the complex process of thread assembly and organization that has fascinated and perplexed biologists for over a century, and provides valuable insights for the quest to manufacture high-performance biomimetic protein materials.

  7. Coupled electrophysiological recording and single cell transcriptome analyses revealed molecular mechanisms underlying neuronal maturation.

    Science.gov (United States)

    Chen, Xiaoying; Zhang, Kunshan; Zhou, Liqiang; Gao, Xinpei; Wang, Junbang; Yao, Yinan; He, Fei; Luo, Yuping; Yu, Yongchun; Li, Siguang; Cheng, Liming; Sun, Yi E

    2016-03-01

    The mammalian brain is heterogeneous, containing billions of neurons and trillions of synapses forming various neural circuitries, through which sense, movement, thought, and emotion arise. The cellular heterogeneity of the brain has made it difficult to study the molecular logic of neural circuitry wiring, pruning, activation, and plasticity, until recently, transcriptome analyses with single cell resolution makes decoding of gene regulatory networks underlying aforementioned circuitry properties possible. Here we report success in performing both electrophysiological and whole-genome transcriptome analyses on single human neurons in culture. Using Weighted Gene Coexpression Network Analyses (WGCNA), we identified gene clusters highly correlated with neuronal maturation judged by electrophysiological characteristics. A tight link between neuronal maturation and genes involved in ubiquitination and mitochondrial function was revealed. Moreover, we identified a list of candidate genes, which could potentially serve as biomarkers for neuronal maturation. Coupled electrophysiological recording and single cell transcriptome analysis will serve as powerful tools in the future to unveil molecular logics for neural circuitry functions. PMID:26883038

  8. Endometrial aspiration biopsy: a non-invasive method of obtaining functional lymphoid progenitor cells and mature natural killer cells.

    LENUS (Irish Health Repository)

    McMenamin, Moya

    2012-09-01

    The aim of this study was to compare the efficacy of endometrial aspiration biopsy (EAB) with the more traditional dilatation and curettage (D&C) for the procurement of lymphoid progenitor cells and uterine natural killer (NK) populations in endometrial tissue. This prospective observational study conducted in a tertiary referral university hospital examined endometrium obtained from 32 women admitted for laparoscopic gynaecological procedures. Each participant had endometrium sampled using both EAB and D&C. Both methods were assessed as a source of uterine NK and lymphoid progenitor cells. Similar proportions of mature CD45+CD56+ NK cells (range 25.4-36.2%) and CD45+CD34+ lymphoid progenitors (range 1.2-2.0%) were found in tissue obtained using both EAB and D&C. These cells were adequate for flow cytometric analysis, magnetic bead separation and culture. Colony formation by the CD34+ population demonstrated maturational potential. Tissues obtained via endometrial biopsy and D&C are equivalent, by analysis of uterine NK and lymphoid progenitor cells. The aim of this study was to compare two methods of endometrial sampling - endometrial aspiration biopsy and traditional dilatation and curettage - for the procurement of haematopoietic stem cells and uterine natural killer (NK) populations in endometrial tissue. Thirty-two women who had gynaecological procedures in a tertiary referral hospital participated in this study and had endometrial tissue collected via both methods. Similar populations of mature NK cells and haematopoietic stem cells were found in tissue obtained using both endometrial aspiration biopsy and dilatation and curettage. Tissue obtained via endometrial aspiration biopsy was adequate for the culture and growth of haematopoietic stem cells. We conclude that tissue obtained via endometrial biopsy and dilatation and curettage is equivalent, by analysis of uterine NK and haematopoietic stem cells using flow cytometry. This has implications for further

  9. SOX2+ cell population from normal human brain white matter is able to generate mature oligodendrocytes.

    Directory of Open Access Journals (Sweden)

    Jorge Oliver-De La Cruz

    Full Text Available OBJECTIVES: A number of neurodegenerative diseases progress with a loss of myelin, which makes them candidate diseases for the development of cell-replacement therapies based on mobilisation or isolation of the endogenous neural/glial progenitor cells, in vitro expansion, and further implantation. Cells expressing A2B5 or PDGFRA/CNP have been isolated within the pool of glial progenitor cells in the subcortical white matter of the normal adult human brain, all of which demonstrate glial progenitor features. However, the heterogeneity and differentiation potential of this pool of cells is not yet well established. METHODS: We used diffusion tensor images, histopathology, and immunostaining analysis to demonstrate normal cytoarchitecture and the absence of abnormalities in human temporal lobe samples from patients with mesial temporal sclerosis. These samples were used to isolate and enrich glial progenitor cells in vitro, and later to detect such cells in vivo. RESULTS: We have identified a subpopulation of SOX2+ cells, most of them co-localising with OLIG2, in the white matter of the normal adult human brain in vivo. These cells can be isolated and enriched in vitro, where they proliferate and generate immature (O4+ and mature (MBP+ oligodendrocytes and, to a lesser extent, astrocytes (GFAP+. CONCLUSION: Our results demonstrate the existence of a new glial progenitor cell subpopulation that expresses SOX2 in the white matter of the normal adult human brain. These cells might be of use for tissue regeneration procedures.

  10. p73 is required for ependymal cell maturation and neurogenic SVZ cytoarchitecture.

    Science.gov (United States)

    Gonzalez-Cano, L; Fuertes-Alvarez, S; Robledinos-Anton, N; Bizy, A; Villena-Cortes, A; Fariñas, I; Marques, M M; Marin, Maria C

    2016-07-01

    The adult subventricular zone (SVZ) is a highly organized microenvironment established during the first postnatal days when radial glia cells begin to transform into type B-cells and ependymal cells, all of which will form regenerative units, pinwheels, along the lateral wall of the lateral ventricle. Here, we identify p73, a p53 homologue, as a critical factor controlling both cell-type specification and structural organization of the developing mouse SVZ. We describe that p73 deficiency halts the transition of the radial glia into ependymal cells, leading to the emergence of immature cells with abnormal identities in the ventricle and resulting in loss of the ventricular integrity. p73-deficient ependymal cells have noticeably impaired ciliogenesis and they fail to organize into pinwheels, disrupting SVZ niche structure and function. Therefore, p73 is essential for appropriate ependymal cell maturation and the establishment of the neurogenic niche architecture. Accordingly, lack of p73 results in impaired neurogenesis. Moreover, p73 is required for translational planar cell polarity establishment, since p73 deficiency results in profound defects in cilia organization in individual cells and in intercellular patch orientation. Thus, our data reveal a completely new function of p73, independent of p53, in the neurogenic architecture of the SVZ of rodent brain and in the establishment of ependymal planar cell polarity with important implications in neurogenesis. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 76: 730-747, 2016. PMID:26482843

  11. Scrapie affects the maturation cycle and immune complex trapping by follicular dendritic cells in mice.

    Science.gov (United States)

    McGovern, Gillian; Mabbott, Neil; Jeffrey, Martin

    2009-01-01

    Transmissible spongiform encephalopathies (TSEs) or prion diseases are infectious neurological disorders of man and animals, characterised by abnormal disease-associated prion protein (PrP(d)) accumulations in the brain and lymphoreticular system (LRS). Prior to neuroinvasion, TSE agents often accumulate to high levels within the LRS, apparently without affecting immune function. However, our analysis of scrapie-affected sheep shows that PrP(d) accumulations within the LRS are associated with morphological changes to follicular dendritic cells (FDCs) and tingible body macrophages (TBMs). Here we examined FDCs and TBMs in the mesenteric lymph nodes (MLNs) of scrapie-affected mice by light and electron microscopy. In MLNs from uninfected mice, FDCs could be morphologically categorised into immature, mature and regressing forms. However, in scrapie-affected MLNs this maturation cycle was adversely affected. FDCs characteristically trap and retain immune complexes on their surfaces, which they display to B-lymphocytes. In scrapie-affected MLNs, some FDCs were found where areas of normal and abnormal immune complex retention occurred side by side. The latter co-localised with PrP(d) plasmalemmal accumulations. Our data suggest this previously unrecognised morphology represents the initial stage of an abnormal FDC maturation cycle. Alterations to the FDCs included PrP(d) accumulation, abnormal cell membrane ubiquitin and excess immunoglobulin accumulation. Regressing FDCs, in contrast, appeared to lose their membrane-attached PrP(d). Together, these data suggest that TSE infection adversely affects the maturation and regression cycle of FDCs, and that PrP(d) accumulation is causally linked to the abnormal pathology observed. We therefore support the hypothesis that TSEs cause an abnormality in immune function. PMID:19997557

  12. Scrapie affects the maturation cycle and immune complex trapping by follicular dendritic cells in mice.

    Directory of Open Access Journals (Sweden)

    Gillian McGovern

    Full Text Available Transmissible spongiform encephalopathies (TSEs or prion diseases are infectious neurological disorders of man and animals, characterised by abnormal disease-associated prion protein (PrP(d accumulations in the brain and lymphoreticular system (LRS. Prior to neuroinvasion, TSE agents often accumulate to high levels within the LRS, apparently without affecting immune function. However, our analysis of scrapie-affected sheep shows that PrP(d accumulations within the LRS are associated with morphological changes to follicular dendritic cells (FDCs and tingible body macrophages (TBMs. Here we examined FDCs and TBMs in the mesenteric lymph nodes (MLNs of scrapie-affected mice by light and electron microscopy. In MLNs from uninfected mice, FDCs could be morphologically categorised into immature, mature and regressing forms. However, in scrapie-affected MLNs this maturation cycle was adversely affected. FDCs characteristically trap and retain immune complexes on their surfaces, which they display to B-lymphocytes. In scrapie-affected MLNs, some FDCs were found where areas of normal and abnormal immune complex retention occurred side by side. The latter co-localised with PrP(d plasmalemmal accumulations. Our data suggest this previously unrecognised morphology represents the initial stage of an abnormal FDC maturation cycle. Alterations to the FDCs included PrP(d accumulation, abnormal cell membrane ubiquitin and excess immunoglobulin accumulation. Regressing FDCs, in contrast, appeared to lose their membrane-attached PrP(d. Together, these data suggest that TSE infection adversely affects the maturation and regression cycle of FDCs, and that PrP(d accumulation is causally linked to the abnormal pathology observed. We therefore support the hypothesis that TSEs cause an abnormality in immune function.

  13. A gene expression signature shared by human mature oocytes and embryonic stem cells

    Directory of Open Access Journals (Sweden)

    Pantesco Véronique

    2009-01-01

    Full Text Available Abstract Background The first week of human pre-embryo development is characterized by the induction of totipotency and then pluripotency. The understanding of this delicate process will have far reaching implication for in vitro fertilization and regenerative medicine. Human mature MII oocytes and embryonic stem (ES cells are both able to achieve the feat of cell reprogramming towards pluripotency, either by somatic cell nuclear transfer or by cell fusion, respectively. Comparison of the transcriptome of these two cell types may highlight genes that are involved in pluripotency initiation. Results Based on a microarray compendium of 205 samples, we compared the gene expression profile of mature MII oocytes and human ES cells (hESC to that of somatic tissues. We identified a common oocyte/hESC gene expression profile, which included a strong cell cycle signature, genes associated with pluripotency such as LIN28 and TDGF1, a large chromatin remodelling network (TOP2A, DNMT3B, JARID2, SMARCA5, CBX1, CBX5, 18 different zinc finger transcription factors, including ZNF84, and several still poorly annotated genes such as KLHL7, MRS2, or the Selenophosphate synthetase 1 (SEPHS1. Interestingly, a large set of genes was also found to code for proteins involved in the ubiquitination and proteasome pathway. Upon hESC differentiation into embryoid bodies, the transcription of this pathway declined. In vitro, we observed a selective sensitivity of hESC to the inhibition of the activity of the proteasome. Conclusion These results shed light on the gene networks that are concurrently overexpressed by the two human cell types with somatic cell reprogramming properties.

  14. In vivo targeting of antigens to maturing dendritic cells via the DEC-205 receptor improves T cell vaccination.

    Science.gov (United States)

    Bonifaz, Laura C; Bonnyay, David P; Charalambous, Anna; Darguste, Dara I; Fujii, Shin-Ichiro; Soares, Helena; Brimnes, Marie K; Moltedo, Bruno; Moran, Thomas M; Steinman, Ralph M

    2004-03-15

    The prevention and treatment of prevalent infectious diseases and tumors should benefit from improvements in the induction of antigen-specific T cell immunity. To assess the potential of antigen targeting to dendritic cells to improve immunity, we incorporated ovalbumin protein into a monoclonal antibody to the DEC-205 receptor, an endocytic receptor that is abundant on these cells in lymphoid tissues. Simultaneously, we injected agonistic alpha-CD40 antibody to mature the dendritic cells. We found that a single low dose of antibody-conjugated ovalbumin initiated immunity from the naive CD4+ and CD8+ T cell repertoire. Unexpectedly, the alphaDEC-205 antigen conjugates, given s.c., targeted to dendritic cells systemically and for long periods, and ovalbumin peptide was presented on MHC class I for 2 weeks. This was associated with stronger CD8+ T cell-mediated immunity relative to other forms of antigen delivery, even when the latter was given at a thousand times higher doses. In parallel, the mice showed enhanced resistance to an established rapidly growing tumor and to viral infection at a mucosal site. By better harnessing the immunizing functions of maturing dendritic cells, antibody-mediated antigen targeting via the DEC-205 receptor increases the efficiency of vaccination for T cell immunity, including systemic and mucosal resistance in disease models.

  15. Age and size at maturity: a quantitative review of diet-induced reaction norms in insects.

    Science.gov (United States)

    Teder, Tiit; Vellau, Helen; Tammaru, Toomas

    2014-11-01

    Optimality models predict that diet-induced bivariate reaction norms for age and size at maturity can have diverse shapes, with the slope varying from negative to positive. To evaluate these predictions, we perform a quantitative review of relevant data, using a literature-derived database of body sizes and development times for over 200 insect species. We show that bivariate reaction norms with a negative slope prevail in nearly all taxonomic and ecological categories of insects as well as in some other ectotherm taxa with comparable life histories (arachnids and amphibians). In insects, positive slopes are largely limited to species, which feed on discrete resource items, parasitoids in particular. By contrast, with virtually no meaningful exceptions, herbivorous and predatory insects display reaction norms with a negative slope. This is consistent with the idea that predictable resource depletion, a scenario selecting for positively sloped reaction norms, is not frequent for these insects. Another source of such selection-a positive correlation between resource levels and juvenile mortality rates-should similarly be rare among insects. Positive slopes can also be predicted by models which integrate life-history evolution and population dynamics. As bottom-up regulation is not common in most insect groups, such models may not be most appropriate for insects.

  16. Peripheral tolerance through clonal deletion of mature CD4-CD8+ T cells.

    Science.gov (United States)

    Carlow, D A; Teh, S J; van Oers, N S; Miller, R G; Teh, H S

    1992-05-01

    Transgenic mice bearing the alpha beta transgenes encoding a defined T cell receptor specific for the male (H-Y) antigen presented by the H-2Db class I MHC molecule were used to study mechanisms of peripheral tolerance. Female transgenic mice produce large numbers of functionally homogeneous CD8+ male antigen-reactive T cells in the thymus that subsequently accumulate in the peripheral lymphoid organs. We have used three experimental approaches to show that male reactive CD8+ T cells can be eliminated from peripheral lymphoid organs after exposure to male antigen. (i) In female transgenic mice that were neonatally tolerized with male spleen cells, male reactive CD8+ T cells continued to be produced in large numbers in the thymus but were virtually absent in the lymph nodes. (ii) Injection of thymocytes from female transgenic mice into female mice neonatally tolerized with the male antigen, or into normal male mice, led to the specific elimination of male-reactive CD8+ T cells in the lymph nodes. (iii) Four days after male lymphoid cells were injected intravenously into female transgenic mice, male antigen-reactive CD8+ T cells recovered from the lymph nodes of recipient mice were highly apoptotic when compared to CD4+ (non-male reactive) T cells. These data indicate that tolerance to extrathymic antigen can be achieved through elimination of mature T cells in the peripheral lymphoid organs.

  17. Pediatric mature B-cell non Hodgkin lymphoma treatment with LMB-96 protocol. The Children Cancer Hospital Egypt experience

    OpenAIRE

    Hany Abdel Rahman; Emad Moussa; Mohamed Sedky; Iman Gouda; Madiha El Wakeel; Omneya Hassanein

    2015-01-01

    Purpose: Burkitt lymphoma (BL) is a highly aggressive mature B-cell non-Hodgkin lymphoma (NHL) and is the fastest growing human tumor. The outcome of childhood NHL has improved steadily over the past decades through the use of intensive sequential multi-agent chemotherapy regimens.Methods: A retrospective study having all patients 18 years old or younger diagnosed with mature B cell NHL and treated at Children Cancer Hospital Egypt (CCHE). All children were treated according to the modified (...

  18. In Vivo Targeting of Antigens to Maturing Dendritic Cells via the DEC-205 Receptor Improves T Cell Vaccination

    Science.gov (United States)

    Bonifaz, Laura C.; Bonnyay, David P.; Charalambous, Anna; Darguste, Dara I.; Fujii, Shin-Ichiro; Soares, Helena; Brimnes, Marie K.; Moltedo, Bruno; Moran, Thomas M.; Steinman, Ralph M.

    2004-01-01

    The prevention and treatment of prevalent infectious diseases and tumors should benefit from improvements in the induction of antigen-specific T cell immunity. To assess the potential of antigen targeting to dendritic cells to improve immunity, we incorporated ovalbumin protein into a monoclonal antibody to the DEC-205 receptor, an endocytic receptor that is abundant on these cells in lymphoid tissues. Simultaneously, we injected agonistic α-CD40 antibody to mature the dendritic cells. We found that a single low dose of antibody-conjugated ovalbumin initiated immunity from the naive CD4+ and CD8+ T cell repertoire. Unexpectedly, the αDEC-205 antigen conjugates, given s.c., targeted to dendritic cells systemically and for long periods, and ovalbumin peptide was presented on MHC class I for 2 weeks. This was associated with stronger CD8+ T cell–mediated immunity relative to other forms of antigen delivery, even when the latter was given at a thousand times higher doses. In parallel, the mice showed enhanced resistance to an established rapidly growing tumor and to viral infection at a mucosal site. By better harnessing the immunizing functions of maturing dendritic cells, antibody-mediated antigen targeting via the DEC-205 receptor increases the efficiency of vaccination for T cell immunity, including systemic and mucosal resistance in disease models. PMID:15024047

  19. Mature T- and NK-cell non-Hodgkin lymphoma in children and young adolescents.

    Science.gov (United States)

    Pillai, Vinodh; Tallarico, Michael; Bishop, Michael R; Lim, Megan S

    2016-05-01

    Mature T/Natural killer (NK)-cell neoplasms of children and the young adolescent population exhibit higher prevalence in Central and South American and Asian populations and many are associated with Epstein-Barr virus (EBV). They are represented in large part by extranodal T/NK cell lymphomas- nasal-type or extra nasal-type, chronic lymphoproliferative disorders of T/NK cells or chronic active EBV disease, systemic EBV-positive lymphoproliferative disorders of childhood, hydroa vacciniforme-like lymphoma, hepatosplenic T-cell lymphoma and primary cutaneous gamma/delta T-cell lymphoma among others. Many T/NK cell neoplasms in this age group are derived from cells of the innate immune system, in contrast to adults where they are predominantly from the adaptive immune system. The genetic basis of T/NK cell lymphomas in children and young adolescents remains largely unknown. Anthracycline-based regimens and haematopoietic stem cell transplants (allogeneic and autologous) are current treatment modalities, however it is anticipated that novel targeted therapeutic agents will be available in the near future. PMID:26992145

  20. Whey protein processing influences formula-induced gut maturation in preterm pigs.

    Science.gov (United States)

    Li, Yanqi; Østergaard, Mette V; Jiang, Pingping; Chatterton, Dereck E W; Thymann, Thomas; Kvistgaard, Anne S; Sangild, Per T

    2013-12-01

    Immaturity of the gut predisposes preterm infants to nutritional challenges potentially leading to clinical complications such as necrotizing enterocolitis. Feeding milk formulas is associated with greater risk than fresh colostrum or milk, probably due to loss of bioactive proteins (e.g., immunoglobulins, lactoferrin, insulin-like growth factor, transforming growth factor-β) during industrial processing (e.g., pasteurization, filtration, spray-drying). We hypothesized that the processing method for whey protein concentrate (WPC) would affect gut maturation in formula-fed preterm pigs used as a model for preterm infants. Fifty-five caesarean-delivered preterm pigs were distributed into 4 groups given 1 of 4 isoenergetic diets: formula containing conventional WPC (filtration, multi-pasteurization, standard spray-drying) (CF); formula containing gently treated WPC (reduced filtration and pasteurization, gentle spray-drying) (GF); formula containing minimally treated WPC (rennet precipitation, reduced filtration, heat treatment bovine colostrum (used as a positive reference group) (BC). Relative to CF, GF, and MF pigs, BC pigs had greater villus heights, lactose digestion, and absorption and lower gut permeability (P cells. We conclude that processing of WPC affects intestinal structure, function, and integrity when included in formulas for preterm pigs. Optimization of WPC processing technology may be important to preserve the bioactivity and nutritional value of formulas for sensitive newborns. PMID:24047702

  1. Mature cystic teratoma with malignant transformation of teratomatous urothelial cells: Rare case presentation

    Directory of Open Access Journals (Sweden)

    Senjuti Dasgupta

    2015-01-01

    Full Text Available The occurrence of malignancies in somatic elements of mature cystic teratoma of ovary is rare. The malignancies that may be encountered in dermoid cyst include squamous cell carcinoma, adenocarcinoma, adenosquamous carcinoma, melanoma, sarcoma, carcinoid, and germ cell neoplasms. The development of transitional cell carcinoma (TCC in dermoid cyst is extremely rare with only four such cases having been reported in literature so far. Here we report the fifth case of such an occurrence in a 50-year-old postmenopausal multiparous female patient. She presented with pain and gradual swelling of abdomen for 1 month. Abdominal computed tomography revealed a solid space occupying lesion with few cystic components at right pelvis, raising the possibility of an ovarian neoplasm. The level of CA-125 was slightly raised (56∙45 U/ml. Total abdominal hysterectomy and bilateral salpingo-oopherectomy was performed. Microscopic examination showed cyst wall lined by stratified squamous epithelium. Beneath the cyst wall, a tumor mass was present, histological features of which resembled that of high-grade TCC (stage pT1aNXMX. On immunohistochemical analysis, the tumor was found to be positive for CK7 and CK20 and negative for WT-1. These results were consistent with a diagnosis of TCC arising in urothelium of mature cystic teratoma. Reporting of such extremely rare cases is important for the assessment of prognostic factors and treatment protocols.

  2. A Tec kinase BTK inhibitor ibrutinib promotes maturation and activation of dendritic cells.

    Science.gov (United States)

    Natarajan, Gayathri; Oghumu, Steve; Terrazas, Cesar; Varikuti, Sanjay; Byrd, John C; Satoskar, Abhay R

    2016-06-01

    Ibrutinib, a BTK inhibitor, is currently used to treat various hematological malignancies. We evaluated whether ibrutinib treatment during development of murine bone marrow-derived dendritic cells (DCs) modulates their maturation and activation. Ibrutinib treatment increased the proportion of CD11c(+) DCs, upregulated the expression of MHC-II and CD80 and downregulated Ly6C expression by DCs. Additionally, ibrutinib treatment led to an increase in MHC-II(+), CD80(+) and CCR7(+) DCs but a decrease in CD86(+) DCs upon LPS stimulation. LPS/ibrutinib-treated DCs displayed increased IFNβ and IL-10 synthesis and decreased IL-6, IL-12 and NO production compared to DCs stimulated with LPS alone. Finally, LPS/ibrutinib-treated DCs promoted higher rates of CD4(+) T cell proliferation and cytokine production compared to LPS only stimulated DCs. Taken together, our results indicate that ibrutinib enhances the maturation and activation of DCs to promote CD4(+) T cell activation which could be exploited for the development of DC-based cancer therapies. PMID:27471620

  3. Estrogen influences the differentiation, maturation and function of dendritic cells in rats with experimental autoimmune encephalomyelitis

    Institute of Scientific and Technical Information of China (English)

    Qing-hong ZHANG; Yu-zhen HU; Jun CAO; Yan-qing ZHONG; Yu-feng ZHAO; Qi-bing MEI

    2004-01-01

    AIM: To examine if estrogen can affect the immune response at the dendritic cells (DCs) level in rats with experimental autoimmune encephalomyelitis (EAE). METHODS: Lewis rats were immunized with inoculum containing MBP68-86. DCs were derived from spleen monocytes of EAE rats with IL-4 and GM-CSF in presence of 17β-estradiol (E2). Nitric oxide (NO) was detected by Griess reagent. The surface markers and cytokines production of DCs were shown by flow cytometry. DCs were cocultured with MBP-specific T cells, [3H]-TdR incoportation was used to reveal the antigen presentability, the supematant of the coculture were collected to examine the cytokines secretion by ELISA. RESULTS: E2 activated DCs by accelerating the maturation process characterized by upregulation of MHC II and costimulating molecule B7-1, B7-2, drastic high expression of CD40. IFN-γ-producing DCs were also elevated without any alteration of IL-10. Estradiol-treated DCs (E2-DCs) secreted more NO in the culture supernatant. By contrast, E2-DCs showed decreased antigen presentation ability with reduced secretion of IFN-γ but no alteration of IL-10 in the coculture with T cells. CONCLUSION: Estrogen can affect the differentiation, maturation and function of DCs from EAE rats, which may be attributed to its protection against EAE and the remission of multiple sclerosis patients in pregnancy.

  4. Global discovery of erythroid long noncoding RNAs reveals novel regulators of red cell maturation.

    Science.gov (United States)

    Alvarez-Dominguez, Juan R; Hu, Wenqian; Yuan, Bingbing; Shi, Jiahai; Park, Staphany S; Gromatzky, Austin A; van Oudenaarden, Alexander; Lodish, Harvey F

    2014-01-23

    Erythropoiesis is regulated at multiple levels to ensure the proper generation of mature red cells under multiple physiological conditions. To probe the contribution of long noncoding RNAs (lncRNAs) to this process, we examined >1 billion RNA-seq reads of polyadenylated and nonpolyadenylated RNA from differentiating mouse fetal liver red blood cells and identified 655 lncRNA genes including not only intergenic, antisense, and intronic but also pseudogene and enhancer loci. More than 100 of these genes are previously unrecognized and highly erythroid specific. By integrating genome-wide surveys of chromatin states, transcription factor occupancy, and tissue expression patterns, we identify multiple lncRNAs that are dynamically expressed during erythropoiesis, show epigenetic regulation, and are targeted by key erythroid transcription factors GATA1, TAL1, or KLF1. We focus on 12 such candidates and find that they are nuclear-localized and exhibit complex developmental expression patterns. Depleting them severely impaired erythrocyte maturation, inhibiting cell size reduction and subsequent enucleation. One of them, alncRNA-EC7, is transcribed from an enhancer and is specifically needed for activation of the neighboring gene encoding BAND 3. Our study provides an annotated catalog of erythroid lncRNAs, readily available through an online resource, and shows that diverse types of lncRNAs participate in the regulatory circuitry underlying erythropoiesis.

  5. Somatostatin Improved B Cells Mature in Macaques during Intestinal Ischemia-Reperfusion.

    Directory of Open Access Journals (Sweden)

    Ling Liu

    Full Text Available Intestinal ischemia-reperfusion has been taken as an important pathophysiological process for multiple organ dysfunctions in critical patients. Recent studies reported that dual expression programs of the B cells receptors and Toll-like receptors on B-lymphocytes permit these ubiquitous cells to integrate both adaptive and innate immune functions. Our previous studies found that somatostatin inhibited the intestinal inflammatory injury after ischemia-reperfusion in macaques. However, the changes of B cells and the effects of somatostatin on B cells after intestinal ischemia-reperfusion were unclear.15 macaques were divided into control, intestinal ischemia-reperfusion and somatostatin pretreatment groups. Immunohistochemistry was performed to identify the distributions of adaptive and innate immunity markers in the iliac mucosa. Hmy2.cir B lymphoblastoid cell line was cultured in vitro study. Enzyme-linked immunosorbent assay was used to measure IgM, IL-6 and SIgA, and the expressions of B cells transcription factors, PAX-5 and BLIMP-1, were detected by Western blotting.B2 lymphocytes in normal Peyer's patches were presented the phenotype of PAX-5+CD20+CD5-. Ischemia-reperfusion increased the numbers and sizes of Peyer's patches but with PAX-5+CD20-CD5- B cells, an unmatured set of B cells. Somatostatin partly kept the phenotype of mature B cells during ischemia-reperfusion. The innate immunity of B cells was inhibited whereas the adaptive immunity was increased in the intestinal mucosa in the somatostatin group, compared to the ischemia-reperfusion group. In vitro, somatostatin significantly inhibited IL-6 and promoted IgM by increasing the expression of both PAX-5 and BLIMP-1 in the proinflammatory condition.Intestinal ischemia-reperfusion resulted in the proliferation of unmatured B cells which were involved in the augmentation of innate immunity. Somatostatin, with a bi-directional regulation function on innate as well as adaptive immunity

  6. Establishment of a preadipocyte cell line derived from mature adipocytes of GFP transgenic mice and formation of adipose tissue.

    Science.gov (United States)

    Nobusue, Hiroyuki; Endo, Tsuyoshi; Kano, Koichiro

    2008-06-01

    We established a preadipocyte cell line from mature adipocytes obtained from subcutaneous fat tissue of green fluorescent protein (GFP) transgenic mice. The floating top layer, containing mature adipocytes, was isolated from subcutaneous fat tissue by collagenase digestion and filtration. Fluorescence-activated cell sorting and microscopic analysis revealed that the floating cell fraction comprised a highly homogeneous adipocyte population with no adipose stromal-vascular cells. Isolated mature adipocytes dedifferentiated into fibroblast-like cells and actively proliferated in ceiling culture. In vitro studies showed that the cells could redifferentiate into mature adipocytes in an identical way to 3T3-L1 preadipocytes. No changes in the differentiation pattern were observed during the propagation of our cells. They were successfully maintained and differentiated for at least 22 passages. We named these cells dedifferentiated fat (DFAT-GFP) cells. When DFAT-GFP cells were implanted subcutaneously into C57BL/6N mice, they developed highly vascularized fat pads that morphologically resembled normal subcutaneous adipose tissue and consisted of GFP-positive cells; however, implanted 3T3-L1 cells did not have such an effect on the mice. We conclude that DFAT-GFP cells provide a model that should enable us to study the mechanisms of adipocyte differentiation and adipose tissue formation in vivo and in vitro. PMID:18386066

  7. Thymic and peripheral microenvironments differentially mediate development and maturation of iNKT cells by IL-15 transpresentation.

    Science.gov (United States)

    Castillo, Eliseo F; Acero, Luis F; Stonier, Spencer W; Zhou, Dapeng; Schluns, Kimberly S

    2010-10-01

    Invariant NKT (iNKT) cells are an innate type of T cells, which respond rapidly on activation. iNKT cells acquire these innate-like abilities during development; however, the signals driving development and functional maturation remain only partially understood. Because interleukin-15 (IL-15) is crucial for iNKT development and is delivered by transpresentation, we set out to identify the cell types providing IL-15 to developing iNKT cells and determine their role at the various states of development and maturation. We report here that transpresentation of IL-15 by parenchymal cells was crucial for generating normal number of iNKTs in the thymus, whereas both hematopoietic and parenchymal cells regulated iNKT cell numbers in the periphery, particularly in the liver. Specifically, dendritic cells contributed to peripheral iNKT cell numbers by up-regulating Bcl-2 expression and promoting extrathymic iNKT cell ex-pansion and their homeostatic proliferation. Whether IL-15 affects functional maturation of iNKT cells was also examined. In IL-15Rα(-/-) mice, CD44(High)NK1.1(+) iNKT cells displayed decreased T-bet expression and in response to α-galactosylceramide, had deficient interferon-γ expression. Such defects could be reversed by exogenous IL-15 signals. Overall, these studies identify stage-specific functions of IL-15, which are determined by the tissue microenvironment and elucidate the importance of IL-15 in functional maturation.

  8. Mature neurons modulate neurogenesis through chemical signals acting on neural stem cells.

    Science.gov (United States)

    Pardal, Ricardo; López Barneo, José

    2016-06-01

    The discovery of neural stem cells has revealed a much higher structural and functional plasticity in the adult nervous system than previously anticipated. Progenitor cells are able to give rise to new neurons and glial cells when needed, thanks to their surveillance of the environment from the germinal niches. Multiple different factors define neural stem cell niches, including cellular and non-cellular components. Innervation of neurogenic centers is crucial, as it allows the functional connection between stem cell behavior and surrounding neuronal activity. Although the association between organismal behavior and neurogenesis is well documented, much less is known about the cellular and molecular mechanisms by which neurons control stem cell activity. In this review we discuss the existing data on this type of regulation from the three best characterized germinal niches in the adult nervous system: the subventricular zone, the hippocampal subgranular zone, and the carotid body. In all cases, neuronal activity modulates stem cell behavior either by neurotransmitter spillover or by synaptic-like contacts. Currently, the molecular mechanisms underlying mature neuron-stem cell interaction are being clarified. Functional consequences and potential clinical relevance of these phenomena are also discussed. PMID:27101323

  9. Effects of vitamin A on in vitro maturation of pre-pubertal mouse spermatogonial stem cells.

    Directory of Open Access Journals (Sweden)

    Albanne Travers

    Full Text Available Testicular tissue cryopreservation is the only potential option for fertility preservation in pre-pubertal boys exposed to gonadotoxic treatment. Completion of spermatogenesis after in vitro maturation is one of the future uses of harvested testicular tissue. The purpose of the current study was to evaluate the effects of vitamin A on in vitro maturation of fresh and frozen-thawed mouse pre-pubertal spermatogonial stem cells in an organ culture system. Pre-pubertal CD1 mouse fresh testes were cultured for 7 (D7, 9 (D9 and 11 (D11 days using an organ culture system. Basal medium was supplemented with different concentrations of retinol (Re or retinoic acid (RA alone or in combination. Seminiferous tubule morphology (tubule diameter, intra-tubular cell type, intra-tubular cell death and proliferation (PCNA antibody and testosterone level were assessed at D7, D9 and D11. Pre-pubertal mouse testicular tissue were frozen after a soaking temperature performed at -7 °C, -8 °C or -9 °C and after thawing, were cultured for 9 days, using the culture medium preserving the best fresh tissue functionality. Retinoic acid at 10(-6M and retinol at 3.3.10(-7M, as well as retinol 10(-6M are favourable for seminiferous tubule growth, maintenance of intra-tubular cell proliferation and germ cell differentiation of fresh pre-pubertal mouse spermatogonia. Structural and functional integrity of frozen-thawed testicular tissue appeared to be well-preserved after soaking temperature at -8 °C, after 9 days of organotypic culture using 10(-6M retinol. RA and Re can control in vitro germ cell proliferation and differentiation. Re at a concentration of 10(-6M maintains intra-tubular cell proliferation and the ability of spermatogonia to initiate spermatogenesis in fresh and frozen pre-pubertal mouse testicular tissue using a soaking temperature at -8 °C. Our data suggested a possible human application for in vitro maturation of cryopreserved pre-pubertal testicular

  10. Effects of mature Sertoli cells on allogeneic islets cocultured in vitro

    Institute of Scientific and Technical Information of China (English)

    Heli Xiang; Wujun Xue; Yan Teng; Xinshun Feng; Puxun Tian; Xiaoming Ding

    2006-01-01

    Objective: To set up a method for isolation and culture of mature Sertoli cells and to estimate their effects on allogeneic islets cocultured in vitro. Methods: Adult SD rat testicular Sertoli cells were prepared successfully by three-step enzyme digestion. Then they were cocultured respectively with allogeneic islets and activated Wistar rat splenocytes. 24-hour cumulative insulin release and glucose-stimulated insulin secretion test were performed to detect islet function between pure islets culture group and coculture group. Splenocyte proliferation activity was determined by MTT colorimetry assay to observe the inhibition effect of Sertoli cells in different densities. Result: Firstly, in pure islet culture group, the 24-hour cumulative insulin release was gradually decreased in 21-day culture time. Compared to day 3, this change was significant on day 7 (P < 0.05) and on day 10,14,21 (P < 0.01). In contrast, in coculture group, compared to day 3, the 24-hour cumulative insulin release was increased significantly on day 7 (P < 0.01 ), and then gradually decreased on day 10 and 14, but still higher than that of day 3. It was on day 21 that it began to decrease compared to day 3 (P < 0.05). During the culture time in vitro, the 24-hour cumulative insulin release of islet coculture group was significantly higher than that of pure islets culture group (P < 0.01). In the case of stimulation index(SI), there was a similar tendency as insulin release in the two groups. Secondly, mature Sertoli cells(1×106/mL)pretreated by 15 grays irradiation could decrease proliferation activity of activated splenocytes compared to that of control group (P < 0.01 ). This inhibition effect was dose-dependent. Conclusion: Mature Sertoli cells can improve the function and prolong the survival of islet cells cultured in vitro. They can also provide an immune protection to islet cells. The approach described above might be applicable to human islet transplantation as soon as

  11. Relation between clinical mature and immature lymphocyte cells in human peripheral blood and their spatial label free scattering patterns

    Science.gov (United States)

    Zhang, Lu; Zhao, Xin; Zhang, Zhenxi; Zhao, Hong; Chen, Wei; Yuan, Li

    2016-07-01

    A single living cell's light scattering pattern (LSP) in the horizontal plane, which has been denoted as the cell's "2D fingerprint," may provide a powerful label-free detection tool in clinical applications. We have recently studied the LSP in spatial scattering planes, denoted as the cell's "3D fingerprint," for mature and immature lymphocyte cells in human peripheral blood. The effects of membrane size, morphology, and the existence of the nucleus on the spatial LSP are discussed. In order to distinguish clinical label-free mature and immature lymphocytes, the special features of the spatial LSP are studied by statistical method in both the spatial and frequency domains. Spatial LSP provides rich information on the cell's morphology and contents, which can distinguish mature from immature lymphocyte cells and hence ultimately it may be a useful label-free technique for clinical leukemia diagnosis.

