WorldWideScience

Sample records for cell lung cancer

  1. Lung cancer - small cell

    Science.gov (United States)

    Cancer - lung - small cell; Small cell lung cancer; SCLC ... About 15% of all lung cancer cases are SCLC. Small cell lung cancer is slightly more common in men than women. Almost all cases of SCLC are ...

  2. Lung Cancer Stem Cells

    Directory of Open Access Journals (Sweden)

    Sharon R. Pine

    2008-01-01

    Full Text Available Lung cancer remains a major cause of cancer-related lethality because of high incidence and recurrence in spite of significant advances in staging and therapies. Recent data indicates that stem cells situated throughout the airways may initiate cancer formation. These putative stem cells maintain protumorigenic characteristics including high proliferative capacity, multipotent differentiation, drug resistance and long lifespan relative to other cells. Stem cell signaling and differentiation pathways are maintained within distinct cancer types, and destabilization of this machinery may participate in maintenance of cancer stem cells. Characterization of lung cancer stem cells is an area of active research and is critical for developing novel therapies. This review summarizes the current knowledge on stem cell signaling pathways and cell markers used to identify the lung cancer stem cells.

  3. Lung cancer - non-small cell

    Science.gov (United States)

    Cancer - lung - non-small cell; Non-small cell lung cancer; NSCLC; Adenocarcinoma - lung; Squamous cell carcinoma - lung ... Research shows that smoking marijuana may help cancer cells grow. But there is no direct link between ...

  4. General Information about Small Cell Lung Cancer

    Science.gov (United States)

    ... lung cancer is a disease in which malignant (cancer) cells form in the tissues of the lung. The ... diagnosed, tests are done to find out if cancer cells have spread within the chest or to other ...

  5. Treatment Option Overview (Small Cell Lung Cancer)

    Science.gov (United States)

    ... lung cancer is a disease in which malignant (cancer) cells form in the tissues of the lung. The ... diagnosed, tests are done to find out if cancer cells have spread within the chest or to other ...

  6. Stages of Small Cell Lung Cancer

    Science.gov (United States)

    ... lung cancer is a disease in which malignant (cancer) cells form in the tissues of the lung. The ... diagnosed, tests are done to find out if cancer cells have spread within the chest or to other ...

  7. Advances in Lung Stem Cells and Lung Cancer Stem Cells

    Directory of Open Access Journals (Sweden)

    Huijing YIN

    2015-10-01

    Full Text Available Cancer stem cells (CSCs are emerging as a hot topic for cancer research. Lung CSCs share many characteristics with normal lung stem cells (SCs, including self-renewal and multi-potency for differentiation. Many molecular markers expressed in various types of CSCs were also found in lung CSCs, such as CD133, CD44, aldehyde dehydrogenase (ALDH and ATP-binding cassette sub-family G member 2 (ABCG2. Similarly, proliferation and expansion of lung CSCs are regulated not only by signal transduction pathways functioning in normal lung SCs, such as Notch, Hedgehog and Wnt pathways, but also by those acting in tumor cells, such as epidermal growth factor receptor (EGFR, signal transducer and activator of transcription 3 (STAT3 and phosphatidylinositol 3 kinase (PI3K pathways. As CSC plays an critical role in tumor recurrence, metastasis and drug-resistance, understanding the difference between lung CSCs and normal lung SCs, identifying and targeting CSC markers or related signaling pathways may increase the efficacy of therapy on lung cancer and improved survival of lung cancer patients.

  8. [Advances in Lung Stem Cells and Lung Cancer Stem Cells].

    Science.gov (United States)

    Yin, Huijing; Deng, Jiong

    2015-10-20

    Cancer stem cells (CSCs) are emerging as a hot topic for cancer research. Lung CSCs share many characteristics with normal lung stem cells (SCs), including self-renewal and multi-potency for differentiation. Many molecular markers expressed in various types of CSCs were also found in lung CSCs, such as CD133, CD44, aldehyde dehydrogenase (ALDH) and ATP-binding cassette sub-family G member 2 (ABCG2). Similarly, proliferation and expansion of lung CSCs are regulated not only by signal transduction pathways functioning in normal lung SCs, such as Notch, Hedgehog and Wnt pathways, but also by those acting in tumor cells, such as epidermal growth factor receptor (EGFR), signal transducer and activator of transcription 3 (STAT3) and phosphatidylinositol 3 kinase (PI3K) pathways. As CSC plays an critical role in tumor recurrence, metastasis and drug-resistance, understanding the difference between lung CSCs and normal lung SCs, identifying and targeting CSC markers or related signaling pathways may increase the efficacy of therapy on lung cancer and improved survival of lung cancer patients.

  9. Treatment Options by Stage (Small Cell Lung Cancer)

    Science.gov (United States)

    ... lung cancer is a disease in which malignant (cancer) cells form in the tissues of the lung. The ... diagnosed, tests are done to find out if cancer cells have spread within the chest or to other ...

  10. Sirolimus and Auranofin in Treating Patients With Advanced or Recurrent Non-Small Cell Lung Cancer or Small Cell Lung Cancer

    Science.gov (United States)

    2016-08-25

    Extensive Stage Small Cell Lung Carcinoma; Lung Adenocarcinoma; Recurrent Non-Small Cell Lung Carcinoma; Recurrent Small Cell Lung Carcinoma; Squamous Cell Lung Carcinoma; Stage IIIA Non-Small Cell Lung Cancer; Stage IIIB Non-Small Cell Lung Cancer; Stage IV Non-Small Cell Lung Cancer

  11. Current therapy of small cell lung cancer

    DEFF Research Database (Denmark)

    Sorensen, M; Lassen, U; Hansen, H H

    1998-01-01

    This article reviews the most important recent clinical trials on the treatment of small cell lung cancer (SCLC). Two randomized studies addressing the timing of thoracic radiotherapy in limited stage SCLC are discussed. In the smaller of the two studies (n = 103), a survival benefit was associated...

  12. Low-Dose Acetylsalicylic Acid in Treating Patients With Stage I-III Non-Small Cell Lung Cancer

    Science.gov (United States)

    2016-06-28

    Adenocarcinoma of the Lung; Recurrent Non-small Cell Lung Cancer; Stage IA Non-small Cell Lung Cancer; Stage IB Non-small Cell Lung Cancer; Stage IIA Non-small Cell Lung Cancer; Stage IIB Non-small Cell Lung Cancer; Stage IIIA Non-small Cell Lung Cancer; Stage IIIB Non-small Cell Lung Cancer

  13. Vasculogenic mimicry in small cell lung cancer.

    Science.gov (United States)

    Williamson, Stuart C; Metcalf, Robert L; Trapani, Francesca; Mohan, Sumitra; Antonello, Jenny; Abbott, Benjamin; Leong, Hui Sun; Chester, Christopher P E; Simms, Nicole; Polanski, Radoslaw; Nonaka, Daisuke; Priest, Lynsey; Fusi, Alberto; Carlsson, Fredrika; Carlsson, Anders; Hendrix, Mary J C; Seftor, Richard E B; Seftor, Elisabeth A; Rothwell, Dominic G; Hughes, Andrew; Hicks, James; Miller, Crispin; Kuhn, Peter; Brady, Ged; Simpson, Kathryn L; Blackhall, Fiona H; Dive, Caroline

    2016-11-09

    Small cell lung cancer (SCLC) is characterized by prevalent circulating tumour cells (CTCs), early metastasis and poor prognosis. We show that SCLC patients (37/38) have rare CTC subpopulations co-expressing vascular endothelial-cadherin (VE-cadherin) and cytokeratins consistent with vasculogenic mimicry (VM), a process whereby tumour cells form 'endothelial-like' vessels. Single-cell genomic analysis reveals characteristic SCLC genomic changes in both VE-cadherin-positive and -negative CTCs. Higher levels of VM are associated with worse overall survival in 41 limited-stage patients' biopsies (Pcisplatin efficacy. The functional significance of VM in SCLC suggests VM regulation may provide new targets for therapeutic intervention.

  14. Comprehensive genomic characterization of squamous cell lung cancers

    NARCIS (Netherlands)

    Hammerman, Peter S.; Lawrence, Michael S.; Voet, Douglas; Jing, Rui; Cibulskis, Kristian; Sivachenko, Andrey; Stojanov, Petar; McKenna, Aaron; Lander, Eric S.; Gabriel, Stacey; Getz, Gad; Sougnez, Carrie; Imielinski, Marcin; Helman, Elena; Hernandez, Bryan; Pho, Nam H.; Meyerson, Matthew; Chu, Andy; Chun, Hye-Jung E.; Mungall, Andrew J.; Pleasance, Erin; Robertson, A. Gordon; Sipahimalani, Payal; Stoll, Dominik; Balasundaram, Miruna; Birol, Inanc; Butterfield, Yaron S. N.; Chuah, Eric; Coope, Robin J. N.; Corbett, Richard; Dhalla, Noreen; Guin, Ranabir; Hirst, Anhe Carrie; Hirst, Martin; Holt, Robert A.; Lee, Darlene; Li, Haiyan I.; Mayo, Michael; Moore, Richard A.; Mungall, Karen; Nip, Ka Ming; Olshen, Adam; Schein, Jacqueline E.; Slobodan, Jared R.; Tam, Angela; Thiessen, Nina; Varhol, Richard; Zeng, Thomas; Zhao, Yongjun; Jones, Steven J. M.; Marra, Marco A.; Saksena, Gordon; Cherniack, Andrew D.; Schumacher, Stephen E.; Tabak, Barbara; Carter, Scott L.; Pho, Nam H.; Nguyen, Huy; Onofrio, Robert C.; Crenshaw, Andrew; Ardlie, Kristin; Beroukhim, Rameen; Winckler, Wendy; Hammerman, Peter S.; Getz, Gad; Meyerson, Matthew; Protopopov, Alexei; Zhang, Jianhua; Hadjipanayis, Angela; Lee, Semin; Xi, Ruibin; Yang, Lixing; Ren, Xiaojia; Zhang, Hailei; Shukla, Sachet; Chen, Peng-Chieh; Haseley, Psalm; Lee, Eunjung; Chin, Lynda; Park, Peter J.; Kucherlapati, Raju; Socci, Nicholas D.; Liang, Yupu; Schultz, Nikolaus; Borsu, Laetitia; Lash, Alex E.; Viale, Agnes; Sander, Chris; Ladanyi, Marc; Auman, J. Todd; Hoadley, Katherine A.; Wilkerson, Matthew D.; Shi, Yan; Liquori, Christina; Meng, Shaowu; Li, Ling; Turman, Yidi J.; Topal, Michael D.; Tan, Donghui; Waring, Scot; Buda, Elizabeth; Walsh, Jesse; Jones, Corbin D.; Mieczkowski, Piotr A.; Singh, Darshan; Wu, Junyuan; Gulabani, Anisha; Dolina, Peter; Bodenheimer, Tom; Hoyle, Alan P.; Simons, Janae V.; Soloway, Matthew G.; Mose, Lisle E.; Jefferys, Stuart R.; Balu, Saianand; O'Connor, Brian D.; Prins, Jan F.; Liu, Jinze; Chiang, Derek Y.; Hayes, D. Neil; Perou, Charles M.; Cope, Leslie; Danilova, Ludmila; Weisenberger, Daniel J.; Maglinte, Dennis T.; Pan, Fei; Van den Berg, David J.; Triche, Timothy; Herman, James G.; Baylin, Stephen B.; Laird, Peter W.; Getz, Gad; Noble, Michael; Voet, Doug; Saksena, Gordon; Gehlenborg, Nils; DiCara, Daniel; Zhang, Jinhua; Zhang, Hailei; Wu, Chang-Jiun; Liu, Spring Yingchun; Lawrence, Michael S.; Zou, Lihua; Sivachenko, Andrey; Lin, Pei; Stojanov, Petar; Jing, Rui; Cho, Juok; Nazaire, Marc-Danie; Robinson, Jim; Thorvaldsdottir, Helga; Mesirov, Jill; Park, Peter J.; Chin, Lynda; Schultz, Nikolaus; Sinha, Rileen; Ciriello, Giovanni; Cerami, Ethan; Gross, Benjamin; Jacobsen, Anders; Gao, Jianjiong; Aksoy, B. Arman; Weinhold, Nils; Ramirez, Ricardo; Taylor, Barry S.; Antipin, Yevgeniy; Reva, Boris; Shen, Ronglai; Mo, Qianxing; Seshan, Venkatraman; Paik, Paul K.; Ladanyi, Marc; Sander, Chris; Akbani, Rehan; Zhang, Nianxiang; Broom, Bradley M.; Casasent, Tod; Unruh, Anna; Wakefield, Chris; Cason, R. Craig; Baggerly, Keith A.; Weinstein, John N.; Haussler, David; Benz, Christopher C.; Stuart, Joshua M.; Zhu, Jingchun; Szeto, Christopher; Scott, Gary K.; Yau, Christina; Ng, Sam; Goldstein, Ted; Waltman, Peter; Sokolov, Artem; Ellrott, Kyle; Collisson, Eric A.; Zerbino, Daniel; Wilks, Christopher; Ma, Singer; Craft, Brian; Wilkerson, Matthew D.; Auman, J. Todd; Hoadley, Katherine A.; Du, Ying; Cabanski, Christopher; Walter, Vonn; Singh, Darshan; Wu, Junyuan; Gulabani, Anisha; Bodenheimer, Tom; Hoyle, Alan P.; Simons, Janae V.; Soloway, Matthew G.; Mose, Lisle E.; Jefferys, Stuart R.; Balu, Saianand; Marron, J. S.; Liu, Yufeng; Wang, Kai; Liu, Jinze; Prins, Jan F.; Hayes, D. Neil; Perou, Charles M.; Creighton, Chad J.; Zhang, Yiqun; Travis, William D.; Rekhtman, Natasha; Yi, Joanne; Aubry, Marie C.; Cheney, Richard; Dacic, Sanja; Flieder, Douglas; Funkhouser, William; Illei, Peter; Myers, Jerome; Tsao, Ming-Sound; Penny, Robert; Mallery, David; Shelton, Troy; Hatfield, Martha; Morris, Scott; Yena, Peggy; Shelton, Candace; Sherman, Mark; Paulauskis, Joseph; Meyerson, Matthew; Baylin, Stephen B.; Govindan, Ramaswamy; Akbani, Rehan; Azodo, Ijeoma; Beer, David; Bose, Ron; Byers, Lauren A.; Carbone, David; Chang, Li-Wei; Chiang, Derek; Chu, Andy; Chun, Elizabeth; Collisson, Eric; Cope, Leslie; Creighton, Chad J.; Danilova, Ludmila; Ding, Li; Getz, Gad; Hammerman, Peter S.; Hayes, D. Neil; Hernandez, Bryan; Herman, James G.; Heymach, John; Ida, Cristiane; Imielinski, Marcin; Johnson, Bruce; Jurisica, Igor; Kaufman, Jacob; Kosari, Farhad; Kucherlapati, Raju; Kwiatkowski, David; Ladanyi, Marc; Lawrence, Michael S.; Maher, Christopher A.; Mungall, Andy; Ng, Sam; Pao, William; Peifer, Martin; Penny, Robert; Robertson, Gordon; Rusch, Valerie; Sander, Chris; Schultz, Nikolaus; Shen, Ronglai; Siegfried, Jill; Sinha, Rileen; Sivachenko, Andrey; Sougnez, Carrie; Stoll, Dominik; Stuart, Joshua; Thomas, Roman K.; Tomaszek, Sandra; Tsao, Ming-Sound; Travis, William D.; Vaske, Charles; Weinstein, John N.; Weisenberger, Daniel; Wheeler, David; Wigle, Dennis A.; Wilkerson, Matthew D.; Wilks, Christopher; Yang, Ping; Zhang, Jianjua John; Jensen, Mark A.; Sfeir, Robert; Kahn, Ari B.; Chu, Anna L.; Kothiyal, Prachi; Wang, Zhining; Snyder, Eric E.; Pontius, Joan; Pihl, Todd D.; Ayala, Brenda; Backus, Mark; Walton, Jessica; Baboud, Julien; Berton, Dominique L.; Nicholls, Matthew C.; Srinivasan, Deepak; Raman, Rohini; Girshik, Stanley; Kigonya, Peter A.; Alonso, Shelley; Sanbhadti, Rashmi N.; Barletta, Sean P.; Greene, John M.; Pot, David A.; Tsao, Ming-Sound; Bandarchi-Chamkhaleh, Bizhan; Boyd, Jeff; Weaver, JoEllen; Wigle, Dennis A.; Azodo, Ijeoma A.; Tomaszek, Sandra C.; Aubry, Marie Christine; Ida, Christiane M.; Yang, Ping; Kosari, Farhad; Brock, Malcolm V.; Rogers, Kristen; Rutledge, Marian; Brown, Travis; Lee, Beverly; Shin, James; Trusty, Dante; Dhir, Rajiv; Siegfried, Jill M.; Potapova, Olga; Fedosenko, Konstantin V.; Nemirovich-Danchenko, Elena; Rusch, Valerie; Zakowski, Maureen; Iacocca, Mary V.; Brown, Jennifer; Rabeno, Brenda; Czerwinski, Christine; Petrelli, Nicholas; Fan, Zhen; Todaro, Nicole; Eckman, John; Myers, Jerome; Rathmell, W. Kimryn; Thorne, Leigh B.; Huang, Mei; Boice, Lori; Hill, Ashley; Penny, Robert; Mallery, David; Curley, Erin; Shelton, Candace; Yena, Peggy; Morrison, Carl; Gaudioso, Carmelo; Bartlett, Johnm. S.; Kodeeswaran, Sugy; Zanke, Brent; Sekhon, Harman; David, Kerstin; Juhl, Hartmut; Van Le, Xuan; Kohl, Bernard; Thorp, Richard; Tien, Nguyen Viet; Van Bang, Nguyen; Sussman, Howard; Phu, Bui Duc; Hajek, Richard; PhiHung, Nguyen; Khan, Khurram Z.; Muley, Thomas; Shaw, Kenna R. Mills; Sheth, Margi; Yang, Liming; Buetow, Ken; Davidsen, Tanja; Demchok, John A.; Eley, Greg; Ferguson, Martin; Dillon, Laura A. L.; Schaefer, Carl; Guyer, Mark S.; Ozenberger, Bradley A.; Palchik, Jacqueline D.; Peterson, Jane; Sofia, Heidi J.; Thomson, Elizabeth; Meyerson, Matthew

    2012-01-01

    Lung squamous cell carcinoma is a common type of lung cancer, causing approximately 400,000 deaths per year worldwide. Genomic alterations in squamous cell lung cancers have not been comprehensively characterized, and no molecularly targeted agents have been specifically developed for its treatment.

  15. Immune and Inflammatory Cell Composition of Human Lung Cancer Stroma.

    Directory of Open Access Journals (Sweden)

    G-Andre Banat

    Full Text Available Recent studies indicate that the abnormal microenvironment of tumors may play a critical role in carcinogenesis, including lung cancer. We comprehensively assessed the number of stromal cells, especially immune/inflammatory cells, in lung cancer and evaluated their infiltration in cancers of different stages, types and metastatic characteristics potential. Immunohistochemical analysis of lung cancer tissue arrays containing normal and lung cancer sections was performed. This analysis was combined with cyto-/histomorphological assessment and quantification of cells to classify/subclassify tumors accurately and to perform a high throughput analysis of stromal cell composition in different types of lung cancer. In human lung cancer sections we observed a significant elevation/infiltration of total-T lymphocytes (CD3+, cytotoxic-T cells (CD8+, T-helper cells (CD4+, B cells (CD20+, macrophages (CD68+, mast cells (CD117+, mononuclear cells (CD11c+, plasma cells, activated-T cells (MUM1+, B cells, myeloid cells (PD1+ and neutrophilic granulocytes (myeloperoxidase+ compared with healthy donor specimens. We observed all of these immune cell markers in different types of lung cancers including squamous cell carcinoma, adenocarcinoma, adenosquamous cell carcinoma, small cell carcinoma, papillary adenocarcinoma, metastatic adenocarcinoma, and bronchioloalveolar carcinoma. The numbers of all tumor-associated immune cells (except MUM1+ cells in stage III cancer specimens was significantly greater than those in stage I samples. We observed substantial stage-dependent immune cell infiltration in human lung tumors suggesting that the tumor microenvironment plays a critical role during lung carcinogenesis. Strategies for therapeutic interference with lung cancer microenvironment should consider the complexity of its immune cell composition.

  16. MET and Small-Cell Lung Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Gelsomino, Francesco, E-mail: francesco.gelsomino@istitutotumori.mi.it [Medical Oncology Unit 1, Medical Oncology Department, Fondazione IRCCS Istituto Nazionale Tumori, Via G. Venezian 1, 20133 Milano (Italy); Rossi, Giulio [Operative Unit of Pathology, Azienda Ospedaliero-Universitaria Policlinico, Via del Pozzo 71, 41124 Modena (Italy); Tiseo, Marcello [Medical Oncology Unit, Azienda Ospedaliero-Universitaria, Viale A. Gramsci 14, 43126 Parma (Italy)

    2014-10-13

    Small-cell lung cancer (SCLC) is one of the most aggressive lung tumors. The majority of patients with SCLC are diagnosed at an advanced stage. This tumor type is highly sensitive to chemo-radiation treatment, with very high response rates, but invariably relapses. At this time, treatment options are still limited and the prognosis of these patients is poor. A better knowledge of the molecular biology of SCLC allowed us to identify potential druggable targets. Among these, the MET/HGF axis seems to be one of the most aberrant signaling pathways involved in SCLC invasiveness and progression. In this review, we describe briefly all recent literature on the different molecular profiling in SCLC; in particular, we discuss the specific alterations involving c-MET gene and their implications as a potential target in SCLC.

  17. MET and Small-Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Francesco Gelsomino

    2014-10-01

    Full Text Available Small-cell lung cancer (SCLC is one of the most aggressive lung tumors. The majority of patients with SCLC are diagnosed at an advanced stage. This tumor type is highly sensitive to chemo-radiation treatment, with very high response rates, but invariably relapses. At this time, treatment options are still limited and the prognosis of these patients is poor. A better knowledge of the molecular biology of SCLC allowed us to identify potential druggable targets. Among these, the MET/HGF axis seems to be one of the most aberrant signaling pathways involved in SCLC invasiveness and progression. In this review, we describe briefly all recent literature on the different molecular profiling in SCLC; in particular, we discuss the specific alterations involving c-MET gene and their implications as a potential target in SCLC.

  18. 1st ESMO Consensus Conference in lung cancer; Lugano 2010: small-cell lung cancer

    DEFF Research Database (Denmark)

    Stahel, R; Thatcher, N; Früh, M;

    2011-01-01

    , the expert panel prepared clinically relevant questions concerning five areas as follows: early and locally advanced non-small-cell lung cancer (NSCLC), first-line metastatic NSCLC, second-/third-line NSCLC, NSCLC pathology and molecular testing, and small-cell lung cancer (SCLC) to be addressed through......The 1st ESMO Consensus Conference on lung cancer was held in Lugano, Switzerland on 21st and 22nd May 2010 with the participation of a multidisciplinary panel of leading professionals in pathology and molecular diagnostics and medical, surgical and radiation oncology. Before the conference...

  19. NK cell phenotypic modulation in lung cancer environment.

    Directory of Open Access Journals (Sweden)

    Shi Jin

    Full Text Available Nature killer (NK cells play an important role in anti-tumor immunotherapy. But it indicated that tumor cells impacted possibly on NK cell normal functions through some molecules mechanisms in tumor microenvironment.Our study analyzed the change about NK cells surface markers (NK cells receptors through immunofluorescence, flow cytometry and real-time PCR, the killed function from mouse spleen NK cell and human high/low lung cancer cell line by co-culture. Furthermore we certificated the above result on the lung cancer model of SCID mouse.We showed that the infiltration of NK cells in tumor periphery was related with lung cancer patients' prognosis. And the number of NK cell infiltrating in lung cancer tissue is closely related to the pathological types, size of the primary cancer, smoking history and prognosis of the patients with lung cancer. The expression of NK cells inhibitor receptors increased remarkably in tumor micro-environment, in opposite, the expression of NK cells activated receptors decrease magnificently.The survival time of lung cancer patient was positively related to NK cell infiltration degree in lung cancer. Thus, the down-regulation of NKG2D, Ly49I and the up-regulation of NKG2A may indicate immune tolerance mechanism and facilitate metastasis in tumor environment. Our research will offer more theory for clinical strategy about tumor immunotherapy.

  20. Squamous Cell Lung Cancer Presenting as a Malar Mass

    Directory of Open Access Journals (Sweden)

    Ganesh Veerappan

    2003-09-01

    Full Text Available Introduction: Lung cancer metastasizing to the face has rarely been reported and is an even more unusual presentation. Case: This is the case of a 49-year-old man diagnosed with squamous cell carcinoma of the face, scheduled for resection. Preoperative radiographs revealed a left upper lobe mass, found to be squamous cell carcinoma. Diagnosis was changed to Stage IV primary lung cancer. The patient did not undergo resection. Discussion: No previous cases of primary lung cancer presenting as a malar mass have been reported. Facial lesions can be the presenting feature of primary lung cancer. Discovery of the true primary lesion can alter therapy and prognosis.

  1. Treatment Options by Stage (Non-Small Cell Lung Cancer)

    Science.gov (United States)

    ... Cancer Screening Research Non-Small Cell Lung Cancer Treatment (PDQ®)–Patient Version General Information About Non-Small ... Certain factors affect prognosis (chance of recovery) and treatment options. The prognosis (chance of recovery ) and treatment ...

  2. Advances on Driver Oncogenes of Squamous Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Wei HONG

    2014-05-01

    Full Text Available Background and objective Lung cancer is the leading cause of cancer-related deaths worldwide. Next to adenocarcinoma, squamous cell carcinoma (SCC of the lung is the most frequent histologic subtype in non-small cell lung cancer. Several molecular alterations have been defined as "driver oncogenes" responsible for both the initiation and maintenance of the malignancy. The squamous cell carcinoma of the lung has recently shown peculiar molecular characteristics which relate with both carcinogenesis and response to targeted drugs. So far, about 40% of lung squamous cell carcinoma has been found harbouring driver oncogenes, in which fibroblast growth factor receptor 1 (FGFR1 plays important roles. In this review, we will report the mainly advances on some latest driver mutations of squamous cell lung cancer.

  3. Cellular radiosensitivity of small-cell lung cancer cell lines

    DEFF Research Database (Denmark)

    Krarup, M; Poulsen, H S; Spang-Thomsen, M

    1997-01-01

    PURPOSE: The objective of this study was to determine the radiobiological characteristics of a panel of small-cell lung cancer (SCLC) cell lines by use of a clonogenic assay. In addition, we tested whether comparable results could be obtained by employing a growth extrapolation method based...

  4. The Role of Proteasome Inhibition in Nonsmall Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Mauricio Escobar

    2011-01-01

    Full Text Available Lung cancer therapy with current available chemotherapeutic agents is mainly palliative. For these and other reasons there is now a great interest to find targeted therapies that can be effective not only palliating lung cancer or decreasing treatment-related toxicity, but also giving hope to cure these patients. It is already well known that the ubiquitin-proteasome system like other cellular pathways is critical for the proliferation and survival of cancer cells; thus, proteosome inhibition has become a very attractive anticancer therapy. There are several phase I and phase II clinical trials now in non-small cell lung cancer and small cell lung cancer using this potential target. Most of the trials use bortezomib in combination with chemotherapeutic agents. This paper tends to make a state-of-the-art review based on the available literature regarding the use of bortezomib as a single agent or in combination with chemotherapy in patients with lung cancer.

  5. [Advances of molecular targeted therapy in squamous cell lung cancer].

    Science.gov (United States)

    Ma, Li; Zhang, Shucai

    2013-12-01

    Squamous cell lung cancer (SQCLC) is one of the most prevalent subtypes of lung cancer worldwide, about 400,000 persons die from squamous-cell lung cancer around the world, and its pathogenesis is closely linked with tobacco exposure. Unfortunately, squamous-cell lung cancer patients do not benefit from major advances in the development of targeted therapeutics such as epidermal growth factor receptor (EGFR) inhibitors or anaplastic lymphoma kinase (ALK) inhibitors that show exquisite activity in lung adenocarcinomas with EGFR mutations or echinoderm microtubule associated protein like-4 (EML4)-ALK fusions, respectively. Major efforts have been launched to characterize the genomes of squamous-cell lung cancers. Among the new results emanating from these efforts are amplifications of the fibroblast growth factor receptor 1 (FGFR1) gene, the discoidin domain receptor 2 (DDR2) gene mutation as potential novel targets for the treatment of SQCLCs. Researchers find that there are many specific molecular targeted genes in the genome of squamous-cell lung cancer patients. These changes play a vital role in cell cycle regulation, oxidative stress, cell apoptosis, squamous epithelium differentiation, may be the candidate targeted moleculars in SQCLCs. Here, we provide a review on these discoveries and their implications for clinical trials in squamous-cell lung cancer assessing the value of novel therapeutics addressing these targets.

  6. Staging of Lung Cancer

    Science.gov (United States)

    ... is important for two reasons. First, staging your lung cancer helps decide which therapy (or therapies) should be used. Second, lung cancer ... 422-6237 http://www.cancer.gov/cancertopics/wyntk/lung/page8 http://www.cancer.gov/cancertopics/pdq/treatment/non- small-cell-lung/Patient/page2 National Lung ...

  7. Double primary non-small cell lung cancer with synchronous small cell lung cancer N2 nodes: a case report

    OpenAIRE

    Gogakos, Apostolos S; Paliouras, Dimitrios; Rallis, Thomas; Chatzinikolaou, Fotios; Xirou, Persefoni; Tsirgogianni, Katerina; Tsavlis,Drosos; Sachpekidis,Nikos; Tsakiridis, Kosmas; Mpakas, Andreas; Zarogoulidis, Konstantinos; Zissimopoulos, Athanasios; Zarogoulidis, Paul; Barbetakis, Nikolaos

    2015-01-01

    Synchronous multiple primary lung cancer (SMPLC) is rare and very hard to distinguish from metastatic disease. Recent studies indicate the presence of this entity in the lung, with no mention to the involvement of the mediastinum. An extremely rare case of a 68-year-old male with double primary non-small cell lung cancer (NSCLC) in the left upper lobe and N2 positive nodes for small cell lung cancer (SCLC) is presented. Modern diagnostic criteria as well as aggressive curative strategies are ...

  8. Double primary non-small cell lung cancer with synchronous small cell lung cancer N2 nodes: a case report.

    Science.gov (United States)

    Gogakos, Apostolos S; Paliouras, Dimitrios; Rallis, Thomas; Chatzinikolaou, Fotios; Xirou, Persefoni; Tsirgogianni, Katerina; Tsavlis, Drosos; Sachpekidis, Nikos; Tsakiridis, Kosmas; Mpakas, Andreas; Zarogoulidis, Konstantinos; Zissimopoulos, Athanasios; Zarogoulidis, Paul; Barbetakis, Nikolaos

    2015-07-01

    Synchronous multiple primary lung cancer (SMPLC) is rare and very hard to distinguish from metastatic disease. Recent studies indicate the presence of this entity in the lung, with no mention to the involvement of the mediastinum. An extremely rare case of a 68-year-old male with double primary non-small cell lung cancer (NSCLC) in the left upper lobe and N2 positive nodes for small cell lung cancer (SCLC) is presented. Modern diagnostic criteria as well as aggressive curative strategies are encouraged, in order to achieve better survival rates for such patients.

  9. Targeted therapy in non-small cell lung cancer

    Institute of Scientific and Technical Information of China (English)

    Shou-Ching Tang

    2004-01-01

    @@ 1 Introduction Recent progress in molecular biology has enabled us to better understand the molecular mechanism underlying pathogenesis of human malignancy including lung cancer. Sequencing of human genome has identified many oncogenes and tumor suppressor genes,giving us a better understanding of the molecular events leading to the formation, progression, metastasis, and the development of drug resistance in human lung cancer. In addition, many signal transduction pathways have been discovered that play important roles in lung cancer. Novel strategy of anti-cancer drug development now involves the identification and development of targeted therapy that interrupts one or more than one pathways or cross-talk among different signal transduction pathways. In addition, efforts are underway that combine the traditional cytotoxic (non-targeted) agents with the biological (targeted) therapy to increase the response rate and survival in patients with lung cancer, especially advanced non-small cell lung cancer (NSCLC).

  10. Genetics Home Reference: lung cancer

    Science.gov (United States)

    ... neoplasm of lung malignant tumor of lung pulmonary cancer pulmonary carcinoma pulmonary neoplasms respiratory carcinoma Related Information How are genetic conditions and genes named? Additional Information & Resources ... Encyclopedia: Lung Cancer--Non-Small Cell Encyclopedia: Lung Cancer--Small Cell ...

  11. TP53 Mutations in Nonsmall Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Akira Mogi

    2011-01-01

    Full Text Available The tumor suppressor gene TP53 is frequently mutated in human cancers. Abnormality of the TP53 gene is one of the most significant events in lung cancers and plays an important role in the tumorigenesis of lung epithelial cells. Human lung cancers are classified into two major types, small cell lung cancer (SCLC and nonsmall cell lung cancer (NSCLC. The latter accounts for approximately 80% of all primary lung cancers, and the incidence of NSCLC is increasing yearly. Most clinical studies suggest that NSCLC with TP53 alterations carries a worse prognosis and may be relatively more resistant to chemotherapy and radiation. A deep understanding of the role of TP53 in lung carcinogenesis may lead to a more reasonably targeted clinical approach, which should be exploited to enhance the survival rates of patients with lung cancer. This paper will focus on the role of TP53 in the molecular pathogenesis, epidemiology, and therapeutic strategies of TP53 mutation in NSCLC.

  12. Advances of Molecular Targeted Therapy in Squamous Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Li MA

    2013-12-01

    Full Text Available Squamous cell lung cancer (SQCLC is one of the most prevalent subtypes of lung cancer worldwide, about 400,000 persons die from squamous-cell lung cancer around the world, and its pathogenesis is closely linked with tobacco exposure. Unfortunately, squamous-cell lung cancer patients do not benefit from major advances in the development of targeted therapeutics such as epidermal growth factor receptor (EGFR inhibitors or anaplastic lymphoma kinase (ALK inhibitors that show exquisite activity in lungadenocarcinomas with EGFR mutations or echinoderm microtubule associated protein like-4 (EML4-ALK fusions, respectively. Major efforts have been launched to characterize the genomes of squamous-cell lung cancers. Among the new results emanating from these efforts are amplifications of the fibroblast growth factor receptor 1 (FGFR1 gene, the discoidin domain receptor 2 (DDR2 gene mutation as potential novel targets for the treatment of SQCLCs. Researchers find that there are many specific molecular targeted genes in the genome of squamous-cell lung cancer patients. These changes play a vital role in cell cycle regulation, oxidative stress, cell apoptosis, squamous epithelium differentiation, may be the candidate targeted moleculars in SQCLCs. Here, we provide a review on these discoveries and their implications for clinical trials in squamous-cell lungcancer assessing the value of novel therapeutics addressing these targets.

  13. Transformation from non-small-cell lung cancer to small-cell lung cancer: molecular drivers and cells of origin.

    Science.gov (United States)

    Oser, Matthew G; Niederst, Matthew J; Sequist, Lecia V; Engelman, Jeffrey A

    2015-04-01

    Lung cancer is the most common cause of cancer deaths worldwide. The two broad histological subtypes of lung cancer are small-cell lung cancer (SCLC), which is the cause of 15% of cases, and non-small-cell lung cancer (NSCLC), which accounts for 85% of cases and includes adenocarcinoma, squamous-cell carcinoma, and large-cell carcinoma. Although NSCLC and SCLC are commonly thought to be different diseases owing to their distinct biology and genomic abnormalities, the idea that these malignant disorders might share common cells of origin has been gaining support. This idea has been supported by the unexpected findings that a subset of NSCLCs with mutated EGFR return as SCLC when resistance to EGFR tyrosine kinase inhibitors develops. Additionally, other case reports have described the coexistence of NSCLC and SCLC, further challenging the commonly accepted view of their distinct lineages. Here, we summarise the published clinical observations and biology underlying tumours with combined SCLC and NSCLC histology and cancers that transform from adenocarcinoma to SCLC. We also discuss pre-clinical studies pointing to common potential cells of origin, and speculate how the distinct paths of differentiation are determined by the genomics of each disease.

  14. Alpinetin inhibits lung cancer progression and elevates sensitization drug-resistant lung cancer cells to cis-diammined dichloridoplatium

    Directory of Open Access Journals (Sweden)

    Wu L

    2015-11-01

    Full Text Available Lin Wu, Wei Yang, Su-ning Zhang, Ji-bin Lu Department of Thoracic Surgery, Sheng Jing Hospital of China Medical University, Shenyang, People’s Republic of China Objective: Alpinetin is a novel flavonoid that has demonstrated potent antitumor activity in previous studies. However, the efficacy and mechanism of alpinetin in treating lung cancer have not been determined. Methods: We evaluated the impact of different doses and durations of alpinetin treatment on the cell proliferation, the apoptosis of lung cancer cells, as well as the drug-resistant lung cancer cells. Results: This study showed that the alpinetin inhibited the cell proliferation, enhanced the apoptosis, and inhibited the PI3K/Akt signaling in lung cancer cells. Moreover, alpinetin significantly increased the sensitivity of drug-resistant lung cancer cells to the chemotherapeutic effect of cis-diammined dichloridoplatium. Taken together, this study demonstrated that alpinetin significantly suppressed the development of human lung cancer possibly by influencing mitochondria and the PI3K/Akt signaling pathway and sensitized drug-resistant lung cancer cells. Conclusion: Alpinetin may be used as a potential compound for combinatorial therapy or as a complement to other chemotherapeutic agents when multiple lines of treatments have failed to reduce lung cancer. Keywords: alpinetin, cell proliferation and apoptosis, drug resistance reversal, PI3K/Akt, lung cancer

  15. Cavitary Lung Cancer Lined with Normal Bronchial Epithelium and Cancer Cells

    OpenAIRE

    Goto, Taichiro; Maeshima, Arafumi; Oyamada, Yoshitaka; Kato, Ryoichi

    2011-01-01

    Reports of cavitary lung cancer are not uncommon, and the cavity generally contains either dilated bronchi or cancer cells. Recently, we encountered a surgical case of cavitary lung cancer whose cavity tended to enlarge during long-term follow-up, and was found to be lined with normal bronchial epithelium and adenocarcinoma cells.

  16. Advanced Research on Circulating Tumor Cells in Lung Cancer

    Directory of Open Access Journals (Sweden)

    Hui LI

    2012-11-01

    Full Text Available Lung cancer is the malignant disease with the highest rate in terms of incidence and mortality in China. Early diagnosis and timely monitoring tumor recurrence and metastasis are extremely important for improving 5-year survival rate of lung cancer patients. Circulating tumor cells (CTCs, as a "liquid biopsy specimens” for the primary tumor, provide the possibility to perform real-time, non-invasive histological identification for lung cancer patients. The detection of CTCs contributes to early diagnosis, surveillance of tumor recurrence and metastasis, and prediction of therapeutic efficacy and prognosis. Furthermore, CTCs-dependent detection emerges as a new approach for molecularly pathologic examination, study of molecular mechanisms involved in drug resistance, and resolution for tumor heterogeneity. This study reviewed the recent progress of CTCs in lung cancer research field.

  17. Long-term survival in small-cell lung cancer

    DEFF Research Database (Denmark)

    Lassen, U; Osterlind, K; Hansen, M

    1995-01-01

    PURPOSE: To describe in patients with small-cell lung cancer (SCLC) the characteristics of those who survive for > or = 5 years, to identify long-term prognostic factors, to analyze survival data of 5-year survivors, and to study 10-year survival in patients entered before 1981. PATIENTS......, especially tobacco-related cancers and other tobacco-related diseases....

  18. Isolated renal metastasis from squamous cell lung cancer

    Directory of Open Access Journals (Sweden)

    Cai Jun

    2013-01-01

    Full Text Available Abstract Renal metastasis from non-small cell lung cancer is rather uncommon. The mechanism underlying the occurrence of metastasis in this site is still not well understood. We report a case of a 53-year-old Chinese woman who had moderately differentiated squamous cell carcinoma of the lung. After a ten months post-surgery interval of disease free survival, computed tomography (CT scan found that left renal parenchymal was occupied by a mass, confirmed by kidney biopsy to be a metastasis from squamous cell lung carcinoma. Based on this case, we are warned to be cautious in diagnosis and treatment when renal lesion are detected.

  19. Image-Guided Hypofractionated Radiation Therapy With Stereotactic Body Radiation Therapy Boost and Combination Chemotherapy in Treating Patients With Stage II-III Non-Small Cell Lung Cancer That Cannot Be Removed By Surgery

    Science.gov (United States)

    2016-09-07

    Adenocarcinoma of the Lung; Adenosquamous Cell Lung Cancer; Large Cell Lung Cancer; Recurrent Non-small Cell Lung Cancer; Squamous Cell Lung Cancer; Stage IIA Non-small Cell Lung Cancer; Stage IIB Non-small Cell Lung Cancer; Stage IIIA Non-small Cell Lung Cancer; Stage IIIB Non-small Cell Lung Cancer

  20. Progesterone and estrogen receptor expression and activity in human non-small cell lung cancer

    OpenAIRE

    2011-01-01

    Lung cancer is the most common cause of cancer mortality in male and female patients in the US. Although it is clear that tobacco smoking is a major cause of lung cancer, about half of all women with lung cancer worldwide are never-smokers. Despite a declining smoking population, the incidence of non-small cell lung cancer (NSCLC), the predominant form of lung cancer, has reached epidemic proportions particularly in women. Emerging data suggest that factors other than tobacco, namely endogeno...

  1. Primary non-small cell lung cancer in a transplanted lung treated with stereotactic body radiation therapy. A case study

    Energy Technology Data Exchange (ETDEWEB)

    Oskan, F. [Munich Univ. (Germany). Dept. of Radiation Oncology; University Hospital of Saarland, Homburg (Saar) (Germany). Dept. of Radiation Oncology; Ganswindt, U.; Belka, C.; Manapov, F. [Munich Univ. (Germany). Dept. of Radiation Oncology

    2014-04-15

    The first case of primary lung cancer in a transplanted lung was described in 2001. Since then, only 5 cases of lung cancer in donated lung have been reported. We present one more patient with non-small cell cancer in the transplanted lung treated with stereotactic body radiation therapy. In most cases of primary lung cancer in transplanted lung, rapid progression of the cancer was reported. Occurrence of the locoregional failure in our case could be explained by factors related to the treatment protocol and also to underlying immunosuppression.

  2. Enrichment and Function Research of Large Cell Lung Cancer Stem Cell-like Cells

    Directory of Open Access Journals (Sweden)

    Wenke YUE

    2011-06-01

    Full Text Available Background and objective There are no universal method to recognize and screen for lung cancer stem cell markers and indicators. Commonly used methods are flow Cytometry and learning from other cancer stem cell sorting tags to sort lung cancer stem cells. But this method has low specificity screening, the workload is huge. In this study, Serum-free suspension culture was used to enrich lung cancer stem cells, and explore method for lung cancer stem cell screening. Methods Human large lung cancer cell line-L9981 was cultured in serum-free and growth factors added medium, and spheres were obtained. Then the morphological differences of sphere cells and adherent L9981 cells cultured in serum-containing mediums are observed. Cell proliferation was analyzed by Vi-cell viability analyzer; invasion ability was tested by transwell assay; and in vivo tumorigenicity of the two groups of cells was studied in nude mouse. Results Compared with adherent L9981 cells cultured in serum-containing mediums, cells cultured in serum-free medium display sphere appearance. Doubling time of adherent cells and sphere cells are (56.05±1.95 h and (33.00±1.44 h respectively; Spheroid cells had higher invasion and tumorigenicity ability, 5 times and 20 times respectively, than adherent cells. Conclusion Suspension cultured L9981 in Serum-free medium could form spheroid populations. Cells in spheres had higher ability of invasion and Tumorigenicity than adherent L9981 cells. These results indicated spheroid L9981 cells contained enriched lung cancer stem cells, and Serum-free suspension culture can be a candidate method for enriching lung cancer stem cell.

  3. Palliative Care Intervention in Improving Symptom Control and Quality of Life in Patients With Stage II-IV Non-small Cell Lung Cancer and Their Family Caregivers

    Science.gov (United States)

    2016-10-13

    Caregiver; Psychological Impact of Cancer and Its Treatment; Recurrent Non-small Cell Lung Cancer; Stage IIA Non-small Cell Lung Cancer; Stage IIB Non-small Cell Lung Cancer; Stage IIIA Non-small Cell Lung Cancer; Stage IIIB Non-small Cell Lung Cancer; Stage IV Non-small Cell Lung Cancer

  4. Lung Cancer

    Science.gov (United States)

    Lung cancer is one of the most common cancers in the world. It is a leading cause of cancer death in men and women in the United States. Cigarette smoking causes most lung cancers. The more cigarettes you smoke per day and ...

  5. Hedgehog Pathway Inhibition Radiosensitizes Non-Small Cell Lung Cancers

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Jing; Aziz, Khaled; Chettiar, Sivarajan T. [Department of Radiation Oncology and Molecular Radiation Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland (United States); Aftab, Blake T. [Department of Medical Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland (United States); Armour, Michael; Gajula, Rajendra; Gandhi, Nishant; Salih, Tarek; Herman, Joseph M.; Wong, John [Department of Radiation Oncology and Molecular Radiation Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland (United States); Rudin, Charles M. [Department of Medical Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland (United States); Tran, Phuoc T. [Department of Radiation Oncology and Molecular Radiation Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland (United States); Department of Medical Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland (United States); Hales, Russell K., E-mail: rhales1@jhmi.edu [Department of Radiation Oncology and Molecular Radiation Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland (United States)

    2013-05-01

    Purpose: Despite improvements in chemoradiation, local control remains a major clinical problem in locally advanced non-small cell lung cancer. The Hedgehog pathway has been implicated in tumor recurrence by promoting survival of tumorigenic precursors and through effects on tumor-associated stroma. Whether Hedgehog inhibition can affect radiation efficacy in vivo has not been reported. Methods and Materials: We evaluated the effects of a targeted Hedgehog inhibitor (HhAntag) and radiation on clonogenic survival of human non-small cell lung cancer lines in vitro. Using an A549 cell line xenograft model, we examined tumor growth, proliferation, apoptosis, and gene expression changes after concomitant HhAntag and radiation. In a transgenic mouse model of Kras{sup G12D}-induced and Twist1-induced lung adenocarcinoma, we assessed tumor response to radiation and HhAntag by serial micro-computed tomography (CT) scanning. Results: In 4 human lung cancer lines in vitro, HhAntag showed little or no effect on radiosensitivity. By contrast, in both the human tumor xenograft and murine inducible transgenic models, HhAntag enhanced radiation efficacy and delayed tumor growth. By use of the human xenograft model to differentiate tumor and stromal effects, mouse stromal cells, but not human tumor cells, showed significant and consistent downregulation of Hedgehog pathway gene expression. This was associated with increased tumor cell apoptosis. Conclusions: Targeted Hedgehog pathway inhibition can increase in vivo radiation efficacy in lung cancer preclinical models. This effect is associated with pathway suppression in tumor-associated stroma. These data support clinical testing of Hedgehog inhibitors as a component of multimodality therapy for locally advanced non-small cell lung cancer.

  6. Methoxyamine, Pemetrexed Disodium, Cisplatin, and Radiation Therapy in Treating Patients With Stage IIIA-IV Non-small Cell Lung Cancer

    Science.gov (United States)

    2016-10-05

    Metastatic Malignant Neoplasm in the Brain; Stage IIIA Large Cell Lung Carcinoma; Stage IIIA Lung Adenocarcinoma; Stage IIIA Non-Small Cell Lung Cancer; Stage IIIB Large Cell Lung Carcinoma; Stage IIIB Lung Adenocarcinoma; Stage IIIB Non-Small Cell Lung Cancer; Stage IV Large Cell Lung Carcinoma; Stage IV Lung Adenocarcinoma; Stage IV Non-Small Cell Lung Cancer

  7. Treatment Advances in Locally Advanced and Metastatic Non-Small Cell Lung Cancer

    NARCIS (Netherlands)

    V.M.F. Surmont (Veerle)

    2010-01-01

    textabstractLung cancer is the leading cause of cancer mortality in the United States and Europe. Approximately 85% of the patients with lung cancer have non–small cell lung cancer (NSCLC), which can be classified into squamous, adeno, large cell and not otherwise specified (NOS) histologies. The mo

  8. Overview of KRAS-Driven Genetically Engineered Mouse Models of Non-Small Cell Lung Cancer.

    Science.gov (United States)

    Sheridan, Clare; Downward, Julian

    2015-01-01

    KRAS, the most frequently mutated oncogene in non-small cell lung cancer, has been utilized extensively to model human lung adenocarcinomas. The results from such studies have enhanced considerably an understanding of the relationship between KRAS and the development of lung cancer. Detailed in this overview are the features of various KRAS-driven genetically engineered mouse models (GEMMs) of non-small cell lung cancer, their utilization, and the potential of these models for the study of lung cancer biology.

  9. Lung cancer stem cells%肺癌干细胞

    Institute of Scientific and Technical Information of China (English)

    江妹; 岳文涛

    2011-01-01

    Recently,studies have demonstrated that several signaling pathways including Wnt,Notch,and Hedgehog which are involved in the regulation of the stem cells are abnormally activated in lung cancer.They are closely associated with some properties of the lung cancer stem cells,such as high tumorigenic,high metastasis,drug resistance and so on.In addition,several studies have shown that the population of the lung cancer stem cells,which are resistant to radiotherapy and chemotherapy significantly,highly express drug resistance proteins.Therefore,how to target lung cancer stem cells and ultimately cure the disease is becoming a hotspot in the cancer targeted therapy.%现有研究表明,在肺癌中与干细胞功能相关的Wnt、Notch和Hedgehog信号通路被异常激活,它们与肺癌干细胞的高致瘤性、高转移性、耐药性等特性密切相关.多项研究显示肺癌干细胞群高度表达肿瘤耐药蛋白并且对放化疗明显耐受.因此,如何靶向治疗肺癌干细胞,最终根治肺癌,正逐渐成为肿瘤靶向治疗研究中的热点.

  10. Establishment and characterization of primary lung cancer cell lines from Chinese population

    Institute of Scientific and Technical Information of China (English)

    Chao ZHENG; Yi-hua SUN; Xiao-lei YE; Hai-quan CHEN; Hong-bin JI

    2011-01-01

    Aim: To establish and characterize primary lung cancer cell lines from Chinese population.Methods: Lung cancer specimens or pleural effusions were collected from Chinese lung cancer patients and cultured in vitro with ACL4 medium (for non-small cell lung carcinomas (NSCLC)) or HITES medium (for small cell lung carcinomas (SCLC)) supplemented with 5%FBS. All cell lines were maintained in culture for more than 25 passages. Most of these cell lines were further analyzed for oncogenic mutations, karyotype, cell growth kinetics, and tumorigenicity in nude mice.Results: Eight primary cell lines from Chinese lung cancer patients were established and characterized, including seven NSCLC cell lines and one SCLC cell line. Five NSCLC cell lines were found to harbor epidermal growth factor receptor (EGFR) kinase domain mutations.Conclusion: These well-characterized primary lung cancer cell lines from Chinese population provide a unique platform for future studies of the ethnic differences in lung cancer biology and drug response.

  11. Overexpression of cyclin Y in non-small cell lung cancer is associated with cancer cell proliferation

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Cyclin Y (CCNY) is a key cell cycle regulator that acts as a growth factor sensor to integrate extracellular signals with the cell cycle machinery. The expression status of CCNY in lung cancer and its clinical significance remain unknown. The data indicates that CCNY may be deregulated in non-small cell lung cancer, where it may act to promote cell proliferation. These studies suggest that CCNY may be a candidate biomarker of NSCLC and a possible therapeutic target for lung cancer treatment.

  12. Ciprofloxacin mediates cancer stem cell phenotypes in lung cancer cells through caveolin-1-dependent mechanism.

    Science.gov (United States)

    Phiboonchaiyanan, Preeyaporn Plaimee; Kiratipaiboon, Chayanin; Chanvorachote, Pithi

    2016-04-25

    Cancer stem cells (CSCs), a subpopulation of cancer cells with high aggressive behaviors, have been identified in many types of cancer including lung cancer as one of the key mediators driving cancer progression and metastasis. Here, we have reported for the first time that ciprofloxacin (CIP), a widely used anti-microbial drug, has a potentiating effect on CSC-like features in human non-small cell lung cancer (NSCLC) cells. CIP treatment promoted CSC-like phenotypes, including enhanced anchorage-independent growth and spheroid formation. The known lung CSC markers: CD133, CD44, ABCG2 and ALDH1A1 were found to be significantly increased, while the factors involving in epithelial to mesenchymal transition (EMT): Slug and Snail, were depleted. Also, self-renewal transcription factors Oct-4 and Nanog were found to be up-regulated in CIP-treated cells. The treatment of CIP on CSC-rich populations obtained from secondary spheroids resulted in the further increase of CSC markers. In addition, we have proven that the mechanistic insight of the CIP induced stemness is through Caveolin-1 (Cav-1)-dependent mechanism. The specific suppression of Cav-1 by stably transfected Cav-1 shRNA plasmid dramatically reduced the effect of CIP on CSC markers as well as the CIP-induced spheroid formation ability. Cav-1 was shown to activate protein kinase B (Akt) and extracellular signal-regulated kinase (ERK) pathways in CSC-rich population; however, such an effect was rarely found in the main lung cancer cells population. These findings reveal a novel effect of CIP in positively regulating CSCs in lung cancer cells via the activation of Cav-1, Akt and ERK, and may provoke the awareness of appropriate therapeutic strategy in cancer patients.

  13. Prophylactic cranial irradiation in patients with small cell lung cancer

    DEFF Research Database (Denmark)

    Ramlov, Anne; Tietze, Anna; Khalil, Azza Ahmed

    2012-01-01

    BACKGROUND: Prophylactic cerebral irradiation (PCI) is a standard treatment for all small cell lung cancer (SCLC) patients with response to chemotherapy. The aims of this study were: to evaluate patients undergoing PCI with regard to cerebral recurrence rate, site of recurrence, and overall...

  14. Surgery in limited stage small cell lung cancer

    DEFF Research Database (Denmark)

    Lassen, U; Hansen, H H

    1999-01-01

    The role of surgery in small cell lung cancer (SCLC) is controversial. Surgery has several potential advantages because it may reduce the frequency of local relapses, it does not impede the intensity of chemotherapy, it does not affect the bone marrow, and surgical staging may be of prognostic...

  15. Third-line chemotherapy for small cell lung cancer

    NARCIS (Netherlands)

    de Jong, WK; ten Hacken, NHT; Groen, HJM

    2006-01-01

    Efficacy of third-line chemotherapy treatment for small cell lung cancer (SCLC) is unknown. We present our experience with third-tine chemotherapy for recurrent SCLC. Between January 1996 and July 2004 all. consecutive patients treated for SCLC were retrospectively studied. We recorded patient chara

  16. Substrate stiffness regulates filopodial activities in lung cancer cells.

    Directory of Open Access Journals (Sweden)

    Yu-Ren Liou

    Full Text Available Microenvironment stiffening plays a crucial role in tumorigenesis. While filopodia are generally thought to be one of the cellular mechanosensors for probing environmental stiffness, the effects of environmental stiffness on filopodial activities of cancer cells remain unclear. In this work, we investigated the filopodial activities of human lung adenocarcinoma cells CL1-5 cultured on substrates of tunable stiffness using a novel platform. The platform consists of an optical system called structured illumination nano-profilometry, which allows time-lapsed visualization of filopodial activities without fluorescence labeling. The culturing substrates were composed of polyvinyl chloride mixed with an environmentally friendly plasticizer to yield Young's modulus ranging from 20 to 60 kPa. Cell viability studies showed that the viability of cells cultured on the substrates was similar to those cultured on commonly used elastomers such as polydimethylsiloxane. Time-lapsed live cell images were acquired and the filopodial activities in response to substrates with varying degrees of stiffness were analyzed. Statistical analyses revealed that lung cancer cells cultured on softer substrates appeared to have longer filopodia, higher filopodial densities with respect to the cellular perimeter, and slower filopodial retraction rates. Nonetheless, the temporal analysis of filopodial activities revealed that whether a filopodium decides to extend or retract is purely a stochastic process without dependency on substrate stiffness. The discrepancy of the filopodial activities between lung cancer cells cultured on substrates with different degrees of stiffness vanished when the myosin II activities were inhibited by treating the cells with blebbistatin, which suggests that the filopodial activities are closely modulated by the adhesion strength of the cells. Our data quantitatively relate filopodial activities of lung cancer cells with environmental stiffness and

  17. Preferential elevation of Prx I and Trx expression in lung cancer cells following hypoxia and in human lung cancer tissues.

    Science.gov (United States)

    Kim, H J; Chae, H Z; Kim, Y J; Kim, Y H; Hwangs, T S; Park, E M; Park, Y M

    2003-10-01

    Transient/chronic microenvironmental hypoxia that exists within a majority of solid tumors has been suggested to have a profound influence on tumor growth and therapeutic outcome. Since the functions of novel antioxidant proteins, peroxiredoxin I (Prx I) and II, have been implicated in regulating cell proliferation, differentiation, and apoptosis, it was of our special interest to probe a possible role of Prx I and II in the context of hypoxic tumor microenvironment. Since both Prx I and II use thioredoxin (Trx) as an electron donor and Trx is a substrate for thioredoxin reductase (TrxR), we investigated the regulation of Trx and TrxR as well as Prx expression following hypoxia. Here we show a dynamic change of glutathione homeostasis in lung cancer A549 cells and an up-regulation of Prx I and Trx following hypoxia. Western blot analysis of 10 human lung cancer and paired normal lung tissues also revealed an elevated expression of Prx I and Trx proteins in lung cancer tissues. Immunohistochemical analysis of the lung cancer tissues confirmed an augmented Prx I and Trx expression in cancer cells with respect to the parenchymal cells in adjacent normal lung tissue. Based on these results, we suggest that the redox changes in lung tumor microenvironment could have acted as a trigger for the up-regulation of Prx I and Trx in lung cancer cells. Although the clinical significance of our finding awaits more rigorous future study, preferential augmentation of the Prx I and Trx in lung cancer cells may well represent an attempt of cancer cells to manipulate a dynamic redox change in tumor microenvironment in a manner that is beneficial for their proliferation and malignant progression.

  18. Lung Cancer Prevention

    Science.gov (United States)

    ... Treatment Lung Cancer Prevention Lung Cancer Screening Research Lung Cancer Prevention (PDQ®)–Patient Version What is prevention? Go ... to keep cancer from starting. General Information About Lung Cancer Key Points Lung cancer is a disease in ...

  19. Subamolide A Induces Mitotic Catastrophe Accompanied by Apoptosis in Human Lung Cancer Cells

    OpenAIRE

    Jen-Yu Hung; Ching-Wen Wen; Ya-Ling Hsu; En-Shyh Lin; Ming-Shyan Huang; Chung-Yi Chen; Po-Lin Kuo

    2013-01-01

    This study investigated the anticancer effects of subamolide A (Sub-A), isolated from Cinnamomum subavenium, on human nonsmall cell lung cancer cell lines A549 and NCI-H460. Treatment of cancer cells with Sub-A resulted in decreased cell viability of both lung cancer cell lines. Sub-A induced lung cancer cell death by triggering mitotic catastrophe with apoptosis. It triggered oxidant stress, indicated by increased cellular reactive oxygen species (ROS) production and decreased glutathione le...

  20. EF5 and Motexafin Lutetium in Detecting Tumor Cells in Patients With Abdominal or Non-Small Cell Lung Cancer

    Science.gov (United States)

    2013-01-15

    Advanced Adult Primary Liver Cancer; Carcinoma of the Appendix; Fallopian Tube Cancer; Gastrointestinal Stromal Tumor; Localized Extrahepatic Bile Duct Cancer; Localized Gallbladder Cancer; Localized Gastrointestinal Carcinoid Tumor; Localized Resectable Adult Primary Liver Cancer; Localized Unresectable Adult Primary Liver Cancer; Metastatic Gastrointestinal Carcinoid Tumor; Ovarian Sarcoma; Ovarian Stromal Cancer; Primary Peritoneal Cavity Cancer; Recurrent Adult Primary Liver Cancer; Recurrent Adult Soft Tissue Sarcoma; Recurrent Colon Cancer; Recurrent Extrahepatic Bile Duct Cancer; Recurrent Gallbladder Cancer; Recurrent Gastric Cancer; Recurrent Gastrointestinal Carcinoid Tumor; Recurrent Non-small Cell Lung Cancer; Recurrent Ovarian Epithelial Cancer; Recurrent Ovarian Germ Cell Tumor; Recurrent Pancreatic Cancer; Recurrent Rectal Cancer; Recurrent Small Intestine Cancer; Recurrent Uterine Sarcoma; Regional Gastrointestinal Carcinoid Tumor; Small Intestine Adenocarcinoma; Small Intestine Leiomyosarcoma; Small Intestine Lymphoma; Stage 0 Non-small Cell Lung Cancer; Stage I Adult Soft Tissue Sarcoma; Stage I Colon Cancer; Stage I Gastric Cancer; Stage I Non-small Cell Lung Cancer; Stage I Ovarian Epithelial Cancer; Stage I Ovarian Germ Cell Tumor; Stage I Pancreatic Cancer; Stage I Rectal Cancer; Stage I Uterine Sarcoma; Stage II Adult Soft Tissue Sarcoma; Stage II Colon Cancer; Stage II Gastric Cancer; Stage II Non-small Cell Lung Cancer; Stage II Ovarian Epithelial Cancer; Stage II Ovarian Germ Cell Tumor; Stage II Pancreatic Cancer; Stage II Rectal Cancer; Stage II Uterine Sarcoma; Stage III Adult Soft Tissue Sarcoma; Stage III Colon Cancer; Stage III Gastric Cancer; Stage III Ovarian Epithelial Cancer; Stage III Ovarian Germ Cell Tumor; Stage III Pancreatic Cancer; Stage III Rectal Cancer; Stage III Uterine Sarcoma; Stage IIIA Non-small Cell Lung Cancer; Stage IIIB Non-small Cell Lung Cancer; Stage IV Adult Soft Tissue Sarcoma; Stage IV Colon Cancer; Stage

  1. Genetic polymorphisms and non-small-cell lung cancer: future paradigms

    Energy Technology Data Exchange (ETDEWEB)

    Mello, Ramon Andrade Bezerra de [Serviço de Oncologia Médica, Instituto Português de Oncologia Francisco Gentil, Porto (Portugal); Departamento de Ciências Biomédicas e Medicina, Universidade do Algarve, Faro (Portugal)

    2014-07-01

    This article addresses some current issues about genetic polymorphisms studied in the non-small-cell lung cancer translational field. Furthermore, it discusses about new potential biomarkers regarding lung cancer risk and prognosis.