  12. Endotoxin-induced nitric oxide production rescues airway growth and maturation in atrophic fetal rat lung explants

    International Nuclear Information System (INIS)

    Inflammation induces premature maturation of the fetal lung but the signals causing this effect remain unclear. We determined if nitric oxide (NO) synthesis, evoked by Escherichia coli lipopolysaccharide (LPS, 2 μg ml-1), participated in this process. Fetal rat lung airway surface complexity rose 2.5-fold over 96 h in response to LPS and was associated with increased iNOS protein expression and activity. iNOS inhibition by N6-(1-iminoethyl)-L-lysine-2HCl (L-NIL) abolished this and induced airway atrophy similar to untreated explants. Surfactant protein-C (SP-C) expression was also induced by LPS and abolished by L-NIL. As TGFβ suppresses iNOS activity, we determined if feedback regulation modulated NO-dependent maturation. LPS induced TGFβ1 release and SMAD4 nuclear translocation 96 h after treatment. Treatment of explants with a blocking antibody against TGFβ1 sustained NO production and airway morphogenesis whereas recombinant TGFβ1 antagonized these effects. Feedback regulation of NO synthesis by TGFβ may, thus, modulate airway branching and maturation of the fetal lung

  13. An induced junction photovoltaic cell

    Science.gov (United States)

    Call, R. L.

    1974-01-01

    Silicon solar cells operating with induced junctions rather than diffused junctions have been fabricated and tested. Induced junctions were created by forming an inversion layer near the surface of the silicon by supplying a sheet of positive charge above the surface. Measurements of the response of the inversion layer cell to light of different wavelengths indicated it to be more sensitive to the shorter wavelengths of the sun's spectrum than conventional cells. The greater sensitivity occurs because of the shallow junction and the strong electric field at the surface.

  14. B cell development in the bone marrow is regulated by homeostatic feedback exerted by mature B cells

    Directory of Open Access Journals (Sweden)

    Gitit eShahaf

    2016-03-01

    Full Text Available Cellular homeostasis in the B cell compartment is strictly imposed to balance cell production and cell loss. However, it is not clear whether B cell development in the bone marrow (BM is an autonomous process or subjected to regulation by the peripheral B cell compartment. To specifically address this question, we used mice transgenic for human CD20, where effective depletion of B lineage cells is obtained upon administration of mouse-anti-human CD20 antibodies, in the absence of any effect on other cell lineages and/or tissues. We followed the kinetics of B cell return to equilibrium by BrdU labeling and flow cytometry and analyzed the resulting data by mathematical modeling. Labeling was much faster in depleted mice. Compared to control mice, B cell-depleted mice exhibited a higher proliferation rate in the pro-/pre-B compartment, and higher cell death and lower differentiation in the immature B cell compartment. We validated the first result by analysis of the expression of Ki67, the nuclear protein expressed in proliferating cells, and the second using Annexin-V staining. Collectively, our results suggest that B lymphopoiesis is subjected to homeostatic feedback mechanisms imposed by mature B cells in the peripheral compartment.

  15. Effect of non-cell Corynebacterium Parvum on differentiation and maturation of bone marrow-derived dendritic cells.

    Science.gov (United States)

    Liu, Chenghu; Gao, Shangxian; Qu, Zhonghua; Guo, Chun; Wu, Ping; Shi, Yanping; Zhang, Lining

    2012-01-01

    Corynebacterium parvum (CP), with their potent anti-tumor activities, has been well documented. Non-cell Corynebacterium Parvum (NCPP) is a neotype of biological preparation, which based on manipulating CP with nanotechnology. The present study was designed to investigate the effect of NCPP/CP on bone marrow derived dendritic cells (BMDCs) in tumor-bearing mice, especially focused on the differentiation and maturation of these BMDCs. BM cells from tumor-bearing mice administrated with NCPP/CP were analyzed by flow cytometry, which exhibit enhanced numbers of DCs and macrophages. In the meanwhile, flow cytometry analysis showed mild but significant difference for CD80 expression on these LPS- treated BMDCs between NCPP/CP administrated mice and the control animals. Furthermore, antigen presenting assay for these LPS-treated BMDCs showed significant difference for cytolytic assay of CD8+T cells against B16 melanoma cells, which indicate that NCPP treatments have enhanced the cytolytic rates of CD8+T cells from 47.9%±2.3% to 54.2%±2.4%. The data suggest that NCPP/CP treatment can efficiently facilitate the generation of BMDCs in vivo and enhance the maturation of these BMDCs in vitro. PMID:22676053

  16. Involvement of Phosphatases in Proliferation, Maturation, and Hemoglobinization of Developing Erythroid Cells

    Directory of Open Access Journals (Sweden)

    Eitan Fibach

    2011-01-01

    Full Text Available Production of RBCs is triggered by the action of erythropoietin (Epo through its binding to surface receptors (Epo-R on erythroid precursors in the bone marrow. The intensity and the duration of the Epo signal are regulated by several factors, including the balance between the activities of kinesase and phosphatases. The Epo signal determines the proliferation and maturation of the precursors into hemoglobin (Hb-containing RBCs. The activity of various protein tyrosine phosphatases, including those involved in the Epo pathway, can be inhibited by sodium orthovanadate (Na3VO4, vanadate. Adding vanadate to cultured erythroid precursors of normal donors and patients with β-thalassemia enhanced cell proliferation and arrested maturation. This was associated with an increased production of fetal hemoglobin (HbF. Increased HbF in patients with β-hemoglobinopathies (β-thalassemia and sickle cell disease ameliorates the clinical symptoms of the disease. These results raise the possibility that specific and nontoxic inhibitors of phosphatases may be considered as a therapeutic modality for elevating HbF in patients with β-hemoglobinopathies as well as for intensifying the Epo response in other forms of anemia.

  17. Pancreatic Cancer Cells Isolated from Muc1-null Tumors Favor the Generation of a Mature Less Suppressive MDSC Population

    Directory of Open Access Journals (Sweden)

    Amritha eKidiyoor

    2014-02-01

    Full Text Available Mucin 1 (MUC1 is a transmembrane mucin glycoprotein that is over-expressed and aberrantly glycosylated in >80% of human pancreatic ductal adenocarcinoma (PDA and is associated with poor prognosis. To understand the role of MUC1 in PDA, we have recently developed two mouse models of spontaneous PDA, one that expresses full-length human MUC1 transgene (KCM mice and one that is null for MUC1 (KCKO mice. We have previously reported that KCM mice express high levels of myeloid derived suppressor cells (MDSCs in their tumors and develop highly aggressive PDA. To further understand the underlying mechanism for high MDSC levels in KCM tumors, we generated primary cell lines from KCM and KCKO tumors. In this study, we report that MDSCs derived using KCM cells express significantly higher levels of arginase 1 and inducible nitric oxide synthase (markers associated with immune suppression and lower levels of CD115 (a marker associated with maturation of myeloid cells as compared to KCKO-derived MDSCs. Functionally, KCM-derived MDSCs secrete significantly higher levels of urea and nitric oxide when co-cultured with normal splenic cells as compared to KCKO-derived MDSCs. Data indicates that KCM-derived MDSCs remain immature and are more suppressive as compared to KCKO-derived MDSCs. This was further corroborated in vivo where MDSCs isolated from KCM-tumor bearing mice retained their immature state and were highly suppressive as compared to MDSCs derived from KCKO-tumor bearing mice. Finally, we show that KCM cells secrete significantly higher levels of prostaglandin E2 (PGE2,, a COX-2 metabolite and a known driver of suppressive MDSCs as compared to KCKO cells. Thus, inhibiting PGE2 with a specific COX-2 inhibitor reverses the immunosuppressive and immature phenotype of KCM-derived MDSCs. This is the first report that clearly suggests a functional role of pancreatic tumor-associated MUC1 in the development of functional MDSCs.

  18. Engineering Adolescence: Maturation of Human Pluripotent Stem Cell-derived Cardiomyocytes

    OpenAIRE

    Yang, Xiulan; Pabon, Lil; Murry, Charles E.

    2014-01-01

    The discovery of human pluripotent stem cells (hPSCs), including both human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs), has opened up novel paths for a wide range of scientific studies. The capability to direct the differentiation of hPSCs into functional cardiomyocytes has provided a platform for regenerative medicine, development, tissue engineering, disease modeling, and drug toxicity testing. Despite exciting progress, achieving the optimal benefits has...

  19. Alternative donor hematopoietic stem cell transplantation for mature lymphoid malignancies after reduced-intensity conditioning regimen

    DEFF Research Database (Denmark)

    Rodrigues, Celso Arrais; Rocha, Vanderson; Dreger, Peter;

    2014-01-01

    We have reported encouraging results of unrelated cord blood transplantation for patients with lymphoid malignancies. Whether those outcomes are comparable to matched unrelated donor transplants remains to be defined. We studied 645 adult patients with mature lymphoid malignancies who received...... an allogeneic unrelated donor transplant using umbilical cord blood (n=104) or mobilized peripheral blood stem cells (n=541) after a reduced-intensity conditioning regimen. Unrelated cord blood recipients had more refractory disease. Median follow-up time was 30 months. Neutrophil engraftment (81% vs. 97......%), and relapse or progression (28% vs. 35%) at 36 months. There were also no significant differences in 2-year progression-free survival (43% vs. 58%, respectively) and overall survival (36% vs. 51%) at 36 months. In a multivariate analysis, no differences were observed in the outcomes between the two stem cell...

  20. Flotillins are involved in the polarization of primitive and mature hematopoietic cells.

    Directory of Open Access Journals (Sweden)

    Lawrence Rajendran

    Full Text Available BACKGROUND: Migration of mature and immature leukocytes in response to chemokines is not only essential during inflammation and host defense, but also during development of the hematopoietic system. Many molecules implicated in migratory polarity show uniform cellular distribution under non-activated conditions, but acquire a polarized localization upon exposure to migratory cues. METHODOLOGY/PRINCIPAL FINDINGS: Here, we present evidence that raft-associated endocytic proteins (flotillins are pre-assembled in lymphoid, myeloid and primitive hematopoietic cells and accumulate in the uropod during migration. Furthermore, flotillins display a polarized distribution during immunological synapse formation. Employing the membrane lipid-order sensitive probe Laurdan, we show that flotillin accumulation in the immunological synapse is concomittant with membrane ordering in these regions. CONCLUSIONS: Together with the observation that flotillin polarization does not occur in other polarized cell types such as polarized epithelial cells, our results suggest a specific role for flotillins in hematopoietic cell polarization. Based on our results, we propose that in hematopoietic cells, flotillins provide intrinsic cues that govern segregation of certain microdomain-associated molecules during immune cell polarization.

  1. Msx genes define a population of mural cell precursors required for head blood vessel maturation.

    Science.gov (United States)

    Lopes, Miguel; Goupille, Olivier; Saint Cloment, Cécile; Lallemand, Yvan; Cumano, Ana; Robert, Benoît

    2011-07-01

    Vessels are primarily formed from an inner endothelial layer that is secondarily covered by mural cells, namely vascular smooth muscle cells (VSMCs) in arteries and veins and pericytes in capillaries and veinules. We previously showed that, in the mouse embryo, Msx1(lacZ) and Msx2(lacZ) are expressed in mural cells and in a few endothelial cells. To unravel the role of Msx genes in vascular development, we have inactivated the two Msx genes specifically in mural cells by combining the Msx1(lacZ), Msx2(lox) and Sm22α-Cre alleles. Optical projection tomography demonstrated abnormal branching of the cephalic vessels in E11.5 mutant embryos. The carotid and vertebral arteries showed an increase in caliber that was related to reduced vascular smooth muscle coverage. Taking advantage of a newly constructed Msx1(CreERT2) allele, we demonstrated by lineage tracing that the primary defect lies in a population of VSMC precursors. The abnormal phenotype that ensues is a consequence of impaired BMP signaling in the VSMC precursors that leads to downregulation of the metalloprotease 2 (Mmp2) and Mmp9 genes, which are essential for cell migration and integration into the mural layer. Improper coverage by VSMCs secondarily leads to incomplete maturation of the endothelial layer. Our results demonstrate that both Msx1 and Msx2 are required for the recruitment of a population of neural crest-derived VSMCs.

  2. Polyphosphate induces matrix metalloproteinase-3-mediated proliferation of odontoblast-like cells derived from induced pluripotent stem cells

    International Nuclear Information System (INIS)

    Inorganic polyphosphate [Poly(P)] may represent a physiological source of phosphate and has the ability to induce bone differentiation in osteoblasts. We previously reported that cytokine-induced matrix metalloproteinase (MMP)-3 accelerates the proliferation of purified odontoblast-like cells. In this study, MMP-3 small interfering RNA (siRNA) was transfected into odontoblast-like cells derived from induced pluripotent stem cells to investigate whether MMP-3 activity is induced by Poly(P) and/or is associated with cell proliferation and differentiation into odontoblast-like cells. Treatment with Poly(P) led to an increase in both cell proliferation and additional odontoblastic differentiation. Poly(P)-treated cells showed a small but significant increase in dentin sialophosphoprotein (DSPP) and dentin matrix protein-1 (DMP-1) mRNA expression, which are markers of mature odontoblasts. The cells also acquired additional odontoblast-specific properties including adoption of an odontoblastic phenotype typified by high alkaline phosphatase (ALP) activity and a calcification capacity. In addition, Poly(P) induced expression of MMP-3 mRNA and protein, and increased MMP-3 activity. MMP-3 siRNA-mediated disruption of the expression of these effectors potently suppressed the expression of odontoblastic biomarkers ALP, DSPP, and DMP-1, and blocked calcification. Interestingly, upon siRNA-mediated silencing of MMP-3, we noted a potent and significant decrease in cell proliferation. Using specific siRNAs, we revealed that a unique signaling cascade, Poly(P)→MMP-3→DSPP and/or DMP-1, was intimately involved in the proliferation of odontoblast-like cells. - Highlights: • Polyphosphate increases proliferation of iPS cell-derived odontoblast-like cells. • Polyphosphate-induced MMP-3 results in an increase of cell proliferation. • Induced cell proliferation involves MMP-3, DSPP, and/or DMP-1 sequentially. • Induced MMP-3 also results in an increase of odontoblastic

  3. Polyphosphate induces matrix metalloproteinase-3-mediated proliferation of odontoblast-like cells derived from induced pluripotent stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Ozeki, Nobuaki; Hase, Naoko; Yamaguchi, Hideyuki; Hiyama, Taiki; Kawai, Rie [Department of Endodontics, School of Dentistry, Aichi Gakuin University, 2-11 Suemori-dori, Chikusa-ku, Nagoya, Aichi 464-8651 (Japan); Kondo, Ayami [Department of Medicinal Biochemistry, School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto, Chikusa-ku, Nagoya 464-8650 (Japan); Nakata, Kazuhiko [Department of Endodontics, School of Dentistry, Aichi Gakuin University, 2-11 Suemori-dori, Chikusa-ku, Nagoya, Aichi 464-8651 (Japan); Mogi, Makio, E-mail: makio@dpc.agu.ac.jp [Department of Medicinal Biochemistry, School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto, Chikusa-ku, Nagoya 464-8650 (Japan)

    2015-05-01

    Inorganic polyphosphate [Poly(P)] may represent a physiological source of phosphate and has the ability to induce bone differentiation in osteoblasts. We previously reported that cytokine-induced matrix metalloproteinase (MMP)-3 accelerates the proliferation of purified odontoblast-like cells. In this study, MMP-3 small interfering RNA (siRNA) was transfected into odontoblast-like cells derived from induced pluripotent stem cells to investigate whether MMP-3 activity is induced by Poly(P) and/or is associated with cell proliferation and differentiation into odontoblast-like cells. Treatment with Poly(P) led to an increase in both cell proliferation and additional odontoblastic differentiation. Poly(P)-treated cells showed a small but significant increase in dentin sialophosphoprotein (DSPP) and dentin matrix protein-1 (DMP-1) mRNA expression, which are markers of mature odontoblasts. The cells also acquired additional odontoblast-specific properties including adoption of an odontoblastic phenotype typified by high alkaline phosphatase (ALP) activity and a calcification capacity. In addition, Poly(P) induced expression of MMP-3 mRNA and protein, and increased MMP-3 activity. MMP-3 siRNA-mediated disruption of the expression of these effectors potently suppressed the expression of odontoblastic biomarkers ALP, DSPP, and DMP-1, and blocked calcification. Interestingly, upon siRNA-mediated silencing of MMP-3, we noted a potent and significant decrease in cell proliferation. Using specific siRNAs, we revealed that a unique signaling cascade, Poly(P)→MMP-3→DSPP and/or DMP-1, was intimately involved in the proliferation of odontoblast-like cells. - Highlights: • Polyphosphate increases proliferation of iPS cell-derived odontoblast-like cells. • Polyphosphate-induced MMP-3 results in an increase of cell proliferation. • Induced cell proliferation involves MMP-3, DSPP, and/or DMP-1 sequentially. • Induced MMP-3 also results in an increase of odontoblastic

  4. Variability of doublecortin-associated dendrite maturation in adult hippocampal neurogenesis is independent of the regulation of precursor cell proliferation

    Directory of Open Access Journals (Sweden)

    Jessberger Sebastian

    2006-11-01

    Full Text Available Abstract Background In the course of adult hippocampal neurogenesis most regulation takes place during the phase of doublecortin (DCX expression, either as pro-proliferative effect on precursor cells or as survival-promoting effect on postmitotic cells. We here obtained quantitative data about the proliferative population and the dynamics of postmitotic dendrite development during the period of DCX expression. The question was, whether any indication could be obtained that the initiation of dendrite development is timely bound to the exit from the cell cycle. Alternatively, the temporal course of morphological maturation might be subject to additional regulatory events. Results We found that (1 20% of the DCX population were precursor cells in cell cycle, whereas more than 70% were postmitotic, (2 the time span until newborn cells had reached the most mature stage associated with DCX expression varied between 3 days and several weeks, (3 positive or negative regulation of precursor cell proliferation did not alter the pattern and dynamics of dendrite development. Dendrite maturation was largely independent of close contacts to astrocytes. Conclusion These data imply that dendrite maturation of immature neurons is initiated at varying times after cell cycle exit, is variable in duration, and is controlled independently of the regulation of precursor cell proliferation. We conclude that in addition to the major regulatory events in cell proliferation and selective survival, additional micro-regulatory events influence the course of adult hippocampal neurogenesis.

  5. Heterogeneity in predisposition of hepatic cells to be induced into pancreatic endocrine cells by PDX-1

    Institute of Scientific and Technical Information of China (English)

    Shun Lu; Wei-Ping Wang; Xiao-Fei Wang; Zong-Mei Zheng; Ping Chen; Kang-Tao Ma; Chun-Yan Zhou

    2005-01-01

    AIM: The role of Pancreatic and Duodenal Homeobox-1(PDX-1) as a major regulator of pancreatic development determines the function and phenotype of β cell. In this study, potential plasticity of liver cells into pancreatic endocrine cells induced by PDX-1 was evaluated.METHODS: Human hepatoma cell line HepG2 was stably transfected with mammalian expression plasmid pcDNA3-PDX encoding human PDX-1 gene. Ectopic expression of PDX-1 and insulin were detected by RT-PCR,Western blot and/or immunostaining. PDX-1+ HepG2 cells were transplanted under renal capsule of STZ-induced diabetic nude mice (n = 16) to examine the inducing effect in vivo.RESULTS: Exogenous PDX-1 transgene was proved to express effectively in HepG2 cell at both mRNA and protein levels. The expression of endogenous insulin and some βcell-specific differentiation markers and transcription factors were not induced in PDX-1+ HepG2 cells. When transplanted under renal capsule of STZ-induced diabetic nude mice, PDX-1+ HepG2 cells did not generate insulinproducing cells. These data indicated that stable transfected PDX-1 could not convert hepatoma cell line HepG2 to pancreatic cells in vitro or in vivo. Mature hepatocytes might need much more complicated or rigorous conditions to be shifted to insulin-producing cells.CONCLUSION: The expression of exogenous PDX-1 is not sufficient to induce relatively mature hepatocytes differentiating into insulin-producing cells.

  6. New insights into the trophic and cytoprotective effects of creatine in in vitro and in vivo models of cell maturation.

    Science.gov (United States)

    Sestili, Piero; Ambrogini, Patrizia; Barbieri, Elena; Sartini, Stefano; Fimognari, Carmela; Calcabrini, Cinzia; Diaz, Anna Rita; Guescini, Michele; Polidori, Emanuela; Luchetti, Francesca; Canonico, Barbara; Lattanzi, Davide; Cuppini, Riccardo; Papa, Stefano; Stocchi, Vilberto

    2016-08-01

    A growing body of scientific reports indicates that the role of creatine (Cr) in cellular biochemistry and physiology goes beyond its contribution to cell energy. Indeed Cr has been shown to exert multiple effects promoting a wide range of physiological responses in vitro as well as in vivo. Included in these, Cr promotes in vitro neuron and muscle cell differentiation, viability and survival under normal or adverse conditions; anabolic, protective and pro-differentiative effects have also been observed in vivo. For example Cr has been shown to accelerate in vitro differentiation of cultured C2C12 myoblasts into myotubes, where it also induces a slight but significant hypertrophic effect as compared to unsupplemented cultures; Cr also prevents the anti-differentiation effects caused by oxidative stress in the same cells. In trained adults, Cr increases the mRNA expression of relevant myogemic factors, protein synthesis, muscle strength and size, in cooperation with physical exercise. As to neurons and central nervous system, Cr favors the electrophysiological maturation of chick neuroblasts in vitro and protects them from oxidative stress-caused killing; similarly, Cr promotes the survival and differentiation of GABA-ergic neurons in fetal spinal cord cultures in vitro; in vivo, maternal Cr supplementation promotes the morpho-functional development of hippocampal neurons in rat offsprings. This article, which presents also some new experimental data, focuses on the trophic, pro-survival and pro-differentiation effects of Cr and examines the ensuing preventive and therapeutic potential in pathological muscle and brain conditions.

  7. Chronic mast cell leukemia (MCL) with KIT S476I: a rare entity defined by leukemic expansion of mature mast cells and absence of organ damage.

    Science.gov (United States)

    Valent, Peter; Berger, Jörg; Cerny-Reiterer, Sabine; Peter, Barbara; Eisenwort, Gregor; Hoermann, Gregor; Müllauer, Leonhard; Mannhalter, Christine; Steurer, Michael; Bettelheim, Peter; Horny, Hans-Peter; Arock, Michel

    2015-02-01

    Mast cell leukemia (MCL) is a rare, life-threatening malignancy defined by a substantial increase in neoplastic mast cells (MCs) in bone marrow (BM) smears, drug-resistance, and a poor prognosis. In most patients, the survival time is less than 1 year. However, exceptional cases may present with a less malignant course. We report on a 49-year-old female patient with MCL diagnosed in 2013. In February 2013, first symptoms, including flushing, headache, and diarrhea, were recorded. In addition, mild anemia was detected. The disease was characterized by a massive increase in well-granulated, mature, and often spindle-shaped MCs (80 %) in BM smears. The serum tryptase level amounted to 332 ng/mL. Like in most other MCL patients, no skin lesions were detected. However, unlike in other patients, tryptase levels remained stable, and no other signs or symptoms of MCL-induced organ damage were found. Sequencing studies revealed an isolated S476I point mutation in KIT but no mutation in codon 816. The patient received histamine receptor blockers but refused cytoreductive therapy. After 9 months, still no progression or organ damage was detected. However, progression with transformation to acute MCL occurred after 12 months. We propose that the chronic type of MCL with stable conditions, absence of organ damage, and a mature MC morphology is recognized as a distinct entity that should be distinguished from the acute variant of MCL.

  8. Towards the Maturation and Characterization of Smooth Muscle Cells Derived from Human Embryonic Stem Cells

    OpenAIRE

    Helena Vazão; Ricardo Pires das Neves; Mário Grãos; Lino Ferreira

    2011-01-01

    In this study we demonstrate that CD34(+) cells derived from human embryonic stem cells (hESCs) have higher smooth muscle cell (SMC) potential than CD34(-) cells. We report that from all inductive signals tested, retinoic acid (RA) and platelet derived growth factor (PDGF(BB)) are the most effective agents in guiding the differentiation of CD34(+) cells into smooth muscle progenitor cells (SMPCs) characterized by the expression of SMC genes and proteins, secretion of SMC-related cytokines, co...

  9. Distinct roles of Eps8 in the maturation of cochlear and vestibular hair cells.

    Science.gov (United States)

    Tavazzani, Elisa; Spaiardi, Paolo; Zampini, Valeria; Contini, Donatella; Manca, Marco; Russo, Giancarlo; Prigioni, Ivo; Marcotti, Walter; Masetto, Sergio

    2016-07-22

    Several genetic mutations affecting the development and function of mammalian hair cells have been shown to cause deafness but not vestibular defects, most likely because vestibular deficits are sometimes centrally compensated. The study of hair cell physiology is thus a powerful direct approach to ascertain the functional status of the vestibular end organs. Deletion of Epidermal growth factor receptor pathway substrate 8 (Eps8), a gene involved in actin remodeling, has been shown to cause deafness in mice. While both inner and outer hair cells from Eps8 knockout (KO) mice showed abnormally short stereocilia, inner hair cells (IHCs) also failed to acquire mature-type ion channels. Despite the fact that Eps8 is also expressed in vestibular hair cells, Eps8 KO mice show no vestibular deficits. In the present study we have investigated the properties of vestibular Type I and Type II hair cells in Eps8-KO mice and compared them to those of cochlear IHCs. In the absence of Eps8, vestibular hair cells show normally long kinocilia, significantly shorter stereocilia and a normal pattern of basolateral voltage-dependent ion channels. We have also found that while vestibular hair cells from Eps8 KO mice show normal voltage responses to injected sinusoidal currents, which were used to mimic the mechanoelectrical transducer current, IHCs lose their ability to synchronize their responses to the stimulus. We conclude that the absence of Eps8 produces a weaker phenotype in vestibular hair cells compared to cochlear IHCs, since it affects the hair bundle morphology but not the basolateral membrane currents. This difference is likely to explain the absence of obvious vestibular dysfunction in Eps8 KO mice. PMID:27132230

  10. Comparison of alpha-Type-1 polarizing and standard dendritic cell cytokine cocktail for maturation of therapeutic monocyte-derived dendritic cell preparations from cancer patients

    DEFF Research Database (Denmark)

    Trepiakas, Redas; Pedersen, Anders Elm; Met, Ozcan;

    2008-01-01

    polarized dendritic cells (alphaDC1) in serum-free medium was published based on maturation of monocyte-derived DCs with TNF-alpha/IL-1-beta/polyinosinic:polycytidylic acid (poly-I:C)/interferon (IFN)-alpha and IFN-gamma. This DC maturation cocktail was described to fulfill the criteria for optimal DC...

  11. Use of rat mature adipocyte-derived dedifferentiated fat cells as a cell source for periodontal tissue regeneration

    Directory of Open Access Journals (Sweden)

    Daisuke eAkita

    2016-02-01

    Full Text Available Lipid-free fibroblast-like cells, known as dedifferentiated fat (DFAT cells, can be generated from mature adipocytes with a large single lipid droplet. DFAT cells can re-establish their active proliferation ability and can transdifferentiate into various cell types under appropriate culture conditions. The first objective of this study was to compare the multilineage differentiation potential of DFAT cells with that of adipose-derived stem cells (ASCs on mesenchymal stem cellsWe obtained DFAT cells and ASCs from inbred rats and found that rat DFAT cells possess higher osteogenic differentiation potential than rat ASCs. On the other hand, DFAT cells show similar adipogenic differentiation, and chondrogenic differentiation potential in comparison with ASCs. The second objective of this study was to assess the regenerative potential of DFAT cells combined with novel solid scaffolds composed of PLGA (Poly d, l-lactic-co-glycolic acid on periodontal tissue, and to compare this with the regenerative potential of ASCs combined with PLGA scaffolds. Cultured DFAT cells and ASCs were seeded onto PLGA scaffolds (DFAT/PLGA and ASCs/PLGA and transplanted into periodontal fenestration defects in rat mandible. Micro computed tomography analysis revealed a significantly higher amount of bone regeneration in the DFAT/PLGA group compared with that of ASCs/PLGA and PLGA-alone groups at 2, 3 and 5 weeks after transplantation. Similarly, histomorphometric analysis showed that DFAT/PLGA groups had significantly greater width of cementum, periodontal ligament and alveolar bone than ASCs/PLGA and PLGA-alone groups. In addition, transplanted fluorescent-labeled DFAT cells were observed in the periodontal ligament beside the newly formed bone and cementum. These findings suggest that DFAT cells have a greater potential for enhancing periodontal tissue regeneration than ASCs. Therefore, DFAT cells are a promising cell source for periodontium regeneration.

  12. Isolation of Mature (Peritoneum-Derived Mast Cells and Immature (Bone Marrow-Derived Mast Cell Precursors from Mice.

    Directory of Open Access Journals (Sweden)

    Steffen K Meurer

    Full Text Available Mast cells (MCs are a versatile cell type playing key roles in tissue morphogenesis and host defence against bacteria and parasites. Furthermore, they can enhance immunological danger signals and are implicated in inflammatory disorders like fibrosis. This granulated cell type originates from the myeloid lineage and has similarities to basophilic granulocytes, both containing large quantities of histamine and heparin. Immature murine mast cells mature in their destination tissue and adopt either the connective tissue (CTMC or mucosal (MMC type. Some effector functions are executed by activation/degranulation of MCs which lead to secretion of a typical set of MC proteases (MCPT and of the preformed or newly synthesized mediators from its granules into the local microenvironment. Due to the potential accumulation of mutations in key signalling pathway components of corresponding MC cell-lines, primary cultured MCs are an attractive mean to study general features of MC biology and aspects of MC functions relevant to human disease. Here, we describe a simple protocol for the simultaneous isolation of mature CTMC-like murine MCs from the peritoneum (PMCs and immature MC precursors from the bone marrow (BM. The latter are differentiated in vitro to yield BM-derived MCs (BMMC. These cells display the typical morphological and phenotypic features of MCs, express the typical MC surface markers, and can be propagated and kept in culture for several weeks. The provided protocol allows simple amplification of large quantities of homogenous, non-transformed MCs from the peritoneum and bone marrow-derived mast cells for cell- and tissue-based biomedical research.

  13. Isolation of Mature (Peritoneum-Derived) Mast Cells and Immature (Bone Marrow-Derived) Mast Cell Precursors from Mice

    Science.gov (United States)

    Meurer, Steffen K.; Neß, Melanie; Weiskirchen, Sabine; Kim, Philipp; Tag, Carmen G.; Kauffmann, Marlies; Huber, Michael; Weiskirchen, Ralf

    2016-01-01

    Mast cells (MCs) are a versatile cell type playing key roles in tissue morphogenesis and host defence against bacteria and parasites. Furthermore, they can enhance immunological danger signals and are implicated in inflammatory disorders like fibrosis. This granulated cell type originates from the myeloid lineage and has similarities to basophilic granulocytes, both containing large quantities of histamine and heparin. Immature murine mast cells mature in their destination tissue and adopt either the connective tissue (CTMC) or mucosal (MMC) type. Some effector functions are executed by activation/degranulation of MCs which lead to secretion of a typical set of MC proteases (MCPT) and of the preformed or newly synthesized mediators from its granules into the local microenvironment. Due to the potential accumulation of mutations in key signalling pathway components of corresponding MC cell-lines, primary cultured MCs are an attractive mean to study general features of MC biology and aspects of MC functions relevant to human disease. Here, we describe a simple protocol for the simultaneous isolation of mature CTMC-like murine MCs from the peritoneum (PMCs) and immature MC precursors from the bone marrow (BM). The latter are differentiated in vitro to yield BM-derived MCs (BMMC). These cells display the typical morphological and phenotypic features of MCs, express the typical MC surface markers, and can be propagated and kept in culture for several weeks. The provided protocol allows simple amplification of large quantities of homogenous, non-transformed MCs from the peritoneum and bone marrow-derived mast cells for cell- and tissue-based biomedical research. PMID:27337047

  14. Maturation of Shark Single-Domain (IgNAR) Antibodies: Evidence for Induced-Fit Binding

    Energy Technology Data Exchange (ETDEWEB)

    Stanfield, R.L.; Dooley, H.; Verdino, P.; Flajnik, M.F.; Wilson, I.A.; /Scripps Res. Inst. /Maryland U.

    2007-07-13

    Sharks express an unusual heavy-chain isotype called IgNAR, whose variable regions bind antigen as independent soluble domains. To further probe affinity maturation of the IgNAR response, we structurally characterized the germline and somatically matured versions of a type II variable (V) region, both in the presence and absence of its antigen, hen egg-white lysozyme. Despite a disulfide bond linking complementarity determining regions (CDRs) 1 and 3, both germline and somatically matured V regions displayed significant structural changes in these CDRs upon complex formation with antigen. Somatic mutations in the IgNAR V region serve to increase the number of contacts with antigen, as reflected by a tenfold increase in affinity, and one of these mutations appears to stabilize the CDR3 region. In addition, a residue in the HV4 loop plays an important role in antibody-antigen interaction, consistent with the high rate of somatic mutations in this non-CDR loop.

  15. Maturation of Stem Cell-Derived Beta-cells Guided by the Expression of Urocortin 3

    OpenAIRE

    van der Meulen, Talitha; Huising, Mark O.

    2014-01-01

    Type 1 diabetes (T1D) is a devastating disease precipitated by an autoimmune response directed at the insulin-producing beta-cells of the pancreas for which no cure exists. Stem cell-derived beta-cells show great promise for a cure as they have the potential to supply unlimited numbers of cells that could be derived from a patient's own cells, thus eliminating the need for immunosuppression. Current in vitro protocols for the differentiation of stem cell-derived beta-cells can successfully ge...

  16. Regulation of oligodendrocyte progenitor cell maturation by PPARδ: effects on bone morphogenetic proteins

    Directory of Open Access Journals (Sweden)

    Jill C Richardson

    2010-01-01

    Full Text Available In EAE (experimental autoimmune encephalomyelitis, agonists of PPARs (peroxisome proliferator-activated receptors provide clinical benefit and reduce damage. In contrast with PPARγ, agonists of PPARδ are more effective when given at later stages of EAE and increase myelin gene expression, suggesting effects on OL (oligodendrocyte maturation. In the present study we examined effects of the PPARδ agonist GW0742 on OPCs (OL progenitor cells, and tested whether the effects involve modulation of BMPs (bone morphogenetic proteins. We show that effects of GW0742 are mediated through PPARδ since no amelioration of EAE clinical scores was observed in PPARδ-null mice. In OPCs derived from E13 mice (where E is embryonic day, GW0742, but not the PPARγ agonist pioglitazone, increased the number of myelin-producing OLs. This was due to activation of PPARδ since process formation was reduced in PPARδ-null compared with wild-type OPCs. In both OPCs and enriched astrocyte cultures, GW0742 increased noggin protein expression; however, noggin mRNA was only increased in astrocytes. In contrast, GW0742 reduced BMP2 and BMP4 mRNA levels in OPCs, with lesser effects in astrocytes. These findings demonstrate that PPARδ plays a role in OPC maturation, mediated, in part, by regulation of BMP and BMP antagonists.