  2. Advances in Immunotherapies for Non-small Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Yuan HE

    2014-03-01

    Full Text Available Globally, Lung cancer is the leading cause of cancer-related death of high morbidity and mortality with poor prognosis, which needs some more effective and less toxic therapies. The immunotherapies offer a novel approach for the treatment of patients with non-small cell lung cancer (NSCLC in both the adjuvant and palliative disease settings. A number of promising immunotherapies based on different mechanism have now been evaluated showing an increasing response rate. Moreover, further phase II/III clinical trials will be indicated to explore its value. These include checkpoint inhibitors (anti-CTLA4 antibody, anti-PD-1 antibody, anti-PD-L1 antibody, active vaccination (L-BLP25 liposome vaccine, Belagenpumatucel-L vaccine, MAGE-A3 protein vaccine and adoptive vaccination (CIK cells. The purpose of this paper will draw a summary on the theory, clinical trials, toxicity and problems to be solved of the immunotherapies in NSCLC.

  3. Lung Cancer Screening

    Science.gov (United States)

    ... Treatment Lung Cancer Prevention Lung Cancer Screening Research Lung Cancer Screening (PDQ®)–Patient Version What is screening? Go ... These are called diagnostic tests . General Information About Lung Cancer Key Points Lung cancer is a disease in ...

  4. What Is Lung Cancer?

    Science.gov (United States)

    ... Graphics Infographic Stay Informed Cancer Home What Is Lung Cancer? Language: English Español (Spanish) Recommend on Facebook Tweet ... cancer starts in the lungs, it is called lung cancer. Lung cancer begins in the lungs and may ...

  5. KLF4 regulates adult lung tumor-initiating cells and represses K-Ras-mediated lung cancer.

    Science.gov (United States)

    Yu, T; Chen, X; Zhang, W; Liu, J; Avdiushko, R; Napier, D L; Liu, A X; Neltner, J M; Wang, C; Cohen, D; Liu, C

    2016-02-01

    Lung cancer is the leading cause of cancer-related mortality in both men and women worldwide. To identify novel factors that contribute to lung cancer pathogenesis, we analyzed a lung cancer database from The Cancer Genome Atlas and found that Krüppel-like Factor 4 (KLF4) expression is significantly lower in patients' lung cancer tissue than in normal lung tissue. In addition, we identified seven missense mutations in the KLF4 gene. KLF4 is a transcription factor that regulates cell proliferation and differentiation as well as the self-renewal of stem cells. To understand the role of KLF4 in the lung, we generated a tamoxifen-induced Klf4 knockout mouse model. We found that KLF4 inhibits lung cancer cell growth and that depletion of Klf4 altered the differentiation pattern in the developing lung. To understand how KLF4 functions during lung tumorigenesis, we generated the K-ras(LSL-G12D/+);Klf4(fl/fl) mouse model, and we used adenovirus-expressed Cre to induce K-ras activation and Klf4 depletion in the lung. Although Klf4 deletion alone or K-ras mutation alone can trigger lung tumor formation, Klf4 deletion combined with K-ras mutation significantly enhanced lung tumor formation. We also found that Klf4 deletion in conjunction with K-ras activation caused lung inflammation. To understand the mechanism whereby KLF4 is regulated during lung tumorigenesis, we analyzed KLF4 promoter methylation and the profiles of epigenetic factors. We found that Class I histone deacetylases (HDACs) are overexpressed in lung cancer and that HDAC inhibitors induced expression of KLF4 and inhibited proliferation of lung cancer cells, suggesting that KLF4 is probably repressed by histone acetylation and that HDACs are valuable drug targets for lung cancer treatment.

  6. Adherence to Survivorship Care Guidelines in Health Care Providers for Non-Small Cell Lung Cancer and Colorectal Cancer Survivor Care

    Science.gov (United States)

    2016-03-01

    Adenocarcinoma of the Lung; Mucinous Adenocarcinoma of the Colon; Mucinous Adenocarcinoma of the Rectum; Signet Ring Adenocarcinoma of the Colon; Signet Ring Adenocarcinoma of the Rectum; Squamous Cell Lung Cancer; Stage I Colon Cancer; Stage I Rectal Cancer; Stage IA Non-small Cell Lung Cancer; Stage IB Non-small Cell Lung Cancer; Stage IIA Colon Cancer; Stage IIA Non-small Cell Lung Cancer; Stage IIA Rectal Cancer; Stage IIB Colon Cancer; Stage IIB Non-small Cell Lung Cancer; Stage IIB Rectal Cancer; Stage IIC Colon Cancer; Stage IIC Rectal Cancer; Stage IIIA Colon Cancer; Stage IIIA Non-small Cell Lung Cancer; Stage IIIA Rectal Cancer; Stage IIIB Colon Cancer; Stage IIIB Non-small Cell Lung Cancer; Stage IIIB Rectal Cancer; Stage IIIC Colon Cancer; Stage IIIC Rectal Cancer

  7. Bilateral Choroidal Metastasis from Non-Small Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Tariq Namad

    2014-01-01

    Full Text Available Breast and lung cancers are the most common primary neoplasms to manifest with choroidal metastases. The incidence of choroidal metastases from metastatic lung cancer was reported to be 2–6.7%. We report a case of bilateral choroidal metastasis from non-small cell lung cancer. A 59-year-old Caucasian female patient, never a smoker, was diagnosed with stage IV lung adenocarcinoma metastatic to the pleura, bones, and the brain. Her initial scan of the chest showed innumerable soft tissue nodules and mediastinal adenopathy compatible with metastatic disease. Her initial brain MRI showed numerous small enhancing lesions consistent with extensive disease. Unfortunately, during her follow-up visits, she presented with bulge on her left eye. Simultaneously, her follow-up chest scan showed increase in the size of the lung nodules. She continued to have a reasonable performance status at that time, except for mild increase in her dyspnea. The choroidal metastases require a multidisciplinary care and should be among the differential patients with malignancy who present with ocular symptoms.

  8. Wnt blockers inhibit the proliferation of lung cancer stem cells

    Directory of Open Access Journals (Sweden)

    Zhang X

    2015-04-01

    Full Text Available Xueyan Zhang,1* Yuqing Lou,1* Xiaoxuan Zheng,1 Huimin Wang,1 Jiayuan Sun,1 Qianggang Dong,2 Baohui Han1 1Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai, People’s Republic of China; 2Section of Cancer Stem Cells, Shanghai Cancer Institute, Shanghai Jiaotong University, Shanghai, People’s Republic of China *These authors contributed equally to this work Background: Previous study has confirmed that the occurrence of Wnt pathway activation is associated with risk of non-small-cell lung cancer recurrence. However, whether the pharmacologic blocking of the Wnt signaling pathway could provide therapeutic possibility remains unknown. The aim of the present study was to evaluate the therapeutic functions of the Wnt signaling pathway inhibitor pyrvinium pamoate (PP on lung cancer stem cells (LCSCs in vitro. Methods: Colony formation and sphere culture were performed to enrich LCSCs from three lung cancer cell lines: PC9, SPC-A1, and A549. After confirming stemness by immunofluorescence, PP was employed for cell viability assay by comparison with three other kinds of Wnt signaling inhibitor: salinomycin, ICG-001, and silibinin. The effect of PP on LCSCs was further verified by colony formation assay and gene expression analysis. Results: LCSCs were successfully generated by sphere culture from SPC-A1 and PC9 cells, but not A549 cells. Immunofluorescence assay showed that LCSCs could express pluripotent stem cell markers, including NANOG, Oct4, KLF5, and SOX2, and Wnt signaling pathway molecules ß-catenin and MYC. Half-maximal inhibitory concentrations of PP on SPC-A1, PC9, and A549 were 10 nM, 0.44 nM, and 0.21 nM, respectively, which are much lower than those of salinomycin, ICG-001, and silibinin. Moreover, significantly decreased colony formation and downregulation of pluripotent stem cell signaling pathway were observed in lung cancer cells after treatment with PP. Conclusion: Wnt signaling

  9. Radiosensitization of non-small cell lung cancer by kaempferol.

    Science.gov (United States)

    Kuo, Wei-Ting; Tsai, Yuan-Chung; Wu, His-Chin; Ho, Yung-Jen; Chen, Yueh-Sheng; Yao, Chen-Han; Yao, Chun-Hsu

    2015-11-01

    The aim of the present study was to determine whether kaempferol has a radiosensitization potential for lung cancer in vitro and in vivo. The in vitro radio-sensitization activity of kaempferol was elucidated in A-549 lung cancer cells by using an MTT (3-(4 5-dimethylthiazol-2-yl)-25-diphenyl-tetrazolium bromide) assay, cell cycle analysis and clonogenic assay. The in vivo activity was evaluated in the BALB/c nude mouse xenograft model of A-549 cells by hematoxylin and eosin staining and immunohistochemistry, and the tumor volume was recorded. Protein levels of the apoptotic pathway were detected by western blot analysis. Treatment with kaempferol inhibited the growth of A-549 cells through activation of apoptotic pathway. However, the same doses did not affect HFL1 normal lung cell growth. Kaempferol induced G2/M cell cycle arrest and the enhancement of radiation-induced death and clonogenic survival inhibition. The in vivo data showed that kaempferol increased tumor cell apoptosis and killing of radiation. In conclusion, the findings demonstrated that kaempferol increased tumor cell killing by radiation in vitro and in vivo through inhibition of the AKT/PI3K and ERK pathways and activation of the mitochondria apoptosis pathway. The results of the present study provided solid evidence that kaempferol is a safe and potential radiosensitizer.

  10. Multifunctional fluorescent magnetic nanoparticles for lung cancer stem cells research.

    Science.gov (United States)

    Zhou, Xuan; Chen, Lisha; Wang, Anxin; Ma, Yufei; Zhang, Hailu; Zhu, Yimin

    2015-10-01

    In this paper, a multifunctional peptide-fluorescent-magnetic nanocomposites (Fe₃O₄@PEI@Cy5.5@PEG@HCBP-1 NPs) was synthesized via a layer-by-layer approach for potential application to cancer diagnoses. The multifunctional nanocomposites have great dispersibility and homogeneous particle sizes in aqueous solution. Meanwhile, it has perfect hemocompatibility and satisfying cytocompatibility in a relatively high concentration. Data from in vitro cytotoxicity assay indicated that the nanocomposites could recognize the lung cancer stem cells (CSCs) specifically and enrich the HCBP-1 positive CSCs from H460 tumor xenografts effectively. Additionally, the results of in vivo live fluorescent imaging and magnetic resonance imaging (MRI) showed that the nanocomposites could identify lung CSCs in tumor xenografts. These results suggested that the nanocomposites could be used as a potential cancer diagnostic agent through modifying diverse fluorescence dyes and targeting ligands on its surface.

  11. Liquid Biopsy in Non-Small Cell Lung Cancer

    Science.gov (United States)

    Molina-Vila, Miguel A.; Mayo-de-las-Casas, Clara; Giménez-Capitán, Ana; Jordana-Ariza, Núria; Garzón, Mónica; Balada, Ariadna; Villatoro, Sergi; Teixidó, Cristina; García-Peláez, Beatriz; Aguado, Cristina; Catalán, María José; Campos, Raquel; Pérez-Rosado, Ana; Bertran-Alamillo, Jordi; Martínez-Bueno, Alejandro; Gil, María-de-los-Llanos; González-Cao, María; González, Xavier; Morales-Espinosa, Daniela; Viteri, Santiago; Karachaliou, Niki; Rosell, Rafael

    2016-01-01

    Liquid biopsy analyses are already incorporated in the routine clinical practice in many hospitals and oncology departments worldwide, improving the selection of treatments and monitoring of lung cancer patients. Although they have not yet reached its full potential, liquid biopsy-based tests will soon be as widespread as “standard” biopsies and imaging techniques, offering invaluable diagnostic, prognostic, and predictive information. This review summarizes the techniques available for the isolation and analysis of circulating free DNA and RNA, exosomes, tumor-educated platelets, and circulating tumor cells from the blood of cancer patients, presents the methodological challenges associated with each of these materials, and discusses the clinical applications of liquid biopsy testing in lung cancer. PMID:28066769

  12. Inhibitory effect of Disulfiram/copper complex on non-small cell lung cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Lincan [Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming (China); Shen, Hongmei [Cancer Center of Integrative Medicine, The Third Affiliated Hospital of Kunming Medical University, Kunming (China); Zhao, Guangqiang [Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming (China); Yang, Runxiang [Cancer Chemotherapy Center, The Third Affiliated Hospital of Kunming Medical University, Kunming (China); Cai, Xinyi [Colorectal Cancer Center, The Third Affiliated Hospital of Kunming Medical University, Kunming (China); Zhang, Lijuan [Department of Pathology, The Third Affiliated Hospital of Kunming Medical University, Kunming (China); Jin, Congguo [Cancer Institute, The Third Affiliated Hospital of Kunming Medical University, Kunming (China); Huang, Yunchao, E-mail: daliduanlincan@163.com [Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming (China)

    2014-04-18

    Highlights: • Disulfiram and copper synergistically inhibit lung cancer cell proliferation. • Lung cancer cell colony formation ability is inhibited by Disulfiram/copper. • Disulfiram/copper increases the sensitivity of cisplatin to lung cancer cells. • Lung cancer stem cells are specifically targeted by Disulfiram/copper complex. - Abstract: Non-small cell lung cancer (NSCLC) is the most common cause of cancer-related death in both men and women worldwide. Recently, Disulfiram has been reported to be able to inhibit glioblastoma, prostate, or breast cancer cell proliferation. In this study, the synergistic effect of Disulfiram and copper on NSCLC cell growth was investigated. Inhibition of cancer cell proliferation was detected by 1-(4,5-Dimethylthiazol-2-yl)-3,5-diphenylformazan (MTT) assay and cell cycle analysis. Liquid colony formation and tumor spheroid formation assays were used to evaluate their effect on cancer cell clonogenicity. Real-time PCR was performed to test the mRNA level of cancer stem cell related genes. We found that Disulfiram or copper alone did not potently inhibit NSCLC cell proliferation in vitro. However, the presence of copper significantly enhanced inhibitory effect of Disulfiram on NSCLC cell growth, indicating a synergistic effect between Disulfiram and copper. Cell cycle analysis showed that Disulfiram/copper complex caused NSCLC cell cycle arrest in G2/M phase. Furthermore, Disulfiram/copper significantly increased the sensitivity of cisplatin in NSCLC cells tested by MTT assay. Liquid colony formation assay revealed that copper dramatically increased the inhibitory effect of Disulfiram on NSCLC cell colony forming ability. Disulfiram combined with copper significantly attenuated NSCLC cell spheroid formation and recuded the mRNA expression of lung cancer stem cell related genes. Our data suggest that Disulfiram/copper complex alone or combined with other chemotherapy is a potential therapeutic strategy for NSCLC patients.

  13. Cutaneous Metastasis of Large Cell Lung Cancer: A Case Report

    Directory of Open Access Journals (Sweden)

    Ižsmail Gedik

    2016-05-01

    Full Text Available Lung cancer has the highest incidence among all cancer types in the world. Skin is an uncommon organ that lung cancers metastasize and the incidence of cutaneous metastasis has been reported between 1-12%. In this report, we would like to present the case of a 67 year old male patient who admitted to our hospital with the complaint of multiple swollen masses on the different parts of his skin and has a homogenous mass with the width of 3 cm on chest x ray. The nodule at the intersection of the right 6th intercostal space and the mid-axillary line and with the dimensions of 1.5x1 cm was excised under local anesthesia and the specimen was sent to the pathology laboratory for histopathological examination. The diagnosis of %u201Clarge cell neuroendocrine carcinoma%u201D was made histopathologically. The patient was diagnosed as the distant metastasis of the large cell lung cancer, considered inoperable and referred to oncology clinics.

  14. Lung Cancer Screening and clinical implications

    NARCIS (Netherlands)

    S.C. van 't Westeinde (Susan)

    2012-01-01

    textabstractLung cancer is the most frequently diagnosed major cancer worldwide and the leading cause of death from cancer. Lung cancer is divided into two subgroups: small-cell lung cancer (SCLC) and non-small-cell lung cancer (NSCLC), accounting for 10-20% and 75% of lung cancer cases, respectivel

  15. Molecular-targeted therapy for elderly patients with advanced non-small cell lung cancer

    OpenAIRE

    Antonelli,Giovanna; Libra, Massimo; PANEBIANCO, VINCENZO; Russo,Alessia Erika; Vitale, Felice Vito; COLINA, PAOLO; D'Angelo,Alessandro; ROSSELLO, ROSALBA; Ferraù, Francesco

    2015-01-01

    Lung cancer is the most common cause of cancer-related mortality in men and women. Non-small cell lung cancer (NSCLC) represents close to 90% of all lung cancers. When diagnosed, >50% of patients are >65 years old. Through an improved understanding of the molecular mechanisms involved in lung oncogenesis, molecular-targeted approaches have become an essential element for the treatment of patients with NSCLC. As the toxicity profiles of the techniques are definitely more favorable compared wit...

  16. Development of Antidepressants as Novel Agents To Treat Small Cell Lung Cancer

    Science.gov (United States)

    2014-08-01

    in culture at the drug concentrations used ( Fig. 1C ; Supplementary Fig. S1B; and data not shown) or in the lung epithelium of mice treated daily...SUPPLEMENTARY NOTES 14. ABSTRACT Small cell lung cancer (SCLC) is an aggressive neuroendocrine subtype of lung cancer with high mortality. We...SCLC, small cell lung cancer, tri-cyclic anti-depressants, tricycl 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF

  17. Chemotherapy and Radiation Therapy With or Without Metformin Hydrochloride in Treating Patients With Stage III Non-small Cell Lung Cancer

    Science.gov (United States)

    2016-06-17

    Adenosquamous Lung Carcinoma; Bronchioloalveolar Carcinoma; Large Cell Lung Carcinoma; Lung Adenocarcinoma; Non-Small Cell Lung Carcinoma; Recurrent Non-Small Cell Lung Carcinoma; Squamous Cell Lung Carcinoma; Stage IIIA Non-Small Cell Lung Cancer; Stage IIIB Non-Small Cell Lung Cancer

  18. Noncoding RNA small nucleolar RNA host gene 1 promote cell proliferation in nonsmall cell lung cancer

    Directory of Open Access Journals (Sweden)

    J You

    2014-01-01

    Full Text Available Background: Nonsmall cell lung cancer (NSCLC is the major cause of cancer death worldwide. Increasing evidence shows that noncoding RNAs (ncRNAs are widely involved in the development and progression of NSCLC. ncRNA small nucleolar RNA host gene 1 (SNHG1 has not been studied in cancer, especially its role in lung cancer remains unknown. Our studies were designed to investigate the expression and biological significance of SNHG1 in lung cancer. SNHG1 may be a novel ncRNA in early diagnosis in lung cancer. Methods: Noncoding RNA SNHG1 expression in 7 lung cancer cell lines was measured by quantitative real-time polymerase chain reaction. RNA interference approaches were used to find the biological functions of SNHG1. The effect of SNHG1 on proliferation was evaluated by cell count and crystal violet stains. Results: Noncoding RNA SNHG1 expression was significantly upregulated in lung cancer cells when compared with normal bronchial epithelial cells. In addition, in vitro assays our results indicated that knockdown of SNHG1 inhibited cell proliferation. Conclusions: Our data indicated that ncRNA SNHG1 is significantly upregulated in NSCLC cell lines and may represent a new biomarker and a potential therapeutic target for NSCLC intervention.

  19. Surgical management of non-small-cell lung cancer

    Directory of Open Access Journals (Sweden)

    Bamousa Ahmed

    2008-10-01

    Full Text Available Surgery plays a major role in the management of patients with lung cancer. Surgery is not only the main curative treatment modality in patients with early-stage lung cancer but it also has a significant role in the initial workup for the diagnosis and staging of lung cancer. This article describes the surgical management of patients with lung cancer. Surgical resection for lung cancer is still regarded as the most effective method for controlling the primary tumor, provided it is resectable for cure and the risks of the procedure are low. The 5-year survival rare following complete resection (R0 of a lung cancer is stage dependent [Table 1]. [1-3] Incomplete resection (R1, R2 rarely, if ever, cures the patient.

  20. Small cell lung cancer: where do we go from here?

    Science.gov (United States)

    Byers, Lauren Averett; Rudin, Charles M

    2015-03-01

    Small cell lung cancer (SCLC) is an aggressive disease that accounts for approximately 14% of all lung cancers. In the United States, approximately 31,000 patients are diagnosed annually with SCLC. Despite numerous clinical trials, including at least 40 phase 3 trials since the 1970s, systemic treatment for patients with SCLC has not changed significantly in the past several decades. Consequently, the 5-year survival rate remains low at <7% overall, and most patients survive for only 1 year or less after diagnosis. Unlike nonsmall cell lung cancer (NSCLC), in which major advances have been made using targeted therapies, there are still no approved targeted drugs for SCLC. Significant barriers to progress in SCLC include 1) a lack of early detection modalities, 2) limited tumor tissue for translational research (eg, molecular profiling of DNA, RNA, and/or protein alterations) because of small diagnostic biopsies and the rare use of surgical resection in standard treatment, and 3) rapid disease progression with poor understanding of the mechanisms contributing to therapeutic resistance. In this report, the authors review the current state of SCLC treatment, recent advances in current understanding of the underlying disease biology, and opportunities to advance translational research and therapeutic approaches for patients with SCLC.

  1. Drugs Approved for Lung Cancer

    Science.gov (United States)

    ... Ask about Your Treatment Research Drugs Approved for Lung Cancer This page lists cancer drugs approved by the ... listed here. Drugs Approved for Non-Small Cell Lung Cancer Abitrexate (Methotrexate) Abraxane (Paclitaxel Albumin-stabilized Nanoparticle Formulation) ...

  2. Lung carcinogenesis from chronic obstructive pulmonary disease: characteristics of lung cancer from COPD and contribution of signal transducers and lung stem cells in the inflammatory microenvironment.

    Science.gov (United States)

    Sekine, Yasuo; Hata, Atsushi; Koh, Eitetsu; Hiroshima, Kenzo

    2014-07-01

    Chronic obstructive pulmonary disease (COPD) and lung cancer are closely related. The annual incidence of lung cancer arising from COPD has been reported to be 0.8-1.7 %. Treatment of lung cancer from COPD is very difficult due to low cardiopulmonary function, rapid tumor growth, and resistance to molecularly targeted therapies. Chronic inflammation caused by toxic gases can induce COPD and lung cancer. Carcinogenesis in the inflammatory microenvironment occurs during cycles of tissue injury and repair. Cellular damage can induce induction of necrotic cell death and loss of tissue integrity. Quiescent normal stem cells or differentiated progenitor cells are introduced to repair injured tissues. However, inflammatory mediators may promote the growth of bronchioalveolar stem cells, and activation of NF-κB and signal transducer and activator of transcription 3 (STAT3) play crucial roles in the development of lung cancer from COPD. Many of the protumorgenic effects of NF-κB and STAT3 activation in immune cells are mediated through paracrine signaling. NF-κB and STAT3 also contribute to epithelial-mesenchymal transition. To improve lung cancer treatment outcomes, lung cancer from COPD must be overcome. In this article, we review the characteristics of lung cancer from COPD and the mechanisms of carcinogenesis in the inflammatory microenvironment. We also propose the necessity of identifying the mechanisms underlying progression of COPD to lung cancer, and comment on the clinical implications with respect to lung cancer prevention, screening, and therapy.

  3. Tumor-Induced CD8+ T-Cell Dysfunction in Lung Cancer Patients

    Directory of Open Access Journals (Sweden)

    Heriberto Prado-Garcia

    2012-01-01

    Full Text Available Lung cancer is the leading cause of cancer deaths worldwide and one of the most common types of cancers. The limited success of chemotherapy and radiotherapy regimes have highlighted the need to develop new therapies like antitumor immunotherapy. CD8+ T-cells represent a major arm of the cell-mediated anti-tumor response and a promising target for developing T-cell-based immunotherapies against lung cancer. Lung tumors, however, have been considered to possess poor immunogenicity; even so, lung tumor-specific CD8+ T-cell clones can be established that possess cytotoxicity against autologous tumor cells. This paper will focus on the alterations induced in CD8+ T-cells by lung cancer. Although memory CD8+ T-cells infiltrate lung tumors, in both tumor-infiltrating lymphocytes (TILs and malignant pleural effusions, these cells are dysfunctional and the effector subset is reduced. We propose that chronic presence of lung tumors induces dysfunctions in CD8+ T-cells and sensitizes them to activation-induced cell death, which may be associated with the poor clinical responses observed in immunotherapeutic trials. Getting a deeper knowledge of the evasion mechanisms lung cancer induce in CD8+ T-cells should lead to further understanding of lung cancer biology, overcome tumor evasion mechanisms, and design improved immunotherapeutic treatments for lung cancer.

  4. Tumor-Induced CD8+ T-Cell Dysfunction in Lung Cancer Patients

    Science.gov (United States)

    Prado-Garcia, Heriberto; Romero-Garcia, Susana; Aguilar-Cazares, Dolores; Meneses-Flores, Manuel; Lopez-Gonzalez, Jose Sullivan

    2012-01-01

    Lung cancer is the leading cause of cancer deaths worldwide and one of the most common types of cancers. The limited success of chemotherapy and radiotherapy regimes have highlighted the need to develop new therapies like antitumor immunotherapy. CD8+ T-cells represent a major arm of the cell-mediated anti-tumor response and a promising target for developing T-cell-based immunotherapies against lung cancer. Lung tumors, however, have been considered to possess poor immunogenicity; even so, lung tumor-specific CD8+ T-cell clones can be established that possess cytotoxicity against autologous tumor cells. This paper will focus on the alterations induced in CD8+ T-cells by lung cancer. Although memory CD8+ T-cells infiltrate lung tumors, in both tumor-infiltrating lymphocytes (TILs) and malignant pleural effusions, these cells are dysfunctional and the effector subset is reduced. We propose that chronic presence of lung tumors induces dysfunctions in CD8+ T-cells and sensitizes them to activation-induced cell death, which may be associated with the poor clinical responses observed in immunotherapeutic trials. Getting a deeper knowledge of the evasion mechanisms lung cancer induce in CD8+ T-cells should lead to further understanding of lung cancer biology, overcome tumor evasion mechanisms, and design improved immunotherapeutic treatments for lung cancer. PMID:23118782

  5. EPS8 inhibition increases cisplatin sensitivity in lung cancer cells.

    Directory of Open Access Journals (Sweden)

    Lidija K Gorsic

    Full Text Available Cisplatin, a commonly used chemotherapeutic, is associated with ototoxicity, renal toxicity and neurotoxicity, thus identifying means to increase the therapeutic index of cisplatin may allow for improved outcomes. A SNP (rs4343077 within EPS8, discovered through a genome wide association study of cisplatin-induced cytotoxicity and apoptosis in lymphoblastoid cell lines (LCLs, provided impetus to further study this gene. The purpose of this work was to evaluate the role of EPS8 in cellular susceptibility to cisplatin in cancerous and non-cancerous cells. We used EPS8 RNA interference to determine the effect of decreased EPS8 expression on LCL and A549 lung cancer cell sensitivity to cisplatin. EPS8 knockdown in LCLs resulted in a 7.9% increase in cisplatin-induced survival (P = 1.98 × 10(-7 and an 8.7% decrease in apoptosis (P = 0.004 compared to control. In contrast, reduced EPS8 expression in lung cancer cells resulted in a 20.6% decrease in cisplatin-induced survival (P = 5.08 × 10(-5. We then investigated an EPS8 inhibitor, mithramycin A, as a potential agent to increase the therapeutic index of cisplatin. Mithramycin A decreased EPS8 expression in LCLs resulting in decreased cellular sensitivity to cisplatin as evidenced by lower caspase 3/7 activation following cisplatin treatment (42.7% ± 6.8% relative to control P = 0.0002. In 5 non-small-cell lung carcinoma (NSCLC cell lines, mithramycin A also resulted in decreased EPS8 expression. Adding mithramycin to 4 NSCLC cell lines and a bladder cancer cell line, resulted in increased sensitivity to cisplatin that was significantly more pronounced in tumor cell lines than in LCL lines (p<0.0001. An EGFR mutant NSCLC cell line (H1975 showed no significant change in sensitivity to cisplatin with the addition of mithramycin treatment. Therefore, an inhibitor of EPS8, such as mithramycin A, could improve cisplatin treatment by increasing sensitivity of tumor relative to normal cells.

  6. Induction of apoptosis in lung cancer cells by isorhamnetin

    Institute of Scientific and Technical Information of China (English)

    LingZHU; Li-mingZHOU; Chun-leiYANG; Zun-zhenZHANG; JingXIAO; Zheng-rongWANG

    2005-01-01

    AIM The aim of the present study was to explore cytotoxic activity and the mechanism of tumor cell killing by isorhamnetin and to investigate the effect of isorhamnetin on tumor growth, cell prolification and apoptosis in transplantation tumor of lung cancer of Lewis cell line in C57BL/6 mice. METHODS Human A549 cells were treated with 10-320(g/ml isorhamnetin, C57BL/6 mice were subcutaneously inoculated Lewis cells 0.2ml/each (1×107cells/ml) below the right forelimb armpit and were treated with 50 (g/ml isorhamnetin isorhamnetin.The results were observed and analyzed under light-microscope, electronic microscopy, growth inhibition was analyzed by MTT, clonogenic asssays and growth curve;the apoptosis and the expression-associated genes peaks were detected with flow cytometry (FCM), DNA fragmentation, single cell gel electrophoresis (comet) assay,

  7. Effects of Src on Proliferation and Invasion of Lung Cancer Cells

    Directory of Open Access Journals (Sweden)

    Rui ZHENG

    2011-04-01

    Full Text Available Background and objective It has been proven that Src played pivotal roles in carcinogenesis, cancer progression and metastasis. The aim of this study is to explore the roles of Src phosphorylation on lung cancer cells. Methods Western blot and immunoprecipitation was used to detect the expression and phosphorylation of Src in lung cancer cells. MTT and Boyden chamber assay was used to examine the effects of inhibition of Src phosphorylation on proliferation and invasion of lung cancer cells in vitro, respectively. Results pp60src was expressed in all lung cancer cell lines in this study. All 5 non-small cell lung cancer (NSCLC cell lines had increased autophosphorylated tyrosine-418, while nearly no phosphorylated Src in small cell lung cancer SBC5 cell line was detected. The effect of inhibition of Src tyrosine kinase on cell proliferation varied among the lung cancer cell lines. Submicromolar Src tyrosine kinase inhibitor (≤1 μM remarkably suppressed the proliferation of PC-9 and A549 cells in a dose dependent manner (P < 0.05, while the same concentration of Src tyrosine kinase inhibitor had no significant effect on proliferation of H226, PC14PE6 and RERFLCOK cells. Invasiveness of lung cancer cells was significantly suppressed by Src tyrosine kinase in a dose-dependent manner (P < 0.05. Conclusion Phosphorylation of Src, but not over-expression, plays a pivotal role in proliferation and invasion of NSCLC cell lines in vitro.

  8. Oligometastatic non-small-cell lung cancer: current treatment strategies

    Directory of Open Access Journals (Sweden)

    Richard PJ

    2016-11-01

    Full Text Available Patrick J Richard, Ramesh Rengan Department of Radiation Oncology, University of Washington, Seattle, WA, USA Abstract: The oligometastatic disease theory was initially described in 1995 by Hellman and Weichselbaum. Since then, much work has been performed to investigate its existence in many solid tumors. This has led to subclassifications of stage IV cancer, which could redefine our treatment approaches and the therapeutic outcomes for this historically “incurable” entity. With a high incidence of stage IV disease, non-small-cell lung cancer (NSCLC remains a difficult cancer to treat and cure. Recent work has proven the existence of an oligometastatic state in NSCLC in terms of properly selecting patients who may benefit from aggressive therapy and experience long-term overall survival. This review discusses the current treatment approaches used in oligometastatic NSCLC and provides the evidence and rationale for each approach. The prognostic factors of many trials are discussed, which can be used to properly select patients for aggressive treatment regimens. Future advances in both molecular profiling of NSCLC to find targetable mutations and investigating patient selection may increase the number of patients diagnosed with oligometastatic NSCLC. As this disease entity increases, it is of utmost importance for oncologists treating NSCLC to be aware of the current treatment strategies that exist and the potential advantages/disadvantages of each. Keywords: oligometastatic, non-small-cell lung cancer, oligoprogressive, treatment

  9. Mutation of the BRAF Genes in Non-small Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Zhimin HUANG

    2012-03-01

    Full Text Available BRAF mutations have been found to be a driver mutation and maybe a therapy target in patients with non-small cell lung cancer. This article reviews the current understanding of BRAF gene, its structure, expression, the signal pathway, as well as its relationship with cancer especially the targeted therapies for non-small cell lung cancer.

  10. Advances of Immunotherapy in Small Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Jingjing LIU

    2014-06-01

    Full Text Available Small cell lung cancer (SCLC is complex heterogeneous due to unclear biological characteristics in terms of cell origin, pathogenesis and driver genes etc. Diagnosis and treatment of SCLC has been slowly improved and few breakthroughs have been discovered up to now. Therefore new strategies are urgently needed to improve the efficacy of SCLC treatment. Tumor immunotherapy has potential to restore and trigger the immune system to recognize and eliminate tumor cells, notably it has only minimal adverse impact on normal tissue. Cancer vaccine, adoptive immunotherapy, cytokines and checkpoint inhibitors have now been launched for clinical treatment of SCLC. Ipilimumab is the most promising medicine of immunotherapy. Immunotherapy is expected to bring new vision to the treatment of SCLC. And further researches are needed on such problems affecting efficacy of immunotherapy as the heterogeneity of SCLC, the uncertainty of target for immunotherapy, the immune tolerance, etc.

  11. Miniature Dielectric Barrier Discharge Nonthermal Plasma Induces Apoptosis in Lung Cancer Cells and Inhibits Cell Migration

    Science.gov (United States)

    Eisenmann, Kathryn M.

    2017-01-01

    Traditional cancer treatments like radiotherapy and chemotherapy have drawbacks and are not selective for killing only cancer cells. Nonthermal atmospheric pressure plasmas with dielectric barrier discharge (DBD) can be applied to living cells and tissues and have emerged as novel tools for localized cancer therapy. The purpose of this study was to investigate the different effects caused by miniature DBD (mDBD) plasma to A549 lung cancer cells. In this study, A549 lung cancer cells cultured in 12 well plates were treated with mDBD plasma for specified treatment times to assess the changes in the size of the area of cell detachment, the viability of attached or detached cells, and cell migration. Furthermore, we investigated an innovative mDBD plasma-based therapy for localized treatment of lung cancer cells through apoptotic induction. Our results indicate that plasma treatment for 120 sec causes apoptotic cell death in 35.8% of cells, while mDBD plasma treatment for 60 sec, 30 sec, or 15 sec causes apoptotic cell death in 20.5%, 14.1%, and 6.3% of the cell population, respectively. Additionally, we observed reduced A549 cell migration in response to mDBD plasma treatment. Thus, mDBD plasma system can be a viable platform for localized lung cancer therapy. PMID:28243603

  12. SAMHD1 is down regulated in lung cancer by methylation and inhibits tumor cell proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jia-lei [Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032 (China); Lu, Fan-zhen [Department of Thoracic Surgery, The Huadong Hospital, Fudan University, Shanghai 200040 (China); Shen, Xiao-Yong, E-mail: shengxiaoyong_sh@163.com [Department of Thoracic Surgery, The Huadong Hospital, Fudan University, Shanghai 200040 (China); Wu, Yun, E-mail: WuYun_hd@163.com [Department of Thoracic Surgery, The Huadong Hospital, Fudan University, Shanghai 200040 (China); Zhao, Li-ting [Department of Thoracic Surgery, The Huadong Hospital, Fudan University, Shanghai 200040 (China)

    2014-12-12

    Highlights: • SAMHD1 expression level is down regulated in lung adenocarcinoma. • The promoter of SAMHD1 is methylated in lung adenocarcinoma. • Over expression of SAMHD1 inhibits the proliferation of lung cancer cells. - Abstract: The function of dNTP hydrolase SAMHD1 as a viral restriction factor to inhibit the replication of several viruses in human immune cells was well established. However, its regulation and function in lung cancer have been elusive. Here, we report that SAMHD1 is down regulated both on protein and mRNA levels in lung adenocarcinoma compared to adjacent normal tissue. We also found that SAMHD1 promoter is highly methylated in lung adenocarcinoma, which may inhibit its gene expression. Furthermore, over expression of the SAMHD1 reduces dNTP level and inhibits the proliferation of lung tumor cells. These results reveal the regulation and function of SAMHD1 in lung cancer, which is important for the proliferation of lung tumor cells.

  13. PET-Adjusted Intensity Modulated Radiation Therapy and Combination Chemotherapy in Treating Patients With Stage II-IV Non-small Cell Lung Cancer

    Science.gov (United States)

    2017-01-23

    Metastatic Malignant Neoplasm in the Brain; Recurrent Non-Small Cell Lung Carcinoma; Stage IIA Non-Small Cell Lung Carcinoma; Stage IIB Non-Small Cell Lung Carcinoma; Stage IIIA Non-Small Cell Lung Cancer; Stage IIIB Non-Small Cell Lung Cancer; Stage IV Non-Small Cell Lung Cancer

  14. Immunotherapy in Lung Cancer.

    Science.gov (United States)

    Castellanos, Emily H; Horn, Leora

    2016-01-01

    Lung cancer has not traditionally been viewed as an immune-responsive tumor. However, it is becoming evident that tumor-induced immune suppression is vital to malignant progression. Immunotherapies act by enhancing the patient's innate immune response and hold promise for inducing long-term responses in select patients with non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC). Immune checkpoint inhibitors, in particular, inhibitors to cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) and programmed death 1 (PD-1) and programmed death receptor ligand 1 (PD-L1) have shown promise in early studies and are currently in clinical trials in both small cell lung cancer and non-small cell lung cancer patients. Two large randomized phase III trials recently demonstrated superior overall survival (OS) in patients treated with anti-PD-1 therapy compared to chemotherapy in the second-line setting.

  15. Antiproliferative effect of exemestane in lung cancer cells

    Directory of Open Access Journals (Sweden)

    Giannopoulou Efstathia

    2009-01-01

    Full Text Available Abstract Background Recent evidence suggests that estrogen signaling may be involved in the pathogenesis of non-small cell lung cancer (NSCLC. Aromatase is an enzyme complex that catalyses the final step in estrogen synthesis and is present in several tissues, including the lung. In the current study we investigated the activity of the aromatase inhibitor exemestane in human NSCLC cell lines H23 and A549. Results Aromatase expression was detected in both cell lines. H23 cells showed lower protein and mRNA levels of aromatase, compared to A549 cells. Exemestane decreased cell proliferation and increased apoptosis in both cell lines, 48 h after its application, with A549 exhibiting higher sensitivity than H23 cells. Aromatase protein and mRNA levels were not affected by exemestane in A549 cells, whereas an increase in both protein and mRNA levels was observed in H23 cells, 48 h after exemestane application. Moreover, an increase in cAMP levels was found in both cell lines, 15 min after the administration of exemestane. In addition, we studied the effect of exemestane on epidermal growth factor receptor (EGFR localization and activation. Exemestane increased EGFR activation 15 min after its application in H23 cells. Furthermore, we demonstrated a translocation of EGFR from cell membrane, 24 h after the addition of exemestane in H23 cells. No changes in EGFR activation or localization were observed in A549 cells. Conclusion Our findings suggest an antiproliferative effect of exemestane on NSCLC cell lines. Exemestane may be more effective in cells with higher aromatase levels. Further studies are needed to assess the activity of exemestane in NSCLC.

  16. Amygdalin-mediated inhibition of non-small cell lung cancer cell invasion in vitro

    OpenAIRE

    Qian, Liyu; Xie, Bo; Wang, Yaguo; Qian, Jun

    2015-01-01

    Lung cancer is a common malignant tumor claiming the highest fatality worldwide for a long period of time. Unfortunately, most of the current treatment methods are still based on the characteristics of cancer cells in the primary lesion and the prognosis is often much poorer in patients with metastatic cancers. Amygdalin, a natural product of glycosides and lots of evidence shows that amygdalin can inhibit the proliferation of some kinds of cancer cells. In this study, we first obtained the h...

  17. S100A4 is frequently overexpressed in lung cancer cells and promotes cell growth and cell motility

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Na; Sato, Daisuke; Saiki, Yuriko; Sunamura, Makoto; Fukushige, Shinichi; Horii, Akira, E-mail: horii@med.tohoku.ac.jp

    2014-05-09

    Highlights: • We observed frequent overexpression of S100A4 in lung cancer cell lines. • Knockdown of S100A4 suppressed proliferation in lung cancer cells. • Forced expression of S100A4 accelerated cell motility in lung cancer cells. • PRDM2 was found to be one of the downstream suppressed genes of S100A4. - Abstract: S100A4, a small calcium-binding protein belonging to the S100 protein family, is commonly overexpressed in a variety of tumor types and is widely accepted to associate with metastasis by regulating the motility and invasiveness of cancer cells. However, its biological role in lung carcinogenesis is largely unknown. In this study, we found that S100A4 was frequently overexpressed in lung cancer cells, irrespective of histological subtype. Then we performed knockdown and forced expression of S100A4 in lung cancer cell lines and found that specific knockdown of S100A4 effectively suppressed cell proliferation only in lung cancer cells with S100A4-overexpression; forced expression of S100A4 accelerated cell motility only in S100A4 low-expressing lung cancer cells. PRDM2 and VASH1, identified as novel upregulated genes by microarray after specific knockdown of S100A4 in pancreatic cancer, were also analyzed, and we found that PRDM2 was significantly upregulated after S100A4-knockdown in one of two analyzed S100A4-overexpressing lung cancer cells. Our present results suggest that S100A4 plays an important role in lung carcinogenesis by means of cell proliferation and motility by a pathway similar to that in pancreatic cancer.

  18. 1st ESMO Consensus Conference in lung cancer; Lugano 2010: small-cell lung cancer

    DEFF Research Database (Denmark)

    Stahel, R; Thatcher, N; Früh, M;

    2011-01-01

    The 1st ESMO Consensus Conference on lung cancer was held in Lugano, Switzerland on 21st and 22nd May 2010 with the participation of a multidisciplinary panel of leading professionals in pathology and molecular diagnostics and medical, surgical and radiation oncology. Before the conference, the e...

  19. Clozapine Induces Autophagic Cell Death in Non-Small Cell Lung Cancer Cells

    Directory of Open Access Journals (Sweden)

    Yu-Chun Yin

    2015-02-01

    Full Text Available Background/Aims: Previous studies have shown that patients with schizophrenia have a lower incidence of cancer than the general population, and several antipsychotics have been demonstrated to have cytotoxic effects on cancer cells. However, the mechanisms underlying these results remain unclear. The present study aimed to investigate the effect of clozapine, which is often used to treat patients with refractory schizophrenia, on the growth of non-small cell lung carcinoma cell lines and to examine whether autophagy contributes to its effects. Methods: A549 and H1299 cells were treated with clozapine, and cell cytotoxicity, cell cycle and autophagy were then assessed. The autophagy inhibitor bafilomycin A1 and siRNA-targeted Atg7 were used to determine the role of autophagy in the effect of clozapine. Results: Clozapine inhibited A549 and H1299 proliferation and increased p21 and p27 expression levels, leading to cell cycle arrest. Clozapine also induced a high level of autophagy, but not apoptosis, in both cell lines, and the growth inhibitory effect of clozapine was blunted by treatment with the autophagy inhibitor bafilomycin A1 or with an siRNA targeting atg7. Conclusions: Clozapine inhibits cell proliferation by inducing autophagic cell death in two non-small cell lung carcinoma cell lines. These findings may provide insights into the relationship between clozapine use and the lower incidence of lung cancer among patients with schizophrenia.

  20. CYLD Promotes TNF-α-Induced Cell Necrosis Mediated by RIP-1 in Human Lung Cancer Cells

    Science.gov (United States)

    Lin, Xing; Chen, Qianshun; Huang, Chen

    2016-01-01

    Lung cancer is one of the most common cancers in the world. Cylindromatosis (CYLD) is a deubiquitination enzyme and contributes to the degradation of ubiquitin chains on RIP1. The aim of the present study is to investigate the levels of CYLD in lung cancer patients and explore the molecular mechanism of CYLD in the lung cancer pathogenesis. The levels of CYLD were detected in human lung cancer tissues and the paired paracarcinoma tissues by real-time PCR and western blotting analysis. The proliferation of human lung cancer cells was determined by MTT assay. Cell apoptosis and necrosis were determined by FACS assay. The results demonstrated that low levels of CYLD were detected in clinical lung carcinoma specimens. Three pairs of siRNA were used to knock down the endogenous CYLD in lung cancer cells. Knockdown of CYLD promoted cell proliferation of lung cancer cells. Otherwise overexpression of CYLD induced TNF-α-induced cell death in A549 cells and H460 cells. Moreover, CYLD-overexpressed lung cancer cells were treated with 10 μM of z-VAD-fmk for 12 hours and the result revealed that TNF-α-induced cell necrosis was significantly enhanced. Additionally, TNF-α-induced cell necrosis in CYLD-overexpressed H460 cells was mediated by receptor-interacting protein 1 (RIP-1) kinase. Our findings suggested that CYLD was a potential target for the therapy of human lung cancers.

  1. Immunotherapy for small-cell lung cancer: emerging evidence.

    Science.gov (United States)

    Reck, Martin; Heigener, David; Reinmuth, Niels

    2016-04-01

    Treatment for small-cell lung cancer (SCLC) has changed little over the past few decades; available therapies have failed to extend survival in advanced disease. In recent years, immunotherapy with treatments such as interferons, TNFs, vaccines and immune checkpoint inhibitors has advanced and shown promise in the treatment of several tumor types. Immune checkpoint inhibitors such as ipilimumab, nivolumab, pembrolizumab, durvalumab, tremelimumab and ulocuplumab are at the forefront of immunotherapy and have achieved approvals for certain cancer types, including melanoma (ipilimumab, nivolumab and pembrolizumab), non-SCLC (nivolumab and pembrolizumab) and renal cell carcinoma (nivolumab). Clinical trials are investigating different immunotherapies in patients with other solid and hematologic malignancies, including SCLC. We review emerging evidence supporting the use of immunotherapy in SCLC patients.

  2. Radio(chemotherapy in locally advanced nonsmall cell lung cancer

    Directory of Open Access Journals (Sweden)

    Markus Glatzer

    2016-03-01

    Full Text Available Definitive radiochemotherapy is the standard treatment for many patients with locally advanced nonsmall cell lung cancer (NSCLC. Treatment outcomes have improved over the last decades. Several treatment regimens have been shown effective and safe. This review summarises the results of significant studies between 1996 and 2015 on concomitant and sequential radiochemotherapy regimens and radiation dose per fraction. Beside therapy regimens, optimised radiotherapy planning is indispensable to improve outcome and minimise radiation-induced toxicity. An insight into the rationale of radiotherapy planning for stage III NSCLC is also provided.

  3. An IMRT/VMAT Technique for Nonsmall Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Nan Zhao

    2015-01-01

    Full Text Available The study is to investigate a Hybrid IMRT/VMAT technique which combines intensity modulated radiation therapy (IMRT and volumetric modulated arc therapy (VMAT for the treatment of nonsmall cell lung cancer (NSCLC. Two partial arcs VMAT, 5-field IMRT, and hybrid plans were created for 15 patients with NSCLC. The hybrid plans were combination of 2 partial arcs VMAT and 5-field IMRT. The dose distribution of planning target volume (PTV and organs at risk (OARs for hybrid technique was compared with IMRT and VMAT. The monitor units (MUs and treatment delivery time were also evaluated. Hybrid technique significantly improved the target conformity and homogeneity compared with IMRT and VMAT. The mean delivery time of IMRT, VMAT, and hybrid plans was 280 s, 114 s, and 327 s, respectively. The mean MUs needed for IMRT, VMAT, and hybrid plans were 933, 512, and 737, respectively. Hybrid technique reduced V5, V10, V30, and MLD of normal lung compared with VMAT and spared the OARs better with fewer MUs with the cost of a little higher V5, V10, and mean lung dose (MLD of normal lung compared with IMRT. Hybrid IMRT/VMAT can be a viable radiotherapy technique with better plan quality.

  4. An IMRT/VMAT Technique for Nonsmall Cell Lung Cancer.

    Science.gov (United States)

    Zhao, Nan; Yang, Ruijie; Wang, Junjie; Zhang, Xile; Li, Jinna

    2015-01-01

    The study is to investigate a Hybrid IMRT/VMAT technique which combines intensity modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT) for the treatment of nonsmall cell lung cancer (NSCLC). Two partial arcs VMAT, 5-field IMRT, and hybrid plans were created for 15 patients with NSCLC. The hybrid plans were combination of 2 partial arcs VMAT and 5-field IMRT. The dose distribution of planning target volume (PTV) and organs at risk (OARs) for hybrid technique was compared with IMRT and VMAT. The monitor units (MUs) and treatment delivery time were also evaluated. Hybrid technique significantly improved the target conformity and homogeneity compared with IMRT and VMAT. The mean delivery time of IMRT, VMAT, and hybrid plans was 280 s, 114 s, and 327 s, respectively. The mean MUs needed for IMRT, VMAT, and hybrid plans were 933, 512, and 737, respectively. Hybrid technique reduced V5, V10, V30, and MLD of normal lung compared with VMAT and spared the OARs better with fewer MUs with the cost of a little higher V5, V10, and mean lung dose (MLD) of normal lung compared with IMRT. Hybrid IMRT/VMAT can be a viable radiotherapy technique with better plan quality.

  5. New serum markers for small-cell lung cancer. II. The neural cell adhesion molecule, NCAM

    DEFF Research Database (Denmark)

    Vangsted, A; Drivsholm, L; Andersen, E;

    1994-01-01

    The neural cell adhesion molecule (NCAM) was recently suggested as a marker for small-cell lung cancer (SCLC). Immunohistochemical analysis demonstrated the presence of the NCAM in 78% of SCLC patients and in 25% of patients with other cancer forms. NCAM was proposed to be the most sensitive marker...

  6. Immunotherapy for lung cancer.

    Science.gov (United States)

    Steven, Antonius; Fisher, Scott A; Robinson, Bruce W

    2016-07-01

    Treatment of lung cancer remains a challenge, and lung cancer is still the leading cause of cancer-related mortality. Immunotherapy has previously failed in lung cancer but has recently emerged as a very effective new therapy, and there is now growing worldwide enthusiasm in cancer immunotherapy. We summarize why immune checkpoint blockade therapies have generated efficacious and durable responses in clinical trials and why this has reignited interest in this field. Cancer vaccines have also been explored in the past with marginal success. Identification of optimal candidate neoantigens may improve cancer vaccine efficacy and may pave the way to personalized immunotherapy, alone or in combination with other immunotherapy such as immune checkpoint blockade. Understanding the steps in immune recognition and eradication of cancer cells is vital to understanding why previous immunotherapies failed and how current therapies can be used optimally. We hold an optimistic view for the future prospect in lung cancer immunotherapy.

  7. Computational discovery of pathway-level genetic vulnerabilities in non-small-cell lung cancer | Office of Cancer Genomics

    Science.gov (United States)

    Novel approaches are needed for discovery of targeted therapies for non-small-cell lung cancer (NSCLC) that are specific to certain patients. Whole genome RNAi screening of lung cancer cell lines provides an ideal source for determining candidate drug targets. Unsupervised learning algorithms uncovered patterns of differential vulnerability across lung cancer cell lines to loss of functionally related genes. Such genetic vulnerabilities represent candidate targets for therapy and are found to be involved in splicing, translation and protein folding.

  8. Polymorphisms in miRNA binding site: new insight into small cell lung cancer susceptibility

    Institute of Scientific and Technical Information of China (English)

    Hong-yu LIU; Jun CHEN

    2011-01-01

    Lung cancer is a leading cause in cancer-related deaths with less than 15% five-year survival worldwide.Small cell lung cancer (SCLC),which accounts for about 15%-18% of lung cancer,carries the worst prognosis within the lung cancer patients.SCLC differs from other lung cancers,so called non-small cell lung cancers (NSCLCs),in the specifically clinical and biologic characteristics.It exhibits aggressive behavior,with rapid growth,early spread to distant sites.Although exquisite sensitive to chemotherapy and radiation,SCLC recurs rapidly with only 5% of patients surviving five years and frequent association with distinct paraneoplastic syndromes[1].

  9. Long Non-coding RNAs and Their Roles in Non-small-cell Lung Cancer

    Institute of Scientific and Technical Information of China (English)

    Ming-Ming Wei; Guang-Biao Zhou

    2016-01-01

    As a leading cause of cancer deaths worldwide, lung cancer is a collection of diseases with diverse etiologies which can be broadly classified into small-cell lung cancer (SCLC) and non-small-cell lung cancer (NSCLC). Lung cancer is characterized by genomic and epigenomic alter-ations; however, mechanisms underlying lung tumorigenesis remain to be elucidated. Long non-coding RNAs (lncRNAs) are a group of non-coding RNAs that consist of P200 nucleotides but possess low or no protein-coding potential. Accumulating evidence indicates that abnormal expres-sion of lncRNAs is associated with tumorigenesis of various cancers, including lung cancer, through multiple biological mechanisms involving epigenetic, transcriptional, and post-transcriptional alter-ations. In this review, we highlight the expression and roles of lncRNAs in NSCLC and discuss their potential clinical applications as diagnostic or prognostic biomarkers, as well as therapeutic targets.

  10. Estrogen and its signaling pathway in non-small cell lung cancer(NSCLC)

    Institute of Scientific and Technical Information of China (English)

    Ruitong Xu; Yongqian Shu

    2009-01-01

    Lung cancer is the most common cancer in the world. It is a highly lethal disease in women and men, and new treatments are urgently needed. Several studies have implicated a role of estrogens and estrogen receptors in lung cancer progression. This review will investigate the biological significance of estrogens in lung cancer cells, the expression and molecular mechanisms of estrogen receptors(ER α and ER β, elucidate the prognostic significance of estrogens and their receptors in lung carcinomas and provide new options for patients afflicted with lung malignancies.

  11. Chronic cadmium exposure in vitro induces cancer cell characteristics in human lung cells

    Energy Technology Data Exchange (ETDEWEB)

    Person, Rachel J.; Tokar, Erik J.; Xu, Yuanyuan; Orihuela, Ruben; Ngalame, Ntube N. Olive; Waalkes, Michael P., E-mail: waalkes@niehs.nih.gov

    2013-12-01

    Cadmium is a known human lung carcinogen. Here, we attempt to develop an in vitro model of cadmium-induced human lung carcinogenesis by chronically exposing the peripheral lung epithelia cell line, HPL-1D, to a low level of cadmium. Cells were chronically exposed to 5 μM cadmium, a noncytotoxic level, and monitored for acquired cancer characteristics. By 20 weeks of continuous cadmium exposure, these chronic cadmium treated lung (CCT-LC) cells showed marked increases in secreted MMP-2 activity (3.5-fold), invasion (3.4-fold), and colony formation in soft agar (2-fold). CCT-LC cells were hyperproliferative, grew well in serum-free media, and overexpressed cyclin D1. The CCT-LC cells also showed decreased expression of the tumor suppressor genes p16 and SLC38A3 at the protein levels. Also consistent with an acquired cancer cell phenotype, CCT-LC cells showed increased expression of the oncoproteins K-RAS and N-RAS as well as the epithelial-to-mesenchymal transition marker protein Vimentin. Metallothionein (MT) expression is increased by cadmium, and is typically overexpressed in human lung cancers. The major MT isoforms, MT-1A and MT-2A were elevated in CCT-LC cells. Oxidant adaptive response genes HO-1 and HIF-1A were also activated in CCT-LC cells. Expression of the metal transport genes ZNT-1, ZNT-5, and ZIP-8 increased in CCT-LC cells culminating in reduced cadmium accumulation, suggesting adaptation to the metal. Overall, these data suggest that exposure of human lung epithelial cells to cadmium causes acquisition of cancer cell characteristics. Furthermore, transformation occurs despite the cell's ability to adapt to chronic cadmium exposure. - Highlights: • Chronic cadmium exposure induces cancer cell characteristics in human lung cells. • This provides an in vitro model of cadmium-induced human lung cell transformation. • This occurred with general and lung specific changes typical for cancer cells. • These findings add insight to the

  12. Identification of a panel of sensitive and specific DNA methylation markers for squamous cell lung cancer

    Directory of Open Access Journals (Sweden)

    Laird Peter W

    2008-07-01

    Full Text Available Abstract Background Lung cancer is the leading cause of cancer death in men and women in the United States and Western Europe. Over 160,000 Americans die of this disease every year. The five-year survival rate is 15% – significantly lower than that of other major cancers. Early detection is a key factor in increasing lung cancer patient survival. DNA hypermethylation is recognized as an important mechanism for tumor suppressor gene inactivation in cancer and could yield powerful biomarkers for early detection of lung cancer. Here we focused on developing DNA methylation markers for squamous cell carcinoma of the lung. Using the sensitive, high-throughput DNA methylation analysis technique MethyLight, we examined the methylation profile of 42 loci in a collection of 45 squamous cell lung cancer samples and adjacent non-tumor lung tissues from the same patients. Results We identified 22 loci showing significantly higher DNA methylation levels in tumor tissue than adjacent non-tumor lung. Of these, eight showed highly significant hypermethylation in tumor tissue (p Conclusion We have identified 22 DNA methylation markers for squamous cell lung cancer, several of which have not previously been reported to be methylated in any type of human cancer. The top eight markers show great promise as a sensitive and specific DNA methylation marker panel for squamous cell lung cancer.

  13. Autophagy Accompanied with Bisdemethoxycurcumin-induced Apoptosis in Non-small Cell Lung Cancer Cells

    Institute of Scientific and Technical Information of China (English)

    XU Jin Hong; YANG He Ping; ZHOU Xiang Dong; WANG Hai Jing; GONG Liang; TANG Chun Lan

    2015-01-01

    Objective To investigate the effects of bisdemethoxycurcumin (BDMC) on non-small cell lung cancer (NSCLC) cell line, A549, and the highly metastatic lung cancer 95D cells. Methods CCK-8 assay was used to assess the effect of BDMC on cytotoxicity. Flow cytometry was used to evaluate apoptosis. Western blot analysis, electron microscopy, and quantification of GFP-LC3 punctuates were used to test the effect of BDMC on autophagy and apoptosis of lung cancer cells. Results BDMC inhibited the viability of NSCLC cells, but had no cytotoxic effects on lung small airway epithelial cells (SAECs). The apoptotic cell death induced by BDMC was accompanied with the induction of autophagy in NSCLC cells. Blockage of autophagy by the autophagy inhibitor 3-methyladenine (3-MA) repressed the growth inhibitory effects and induction of apoptosis by BDMC. In addition, BDMC treatment significantly decreased smoothened (SMO) and the transcription factor glioma-associated oncogene 1 (Gli1) expression. Furthermore, depletion of Gli1 by siRNA and cyclopamine (a specific SMO inhibitor) induced autophagy. Conclusion Aberrant activation of Hedgehog (Hh) signaling has been implicated in several human cancers, including lung cancers. The present findings provide direct evidence that BDMC-induced autophagy plays a pro-death role in NSCLC, in part, by inhibiting Hedgehog signaling.

  14. Knockdown of cullin 4A inhibits growth and increases chemosensitivity in lung cancer cells.

    Science.gov (United States)

    Hung, Ming-Szu; Chen, I-Chuan; You, Liang; Jablons, David M; Li, Ya-Chin; Mao, Jian-Hua; Xu, Zhidong; Lung, Jr-Hau; Yang, Cheng-Ta; Liu, Shih-Tung

    2016-07-01

    Cullin 4A (Cul4A) has been observed to be overexpressed in various cancers. In this study, the role of Cul4A in the growth and chemosensitivity in lung cancer cells were studied. We showed that Cul4A is overexpressed in lung cancer cells and tissues. Knockdown of the Cul4A expression by shRNA in lung cancer cells resulted in decreased cellular proliferation and growth in lung cancer cells. Increased sensitivity to gemcitabine, a chemotherapy drug, was also noted in those Cul4A knockdown lung cancer cells. Moreover, increased expression of p21, transforming growth factor (TGF)-β inducible early gene-1 (TIEG1) and TGF beta-induced (TGFBI) was observed in lung cancer cells after Cul4A knockdown, which may be partially related to increased chemosensitivity to gemcitabine. G0/G1 cell cycle arrest was also noted after Cul4A knockdown. Notably, decreased tumour growth and increased chemosensitivity to gemcitabine were also noted after Cul4A knockdown in lung cancer xenograft nude mice models. In summary, our study showed that targeting Cul4A with RNAi or other techniques may provide a possible insight to the development of lung cancer therapy in the future.

  15. Lung cancer

    DEFF Research Database (Denmark)

    Hansen, H H; Rørth, M

    1999-01-01

    The results of the many clinical trials published in 1997 had only modest impact on the treatment results using either cytostatic agents alone or combined with radiotherapy in lung cancer. In SCLC, combination chemotherapy including platin-compounds (cisplatin, carboplatin) and the podophyllotoxins...

  16. Afatinib treatment in advanced non-small cell lung cancer

    Directory of Open Access Journals (Sweden)

    Hurwitz JL

    2011-10-01

    Full Text Available Jane L Hurwitz, Paula Scullin, Lynn CampbellDepartment of Medical Oncology, Northern Ireland Cancer Centre, Belfast, UKAbstract: Despite some recent advances in the management of advanced non-small cell lung cancer (NSCLC, prognosis for these patients remains poor. Small molecule epidermal growth factor receptor (EGFR tyrosine kinase inhibitors (TKIs have however provided a new therapeutic option in this disease setting and EGFR mutation testing is now routine practice for newly diagnosed NSCLC patients. A proportion of patients will not respond to first-generation EGFR-TKIs however, and those who do will ultimately develop resistance and disease relapse. Next-generation EGFR-TKIs which inhibit multiple members of the EGFR family are being developed in order to increase sensitivity and overcome resistance to existing agents. Afatinib (BIBW 2992 is an oral, irreversible inhibitor of EGFR and HER2 tyrosine kinases and is the most advanced of these agents in clinical development. Pre-clinical and early-phase clinical trials have demonstrated a favorable safety profile as a single agent and in combination with other anti-cancer agents, and provide evidence of clinical activity in advanced NSCLC. The LUX-Lung trials suggest that for selected patients, afatinib offers symptomatic improvement and prolonged progression-free survival, although this has not yet translated into improved overall survival. This article aims to review the use of EGFR-TKIs in the management of advanced NSCLC and the mechanisms underlying resistance to these agents. We will discuss the current pre-clinical and clinical data regarding afatinib, its potential to overcome resistance to first-generation TKIs, and its emerging role in advanced NSCLC treatment.Keywords: EGFR, tyrosine kinase inhibitor, mutation, LUX-lung

  17. 6 Common Cancers - Lung Cancer

    Science.gov (United States)

    ... Bar Home Current Issue Past Issues 6 Common Cancers - Lung Cancer Past Issues / Spring 2007 Table of Contents For ... Desperate Housewives. (Photo ©2005 Kathy Hutchins / Hutchins) Lung Cancer Lung cancer causes more deaths than the next ...

  18. Cryotherapy in Treating Patients With Lung Cancer That Has Spread to the Other Lung or Parts of the Body

    Science.gov (United States)

    2017-01-17

    Advanced Malignant Mesothelioma; Extensive Stage Small Cell Lung Cancer; Lung Metastases; Recurrent Malignant Mesothelioma; Recurrent Non-small Cell Lung Cancer; Recurrent Small Cell Lung Cancer; Stage IV Non-small Cell Lung Cancer

  19. Urokinase receptor forms in serum from non-small cell lung cancer patients

    DEFF Research Database (Denmark)

    Almasi, Charlotte Elberling; Christensen, Ib Jarle; Høyer-Hansen, Gunilla;

    2011-01-01

    To study the prognostic impact of the different forms of the receptor for urokinase plasminogen activator (uPAR) in serum from 171 non-small cell lung cancer (NSCLC) patients.......To study the prognostic impact of the different forms of the receptor for urokinase plasminogen activator (uPAR) in serum from 171 non-small cell lung cancer (NSCLC) patients....

  20. Crizotinib for Advanced Non-Small Cell Lung Cancer

    Science.gov (United States)

    A summary of results from an international phase III clinical trial that compared crizotinib versus chemotherapy in previously treated patients with advanced lung cancer whose tumors have an EML4-ALK fusion gene.

  1. Socioeconomic position and surgery for early-stage non-small-cell lung cancer

    DEFF Research Database (Denmark)

    Starr, Laila Kærgaard; Osler, Merete; Steding-Jessen, Marianne;

    2012-01-01

    AIM: To examine possible associations between socioeconomic position and surgical treatment of patients with early-stage non-small-cell lung cancer (NSCLC). METHODS: In a register-based clinical cohort study, patients with early-stage (stages I-IIIa) NSCLC were identified in the Danish Lung Cancer...... in a health care system with free, equal access to health services, disadvantaged groups are less likely to receive surgery for lung cancer....

  2. Diagnostic procedures for non-small-cell lung cancer (NSCLC): recommendations of the European Expert Group

    OpenAIRE

    Dietel, Manfred; Bubendorf, Lukas; Dingemans, Anne-Marie C; Dooms, Christophe; Elmberger, Göran; García, Rosa Calero; Keith M Kerr; Lim, Eric; López-Ríos, Fernando; Thunnissen, Erik; Van Schil, Paul E.; von Laffert, Maximilian

    2015-01-01

    Background There is currently no Europe-wide consensus on the appropriate preanalytical measures and workflow to optimise procedures for tissue-based molecular testing of non-small-cell lung cancer (NSCLC). To address this, a group of lung cancer experts (see list of authors) convened to discuss and propose standard operating procedures (SOPs) for NSCLC. Methods Based on earlier meetings and scientific expertise on lung cancer, a multidisciplinary group meeting was aligned. The aim was to inc...

  3. Notch signaling and EMT in non-small cell lung cancer: biological significance and therapeutic application

    OpenAIRE

    Yuan, Xun; Wu, Hua; Han, Na; Xu, Hanxiao; Chu, Qian; Yu, Shiying; Chen, Yuan; Wu, Kongming

    2014-01-01

    Through epithelial-mesenchymal transition (EMT), cancer cells acquire enhanced ability of migration and invasion, stem cell like characteristics and therapeutic resistance. Notch signaling regulates cell-cell connection, cell polarity and motility during organ development. Recent studies demonstrate that Notch signaling plays an important role in lung cancer initiation and cross-talks with several transcriptional factors to enhance EMT, contributing to the progression of non-small cell lung c...

  4. Epidermal Growth Factor Receptor Mutation Enhances Expression of Cadherin-5 in Lung Cancer Cells.

    Science.gov (United States)

    Hung, Ming-Szu; Chen, I-Chuan; Lung, Jr-Hau; Lin, Paul-Yann; Li, Ya-Chin; Tsai, Ying-Huang

    2016-01-01

    Epidermal growth factor receptor (EGFR) activation has been shown to play a critical role in tumor angiogenesis. In this study, we investigate the correlation between EGFR mutations and cadherin-5 (CDH5), which is an angiogenic factor, in lung cancer cells. Increased expression CDH5 is observed in lung cancer cells with EGFR mutations. Stable lung cancer cell lines expressing mutant (exon 19 deletion E746-A750, and exon 21 missense mutation L858R) and wild type EGFR genes are established. A significantly higher expression of CDH5 is observed in exon 19 deletion stable lung cancer cells and mouse xenografts. Further studies show that expression of CDH5 is decreased after the inhibition of EGFR and downstream Akt pathways in lung cancer cells with EGFR mutation. In addition, mutant EGFR genes potentiates angiogenesis in lung cancer cells, which is inhibited by CDH5 siRNA, and potentiates migration and invasion in lung cancer cells. Our study shows that mutant EGFR genes are associated with overexpression of CDH5 through increased phosphorylation of EGFR and downstream Akt pathways. Our result may provide an insight into the association of mutant EGFR and CDH5 expression in lung cancer and aid further development of target therapy for NSCLC in the future.

  5. The role of stem cells in airway repair: implications for the origins of lung cancer

    Institute of Scientific and Technical Information of China (English)

    Michael S.Mulvihill; Johannes R.Kratz; Patrick Pham; David M.Jablons; Biao He

    2013-01-01

    Lung cancer is the leading cause of cancer-related deaths worldwide.Recently,advancements in our ability to identify and study stem cell populations in the lung have helped researchers to elucidate the central role that cells with stem cell-like properties may have in lung tumorigenesis.Much of this research has focused on the use of the airway repair model to study response to injury.In this review,we discuss the primary evidence of the role that cancer stem cells play in lung cancer development.The implications of a stem cell origin of lung cancer are reviewed,and the importance of ongoing research to identify novel therapeutic and prognostic targets is reiterated.

  6. Specifically targeted gene therapy for small-cell lung cancer

    DEFF Research Database (Denmark)

    Christensen, C.L.; Zandi, R.; Gjetting, T.

    2009-01-01

    Small-cell lung cancer (SCLC) is a highly malignant disease with poor prognosis. Hence, there is great demand for new therapies that can replace or supplement the current available treatment regimes. Gene therapy constitutes a promising strategy and relies on the principle of introducing exogenous....... This review describes and discusses the current status of the application of gene therapy in relation to SCLC Udgivelsesdato: 2009/4...... DNA into malignant cells causing them to die. Since SCLC is a highly disseminated malignancy, the gene therapeutic agent must be administered systemically, obligating a high level of targeting of tumor tissue and the use of delivery vehicles designed for systemic circulation of the therapeutic DNA...

  7. Research progress in the treatment of small cell lung cancer

    Science.gov (United States)

    Qiu, Yan-fang; Liu, Zhi-gang; Yang, Wen-juan; Zhao, Yu; Tang, Jiao; Tang, Wei-zhi; Jin, Yi; Li, Fang; Zhong, Rui; Wang, Hui

    2017-01-01

    Small cell lung cancer (SCLC) accounts for approximately 10-15% of all lung cancers. No significant improvement has been made for patients with SCLC in the past several decades. The main progresses were the thoracic radiation and prophylactic cranial irradiation (PCI) that improved the patient survival rate. For patients with limited disease and good performance status (PS), concurrent chemoradiotherapy (CCRT) followed by PCI should be considered. For extensive disease, the combination of etoposide and platinum-based chemotherapy remains the standard treatment and consolidative thoracic radiotherapy is beneficial for patients who have a significant respond to initial chemotherapy. However, the prognosis still remains poor. Recently, efforts have been focused on molecular targets and immunotherapy. But numerous molecular targets methods have failed to show a significant clinical benefit in patients with SCLC. It is anticipated that further development of research will depend on the on-going trials for molecular targeted therapy and immunotherapy which are promising and may improve the outcomes for SCLC in the next decade.

  8. ABCC4 is required for cell proliferation and tumorigenesis in non-small cell lung cancer

    Directory of Open Access Journals (Sweden)

    Zhao X

    2014-02-01

    Full Text Available Xiaoting Zhao, Yinan Guo, Wentao Yue, Lina Zhang, Meng Gu, Yue Wang Department of Cellular and Molecular Biology, Beijing TB and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, People's Republic of China Background: Multidrug resistance protein 4 (MRP4, also known as ATP-cassette binding protein 4 (ABCC4, is a member of the MRP/ABCC subfamily of ATP-binding cassette transporters, which are capable of pumping a wide variety of drugs out of the cell. However, little is known about the function of ABCC4 in the proliferation of lung cancer cells. Methods: ABCC4 mRNA and protein levels in lung cancer cell lines were measured by real-time polymerase chain reaction and Western blot, respectively. A lentivirus-mediated RNA interference technique was used to inhibit ABCC4 mRNA expression in A549 and 801D cells. The function of ABCC4 in cell growth was investigated by MTS and colony formation assays. The role of ABCC4 in cell cycle progression was evaluated by flow cytometry and Western blot analysis. ABCC4 mRNA levels in 30 pairs of tumors and corresponding matched adjacent normal tissues from non-small cell lung cancer patients were detected by real-time polymerase chain reaction. Results: ABCC4 was highly expressed in lung cancer cell lines. ABCC4 expression was markedly downregulated in A549 and 801D cells using the RNA interference technique. Suppression of ABCC4 expression inhibited cell growth. The percentage of cells in G1 phase was increased when ABCC4 expression was suppressed. Phosphorylation of retinoblastoma protein was weakened, originating in the downregulation of ABCC4. ABCC4 mRNA was highly expressed in lung cancer tissue and lung cancer cell lines. Conclusion: ABCC4 may play an important role in the control of A549 and 801D cell growth. ABCC4 is a potential target for lung cancer therapy. Keywords: ABCC4, cell proliferation, lung cancer, cell cycle

  9. Therapeutic vaccines in non-small cell lung cancer

    Directory of Open Access Journals (Sweden)

    Socola F

    2013-09-01

    Full Text Available Francisco Socola,1 Naomi Scherfenberg,2 Luis E Raez3 1Division of Hematology/Oncology, Sylvester Comprehensive Cancer Center, University of Miami Leonard M Miller School of Medicine, Miami, Florida, USA; 2University of Miami Leonard M Miller School of Medicine, Miami, Florida, USA; 3Thoracic Oncology Program, Memorial Cancer Institute, Memorial Health Care System, Pembroke Pines, Florida, USA Abstract: Non-small cell lung cancer (NSCLC unfortunately carries a very poor prognosis. Patients usually do not become symptomatic, and therefore do not seek treatment, until the cancer is advanced and it is too late to employ curative treatment options. New therapeutic options are urgently needed for NSCLC, because even current targeted therapies cure very few patients. Active immunotherapy is an option that is gaining more attention. A delicate and complex interplay exists between the tumor and the immune system. Solid tumors utilize a variety of mechanisms to evade immune detection. However, if the immune system can be stimulated to recognize the tumor as foreign, tumor cells can be specifically eliminated with little systemic toxicity. A number of vaccines designed to boost immunity against NSCLC are currently undergoing investigation in phase III clinical trials. Belagenpumatucel-L, an allogeneic cell vaccine that decreases transforming growth factor (TGF-β in the tumor microenvironment, releases the immune suppression caused by the tumor and it has shown efficacy in a wide array of patients with advanced NSCLC. Melanoma-associated antigen A3 (MAGE-A3, an antigen-based vaccine, has shown promising results in MAGE-A3+ NSCLC patients who have undergone complete surgical resection. L-BLP25 and TG4010 are both antigenic vaccines that target the Mucin 1 protein (MUC-1, a proto-oncogene that is commonly mutated in solid tumors. CIMAVax is a recombinant human epidermal growth factor (EGF vaccine that induces anti-EGF antibody production and prevents EGF

  10. Unlocking Pandora's box: personalising cancer cell death in non-small cell lung cancer

    Directory of Open Access Journals (Sweden)

    Fennell Dean A

    2012-06-01

    Full Text Available Abstract Evasion of apoptosis is a hallmark of tumorigenesis and a recognised cause of multidrug resistance. Over the last decade, insights into how apoptosis might be exploited in non-small cell lung cancer (NSCLC and how cancer therapeutics might be used to engage apoptotic signalling in a personalised manner have changed markedly. We are now in the wake of a paradigm shift in stratified therapeutic approaches related to NSCLC. At the heart of this shift in thinking is the emerging knowledge that even the most drug-resistant cancers exhibit a functional death pathway and, critically, that this pathway can be efficiently engaged, leading to clinical benefit. This review will summarise current knowledge of mitochondrial apoptotic pathway dysfunction in NSCLC and how the next generation of targeted therapeutics might be used to exploit deficiencies in apoptotic signalling in a personalised manner to improve clinical outcome and predict therapeutic benefit.

  11. The Biological Effects of Dickkopf1 on Small Cell Lung Cancer Cells and Bone Metastasis.

    Science.gov (United States)

    Pang, Hailin; Ma, Ningqiang; Jiao, Mi; Shen, Weiwei; Xin, Bo; Wang, Tongfei; Zhang, Feng; Liu, Lili; Zhang, Helong

    2017-01-02

    The bone is among the most common sites of metastasis in patients with lung cancer. Over 30%-40% of lung cancers can develop bone metastasis, and no effective therapeutic methods exist in clinic cases. Wnt/β-catenin signaling and Dickkopf1 (DKK1) play important roles in the progression of lung cancer, which preferentially metastasizes to the skeleton. However, the role of DKK1 in osteotropism of small cell lung cancer (SCLC) remains to be elucidated. This study aimed to define the role of DKK1 in SCLC bone metastasis and investigate the underlying mechanisms. Our results demonstrated that the expression level of DKK1 was dramatically higher in bone metastatic SCLC cells (SBC-5 cell line) compared with that in cells without bone metastatic ability (SBC-3 cell line). Therefore, we hypothesized that DKK1 was involved in the bone metastasis of SCLC. We then suppressed the DKK1 expression in SBC-5 cells by RNAi and found that downregulation of DKK1 can inhibit cell proliferation, colony formation, cell migration, and invasion, but increase the apoptosis rate. Downregulation of DKK1 did not affect the cell cycle progression of SBC-5 cells in vitro. In vivo, downregulated DKK1 in SBC-5 cells resulted in attenuated bone metastasis. These results indicated that DKK1 may be an important regulator in bone metastases of SCLC, and targeting DKK1 may be an effective method to prevent and treat skeleton metastases in SCLC cases.

  12. Comprehensive genomic profiles of small cell lung cancer

    Science.gov (United States)

    George, Julie; Lim, Jing Shan; Jang, Se Jin; Cun, Yupeng; Ozretić, Luka; Kong, Gu; Leenders, Frauke; Lu, Xin; Fernández-Cuesta, Lynnette; Bosco, Graziella; Müller, Christian; Dahmen, Ilona; Jahchan, Nadine S.; Park, Kwon-Sik; Yang, Dian; Karnezis, Anthony N.; Vaka, Dedeepya; Torres, Angela; Wang, Maia Segura; Korbel, Jan O.; Menon, Roopika; Chun, Sung-Min; Kim, Deokhoon; Wilkerson, Matt; Hayes, Neil; Engelmann, David; Pützer, Brigitte; Bos, Marc; Michels, Sebastian; Vlasic, Ignacija; Seidel, Danila; Pinther, Berit; Schaub, Philipp; Becker, Christian; Altmüller, Janine; Yokota, Jun; Kohno, Takashi; Iwakawa, Reika; Tsuta, Koji; Noguchi, Masayuki; Muley, Thomas; Hoffmann, Hans; Schnabel, Philipp A.; Petersen, Iver; Chen, Yuan; Soltermann, Alex; Tischler, Verena; Choi, Chang-min; Kim, Yong-Hee; Massion, Pierre P.; Zou, Yong; Jovanovic, Dragana; Kontic, Milica; Wright, Gavin M.; Russell, Prudence A.; Solomon, Benjamin; Koch, Ina; Lindner, Michael; Muscarella, Lucia A.; la Torre, Annamaria; Field, John K.; Jakopovic, Marko; Knezevic, Jelena; Castaños-Vélez, Esmeralda; Roz, Luca; Pastorino, Ugo; Brustugun, Odd-Terje; Lund-Iversen, Marius; Thunnissen, Erik; Köhler, Jens; Schuler, Martin; Botling, Johan; Sandelin, Martin; Sanchez-Cespedes, Montserrat; Salvesen, Helga B.; Achter, Viktor; Lang, Ulrich; Bogus, Magdalena; Schneider, Peter M.; Zander, Thomas; Ansén, Sascha; Hallek, Michael; Wolf, Jürgen; Vingron, Martin; Yatabe, Yasushi; Travis, William D.; Nürnberg, Peter; Reinhardt, Christian; Perner, Sven; Heukamp, Lukas; Büttner, Reinhard; Haas, Stefan A.; Brambilla, Elisabeth; Peifer, Martin; Sage, Julien; Thomas, Roman K.

    2016-01-01

    We have sequenced the genomes of 110 small cell lung cancers (SCLC), one of the deadliest human cancers. In nearly all the tumours analysed we found bi-allelic inactivation of TP53 and RB1, sometimes by complex genomic rearrangements. Two tumours with wild-type RB1 had evidence of chromothripsis leading to overexpression of cyclin D1 (encoded by the CCND1 gene), revealing an alternative mechanism of Rb1 deregulation. Thus, loss of the tumour suppressors TP53 and RB1 is obligatory in SCLC. We discovered somatic genomic rearrangements of TP73 that create an oncogenic version of this gene, TP73Δex2/3. In rare cases, SCLC tumours exhibited kinase gene mutations, providing a possible therapeutic opportunity for individual patients. Finally, we observed inactivating mutations in NOTCH family genes in 25% of human SCLC. Accordingly, activation of Notch signalling in a pre-clinical SCLC mouse model strikingly reduced the number of tumours and extended the survival of the mutant mice. Furthermore, neuroendocrine gene expression was abrogated by Notch activity in SCLC cells. This first comprehensive study of somatic genome alterations in SCLC uncovers several key biological processes and identifies candidate therapeutic targets in this highly lethal form of cancer. PMID:26168399

  13. Detection of circulating tumor cells in non-small cell lung cancer

    Directory of Open Access Journals (Sweden)

    Annkathrin eHanssen

    2015-09-01

    Full Text Available Lung Cancer is the most common cause of cancer related deaths that frequently metastasizes prior to disease diagnosis. Circulating tumor cells (CTCs are found in many different types of epithelial tumors and are of great clinical interest in terms of prognosis and therapy intervention. Here, we present and discuss EpCAM-dependent and -independent capture of CTCs in non-small cell lung cancer (NSCLC and the clinical relevance of CTC detection and characterization. Taking blood samples and analyzing CTCs as liquid biopsy might be a far less invasive diagnostic strategy than biopsies of lung tumors or metastases. Moreover, sequential blood sampling allows to study the dynamic changes of tumor cells during therapy, in particular the development of resistant tumor cell clones.

  14. Teroxirone inhibited growth of human non-small cell lung cancer cells by activating p53

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jing-Ping; Lin, Kai-Han; Liu, Chun-Yen; Yu, Ya-Chu; Wu, Pei-Tsun [Department of Life Science, National Taiwan Normal University, Taipei, Taiwan (China); Chiu, Chien-Chih [Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan (China); Su, Chun-Li [Department of Human Development and Family Studies, National Taiwan Normal University, Taipei, Taiwan (China); Chen, Kwun-Min [Department of Chemistry, National Taiwan Normal University, Taipei, Taiwan (China); Fang, Kang, E-mail: kangfang@ntnu.edu.tw [Department of Life Science, National Taiwan Normal University, Taipei, Taiwan (China)

    2013-11-15

    In this work, we demonstrated that the growth of human non-small-cell-lung-cancer cells H460 and A549 cells can be inhibited by low concentrations of an epoxide derivative, teroxirone, in both in vitro and in vivo models. The cytotoxicity was mediated by apoptotic cell death through DNA damage. The onset of ultimate apoptosis is dependent on the status of p53. Teroxirone caused transient elevation of p53 that activates downstream p21 and procaspase-3 cleavage. The presence of caspase-3 inhibitor reverted apoptotic phenotype. Furthermore, we showed the cytotoxicity of teroxirone in H1299 cells with stable ectopic expression of p53, but not those of mutant p53. A siRNA-mediated knockdown of p53 expression attenuated drug sensitivity. The in vivo experiments demonstrated that teroxirone suppressed growth of xenograft tumors in nude mice. Being a potential therapeutic agent by restraining cell growth through apoptotic death at low concentrations, teroxirone provides a feasible perspective in reversing tumorigenic phenotype of human lung cancer cells. - Highlights: • Teroxirone repressed tumor cell growth in nude mice of human lung cancer cells. • The apoptotic cell death reverted by caspase-3 inhibitor is related to p53 status. • Teroxirone provides a good candidate for lung cancer treatment.

  15. Cetuximab in non-small-cell lung cancer.

    Science.gov (United States)

    Carillio, Guido; Montanino, Agnese; Costanzo, Raffaele; Sandomenico, Claudia; Piccirillo, Maria Carmela; Di Maio, Massimo; Daniele, Gennaro; Giordano, Pasqualina; Bryce, Jane; Normanno, Nicola; Rocco, Gaetano; Perrone, Francesco; Morabito, Alessandro

    2012-02-01

    Cetuximab is a chimeric human-mouse anti-EGF receptor monoclonal antibody. In Phase I studies, no dose-limiting toxicities were observed with cetuximab as a single agent or combined with chemotherapy; pharmacokinetic and pharmacodynamic analyses supported 250 mg/m(2) weekly administration. Skin toxicity, diarrhea and fatigue were the most common toxicities. The positive results obtained in Phase II trials in patients with advanced non-small-cell lung cancer prompted two randomized Phase III trials evaluating cetuximab in addition to first-line chemotherapy. Both trials showed a small benefit in overall survival for the experimental treatment, which was considered insufficient by the EMA for marketing approval. However, a subgroup analysis of the FLEX Phase III trial recently demonstrated a larger survival benefit from the experimental treatment in patients with high immunohistochemical EGF receptor expression. This finding, if confirmed prospectively, could represent a new opportunity for positioning cetuximab into the standard treatment of advanced non-small-cell lung carcinoma.

  16. Immunotherapy for Lung Cancers

    Directory of Open Access Journals (Sweden)

    Ming-Yi Ho

    2011-01-01

    Full Text Available Lung cancer is the leading cause of cancer-related deaths worldwide. Although treatment methods in surgery, irradiation, and chemotherapy have improved, prognosis remains unsatisfactory and developing new therapeutic strategies is still an urgent demand. Immunotherapy is a novel therapeutic approach wherein activated immune cells can specifically kill tumor cells by recognition of tumor-associated antigens without damage to normal cells. Several lung cancer vaccines have demonstrated prolonged survival time in phase II and phase III trials, and several clinical trials are under investigation. However, many clinical trials involving cancer vaccination with defined tumor antigens work in only a small number of patients. Cancer immunotherapy is not completely effective in eradicating tumor cells because tumor cells escape from host immune scrutiny. Understanding of the mechanism of immune evasion regulated by tumor cells is required for the development of more effective immunotherapeutic approaches against lung cancer. This paper discusses the identification of tumor antigens in lung cancer, tumor immune escape mechanisms, and clinical vaccine trials in lung cancer.

  17. Extent and computed tomography appearance of early radiation induced lung injury for non-small cell lung cancer

    DEFF Research Database (Denmark)

    Bernchou, Uffe; Christiansen, Rasmus Lübeck; Asmussen, Jon Thor

    2017-01-01

    BACKGROUND AND PURPOSE: The present study investigates the extent and appearance of radiologic injury in the lung after radiotherapy for non-small cell lung cancer (NSCLC) patients and correlates radiologic response with clinical and dosimetric factors. METHODS AND MATERIALS: Eligible follow-up C...

  18. Surgical treatment of T3 and T4 non-small cell lung cancer

    NARCIS (Netherlands)

    Pitz, Cordula Catharina Maria

    2004-01-01

    The primary goal of lung cancer therapy is complete eradication of the disease. Surgery remains the most curative modality for non-small cell lung cancer. The goal of surgical treatment is to perform a complete resection. Resectability is closely related to the stage of the disease. The thesis focu

  19. A prospective study of PET/CT in initial staging of small-cell lung cancer

    DEFF Research Database (Denmark)

    Fischer, B M; Mortensen, J; Langer, S W

    2007-01-01

    BACKGROUND: Small-cell lung cancer (SCLC) accounts for 15%-20% of all lung cancer cases. Accurate and fast staging is mandatory when choosing treatment, but current staging procedures are time consuming and lack sensitivity. PATIENTS AND METHODS: A prospective study was designed to examine the ro...

  20. Interpretation of NCCN Guidelines: General Therapies on Non-small Cell Lung Cancer (Version 6. 2015

    Directory of Open Access Journals (Sweden)

    Xin-en HUANG

    2015-06-01

    Full Text Available Lung cancer is one of the most common malignant tumors in China and ranks the first of cancer-related death. The major etiological agent of lung cancer is an industry-made and promoted addictive product, so lung cancer is considered to be a unique disease in all cancers. Effective policies for public health are required to prevent the smoking initiation so as to reduce the mortality of lung cancer, so Food and Drug Administration (FDA has introduced a series of measures to monitor the tobacco products. As to patients with strong suspicion of lung cancer in stage Ⅰ-Ⅱ, a preoperative biopsy is needed and intra-operative diagnosis is necessary before pneumonectomy, bilobectomy or lobectomy if the preoperative tissue diagnosis is not obtained. However, lung cancer still cannot be easily diagnosed and cured, so the annual improvement and update of new therapeutic protocols and the development of new agents is of great significance. Non-small cell lung cancer (NSCLC accounts for about 80% of all lung cancer, and above 75% NSCLC patients are in middle-advanced stage when diagnosed, so they have lost the optimal therapeutic opportunity and the 5-year survival rate is relatively low. Therefore, this study mainly interpreted the National Comprehensive Cancer Network (NCCN guidelines on the general therapies on NSCLC, hoping to provide references for the treatment of NSCLC patients and prolong their long-term survival.

  1. REV3L modulates cisplatin sensitivity of non-small cell lung cancer H1299 cells.

    Science.gov (United States)

    Wang, Wenjie; Sheng, Wenjiong; Yu, Chenxiao; Cao, Jianping; Zhou, Jundong; Wu, Jinchang; Zhang, Huojun; Zhang, Shuyu

    2015-09-01

    Lung cancer remains the leading cause of cancer-related mortality worldwide and non-small cell lung cancer (NSCLC) accounts for approximately 80-85% of all cases of lung cancer. Cisplatin plays a significant role in the management of human lung cancer. Translesion DNA synthesis (TLS) is involved in DNA damage repair. DNA polymerase ζ (Pol ζ) is able to mediate the DNA replication bypass of DNA damage, which is suggested to be involved in chemoresistance. REV3L is the catalytic subunit of Pol ζ. Due to its critical role in translesion DNA synthesis, whether REV3L modulates cisplatin response in NSCLC cells remains unknown. In this study, REV3L overexpression and silencing H1299 cell lines were established. The reports showed that cisplatin induced the expression of REV3L by recruiting Sp1 to its promoter. Similar results were obtained when the ability of the cells to express luciferase from a platinated plasmid was measured. Co-transfection of the reporter with the REV3L overexpression vector or REV3L plus REV7L significantly enhanced the reporter activity. Nuclear condensation and fragmentation of shRNA-REV3L H1299 cells were more pronounced than shRNA-NC H1299 cells after cisplatin exposure, indicating that REV3L overexpression abolished cisplatin-induced DNA damage. Moreover, a forced expression of REV3L conferred the resistance of H1299 cells to cisplatin, whereas the knockdown of REV3L sensitized cisplatin efficacy in H1299 cells. Taken together, we demonstrated that inhibition of REV3L sensitized lung cancer H1299 cells to cisplatin treatment. Thus, REV3L may be a novel target for the chemotherapy of NSCLC.

  2. MiR-122 Induces Radiosensitization in Non-Small Cell Lung Cancer Cell Line

    Directory of Open Access Journals (Sweden)

    Debin Ma

    2015-09-01

    Full Text Available MiR-122 is a novel tumor suppresser and its expression induces cell cycle arrest, or apoptosis, and inhibits cell proliferation in multiple cancer cells, including non-small cell lung cancer (NSCLC cells. Radioresistance of cancer cell leads to the major drawback of radiotherapy for NSCLC and the induction of radiosensitization could be a useful strategy to fix this problem. The present work investigates the function of miR-122 in inducing radiosensitization in A549 cell, a type of NSCLC cells. MiR-122 induces the radiosensitization of A549 cells. MiR-122 also boosts the inhibitory activity of ionizing radiation (IR on cancer cell anchor-independent growth and invasion. Moreover, miR-122 reduced the expression of its targeted genes related to tumor-survival or cellular stress response. These results indicate that miR-122 would be a novel strategy for NSCLC radiation-therapy.

  3. Selectins mediate small cell lung cancer systemic metastasis.

    Directory of Open Access Journals (Sweden)

    Franziska Heidemann

    Full Text Available Metastasis formation is the major reason for the extremely poor prognosis in small cell lung cancer (SCLC patients. The molecular interaction partners regulating metastasis formation in SCLC are largely unidentified, however, from other tumor entities it is known that tumor cells use the adhesion molecules of the leukocyte adhesion cascade to attach to the endothelium at the site of the future metastasis. Using the human OH-1 SCLC line as a model, we found that these cells expressed E- and P-selectin binding sites, which could be in part attributed to the selectin binding carbohydrate motif sialyl Lewis A. In addition, protein backbones known to carry these glycotopes in other cell lines including PSGL-1, CD44 and CEA could be detected in in vitro and in vivo grown OH1 SCLC cells. By intravital microscopy of murine mesenterial vasculature we could capture SCLC cells while rolling along vessel walls demonstrating that SCLC cells mimic leukocyte rolling behavior in terms of selectin and selectin ligand interaction in vivo indicating that this mechanism might indeed be important for SCLC cells to seed distant metastases. Accordingly, formation of spontaneous distant metastases was reduced by 50% when OH-1 cells were xenografted into E-/P-selectin-deficient mice compared with wild type mice (p = 0.0181. However, as metastasis formation was not completely abrogated in selectin deficient mice, we concluded that this adhesion cascade is redundant and that other molecules of this cascade mediate metastasis formation as well. Using several of these adhesion molecules as interaction partners presumably make SCLC cells so highly metastatic.

  4. Advances of Driver Gene and Targeted Therapy of Non-small Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Dan ZHANG

    2014-10-01

    Full Text Available Lung cancer is the leading cause of cancer-related mortality in the worldwide. The discovery of drive gene makes tumor treatment is no longer "one-size-fits-all". Targeted therapy to change the present situation of cancer drugs become "bullet" with eyes, the effect is visible and bring a revolution in the treatment of lung cancer. The diver gene and targeted therapy have became the new cedule of non-small cell lung cancer (NSCLC. Society of Clinical Oncology (ASCO has showed 11 kinds of diver genes. Here, we review the functional and structural characteristics and the targeted therapy in the 11 kinds of driver gene mutations.

  5. [Advances of driver gene and targeted therapy of non-small cell lung cancer].

    Science.gov (United States)

    Zhang, Dan; Huang, Yan; Wang, Hongyang

    2014-10-20

    Lung cancer is the leading cause of cancer-related mortality in the worldwide. The discovery of drive gene makes tumor treatment is no longer "one-size-fits-all". Targeted therapy to change the present situation of cancer drugs become "bullet" with eyes, the effect is visible and bring a revolution in the treatment of lung cancer. The diver gene and targeted therapy have became the new cedule of non-small cell lung cancer (NSCLC). Society of Clinical Oncology (ASCO) has showed 11 kinds of diver genes. Here, we review the functional and structural characteristics and the targeted therapy in the 11 kinds of driver gene mutations.

  6. Stem cell and lung cancer development: blaming the Wnt, Hh and Notch signalling pathway.

    Science.gov (United States)

    García Campelo, María Rosario; Alonso Curbera, Guillermo; Aparicio Gallego, Guadalupe; Grande Pulido, Enrique; Antón Aparicio, Luis Miguel

    2011-02-01

    Primary lung cancer may arise from the central (bronchial) or peripheral (bronchiolo-alveolar) compartments. However the origins of the different histological types of primary lung cancer are not well understood. Stem cells are believed to be crucial players in tumour development and there is much interest in identifying those compartments that harbour stem cells involved in lung cancer. Although the role of stem cells in carcinogenesis is not well characterised, emerging evidence is providing new insights into this process. Numerous studies have indicated that lung cancer is not a result of a sudden transforming event but a multistep process in which a sequence of molecular changes result in genetic and morphological aberrations. The exact sequence of molecular events involved in lung carcinogenesis is not yet well understood, therefore deeper knowledge of the aberrant stem cell fate signalling pathway could be crucial in the development of new drugs against the advanced setting.

  7. Endoplasmic reticulum Ca2+-homeostasis is altered in small and non-small cell lung cancer cell lines

    Directory of Open Access Journals (Sweden)

    Tufman Amanda

    2009-02-01

    Full Text Available Abstract Background Knowledge of differences in the cellular physiology of malignant and non-malignant cells is a prerequisite for the development of cancer treatments that effectively kill cancer without damaging normal cells. Calcium is a ubiquitous signal molecule that is involved in the control of proliferation and apoptosis. We aimed to investigate if the endoplasmic reticulum (ER Ca2+-homeostasis is different in lung cancer and normal human bronchial epithelial (NHBE cells. Methods The intracellular Ca2+-signaling was investigated using fluorescence microscopy and the expression of Ca2+-regulating proteins was assessed using Western Blot analysis. Results In a Small Cell Lung Cancer (H1339 and an Adeno Carcinoma Lung Cancer (HCC cell line but not in a Squamous Cell Lung Cancer (EPLC and a Large Cell Lung Cancer (LCLC cell line the ER Ca2+-content was reduced compared to NHBE. The reduced Ca2+-content correlated with a reduced expression of SERCA 2 pumping calcium into the ER, an increased expression of IP3R releasing calcium from the ER, and a reduced expression of calreticulin buffering calcium within the ER. Lowering the ER Ca2+-content with CPA led to increased proliferation NHBE and lung cancer cells. Conclusion The significant differences in Ca2+-homeostasis between lung cancer and NHBE cells could represent a new target for cancer treatments.

  8. TCRP1 contributes to cisplatin resistance by preventing Pol β degradation in lung cancer cells.

    Science.gov (United States)

    Liu, Xiaorong; Wang, Chengkun; Gu, Yixue; Zhang, Zhijie; Zheng, Guopei; He, Zhimin

    2015-01-01

    Cisplatin (DDP) is the first-line chemotherapy drug widely used for the treatment of lung cancer patients, whereas the majority of cancer patients will eventually show resistance to DDP. The mechanisms responsible for DDP resistance are not fully understood. Tongue cancer resistance-associated protein 1 (TCRP1) gene was recently cloned and reported to specially mediate DDP resistance in human oral squamous cell carcinoma (OSCC) cells. However, the mechanisms of TCRP1-mediated DDP resistance are far from clear, and whether TCRP1 participates in DDP resistance in lung cancer cells remains unknown. Here, we show that TCRP1 contributes to DDP resistance in lung cancer cells. Knockdown of TCRP1 sensitizes the cells to DDP and increases the DDP-induced DNA damage. We have identified that Pol β is associated with DDP resistance, and Pol β knockdown delays the repair of DDP-induced DNA damage in A549/DDP cells. We find TCRP1 interacts with Pol β in lung cancer cells. Moreover, TCRP1 knockdown decreases the level of Pol β and increases the level of its ubiquitination. These results suggest that TCRP1 contributes to DDP resistance through the prevention of Pol β degradation in lung cancer cells. These findings provide new insights into chemoresistance and may contribute to prevention and reversal of DDP resistance in treatment of lung cancer in the future.

  9. Lung Adenocarcinomas and Lung Cancer Cell Lines Show Association of MMP-1 Expression With STAT3 Activation

    Directory of Open Access Journals (Sweden)

    Alexander Schütz

    2015-04-01

    Full Text Available Signal transducer and activator of transcription 3 (STAT3 is constitutively activated in the majority of lung cancer. This study aims at defining connections between STAT3 function and the malignant properties of non–small cell lung carcinoma (NSCLC cells. To address possible mechanisms by which STAT3 influences invasiveness, the expression of matrix metalloproteinase-1 (MMP-1 was analyzed and correlated with the STAT3 activity status. Studies on both surgical biopsies and on lung cancer cell lines revealed a coincidence of STAT3 activation and strong expression of MMP-1. MMP-1 and tyrosine-phosphorylated activated STAT3 were found co-localized in cancer tissues, most pronounced in tumor fronts, and in particular in adenocarcinomas. STAT3 activity was constitutive, although to different degrees, in the lung cancer cell lines investigated. Three cell lines (BEN, KNS62, and A549 were identified in which STAT3 activitation was inducible by Interleukin-6 (IL-6. In A549 cells, STAT3 activity enhanced the level of MMP-1 mRNA and stimulated transcription from the MMP-1 promoter in IL-6–stimulated A549 cells. STAT3 specificity of this effect was confirmed by STAT3 knockdown through RNA interference. Our results link aberrant activity of STAT3 in lung cancer cells to malignant tumor progression through up-regulation of expression of invasiveness-associated MMPs.

  10. Medical treatment of advanced non-small cell lung cancer: progress in 2014

    Directory of Open Access Journals (Sweden)

    Yong SONG

    2015-04-01

    Full Text Available Non-small cell lung cancer is the most common pathological type of lung cancer. Along with the rising incidence in recent years, lung cancer has been the leading cause of death due to malignancies both in our country and worldwide. Due to simplistic therapeutic approach for lung cancer decades ago, those patients suffering from advanced lung cancer had short lifetime, and it was difficult to ensure their life quality. In recent years, many molecular targeted drugs, such as Gefitinib, Erlotinib and Crizotinib etc., have been successively applied in clinical use, and they bring about a substantial prolongation of survival life and improvement in life quality of those patients with advanced lung cancer. In 2014, there was a number of important reports concerning the diagnosis and treatment of non-small cell lung cancer in the annual meetings of either American Society of Clinical Oncology or European Society for Medical Oncology. On the basis of the relevant reports delivered in the conferences, it is our attempt to summarize the recent advances in regard to chemotherapy, molecular targeted therapy, measures to treat TKI therapy resistant cases, and immune therapy, followed by a comment regarding recent advances in the treatment of non-small cell lung cancer in 2014. DOI: 10.11855/j.issn.0577-7402.2015.01.03

  11. [Clinical significance of cyclin Dl expression in non-small cell lung cancer].

    Science.gov (United States)

    Dworakowska, Dorota

    2005-01-01

    Lung cancer remains interdisciplinary problem. The genetic alterations in non-small cell lung cancer (NSCLC) are related to tumor suppressor genes and proto-oncogenes. CCND1 gene, coding cyclin DI, in correlation with pRb is involved in regulation of cell cycle arrest in G1 phase. Amplification of CCND1 gene and cyclin D1 over-expression was found in several cancers including head and neck cancers or colorectal cancer, where these alterations were correlated with worse prognosis. The literature addressing the clinical significance of CCND1 gene amplification/expression in NSCLC remains poor and prognostic value of these alterations in that cancer is still controversial.

  12. Activation of PPARγ in myeloid cells promotes lung cancer progression and metastasis.

    Directory of Open Access Journals (Sweden)

    Howard Li

    Full Text Available Activation of peroxisome proliferator-activated receptor-γ (PPARγ inhibits growth of cancer cells including non-small cell lung cancer (NSCLC. Clinically, use of thiazolidinediones, which are pharmacological activators of PPARγ is associated with a lower risk of developing lung cancer. However, the role of this pathway in lung cancer metastasis has not been examined well. The systemic effect of pioglitazone was examined in two models of lung cancer metastasis in immune-competent mice. In an orthotopic model, murine lung cancer cells implanted into the lungs of syngeneic mice metastasized to the liver and brain. As a second model, cancer cells injected subcutaneously metastasized to the lung. In both models systemic administration of pioglitazone increased the rate of metastasis. Examination of tissues from the orthotopic model demonstrated increased numbers of arginase I-positive macrophages in tumors from pioglitazone-treated animals. In co-culture experiments of cancer cells with bone marrow-derived macrophages, pioglitazone promoted arginase I expression in macrophages and this was dependent on the expression of PPARγ in the macrophages. To assess the contribution of PPARγ in macrophages to cancer progression, experiments were performed in bone marrow-transplanted animals receiving bone marrow from Lys-M-Cre+/PPARγ(flox/flox mice, in which PPARγ is deleted specifically in myeloid cells (PPARγ-Mac(neg, or control PPARγ(flox/flox mice. In both models, mice receiving PPARγ-Mac(neg bone marrow had a marked decrease in secondary tumors which was not significantly altered by treatment with pioglitazone. This was associated with decreased numbers of arginase I-positive cells in the lung. These data support a model in which activation of PPARγ may have opposing effects on tumor progression, with anti-tumorigenic effects on cancer cells, but pro-tumorigenic effects on cells of the microenvironment, specifically myeloid cells.

  13. Identification of Gene Biomarkers for Distinguishing Small-Cell Lung Cancer from Non-Small-Cell Lung Cancer Using a Network-Based Approach

    Directory of Open Access Journals (Sweden)

    Fei Long

    2015-01-01

    Full Text Available Lung cancer consists of two main subtypes: small-cell lung cancer (SCLC and non-small-cell lung cancer (NSCLC that are classified according to their physiological phenotypes. In this study, we have developed a network-based approach to identify molecular biomarkers that can distinguish SCLC from NSCLC. By identifying positive and negative coexpression gene pairs in normal lung tissues, SCLC, or NSCLC samples and using functional association information from the STRING network, we first construct a lung cancer-specific gene association network. From the network, we obtain gene modules in which genes are highly functionally associated with each other and are either positively or negatively coexpressed in the three conditions. Then, we identify gene modules that not only are differentially expressed between cancer and normal samples, but also show distinctive expression patterns between SCLC and NSCLC. Finally, we select genes inside those modules with discriminating coexpression patterns between the two lung cancer subtypes and predict them as candidate biomarkers that are of diagnostic use.

  14. Small-Cell Lung Cancer: Clinical Management and Unmet Needs New Perspectives for an Old Problem.

    Science.gov (United States)

    Lo Russo, Giuseppe; Macerelli, Marianna; Platania, Marco; Zilembo, Nicoletta; Vitali, Milena; Signorelli, Diego; Proto, Claudia; Ganzinelli, Monica; Gallucci, Rosaria; Agustoni, Francesco; Fasola, Gianpiero; de Braud, Filippo; Garassino, Marina Chiara

    2017-01-01

    Small cell lung cancer is a highly aggressive, difficult to treat neoplasm. Among all lung tumors, small cell lung cancers account for about 20%. Patients typically include heavy smokers in 70s age group, presenting with symptoms such as intrathoracic tumors growth, distant spread or paraneoplastic syndromes at the time of diagnosis. A useful and functional classification divides small cell lung cancers into limited disease and extensive disease. Concurrent chemo-radiotherapy is the standard treatment for limited disease, with improved survival when combined with prophylactic cranial irradiation. Platinum compounds (cisplatin/carboplatin) plus etoposide remain the cornerstone for extensive disease. Nevertheless, despite high chemo- and radio-sensitivity of this cancer, nearly all patients relapse within the first two years and the prognosis is extremely poor. A deeper understanding about small cell lung cancer carcinogenesis led to develop and test a considerable number of new and targeted agents but the results are currently weak or insufficient. To date, small cell lung cancer is still a challenge for researchers. In this review, key aspects of small cell lung cancer management and controversial points of standard and new treatments will be discussed.

  15. Human lung cancer cell line SPC-A1 contains cells with characteristics of cancer stem cells.

    Science.gov (United States)

    Zhou, C H; Yang, S F; Li, P Q

    2012-01-01

    Cancer stem cells (CSCs) play important roles in occurrence, development, recurrence and metastasis of cancer. Isolation and identification of CSCs have been performed from some cancer tissues or cells. In this paper, human lung adenocarcinoma stem cells were induced and isolated from SPC-A1 cells and their characteristics were determined. SPC-A1 cells were cultured in serum-free medium and epidermal growth factor and basic fibroblast growth factor were added into the medium to induce the formation of multicellular tumor spheroids. The results showed that floating multicellular tumor spheroids (named pulmospheres) were formed 5-10 d after the induction of SPC-A1 cells. Real-time PCR analysis showed that in the pulmospheres, the marker of bronchioalveolar stem cells, Clara cell secretary protein and the marker of AT2 cells, alveolar surfactant protein C were highly expressed. Furthermore, such embryonic stem cell markers as octamer-binding transcription factor 4 (OCT-4), Bmi-1, and thyroid transcription factor -1 (TTF-1) were also highly expressed. Some miRNAs as hsa-miR-126, hsa-miR-145, hsa-let-7g, hsa-let-7d, hsa-let-7c, hsa-let-7e and hsa-miR-98, which were lowly expressed in SPC-A1 cells, were not expressed in the pulmospheres. Cell cycle analysis showed that 94.29 % of the pulmosphere cells were in G1 stages. Further study showed that these cells possessed higher proliferation and invasion activity than SPC-A1 cells. Tumorigenicity activity experiments on BALB/c nude mice showed that 1 × 103 of the pulmosphere cells could form tumors with similar pathological features with lung adenocarcinoma. In conclusion, lung adenocarcinoma stem cells were enriched in the pulmosphere cells and were with high tumorigenicity.

  16. Tumor stem cell assay for detecting metastases of human lung cancer.

    Directory of Open Access Journals (Sweden)

    Hirai,Shunkichi

    1983-04-01

    Full Text Available We applied a tumor stem cell assay using an enriched double-layered soft agar system for the detection of metastatic sites of lung cancer. Lung cancer colonies grew from 7 of 10 effusions cytologically positive for tumor cells and 7 of 10 bone marrow aspirates cytologically and histologically positive for tumor cells. Twenty-six of 29 bone marrow aspirates cytologically and histologically negative for tumor cells showed no colony growth. However, the remaining three bone marrow aspirates, which were obtained from patients with small cell lung cancer, formed colonies in soft agar. These results indicate that the tumor stem cell assay is useful for detecting metastatic sites of lung cancer.

  17. Induction of premature senescence by hsp90 inhibition in small cell lung cancer.

    Directory of Open Access Journals (Sweden)

    Ian J Restall

    Full Text Available BACKGROUND: The molecular chaperone Hsp90 is a promising new target in cancer therapy and selective Hsp90 inhibitors are currently in clinical trials. Previously these inhibitors have been reported to induce either cell cycle arrest or cell death in cancer cells. Whether the cell cycle arrest is reversible or irreversible has not generally been assessed. Here we have examined in detail the cell cycle arrest and cell death responses of human small cell lung cancer cell lines to Hsp90 inhibition. METHODOLOGY/PRINCIPAL FINDINGS: In MTT assays, small cell lung cancer cells showed a biphasic response to the Hsp90 inhibitors geldanamycin and radicicol, with low concentrations causing proliferation arrest and high concentrations causing cell death. Assessment of Hsp90 intracellular activity using loss of client protein expression showed that geldanamycin concentrations that inhibited Hsp90 correlated closely with those causing proliferation arrest but not cell death. The proliferation arrest induced by low concentrations of geldanamycin was not reversed for a period of over thirty days following drug removal and showed features of senescence. Rare populations of variant small cell lung cancer cells could be isolated that had additional genetic alterations and no longer underwent irreversible proliferation arrest in response to Hsp90 inhibitors. CONCLUSIONS/SIGNIFICANCE: We conclude that: (1 Hsp90 inhibition primarily induces premature senescence, rather than cell death, in small cell lung cancer cells; (2 small cell lung cancer cells can bypass this senescence through further genetic alterations; (3 Hsp90 inhibitor-induced cell death in small cell lung cancer cells is due to inhibition of a target other than cytosolic Hsp90. These results have implications with regard to how these inhibitors will behave in clinical trials and for the design of future inhibitors in this class.

  18. Kaempferol modulates the metastasis of human non-small cell lung cancer cells by inhibiting epithelial-mesenchymal transition

    Directory of Open Access Journals (Sweden)

    Meng Hang

    2015-06-01

    Full Text Available The present study was done to determine whether kaempferol, a natural polyphenol of the flavonoid family, affects Epithelial-Mesenchymal Transition (EMT in non-small cell lung cancer cells. Kaempferol not only inhibited cancer cell proliferation and migration in a dose-dependent manner but also modulated the expression of EMT-related proteins E-cadherin and vimentin which are indispensible to cellular motility, invasiveness and metastasis. These results indicate that kaempferol suppresses non-small cell lung cancer migration by modulating the expression of EMT proteins. Therefore, kaempferol may be useful as a potential anticancer agent for non-small cell lung cancer.

  19. Circulating tumor cells in lung cancer: detection methods and clinical applications.

    Science.gov (United States)

    Yu, Na; Zhou, Jia; Cui, Fang; Tang, Xiaokui

    2015-04-01

    Circulating tumor cells (CTCs) are tumor cells that have disseminated from primary and metastatic sites, and circulate in the bloodstream. Advanced immunological and molecular-based methods can be used to detect and analyze the cells with the characteristics of tumor cells, and can be detected and analyzed in the blood of cancer patients. The most commonly used methods in lung cancer combine the processes of immunomagnetic enrichment and immunocytochemical detection, morphology-based enrichment coupled with reverse transcriptase polymerase chain reaction (RT-PCR), and RT-PCR alone. CTC analysis is considered a liquid biopsy approach for early diagnosis, risk stratification, evaluation of curative efficacy, and early detection of lung cancer relapse. In this review, we discuss the present techniques for analyzing CTCs, and the restrictions of using these methods in lung cancer. We also review the clinical studies in lung cancer and discuss the underlying associations between these studies and their future applications to this disease.

  20. Nutrition aspects of lung cancer.

    Science.gov (United States)

    Cranganu, Andreea; Camporeale, Jayne

    2009-12-01

    Lung cancer is the most common type of cancer, excluding nonmelanoma skin cancer, and is the leading cause of cancer death in the United States. Notable carcinogens involved in the development of lung cancer include smoking, secondhand smoke, and radon. Lung cancer is divided into 2 major types: non-small-cell lung cancer, the most prevalent, and small-cell lung cancer. Treatment includes surgery, chemotherapy, radiation, or a combination of the same. Medical nutrition therapy is often required for nutrition-related side effects of cancer treatment, which include but are not limited to anorexia, nausea and vomiting, and esophagitis. The best protection against lung cancer is avoidance of airborne carcinogens and increased consumption of fruits and vegetables. Studies have shown that smokers taking large amounts of beta-carotene and vitamin A supplements had increased lung cancer incidence and mortality. However, ingestion of beta-carotene from foods, along with a diet rich in fruits and vegetables, has a protective role against lung disease. The use of complementary and alternative medicine by lung cancer patients is prevalent; therefore, clinicians should investigate whether complementary and alternative therapies are used by patients and advise them on the use of these therapies to avoid any potential side effects and interactions with conventional therapies. The article concludes with a case study of a patient with non-small-cell lung cancer and illustrates the use of medical nutrition therapy in relation to cancer treatment side effects.

  1. GPR171 expression enhances proliferation and metastasis of lung cancer cells

    Science.gov (United States)

    Dho, So Hee; Lee, Kwang-Pyo; Jeong, Dongjun; Kim, Chang-Jin; Chung, Kyung-Sook; Kim, Ji Young; Park, Bum-Chan; Park, Sung Sup; Kim, Seon-Young; Kwon, Ki-Sun

    2016-01-01

    G protein-coupled receptors (GPCRs) are among the most significant therapeutic targets and some of them promote the growth and metastasis of cancer. Here, we show that an increase in the levels of GPR171 is crucial for lung cancer tumor progression in vitro and in vivo. Immunostaining of clinical samples indicated that GPR171 was overexpressed in 46.8% of lung carcinoma tissues. Depletion of GPR171 with an anti-GPR171 antibody decreased proliferation of lung carcinoma cells and attenuated tumor progression in a mouse xenograft model. Knockdown of GPR171 also inhibited migration and invasion of the lung cancer cell lines. Notably, inhibition of GPR171 synergistically enhanced the tumoricidal activity of an epidermal growth factor receptor (EGFR) inhibitor in lung cancer cells. These results indicate that GPR171 blockade is a promising antineoplastic strategy and provide a preclinical rationale for combined inhibition of GPR171 and EGFR. PMID:26760963

  2. Subtyping of nonsmall cell lung cancer on cytology specimens: Reproducibility of cytopathologic diagnoses on sparse material

    DEFF Research Database (Denmark)

    Haukali, O. S.; Henrik, H.; Olsen, Karen Ege;

    2014-01-01

    Cytologic examination of fine-needle aspiration (material is increasingly used in diagnosing lung cancer. High interobserver agreement in distinguishing small-cell lung cancer from nonsmall-cell lung cancer (NSCLC) on cytologic material has been demonstrated. Because of new treatment......-modalities, subclassification of NSCLC into squamous cell carcinoma (SQC) and non-SQC has clinical impact. Subclassification based on morphology alone may be difficult, but applying immunohistochemistry (IHC) to clot-material has proved helpful. When insufficient material is available to make a clot from the aspirate......-Grunwald-Giemsa (MGG) stained smears and CS with IHC on material from 79 patients suspected of having lung cancer was included. The material was circulated twice to four pathologists. The diagnoses were categorized in five groups: SQC, adenocarcinoma of the lung, non-SQC, benign lesion and other forms of malignancy...

  3. Activation of AIFM2 enhances apoptosis of human lung cancer cells undergoing toxicological stress.

    Science.gov (United States)

    Lu, Jun; Chen, Jian; Xu, Nianjun; Wu, Jun; Kang, Yani; Shen, Tingting; Kong, Hualei; Ma, Chao; Cheng, Ming; Shao, Zhifeng; Xu, Ling; Zhao, Xiaodong

    2016-09-01

    Application of cisplatin (DDP) for treating lung cancer is restricted due to its toxicity and lung cancer's drug resistance. In this study, we examined the effect of Jinfukang (JFK), an effective herbal medicine against lung cancer, on DDP-induced cytotoxicity in lung cancer cells. Morphologically, we observed that JFK increases DDP-induced pro-apoptosis in A549 cells in a synergistic manner. Transcriptome profiling analysis indicated that the combination of JFK and DDP regulates genes involved in apoptosis-related signaling pathways. Moreover, we found that the combination of JFK and DDP produces synergistic pro-apoptosis effect in other lung cancer cell lines, such as NCI-H1975, NCI-H1650, and NCI-H2228. Particularly, we demonstrated that AIFM2 is activated by the combined treatment of JFK and DDP and partially mediates the synergistic pro-apoptosis effect. Collectively, this study not only offered the first evidence that JFK promotes DDP-induced cytotoxicity, and activation of AIFM2 enhances apoptosis of human lung cancer cells undergoing toxicological stress, but also provided a novel insight for improving cytotoxicity by combining JFK with DDP to treat lung cancer cells.

  4. Non-small cell lung cancer cell survival crucially depends on functional insulin receptors.

    Science.gov (United States)

    Frisch, Carolin Maria; Zimmermann, Katrin; Zilleßen, Pia; Pfeifer, Alexander; Racké, Kurt; Mayer, Peter

    2015-08-01

    Insulin plays an important role as a growth factor and its contribution to tumor proliferation is intensely discussed. It acts via the cognate insulin receptor (IR) but can also activate the IGF1 receptor (IGF1R). Apart from increasing proliferation, insulin might have additional effects in lung cancer. Therefore, we investigated insulin action and effects of IR knockdown (KD) in three (NCI-H292, NCI-H226 and NCI-H460) independent non-small cell lung cancer (NSCLC) cell lines. All lung cancer lines studied were found to express IR, albeit with marked differences in the ratio of the two variants IR-A and IR-B. Insulin activated the classical signaling pathway with IR autophosphorylation and Akt phosphorylation. Moreover, activation of MAPK was observed in H292 cells, accompanied by enhanced proliferation. Lentiviral shRNA IR KD caused strong decrease in survival of all three lines, indicating that the effects of insulin in lung cancer go beyond enhancing proliferation. Unspecific effects were ruled out by employing further shRNAs and different insulin-responsive cells (human pre-adipocytes) for comparison. Caspase assays demonstrated that IR KD strongly induced apoptosis in these lung cancer cells, providing the physiological basis of the rapid cell loss. In search for the underlying mechanism, we analyzed alterations in the gene expression profile in response to IR KD. A strong induction of certain cytokines (e.g. IL20 and tumour necrosis factor) became obvious and it turned out that these cytokines trigger apoptosis in the NSCLC cells tested. This indicates a novel role of IR in tumor cell survival via suppression of pro-apoptotic cytokines.

  5. Risks of Lung Cancer Screening

    Science.gov (United States)

    ... Treatment Lung Cancer Prevention Lung Cancer Screening Research Lung Cancer Screening (PDQ®)–Patient Version What is screening? Go ... These are called diagnostic tests . General Information About Lung Cancer Key Points Lung cancer is a disease in ...

  6. Sec62 bridges the gap from 3q amplification to molecular cell biology in non-small cell lung cancer.

    Science.gov (United States)

    Linxweiler, Maximilian; Linxweiler, Johannes; Barth, Monika; Benedix, Julia; Jung, Volker; Kim, Yoo-Jin; Bohle, Rainer M; Zimmermann, Richard; Greiner, Markus

    2012-02-01

    The molecular carcinogenesis of lung cancer has yet to be clearly elucidated. We investigated the possible oncogenic function of SEC62 in lung cancer, which was predicted based on our previous findings that lung and thyroid cancer tissue samples exhibited increased Sec62 protein levels. The SEC62 gene locus is at 3q26.2, and 3q amplification is reportedly the most common genomic alteration in non-small cell lung cancer. We analyzed SEC62 mRNA and protein levels in tissue samples from lung cancer patients by real-time quantitative PCR, Western blot, and IHC and found significantly increased SEC62 mRNA and protein levels in tumors compared with tumor-free tissue samples from the same patients. Correlation analyses revealed significantly higher Sec62 levels in tumors with lymph node metastases compared with nonmetastatic tumors, as well as in poorly compared with moderately differentiated tumors. On the basis of these promising results, we examined the role of Sec62 in cancer cell biology in vitro. Cell migration assays with lung and thyroid cancer cells showed distinct stimulation of migration in SEC62-overexpressing cells and inhibition of migration in Sec62-depleted cells. Moreover, we found that SEC62 silencing sensitized the cells to thapsigargin-induced endoplasmic reticulum stress. Thus, our results indicate that SEC62 represents a potential candidate oncogene in the amplified 3q region in cases of non-small cell lung cancer and harbors various functions in cancer cell biology.

  7. Establishment of a human lung cancer cell line with high metastatic potential to multiple organs: gene expression associated with metastatic potential in human lung cancer.

    Science.gov (United States)

    Nakano, Tetsuhiro; Shimizu, Kimihiro; Kawashima, Osamu; Kamiyoshihara, Mitsuhiro; Kakegawa, Seiichi; Sugano, Masayuki; Ibe, Takashi; Nagashima, Toshiteru; Kaira, Kyoichi; Sunaga, Noriaki; Ohtaki, Youichi; Atsumi, Jun; Takeyoshi, Izumi

    2012-11-01

    Convenient and reliable multiple organ metastasis model systems might contribute to understanding the mechanism(s) of metastasis of lung cancer, which may lead to overcoming metastasis and improvement in the treatment outcome of lung cancer. We isolated a highly metastatic subline, PC14HM, from the human pulmonary adenocarcinoma cell line, PC14, using an in vivo selection method. The expression of 34,580 genes was compared between PC14HM and parental PC14 by cDNA microarray analysis. Among the differentially expressed genes, expression of four genes in human lung cancer tissues and adjacent normal lung tissues were compared using real-time reverse transcription polymerase chain reaction. Although BALB/c nude mice inoculated with parental PC14 cells had few metastases, almost all mice inoculated with PC14HM cells developed metastases in multiple organs, including the lung, bone and adrenal gland, the same progression seen in human lung cancer. cDNA microarray analysis revealed that 981 genes were differentially (more than 3-fold) expressed between the two cell lines. Functional classification revealed that many of those genes were associated with cell growth, cell communication, development and transcription. Expression of three upregulated genes (HRB-2, HS3ST3A1 and RAB7) was higher in human cancer tissue compared to normal lung tissue, while expression of EDG1, which was downregulated, was lower in the cancer tissue compared to the normal lung. These results suggest that the newly established PC14HM cell line may provide a mouse model of widespread metastasis of lung cancer. This model system may provide insights into the key genetic determinants of widespread metastasis of lung cancer.

  8. Circulating Tumor Cell and Cell-free Circulating Tumor DNA in Lung Cancer.

    Science.gov (United States)

    Nurwidya, Fariz; Zaini, Jamal; Putra, Andika Chandra; Andarini, Sita; Hudoyo, Achmad; Syahruddin, Elisna; Yunus, Faisal

    2016-09-01

    Circulating tumor cells (CTCs) are tumor cells that are separated from the primary site or metastatic lesion and disseminate in blood circulation. CTCs are considered to be part of the long process of cancer metastasis. As a 'liquid biopsy', CTC molecular examination and investigation of single cancer cells create an important opportunity for providing an understanding of cancer biology and the process of metastasis. In the last decade, we have seen dramatic development in defining the role of CTCs in lung cancer in terms of diagnosis, genomic alteration determination, treatment response and, finally, prognosis prediction. The aims of this review are to understand the basic biology and to review methods of detection of CTCs that apply to the various types of solid tumor. Furthermore, we explored clinical applications, including treatment monitoring to anticipate therapy resistance as well as biomarker analysis, in the context of lung cancer. We also explored the potential use of cell-free circulating tumor DNA (ctDNA) in the genomic alteration analysis of lung cancer.

  9. Telomere shortening and cell senescence induced by perylene derivatives in A549 human lung cancer cells.

    Science.gov (United States)

    Taka, Thanachai; Huang, Liming; Wongnoppavich, Ariyaphong; Tam-Chang, Suk-Wah; Lee, T Randall; Tuntiwechapikul, Wirote

    2013-02-15

    Cancer cells evade replicative senescence by re-expressing telomerase, which maintains telomere length and hence chromosomal integrity. Telomerase inhibition would lead cancer cells to senesce and therefore prevent cancer cells from growing indefinitely. G-quadruplex ligands can attenuate telomerase activity by inducing G-quadruplex formation at the 3'-overhang of telomere and at the human telomerase reverse transcriptase (hTERT) promoter; the former prevents telomerase from accessing the telomere, and the latter acts as a transcriptional silencer. The present investigation found that perylene derivatives PM2 and PIPER induced G-quadruplex formation from both telomeric DNA and the hTERT promoter region in vitro. Further, TRAP assay showed that these compounds inhibited telomerase in a dose-dependent manner. When A549 human lung cancer cells were treated with these compounds, hTERT expression was down-regulated. Moreover, the crude protein extract from these treated cells exhibited less telomerase activity. In the long-term treatment of A549 lung cancer cells with sub-cytotoxic dose of these perylenes, telomere shortening, reduction of cell proliferation and tumorigenicity, and cell senescence were observed. The results of this study indicate that perylene derivatives warrant further consideration as effective agents for cancer therapy.