  17. Dexamethasone impairs the differentiation and maturation of murine dendritic cells by Toll-like receptor 4-nuclear factor-κB pathway

    Institute of Scientific and Technical Information of China (English)

    HE Xiao-kui; WU Xiang-ling; HE Xiu-juan; LI Bo; HU Yong-xiu

    2010-01-01

    Background Recent studies have demonstrated that dexamethasone (DEX) interferes with immune responses by targeting key functions of dendritic cells (DCs) at the earliest stage. However, the cellular and molecular mechanisms are still incompletely understood. This study aimed to explore the possible mechanisms by investigating the roles of DEX on differentiation, maturation & function of murine DCs and the effects of DEX on DCs via Toll-like receptor 4 (TLR4)-nuclear factor (NF)-κB mediated signal pathway.Methods Immature DCs (imDCs) were cultured from murine bone marrow (BM) cells. We added DEX into culture medium at different time. The expression of CD11c, CD86 and I-A~b (mouse MHC class Ⅱ molecule) was determined by flow cytometry. We determined the expression of NF-κB and its inhibitory protein I-κBα by electrophoretic mobility shift assay (EMSA) and Western blotting, respectively. The productions of interleukin (IL)-12p70 and IL-10 in cell culture supernatants were determined by enzyme-linked immunosorbent assay (ELISA).Results DEX impaired differentiation of DCs from murine bone marrow progenitors, and inhibited lipopolysaccharide (LPS) induced maturation of DCs. DEX significantly inhibited NF-κB expression of normal DCs, the higher the DEX concentration or the longer the DEX treatment time, the more obvious the effect. However, DEX had little effect on LPS-induced NF-κB activation, and partially impaired LPS-induced I-κBα degradation. DEX significantly decreased LPS induced IL-12p70 production by DCs. Interestingly, our results showed a synergistic effect between DEX and LPS on the production of IL-10 by DCs.Conclusions DEX inhibits the differentiation and maturation of murine DCs involved in TLR4-I-κB-NF-κB pathway, and also indirectly impairs Th1 development and interferes with the Th1-Th2 balance through IL-12 and/or IL-10 secretion by DCs.

  18. The microvesicle component of HIV-1 inocula modulates dendritic cell infection and maturation and enhances adhesion to and activation of T lymphocytes.

    Directory of Open Access Journals (Sweden)

    Sarah K Mercier

    2013-10-01

    Full Text Available HIV-1 is taken up by immature monocyte derived dendritic cells (iMDDCs into tetraspanin rich caves from which the virus can either be transferred to T lymphocytes or enter into endosomes resulting in degradation. HIV-1 binding and fusion with the DC membrane results in low level de novo infection that can also be transferred to T lymphocytes at a later stage. We have previously reported that HIV-1 can induce partial maturation of iMDDCs at both stages of trafficking. Here we show that CD45⁺ microvesicles (MV which contaminate purified HIV-1 inocula due to similar size and density, affect DC maturation, de novo HIV-1 infection and transfer to T lymphocytes. Comparing iMDDCs infected with CD45-depleted HIV-1BaL or matched non-depleted preparations, the presence of CD45⁺ MVs was shown to enhance DC maturation and ICAM-1 (CD54 expression, which is involved in DC∶T lymphocyte interactions, while restricting HIV-1 infection of MDDCs. Furthermore, in the DC culture HIV-1 infected (p24⁺ MDDCs were more mature than bystander cells. Depletion of MVs from the HIV-1 inoculum markedly inhibited DC∶T lymphocyte clustering and the induction of alloproliferation as well as limiting HIV-1 transfer from DCs to T lymphocytes. The effects of MV depletion on these functions were reversed by the re-addition of purified MVs from activated but not non-activated SUPT1.CCR5-CL.30 or primary T cells. Analysis of the protein complement of these MVs and of these HIV-1 inocula before and after MV depletion showed that Heat Shock Proteins (HSPs and nef were the likely DC maturation candidates. Recombinant HSP90α and β and nef all induced DC maturation and ICAM-1 expression, greater when combined. These results suggest that MVs contaminating HIV-1 released from infected T lymphocytes may be biologically important, especially in enhancing T cell activation, during uptake by DCs in vitro and in vivo, particularly as MVs have been detected in the circulation of HIV-1

  19. Direct hepatic differentiation of mouse embryonic stem cells induced by valproic acid and cytokines

    Institute of Scientific and Technical Information of China (English)

    Xue-Jun Dong; Guo-Rong Zhang; Qing-Jun Zhou; Ruo-Lang Pan; Ye Chen; Li-Xin Xiang; Jian-Zhong Shao

    2009-01-01

    AIM: To develop a protocol for direct hepatic lineage differentiation from early developmental progenitors to a population of mature hepatocytes. METHODS: Hepatic progenitor cells and then mature hepatocytes from mouse embryonic stem (ES) cells were obtained in a sequential manner, induced by valproic acid (VPA) and cytokines (hepatocyte growth factor, epidermal growth factor and insulin). Morphological changes of the differentiated cells were examined by phase-contrast microscopy and electron microscopy. Reverse transcription polymerase chain reaction and immunocytochemical analyses were used to evaluate the gene expression profiles of the VPA-induced hepatic progenitors and the hepatic progenitor-derived hepatocytes. Glycogen storage, cytochrome P450 activity, transplantation assay, differentiation of bile duct-like structures and tumorigenic analyses were performed for the functional identification of the differentiated cells. Furthermore, FACS and electron microscopy were used for the analyses of cell cycle profile and apoptosis in VPA-induced hepatic differentiated cells. RESULTS: Based on the combination of VPA and cytokines, mouse ES cells differentiated into a uniform and homogeneous cell population of hepatic progenitor cells and then matured into functional hepatocytes. The progenitor population shared several characteristics with ES cells and hepatic stem/progenitor cells, and represented a novel progenitor cell between ES and hepatic oval cells in embryonic development. The differentiated hepatocytes from progenitor cells shared typical characteristics with mature hepatocytes, including the patterns of gene expression, immunological markers, in vitro hepatocyte functions and in vivo capacity to restore acute-damaged liver function. In addition, the differentiation of hepatic progenitor cells from ES cells was accompanied by significant cell cycle arrest and selective survival of differentiating cells towards hepatic lineages. CONCLUSION: Hepatic cells

  20. Inducement of chromosome translocation with small alien segments by irradiating mature female gametes of the whole arm translocation line

    Institute of Scientific and Technical Information of China (English)

    CHEN ShengWei; CHEN PeiDu; WANG XiuE

    2008-01-01

    Haynaldia villosa Schur. (syn. Dasypyrum villosum Candargy, 2n=14, VV) has been proved to be an Important genetic resource for wheat improvement. The development of translocation with small alien chromosome segments, especially interstitial translocation, will be helpful for better utilization of its useful genes. Up to now, most of the reported Triticum aestivum - H. villosa translocation lines are involved in a whole arm or large alien fragments. In this paper, we report a highly efficient approach for the creation of small chromosome segment translocation lines. Before flowering, the female gametes of wheat-H, villosa 6VS/6AL trsnslocation line were irradiated by 60Co-γ ray at 160 Rad/M dosage rate and three dosages (1600, 1920, 2240 Rad). Anthers were removed from the irradiated florets on the same day and the florets were pollinated with normal fresh pollens of T. aestivum cv. Chinese Spring after 2-3 days. Genomic in situ hybridization (GISH) at mitosis metaphase of root-tip cell of M1 plants was used to detect the chromosome structural changes involving 6VS of H. villosa. Among the 534 M1 plants screened, 97 plants contained small segment chromosome structural changes of 6VS, including 80 interstitial translocation chromosomes, 57 terminal translocation chromosomes and 55 deletion chromosomes. For the 2240 Rad dosage treatment, the inducement frequencies of interstitial translocation, terminal translocation and deletion were 21.02%, 14.01%, and 14.65%, respectively, which were much higher than those previously reported. The M2 seeds were obtained by bsckcrossing of 74 M1 plants involving 146 chromosomes structural changes of 6VS, and it was found that the structural aberrations in the M1 plants could be transmitted to their progenies. Irradiating mature female gametes of whole arm translocation is a new and highly efficient approach for creation of small segment chromosome structural changes, especially for interstitial translocations.

  1. Inducement of chromosome translocation with small alien segments by irradiating mature female gametes of the whole arm translocation line

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Haynaldia villosa Schur. (syn. Dasypyrum villosum Candargy, 2n=14, VV) has been proved to be an important genetic resource for wheat improvement. The development of translocation with small alien chromosome segments, especially interstitial translocation, will be helpful for better utilization of its useful genes. Up to now, most of the reported Triticum aestivum – H. villosa translocation lines are involved in a whole arm or large alien fragments. In this paper, we report a highly efficient approach for the creation of small chromosome segment translocation lines. Before flowering, the female gametes of wheat-H. villosa 6VS/6AL translocation line were irradiated by 60CO-γ ray at 160 Rad/M dosage rate and three dosages (1600, 1920, 2240 Rad). Anthers were removed from the irradiated florets on the same day and the florets were pollinated with normal fresh pollens of T. aestivum cv. Chinese Spring after 2-3 days. Genomic in situ hybridization (GISH) at mitosis metaphase of root-tip cell of M1 plants was used to detect the chromosome structural changes involving 6VS of H. villosa. Among the 534 M1 plants screened, 97 plants contained small segment chromosome structural changes of 6VS, including 80 interstitial translocation chromosomes, 57 terminal translocation chromosomes and 55 deletion chromosomes. For the 2240 Rad dosage treatment, the inducement frequencies of interstitial translo-cation, terminal translocation and deletion were 21.02%, 14.01%, and 14.65%, respectively, which were much higher than those previously reported. The M2 seeds were obtained by backcrossing of 74 M1 plants involving 146 chromosomes structural changes of 6VS, and it was found that the structural aberrations in the M1 plants could be transmitted to their progenies. Irradiating mature female gametes of whole arm translocation is a new and highly efficient approach for creation of small segment chromosome struc-tural changes, especially for interstitial translocations.

  2. Early vessel destabilization mediated by Angiopoietin-2 and subsequent vessel maturation via Angiopoietin-1 induce functional neovasculature after ischemia.

    Directory of Open Access Journals (Sweden)

    Di Qin

    Full Text Available BACKGROUND: We assessed whether Angiopoietin-2 (Ang2, a Tie2 ligand and partial antagonist of Angiopoietin-1 (Ang1, is required for early vessel destabilization during postischemic angiogenesis, when combined with vascular growth factors. METHODS: In vitro, matrigel co-cultures assessed endothelial-cell tube formation and pericyte recruitment after stimulation of VEGF-A, Apelin (APLN, Ang1 with or without Ang2. In a murine hindlimb ischemia model, adeno-associated virus (rAAV, 3×10(12 virusparticles transduction of VEGF-A, APLN and Ang1 with or without Ang2 (continuous or early expression d0-3 was performed intramuscularly (d-14. Femoral artery ligation was performed at d0, followed by laser doppler perfusion meassurements (LDI 7 and 14. At d7 (early timepoint and d14 (late timepoint, histological analysis of capillary/muscle fiber ratio (CMF-R, PECAM-1 and pericyte/capillary ratio (PC-R, NG2 was performed. RESULTS: In vitro, VEGF-A, APLN and Ang1 induced ring formation, but only APLN and Ang1 recruited pericytes. Ang2 did not affect tube formation by APLN, but reduced pericyte recruitment after APLN or Ang1 overexpression. In vivo, rAAV.VEGF-A did not alter LDI-perfusion at d14, consistent with an impaired PC-R despite a rise in CMF-R. rAAV.APLN improved perfusion at d14, with or without continuous Ang2, increasing CMF-R and PC-R. rAAV.Ang1 improved perfusion at d14, when combined with rAAV.Ang2 (d0-3, accompanied by an increased CMF-R and PC-R. CONCLUSION: The combination of early vessel destabilization (Ang2 d0-3 and continuous Ang1 overexpression improves hindlimb perfusion, pointing to the importance of early vessel destabilization and subsequent vessel maturation for enhanced therapeutic neovascularization.

  3. Natural Killer Cells Are Activated by Lactic Acid Bacteria-Matured Dendritic Cells

    DEFF Research Database (Denmark)

    Fink, Lisbeth Nielsen; Christensen, Hanne Risager; Frøkiær, Hanne

    of certain lactic acid bacteria has been shown to increase in vivo NK cytotoxicity. Here, we investigated how human gut flora-derived lactobacilli affect NK cells in vitro, by measuring proliferation and IFN-gamma production of human NK cells upon bacterial stimulation. Human peripheral blood NK cells were....... In contrast, a Lactobacillus paracasei strain caused the NK cells to proliferate only in the presence of monocytes. These results demonstrate that various strains of lactobacilli have the capacity to activate NK cells in vitro, in a monocyte dependent or independent way. Hence, the encounter of NK cells...

  4. Statistical study of biomechanics of living brain cells during growth and maturation on artificial substrates.

    Science.gov (United States)

    Chen, La; Li, Wenfang; Maybeck, Vanessa; Offenhäusser, Andreas; Krause, Hans-Joachim

    2016-11-01

    There is increasing evidence that mechanical issues play a vital role in neuron growth and brain development. The importance of this grows as novel devices, whose material properties differ from cells, are increasingly implanted in the body. In this work, we studied the mechanical properties of rat brain cells over time and on different materials by using a high throughput magnetic tweezers system. It was found that the elastic moduli of both neurite and soma in networked neurons increased with growth. However, neurites at DIV4 exhibited a relatively high stiffness, which could be ascribed to the high outgrowth tension. The power-law exponents (viscoelasticity) of both neurites and somas of neurons decreased with culture time. On the other hand, the stiffness of glial cells also increased with maturity. Furthermore, both neurites and glia become softer when cultured on compliant substrates. Especially, the glial cells cultured on a soft substrate obviously showed a less dense and more porous actin and GFAP mesh. In addition, the viscoelasticity of both neurites and glia did not show a significant dependence on the substrates' stiffness. PMID:27573132

  5. Impaired maturation of large dense-core vesicles in muted-deficient adrenal chromaffin cells.

    Science.gov (United States)

    Hao, Zhenhua; Wei, Lisi; Feng, Yaqin; Chen, Xiaowei; Du, Wen; Ma, Jing; Zhou, Zhuan; Chen, Liangyi; Li, Wei

    2015-04-01

    The large dense-core vesicle (LDCV), a type of lysosome-related organelle, is involved in the secretion of hormones and neuropeptides in specialized secretory cells. The granin family is a driving force in LDCV biogenesis, but the machinery for granin sorting to this biogenesis pathway is largely unknown. The mu mutant mouse, which carries a spontaneous null mutation on the Muted gene (also known as Bloc1s5), which encodes a subunit of the biogenesis of lysosome-related organelles complex-1 (BLOC-1), is a mouse model of Hermansky-Pudlak syndrome. Here, we found that LDCVs were enlarged in mu adrenal chromaffin cells. Chromogranin A (CgA, also known as CHGA) was increased in mu adrenals and muted-knockdown cells. The increased CgA in mu mice was likely due a failure to export this molecule out of immature LDCVs, which impairs LDCV maturation and docking. In mu chromaffin cells, the size of readily releasable pool and the vesicle release frequency were reduced. Our studies suggest that the muted protein is involved in the selective export of CgA during the biogenesis of LDCVs.

  6. Chronic stress regulates NG2⁺ cell maturation and myelination in the prefrontal cortex through induction of death receptor 6.

    Science.gov (United States)

    Yang, Youjun; Zhang, Yini; Luo, Fei; Li, Baoming

    2016-03-01

    Chronic stress significantly affects neuron morphometry and function in the prefrontal cortex, a brain region controlling cognition and emotion. However, whether and how chronic stress regulates the maturation of NG2-expressing oligodendrocyte precursor cell (NG2(+) cell) and the importance of these changes remained unknown. Here, we report that exposing adult mice to chronic stress results in NG2(+) cell atrophy and myelination arrested in the medial prefrontal cortex (mPFC), and impaired mPFC-dependent functions. These alterations, are phenocopied by overexpression of death receptor 6 (DR6) in NG2(+) cell. Conversely, selectively silencing of DR6 in the NG2(+) cell can partly rescue NG2(+) cell atrophy and cognitive deficiency caused by chronic stress. We further demonstrate that myelination appears necessary for mPFC-dependent cognitive processes, as lysolecithin (LPC)-induced demyelination specifically in the mPFC is sufficient to cause these behavioral and cognitive impairments. Our results indicate that chronic stress impairs cognitive functions, at least in part, through modulation of NG2(+) cell maturation and myelination, and suggest that myelination is require for normal cognitive functions. PMID:26772637

  7. Dearth and Delayed Maturation of Testicular Germ Cells in Fanconi Anemia E Mutant Male Mice

    Science.gov (United States)

    Fu, Chun; Begum, Khurshida; Jordan, Philip W.; He, Yan; Overbeek, Paul A.

    2016-01-01

    After using a self-inactivating lentivirus for non-targeted insertional mutagenesis in mice, we identified a transgenic family with a recessive mutation that resulted in reduced fertility in homozygous transgenic mice. The lentiviral integration site was amplified by inverse PCR. Sequencing revealed that integration had occurred in intron 8 of the mouse Fance gene, which encodes the Fanconi anemia E (Fance) protein. Fanconi anemia (FA) proteins play pivotal roles in cellular responses to DNA damage and Fance acts as a molecular bridge between the FA core complex and Fancd2. To investigate the reduced fertility in the mutant males, we analyzed postnatal development of testicular germ cells. At one week after birth, most tubules in the mutant testes contained few or no germ cells. Over the next 2–3 weeks, germ cells accumulated in a limited number of tubules, so that some tubules contained germ cells around the full periphery of the tubule. Once sufficient numbers of germ cells had accumulated, they began to undergo the later stages of spermatogenesis. Immunoassays revealed that the Fancd2 protein accumulated around the periphery of the nucleus in normal developing spermatocytes, but we did not detect a similar localization of Fancd2 in the Fance mutant testes. Our assays indicate that although Fance mutant males are germ cell deficient at birth, the extant germ cells can proliferate and, if they reach a threshold density, can differentiate into mature sperm. Analogous to previous studies of FA genes in mice, our results show that the Fance protein plays an important, but not absolutely essential, role in the initial developmental expansion of the male germ line. PMID:27486799

  8. Endogenous neurogenic cell response in the mature mammalian brain following traumatic injury.

    Science.gov (United States)

    Sun, Dong

    2016-01-01

    In the mature mammalian brain, new neurons are generated throughout life in the neurogenic regions of the subventricular zone (SVZ) and the dentate gyrus (DG) of the hippocampus. Over the past two decades, extensive studies have examined the extent of adult neurogenesis in the SVZ and DG, the role of the adult generated new neurons in normal brain function and the underlying mechanisms regulating the process of adult neurogenesis. The extent and the function of adult neurogenesis under neuropathological conditions have also been explored in varying types of disease models in animals. Increasing evidence has indicated that these endogenous neural stem/progenitor cells may play regenerative and reparative roles in response to CNS injuries or diseases. This review will discuss the potential functions of adult neurogenesis in the injured brain and will describe the recent development of strategies aimed at harnessing this neurogenic capacity in order to repopulate and repair the injured brain following trauma. PMID:25936874

  9. Oral traumatic neuroma with mature ganglion cells: A case report and review of the literature

    Directory of Open Access Journals (Sweden)

    Lopes Marcio

    2009-01-01

    Full Text Available Traumatic neuromas are characterized by the presence of pain, burning, or paresthesia, associated with a history of trauma, normally surgery, in the same site. In the oral cavity, the most commonly affected sites are the lip, tongue, and mental nerve area. Pressure on the suspected area usually provokes pain. They microscopically consist of a proliferation of nerve fascicles embedded in a background of collagen. We present a case of a 42-year-old Latin American female patient complaining of a painful solitary nodule erupting on the lingual surface of the mandibular body. Histopathological analysis showed a traumatic neuroma associated with mature ganglion cells, which is an extremely unusual finding. After complete removal of the lesion the symptoms disappeared. To the best of our knowledge, this is the first case of a unique lesion with unusual clinical and histopathological features reported in the English language literature.

  10. The Specification and Maturation of Nociceptive Neurons from Human Embryonic Stem Cells

    OpenAIRE

    Erin M. Boisvert; Engle, Sandra J; Shawn E. Hallowell; Ping Liu; Zhao-Wen Wang; Xue-Jun Li

    2015-01-01

    Nociceptive neurons play an essential role in pain sensation by transmitting painful stimuli to the central nervous system. However, investigations of nociceptive neuron biology have been hampered by the lack of accessibility of human nociceptive neurons. Here, we describe a system for efficiently guiding human embryonic stem cells into nociceptive neurons by first inducing these cells to the neural lineage. Subsequent addition of retinoic acid and BMP4 at specific time points and concentrati...

  11. In Vitro Differentiation and Maturation of Human Embryonic Stem Cell into Multipotent Cells

    OpenAIRE

    Amer Mahmood; Claudio Napoli; Abdullah Aldahmash

    2011-01-01

    Human embryonic stem cells (hESCs), which have the potential to generate virtually any differentiated progeny, are an attractive cell source for transplantation therapy, regenerative medicine, and tissue engineering. To realize this potential, it is essential to be able to control ESC differentiation and to direct the development of these cells along specific pathways. Basic science in the field of embryonic development, stem cell differentiation, and tissue engineering has offered important ...

  12. Conversion of mature human beta-cells into glucagon-producing alpha-cells

    NARCIS (Netherlands)

    Spijker, H.S.; Ravelli, R.B.; Mommaas-Kienhuis, A.M.; van Apeldoorn, A.A.; Engelse, M.A.; Zaldumbide, A.; Bonner-Weir, S.; Rabelink, T.J.; Hoeben, R.C.; Clevers, H.; Mummery, C.L.; Carlotti, F.; de Koning, E.

    2013-01-01

    Conversion of one terminally differentiated cell type into another (or transdifferentiation) usually requires the forced expression of key transcription factors. We examined the plasticity of human insulin-producing beta-cells in a model of islet cell aggregate formation. Here, we show that primary

  13. mRNA translation during oocyte maturation plays a key role in development of primordial germ cells in Xenopus embryos

    Indian Academy of Sciences (India)

    Bahman Zeynali; Keith E Dixon

    2004-09-01

    It is believed that cytoplasmic localization in the egg is necessary for development of primordial germ cells (PGCs) in Xenopus embryos. In this study, we sought to determine if translation of maternal mRNA during oocyte maturation is involved in the development of PGCs. Donor oocytes were collected from both stimulated (those who receive gonadotropin) and unstimulated females, artificially matured and fertilized using a host transfer technique. Using chloramphenicol (50 M and 500 M RNA), RNA translation was inhibited during oocyte maturation. Our results showed that in unstimulated embryos treated with 50 M chloramphenicol, there was a significant reduction in the number of PGCs reaching genital ridges. In stimulated embryos, however, the number of PGCs was unchanged unless a higher concentration (500 M) of chloramphenicol was used. From these results it is suggested that maternal mRNA translation during oocyte maturation plays a key role in development of PGCs.

  14. Role of inhibin and activin in the modulation of gonadotropin- and steroid-induced oocyte maturation in the teleost Fundulus heteroclitus

    Directory of Open Access Journals (Sweden)

    Toussaint Gesulla

    2007-06-01

    Full Text Available Abstract Background Activin and inhibin are glycoproteins structurally related to the transforming growth factor-beta superfamily. These peptides were first described as factors that regulate the follicle-stimulating hormone (FSH at the pituitary level. The possible role of inhibin and activin, at the ovarian level, in mediating the stimulatory actions of a Fundulus pituitary extract (FPE and 17alpha,20beta-dihydroprogesterone (DHP on oocyte maturation was investigated in this study. Methods In vitro culture of ovarian follicles and induction of oocyte maturation were carried out in 75% Leibovitz L-15 medium. Follicles or denuded oocytes were exposed to FPE, inhibin, activin, ethanol vehicle (control group, or DHP. The competence of the follicles or denuded oocytes to respond to the hormones was assessed by scoring germinal vesicle breakdown (GVBD used as an indication of the reinitiation of meiosis or oocyte maturation. DHP level was measured by radioimmunoassay. Results Addition of FPE promoted the synthesis of DHP by the granulose cells of fully grown ovarian follicles and thus stimulated GVBD in the oocyte. Presence of porcine inhibin did not hinder the synthesis of DHP stimulated by FPE, although it did inhibit the subsequent GVBD in a dose-dependent manner, suggesting that the action of inhibin was at the oocyte level. Similarly to the findings with FPE, inhibin also blocked the DHP-induced GVBD in intact follicles, as well as the spontaneous and steroid-induced GVBD of denuded oocyte. Inhibin straightforwardly blocked the response to a low dose of DHP throughout the culture period, while higher doses of the steroid appeared to overcome the inhibitory effect especially at later times. In contrast to inhibin, recombinant human activin A significantly enhanced DHP-induced GVBD in a dose-dependent manner after 48 hr, although activin alone was not able to induce GVBD without the presence of the steroid. Conclusion Taking together with our

  15. Suppressor cells in transplantation tolerance II. Maturation of suppressor cells in the bone marrow chimera

    International Nuclear Information System (INIS)

    Histoincompatible bone marrow allografts were established in lethally irradiated rats. At various times after transplantation, the spleen cells were harvested, subjected to mixed lymphocyte cultures, and assayed for suppressor cells in vitro and in vivo by adoptive transfer studies. Alloantigen-nonspecific suppressor cells appeared in the chimera at 40 days after grafting, coinciding with the resolution of graft-versus-host disease (GVHD). At 250 days the nonspecific suppressor cells were replaced by suppressor cells specifically suppressing donor-versus-host alloantigen responses. At 720 days suppressor cells could no longer be identified by in vitro methods but were identified by in vivo adoptive transfer of transplantation tolerance. After injection of host-type antigen into chimeras, the suppressor cells could be again demonstrated by in vitro methods

  16. Suppressor cells in transplantation tolerance. II. maturation of suppressor cells in the bone marrow chimera

    International Nuclear Information System (INIS)

    Histoincompatible bone marrow allografts were established in lethally irradiated rats. At various times after transplantation, the spleen cells were harvested, subjected to mixed lymphocyte cultures, and assayed for suppressor cells in vitro and in vivo by adoptive transfer studies. Alloantigen-nonspecific suppressor cells appeared in the chimera at 40 days after grafting, coinciding with the resolution of graft-versus-host disease (GVHD). At 250 days the nonspecific suppressor cells were replaced by suppressor cells specifically suppressing donor-versus-host alloantigen responses. At 720 days suppressor cells could no longer be identified by in vitro methods but were identified by in vivo adoptive transfer of transplantation tolerance. After injection of host-type antigen into chimeras, the suppressor cells could be again demonstrated by in vitro methods

  17. Low Temperature Induced Changes in Citrate Metabolism in Ponkan (Citrus reticulata Blanco cv. Ponkan) Fruit during Maturation.

    Science.gov (United States)

    Lin, Qiong; Qian, Jing; Zhao, Chenning; Wang, Dengliang; Liu, Chunrong; Wang, Zhidong; Sun, Chongde; Chen, Kunsong

    2016-01-01

    Citrate is the most important organic acid in citrus fruit, and its concentration in fruit cells is regulated mainly by the balance between synthesis and degradation. Ponkan (Citrus reticulate Blanco cv. Ponkan) is one of the major citrus cultivars grew in China, and the fruit are picked before fully mature to avoid bad weather. Greenhouse production is widely used to prolong the maturation period and improve the quality of Ponkan fruit by maintaining adequate temperature and providing protection from adverse weather. In this research, Ponkan fruit cultivated in either a greenhouse or open field were used to investigate differences in the expression of genes related to citrate metabolism during maturation in the two environments. The citrate contents were higher in open field fruit, and were mainly correlated with expressions of CitPEPCs, CitCSs, CitAco3 and CitGAD4, which were significantly increased. In addition, the impacts of low temperature (LT) and water stress (WS) on citrate metabolism in Ponkan were investigated during fruit maturation. The citrate contents in LT fruit were significantly increased, by between 1.4-1.9 fold, compared to the control; it showed no significant difference in fruit with water stress treatment compared to the control fruit. Furthermore, the expressions of CitPEPCs, CitCSs, CitAco3 and CitGAD4 were significantly increased in response to LT treatment, but showed no significant difference in WS compared to the control fruit. Thus, it can be concluded that low temperature may be the main factor influencing citrate metabolism during maturation in Ponkan fruit. PMID:27249065

  18. Studies on mRNA electroporation of immature and mature dendritic cells: Effects on their immunogenic potential

    DEFF Research Database (Denmark)

    Met, O.; Eriksen, J.; Svane, Inge Marie

    2008-01-01

    Previous studies have shown that mRNA-electroporated dendritic cells (DCs) are able to process and present tumor-associated antigens, leading to the activation of tumor-specific T cells in vitro and in vivo. However, the optimal maturation state of antigen loading and half-life of the mRNA-transl......Previous studies have shown that mRNA-electroporated dendritic cells (DCs) are able to process and present tumor-associated antigens, leading to the activation of tumor-specific T cells in vitro and in vivo. However, the optimal maturation state of antigen loading and half-life of the m......RNA-translated protein product and its immunogenic epitopes are significant parameters, which needs to be clarified in order to establish an effective electroporation protocol. In addition, despite extensive experimental investigations and their widespread application in research and clinical environments, little...... in addition to higher T-cell stimulatory ability compared to transfection of DCs prior to maturation. Mature mRNA-electroporated DCs showed long-lived expression of EGFP and were able to stimulate influenza matrix protein M1 (M1)-specific T cells up to 24 h after electroporation. However, when DCs were...

  19. Experimental investigation of changes in methane adsorption of bitumen-free Woodford Shale with thermal maturation induced by hydrous pyrolysis

    Science.gov (United States)

    Hu, Haiyan; Zhang, Tongwei; Wiggins-Camacho, Jaclyn D.; Ellis, Geoffrey S.; Lewan, Michael D.; Zhang, Xiayong

    2014-01-01

    This study quantifies the effects of organic-matter (OM) thermal maturity on methane (CH4) sorption, on the basis of five samples that were artificially matured through hydrous pyrolysis achieved by heating samples of immature Woodford Shale under five different time–temperature conditions. CH4-sorption isotherms at 35 °C, 50 °C, and 65 °C, and pressures up to 14 MPa on dry, solvent-extracted samples of the artificially matured Woodford Shale were measured. The results showed that CH4-sorption capacity, normalized to TOC, varied with thermal maturity, following the trend: maximum oil (367 °C) > oil cracking (400 °C) > maximum bitumen/early oil (333 °C) > early bitumen (300 °C) > immature stage (130 °C). The Langmuir constants for the samples at maximum-oil and oil-cracking stages are larger than the values for the bitumen-forming stages. The total pore volume, determined by N2 physisorption at 77 K, increases with increased maturation: mesopores, 2–50 nm in width, were created during the thermal conversion of organic-matter and a dramatic increase in porosity appeared when maximum-bitumen and maximum-oil generation stages were reached. A linear relationship between thermal maturity and Brunauer–Emmett–Teller (BET) surface area suggests that the observed increase in CH4-sorption capacity may be the result of mesopores produced during OM conversion. No obvious difference is observed in pore-size distribution and pore volume for samples with pores 2 physisorption at 273 K. The isosteric heat of adsorption and the standard entropy for artificially matured samples ranged from 17.9 kJ mol−1 to 21.9 kJ mol−1 and from −85.4 J mol−1 K−1 to −101.8 J mol−1 K−1, respectively. These values are similar to the values of immature Woodford kerogen concentrate previously observed, but are larger than naturally matured organic-rich shales. High-temperature hydrous pyrolysis might have induced Lewis acid sites on both organic and mineral surfaces

  20. Immunomodulatory effects of human umbilical cord Wharton's jelly-derived mesenchymal stem cells on differentiation, maturation and endocytosis of monocyte-derived dendritic cells.

    Science.gov (United States)

    Saeidi, Mohsen; Masoud, Ahmad; Shakiba, Yadollah; Hadjati, Jamshid; Mohyeddin Bonab, Mandana; Nicknam, Mohammad Hossein; Latifpour, Mostafa; Nikbin, Behrooz

    2013-03-01

    The Wharton's jelly of the umbilical cord is believed to be a source of mesenchymal stem cells (MSCs) which can be therapeutically applied in degenerative diseases.In this study, we investigated the immunomodulatory effect of umbilical cord derived-mesenchymal stem cells (UC-MSCs) and bone marrow-derived-mesenchymal stem cells (BM-MSCs) on differentiation, maturation, and endocytosis of monocyte-derived dendritic cells in a transwell culture system under laboratory conditions. Monocytes were differentiated into immature dendritic cells (iDCs) in the presence of GM-CSF and IL-4 for 6 days and then differentiated into mature dendritic cells (mDCs) in the presence of TNF-α for 2 days. In every stage of differentiation, immature and mature dendritic cells were separately co-cultured with UC-MSCs and BM-MSCs. The findings showed that UC-MSCs and BM-MSCs inhibited strongly differentiation and maturation of dendritic cells at higher dilution ratios (1:1). The BM-MSCs and UC-MSCs showed more inhibitory effect on CD1a, CD83, CD86 expression, and dendritic cell endocytic activity, respectively. On the other hand, these cells severely up-regulated CD14 marker expression. We concluded that UC-MSCs and BM-MSCs could inhibit differentiation, maturation and endocytosis in monocyte-derived DCs through the secreted factors and free of any cell-cell contacts under laboratory conditions. As DCs are believed to be the main antigen presenting cells for naïve T cells in triggering immune responses, it would be logical that their inhibitory effect on differentiation, maturation and function can decrease or modulate immune and inflammatory responses. PMID:23454777

  1. Immunomodulatory effects of human umbilical cord Wharton's jelly-derived mesenchymal stem cells on differentiation, maturation and endocytosis of monocyte-derived dendritic cells.

    Directory of Open Access Journals (Sweden)

    Mohsen Saeidi

    2013-03-01

    Full Text Available The Wharton’s jelly of the umbilical cord is believed to be a source of mesenchymal stem cells (MSCs which can be therapeutically applied in degenerative diseases.In this study, we investigated the immunomodulatory effect of umbilical cord derived- mesenchymal stem  cells (UC-MSCs and  bone  marrow-derived-mesenchymal stem  cells (BM-MSCs on differentiation, maturation, and endocytosis of monocyte-derived dendritic cells in a transwell culture system under laboratory conditions. Monocytes were differentiated into immature dendritic cells (iDCs in the presence of GM-CSF and IL-4 for 6 days and then differentiated into mature dendritic cells (mDCs in the presence of TNF-α for 2 days. In every stage of differentiation, immature and mature dendritic cells were separately co- cultured with UC-MSCs and BM-MSCs.The findings showed that UC-MSCs and BM-MSCs inhibited strongly differentiation and maturation of dendritic cells at higher dilution ratios (1:1. The BM-MSCs and UC-MSCs showed more inhibitory effect on CD1a, CD83, CD86 expression, and dendritic cell endocytic activity, respectively. On the other hand, these cells severely up-regulated CD14 marker expression. We concluded that UC-MSCs and BM-MSCs could inhibit differentiation, maturation and endocytosis in monocyte-derived DCs through the secreted factors and free of any cell- cell contacts  under  laboratory conditions. As DCs  are believed to  be the  main antigen presenting cells for naïve T cells in triggering immune responses, it would be logical that their inhibitory effect on differentiation, maturation and function can decrease or modulate immune and inflammatory responses.

  2. Mycobacterium tuberculosis infection induces non-apoptotic cell death of human dendritic cells

    LENUS (Irish Health Repository)

    Ryan, Ruth CM

    2011-10-24

    Abstract Background Dendritic cells (DCs) connect innate and adaptive immunity, and are necessary for an efficient CD4+ and CD8+ T cell response after infection with Mycobacterium tuberculosis (Mtb). We previously described the macrophage cell death response to Mtb infection. To investigate the effect of Mtb infection on human DC viability, we infected these phagocytes with different strains of Mtb and assessed viability, as well as DNA fragmentation and caspase activity. In parallel studies, we assessed the impact of infection on DC maturation, cytokine production and bacillary survival. Results Infection of DCs with live Mtb (H37Ra or H37Rv) led to cell death. This cell death proceeded in a caspase-independent manner, and without nuclear fragmentation. In fact, substrate assays demonstrated that Mtb H37Ra-induced cell death progressed without the activation of the executioner caspases, 3\\/7. Although the death pathway was triggered after infection, the DCs successfully underwent maturation and produced a host-protective cytokine profile. Finally, dying infected DCs were permissive for Mtb H37Ra growth. Conclusions Human DCs undergo cell death after infection with live Mtb, in a manner that does not involve executioner caspases, and results in no mycobactericidal effect. Nonetheless, the DC maturation and cytokine profile observed suggests that the infected cells can still contribute to TB immunity.