  10. XCR1 promotes cell growth and migration and is correlated with bone metastasis in non-small cell lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ting; Han, Shuai; Wu, Zhipeng; Han, Zhitao; Yan, Wangjun; Liu, Tielong; Wei, Haifeng; Song, Dianwen; Zhou, Wang, E-mail: brilliant212@163.com; Yang, Xinghai, E-mail: cnspineyang@163.com; Xiao, Jianru, E-mail: jianruxiao83@163.com

    2015-08-21

    Bone metastasis occurs in approximately 30–40% patients with advanced non-small cell lung cancer (NSCLC), but the mechanism underlying this bone metastasis remains poorly understood. The chemokine super family is believed to play an important role in tumor metastasis in lung cancer. The chemokine receptor XCR1 has been identified to promote cell proliferation and migration in oral cancer and ovarian carcinoma, but the role of XCR1 in lung cancer has not been reported. In this study, we demonstrated for the first time that XCR1 was overexpressed in lung cancer bone metastasis as compared with that in patients with primary lung cancer. In addition, the XCR1 ligand XCL1 promoted the proliferation and migration of lung cancer cells markedly, and knockdown of XCR1 by siRNA abolished the effect of XCL1 in cell proliferation and migration. Furthermore, we identified JAK2/STAT3 as a novel downstream pathway of XCR1, while XCL1/XCR1 increased the mRNA level of the downstream of JAK2/STAT3 including PIM1, JunB, TTP, MMP2 and MMP9. These results indicate that XCR1 is a new potential therapeutic target for the treatment of lung cancer bone metastasis. - Highlights: • XCR1 is overexpressed in bone metastasis compared with primary NSCLC. • XCR1 activation by XCL1 promotes lung cancer cell proliferation and migration. • JAK2/STAT3 is a novel potential downstream pathway of XCR1.

  11. Knockdown of Immature Colon Carcinoma Transcript 1 Inhibits Proliferation and Promotes Apoptosis of Non-Small Cell Lung Cancer Cells.

    Science.gov (United States)

    Wang, Yiling; He, Jiantao; Zhang, Shenghui; Yang, Qingbo; Wang, Bo; Liu, Zhiyu; Wu, Xintian

    2016-07-13

    Non-small cell lung cancer, as the most frequent type lung cancer, has lower survival rate of 5 years, despite improvements in surgery and chemotherapy. Previous studies showed immature colon carcinoma transcript 1 is closely related to tumorigenesis of human cancer cells. In the present study, we found immature colon carcinoma transcript 1 was overexpressed in lung cancer tissues using Oncomine database mining, and the biological effect of immature colon carcinoma transcript 1 was investigated in non-small cell lung cancer cell lines 95D and A549. Lentivirus-mediated RNA interference was used to knock down immature colon carcinoma transcript 1 expression in 95D and A549 cells in vitro, and the knockdown efficiency was determined using quantitative real-time polymerase chain reaction and Western blot assay. Knockdown of immature colon carcinoma transcript 1 significantly suppressed non-small cell lung cancer cell proliferation and colony formation ability confirmed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and colony formation assay. Flow cytometry was applied to measure cell cycle arrest, and the result showed the cell cycle arrested in G2/M phase in 95D cells and arrested in G0/G1 phase in A549 cells. Furthermore, we measured the levels of cell cycle-associated proteins by Western blot analysis and found immature colon carcinoma transcript 1-mediated cell proliferation inhibition appeared due to downregulation of cell cycle activator cyclin D1 and upregulation of cell cycle inhibitor p21. In addition, immature colon carcinoma transcript 1 silencing significantly induced non-small cell lung cancer cell apoptosis by annexin V/7-amino-actinomycin D double-staining assay. All our data suggest that immature colon carcinoma transcript 1 may play an important role for non-small cell lung cancer cell proliferation and could be a potential molecular target for diagnosing and treating human non-small cell lung cancer.

  12. Inhibitor-sensitive FGFR1 amplification in human non-small cell lung cancer.

    Directory of Open Access Journals (Sweden)

    Amit Dutt

    Full Text Available BACKGROUND: Squamous cell lung carcinomas account for approximately 25% of new lung carcinoma cases and 40,000 deaths per year in the United States. Although there are multiple genomically targeted therapies for lung adenocarcinoma, none has yet been reported in squamous cell lung carcinoma. METHODOLOGY/PRINCIPAL FINDINGS: Using SNP array analysis, we found that a region of chromosome segment 8p11-12 containing three genes-WHSC1L1, LETM2, and FGFR1-is amplified in 3% of lung adenocarcinomas and 21% of squamous cell lung carcinomas. Furthermore, we demonstrated that a non-small cell lung carcinoma cell line harboring focal amplification of FGFR1 is dependent on FGFR1 activity for cell growth, as treatment of this cell line either with FGFR1-specific shRNAs or with FGFR small molecule enzymatic inhibitors leads to cell growth inhibition. CONCLUSIONS/SIGNIFICANCE: These studies show that FGFR1 amplification is common in squamous cell lung cancer, and that FGFR1 may represent a promising therapeutic target in non-small cell lung cancer.

  13. TENIPOSIDE FOR MENINGEAL CARCINOMATOSIS OF SMALL-CELL LUNG-CANCER

    NARCIS (Netherlands)

    VANDERGRAAF, WTA; HAAXMAREICHE, H; BURGHOUTS, JTM; POSTMUS, PE

    1993-01-01

    A female patient with small cell lung cancer and extensive bone marrow metastases achieved a complete response after combination chemotherapy including etoposide. During maintenance therapy meningeal carcinomatosis was diagnosed. After intravenous administration of teniposide she improved dramatical

  14. Acute onset paraneoplastic cerebellar degeneration in a patient with small cell lung cancer

    Directory of Open Access Journals (Sweden)

    Bhatia R

    2003-04-01

    Full Text Available A patient with small cell lung cancer presented with a rare presentation of an acute onset pancerebellar dysfunction. His clinical condition markedly improved following the surgical removal of the tumor and chemo- and radiotherapy.

  15. Multidrug resistance and retroviral transduction potential in human small cell lung cancer cell lines

    DEFF Research Database (Denmark)

    Theilade, M D; Gram, G J; Jensen, P B;

    1999-01-01

    Multidrug resistance (MDR) remains a major problem in the successful treatment of small cell lung cancer (SCLC). New treatment strategies are needed, such as gene therapy specifically targeting the MDR cells in the tumor. Retroviral LacZ gene-containing vectors that were either pseudotyped...... cells, and that MLV-A as well as GALV-1 retroviral vectors are suitable for further development of gene therapy in SCLC....

  16. Inhibitory effect of Disulfiram/copper complex on non-small cell lung cancer cells.

    Science.gov (United States)

    Duan, Lincan; Shen, Hongmei; Zhao, Guangqiang; Yang, Runxiang; Cai, Xinyi; Zhang, Lijuan; Jin, Congguo; Huang, Yunchao

    2014-04-18

    Non-small cell lung cancer (NSCLC) is the most common cause of cancer-related death in both men and women worldwide. Recently, Disulfiram has been reported to be able to inhibit glioblastoma, prostate, or breast cancer cell proliferation. In this study, the synergistic effect of Disulfiram and copper on NSCLC cell growth was investigated. Inhibition of cancer cell proliferation was detected by 1-(4,5-Dimethylthiazol-2-yl)-3,5-diphenylformazan (MTT) assay and cell cycle analysis. Liquid colony formation and tumor spheroid formation assays were used to evaluate their effect on cancer cell clonogenicity. Real-time PCR was performed to test the mRNA level of cancer stem cell related genes. We found that Disulfiram or copper alone did not potently inhibit NSCLC cell proliferation in vitro. However, the presence of copper significantly enhanced inhibitory effect of Disulfiram on NSCLC cell growth, indicating a synergistic effect between Disulfiram and copper. Cell cycle analysis showed that Disulfiram/copper complex caused NSCLC cell cycle arrest in G2/M phase. Furthermore, Disulfiram/copper significantly increased the sensitivity of cisplatin in NSCLC cells tested by MTT assay. Liquid colony formation assay revealed that copper dramatically increased the inhibitory effect of Disulfiram on NSCLC cell colony forming ability. Disulfiram combined with copper significantly attenuated NSCLC cell spheroid formation and recuded the mRNA expression of lung cancer stem cell related genes. Our data suggest that Disulfiram/copper complex alone or combined with other chemotherapy is a potential therapeutic strategy for NSCLC patients.

  17. Defective lung macrophage function in lung cancer ± chronic obstructive pulmonary disease (COPD/emphysema)-mediated by cancer cell production of PGE2?

    Science.gov (United States)

    Dehle, Francis C; Mukaro, Violet R; Jurisevic, Craig; Moffat, David; Ahern, Jessica; Hodge, Greg; Jersmann, Hubertus; Reynolds, Paul N; Hodge, Sandra

    2013-01-01

    In chronic obstructive pulmonary disease (COPD/emphysema) we have shown a reduced ability of lung and alveolar (AM) macrophages to phagocytose apoptotic cells (defective 'efferocytosis'), associated with evidence of secondary cellular necrosis and a resultant inflammatory response in the airway. It is unknown whether this defect is present in cancer (no COPD) and if so, whether this results from soluble mediators produced by cancer cells. We investigated efferocytosis in AM (26 controls, 15 healthy smokers, 37 COPD, 20 COPD+ non small cell lung cancer (NSCLC) and 8 patients with NSCLC without COPD) and tumor and tumor-free lung tissue macrophages (21 NSCLC with/13 without COPD). To investigate the effects of soluble mediators produced by lung cancer cells we then treated AM or U937 macrophages with cancer cell line supernatant and assessed their efferocytosis ability. We qualitatively identified Arachidonic Acid (AA) metabolites in cancer cells by LC-ESI-MSMS, and assessed the effects of COX inhibition (using indomethacin) on efferocytosis. Decreased efferocytosis was noted in all cancer/COPD groups in all compartments. Conditioned media from cancer cell cultures decreased the efferocytosis ability of both AM and U937 macrophages with the most pronounced effects occurring with supernatant from SCLC (an aggressive lung cancer type). AA metabolites identified in cancer cells included PGE2. The inhibitory effect of PGE2 on efferocytosis, and the involvement of the COX-2 pathway were shown. Efferocytosis is decreased in COPD/emphysema and lung cancer; the latter at least partially a result of inhibition by soluble mediators produced by cancer cells that include PGE2.

  18. Inhibitory Activity of (+-Usnic Acid against Non-Small Cell Lung Cancer Cell Motility.

    Directory of Open Access Journals (Sweden)

    Yi Yang

    Full Text Available Lichens are symbiotic organisms that produce various unique chemicals that can be used for pharmaceutical purposes. With the aim of screening new anti-cancer agents that inhibit cancer cell motility, we tested the inhibitory activity of seven lichen species collected from the Romanian Carpathian Mountains against migration and invasion of human lung cancer cells and further investigated the molecular mechanisms underlying their anti-metastatic activity. Among them, Alectoria samentosa, Flavocetraria nivalis, Alectoria ochroleuca, and Usnea florida showed significant inhibitory activity against motility of human lung cancer cells. HPLC results showed that usnic acid is the main compound in these lichens, and (+-usnic acid showed similar inhibitory activity that crude extract have. Mechanistically, β-catenin-mediated TOPFLASH activity and KITENIN-mediated AP-1 activity were decreased by (+-usnic acid treatment in a dose-dependent manner. The quantitative real-time PCR data showed that (+-usnic acid decreased the mRNA level of CD44, Cyclin D1 and c-myc, which are the downstream target genes of both β-catenin/LEF and c-jun/AP-1. Also, Rac1 and RhoA activities were decreased by treatment with (+-usnic acid. Interestingly, higher inhibitory activity for cell invasion was observed when cells were treated with (+-usnic acid and cetuximab. These results implied that (+-usnic acid might have potential activity in inhibition of cancer cell metastasis, and (+-usnic acid could be used for anti-cancer therapy with a distinct mechanisms of action.

  19. Shorter telomere length of T-cells in peripheral blood of patients with lung cancer

    Directory of Open Access Journals (Sweden)

    Qian Y

    2016-05-01

    Full Text Available Yaqin Qian,1–3,* Tingting Ding,1–3,* Lijuan Wei,2 Shui Cao,2–4 Lili Yang1–3 1Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, People’s Republic of China; 2National Clinical Research Center of Cancer, Tianjin, People’s Republic of China; 3Tianjin Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, People’s Republic of China; 4Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, People’s Republic of China *These authors contributed equally to this work Purpose: Telomere shortening occurs in tumor tissues and peripheral blood lymphocytes of many common human malignancies, including lung cancer, but its variation in T-cells has never been investigated. Thus, the aim of this study was to assess telomere length in T-cells and its correlation with the clinical characteristics of patients with lung cancer.Patients and methods: A total of 40 patients with lung cancer but without prior cancer history and 25 healthy individuals were selected. T-cells were isolated and their telomere lengths were measured using quantitative real-time polymerase chain reaction methods.Results: Telomere length in T-cells was significantly shorter in patients with lung cancer than in controls (P<0.001. Shorter telomere length was significantly associated with increased clinical stage (P=0.008 and distant metastasis (P=0.028. Naïve T-cells from patients with lung cancer had significantly decreased telomere length when compared with those from controls (P=0.012.Conclusion: The shortened telomere length in T-cells occurred in naïve T-cells and might be related to lung cancer progression. Keywords: tumor, telomere’s activity, naïve T-cell, immunocompromise, telomere shortening, T lymphocytes

  20. Identification of uPAR-positive chemoresistant cells in small cell lung cancer.

    Directory of Open Access Journals (Sweden)

    Margarita Gutova

    Full Text Available BACKGROUND: The urokinase plasminogen activator (uPA and its receptor (uPAR/CD87 are major regulators of extracellular matrix degradation and are involved in cell migration and invasion under physiological and pathological conditions. The uPA/uPAR system has been of great interest in cancer research because it is involved in the development of most invasive cancer phenotypes and is a strong predictor of poor patient survival. However, little is known about the role of uPA/uPAR in small cell lung cancer (SCLC, the most aggressive type of lung cancer. We therefore determined whether uPA and uPAR are involved in generation of drug resistant SCLC cell phenotype. METHODS AND FINDINGS: We screened six human SCLC cell lines for surface markers for putative stem and cancer cells. We used fluorescence-activated cell sorting (FACS, fluorescence microscopy and clonogenic assays to demonstrate uPAR expression in a subpopulation of cells derived from primary and metastatic SCLC cell lines. Cytotoxic assays were used to determine the sensitivity of uPAR-positive and uPAR-negative cells to chemotherapeutic agents. The uPAR-positive cells in all SCLC lines demonstrated multi-drug resistance, high clonogenic activity and co-expression of CD44 and MDR1, putative cancer stem cell markers. CONCLUSIONS: These data suggest that uPAR-positive cells may define a functionally important population of cancer cells in SCLC, which are resistant to traditional chemotherapies, and could serve as critical targets for more effective therapeutic interventions in SCLC.

  1. Targeting of Cancer Stem Cells and Their Microenvironment in Early-Stage MutantK-ras Lung Cancer

    Science.gov (United States)

    2015-10-01

    Ericson J, Morton S, Kawakami A, Roelink H, Jessell TM. Two critical periods of Sonic Hedgehog signaling required for the specification of motor...Non-small cell lung cancer, cancer stem cells, Hedgehog pathway, metastasis, tumor epithelial-stromal interactions 16. SECURITY CLASSIFICATION OF: 17...cancer cancer stem cells Hedgehog pathway metastasis tumor epithelial-stromal interactions ACCOMPLISHMENTS: I. Major Goals of the Project: AIM 1

  2. Establishment of a drug sensitivity panel using human lung cancer cell lines.

    Directory of Open Access Journals (Sweden)

    Matsushita A

    1999-04-01

    Full Text Available We established a drug sensitivity panel consisting of 24 human lung cancer cell lines. Using this panel, we evaluated 26 anti-cancer agents: three alkylators, three platinum compounds, four antimetabolites, one topoisomerase I inhibitor, five topoisomerase II inhibitors, seven antimitotic agents and three tyrosine kinase inhibitors. This panel showed the following: a Drug sensitivity patterns reflected their clinically-established patterns of action. For example, doxorubicin and etoposide were shown to be active against small cell lung cancer cell lines and mitomycin-C and 5-fluorouracil were active against non-small cell lung cancer cell lines, in agreement with clinical data. b Correlation analysis of the mean graphs derived from the logarithm of IC50 values of the drugs gave insight into the mechanism of each drug's action. Thus, two drug combinations with reverse or no correlation, such as the combination of cisplatin and vinorelbine, might be good candidates for the ideal two drug combination in the treatment of lung cancer, as is being confirmed in clinical trials. c Using cluster analysis of the cell lines in the panel with their drug sensitivity patterns, we could classify the cell lines into four groups depending on the drug sensitivity similarity. This classification will be useful to elucidate the cellular mechanism of action and drug resistance. Thus, our drug sensitivity panel will be helpful to explore new drugs or to develop a new combination of anti-cancer agents for the treatment of lung cancer.

  3. Subamolide a induces mitotic catastrophe accompanied by apoptosis in human lung cancer cells.

    Science.gov (United States)

    Hung, Jen-Yu; Wen, Ching-Wen; Hsu, Ya-Ling; Lin, En-Shyh; Huang, Ming-Shyan; Chen, Chung-Yi; Kuo, Po-Lin

    2013-01-01

    This study investigated the anticancer effects of subamolide A (Sub-A), isolated from Cinnamomum subavenium, on human nonsmall cell lung cancer cell lines A549 and NCI-H460. Treatment of cancer cells with Sub-A resulted in decreased cell viability of both lung cancer cell lines. Sub-A induced lung cancer cell death by triggering mitotic catastrophe with apoptosis. It triggered oxidant stress, indicated by increased cellular reactive oxygen species (ROS) production and decreased glutathione level. The elevated ROS triggered the activation of ataxia-telangiectasia mutation (ATM), which further enhanced the ATF3 upregulation and subsequently enhanced p53 function by phosphorylation at Serine 15 and Serine 392. The antioxidant, EUK8, significantly decreased mitotic catastrophe by inhibiting ATM activation, ATF3 expression, and p53 phosphorylation. The reduction of ATM and ATF3 expression by shRNA decreased Sub-A-mediated p53 phosphorylation and mitotic catastrophe. Sub-A also caused a dramatic 70% reduction in tumor size in an animal model. Taken together, cell death of lung cancer cells in response to Sub-A is dependent on ROS generation, which triggers mitotic catastrophe followed by apoptosis. Therefore, Sub-A may be a novel anticancer agent for the treatment of nonsmall cell lung cancer.

  4. Subamolide A Induces Mitotic Catastrophe Accompanied by Apoptosis in Human Lung Cancer Cells

    Directory of Open Access Journals (Sweden)

    Jen-Yu Hung

    2013-01-01

    Full Text Available This study investigated the anticancer effects of subamolide A (Sub-A, isolated from Cinnamomum subavenium, on human nonsmall cell lung cancer cell lines A549 and NCI-H460. Treatment of cancer cells with Sub-A resulted in decreased cell viability of both lung cancer cell lines. Sub-A induced lung cancer cell death by triggering mitotic catastrophe with apoptosis. It triggered oxidant stress, indicated by increased cellular reactive oxygen species (ROS production and decreased glutathione level. The elevated ROS triggered the activation of ataxia-telangiectasia mutation (ATM, which further enhanced the ATF3 upregulation and subsequently enhanced p53 function by phosphorylation at Serine 15 and Serine 392. The antioxidant, EUK8, significantly decreased mitotic catastrophe by inhibiting ATM activation, ATF3 expression, and p53 phosphorylation. The reduction of ATM and ATF3 expression by shRNA decreased Sub-A-mediated p53 phosphorylation and mitotic catastrophe. Sub-A also caused a dramatic 70% reduction in tumor size in an animal model. Taken together, cell death of lung cancer cells in response to Sub-A is dependent on ROS generation, which triggers mitotic catastrophe followed by apoptosis. Therefore, Sub-A may be a novel anticancer agent for the treatment of nonsmall cell lung cancer.

  5. Photodynamic therapy for the treatment of non-small cell lung cancer.

    Science.gov (United States)

    Simone, Charles B; Friedberg, Joseph S; Glatstein, Eli; Stevenson, James P; Sterman, Daniel H; Hahn, Stephen M; Cengel, Keith A

    2012-02-01

    Photodynamic therapy is increasingly being utilized to treat thoracic malignancies. For patients with early-stage non-small cell lung cancer, photodynamic therapy is primarily employed as an endobronchial therapy to definitely treat endobronchial, roentgenographically occult, or synchronous primary carcinomas. As definitive monotherapy, photodynamic therapy is most effective in treating bronchoscopically visible lung cancers ≤1 cm with no extracartilaginous invasion. For patients with advanced-stage non-small cell lung cancer, photodynamic therapy can be used to palliate obstructing endobronchial lesions, as a component of definitive multi-modality therapy, or to increase operability or reduce the extent of operation required. A review of the available medical literature detailing all published studies utilizing photodynamic therapy to treat at least 10 patients with non-small cell lung cancer is performed, and treatment recommendations and summaries for photodynamic therapy applications are described.

  6. Expression of transcription factor Klf8 in lung cancer tissue and the biological effect of downregulation of Klf8 expression in lung cancer cell lines

    Institute of Scientific and Technical Information of China (English)

    Xuan-Hong Yi; Jing Wang

    2016-01-01

    Objective:To study the expression of transcription factor Klf8 in lung cancer tissue and the biological effect of downregulation of Klf8 expression in lung cancer cell lines.Methods:Cancer tissue and adjacent normal lung tissue were collected and mRNA contents of Klf8 were detected; lung cancer A549 cell lines were cultured, and after transfection of Klf8 siRNA, cell cycle, cell invasion and epithelial-mesenchymal transition were detected.Results:mRNA contents of Klf8 in lung cancer tissue were higher than those in adjacent normal lung tissue; after transfection of Klf8 siRNA, Klf8 mRNA inhibition rate was 74.31%; G0/G1 phase ratio of Klf8 siRNA group was higher than that of negative control siRNA group; ratios of S-phase and G2/M phase cells, mRNA contents of Cyclin D1 and number of cells invading to the outer side of the transwell microporous membrane were lower than those of negative control siRNA group; mRNA contents of CDH1 and CK18 as well as Snail and Slug of Klf8 siRNA group were higher than those of negative control siRNA group; mRNA contents of VIM and N-cadherin were lower than those of negative control siRNA group.Conclusion:The expression of Klf8 in lung cancer tissue abnormally elevates; downregulation of Klf8 expression in lung cancer cell lines can inhibit malignant biological effect of cells, manifested as cell cycle arrest as well as the inhibition of cell invasion and epithelial-mesenchymal transition processes.

  7. Synergistic effect of phenformin in non-small cell lung cancer (NSCLC) ionizing radiation treatment.

    Science.gov (United States)

    Wang, Jia; Xia, Shi'an; Zhu, Zhizhen

    2015-03-01

    Biguanides, used for anti-diabetic drugs, bring more attention in cancer research for their beneficial effects. Phenformin is more potent than metformin. However its potential application as a anti-cancer regent is far behind metformin. In order to investigate any beneficial effect of combination of Phenformin and radiotherapy, non-small cell lung cancer cell lines A549 and H1299 were exposure under different dose of ionizing radiation with or without Phenformin. Results indicated Phenformin showed synergistic effect and could induce more cancer cell apoptosis and inhibition of tumor growth compared with ionizing radiation alone. Furthermore, this synergistic effect may be through different pathway according to cancer cell genotype background. Our results showed Phenformin induced AMPK activation in A549 but not H1299. However, Phenformin activated eIF2α in both cell lines. Our findings implicated Phenformin may be used as radiosensitizer for non-small cell lung cancer therapy.

  8. Effects of Curcuma longa Extract on Telomerase Activity in Lung and Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Nosratollah Zarghami

    2014-10-01

    Full Text Available Background: The purpose of this study is to evaluate the effect of Curcuma longa extract on the telomerase gene expression in QU-DB lung cancer and T47D breast cancer cell lines. Materials and Methods: The present study is an experimental research. Using 3 different phases n-hexane, dichloromethane and methanol, total extract of Curcuma longa in a serial dilution was prepared and three phases was analyzed for determining which phase has more curcuminoids. Then the extract cytotoxicity effect was tested on breast cancer cell line (T47D, and lung cancer cell line (QU-DB by 24, 48 and 72 h MTT (Dimethyl thiazolyl diphenyl tetrazolium assay. Then, the cells were treated with serial concentrations of the extract. Finally, total protein was extracted from the control and test groups, its quantity was determined and telomeric repeat amplification protocol (TRAP assay was performed for measurement of possible inhibition of the telomerase activity. Results: Cell viability and MTT-based cytotoxicity assay show that the total extract of Curcuma longa has cytotoxic effect with different IC50s in breast and lung cancer cell lines. Analysis of TRAP assay also shows a significant reduction in telomerase activity on both cancer cells with different levels. Conclusion: Curcuma longa extract has anti-proliferation and telomerase inhibitory effects on QU-DB lung cancer and T47D breast cancer cells with differences in levels of telomerase inhibition.

  9. Integrative genome analyses identify key somatic driver mutations of small-cell lung cancer

    NARCIS (Netherlands)

    Peifer, Martin; Fernandez-Cuesta, Lynnette; Sos, Martin L.; George, Julie; Seidel, Danila; Kasper, Lawryn H.; Plenker, Dennis; Leenders, Frauke; Sun, Ruping; Zander, Thomas; Menon, Roopika; Koker, Mirjam; Dahmen, Ilona; Mueller, Christian; Di Cerbo, Vincenzo; Schildhaus, Hans-Ulrich; Altmueller, Janine; Baessmann, Ingelore; Becker, Christian; de Wilde, Bram; Vandesompele, Jo; Boehm, Diana; Ansen, Sascha; Gabler, Franziska; Wilkening, Ines; Heynck, Stefanie; Heuckmann, Johannes M.; Lu, Xin; Carter, Scott L.; Cibulskis, Kristian; Banerji, Shantanu; Getz, Gad; Park, Kwon-Sik; Rauh, Daniel; Gruetter, Christian; Fischer, Matthias; Pasqualucci, Laura; Wright, Gavin; Wainer, Zoe; Russell, Prudence; Petersen, Iver; Chen, Yuan; Stoelben, Erich; Ludwig, Corinna; Schnabel, Philipp; Hoffmann, Hans; Muley, Thomas; Brockmann, Michael; Engel-Riedel, Walburga; Muscarella, Lucia A.; Fazio, Vito M.; Groen, Harry; Timens, Wim; Sietsma, Hannie; Thunnissen, Erik; Smit, Egbert; Heideman, Danielle A. M.; Snijders, Peter J. F.; Cappuzzo, Federico; Ligorio, Claudia; Damiani, Stefania; Field, John; Solberg, Steinar; Brustugun, Odd Terje; Lund-Iversen, Marius; Saenger, Joerg; Clement, Joachim H.; Soltermann, Alex; Moch, Holger; Weder, Walter; Solomon, Benjamin; Soria, Jean-Charles; Validire, Pierre; Besse, Benjamin; Brambilla, Elisabeth; Brambilla, Christian; Lantuejoul, Sylvie; Lorimier, Philippe; Schneider, Peter M.; Hallek, Michael; Pao, William; Meyerson, Matthew; Sage, Julien; Shendure, Jay; Schneider, Robert; Buettner, Reinhard; Wolf, Juergen; Nuernberg, Peter; Perner, Sven; Heukamp, Lukas C.; Brindle, Paul K.; Haas, Stefan; Thomas, Roman K.

    2012-01-01

    Small-cell lung cancer (SCLC) is an aggressive lung tumor subtype with poor prognosis(1-3). We sequenced 29 SCLC exomes, 2 genomes and 15 transcriptomes and found an extremely high mutation rate of 7.4 +/- 1 protein-changing mutations per million base pairs. Therefore, we conducted integrated analys

  10. Antitumor Effect of Antisense Ornithine Decarboxylase Adenovirus on Human Lung Cancer Cells

    Institute of Scientific and Technical Information of China (English)

    Hui TIAN; Lin LI; Xian-Xi LIU; Yan ZHANG

    2006-01-01

    Ornithine decarboxylase (ODC), the first enzyme of polyamine biosynthesis, was found to increase in cancer cells, especially lung cancer cells. Some chemotherapeutic agents aimed at decreasing ODC gene expression showed inhibitory effects on cancer cells. In this study, we examined the effects of adenoviral transduced antisense ODC on lung cancer cells. An adenovirus carrying antisense ODC (rAd-ODC/Ex3as) was used to infect lung cancer cell line A-549. The 3-(4,5-me thylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay was used to analyze the effect on cell growth. Expression of ODC and concentration of polyamines in cells were determined by Western blot analysis and high performance liquid chromatography. Terminal deoxynucleotidyl transferase-mediated biotin-dUTP nick-end labeling was used to analyze cell apoptosis. The expression of ODC in A-549 cells was reduced to 54%, and that of three polyamines was also decreased through the rAd-ODC/Ex3as treatment. Consequently, cell growth was substantially inhibited and terminal deoxynucleotidyl transferase-mediated biotin-dUTP nick-end labeling showed that rAd-ODC/Ex3as could lead to cell apoptosis, with apoptosis index of 46%. This study suggests that rAd-ODC/Ex3as has an antitumor effect on the human lung cancer cells.

  11. In vitro evaluation of a new nitrosourea, TCNU, against human small cell lung cancer cell lines

    DEFF Research Database (Denmark)

    Roed, H; Vindeløv, L L; Spang-Thomsen, M;

    1987-01-01

    The cytotoxic activity of a new nitrosourea, TCNU, was compared with that of BCNU in five human small cell lung cancer cell lines in vitro. TCNU was found to be equivalent or inferior to BCNU when compared on a microgram to microgram basis. If the potential of in vitro phase II trials for selecti...... of new drugs can be validated, it can be concluded that TCNU is not superior to other nitrosoureas for the treatment of SCCL....

  12. A functional role for tumor cell heterogeneity in a mouse model of small cell lung cancer.

    Science.gov (United States)

    Calbo, Joaquim; van Montfort, Erwin; Proost, Natalie; van Drunen, Ellen; Beverloo, H Berna; Meuwissen, Ralph; Berns, Anton

    2011-02-15

    Small cell lung cancer (SCLC) is the lung neoplasia with the poorest prognosis, due to its high metastatic potential and chemoresistance upon relapse. Using the previously described mouse model for SCLC, we found that the tumors are often composed of phenotypically different cells with either a neuroendocrine or a mesenchymal marker profile. These cells had a common origin because they shared specific genomic aberrations. The transition from neuroendocrine to mesenchymal phenotype could be achieved by the ectopic expression of oncogenic Ras(V12). Crosstalk between mesenchymal and neuroendocrine cells strongly influenced their behavior. When engrafted as a mixed population, the mesenchymal cells endowed the neuroendocrine cells with metastatic capacity, illustrating the potential relevance of tumor cell heterogeneity in dictating tumor properties.

  13. GENETIC ALTERRATIONS OF MICROSATELLITE MARKERS AT CHROMOSOME 17 IN NON-SMALL CELL LUNG CANCER

    Institute of Scientific and Technical Information of China (English)

    GUO; Xue-jun

    2001-01-01

    [1]Froudarakis ME, Bouros D, Spandidos DA, et al. Microsatellite instability and loss of heterozygosity at chromosomes 17 in non-small cell lung cancer [J]. Chest 1998; 113:1091.[2]Fong KM, Zimmerman PV, Smith PJ. Microsatellite instability and other molecular abnormalities in non-small cell lung cancer [J]. Cancer Res 1994; 54:2098.[3]Mountain CF. A new international staging system for lung cancer [J]. Chest 1986; 89(suppl):225.[4]Shridhar V, Siegfried J, Hunt J, et al. Genetic instability of microsatellite sequences in many non-small cell lung carcinomas [J]. Cancer Res 1994; 54:2084.[5]Loeb LA. Microsatellite instability: Marker of a mutator phenotype in cancer [J]. Cancer Res 1994; 54:5059.[6]Sanchez CM, Monzo M, Rosell R, et al. Detection of chromosome 3p alterations in serum DNA of non-small cell lung cancer patients [J]. Ann Oncol 1989; 113.

  14. Advanced Research of Fibroblast Growth Factor Receptor 
in Non-small Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Dan PU

    2013-11-01

    Full Text Available Lung cancer is severely threatening human health. In recent years, the treatment for lung adenocarcinoma has made a great progress, targeted therapy has been widely applied in clinic, and benefits amount of patients. However, in squamous cell lung cancer, the incidence of epidermal growth factor receptor (EGFR gene mutant and ALK fusion gene are low,and targeted therapy like Tarceva and crizotinib, can hardly work. Since the fibroblast growth factors (fibroblast growth factor, FGF pathway is considered to be related to tumor cell proliferation, metastasis and angiogenesis, more and more researches proved the amplification of fibroblast growth factor receptor (FGFR in squamous cell lung cancer. Experiments in vivo and in vitro found that blocking FGF pathway could reduce the proliferation of tumor cells and inhibit metastasis. The FGF pathway might be a new target for treatment of squamous cell lung cancer. This article reviews the effect of FGFR in tumorigenesis,as well as the prospect as a therapeutic target in non-small cell lung cancer.

  15. Curcumin Suppresses Lung Cancer Stem Cells via Inhibiting Wnt/β-catenin and Sonic Hedgehog Pathways.

    Science.gov (United States)

    Zhu, Jian-Yun; Yang, Xue; Chen, Yue; Jiang, Ye; Wang, Shi-Jia; Li, Yuan; Wang, Xiao-Qian; Meng, Yu; Zhu, Ming-Ming; Ma, Xiao; Huang, Cong; Wu, Rui; Xie, Chun-Feng; Li, Xiao-Ting; Geng, Shan-Shan; Wu, Jie-Shu; Zhong, Cai-Yun; Han, Hong-Yu

    2017-02-15

    Cancer stem cells (CSCs) are highly implicated in the progression of human cancers. Thus, targeting CSCs may be a promising strategy for cancer therapy. Wnt/β-catenin and Sonic Hedgehog pathways play an important regulatory role in maintaining CSC characteristics. Natural compounds, such as curcumin, possess chemopreventive properties. However, the interventional effect of curcumin on lung CSCs has not been clarified. In the present study, tumorsphere formation assay was used to enrich lung CSCs from A549 and H1299 cells. We showed that the levels of lung CSC markers (CD133, CD44, ALDHA1, Nanog and Oct4) and the number of CD133-positive cells were significantly elevated in the sphere-forming cells. We further illustrated that curcumin efficiently abolished lung CSC traits, as evidenced by reduced tumorsphere formation, reduced number of CD133-positive cells, decreased expression levels of lung CSC markers, as well as proliferation inhibition and apoptosis induction. Moreover, we demonstrated that curcumin suppressed the activation of both Wnt/β-catenin and Sonic Hedgehog pathways. Taken together, our data suggested that curcumin exhibited its interventional effect on lung CSCs via inhibition of Wnt/β-catenin and Sonic Hedgehog pathways. These novel findings could provide new insights into the potential therapeutic application of curcumin in lung CSC elimination and cancer intervention. Copyright © 2017 John Wiley & Sons, Ltd.

  16. [Metabonomics study of lung cancer cells based on liquid l chromatography-mass spectrometry].

    Science.gov (United States)

    Yu, Xinwei; Wu, Qian; Lu, Wang; Wang, Yan; Ma, Xiaoqiong; Chen, Zhe; Yan, Chao

    2013-07-01

    The metabolic profiles of the polar metabolites and the non-polar metabolites in lung tumor cell lines H358, A549, HCC827, H1299, Calu-3, Calu-l, PC-9 and normal cell line MRC-5 were analyzed separately using high performance liquid chromatography-quadrupole time-of flight mass spectrometry (HPLC-Q-TOF/MS). Partial least square discriminant analysis ( PLS-DA) was used to process the metabolic data. The results showed that the metabolites of the lung cancer cell lines and normal cell line have significant differences. Further, 10 polar metabolites and 21 non-polar metabolites which had a significant contribution to classification were selected and preliminarily identified due to the accurate mass. Comparing with the normal cell line, the lung tumor cell lines present an abnormal metabolism in protein, fatty acid, and phospholipids. These results may provide important information for the early diagnosis of lung cancer.

  17. Genetic and Epigenetic Determinants of Lung Cancer Subtype: Adenocarcinoma to Small Cell Conversion

    Science.gov (United States)

    2015-08-01

    AWARD NUMBER: W81XWH-14-1-0223 TITLE: Genetic and Epigenetic Determinants of Lung Cancer Subtype: Adenocarcinoma to Small Cell Conversion...COVERED 1Aug2014 - 31Jul2015 4. TITLE AND SUBTITLE Genetic and Epigenetic Determinants of Lung Cancer Subtype: 5a. CONTRACT NUMBER W81XWH-14-1-0223...same patient will provide substantial insight into the determinants of subtype specificity. Preliminary data on one such case demonstrates a

  18. Clinical application of whole blood red cell distribution width in lung cancer metastasis

    Institute of Scientific and Technical Information of China (English)

    徐阳飏

    2014-01-01

    Objective To investigate the clinical value of whole blood red cell distribution width(RDW)in discriminating lung cancer metastasis.Methods A retropective analysis was conducted on the patients who were initially diagnosed as primary lung cancer.A total of 525 patients were included for analysis between January 2012 and July2013,stratified by different stages and metastasis scenarios.RDW data was investigated.Kruskal-Wallis H tests

  19. Rapamycin potentiates cytotoxicity by docetaxel possibly through downregulation of Survivin in lung cancer cells

    Directory of Open Access Journals (Sweden)

    Li Hui

    2011-03-01

    Full Text Available Abstract Background To elucidate whether rapamycin, the inhibitor of mTOR (mammalian target of rapamycin, can potentiate the cytotoxic effect of docetaxel in lung cancer cells and to probe the mechanism underlying such enhancement. Methods Lung cancer cells were treated with docetaxel and rapamycin. The effect on the proliferation of lung cancer cells was evaluated using the MTT method, and cell apoptosis was measured by flow cytometry. Protein expression and level of phosphorylation were assayed using Western Blot method. Results Co-treatment of rapamycin and docetaxel was found to favorably enhance the cytotoxic effect of docetaxel in four lung cancer cell lines. This tumoricidal boost is associated with a reduction in the expression and phosphorylation levels of Survivin and ERK1/2, respectively. Conclusion The combined application of mTOR inhibitor and docetaxel led to a greater degree of cancer cell killing than that by either compound used alone. Therefore, this combination warrants further investigation in its suitability of serving as a novel therapeutic scheme for treating advanced and recurrent lung cancer patients.

  20. Osteopontin knockdown suppresses non-small cell lung cancer cell invasion and metastasis

    Institute of Scientific and Technical Information of China (English)

    SUN Bing-sheng; YOU Jian; LI Yue; ZHANG Zhen-fa; WANG Chang-li

    2013-01-01

    Background Osteopontin (OPN) was identified as one of the leading genes that promote the metastasis of malignant tumor.However,the mechanism by which OPN mediates metastasis in non-small cell lung cancer (NSCLC) remains unknown.The aim of the study is to investigate the biological significance and the related molecular mechanism of OPN expression in lung cancer cell line.Methods Lentiviral-mediated RNA interference was applied to inhibit OPN expression in metastatic human NSCLC cell line (A549).The invasion,proliferation,and metastasis were evaluated OPN-silenced in A549 cells in vitro and in vivo.The related mechanism was further investigated.Results Interestingly,OPN knockdown significantly suppressed the invasiveness of A549 cells,but had only a minor effect on the cellular migration and proliferation.Moreover,we demonstrated that OPN knockdown significantly reduced the levels of matrix metalloproteinase (MMP)-2 and urokinase plasminogen activator (uPA),and led to an obviousinhibition of both in vitro invasion and in vivo lung metastasis of A549 cells (P <0.001).Conclusions Our data demonstrate that OPN contributes to A549 cell metastasis by stimulating cell invasion,independent of cellular migration and proliferation.OPN could be a new treatment target of NSCLC.

  1. Wnt signaling regulates the stemness of lung cancer stem cells and its inhibitors exert anticancer effect on lung cancer SPC-A1 cells.

    Science.gov (United States)

    Zhang, Xueyan; Lou, Yuqing; Wang, Huimin; Zheng, Xiaoxuan; Dong, Qianggang; Sun, Jiayuan; Han, Baohui

    2015-04-01

    Wnt signaling plays an important role in regulating the activity of cancer stem cells (CSCs) in a variety of cancers. In this study, we explored the role of Wnt signaling in the lung cancer stem cells (LCSCs). LCSCs were obtained by sphere culture, for which human lung adenocarcinoma cell line SPC-A1 was treated with IGF, EGF and FGF-10. The stemness of LCSCs was confirmed by immunofluorescence, and pathway analysis was performed by functional genome screening and RT-PCR. The relationship between the identified signaling pathway and the expression of the stemness genes was explored by agonist/antagonist assay. Moreover, the effects of different signaling molecule inhibitors on sphere formation, cell viability and colony formation were also analyzed. The results showed that LCSCs were successfully generated as they expressed pluripotent stem cell markers Nanog and Oct 4, and lung distal epithelial markers CCSP and SP-C, by which the phenotype characterization of stem cells can be confirmed. The involvement of Wnt pathway in LCSCs was identified by functional genome screening and verified by RT-PCR. The expression of Wnt signaling components was closely related to the expression of the Nanog and Oct 4. Furthermore, targeting Wnt signaling pathway by using different signaling molecule inhibitors can exert anticancer effects. In conclusion, Wnt signaling pathway is involved in the stemness regulation of LCSCs and might be considered as a potential therapeutic target in lung adenocarcinoma.

  2. Radiation Therapy for Lung Cancer

    Science.gov (United States)

    ... of the lung cancer and your overall health. Radiation Therapy Radiation is a high-energy X-ray that can ... surgery, chemotherapy or both depending upon the circumstances. Radiation therapy works within cancer cells by damaging their ...

  3. COPD and squamous cell lung cancer: aberrant inflammation and immunity is the common link.

    Science.gov (United States)

    Bozinovski, Steven; Vlahos, Ross; Anthony, Desiree; McQualter, Jonathan; Anderson, Gary; Irving, Louis; Steinfort, Daniel

    2016-02-01

    Cigarette smoking has reached epidemic proportions within many regions of the world and remains the highest risk factor for chronic obstructive pulmonary disease (COPD) and lung cancer. Squamous cell lung cancer is commonly detected in heavy smokers, where the risk of developing lung cancer is not solely defined by tobacco consumption. Although therapies that target common driver mutations in adenocarcinomas are showing some promise, they are proving ineffective in smoking-related squamous cell lung cancer. Since COPD is characterized by an excessive inflammatory and oxidative stress response, this review details how aberrant innate, adaptive and systemic inflammatory processes can contribute to lung cancer susceptibility in COPD. Activated leukocytes release increasing levels of proteases and free radicals as COPD progresses and tertiary lymphoid aggregates accumulate with increasing severity. Reactive oxygen species promote formation of reactive carbonyls that are not only tumourigenic through initiating DNA damage, but can directly alter the function of regulatory proteins involved in host immunity and tumour suppressor functions. Systemic inflammation is also markedly increased during infective exacerbations in COPD and the interplay between tumour-promoting serum amyloid A (SAA) and IL-17A is discussed. SAA is also an endogenous allosteric modifier of FPR2 expressed on immune and epithelial cells, and the therapeutic potential of targeting this receptor is proposed as a novel strategy for COPD-lung cancer overlap.

  4. Overexpression of TRPV3 Correlates with Tumor Progression in Non-Small Cell Lung Cancer.

    Science.gov (United States)

    Li, Xiaolei; Zhang, Qianhui; Fan, Kai; Li, Baiyan; Li, Huifeng; Qi, Hanping; Guo, Jing; Cao, Yonggang; Sun, Hongli

    2016-03-24

    (1) BACKGROUND: Transient receptor potential vanilloid 3 (TRPV3) is a member of the TRP channels family of Ca(2+)-permeant channels. The proteins of some TRP channels are highly expressed in cancer cells. This study aimed to assess the clinical significance and biological functions of TRPV3 in non-small cell lung cancer (NSCLC); (2) METHODS: Immunohistochemistry was used to detect the expression of TRPV3 in NSCLC tissues and adjacent noncancerous lung tissues. Western blot was used to detect the protein expressions of TRPV3, CaMKII, p-CaMKII, CyclinA, CyclinD, CyclinE1, CDK2, CDK4, and P27. Small interfering RNA was used to deplete TRPV3 expression. A laser scanning confocal microscope was used to measure intracellular calcium concentration ([Ca(2+)]i). Flow cytometry was used to analyze cell cycle; (3) RESULTS: TRPV3 was overexpressed in 65 of 96 (67.7%) human lung cancer cases and correlated with differentiation (p = 0.001) and TNM stage (p = 0.004). Importantly, TRPV3 expression was associated with short overall survival. In addition, blocking or knockdown of TRPV3 could inhibit lung cancer cell proliferation. Moreover, TRPV3 inhibition could decrease [Ca(2+)]i of lung cancer cells and arrest cell cycle at the G1/S boundary. Further results revealed that TRPV3 inhibition decreased expressions of p-CaMKII, CyclinA, CyclinD1, CyclinE, and increased P27 level; (4) CONCLUSIONS: Our findings demonstrate that TRPV3 was overexpressed in NSCLC and correlated with lung cancer progression. TRPV3 activation could promote proliferation of lung cancer cells. TRPV3 might serve as a potential companion drug target in NSCLC.

  5. Signatures of Drug Sensitivity in Nonsmall Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Hua C. Gong

    2011-01-01

    Full Text Available We profiled receptor tyrosine kinase pathway activation and key gene mutations in eight human lung tumor cell lines and 50 human lung tumor tissue samples to define molecular pathways. A panel of eight kinase inhibitors was used to determine whether blocking pathway activation affected the tumor cell growth. The HER1 pathway in HER1 mutant cell lines HCC827 and H1975 were found to be highly activated and sensitive to HER1 inhibition. H1993 is a c-MET amplified cell line showing c-MET and HER1 pathway activation and responsiveness to c-MET inhibitor treatment. IGF-1R pathway activated H358 and A549 cells are sensitive to IGF-1R inhibition. The downstream PI3K inhibitor, BEZ-235, effectively inhibited tumor cell growth in most of the cell lines tested, except the H1993 and H1650 cells, while the MEK inhibitor PD-325901 was effective in blocking the growth of KRAS mutated cell line H1734 but not H358, A549 and H460. Hierarchical clustering of primary tumor samples with the corresponding tumor cell lines based on their pathway signatures revealed similar profiles for HER1, c-MET and IGF-1R pathway activation and predict potential treatment options for the primary tumors based on the tumor cell lines response to the panel of kinase inhibitors.

  6. Facial Nerve Palsy: An Unusual Presenting Feature of Small Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Ozcan Yildiz

    2011-01-01

    Full Text Available Lung cancer is the second most common type of cancer in the world and is the most common cause of cancer-related death in men and women; it is responsible for 1.3 million deaths annually worldwide. It can metastasize to any organ. The most common site of metastasis in the head and neck region is the brain; however, it can also metastasize to the oral cavity, gingiva, tongue, parotid gland and lymph nodes. This article reports a case of small cell lung cancer presenting with metastasis to the facial nerve.

  7. Effect of clarythromycin on the distant metastases of human lung cancer cells in SCID mice.

    Science.gov (United States)

    Parajuli, P; Yano, S; Hanibuchi, M; Nokihara, H; Shinohara, T; Sone, S

    1998-02-01

    Recently, the use of macrolides is suggested to be therapeutically effective in prolonging the survival of patients with inoperable non-small cell lung cancer. The purpose of this study was to examine therapeutic effects of a macrolide, clarythromycin (CAM) on the metastastic developments of two different human non-small cell lung cancers (squamous cell lung carcinoma RERF-LC-AI, and adenocarcinoma PC-14) in severe combined immunodeficient (SCID) mice depleted or undepleted of natural killer (NK) cells, respectively. CAM, injected subcutaneously at doses of 5 and 10 mg/kg body weight/day from day 7 to 41 after i.v. inoculation of human lung cancer cells, was not effective in inhibiting their distant organ metastases in SCID mice. CAM at concentrations of less than 10 micrograms/ml did not have a direct influence on the proliferation of these tumor cells in vitro. Although CAM alone was not effective in augmenting NK activity, it augmented the IL-2-induced killer (LAK) activity against Daudi cells in vitro. These results suggest that CAM alone may not be enough to control the spread of non-small cell lung cancer in the patient with T cell dysfunction.

  8. Radiation Therapy for Lung Cancer

    Science.gov (United States)

    ... are available to help. HELPFUL WEB SITES ON LUNG CANCER American Lung Association www.lung.org Lungcancer.org www.lungcancer.org Lung Cancer Alliance www.lungcanceralliance.org Lung Cancer Online www. ...

  9. Expression of cadherin and NCAM in human small cell lung cancer cell lines and xenografts

    DEFF Research Database (Denmark)

    Rygaard, K; Møller, C; Bock, E

    1992-01-01

    characterised, the cadherin family and the Ig superfamily member, neural cell adhesion molecule (NCAM). We investigated expression of these two adhesion molecule families in small cell lung cancer (SCLC) cell lines and xenografts by immunoblotting. Nineteen tumours established from 15 patients with SCLC were...... embryonic development, which may play a role in connection with tumour invasion and metastasis, was found in 14/18 NCAM expressing SCLC tumours. Individual tumours grown as cell lines and as nude mouse xenografts showed no qualitative differences in cadherin or NCAM expression....

  10. Gastrin releasing peptide GRP(14-27) in human breast cancer cells and in small cell lung cancer

    DEFF Research Database (Denmark)

    Vangsted, A J; Andersen, E V; Nedergaard, L

    1991-01-01

    Immunoreactivity related to the gastrin-releasing peptide (GRP) precursor was detected in four different human breast cancer cell lines. The amounts and the characteristics in extracts from different breast carcinoma cells were compared with cell extracts from small cell lung cancer (SCLC) cells......% of the samples. When the GRP(14-27) peptide was added exogenously to breast cancer and SCLC cell lines under serum-free culture conditions, (3H)-thymidine incorporation was stimulated by GRP(14-27) in the SCLC cell lines. Of the breast cancer cell lines only the T47D cell line responded with an increase in (3H......)-thymidine incorporation comparable to the increase observed with SCLC cells. Recently, it has been reported that GRP-like receptors are present in some human breast cancer cell lines, including the T47D cell line studied here. The breast cancer cell line T47D therefore expresses the GRP peptide and the receptor for GRP...

  11. Cisplatin in 5% Ethanol Eradicates Cisplatin-Resistant Lung Tumor by Killing Lung Cancer Side Population (SP Cells and Non-SP Cells

    Directory of Open Access Journals (Sweden)

    Qi eNiu

    2013-08-01

    Full Text Available Cancer side population (SP cells with cancer stem cell-like properties are thought to be responsible for lung cancer chemotherapy resistance and currently no drug can efficiently target them. Breast cancer resistance protein (BRCP/ABCG2 is a major drug transporter in protecting lung cancer SP cells from cytotoxic agents. We showed that a low concentration of ethanol, which inhibits many membrane proteins, inhibits ABCG2 in lung cancer SP cells. Furthermore, cytotoxic cisplatin (DDP in 5% (vol/vol ethanol kills SP plus non-SP cancer cells better than either treatment alone in eradicating chemoresistant lung tumors. We found that 5% ethanol did not reduce ABCG2 protein levels, but significantly reduced ABCG2 protein function by a Hoechst 33342 extrusion assay, an ATPase activity assay, and transmission electron microscopy. Further, DDP in 5% ethanol (5% ethanol-DDP induced apoptosis of the SP plus non-SP cancer cells both in vitro and in vivo. In DDP-resistant A549/DDP lung tumor-bearing Balb/C nude mice, intratumoral injection of 5% ethanol-DDP regressed tumors and significantly improved survivals compared with 5% ethanol, DDP alone, or control. Intratumoral injection of 5% ethanol-DDP helped eradicate tumors in 30% (3/10 of the mice after 4 weeks treatment. By killing SP and non-SP cancer cells, 5% ethanol-DDP could eradicate DDP-resistant lung tumor and extend survival, providing a novel way to improve chemoresistant lung cancer survival for clinic.

  12. Overcoming paclitaxel resistance in lung cancer cells via dual inhibition of stathmin and Bcl-2.

    Science.gov (United States)

    Han, Zheng-Xiang; Wang, Hong-Mei; Jiang, Guan; Du, Xiu-Ping; Gao, Xiang-Yang; Pei, Dong-Sheng

    2013-06-01

    Lung cancer is the leading cause of death from malignancy in people and over 85% of these patients eventually die from disseminated disease. Paclitaxel (TAX) is widely used as an antimicrotubule agent for the treatment of lung cancer. Unfortunately, the resistance to this antimicrotubule agent occurs frequently. Stathmin (STMN1) is a ubiquitous microtubule destabilizing protein linked to cancer and cell health and its expression level often correlates with cancer stage progression and prognosis for survival. Overexpression of the antiapoptotic protein Bcl-2 has been shown to prolong drug-induced growth arrest, potentially inducing resistance. In this study, we used a short hairpin RNA (shRNA) approach to evaluate the effect of STMN1 and Bcl-2 downregulation in the sensitivity to TAX in lung cancer cells. We achieved significant downregulation of STMN1 and Bcl-2 mRNA and protein expression by a combination of double shRNA treatment strategy. Our experimental data showed that inhibition of STMN1 and Bcl-2 expression with RNA interference can sensitize lung cancer cells to TAX. These findings suggest a novel approach to improve the efficacy of certain antimicrotubule agents against lung cancer by regulating the function of STMN1 and Bcl-2.

  13. [Neuronal differentiation of human small cell lung cancer cell line PC-6 by Solcoseryl].

    Science.gov (United States)

    Shimizu, T

    1997-11-01

    Solcoseryl is composed of extracts from calf blood, and is a drug known to activate tissue respiration. In the present study, I demonstrated the cell biological effects of Solcoseryl on a human small cell lung cancer cell line, PC-6, by analyzing cell morphology, cell growth, expression of neuronal differentiation markers, and the ras proto-oncogene product(ras p21). Exposure of PC-6 cells to Solcoseryl at the concentration of 200 microliters/ml induced (1) cell morphological changes, including neurodendrite-like projections from the cell surface, and (2) complete inhibition of cell growth, that was shown by the loss of Ki-67 expression. Solcoseryl also induced the expression of neurofilament protein and acetylcholinesterase, both of which are markers of neuronal differentiation. Moreover, it upregulated the expression of the ras proto-oncogene product, ras p21. Taken together, these data suggest that Solcoseryl is composed of component(s) which can induce neuronal differentiation of the human small cell lung cancer cell line, PC-6.

  14. A Preliminary Analysis of Non-small Cell Lung Cancer Biomarkers in Serum

    Institute of Scientific and Technical Information of China (English)

    XUE-YUAN XIAO; YING TANG; XIU-PING WEI; DA-CHENG HE

    2003-01-01

    Objective To identify potential serum biomarkers that could be used to discriminate lungcancers from normal. Methods Proteomic spectra of twenty-eight serum samples from patientswith non-small cell lung cancer and twelve from normal individuals were generated by SELDI(Surfaced Enhanced Laser Desorption/Ionization) Mass Spectrometry. Anion-exchange columns wereused to fractionate the sera into 6 designated pH groups. Two different types of protein chip arrays,IMAC-Cu and WCX2, were employed. Samples were examined in PBSII Protein Chip Reader(Ciphergen Biosystem Inc) and the discriminatory profiling between cancer and normal samples wasanalyzed with Biomarker Pattern software. Results Five distinct potential lung cancer biomarkerswith higher sensitivity and specificity were found, with four common biomarkers in both IMAC-Cuand WCX2 chip; the remaining biomarker occurred only in WCX2 chip. Two biomarkers wereup-regulated while three biomarkers were down-regulated in the serum samples from patients withnon-small cell lung cancer. The sensitivities provided by the individual biomarkers were 75%-96.43%and specificities were 75%-100%. Conclusions The preliminary results suggest that serum is acapable resource for detecting specific non-small cell lung cancer biomarkers. SELDI massspectrometry is a useful tool for the detection and identification of new potential biomarker ofnon-small cell lung cancer in serum.

  15. Genomic profiling toward precision medicine in non-small cell lung cancer: getting beyond EGFR

    Directory of Open Access Journals (Sweden)

    Richer AL

    2015-02-01

    Full Text Available Amanda L Richer,1 Jacqueline M Friel,1 Vashti M Carson,2 Landon J Inge,1 Timothy G Whitsett2 1Norton Thoracic Institute, St Joseph’s Hospital and Medical Center, 2Cancer and Cell Biology Division, Translational Genomics Research Institute, Phoenix, AZ, USA Abstract: Lung cancer remains the leading cause of cancer-related mortality worldwide. The application of next-generation genomic technologies has offered a more comprehensive look at the mutational landscape across the different subtypes of non-small cell lung cancer (NSCLC. A number of recurrent mutations such as TP53, KRAS, and epidermal growth factor receptor (EGFR have been identified in NSCLC. While targeted therapeutic successes have been demonstrated in the therapeutic targeting of EGFR and ALK, the majority of NSCLC tumors do not harbor these genomic events. This review looks at the current treatment paradigms for lung adenocarcinomas and squamous cell carcinomas, examining genomic aberrations that dictate therapy selection, as well as novel therapeutic strategies for tumors harboring mutations in KRAS, TP53, and LKB1 which, to date, have been considered “undruggable”. A more thorough understanding of the molecular alterations that govern NSCLC tumorigenesis, aided by next-generation sequencing, will lead to targeted therapeutic options expected to dramatically reduce the high mortality rate observed in lung cancer. Keywords: non-small cell lung cancer, precision medicine, epidermal growth factor receptor, Kirsten rat sarcoma viral oncogene homolog, serine/threonine kinase 11, tumor protein p53

  16. Nestin servers as a promising prognostic biomarker in non-small cell lung cancer.

    Science.gov (United States)

    Liu, Fang; Zhang, Yuan; Lu, Ming; Wang, Cong; Li, Qingbao; Gao, Yongsheng; Mu, Dianbin; Cao, Yan; Li, Miaomiao; Meng, Xiangjiao

    2017-01-01

    Lung cancer is currently the leading cause of cancer-related death worldwide and it is important to identify the predictive and/or prognostic markers for the cancer. Nestin, a proliferative and multipotent biomarker has been reported to be associated with prognosis in non-small cell lung cancer (NSCLC) in a few studies. In the present study, we retrospectively recruited 153 patients with NSCLC. Nestin protein expression in tumor samples was determined by immunohistochemistry staining. Nestin expression was related with tumor differentiation (P=0.036), lymphatic metastasis (N stage, P=0.011), and p-TNM stage (P=0.013), while there was no significant association between Nestin expression level and age, smoking habits, gender, histologic type, and T stage. Nestin was an independent prognostic factor for overall survival in NSCLC with an adjusted hazard ratio of 2.701 (95% CI, 1.616-4.513, PCRISPR/Cas9 mediated genome editing. It was observed that knockout of Nestin caused enhancement of cancer cell apoptosis and inhibition of cell proliferation, colony formation, and invasion in A549 and H1299 cell lines. Furthermore, we examined the expression of epithelial-mesenchymal transition (EMT) related biomarkers such as E-cadherin and Vimentin in Nestin-depleted lung cancer cells and knockout of Nestin was found to inhibit EMT, suggesting the involvement of Nestin mediated EMT signaling in lung cancer. The finding above demonstrated that Nestin might serve as a prognostic factor and therapeutic target in NSCLCs.

  17. SC1, an immunoglobulin-superfamily cell adhesion molecule, is involved in the brain metastatic activity of lung cancer cells

    Science.gov (United States)

    KUBOTA, YUKA; KIRIMURA, NAOKI; SHIBA, HATSUKI; ADACHI, KAZUHIDE; TSUKAMOTO, YASUHIRO

    2015-01-01

    SC1 is a cell adhesion molecule that belongs to the immunoglobulin superfamily; this molecule was initially purified from the chick embryonic nervous system and was reported to exhibit homophilic adhesion activity. SC1 is transiently expressed in various organs during development and has been identified in numerous neoplastic tissues, including lung cancer and colorectal carcinomas. The present study focused on the encephalic metastasis of lung cancer cells with respect to the potential function of SC1, as this molecule is known to be consistently expressed in the central nervous system as well as lung cancers. SC1 complementary DNA was introduced into A549 cells, a human lung cancer-derived cell line. The stable overexpression of the SC1 protein in A549 cells was demonstrated to enhance the self-aggregation of the cells. In addition, the SC1 transfectants enhanced the metastatic and invasive potential to the encephalic parenchyma following implantation into nude mice. In conclusion, the results of the present study demonstrated that cell adhesion due interactions between SC1 on brain tissue and SC1 on lung cancer cells was involved in the malignant aspects of lung cancer, including invasion and metastasis to the brain. PMID:26622821

  18. Comparative Proteomic Analysis of Anti-Cancer Mechanism by Periplocin Treatment in Lung Cancer Cells

    Directory of Open Access Journals (Sweden)

    Zejun Lu

    2014-03-01

    Full Text Available Background: Periplocin is used for treatment of rheumatoid arthritis, reinforcement of bones and tendons, palpitations or shortness of breath and lower extremity edema in traditional medicine. Our previous findings suggested that periplocin could inhibit the growth of lung cancer both in vitro and in vivo. But the biological processes and molecular pathways by which periplocin induces these beneficial effects remain largely undefined. Methods: To explore the molecular mechanisms of periplocin involved in anti-cancer activity, in the present study the protein profile changes of human lung cancer cell lines A549 in response to periplocin treatment were investigated using the proteomics approaches (2-DE combined with MS/MS. Western blot was employed to verify the changed proteins. Interactions between changed proteins were analyzed by STRING. Results: 29 down-regulated protein species named GTP-binding nuclear protein Ran (RAN, Rho GDP-dissociation inhibitor 1 (ARHGDIA, eukaryotic translation initiation factor 5A-1 (EIF5A and Profilin-1(PFN1, and 10 up-regulated protein species named Heat shock cognate 71 kDa protein (HSPA8,10 kDa heat shock protein (HSPE1, and Cofilin-1(CFL-1 were identified. Among them, GTP-binding nuclear protein Ran (RAN and Rho GDP-dissociation inhibitor 1 (ARHGDIA were the most significantly changed (over tenfold. The proteasome subunit beta type-6 (PSMB6, ATP synthase ecto-α-subunit (ATP5A1, Aldehyde dehydrogenase 1 (ALDH1 and EIF5A were verified by immunoblot assays to be dramatically down-regulated. By STRING bioinformatics analysis revealing interactions and signaling networks it became apparent that the proteins changed they are primarily involved in transcription and proteolysis. Conclusion: Periplocin inhibited growth of lung cancer by down-regulating proteins, such as ATP5A1, EIF5A, ALDH1 and PSMB6. These findings may improve our understanding of the molecular mechanisms underlying the anti-cancer effects of

  19. Notch signaling and EMT in non-small cell lung cancer: biological significance and therapeutic application.

    Science.gov (United States)

    Yuan, Xun; Wu, Hua; Han, Na; Xu, Hanxiao; Chu, Qian; Yu, Shiying; Chen, Yuan; Wu, Kongming

    2014-12-05

    Through epithelial-mesenchymal transition (EMT), cancer cells acquire enhanced ability of migration and invasion, stem cell like characteristics and therapeutic resistance. Notch signaling regulates cell-cell connection, cell polarity and motility during organ development. Recent studies demonstrate that Notch signaling plays an important role in lung cancer initiation and cross-talks with several transcriptional factors to enhance EMT, contributing to the progression of non-small cell lung cancer (NSCLC). Correspondingly, blocking of Notch signaling inhibits NSCLC migration and tumor growth by reversing EMT. Clinical trials have showed promising effect in some cancer patients received treatment with Notch1 inhibitor. This review attempts to provide an overview of the Notch signal in NSCLC: its biological significance and therapeutic application.