  3. Generation of functional podocytes from human induced pluripotent stem cells

    Directory of Open Access Journals (Sweden)

    Osele Ciampi

    2016-07-01

    Full Text Available Generating human podocytes in vitro could offer a unique opportunity to study human diseases. Here, we describe a simple and efficient protocol for obtaining functional podocytes in vitro from human induced pluripotent stem cells. Cells were exposed to a three-step protocol, which induced their differentiation into intermediate mesoderm, then into nephron progenitors and, finally, into mature podocytes. After differentiation, cells expressed the main podocyte markers, such as synaptopodin, WT1, α-Actinin-4, P-cadherin and nephrin at the protein and mRNA level, and showed the low proliferation rate typical of mature podocytes. Exposure to Angiotensin II significantly decreased the expression of podocyte genes and cells underwent cytoskeleton rearrangement. Cells were able to internalize albumin and self-assembled into chimeric 3D structures in combination with dissociated embryonic mouse kidney cells. Overall, these findings demonstrate the establishment of a robust protocol that, mimicking developmental stages, makes it possible to derive functional podocytes in vitro.

  4. Glia Maturation Factor Deficiency Suppresses 1-Methyl-4-Phenylpyridinium-Induced Oxidative Stress in Astrocytes

    OpenAIRE

    Khan, Mohammad Moshahid; Kempuraj, Duraisamy; Zaheer, Smita; Zaheer, Asgar

    2014-01-01

    Inflammation is closely intertwined with pathogenesis of Parkinson's disease (PD). Increasing evidence suggests that inhibition of glia-mediated inflammation might represent a promising therapeutic target for PD. Glia maturation factor (GMF), an inflammatory protein, predominantly localized in astrocytes is previously isolated, sequenced and cloned in our laboratory. In the present investigation, we demonstrate that GMF-deficiency in astrocytes upregulates the antioxidant status and limit the...

  5. pH-Induced Stability Switching of the Bacteriophage HK97 Maturation Pathway

    OpenAIRE

    May, Eric R.; Arora, Karunesh; Brooks, Charles L.

    2014-01-01

    Many viruses undergo large-scale conformational changes during their life cycles. Blocking the transition from one stage of the life cycle to the next is an attractive strategy for the development of antiviral compounds. In this work, we have constructed an icosahedrally symmetric, low-energy pathway for the maturation transition of bacteriophage HK97. By conducting constant-pH molecular dynamics simulations on this pathway, we identify which residues are contributing most significantly to sh...

  6. Effect of Somatic Cell Types and Culture Medium on in vitro Maturation, Fertilization and Early Development Capability of Buffalo Oocytes

    Directory of Open Access Journals (Sweden)

    H. Jamil*, H. A. Samad, N. Rehman, Z. I. Qureshi and L. A. Lodhi

    2011-04-01

    Full Text Available This study was designed to evaluate the efficacy of different somatic cell types and media in supporting in vitro maturation (IVM, in vitro fertilization (IVF and early embryonic development competence of buffalo follicular oocytes. Cumulus oocyte complexes were collected for maturation from follicles (>6mm of buffalo ovaries collected at the local abattoir. Oocytes were co-cultured in tissue culture medium (TCM-199 with either granulosa cells, cumulus cells, or buffalo oviductal epithelial cells (BOEC @ 3x106 cells/ml or in TCM-199 without helper cells (control at 39°C and 5%CO2 in humidified air. Fresh semen was prepared in modified Ca++ free Tyrode medium. Fertilization was carried out in four types of media: i Tyrode lactate albumin pyruvate (TALP, ii TALP+BOEC, iii modified Ca++ free Tyrode and iv modified Ca++ free Tyrode+BOEC. Fertilized oocytes were cultured for early embryonic development in TCM-199 with and without BOEC. Higher maturation rates were observed in the granulosa (84.24% and cumulus cells (83.44% than BOEC co culture system (73.37%. Highest fertilization rate was obtained in modified Ca++ free Tyrode with BOEC co culture (70.42%, followed by modified Ca++ free Tyrode alone (63.77%, TALP with BOEC (36.92% and TALP alone (10.94%. Development of early embryos (8-cell stage improved in TCM-199 with BOEC co culture than TCM-199 alone. From the results of this study, it can be concluded that addition of somatic cells (granulosa cells, cumulus cells results in higher maturation rates of buffalo follicular oocytes than BOEC co culture system, while fertilization rate improved in modified Ca++ free Tyrode with and without BOEC. Addition of BOEC to TCM-199 improved the developmental capacity of early embryo.

  7. Selective ablation of the androgen receptor in mouse sertoli cells affects sertoli cell maturation, barrier formation and cytoskeletal development.

    Directory of Open Access Journals (Sweden)

    Ariane Willems

    Full Text Available The observation that mice with a selective ablation of the androgen receptor (AR in Sertoli cells (SC (SCARKO mice display a complete block in meiosis supports the contention that SC play a pivotal role in the control of germ cell development by androgens. To delineate the physiological and molecular mechanism responsible for this control, we compared tubular development in pubertal SCARKO mice and littermate controls. Particular attention was paid to differences in SC maturation, SC barrier formation and cytoskeletal organization and to the molecular mediators potentially involved. Functional analysis of SC barrier development by hypertonic perfusion and lanthanum permeation techniques and immunohistochemical analysis of junction formation showed that SCARKO mice still attempt to produce a barrier separating basal and adluminal compartment but that barrier formation is delayed and defective. Defective barrier formation was accompanied by disturbances in SC nuclear maturation (immature shape, absence of prominent, tripartite nucleoli and SC polarization (aberrant positioning of SC nuclei and cytoskeletal elements such as vimentin. Quantitative RT-PCR was used to study the transcript levels of genes potentially related to the described phenomena between day 8 and 35. Differences in the expression of SC genes known to play a role in junction formation could be shown from day 8 for Cldn11, from day 15 for Cldn3 and Espn, from day 20 for Cdh2 and Jam3 and from day 35 for ZO-1. Marked differences were also noted in the transcript levels of several genes that are also related to cell adhesion and cytoskeletal dynamics but that have not yet been studied in SC (Actn3, Ank3, Anxa9, Scin, Emb, Mpzl2. It is concluded that absence of a functional AR in SC impedes the remodeling of testicular tubules expected at the onset of spermatogenesis and interferes with the creation of the specific environment needed for germ cell development.

  8. Fluorescences Of Inclusion Oils With Respect To Their Maturities And Sources:Simulation In Diamond Anvil Cell

    Science.gov (United States)

    Chang, Y.; Huang, W.

    2007-12-01

    Evolution of fluorescence color of inclusion oils has been simulated by measuring in-situ the fluorescence of `live' oils generated from thirteen oil-prone kerogens from different depositional environments during a closed system pyrolysis in a diamond anvil cell at three heating rates (3, 8, and 25°C /min) up to 600°C. The measured fluorescence intensity of samples increases considerably within maturation intervals close to oil windows, while the fluorescence spectra of oils generated from all studied kerogens exhibit exclusively a progressive blue-shift of peak wavelengths (λmax) and red/green quotient (Q) upon increasing maturity. The observation is consistent with the maturity dependence of spectral shift trend widely recognized in natural hydrocarbon inclusions or crude oils. This study furthermore reveals that the acclaimed direction of spectral shift for inclusion oils is mostly independent of sources of their parental kerogens, implying that some reverse or anomalous trends reported in inclusion oils may be attributed to other processes subsequent to their generation, which significantly altered the fluorescence properties of oils. However, the experimental maturity corresponding to each color (λmax or Q) of oils can vary significantly (± 0.2 %Ro) among their sourced kerogens, suggesting that single fluorescence color of crude or inclusion oil is both maturity- and source-dependent and therefore may not be a good indication of its maturity. In addition, the blue-shift of cumulative oils generated from all kerogens approaches similar minima λmax around 564 nm or Q- value around 0.6 at maturity close to the middle or late stage of oil generation, implying that most late cumulative oils may exhibit similar colors. The oils generated in a maturity interval in late stage, however, can exhibit color of shorter wavelength less than the minimum.

  9. In Vitro Differentiation and Maturation of Human Embryonic Stem Cell into Multipotent Cells

    Directory of Open Access Journals (Sweden)

    Amer Mahmood

    2011-01-01

    Full Text Available Human embryonic stem cells (hESCs, which have the potential to generate virtually any differentiated progeny, are an attractive cell source for transplantation therapy, regenerative medicine, and tissue engineering. To realize this potential, it is essential to be able to control ESC differentiation and to direct the development of these cells along specific pathways. Basic science in the field of embryonic development, stem cell differentiation, and tissue engineering has offered important insights into key pathways and scaffolds that regulate hESC differentiation, which have produced advances in modeling gastrulation in culture and in the efficient induction of endoderm, mesoderm, ectoderm, and many of their downstream derivatives. These findings have lead to identification of several pathways controlling the differentiation of hESCs into mesodermal derivatives such as myoblasts, mesenchymal cells, osteoblasts, chondrocytes, adipocytes, as well as hemangioblastic derivatives. The next challenge will be to demonstrate the functional utility of these cells, both in vitro and in preclinical models of bone and vascular diseases.

  10. ERRγ Is Required for the Metabolic Maturation of Therapeutically Functional Glucose-Responsive β Cells.

    Science.gov (United States)

    Yoshihara, Eiji; Wei, Zong; Lin, Chun Shi; Fang, Sungsoon; Ahmadian, Maryam; Kida, Yasuyuki; Tseng, Tiffany; Dai, Yang; Yu, Ruth T; Liddle, Christopher; Atkins, Annette R; Downes, Michael; Evans, Ronald M

    2016-04-12

    Pancreatic β cells undergo postnatal maturation to achieve maximal glucose-responsive insulin secretion, an energy intensive process. We identify estrogen-related receptor γ (ERRγ) expression as a hallmark of adult, but not neonatal β cells. Postnatal induction of ERRγ drives a transcriptional network activating mitochondrial oxidative phosphorylation, the electron transport chain, and ATP production needed to drive glucose-responsive insulin secretion. Mice deficient in β cell-specific ERRγ expression are glucose intolerant and fail to secrete insulin in response to a glucose challenge. Notably, forced expression of ERRγ in iPSC-derived β-like cells enables glucose-responsive secretion of human insulin in vitro, obviating in vivo maturation to achieve functionality. Moreover, these cells rapidly rescue diabetes when transplanted into β cell-deficient mice. These results identify a key role for ERRγ in β cell metabolic maturation, and offer a reproducible, quantifiable, and scalable approach for in vitro generation of functional human β cell therapeutics. PMID:27076077

  11. Antigen-oriented T cell migration contributes to myelin peptide induced-EAE and immune tolerance.

    Science.gov (United States)

    Zheng, Peiguo; Fu, Hanxiao; Wei, Gaohui; Wei, Zhongwei; Zhang, Junhua; Ma, Xuehan; Rui, Dong; Meng, Xianchun; Ming, Liang

    2016-08-01

    Treatment with soluble myelin peptide can efficiently and specifically induce tolerance to demyelination autoimmune diseases including multiple sclerosis, however the mechanism underlying this therapeutic effect remains to be elucidated. In actively induced mouse model of experimental autoimmune encephalomyelitis (EAE) we analyzed T cell and innate immune cell responses in the central nervous system (CNS) and spleen after intraperitoneal (i.p.) infusion of myelin oligodendrocyte glycoprotein (MOG). We found that i.p. MOG infusion blocked effector T cell recruitment to the CNS and protected mice from EAE and lymphoid organ atrophy. Innate immune CD11b(+) cells preferentially recruited MOG-specific effector T cells, particularly when activated to become competent antigen presenting cells (APCs). During EAE development, mature APCs were enriched in the CNS rather than in the spleen, attracting effector T cells to the CNS. Increased myelin antigen exposure induced CNS-APC maturation, recruiting additional effector T cells to the CNS, causing symptoms of disease. MOG triggered functional maturation of splenic APCs. MOG presenting APCs interacted with MOG-specific T cells in the spleen, aggregating to cluster around CD11b(+) cells, and were trapped in the periphery. This process was MHC II dependent as an MHC II directed antibody blocked CD4(+) T cell cluster formation. These findings highlight the role of myelin peptide-loaded APCs in myelin peptide-induced EAE and immune tolerance. PMID:27327113

  12. New insights into the trophic and cytoprotective effects of creatine in in vitro and in vivo models of cell maturation.

    Science.gov (United States)

    Sestili, Piero; Ambrogini, Patrizia; Barbieri, Elena; Sartini, Stefano; Fimognari, Carmela; Calcabrini, Cinzia; Diaz, Anna Rita; Guescini, Michele; Polidori, Emanuela; Luchetti, Francesca; Canonico, Barbara; Lattanzi, Davide; Cuppini, Riccardo; Papa, Stefano; Stocchi, Vilberto

    2016-08-01

    A growing body of scientific reports indicates that the role of creatine (Cr) in cellular biochemistry and physiology goes beyond its contribution to cell energy. Indeed Cr has been shown to exert multiple effects promoting a wide range of physiological responses in vitro as well as in vivo. Included in these, Cr promotes in vitro neuron and muscle cell differentiation, viability and survival under normal or adverse conditions; anabolic, protective and pro-differentiative effects have also been observed in vivo. For example Cr has been shown to accelerate in vitro differentiation of cultured C2C12 myoblasts into myotubes, where it also induces a slight but significant hypertrophic effect as compared to unsupplemented cultures; Cr also prevents the anti-differentiation effects caused by oxidative stress in the same cells. In trained adults, Cr increases the mRNA expression of relevant myogemic factors, protein synthesis, muscle strength and size, in cooperation with physical exercise. As to neurons and central nervous system, Cr favors the electrophysiological maturation of chick neuroblasts in vitro and protects them from oxidative stress-caused killing; similarly, Cr promotes the survival and differentiation of GABA-ergic neurons in fetal spinal cord cultures in vitro; in vivo, maternal Cr supplementation promotes the morpho-functional development of hippocampal neurons in rat offsprings. This article, which presents also some new experimental data, focuses on the trophic, pro-survival and pro-differentiation effects of Cr and examines the ensuing preventive and therapeutic potential in pathological muscle and brain conditions. PMID:26724921

  13. Cdc42 is crucial for the maturation of primordial cell junctions in keratinocytes independent of Rac1

    DEFF Research Database (Denmark)

    Du, Dan; Pedersen, Esben; Wang, Zhipeng;

    2008-01-01

    -deficient immortalized and primary keratinocytes form only punctate primordial cell contacts in vitro, which cannot mature into belt-like junctions. This defect was independent of enhanced degradation of beta-catenin, but correlated to an impaired activation and localization of aPKCzeta in the Cdc42-null...

  14. Mature B-cell lymphoma and leukemia in children and adolescents-review of standard chemotherapy regimen and perspectives.

    Science.gov (United States)

    Worch, Jennifer; Rohde, Marius; Burkhardt, Birgit

    2013-09-01

    Mature B-cell non-Hodgkin lymphoma (B-NHL) comprises more than 50% of all non-Hodgkin lymphoma (NHL) in children and adolescents. Many B-NHL subtypes frequently observed in adults are rarely diagnosed in children and adolescents. In this age group, Burkitt lymphoma (BL), Burkitt leukemia or FAB L3 leukemia (B-AL), diffuse large B-cell lymphoma (DLBCL), primary mediastinal large B-cell lymphoma (PMLBL), follicular lymphoma (FL), and aggressive mature B-NHL not further classifiable (B-NHL nfc) are the most common subtypes. Diverse clinical trials demonstrated similar results of current combination chemotherapy regimens succeeding in overall survival rates of more than 80%. However, treatment-related toxicity and the poor prognosis of relapse are serious concerns. Furthermore, specific histological B-NHL subtypes are rare in children and optimal treatment is not established. New treatment modalities are urgently needed for these patient groups. Rituximab, a monoclonal antibody that is already established in the treatment of adults with mature B-NHL, demonstrated promising results in pediatric patients. The definitive role of rituximab in the treatment of children and adolescents with B-NHL needs to be evaluated in prospective controlled clinical trials. This review provides a comprehensive overview of chemotherapy regimens and the perspectives for children and adolescents with mature B-cell lymphoma and leukemia. PMID:23570584

  15. Conditional induction of Math1 specifies embryonic stem cells to cerebellar granule neuron lineage and promotes differentiation into mature granule neurons.

    Science.gov (United States)

    Srivastava, Rupali; Kumar, Manoj; Peineau, Stéphane; Csaba, Zsolt; Mani, Shyamala; Gressens, Pierre; El Ghouzzi, Vincent

    2013-04-01

    Directing differentiation of embryonic stem cells (ESCs) to specific neuronal subtype is critical for modeling disease pathology in vitro. An attractive means of action would be to combine regulatory differentiation factors and extrinsic inductive signals added to the culture medium. In this study, we have generated mature cerebellar granule neurons by combining a temporally controlled transient expression of Math1, a master gene in granule neuron differentiation, with inductive extrinsic factors involved in cerebellar development. Using a Tetracyclin-On transactivation system, we overexpressed Math1 at various stages of ESCs differentiation and found that the yield of progenitors was considerably increased when Math1 was induced during embryonic body stage. Math1 triggered expression of Mbh1 and Mbh2, two target genes directly involved in granule neuron precursor formation and strong expression of early cerebellar territory markers En1 and NeuroD1. Three weeks after induction, we observed a decrease in the number of glial cells and an increase in that of neurons albeit still immature. Combining Math1 induction with extrinsic factors specifically increased the number of neurons that expressed Pde1c, Zic1, and GABAα6R characteristic of mature granule neurons, formed "T-shaped" axons typical of granule neurons, and generated synaptic contacts and action potentials in vitro. Finally, in vivo implantation of Math1-induced progenitors into young adult mice resulted in cell migration and settling of newly generated neurons in the cerebellum. These results show that conditional induction of Math1 drives ESCs toward the cerebellar fate and indicate that acting on both intrinsic and extrinsic factors is a powerful means to modulate ESCs differentiation and maturation into a specific neuronal lineage.

  16. Role of dystroglycan in limiting contraction-induced injury to the sarcomeric cytoskeleton of mature skeletal muscle.

    Science.gov (United States)

    Rader, Erik P; Turk, Rolf; Willer, Tobias; Beltrán, Daniel; Inamori, Kei-Ichiro; Peterson, Taylor A; Engle, Jeffrey; Prouty, Sally; Matsumura, Kiichiro; Saito, Fumiaki; Anderson, Mary E; Campbell, Kevin P

    2016-09-27

    Dystroglycan (DG) is a highly expressed extracellular matrix receptor that is linked to the cytoskeleton in skeletal muscle. DG is critical for the function of skeletal muscle, and muscle with primary defects in the expression and/or function of DG throughout development has many pathological features and a severe muscular dystrophy phenotype. In addition, reduction in DG at the sarcolemma is a common feature in muscle biopsies from patients with various types of muscular dystrophy. However, the consequence of disrupting DG in mature muscle is not known. Here, we investigated muscles of transgenic mice several months after genetic knockdown of DG at maturity. In our study, an increase in susceptibility to contraction-induced injury was the first pathological feature observed after the levels of DG at the sarcolemma were reduced. The contraction-induced injury was not accompanied by increased necrosis, excitation-contraction uncoupling, or fragility of the sarcolemma. Rather, disruption of the sarcomeric cytoskeleton was evident as reduced passive tension and decreased titin immunostaining. These results reveal a role for DG in maintaining the stability of the sarcomeric cytoskeleton during contraction and provide mechanistic insight into the cause of the reduction in strength that occurs in muscular dystrophy after lengthening contractions.

  17. Stimulation of dendritic cell maturation and induction of apoptosis in leukemia cells by a heat-stable extract from azuki bean (Vigna angularis), a promising immunopotentiating food and dietary supplement for cancer prevention.

    Science.gov (United States)

    Nakaya, Kazuyasu; Nabata, Yuri; Ichiyanagi, Takashi; An, Wei Wei

    2012-01-01

    Non-toxic stimulation of dendritic cells (DCs), which are central immunomodulators, may aid the prevention of cancer. Furthermore, induction of apoptosis in cancer cells by anticancer agents contributes to the induction of DC maturation. We previously reported that extracts from Pinus parviflora Sieb. et Zucc pine cone and Mucuna seed induce differentiation of mouse bone marrow cells into mature dendritic cells and also induce apoptosis in various human cancer cell lines. In the present study, we screened 31 kinds of edible beans with biological activity similar to that of extracts from pine cone and Mucuna and found that the heat-stable extract from azuki bean (Vigna angula) stimulated differentiation of bone marrow cells into immature DCs with the greatest efficacy. The level of IL-6 produced by sequential treatment of DCs with azuki extract and lipopolysaccharide was the highest among the examined beans. Azuki extract also inhibited the growth of human leukemia U937 cells, leading to induction of apoptosis. These results suggest that azuki bean and its extract are immunopotentiating foods that can be used as a dietary supplement for cancer prevention and immunotherapy. PMID:22524832

  18. Cell therapy using induced pluripotent stem cells or somatic stem cells: this is the question.

    Science.gov (United States)

    Somoza, Rodrigo A; Rubio, Francisco J

    2012-05-01

    A lot of effort has been developed to bypass the use of embryonic stem cells (ES) in human therapies, because of several concerns and ethical issues. Some unsolved problems of using stem cells for human therapies, excluding the human embryonic origin, are: how to regulate cell plasticity and proliferation, immunological compatibility, potential adverse side-effects when stem cells are systemically administrated, and the in vivo signals to rule out a specific cell fate after transplantation. Currently, it is known that almost all tissues of an adult organism have somatic stem cells (SSC). Whereas ES are primary involved in the genesis of new tissues and organs, SSC are involved in regeneration processes, immuno-regulatory and homeostasis mechanisms. Although the differentiating potential of ES is higher than SSC, several studies suggest that some types of SSC, such as mesenchymal stem cells (MSC), can be induced epigenetically to differentiate into tissue-specific cells of different lineages. This unexpected pluripotency and the variety of sources that they come from, can make MSC-like cells suitable for the treatment of diverse pathologies and injuries. New hopes for cell therapy came from somatic/mature cells and the discovery that could be reprogrammed to a pluripotent stage similar to ES, thus generating induced pluripotent stem cells (iPS). For this, it is necessary to overexpress four main reprogramming factors, Sox2, Oct4, Klf4 and c-Myc. The aim of this review is to analyze the potential and requirements of cellular based tools in human therapy strategies, focusing on the advantage of using MSC over iPS.

  19. Aflatoxins of type B and G affect porcine dendritic cell maturation in vitro.

    Science.gov (United States)

    Mehrzad, Jalil; Devriendt, Bert; Baert, Kim; Cox, Eric

    2015-01-01

    The toxic effects of highly carcinogenic mycotoxins, especially aflatoxins (AF), on key antigen-presenting cells, such as dendritic cells (DC), are largely unknown. To elucidate the effect of AF on DC function, porcine monocyte-derived DC (MoDC) were treated with a mixture of several AF (i.e., AFB1, AFB2, AFG1, and AFG2) and the phagocytic capacity, the membrane expression level of several DC activation markers, the T-cell proliferation-inducing capacity, and the cytokine secretion pattern were assessed. As compared to untreated MoDC, AF significantly up-regulated the expression of the co-stimulatory molecules CD25 and CD80/86. However, the phagocytic activity of MoDC was not affected by AF treatment. While the cytokine secretion pattern of AF-treated MoDC was similar to control MoDC, the T-cell proliferation-inducing capacity of MoDC was increased upon aflatoxin treatment. The results indicate that a mixture of naturally occurring AF enhances the antigen-presenting capacity of DC, which could explain the observed immunotoxicity of AF by breaking down tolerance and further emphasizes the need to reduce the admissible level of AF in agricultural commodities.

  20. Probiotic metabolites from Bacillus coagulans GanedenBC30TM support maturation of antigen-presenting cells in vitro

    Institute of Scientific and Technical Information of China (English)

    Kathleen F Benson; Kimberlee A Redman; Steve G Carter; David Keller; Sean Farmer; John R Endres; Gitte S Jensen

    2012-01-01

    AIM:To study the effects of probiotic metabolites on maturation stage of antigen-presenting immune cells.METHODS:Ganeden Bacillus coagulans 30 (GBC30)bacterial cultures in log phase were used to isolate the secreted metabolite (MET) fraction.A second fraction was made to generate a crude cell-wall-enriched fraction,by centrifugation and lysis,followed by washing.A preparation of MET was subjected to size exclusion centrifugation,generating three fractions:< 3 kDa,3-30 kDa,and 30-200 kDa and activities were tested in comparison to crude MET and cell wall in primary cultures of human peripheral blood mononuclear cell (PBMC) as a source of antigen-presenting mononuclear phagocytes.The maturation status of mononudear phagocytes was evaluated by staining with monoclonal antibodies towards CD14,CD16,CD80 and CD86 and analyzed by flow cytometry.RESULTS:Treatment of PBMC with MET supported maturation of mononuclear phagocytes toward both macrophage and dendritic cell phenotypes.The biological activity unique to the metabolites included a reduction of CD14+ CD16+ pro-inflammatory ceils,and this property was associated with the high molecular weight metabolite fraction.Changes were also seen for the dendritic cell maturation markers CD80 and CD86.On CD14dim cells,an increase in both CD80 and CD86 expression was seen,in contrast to a selective increase in CD86 expression on CD14bright cells.The co-expression of CD80 and CD86 indicates effective antigen presentation to T cells and support of T helper cell differentiation.The selective expression of CD86 in the absence of CD80 points to a role in generating T regulatory cells.CONCLUSION:The data show that a primary mechanism of action of GBC30 metabolites involves support of more mature phenotypes of antigen-presenting cells,important for immunological decision-making.

  1. Human natural killer cell maturation defect supports in vivo CD56(bright to CD56(dim lineage development.

    Directory of Open Access Journals (Sweden)

    Carolina Inés Domaica

    Full Text Available Two populations of human natural killer (NK cells can be identified in peripheral blood. The majority are CD3(-CD56(dim cells while the minority exhibits a CD3(-CD56(bright phenotype. In vitro evidence indicates that CD56(bright cells are precursors of CD56(dim cells, but in vivo evidence is lacking. Here, we studied NK cells from a patient that suffered from a melanoma and opportunistic fungal infection during childhood. The patient exhibited a stable phenotype characterized by a reduction in the frequency of peripheral blood CD3(-CD56(dim NK cells, accompanied by an overt increase in the frequency and absolute number of CD3(-CD56(bright cells. These NK cells exhibited similar expression of perforin, CD57 and CD158, the major activating receptors CD16, NKp46, NKG2D, DNAM-1, and 2B4, as well as the inhibitory receptor CD94/NKG2A, on both CD56(bright and CD56(dim NK cells as healthy controls. Also, both NK cell subpopulations produced IFN-γ upon stimulation with cytokines, and CD3(-CD56(dim NK cells degranulated in response to cytokines or K562 cells. However, upon stimulation with cytokines, a substantial fraction of CD56(dim cells failed to up-regulate CD57 and CD158, showed a reduction in the percentage of CD16(+ cells, and CD56(bright cells did not down-regulate CD62L, suggesting that CD56(dim cells could not acquire a terminally differentiated phenotype and that CD56(bright cells exhibit a maturation defect that might result in a potential altered migration pattern. These observations, support the notion that NK cells of this patient display a maturation/activation defect that precludes the generation of mature NK cells at a normal rate accompanied by CD56(dim NK cells that cannot completely acquire a terminally differentiated phenotype. Thus, our results provide evidence that support the concept that in vivo CD56(bright NK cells differentiate into CD56(dim NK cells, and contribute to further understand human NK cell ontogeny.

  2. Human Natural Killer Cell Maturation Defect Supports In Vivo CD56bright to CD56dim Lineage Development

    Science.gov (United States)

    Domaica, Carolina Inés; Fuertes, Mercedes Beatriz; Uriarte, Ignacio; Girart, María Victoria; Sardañons, Jessica; Comas, Dorina Ileana; Di Giovanni, Daniela; Gaillard, María Isabel; Bezrodnik, Liliana; Zwirner, Norberto Walter

    2012-01-01

    Two populations of human natural killer (NK) cells can be identified in peripheral blood. The majority are CD3−CD56dim cells while the minority exhibits a CD3−CD56bright phenotype. In vitro evidence indicates that CD56bright cells are precursors of CD56dim cells, but in vivo evidence is lacking. Here, we studied NK cells from a patient that suffered from a melanoma and opportunistic fungal infection during childhood. The patient exhibited a stable phenotype characterized by a reduction in the frequency of peripheral blood CD3−CD56dim NK cells, accompanied by an overt increase in the frequency and absolute number of CD3−CD56bright cells. These NK cells exhibited similar expression of perforin, CD57 and CD158, the major activating receptors CD16, NKp46, NKG2D, DNAM-1, and 2B4, as well as the inhibitory receptor CD94/NKG2A, on both CD56bright and CD56dim NK cells as healthy controls. Also, both NK cell subpopulations produced IFN-γ upon stimulation with cytokines, and CD3−CD56dim NK cells degranulated in response to cytokines or K562 cells. However, upon stimulation with cytokines, a substantial fraction of CD56dim cells failed to up-regulate CD57 and CD158, showed a reduction in the percentage of CD16+ cells, and CD56bright cells did not down-regulate CD62L, suggesting that CD56dim cells could not acquire a terminally differentiated phenotype and that CD56bright cells exhibit a maturation defect that might result in a potential altered migration pattern. These observations, support the notion that NK cells of this patient display a maturation/activation defect that precludes the generation of mature NK cells at a normal rate accompanied by CD56dim NK cells that cannot completely acquire a terminally differentiated phenotype. Thus, our results provide evidence that support the concept that in vivo CD56bright NK cells differentiate into CD56dim NK cells, and contribute to further understand human NK cell ontogeny. PMID:23240056

  3. Maturation of Dendritic Cells & HIV Transmission to CD4(+) T cells

    OpenAIRE

    Izquierdo-Useros, Nuria

    2009-01-01

    Las células dendríticas (DCs) están especializadas en la presentación de antígeno. Sin embargo, las DCs expuestas al virus de la inmunodeficiencia humana (VIH) también son capaces de transmitir una potente infección citopática a los linfocitos T CD4+, un proceso que frecuentemente se ha relacionado con la capacidad que tiene el receptor DC-SIGN (Dendritic Cell-Specific Intercellular adhesion molecule-3-Grabbing Non-integrin) para unirse de forma específica a la glicoproteína de la envuelta vi...

  4. Maturation of dendritic cells & HIV-1 transmission to CD4+ T cells

    OpenAIRE

    Izquierdo Useros, Nuria

    2009-01-01

    Descripció del recurs: 22 febrer de 2010 Las células dendríticas (DCs) están especializadas en la presentación de antígeno. Sin embargo, las DCs expuestas al virus de la inmunodeficiencia humana (VIH) también son capaces de transmitir una potente infección citopática a los linfocitos T CD4+, un proceso que frecuentemente se ha relacionado con la capacidad que tiene el receptor DC-SIGN (Dendritic Cell-Specific Intercellular adhesion molecule-3-Grabbing Non-integrin) para unirse de forma esp...

  5. Notch signaling differentially regulates the cell fate of early endocrine precursor cells and their maturing descendants in the mouse pancreas and intestine.

    Science.gov (United States)

    Li, Hui Joyce; Kapoor, Archana; Giel-Moloney, Maryann; Rindi, Guido; Leiter, Andrew B

    2012-11-15

    Notch signaling inhibits differentiation of endocrine cells in the pancreas and intestine. In a number of cases, the observed inhibition occurred with Notch activation in multipotential cells, prior to the initiation of endocrine differentiation. It has not been established how direct activation of Notch in endocrine precursor cells affects their subsequent cell fate. Using conditional activation of Notch in cells expressing Neurogenin3 or NeuroD1, we examined the effects of Notch in both organs, on cell fate of early endocrine precursors and maturing endocrine-restricted cells, respectively. Notch did not preclude the differentiation of a limited number of endocrine cells in either organ when activated in Ngn3(+) precursor cells. In addition, in the pancreas most Ngn3(+) cells adopted a duct but not acinar cell fate; whereas in intestinal Ngn3(+) cells, Notch favored enterocyte and goblet cell fates, while selecting against endocrine and Paneth cell differentiation. A small fraction of NeuroD1(+) cells in the pancreas retain plasticity to respond to Notch, giving rise to intraislet ductules as well as cells with no detectable pancreatic lineage markers that appear to have limited ultrastructural features of both endocrine and duct cells. These results suggest that Notch directly regulates cell fate decisions in multipotential early endocrine precursor cells. Some maturing endocrine-restricted NeuroD1(+) cells in the pancreas switch to the duct lineage in response to Notch, indicating previously unappreciated plasticity at such a late stage of endocrine differentiation.

  6. Leptin promotes fetal lung maturity and upregulates SP-A expression in pulmonary alveoli type-II epithelial cells involving TTF-1 activation.

    Directory of Open Access Journals (Sweden)

    Hui Chen

    Full Text Available The placental hormone leptin has important functions in fetal and neonatal growth, and prevents depressed respiration in leptin-deficient mice. The effect of leptin on respiratory distress suffered by low birth weight and premature infants has been studied. However, it is unclear how leptin enhances lung maturity in the fetus and ameliorates neonatal respiratory distress. In the present study, we found that antenatal treatment with leptin for 2 d significantly enhanced the relative alveolus area and improved the maturity of fetal lungs in a rat model of fetal growth restriction (FGR. Mean birth weight and lung wet weight were higher in the leptin-treated group than in the PBS-treated group, indicating promotion of fetal growth. Leptin upregulated the intracellular expression and extracellular secretion of surfactant protein (SP A in type-II alveolar epithelial cells (AECs in vivo and in vitro. Dual positive effects of leptin were found on protein expression and transcriptional activity of thyroid transcription factor-1 (TTF-1, a nuclear transcription essential for branching morphogenesis of the lung and expression of SP-A in type-II AECs. Knockdown of TTF-1 by RNA interference indicated that TTF-1 may play a vital role in leptin-induced SP-A expression. These results suggest that leptin may have great therapeutic potential for the treatment of FGR, and leptin-mediated SP-A induction and lung maturity of the fetus are TTF-1 dependent.

  7. Negative regulation of erythroblast maturation by Fas-L(+)/TRAIL(+) highly malignant plasma cells: a major pathogenetic mechanism of anemia in multiple myeloma.

    Science.gov (United States)

    Silvestris, Franco; Cafforio, Paola; Tucci, Marco; Dammacco, Franco

    2002-02-15

    Multiple myeloma (MM) is associated with severe normochromic/normocytic anemia. This study demonstrates that the abnormal up-regulation of apoptogenic receptors, including both Fas ligand (L) and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), by highly malignant myeloma cells is involved in the pathogenesis of the ineffective erythropoiesis and chronic exhaustion of the erythroid matrix. By measuring Fas-L and TRAIL in plasma cells and the content of glycophorin A (GpA) in erythroblasts from a cohort of 28 untreated, newly diagnosed patients with MM and 7 with monoclonal gammopathy of undetermined significance (MGUS), selected in relation to their peripheral hemoglobin values, results showed that both receptors occurred at high levels in 15 severely anemic MM patients. Their marrow erythropoietic component was low and included predominantly immature GpA(+dim) erythroblasts, in contrast with the higher relative numbers of mature GpA(+bright) erythroid cells observed in the nonanemic patients and those with MGUS. In cocultures with autologous Fas-L(+)/TRAIL(+) myeloma cells, the expanded GpA(+dim) erythroid population underwent prompt apoptosis after direct exposure to malignant plasma cells, whereas erythroblasts from nonanemic patients were scarcely affected. The evidence that Fas-L(+)/TRAIL(+) malignant plasma cells prime erythroblast apoptosis by direct cytotoxicity was also supported by the increase of FLICE in fresh immature GpA(+dim) erythroid cells, whereas ICE and caspase-10 increased in subsequent maturative forms. In addition, GATA-1, a survival factor for erythroid precursors, was remarkably down-regulated in fresh erythroblasts from the severely anemic patients. These results indicate that progressive destruction of the erythroid matrix in aggressive MM is due to cytotoxic mechanisms based on the up-regulation in myeloma cells of Fas-L, TRAIL, or both. It is conceivable that the altered regulation of these receptors defines a peculiar

  8. A potential role of karyopherin a2 in the impaired maturation of dendritic cells observed in glioblastoma patients

    Directory of Open Access Journals (Sweden)

    Konstantinos Gousias

    2015-03-01

    Full Text Available Aim: Patients with glioblastomas demonstrate well-documented immunological impairments including decreased numbers of mature dendritic cells (DCs. Recent data identified karyopherin a2 (KPNA2, a nucleocytoplasmic shuttling receptor, as diagnostic and prognostic biomarker for gliomas. The aim of this ongoing study is to correlate parameters of immunity and nucleocytoplasmic transport in glioblastoma patients. Methods: We preoperatively collected serum from 17 patients with glioblastomas and determined DC subsets (HLA DR+ Lin-, CD34-, CD45+, CD123+, CD11+ were analyzed using a 6-color flow cytometry panel. Expression levels of KPNA2 and nuclear accumulation of p53 were evaluated semi-quantitatively by immunohistochemistry. O6-methylguanine DNA methyltransferase (MGMT and isocitrate dehydrogenase-1 (IDH-1 status were assessed by pyrosequencing and immunohistochemistry, respectively. Results: Median expression levels for both KPNA2 and p53 were 5-10%. IDH-1-R132H mutation and MGMT promoter hypermethylation was detected in 3/16 and 1/9 patients, respectively. Mean counts of total mature DCs, myeloid DCs and plasmacytoid DCs were 9.6, 2.1, 3.4 cells/μL. A preliminary analysis suggests an association between low KPNA2 nuclear expression and increased numbers of mature DCs. However, this correlation did not reach statistical significance so far (P = 0.077. Conclusion: Our preliminary data may indicate a role of KPNA2 in the impaired maturation of DCs observed in glioblastoma patients.