  20. Gold nanoparticles trigger apoptosis and necrosis in lung cancer cells with low intracellular glutathione

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Min [Shandong University, Department of Pharmacology, School of Medicine (China); Gu, Xiaohu [Shandong University, School of Chemistry and Chemical Engineering (China); Zhang, Ke [Shandong University, Department of Pharmacology, School of Medicine (China); Ding, Yi [Shandong University, School of Chemistry and Chemical Engineering (China); Wei, Xinbing; Zhang, Xiumei, E-mail: zhangxm@sdu.edu.cn; Zhao, Yunxue, E-mail: zhaoyunxue@sdu.edu.cn [Shandong University, Department of Pharmacology, School of Medicine (China)

    2013-08-15

    Previously 13 nm gold nanoparticles (GNPs) have been shown to display cytotoxicity to lung cancer cells when l-buthionine-sulfoximine (BSO) was used to decrease the expression of intracellular glutathione (GSH). In this study, we investigated how the GNPs induced cell death at the molecular level. Dual staining with fluorescent annexin V, and propidium iodide was used to discriminate apoptotic and necrotic cell death. We found that GNPs induced apoptosis and necrosis in lung cancer cells with low level of intracellular GSH. The disruption of F-actin and phosphorylation of H2AX induced by GNPs were both associated with apoptosis. The ER stress was caused, mitochondrial membrane potential was disrupted, intracellular calcium was elevated and intracellular caspase-3 was activated by GNPs in lung cancer cells with low intracellular GSH, while cell death could not be prevented by the pan-caspase inhibitor N-benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone. The cells were further examined for caspase-independent death. After GNPs and BSO exposure, apoptosis inducing factor, endonuclease G, and glyceraldehyde-3-phosphate dehydrogenase translocated into the nuclei of apoptotic cells. Receptor-interacting protein 1 kinase inhibitor necrostatin-1 significantly decreased the PI positive cells that were induced by GNPs and BSO. Taken together, our results suggest that multiple modes of cell death are concurrently induced in GNPs-exposed lung cancer cells with low intracellular GSH, including apoptosis and necrosis. These results have important implications for GNPs in anticancer applications.

  1. Generation of dendritic cell-based vaccine using high hydrostatic pressure for non-small cell lung cancer immunotherapy

    Science.gov (United States)

    Hradilova, Nada; Sadilkova, Lenka; Palata, Ondrej; Mysikova, Dagmar; Mrazkova, Hana; Lischke, Robert; Spisek, Radek; Adkins, Irena

    2017-01-01

    High hydrostatic pressure (HHP) induces immunogenic death of tumor cells which confer protective anti-tumor immunity in vivo. Moreover, DC pulsed with HHP-treated tumor cells induced therapeutic effect in mouse cancer model. In this study, we tested the immunogenicity, stability and T cell stimulatory activity of human monocyte-derived dendritic cell (DC)-based HHP lung cancer vaccine generated in GMP compliant serum free medium using HHP 250 MPa. DC pulsed with HHP-killed lung cancer cells and poly(I:C) enhanced DC maturation, chemotactic migration and production of pro-inflammatory cytokines after 24h. Moreover, DC-based HHP lung cancer vaccine showed functional plasticity after transfer into serum-containing media and stimulation with LPS or CD40L after additional 24h. LPS and CD40L stimulation further differentially enhanced the expression of costimulatory molecules and production of IL-12p70. DC-based HHP lung cancer vaccine decreased the number of CD4+CD25+Foxp3+ T regulatory cells and stimulated IFN-γ-producing tumor antigen-specific CD4+ and CD8+ T cells from non-small cell lung cancer (NSCLC) patients. Tumor antigen specific CD8+ and CD4+ T cell responses were detected in NSCLC patient’s against a selected tumor antigens expressed by lung cancer cell lines used for the vaccine generation. We also showed for the first time that protein antigen from HHP-killed lung cancer cells is processed and presented by DC to CD8+ T cells. Our results represent important preclinical data for ongoing NSCLC Phase I/II clinical trial using DC-based active cellular immunotherapy (DCVAC/LuCa) in combination with chemotherapy and immune enhancers. PMID:28187172

  2. Amygdalin-mediated inhibition of non-small cell lung cancer cell invasion in vitro.

    Science.gov (United States)

    Qian, Liyu; Xie, Bo; Wang, Yaguo; Qian, Jun

    2015-01-01

    Lung cancer is a common malignant tumor claiming the highest fatality worldwide for a long period of time. Unfortunately, most of the current treatment methods are still based on the characteristics of cancer cells in the primary lesion and the prognosis is often much poorer in patients with metastatic cancers. Amygdalin, a natural product of glycosides and lots of evidence shows that amygdalin can inhibit the proliferation of some kinds of cancer cells. In this study, we first obtained the highly metastatic NSCLC cell lines H1299/M and PA/M and further treated these cells with amygdalin. We found that the in vitro proliferability of H1299/M and PA/M was inhibited, but such inhibition required higher concentration of amygdalin. When lower concentration of amygdalin was used for the experiments, we observed that the in vitro invasive and migration capacities of H1299/M and PA/M were significantly inhibited. These results strongly suggested that amygdalin was likely to have anti-metastatic NSCLC effect. This study offers information of the role of amygdalin that may be useful as a therapeutic target in lung tumors.

  3. Potential targets for lung squamous cell carcinoma

    Science.gov (United States)

    Researchers have identified potential therapeutic targets in lung squamous cell carcinoma, the second most common form of lung cancer. The Cancer Genome Atlas (TCGA) Research Network study comprehensively characterized the lung squamous cell carcinoma gen

  4. Transcription factor FOXA2-centered transcriptional regulation network in non-small cell lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Sang-Min; An, Joo-Hee; Kim, Chul-Hong; Kim, Jung-Woong, E-mail: jungkim@cau.ac.kr; Choi, Kyung-Hee, E-mail: khchoi@cau.ac.kr

    2015-08-07

    Lung cancer is the leading cause of cancer-mediated death. Although various therapeutic approaches are used for lung cancer treatment, these mainly target the tumor suppressor p53 transcription factor, which is involved in apoptosis and cell cycle arrest. However, p53-targeted therapies have limited application in lung cancer, since p53 is found to be mutated in more than half of lung cancers. In this study, we propose tumor suppressor FOXA2 as an alternative target protein for therapies against lung cancer and reveal a possible FOXA2-centered transcriptional regulation network by identifying new target genes and binding partners of FOXA2 by using various screening techniques. The genes encoding Glu/Asp-rich carboxy-terminal domain 2 (CITED2), nuclear receptor subfamily 0, group B, member 2 (NR0B2), cell adhesion molecule 1 (CADM1) and BCL2-associated X protein (BAX) were identified as putative target genes of FOXA2. Additionally, the proteins including highly similar to heat shock protein HSP 90-beta (HSP90A), heat shock 70 kDa protein 1A variant (HSPA1A), histone deacetylase 1 (HDAC1) and HDAC3 were identified as novel interacting partners of FOXA2. Moreover, we showed that FOXA2-dependent promoter activation of BAX and p21 genes is significantly reduced via physical interactions between the identified binding partners and FOXA2. These results provide opportunities to understand the FOXA2-centered transcriptional regulation network and novel therapeutic targets to modulate this network in p53-deficient lung cancer. - Highlights: • Identification of new target genes of FOXA2. • Identifications of novel interaction proteins of FOXA2. • Construction of FOXA2-centered transcriptional regulatory network in non-small cell lung cancer.

  5. Chronic inorganic arsenic exposure in vitro induces a cancer cell phenotype in human peripheral lung epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Person, Rachel J.; Olive Ngalame, Ntube N.; Makia, Ngome L.; Bell, Matthew W.; Waalkes, Michael P.; Tokar, Erik J., E-mail: tokare@niehs.nih.gov

    2015-07-01

    Inorganic arsenic is a human lung carcinogen. We studied the ability of chronic inorganic arsenic (2 μM; as sodium arsenite) exposure to induce a cancer phenotype in the immortalized, non-tumorigenic human lung peripheral epithelial cell line, HPL-1D. After 38 weeks of continuous arsenic exposure, secreted matrix metalloproteinase-2 (MMP2) activity increased to over 200% of control, levels linked to arsenic-induced cancer phenotypes in other cell lines. The invasive capacity of these chronic arsenic-treated lung epithelial (CATLE) cells increased to 320% of control and colony formation increased to 280% of control. CATLE cells showed enhanced proliferation in serum-free media indicative of autonomous growth. Compared to control cells, CATLE cells showed reduced protein expression of the tumor suppressor gene PTEN (decreased to 26% of control) and the putative tumor suppressor gene SLC38A3 (14% of control). Morphological evidence of epithelial-to-mesenchymal transition (EMT) occurred in CATLE cells together with appropriate changes in expression of the EMT markers vimentin (VIM; increased to 300% of control) and e-cadherin (CDH1; decreased to 16% of control). EMT is common in carcinogenic transformation of epithelial cells. CATLE cells showed increased KRAS (291%), ERK1/2 (274%), phosphorylated ERK (p-ERK; 152%), and phosphorylated AKT1 (p-AKT1; 170%) protein expression. Increased transcript expression of metallothioneins, MT1A and MT2A and the stress response genes HMOX1 (690%) and HIF1A (247%) occurred in CATLE cells possibly in adaptation to chronic arsenic exposure. Thus, arsenic induced multiple cancer cell characteristics in human peripheral lung epithelial cells. This model may be useful to assess mechanisms of arsenic-induced lung cancer. - Highlights: • Chronic arsenic exposure transforms a human peripheral lung epithelia cell line. • Cells acquire characteristics in common with human lung adenocarcinoma cells. • These transformed cells provide a

  6. The role of mismatch repair in small-cell lung cancer cells

    DEFF Research Database (Denmark)

    Hansen, L T; Thykjaer, T; Ørntoft, T F

    2003-01-01

    The role of mismatch repair (MMR) in small-cell lung cancer (SCLC) is controversial, as the phenotype of a MMR-deficiency, microsatellite instability (MSI), has been reported to range from 0 to 76%. We studied the MMR pathway in a panel of 21 SCLC cell lines and observed a highly heterogeneous...... pattern of MMR gene expression. A significant correlation between the mRNA and protein levels was found. We demonstrate that low hMLH1 gene expression was not linked to promoter CpG methylation. One cell line (86MI) was found to be deficient in MMR and exhibited resistance to the alkylating agent MNNG...

  7. The effect of adenovirus-mediated gene expression of FHIT in small cell lung cancer cells

    DEFF Research Database (Denmark)

    Zandi, Roza; Xu, Kai; Poulsen, Hans S

    2011-01-01

    The candidate tumor suppressor fragile histidine traid (FHIT) is frequently inactivated in small cell lung cancer (SCLC). Mutations in the p53 gene also occur in the majority of SCLC leading to the accumulation of the mutant protein. Here we evaluated the effect of FHIT gene therapy alone...... or in combination with the mutant p53-reactivating molecule, PRIMA-1(Met)/APR-246, in SCLC. Overexpression of FHIT by recombinant adenoviral vector (Ad-FHIT)-mediated gene transfer in SCLC cells inhibited their growth by inducing apoptosis and when combined with PRIMA-1(Met)/APR-246, a synergistic cell growth...

  8. Safety and Efficacy of Vinorelbine in the Treatment of Non-Small Cell Lung Cancer

    Science.gov (United States)

    Faller, Bryan A.; Pandit, Trailokya N.

    2011-01-01

    Lung cancer remains the most frequently diagnosed cancer in the United States, excluding non-melanoma skin cancer. Non-small cell lung cancer (NSCLC) constitutes the majority (more than 80%) of lung cancer diagnoses. Systemic therapy, with either cytotoxic chemotherapy and/or targeted therapies, has been established to provide benefit to patients with NSCLC in both the adjuvant and advanced disease settings. Vinorelbine, a semi-synthetic vinca-alkaloid has been extensively tested alone and in combination with other cytotoxic or targeted agents in the treatment of NSCLC. Its safety has been well established with neutropenia, anemia, nausea, and vomiting being the most frequently encountered toxicities. The data defining the risks and benefits of vinorelbine in the treatment of NSCLC will be summarized. PMID:21695100

  9. HPV16 E6/E7 Negatively Affect Radiosensitivity of Lung Cancer Cells

    Institute of Scientific and Technical Information of China (English)

    Lu Lu; Qinghui Meng; Ming Cui; Xiaofei Chu; Shuyi Zhao; Huiwen Xiao; Jiali Dong

    2016-01-01

    Objective Lung cancer cells associated with radioresistance are likely to give rise to local recurrence and distant metastatic relapse,but little is known about its underlying mechanisms.In the present paper,the effects of the HPV16 E6 and HPV16 E7 oncoprotein on the radiosensitivity of lung cancer cell lines were investigated.Methods The HPV16 E6 or HPV16 E7 oncoprotein was expressed by a transient transfection with pcDNA3-HPV16 E6 or pcDNA3-HPV16 E7 expression vector.Human lung cancer H2179 cells and mouse lung cancer Lewis cells were exposed to a γ-ray radiation source,cellular survival was evaluated by using a colony formation assay.The expression of HPV16 oncoproteins E6/E7,extracellular signal-regulated kinases 1/2(ERK1/2) and AKT signaling was determined by Western blot assay.VEGF secretion was determined by ELISA.Results Both HPV16 oncoproteins E6 and E7 significantly decreased radiosensitivity of H2179 cells,associated with a promotion of the ERK1/2 and AKT phosphorylation.A decrease of reactive oxygen species(ROS) and an increase of VEGF levels were observed in the cells expressing the HPV16 oncoproteins E6 and E7.Furthermore,a similar reduction of radiosensitivity mediated by the HPV16 oncoproteins E6 and E7 was also observed in a mouse lung cancer Lewis cells.Conclusion The findings indicate that the HPV16 oncoproteins E6 and E7 negatively affects susceptibility of lung cancer cells to radiotherapy via regulation of the ERK1/2 and Akt signaling pathway and VEGF expression.

  10. Thymosin beta 10 Prompted the VEGF-C Expression in Lung Cancer Cell

    Directory of Open Access Journals (Sweden)

    Zixuan LI

    2014-05-01

    Full Text Available Background and objective Our previous study found that thymosin β10 overexpressed in lung cancer and positively correlated with differentiation, lymph node metastasis and stage of lung cancer. In this reasearch we aim to study the effects and mechanism of exogenous human recombinant Tβ10 on the expression of VEGF-C on non-small cell lung cancer. Methods After SPC, A549 and LK2 cells were treated with 100 ng/mL recombinant human Tβ10, the mRNA level of VEGF-C were detected by RT-PCR. The mean while the protein expression of VEGF-C, P-AKT and AKT were determined by Western blot assay. Results Exogenous recombinant human Tβ10 were significantly promote the expression levels of VEGF-C mRNA and protein while promoting the phosphorylation of AKT. Exogenous Tβ10 can promote the expression of VEGF-C mRNA and protein in lung cancer cell lines A549 and LK2 (P<0.05, and this effect can be inhibited by use AKT inhibitor LY294002 (P<0.05. Conclusion Tβ10 human recombinant proteins can promote the expression of VEGF-C by activating AKT phosphorylation in lung cancer cell lines.

  11. Apoptosis induction by MEK inhibition in human lung cancer cells is mediated by Bim.

    Directory of Open Access Journals (Sweden)

    Jieru Meng

    Full Text Available AZD6244 (ARRY-142886 is an inhibitor of MEK1/2 and can inhibit cell proliferation or induce apoptosis in a cell-type dependent manner. The precise molecular mechanism of AZD6244-induced apoptosis is not clear. To investigate mechanisms of AZD6244 induced apoptosis in human lung cancer, we determined the molecular changes of two subgroups of human lung cancer cell lines that are either sensitive or resistant to AZD6244 treatment. We found that AZD6244 elicited a large increase of Bim proteins and a smaller increase of PUMA and NOXA proteins, and induced cell death in sensitive lung cancer cell lines, but had no effect on other Bcl-2 related proteins in those cell lines. Knockdown of Bim by siRNA greatly increased the IC(50 and reduced apoptosis for AZD6244 treated cells. We also found that levels of endogenous p-Thr32-FOXO3a and p-Ser253-FOXO3a were lower in AZD6244-sensitive cells than in AZD6244-resistant cells. In the sensitive cells, AZD6244 induced FOXO3a nuclear translocation required for Bim activation. Moreover, the silencing of FOXO3a by siRNA abrogated AZD6244-induced cell apoptosis. In addition, we found that transfection of constitutively active AKT up-regulated p-Thr32-FOXO3a and p-Ser253-FOXO3a expression and inhibited AZD6244-induced Bim expression in sensitive cells. These results show that Bim plays an important role in AZD6244-induced apoptosis in lung cancer cells and that the PI3K/AKT/FOXO3a pathway is involved in Bim regulation and susceptibility of lung cancer cells to AZD6244. These results have implications in the development of strategies to overcome resistance to MEK inhibitors.

  12. Nonsmall Cell Lung Cancer Therapy: Insight into Multitargeted Small-Molecule Growth Factor Receptor Inhibitors

    Directory of Open Access Journals (Sweden)

    Mridul Roy

    2013-01-01

    Full Text Available To date, lung cancer is the leading cause of cancer-related death worldwide, among which nonsmall cell lung cancer (NSCLC comprises about 85%. Taking into account the side effects of surgery, radiation, platinum-based doublet chemotherapy, and the growth self-sufficiency characteristic of cancer cells, drugs have been discovered toward growth factor receptor (GFR to treat NSCLC. As expected, these drugs provide a greater benefit. To increase the efficacy of such growth factor receptor tyrosine kinase inhibitors (RTKIs, coinhibition of GFR signaling pathways and combination of inhibitors along with radiation or chemotherapy have drew intense insight. Although clinical trials about single-agent RTKIs or their combination strategies suggest their increase potency against cancer, they are not beyond adverse effects, and sometimes the effects are more deadly than chemotherapy. Nevertheless the hope for RTKIs may be proved true by further researches and digging deep into cancer therapeutics.

  13. Immune checkpoint inhibitors: the new frontier in non–small cell lung cancer treatment

    Directory of Open Access Journals (Sweden)

    El-Osta HE

    2016-08-01

    Full Text Available Hazem El-Osta, Kamran Shahid, Glenn M Mills, Prakash Peddi Department of Medicine, Division of Hematology-Oncology, Louisiana State University Health Sciences Center, Shreveport, LA, USA Abstract: Lung cancer is the major cause for cancer-related death in the US. Although advances in chemotherapy and targeted therapy have improved the outcome of metastatic non-small-cell lung cancer, its prognosis remains dismal. A deeper understanding of the complex interaction between the immune system and tumor microenvironment has identified immune checkpoint inhibitors as new avenue of immunotherapy. Rather than acting directly on the tumor, these therapies work by removing the inhibition exerted by tumor cell or other immune cells on the immune system, promoting antitumoral immune response. To date, two programmed death-1 inhibitors, namely nivolumab and pembrolizumab, have received the US Food and Drug Administration approval for the treatment of advanced non-small-cell lung cancer that failed platinum-based chemotherapy. This manuscript provides a brief overview of the pathophysiology of cancer immune evasion, summarizes pertinent data on completed and ongoing clinical trials involving checkpoint inhibitors, discusses the different strategies to optimize their function, and outlines various challenges that are faced in this promising yet evolving field. Keywords: checkpoint inhibitors, immunotherapy, nivolumab, non-small-cell lung cancer, pembrolizumab, programmed death-1, programmed death ligand-1

  14. Lung cancer in younger patients

    DEFF Research Database (Denmark)

    Abbasowa, Leda; Madsen, Poul Henning

    2016-01-01

    INTRODUCTION: Lung cancer remains a leading cause of cancer-related death. The incidence increases with age and the occurrence in young patients is relatively low. The clinicopathological features of lung cancer in younger patients have not been fully explored previously. METHODS: To assess the age...... differences in the clinical characteristics of lung cancer, we conducted a retrospective analysis comparing young patients ≤ 65 years of age with an elderly group > 65 years of age. Among 1,232 patients evaluated due to suspicion of lung cancer in our fast-track setting from January-December 2013, 312 newly...... diagnosed lung cancer patients were included. RESULTS: Patients ≤ 65 years had a significantly higher representation of females (p = 0.0021), more frequent familial cancer aggregation (p = 0.028) and a lower incidence of squamous cell carcinoma (p = 0.0133). When excluding pure carcinoid tumours...

  15. Expression and alternative splicing pattern of human telomerase reverse transcriptase in human lung cancer cells.

    Science.gov (United States)

    Fujiwara, Masachika; Kamma, Hiroshi; Wu, Wenwen; Hamasaki, Makoto; Kaneko, Setsuko; Horiguchi, Hisashi; Matsui-Horiguchi, Miwa; Satoh, Hiroaki

    2004-04-01

    Telomerase activity is generally considered to be necessary for cancer cells to avoid senescence. The expression of human telomerase reverse transcriptase (hTERT) is believed to be a rate-limiting step in telomerase activation. Recently, it has been proposed that the alternative splicing of hTERT is also involved in regulation of telomerase activity. However, the regulatory mechanism of telomerase in cancer cells has not been thoroughly investigated. To clarify it in lung cancer cells, we measured the expression of the hTERT transcript, analyzed its alternative splicing by RT-PCR, and compared it with telomerase activity and telomere length. The expression of the hTERT transcript was positively correlated with telomerase activity in lung cancer cells. Cancer cells with high telomerase activity contained 4 splicing variants of hTERT, and the full-length variant was 31.3-54.2% of the total transcripts. Cells of the TKB-20 cell line, which has extremely low telomerase activity, showed a different splicing pattern of hTERT in addition to low expression. The functional full-length variant was scarcely detected in TKB-20 cells, suggesting that the telomerase activity was repressed by alternative splicing of hTERT. Telomere length was not necessarily correlated with telomerase activity or hTERT expression in lung cancer cells. Cells of the TKB-4 cell line that also showed relatively low telomerase activity (as TKB-20 cells) had long telomeres. In conclusion, hTERT expression is regulated at both the transcriptional and post-transcriptional levels in lung cancer cells, and the alternative splicing of hTERT is involved in the control of telomerase activity.

  16. In vitro cultured lung cancer cells are not suitable for animal-based breath biomarker detection.

    Science.gov (United States)

    Schallschmidt, Kristin; Becker, Roland; Zwaka, Hanna; Menzel, Randolf; Johnen, Dorothea; Fischer-Tenhagen, Carola; Rolff, Jana; Nehls, Irene

    2015-02-10

    In vitro cultured lung cancer cell lines were investigated regarding the possible identification of volatile organic compounds as potential biomarkers. Gas samples from the headspace of pure culture medium and from the cultures of human lung adenocarcinoma cell lines A549 and Lu7466 were exposed to polypropylene fleece in order to absorb odour components. Sniffer dogs were trained with loaded fleeces of both cell lines, and honey bees were trained with fleeces exposed to A549. Afterwards, their ability to distinguish between cell-free culture medium odour and lung cancer cell odour was tested. Neither bees nor dogs were able to discriminate between odours from the cancer cell cultures and the pure culture medium. Solid phase micro extraction followed by gas chromatography with mass selective detection produced profiles of volatiles from the headspace offered to the animals. The profiles from the cell lines were largely similar; distinct differences were based on the decrease of volatile culture medium components due to the cells' metabolic activity. In summary, cultured lung cancer cell lines do not produce any biomarkers recognizable by animals or gas chromatographic analysis.

  17. Identification of Serum Peptidome Signatures of Non-Small Cell Lung Cancer

    OpenAIRE

    Agnieszka Klupczynska; Agata Swiatly; Joanna Hajduk; Jan Matysiak; Wojciech Dyszkiewicz; Krystian Pawlak; Zenon J. Kokot

    2016-01-01

    Due to high mortality rates of lung cancer, there is a need for identification of new, clinically useful markers, which improve detection of this tumor in early stage of disease. In the current study, serum peptide profiling was evaluated as a diagnostic tool for non-small cell lung cancer patients. The combination of the ZipTip technology with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) for the analysis of peptide pattern of cancer patients (n ...

  18. [Targeted Therapy and Immunotherapy for Non-small Cell Lung Cancer 
with Brain Metastasis].

    Science.gov (United States)

    Song, Qi; Jiao, Shunchang; Li, Fang

    2016-08-20

    Brain metastasis, a common complication of non-small cell lung cancer (NSCLC) with an incidence rate of 30%-50%, significantly affects the patients' quality of life. The prognosis of patients of NSCLC with brain metastasis is extremely poor, the average median survival is only 1 m-2 m without treatment. The targeted therapy based on lung cancer driven gene is a new treatment. Besides, the immunotherapy which can enhance the effect of anti-cancer by simulating the immune system is a new approach. The combination of targeted therapy and immunotherapy can greatly benefit patients in clinical work.

  19. Targeted Therapy and Immunotherapy for Non-small Cell Lung Cancer 
with Brain Metastasis

    Directory of Open Access Journals (Sweden)

    Qi SONG

    2016-08-01

    Full Text Available Brain metastasis, a common complication of non-small cell lung cancer (NSCLC with an incidence rate of 30%-50%, significantly affects the patients’ quality of life. The prognosis of patients of NSCLC with brain metastasis is extremely poor, the average median survival is only 1 m-2 m without treatment. The targeted therapy based on lung cancer driven gene is a new treatment. Besides, the immunotherapy which can enhance the effect of anti-cancer by simulating the immune system is a new approach. The combination of targeted therapy and immunotherapy can greatly benefit patients in clinical work.

  20. Targeted Therapy and Immunotherapy for Non-small Cell Lung Cancer 
with Brain Metastasis

    OpenAIRE

    Song, Qi; Jiao, Shunchang; Li, Fang

    2016-01-01

    Brain metastasis, a common complication of non-small cell lung cancer (NSCLC) with an incidence rate of 30%-50%, significantly affects the patients’ quality of life. The prognosis of patients of NSCLC with brain metastasis is extremely poor, the average median survival is only 1 m-2 m without treatment. The targeted therapy based on lung cancer driven gene is a new treatment. Besides, the immunotherapy which can enhance the effect of anti-cancer by simulating the immune system is a new approa...

  1. Profile of ceritinib in the treatment of ALK+ metastatic non-small-cell lung cancer

    Directory of Open Access Journals (Sweden)

    Burns MW

    2015-05-01

    Full Text Available Mark W Burns, Eric S Kim Wilmot Cancer Center, University of Rochester, Rochester, NY, USA Abstract: Lung cancer has become one of the leading causes of death in both men and women in the United States, with approximately 230,000 new cases and 160,000 deaths each year. Approximately 80% of lung cancer patients are diagnosed with non-small-cell lung cancer (NSCLC, a subset of epithelial lung cancers that are generally insensitive to chemotherapy. An estimated 3%–7% of NSCLC patients harbor tumors containing anaplastic lymphoma kinase (ALK gene rearrangement as an oncogenic driver. Subsequent development of the first-generation tyrosine kinase inhibitor crizotinib demonstrated substantial initial ALK+-tumor regression, yet ultimately displayed resistance in treated patients. The recently approved tyrosine kinase inhibitor ceritinib has been shown to be an effective antitumor agent against crizotinib-naïve and -resistant ALK+-NSCLC patients. In this review, we will provide an overview of biology and management of ALK+-NSCLC with a special focus on clinical development of ceritinib. Keywords: ceritinib, anaplastic lymphoma kinase, non-small-cell lung cancer

  2. Promotion of MAG-1 on Metastasis of Lung Cancer Cells in vitro and Its Expression in Lung Cancer Tissue of 24 Cases

    Directory of Open Access Journals (Sweden)

    Jinqiang ZHANG

    2009-02-01

    Full Text Available Background and objective Tumor metastasis is a multistep process with many genes involved in. A novel gene MAG-1 , identified by suppression subtractive hybridization from lung cancer cells was found to be associated with tumor metastasis. The aims of this work are to investigate the metastasis related effects of MAG-1 on human lunggiant-cell line PLA801, and to compare the expression rate of MAG-1 in cancer tissue from lung cancer patients with different metastatic status. Methods Sense and anti-sense expressing vectors of MAG-1 were constructed and transfected into PLA801C and PLA801D respectively. Colony forming, adherence assay, MTT assay and Transwell experiments were used to evaluate the alterations of clone forming, cell-matrix adherence, proliferating and invasion of the stable transfected cell strains. Western blot was employed to detect the proteins levels of CD44, and MMP-2 in cell strains and mRNAstate of MAG-1 in lung cancer tissue from patients with or without pathological metastasis were also analyzed by RTPCR. Results MAG-1 could increase cell-ECM (Extracellular Matrix adhesive capacity, promote invasion, enhance cell proliferation and had no effects on clone forming ability of PLA801 cells in soft agar. MAG-1 was also found have positive effects on the protein level of CD44 and MMP-2 in PLA801 cells, and the detection rate of MAG-1 mRNA was much higher in cancer tissue from metastatic patients (7/12 than that in non-metastatic patients (2/12. Conclusion MAG-1 could promote lung cancer metastasis and might be a metastasis associated gene of lung cancer.

  3. Exosomal proteins as prognostic biomarkers in non-small cell lung cancer

    DEFF Research Database (Denmark)

    Paulsen, Birgitte Sandfeld; Aggerholm-Pedersen, N; Bæk, R

    2016-01-01

    BACKGROUND: Use of exosomes as biomarkers in non-small cell lung cancer (NSCLC) is an intriguing approach in the liquid-biopsy era. Exosomes are nano-sized vesicles with membrane-bound proteins that reflect their originating cell. Prognostic biomarkers are needed to improve patient selection...

  4. Unbiased Selection of Peptide-Peptoid Hybrids Specific for Lung Cancer Compared to Normal Lung Epithelial Cells.

    Science.gov (United States)

    Matharage, Jaya M; Minna, John D; Brekken, Rolf A; Udugamasooriya, D Gomika

    2015-12-18

    To develop widely applicable diagnostic and potentially therapeutic approaches overcoming protein heterogeneity in human cancer, we have developed a technology to unbiasedly select high specificity compound(s) that bind any biomolecule (e.g., proteins, lipids, carbohydrates) presented on the cancer cell surface but not on normal cells. We utilized a peptidomimetic based on-bead two-color (OBTC) combinatorial cell screen that can detect differences between two cell surfaces at high accuracy by looking for beads (where each bead in the library had one peptide-peptoid hybrid on the surface) that only bound cancer but not normal cells. We screened a library of 393 216 compounds targeting HCC4017 lung adenocarcinoma cells (labeled in red) in the presence of HBEC30KT normal bronchial epithelial cells (labeled in green) derived from the same tissue of the same patient. This screen identified a peptide-peptoid hybrid called PPS1 which displayed high specific binding for HCC4017 cancer cells over HBEC30KT cells. Specificity was validated through on-bead, ELISA-like and magnetic bead pulldown studies, while a scrambled version of PPS1 did not show any binding. Of interest, the simple dimeric version (PPS1D1) displayed cytotoxic activity on HCC4017 cells, but not on normal HBEC30KT cells. PPS1D1 also strongly accumulated in HCC4017 lung cancer xenografts in mice over control constructs. We conclude that such combinatorial screens using tumor and normal cells from the same patient have significant potential to develop new reagents for cancer biology, diagnosis, and potentially therapy.

  5. Nicotine-induced resistance of non-small cell lung cancer to treatment--possible mechanisms.

    Science.gov (United States)

    Czyżykowski, Rafał; Połowinczak-Przybyłek, Joanna; Potemski, Piotr

    2016-03-04

    Cigarette smoking is the leading risk factor of lung cancer. Data from several clinical studies suggest that continuation of smoking during therapy of tobacco-related cancers is associated with lower response rates to chemotherapy and/or radiotherapy, and even with decreased survival. Although nicotine--an addictive component of tobacco--is not a carcinogen, it may influence cancer development and progression or effectiveness of anti-cancer therapy. Several in vitro and in vivo trials have evaluated the influence of nicotine on lung cancer cells. The best known mechanisms by which nicotine impacts cancer biology involve suppression of apoptosis induced by certain drugs or radiation, promotion of proliferation, angiogenesis, invasion and migration of cancer cells. This effect is mainly mediated by membranous nicotinic acetylcholine receptors whose stimulation leads to sustained activation of such intracellular pathways as PI3K/Akt/mTOR, RAS/RAF/MEK/ERK and JAK/STAT, induction of NF-κB activity, enhanced transcription of mitogenic promoters, inhibition of the mitochondrial death pathway or stimulation of pro-angiogenic factors. We herein summarize the mechanisms underlying nicotine's influence on biology of lung cancer cells and the effectiveness of anti-cancer therapy.

  6. Effects of chemically modified nanostructured PLGA on functioning of lung and breast cancer cells

    Directory of Open Access Journals (Sweden)

    Zhang L

    2013-05-01

    Full Text Available Lijuan Zhang,1 Thomas J Webster21Department of Chemistry, 2School of Engineering, Brown University, Providence, RI, USABackground: The aim of this study was to investigate the effects of poly-lactic-co-glycolic acid (PLGA nanotopographies with alginate or chitosan protein preadsorption on the functioning of healthy and cancerous lung and breast cells, including adhesion, proliferation, apoptosis, and release of vascular endothelial growth factor (VEGF, which promotes tumor angiogenesis and secretion.Methods: We used a well established cast-mold technique to create nanoscale surface features on PLGA. Some of the nanomodified PLGA films were then exposed to alginate and chitosan. Surface roughness and the presence of protein was confirmed by atomic force microscopy. Surface energy was quantified by contact angle measurement.Results: Nanostructured PLGA surfaces with 23 nm features decreased synthesis of VEGF in both lung and breast cancer cells compared with conventional PLGA. Preadsorbing alginate further decreased cancer cell function, with nanostructured PLGA preadsorbed with alginate achieving the greatest decrease in synthesis of VEGF in both lung and breast cancer cells. In contrast, compared with nonmodified smooth PLGA, healthy cell functions were either not altered (ie, breast or were enhanced (ie, lung by use of nanostructured features and alginate or chitosan protein preadsorption.Conclusion: Using this technique, we developed surface nanometric roughness and modification of surface chemistry that could selectively decrease breast and lung cancer cell functioning without the need for chemotherapeutics. This technique requires further study in a wide range of anticancer and regenerative medicine applications.Keywords: breast, lung, cancer, nanotechnology, alginate, chitosan

  7. Erlotinib Hydrochloride and Cetuximab in Treating Patients With Advanced Gastrointestinal Cancer, Head and Neck Cancer, Non-Small Cell Lung Cancer, or Colorectal Cancer

    Science.gov (United States)

    2015-09-28

    Adenocarcinoma of the Colon; Adenocarcinoma of the Rectum; Advanced Adult Primary Liver Cancer; Carcinoma of the Appendix; Gastrointestinal Stromal Tumor; Metastatic Gastrointestinal Carcinoid Tumor; Metastatic Squamous Neck Cancer With Occult Primary; Recurrent Adenoid Cystic Carcinoma of the Oral Cavity; Recurrent Adult Primary Liver Cancer; Recurrent Anal Cancer; Recurrent Basal Cell Carcinoma of the Lip; Recurrent Colon Cancer; Recurrent Esophageal Cancer; Recurrent Esthesioneuroblastoma of the Paranasal Sinus and Nasal Cavity; Recurrent Extrahepatic Bile Duct Cancer; Recurrent Gallbladder Cancer; Recurrent Gastric Cancer; Recurrent Gastrointestinal Carcinoid Tumor; Recurrent Inverted Papilloma of the Paranasal Sinus and Nasal Cavity; Recurrent Lymphoepithelioma of the Nasopharynx; Recurrent Lymphoepithelioma of the Oropharynx; Recurrent Metastatic Squamous Neck Cancer With Occult Primary; Recurrent Midline Lethal Granuloma of the Paranasal Sinus and Nasal Cavity; Recurrent Mucoepidermoid Carcinoma of the Oral Cavity; Recurrent Non-small Cell Lung Cancer; Recurrent Pancreatic Cancer; Recurrent Rectal Cancer; Recurrent Salivary Gland Cancer; Recurrent Small Intestine Cancer; Recurrent Squamous Cell Carcinoma of the Hypopharynx; Recurrent Squamous Cell Carcinoma of the Larynx; Recurrent Squamous Cell Carcinoma of the Lip and Oral Cavity; Recurrent Squamous Cell Carcinoma of the Nasopharynx; Recurrent Squamous Cell Carcinoma of the Oropharynx; Recurrent Squamous Cell Carcinoma of the Paranasal Sinus and Nasal Cavity; Recurrent Verrucous Carcinoma of the Larynx; Recurrent Verrucous Carcinoma of the Oral Cavity; Small Intestine Adenocarcinoma; Small Intestine Leiomyosarcoma; Small Intestine Lymphoma; Stage IV Adenoid Cystic Carcinoma of the Oral Cavity; Stage IV Anal Cancer; Stage IV Basal Cell Carcinoma of the Lip; Stage IV Colon Cancer; Stage IV Esophageal Cancer; Stage IV Esthesioneuroblastoma of the Paranasal Sinus and Nasal Cavity; Stage IV Gastric Cancer

  8. A Highly Efficient Gene Expression Programming (GEP Model for Auxiliary Diagnosis of Small Cell Lung Cancer.

    Directory of Open Access Journals (Sweden)

    Zhuang Yu

    Full Text Available Lung cancer is an important and common cancer that constitutes a major public health problem, but early detection of small cell lung cancer can significantly improve the survival rate of cancer patients. A number of serum biomarkers have been used in the diagnosis of lung cancers; however, they exhibit low sensitivity and specificity.We used biochemical methods to measure blood levels of lactate dehydrogenase (LDH, C-reactive protein (CRP, Na+, Cl-, carcino-embryonic antigen (CEA, and neuron specific enolase (NSE in 145 small cell lung cancer (SCLC patients and 155 non-small cell lung cancer and 155 normal controls. A gene expression programming (GEP model and Receiver Operating Characteristic (ROC curves incorporating these biomarkers was developed for the auxiliary diagnosis of SCLC.After appropriate modification of the parameters, the GEP model was initially set up based on a training set of 115 SCLC patients and 125 normal controls for GEP model generation. Then the GEP was applied to the remaining 60 subjects (the test set for model validation. GEP successfully discriminated 281 out of 300 cases, showing a correct classification rate for lung cancer patients of 93.75% (225/240 and 93.33% (56/60 for the training and test sets, respectively. Another GEP model incorporating four biomarkers, including CEA, NSE, LDH, and CRP, exhibited slightly lower detection sensitivity than the GEP model, including six biomarkers. We repeat the models on artificial neural network (ANN, and our results showed that the accuracy of GEP models were higher than that in ANN. GEP model incorporating six serum biomarkers performed by NSCLC patients and normal controls showed low accuracy than SCLC patients and was enough to prove that the GEP model is suitable for the SCLC patients.We have developed a GEP model with high sensitivity and specificity for the auxiliary diagnosis of SCLC. This GEP model has the potential for the wide use for detection of SCLC in less

  9. Matrix metalloproteinase-10 is required for lung cancer stem cell maintenance, tumor initiation and metastatic potential.

    Directory of Open Access Journals (Sweden)

    Verline Justilien

    Full Text Available Matrix metalloproteinases (Mmps stimulate tumor invasion and metastasis by degrading the extracellular matrix. Here we reveal an unexpected role for Mmp10 (stromelysin 2 in the maintenance and tumorigenicity of mouse lung cancer stem-like cells (CSC. Mmp10 is highly expressed in oncosphere cultures enriched in CSCs and RNAi-mediated knockdown of Mmp10 leads to a loss of stem cell marker gene expression and inhibition of oncosphere growth, clonal expansion, and transformed growth in vitro. Interestingly, clonal expansion of Mmp10 deficient oncospheres can be restored by addition of exogenous Mmp10 protein to the culture medium, demonstrating a direct role for Mmp10 in the proliferation of these cells. Oncospheres exhibit enhanced tumor-initiating and metastatic activity when injected orthotopically into syngeneic mice, whereas Mmp10-deficient cultures show a severe defect in tumor initiation. Conversely, oncospheres implanted into syngeneic non-transgenic or Mmp10(-/- mice show no significant difference in tumor initiation, growth or metastasis, demonstrating the importance of Mmp10 produced by cancer cells rather than the tumor microenvironment in lung tumor initiation and maintenance. Analysis of gene expression data from human cancers reveals a strong positive correlation between tumor Mmp10 expression and metastatic behavior in many human tumor types. Thus, Mmp10 is required for maintenance of a highly tumorigenic, cancer-initiating, metastatic stem-like cell population in lung cancer. Our data demonstrate for the first time that Mmp10 is a critical lung cancer stem cell gene and novel therapeutic target for lung cancer stem cells.

  10. Role of AXL expression in non-small cell lung cancer.

    Science.gov (United States)

    Qu, Xiaohan; Liu, Jinlu; Zhong, Xinwen; Li, Xi; Zhang, Qigang

    2016-12-01

    The present study aimed to investigate the expression profile of AXL in non-small cell lung cancer (NSCLC) and its clinical significance. The current study included 257 NSCLC patients, tyrosine-protein kinase receptor UFO (AXL) expression in paired lung cancer and adjacent normal lung tissues of NSCLC patients were compared by immunohistochemistry, western blot analysis and quantitative polymerase chain reaction (qPCR). These methods were used to detect the expression of the AXL gene and protein in fresh tissues from 35 patients. Small interfering RNA (siRNA) was transfected into the H1299 lung cancer cell line to knock down AXL expression; the effects of AXL-siRNA on cell proliferation and migration were examined by MTT and Transwell migration assay, respectively. It was found that AXL staining density in lung cancer tissues was significantly increased compared with adjacent normal lung tissues (55.25 vs. 26.85%; P<0.01); and the expression level of AXL in NSCLC patients was significantly associated with the degree of tumor differentiation (P<0.01) and the clinical stage of disease (P<0.01). Western blotting and qPCR showed that AXL expression was significantly higher in cancer tissues compared with that in adjacent lung tissue (P<0.05). Additionally, the current study also showed that AXL-siRNA inhibited H1299 cell proliferation and migration in vitro. The present study demonstrates the association between increased expression of AXL in NSCLC and the low differentiation phenotype, and its effects on cell proliferation and migration, suggesting its potential clinical values for the prognosis of NSCLC.

  11. Maintenance therapies for non small cell lung cancer

    Directory of Open Access Journals (Sweden)

    Normand eBlais

    2014-08-01

    Full Text Available Treatment of lung cancer had evolved during the last decade with the introduction of new chemotherapeutic regimens and targeted therapies. However, the maximum benefit reached after first line therapy is limited by the cumulative toxicity of platinum drugs and the subsequent deterioration in performance status in a high percentage of patients who end up receiving not more than one line of treatment. Maintenance therapy had been introduced and evaluated in many large randomized trials showing a delay in tumour progression and an improvement in overall survival. This effective strategy should be taken into account when discussing the initial treatment plan and tailored according to the preferences of both patients and physicians.

  12. Adaptive responses to dasatinib-treated lung squamous cell cancer cells harboring DDR2 mutations.

    Science.gov (United States)

    Bai, Yun; Kim, Jae-Young; Watters, January M; Fang, Bin; Kinose, Fumi; Song, Lanxi; Koomen, John M; Teer, Jamie K; Fisher, Kate; Chen, Yian Ann; Rix, Uwe; Haura, Eric B

    2014-12-15

    DDR2 mutations occur in approximately 4% of lung squamous cell cancer (SCC) where the tyrosine kinase inhibitor dasatinib has emerged as a new therapeutic option. We found that ERK and AKT phosphorylation was weakly inhibited by dasatinib in DDR2-mutant lung SCC cells, suggesting that dasatinib inhibits survival signals distinct from other oncogenic receptor tyrosine kinases (RTK) and/or compensatory signals exist that dampen dasatinib activity. To gain better insight into dasatinib's action in these cells, we assessed altered global tyrosine phosphorylation (pY) after dasatinib exposure using a mass spectrometry-based quantitative phosphoproteomics approach. Overlaying protein-protein interaction relationships upon this dasatinib-regulated pY network revealed decreased phosphorylation of Src family kinases and their targets. Conversely, dasatinib enhanced tyrosine phosphorylation in a panel of RTK and their signaling adaptor complexes, including EGFR, MET/GAB1, and IGF1R/IRS2, implicating a RTK-driven adaptive response associated with dasatinib. To address the significance of this observation, these results were further integrated with results from a small-molecule chemical library screen. We found that dasatinib combined with MET and insulin-like growth factor receptor (IGF1R) inhibitors had a synergistic effect, and ligand stimulation of EGFR and MET rescued DDR2-mutant lung SCC cells from dasatinib-induced loss of cell viability. Importantly, we observed high levels of tyrosine-phosphorylated EGFR and MET in a panel of human lung SCC tissues harboring DDR2 mutations. Our results highlight potential RTK-driven adaptive-resistant mechanisms upon DDR2 targeting, and they suggest new, rationale cotargeting strategies for DDR2-mutant lung SCC.

  13. In Situ Characterizing Membrane Lipid Phenotype of Human Lung Cancer Cell Lines Using Mass Spectrometry Profiling

    OpenAIRE

    2016-01-01

    Abnormal lipid metabolisms are closely associated with cancers. In this study, mass spectrometry was employed to in situ investigate the associations of membrane lipid phenotypes of six human lung cancer cell lines (i.e., A549, H1650, H1975 from adenocarcinoma, H157 and H1703 from squamous cell carcinomas, and H460 from a large cell carcinoma) with cancer cell types and finally total 230 lipids were detected. Based these 230 lipids, partial least-square discriminant analysis indicated that fi...

  14. PET/CT imaging in response evaluation of patients with small cell lung cancer

    DEFF Research Database (Denmark)

    Fischer, Barbara M; Mortensen, Jann; Langer, Seppo W;

    2006-01-01

    UNLABELLED: There is an increasing amount of evidence on the usability of PET in response evaluation of non-small cell lung cancer. However, data on SCLC is scarce and mainly retrospective. This prospective study assesses the use of PET (positron emission tomography) and PET/CT in response...... evaluation of patients with small cell lung cancer (SCLC). METHODS: Assignment of early and final response was compared between PET, PET/CT, and CT in 20 patients with SCLC. Final response as assigned by CT (RECIST) served as reference. RESULTS: At response evaluation after one cycle of chemotherapy major...

  15. Cancer immunotherapy: a future paradigm shift in the treatment of non-small cell lung cancer.

    Science.gov (United States)

    Anagnostou, Valsamo K; Brahmer, Julie R

    2015-03-01

    Emerging evidence on the role of the antitumor activity of the immune system has generated great interest in immunotherapy even for tumors that were historically considered as nonimmunogenic. Immunotherapy is emerging as a major modality in non-small cell lung cancer (NSCLC) treatment focusing on vaccine approaches to elicit specific immune responses and development of inhibitors of the molecular mediators of cancer-induced immunosuppression (immune checkpoints) to boost antitumor immune responses. Amplification of the host response against evolving tumors through vaccination is being investigated in ongoing clinical trials with tumor cell vaccines; however, the clinical efficacy of these agents has been limited. Blocking inhibitory pathways such as the CTL antigen 4 (CTLA-4) and programmed cell death 1 (PD-1) checkpoint pathways with mAbs has generated antitumor immune responses that are transforming cancer therapeutics. PD-1 and programmed cell death ligand 1 (PD-L1) antibodies have shown durable responses in NSCLC, with a favorable safety profile and manageable side effects. The activity of immune checkpoint inhibitors is currently been assessed in treatment-naïve patients with PD-L1-positive advanced NSCLC. Combinatorial approaches with other immune checkpoint inhibitors, chemotherapy, or targeted agents are being explored in ongoing clinical trials, and may improve outcome in NSCLC.

  16. Gefitinib versus docetaxel in previously treated non-small-cell lung cancer (INTEREST): a randomised phase III trial

    DEFF Research Database (Denmark)

    Kim, E.S.; Hirsh, V.; Mok, T.;

    2008-01-01

    BACKGROUND: Two phase II trials in patients with previously-treated advanced non-small-cell lung cancer suggested that gefitinib was efficacious and less toxic than was chemotherapy. We compared gefitinib with docetaxel in patients with locally advanced or metastatic non-small-cell lung cancer wh...

  17. The histone demethylase PHF8 is an oncogenic protein in human non-small cell lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Yuzhou; Pan, Xufeng; Zhao, Heng, E-mail: hengzhao1966@sina.com

    2014-08-15

    Highlights: • PHF8 overexpresses in human NSCLC and predicts poor survival. • PHF8 regulates lung cancer cell growth and transformation. • PHF8 regulates apoptosis in human lung cancer cells. • PHF8 promotes miR-21 expression in human lung cancer. • MiR-21 is critically essential for PHF8 function in human lung cancer cells. - Abstract: PHF8 is a JmjC domain-containing protein and erases repressive histone marks including H4K20me1 and H3K9me1/2. It binds to H3K4me3, an active histone mark usually located at transcription start sites (TSSs), through its plant homeo-domain, and is thus recruited and enriched in gene promoters. PHF8 is involved in the development of several types of cancer, including leukemia, prostate cancer, and esophageal squamous cell carcinoma. Herein we report that PHF8 is an oncogenic protein in human non-small cell lung cancer (NSCLC). PHF8 is up-regulated in human NSCLC tissues, and high PHF8 expression predicts poor survival. Our in vitro and in vivo evidence demonstrate that PHF8 regulates lung cancer cell proliferation and cellular transformation. We found that PHF8 knockdown induces DNA damage and apoptosis in lung cancer cells. PHF8 promotes miR-21 expression in human lung cancer, and miR-21 knockdown blocks the effects of PHF8 on proliferation and apoptosis of lung cancer cells. In summary, PHF8 promotes lung cancer cell growth and survival by regulating miR-21.

  18. ZEB-1, a Repressor of the Semaphorin 3F Tumor Suppressor Gene in Lung Cancer Cells

    Directory of Open Access Journals (Sweden)

    Jonathan Clarhaut

    2009-02-01

    Full Text Available SEMA3F is a secreted semaphorin with potent antitumor activity, which is frequently downregulated in lung cancer. In cancer cell lines, SEMA3F overexpression decreases hypoxia-induced factor 1α protein and vascular endothelial growth factor mRNA, and inhibits multiple signaling components. Therefore, understanding how SEMA3F expression is inhibited in cancer cells is important. We previously defined the promoter organization of SEMA3F and found that chromatin remodeling by a histone deacetylase inhibitor was sufficient to activate SEMA3F expression. In lung cancer, we have also shown that ZEB-1, an E-box transcription repressor, is predominantly responsible for loss of E-Cadherin associated with a poor prognosis and resistance to epidermal growth factor receptor inhibitors. In the present study, we demonstrated that ZEB-1 also inhibits SEMA3F in lung cancer cells. Levels of ZEB-1, but not ZEB-2, Snail or Slug, significantly correlate with SEMA3F inhibition, and overexpression or inhibition of ZEB-1 correspondingly affected SEMA3F expression. Four conserved E-box sites were identified in the SEMA3F gene. Direct ZEB-1 binding was confirmed by chromatin immunoprecipitation assays for two of these, and ZEB-1 binding was reduced when cells were treated with a histone deacetylase inhibitor. These results demonstrate that ZEB-1 directly inhibits SEMA3F expression in lung cancer cells. SEMA3F loss was associated with changes in cell signaling: increased phospho-AKT in normoxia and increase of hypoxia-induced factor 1α protein in hypoxia. Moreover, exogenous addition of SEMA3F could modulate ZEB-1-induced angiogenesis in a chorioallantoic membrane assay. Together, these data provide further support for the importance of SEMA3F and ZEB-1 in lung cancer progression.

  19. Changing paradigm in treatment of lung cancer

    Institute of Scientific and Technical Information of China (English)

    Sundaram Viswanath; Abhishek Pathak; Amul Kapoor; Anvesh Rathore; Bhupendra Nath Kapur

    2016-01-01

    Lung cancer is one of the most common and deadliest forms of cancer. It accounts for 13% of all new cancer cases and 19% of cancer-related deaths. In India, lung cancer constitutes 6.9% of all new cancer cases and 9.3% of all cancer cases. There has also been a dramatic rise worldwide in both the absolute and relative frequencies of lung cancer occurrence. In 1953 it became the most common cause of cancer mortality in men. By 1985, it became the leading cause of cancer deaths in women, causing almost twice as many deaths as breast cancer. The demographic proifle of lung cancer has changed greatly over the years; however, methods for diagnosing, screening, and managing lung cancer patients have improved. This is due to our growing understanding of the biology of lung cancer. It is now possible to further deifne lung cancer types beyond small cell lung carcinoma and non-small cell lung carcinoma. Moreover, new histology-based therapeutic modalities have been developed, and more new lung cancer biomarkers have been uncovered. Therefore, more detailed histological characterization of lung cancer samples is warranted in order to determine the best course of treatment for speciifc patients. This review article describes how these new molecular technologies are shaping the way lung cancer can be treated in future.

  20. Challenges in optimizing chemoradiation in locally advanced non small-cell lung cancers in India

    Directory of Open Access Journals (Sweden)

    Sushma Agrawal

    2013-01-01

    Full Text Available Data supporting use of concurrent chemoradiation in locally advanced lung cancers comes from clinical trials from developed countries. Applicability and outcomes of such schedules in developing countries is not widely reported. There are various challenges in delivering chemoradiation in locally advanced non small cell lung cancer in developing countries which is highlighted by an audit of patients treated with chemoradiation in our center. This article deals with the challenges in the context of a developing country. We conclude that sequential chemoradiotherapy is better tolerated than concurrent chemoradiation in Indian patients with locally advanced non-small cell lung cancers. Patients with stage IIIa, normal weight or overweight, and adequate baseline pulmonary function should be offered concurrent chemoradiation.

  1. Ablation of p120-Catenin Altering the Activity of Small GTPase in Human Lung Cancer Cells

    Directory of Open Access Journals (Sweden)

    Nan LIU

    2009-05-01

    Full Text Available Background and objective p120-catenin (p120ctn, a member of the Armadillo gene family, has emerged as an important modulator of small GTPase activities. Therefore, it plays novel roles in tumor malignant phenotype, such as invasion and metastasis, whose mechanism are not well clarified yet. The aim of this study is to explore the roles of p120ctn on the regulation of small GTP family members in lung cancer and the effects to lung cancer invasions andmetastasis. Methods After p120ctn was knocked down by siRNA, in vivo and in vitro analysis was applied to investigate the role and possible mechanism of p120ctn in lung cancer, such as Western Blot, pull-down analysis, and nude mice models. Results p120ctn depletion inactivated RhoA, with the the activity of Cdc42 and Rac1 increased, the invasiveness of lung cancer cells was promoted both in vitro and in vivo . Conclusion p120ctn gene knockdown enhances the metastasis of lung cancer cells, probably by altering expression of small GTPase, such as inactivation of RhoA and activation of Cdc42/Rac1.

  2. Mutational landscape determines sensitivity to PD-1 blockade in non–small cell lung cancer

    Science.gov (United States)

    Rizvi, Naiyer A.; Hellmann, Matthew D.; Snyder, Alexandra; Kvistborg, Pia; Makarov, Vladimir; Havel, Jonathan J.; Lee, William; Yuan, Jianda; Wong, Phillip; Ho, Teresa S.; Miller, Martin L.; Rekhtman, Natasha; Moreira, Andre L.; Ibrahim, Fawzia; Bruggeman, Cameron; Gasmi, Billel; Zappasodi, Roberta; Maeda, Yuka; Sander, Chris; Garon, Edward B.; Merghoub, Taha; Wolchok, Jedd D.; Schumacher, Ton N.; Chan, Timothy A.

    2016-01-01

    Immune checkpoint inhibitors, which unleash a patient’s own T cells to kill tumors, are revolutionizing cancer treatment. To unravel the genomic determinants of response to this therapy, we used whole-exome sequencing of non–small cell lung cancers treated with pembrolizumab, an antibody targeting programmed cell death-1 (PD-1). In two independent cohorts, higher nonsynonymous mutation burden in tumors was associated with improved objective response, durable clinical benefit, and progression-free survival. Efficacy also correlated with the molecular smoking signature, higher neoantigen burden, and DNA repair pathway mutations; each factor was also associated with mutation burden. In one responder, neoantigen-specific CD8+ T cell responses paralleled tumor regression, suggesting that anti–PD-1 therapy enhances neoantigen-specific T cell reactivity. Our results suggest that the genomic landscape of lung cancers shapes response to anti–PD-1 therapy. PMID:25765070

  3. Two Cases of Non-Small Cell Lung Cancer Treated with Intravenous Cultivated Wild Ginseng Pharmacopuncture

    Directory of Open Access Journals (Sweden)

    Sun-Hwi Bang

    2008-06-01

    Full Text Available Objectives : To investigate the therapeutic effects of intravenous cultivated wild ginseng(Panax ginseng C.A. Meyer pharmacopuncture(CWGP in treating patients with non-small cell lung cancer(NSCLC. Design : Prospective case series. Setting : This study was conducted at the East-West Cancer Center of Dunsan Oriental Hospital, Daejeon University. Patients : Two non-small cell lung cancer patients. Intervention : Two non-small cell lung cancer patients were injected CWGP(20mL/day mixed with 0.9% normal saline(100mL intravenously. Each patient received a total of 16 and 9 cycles, respectively. One cycle is composed of 14 days. Outcome Measures : The effect of intravenous CWGP was measured by scanning with computed tomography(CT after every 2 cycle and Positron emission tomography- computed tomography(PET/CT after every 6 cycles. Response and progression was evaluated using the Response Evaluation Criteria in Solid Tumors(RECIST Committee classification of complete response(CR, partial response(PR, progressive disease(PD and stable disease(SD. Results : They were treated with intravenous CWGP for 8 and 5 months respectively. time later, each tumor remains stable disease(SD Conclusion : These cases may give us a possibility that intravenous CWGP offers potential benefits for non-small cell lung cancer patients.

  4. Inhibition of human telomerase enhances the effect of chemotherapeutic agents in lung cancer cells.

    Science.gov (United States)

    Misawa, Masafumi; Tauchi, Tetsuzo; Sashida, Goro; Nakajima, Akihiro; Abe, Kenji; Ohyashiki, Junko H; Ohyashiki, Kazuma

    2002-11-01

    Telomerase is a ribonucleoprotein enzyme that maintains protective structures at the ends of eukaryotic chromosomes. Earlier studies have reported that the presence of telomerase activity in tumors of patients with non-small cell lung cancer patients correlates with a high proliferation rate and advanced pathological stage. Thus, the modification of telomerase activity may be a potential therapeutic modality for the treatment of lung and other cancers. We introduced vectors encoding dominant negative (DN)-hTERT, or wild-type (WT)-hTERT, or a control vector expressing only a drug-resistance marker, into the A549 lung cancer cell line, and assessed the biological effect of telomerase inhibition on cellular immortality. Ectopic expression of DN-hTERT resulted in complete inhibition of telomerase activity and reduction of telomere length. The entire population of telomerase-inhibited A549 cells exhibited cytoplasmic blebbling and chromatin condensation, which are features of apoptosis. In contrast, A549 cells expressing wild-type hTERT, which differs from the mutants by only two amino acids, exhibited normal morphology. Evidence for apoptosis in the telomerase-inhibited cells was provided by flow cytometric analysis with APO2.7 monoclonal antibody. We also observed enhanced induction of apoptosis by chemotherapeutic reagents, including cisplatin, docetaxel and etoposide, in DN-hTERT-expressing A549 cells, as compared with WT-hTERT-expressing cells. These results demonstrate that disruption of telomere maintenance limits the cellular lifespan of lung cancer cells, and show that the combined use of chemotherapeutic agents and telomere maintenance inhibition may be effective in the treatment of patients with non-small cell lung cancer.

  5. Second primary cancer in survivors following concurrent chemoradiation for locally advanced non-small-cell lung cancer

    Science.gov (United States)

    Takigawa, N; Kiura, K; Segawa, Y; Watanabe, Y; Kamei, H; Moritaka, T; Shibayama, T; Ueoka, H; Gemba, K; Yonei, T; Tabata, M; Shinkai, T; Hiraki, S; Takemoto, M; Kanazawa, S; Matsuo, K; Tanimoto, M

    2006-01-01

    Long-term cancer survivors risk development of second primary cancers (SPC). Vigilant follow-up may be required. We report outcomes of 92 patients who underwent chemoradiation for unresectable stage III non-small-cell lung cancer, with a median follow-up of 8.9 years. The incidence of SPC was 2.4 per 100 patient-years (95% confidence interval: 1.0–4.9). PMID:17031394

  6. An Overview: Treatment of Lung Cancer on Researcher Point of View

    Directory of Open Access Journals (Sweden)

    Javeria Amin

    2015-01-01

    Full Text Available Cancers is defined as the uncontrolled cell divisions. Cell does not grow maturely and destined to uncontrolled cell growth. When these cells of lungs grow uncontrolled it is called lung cancer. Nowadays mortality rate due to lung cancer is increasing day by day. Many treatment and diagnoses are now a day’s available to deal with lung cancer. Here we disused different method for diagnosis the common types of lung cancer Non-Small Cell Lung Cancer, Small Cell Lung Cancer, Small Cell Lung Cancer Limited Stage, Small Cell Lung Cancer - Extensive Stage, Lung Adenocarcinoma, Squamous Cell Carcinoma,Bronchioloalveolar carcinoma (BAC, Metastatic lung cancer.