  9. Interleukin-10 inhibits lipopolysaccharide induced miR-155 precursor stability and maturation.

    Directory of Open Access Journals (Sweden)

    Sylvia T Cheung

    Full Text Available The anti-inflammatory cytokine interleukin-10 (IL-10 is essential for attenuating the inflammatory response, which includes reducing the expression of pro-inflammatory microRNA-155 (miR-155 in lipopolysaccharide (LPS activated macrophages. miR-155 enhances the expression of pro-inflammatory cytokines such as TNFα and suppresses expression of anti-inflammatory molecules such as SOCS1. Therefore, we examined the mechanism by which IL-10 inhibits miR-155. We found that IL-10 treatment did not affect the transcription of the miR-155 host gene nor the nuclear export of pre-miR-155, but rather destabilized both pri-miR-155 and pre-miR-155 transcripts, as well as interfered with the final maturation of miR-155. This inhibitory effect of IL-10 on miR-155 expression involved the contribution of both the STAT3 transcription factor and the phosphoinositol phosphatase SHIP1. This is the first report showing evidence that IL-10 regulates miRNA expression post-transcriptionally.

  10. Human Truncated Tau Induces Mature Neurofibrillary Pathology in a Mouse Model of Human Tauopathy.

    Science.gov (United States)

    Zimova, Ivana; Brezovakova, Veronika; Hromadka, Tomas; Weisova, Petronela; Cubinkova, Veronika; Valachova, Bernadeta; Filipcik, Peter; Jadhav, Santosh; Smolek, Tomas; Novak, Michal; Zilka, Norbert

    2016-09-01

    Alzheimer's disease (AD) represents the most common neurodegenerative disorder. Several animal models have been developed in order to test pathophysiological mechanisms of the disease and to predict effects of pharmacological interventions. Here we examine the molecular and behavioral features of R3m/4 transgenic mice expressing human non-mutated truncated tau protein (3R tau, aa151-391) that were previously used for efficacy testing of passive tau vaccine. The mouse model reliably recapitulated crucial histopathological features of human AD, such as pre-tangles, neurofibrillary tangles, and neuropil threads. The pathology was predominantly located in the brain stem. Transgenic mice developed mature sarkosyl insoluble tau complexes consisting of mouse endogenous and human truncated and hyperphosphorylated forms of tau protein. The histopathological and biochemical features were accompanied by significant sensorimotor impairment and reduced lifespan. The sensorimotor impairment was monitored by a highly sensitive, fully-automated tool that allowed us to assess early deficit in gait and locomotion. We suggest that the novel transgenic mouse model can serve as a valuable tool for analysis of the therapeutic efficacy of tau vaccines for AD therapy. PMID:27567836

  11. Cumulus Cell Role on Mouse Germinal Vesicle Oocyte Maturation, Fertilization, and Subsequent Embryo Development to Blastocyst Stage In Vitro

    Directory of Open Access Journals (Sweden)

    Reza Mahmodi

    2009-01-01

    Full Text Available Objective: The purpose of this study is to investigate the effect of cumulus cells on maturation,fertilization and subsequent development of mouse germinal vesicle oocytes.Materials and Methods: A total of 470 germinal vesicle (GV oocytes were obtained from26 ovaries of 3- 4 week old ICR female mice 48 hours after injection of 5 IU pregnant mareserum gonadotropin (PMSG. Collected oocytes were divided into two groups; group I: GVoocytes without cumulus cells (denuded oocyte, group II: GV oocytes with cumulus cells(cumulus-oocyte complex. The oocytes in both groups were cultured in TCM-199 mediumsupplemented with 10% fetal bovine serum (FBS for 22- 24 hours in a humidified atmosphereof 5% CO2 in air at 37°C. Oocyte maturation was scored under inverted microscope.To do in vitro fertilization, matured oocytes from each group were placed in T6 mediumand capacitated spermatozoa were added. Then the fertilized oocytes were cultured andassessed for cleavage to the 2-cell stage 24 hours and production of blastocyst 120 hoursafter fertilization. Data was analyzed by chi-square test and differences in the values wereconsiderable significant when p<0.05.Results: Maturation, fertilization, cleavage and blastocyst rates in denuded oocytes were:76.32%, 57.49%, 51.15% and 19.14% respectively. In the cumulus-oocyte complex rateswere: 89.41%, 80.76%, 75.58% and 45.62% respectively; all in the cumulus-oocyte complexwere significantly higher than those of denuded oocytes (p<0.05.Conclusion: The present study indicates that cumulus cells have important role duringmaturation, fertilization and subsequent embryo development to the blastocyst stage.

  12. Bordetella pertussis naturally occurring isolates with altered lipooligosaccharide structure fail to fully mature human dendritic cells.

    Science.gov (United States)

    Brummelman, Jolanda; Veerman, Rosanne E; Hamstra, Hendrik Jan; Deuss, Anna J M; Schuijt, Tim J; Sloots, Arjen; Kuipers, Betsy; van Els, Cécile A C M; van der Ley, Peter; Mooi, Frits R; Han, Wanda G H; Pinelli, Elena

    2015-01-01

    Bordetella pertussis is a Gram-negative bacterium and the causative agent of whooping cough. Despite high vaccination coverage, outbreaks are being increasingly reported worldwide. Possible explanations include adaptation of this pathogen, which may interfere with recognition by the innate immune system. Here, we describe innate immune recognition and responses to different B. pertussis clinical isolates. By using HEK-Blue cells transfected with different pattern recognition receptors, we found that 3 out of 19 clinical isolates failed to activate Toll-like receptor 4 (TLR4). These findings were confirmed by using the monocytic MM6 cell line. Although incubation with high concentrations of these 3 strains resulted in significant activation of the MM6 cells, it was found to occur mainly through interaction with TLR2 and not through TLR4. When using live bacteria, these 3 strains also failed to activate TLR4 on HEK-Blue cells, and activation of MM6 cells or human monocyte-derived dendritic cells was significantly lower than activation induced by the other 16 strains. Mass spectrum analysis of the lipid A moieties from these 3 strains indicated an altered structure of this molecule. Gene sequence analysis revealed mutations in genes involved in lipid A synthesis. Findings from this study indicate that B. pertussis isolates that do not activate TLR4 occur naturally and that this phenotype may give this bacterium an advantage in tempering the innate immune response and establishing infection. Knowledge on the strategies used by this pathogen in evading the host immune response is essential for the improvement of current vaccines or for the development of new ones.

  13. Generation and Characterization of Erythroid Cells from Human Embryonic Stem Cells and Induced Pluripotent Stem Cells: An Overview

    Directory of Open Access Journals (Sweden)

    Kai-Hsin Chang

    2011-01-01

    Full Text Available Because of the imbalance in the supply and demand of red blood cells (RBCs, especially for alloimmunized patients or patients with rare blood phenotypes, extensive research has been done to generate therapeutic quantities of mature RBCs from hematopoietic stem cells of various sources, such as bone marrow, peripheral blood, and cord blood. Since human embryonic stem cells (hESCs and induced pluripotent stem cells (iPSCs can be maintained indefinitely in vitro, they represent potentially inexhaustible sources of donor-free RBCs. In contrast to other ex vivo stem-cell-derived cellular therapeutics, tumorigenesis is not a concern, as RBCs can be irradiated without marked adverse effects on in vivo function. Here, we provide a comprehensive review of the recent publications relevant to the generation and characterization of hESC- and iPSC-derived erythroid cells and discuss challenges to be met before the eventual realization of clinical usage of these cells.

  14. Role of arachidonic acid and protein kinase C during maturation-inducing hormone-dependent meiotic resumption and ovulation in ovarian follicles of Atlantic croaker

    Science.gov (United States)

    Patino, R.; Yoshizaki, G.; Bolamba, D.; Thomas, P.

    2003-01-01

    The roles of arachidonic acid (AA) and protein kinase C (PKC) during in vitro maturation-inducing hormone (MIH)-dependent meiotic resumption (maturation) and ovulation were studied in ovarian follicles of Atlantic croaker (Micropogonias undulatus). The requirement for cyclooxygenase (COX) metabolites of AA was examined using a nonspecific COX inhibitor, indomethacin (IM), as well as two COX products, prostaglandin (PG) F2?? and PGE2, whereas the role of lipoxygenase (LOX) was investigated using a specific LOX inhibitor, nordihydroguaiaretic acid (NDGA). The involvement of PKC was examined using phorbol 12-myristate 13-acetate (PMA), a PKC activator, as well as GF109203X (GF), a specific inhibitor of PKC and 1-(5-isoquin- olinesulfonyl)-2-methylpiperazine (H7), nonspecific inhibitor of protein kinases. Genomic mechanisms were examined with the transcription-inhibitor actinomycin D (ActD) and the functionality of heterologous (oocyte-granulosa) gap junctions (GJ) with a dye transfer assay. The AA (100 ??M) and PGF2?? (5 ??M) did not induce maturation, and NDGA (10 ??M) did not affect MIH-dependent maturation. However, IM (100 ??M) partially inhibited MIH-dependent maturation. Conversely, AA and both PGs induced, and IM and NDGA inhibited, MIH-dependent ovulation in matured follicles. The PMA (1 ??g/ml) did not induce maturation but caused ovulation in matured follicles, whereas PKC inhibitors (GF, 5 ??M; H7, 50??M) did not affect MIH-dependent maturation but inhibited MIH- and PMA-dependent ovulation. The PMA-dependent ovulation was inhibited by IM but not by NDGA. In addition, ActD (5 ??M) blocked MIH-dependent, but not PMA-dependent, ovulation, and PGF2?? restored MIH-dependent ovulation in ActD-blocked follicles. The AA and PGs did not induce, and GF did not inhibit, MIH-dependent heterologous GJ uncoupling. In conclusion, AA and PKC mediate MIH-dependent ovulation but not meiotic resumption or heterologous GJ uncoupling in croaker follicles, but a permissive role

  15. Reelin Regulates the Maturation of Dendritic Spines, Synaptogenesis and Glial Ensheathment of Newborn Granule Cells

    Science.gov (United States)

    Bosch, Carles; Masachs, Nuria; Exposito-Alonso, David; Martínez, Albert; Teixeira, Cátia M.; Fernaud, Isabel; Pujadas, Lluís; Ulloa, Fausto; Comella, Joan X.; DeFelipe, Javier; Merchán-Pérez, Angel; Soriano, Eduardo

    2016-01-01

    The Reelin pathway is essential for both neural migration and for the development and maturation of synaptic connections. However, its role in adult synaptic formation and remodeling is still being investigated. Here, we investigated the impact of the Reelin/Dab1 pathway on the synaptogenesis of newborn granule cells (GCs) in the young-adult mouse hippocampus. We show that neither Reelin overexpression nor the inactivation of its intracellular adapter, Dab1, substantially alters dendritic spine numbers in these neurons. In contrast, 3D-electron microscopy (focused ion beam milling/scanning electron microscope) revealed that dysregulation of the Reelin/Dab1 pathway leads to both transient and permanent changes in the types and morphology of dendritic spines, mainly altering mushroom, filopodial, and branched GC spines. We also found that the Reelin/Dab1 pathway controls synaptic configuration of presynaptic boutons in the dentate gyrus, with its dysregulation leading to a substantial decrease in multi-synaptic bouton innervation. Lastly, we show that the Reelin/Dab1 pathway controls astroglial ensheathment of synapses. Thus, the Reelin pathway is a key regulator of adult-generated GC integration, by controlling dendritic spine types and shapes, their synaptic innervation patterns, and glial ensheathment. These findings may help to better understanding of hippocampal circuit alterations in neurological disorders in which the Reelin pathway is implicated. Significance Statement The extracellular protein Reelin has an important role in neurological diseases, including epilepsy, Alzheimer's disease and psychiatric diseases, targeting hippocampal circuits. Here we address the role of Reelin in the development of synaptic contacts in adult-generated granule cells (GCs), a neuronal population that is crucial for learning and memory and implicated in neurological and psychiatric diseases. We found that the Reelin pathway controls the shapes, sizes, and types of dendritic

  16. Seizure induces activation of multiple subtypes of neural progenitors and growth factors in hippocampus with neuronal maturation confined to dentate gyrus

    Energy Technology Data Exchange (ETDEWEB)

    Indulekha, Chandrasekharan L.; Sanalkumar, Rajendran [Neuro Stem Cell Biology Laboratory, Department of Neurobiology, Rajiv Gandhi Center for Biotechnology, Thiruvananthapuram, Kerala 695 014 (India); Thekkuveettil, Anoopkumar [Molecular Medicine, Biomedical Technology Wing, Sree Chitra Thirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala (India); James, Jackson, E-mail: jjames@rgcb.res.in [Neuro Stem Cell Biology Laboratory, Department of Neurobiology, Rajiv Gandhi Center for Biotechnology, Thiruvananthapuram, Kerala 695 014 (India)

    2010-03-19

    Adult hippocampal neurogenesis is altered in response to different physiological and pathological stimuli. GFAP{sup +ve}/nestin{sup +ve} radial glial like Type-1 progenitors are considered to be the resident stem cell population in adult hippocampus. During neurogenesis these Type-1 progenitors matures to GFAP{sup -ve}/nestin{sup +ve} Type-2 progenitors and then to Type-3 neuroblasts and finally differentiates into granule cell neurons. In our study, using pilocarpine-induced seizure model, we showed that seizure initiated activation of multiple progenitors in the entire hippocampal area such as DG, CA1 and CA3. Seizure induction resulted in activation of two subtypes of Type-1 progenitors, Type-1a (GFAP{sup +ve}/nestin{sup +ve}/BrdU{sup +ve}) and Type-1b (GFAP{sup +ve}/nestin{sup +ve}/BrdU{sup -ve}). We showed that majority of Type-1b progenitors were undergoing only a transition from a state of dormancy to activated form immediately after seizures rather than proliferating, whereas Type-1a showed maximum proliferation by 3 days post-seizure induction. Type-2 (GFAP{sup -ve}/nestin{sup +ve}/BrdU{sup +ve}) progenitors were few compared to Type-1. Type-3 (DCX{sup +ve}) progenitors showed increased expression of immature neurons only in DG region by 3 days after seizure induction indicating maturation of progenitors happens only in microenvironment of DG even though progenitors are activated in CA1 and CA3 regions of hippocampus. Also parallel increase in growth factors expression after seizure induction suggests that microenvironmental niche has a profound effect on stimulation of adult neural progenitors.

  17. Ascaris lumbricoides pseudocoelomic body fluid induces a partially activated dendritic cell phenotype with Th2 promoting ability in vivo.

    Science.gov (United States)

    Dowling, David J; Noone, Cariosa M; Adams, Paul N; Vukman, Krisztina V; Molloy, Sile F; Forde, Jessica; Asaolu, Samuel; O'Neill, Sandra M

    2011-02-01

    Dendritic cells (DCs) matured with helminth-derived molecules that promote Th2 immune responses do not follow conventional definitions of DC maturation processes. While a number of models of DC maturation by Th2 stimuli are postulated, further studies are required if we are to clearly define DC maturation processes that lead to Th2 immune responses. In this study, we examine the interaction of Th2-inducing molecules from the parasitic helminth Ascaris lumbricoides with the maturation processes and function of DCs. Here we show that murine bone marrow-derived DCs are partially matured by A. lumbricoides pseudocoelomic body fluid (ABF) as characterised by the production of IL-6, IL-12p40 and macrophage inflammatory protein 2 (MIP-2) but no enhanced expression of cluster of differentiation (CD)-14, T-cell co-stimulatory markers CD80, CD86, CD40, OX40L and major histocompatibility complex class II was observed. Despite these phenotypic characteristics, ABF-stimulated DCs displayed the functional hallmarks of fully matured cells, enhancing DC phagocytosis and promoting Th2-type responses in skin-draining lymph node cells in vivo. ABF activated Th2-associated extracellular signal-regulated kinase-1 and nuclear factor-kB intracellular signalling pathways independently of toll-like receptor 4. Taken together, we believe this is the first paper to demonstrate A. lumbricoides murine DC-Th cell-driven responses shedding further light on DC maturation processes by helminth antigens.

  18. Malignant transformation of mature T cells after gammaretrovirus mediated transfer of nucleophosmin-anaplastic lymphoma kinase oncogene

    Directory of Open Access Journals (Sweden)

    Ashok Kumar

    2015-01-01

    Full Text Available Background: Gene therapy has been in use to cure hereditary and acquired diseases by incorporating the desired gene into the cells with the help of gammaretroviral vectors. Despite the success of this therapy in X-linked severe combined immunodeficiency syndrome, few patients developed leukemia as a major adverse event due to retroviral insertional mutagenesis within stem cells. In experimental animals also, retroviral-mediated gene transfer technique resulted in the development of leukemia. On the other hand, evidence suggests that mature T cells (TC are relatively resistant to transformation even after retroviral-mediated transfer of potent oncogenes Tcl1, ΔTrkA and LMO2 with no reported side effects yet. Aims: To further address the safety issue for TC use in gene therapy, this study investigated susceptibility of mature polyclonal TC to malignant transformation by the retroviral-mediated transfer of nucleophosmin-anaplastic lymphoma kinase (NPM-ALK oncogene. Materials and Methods: Wild-type mature TC, isolated from C57BL/6 donor mice (genetic background Ly5.1 were transduced with gamma-retroviral vectors encoding the potent TC oncogene NPM-ALK or the control vector enhanced green fluorescent protein eGFP. The cells were then transplanted into RAG-1 deficient recipient mice (genetic background Ly5.2. Results: Two out of five mice from NPM-ALK oncogene group developed leukemia/lymphoma after latency periods (153 and 250 days, respectively. None of the mice from the control group developed any malignancy throughout the observational period. Conclusion: Mature polyclonal TC are relatively susceptible to malignant transformation after gamma-retroviral mediated transfer of NPM-ALK oncogene; hence safety of TC use in gene therapy should be further investigated to avoid the possible side-effect of development of leukemia/lymphoma.

  19. Prenatal Immune Activation Induces Maturation-Dependent Alterations in the Prefrontal GABAergic Transcriptome

    OpenAIRE

    Richetto, J; Calabrese, F; M.A. RIVA; Meyer, U.

    2014-01-01

    Neuronal dysfunctions in the cortical GABAergic system have been widely documented in neuropsychiatric disorders with prenatal infectious etiologies, including schizophrenia. At least some of these abnormalities may stem from transcriptional impairments in the GABAergic transcriptome. However, the extent to which prenatal exposure to immune challenge can induce long-term alterations in GABAergic gene transcription remains largely elusive. Here, we use an established mouse model of prenatal im...

  20. Akt activation induces hypertrophy without contractile phenotypic maturation in airway smooth muscle

    OpenAIRE

    Ma, Lan; Brown, Melanie; Kogut, Paul; Serban, Karina; Li, Xiaojing; McConville, John; Chen, Bohao; Bentley, J. Kelley; Hershenson, Marc B.; Dulin, Nickolai; Solway, Julian; Camoretti-Mercado, Blanca

    2011-01-01

    Airway smooth muscle (ASM) hypertrophy is a cardinal feature of severe asthma, but the underlying molecular mechanisms remain uncertain. Forced protein kinase B/Akt 1 activation is known to induce myocyte hypertrophy in other muscle types, and, since a number of mediators present in asthmatic airways can activate Akt signaling, we hypothesized that Akt activation could contribute to ASM hypertrophy in asthma. To test this hypothesis, we evaluated whether Akt activation occurs naturally within...

  1. Placing Ion Channels into a Signaling Network of T Cells: From Maturing Thymocytes to Healthy T Lymphocytes or Leukemic T Lymphoblasts

    Directory of Open Access Journals (Sweden)

    Oxana Dobrovinskaya

    2015-01-01

    Full Text Available T leukemogenesis is a multistep process, where the genetic errors during T cell maturation cause the healthy progenitor to convert into the leukemic precursor that lost its ability to differentiate but possesses high potential for proliferation, self-renewal, and migration. A new misdirecting “leukemogenic” signaling network appears, composed by three types of participants which are encoded by (1 genes implicated in determined stages of T cell development but deregulated by translocations or mutations, (2 genes which normally do not participate in T cell development but are upregulated, and (3 nondifferentially expressed genes which become highly interconnected with genes expressed differentially. It appears that each of three groups may contain genes coding ion channels. In T cells, ion channels are implicated in regulation of cell cycle progression, differentiation, activation, migration, and cell death. In the present review we are going to reveal a relationship between different genetic defects, which drive the T cell neoplasias, with calcium signaling and ion channels. We suggest that changes in regulation of various ion channels in different types of the T leukemias may provide the intracellular ion microenvironment favorable to maintain self-renewal capacity, arrest differentiation, induce proliferation, and enhance motility.

  2. Interleukin-1 (IL-1 system gene expression in granulosa cells: kinetics during terminal preovulatory follicle maturation in the mare

    Directory of Open Access Journals (Sweden)

    Gérard Nadine

    2003-05-01

    Full Text Available Abstract Background A growing body of evidences suggests that the ovary is a site of inflammatory reactions, and thus, ovarian cells could represent sources and targets of the interleukin-1 (IL-1 system. The purpose of this study was to examine the IL-1 system gene expressions in equine granulosa cells, and to study the IL-1β content in follicular fluid during the follicle maturation. For this purpose, granulosa cells and follicular fluids were collected from the largest follicle at the early dominance stage (diameter 24 ± 3 mm or during the preovulatory maturation phase, at T0 h, T6 h, T12 h, T24 h and T34 h after induction of ovulation. Cells were analysed by RT-PCR and follicular fluids were studied by gel electrophoresis and immunoblotting. Results We demonstrated that interleukin-1β (IL-1β, interleukin-1 receptor 2 (IL-1R2 and interleukin-1 receptor antagonist (IL-1RA genes are expressed in equine granulosa cells. We observed that the IL-1β and IL-1RA mRNA content changed in granulosa cells during the terminal follicular maturation whereas IL-1R2 mRNA did not vary. In follicular fluid, IL-1β content fluctuated few hours after induction of ovulation. Conclusions The expression of IL-1β gene in granulosa cells and the follicular fluid IL-1β content seem to be regulated by gonadotropins suggesting that IL-1β could be an intermediate paracrine factor involved in ovulation.

  3. miR-150, a microRNA expressed in mature B and T cells, blocks early B cell development when expressed prematurely.

    Science.gov (United States)

    Zhou, Beiyan; Wang, Stephanie; Mayr, Christine; Bartel, David P; Lodish, Harvey F

    2007-04-24

    MicroRNAs (miRNAs) are a family of approximately 22-nt noncoding RNAs that can posttranscriptionally regulate gene expression. Several miRNAs are specifically expressed in hematopoietic cells. Here we show that one such miRNA, miR-150, is mainly expressed in the lymph nodes and spleen and is highly up-regulated during the development of mature T and B cells; expression of miR-150 is sharply up-regulated at the immature B cell stage. Overexpression of miR-150 in hematopoietic stem cells, followed by bone marrow transplantation, had little effect on the formation of either mature CD8- and CD4-positive T cells or granulocytes or macrophages, but the formation of mature B cells was greatly impaired. Furthermore, premature expression of miR-150 blocked the transition from the pro-B to the pre-B stage. Our results indicate that miR-150 most likely down-regulates mRNAs that are important for pre- and pro-B cell formation or function, and its ectopic expression in these cells blocks further development of B cells.

  4. HIV transcription is induced in dying cells

    Energy Technology Data Exchange (ETDEWEB)

    Woloschak, G.E.; Chang-Liu, Chin-Mei [Argonne National Lab., IL (United States); Schreck, S. [Argonne National Lab., IL (United States)]|[Univ. of South Carolina, Columbia, SC (United States). Dept. of Chemistry; Panozzo, J. [Loyola Univ. Medical Center, Maywood, IL (United States); Libertin, C.R. [Loyola Univ. Medical Center, Maywood, IL (United States)

    1996-02-01

    Using HeLa cells stably transfected with an HIV-LTR-CAT construct, we demonstrated a peak in CAT induction that occurs in viable (but not necessarily cell-division-competent) cells 24 h following exposure to some cell-killing agents. {gamma} rays were the only cell-killing agent which did not induce HIV transcription; this can be attributed to the fact that {gamma}-ray-induced apoptotic death requires functional p53, which is not present in HeLa cells. For all other agents, HIV-LTR induction was dose-dependent and correlated with the amount of cell killing that occurred in the culture. Doses which caused over 99% cell killing induced HIV-LTR transcription maximally, demonstrating that cells that will go on to die by 14 days are the cells expressing HIV-LTR-CAT.

  5. Nicotinamide induces differentiation of embryonic stem cells into insulin-secreting cells

    International Nuclear Information System (INIS)

    The poly(ADP-ribose) polymerase (PARP) inhibitor, nicotinamide, induces differentiation and maturation of fetal pancreatic cells. In addition, we have previously reported evidence that nicotinamide increases the insulin content of cells differentiated from embryonic stem (ES) cells, but the possibility of nicotinamide acting as a differentiating agent on its own has never been completely explored. Islet cell differentiation was studied by: (i) X-gal staining after neomycin selection; (ii) BrdU studies; (iii) single and double immunohistochemistry for insulin, C-peptide and Glut-2; (iv) insulin and C-peptide content and secretion assays; and (v) transplantation of differentiated cells, under the kidney capsule, into streptozotocin (STZ)-diabetic mice. Here we show that undifferentiated mouse ES cells treated with nicotinamide: (i) showed an 80% decrease in cell proliferation; (ii) co-expressed insulin, C-peptide and Glut-2; (iii) had values of insulin and C-peptide corresponding to 10% of normal mouse islets; (iv) released insulin and C-peptide in response to stimulatory glucose concentrations; and (v) after transplantation into diabetic mice, normalized blood glucose levels over 7 weeks. Our data indicate that nicotinamide decreases ES cell proliferation and induces differentiation into insulin-secreting cells. Both aspects are very important when thinking about cell therapy for the treatment of diabetes based on ES cells

  6. Evidence of a hemolymph-born factor that induces onset of maturation in Manduca sexta larvae.

    Science.gov (United States)

    Helm, Bryan R; Davidowitz, Goggy

    2015-07-01

    Insect metamorphosis is a complex developmental transition determined and coordinated by hormonal signaling that begins at a critical weight late in the larval phase of life. Even though this hormonal signaling is well understood in insects, the internal factors that are assessed at the critical weight and that drive commitment to metamorphosis have remained unresolved in most species. The critical weight may represent either an autonomous decision by the neuroendocrine system without input from other developing larval tissues, or an assessment of developmental thresholds occurring throughout the body that are then integrated by the neuroendocrine tissues. The latter hypothesis predicts that there could be one or more developmental threshold signals that originate from developing tissues and ultimately induce the onset of metamorphosis. However, there is no evidence for such a signal in the organisms for which the critical weight is well described. Here we test for the evidence of this factor in Manduca sexta (Lepidoptera: Sphingidae) by transferring hemolymph from individuals that are either post- or pre-critical weight into pre-critical weight 5(th) instar larvae. We found that hemolymph from a post-critical weight donor induces a shortening of development time, though the mass at pupation is unaffected. This suggests that metamorphic commitment occurring at the critical weight is at least partially coordinated by signaling from developing tissues via a hemolymph-borne signaling factor. PMID:25958164

  7. SIP/SHIP inhibits Xenopus oocyte maturation induced by insulin and phosphatidylinositol 3-kinase.

    OpenAIRE

    Deuter-Reinhard, M; Apell, G; Pot, D; Klippel, A.; Williams, L T; Kavanaugh, W M

    1997-01-01

    SIP (signaling inositol phosphatase) or SHIP (SH2-containing inositol phosphatase) is a recently identified SH2 domain-containing protein which has been implicated as an important signaling molecule. SIP/SHIP becomes tyrosine phosphorylated and binds the phosphotyrosine-binding domain of SHC in response to activation of hematopoietic cells. The signaling pathways and biological responses that may be regulated by SIP have not been demonstrated. SIP is a phosphatidylinositol- and inositol-polyp...

  8. Cumulus Cell Transcripts Transit to the Bovine Oocyte in Preparation for Maturation

    DEFF Research Database (Denmark)

    Macaulay, Angus D; Gilbert, Isabelle; Scantland, Sara;

    2016-01-01

    the initiation of meiosis resumption under a timetable fitting with the acquisition of developmental competence. A comparison of the identity of the nascent transcripts trafficking in the TZPs, with those in the oocyte increasing in abundance during maturation, and that are present on the oocyte's polyribosomes...

  9. 5-Azacytidine induces early stage apoptosis and promotes in vitro maturation by changing chromosomal construction in murine oocytes.

    Science.gov (United States)

    Zhao, F Y; Shao, C P; Li, Y; Ma, W Y; Tian, N; Zheng, J H

    2013-06-01

    As an anticancer drug, 5-azacytidine (5-AzaC) has been widely used to treat various cancers. To investigate the effect of 5-AzaC on mouse oocytes cultured in vitro, we have performed morphological and molecular biology studies to examine the behavior of chromosomes and oocyte development. In 5-AzaC-treated oocytes, chromosomes were decondensed and unstable. The mRNA levels of Caspase3, Caspase8, and Caspase9 increased with the occurrence of early stage apoptosis in oocytes following 5-AzaC treatment. Furthermore, the mRNA levels of Gdf9 and Bmp15 also increased with the corresponding morphological changes in 5-AzaC-treated oocytes. In conclusion, 5-AzaC not only induced early apoptosis through both extrinsic and intrinsic pathways, but also had a positive effect on the developmental competence of mouse oocytes during in vitro maturation. These effects may be due to changes in chromosomal construction induced by DNA hypomethylation. PMID:23395740

  10. Mapping QTL for drought stress-induced premature senescence and maturity in cowpea [Vigna unguiculata (L.) Walp.].

    Science.gov (United States)

    Muchero, Wellington; Ehlers, Jeffrey D; Close, Timothy J; Roberts, Philip A

    2009-03-01

    Cowpea is an important crop for subsistence farmers in arid regions of Africa, Asia, and South America. Efforts to develop cultivars with improved productivity under drought conditions are constrained by lack of molecular markers associated with drought tolerance. Here, we report the mapping of 12 quantitative trait loci (QTL) associated with seedling drought tolerance and maturity in a cowpea recombinant inbred (RIL) population. One hundred and twenty-seven F(8) RILs developed from a cross between IT93K503-1 and CB46 were screened with 62 EcoR1 and Mse1 primer combinations to generate 306 amplified fragment length polymorphisms for use in genetic linkage mapping. The same population was phenotyped for maintenance of stem greenness (stg) and recovery dry weight (rdw) after drought stress in six greenhouse experiments. In field experiments conducted over 3 years, visual ratings and dry weights were used to phenotype drought stress-induced premature senescence in the RIL population. Kruskall-Wallis and multiple-QTL model mapping analysis were used to identify QTL associated with drought response phenotypes. Observed QTL were highly reproducible between stg and rdw under greenhouse conditions. Field studies confirmed all ten drought-response QTL observed under greenhouse conditions. Regions harboring drought-related QTL were observed on linkage groups 1, 2, 3, 5, 6, 7, 9, and 10 accounting for between 4.7 and 24.2% of the phenotypic variance (R(2)). Further, two QTL for maturity (R(2) = 14.4-28.9% and R(2) = 11.7-25.2%) mapped on linkage groups 7 and 8 separately from drought-related QTL. These results provide a platform for identification of genetic determinants of seedling drought tolerance in cowpea.

  11. Laser-induced fusion of human embryonic stem cells with optical tweezers

    Energy Technology Data Exchange (ETDEWEB)

    Chen Shuxun; Wang Xiaolin; Sun Dong [Department of Mechanical and Biomedical Engineering, City University of Hong Kong (Hong Kong); Cheng Jinping; Han Cheng, Shuk [Department of Biology and Chemistry, City University of Hong Kong (Hong Kong); Kong, Chi-Wing [Stem Cell and Regenerative Medicine Consortium, and Departments of Medicine and Physiology, LKS Faculty of Medicine, University of Hong Kong (Hong Kong); Li, Ronald A. [Stem Cell and Regenerative Medicine Consortium, and Departments of Medicine and Physiology, LKS Faculty of Medicine, University of Hong Kong (Hong Kong); Center of Cardiovascular Research, Mount Sinai School of Medicine, New York, New York 10029 (United States)

    2013-07-15

    We report a study on the laser-induced fusion of human embryonic stem cells (hESCs) at the single-cell level. Cells were manipulated by optical tweezers and fused under irradiation with pulsed UV laser at 355 nm. Successful fusion was indicated by green fluorescence protein transfer. The influence of laser pulse energy on the fusion efficiency was investigated. The fused products were viable as gauged by live cell staining. Successful fusion of hESCs with somatic cells was also demonstrated. The reported fusion outcome may facilitate studies of cell differentiation, maturation, and reprogramming.

  12. Laser-induced fusion of human embryonic stem cells with optical tweezers

    Science.gov (United States)

    Chen, Shuxun; Cheng, Jinping; Kong, Chi-Wing; Wang, Xiaolin; Han Cheng, Shuk; Li, Ronald A.; Sun, Dong

    2013-07-01

    We report a study on the laser-induced fusion of human embryonic stem cells (hESCs) at the single-cell level. Cells were manipulated by optical tweezers and fused under irradiation with pulsed UV laser at 355 nm. Successful fusion was indicated by green fluorescence protein transfer. The influence of laser pulse energy on the fusion efficiency was investigated. The fused products were viable as gauged by live cell staining. Successful fusion of hESCs with somatic cells was also demonstrated. The reported fusion outcome may facilitate studies of cell differentiation, maturation, and reprogramming.

  13. Derivation, characterization and retinal differentiation of induced pluripotent stem cells

    Indian Academy of Sciences (India)

    Subba Rao Mekala; Vasundhara Vauhini; Usha Nagarajan; Savitri Maddileti; Subhash Gaddipati; Indumathi Mariappan

    2013-03-01

    Millions of people world over suffer visual disability due to retinal dystrophies which can be age-related or a genetic disorder resulting in gradual degeneration of the retinal pigmented epithelial (RPE) cells and photoreceptors. Therefore, cell replacement therapy offers a great promise in treating such diseases. Since the adult retina does not harbour any stem cells, alternative stem cell sources like the embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) offer a great promise for generating different cell types of the retina. Here, we report the derivation of four iPSC lines from mouse embryonic fibroblasts (MEFs) using a cocktail of recombinant retroviruses carrying the genes for Oct4, Sox2, Klf4 and cMyc. The iPS clone MEF-4F3 was further characterized for stemness marker expression and stable reprogramming by immunocytochemistry, FACS and RT-PCR analysis. Methylation analysis of the nanog promoter confirmed the reprogrammed epigenetic state. Pluripotency was confirmed by embryoid body (EB) formation and lineage-specific marker expression. Also, upon retinal differentiation, patches of pigmented cells with typical cobble-stone phenotype similar to RPE cells are generated within 6 weeks and they expressed ZO-1 (tight junction protein), RPE65 and bestrophin (mature RPE markers) and showed phagocytic activity by the uptake of fluorescent latex beads.

  14. Regulatory T cells prevent CD8 T cell maturation by inhibiting CD4 Th cells at tumor sites.

    Science.gov (United States)

    Chaput, Nathalie; Darrasse-Jèze, Guillaume; Bergot, Anne-Sophie; Cordier, Corinne; Ngo-Abdalla, Stacie; Klatzmann, David; Azogui, Orly

    2007-10-15

    Natural regulatory T cells (Tregs) are present in high frequencies among tumor-infiltrating lymphocytes and in draining lymph nodes, supposedly facilitating tumor development. To investigate their role in controlling local immune responses, we analyzed intratumoral T cell accumulation and function in the presence or absence of Tregs. Tumors that grew in normal BALB/c mice injected with the 4T1 tumor cell line were highly infiltrated by Tregs, CD4 and CD8 cells, all having unique characteristics. Most infiltrating Tregs expressed low levels of CD25Rs and Foxp3. They did not proliferate even in the presence of IL-2 but maintained a strong suppressor activity. CD4 T cells were profoundly anergic and CD8 T cell proliferation and cytotoxicity were severely impaired. Depletion of Tregs modified the characteristics of tumor infiltrates. Tumors were initially invaded by activated CD4(+)CD25(-) T cells, which produced IL-2 and IFN-gamma. This was followed by the recruitment of highly cytotoxic CD8(+) T cells at tumor sites leading to tumor rejection. The beneficial effect of Treg depletion in tumor regression was abrogated when CD4 helper cells were also depleted. These findings indicate that the massive infiltration of tumors by Tregs prevents the development of a successful helper response. The Tregs in our model prevent Th cell activation and subsequent development of efficient CD8 T cell activity required for the control of tumor growth. PMID:17911581

  15. Proinsulin maturation disorder is a contributor to the defect of subsequent conversion to insulin in {beta}-cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jie, E-mail: jie.wang2@osumc.edu [Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, The Ohio State University, Columbus, OH (United States); Osei, Kwame [Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, The Ohio State University, Columbus, OH (United States)

    2011-07-22

    Highlights: {yields} Primary proinsulin maturation disorder is inherent in Ins2{sup +/Akita} islets/{beta}-cells. {yields} A consequence is the inefficient conversion of proinsulin to insulin. {yields} Post-translational defects occur as well in the involved PC1/3 and PC2 convertases. {yields} Proinsulin maturation chaos results in defects in the following conversion process. {yields} A link of the proinsulin maturation disorder and hyperproinsulinemia is suggested. -- Abstract: Disproportionate hyperproinsulinemia is an indicator of {beta}-cell dysfunction in diabetes and the basis underlying this abnormality remains obscure. Recently, we have found proinsulin is an aggregation-prone molecule inherent with a low relative folding rate and maintains a homeostatic balance of natively and plentiful non-natively folded states (i.e., proinsulin homeostasis, PIHO) in normal {beta}-cells as a result of the integration of maturation and disposal processes. PIHO is susceptible to environmental and genetic influences. Perturbation of PIHO produces a number of toxic consequences with known association to {beta}-cell failure in diabetes. To explore whether the perturbation of PIHO has a link to disproportionate hyperproinsulinemia, we investigated proinsulin conversion and the involved prohormone convertase 1/3 (PC1/3) and 2 (PC2) in mouse Ins2{sup +/Akita} islets/{beta}-cells that preserve a primary PIHO disorder due to a mutation (C96Y) in the insulin 2 (Ins2) gene. Our metabolic-labeling studies found an increased ratio of proinsulin to insulin in the cellular or released proteins of Ins2{sup +/Akita} islets. Histological, metabolic-labeling, and RT-PCR analyses revealed decreases of the PC1/3 and PC2 immunoreactivities in the {beta}-cells of Ins2{sup +/Akita} islets in spite of no declines of these two convertases at the transcriptional and translational levels. Immunoblot analyses in cloned Ins2{sup +/Akita} {beta}-cells further confirmed the increased ratio of proinsulin

  16. Proinsulin maturation disorder is a contributor to the defect of subsequent conversion to insulin in β-cells

    International Nuclear Information System (INIS)

    Highlights: → Primary proinsulin maturation disorder is inherent in Ins2+/Akita islets/β-cells. → A consequence is the inefficient conversion of proinsulin to insulin. → Post-translational defects occur as well in the involved PC1/3 and PC2 convertases. → Proinsulin maturation chaos results in defects in the following conversion process. → A link of the proinsulin maturation disorder and hyperproinsulinemia is suggested. -- Abstract: Disproportionate hyperproinsulinemia is an indicator of β-cell dysfunction in diabetes and the basis underlying this abnormality remains obscure. Recently, we have found proinsulin is an aggregation-prone molecule inherent with a low relative folding rate and maintains a homeostatic balance of natively and plentiful non-natively folded states (i.e., proinsulin homeostasis, PIHO) in normal β-cells as a result of the integration of maturation and disposal processes. PIHO is susceptible to environmental and genetic influences. Perturbation of PIHO produces a number of toxic consequences with known association to β-cell failure in diabetes. To explore whether the perturbation of PIHO has a link to disproportionate hyperproinsulinemia, we investigated proinsulin conversion and the involved prohormone convertase 1/3 (PC1/3) and 2 (PC2) in mouse Ins2+/Akita islets/β-cells that preserve a primary PIHO disorder due to a mutation (C96Y) in the insulin 2 (Ins2) gene. Our metabolic-labeling studies found an increased ratio of proinsulin to insulin in the cellular or released proteins of Ins2+/Akita islets. Histological, metabolic-labeling, and RT-PCR analyses revealed decreases of the PC1/3 and PC2 immunoreactivities in the β-cells of Ins2+/Akita islets in spite of no declines of these two convertases at the transcriptional and translational levels. Immunoblot analyses in cloned Ins2+/Akita β-cells further confirmed the increased ratio of proinsulin to insulin despite the levels of PC1/3 and PC2 proteins were not reduced somehow

  17. PDGF-C induces maturation of blood vessels in a model of glioblastoma and attenuates the response to anti-VEGF treatment.

    Directory of Open Access Journals (Sweden)

    Emmanuelle di Tomaso

    Full Text Available Recent clinical trials of VEGF inhibitors have shown promise in the treatment of recurrent glioblastomas (GBM. However, the survival benefit is usually short-lived as tumors escape anti-VEGF therapies. Here we tested the hypothesis that Platelet Derived Growth Factor-C (PDGF-C, an isoform of the PDGF family, affects GBM progression independent of VEGF pathway and hinders anti-VEGF therapy.We first showed that PDGF-C is present in human GBMs. Then, we overexpressed or downregulated PDGF-C in a human GBM cell line, U87MG, and grew them in cranial windows in nude mice to assess vessel structure and function using intravital microscopy. PDGF-C overexpressing tumors had smaller vessel diameters and lower vascular permeability compared to the parental or siRNA-transfected tumors. Furthermore, vessels in PDGF-C overexpressing tumors had more extensive coverage with NG2 positive perivascular cells and a thicker collagen IV basement membrane than the controls. Treatment with DC101, an anti-VEGFR-2 antibody, induced decreases in vessel density in the parental tumors, but had no effect on the PDGF-C overexpressing tumors.These results suggest that PDGF-C plays an important role in glioma vessel maturation and stabilization, and that it can attenuate the response to anti-VEGF therapy, potentially contributing to escape from vascular normalization.

  18. Effect of Salinity on the Composition, Number and Size of Epidermal Cells along the Mature Blade of Wheat Leaves

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Salinity inhibits leaf growth in association with changes in cell size. The objective of this study was to determine the spatial distributions of the composition, number and dimensions of epidermal cells in the mature blades of leaf four of wheat seedlings under saline conditions. Plants were grown in loamy soil either with or without 120 mmol/L NaCl in a growth chamber, and harvested after leaf four was fully developed. The results of the spatial distribution analyses of width along the blade showed that salinity not only reduced the width of the leaf blade, but that it also altered the distribution pattern of blade width along the leaf axis. The reduction in the final size of the leaf blade was associated with a reduction in the total number of epidermal cells and in their widths and lengths. This study also revealed the spatial effects of salinity on the blade and epidermal cell dimensions along the leaf axis. In particular, salinity inhibited the total cell number for interstomatal, sister and elongated cells, implying that cell division in wheat leaves is inhibited by salinity. However, the lengths of interstomatal cells were not affected by salinity (unlike those for the sister and elongated cells), suggesting the relative contributions of cell length and numbers to the reduction in the final length of the blade under salinity is dependent on cell type.

  19. Generation of Induced Neuronal Cells by the Single Reprogramming Factor ASCL1

    Directory of Open Access Journals (Sweden)

    Soham Chanda

    2014-08-01

    Full Text Available Direct conversion of nonneural cells to functional neurons holds great promise for neurological disease modeling and regenerative medicine. We previously reported rapid reprogramming of mouse embryonic fibroblasts (MEFs into mature induced neuronal (iN cells by forced expression of three transcription factors: ASCL1, MYT1L, and BRN2. Here, we show that ASCL1 alone is sufficient to generate functional iN cells from mouse and human fibroblasts and embryonic stem cells, indicating that ASCL1 is the key driver of iN cell reprogramming in different cell contexts and that the role of MYT1L and BRN2 is primarily to enhance the neuronal maturation process. ASCL1-induced single-factor neurons (1F-iN expressed mature neuronal markers, exhibited typical passive and active intrinsic membrane properties, and formed functional pre- and postsynaptic structures. Surprisingly, ASCL1-induced iN cells were predominantly excitatory, demonstrating that ASCL1 is permissive but alone not deterministic for the inhibitory neuronal lineage.

  20. Visualization of RelB expression and activation at the single-cell level during dendritic cell maturation in Relb-Venus knock-in mice.

    Science.gov (United States)

    Seki, Takao; Yamamoto, Mami; Taguchi, Yuu; Miyauchi, Maki; Akiyama, Nobuko; Yamaguchi, Noritaka; Gohda, Jin; Akiyama, Taishin; Inoue, Jun-ichiro

    2015-12-01

    RelB is activated by the non-canonical NF-κB pathway, which is crucial for immunity by establishing lymphoid organogenesis and B-cell and dendritic cell (DC) maturation. To elucidate the mechanism of the RelB-mediated immune cell maturation, a precise understanding of the relationship between cell maturation and RelB expression and activation at the single-cell level is required. Therefore, we generated knock-in mice expressing a fusion protein between RelB and fluorescent protein (RelB-Venus) from the Relb locus. The Relb(Venus/Venus) mice developed without any abnormalities observed in the Relb(-/-) mice, allowing us to monitor RelB-Venus expression and nuclear localization as RelB expression and activation. Relb(Venus/Venus) DC analyses revealed that DCs consist of RelB(-), RelB(low) and RelB(high) populations. The RelB(high) population, which included mature DCs with projections, displayed RelB nuclear localization, whereas RelB in the RelB(low) population was in the cytoplasm. Although both the RelB(low) and RelB(-) populations barely showed projections, MHC II and co-stimulatory molecule expression were higher in the RelB(low) than in the RelB(-) splenic conventional DCs. Taken together, our results identify the RelB(low) population as a possible novel intermediate maturation stage of cDCs and the Relb(Venus/Venus) mice as a useful tool to analyse the dynamic regulation of the non-canonical NF-κB pathway.

  1. Metformin induces apoptosis of pancreatic cancer cells

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    AIM: To assess the role and mechanism of mefformin in inducing apoptosis of pancreatic cancer cells. METHODS: The human pancreatic cancer cell lines ASPC-1, BxPc-3, PANC-1 and SW1990 were exposed to mefformin. The inhibition of cell proliferation and colony formation via apoptosis induction and S phase arrest in pancreatic cancer cell lines of mefformin was tested.RESULTS: In each pancreatic cancer cell line tested, metformin inhibited cell proliferation in a dose dependent manner in MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium assays). Flow cytometric analysis showed that metformin reduced the number of cells in G1 and increased the percentage of cells in S phase as well as the apoptotic fraction. Enzymelinked immunosorbent assay (EUSA) showed that metformin induced apaptosis in all pancreatic cancer cell lines. In Western blot studies, metformin induced oly-ADP-ribose polymerase(PARP) cleavage (an indicator of aspase activation) in all pancreatic cancer cell lines. The general caspase inhibitor (VAD-fmk) completely abolished metformin-induced PARP cleavage and apoptosis in ASPC-1 BxPc-3 and PANC-1, the caspase-8 specific inhibitor (IETD-fmk) and the caspase-9 specific inhibitor (LEHD-fmk) only partially abrogated metformin-induced apoptosis and PARP cleavage in BxPc-3 and PANC-1 cells. We also observed that metformin treatment ramatically reduced epidermal growth factor receptor (EGFR) and phosphorylated mitogen activated protein kinase (P-MAPK) in both a time- and dose-dependent manner in all cell lines tested.CONCLUSION: Metformin significantly inhibits cell proliferation and apoptosis in all pancreatic cell lines. And the metformin-induced apoptosis is associated with PARP leavage, activation of caspase-3, -8, and -9 in a time- and dose-dependent manner. Hence, both caspase-8 and -9-initiated apoptotic signaling pathways contribute to metforrnin-induced apoptosis in pancreatic cell lines.

  2. Peruvoside, a Cardiac Glycoside, Induces Primitive Myeloid Leukemia Cell Death.

    Science.gov (United States)

    Feng, Qian; Leong, Wa Seng; Liu, Liang; Chan, Wai-In

    2016-01-01

    Despite the available chemotherapy and treatment, leukemia remains a difficult disease to cure due to frequent relapses after treatment. Among the heterogeneous leukemic cells, a rare population referred as the leukemic stem cell (LSC), is thought to be responsible for relapses and drug resistance. Cardiac glycosides (CGs) have been used in treating heart failure despite its toxicity. Recently, increasing evidence has demonstrated its new usage as a potential anti-cancer drug. Ouabain, one of the CGs, specifically targeted CD34⁺CD38(-) leukemic stem-like cells, but not the more mature CD34⁺CD38⁺ leukemic cells, making this type of compounds a potential treatment for leukemia. In search of other potential anti-leukemia CGs, we found that Peruvoside, a less studied CG, is more effective than Ouabain and Digitoxin at inducing cell death in primitive myeloid leukemia cells without obvious cytotoxicity on normal blood cells. Similar to Ouabain and Digitoxin, Peruvoside also caused cell cycle arrest at G₂/M stage. It up-regulates CDKN1A expression and activated the cleavage of Caspase 3, 8 and PARP, resulting in apoptosis. Thus, Peruvoside showed potent anti-leukemia effect, which may serve as a new anti-leukemia agent in the future. PMID:27110755

  3. Effect of pimecrolimus vs. corticosteroids on murine bone marrow-derived dendritic cell differentiation, maturation and function.

    Science.gov (United States)

    Krummen, Mathias B W; Varga, Georg; Steinert, Meike; Stuetz, Anton; Luger, Thomas A; Grabbe, Stephan

    2006-01-01

    Pimecrolimus (SDZ ASM981) is a non-steroid member of calcineurin inhibitors recently developed for the treatment of inflammatory skin diseases. In this study, we compared the effect of pimecrolimus and corticosteroids on the differentiation, maturation and function of murine bone marrow-derived dendritic cells (BM-DC). We added pimecrolimus at concentrations of 5-500 ng/ml or 0.5 ng/ml mometasone furoate at different timepoints to the BM-DC culture and checked (i) the number of matured cells, (ii) the expression of activation markers, (iii) the release of cytokines and (iv) the stimulatory capacity of the resulting BM-DC in vivo. Even at the highest concentration, pimecrolimus treatment resulted in only modest effects. In the pimecrolimus-treated culture, we observed a decrease in the numbers of matured cells but no significant effects on the expression of activation markers. The release of some inflammatory cytokines was reduced, but the stimulatory capacity in vivo was not affected. In contrast, mometasone furoate has pronounced effects on BM-DC at a concentration ten to 1000 times lower than those used with pimecrolimus. Furthermore, topical treatment of mice with clobetasole cream 0.05% resulted in almost complete depletion of splenic DC and a severe hyposplenia, while high-dose oral pimecrolimus treatment did not show any effects on the spleen or on splenic DC. These results support that pimecrolimus, unlike corticosteroids, has little effects on dendritic cells. To the best of our knowledge, this is the first study of this type with use of BM-DC.

  4. Ultrastructural maturation of human bone marrow mesenchymal stem cells-derived cardiomyocytes under alternative induction of 5-azacytidine.

    Science.gov (United States)

    Piryaei, Abbas; Soleimani, Masoud; Heidari, Mohammad Hassan; Saheli, Mona; Rohani, Razieh; Almasieh, Mohammadali

    2015-05-01

    Adult cardiomyocytes lack the ability to proliferate and are unable to repair damaged heart tissue, therefore differentiation of stem cells to cardiomyocytes represents an exceptional opportunity to study cardiomyocytes in vitro and potentially provides a valuable source for replacing damaged tissue. However, characteristic maturity of the in vitro differentiated cardiomyocytes and methods to achieve it are yet to be optimized. In this study, differentiation of human bone marrow-mesenchymal stem cells (hBM-MSCs) into cardiomyocytes is accomplished and the process investigated ultrastructurally. The hBM-MSCs were alternatively treated with 5 μM of 5-azacytidine (5-aza) for 8 weeks resulting in differentiation to cardiomyocytes. Expressions of cardiomyocyte-specific genes [cardiac α-actinin, cardiac β-myosin heavy chain (MHC) and connexin-43] and proteins (cardiac α-actinin, cardiac troponin and connexin-43) were confirmed in a time-dependent manner from the first to the fifth weeks post-induction. Ultrastructural maturation of hBM-MSCs-derived cardiomyocyte (MSCs-CM) corresponded with increase in number and organization of myofilaments in cells over time. Starting from week five, organized myofibrils along with developing sarcomeres were detectable. Later on, MSCs-CM were characterized by the presence of sarcoplasmic reticulum, T-tubules and diads as cardiomyocytes connected to each other by intercalated disc-like structures. Here, we showed the potential of hBM-MSCs as a source for the production of cardiomyocytes and confirmed mature ultrastructural characteristics of these cells using our alternative incubation method. PMID:25573851

  5. Comparison of the Proteome of Adult and Cord Erythroid Cells, and Changes in the Proteome Following Reticulocyte Maturation.

    Science.gov (United States)

    Wilson, Marieangela C; Trakarnsanga, Kongtana; Heesom, Kate J; Cogan, Nicola; Green, Carole; Toye, Ashley M; Parsons, Steve F; Anstee, David J; Frayne, Jan

    2016-06-01

    Cord blood stem cells are an attractive starting source for the production of red blood cells in vitro for therapy because of additional expansion potential compared with adult peripheral blood progenitors and cord blood banks usually being more representative of national populations than blood donors. Consequently, it is important to establish how similar cord RBCs are to adult cells. In this study, we used multiplex tandem mass tag labeling combined with nano-LC-MS/MS to compare the proteome of adult and cord RBCs and reticulocytes. 2838 unique proteins were identified, providing the most comprehensive compendium of RBC proteins to date. Using stringent criteria, 1674 proteins were quantified, and only a small number differed in amount between adult and cord RBC. We focused on proteins critical for RBC function. Of these, only the expected differences in globin subunits, along with higher levels of carbonic anhydrase 1 and 2 and aquaporin-1 in adult RBCs would be expected to have a phenotypic effect since they are associated with the differences in gaseous exchange between adults and neonates. Since the RBC and reticulocyte samples used were autologous, we catalogue the change in proteome following reticulocyte maturation. The majority of proteins (>60% of the 1671 quantified) reduced in abundance between 2- and 100-fold following maturation. However, ∼5% were at a higher level in RBCs, localized almost exclusively to cell membranes, in keeping with the known clearance of intracellular recycling pools during reticulocyte maturation. Overall, these data suggest that, with respect to the proteome, there is no barrier to the use of cord progenitors for the in vitro generation of RBCs for transfusion to adults other than the expression of fetal, not adult, hemoglobin. PMID:27006477

  6. Efficient Generation of Myelinating Oligodendrocytes from Primary Progressive Multiple Sclerosis Patients by Induced Pluripotent Stem Cells

    OpenAIRE

    Panagiotis Douvaras; Jing Wang; Matthew Zimmer; Stephanie Hanchuk; Melanie A. O’Bara; Saud Sadiq; Fraser J. Sim; James Goldman; Valentina Fossati

    2014-01-01

    Summary Multiple sclerosis (MS) is a chronic demyelinating disease of unknown etiology that affects the CNS. While current therapies are primarily directed against the immune system, the new challenge is to address progressive MS with remyelinating and neuroprotective strategies. Here, we develop a highly reproducible protocol to efficiently derive oligodendrocyte progenitor cells (OPCs) and mature oligodendrocytes from induced pluripotent stem cells (iPSCs). Key elements of our protocol incl...

  7. Role of FDG-PET scan in the management of pediatric mature B cell non-Hodgkin’s lymphoma. CCHE experience

    OpenAIRE

    Hany Abdel Rahman; Mohamed Sedky; Asmaa Hamoda; Tarek Raafat; Ayda Youssef; Walid Omar; Omneya Hassanein; Emad Moussa

    2016-01-01

    Aim of work: To evaluate the sensitivity (Se), specificity (Sp), and predictive values (PV) of PET scan during management of pediatric mature B cell non-Hodgkin’s lymphoma (NHL) in comparison with conventional computed tomography (CT) scan. Patients and methods: A retrospective study enrolled on pediatric NHL patients at Children Cancer Hospital Egypt (CCHE) during the period from July 2007 to the end of June 2013. Results: For 115 pediatric patients diagnosed with mature B cell NHL, 15...

  8. Expression of p13MTCP1 is restricted to mature T-cell proliferations with t(X;14) translocations.

    Science.gov (United States)

    Madani, A; Choukroun, V; Soulier, J; Cacheux, V; Claisse, J F; Valensi, F; Daliphard, S; Cazin, B; Levy, V; Leblond, V; Daniel, M T; Sigaux, F; Stern, M H

    1996-03-01

    T-cell prolymphocytic leukemia (T-PLL), a rare form of mature T-cell leukemias, and ataxia telangiectasia clonal proliferation, a related condition occurring in patients suffering from ataxia telangiectasia, have been associated to translocations involving the 14q32.1 or Xq28 regions, where are located the TCL1 and MTCP1 putative oncogenes, respectively. The MTCP1 gene is involved in the t(X;14)(q28;q11) translocation associated with these T-cell proliferations. Alternative splicing generates type A and B transcripts that potentially encode two entirely distinct proteins; type A transcripts code for a small mitochondrial protein, p8MTCP1, and type B transcripts, containing an additional open reading frame, may code for 107 amino-acid protein, p13MTCP1. The recently cloned TCL1 gene, also involved in translocations and inversions associated with T-cell proliferations, codes for a 14-kD protein that displays significant homology with p13MTCP1. We have generated rabbit antisera against this putative p13MTCP1 protein and screened for expression of p13MTCP1 normal lymphoid tissues and 33 cases of immature and mature lymphoid T-cell proliferations using a sensitive Western blot assay. We also investigated the MTCP1 locus configuration by Southern blot analysis. The p13MTCP1 protein was detected in the three T-cell proliferations with MTCP1 rearrangements because of t(X;14) translocations, but neither in normal resting and activated lymphocytes nor in the other T-cell leukemias. Our data support the hypothesis that p13MTCP1 and p14TCL1 form a new protein family that plays a key role in the pathogenesis of T-PLL and related conditions.

  9. Metabolomic changes in follicular fluid induced by soy isoflavones administered to rats from weaning until sexual maturity.

    Science.gov (United States)

    Wang, Wenxiang; Zhang, Wenchang; Liu, Jin; Sun, Yan; Li, Yuchen; Li, Hong; Xiao, Shihua; Shen, Xiaohua

    2013-06-15

    Female Wistar rats at 21 days of age were treated with one of three concentrations of soy isoflavones (SIF) (50, 100 or 200mg/kg body weight, orally, once per day) from weaning until sexual maturity (3 months) in order to evaluate the influence of SIF on ovarian follicle development. After treatment, the serum sex hormone levels and enumeration of ovarian follicles of the ovary were measured. The metabolic profile of follicular fluid was determined using HPLC-MS. Principal component analysis (PCA) and partial least-squares-discriminant analysis (PLS-DA) was used to identify differences in metabolites and reveal useful toxic biomarkers. The results indicated that modest doses of SIF affect ovarian follicle development, as demonstrated by decreased serum estradiol levels and increases in both ovarian follicle atresia and corpora lutea number in the ovary. SIF treatment-related metabolic alterations in follicular fluid were also found in the PCA and PLS-DA models. The 24 most significantly altered metabolites were identified, including primary sex hormones, amino acids, fatty acids and metabolites involved in energy metabolism. These findings may indicate that soy isoflavones affect ovarian follicle development by inducing metabolomic variations in the follicular fluid.

  10. Metabolomic changes in follicular fluid induced by soy isoflavones administered to rats from weaning until sexual maturity

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wenxiang [Department of Nutrition and Health Care, School of Public Health, Fujian Medical University, Fuzhou, Fujian (China); Zhang, Wenchang, E-mail: wenchang2002@sina.com [Department of Occupational and Environmental Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian (China); Liu, Jin [Department of Occupational and Environmental Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian (China); Sun, Yan [Center for Reproductive Medicine, Teaching Hospital of Fujian Medical University, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian (China); Li, Yuchen; Li, Hong; Xiao, Shihua; Shen, Xiaohua [Department of Occupational and Environmental Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian (China)

    2013-06-15

    Female Wistar rats at 21 days of age were treated with one of three concentrations of soy isoflavones (SIF) (50, 100 or 200 mg/kg body weight, orally, once per day) from weaning until sexual maturity (3 months) in order to evaluate the influence of SIF on ovarian follicle development. After treatment, the serum sex hormone levels and enumeration of ovarian follicles of the ovary were measured. The metabolic profile of follicular fluid was determined using HPLC-MS. Principal component analysis (PCA) and partial least-squares-discriminant analysis (PLS-DA) was used to identify differences in metabolites and reveal useful toxic biomarkers. The results indicated that modest doses of SIF affect ovarian follicle development, as demonstrated by decreased serum estradiol levels and increases in both ovarian follicle atresia and corpora lutea number in the ovary. SIF treatment-related metabolic alterations in follicular fluid were also found in the PCA and PLS-DA models. The 24 most significantly altered metabolites were identified, including primary sex hormones, amino acids, fatty acids and metabolites involved in energy metabolism. These findings may indicate that soy isoflavones affect ovarian follicle development by inducing metabolomic variations in the follicular fluid. - Highlights: ► Modest doses of soy isoflavones (SIF) do affect ovarian follicle development. ► SIF treatment-related metabolic alterations in follicular fluid were found. ► The 24 most significantly altered metabolites were identified.

  11. Impact of the Maturation of Human Primary Bone-Forming Cells on Their Behavior in Acute or Persistent Staphylococcus aureus Infection Models.

    Science.gov (United States)

    Josse, Jérôme; Guillaume, Christine; Bour, Camille; Lemaire, Flora; Mongaret, Céline; Draux, Florence; Velard, Frédéric; Gangloff, Sophie C

    2016-01-01

    Staphylococcus aureus is one of the most frequently involved pathogens in bacterial infections such as skin abscess, pneumonia, endocarditis, osteomyelitis, and implant-associated infection. As for bone homeostasis, it is partly altered during infections by S. aureus by the induction of various responses from osteoblasts, which are the bone-forming cells responsible for extracellular matrix synthesis and its mineralization. Nevertheless, bone-forming cells are a heterogeneous population with different stages of maturation and the impact of the latter on their responses toward bacteria remains unclear. We describe the impact of S. aureus on two populations of human primary bone-forming cells (HPBCs) which have distinct maturation characteristics in both acute and persistent models of interaction. Cell maturation did not influence the internalization and survival of S. aureus inside bone-forming cells or the cell death related to the infection. By studying the expression of chemokines, cytokines, and osteoclastogenic regulators by HPBCs, we observed different profiles of chemokine expression according to the degree of cell maturation. However, there was no statistical difference in the amounts of proteins released by both populations in the presence of S. aureus compared to the non-infected counterparts. Our findings show that cell maturation does not impact the behavior of HPBCs infected with S. aureus and suggest that the role of bone-forming cells may not be pivotal for the inflammatory response in osteomyelitis. PMID:27446812

  12. Enhancement of Extracts from Celastrus orbiculatus on Maturation and Function of Dendritic Cells in vitro and in vivo

    Institute of Scientific and Technical Information of China (English)

    QIAN Ya-yun; ZHANG Hua; YUAN Lin; HOU Ying; LIU Wei-wei; LIU Yan-qing

    2010-01-01

    Objective To examine the immunoregulation of Celastrus orbiculatus extracts(COE),a traditional Chinese medicine,on maturation and function of dendritic cells(DCs)in vitro and in vivo.Methods In vitro,after treated with COE indifferent nontoxic concentrations(0,10,20,40,80,and 160 μg/mL)for 5 d,the surface immunological molecules andcytokine secretion of mice bone marrow-derived DCs in response to COE were analyzed by flow cytometric analysis(FACS)and enzyme linked immunosorbent assay(ELISA),respectively.In vivo,mouse hepatoma cells(Hepal-6,1 ×106)were injected sc and were treated with different dosages of COE(10,20 or 40 mg/kg/d).Effects on tumor growth were determined by tumor volume and histology analysis after 28 d administration of COE.The relative proportions ofmature DCs and CD8+ T cells were measured in mononuclear cells that had been isolated from spleen by FACS.Results COE stimulated IL-2 and IFN-γ secretion of DCs,simultaneously enhanced the maturation of DCs byenhancing immunological molecule(CD40,CDS0,CD86,H-2Kb,and I-Ab)expression in a dose-dependent manner.Furthermore,the chcmotactic responses of DCs were significantly higher in COE-treated than untreated DCs,in association with higher chcmokine receptor 7 expression.Furthermore,COE increased DCs produce IFN-γ and IL-2 ina dose-dependent manner when the concentration of COE less than 40 μg/mL,decreased DCs produce IL-10 and IL-4also in a dose-dependent manner.In in vivo studies,COE can not only suppress growth of malignant hepatocellularcarcinomas but also stimulate maturation of DCs,associated with strongly enhanced CD8+ CTL responses.ConclusionThese data provide new insight into the mechanism of action of COE and indicate that the stimulation of maturation andfunction of DCs by COE contributes to its immunoregulatory effects.

  13. Production of dendritic cells and cytokine-induced killer cells from banked umbilical cord blood samples

    Directory of Open Access Journals (Sweden)

    Phuc Van Pham

    2015-11-01

    Full Text Available Umbilical cord blood (UCB is considered to be a source of hematopoietic stem cells (HSCs. All UCB banks have recently become interested in the isolation and storage of HSCs for the treatment of hematological diseases. However, UCB was also recently confirmed as a source of immune cells for immunotherapy such as dendritic cells (DCs and cytokine-induced killer cells (CIKs. This study aimed to exploit this source of immune cells in banked UCB samples. After collection of UCB samples, mononuclear cells (MNCs containing stem cells, progenitor cells, and mature cells were isolated by Ficoll-Hypaque-based centrifugation. The MNCs were subjected to freezing and thawing according to a previously published protocol. The banked MNCs were used to produce DCs and CIKs. To produce DCs, MNCs were induced in RPMI 1640 medium supplemented with GM-CSF (50 ng/ml and IL-4 (40 ng/ml for 14 days. To produce CIKs, MNCs were induced in RPMI 1640 medium supplemented an anti-CD3 monoclonal antibody, IL-3, and GMC-SF for 21 and ndash;28 days. Both DCs and CIKs were evaluated for their phenotypes and functions according to previously published protocols. The results showed that banked UCB samples can be successfully used to produce functional DCs and CIKs. These samples are valuable sources of immune cells for immunotherapy. The present results suggest that banked UCB samples are useful not only for stem cell isolation, but also for immune cell production. [Biomed Res Ther 2015; 2(11.000: 402-408

  14. Induced differentiation of cancer cells: second generation potent hybrid polar compounds target cell cycle regulators

    International Nuclear Information System (INIS)

    cells, achieved peripheral blood granulocyte counts that approached normal levels. More than 80% of these morphologically mature granulocytes carried the chromosomal marker characteristic of the malignant clone, providing clear evidence that the clinical response was consequent to maturation within the malignant clone. These phase II studies, however, also showed that HMBA is not a satisfactory therapeutic agent, owing to thrombocytopenia, which limits the amount of drug that can be administered. Furthermore, because continuous exposure to the agent is required for induction, and the biological half-life of HMBA in the patient is very short (about 1.5 hr), HMBA must be administered by continuous infusion to maintain a clinical effect. These factors, taken together, have inspired a continued search for additional hybrid polar compounds effective at significantly lower concentration and that might avoid the clinical side effects that limit the use of HMBA. We recently identified a group of three potent second generation hybrid polar compounds, diethyl bis-(pentamethylene-N,N-dimethylcarboxamide) malonate (EMBA), suberoylanilide hydroxamic acid (SAHA), and m-carboxycinnamic acid bis-hydroxamide (CBHA) with optimal concentrations for inducing MEL cells of 0.4 mM, 2M and 4M, respectively, compared to 5 mM for HMBA. All three agents induce accumulation of underphosphorylated pRB; increased levels of p21 protein, a prolongation of the initial G1 phase of the cell cycle; and accumulation of gemoglobin. Based upon their effective concentration, the cross-resistance or sensitivity of a HMBA-resistant MEL cell variant and differences in c-myb expression during induction, these differentiation-inducing hybrid polar compounds can be grouped into two subsets, HMBA/EMBA and SAHA/CBHA. This classification may prove of value in planning future clinical studies toward the treatment of cancer by differentiation therapy

  15. Nicotine-induced Disturbances of Meiotic Maturation in Cultured Mouse Oocytes: Alterations of Spindle Integrity and Chromosome Alignment

    Directory of Open Access Journals (Sweden)

    Zenzes Maria

    2004-09-01

    Full Text Available Abstract We investigated whether nicotine exposure in vitro of mouse oocytes affects spindle and chromosome function during meiotic maturation (M-I and M-II. Oocytes in germinal vesicle (GV stage were cultured in nicotine for 8 h or for 16 h, to assess effects in M-I and in metaphase II (M-II. The latter culture setting used the three protocols: 8 h nicotine then 8 h medium (8N + 8M; 16 h nicotine (16N; 8 h medium then 8 h nicotine (8M + 8N. Non-toxic concentrations of nicotine at 1.0, 2.5, 5.0 and 10.0 mmol/L were used. Spindle-chromosome configurations were analyzed with wide-field optical sectioning microscopy. In 8 h cultures, nicotine exposure resulted in dose-related increased proportions of M-I oocytes with defective spindle-chromosome configurations. A dose-related delayed entry into anaphase I was also detected. In 16 h cultures, nicotine exposure for the first 8 h (8N + 8M, or for 16 h (16N, resulted in dose- and time-related increased proportions of oocytes arrested in M-I (10 mmol/L; 8 h: 53.2%, controls 9.6%; 16 h: 87.6%, controls 8.5%. Defects in M-I spindles and chromosomes caused M-I arrest leading to dose-related decreased proportions of oocytes that reached metaphase-II (10 mmol/L 8 h: 46.8%, controls 90.4%;16 h: 12.4%, controls 91.5%. A delayed anaphase-I affected the normal timing of M-II, leading to abnormal oocytes with dispersed chromosomes, or with double spindles and no polar body. Nicotine exposure during the second 8 h (8M + 8N resulted in dose-related, increased proportions of M-II oocytes with defective spindles and chromosomes (10 mmol/L: 42.9%, controls 2.0%. Nicotine has no adverse effects on GV break down, but induces spindle and chromosome defects compromising oocyte meiotic maturation and development.

  16. Alloantigen-specific T-cell hyporesponsiveness induced by dnIKK2 gene-transfected recipient immature dendritic cells.