  7. Low-Dose Radiation Induces Cell Proliferation in Human Embryonic Lung Fibroblasts but not in Lung Cancer Cells

    Directory of Open Access Journals (Sweden)

    Xinyue Liang

    2016-01-01

    Full Text Available Hormesis and adaptive responses are 2 important biological effects of low-dose ionizing radiation (LDR. In normal tissue, LDR induces hormesis as evinced by increased cell proliferation; however, whether LDR also increases tumor cell proliferation needs to be investigated. In this study, cell proliferation was assayed by total cell numbers and the Cell Counting Kit 8 assay. Mitogen-activated protein kinases (MAPK/extracellular signal-regulated kinase (ERK and phosphatidylinositol 3′ -kinase(PI3K-Akt (PI3K/AKT phosphorylation were determined by Western blot analysis. Human embryonic lung fibroblast 2BS and lung cancer NCI-H446 cell lines were irradiated with LDR at different doses (20-100 mGy. In response to 20 to 75 mGy X-rays, cell proliferation was significantly increased in 2BS but not in NCI-H446 cells. In 2BS cells, LDR at 20 to 75 mGy also stimulated phosphorylation of MAPK/ERK pathway proteins including ERK, MEK, and Raf and of the PI3K/AKT pathway protein AKT. To test whether ERK1/2 and AKT pathway activation was involved in the stimulation of cell proliferation in 2BS cells, the MAPK/ERK and PI3K/AKT pathways were inhibited using their specific inhibitors, U0126 and LY294002. U0126 decreased the phosphorylation of ERK1/2, and LY294002 decreased the phosphorylation of AKT; each could significantly inhibit LDR-induced 2BS cell proliferation. However, LDR did not stimulate these kinases, and kinase inhibitors also did not affect cell proliferation in the NCI-H446 cells. These results suggest that LDR stimulates cell proliferation via the activation of both MAPK/ERK and PI3K/AKT signaling pathways in 2BS but not in NCI-H446 cells. This finding implies the potential for applying LDR to protect normal tissues from radiotherapy without diminishing the efficacy of tumor therapy.

  8. Changes in Functional Lung Regions During the Course of Radiation Therapy and Their Potential Impact on Lung Dosimetry for Non-Small Cell Lung Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Xue [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States); Department of Radiation Oncology, Shandong Cancer Hospital, Shandong University, Jinan (China); Frey, Kirk [Division of Nuclear Medicine, Department of Radiology, University of Michigan, Ann Arbor, Michigan (United States); Matuszak, Martha; Paul, Stanton; Ten Haken, Randall [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States); Yu, Jinming [Department of Radiation Oncology, Shandong Cancer Hospital, Shandong University, Jinan (China); Kong, Feng-Ming, E-mail: fkong@gru.edu [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States); Department of Radiation Oncology, Georgia Regents University, Augusta, Georgia (United States)

    2014-05-01

    Purpose: To study changes in functional activity on ventilation (V)/perfusion (Q) single-photon emission computed tomography (SPECT) during radiation therapy (RT) and explore the impact of such changes on lung dosimetry in patients with non-small cell lung cancer (NSCLC). Methods and Materials: Fifteen NSCLC patients with centrally located tumors were enrolled. All patients were treated with definitive RT dose of ≥60 Gy. V/Q SPECT-CT scans were performed prior to and after delivery of 45 Gy of fractionated RT. SPECT images were used to define temporarily dysfunctional regions of lung caused by tumor or other potentially reversible conditions as B3. The functional lung (FL) was defined on SPECT by 2 separate approaches: FL1, a threshold of 30% of the maximum uptake of the patient's lung; and FL2, FL1 plus B3 region. The impact of changes in FL between initiation of RT and delivery of 45 Gy on lung dosimetry were analyzed. Results: Fourteen patients (93%) had larger FL2 volumes than FL1 pre-RT (P<.001). Dysfunctional lung became functional in 11 patients (73%) on V SPECT and in 10 patients (67%) on Q SPECT. The dosimetric parameters generated from CT-based anatomical lung had significantly lower values in FL1 than FL2, with a median reduction in the volume of lung receiving a dose of at least 20 Gy (V{sub 20}) of 3%, 5.6%, and mean lung dose of 0.95 and 1.55 on V and Q SPECT respectively. Conclusions: Regional ventilation and perfusion function improve significantly during RT in centrally located NSCLC. Lung dosimetry values vary notably between different definitions of functional lung.

  9. Micro RNA-98 interferes with expression interleukin-10 in peripheral B cells of patients with lung cancer

    Science.gov (United States)

    Li, Yun; Rong, Jian; Qin, Jie; He, Jin-Yuan; Chen, Hui-Guo; Huang, Shao-Hong

    2016-09-01

    Interleukin (IL)-10-producing B cells (B10 cells) plays an important role in the tumor tolerance. High frequency of peripheral B10 cell was reported in patients with lung cancer recently. Micro RNA (miR) regulates some gene expression. This study test a hypothesis that miR-98 suppresses the expression of IL-10 in B cells of subjects with lung cancer. The results showed that the levels of miR-98 were significantly less in peripheral B cells of patients with lung cancer than that in healthy subjects. IL-10 mRNA levels in peripheral B cells were significantly higher in lung cancer patients as compared with healthy controls. A negative correlation was identified between miR-98 and IL-10 in peripheral B cells. Serum IL-13 was higher in lung cancer patients than that in healthy controls. The levels of IL-13 were also negatively correlated with IL-10 in B cells. Exposure B10 cells to IL-13 in the culture or over expression of miR-98 reduced the expression of IL-10 in B cells. Administration with miR-98-laden liposomes inhibited the lung cancer growth in a mouse model. In conclusion, up regulation of miR-98 inhibits the expression of IL-10 in B cells, which may contribute to inhibit the lung cancer tolerance in the body.

  10. Assessment of metal contaminants in non-small cell lung cancer by EDX microanalysis

    Directory of Open Access Journals (Sweden)

    M. Scimeca

    2014-09-01

    Full Text Available Human cardio-respiratory diseases are strongly correlated to concentrations of atmospheric elements. Bioaccumulation of heavy metals is strictly monitored, because of its possible toxic effects. In this work, we utilized the EDX microanalysis in order to identify the potential heavy metal accumulation in the lung tissue.  To this aim, we enrolled 45 human lung biopsies: 15 non-small cell lung cancers, 15 lung benign lesions and 15 control biopsies. Lung samples were both paraffin embedded for light microscopy study and eponepoxid embedded for transmission electron microscopy. EDX microanalysis was performed on 100 nm thick unstained ultrathin-sections placed on specific copper grids. Our results demonstrated that the EDX technology was particularly efficient in the study of elemental composition of lung tissues, where we found heavy metals, such as Cobalt (Co, Chromium (Cr, Manganese (Mn and Lead (Pb. Furthermore, in malignant lesions we demonstrated the presence of multiple bio-accumulated elements. In fact, a high rate of lung cancers was associated with the presence of 3 or more bio-accumulated elements compared to benign lesions and control tissue (91.7%, 0%, 8.3%, respectively. The environmental impact on pulmonary carcinogenesis could be better clarified by demonstrating the presence of polluting agents in lung tissues. The application of EDX microanalysis on biological tissuescould shed new light in the study of the possible bioaccumulation of polluting agents in different human organs and systems.

  11. EXPRESSION OF P120ctn IN NON-SMALL-CELL LUNG CANCER: A CLINICOPATHOLOGICAL STUDY

    Institute of Scientific and Technical Information of China (English)

    张志坤; 林东; 王恩华; 关奕

    2002-01-01

    Objective: To investigate the expression of p120ctn in non-small-cell lungcancer (NSCLC) and its relationship with clinicopathological factors and prognosis. Methods: p120ctn expression was tested by immunohistochemistry for 80 tumors from patients with non-small-cell lung cancer. Correlations were investigated between p120ctn immunostaining in primary tumors and clinicopathological characteristics and survival. Results: Abnormal expression of p120ctn was found in 68/80(85%) tumors in which 43 cases had cytoplasmic staining. Abnormal staining of p120ctn was related with high TNM stage (P=0.003) and nodal metastasis (P=0.024).However, there was no correlation between altered expression with poor differentiation and histological type. According to Kaplan-Meier survival estimate, the expression of p120ctn was related to the poor survival (P=0.015) of patients. A Cox regression analysis revealed that p120ctn expression was a significant independent factor in the prediction of survival for patients with non-small-cell lung cancer (P=0.008). Conclusion: altered expression of p120ctn was found in non-small-cell lung cancers and was correlated with lymph node metastasis and prognosis. From a practical point of view, the expression of p120ctn can be of prognostic value for patients with non-small-cell lung cancer.

  12. Against Lung Cancer Cells: To Be, or Not to Be, That Is the Problem

    Directory of Open Access Journals (Sweden)

    Naoko Okumura

    2012-01-01

    Full Text Available Tobacco smoke and radioactive radon gas impose a high risk for lung cancer. The radon-derived ionizing radiation and some components of cigarette smoke induce oxidative stress by generating reactive oxygen species (ROS. Respiratory lung cells are subject to the ROS that causes DNA breaks, which subsequently bring about DNA mutagenesis and are intimately linked with carcinogenesis. The damaged cells by oxidative stress are often destroyed through the active apoptotic pathway. However, the ROS also perform critical signaling functions in stress responses, cell survival, and cell proliferation. Some molecules enhance radiation-induced tumor cell killing via the reduction in DNA repair levels. Hence the DNA repair levels may be a novel therapeutic modality in overcoming drug resistance in lung cancer. Either survival or apoptosis, which is determined by the balance between DNA damage and DNA repair levels, may lender the major problems in cancer therapy. The purpose of this paper is to take a closer look at risk factor and at therapy modulation factor in lung cancer relevant to the ROS.

  13. Alternative splicing isoform of T cell factor 4K suppresses the proliferation and metastasis of non-small cell lung cancer cells.

    Science.gov (United States)

    Fan, Y C; Min, L; Chen, H; Liu, Y L

    2015-10-30

    The Wnt pathway has been implicated in the initiation, progression, and metastasis of lung cancer. T cell factor 4, a member of TCF/LEF family, acts as a transcriptional factor for Wnt pathways in lung cancer. Increasing amounts of evidence have shown that TCF-4 has multiple alternative splicing isoforms with transactivation or transrepression activity toward the Wnt pathway. Here, we found the presence of multiple TCF-4 isoforms in lung cancer cell lines and in normal bronchial epithelial cells. TCF-4K isoform expression was significantly decreased in lung cancer cells compared with normal bronchial epithelial cells and was identified as a transcriptional suppressor of the Wnt pathway in non-small cell lung carcinoma (NSCLC). Overexpression of TCF-4K significantly inhibited the proliferation and migration of NSCLC cells. Collectively, our data indicate that TCF-4K functions as a tumor suppressor in NSCLC by down-regulating the Wnt pathway.

  14. Transcription factor FOXA2-centered transcriptional regulation network in non-small cell lung cancer.

    Science.gov (United States)

    Jang, Sang-Min; An, Joo-Hee; Kim, Chul-Hong; Kim, Jung-Woong; Choi, Kyung-Hee

    2015-08-01

    Lung cancer is the leading cause of cancer-mediated death. Although various therapeutic approaches are used for lung cancer treatment, these mainly target the tumor suppressor p53 transcription factor, which is involved in apoptosis and cell cycle arrest. However, p53-targeted therapies have limited application in lung cancer, since p53 is found to be mutated in more than half of lung cancers. In this study, we propose tumor suppressor FOXA2 as an alternative target protein for therapies against lung cancer and reveal a possible FOXA2-centered transcriptional regulation network by identifying new target genes and binding partners of FOXA2 by using various screening techniques. The genes encoding Glu/Asp-rich carboxy-terminal domain 2 (CITED2), nuclear receptor subfamily 0, group B, member 2 (NR0B2), cell adhesion molecule 1 (CADM1) and BCL2-associated X protein (BAX) were identified as putative target genes of FOXA2. Additionally, the proteins including highly similar to heat shock protein HSP 90-beta (HSP90A), heat shock 70 kDa protein 1A variant (HSPA1A), histone deacetylase 1 (HDAC1) and HDAC3 were identified as novel interacting partners of FOXA2. Moreover, we showed that FOXA2-dependent promoter activation of BAX and p21 genes is significantly reduced via physical interactions between the identified binding partners and FOXA2. These results provide opportunities to understand the FOXA2-centered transcriptional regulation network and novel therapeutic targets to modulate this network in p53-deficient lung cancer.

  15. Inhibition of telomerase activity preferentially targets aldehyde dehydrogenase-positive cancer stem-like cells in lung cancer

    Directory of Open Access Journals (Sweden)

    Iniesta Pilar

    2011-08-01

    Full Text Available Abstract Background Mortality rates for advanced lung cancer have not declined for decades, even with the implementation of novel chemotherapeutic regimens or the use of tyrosine kinase inhibitors. Cancer Stem Cells (CSCs are thought to be responsible for resistance to chemo/radiotherapy. Therefore, targeting CSCs with novel compounds may be an effective approach to reduce lung tumor growth and metastasis. We have isolated and characterized CSCs from non-small cell lung cancer (NSCLC cell lines and measured their telomerase activity, telomere length, and sensitivity to the novel telomerase inhibitor MST312. Results The aldehyde dehydrogenase (ALDH positive lung cancer cell fraction is enriched in markers of stemness and endowed with stem cell properties. ALDH+ CSCs display longer telomeres than the non-CSC population. Interestingly, MST312 has a strong antiproliferative effect on lung CSCs and induces p21, p27 and apoptosis in the whole tumor population. MST312 acts through activation of the ATM/pH2AX DNA damage pathway (short-term effect and through decrease in telomere length (long-term effect. Administration of this telomerase inhibitor (40 mg/kg in the H460 xenograft model results in significant tumor shrinkage (70% reduction, compared to controls. Combination therapy consisting of irradiation (10Gy plus administration of MST312 did not improve the therapeutic efficacy of the telomerase inhibitor alone. Treatment with MST312 reduces significantly the number of ALDH+ CSCs and their telomeric length in vivo. Conclusions We conclude that antitelomeric therapy using MST312 mainly targets lung CSCs and may represent a novel approach for effective treatment of lung cancer.

  16. Fibroblasts weaken the anti-tumor effect of gefitinib on co-cultured non-small cell lung cancer cells

    Institute of Scientific and Technical Information of China (English)

    Yong Xiao; Wang Peiqin; Jiang Tao; Yu Wenchen; Shang Yan; Han Yiping; Zhang Pingping

    2014-01-01

    Background Non-small cell lung cancer (NSCLC) is the most common lung malignancy worldwide.The metastatic potential of NSCLC cells has been shown to be associated with the tumor microenvironment,which consists of tumor cells,stroma,blood vessels,immune infiltrates and the extracellular matrix.Fibroblasts can produce numerous extraceilular matrix molecules and growth factors.Gefitinib has been evaluated as a first-line treatment in selected patients,and it has shown favorable efficacy especially in NSCLC,but it is not effective for everyone.Methods In this study,we examined the antitumor activity of gefitinib on lung fibroblasts co-cultured of lung cancer cells.A series of co-culture experiments that employed cell counting kit-8 (CCK8),transwells,real-time polymerase chain reaction (RT-PCR) and Western blotting with HFL-1 fibroblasts and A549 human lung carcinoma cells were performed to learn more about tumor cell proliferation,migration and invasion; and to determine any change of epithelial mesenchymal transition (EMT)-associated tumor markers vimentin,matrix metallopro-teinase 2 (MMP2) and chemotaxis cytokines receptor 4 (CXCR4) mRNA levels.Results A549 cell proliferation in the presence of HFL-1 cells was not significantly increased compared with A549 cells alone,but A549 cell spheroid body formation was increased after co-culture,and treatment with gefitinib increased further.Our study also revealed that fibroblasts attenuated the lung cancer cell inhibition ratio of migration and invasion after gefitinib treatment in vitro.To further study this mechanism,RT-PCR analysis showed that vimentin,MMP2 and CXCR4 mRNA levels were more highly expressed in the lung cancer cells after co-culture,but did not obviously decrease compared with the control cells following gefitinib treatment.This suggests the mechanism by which fibroblasts attenuate gefitinib-induced expression of EMT-associated tumor markers.Finally,our results demonstrated that co-culture with A549 lung

  17. Loss of aquaporin-4 expression and putative function in non-small cell lung cancer

    Directory of Open Access Journals (Sweden)

    Schnabel Philipp A

    2011-05-01

    Full Text Available Abstract Background Aquaporins (AQPs have been recognized to promote tumor progression, invasion, and metastasis and are therefore recognized as promising targets for novel anti-cancer therapies. Potentially relevant AQPs in distinct cancer entities can be determined by a comprehensive expression analysis of the 13 human AQPs. Methods We analyzed the presence of all AQP transcripts in 576 different normal lung and non-small cell lung cancer (NSCLC samples using microarray data and validated our findings by qRT-PCR and immunohistochemistry. Results Variable expression of several AQPs (AQP1, -3, -4, and -5 was found in NSCLC and normal lung tissues. Furthermore, we identified remarkable differences between NSCLC subtypes in regard to AQP1, -3 and -4 expression. Higher transcript and protein levels of AQP4 in well-differentiated lung adenocarcinomas suggested an association with a more favourable prognosis. Beyond water transport, data mining of co-expressed genes indicated an involvement of AQP4 in cell-cell signalling, cellular movement and lipid metabolism, and underlined the association of AQP4 to important physiological functions in benign lung tissue. Conclusions Our findings accentuate the need to identify functional differences and redundancies of active AQPs in normal and tumor cells in order to assess their value as promising drug targets.

  18. Oral Cell DNA Adducts as Potential Biomarkers for Lung Cancer Susceptibility in Cigarette Smokers

    Science.gov (United States)

    Hecht, Stephen S.

    2017-01-01

    This perspective considers the use of oral cell DNA adducts, together with exposure and genetic information, to potentially identify those cigarette smokers at highest risk for lung cancer, so that appropriate preventive measures could be initiated at a relatively young age before too much damage has been done. There are now well established and validated analytical methods for the quantitation of urinary and serum metabolites of tobacco smoke toxicants and carcinogens. These metabolites provide a profile of exposure and in some cases lung cancer risk. But they do not yield information on the critical DNA damage parameter that leads to mutations in cancer growth control genes such as KRAS and TP53. Studies demonstrate a correlation between changes in the oral cavity and lung in cigarette smokers, due to the field effect of tobacco smoke. Oral cell DNA is readily obtained in contrast to DNA samples from the lung. Studies in which oral cell DNA and salivary DNA have been analyzed for specific DNA adducts are reviewed; some of the adducts identified have also been previously reported in lung DNA from smokers. The multiple challenges of developing a panel of oral cell DNA adducts that could be routinely quantified by mass spectrometry are discussed. PMID:28092948

  19. Gefitinib in Treating Patients With Metastatic or Unresectable Head and Neck Cancer or Non-Small Cell Lung Cancer

    Science.gov (United States)

    2013-01-11

    Anaplastic Thyroid Cancer; Insular Thyroid Cancer; Metastatic Parathyroid Cancer; Recurrent Adenoid Cystic Carcinoma of the Oral Cavity; Recurrent Basal Cell Carcinoma of the Lip; Recurrent Esthesioneuroblastoma of the Paranasal Sinus and Nasal Cavity; Recurrent Inverted Papilloma of the Paranasal Sinus and Nasal Cavity; Recurrent Lymphoepithelioma of the Nasopharynx; Recurrent Lymphoepithelioma of the Oropharynx; Recurrent Metastatic Squamous Neck Cancer With Occult Primary; Recurrent Midline Lethal Granuloma of the Paranasal Sinus and Nasal Cavity; Recurrent Mucoepidermoid Carcinoma of the Oral Cavity; Recurrent Non-small Cell Lung Cancer; Recurrent Parathyroid Cancer; Recurrent Salivary Gland Cancer; Recurrent Squamous Cell Carcinoma of the Hypopharynx; Recurrent Squamous Cell Carcinoma of the Larynx; Recurrent Squamous Cell Carcinoma of the Lip and Oral Cavity; Recurrent Squamous Cell Carcinoma of the Nasopharynx; Recurrent Squamous Cell Carcinoma of the Oropharynx; Recurrent Squamous Cell Carcinoma of the Paranasal Sinus and Nasal Cavity; Recurrent Thyroid Cancer; Recurrent Verrucous Carcinoma of the Larynx; Stage III Follicular Thyroid Cancer; Stage III Papillary Thyroid Cancer; Stage III Salivary Gland Cancer; Stage III Squamous Cell Carcinoma of the Hypopharynx; Stage III Squamous Cell Carcinoma of the Larynx; Stage III Verrucous Carcinoma of the Larynx; Stage IIIB Non-small Cell Lung Cancer; Stage IV Lymphoepithelioma of the Nasopharynx; Stage IV Non-small Cell Lung Cancer; Stage IV Squamous Cell Carcinoma of the Hypopharynx; Stage IV Squamous Cell Carcinoma of the Nasopharynx; Stage IVA Adenoid Cystic Carcinoma of the Oral Cavity; Stage IVA Basal Cell Carcinoma of the Lip; Stage IVA Esthesioneuroblastoma of the Paranasal Sinus and Nasal Cavity; Stage IVA Follicular Thyroid Cancer; Stage IVA Inverted Papilloma of the Paranasal Sinus and Nasal Cavity; Stage IVA Lymphoepithelioma of the Oropharynx; Stage IVA Midline Lethal Granuloma of the Paranasal Sinus

  20. Expression of prostate-specific membrane antigen in lung cancer cells and tumor neovasculature endothelial cells and its clinical significance.

    Directory of Open Access Journals (Sweden)

    Hai-long Wang

    Full Text Available Prostate-specific membrane antigen (PSMA has been found in tumor neovasculature endothelial cells (NECs of non-prostate cancers and may become the most promising target for anti-tumor therapy. To study the value of PSMA as a potential new target for lung cancer treatment, PSMA expression in non-small cell lung cancer (NSCLC and small cell lung cancer (SCLC tissues and its relationship with clinicopathology were investigated in the current study.Immunohistochemistry was used to detect PSMA expression in a total of 150 lung specimens of patients with lung cancer. The data were analyzed using univariate and multivariate statistical analyses.The percentages of NSCLC patients who had PSMA (+ tumor cells and PSMA (+ NECs were 54.02% and 85.06%, respectively. The percentage of patients younger than 60 years old who had PSMA (+ tumor cells was 69.05%, which was significantly greater than the percentage of patients aged 60 years or older (40.00%, p<0.05. A significant difference was observed in the percentage of NSCLC patients with PMSA (+ NECs and stage I or II cancer (92.98% and those patients with stage III or IV cancer (76.77%. In the SCLC tissues, NEC PSMA expression (70.00% did not differ significantly from NSCLC. SCLC tumor cells and normal lung tissues cells were all negative. There was no significant correlation between the presence of PSMA (+ NECs in SCLC patients and the observed clinicopathological parameters.PSMA is expressed not only in NECs of NSCLC and SCLC but also in tumor cells of most NSCLC patients. The presence of PSMA (+ tumor cells and PSMA (+ NECs in NSCLC was negatively correlated with age and the clinicopathological stage of the patients, respectively.

  1. Regulation of COX-2 expression by miR-146a in lung cancer cells.

    Science.gov (United States)

    Cornett, Ashley L; Lutz, Carol S

    2014-09-01

    Prostaglandins are a class of molecules that mediate cellular inflammatory responses and control cell growth. The oxidative conversion of arachidonic acid to prostaglandin H2 is carried out by two isozymes of cyclooxygenase, COX-1 and COX-2. COX-1 is constitutively expressed, while COX-2 can be transiently induced by external stimuli, such as pro-inflammatory cytokines. Interestingly, COX-2 is overexpressed in numerous cancers, including lung cancer. MicroRNAs (miRNAs) are small RNA molecules that function to regulate gene expression. Previous studies have implicated an important role for miRNAs in human cancer. We demonstrate here that miR-146a expression levels are significantly lower in lung cancer cells as compared with normal lung cells. Conversely, lung cancer cells have higher levels of COX-2 protein and mRNA expression. Introduction of miR-146a can specifically ablate COX-2 protein and the biological activity of COX-2 as measured by prostaglandin production. The regulation of COX-2 by miR-146a is mediated through a single miRNA-binding site present in the 3' UTR. Therefore, we propose that decreased miR-146a expression contributes to the up-regulation and overexpression of COX-2 in lung cancer cells. Since potential miRNA-mediated regulation is a functional consequence of alternative polyadenylation site choice, understanding the molecular mechanisms that regulate COX-2 mRNA alternative polyadenylation and miRNA targeting will give us key insights into how COX-2 expression is involved in the development of a metastatic condition.

  2. Inhibition of TRPC6 reduces non-small cell lung cancer cell proliferation and invasion

    Science.gov (United States)

    Lu, Xiao-Yu; Yan, Yan; Zhai, Yu-Jia; Bao, Qing; Doetsch, Paul W.; Deng, Xingming; Thai, Tiffany L.; Alli, Abdel A.; Eaton, Douglas C.; Shen, Bao-Zhong; Ma, He-Ping

    2017-01-01

    Recent studies indicate that the transient receptor potential canonical 6 (TRPC6) channel is highly expressed in several types of cancer cells. However, it remains unclear whether TRPC6 contributes to the malignancy of human non-small cell lung cancer (NSCLC). We used a human NSCLC A549 cell line as a model and found that pharmacological blockade or molecular knockdown of TRPC6 channel inhibited A549 cell proliferation by arresting cell cycle at the S-G2M phase and caused a significant portion of cells detached and rounded-up, but did not induce any types of cell death. Western blot and cell cycle analysis show that the detached round cells at the S-G2M phase expressed more TRPC6 than the still attached polygon cells at the G1 phase. Patch-clamp data also show that TRPC whole-cell currents in the detached cells were significantly higher than in the still attached cells. Inhibition of Ca2+-permeable TRPC6 channels significantly reduced intracellular Ca2+ in A549 cells. Interestingly, either blockade or knockdown of TRPC6 strongly reduced the invasion of this NSCLC cell line and decreased the expression of an adherent protein, fibronectin, and a tight junction protein, zonula occluden protein-1 (ZO-1). These data suggest that TRPC6-mediated elevation of intracellular Ca2+ stimulates NSCLC cell proliferation by promoting cell cycle progression and that inhibition of TRPC6 attenuates cell proliferation and invasion. Therefore, further in vivo studies may lead to a consideration of using a specific TRPC6 blocker as a complement to treat NSCLC. PMID:28030826

  3. Luteolin inhibits lung metastasis, cell migration, and viability of triple-negative breast cancer cells

    Science.gov (United States)

    Cook, Matthew T; Liang, Yayun; Besch-Williford, Cynthia; Hyder, Salman M

    2017-01-01

    Most breast cancer-related deaths from triple-negative breast cancer (TNBC) occur following metastasis of cancer cells and development of tumors at secondary sites. Because TNBCs lack the three receptors targeted by current chemotherapeutic regimens, they are typically treated with extremely aggressive and highly toxic non-targeted treatment strategies. Women with TNBC frequently develop metastatic lesions originating from drug-resistant residual cells and have poor prognosis. For this reason, novel therapeutic strategies that are safer and more effective are sought. Luteolin (LU) is a naturally occurring, non-toxic plant compound that has proven effective against several types of cancer. With this in mind, we conducted in vivo and in vitro studies to determine whether LU might suppress metastasis of TNBC. In an in vivo mouse metastasis model, LU suppressed metastasis of human MDA-MB-435 and MDA-MB-231 (4175) LM2 TNBC cells to the lungs. In in vitro assays, LU inhibited cell migration and viability of MDA-MB-435 and MDA-MB-231 (4175) LM2 cells. Further, LU induced apoptosis in MDA-MB-231 (4175) LM2 cells. Relatively low levels (10 µM) of LU significantly inhibited vascular endothelial growth factor (VEGF) secretion in MDA-MB-231 (4175) LM2 cells, suggesting that it has the ability to suppress a potent angiogenic and cell survival factor. In addition, migration of MDA-MB-231 (4175) LM2 cells was inhibited upon exposure to an antibody against the VEGF receptor, KDR, but not by exposure to a VEGF165 antibody. Collectively, these data suggest that the anti-metastatic properties of LU may, in part, be due to its ability to block VEGF production and KDR-mediated activity, thereby inhibiting tumor cell migration. These studies suggest that LU deserves further investigation as a potential treatment option for women with TNBC. PMID:28096694

  4. Mutations in the DDR2 Kinase Gene identify a Novel therapeutic target in squamous cell lung cancer

    NARCIS (Netherlands)

    Hammerman, Peter S.; Sos, Martin L.; Ramos, Alex H.; Xu, Chunxiao; Dutt, Amit; Zhou, Wenjun; Brace, Lear E.; Woods, Brittany A.; Lin, Wenchu; Zhang, Jianming; Deng, Xianming; Lim, Sang Min; Heynck, Stefanie; Peifer, Martin; Simard, Jeffrey R.; Lawrence, Michael S.; Onofrio, Robert C.; Salvesen, Helga B.; Seidel, Danila; Zander, Thomas; Heuckmann, Johannes M.; Soltermann, Alex; Moch, Holger; Koker, Mirjam; Leenders, Frauke; Gabler, Franziska; Querings, Silvia; Ansen, Sascha; Brambilla, Elisabeth; Brambilla, Christian; Lorimier, Philippe; Brustugun, Odd Terje; Helland, Aslaug; Petersen, Iver; Clement, Joachim H.; Groen, Harry; Timens, Wim; Sietsma, Hannie; Stoelben, Erich; Wolf, Juergen; Beer, David G.; Tsao, Ming Sound; Hanna, Megan; Hatton, Charles; Eck, Michael J.; Janne, Pasi A.; Johnson, Bruce E.; Winckler, Wendy; Greulich, Heidi; Bass, Adam J.; Cho, Jeonghee; Rauh, Daniel; Gray, Nathanael S.; Wong, Kwok-Kin; Haura, Eric B.; Thomas, Roman K.; Meyerson, Matthew

    2011-01-01

    Although genomically targeted therapies have improved outcomes for patients with lung adenocarcinoma, little is known about the genomic alterations that drive squamous cell cancer (SCC) of the lung. Sanger sequencing of the tyrosine kinome identified mutations in the DDR2 kinase gene in 3.8% of lung

  5. Matrine induces the apoptosis of lung cancer cells through downregulation of inhibitor of apoptosis proteins and the Akt signaling pathway.

    Science.gov (United States)

    Niu, Huiyan; Zhang, Yifei; Wu, Baogang; Zhang, Yi; Jiang, Hongfang; He, Ping

    2014-09-01

    Lung cancer is the leading cause of cancer‑related mortality in humans. The prognosis for advanced lung cancer patients is extremely poor. Current standard care is rather ineffective for prolonging patient life while preserving satisfactory quality of life due to adverse side-effects. Matrine extracted from the traditional Chinese herbal plant Sophora flavescens was shown to induce cancer cell death in vitro. The aim of this study was to investigate the effect of matrine on the proliferation and apoptosis of lung cancer cells and the molecular basis of matrine-induced apoptosis. The results showed that matrine inhibited cell proliferation and induced apoptosis in lung cancer A549 and 95D cells in a dose- and time-dependent manner. The apoptotic effects of matrine on lung cancer cells appeared to act via the phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin (PI3K-Akt-mTOR) signaling pathway and downregulation of the expression of the inhibitor of apoptosis protein (IAP) family proteins. Matrine exerts its cancer-killing effect via promoting apoptosis in lung cancer cells and may be a useful adjuvant therapeutic scheme for treating advanced lung cancer patients.

  6. Role of Autophagy and Apoptosis in Non-Small-Cell Lung Cancer

    Science.gov (United States)

    Liu, Guangbo; Pei, Fen; Yang, Fengqing; Li, Lingxiao; Amin, Amit Dipak; Liu, Songnian; Buchan, J. Ross; Cho, William C.

    2017-01-01

    Non-small-cell lung cancer (NSCLC) constitutes 85% of all lung cancers, and is the leading cause of cancer-related death worldwide. The poor prognosis and resistance to both radiation and chemotherapy warrant further investigation into the molecular mechanisms of NSCLC and the development of new, more efficacious therapeutics. The processes of autophagy and apoptosis, which induce degradation of proteins and organelles or cell death upon cellular stress, are crucial in the pathophysiology of NSCLC. The close interplay between autophagy and apoptosis through shared signaling pathways complicates our understanding of how NSCLC pathophysiology is regulated. The apoptotic effect of autophagy is controversial as both inhibitory and stimulatory effects have been reported in NSCLC. In addition, crosstalk of proteins regulating both autophagy and apoptosis exists. Here, we review the recent advances of the relationship between autophagy and apoptosis in NSCLC, aiming to provide few insights into the discovery of novel pathogenic factors and the development of new cancer therapeutics. PMID:28208579

  7. Effect of lumiracoxib on proliferation and apoptosis of human nonsmall cell lung cancer cells in vitro

    Institute of Scientific and Technical Information of China (English)

    HAO Ji-qing; LI Qi; XU Shu-ping; SHEN Yu-xian; SUN Gen-yun

    2008-01-01

    Background Lumiracoxib is a highly selective cyclooxygenase-2(COX-2)inhibitor with antiinflammatory,analgesic and antipyretic activities comparable with class specific drugs,but with much improved gastrointestinal safety.No studies have examined lumiracoxib for antitumorigenic activity on human nonsmall cell lung cancer cell lines in vitro or its possible molecular mechanisms.Methods The antiproliferative effect of lumiracoxib alone or combined with docetaxol on A549 and NCI-H460 lines was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide(MTT)assay.Drug-drug interactions were analyzed using the coefficient of drug interaction(CDI)to characterize the interactions as synergism,additivity or antagonism.Morphological changes were observed by acridine orange fluorescent staining.Extent of apoptosis was determined by flow cytometry.Results Lumiracoxib(15-240 μmol/L)has an inhibitory effect on the proliferation of A549 and NCI-H460 celllines in concentration- and time-dependent manners with the IC50 values of 2597 μmol/L and 833 pmol/L,respectively.The synergistic effect was prominent when lumiracoxib(15-240 μmol/L)was combined with docetaxol(0.2-2 μmol/L)(CDI <1).Fluorescent staining showed that lumiracoxib could induce apoptosis in A549 and NCI-H460 cells.Lumiracoxib treatment also caused an increase of the sub-G1 fraction in each cell line and resulted in an increase of G0/G1-phase cells and a decrease of S-phase cells.Conclusions Lumiracoxib had antiproliferative effect on the human nonsmall cell lung cancer cell lines A549 and NCI-H460 and had a significant synergy with docetaxol,which may be related to apoptotic induction and cell cycle arrest.

  8. Plasma and EBC microRNAs as early biomarkers of non-small-cell lung cancer.

    Science.gov (United States)

    Mozzoni, Paola; Banda, Iris; Goldoni, Matteo; Corradi, Massimo; Tiseo, Marcello; Acampa, Olga; Balestra, Valeria; Ampollini, Luca; Casalini, Angelo; Carbognani, Paolo; Mutti, Antonio

    2013-12-01

    Lung cancer is a major cause of death in Western countries. Current screening methods are invasive and still lead to a high percentage of false positives. There is, therefore, a need to find biomarkers that increase the probability of detecting lung cancer early. MicroRNAs (miRNAs) are stable molecules in blood plasma and exhaled breath condensate (EBC). We quantified miRNA-21 and miRNA-486 expression from plasma and EBC samples from patients with a diagnosis of non-small-cell lung cancer (NSCLC) and controls. miRNA-21 was significantly higher in plasma and in EBC of the NSCLC patients and miRNA-486 was significantly lower. This difference indicates a significantly improved diagnostic value, and suggests that these miRNAs could be clinically used as a first-line screening test in high-risk subjects.

  9. PD-L1 expression in non-small cell lung cancer : Correlations with genetic alterations

    NARCIS (Netherlands)

    Scheel, Andreas H.; Ansen, Sascha; Schultheis, Anne M.; Scheffler, Matthias; Fischer, Rieke N.; Michels, Sebastian; Hellmich, Martin; George, Julie; Zander, Thomas; Brockmann, Michael; Stoelben, Erich; Groen, Harry; Timens, Wim; Perner, Sven; von Bergwelt-Baildon, Michael; Buettner, Reinhard; Wolf, Juergen

    2016-01-01

    Inhibition of the PD-1/PD-L1 pathway may induce anticancer immune responses in non-small cell lung cancer (NSCLC). Two PD-L1 immunohistochemistry (IHC) assays have been approved as companion diagnostic tests for therapeutic anti-PD-1 antibodies. However, many aspects of PD-L1 prevalence and associat

  10. Early death during chemotherapy in patients with small-cell lung cancer

    DEFF Research Database (Denmark)

    Lassen, U N; Osterlind, K; Hirsch, F R

    1999-01-01

    Based on an increased frequency of early death (death within the first treatment cycle) in our two latest randomized trials of combination chemotherapy in small-cell lung cancer (SCLC), we wanted to identify patients at risk of early non-toxic death (ENTD) and early toxic death (ETD). Data were...

  11. Outcome of combination chemotherapy in extensive stage small-cell lung cancer

    DEFF Research Database (Denmark)

    Lassen, U N; Hirsch, F R; Osterlind, K

    1998-01-01

    During the past two decades many different treatment regimens of combination chemotherapy have been applied in extensive stage small-cell lung cancer (SCLC). This study was carried out to identify whether these modifications have resulted in an improved overall survival for extensive stage during...

  12. Carcinomatous meningitis in non-small cell lung cancer: Palliation with intrathecal treatment

    Directory of Open Access Journals (Sweden)

    D. Santhosh Kumar

    2014-01-01

    Full Text Available Carcinomatous meningitis or meningeal carcinomatosis is seen in up to 5% of patients of metastatic non-small cell lung cancer. However, isolated carcinomatous meningitis without brain parenchymal metastasis is less common. Patients with carcinomatous meningitis have limited treatment options. However, intrathecal therapy if used optimally along with targeted therapy when indicated result in good palliation with improvement in survival.

  13. A phase II study of paclitaxel in heavily pretreated patients with small-cell lung cancer

    NARCIS (Netherlands)

    Smit, EF; Fokkema, E; Biesma, B; Groen, HJM; Snoek, W; Postmus, PE

    1998-01-01

    The purpose of the study was to delineate the efficacy and toxicity of paclitaxel (Taxol, Bristol Myers Squibb) in the treatment of drug resistant small-cell lung cancer (SCLC). Patients with SCLC relapsing within 3 months of cytotoxic therapy received paclitaxel 175 mg m(-2) intravenously over 3 h

  14. LONG-TERM SURVIVAL OF SMALL-CELL LUNG-CANCER PATIENTS AFTER CHEMOTHERAPY

    NARCIS (Netherlands)

    VANDERGAAST, A; POSTMUS, PE; BURGHOUTS, J; VANBOLHUIS, C; STAM, J; SPLINTER, TAW

    1993-01-01

    Eighty-one patients with small cell lung cancer (SCLC) with a survival Of more than 2 years start of chemotherapy were studied. Twenty-six of the 28 patients who died of relapsed SCLC had in relapsed before two years and of the 55 who had not then only two (4%) relapsed subsequently. It is stressed

  15. Changes in epidermal growth factor receptor expression during chemotherapy in non-small cell lung cancer

    DEFF Research Database (Denmark)

    Jakobsen, Jan Nyrop; Santoni-Rugiu, Eric; Sørensen, Jens Benn

    2014-01-01

    BACKGROUND: Antibodies targeting epidermal growth factor receptor (EGFR), such as cetuximab, may potentially improve outcome in non-small cell lung cancer (NSCLC) patients with high EGFR expression. The EGFR expression may be heterogeneously distributed within tumors, and small biopsies may thus...

  16. Red blood cell glutathione levels in lung cancer patients treated by radiation and continuously infused carboplatin

    NARCIS (Netherlands)

    Groen, HJM; Meijer, C; DeVries, EGE; Mulder, NH

    1996-01-01

    Intrinsic resistance in non-small cell lung cancer (NSCLC) curtails the efficacy of chemotherapy and radiotherapy. Glutathione (GSH) may be one of the factors responsible for this phenomenon as it counteracts the cytotoxic effects of platinum containing drugs and radiation. GSH levels were studied i

  17. SSX2-4 expression in early-stage non-small cell lung cancer

    DEFF Research Database (Denmark)

    Greve, K B V; Pøhl, M; Olsen, K E

    2014-01-01

    The expression of cancer/testis antigens SSX2, SSX3, and SSX4 in non-small cell lung cancers (NSCLC) was examined, since they are considered promising targets for cancer immunotherapy due to their immunogenicity and testis-restricted normal tissue expression. We characterized three SSX antibodies...... was only detected in 5 of 143 early-stage NSCLCs, which is rare compared to other cancer/testis antigens (e.g. MAGE-A and GAGE). However, further studies are needed to determine whether SSX can be used as a prognostic or predictive biomarker in NSCLC....

  18. EM011 activates a survivin-dependent apoptotic program in human non-small cell lung cancer cells

    Directory of Open Access Journals (Sweden)

    Yates Clayton

    2009-10-01

    Full Text Available Abstract Background Lung cancer remains a leading cause of cancer death among both men and women in the United States. Treatment modalities available for this malignancy are inadequate and thus new drugs with improved pharmacological profiles and superior therapeutic indices are being continually explored. Noscapinoids constitute an emerging class of anticancer agents that bind tubulin but do not significantly alter the monomer/polymer ratio of tubulin. EM011, a rationally-designed member of this class of non-toxic agents, is more potent than the lead molecule, noscapine. Results Here we report that EM011 inhibited proliferation of a comprehensive panel of lung cancer cells with IC50's ranging from 4-50 μM. In A549 human non-small cell lung cancer cells, the antiproliferative activity was mediated through blockage of cell-cycle progression by induction of a transient but robust mitotic arrest accompanied by activation of the spindle assembly checkpoint. The mitotically-arrested A549 cells then override the activated mitotic checkpoint and aberrantly exit mitosis without cytokinesis resulting in pseudo G1-like multinucleated cells that either succumb directly to apoptosis or continue another round of the cell-cycle. The accumulated enormous DNA perhaps acts as genotoxic stress to trigger cell death. EM011-induced apoptotic cell death in A549 cells was associated with a decrease of the Bcl2/BAX ratio, activation of caspase-3 and cleavage of PARP. Furthermore, EM011 induced downregulation of survivin expression over time of treatment. Abrogation of survivin led to an increase of cell death whereas, overexpression caused decreased apoptosis. Conclusion These in vitro data suggest that EM011 mediates antiproliferative and proapoptotic activity in non-small cell A549 lung cancer cells by impeding cell-cycle progression and attenuating antiapoptotic signaling circuitries (viz. Bcl2, survivin. The study provides evidence for the potential usefulness of

  19. Simulating non-small cell lung cancer with a multiscale agent-based model

    OpenAIRE

    Deisboeck Thomas S; Sagotsky Jonathan; Zhang Le; Wang Zhihui

    2007-01-01

    Abstract Background The epidermal growth factor receptor (EGFR) is frequently overexpressed in many cancers, including non-small cell lung cancer (NSCLC). In silico modeling is considered to be an increasingly promising tool to add useful insights into the dynamics of the EGFR signal transduction pathway. However, most of the previous modeling work focused on the molecular or the cellular level only, neglecting the crucial feedback between these scales as well as the interaction with the hete...

  20. Effects of Curcuma longa Extract on Telomerase Activity in Lung and Breast Cancer Cells

    OpenAIRE

    Nosratollah Zarghami; Javad Ranjbari; Abbas Alibakhshi; Roghayeh Arezumand; Mohammad Pourhassan-Moghaddam; Mohammad Rahmati; Mohammad Mehdi Namvaran

    2014-01-01

    Background: The purpose of this study is to evaluate the effect of Curcuma longa extract on the telomerase gene expression in QU-DB lung cancer and T47D breast cancer cell lines. Materials and Methods: The present study is an experimental research. Using 3 different phases n-hexane, dichloromethane and methanol, total extract of Curcuma longa in a serial dilution was prepared and three phases was analyzed for determining which phase has more curcuminoids. Then the extract cytotoxicity effe...

  1. Gallbladder Metastasis of Non-small Cell Lung Cancer Presenting as Acute Cholecystitis

    Institute of Scientific and Technical Information of China (English)

    Yu-Sook Jeong; Seung-Taik Kim; Hye-Suk Han; Sung-Nam Lim; Mi-Jin Kim; Joung-Ho Han; Min-Ho Kang; Dong-Hee Ryu; Ok-Jun Lee; Ki-Hyeong Lee

    2012-01-01

    Although non-small cell lung cancer (NSCLC) can metastasize to almost any organ,metastasis to the gallbladder with significant clinical manifestation is relatively rare.Here,we report a case of gallbladder metastasis of NSCLC presenting as acute cholecystitis.A 79-year-old man presented with pain in the right upper quadrant and fever.A computed tomography (CT) scan of the chest and abdomen showed a cavitary mass in the right lower lobe of the lung and irregular wall thickening of the gallbladder.Open cholecystectomy and needle biopsy of the lung mass were performed.Histological examination of the gallbladder revealed a moderately-differentiated squamous cell carcinoma displaying the same morphology as the lung mass assessed by needle biopsy.Subsequent immunohistochemical examination of the gallbladder and lung tissue showed that the tumor cells were positive for P63 but negative for cytokeratin 7,cytokeratin 20 and thyroid transcription factor-1.A second primary tumor of the gallbladder was excluded by immunohistochemical methods,and the final pathological diagnosis was gallbladder metastasis of NSCLC.Although the incidence is extremely rare,acute cholecystitis can occur in association with lung cancer metastasis to the gallbladder.

  2. Human decorin regulates proliferation and migration of human lung cancer A549 cells

    Institute of Scientific and Technical Information of China (English)

    LIANG Shuo; XU Jin-fu; CAO Wei-jun; LI Hui-ping; HU Cheng-ping

    2013-01-01

    Background Decorin is a small leucine-rich proteoglycan and it plays an important role in regulation of cell growth and migration in various tumor cell lines.Decorin was found down-regulated in non-small cell lung cancer tissue and may be involved in regulation of lung cancer development.Methods In this study,lentivirus-mediated RNA interference and over expression were employed to change the expression levels of decorin in lung cancer A549 cells.We tested the cell cycle of A549 cells and the expression of transforming growth factor (TGF)-β1,cyclin D1,epidermal growth factor receptor (EGFR),P53,and P21.Results We found that up-regulation of decorin could inhibit proliferation,block cell cycle at G1 and decrease invasive activity of A549 cells.Moreover,we also show that up-regulation of decorin induced significant decreases of TGF-β1,cyclin D1 expression,phosphorylation of EGFR,and increases of P53 and P21 expression.Opposite results were observed in A549 cells with down-regulation of decorin.Conclusion Our results suggest that decorin is a key regulator involved in proliferation and migration ofA549 cells.

  3. Quantitative Analysis of Exosomes From Murine Lung Cancer Cells by Flow Cytometry

    Science.gov (United States)

    Rim, Kyung-Taek; Kim, Soo-Jin

    2016-01-01

    In vivo studies regarding biochemical, molecular biological, and histopathological changes in cancer tissues have been widely performed by the administration of carcinogens in rodents. In these established methods, dissection of the animal following sacrifice must be carried out. Exosomes are cell-derived vesicles that are present in all body fluids and these vesicles have specific roles within cells. Thus, much attention is given to the clinical application of exosomes that can possibly be used for prediction and therapy and as biomarkers related to cancer. To develop a new tool for monitoring in vivo genetic alterations, as a result of carcinogenesis, without the need for frequent euthanasia, we performed quantitative measurement of exosomes in Mlg2908 murine lung fibroblasts and LA-4 and KLN 205 murine lung cancer cells using fluorescence-activated cell sorting. We detected an increase in CD63-specific exosomes in LA-4 lung cancer cells. This result is able to be applied to the classification of cancer-specific proteins and miRNA as diagnostic markers. PMID:27722146

  4. Occurrence of BOOP outside radiation field after radiation therapy for small cell lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Hamanishi, Tohru; Oida, Kazukiyo [Tenri Hospital, Nara (Japan); Morimatu, Takafumi (and others)

    2001-09-01

    We report a case of bronchiolitis obliterans organizing pneumonia (BOOP) that occurred outside the radiation field after radiation therapy for small cell lung cancer. A 74-year-old woman received chemotherapy and a total of 60 Gy of radiation therapy to the right hilum and mediastinum for small cell carcinoma of the suprahilar area of the right lung. Radiation pneumonitis developed within the radiation port 3 months after the completion of radiation therapy. She complained of cough and was admitted 7 months after completion of the radiation therapy. Chest radiography and computed tomography demonstrated peripheral alveolar opacities outside the radiation field on the side contralateral to that receiving the radiation therapy. Bronchoalveolar lavage showed that the total cell count was increased, with a markedly increased percentage of lymphocytes. Transbronchial lung biopsy revealed a histologic pattern consistent with BOOP. Treatment with corticosteroids resulted in rapid improvement of the symptoms and complete resolution of the radiographic abnormalities of the left lung. Although some cases of BOOP following radiation therapy for breast cancer have been reported, none of BOOP after radiation therapy for lung cancer have appeared in the literature. (author)

  5. Diet and lung cancer

    DEFF Research Database (Denmark)

    Fabricius, P; Lange, Peter

    2003-01-01

    Lung cancer is the leading cause of cancer-related deaths worldwide. While cigarette smoking is of key importance, factors such as diet also play a role in the development of lung cancer. MedLine and Embase were searched with diet and lung cancer as the key words. Recently published reviews...... and large well designed original articles were preferred to form the basis for the present article. A diet rich in fruit and vegetables reduces the incidence of lung cancer by approximately 25%. The reduction is of the same magnitude in current smokers, ex-smokers and never smokers. Supplementation...... with vitamins A, C and E and beta-carotene offers no protection against the development of lung cancer. On the contrary, beta-carotene supplementation has, in two major randomised intervention trials, resulted in an increased mortality. Smoking remains the leading cause of lung cancer. The adverse effects...

  6. Effects of navelbine and docetaxel on gene expression in lung cancer cell strains

    Institute of Scientific and Technical Information of China (English)

    Li CAI; Hai-ying DONG; Guang-jie SUI

    2005-01-01

    Aim: To search genes sensitivity to the anti-cancer drugs navelbine (NVB) and docetaxel (DOC) in small-cell lung cancer (SCLC) and non-small-cell lung cancer (NSCLC) cell strains. Methods: The sensitivity of 4 strains of SCLC and 6 strains of NSCLC to NVB and DOC was evaluated using the MTT assay. The expression of 1291 sensitive-related genes to the anti-cancer drugs in 10 lung cancer cell strains was measured using cDNA macroarrays and the relationship was analyzed.Results: In total, there were 56 (r≥0.4) genes sensitive to NVB and DOC. For NVB: 36 genes were sensitive to NVB, 20 co-expressed genes between the SCLC+NSCLC set and the NSCLC set; 27 expressed genes and 7 specially expressed genes in the SCLC+NSCLC set; and 29 expressed genes and 9 specially expressed genes in the NSCLC set. For DOC, 50 genes were sensitive to DOC, 12co-expressed genes between the SCLC+NSCLC set and the NSCLC set; 24expressed genes and 12 specially expressed genes in the SCLC+NSCLC set; and 38 expressed genes and 26 specially expressed genes in the NSCLC set. The genes sensitive to NVB and DOC in lung-cancer cell stains were mainly divided into the following 4 categories: signal transduction molecules, cell factors, transcription factors and metabolism-related enzymes and inhibitors. Conclusions:There were obvious differences in genes related to NVB and DOC between SCLC and NSCLC cell strains, but the same as categories of function.

  7. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer.

    Science.gov (United States)

    Rizvi, Naiyer A; Hellmann, Matthew D; Snyder, Alexandra; Kvistborg, Pia; Makarov, Vladimir; Havel, Jonathan J; Lee, William; Yuan, Jianda; Wong, Phillip; Ho, Teresa S; Miller, Martin L; Rekhtman, Natasha; Moreira, Andre L; Ibrahim, Fawzia; Bruggeman, Cameron; Gasmi, Billel; Zappasodi, Roberta; Maeda, Yuka; Sander, Chris; Garon, Edward B; Merghoub, Taha; Wolchok, Jedd D; Schumacher, Ton N; Chan, Timothy A

    2015-04-03

    Immune checkpoint inhibitors, which unleash a patient's own T cells to kill tumors, are revolutionizing cancer treatment. To unravel the genomic determinants of response to this therapy, we used whole-exome sequencing of non-small cell lung cancers treated with pembrolizumab, an antibody targeting programmed cell death-1 (PD-1). In two independent cohorts, higher nonsynonymous mutation burden in tumors was associated with improved objective response, durable clinical benefit, and progression-free survival. Efficacy also correlated with the molecular smoking signature, higher neoantigen burden, and DNA repair pathway mutations; each factor was also associated with mutation burden. In one responder, neoantigen-specific CD8+ T cell responses paralleled tumor regression, suggesting that anti-PD-1 therapy enhances neoantigen-specific T cell reactivity. Our results suggest that the genomic landscape of lung cancers shapes response to anti-PD-1 therapy.

  8. Validation of an algorithm able to differentiate small-cell lung cancer (SCLC) from non-small-cell lung cancer (NSCLC) patients by means of a tumour marker panel: analysis of the errors.

    OpenAIRE

    Paone, G; De Angelis, G.; Portalone, L.; Greco, S.; Giosué, S.; Taglienti, A.; Bisetti, A; Ameglio, F

    1997-01-01

    By means of a mathematical score previously generated by discriminant analysis on 90 lung cancer patients, a new and larger group of 261 subjects [209 with non-small-cell lung cancer (NSCLC) and 52 with small-cell lung cancer (SCLC)] was analysed to confirm the ability of the method to distinguish between these two types of cancers. The score, which included the serum neuron-specific enolase (NSE) and CYFRA-21.1 levels, permitted correct classification of 93% of the patients. When the misclas...

  9. Upregulation of APE/ref-1 in recurrence stage I, non small cell lung cancer.

    Science.gov (United States)

    Kang, Min-Woong; Kang, Shin Kwang; Choi, Songyi; Lee, Choong Sik; Jeon, Byeong Hwa; Lim, Seung Pyung

    2012-02-01

    Lung cancer, the leading cause of cancer-related death, still lacks reliable biomarkers. Apurinic/apyrimidinic endonuclease 1/Ref-1 is a multifunctional protein involved in the base excision repair of DNA damaged by oxidative stress or alkylating compounds, as well as in the regulation of multiple transcription factors. To validate apurinic/apyrimidinic endonuclease 1/Ref-1 as a biomarker for prediction of lung cancer recurrence, we studied 42 patients who received curative resection and mediastinal lymph node dissection for stage I non-small-cell lung cancer. They were divided into 2 groups based on recurrence, and compared by immunohistochemistry staining of paraffin-embedded tissues and Western blot analysis. Immunohistochemical staining showed a significant difference between the cytoplasm and nucleus in patients who had a recurrence compared to those with nonrecurrent adenocarcinoma. In Western blot analysis, the recurrent adenocarcinoma group showed increased expression of apurinic/apyrimidinic endonuclease 1/Ref-1 in cytoplasm, nucleus, and in total. This indicates that apurinic/apyrimidinic endonuclease 1/Ref-1 is unregulated in recurrent stage I adenocarcinoma. For clinical application as a prognostic marker for non-small-cell lung cancer, further investigation into the role of apurinic/apyrimidinic endonuclease 1/Ref-1 in carcinogenesis is needed in an expanded prospective study.

  10. LUNG CANCER AND PULMONARY THROMBOEMBOLISM

    Science.gov (United States)

    Cukic, Vesna; Ustamujic, Aida

    2015-01-01

    Introduction: Malignant diseases including lung cancer are the risk for development of pulmonary thromboembolism (PTE). Objective: To show the number of PTE in patients with lung cancer treated in Clinic for pulmonary diseases and TB “Podhrastovi” in three-year period: from 2012-2014. Material and methods: This is the retrospective study in which we present the number of various types of lung cancer treated in three-year period, number and per cent of PTE in different types of lung carcinoma, number and per cent of PTE of all diagnosed PTE in lung carcinoma according to the type of carcinoma. Results: In three-year period (from 2012 to 2014) 1609 patients with lung cancer were treated in Clinic for pulmonary diseases and TB “Podhrastovi” Clinical Centre of Sarajevo University. 42 patients: 25 men middle –aged 64.4 years and 17 women middle- aged 66.7 or 2.61% of all patients with lung cancer had diagnosed PTE. That was the 16. 7% of all patients with PTE treated in Clinic “Podhrastovi “in that three-year period. Of all 42 patients with lung cancer and diagnosed PTE 3 patients (7.14%) had planocellular cancer, 4 patients (9.53%) had squamocellular cancer, 9 (21.43%) had adenocarcinoma, 1 (2.38%) had NSCLC, 3 (7.14 %) had microcellular cancer, 1 (2.38%) had neuroendocrine cancer, 2 (4.76%) had large cell-macrocellular and 19 (45.24%) had histological non-differentiated lung carcinoma. Conclusion: Malignant diseases, including lung cancer, are the risk factor for development of PTE. It is important to consider the including anticoagulant prophylaxis in these patients and so to slow down the course of diseases in these patients. PMID:26622205

  11. Nestin servers as a promising prognostic biomarker in non-small cell lung cancer

    Science.gov (United States)

    Liu, Fang; Zhang, Yuan; Lu, Ming; Wang, Cong; Li, Qingbao; Gao, Yongsheng; Mu, Dianbin; Cao, Yan; Li, Miaomiao; Meng, Xiangjiao

    2017-01-01

    Lung cancer is currently the leading cause of cancer-related death worldwide and it is important to identify the predictive and/or prognostic markers for the cancer. Nestin, a proliferative and multipotent biomarker has been reported to be associated with prognosis in non-small cell lung cancer (NSCLC) in a few studies. In the present study, we retrospectively recruited 153 patients with NSCLC. Nestin protein expression in tumor samples was determined by immunohistochemistry staining. Nestin expression was related with tumor differentiation (P=0.036), lymphatic metastasis (N stage, P=0.011), and p-TNM stage (P=0.013), while there was no significant association between Nestin expression level and age, smoking habits, gender, histologic type, and T stage. Nestin was an independent prognostic factor for overall survival in NSCLC with an adjusted hazard ratio of 2.701 (95% CI, 1.616-4.513, Pcell proliferation, colony formation, invasion, and apoptosis by knockout of Nestin with a new developed method, CRISPR/Cas9 mediated genome editing. It was observed that knockout of Nestin caused enhancement of cancer cell apoptosis and inhibition of cell proliferation, colony formation, and invasion in A549 and H1299 cell lines. Furthermore, we examined the expression of epithelial-mesenchymal transition (EMT) related biomarkers such as E-cadherin and Vimentin in Nestin-depleted lung cancer cells and knockout of Nestin was found to inhibit EMT, suggesting the involvement of Nestin mediated EMT signaling in lung cancer. The finding above demonstrated that Nestin might serve as a prognostic factor and therapeutic target in NSCLCs.

  12. Diet and lung cancer

    DEFF Research Database (Denmark)

    Fabricius, P; Lange, Peter

    2003-01-01

    Lung cancer is the leading cause of cancer-related deaths worldwide. While cigarette smoking is of key importance, factors such as diet also play a role in the development of lung cancer. MedLine and Embase were searched with diet and lung cancer as the key words. Recently published reviews...... and large well designed original articles were preferred to form the basis for the present article. A diet rich in fruit and vegetables reduces the incidence of lung cancer by approximately 25%. The reduction is of the same magnitude in current smokers, ex-smokers and never smokers. Supplementation...... are only ameliorated to a minor degree by a healthy diet....

  13. Neferine, an alkaloid from lotus seed embryo, inhibits human lung cancer cell growth by MAPK activation and cell cycle arrest.

    Science.gov (United States)

    Poornima, Paramasivan; Weng, Ching Feng; Padma, Viswanadha Vijaya

    2014-01-01

    Neferine is the major bisbenzylisoquinoline alkaloid isolated from the seed embryo of a traditional medicinal plant Nelumbo nucifera (Lotus). Epidemiological studies have revealed the therapeutic potential of lotus seed embryo. Although several mechanisms have been proposed, a clear anticancer action mechanism of neferine on lung cancer cells is still not known. Lung cancer is the most common cause of cancer death in the world, and the patients with advanced stage of nonsmall lung cancer require adjunct chemotherapy after surgical resection for the eradication of cancer cells. In this study, the effects of neferine were evaluated and characterized in A549 cells. Neferine induced apoptosis in a dose-dependent manner with the hypergeneration of reactive oxygen species, activation of MAPKs, lipid peroxidation, depletion of cellular antioxidant pool, loss of mitochondrial membrane potential, and intracellular calcium accumulation. Furthermore, neferine treatment leads to the inhibition of nuclear factor kappaB and Bcl2, upregulation of Bax and Bad, release of cytochrome C, activation of caspase cascade, and DNA fragmentation. In addition, neferine could induce p53 and its effector protein p21 and downregulation of cell cycle regulatory protein cyclin D1 thereby inducing G1 cell cycle arrest. These results suggest a novel function of neferine as an apoptosis inducer in lung cancer cells.

  14. Role of recombinant interferon-gamma maintenance in responding patients with small cell lung cancer. A randomised phase III study of the EORTC lung cancer cooperative group

    NARCIS (Netherlands)

    vanZandwijk, N; Groen, HJM; Postmus, PE; Burghouts, JTW; tenVelde, GPM; Ardizzoni, A; Smith, IE; Baas, P; Sahmoud, T; Kirkpatrick, A; Dalesio, O; Giaccone, G

    1997-01-01

    This study was undertaken to determine if recombinant interferon-gamma (rIFN-gamma) given every other day as maintenance therapy could prolong the survival of patients with small cell lung cancer (SCLC) who achieved a complete or nearly-complete response to induction therapy. A secondary endpoint wa

  15. EGFR-dependent Impact of Indol-3-Carbinol on Radiosensitivity 
of Lung Cancer Cells

    Directory of Open Access Journals (Sweden)

    Xiao XIAO

    2012-07-01

    Full Text Available Background and objective Indole-3-carbinol (I3C is a naturally occurring phytochemical found in cruciferous vegetables. The aim of the present study is to investigate the influence of I3C on radiosensitivity in epidermal growth factor receptor (EGFR-positive and EGFR-negative lung cancer cell lines. Methods Human lung adenocarcinoma NIH-H1975 cells and human lung squamous carcinoma NIH-H226 and NIH-H520 cells were routinely cultured in RPMI-1640. MTT assay and clonogenic assay were used to detect cell growth and survival, respectively. Western blot and RT-PRC assay was employed to detect EGFR protein and mRNA expression. Results 5 μmol/L of I3C significantly reduced radiosensitivity of EGFR-positive NIH-H1975 and NIH-H226 cells, but failed to affect radiosensitivity of EGFR-negative NIH-H520 cells. Furthermore, I3C caused an increased expression of total EGFR and pEGFR (Y845 protein in NIH-H1975 and NIH-H226 cell lines, but not in NIH-H520 cell line. A reduction of EGFR expression by EGFR-siRNA significantly inhibited I3C-caused radioresistance in NIH-H1975 cells. Conclusion Our data presented here for the first time demonstrate that I3C reduces radiosensitivity of lung cancer cells by mediating EGFR expression, indicating that EGFR may be an important target for I3C-mediated radioresistance in lung cancer.