    Science.gov (United States)

    Fan, Cai-bin; Wang, Yi; Wang, Qing-ping; Du, Ke-lin; Wen, Duan-gai; Ouyang, Jun

    2015-10-01

    Immature dendritic cells (iDCs) have been shown to be able to induce peripheral T-cell tolerance through distinct pathways. Here, we investigated the tolerogenic property of recipient iDCs whose maturation was arrested by a dominant negative mutant of inhibitor of nuclear factor kappa-B kinase 2 (dnIKK2) gene. We found that dnIKK2-iDCs presented a typical semi-mature morphology and expressed lower levels of CD80 and CD86, slightly higher MHC-II than untransfected iDCs. The expression of these molecules had no significant change even dnIKK2-iDCs were pulsed by donor antigen. In primary mixed leukocyte reaction (MLR), dnIKK2-iDCs exhibited impaired ability to stimulate allogeneic T-cells, but induced CD4(+)CD25(-) T-cell formation. In co-culture MLR, these CD4(+)CD25(-) T-cells suppressed T-cell alloreaction in an antigen-specific manner. Besides, CD4(+)CD25(-) T-cells inhibited IL-2 and IFN-γ release, whereas promoted IL-10 and TGF-β secretion. These data suggested recipient dnIKK2-iDCs could maintain peripheral tolerance through down-regulating costimulatory molecule expressions and inducing CD4(+)CD25(-) T-cell formation. PMID:26253357

  17. Nerves Control Redox Levels in Mature Tissues Through Schwann Cells and Hedgehog Signaling

    OpenAIRE

    Meda, Francesca; Gauron, Carole; Rampon, Christine; Teillon, Jérémie; Volovitch, Michel; Vriz, Sophie

    2016-01-01

    Abstract Aims: Recent advances in redox biology have emphasized the role of hydrogen peroxide (H2O2) in the modulation of signaling pathways and revealed that H2O2 plays a role in cellular remodeling in adults. Thus, an understanding of the mechanisms that control H2O2 levels in mature tissue would be of great interest. Results: We used a denervation strategy to demonstrate that sensory neurons are responsible for controlling H2O2 levels under normal conditions and after being lesioned. Moreo...

  18. Neuroprotective effects of ginsenoside Rg1-induced neural stem cell transplantation on hypoxic-ischemic encephalopathy

    Institute of Scientific and Technical Information of China (English)

    Ying-bo Li; Yan Wang; Ji-ping Tang; Di Chen; Sha-li Wang

    2015-01-01

    Ginsenoside Rg1 is the major pharmacologically active component of ginseng, and is reported to have various therapeutic actions. To determine whether it induces the differentiation of neural stem cells, and whether neural stem cell transplantation after induction has therapeutic effects on hypoxic-ischemic encephalopathy, we cultured neural stem cells in 10–80 μM ginsenoside Rg1. Immunohistochemistry revealed that of the concentrations tested, 20 mM ginsenoside Rg1 had the greatest differentiation-inducing effect and was the concentration used for subsequent exper-iments. Whole-cell patch clamp showed that neural stem cells induced by 20 μM ginsenoside Rg1 were more mature than non-induced cells. We then established neonatal rat models of hypox-ic-ischemic encephalopathy using the suture method, and ginsenoside Rg1-induced neural stem cells were transplantedvia intracerebroventricular injection. These tests conifrmed that neural stem cells induced by ginsenoside had fewer pathological lesions and had a signiifcantly better behavioral capacity than model rats that received saline. Transplanted neural stem cells expressed neuron-speciifc enolase, and were mainly distributed in the hippocampus and cerebral cortex. The present data suggest that ginsenoside Rg1-induced neural stem cells can promote the partial recovery of complicated brain functions in models of hypoxic-ischemic encephalopathy.

  19. Neuroprotective effects of ginsenoside Rg1-induced neural stem cell transplantation on hypoxic-ischemic encephalopathy

    Directory of Open Access Journals (Sweden)

    Ying-bo Li

    2015-01-01

    Full Text Available Ginsenoside Rg1 is the major pharmacologically active component of ginseng, and is reported to have various therapeutic actions. To determine whether it induces the differentiation of neural stem cells, and whether neural stem cell transplantation after induction has therapeutic effects on hypoxic-ischemic encephalopathy, we cultured neural stem cells in 10-80 µM ginsenoside Rg1. Immunohistochemistry revealed that of the concentrations tested, 20 mM ginsenoside Rg1 had the greatest differentiation-inducing effect and was the concentration used for subsequent experiments. Whole-cell patch clamp showed that neural stem cells induced by 20 µM ginsenoside Rg1 were more mature than non-induced cells. We then established neonatal rat models of hypoxic-ischemic encephalopathy using the suture method, and ginsenoside Rg1-induced neural stem cells were transplanted via intracerebroventricular injection. These tests confirmed that neural stem cells induced by ginsenoside had fewer pathological lesions and had a significantly better behavioral capacity than model rats that received saline. Transplanted neural stem cells expressed neuron-specific enolase, and were mainly distributed in the hippocampus and cerebral cortex. The present data suggest that ginsenoside Rg1-induced neural stem cells can promote the partial recovery of complicated brain functions in models of hypoxic-ischemic encephalopathy.

  20. From fetus towards adult : maturation and functional analysis of pluripotent stem cell-derived cardiomyocytes

    NARCIS (Netherlands)

    Catarino, Ribeiro M.

    2016-01-01

    This thesis describes research about the differentiation of human stem cells into cardiomyocytes (heart cells). During the differentiation process the stem cells become contractile myocytes that resemble the native heart cells. Nevertheless, the phenotype of these cardiomyocytes is comparable to a s

  1. Dopaminergic Toxin 1-Methyl-4-Phenylpyridinium, Proteins α-Synuclein and Glia Maturation Factor Activate Mast Cells and Release Inflammatory Mediators.

    Directory of Open Access Journals (Sweden)

    Duraisamy Kempuraj

    Full Text Available Parkinson's disease (PD is characterized by the presence of Lewy bodies and degeneration of dopaminergic neurons. 1-methyl-4-phenylpyridinium (MPP+, a metabolite of neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP and Lewy body component α-synuclein activates glia in PD pathogenesis. Mast cells and glia maturation factor (GMF are implicated in neuroinflammatory conditions including Multiple Sclerosis. However, the role of mast cells in PD is not yet known. We have analyzed the effect of recombinant GMF, MPP+, α-synuclein and interleukin-33 (IL-33 on mouse bone marrow-derived cultured mast cells (BMMCs, human umbilical cord blood-derived cultured mast cells (hCBMCs and mouse brain-derived cultured astrocytes by quantifying cytokines/chemokines released using ELISA or by detecting the expression of co-stimulatory molecules CD40 and CD40L by flow cytometry. GMF significantly released chemokine (C-C motif ligand 2 (CCL2 from BMMCs but its release was reduced in BMMCs from GMF knockout mice. GMF, α-synuclein and MPP+ released IL-1β, β-hexosaminidase from BMMCs, and IL-8 from hCBMCs. GMF released CCL5, and IL-33- induced the expression of GMF from hCBMCs. Novel GMF expression was detected in hCBMCs and BMMCs by immunocytochemistry. GMF released tumor necrosis factor-alpha (TNF-α from mouse astrocytes, and this release was greater in BMMC- astrocyte coculture than in individual cultures. Flow cytometry results showed increased IL-33 expression by GMF and MPP+, and GMF-induced CD40 expression in astrocytes. Proinflammatory mediator release by GMF, MPP+ and α-synuclein, as well as GMF expression by mast cells indicate a potential therapeutic target for neurodegenerative diseases including PD.

  2. Differentiation of bone mesenchymal stem cells into hepatocyte-like cells induced by liver tissue homogenate.

    Science.gov (United States)

    Xing, X K; Feng, H G; Yuan, Z Q

    2016-01-01

    This study investigated the efficacy and feasibility of inducing the differentiation of bone marrow-derived mesenchymal stem cells (BMSCs) into hepatocyte-like cells in vitro using Sprague Dawley rats, as a model of hepatocyte generation for cell transplantation. BMSCs were isolated and grown using the adherent method and exposed to 5 or 10% liver tissue homogenate, before being collected for analysis after 0, 7, 14, and 21 days. Immunofluorescence and western blotting were employed to detect the liver-specific markers a-fetoprotein (AFP) and albumin (ALB). Supernatant urea content was also measured to verify that differentiation had been induced. After 7 days in the presence of 10% liver tissue homogenate, BMSCs demonstrated hepatocyte-like morphological characteristics, and with prolonged culture time, liver-specific markers were gradually produced at levels indicating cell maturation. AFP expression peaked at 14 days then began to decrease, while both urea and ALB levels increased with induction time. Overall, marker expression in the 5% homogenate group was less than or equal to the 10% group at each time point. Thus, in a rat model, liver tissue homogenate obtained from partial hepatectomy can induce the differentiation of BMSCs into hepatocyte-like cells. This method is simple, feasible, and has remarkable real-world application potential. PMID:27525848

  3. Revving up natural killer cells and cytokine-induced killer cells against hematological malignancies

    Directory of Open Access Journals (Sweden)

    Gianfranco ePittari

    2015-05-01

    Full Text Available Natural killer (NK cells belong to innate immunity and exhibit cytolytic activity against infectious pathogens and tumor cells. NK-cell function is finely tuned by receptors that transduce inhibitory or activating signals, such as killer immunoglobulin-like receptors (KIR, NK Group 2 member D (NKG2D, NKG2A/CD94, NKp46 and others, and recognize both foreign and self-antigens expressed by NK-susceptible targets. Recent insights into NK-cell developmental intermediates have translated into a more accurate definition of culture conditions for the in vitro generation and propagation of human NK cells. In this respect, interleukin (IL-15 and IL-21 are instrumental in driving NK-cell differentiation and maturation, and hold great promise for the design of optimal NK-cell culture protocols.Cytokine-induced killer (CIK cells possess phenotypic and functional hallmarks of both T cells and NK cells. Similar to T cells, they express CD3 and are expandable in culture, while not requiring functional priming for in vivo activity, like NK cells. CIK cells may offer some advantages over other cell therapy products, including ease of in vitro propagation and no need for exogenous administration of IL-2 for in vivo priming.NK cells and CIK cells can be expanded using a variety of clinical-grade approaches, before their infusion into patients with cancer. Herein, we discuss GMP-compliant strategies to isolate and expand human NK and CIK cells for immunotherapy purposes, focusing on clinical trials of adoptive transfer to patients with hematological malignancies.

  4. NF-κB activation and zinc finger protein A20 expression in mature dendritic cells derived from liver allografts undergoing acute rejection

    Institute of Scientific and Technical Information of China (English)

    Ming-Qing Xu; Wei Wang; Lan Xue; Lv-Nan Yan

    2003-01-01

    AIM: To investigate the role of NF-κB activation and zinc finger protein A20 expression in the regulation of maturation of dendritic cells (DCs) derived from liver allografts undergoing acute rejection. METHODS: Sixty donor male SD rats and sixty recipient male LEW rats weighing 220-300 g were randomly divided into whole liver transplantation group and partial liver transplantation group. Allogeneic (SD rat to LEW rat) whole and 50 % partial liver transplantation were performed. DCs from liver grafts 0 hour and 4 days after transplantation were isolated and propagated in the presence of GM-CSF in vitro. Morphological characteristics and phenotypical features of DCs propagated for 10 days were analyzed by electron microscopy and flow cytometry, respectively. NF-κB binding activity, IL-12p70 protein and zinc finger protein A20expression in these DCs were measured by EMSA and Western blotting, respectively. Histological grading of rejection was determined. RESULTS: Allogeneic whole liver grafts showed no signs of rejection on day 4 after the transplantation. In contrast,allogeneic partial liver grafts demonstrated moderate to severe rejection on day 4 after the transplantation. After propagation for 10 days in the presence of GM-CSF in vitro,DCs from allogeneic whole liver grafts exhibited features of immature DC with absence of CD40 surface expression,these DCs were found to exhibit detectable but very low level of NF-κB activity, IL-12 p70 protein and zinc finger protein A20 expression. Whereas, DCs from allogeneic partial liver graft 4 days after transplantation displayed features of mature DC, with high level of CD40 surface expression, and as a consequence, higher expression of IL-12p70 protein, higher activities of NF-κB and higher expression of zinc finger protein A20 compared with those of DCs from whole liver grafts (P<0.001). CONCLUSION: These results suggest that A20expression is up-regulated in response to NF-κB activation in mature DCs derived from

  5. Thy1-positive bone marrow stem cells express liver-specific genes in vitro and can mature into hepatocytes in vivo

    OpenAIRE

    Bae, Si Hyun; Choi, Jong Young; Yoon, Seung Kew; Oh, Il-Hoan; Yoon, Kun Ho; Park, Seong Tae; Kim, Gi Dae; Oh, Seh-Hoon; PETERSEN, BRYON E.

    2007-01-01

    The bone marrow contains stem cells that have the potential to differentiate into a variety of organ-specific mature cells, including the liver and the pancreas. Recently, the origin of hepatic progenitors and hepatocytes was identified to be the bone marrow. However, evidence that describes which cells, among all bone marrow cells, differentiate into hepatocytes, has not yet been presented. Based on recent reports, hematopoietic and hepatic stem cells share characteristic markers such as CD3...

  6. HIV transcription is induced in dying cells

    Energy Technology Data Exchange (ETDEWEB)

    Woloschak, G.E.; Chang-Liu, Chin-Mei [Argonne National Lab., IL (United States); Schreck, S. [Argonne National Lab., IL (United States)]|[Univ. of South Carolina, Columbia, SC (United States). Dept. of Chemistry

    1995-06-01

    Using HeLa cells stably transfected with an HIV-LTR-CAT construct, we demonstrated a peak in CAT induction that occurs in viable (but not necessarily cell-division-competent) cells 24 h following exposure to some cell-killing agents. {gamma} rays were the only cell-killing agent which did not induce HIV transcription; this can be attributed to the fact that {gamma}-ray-induced apoptotic death requires functional p53, which is not present in HeLa cells. For all other agents, HIV-LTR induction was dose-dependent and correlated with the amount of cell killing that occurred in the culture. 14 refs., 4 figs., 1 tab.

  7. Mature adipocytes in bone marrow protect myeloma cells against chemotherapy through autophagy activation

    Science.gov (United States)

    A major problem in patients with multiple myeloma is chemotherapy resistance, which develops in myeloma cells upon interaction with bone marrow stromal cells. However, few studies have determined the role of bone marrow adipocytes, a major component of stromal cells in the bone marrow, in myeloma ch...

  8. Influence of epidermal growth factor (EGF) and hydrocortisone on the co-culture of mature adipocytes and endothelial cells for vascularized adipose tissue engineering.

    Science.gov (United States)

    Huber, Birgit; Czaja, Alina Maria; Kluger, Petra Juliane

    2016-05-01

    The composition of vascularized adipose tissue is still an ongoing challenge as no culture medium is available to supply adipocytes and endothelial cells appropriately. Endothelial cell medium is typically supplemented with epidermal growth factor (EGF) as well as hydrocortisone (HC). The effect of EGF on adipocytes is discussed controversially. Some studies say it inhibits adipocyte differentiation while others reported of improved adipocyte lipogenesis. HC is known to have lipolytic activities, which might result in mature adipocyte dedifferentiation. In this study, we evaluated the influence of EGF and HC on the co-culture of endothelial cells and mature adipocytes regarding their cell morphology and functionality. We showed in mono-culture that high levels of HC promoted dedifferentiation and proliferation of mature adipocytes, whereas EGF seemed to have no negative influence. Endothelial cells kept their typical cobblestone morphology and showed a proliferation rate comparable to the control independent of EGF and HC concentration. In co-culture, HC promoted dedifferentiation of mature adipocytes, which was shown by a higher glycerol release. EGF had no negative impact on adipocyte morphology. No negative impact on endothelial cell morphology and functionality could be seen with reduced EGF and HC supplementation in co-culture with mature adipocytes. Taken together, our results demonstrate that reduced levels of HC are needed for co-culturing mature adipocytes and endothelial cells. In co-culture, EGF had no influence on mature adipocytes. Therefore, for the composition of vascularized adipose tissue constructs, the media with low levels of HC and high or low levels of EGF can be used.

  9. Influence of epidermal growth factor (EGF) and hydrocortisone on the co-culture of mature adipocytes and endothelial cells for vascularized adipose tissue engineering.

    Science.gov (United States)

    Huber, Birgit; Czaja, Alina Maria; Kluger, Petra Juliane

    2016-05-01

    The composition of vascularized adipose tissue is still an ongoing challenge as no culture medium is available to supply adipocytes and endothelial cells appropriately. Endothelial cell medium is typically supplemented with epidermal growth factor (EGF) as well as hydrocortisone (HC). The effect of EGF on adipocytes is discussed controversially. Some studies say it inhibits adipocyte differentiation while others reported of improved adipocyte lipogenesis. HC is known to have lipolytic activities, which might result in mature adipocyte dedifferentiation. In this study, we evaluated the influence of EGF and HC on the co-culture of endothelial cells and mature adipocytes regarding their cell morphology and functionality. We showed in mono-culture that high levels of HC promoted dedifferentiation and proliferation of mature adipocytes, whereas EGF seemed to have no negative influence. Endothelial cells kept their typical cobblestone morphology and showed a proliferation rate comparable to the control independent of EGF and HC concentration. In co-culture, HC promoted dedifferentiation of mature adipocytes, which was shown by a higher glycerol release. EGF had no negative impact on adipocyte morphology. No negative impact on endothelial cell morphology and functionality could be seen with reduced EGF and HC supplementation in co-culture with mature adipocytes. Taken together, our results demonstrate that reduced levels of HC are needed for co-culturing mature adipocytes and endothelial cells. In co-culture, EGF had no influence on mature adipocytes. Therefore, for the composition of vascularized adipose tissue constructs, the media with low levels of HC and high or low levels of EGF can be used. PMID:26888598

  10. rRNA maturation in yeast cells depleted of large ribosomal subunit proteins.

    Directory of Open Access Journals (Sweden)

    Gisela Pöll

    Full Text Available The structural constituents of the large eukaryotic ribosomal subunit are 3 ribosomal RNAs, namely the 25S, 5.8S and 5S rRNA and about 46 ribosomal proteins (r-proteins. They assemble and mature in a highly dynamic process that involves more than 150 proteins and 70 small RNAs. Ribosome biogenesis starts in the nucleolus, continues in the nucleoplasm and is completed after nucleo-cytoplasmic translocation of the subunits in the cytoplasm. In this work we created 26 yeast strains, each of which conditionally expresses one of the large ribosomal subunit (LSU proteins. In vivo depletion of the analysed LSU r-proteins was lethal and led to destabilisation and degradation of the LSU and/or its precursors. Detailed steady state and metabolic pulse labelling analyses of rRNA precursors in these mutant strains showed that LSU r-proteins can be grouped according to their requirement for efficient progression of different steps of large ribosomal subunit maturation. Comparative analyses of the observed phenotypes and the nature of r-protein-rRNA interactions as predicted by current atomic LSU structure models led us to discuss working hypotheses on i how individual r-proteins control the productive processing of the major 5' end of 5.8S rRNA precursors by exonucleases Rat1p and Xrn1p, and ii the nature of structural characteristics of nascent LSUs that are required for cytoplasmic accumulation of nascent subunits but are nonessential for most of the nuclear LSU pre-rRNA processing events.

  11. Transgenic GDNF Positively Influences Proliferation, Differentiation, Maturation and Survival of Motor Neurons Produced from Mouse Embryonic Stem Cells

    Science.gov (United States)

    Cortés, Daniel; Robledo-Arratia, Yolanda; Hernández-Martínez, Ricardo; Escobedo-Ávila, Itzel; Bargas, José; Velasco, Iván

    2016-01-01

    Embryonic stem cells (ESC) are pluripotent and thus can differentiate into every cell type present in the body. Directed differentiation into motor neurons (MNs) has been described for pluripotent cells. Although neurotrophic factors promote neuronal survival, their role in neuronal commitment is elusive. Here, we developed double-transgenic lines of mouse ESC (mESC) that constitutively produce glial cell line-derived neurotrophic factor (GDNF) and also contain a GFP reporter, driven by HB9, which is expressed only by postmitotic MNs. After lentiviral transduction, ESC lines integrated and expressed the human GDNF (hGDNF) gene without altering pluripotency markers before differentiation. Further, GDNF-ESC showed significantly higher spontaneous release of this neurotrophin to the medium, when compared to controls. To study MN induction, control and GDNF cell lines were grown as embryoid bodies and stimulated with retinoic acid and Sonic Hedgehog. In GDNF-overexpressing cells, a significant increase of proliferative Olig2+ precursors, which are specified as spinal MNs, was found. Accordingly, GDNF increases the yield of cells with the pan motor neuronal markers HB9, monitored by GFP expression, and Isl1. At terminal differentiation, almost all differentiated neurons express phenotypic markers of MNs in GDNF cultures, with lower proportions in control cells. To test if the effects of GDNF were present at early differentiation stages, exogenous recombinant hGDNF was added to control ESC, also resulting in enhanced MN differentiation. This effect was abolished by the co-addition of neutralizing anti-GDNF antibodies, strongly suggesting that differentiating ESC are responsive to GDNF. Using the HB9::GFP reporter, MNs were selected for electrophysiological recordings. MNs differentiated from GDNF-ESC, compared to control MNs, showed greater electrophysiological maturation, characterized by increased numbers of evoked action potentials (APs), as well as by the appearance

  12. Transgenic GDNF Positively Influences Proliferation, Differentiation, Maturation and Survival of Motor Neurons Produced from Mouse Embryonic Stem Cells.

    Science.gov (United States)

    Cortés, Daniel; Robledo-Arratia, Yolanda; Hernández-Martínez, Ricardo; Escobedo-Ávila, Itzel; Bargas, José; Velasco, Iván

    2016-01-01

    Embryonic stem cells (ESC) are pluripotent and thus can differentiate into every cell type present in the body. Directed differentiation into motor neurons (MNs) has been described for pluripotent cells. Although neurotrophic factors promote neuronal survival, their role in neuronal commitment is elusive. Here, we developed double-transgenic lines of mouse ESC (mESC) that constitutively produce glial cell line-derived neurotrophic factor (GDNF) and also contain a GFP reporter, driven by HB9, which is expressed only by postmitotic MNs. After lentiviral transduction, ESC lines integrated and expressed the human GDNF (hGDNF) gene without altering pluripotency markers before differentiation. Further, GDNF-ESC showed significantly higher spontaneous release of this neurotrophin to the medium, when compared to controls. To study MN induction, control and GDNF cell lines were grown as embryoid bodies and stimulated with retinoic acid and Sonic Hedgehog. In GDNF-overexpressing cells, a significant increase of proliferative Olig2+ precursors, which are specified as spinal MNs, was found. Accordingly, GDNF increases the yield of cells with the pan motor neuronal markers HB9, monitored by GFP expression, and Isl1. At terminal differentiation, almost all differentiated neurons express phenotypic markers of MNs in GDNF cultures, with lower proportions in control cells. To test if the effects of GDNF were present at early differentiation stages, exogenous recombinant hGDNF was added to control ESC, also resulting in enhanced MN differentiation. This effect was abolished by the co-addition of neutralizing anti-GDNF antibodies, strongly suggesting that differentiating ESC are responsive to GDNF. Using the HB9::GFP reporter, MNs were selected for electrophysiological recordings. MNs differentiated from GDNF-ESC, compared to control MNs, showed greater electrophysiological maturation, characterized by increased numbers of evoked action potentials (APs), as well as by the appearance

  13. Direct type I IFN but not MDA5/TLR3 activation of dendritic cells is required for maturation and metabolic shift to glycolysis after poly IC stimulation.

    Directory of Open Access Journals (Sweden)

    Austin Pantel

    2014-01-01

    Full Text Available Type I interferons (IFNs play an important role in direct antiviral defense as well as linking the innate and adaptive immune responses. On dendritic cells (DCs, IFNs facilitate their activation and contribute to CD8(+ and CD4(+ T cell priming. However, the precise molecular mechanism by which IFNs regulate maturation and immunogenicity of DCs in vivo has not been studied in depth. Here we show that, after in vivo stimulation with the TLR ligand poly IC, IFNs dominate transcriptional changes in DCs. In contrast to direct TLR3/mda5 signaling, IFNs are required for upregulation of all pathways associated with DC immunogenicity. In addition, metabolic pathways, particularly the switch from oxidative phosphorylation to glycolysis, are also regulated by IFNs and required for DC maturation. These data provide evidence for a metabolic reprogramming concomitant with DC maturation and offer a novel mechanism by which IFNs modulate DC maturation.

  14. Co-Culture of Mesenchymal Stem Cells with Mature Chondrocytes: Producing Cartilage Construct for Application in Cartilage Regeneration

    Directory of Open Access Journals (Sweden)

    Mohamadreza Baghaban Eslaminejad

    2009-12-01

    Full Text Available Background: Cell-based treatment approach using differentiatedmesenchymal stem cells (MSCs and mature chondrocyteshas been considered as an advanced treatment for cartilage repair.We investigated the differentiated level of these two celltypes that is crucial for their repair capacity for cartilage defectat a co-culture micro mass system.Methods: Passaged-2 MSCs isolated from the mouse bonemarrow and the primary-cultured chondrocytes obtained fromrat costal cartilage were mixed at different ratios including 1:1,1:2, and 2:1, and cultivated in the micro mass culture systems(experimental groups. Both the MSCs and chondrocytes alonein micro mass cultures were considered as the controls. After21 days, the cultures were sectioned and examined by toluidineblue staining. Furthermore, the cells at different groups wereanalyzed by semiquantitative reverse transcription-polymerasechain reaction using the specific primers designed to detect theexpression of both mouse and rat cartilage-specific genes.Results: According to the toluidine blue staining, metachromaticstain appeared to be more intense at 1:2 ratios than theother groups. Based on semiquantitative analysis, all coculturespossessed significantly more cartilage-specific geneexpression than the controls (P<0.01. While mouse aggrecanand collagen II genes had significantly more expression at 1:2ratio, rat collagen II gene was expressed in higher rate at coculturewith 2:1 ratio (P<0.01.Conclusion: Co-culture of MSCs with mature chondrocytesseemed to provide an appropriate microenvironment wherebythe two cell types exhibit higher differentiated phenotype thanwhen they were cultured alone, and sufficient to be used as thecellular material for repair of cartilage defects.

  15. Fuel cells: Hydrogen induced insulation

    Science.gov (United States)

    Zhou, Wei; Shao, Zongping

    2016-06-01

    Coupling high ionic and low electronic conductivity in the electrolyte of low-temperature solid-oxide fuel cells remains a challenge. Now, the electronic conductivity of a perovskite electrolyte, which has high proton conductivity, is shown to be heavily suppressed when exposed to hydrogen, leading to high fuel cell performance.

  16. The phosphatase domains of CD45 are required for ligand induced T-cell receptor downregulation

    DEFF Research Database (Denmark)

    Kastrup, J; Lauritsen, Jens Peter Holst; Menné, C;

    2000-01-01

    Down-regulation of the T-cell receptor (TCR) plays an important role in modulating T-cell responses, both during T-cell development and in mature T cells. At least two distinct pathways exist for TCR down-regulation: down-regulation following TCR ligation; and down-regulation following activation...... of protein kinase C (PKC). Ligand-induced TCR down-regulation is dependent on protein tyrosine kinase (PTK) activity and seems to be closely related to T-cell activation. In addition, previous studies have indicated that ligand-induced TCR down-regulation is dependent on the expression of CD45, a...... transmembrane protein tyrosine phosphatase. The role of the different domains of CD45 in TCR down-regulation was investigated in this study. We found that the phosphatase domains of CD45 are required for efficient ligand-induced TCR down-regulation. In contrast, the extracellular domain of CD45 is dispensable...

  17. Efficient Generation of Viral and Integration-Free Human Induced Pluripotent Stem Cell-Derived Oligodendrocytes.

    Science.gov (United States)

    Espinosa-Jeffrey, Araceli; Blanchi, Bruno; Biancotti, Juan Carlos; Kumar, Shalini; Hirose, Megumi; Mandefro, Berhan; Talavera-Adame, Dodanim; Benvenisty, Nissim; de Vellis, Jean

    2016-01-01

    Here we document three highly reproducible protocols: (1) a culture system for the derivation of human oligodendrocytes (OLs) from human induced pluripotent stem cells (hiPS) and their further maturation-our protocol generates viral- and integration-free OLs that efficiently commit and move forward in the OL lineage, recapitulating all the steps known to occur during in vivo development; (2) a method for the isolation, propagation and maintenance of neural stem cells (NSCs); and (3) a protocol for the production, isolation, and maintenance of OLs from perinatal rodent and human brain-derived NSCs. Our unique culture systems rely on a series of chemically defined media, specifically designed and carefully characterized for each developmental stage of OL as they advance from OL progenitors to mature, myelinating cells. We are confident that these protocols bring our field a step closer to efficient autologous cell replacement therapies and disease modeling. © 2016 by John Wiley & Sons, Inc. PMID:27532816

  18. Role of ATM in Suppressing Oncogenic Translocations and Mature B Cell Lymphomas

    OpenAIRE

    Tepsuporn, Suprawee

    2013-01-01

    The ATM protein senses DNA double-stranded breaks (DSBs) and facilitates proper repair. B and T lymphocytes of ATM-deficient patients have increased antigen receptor locus translocations associated with aberrant V(D)J recombination. Correspondingly, ATM-deficient humans are predisposed to both T and B cell malignancies. However, ATM-deficiency in mice only leads to T cell lymphomas, all of which harbor T cell receptor locus translocations resulting from aberrant V(D)J recombination. The first...

  19. Purkinje cell NMDA receptors assume a key role in synaptic gain control in the mature cerebellum

    OpenAIRE

    Piochon, Claire; Levenes, Carole; Ohtsuki, Gen; Hansel, Christian

    2010-01-01

    textabstractA classic view in cerebellar physiology holds that Purkinje cells do not express functional NMDA receptors and that, therefore, postsynaptic NMDA receptors are not involved in the induction of long-term depression (LTD) at parallel fiber (PF) to Purkinje cell synapses. Recently, it has been demonstrated that functional NMDA receptors are postsynaptically expressed at climbing fiber (CF) to Purkinje cell synapses in mice, reaching full expression levels at ∼2 months after birth. He...

  20. In-Vitro differentiation of mature dendritic cells from human blood monocytes

    OpenAIRE

    Robert Gieseler; Dirk Heise; Afsaneh Soruri; Peter Schwartz; J. Hinrich Peters

    1998-01-01

    Representing the most potent antigen-presenting cells, dendritic cells (DC) can now be generated from human blood monocytes. We recently presented a novel protocol employing GM-CSF, IL-4, and IFN-γ to differentiate monocyte-derived DC in vitro. Here, such cells are characterized in detail. Cells in culture exhibited both dendritic and veiled morphologies, the former being adherent and the latter suspended. Phenotypically, they were CD1a-/dim, CD11a+, CD11b++, CD11c+, CD14dim/-, CD16a-/dim, CD...

  1. Mechanisms of cell transformation induced by polyomavirus

    Directory of Open Access Journals (Sweden)

    M.L.S. Oliveira

    1999-07-01

    Full Text Available Polyomavirus is a DNA tumor virus that induces a variety of tumors in mice. Its genome encodes three proteins, namely large T (LT, middle T (MT, and small T (ST antigens, that have been implicated in cell transformation and tumorigenesis. LT is associated with cell immortalization, whereas MT plays an essential role in cell transformation by binding to and activating several cytoplasmic proteins that participate in growth factor-induced mitogenic signal transduction to the nucleus. The use of different MT mutants has led to the identification of MT-binding proteins as well as analysis of their importance during cell transformation. Studying the molecular mechanisms of cell transformation by MT has contributed to a better understanding of cell cycle regulation and growth control.

  2. Purkinje cell NMDA receptors assume a key role in synaptic gain control in the mature cerebellum

    NARCIS (Netherlands)

    C. Piochon (Claire); C. Levenes (Carole); G. Ohtsuki (Gen); C.R.W. Hansel (Christian)

    2010-01-01

    textabstractA classic view in cerebellar physiology holds that Purkinje cells do not express functional NMDA receptors and that, therefore, postsynaptic NMDA receptors are not involved in the induction of long-term depression (LTD) at parallel fiber (PF) to Purkinje cell synapses. Recently, it has b

  3. Pattern of distribution of blood group antigens on human epidermal cells during maturation

    DEFF Research Database (Denmark)

    Dabelsteen, Erik; Buschard, Karsten; Hakomori, Sen-Itiroh

    1984-01-01

    The distribution in human epidermis of A, B, and H blood group antigens and of a precursor carbohydrate chain, N-acetyl-lactosamine, was examined using immunofluorescence staining techniques. The material included tissue from 10 blood group A, 4 blood group B, and 9 blood group O persons. Murine...... on the lower spinous cells whereas H antigen was seen predominantly on upper spinous cells or on the granular cells. Epithelia from blood group A or B persons demonstrated A or B antigens, respectively, but only if the tissue sections were trypsinized before staining. In such cases A or B antigens were found...... monoclonal antibodies were used to identify H antigen (type 2 chain) and N-acetyl-lactosamine. Human antisera were used to identify A and B antigens. In all groups N-acetyl-lactosamine and H antigen were found on the cell membranes of the spinous cell layer. N-acetyl-lactosamine was present mainly...

  4. β-catenin is selectively required for the expansion and regeneration of mature pancreatic acinar cells in mice

    Directory of Open Access Journals (Sweden)

    Matthew D. Keefe

    2012-07-01

    The size of the pancreas is determined by intrinsic factors, such as the number of progenitor cells, and by extrinsic signals that control the fate and proliferation of those progenitors. Both the exocrine and endocrine compartments of the pancreas undergo dramatic expansion after birth and are capable of at least partial regeneration following injury. Whether the expansion of these lineages relies on similar mechanisms is unknown. Although we have shown that the Wnt signaling component β-catenin is selectively required in mouse embryos for the generation of exocrine acinar cells, this protein has been ascribed various functions in the postnatal pancreas, including proliferation and regeneration of islet as well as acinar cells. To address whether β-catenin remains important for the maintenance and expansion of mature acinar cells, we have established a system to follow the behavior and fate of β-catenin-deficient cells during postnatal growth and regeneration in mice. We find that β-catenin is continuously required for the establishment and maintenance of acinar cell mass, extending from embryonic specification through juvenile and adult self-renewal and regeneration. This requirement is not shared with islet cells, which proliferate and function normally in the absence of β-catenin. These results make distinct predictions for the relative role of Wnt–β-catenin signaling in the etiology of human endocrine and exocrine disease. We suggest that loss of Wnt–β-catenin activity is unlikely to drive islet dysfunction, as occurs in type 2 diabetes, but that β-catenin is likely to promote human acinar cell proliferation following injury, and might therefore contribute to the resolution of acute or chronic pancreatitis.

  5. Differentiation and functional maturation of bone marrow-derived intestinal epithelial T cells expressing membrane T cell receptor in athymic radiation chimeras

    International Nuclear Information System (INIS)

    The thymus dependency of murine intestinal intraepithelial lymphocytes (IEL) was studied in an athymic F1----parent radiation chimera model. IEL, although not splenic or lymph node lymphocytes, from athymic chimeras displayed normal levels of cells bearing the class-specific T cell Ag, CD4 and CD8; the TCR-associated molecule, CD3; and the Thy-1 Ag. Moreover, two-color flow cytometric analyses of IEL from athymic mice demonstrated regulated expression of T cell Ag characteristic of IEL subset populations from thymus-bearing mice. In immunoprecipitation experiments, surface TCR-alpha beta or TCR-gamma delta were expressed on IEL, although not on splenic lymphocytes, from athymic chimeras. That IEL from athymic chimeras constituted a population of functionally mature effector cells activated in situ, similar to IEL from thymus-bearing mice, was demonstrated by the presence of CD3-mediated lytic activity of athymic lethally irradiated bone marrow reconstituted IEL. These data provide compelling evidence that intestinal T cells do not require thymic influence for maturation and development, and demonstrate that the microenvironment of the intestinal epithelium is uniquely adapted to regulate IEL differentiation

  6. TGF-β1 regulation of estrogen production in mature rat Leydig cells.

    Directory of Open Access Journals (Sweden)

    Man-Li Liu

    Full Text Available BACKGROUND: Besides androgens, estrogens produced in Leydig cells are also crucial for mammalian germ cell differentiation. Transforming growth factor-β1 (TGF-β1 is now known to have multiple effects on regulation of Leydig cell function. The objective of the present study is to determine whether TGF-β1 regulates estradiol (E2 synthesis in adult rat Leydig cells and then to assess the impact of TGF-β1 on Cx43-based gap junctional intercellular communication (GJIC between Leydig cells. METHODOLOGY/PRINCIPAL FINDINGS: Primary cultured Leydig cells were incubated in the presence of recombinant TGF-β1 and the production of E2 as well as testosterone (T were measured by RIA. The activity of P450arom was addressed by the tritiated water release assay and the expression of Cyp19 gene was evaluated by Western blotting and real time RT-PCR. The expression of Cx43 and GJIC were investigated with immunofluorescence and fluorescence recovery after photo-bleaching (FRAP, respectively. Results from this study show that TGF-β1 down-regulates the level of E2 secretion and the activity of P450arom in a dose-dependent manner in adult Leydig cells. In addition, the expression of Cx43 and GJIC was closely related to the regulation of E2 and TGF-β1, and E2 treatment in turn restored the inhibition of TGF-β1 on GJIC. CONCLUSIONS: Our results indicate, for the first time in adult rat Leydig cells, that TGF-β1 suppresses P450arom activity, as well as the expression of the Cyp19 gene, and that depression of E2 secretion leads to down-regulation of Cx43-based GJIC between Leydig cells.

  7. AGING OF HUMAN MATURE ERYTHROCYTES IS LIKE A PROCESS OF APOPTOSIS IN ENUCLEATED CELL

    Institute of Scientific and Technical Information of China (English)

    潘华珍; 冯立明; 卢红; 许彩民; 张平诚; 张之南

    1998-01-01

    Apoptosis of nucleated cells is well known, but bow about the unnucleated cells is still not elucidated.In the present paper, the morphological and biochemical features of the aged eryshrocytes were observed and compared with the characteristic events of apoptosis. Membrane of aged erythrocytes tends to shrink,protrude, from vesicle and lose lipid asymmetry. Aged erythrocytes were removed by phagocytosis. Both of the events are very similar to the apoptotic nucleated cells. The authors suggested that aging of erythrocytes is also a process of apoptosis.

  8. FoxM1, a forkhead transcription factor is a master cell cycle regulator for mouse mature T cells but not double positive thymocytes.

    Directory of Open Access Journals (Sweden)

    Ling Xue

    Full Text Available FoxM1 is a forkhead box transcription factor and a known master regulator required for different phases of the cell cycle. In cell lines, FoxM1 deficient cells exhibit delayed S phase entry, aneuploidy, polyploidy and can't complete mitosis. In vivo, FoxM1 is expressed mostly in proliferating cells but is surprisingly also found in non-proliferating CD4(+CD8(+ double positive thymocytes. Here, we addressed the role of FoxM1 in T cell development by generating and analyzing two different lines of T-cell specific FoxM1 deficient mice. As expected, FoxM1 is required for proliferation of early thymocytes and activated mature T cells. Defective expression of many cell cycle proteins was detected, including cyclin A, cyclin B1, cdc2, cdk2, p27 and the Rb family members p107 and p130 but surprisingly not survivin. Unexpectedly, loss of FoxM1 only affects a few cell cycle proteins in CD4(+CD8(+ thymocytes and has little effect on their sensitivity to apoptosis and the subsequent steps of T cell differentiation. Thus, regulation of cell cycle genes by FoxM1 is stage- and context-dependent.

  9. Large scale analysis of pediatric antiviral CD8+ T cell populations reveals sustained, functional and mature responses

    Directory of Open Access Journals (Sweden)

    Northfield John

    2006-12-01

    Full Text Available Abstract Background Cellular immunity plays a crucial role in cytomegalovirus (CMV infection and substantial populations of CMV-specific T cells accumulate throughout life. However, although CMV infection occurs during childhood, relatively little is know about the typical quantity and quality of T cell responses in pediatric populations. Methods One thousand and thirty-six people (Male/Female = 594/442, Age: 0–19 yr.; 959 subjects, 20–29 yr.; 77 subjects were examined for HLA typing. All of 1036 subjects were tested for HLA-A2 antigen. Of 1036 subjects, 887 were also tested for HLA-A23, 24 antigens. In addition, 50 elderly people (Male/Female = 11/39, Age: 60–92 yr. were also tested for HLA-A2 antigen. We analyzed the CD8+ T cell responses to CMV, comparing these to responses in children and young. The frequencies, phenotype and function CD8+ T cells for two imunodominant epitopes from pp65 were measured. Results We observed consistently high frequency and phenotypically "mature" (CD27 low, CD28 low, CD45RA+ CMV-specific CD8+ T cell responses in children, including those studied in the first year of life. These CD8+ T cells retained functionality across all age groups, and showed evidence of memory "inflation" only in later adult life. Conclusion CMV consistently elicits a very strong CD8+ T cell response in infants and large pools of CMV specific CD8+ T cells are maintained throughout childhood. The presence of CMV may considerably mould the CD8+ T cell compartment over time, but the relative frequencies of CMV-specific cells do not show the evidence of a population-level increase during childhood and adulthood. This contrast with the marked expansion ("inflation" of such CD8+ T cells in older adults. This study indicates that large scale analysis of peptide specific T cell responses in infants is readily possible. The robust nature of the responses observed suggests vaccine strategies aimed at priming and boosting CD8+ T cells against

  10. Dengue virus cell entry : Unraveling the role of antibodies, maturation status, and antiviral drugs

    NARCIS (Netherlands)

    Ayala Nunez, Vanesa

    2014-01-01

    Antibody-dependent enhancement (ADE) is thought to play a critical role in the exacerbation of dengue virus-induced disease during a heterologous re-infection. Pre-existing cross-reactive anti-dengue antibodies are generally believed to bind to the newly infecting DENV and target the antibody-virus

  11. Mesenchymal stem cells derived from human exfoliated deciduous teeth (SHEDs induce immune modulatory profile in monocyte-derived dendritic cells.

    Directory of Open Access Journals (Sweden)

    Fernando de Sá Silva

    Full Text Available BACKGROUND: Mesenchymal stem cells have prominent immune modulatory properties, which may have clinical applications; however their major source, bone marrow, is of limited availability. On the other hand, mesenchymal stem cells derived from human exfoliated deciduous teeth (SHEDs are readily accessible, but their immune regulatory properties have not been completely investigated. This study was designed, therefore, to evaluate the SHEDs influence on DCs differentiation, maturation, ability to activate T cells and to expand CD4(+Foxp3(+ T cells. METHODOLOGY/PRINCIPAL FINDINGS: The experiments were based in cellular co-culture during differentiation and maturation of monocyte derived-DCs (moDCs, with, or not, presence of SHEDs. After co-culture with SHEDs, (moDCs presented lower expression of BDCA-1 and CD11c, in comparison to DC cultivated without SHEDs. CD40, CD80, CD83 and CD86 levels were also decreased in mature DCs (mDCs after co-cultivation with SHEDs. To assess the ability of SHEDs-exposed moDCs to modulate T cell responses, the former were separated from SHEDs, and co-cultured with peripheral blood lymphocytes. After 5 days, the proliferation of CD4(+ and CD8(+ T cells was evaluated and found to be lower than that induced by moDCs cultivated without SHEDs. In addition, an increase in the proportion of CD4(+Foxp3(+IL-10(+ T cells was observed among cells stimulated by mature moDCs that were previously cultivated with SHEDs. Soluble factors released during co-cultures also showed a reduction in the pro-inflammatory cytokines (IL-2, TNF-α and IFN-γ, and an increase in the anti-inflammatory molecule IL-10. CONCLUSION/SIGNIFICANCE: This study shows that SHEDs induce an immune regulatory phenotype in moDCs cells, evidenced by changes in maturation and differentiation rates, inhibition of lymphocyte stimulation and ability to expand CD4(+Foxp3(+ T cells. Further characterization and validation of this phenomenon could support the use of SHEDs

  12. Pediatric mature B-cell non Hodgkin lymphoma treatment with LMB-96 protocol. The Children Cancer Hospital Egypt experience

    Directory of Open Access Journals (Sweden)

    Hany Abdel Rahman

    2015-01-01

    Full Text Available Purpose: Burkitt lymphoma (BL is a highly aggressive mature B-cell non-Hodgkin lymphoma (NHL and is the fastest growing human tumor. The outcome of childhood NHL has improved steadily over the past decades through the use of intensive sequential multi-agent chemotherapy regimens.Methods: A retrospective study having all patients 18 years old or younger diagnosed with mature B cell NHL and treated at Children Cancer Hospital Egypt (CCHE. All children were treated according to the modified (LMB 96 protocol during the period between July 2007 and December 2012. Patients were followed up till June 2013.Results: Three hundred and seventy-seven patients were diagnosed with mature B cell NHL and received the LMB96 treatment protocol. The majorities were males (76.4% with a median age of 5.3 years, and ranged from 0.1-18.0 years. The median follow-up period was 28.2 months (range 0.9-72 months. Burkitt lymphoma was the most predominant pathologic subtype (79.6%, n = 300, and abdominal mass as a primary site was the most common presentation (71.3%. Twenty seven patients (7.2% were treated as group A, 268 (71.0% as group B, and 82 (21.8% patients as high risk group C. Seventy-one (18.8% patients suffered adverse events. Major adverse events were early deaths in 17 patients (4.5%, death during induction chemotherapy seen in 18 patients (4.7%, and during maintenance therapy in 7 patients (1.8%, tumor progression in 19 patients (5.0%, and relapse in 10 patients (3.7%. Sixty-three patients (16.7% died during the study period. The main causes of death were tumor lysis syndrome (TLS in 25.3%, and severe sepsis during chemotherapy in 41.3% of the patients. The 3 years OS and EFS were 83.3% and 80.4% respectively for the whole groups of patients. OS and EFS were 100% for group A, and 87.5%±3.9% and 85.9±4.3% for group B. For group C BM+/CNS- patients, OS was 55.62%±15.8%, and EFS of 53.8%±15.6%. For BM+/CNS+ patients, OS and EFS were 63.2%±21.76% and 57.9%

  13. Acetylsalicylic acid induces programmed cell death in Arabidopsis cell cultures.

    Science.gov (United States)

    García-Heredia, José M; Hervás, Manuel; De la Rosa, Miguel A; Navarro, José A

    2008-06-01

    Acetylsalicylic acid (ASA), a derivative from the plant hormone salicylic acid (SA), is a commonly used drug that has a dual role in animal organisms as an anti-inflammatory and anticancer agent. It acts as an inhibitor of cyclooxygenases (COXs), which catalyze prostaglandins production. It is known that ASA serves as an apoptotic agent on cancer cells through the inhibition of the COX-2 enzyme. Here, we provide evidences that ASA also behaves as an agent inducing programmed cell death (PCD) in cell cultures of the model plant Arabidopsis thaliana, in a similar way than the well-established PCD-inducing agent H(2)O(2), although the induction of PCD by ASA requires much lower inducer concentrations. Moreover, ASA is herein shown to be a more efficient PCD-inducing agent than salicylic acid. ASA treatment of Arabidopsis cells induces typical PCD-linked morphological and biochemical changes, namely cell shrinkage, nuclear DNA degradation, loss of mitochondrial membrane potential, cytochrome c release from mitochondria and induction of caspase-like activity. However, the ASA effect can be partially reverted by jasmonic acid. Taking together, these results reveal the existence of common features in ASA-induced animal apoptosis and plant PCD, and also suggest that there are similarities between the pathways of synthesis and function of prostanoid-like lipid mediators in animal and plant organisms.

  14. MHC mismatch inhibits neurogenesis and neuron maturation in stem cell allografts.

    Directory of Open Access Journals (Sweden)

    Zhiguo Chen

    Full Text Available BACKGROUND: The role of histocompatibility and immune recognition in stem cell transplant therapy has been controversial, with many reports arguing that undifferentiated stem cells are protected from immune recognition due to the absence of major histocompatibility complex (MHC markers. This argument is even more persuasive in transplantation into the central nervous system (CNS where the graft rejection response is minimal. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we evaluate graft survival and neuron production in perfectly matched vs. strongly mismatched neural stem cells transplanted into the hippocampus in mice. Although allogeneic cells survive, we observe that MHC-mismatch decreases surviving cell numbers and strongly inhibits the differentiation and retention of graft-derived as well as endogenously produced new neurons. Immune suppression with cyclosporine-A did not improve outcome but non-steroidal anti-inflammatory drugs, indomethacin or rosiglitazone, were able to restore allogeneic neuron production, integration and retention to the level of syngeneic grafts. CONCLUSIONS/SIGNIFICANCE: These results suggest an important but unsuspected role for innate, rather than adaptive, immunity in the survival and function of MHC-mismatched cellular grafts in the CNS.

  15. Growth factor independence 1b (gfi1b is important for the maturation of erythroid cells and the regulation of embryonic globin expression.

    Directory of Open Access Journals (Sweden)

    Lothar Vassen

    Full Text Available Growth factor independence 1b (GFI1B is a DNA binding repressor of transcription with vital functions in hematopoiesis. Gfi1b-null embryos die at midgestation very likely due to defects in erythro- and megakaryopoiesis. To analyze the full functionality of Gfi1b, we used conditionally deficient mice that harbor floxed Gfi1b alleles and inducible (Mx-Cre, Cre-ERT or erythroid specific (EpoR-Cre Cre expressing transgenes. In contrast to the germline knockout, EpoR-Cre mediated erythroid specific ablation of Gfi1b allows full gestation, but causes perinatal lethality with very few mice surviving to adulthood. Both the embryonic deletion of Gfi1b by EpoR-Cre and the deletion in adult mice by Mx-Cre or Cre-ERT leads to reduced numbers of erythroid precursors, perturbed and delayed erythroid maturation, anemia and extramedullary erythropoiesis. Global expression analyses showed that the Hba-x, Hbb-bh1 and Hbb-y embryonic globin genes were upregulated in Gfi1b deficient TER119+ fetal liver cells over the gestation period from day 12.5-17.5 p.c. and an increased level of Hbb-bh1 and Hbb-y embryonic globin gene expression was even maintained in adult Gfi1b deficient mice. While the expression of Bcl11a, a regulator of embryonic globin expression was not affected by Gfi1b deficiency, the expression of Gata1 was reduced and the expression of Sox6, also involved in globin switch, was almost entirely lost when Gfi1b was absent. These findings establish Gfi1b as a regulator of embryonic globin expression and embryonic and adult erythroid maturation.

  16. Affinity maturation of anti-TNF-alpha scFv with somatic hypermutation in non-B cells.

    Science.gov (United States)

    Chen, Shaopeng; Qiu, Junkang; Chen, Chuan; Liu, Chunchun; Liu, Yuheng; An, Lili; Jia, Junying; Tang, Jie; Wu, Lijun; Hang, Haiying

    2012-06-01

    Activation-induced cytidine deaminase (AID) is required for the generation of antibody diversity through initiating both somatic hypermutation (SHM) and class switch recombination. A few research groups have successfully used the feature of AID for generating mutant libraries in directed evolution of target proteins in B cells in vitro. B cells, cultured in suspension, are not convenient for transfection and cloning. In this study, we established an AID-based mutant accumulation and sorting system in adherent human cells. Mouse AID gene was first transfected into the human non-small cell lung carcinoma H1299 cells, and a stable cell clone (H1299-AID) was selected. Afterwards, anti-hTNF-α scFv (ATscFv) was transfected into H1299-AID cells and ATscFv was displayed on the surface of H1299-AID cells. By 4-round amplification/flow cytometric sorting for cells with the highest affinities to hTNF-alpha, two ATscFv mutant gene clones were isolated. Compared with the wild type ATscFv, the two mutants were much more efficient in neutralizing cytotoxicity of hTNF-alpha. The results indicate that directed evolution by somatic hypermutation can be carried out in adherent non-B cells, which makes directed evolution in mammalian cells easier and more efficient. PMID:22467272

  17. Optically-Induced Cell Fusion on Cell Pairing Microstructures

    Science.gov (United States)

    Yang, Po-Fu; Wang, Chih-Hung; Lee, Gwo-Bin

    2016-02-01

    Cell fusion is a critical operation for numerous biomedical applications including cell reprogramming, hybridoma formation, cancer immunotherapy, and tissue regeneration. However, unstable cell contact and random cell pairings have limited efficiency and yields when utilizing traditional methods. Furthermore, it is challenging to selectively perform cell fusion within a group of cells. This study reports a new approach called optically-induced cell fusion (OICF), which integrates cell-pairing microstructures with an optically-induced, localized electrical field. By projecting light patterns onto a photoconductive film (hydrogen-rich, amorphous silicon) coated on an indium-tin-oxide (ITO) glass while an alternating current electrical field was applied between two such ITO glass slides, “virtual” electrodes could be generated that could selectively fuse pairing cells. At 10 kHz, a 57% cell paring rate and an 87% fusion efficiency were successfully achieved at a driving voltage of 20  Vpp, suggesting that this new technology could be promising for selective cell fusion within a group of cells.

  18. Improved Adhesion, Growth and Maturation of Vascular Smooth Muscle Cells on Polyethylene Grafted with Bioactive Molecules and Carbon Particles

    Directory of Open Access Journals (Sweden)

    Martina Blazkova

    2009-10-01

    Full Text Available High-density polyethylene (PE foils were modified by an Ar+ plasma discharge and subsequent grafting with biomolecules, namely glycine (Gly, polyethylene glycol (PEG, bovine serum albumin (BSA, colloidal carbon particles (C or BSA and C (BSA + C. As revealed by atomic force microscopy (AFM, goniometry and Rutherford Backscattering Spectroscopy (RBS, the surface chemical structure and surface morphology of PE changed dramatically after plasma treatment. The contact angle decreased for the samples treated by plasma, mainly in relation to the formation of oxygen structures during plasma irradiation. A further decrease in the contact angle was obvious after glycine and PEG grafting. The increase in oxygen concentration after glycine and PEG grafting proved that the two molecules were chemically linked to the plasma-activated surface. Plasma treatment led to ablation of the PE surface layer, thus the surface morphology was changed and the surface roughness was increased. The materials were then seeded with vascular smooth muscle cells (VSMC derived from rat aorta and incubated in a DMEM medium with fetal bovine serum. Generally, the cells adhered and grew better on modified rather than on unmodified PE samples. Immunofluorescence showed that focal adhesion plaques containing talin, vinculin and paxillin were most apparent in cells on PE grafted with PEG or BSA + C, and the fibres containing α-actin, β-actin or SM1 and SM2 myosins were thicker, more numerous and more brightly stained in the cells on all modified PE samples than on pristine PE. An enzyme-linked immunosorbent assay (ELISA revealed increased concentrations of focal adhesion proteins talin and vinculin and also a cytoskeletal protein β-actin in cells on PE modified with BSA + C. A contractile protein α-actin was increased in cells on PE grafted with PEG or Gly. These results showed that PE activated with plasma and subsequently grafted with bioactive molecules and colloidal C

  19. Induced pluripotent stem cells and neurodegenerative diseases.

    Science.gov (United States)

    Chen, Chao; Xiao, Shi-Fu

    2011-04-01

    Neurodegenerative diseases, including Parkinson's disease, Alzheimer's disease and Amyotrophic Lateral Sclerosis, are characterized by idiopathic neuron loss in different regions of the central nervous system, which contributes to the relevant dysfunctions in the patients. The application of cell replacement therapy using human embryonic stem (hES) cells, though having attracted much attention, has been hampered by the intrinsic ethical problems. It has been demonstrated that adult somatic cells can be reprogrammed into the embryonic state, called induced pluripotent stem (iPS) cells. It is soon realized that iPS cells may be an alternative source for cell replacement therapy, because it raises no ethical problems and using patient-specific iPS cells for autologous transplantation will not lead to immunological rejection. What's more, certain types of neurons derived from patient-specific iPS cells may display disease-relevant phenotypes. Thus, patient-specific iPS cells can provide a unique opportunity to directly investigate the pathological properties of relevant neural cells in individual patient, and to study the vulnerability of neural cells to pathogenic factors in vitro, which may help reveal the pathogenesis of many neurodegenerative diseases. In this review, the recent development in cellular treatment of neurodegenerative diseases using iPS cells was summarized, and the potential value of iPS cells in the modeling of neurodegenerative disease was discussed.

  20. Small steps to maturity. Fuel cell heating aggregates; Muehsames Herantasten. Brennstoffzellen-Heizgeraete

    Energy Technology Data Exchange (ETDEWEB)

    Schmid, Wolfgang

    2009-07-15

    By 2015 at the latest, fuel cell heating systems are expected to be available to the end user after practical tests have been completed. The ultimate breakthrough is to be achieved by a funding project of several thousand million Euros of the German Federal Minister of Transportation, Construction and Urban Development (BMVBS). But the 2009 Hanover Fair showed that the development of fuel cell heating systems for serial production is a process of small steps taken one by one. Also, it becomes clear that the optimistic forecasts of a mass market that were sometimes voiced will not become reality. (orig.)

  1. Attenuated Leishmania induce pro-inflammatory mediators and influence leishmanicidal activity by p38 MAPK dependent phagosome maturation in Leishmania donovani co-infected macrophages

    OpenAIRE

    Somenath Banerjee; Dipayan Bose; Nabanita Chatterjee; Subhadip Das; Sreeparna Chakraborty; Tanya Das; Krishna Das Saha

    2016-01-01

    Promastigote form of Leishmania, an intracellular pathogen, delays phagosome maturation and resides inside macrophages. But till date limited study has been done to manipulate the phagosomal machinery of macrophages to restrict Leishmania growth. Attenuated Leishmania strain exposed RAW 264.7 cells showed a respiratory burst and enhanced production of pro-inflammatory mediators. The augmentation of pro-inflammatory activity is mostly attributed to p38 MAPK and p44/42 MAPK. In our study, these...

  2. Chemical composition and cell wall polysaccharide degradability of pith and rind tissues from mature maize internodes

    Science.gov (United States)

    Our study was undertaken to identify tissue-specific biochemical traits that may be targeted in breeding programs for improving forage digestibility. We compared cell wall chemical composition and 24- and 96-h in vitro degradabilities in separated pith and rind tissues from six maize inbred lines. A...

  3. Continued maturing of SOFC cell production technology and development and demonstration of SOFC stacks. Final report

    Energy Technology Data Exchange (ETDEWEB)

    2008-08-15

    The overall objective of the 6385 project was to develop stack materials, components and stack technology including industrial relevant manufacturing methods for cells components and stacks. Furthermore, the project should include testing and demonstration of the stacks under relevant operating conditions. A production of 6.829 cells, twenty 75-cell stacks and a number of small stacks was achieved. Major improvements were also made in the manufacturing methods and in stack design. Two test and demonstration activities were included in the project. The first test unit was established at H.C. OErsted power plant at the Copenhagen waterfront in order to perform test of SOFC stacks. The unit will be used for tests in other projects. The second demonstration unit is the alpha prototype demonstration in a system running on natural gas in Finland. The alpha prototype demonstration system with 24 TOFC (Topsoe Fuel Cell) stacks was established and started running in October 2007 and operational experience was gained in the period from October 2007 to February 2008. (auther)

  4. Morphological and functional maturation of Leydig cells: from rodent models to primates

    NARCIS (Netherlands)

    Teerds, K.J.; Huhtaniemi, I.

    2015-01-01

    BACKGROUND Leydig cells (LC) are the sites of testicular androgen production. Development of LC occurs in the testes of most mammalian species as two distinct growth phases, i.e. as fetal and pubertal/adult populations. In primates there are indications of a third neonatal growth phase. LC androgen

  5. Adhesion, Growth, and Maturation of Vascular Smooth Muscle Cells on Low-Density Polyethylene Grafted with Bioactive Substances

    Directory of Open Access Journals (Sweden)

    Martin Parizek

    2013-01-01

    Full Text Available The attractiveness of synthetic polymers for cell colonization can be affected by physical, chemical, and biological modification of the polymer surface. In this study, low-density polyethylene (LDPE was treated by an Ar+ plasma discharge and then grafted with biologically active substances, namely, glycine (Gly, polyethylene glycol (PEG, bovine serum albumin (BSA, colloidal carbon particles (C, or BSA+C. All modifications increased the oxygen content, the wettability, and the surface free energy of the materials compared to the pristine LDPE, but these changes were most pronounced in LDPE with Gly or PEG, where all the three values were higher than in the only plasma-treated samples. When seeded with vascular smooth muscle cells (VSMCs, the Gly- or PEG-grafted samples increased mainly the spreading and concentration of focal adhesion proteins talin and vinculin in these cells. LDPE grafted with BSA or BSA+C showed a similar oxygen content and similar wettability, as the samples only treated with plasma, but the nano- and submicron-scale irregularities on their surface were more pronounced and of a different shape. These samples promoted predominantly the growth, the formation of a confluent layer, and phenotypic maturation of VSMC, demonstrated by higher concentrations of contractile proteins alpha-actin and SM1 and SM2 myosins. Thus, the behavior of VSMC on LDPE can be regulated by the type of bioactive substances that are grafted.

  6. Characterization of N-Glycan Structures on the Surface of Mature Dengue 2 Virus Derived from Insect Cells.

    Directory of Open Access Journals (Sweden)

    Y Lei

    Full Text Available DENV envelope glycoprotein (E is responsible for interacting with host cell receptors and is the main target for the development of a dengue vaccine based on an induction of neutralizing antibodies. It is well known that DENV E glycoprotein has two potential N-linked glycosylation sites at Asn67 and Asn153. The N-glycans of E glycoprotein have been shown to influence the proper folding of the protein, its cellular localization, its interactions with receptors and its immunogenicity. However, the precise structures of the N-glycans that are attached to E glycoprotein remain elusive, although the crystal structure of DENV E has been determined. This study characterized the structures of envelope protein N-linked glycans on mature DENV-2 particles derived from insect cells via an integrated method that used both lectin microarray and MALDI-TOF-MS. By combining these methods, a high heterogeneity of DENV N-glycans was found. Five types of N-glycan were identified on DENV-2, including mannose, GalNAc, GlcNAc, fucose and sialic acid; high mannose-type N-linked oligosaccharides and the galactosylation of N-glycans were the major structures that were found. Furthermore, a complex between a glycan on DENV and the carbohydrate recognition domain (CRD of DC-SIGN was mimicked with computational docking experiments. For the first time, this study provides a comprehensive understanding of the N-linked glycan profile of whole DENV-2 particles derived from insect cells.

  7. Mast cell degranulation induced by chlorogenic acid

    OpenAIRE

    Huang, Fang-hua; Zhang, Xin-yue; Zhang, Lu-Yong; Li, Qin; Ni, Bin; Zheng, Xiao-liang; CHEN, AI-JUN

    2010-01-01

    Aim: To investigate the mechanism of chlorogenic acid (CA)-induced anaphylactoid reactions. Methods: Degranulation of peritoneal mast cells was assayed by using alcian blue staining in guinea pigs, and the degranulation index (DI) was calculated. CA-induced degranulation of RBL-2H3 cells was also observed and assayed using light microscopy, transmission electron microscopy, flow cytometry, and β-hexosaminidase release. Results: CA 0.2, 1.0, and 5.0 mmol/L was able to promote degranulation of ...

  8. p38 Mitogen-Activated Protein Kinase in beryllium-induced dendritic cell activation

    Science.gov (United States)

    Li, L.; Huang, Z.; Gillespie, M.; Mroz, P.M.; Maier, L.A.

    2014-01-01

    Dendritic cells (DC) play a role in the regulation of immune responses to haptens, which in turn impact DC maturation. Whether beryllium (Be) is able to induce DC maturation and if this occurs via the MAPK pathway is not known. Primary monocyte-derived DCs (moDCs) models were generated from Be non-exposed healthy volunteers as a non-sensitized cell model, while PBMCs from BeS (Be sensitized) and CBD (chronic beryllium disease) were used as disease models. The response of these cells to Be was evaluated. The expression of CD40 was increased significantly (pBeS and CBD subjects, SB203580 downregulated Be-stimulated proliferation in a dose-dependent manner, and decreased Be-stimulated TNF-α and IFNγ cytokine production. Taken together, this study suggests that Be-induces non-sensitized Glu69+ DCs maturation, and that p38MAPK signaling is important in the Be-stimulated DCs activation as well as subsequent T cell proliferation and cytokine production in BeS and CBD. In total, the MAPK pathway may serve as a potential therapeutic target for human granulomatous lung diseases. PMID:25454621

  9. Ascorbic acid enhances the cardiac differentiation of induced pluripotent stem cells through promoting the proliferation of cardiac progenitor cells

    Institute of Scientific and Technical Information of China (English)

    Nan Cao; Bin Wei; Liu Wang; Ying Jin; Huang-Tian Yang; Zumei Liu; Zhongyan Chen; Jia Wang; Taotao Chen; Xiaoyang Zhao; Yu Ma; Lianju Qin; Jiuhong Kang

    2012-01-01

    Generation of induced pluripotent stem cells (iPSCs) has opened new avenues for the investigation of heart diseases,drug screening and potential autologous cardiac regeneration.However,their application is hampered by inefficient cardiac differentiation,high interline variability,and poor maturation of iPSC-derived cardiomyoeytes (iPS-CMs).To identify efficient inducers for cardiac differentiation and maturation of iPSCs and elucidate the mechanisms,we systematically screened sixteen cardiomyocyte inducers on various murine (m) iPSCs and found that only ascorbic acid (AA) consistently and robustly enhanced the cardiac differentiation of eleven lines including eight without spontaneous cardiogenic potential.We then optimized the treatment conditions and demonstrated that differentiation day 2-6,a period for the specification of cardiac progenitor cells (CPCs),was a critical time for AA to take effect.This was further confirmed by the fact that AA increased the expression of cardiovascular but not mesodermal markers.Noteworthily,AA treatment led to approximately 7.3-fold (miPSCs) and 30.2-fold (human iPSCs) augment in the yield of iPS-CMs.Such effect was attributed to a specific increase in the proliferation of CPCs via the MEK-ERK1/2 pathway by promoting collagen synthesis.In addition,AA-induced cardiomyocytes showed better sareomerie organization and enhanced responses of action potentials and calcium transients to β-adrenergic and muscarinic stimulations.These findings demonstrate that AA is a suitable cardiomyocyte inducer for iPSCs to improve cardiac differentiation and maturation simply,universally,and efficiently.These findings also highlight the importance of stimulating CPC proliferation by manipulating extracellular microenvironment in guiding cardiac differentiation of the pluripotent stem cells.

  10. Effects of cytotoxic T lymphocytes on hepatoma cell line SMMC-7721 induced by different subsets of dendritic cells in vitro

    Institute of Scientific and Technical Information of China (English)

    Jia-Xiang Wang; Guang-Hui Liu; Ying-Zhong Fan; Qiu-Liang Liu; Juan Zhou; Dong-Yun Zhang; Yuan-Ming Qi

    2006-01-01

    BACKGROUND:Dendritic cells (DCs) loaded with complex antigen are always used to induce cytotoxic T lymphocytes (CTLs) which have a speciifc anti-tumor activity. However, CTLs can assault autologous cells induced by DCs loaded with autologous antigen. This study aimed to explore how to weaken the autoimmune reaction induced by DC vaccine by combining mature DC (mDC) activating immunity and immature DC (imDC) leading to immune tolerance to make hepatocellular carcinoma (HCC) vaccine in vitro. METHODS: DC progenitors derived from human peripheral blood were assigned to two groups. One was cultured to mDC and pulsed with frozen-thawed antigen (FTA) of human HCC cell line SMMC-7721 cells (mDC group), and the other was cultured to imDC and pulsed with FTA of human liver cell line L-02 cells (imDC group). The morphology of DCs was monitored and cells phenotypes including HLA-DR, CD80, CD1α, CD83 were assayed by lfowcytometry (FCM). The concentrations of interleukin-12 (IL-12) in the supernatant were assayed by ELISA. Methyl thiazolyl tetrazolium (MTT) was used to evaluate T cell proliferation induced by mDC and imDC and the killing rate of CTL induced by mDC and imDC respectively/together on SMMC-7721 and L-02 cells. RESULTS: Compared with the imDC group, the mDC group was characterized by the following: increased secretion of IL-12 (P0.05). CTL induced by mDC and imDC together had a higher killing response to SMMC-7721, but a lower killing rate for L-02 (P CONCLUSIONS:CTL induced by mDC and imDC together has a higher antigen-speciifc killing response in vitro than that induced by mDC alone. This may be of greater clinical value.

  11. Genistein as an inducer of tumor cell differentiation : possible mechanisms of action.

    Energy Technology Data Exchange (ETDEWEB)

    Constantinou, A.; Huberman, E.; Center for Mechanistic Biology and Biotechnology; Univ. of Illinois at Chicago

    1995-01-01

    Decreased activity of either topoisomerases or tyrosine kinases has been implicated in the differentiation of a number of cell types. It is therefore conceivable that genistein, because of its reported ability to inhibit these activities in vitro, may be an inducer of cellular differentiation. We investigated this possibility in human promyelocytic HL-60 and erythroid K-562 leukemia cells and in human SK-MEL-131 melanoma cells. Our results indicated that genistein, in a dose-dependent manner, inhibited cell multiplication and induced cell differentiation. The maturing HL-60 cells acquired granulocytic and monocytic markers. The differentiating K-562 cells stained positively with benzidine, which indicates the production of hemoglobin, an erythroid marker. Following genistein treatment, maturing SK-MEL-131 melanoma cells formed dendrite-like structures and exhibited increased tyrosinase activity and melanin content. Experiments were designed to identify the molecular mechanism of genistein's action. Data from our laboratory suggest that this isoflavone triggers the pathway that leads to cellular differentiation by stabilizing protein-linked DNA strand breakage. Other possible mechanisms reported in the literature are discussed.

  12. Effect of leptin on oocyte maturation and subsequent pregnancy rate of cloned embryos reconstructed by somatic cell nuclear transfer in pigs

    Institute of Scientific and Technical Information of China (English)

    Hengxi Wei; Qiuyan Li; Jun Li; Yan Li; Yunping Dai; Yufang Ma; Kai Xue; Ning Li

    2008-01-01

    Cloning pigs by somatic cell nuclear transfer (SCNT) has wide applications in basic research,human medicine and agricultural production.To improve cloning efficiency,the effect of two basic maturation media,NCSU-23 and TCMI99,was compared,and TCM199 was selected for the following experiments with leptin.We systematically studied the effects of leptin supplementation on oocytes in vitro maturation (IVM),in vitro development of parthenogenetically activated (Phi) and SCNT embryos and/n vivo develop-ment of SCNT embryos after embryo transfer (ET).The results showed that supplementation of 100 or 200 ng/ml leptin into the mat-uration medium did not greatly affect nuclear maturation of oocytes,or cleavage rates of PA and SCNT (P<0.05).Blastocyst rates of PA and SCNT embryos were significantly improved when 100 or 200 ng/ml leptin was added to maturation medium,and the number of cells in PA blastocysts was also improved (P<0.05).The number of cells in blastocyst of SCNT was improved,when 100 ng/ml leptin was added (P<0.05).Furthermore,supplementation of 100 or 200 ng/ml leptin to the IVM medium may improve pregnancy rate and the delivery rate in pig cloning.

  13. Coupled electrophysiological recording and single cell transcriptome analyses revealed molecular mechanisms underlying neuronal maturation

    OpenAIRE

    Chen, Xiaoying; Zhang, Kunshan; Zhou, Liqiang; Gao, Xinpei; Wang, Junbang; Yao, Yinan; He, Fei; Luo, Yuping; Yu, Yongchun; Li, Siguang; Cheng, Liming; Sun, Yi E.

    2016-01-01

    The mammalian brain is heterogeneous, containing billions of neurons and trillions of synapses forming various neural circuitries, through which sense, movement, thought, and emotion arise. The cellular heterogeneity of the brain has made it difficult to study the molecular logic of neural circuitry wiring, pruning, activation, and plasticity, until recently, transcriptome analyses with single cell resolution makes decoding of gene regulatory networks underlying aforementioned circuitry prope...

  14. Control of Precursor Maturation and Disposal Is an Early Regulative Mechanism in the Normal Insulin Production of Pancreatic β-Cells

    OpenAIRE

    Jie Wang; Ying Chen; Qingxin Yuan; Wei Tang; Xiaoping Zhang; Kwame Osei

    2011-01-01

    The essential folding and maturation process of proinsulin in β-cells is largely uncharacterized. To analyze this process, we improved approaches to immunoblotting, metabolic labeling, and data analysis used to determine the proportion of monomers and non-monomers and changes in composition of proinsulin in cells. We found the natural occurrence of a large proportion of proinsulin in various non-monomer states, i.e., aggregates, in normal mouse and human β-cells and a striking increase in the...

  15. Gamma c-signaling cytokines induce a regulatory T cell phenotype in malignant CD4+ T lymphocytes

    DEFF Research Database (Denmark)

    Kasprzycka, Monika; Zhang, Qian; Witkiewicz, Agnieszka;

    2008-01-01

    CD25 and TGF-beta, the expression of FOXP3 and, to a lesser degree, IL-10 was restricted to two CTCL cell lines that are dependent on exogenous IL-2. IL-2, IL-15, and IL-21, all of which signals through receptors containing the common gamma chain, induced expression of IL-10 in the IL-2-dependent...... that the T regulatory cell features are induced in CTCL T cells by common gamma chain signaling cytokines such as IL-2 and do not represent a fully predetermined, constitutive phenotype independent of the local environmental stimuli to which these malignant mature CD4(+) T cells become exposed....

  16. Cell Death Mechanisms Induced by Cytotoxic Lymphocytes

    Institute of Scientific and Technical Information of China (English)

    Ch(a)vez-Gal(a)n L; Arenas-Del Angel MC; Zenteno E; Ch(a)vez