  16. Inhibition on Numb/Notch signal pathway enhances radiosensitivity of lung cancer cell line H358.

    Science.gov (United States)

    Song, Shi-Gang; Yu, Hong-Yang; Ma, Yan-Wei; Zhang, Feng; Xu, Xiang-Ying

    2016-10-01

    The objective of the study is to investigate the effects of the Numb/Notch signal pathway on the radiosensitivity of lung cancer cell line H358. MTT assay and colony forming assay were used to detect the effects of different doses of X-rays and MW167 on the in vitro proliferation of the lung cancer cell line H358. Flow cytometry was applied to evaluate the effects of X rays on the apoptosis of H358. Scratch assay and Transwell invasion assay were used to examine the effects of X-rays on the migration and invasion abilities of H358. The mRNA and protein expressions in the signal pathway were detected by real-time PCR and western blot. Assays in vitro confirmed the effects of the Numb/Notch pathway inhibitor on the radiosensitivity to lung cancer. MW167 enhanced the inhibiting effects of X-ray on the proliferation of H358 cell line. After the addition of MW167, the apoptosis rates significantly increased, but the invasion and migration abilities decreased significantly. Meanwhile, MW167 could dose-dependently promote the increase of expression of Numb, which is the upstream gene of the Numb/Notch signaling pathway, but inhibit the expression of and HES1. In vivo experiments revealed that cell proliferation was suppressed in the radiation, pathway inhibitor, and pathway inhibitor + radiation groups, and the pathway inhibitor + radiation group exhibited more active anti-tumor ability when compared with the blank group (all P pathway inhibitor + radiation group exhibited more significant alternation when compared with the blank group (all P pathway inhibitor + radiation group showed more active apoptosis when compared with the blank group (all P pathway enhances the effects of radiotherapy on the radiosensitivity of the lung cancer cell line H358, and thus the Numb/Notch pathway may be a new target of radiotherapy for lung cancer.

  17. Determination of the optimum conditions for lung cancer cells treatment using cold atmospheric plasma

    Science.gov (United States)

    Akhlaghi, Morteza; Rajaei, Hajar; Mashayekh, Amir Shahriar; Shafiae, Mojtaba; Mahdikia, Hamed; Khani, Mohammadreza; Hassan, Zuhair Mohammad; Shokri, Babak

    2016-10-01

    Cold atmospheric plasmas (CAPs) can affect live cells and organisms due to the production of different reactive species. In this paper, the effects of various parameters of the CAP such as the treatment time, gas mixture, gas flow rate, applied voltage, and distance from the nozzle on the LL/2 lung cancer cell line have been studied. The probable effect of UV radiation has also been investigated using an MgF2 filter. Besides the cancerous cells, the 3T3 fibroblast cell line as a normal cell has been treated with the CAP. The Methylthiazol Tetrazolium assay showed that all parameters except the gas flow rate could impress effectively on the cancer cell viability. The cell proliferation seemed to be stopped after plasma treatment. The flow cytometry assay revealed that apoptosis and necrosis were appreciable. It was also found that treating time up to 2 min will not exert any effect on the normal cells.

  18. Chidamide alleviates TGF-β-induced epithelial-mesenchymal transition in lung cancer cell lines.

    Science.gov (United States)

    Lin, Sheng-Hao; Wang, Bing-Yen; Lin, Ching-Hsiung; Chien, Peng-Ju; Wu, Yueh-Feng; Ko, Jiunn-Liang; Chen, Jeremy J W

    2016-07-01

    Transforming growth factor-β (TGF-β)-induced epithelial-mesenchymal transition is a critical process in the initiation of metastasis of various types of cancer. Chidamide is a class I histone deacetylase inhibitor with anti-tumor activity. This study investigated the effects of chidamide on TGF-β-mediated suppression of E-cadherin expression in adenocarcinomic lung epithelial cells and the molecular mechanisms involved in these effects. Western blot analysis, confocal microscopy, Quantitative methyl-specific PCR and bisulfite sequencing were used to evaluate the effects of different treatments on chidamide ameliorating TGF-β induced-E-cadherin loss. H3 acetylation binding to the promoter of E-cadherin was detected by chromatin immunoprecipitations (CHIP). We found that chidamide reduced the level of lung cancer cell migration observed using a Boyden chamber assay (as an indicator of metastatic potential). Chidamide inhibited TGF-β-induced SMAD2 phosphorylation and attenuated TGF-β-induced loss of E-cadherin expression in lung cancer cells by Western blotting and confocal microscopy, respectively. Quantitative methyl-specific PCR and bisulfite sequencing revealed that TGF-β-enhanced E-cadherin promoter methylation was ameliorated in cells treated with chidamide. We demonstrated that histone H3 deacetylation within the E-cadherin promoter was required for TGF-β-induced E-cadherin loss; cell treatment with chidamide increased the H3 acetylation detected by CHIP. Taken together, our results demonstrate that TGF-β suppressed E-cadherin expression by regulating promoter methylation and histone H3 acetylation. Chidamide significantly enhanced E-cadherin expression in TGF-β-treated cells and inhibited lung cancer cell migration. These findings indicate that chidamide has a potential therapeutic use due to its capacity to prevent cancer cell metastasis.

  19. Progesterone and estrogen receptor expression and activity in human non-small cell lung cancer.

    Science.gov (United States)

    Marquez-Garban, Diana C; Mah, Vei; Alavi, Mohammad; Maresh, Erin L; Chen, Hsiao-Wang; Bagryanova, Lora; Horvath, Steve; Chia, David; Garon, Edward; Goodglick, Lee; Pietras, Richard J

    2011-08-01

    Lung cancer is the most common cause of cancer mortality in male and female patients in the US. Although it is clear that tobacco smoking is a major cause of lung cancer, about half of all women with lung cancer worldwide are never-smokers. Despite a declining smoking population, the incidence of non-small cell lung cancer (NSCLC), the predominant form of lung cancer, has reached epidemic proportions particularly in women. Emerging data suggest that factors other than tobacco, namely endogenous and exogenous female sex hormones, have a role in stimulating NSCLC progression. Aromatase, a key enzyme for estrogen biosynthesis, is expressed in NSCLC. Clinical data show that women with high levels of tumor aromatase (and high intratumoral estrogen) have worse survival than those with low aromatase. The present and previous studies also reveal significant expression and activity of estrogen receptors (ERα, ERβ) in both extranuclear and nuclear sites in most NSCLC. We now report further on the expression of progesterone receptor (PR) transcripts and protein in NSCLC. PR transcripts were significantly lower in cancerous as compared to non-malignant tissue. Using immunohistochemistry, expression of PR was observed in the nucleus and/or extranuclear compartments in the majority of human tumor specimens examined. Combinations of estrogen and progestins administered in vitro cooperate in promoting tumor secretion of vascular endothelial growth factor and, consequently, support tumor-associated angiogenesis. Further, dual treatment with estradiol and progestin increased the numbers of putative tumor stem/progenitor cells. Thus, ER- and/or PR-targeted therapies may offer new approaches to manage NSCLC.

  20. Interpretation of NCCN Guidelines:General Therapies on Non-small Cell Lung Cancer (Version 6. 2015)

    Institute of Scientific and Technical Information of China (English)

    HUANG Xin-en

    2015-01-01

    Lung cancer is one of the most common malignant tumors in China and ranks the ifrst of cancer-related death. The major etiological agent of lung cancer is an industry-made and promoted addictive product, so lung cancer is considered to be a unique disease in all cancers. Effective policies for public health are required to prevent the smoking initiation so as to reduce the mortality of lung cancer, so Food and Drug Administration (FDA) has introduced a series of measures to monitor the tobacco products. As to patients with strong suspicion of lung cancer in stageⅠ-Ⅱ, a preoperative biopsy is needed and intra-operative diagnosis is necessary before pneumonectomy, bilobectomy or lobectomy if the preoperative tissue diagnosis is not obtained. However, lung cancer still cannot be easily diagnosed and cured, so the annual improvement and update of new therapeutic protocols and the development of new agents is of great significance. Non-small cell lung cancer (NSCLC) accounts for about 80% of all lung cancer, and above 75% NSCLC patients are in middle-advanced stage when diagnosed, so they have lost the optimal therapeutic opportunity and the 5-year survival rate is relatively low. Therefore, this study mainly interpreted the National Comprehensive Cancer Network (NCCN) guidelines on the general therapies on NSCLC, hoping to provide references for the treatment of NSCLC patients and prolong their long-term survival.

  1. Fangchinoline inhibits the proliferation of SPC-A-1 lung cancer cells by blocking cell cycle progression.

    Science.gov (United States)

    Luo, Xue; Peng, Jian-Ming; Su, Lan-DI; Wang, Dong-Yan; Yu, You-Jiang

    2016-02-01

    Fangchinoline (Fan) is a bioactive compound isolated from the Chinese herb Stephania tetrandra S. Moore (Fen Fang Ji). The aim of the present study was to investigate the effect of Fan on the proliferation of SPC-A-1 lung cancer cells, and to define the associated molecular mechanisms. Following treatment with Fan, Cell Counting Kit-8, phase contrast imaging and Giemsa staining assays were used to detect cell viability; flow cytometry was performed to analyze the cell cycle distribution; and reverse transcription-quantitative polymerase chain reaction and western blot assays were used to investigate changes in the expression levels of cell cycle-associated genes and proteins. In the present study, treatment with Fan markedly inhibited the proliferation of SPC-A-1 lung cancer cells and significantly increased the percentage of cells in the G0/G1 phase of the cell cycle in a dose-dependent manner (PSPC-A-1 lung cancer cells and induced cell cycle arrest at the G0/G1 phase. These effects may be mediated by the downregulation of cellular CDK4, CDK6 and cyclin D1 levels, thus leading to hypophosphorylation of Rb and subsequent suppression of E2F-1 activity. Therefore, the present results suggest that Fan may be a potential drug candidate for the prevention of lung cancer.

  2. Multiparametric profiling of non–small-cell lung cancers reveals distinct immunophenotypes

    Science.gov (United States)

    Lizotte, Patrick H.; Ivanova, Elena V.; Awad, Mark M.; Jones, Robert E.; Keogh, Lauren; Liu, Hongye; Dries, Ruben; Herter-Sprie, Grit S.; Santos, Abigail; Feeney, Nora B.; Paweletz, Cloud P.; Kulkarni, Meghana M.; Bass, Adam J.; Rustgi, Anil K.; Yuan, Guo-Cheng; Kufe, Donald W.; Jänne, Pasi A.; Hammerman, Peter S.; Sholl, Lynette M.; Hodi, F. Stephen; Richards, William G.; Bueno, Raphael; English, Jessie M.; Bittinger, Mark A.

    2016-01-01

    BACKGROUND. Immune checkpoint blockade improves survival in a subset of patients with non–small-cell lung cancer (NSCLC), but robust biomarkers that predict response to PD-1 pathway inhibitors are lacking. Furthermore, our understanding of the diversity of the NSCLC tumor immune microenvironment remains limited. METHODS. We performed comprehensive flow cytometric immunoprofiling on both tumor and immune cells from 51 NSCLCs and integrated this analysis with clinical and histopathologic characteristics, next-generation sequencing, mRNA expression, and PD-L1 immunohistochemistry (IHC). RESULTS. Cytometric profiling identified an immunologically “hot” cluster with abundant CD8+ T cells expressing high levels of PD-1 and TIM-3 and an immunologically “cold” cluster with lower relative abundance of CD8+ T cells and expression of inhibitory markers. The “hot” cluster was highly enriched for expression of genes associated with T cell trafficking and cytotoxic function and high PD-L1 expression by IHC. There was no correlation between immunophenotype and KRAS or EGFR mutation, or patient smoking history, but we did observe an enrichment of squamous subtype and tumors with higher mutation burden in the “hot” cluster. Additionally, approximately 20% of cases had high B cell infiltrates with a subset producing IL-10. CONCLUSIONS. Our results support the use of immune-based metrics to study response and resistance to immunotherapy in lung cancer. FUNDING. The Robert A. and Renée E. Belfer Family Foundation, Expect Miracles Foundation, Starr Cancer Consortium, Stand Up to Cancer Foundation, Conquer Cancer Foundation, International Association for the Study of Lung Cancer, National Cancer Institute (R01 CA205150), and the Damon Runyon Cancer Research Foundation. PMID:27699239

  3. Lung Cancer Indicators Recurrence

    Science.gov (United States)

    This study describes prognostic factors for lung cancer spread and recurrence, as well as subsequent risk of death from the disease. The investigators observed that regardless of cancer stage, grade, or type of lung cancer, patients in the study were more

  4. KRAS and the Reality of Personalized Medicine in Non-Small Cell Lung Cancer

    Science.gov (United States)

    Kilgoz, Havva O; Bender, Guzide; Scandura, Joseph M; Viale, Agnes; Taneri, Bahar

    2016-01-01

    Lung cancer is the leading cause of mortality among all cancer types worldwide. The latest available global statistics of the World Health Organization report 1.59 million casualities in 2012. Worldwide, 1 in 5 cancer deaths are caused by lung cancer. In 2016, in the United States alone, there are an estimated 224,390 new cases of lung cancer, of which 158,080 are expected to result in death, as reported by the National Cancer Institute. Non-small cell lung cancer (NSCLC), a histological subtype, comprises about 85% of all cases, which is nearly 9 out of 10 lung cancer patients. Efforts are under way to develop and improve targeted therapy strategies. Certain mutations are being clinically targeted, such as those in EGFR and ALK genes. However, one of the most frequently mutated genes in NSCLC is the Kirsten rat sarcoma viral oncogene homolog (KRAS), which is currently not targetable. Approximately 25% of all types of NSCLC tumors contain KRAS mutations, which remain as an undruggable challenge. These mutations are indicative of poor prognosis and show negative response to standard chemotherapy. Furthermore, tumors harboring KRAS mutations are unlikely to respond to currently available targeted treatments such as tyrosine kinase inhibitors. Therefore, there is a definitive, urgent need to generate new targeted therapy approaches for KRAS mutations. Current strategies have major limitations and revolve around targeting molecules upstream and downstream of KRAS. Direct targeting is not available in the clinic. Combination therapies using multiple agents are being sought. Concentrated efforts are needed to accelerate basic research and consecutive clinical trials to achieve effective targeting of KRAS. PMID:27447490

  5. Peripheral blood stem cell harvest in patients with limited stage small-cell lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Katakami, Nobuyuki; Takakura, Shunji; Fujii, Hiroshi; Nishimura, Takashi; Umeda, Bunichi [Kobe City General Hospital (Japan)

    2000-06-01

    Chemotherapy plus granulocyte colony-stimulating factor (G-CSF) induced mobilization of peripheral blood stem cells (PBSC) was performed in patients with limited stage small-cell lung cancer. Chemotherapy consisted of cisplatin/etoposide or cisplatin/adriamycin/etoposide. The amounts of CD34 positive cells and granulocyte-macrophage colony forming units (CFU-GM) collected during 2-3 courses of apheresis were 3.1{+-}2.9 x 10{sup 6}/kg (n=10) and 3.1{+-}1.5 x 10{sup 5}/kg (n=8) , respectively. Adequate amounts of PBSC were also harvested even in patients treated with concurrent chemoradiotherapy. Eight patients were successfully treated with high-dose chemotherapy consisting of ifosfamide, carboplatin and etoposide with PBSC transfusion. The patients'-bone marrow reconstruction was rapid and no treatment-related death was observed. (author)

  6. G4-Tetra DNA Duplex Induce Lung Cancer Cell Apoptosis in A549 Cells

    Science.gov (United States)

    Xu, Xiaobo; Zhao, YiZhuo; Lu, Hu; Fu, Cuiping; Li, Xiao; Jiang, Liyan; Li, Shanqun

    2016-10-01

    The specific DNA is typically impermeable to the plasma membrane due to its natural characters, but DNA tetra structures (DTNs) can be readily uptake by cells in the absence of transfection agents, providing a new strategy to deliver DNA drugs. In this research, the delivery efficiency of tetrahedral DNA nanostructures was measured on adenocarcinomic human alveolar basal epithelial (A549) cells via delivering AS1411 (G4). The DNA tetra-AS1411 complex was rapidly and abundantly uptake by A549 cells, and the induced apoptosis was enhanced. Furthermore, biodistribution in mouse proved the rapid clearance from non-targeted organs in vivo. This study improved the understanding of potential function in DNA-based drug delivery and proved that DTNs-AS1411 could be potentially useful for the treatment of lung cancer.

  7. Altered Ca2+-Homeostasis of Cisplatin-Treated and Low Level Resistant Non-Small-Cell and Small-Cell Lung Cancer Cells

    Directory of Open Access Journals (Sweden)

    Kathrin Schrödl

    2009-01-01

    Full Text Available Background: Chemotherapy often leads to encouraging responses in lung cancer. But, in the course of the treatment, resistance to chemotherapy ultimately limits the life expectancy of the patient. We aimed at investigating if treatment with cisplatin alters the intracellular Ca2+-homeostasis of lung cancer cells and how this may be related to cisplatin resistance.

  8. Expression of Syk in non-small cell lung cancer and its relationship with clinicopathological parameters

    Institute of Scientific and Technical Information of China (English)

    Fen LAN; Shengdao XIONG; Weining XIONG; Guopeng XU; Xiaoxia LU

    2009-01-01

    This study aims to research the expression of spleen tyrosine kinase (Syk) in non-small cell lung cancer (NSCLC) and the relationship between Syk and clinico-pathologic factors and p53. Immunohistochemistry was applied to detect the expression of Syk and p53 protein in 39 cases of NSCLC (23 cases of lung squamous cell can-cer, 16 cases of lung adenocarcinoma) and tumor-sur-rounding normal lung tissues. The positive rate of Syk was 46.15% (18/39) and 100% (39/39) in NSCLC and tumor-surrounding normal lung tissues, respectively. The expres-sion level of Syk in NSCLC was significantly lower than that in tumor-surrounding normal lung tissues (P = 0.000). The Syk expression was positively correlated with the p53 expression in NSCLC specimens (P = 0.025). There was no significant association between Syk expression and lymph node metastasis, differentiation degree, tumor size and tumor node metastasis (TNM). The present study demonstrated that Syk was aberrantly expressed in the NSCLC and might have a significant impact on tumor growth and progression.

  9. Large bilateral adrenal metastases in non-small cell lung cancer

    Directory of Open Access Journals (Sweden)

    Karanikiotis Charisios

    2004-11-01

    Full Text Available Abstract Background The adrenal gland is one of the common sites of metastasis from primary lung cancer. Adrenal metastases are usually unilateral however bilateral adrenal metastases are seen in 10% of all lung cancer patients; of these 2–3% occurs at the initial presentation of non-small cell lung cancer. Secondary tumors can disrupt the structure and function of the adrenal. This can lead to adrenal hemorrhage, which constitutes a life threatening hazard for the patient. Case presentation A 59-year-old male presented with persisting abdominal pain. His initial work-up revealed significant anemia, an invasive process in the right upper lobe of the lung and large masses of heterogeneous texture, with hemorrhagic and necrotic elements in both adrenal glands. A biopsy confirmed it to be a large-cell carcinoma of the lungs. The patient developed severe leukocytosis akin to the paraneoplastic syndrome and died suddenly five days after the administration of chemotherapy. Conclusion Intratumoral hemorrhage is a rare but life threatening complication of adrenal metastases and should be treated as soon as it has been diagnosed. If adrenalectomy is not feasible, combination chemotherapy should be applied as in metastatic disease. For choosing the appropriate chemotherapeutic regimen it is important to accurately achieve the diagnosis.

  10. Secretomic analysis of large cell lung cancer cell lines using two-dimensional gel electrophoresis coupled to mass spectrometry

    Directory of Open Access Journals (Sweden)

    Zahra Yousefi

    2012-10-01

    Full Text Available

    The secretome of cancer cells is a valuable source of biomarkers that can ultimately reach the serum or other body fluids. Cancer biomarkers can facilitate early diagnosis and monitoring of the disease, contribute to our understanding of tumor biology, and support the development of more efficient therapies. Recently, high-throughput proteomic analysis of the conditioned media of cancer cell lines has shown potential to identify novel biomarkers in cancer. We used two-dimensional gel electrophoresis coupled to liquid chromatography tandem mass spectrometry to identify the secretome of the large cell lung cancer cell lines QU-DB and Mehr-80, which they were established from a Canadian and a Persian patient, respectively. A total of 130 distinct protein species were identified. Of these, 124 were previously found in serum or other body fluids, the membrane compartment or conditioned media of other cancer cell lines. Some of the proteins that we identified, e.g. IL-6, triosephosphate isomerase, PGP9.5, α-enolase, Dickkopf-1, and peroxiredoxin-1 are known putative serum markers for lung cancer, whereas others might be candidate markers for further validation in lung cancer body fluids such as IL-25, stathmin, vimentin, peptidyl-prolyl cis-trans isomerase A, transgelin-2, and chloride intracellular channel protein 4.

  11. Expression of T cell factor-4 in non-small-cell lung cancer

    Institute of Scientific and Technical Information of China (English)

    LI Chun-yan; WANG Yan; CUI Ze-shi; WANG En-hua

    2005-01-01

    Background T cell factor- 4 (TCF- 4) plays an important role in development and carcinogenesis. Recently, the role of TCF- 4 has been described in colon cancer and other cancers. However, whether TCF- 4 plays a similar role in lung cancer is unknown. To answer this question, we studied the expression of TCF- 4 protein and mRNA in non-small-cell lung cancer (NSCLC) and the relation of TCF- 4 expression pattern to histological type and cell differentiation. Methods Tissue samples from sixty cases of pathologically diagnosed NSCLC and eight normal tissue samples were obtained between September 2001 and March 2003. Immunohistochemistry was used to investigate the distribution of TCF- 4 protein. The staining patterns of the tumors were divided into 4 categories: nuclear staining alone or nuclear staining greater than cytoplasmic staining; cytoplasmic staining or cytoplasmic staining greater than nuclear staining; equal nuclear and cytoplasmic staining; no nuclear staining or cytoplasmic staining. The integrated optical density (OD) values of all sections were analyzed by UIC MetaMorph image analysis software. The expression of TCF- 4 mRNA was detected by one-step reverse transcription-polymerase chain reaction (RT-PCR). The integrated density values of the PCR products were analyzed semi-quantitatively.Results Immunohistochemistry showed that there was no expression of TCF- 4 in normal tissue. However, TCF- 4 was expressed in 86.7% (52/60) of NSCLC samples, mainly in the nuclei of tumor cells. Furthermore, there was a significant difference in TCF- 4 localization patterns between squamous cell carcinomas and adenocarcinomas (P<0.05). The integrated OD values of TCF- 4 expression was significantly higher in tumors with moderate-poor cell differentiation than in well differentiated tumors (51.63±6.67 vs 46.13±12.31, P<0.01). There was no TCF- 4 mRNA expression in normal tissue. However, 63.9% (23/36) of carcinoma samples expressed TCF- 4 mRNA. TCF- 4 mRNA expression was

  12. Expression of G-protein inwardly rectifying potassium channels (GIRKs in lung cancer cell lines

    Directory of Open Access Journals (Sweden)

    Schuller Hildegard M

    2005-08-01

    Full Text Available Abstract Background Previous data from our laboratory has indicated that there is a functional link between the β-adrenergic receptor signaling pathway and the G-protein inwardly rectifying potassium channel (GIRK1 in human breast cancer cell lines. We wanted to determine if GIRK channels were expressed in lung cancers and if a similar link exists in lung cancer. Methods GIRK1-4 expression and levels were determined by reverse transcription polymerase chain reaction (RT-PCR and real-time PCR. GIRK protein levels were determined by western blots and cell proliferation was determined by a 5-bromo-2'-deoxyuridine (BrdU assay. Results GIRK1 mRNA was expressed in three of six small cell lung cancer (SCLC cell lines, and either GIRK2, 3 or 4 mRNA expression was detected in all six SCLC cell lines. Treatment of NCI-H69 with β2-adrenergic antagonist ICI 118,551 (100 μM daily for seven days led to slight decreases of GIRK1 mRNA expression levels. Treatment of NCI-H69 with the β-adrenergic agonist isoproterenol (10 μM decreased growth rates in these cells. The GIRK inhibitor U50488H (2 μM also inhibited proliferation, and this decrease was potentiated by isoproterenol. In the SCLC cell lines that demonstrated GIRK1 mRNA expression, we also saw GIRK1 protein expression. We feel these may be important regulatory pathways since no expression of mRNA of the GIRK channels (1 & 2 was found in hamster pulmonary neuroendocrine cells, a suggested cell of origin for SCLC, nor was GIRK1 or 2 expression found in human small airway epithelial cells. GIRK (1,2,3,4 mRNA expression was also seen in A549 adenocarcinoma and NCI-H727 carcinoid cell lines. GIRK1 mRNA expression was not found in tissue samples from adenocarcinoma or squamous cancer patients, nor was it found in NCI-H322 or NCI-H441 adenocarcinoma cell lines. GIRK (1,3,4 mRNA expression was seen in three squamous cell lines, GIRK2 was only expressed in one squamous cell line. However, GIRK1 protein

  13. Impact of Introducing Stereotactic Lung Radiotherapy for Elderly Patients With Stage I Non-Small-Cell Lung Cancer : A Population-Based Time-Trend Analysis

    NARCIS (Netherlands)

    Palma, David; Visser, Otto; Lagerwaard, Frank J.; Belderbos, Jose; Slotman, Ben J.; Senan, Suresh

    2010-01-01

    Purpose Stereotactic body radiotherapy (SBRT) for stage I non-small-cell lung cancer (NSCLC) is associated with high local control rates. The impact of introducing SBRT in patients 75 years of age or older was studied using a population-based cancer registry. Methods The Amsterdam Cancer Registry wa

  14. Distribution and mRNA Expression of BAMBI in Non-small-cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Shen MIAO

    2009-03-01

    Full Text Available Background and objective BAMBI structure is similar with that of the receptor Ⅰof TGF-β, it broadly participates in the control of TGF-β signaling. The aim of this study is to investigate the expression and its significance of BAMBI in non-small cell lung cancer (NSCLC and explore the relation between BAMBI and clinical and pathological factors of NSCLC. Methods Sixty-three cases with NSCLC and adjacent normal tissue specimens were used for immunohistochemical assay. Thirty-one fresh lung cancer tissue specimens and surrounding normal lung tissue specimens was preserved for RT-PCR in -70 ℃ after quick-frozen in liquid nitrogen immediately. Results The level of BAMBI mRNA in cancer tissues was higher than that in the corresponding adjacent tissues (0.358±0.135 vs 0.249±0.129, with the difference being statistically significant (P =0.003. BAMBI protein expressed mainly in the membrane and the cytoplasm close to the membrane, its expression in the cancer tissue was higher than that in the adjacent tissues, the difference was significant (P <0.01. Expression of BAMBI in the cancer tissue was higher than that in the adjacent tissues, and the expression of BAMBI in adenocarcinoma of lung is higher than that in squamous carcinoma. Conclusion The expressions of BAMBI significantly increase in NSCLC. It might be a common affair in carcinogenesis of NSCLC.

  15. Modulating chemotaxis of lung cancer cells by using electric fields in a microfluidic device.

    Science.gov (United States)

    Kao, Yu-Chiu; Hsieh, Meng-Hua; Liu, Chung-Chun; Pan, Huei-Jyuan; Liao, Wei-Yu; Cheng, Ji-Yen; Kuo, Po-Ling; Lee, Chau-Hwang

    2014-03-01

    We employed direct-current electric fields (dcEFs) to modulate the chemotaxis of lung cancer cells in a microfluidic cell culture device that incorporates both stable concentration gradients and dcEFs. We found that the chemotaxis induced by a 0.5 μM/mm concentration gradient of epidermal growth factor can be nearly compensated by a 360 mV/mm dcEF. When the effect of chemical stimulation was balanced by the electrical drive, the cells migrated randomly, and the path lengths were largely reduced. We also demonstrated electrically modulated chemotaxis of two types of lung cancer cells with opposite directions of electrotaxis in this device.

  16. FGFR as potential target in the treatment of squamous non small cell lung cancer.

    Science.gov (United States)

    Tiseo, Marcello; Gelsomino, Francesco; Alfieri, Roberta; Cavazzoni, Andrea; Bozzetti, Cecilia; De Giorgi, Anna Maria; Petronini, Pier Giorgio; Ardizzoni, Andrea

    2015-06-01

    To date therapeutic options for squamous cell lung cancer patients remain scarce because no druggable targets have been identified so far. Aberrant signaling by FGFs (fibroblast growth factors) and FGFRs (fibroblast growth factors receptors) has been implicated in several human cancers and, particularly, in squamous non-small cell lung cancer (NSCLC). FGFR gene amplifications, somatic missense mutations, chromosomal translocations are the most frequent mechanisms able to induce aberrant activation of this pathway. Data from literature have established that the presence of an aberrant FGFR signaling has to be considered a possible negative prognostic factor but predictive of potential sensitivity to FGFR inhibitors. In the last years, clinical research efforts allowed to identify and evaluate promising FGFR inhibitors, such as monoclonal antibodies, ligand traps, non-selective or selective tyrosine kinase inhibitors. This review summarizes the current knowledge about FGFR alterations in NSCLC and the relative inhibitors in development, in particular in squamous NSCLC.

  17. CDK-associated Cullin 1 promotes cell proliferation with activation of ERK1/2 in human lung cancer A549 cells

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Tian Jun [Respiratory Department, The First Affiliated Hospital, Xi’an Jiaotong University College of Medicine, Xi’an 710061 (China); Gao, Fei [Hua-shan Central Hospital of Xi’an, Xi’an 710043 (China); Yang, Tian; Thakur, Asmitanand; Ren, Hui; Li, Yang; Zhang, Shuo; Wang, Ting [Respiratory Department, The First Affiliated Hospital, Xi’an Jiaotong University College of Medicine, Xi’an 710061 (China); Chen, Ming Wei, E-mail: xjtucmw@163.com [Respiratory Department, The First Affiliated Hospital, Xi’an Jiaotong University College of Medicine, Xi’an 710061 (China)

    2013-07-19

    Highlights: •CDK-associated Cullin 1 (CAC1) expression increases in human lung carcinoma. •CAC1 promotes the proliferation of lung cancer A549 cells. •CAC1 promotes human lung cancer A549 cell proliferation with activation of ERK1/2. -- Abstract: Lung cancer is one of the most common causes of cancer-related death in the world, but the mechanisms remain unknown. In this study, we investigated the expression of CDK-associated Cullin 1 (CAC1) in lung cancer, the effect of CAC1 on the proliferation of human lung cancer A549 cells, and the activation of signaling pathways of mitogen-activated protein kinases (MAPKs). Results showed that CAC1 expression was higher levels in human lung carcinoma than normal lung tissue, and CAC1 siRNA reduced the proliferation of lung cancer A549 cells by decreasing cell activity and cell division in vitro. The proportion of cells treated with CAC1 siRNA increased in the G1 phase and decreased in the S and G2/M phase, indicative of G1 cell cycle arrest. Furthermore, the proportions of early/late apoptosis in lung cancer A549 cells were enhanced with CAC1 siRNA treatment. It was also found that activation of extracellular signal-regulated protein kinase (ERK) and p38 signaling pathways were involved in the proliferation of A549 cells. After CAC1 siRNA treatment, p-ERK1/2 levels decreased, and meanwhile p-p38 level increased, A549 cell proliferation increased when ERK1/2 signaling is activated by PMA. Our findings demonstrated that CAC1 promoted the proliferation of human lung cancer A549 cells with activation of ERK1/2 signaling pathways, suggesting a potential cure target for treatment of human lung cancer.

  18. Role of Metallothionein1H in Cisplatin Resistance of Non-Small Cell Lung Cancer Cells

    Institute of Scientific and Technical Information of China (English)

    Xin-fang Hou; Qing-xia Fan; Liu-xing Wang; Shi-xin Lu

    2009-01-01

    Objective: Despite platinum-based adjuvant chemotherapy has improved greatly patients' outcomes, drug resistance poses a major impediment to the successful use of such an effective agent. Metallothioneins(MTs) are known to play putative roles in cancer cell proliferation, apoptosis, differentiation, drug resistance and prognosis. The present studiy was to investigte the role of metallethioein1H(MT1H) in cisplatin resistance of human non-small cell lung cancer(NSCLC) cell lines in vitro or its possible molecular mechanisms. Methods: MT1H mRNA expression in A549 and A549/DDP cells was detected by RT-PCR. A recombinant eukaryotic expression plasmid pcDNA3.1(-)-MT1H was constructed and transfected into A549 cells which express no MT1H. MT1H siRNA was transfected into A549/DDP cells which express MT1H highly. MT1H expression was detected by RT-PCR and Immunoblot. The chemosensitivity to cisplatin was assessed by MTT assay. Apoptosis rate was determined by Tunel and FCM. Bcl-2 and Bax were determined by immunohistochemistry. Results: MT1H mRNA was expressed in A549/DDP but not in A549. After transfection of MT1H, MT1H expression was enhanced and the chemosensitivity to cisplatin was decreased in A549 cells. Inversely, after transfection of MT1H siRNA, MT1H expression was decreased and the chemosensitivity to cisplatin was increased in A549/DDP. The apoptosis rate induced by cisplatin was increased and Bcl-2 was down-regulated but Bax showed little change in A549/DDP cells interferred with MT1H siRNA. Conclusion: MT1H overexpression can promote drug resistance in A549 cells . Down-regulation of MT1H interfered with siRNA can effectively reverses the drug resistance in A549/DDP cells by down-regulating the expression of Bcl-2 and increasing cisplatin induced apoptosis. SiRNA targeting MT1H combined with chemotherapy may be a very promising strategy for treatment of lung cancer.

  19. Growth suppressive efficacy of human lak cells against human lung-cancer implanted into scid mice.

    Science.gov (United States)

    Teraoka, S; Kyoizumi, S; Suzuki, T; Yamakido, M; Akiyama, M

    1995-06-01

    The purpose of our study was to determine the efficacy of immunotherapy using human lymphokine activated killer (LAK) cells against a human-lung squamous-cell carcinoma cell line (RERF-LC-AI) implanted into severe combined immunodeficient (SCID) mice. A statistically significant growth suppressive effect on RERF-LC-AI implanted into SCID mice was observed when human LAK cells were administered into the caudal vein of the mice treated with a continuous supply (initiated prior to LAK cells injection) of rIL-2. The human LAK cells stained with PKH 2, a fluorescent dye, for later detection using flow cytometry were administered into the caudal vein of RERF-LC-AI bearing SCID mice; the cells persisted for 7 days in the implanted lung cancer tissue and in the mouse peripheral blood, but for 5 days in the mouse spleen. The number of infiltrated human LAK cells in each tissue increased dose-dependently with the number of injected cells. The results indicate that the antitumor effect most likely occurred during the early implantation period of the human LAK cells. These results demonstrate the applicability of this model to the in vivo study of human lung cancer therapy.

  20. Green tea inhibits cycolooxygenase-2 in non-small cell lung cancer cells through the induction of Annexin-1.

    Science.gov (United States)

    Lu, Qing-Yi; Jin, Yusheng; Mao, Jenny T; Zhang, Zuo-Feng; Heber, David; Dubinett, Steven M; Rao, Jianyu

    2012-11-02

    Elevated cyclooygenase-2 (COX-2) expression is frequently observed in human non-small cell lung cancer (NSCLC) and associated with poor prognosis, indicating critical involvement of the inflammatory pathway in lung carcinogenesis. Recently, we found that green tea extract (GTE) induced Annexin-1 (ANX1) in the lung adenocarcinoma A549 cells. ANX1 is a glucocorticoid-inducible 37kDa protein involved in a wide range biological function and is an important anti-inflammatory mediator. The present study further examines the interplay between the expressions and production of ANX1, COX-2, phospholipase A(2) (cPLA(2)) and prostaglandin E(2) (PGE(2)) following the treatment of NSCLC cell lines with GTE. We found that GTE induced ANX1 and inhibited COX-2 expression in lung cancer A549, H157 and H460 cell lines. Addition of pro-inflammatory cytokine IL-1β diminished GTE-induced ANX1. Silence of ANX1 in cells abrogates the inhibitory activity on COX-2, indicating that the anti-inflammatory activity of GTE is mediated at least partially by the up-regulation of ANX1. However, differential pattern of inhibitory effects of ANX1 on cPLA(2) expression was observed among various cell types, suggesting that the anti-inflammatory activity mediated by ANX1 is cell type specific. Our study may provide a new mechanism of GTE on the prevention of lung cancer and other diseases related to inflammation.

  1. Amrubicin therapy improves patients with refractory small-cell lung cancer: A single-arm confirmatory Chinese clinical study

    Directory of Open Access Journals (Sweden)

    Mengli Zheng

    2016-09-01

    Full Text Available Our objective was to evaluate an open-label, multicenter, single-arm study to appraise whether amrubicin therapy improves patients with refractory small-cell lung cancer in Chinese clinical study. Patients (n=95 with refractory small-cell lung cancer received 3 consecutive days amrubicin therapy for 21 days. Overall response rate of response to amrubicin was 39%. Anemia, febrile neutropenia, thrombocytopenia, hyperglycemia, hyponatremia, infection, elevated serum transaminases levels were appeared, but the incidences of adverse events were very few. Our results suggest amrubicin therapy can improve patients with refractory small-cell lung cancer and may be an effective and safe treatment option.

  2. Expression of cell cycle regulating factor mRNA in small cell lung cancer xenografts

    DEFF Research Database (Denmark)

    Krarup, M; Poulsen, H S; Spang-Thomsen, M

    1998-01-01

    We have investigated the expression of cyclins, cyclin dependent kinases (CDK), and CDK inhibitors (CKI) at the mRNA level in a panel of small-cell lung cancer (SCLC) cell lines in vitro and in vivo as xenografts in nude mice. The results showed that the cell lines expressed varying amounts of most...... cyclin and CDK's but only a few of the cell lines expressed cyclin D1 and/or D2 and some lacked expression of CDK6. Most cell lines expressed mRNA for the CKI's but two cell lines lacked expression of P15INK4B and p16INK4A. The mRNA expression differed for a few of the cell lines regarding cyclin D2...... and CDK6 when in vitro and in vivo data were compared. Two of the cell lines that express the retinoblastoma (Rb) protein had no sign of a deregulated Rb pathway but further studies at the protein level are necessary to demonstrate whether these two cell lines should have a normal Rb pathway or whether...

  3. [The quality of life after chemotherapy in advanced non-small cell lung cancer patients].

    Science.gov (United States)

    Słowik-Gabryelska, A; Szczepanik, A; Kalicka, A

    1999-01-01

    The intensity of complains, short survival and great number of patients makes many oncologists to apply chemotherapy in advanced non-small cell lung cancer/NSCLC/. The achieved median duration of life after chemotherapy was 6 to 12 month. From the other hand non small cell lung cancer chemotherapy is a big burden even to healthy persons. It can worsen the quality of life. That was the reason we evaluated the quality of life after chemotherapy in advanced non small cell lung cancer patients. Taking into account, that the evaluation of quality of life, used in most diseases is useless in advanced NSCLC patients, for appreciation the quality of life in these cases the lung cancer symptoms scale/LCSS/was adopted. In 110 non small cell lung cancer patients in stage IIIB and IV, who received combined chemotherapy by Le Chevalier/Vindesine, Cisplatin, Cyclophosphamide, Lomustin/or by Rosell/Mitomycin, Cyclophosphamide, Cisplatin/the quality of life was evaluated. In 20-persons control group all patients received the symptomatic treatment. In observed group of 110 patients, tumor regressions after 4 courses of chemotherapy allowed to resect cancer in 14 cases, to apply radiotherapy in 42 and to continue chemiotherapy in 23 persons. In every person from above mentioned group the quality of life was evaluated on the basis of intensity of cancer symptoms, accordingly to LCSS. The intensity of cancer symptoms was compared before and after treatment. There were compared; the innensity of complains, weakness, appetite, malnutrition, and hematological, neurological, performans state as well as respiratory sufficiency, infections, cardiac disorders and pain. Apart it, the side effects of applied therapy were assessed in 5 degree scale. The level of hemoglobin, the number of leucocytes, thrombocytes, bilirubine and transaminases in peripheral blood, hematurie, proteinurie, bleedings, appetite, nausea, vomitings, diarrhea, mucosal lesions, infections, skin lesions, cardiac lesions

  4. FoxM1 mediated resistance to gefitinib in non-small-cell lung cancer cells

    Institute of Scientific and Technical Information of China (English)

    Nuo XU; Xin ZHANG; Xun WANG; Hai-yan GE; Xiao-ying WANG; David GARFIELD; Ping YANG; Yuan-lin SONG; Chun-xue BAI

    2012-01-01

    Gefitinib is effective in only approximately 20% of patients with non-small-cell lung cancer (NSCLC),and the underlying mechanism remains unclear.FoxM1 is upregulated in NSCLC and associated with a poor prognosis in NSCLC patients.In this study,we examined the possible role of FoxM1 in gefitinib resistance and the related mechanisms.Methods:Gefitinib resistant human lung adenocarcinoma cell line SPC-A-1 and gefitinib-sensitive human lung mucoepidermoid carcinoma cell line NCI-H292 were used.mRNA and protein expression of FoxM1 and other factors were tested with quantitative RT PCR and Western blot analysis.RNA interference was performed to suppress FoxM1 expression in SPC-A-1 cells,and lentiviral infection was used to overexpress FoxM1 in H292 cells.MTT assay and flow cytometry were used to examine the proliferation and apoptosis of the cells.Results:Treatment of SPC-A-1 cells with gefitinib (1 and 10 μmol/L) upregulated the expression of FoxM1 in time- and concentrationdependent manners,while gefrtinib (1 μmol/L) downregulated in H292 cells.In SPC-A-1 cells treated with gefitinib (1 μmol/L),the expression of several downstream targets of FoxM1,including survivin,cyclin B1,SKP2,PLK1,Aurora B kinase and CDC25B,were significantly upregulated.Overexpression of FoxM1 increased the resistance in H292 cells,while attenuated FoxM1 expression restored the sensitivity to gefitinib in SPC-A-1 cells by inhibiting proliferation and inducing apoptosis.Conclusion:The results suggest that FoxM1 plays an important role in the resistance of NSCLC cells to gefitinib in vitro.FoxM1 could be used as a therapeutic target to overcome the resistance to gefitinib.

  5. Mechanisms of Resistance to Target Therapies in Non-small Cell Lung Cancer.

    Science.gov (United States)

    Facchinetti, Francesco; Proto, Claudia; Minari, Roberta; Garassino, Marina; Tiseo, Marcello

    2017-03-23

    Targeted therapies are revolutionizing the treatment of advanced non-small cell lung cancer (NSCLC). The discovery of key oncogenic events mainly in lung adenocarcinoma, like EGFR mutations or ALK rearrangements, has changed the treatment landscape while improving the prognosis of lung cancer patients. Inevitably, virtually all patients initially treated with targeted therapies develop resistance because of the emergence of an insensitive cellular population, selected by pharmacologic pressure. Diverse mechanisms of resistance, in particular to EGFR, ALK and ROS1 tyrosine-kinase inhibitors (TKIs), have now been discovered and may be classified in three different groups: (1) alterations in the target (such as EGFR T790M and ALK or ROS1 mutations); (2) activation of alternative pathways (i.e. MET amplification, KRAS mutations); (3) phenotype transformation (to small cell lung cancer, epithelial-mesenchymal transition). These basic mechanisms are informing the development of novel therapeutic strategies to overcome resistance in the clinic. Novel-generation molecules include osimertinib, for EGFR-T790M-positive patients, and new ALK-TKIs. Nevertheless, the possible concomitant presence of multiple resistance mechanisms, as well as their heterogeneity among cells and disease localizations, makes research in this field particularly arduous. In this chapter, available evidence and perspectives concerning precise mechanisms of escape to pharmacological inhibition in oncogene-addicted NSCLC are reported for single targets, including but not limited to EGFR and ALK.

  6. Identification of a long non-coding RNA gene, growth hormone secretagogue receptor opposite strand, which stimulates cell migration in non-small cell lung cancer cell lines.

    Science.gov (United States)

    Whiteside, Eliza J; Seim, Inge; Pauli, Jana P; O'Keeffe, Angela J; Thomas, Patrick B; Carter, Shea L; Walpole, Carina M; Fung, Jenny N T; Josh, Peter; Herington, Adrian C; Chopin, Lisa K

    2013-08-01

    The molecular mechanisms involved in non‑small cell lung cancer tumourigenesis are largely unknown; however, recent studies have suggested that long non-coding RNAs (lncRNAs) are likely to play a role. In this study, we used public databases to identify an mRNA-like, candidate long non-coding RNA, GHSROS (GHSR opposite strand), transcribed from the antisense strand of the ghrelin receptor gene, growth hormone secretagogue receptor (GHSR). Quantitative real-time RT-PCR revealed higher expression of GHSROS in lung cancer tissue compared to adjacent, non-tumour lung tissue. In common with many long non-coding RNAs, GHSROS is 5' capped and 3' polyadenylated (mRNA-like), lacks an extensive open reading frame and harbours a transposable element. Engineered overexpression of GHSROS stimulated cell migration in the A549 and NCI-H1299 non-small cell lung cancer cell lines, but suppressed cell migration in the Beas-2B normal lung-derived bronchoepithelial cell line. This suggests that GHSROS function may be dependent on the oncogenic context. The identification of GHSROS, which is expressed in lung cancer and stimulates cell migration in lung cancer cell lines, contributes to the growing number of non-coding RNAs that play a role in the regulation of tumourigenesis and metastatic cancer progression.

  7. Loss of RASSF2 Enhances Tumorigencity of Lung Cancer Cells and Confers Resistance to Chemotherapy

    Directory of Open Access Journals (Sweden)

    Jennifer Clark

    2012-01-01

    Full Text Available RASSF2 is a novel pro-apoptotic effector of K-Ras that is frequently inactivated in a variety of primary tumors by promoter methylation. Inactivation of RASSF2 enhances K-Ras-mediated transformation and overexpression of RASSF2 suppresses tumor cell growth. In this study, we confirm that RASSF2 and K-Ras form an endogenous complex, validating that RASSF2 is a bona fide K-Ras effector. We adopted an RNAi approach to determine the effects of inactivation of RASSF2 on the transformed phenotype of lung cancer cells containing an oncogenic K-Ras. Loss of RASSF2 expression resulted in a more aggressive phenotype that was characterized by enhanced cell proliferation and invasion, decreased cell adhesion, the ability to grow in an anchorage-independent manner and cell morphological changes. This enhanced transformed phenotype of the cells correlated with increased levels of activated AKT, indicating that RASSF2 can modulate Ras signaling pathways. Loss of RASSF2 expression also confers resistance to taxol and cisplatin, two frontline therapeutics for the treatment of lung cancer. Thus we have shown that inactivation of RASSF2, a process that occurs frequently in primary tumors, enhances the transforming potential of activated K-Ras and our data suggests that RASSF2 may be a novel candidate for epigenetic-based therapy in lung cancer.

  8. Neuromedin B receptors regulate EGF receptor tyrosine phosphorylation in lung cancer cells

    Science.gov (United States)

    Moody, Terry W.; Berna, Marc J.; Mantey, Samuel; Sancho, Veronica; Ridnour, Lisa; Wink, David A.; Chan, Daniel; Giaccone, Giuseppe; Jensen, Robert T.

    2014-01-01

    Neuromedin B (NMB), a member of the bombesin family of peptides, is an autocrine growth factor for many lung cancer cells. The present study investigated the ability of NMB to cause transactivation of the epidermal growth factor (EGF) receptor in lung cancer cells. By Western blot, addition of NMB or related peptides to NCI-H1299 human non-small cell lung cancer (NSCLC) cells, caused phosphorylation of Tyr1068 of the EGF receptor. The signal was amplified using NCI-H1299 cells stably transected with NMB receptors. The transactivation of the EGF receptor or the tyrosine phosphorylation of ERK caused by NMB-like peptides was inhibited by AG1478 or gefitinib (tyrosine kinase inhibitors) and NMB receptor antagonist PD168368 but not the GRP receptor antagonist, BW2258U89. The transactivation of the EGF receptor caused by NMB-like peptides was inhibited by GM6001 (matrix metalloprotease inhibitor), PP2 (Src inhibitor), or transforming growth factor (TGF)α antibody. The transactivation of the EGF receptor and the increase in reactive oxygen species caused by NMB-like peptides was inhibited by N-acetylcysteine (NAC) or Tiron. Gefitinib inhibited the proliferation of NCI-H1299 cells and its sensitivity was increased by the addition of PD168368. The results indicate that the NMB receptor regulates EGF receptor transactivation by a mechanism dependent on Src as well as metalloprotease activation and generation of reactive oxygen species. PMID:20388507

  9. Highly Efficient Labeling of Human Lung Cancer Cells Using Cationic Poly-L-lysine-Assisted Magnetic Iron Oxide Nanoparticles

    Institute of Scientific and Technical Information of China (English)

    Xueqin Wang; Huiru Zhang; Hongjuan Jing; Liuqing Cui

    2015-01-01

    Cell labeling with magnetic iron oxide nanoparticles (IONPs) is increasingly a routine approach in the cell-based cancer treatment. However, cell labeling with magnetic IONPs and their leading effects on the biological properties of human lung carcinoma cells remain scarcely reported. Therefore, in the present study the magnetic c-Fe2O3 nanoparticles (MNPs) were firstly synthesized and surface-modified with cationic poly-L-lysine (PLL) to construct the PLL-MNPs, which were then used to magnetically label human A549 lung cancer cells. Cell viability and proliferation were evaluated with propidium iodide/fluorescein diacetate double staining and standard 3-(4,5-dimethylthiazol-2-diphe-nyl-tetrazolium) bromide assay, and the cytoskeleton was immunocytochemically stained. The cell cycle of the PLL-MNP-labeled A549 lung cancer cells was analyzed using flow cytometry. Apoptotic cells were fluorescently analyzed with nuclear-specific staining after the PLL-MNP labeling. The results showed that the constructed PLL-MNPs efficiently magnetically labeled A549 lung cancer cells and that, at low concentrations, labeling did not affect cellular viability, proliferation capability, cell cycle, and apoptosis. Furthermore, the cytoskeleton in the treated cells was detected intact in comparison with the untreated counterparts. However, the results also showed that at high concentration (400 lg mL-1), the PLL-MNPs would slightly impair cell viability, proliferation, cell cycle, and apoptosis and disrupt the cytoskeleton in the treated A549 lung cancer cells. Therefore, the present results indicated that the PLL-MNPs at adequate concentrations can be efficiently used for labeling A549 lung cancer cells and could be considered as a feasible approach for magnetic targeted anti-cancer drug/gene delivery, targeted diagnosis, and therapy in lung cancer treatment.

  10. Non-small-cell lung cancer: unusual presentation in the gluteal muscle.

    LENUS (Irish Health Repository)

    Al-Alao, Bassel Suffian

    2011-05-01

    Lung cancer is one of the most commonly diagnosed cancers in both men and women worldwide. It is also one of the most common forms of cancer in Ireland, accounting for about 20% of all deaths from cancer each year. Early detection of lung cancer is infrequent, and most cases are not diagnosed and treated until they are at an advanced stage. Distant metastases in lung cancer commonly involve the adrenal glands, liver, bones, and central nervous system; they are only rarely seen in the skeletal system. We report a rare case of metastasis to the gluteal muscle as the initial presentation of lung cancer.

  11. Drosophila caliban, a nuclear export mediator, can function as a tumor suppressor in human lung cancer cells.

    Science.gov (United States)

    Bi, Xiaolin; Jones, Tamara; Abbasi, Fatima; Lee, Heuijung; Stultz, Brian; Hursh, Deborah A; Mortin, Mark A

    2005-12-15

    We previously showed that the Drosophila DNA binding homeodomain of Prospero included a 28 amino-acid sequence (HDA) that functions as a nuclear export signal. We describe here the identification of a protein we named Caliban, which can directly interact with the HDA. Caliban is homologous to human Sdccag1, which has been implicated in colon and lung cancer. Here we show that Caliban and Sdccag1 are mediators of nuclear export in fly and human cells, as interference RNA abrogates export of EYFP-HDA in normal fly and human lung cells. Caliban functions as a bipartite mediator nuclear export as the carboxy terminus binds HDA and the amino terminus itself functions as an NES, which directly binds the NES receptor Exportin. Finally, while non-cancerous lung cells have functional Sdccag1, five human lung carcinoma cell lines do not, even though Exportin still functions in these cells. Expression of fly Caliban in these human lung cancer cells restores EYFP-HDA nuclear export, reduces a cell's ability to form colonies on soft agar and reduces cell invasiveness. We suggest that Sdccag1 inactivation contributes to the transformed state of human lung cancer cells and that Caliban should be considered a candidate for use in lung cancer gene therapy.

  12. Toward precision medicine with next-generation EGFR inhibitors in non-small-cell lung cancer

    Directory of Open Access Journals (Sweden)

    Yap TA

    2014-09-01

    Full Text Available Timothy A Yap,1,2 Sanjay Popat1,3 1Lung Cancer Unit, Department of Medicine, The Royal Marsden National Health Service Foundation Trust, London, United Kingdom; 2The Institute of Cancer Research, London, United Kingdom; 3National Heart and Lung Institute, London, United Kingdom Abstract: The use of genomics to discover novel targets and biomarkers has placed the field of oncology at the forefront of precision medicine. First-generation epidermal growth factor receptor (EGFR inhibitors have transformed the therapeutic landscape of EGFR mutant non-small-cell lung carcinoma through the genetic stratification of tumors from patients with this disease. Somatic EGFR mutations in lung adenocarcinoma are now well established as predictive biomarkers of response and resistance to small-molecule EGFR inhibitors. Despite early patient benefit, primary resistance and subsequent tumor progression to first-generation EGFR inhibitors are seen in 10%–30% of patients with EGFR mutant non-small-cell lung carcinoma. Acquired drug resistance is also inevitable, with patients developing disease progression after only 10–13 months of antitumor therapy. This review details strategies pursued in circumventing T790M-mediated drug resistance to EGFR inhibitors, which is the most common mechanism of acquired resistance, and focuses on the clinical development of second-generation EGFR inhibitors, exemplified by afatinib (BIBW2992. We discuss the rationale, mechanism of action, clinical efficacy, and toxicity profile of afatinib, including the LUX-Lung studies. We also discuss the emergence of third-generation irreversible mutant-selective inhibitors of EGFR and envision the future management of EGFR mutant lung adenocarcinoma. Keywords: afatinib, EGFR, erlotinib, gefitinib, LUX-Lung, NSCLC 

  13. The anoikis effector Bit1 displays tumor suppressive function in lung cancer cells.

    Directory of Open Access Journals (Sweden)

    Xin Yao

    Full Text Available The mitochondrial Bit1 (Bcl-2 inhibitor of transcription 1 protein is a part of an apoptotic pathway that is uniquely regulated by integrin-mediated attachment. As an anoikis effector, Bit1 is released into the cytoplasm following loss of cell attachment and induces a caspase-independent form of apoptosis. Considering that anoikis resistance is a critical determinant of transformation, we hypothesized that cancer cells may circumvent the Bit1 apoptotic pathway to attain anchorage-independence and tumorigenic potential. Here, we provide the first evidence of the tumor suppressive effect of Bit1 through a mechanism involving anoikis induction in human lung adenocarcinoma derived A549 cells. Restitution of Bit1 in anoikis resistant A549 cells is sufficient to induce detachment induced-apoptosis despite defect in caspase activation and impairs their anchorage-independent growth. Conversely, stable downregulation of Bit1 in these cells significantly enhances their anoikis resistance and anchorage-independent growth. The Bit1 knockdown cells exhibit significantly enhanced tumorigenecity in vivo. It has been previously shown that the nuclear TLE1 corepressor is a putative oncogene in lung cancer, and we show here that TLE1 blocks Bit1 mediated anoikis in part by sequestering the pro-apoptotic partner of Bit1, the Amino-terminal Enhancer of Split (AES protein, in the nucleus. Taken together, these findings suggest a tumor suppressive role of the caspase-independent anoikis effector Bit1 in lung cancer. Consistent with its role as a tumor suppressor, we have found that Bit1 is downregulated in human non-small cell lung cancer (NSCLC tissues.

  14. The anoikis effector Bit1 displays tumor suppressive function in lung cancer cells.

    Science.gov (United States)

    Yao, Xin; Jennings, Scott; Ireland, Shubha Kale; Pham, Tri; Temple, Brandi; Davis, Mya; Chen, Renwei; Davenport, Ian; Biliran, Hector

    2014-01-01

    The mitochondrial Bit1 (Bcl-2 inhibitor of transcription 1) protein is a part of an apoptotic pathway that is uniquely regulated by integrin-mediated attachment. As an anoikis effector, Bit1 is released into the cytoplasm following loss of cell attachment and induces a caspase-independent form of apoptosis. Considering that anoikis resistance is a critical determinant of transformation, we hypothesized that cancer cells may circumvent the Bit1 apoptotic pathway to attain anchorage-independence and tumorigenic potential. Here, we provide the first evidence of the tumor suppressive effect of Bit1 through a mechanism involving anoikis induction in human lung adenocarcinoma derived A549 cells. Restitution of Bit1 in anoikis resistant A549 cells is sufficient to induce detachment induced-apoptosis despite defect in caspase activation and impairs their anchorage-independent growth. Conversely, stable downregulation of Bit1 in these cells significantly enhances their anoikis resistance and anchorage-independent growth. The Bit1 knockdown cells exhibit significantly enhanced tumorigenecity in vivo. It has been previously shown that the nuclear TLE1 corepressor is a putative oncogene in lung cancer, and we show here that TLE1 blocks Bit1 mediated anoikis in part by sequestering the pro-apoptotic partner of Bit1, the Amino-terminal Enhancer of Split (AES) protein, in the nucleus. Taken together, these findings suggest a tumor suppressive role of the caspase-independent anoikis effector Bit1 in lung cancer. Consistent with its role as a tumor suppressor, we have found that Bit1 is downregulated in human non-small cell lung cancer (NSCLC) tissues.

  15. Effect of cryoablation sequential chemotherapy on patients with advanced non-small cell lung cancer

    Institute of Scientific and Technical Information of China (English)

    Shu-Hui Yao

    2016-01-01

    Objective:To evaluate the effect of cryoablation sequential chemotherapy on patients with advanced non-small cell lung cancer.Methods:A total of 39 cases with advanced non-small cell lung cancer who received cryoablation sequential chemotherapy and 39 cases with advanced non-small cell lung cancer who received chemotherapy alone were selected and enrolled in sequential group and control group, disease progression and survival of two groups were followed up, and contents of tumor markers and angiogenesis molecules in serum as well as contents of T-lymphocyte subsets in peripheral blood were detected.Results:Progression-free survival and median overall survival (mOS) of sequential group were longer than those of control group, and cumulative cases of tumor progression at various points in time were significantly less than those of control group (P<0.05); 1 month after treatment, serum tumor markers CEA, CYFRA21-1 and NSE contents, serum angiogenesis molecules PCDGF, VEGF and HDGF contents as well as CD3+CD4-CD8+CD28-T cell content in peripheral blood of sequential group were significantly lower than those of control group (P<0.05), and contents of CD3+CD4+CD8-T cell and CD3+CD4-CD8+CD28+T cell in peripheral blood were higher than those of control group (P<0.05).Conclusions:Cryoablation sequential chemotherapy can improve the prognosis of patients with advanced non-small cell lung cancer, delay disease progression, prolong survival time, inhibit angiogenesis and improve immune function.

  16. Increased red blood cell distribution width associates with cancer stage and prognosis in patients with lung cancer.

    Directory of Open Access Journals (Sweden)

    Yasuko Koma

    Full Text Available BACKGROUND: Red cell distribution width (RDW, one of many routinely examined parameters, shows the heterogeneity in erythrocyte size. We investigated the association of RDW levels with clinical parameters and prognosis of lung cancer patients. METHODS: Clinical and laboratory data from 332 patients with lung cancer in a single institution were retrospectively studied by univariate analysis. Kaplan-Meier survival analysis and Cox proportional hazard models were used to examine the effect of RDW on survival. RESULTS: THE RDW LEVELS WERE DIVIDED INTO TWO GROUPS: high RDW (>=15%, n=73 vs. low RDW, n=259 (<15%. Univariate analysis showed that there were significant associations of high RDW values with cancer stage, performance status, presence of other disease, white blood cell count, hemoglobin, mean corpuscular volume, platelet count, albumin level, C-reactive protein level, and cytokeratin 19 fragment level. Kruskal-Wallis tests revealed an association of RDW values with cancer stage in patients irrespective of comorbidity (patient with/without comorbidity: p<0.0001, patient without comorbidity: p<0.0001. Stages I-IV lung cancer patients with higher RDW values had poorer prognoses than those with lower RDW values (Wilcoxon test: p=0.002. In particular, the survival rates of stage I and II patients (n=141 were lower in the high RDW group (n=19 than in the low RDW group (n=122 (Wilcoxon test: p<0.001. Moreover, multivariate analysis showed higher RDW is a significant prognostic factor (p=0.040. CONCLUSION: RDW is associated with several factors that reflect inflammation and malnutrition in lung cancer patients. Moreover, high levels of RDW are associated with poor survival. RDW might be used as a new and convenient marker to determine a patient's general condition and to predict the mortality risk of lung cancer patients.

  17. Guidance molecules in lung cancer

    OpenAIRE

    Nasarre, Patrick; Potiron, Vincent; Drabkin, Harry; Roche, Joëlle

    2010-01-01

    Guidance molecules were first described in the nervous system to control axon outgrowth direction. They are also widely expressed outside the nervous system where they control cell migration, tissue development and establishment of the vascular network. In addition, they are involved in cancer development, tumor angiogenesis and metastasis. This review is primarily focused on their functions in lung cancer and their involvement in lung development is also presented. Five guidance molecule fam...

  18. MicroRNA-dependent regulation of transcription in non-small cell lung cancer.

    Directory of Open Access Journals (Sweden)

    Sonia Molina-Pinelo

    Full Text Available Squamous cell lung cancer (SCC and adenocarcinoma are the most common histological subtypes of non-small cell lung cancer (NSCLC, and have been traditionally managed in the clinic as a single entity. Increasing evidence, however, illustrates the biological diversity of these two histological subgroups of lung cancer, and supports the need to improve our understanding of the molecular basis beyond the different phenotypes if we aim to develop more specific and individualized targeted therapy. The purpose of this study was to identify microRNA (miRNA-dependent transcriptional regulation differences between SCC and adenocarcinoma histological lung cancer subtypes. In this work, paired miRNA (667 miRNAs by TaqMan Low Density Arrays (TLDA and mRNA profiling (Whole Genome 44 K array G112A, Agilent was performed in tumor samples of 44 NSCLC patients. Nine miRNAs and 56 mRNAs were found to be differentially expressed in SCC versus adenocarcinoma samples. Eleven of these 56 mRNA were predicted as targets of the miRNAs identified to be differently expressed in these two histological conditions. Of them, 6 miRNAs (miR-149, miR-205, miR-375, miR-378, miR-422a and miR-708 and 9 target genes (CEACAM6, CGN, CLDN3, ABCC3, MLPH, ACSL5, TMEM45B, MUC1 were validated by quantitative PCR in an independent cohort of 41 lung cancer patients. Furthermore, the inverse correlation between mRNAs and microRNAs expression was also validated. These results suggest miRNA-dependent transcriptional regulation differences play an important role in determining key hallmarks of NSCLC, and may provide new biomarkers for personalized treatment strategies.

  19. Advances in molecular biology of lung disease: aiming for precision therapy in non-small cell lung cancer.

    Science.gov (United States)

    Rooney, Claire; Sethi, Tariq

    2015-10-01

    Lung cancer is the principal cause of cancer-related mortality in the developed world, accounting for almost one-quarter of all cancer deaths. Traditional treatment algorithms have largely relied on histologic subtype and have comprised pragmatic chemotherapy regimens with limited efficacy. However, because our understanding of the molecular basis of disease in non-small cell lung cancer (NSCLC) has improved exponentially, it has become apparent that NSCLC can be radically subdivided, or molecularly characterized, based on recurrent driver mutations occurring in specific oncogenes. We know that the presence of such mutations leads to constitutive activation of aberrant signaling proteins that initiate, progress, and sustain tumorigenesis. This persistence of the malignant phenotype is referred to as "oncogene addiction." On this basis, a paradigm shift in treatment approach has occurred. Rational, targeted therapies have been developed, the first being tyrosine kinase inhibitors (TKIs), which entered the clinical arena > 10 years ago. These were tremendously successful, significantly affecting the natural history of NSCLC and improving patient outcomes. However, the benefits of these drugs are somewhat limited by the emergence of adaptive resistance mechanisms, and efforts to tackle this phenomenon are ongoing. A better understanding of all types of oncogene-driven NSCLC and the occurrence of TKI resistance will help us to further develop second- and third-generation small molecule inhibitors and will expand our range of precision therapies for this disease.

  20. Novel metastasis model of human lung cancer in SCID mice depleted of NK cells.

    Science.gov (United States)

    Yano, S; Nishioka, Y; Izumi, K; Tsuruo, T; Tanaka, T; Miyasaka, M; Sone, S

    1996-07-17

    Metastasis is a critical problem in the treatment of human lung cancer. Thus, a suitable animal model of metastasis of human lung cancer is required for in vivo biological and preclinical studies. In this study, we tried to establish a suitable model for this, using SCID mice. Neither human SCLC H69/VP cells (5 x 10(6)) nor squamous-cell carcinoma RERF-LC-AI cells (1 x 10(6)), injected through a tail vein, formed metastases in untreated SCID mice. Pre-treatment of SCID mice with anti-asialo GM1 serum resulted in only a few metastases of H69/VP cells, but pre-treatment with anti-mouse IL-2 receptor beta chain Ab (TM-beta 1) resulted in numerous lymph-node metastases 56 days after tumor inoculation. H69/VP-M cells, an in vivo-selected variant line, formed significant numbers of lymph-node metastases even in SCID mice pre-treated with anti-asialo GM1 serum. SCID mice depleted of NK cells by treatment with TM-beta 1 showed different patterns of metastasis when inoculated intravenously with the 2 different human lung cancer cell lines (H69/VP and RERF-LC-AI cells): H69/VP cells formed metastases mainly in systemic lymph nodes and the liver, whereas RERF-LC-AI cells formed metastases mainly in the liver and kidneys, with only a few in lymph nodes. A histopathological study showed that the metastatic colonies consisted of cancer cells. The numbers of metastatic colonies formed by the 2 cell lines increased with the number of cells inoculated. TM-beta 1 treatment of SCID mice efficiently removed NK cells from peripheral blood for at least 6 weeks, whereas, after treatment of the mice with anti-asialo GM1 serum, NK cells were recovered within 9 days. These findings suggest that NK-cell-depleted SCID mice may be useful as a model in biological and pre-clinical studies on metastasis of human lung cancer.

  1. Molecular-targeted therapy for elderly patients with advanced non-small cell lung cancer.

    Science.gov (United States)

    Antonelli, Giovanna; Libra, Massimo; Panebianco, Vincenzo; Russo, Alessia Erika; Vitale, Felice Vito; Colina, Paolo; D'Angelo, Alessandro; Rossello, Rosalba; Ferraù, Francesco

    2016-01-01

    Lung cancer is the most common cause of cancer-related mortality in men and women. Non-small cell lung cancer (NSCLC) represents close to 90% of all lung cancers. When diagnosed, >50% of patients are >65 years old. Through an improved understanding of the molecular mechanisms involved in lung oncogenesis, molecular-targeted approaches have become an essential element for the treatment of patients with NSCLC. As the toxicity profiles of the techniques are definitely more favorable compared with chemotherapy, they are particularly attractive for use in elderly patients, who are potentially more susceptible to the toxicity of systemic oncological therapies. However, studies on the activity of molecular-targeted agents in this aged patient setting are much more limited compared with those in their younger counterparts. In the present review, the literature on molecular-targeted therapy for elderly patients with advanced NSCLC is discussed. It is concluded that bevacizumab should be reserved only for highly select elderly patients with advanced NSCLC when the clinician deems it useful in the face of acceptable toxicities. In elderly patients with advanced epidermal growth factor receptor mutation-positive NSCLC, erlotinib and gefitinib appear to repeat the same favorable performance as that documented on a larger scale in the overall population of patients with activating mutations. A good toxicity profile is also confirmed for active molecules on different pathways, such as crizotinib.

  2. The role of pembrolizumab in the treatment of advanced non-small cell lung cancer.

    Science.gov (United States)

    Santabarbara, Giuseppe; Maione, Paolo; Rossi, Antonio; Palazzolo, Giovanni; Gridelli, Cesare

    2016-06-01

    Lung cancer is the leading cause of death cancer related worldwide. The standard therapies have unmet medical needs both due to the limited activity and relevant toxicity of platinum-based chemotherapy and to the low frequency of specific alterations required to use targeted therapies. Immune checkpoint inhibition due to restoring the immune system's capacity to eradicate tumors is undergoing in extensive investigation in non-small cell lung cancer (NSCLC) as a new treatment approach. Programmed cell death protein-1 (PD-1) and its ligand, programmed cell death-ligand 1 (PD-L1) have recently led to significantly and durable improvements in the clinical outcome of several kind of tumors including lung cancer. Pembrolizumab, approved by the U.S. FDA for the treatment of advanced NSCLC progressed after other therapies and with expression of PD-L1, has demonstrated durable response and prolonged overall survival (OS) especially in patients with high PD-L1 expression. Further investigation are needed to improve treatment outcomes through combination of immunotherapy or combined with other targeted therapies.

  3. Screening and Establishment of Human Lung Cancer Cell Lines 
with Organ-specific Metastasis Potential

    Directory of Open Access Journals (Sweden)

    Qinghua ZHOU

    2014-03-01

    Full Text Available Background and objective Cancer metastasis is not only the malignant marker and characteristics, but also the main cause of failure to cure and lose their life in the patients with lung cancer. Lung cancer metastasis has organ-specific characteristics. The most common sites of lung cancer metastasis are mediastinal lymph node, brain, bone, liver and adrenal gland. The aim of this study is to screen and establish lung cancer cell model with organ-specific metastasis potential with human high-metastatic large cell lung cancer cell line L9981 established by our laboratory previously, and to provide cell models for studying the mechanisms and signal regulation of organ-specific metastasis of lung cancer. Materials and methods The parent lung cancer cell line, L9981-Luc, was inoculated in the armpit of nude mice. The live animal imaging system, IVIS-200, was used to detect the lung cancer organ-specific metastasis every week. When the organ-specific metastasis were established, the nude mices bearing the lung cancer were sacrificed when they became moribund. Under sterile conditions, the organs (mediastinal lymph nodes, lung, spinal column and brain with lung cancer organ-specific metastasis were removed and the metastasized nodules were dissected free of connective tissue and blood clots, and rinsed twice with medium. The metastasized nodules were finely minced using sterile scalpel blades in medium, and the cells were seeded in tissue culture dishes. Then, the cells with organ-specific metastasis potential were reinoculated into the armpit of nude mice, respectively. This processes were repeated to establish the organ-specific metastatic sublines of L9981-Luc cell line more than 10 times. Finally, the organ-specific metastasis sublines of L9981-Luc were screened and established, which the four cell lines have the characteristics only metastasized to brian, lung, bone and mediastinal lymph node. Results A group of organ-specific metastasis cell

  4. Chronic Inorganic Arsenic Exposure In Vitro Induces a Cancer Cell Phenotype in Human Peripheral Lung Epithelial Cells

    Science.gov (United States)

    Person, Rachel J.; Olive Ngalame, Ntube N.; Makia, Ngome L.; Bell, Matthew W.; Waalkes, Michael P.; Tokar, Erik J.

    2015-01-01

    Inorganic arsenic is a human lung carcinogen. We studied the ability of chronic inorganic arsenic (2 μM; as sodium arsenite) exposure to induce a cancer phenotype in the immortalized, non-tumorigenic human lung peripheral epithelial cell line, HPL-1D. After 38 weeks of continuous arsenic exposure, secreted matrix metalloproteinase-2 (MMP2) activity increased to over 200% of control, levels linked to arsenic-induced cancer phenotypes in other cell lines. The invasive capacity of these chronic arsenic-treated lung epithelial (CATLE) cells increased to 320% of control and colony formation increased to 280% of control. CATLE cells showed enhanced proliferation in serum-free media indicative of autonomous growth. Compared to control cells, CATLE cells showed reduced protein expression of the tumor suppressor gene PTEN (decreased to 26% of control) and the putative tumor suppressor gene SLC38A3 (14% of control). Morphological evidence of epithelial-to-mesenchymal transition (EMT) occurred in CATLE cells together with appropriate changes in expression of the EMT markers vimentin (VIM; increased to 300% of control) and e-cadherin (CDH1; decreased to 16% of control). EMT is common in carcinogenic transformation of epithelial cells. CATLE cells showed increased KRAS (291%), ERK1/2 (274%), phosphorylated ERK (p-ERK; 152%), and phosphorylated AKT1 (p-AKT1; 170%) protein expression. Increased transcript expression of metallothioneins, MT1A and MT2A and the stress response genes HMOX1 (690%) and HIF1A (247%) occurred in CATLE cells possibly in adaptation to chronic arsenic exposure. Thus, arsenic induced multiple cancer cell characteristics in human peripheral lung epithelial cells. This model may be useful to assess mechanisms of arsenic-induced lung cancer. PMID:25804888

  5. Acquisition of cancer stem cell-like properties in non-small cell lung cancer with acquired resistance to afatinib.

    Science.gov (United States)

    Hashida, Shinsuke; Yamamoto, Hiromasa; Shien, Kazuhiko; Miyoshi, Yuichiro; Ohtsuka, Tomoaki; Suzawa, Ken; Watanabe, Mototsugu; Maki, Yuho; Soh, Junichi; Asano, Hiroaki; Tsukuda, Kazunori; Miyoshi, Shinichiro; Toyooka, Shinichi

    2015-10-01

    Afatinib is an irreversible epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitor (TKI) that is known to be effective against the EGFR T790M variant, which accounts for half of the mechanisms of acquired resistance to reversible EGFR-TKIs. However, acquired resistance to afatinib was also observed in clinical use. Thus, elucidating and overcoming the mechanisms of resistance are important issues in the treatment of non-small cell lung cancer. In this study, we established various afatinib-resistant cell lines and investigated the resistance mechanisms. EGFR T790M mutations were not detected using direct sequencing in established resistant cells. Several afatinib-resistant cell lines displayed MET amplification, and these cells were sensitive to the combination of afatinib plus crizotinib. As a further investigation, a cell line that acquired resistance to afatinib plus crizotinib, HCC827-ACR, was established from one of the MET amplified-cell lines. Several afatinib-resistant cell lines including HCC827-ACR displayed epithelial-to-mesenchymal transition (EMT) features and epigenetic silencing of miR-200c, which is a suppresser of EMT. In addition, these cell lines also exhibited overexpression of ALDH1A1 and ABCB1, which are putative stem cell markers, and resistance to docetaxel. In conclusion, we established afatinib-resistant cells and found that MET amplification, EMT, and stem cell-like features are observed in cells with acquired resistance to EGFR-TKIs. This finding may provide clues to overcoming resistance to EGFR-TKIs.

  6. Molecular imaging of hypoxia in non-small-cell lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Yip, Connie [King' s College London, St Thomas' Hospital, Department of Cancer Imaging, Division of Imaging Sciences and Biomedical Engineering, London (United Kingdom); National Cancer Centre, Department of Radiation Oncology, Singapore (Singapore); St Thomas' Hospital, Imaging 2, London (United Kingdom); Blower, Philip J. [King' s College London, St Thomas' Hospital, Department of Imaging Chemistry and Biology, Division of Imaging Sciences and Biomedical Engineering, London (United Kingdom); Goh, Vicky [King' s College London, St Thomas' Hospital, Department of Cancer Imaging, Division of Imaging Sciences and Biomedical Engineering, London (United Kingdom); St Thomas' Hospital, Department of Radiology, Guy' s and St Thomas' NHS Foundation Trust, London (United Kingdom); Landau, David B. [King' s College London, St Thomas' Hospital, Department of Cancer Imaging, Division of Imaging Sciences and Biomedical Engineering, London (United Kingdom); St Thomas' Hospital, Department of Clinical Oncology, Guy' s and St Thomas' NHS Foundation Trust, London (United Kingdom); Cook, Gary J.R. [King' s College London, St Thomas' Hospital, Department of Cancer Imaging, Division of Imaging Sciences and Biomedical Engineering, London (United Kingdom); St Thomas' Hospital, Clinical PET Imaging Centre, Guy' s and St Thomas' NHS Foundation Trust, London (United Kingdom)

    2015-05-01

    Non-small-cell lung cancer (NSCLC) is the commonest cancer worldwide but survival remains poor with a high risk of relapse, particularly after nonsurgical treatment. Hypoxia is present in a variety of solid tumours, including NSCLC. It is associated with treatment resistance and a poor prognosis, although when recognised may be amenable to different treatment strategies. Thus, noninvasive assessment of intratumoral hypoxia could be used to stratify patients for modification of subsequent treatment to improve tumour control. Molecular imaging approaches targeting hypoxic cells have shown some early success in the clinical setting. This review evaluates the evidence for hypoxia imaging using PET in NSCLC and explores its potential clinical utility. (orig.)

  7. Expression of the epidermal growth factor receptor in human small cell lung cancer cell lines

    DEFF Research Database (Denmark)

    Damstrup, L; Rygaard, K; Spang-Thomsen, M;

    1992-01-01

    Epidermal growth factor (EGF) receptor expression was evaluated in a panel of 21 small cell lung cancer cell lines with radioreceptor assay, affinity labeling, and Northern blotting. We found high-affinity receptors to be expressed in 10 cell lines. Scatchard analysis of the binding data...... demonstrated that the cells bound between 3 and 52 fmol/mg protein with a KD ranging from 0.5 x 10(-10) to 2.7 x 10(-10) M. EGF binding to the receptor was confirmed by affinity-labeling EGF to the EGF receptor. The cross-linked complex had a M(r) of 170,000-180,000. Northern blotting showed the expression...... of EGF receptor mRNA in all 10 cell lines that were found to be EGF receptor-positive and in one cell line that was found to be EGF receptor-negative in the radioreceptor assay and affinity labeling. Our results provide, for the first time, evidence that a large proportion of a broad panel of small cell...

  8. Medical image of the week: extensive small cell lung cancer with cardiac invasion

    Directory of Open Access Journals (Sweden)

    Nahapetian R

    2013-03-01

    Full Text Available A 73 year old woman was seen with a lung mass and acute onset of ataxia. MRI of the brain was notable for multifocal infarcts (Figure 1. Echocardiography (ECHO was obtained to identify cardiac source of emboli and was notable for freely mobile mass tethered to the lateral left atrial wall, crossing the mitral valve into the left atrium (Figure 2. A contrast enhanced CT scan of the chest was obtained which confirmed the presence of a large right upper lobe mass with extension to the right pulmonary vein, left atrium and into the left ventricle (Figures 3 and 4. The biopsy confirmed small cell lung cancer.

  9. Cross-talk between AMPK and EGFR dependent Signaling in Non-Small Cell Lung Cancer

    Science.gov (United States)

    Praveen, Paurush; Hülsmann, Helen; Sültmann, Holger; Kuner, Ruprecht; Fröhlich, Holger

    2016-06-01

    Lung cancers globally account for 12% of new cancer cases, 85% of these being Non Small Cell Lung Cancer (NSCLC). Therapies like erlotinib target the key player EGFR, which is mutated in about 10% of lung adenocarcinoma. However, drug insensitivity and resistance caused by second mutations in the EGFR or aberrant bypass signaling have evolved as a major challenge in controlling these tumors. Recently, AMPK activation was proposed to sensitize NSCLC cells against erlotinib treatment. However, the underlying mechanism is largely unknown. In this work we aim to unravel the interplay between 20 proteins that were previously associated with EGFR signaling and erlotinib drug sensitivity. The inferred network shows a high level of agreement with protein-protein interactions reported in STRING and HIPPIE databases. It is further experimentally validated with protein measurements. Moreover, predictions derived from our network model fairly agree with somatic mutations and gene expression data from primary lung adenocarcinoma. Altogether our results support the role of AMPK in EGFR signaling and drug sensitivity.

  10. Gefitinib: a pharmacoeconomic profile of its use in patients with Non Small Cell Lung Cancer EGFR+

    Directory of Open Access Journals (Sweden)

    Viola Sacchi

    2011-06-01

    Full Text Available Lung cancer is the most common form of cancer with the highest incidence worldwide. The mortality rates are highest in males and second highest in females, after breast cancer. The genetic predisposition to Non Small Cell Lung Cancer (NSCLC is still under investigation, however, studies have shown that the Epidermal Growth Factor Receptor (EGFR, a receptor tyrosine kinase is frequently over-expressed and activated to a phosphorylated state in NSCLC. The activity of EGFR in cancer cells results in the phosphorylation of downstream proteins that promote cell proliferation, invasion, metastasis, and inhibition of apoptosis. Targeting the EGFR pathway therefore constitutes a relevant strategy for cancer therapy. Gefitinib is a selective inhibitor of the EGFR tyrosine kinase and is indicated for the treatment of adult patients with locally advanced or metastatic NSCLC with activating mutations of EGFR-TK. From the pharmacoeconomic point of view gefitinib is dominant (more effective and less expensive compared to the alternatives. In conclusion, gefitinib is a treatment option for NSCLC tumors with a high clinical and economic value in the Italian setting.

  11. OLC1 protein levels in plasma of patients with non-small cell lung cancer and its clinical application

    Institute of Scientific and Technical Information of China (English)

    杨龙海

    2014-01-01

    Objective To detect the plasma concentration of OLC1(overexpressed in lung cancer 1)protein as a potential cancer biomarker,and evaluating its clinical application value in the diagnosis of non-small cell lung cancer(NSCLC).Methods We prepared OLC1 antibody with OLC1 full length protein,in 5-6-week old Bal B/c mice.Each mouse was immunized four times at a dose of

  12. Scalp metastasis as the first sign of small-cell lung cancer: management and literature review.

    Science.gov (United States)

    Salemis, Nikolaos S; Veloudis, Georgios; Spiliopoulos, Kyriakos; Nakos, Georgios; Vrizidis, Nikolaos; Gourgiotis, Stavros

    2014-01-01

    Cutaneous metastasis from primary visceral malignancy is a relatively uncommon clinical entity, with a reported incidence ranging from 0.22% to 10% among various series. However, the presence of cutaneous metastasis as the first sign of a clinically silent visceral cancer is exceedingly rare. We describe here a case of an asymptomatic male patient who presented with a solitary scalp metastasis as the initial manifestation of an underlying small-cell lung cancer. Diagnostic evaluation revealed advanced disease. We conclude that the possibility of metastatic skin disease should always be considered in the differential diagnosis in patients with a history of smoking or lung cancer presenting with cutaneous nodules. Physicians should be aware of this rare clinical entity, and appropriate investigation should be arranged for early diagnosis and initiation of the appropriate treatment. The prognosis for most patients remains poor.

  13. Screening for lung cancer

    DEFF Research Database (Denmark)

    Infante, Maurizio V; Pedersen, Jesper H

    2010-01-01

    In lung cancer screening with low-dose spiral computed tomography (LDCT), the proportion of stage I disease is 50-85%, and the survival rate for resected stage I disease can exceed 90%, but proof of real benefit in terms of lung cancer mortality reduction must come from the several randomized...

  14. Vapor of volatile oils from Litsea cubeba seed induces apoptosis and causes cell cycle arrest in lung cancer cells.

    Directory of Open Access Journals (Sweden)

    Soma Seal

    Full Text Available Non-small cell lung carcinoma (NSCLC is a major killer in cancer related human death. Its therapeutic intervention requires superior efficient molecule(s as it often becomes resistant to present chemotherapy options. Here we report that vapor of volatile oil compounds obtained from Litsea cubeba seeds killed human NSCLC cells, A549, through the induction of apoptosis and cell cycle arrest. Vapor generated from the combined oils (VCO deactivated Akt, a key player in cancer cell survival and proliferation. Interestingly VCO dephosphorylated Akt at both Ser(473 and Thr(308; through the suppression of mTOR and pPDK1 respectively. As a consequence of this, diminished phosphorylation of Bad occurred along with the decreased Bcl-xL expression. This subsequently enhanced Bax levels permitting the release of mitochondrial cytochrome c into the cytosol which concomitantly activated caspase 9 and caspase 3 resulting apoptotic cell death. Impairment of Akt activation by VCO also deactivated Mdm2 that effected overexpression of p53 which in turn upregulated p21 expression. This causes enhanced p21 binding to cyclin D1 that halted G1 to S phase progression. Taken together, VCO produces two prong effects on lung cancer cells, it induces apoptosis and blocked cancer cell proliferation, both occurred due to the deactivation of Akt. In addition, it has another crucial advantage: VCO could be directly delivered to lung cancer tissue through inhalation.

  15. Expressions of topoisomerase IIα and BCRP in metastatic cells are associated with overall survival in small cell lung cancer patients.

    Science.gov (United States)

    Rijavec, Matija; Silar, Mira; Triller, Nadja; Kern, Izidor; Cegovnik, Urška; Košnik, Mitja; Korošec, Peter

    2011-09-01

    The aim of this study was to investigate the mRNA expression levels of multidrug resistance-associated proteins in chemo-naïve metastatic lung cancer cells and to determine the correlation with response to chemotherapy and overall survival. Metastatic cells were obtained by transbronchial fine needle aspiration biopsy of enlarged mediastinal lymph nodes in 14 patients with small cell lung cancer (SCLC) and 7 patients with non-small cell lung cancer (NSCLC). After cytological confirmation of lung cancer type, total RNA was extracted from biopsy samples and reverse transcribed to cDNA, and real-time PCR for the genes of interest [P-glycoprotein (P-gp), multidrug resistance protein 1 (MRP1), breast cancer resistance protein (BCRP), lung resistance protein (LRP) and topoisomerase IIα (TOPIIα)], was performed. We observed significantly decreased expression of BCRP and significantly increased expression of TOPIIα in metastatic SCLC cells compared to NSCLC. Furthermore, in SCLC high topoisomerase IIα and low BCRP expression levels positively correlated with longer overall survival. Our results showed higher expression levels of BCRP as well as lower levels of topoisomerase IIα in chemo-naïve metastatic cells in NSCLC than in SCLC. These results correlate with previous observations that metastatic SCLC cells at the beginning of chemotherapy are potentially more sensitive to chemotherapeutic agents while in metastatic NSCLC cells resistance is usually inherent. We also showed that altered levels of topoisomerase IIα and BCRP in SCLC are important factors that contribute to resistance to chemotherapeutics that interfere with the enzyme and/or DNA and are highly associated with overall survival.

  16. Interaction between fragile histamine triad and protein kinase C alpha in human non-small cell lung cancer tissues

    Institute of Scientific and Technical Information of China (English)

    Peng-hui Zhuang; Zhao-hui Liu; Xiao-gang Jiang; Cheng-en Pan

    2009-01-01

    Objective To investigate the interaction between fragile histamine triad (FHIT) and protein kinase C alpha (PKCα) in human non-small cell lung cancer tissues. Methods FHIT and PKC伪 double positive samples were screened by immunohistochemical staining from 13 human non-small cell lung cancer tissues. Co-immunoprecipitation was performed by using anti-FHIT and anti-PKCα. The immune precipitate was analyzed by SDS-PAGE and Western blot. Results Immune precipitate staining detection showed that 3 samples out of the 13 cases were double positive for FHIT and PKCα. FHIT protein was present in the immune precipitate of anti-PKCα while there was PKCα in the immune precipitate of anti-FHITmAb. Conclusion FHIT and PKCα exist as a complex in human non-small cell lung cancer tissues, which will provide a new route for studying the pathogenesis and immunotherapy of human non-small cell lung cancer.

  17. Detection of EMI4-ALK fusion gene in non-small cell lung cancer and its clinicopathologic correlation

    Institute of Scientific and Technical Information of China (English)

    钟山

    2013-01-01

    Objective To investigate the frequency of EML4-ALK fusion gene in non small-cell lung cancer NSCLC patients,and its correlation with clinicopathologic features.Methods Real-time PCR was used to detect

  18. Ethanol extract of Kilkyung-baeksan, a traditional herbal formula, induces G0/G1 cell cycle arrest in human lung cancer cell lines

    Directory of Open Access Journals (Sweden)

    Jinhee Kim

    2015-09-01

    Conclusion: EE-KKBS exerted its cytostatic activity through regulating G1 cell cycle checkpoint in lung cancer cells, and this activity is mainly mediated by one of its component herbs, seeds of Croton tiglium. Collectively, our data suggest that EE-KKBS could be a novel candidate for adjuvant therapy for lung cancer.

  19. IMMUNOTHERAPY OF SPONTANEOUS METASTATIC LUNG CANCER WITH TUMOR ANTIGEN-PULSED, INTERLEUKIN-12 GENE-MODIFIED DENDRITIC CELLS

    Institute of Scientific and Technical Information of China (English)

    陈吉泉; 修清玉; 颜泽敏; 罗文侗

    2003-01-01

    Objective: To investigate the treatment of spontaneous metastatic lung cancer by tumor antigen-pulsed, interleukin-12 (IL-12) gene-modified dendritic cells (DC). Methods:The spontaneous metastatic lung cancer model, prepared by injection of the 3LL Lewis lung cancer cells into the footpads of C57BL/6 mice, was treated by subcutaneous vaccination with tumor antigen peptide mut1-pulsed, IL-12 gene-modified dendritic cells (DC-IL-12/mut1) derived from the normal bone morrow. After treatment, the lung weight, the number of lung metastatic nodes and the survival time of the tumor-bearing mice were observed, and the NK and CTL activity were determined respectively. The mice were divided into 8 groups with 12 mice in each group. Results: Compared with mice treated with mut1-pulsed, control LacZ gene modified DC and untreated DC, tumor-bearing mice treated with DC-IL-12/mut1 had the lightest lung weights (P<0.01), the least lung metastatic node number (P<0.01), the longest survival time (P<0.01), also with the induction of potent CTL activity (P<0.01) and NK activity (P<0.01). Conclusion: Tumor antigen-pulsed, IL-12 gene-modified dendritic cells have significant therapeutic effects on the spontaneous metastatic lung cancer, providing a new approach to treatment of lung tumors.

  20. ENO1 Protein Levels in the Tumor Tissues and Circulating Plasma Samples of Non-small Cell Lung Cancer Patients

    Directory of Open Access Journals (Sweden)

    Ying ZHANG

    2010-12-01

    Full Text Available Background and objective Proper tumor markers are useful to diagnosis, prognosis and treatment for lung cancer. The aim of this study is to examine the levels of alpha-enolase (ENO1 protein in the tumor tissues and peripheral plasma samples obtained from non-small cell lung cancer (NSCLC patients, and evaluate its potential clinical significance. Methods The ENO1 protein levels in the tumor tissues and corresponding normal tissues from 16 cases of lung squamous cell carcinoma were analyzed by Western blot. The ENO1 protein levels in the plasma samples from 42 healthy individuals, 34 patients with lung benign disease and 84 patients with NSCLC were measured by double antibody sandwich enzyme-linked immunosorbent assay. Results For 87.5% (14/16 of the patients with lung squamous cell carcinoma, the ENO1 protein level in the tumor tissues was higher than that in the corresponding normal lung tissues. The ENO1 protein level in the plasma of NSCLC patients was significantly higher than that in the plasma of healthy individuals (P=0.031 and patients with lung benign disease (P=0.019. Furthermore, the ENO1 protein level was significantly higher in the plasma of patients with lung adenocarcinoma than that of patients with lung squamous cell carcinoma. Conclusion The elevated levels of ENO1 protein in the tumor tissues and the plasma samples from NSCLC patients indicate ENO1 may be a candidate biomarker of lung cancer.

  1. Detecting the epidermal growth factor receptors status in non-small cell lung cancer

    Institute of Scientific and Technical Information of China (English)

    MENG Xue; YU Jin-ming

    2011-01-01

    Non-small cell lung cancer is one of the leading causes of all cancer deaths,but despite years of research,it is still difficult to predict the response and clinical outcome of the disease.In recent years,new treatment strategies targeting the epidermal growth factor receptors (EGFR) have been developed.EGFR is one of the most frequently over expressed proteins in various cancers,including lung cancer,and signaling through this receptor has been known to cause tumor progression as well as resistance to different treatments.Therefore,EGFR has become an attractive target for various treatment strategies.However,it is important to note that not all patients with lung cancer are suitable for targeted treatment,and that patients should be selected for this treatment.Several studies have proven that the status of the EGFR can be both an indicator of suitability for treatment with,and predict the likelihood of response to EGFR targeted therapy.There are many standard techniques to be used for the detection of EGFR.This overview summarizes the ongoing and future investigations to determine the status of the EGFR.

  2. Genetic and Biochemical Alterations in Non-Small Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Jackie L. Johnson

    2012-01-01

    Full Text Available Despite significant advances in the detection and treatment of lung cancer, it causes the highest number of cancer-related mortality. Recent advances in the detection of genetic alterations in patient samples along with physiologically relevant animal models has yielded a new understanding of the molecular etiology of lung cancer. This has facilitated the development of potent and specific targeted therapies, based on the genetic and biochemical alterations present in the tumor, especially non-small-cell lung cancer (NSCLC. It is now clear that heterogeneous cell signaling pathways are disrupted to promote NSCLC, including mutations in critical growth regulatory proteins (K-Ras, EGFR, B-RAF, MEK-1, HER2, MET, EML-4-ALK, KIF5B-RET, and NKX2.1 and inactivation of growth inhibitory pathways (TP53, PTEN, p16, and LKB-1. How these pathways differ between smokers and non-smokers is also important for clinical treatment strategies and development of targeted therapies. This paper describes these molecular targets in NSCLC, and describes the biological significance of each mutation and their potential to act as a therapeutic target.

  3. Targeting the MET gene for the treatment of non-small-cell lung cancer.

    Science.gov (United States)

    Gelsomino, F; Facchinetti, F; Haspinger, E R; Garassino, M C; Trusolino, L; De Braud, F; Tiseo, M

    2014-02-01

    Recently, a better understanding of the specific mechanisms of oncogene addiction has led to the development of antitumor strategies aimed at blocking these abnormalities in different malignancies, including lung cancer. These abnormalities trigger constitutive activation of tyrosine kinase receptors (RTKs) involved in fundamental cell mechanisms such as proliferation, survival, differentiation and migration, and consequently the aberrant signaling of RTKs leads to cancer growth and survival. The inhibition of aberrant RTKs and downstream signaling pathways has opened the door to the targeted therapy era. In non-small-cell lung cancer (NSCLC), molecular research has allowed the discrimination of different aberrant RTKs in lung cancer tumorigenesis and progression, and thus the identification of several targetable oncogenic drivers. Following the development of small molecules (gefitinib/erlotinib and crizotinib) able to reversibly inhibit the epidermal growth factor receptor (EGFR) and signaling pathways mediated by anaplastic lymphoma kinase (ALK), respectively, the MET signaling pathway has also been recognized as a potential target. Moreover, according to current knowledge, MET could be considered both as a secondary oncogenic mechanism and as a prognostic factor. Several therapeutic strategies for inhibiting activated hepatocyte growth factor receptor (HGFR) and the subsequent downstream signaling transduction have been improved in order to block tumor growth. This review will focus on the MET pathway and its role in resistance to EGFR TK (tyrosine kinase) inhibitors, the different strategies of its inhibition, and the potential approaches to overcoming acquired resistance.

  4. Changes in tumor-antigen expression proifle as human small-cell lung cancers progress

    Institute of Scientific and Technical Information of China (English)

    Li-Sheng Ge; Neil T Hoa; Nils Lambrecht; Maria Dacosta-Iyer; Yi Ouyang; Amir Abolhoda; Martin R Jadus

    2015-01-01

    AbstrAct Objective:Our group has previously observed that in patients with small-cell lung cancers (SCLCs), the expression of a tumor antigen, glioma big potassium (gBK) ion channel, is higher at the time of death than when the cancer is ifrst treated by surgical resection. This study aimed to determine whether this dichotomy was common in other potential lung tumor antigens by examining the same patient samples using our more extensive proifle analysis of tumor-antigen precursor protein (TAPP). We then tested the hypothesis that therapeutic intervention may inadvertently cause this increased gBK production. Methods:SCLC samples (eight surgical resections and three autopsy samples) and three control lungs were examined by quantitative real-time polymerase chain reaction for 42 potential TAPPs that represent potential T-cell-mediated immunological targets. Results:Twenty-two TAPP mRNAs displayed the same profile as gBK, i.e., more mRNAs were expressed at autopsy than in their surgical counterparts. B-cyclin and mouse double minute 2, human homolog of P53-binding protein were elevated in both autopsy and surgical specimens above the normal-lung controls. When HTB119 cells were incubated with doxorubicin, gBK was strongly induced, as conifrmed by intracellular lfow cytometry with a gBK-speciifc antibody. Conclusion:Our findings suggested that more immunological targets became available as the tumor responded to chemotherapy and proceeded toward its terminal stages.

  5. Enhanced antitumoral activity of doxorubicin against lung cancer cells using biodegradable poly(butylcyanoacrylate nanoparticles

    Directory of Open Access Journals (Sweden)

    Melguizo C

    2015-12-01

    Full Text Available Consolación Melguizo1,2,* Laura Cabeza,1,* Jose Prados,1,2 Raúl Ortiz,1,3 Octavio Caba,1,3 Ana R Rama,1,3 Ángel V Delgado,4 José L Arias1,2,5 1Institute of Biopathology and Regenerative Medicine (IBIMER, Biomedical Research Center, 2Biosanitary Institute of Granada (IBS Granada, SAS Universidad de Granada, Granada, 3Department of Health Science, University of Jaén, Jaén, 4Department of Applied Physics, 5Department of Pharmacy and Pharmaceutical Technology, University of Granada, Granada, Spain *These authors contributed equally to this work Abstract: Doxorubicin (Dox is widely used for the combined chemotherapy of solid tumors. However, the use of these drug associations in lung cancer has low antitumor efficacy. To improve its efficacious delivery and activity in lung adenocarcinoma cells, we developed a biodegradable and noncytotoxic nanoplatform based on biodegradable poly(butylcyanoacrylate (PBCA. The reproducible formulation method was based on an anionic polymerization process of the PBCA monomer, with the antitumor drug being entrapped within the nanoparticle (NP matrix during its formation. Improved drug-entrapment efficiencies and sustained (biphasic drug-release properties were made possible by taking advantage of the synthesis conditions (drug, monomer, and surfactant-agent concentrations. Dox-loaded NPs significantly enhanced cellular uptake of the drug in the A549 and LL/2 lung cancer cell lines, leading to a significant improvement of the drug’s antitumoral activity. In vivo studies demonstrated that Dox-loaded NPs clearly reduced tumor volumes and increased mouse-survival rates compared to the free drug. These results demonstrated that PBCA NPs may be used to optimize the antitumor activity of Dox, thus exhibiting a potential application in chemotherapy against lung adenocarcinoma. Keywords: lung cancer, cancer chemotherapy, PBCA, polymeric nanoparticles, drug carrier

  6. Lung cancer in women

    Directory of Open Access Journals (Sweden)

    Barrera-Rodriguez R

    2012-12-01

    Full Text Available Raúl Barrera-Rodriguez,1 Jorge Morales-Fuentes2 1Biochemistry and Environmental Medicine Laboratory, National Institute of Respiratory Disease, 2Lung Cancer Medical Service, National Institute of Respiratory Disease, Tlalpan, Mexico City, Distrito Federal, Mexico Both authors contributed equally to this workAbstract: Recent biological advances in tumor research provide clear evidence that lung cancer in females is different from that in males. These differences appear to have a direct impact on the clinical presentation, histology, and outcomes of lung cancer. Women are more likely to present with lung adenocarcinoma, tend to receive a diagnosis at an earlier age, and are more likely to be diagnosed with localized disease. Women may also be more predisposed to molecular aberrations resulting from the carcinogenic effects of tobacco, but do not appear to be more susceptible than men to developing lung cancer. The gender differences found in female lung cancer make it mandatory that gender stratification is used in clinical trials in order to improve the survival rates of patients with lung cancer.Keywords: lung cancer, adenocarcinoma, women, genetic susceptibility, genetic differences, tobacco

  7. Safrole oxide induces apoptosis by activating caspase-3, -8, and -9 in A549 human lung cancer cells.

    Science.gov (United States)

    Du, Aiying; Zhao, Baoxiang; Yin, Deling; Zhang, Shangli; Miao, Junying

    2006-01-01

    Previously we found that 3,4-(methylenedioxy)-1-(2',3'-epoxypropyl)-benzene (safrole oxide) induced a typical apoptosis in A549 human lung cancer cells. In this study, we further investigated which caspases were activated by safrole oxide during the apoptosis. The data showed that the activity of caspase-3, -8, and -9 was significantly enhanced by the compound, which suggested that safrole oxide might be used as a caspase promoter to initiate lung cancer cell apoptosis.

  8. Targeting Transcriptional Addictions in Small Cell Lung Cancer with a Covalent CDK7 Inhibitor

    DEFF Research Database (Denmark)

    Christensen, Camilla L; Kwiatkowski, Nicholas; Abraham, Brian J;

    2014-01-01

    Small cell lung cancer (SCLC) is an aggressive disease with high mortality, and the identification of effective pharmacological strategies to target SCLC biology represents an urgent need. Using a high-throughput cellular screen of a diverse chemical library, we observe that SCLC is sensitive to ...... to THZ1 treatment. We propose that downregulation of these transcription factors contributes, in part, to SCLC sensitivity to transcriptional inhibitors and that THZ1 represents a prototype drug for tailored SCLC therapy....

  9. Optimal Therapeutic Strategy for Non-small Cell Lung Cancer with Mutated Epidermal Growth Factor Receptor

    Directory of Open Access Journals (Sweden)

    Zhong SHI

    2015-02-01

    Full Text Available Although epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs have been widely used in non-small cell lung cancer (NSCLC patients, it is still controversial about how to combine EGFR-TKI with chemotherapy and other targeted drugs. We have made a summary on the current therapeutic models of EGFR-TKI combined with chemotherapy/bevacizumab in this review and aimed to find the optimal therapeutic strategy for NSCLC patients with EGFR mutation.

  10. Gefitinib-induced disseminated intravascular coagulation in a patient with non-small cell lung cancer

    Institute of Scientific and Technical Information of China (English)

    YUAN Guang-jin; KE Qin-hua; XU Xi-ming; YANG Ji-yuan; SU Xiao-yan

    2010-01-01

    @@ In February 2005, Gefitinib (Iressa), a small-molecular epidermal growth factor receptor and tyrosine kinase inhibitor, was approved in China as an anticancer agent for patients with advanced (local or metastatic) non-small cell lung cancer (NSCLC), who failed prior chemotherapy. The common adverse events of the drug include acne-like skin rash, paronychia, pruritus, diarrhea, nausea/vomiting, anorexia, hepatitis, and hyperbilirubinemia.~1

  11. Living with a diagnosis of non-small cell lung cancer: patients' lived experiences.

    LENUS (Irish Health Repository)

    McCarthy, Ita

    2012-01-31

    The aim of this study was to explore patients\\' experience of living with non-small cell lung cancer (NSCLC). Patients diagnosed with NSCLC know that their treatment is not with curative intent and can expect distressing symptoms. In this phenomenological study, six adults with a diagnosis of NSCLC were interviewed. Data was analysed guided by van Manen\\'s six-step process. Four main themes were interpreted: \\'Maintaining my life\\'; \\'The enemy within\\'; \\'Staying on the train\\

  12. Characterization of DDR2 Inhibitors for the Treatment of DDR2 Mutated Nonsmall Cell Lung Cancer

    OpenAIRE

    Terai, Hideki; Tan, Li; Beauchamp, Ellen M; Hatcher, John M.; Liu, Qingsong; Meyerson, Matthew; Gray, Nathanael S.; Hammerman, Peter S.

    2015-01-01

    Despite advances in precision medicine approaches over the past decade, the majority of nonsmall cell lung cancers (NSCLCs) are refractory to treatment with targeted small molecule inhibitors. Previous work has identified mutations in the Discoidin Domain Receptor 2 (DDR2) kinase as potential therapeutic targets in NSCLCs. While DDR2 is potently targeted by several multitargeted kinase inhibitors, most notably dasatinib, toxicity has limited the clinical application of anti-DDR2 therapy. Here...

  13. Ectopic expression of a small cell lung cancer transcription factor, INSM1 impairs alveologenesis in lung development

    OpenAIRE

    2016-01-01

    Background Insulinoma associated-1 (INSM1) gene is expressed exclusively in early embryonic neuroendocrine tissues, but has been found highly re-activated in most of the neuroendocrine tumors including small cell lung carcinoma. Methods In order to elucidate the functional effects of INSM1 in normal lung development, we used a conditional lung-specific INSM1 transgenic mouse model. Transgenic (Tet-on system) CMV-INSM1 responder mice were bred with the lung-specific, club cell secretory protei...

  14. Stages of Non-Small Cell Lung Cancer

    Science.gov (United States)

    ... have spread to the nerve that controls the larynx (not shown). (3) Cancer has not spread to the lymph nodes and ... or the nerves that control the diaphragm and larynx (not shown). (1) Cancer has spread to lymph nodes above the collarbone ...

  15. General Information about Non-Small Cell Lung Cancer

    Science.gov (United States)

    ... have spread to the nerve that controls the larynx (not shown). (3) Cancer has not spread to the lymph nodes and ... or the nerves that control the diaphragm and larynx (not shown). (1) Cancer has spread to lymph nodes above the collarbone ...

  16. Treatment Option Overview (Non-Small Cell Lung Cancer)

    Science.gov (United States)

    ... have spread to the nerve that controls the larynx (not shown). (3) Cancer has not spread to the lymph nodes and ... or the nerves that control the diaphragm and larynx (not shown). (1) Cancer has spread to lymph nodes above the collarbone ...

  17. Multiscale in situ analysis of the role of dyskerin in lung cancer cells.

    Science.gov (United States)

    Fernandez-Garcia, Ignacio; Marcos, Tamara; Muñoz-Barrutia, Arrate; Serrano, Diego; Pio, Ruben; Montuenga, Luis M; Ortiz-de-Solorzano, Carlos

    2013-02-01

    Dyskerin is one of the three subunits of the telomerase ribonucleoprotein (RNP) complex. Very little is known about the role of dyskerin in the biology of the telomeres in cancer cells. In this study, we use a quantitative, multiscale 3D image-based in situ method and several molecular techniques to show that dyskerin is overexpressed in lung cancer cell lines. Furthermore, we show that dyskerin expression correlates with telomere length both at the cell population level--cells with higher dyskerin expression have short telomeres--and at the single cell level--the shortest telomeres of the cell are spatially associated with areas of concentration of dyskerin proteins. Using this in vitro model, we also show that exogenous increase in dyskerin expression confers resistance to telomere shortening caused by a telomerase inactivating drug. Finally, we show that resistance is achieved by the recovery of telomerase activity associated with dyskerin. In summary, using a novel multiscale image-based in situ method, we show that, in lung cancer cell lines, dyskerin responds to continuous telomere attrition by increasing the telomerase RNP activity, which in turn provides resistance to telomere shortening.

  18. Release of volatile organic compounds (VOCs from the lung cancer cell line CALU-1 in vitro

    Directory of Open Access Journals (Sweden)

    Schubert Jochen

    2008-11-01

    Full Text Available Abstract Background The aim of this work was to confirm the existence of volatile organic compounds (VOCs specifically released or consumed by lung cancer cells. Methods 50 million cells of the human non-small cell lung cancer (NSCLC cell line CALU-1 were incubated in a sealed fermenter for 4 h or over night (18 hours. Then air samples from the headspace of the culture vessel were collected and preconcentrated by adsorption on solid sorbents with subsequent thermodesorption and analysis by means of gas chromatography mass spectrometry (GC-MS. Identification of altogether 60 compounds in GCMS measurement was done not only by spectral library match, but also by determination of retention times established with calibration mixtures of the respective pure compounds. Results The results showed a significant increase in the concentrations of 2,3,3-trimethylpentane, 2,3,5-trimethylhexane, 2,4-dimethylheptane and 4-methyloctane in the headspace of CALU-1 cell culture as compared to medium controls after 18 h. Decreased concentrations after 18 h of incubation were found for acetaldehyde, 3-methylbutanal, butyl acetate, acetonitrile, acrolein, methacrolein, 2-methylpropanal, 2-butanone, 2-methoxy-2-methylpropane, 2-ethoxy-2-methylpropane, and hexanal. Conclusion Our findings demonstrate that certain volatile compounds can be cancer-cell derived and thus indicative of the presence of a tumor, whereas other compounds are not released but seem to be consumed by CALU-1 cells.

  19. Are lung cysts in renal cell cancer (RCC) patients an indication for FLCN mutation analysis?

    Science.gov (United States)

    Johannesma, Paul C; Houweling, Arjan C; Menko, Fred H; van de Beek, I; Reinhard, Rinze; Gille, Johan J P; van Waesberghe, JanHein T M; Thunnissen, Erik; Starink, Theo M; Postmus, Pieter E; van Moorselaar, R Jeroen A

    2016-04-01

    Renal cell cancer (RCC) represents 2-3% of all cancers and is the most lethal of the urologic malignancies, in a minority of cases caused by a genetic predisposition. Birt-Hogg-Dubé syndrome (BHD) is one of the hereditary renal cancer syndromes. As the histological subtype and clinical presentation in BHD are highly variable, this syndrome is easily missed. Lung cysts--mainly under the main carina--are reported to be present in over 90% of all BHD patients and might be an important clue in differentiating between sporadic RCC and BHD associated RCC. We conducted a retrospective study among patients diagnosed with sporadic RCC, wherein we retrospectively scored for the presence of lung cysts on thoracic CT. We performed FLCN mutation analysis in 8 RCC patients with at least one lung cysts under the carina. No mutations were identified. We compared the radiological findings in the FLCN negative patients to those in 4 known BHD patients and found multiple basal lung cysts were present significantly more frequent in FLCN mutation carriers and may be an indication for BHD syndrome in apparent sporadic RCC patients.

  20. Vaccine Therapy in Treating Patients With Colon, Pancreatic, or Lung Cancer

    Science.gov (United States)

    2015-04-27

    Recurrent Colon Cancer; Extensive Stage Small Cell Lung Cancer; Stage III Pancreatic Cancer; Stage III Rectal Cancer; Limited Stage Small Cell Lung Cancer; Recurrent Pancreatic Cancer; Recurrent Rectal Cancer; Stage III Non-small Cell Lung Cancer; Stage I Pancreatic Cancer; Stage II Non-small Cell Lung Cancer; Stage IVB Pancreatic Cancer; Stage II Pancreatic Cancer; Stage III Colon Cancer; Stage IVA Pancreatic Cancer

  1. Gender difference in bone metastasis of human small cell lung cancer, SBC-5 cells in natural killer-cell depleted severe combined immunodeficient mice.

    Science.gov (United States)

    Sakaguchi, Satoshi; Goto, Hisatsugu; Hanibuchi, Masaki; Otsuka, Shinsaku; Ogino, Hirokazu; Kakiuchi, Soji; Uehara, Hisanori; Yano, Seiji; Nishioka, Yasuhiko; Sone, Saburo

    2010-05-01

    Lung cancer frequently develops multiple organ metastases, which thus makes this disease a leading cause of malignancy-related death worldwide. A gender difference is reported to affect the incidence and mortality of lung cancer; however, whether and how the gender difference is involved in lung cancer metastasis is unclear. This study evaluated the gender difference in multiple organ metastases in human small cell lung cancer (SBC-5) cells by using natural killer cell-depleted severe combined immunodeficient mice. Among multiple organ metastases, only bone metastasis formation significantly increased in female mice in comparison to males, while no significant difference was observed in the metastases to the liver and lungs. The suppression of androgen by castration or androgen receptor antagonist treatment in male mice also induced a significant increase of bone metastases. The number of osteoclasts in the bone metastatic lesions was greater in female mice and in mice with androgen suppression than in control male. However, there was no significant difference in the serum concentration of parathyroid hormone-related protein (PTHrP) associated with gender or androgen suppression. An in vitro study also indicated that sex steroid treatment had no effect on the proliferation or PTHrP production in SBC-5 cells. These results indicate that the balance of sex steroids therefore plays an important role in the formation of bone metastasis in small cell lung cancer, and suggests diverse mechanisms of interaction between cancer cells and host cells in the bone microenvironment.

  2. Intracardiac metastasis from non-small cell lung cancer

    Directory of Open Access Journals (Sweden)

    Vivek eVerma

    2015-07-01

    Full Text Available A 56-year-old female with history of stage IIA adenosquamous lung carcinoma treated 13 months prior to presentation with lobectomy, mediastinal lymph node dissection, and adjuvant chemotherapy, presented for several weeks of worsening dyspnea. Exam was nonfocal aside from tachycardia. Computed tomography of the chest revealed a large 4 cm x 5 cm mass in the bilateral ventricular myocardium. There was also evidence of metastatic disease elsewhere in the body, including a supraclavicular lymph node that was positive for metastatic adenosquamous lung carcinoma. She started whole heart radiotherapy and was to commence chemotherapy but passed away. This report discusses important aspects of diagnosis of this not uncommon condition that many oncologists may come across. We also discuss differential diagnosis of an isolated intracardiac mass as first-diagnosis presentations, and discuss the great importance of multidisciplinary cardio-oncologic management and clinical prioritization.

  3. Characterization of DDR2 Inhibitors for the Treatment of DDR2 Mutated Nonsmall Cell Lung Cancer.

    Science.gov (United States)

    Terai, Hideki; Tan, Li; Beauchamp, Ellen M; Hatcher, John M; Liu, Qingsong; Meyerson, Matthew; Gray, Nathanael S; Hammerman, Peter S

    2015-12-18

    Despite advances in precision medicine approaches over the past decade, the majority of nonsmall cell lung cancers (NSCLCs) are refractory to treatment with targeted small molecule inhibitors. Previous work has identified mutations in the Discoidin Domain Receptor 2 (DDR2) kinase as potential therapeutic targets in NSCLCs. While DDR2 is potently targeted by several multitargeted kinase inhibitors, most notably dasatinib, toxicity has limited the clinical application of anti-DDR2 therapy. Here, we have characterized compound 1 and other tool compounds demonstrating selectivity for DDR2 and show that while these compounds inhibit DDR2 in lung cancer model systems, they display limited antiproliferative activity in DDR2 mutated cell lines as compared to dual DDR2/SRC inhibitors. We show that DDR2 and SRC are binding partners, that SRC activity is tied to DDR2 activation, and that dual inhibition of both DDR2 and SRC leads to enhanced suppression of DDR2 mutated lung cancer cell lines. These results support the further evaluation of dual SRC/DDR2 targeting in NSCLC, and we report a tool compound, compound 5, which potently inhibits both SRC and DDR2 with a distinct selectivity profile as compared to dasatinib.

  4. Effect of Flavopiridol on Radiation-induced Apoptosis of Human Laryngeal and Lung Cancer Cells

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Suzy [The Catholic University of Korea College of Medicine, Seoul (Korea, Republic of); Kwon, Eun Kyung; Lee, B. S.; Lee, Seung Hee; Park, B. S.; Wu, Hong Gyun [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2007-12-15

    Purpose: To investigate the flavopiridol effect on radiation-induced apoptosis and expression of apoptosisrelated genes of human laryngeal and lung cancer cells. Materials and Methods: A human laryngeal cancer cell line, AMC-HN3 and a human lung cancer cell line, NCI-H460, were used in the study. The cells were divided into four groups according to the type of treatment: 1) control groups; 2) cells that were only irradiated; 3) cells treated only with flavopiridol; 4) cells treated with flavopiridol and radiation simultaneously. The cells were irradiated with 10 Gy of X-rays using a 4 MV linear accelerator. Flavopiridol was administered to the media at a concentration of 100 nM for 24 hours. We compared the fraction of apoptotic cells of each group 24 hours after the initiation of treatment. The fraction of apoptotic cells was detected by measurement of the sub-G1 fractions from a flow cytometric analysis. The expression of apoptosis-regulating genes, including cleaved caspase-3, cleaved PARP (poly (ADP-ribose) polymerase), p53, p21, cyclin D1, and phosphorylated Akt (protein kinase B) were analyzed by Western blotting. Results: The sub-G1 fraction of cells was significantly increased in the combination treatment group, as compared to cells exposed to radiation alone or flavopiridol alone. Western blotting also showed an increased expression of cleaved caspase-3 and cleaved PARP expression in cells of the combination treatment group, as compared with cells exposed to radiation alone or flavopiridol alone. Treatment with flavopiridol down regulated cyclin D1 expression of both cell lines but its effect on p53 and p21 expression was different according to each individual cell line. Flavopiridol did not affect the expression of phophorylated Akt in both cell lines. Conclusion: Treatment with flavopiridol increased radiation-induced apoptosis of both the human laryngeal and lung cancer cell lines. Flavopiridol effects on p53 and p21 expression were different according

  5. Triclosan potentiates epithelial-to-mesenchymal transition in anoikis-resistant human lung cancer cells.

    Directory of Open Access Journals (Sweden)

    Thidarat Winitthana

    Full Text Available Alteration of cancer cell toward mesenchymal phenotype has been shown to potentiate tumor aggressiveness by increasing cancer cell metastasis. Herein, we report the effect of triclosan, a widely used antibacterial agent found in many daily products, in enhancing the epithelial-to-mesenchymal transition (EMT in aggressive anoikis resistant human H460 lung cancer cells. EMT has been long known to increase abilities of the cells to increase migration, invasion, and survival in circulating system. The present study reveals that treatment of the cancer cells with triclosan at the physiologically related concentrations significantly increased the colony number of the cancer cells assessed by tumor formation assay. Also, the mesenchymal-like morphology and decrease in cell-to-cell adhesion were observed in triclosan-treated cells. Importantly, western blot analysis revealed that triclosan-treated cells exhibited decreased E-cadherin, while the levels of EMT markers, namely N-cadherin, vimentin, snail and slug were found to be significantly up-regulated. Furthermore, EMT induced by triclosan treatment was accompanied by the activation of focal adhesion kinase/ATP dependent tyrosine kinase (FAK/Akt and Ras-related C3 botulinum toxin substrate 1 (Rac1, which enhanced the ability of the cells to migrate and invade. In conclusion, we demonstrated for the first time that triclosan may potentiate cancer cells survival in detached condition and motility via the process of EMT. As mentioned capabilities are required for success in metastasis, the present study provides the novel toxicological information and encourages the awareness of triclosan use in cancer patients.

  6. Triclosan potentiates epithelial-to-mesenchymal transition in anoikis-resistant human lung cancer cells.

    Science.gov (United States)

    Winitthana, Thidarat; Lawanprasert, Somsong; Chanvorachote, Pithi

    2014-01-01

    Alteration of cancer cell toward mesenchymal phenotype has been shown to potentiate tumor aggressiveness by increasing cancer cell metastasis. Herein, we report the effect of triclosan, a widely used antibacterial agent found in many daily products, in enhancing the epithelial-to-mesenchymal transition (EMT) in aggressive anoikis resistant human H460 lung cancer cells. EMT has been long known to increase abilities of the cells to increase migration, invasion, and survival in circulating system. The present study reveals that treatment of the cancer cells with triclosan at the physiologically related concentrations significantly increased the colony number of the cancer cells assessed by tumor formation assay. Also, the mesenchymal-like morphology and decrease in cell-to-cell adhesion were observed in triclosan-treated cells. Importantly, western blot analysis revealed that triclosan-treated cells exhibited decreased E-cadherin, while the levels of EMT markers, namely N-cadherin, vimentin, snail and slug were found to be significantly up-regulated. Furthermore, EMT induced by triclosan treatment was accompanied by the activation of focal adhesion kinase/ATP dependent tyrosine kinase (FAK/Akt) and Ras-related C3 botulinum toxin substrate 1 (Rac1), which enhanced the ability of the cells to migrate and invade. In conclusion, we demonstrated for the first time that triclosan may potentiate cancer cells survival in detached condition and motility via the process of EMT. As mentioned capabilities are required for success in metastasis, the present study provides the novel toxicological information and encourages the awareness of triclosan use in cancer patients.

  7. Surgery Versus Stereotactic Radiosurgery for Single Synchronous Brain Metastasis from Non-Small Cell Lung Cancer

    Institute of Scientific and Technical Information of China (English)

    Hui LI; Sheng-cai HOU; Bin HU; Tong LI; Yang Wang; Jin-bai Miao; Bin You; Yi-li Fu

    2009-01-01

    Objective: The aim of this study is to compare the effectiveness of surgery with stereotactic radiosurgery (SRS) for patients with a single synchronous brain metastasis from successfully treated non-small cell lung cancer.Methods: Between 1995 and 2002, 53 patients underwent resection of both primary non-small cell lung cancer and the associated single brain metastasis. There were 33 men and 20 women with a mean age of 57 years (range, 32(85 years). At the time of diagnosis, 42 patients experienced lung cancer related symptoms, whereas 11 patients experienced brain metastases-related symptoms. 42 patients had received thoracic surgery first, and 11 patients had undergone neurosurgery or radiosurgery first. Pneumonectomy was performed in 9 out of 42 patients (21.4%), lobectomies in 30 (71.4%), and wedge resection in 3 (7.2%). 48 patients (90.5%) underwent complete lymphadenectomy. 35 patients underwent brain metastasectomy. 18 underwent SRS.Results: There was no postoperative mortality and severe complications after either lung or brain surgery. Histology showed 34 adenocarcinomas, 16 squamous cell carcinomas, and 3 large cell lung cancers. 15 patients (28.3%) had no evidence of lymph node metastases (N0), 20 patients (37.7%) had hilar metastases (N1), and 18 patients (34%) had mediastinal metastases (N2). The 1-, 2-, 3- and 5-year overall survival rates were 49%, 19%, 10%, and 5%, respectively. The corresponding data for neurosurgery group were 55%, 17%, 11%, and 6%, respectively. The median survival time was 13 months. For SRS group the corresponding data were 44.8%, 20.9% 10.5%, and 2%, respectively. The median survival time was 14 months. The differences between the two groups were not significant (P>0.05). In lymph node negative patients (N0), the overall 5-year survival rate was 10%, as compared with a 1% survival rate in patients with lymph node metastases (N1(2). The difference was significant (P0.05).Conclusion: Although the overall survival rate for

  8. CYP24 inhibition preserves 1α,25-dihydroxyvitamin D3 anti-proliferative signaling in lung cancer cells

    OpenAIRE

    Zhang, Qiuhong; Kanterewicz, Beatriz; Buch, Shama; Petkovich, Martin; Parise, Robert; Beumer,Jan; Yan LIN; Diergaarde, Brenda; Hershberger, Pamela A.

    2012-01-01

    Human lung tumors aberrantly express the 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3)-catabolizing enzyme, CYP24. We hypothesized that CYP24 reduces 1,25(OH)2D3-mediated transcription and allows lung cancer cells to escape its growth-inhibitory action. To test this, H292 lung cancer cells and the CYP24-selective inhibitor CTA091 were utilized. In H292 cells, CTA091 reduces 1,25(OH)2D3 catabolism, significantly increases 1,25(OH)2D3-mediated growth inhibition, and increases 1,25(OH)2D3 effects on i...

  9. Comparison of liposomal cisplatin versus cisplatin in non-squamous cell non-small-cell lung cancer

    OpenAIRE

    Stathopoulos, G. P.; Antoniou, D.; Dimitroulis, J.; STATHOPOULOS, J.; Marosis, K.; Michalopoulou, P.

    2011-01-01

    Purpose Liposomal cisplatin was developed to reduce the systemic toxicity of cisplatin, particularly the nephrotoxicity, and it has been used in combination with other agents in pancreatic and head and neck cancers and non-small-cell lung cancer (NSCLC). Our objective was to compare the effectiveness of lipoplatin combined with paclitaxel versus cisplatin with paclitaxel in advanced non-squamous NSCLC. Methods During 2007–2010, 202 patients with non-squamous NSCLC (stage IIIB and IV) were rec...

  10. Stathmin1 increases radioresistance by enhancing autophagy in non-small-cell lung cancer cells

    Directory of Open Access Journals (Sweden)

    Zhang X

    2016-04-01

    Full Text Available Xi Zhang,1,2 Jingfen Ji,3 Yu Yang,4 Juan Zhang,2 Liangfang Shen1 1Department of Oncology, Xiangya Hospital of Central South University, 2Department of Oncology, The Third Xiangya Hospital of Central South University, 3Department of General Surgery, The Second Xiangya Hospital of Central South University, 4Department of Oncology, 163 Hospital of PLA, Changsha, Hunan, People’s Republic of China Abstract: Radioresistance has been demonstrated to be involved in the poor prognosis of patients with non-small-cell lung cancer (NSCLC. However, the underlying mechanism remains largely unclear. Investigation on special therapeutic targets associated with radioresistance shows promises for the enhancement of clinical radiotherapy effect toward NSCLC. This study aimed to reveal the role of Stathmin1 (STMN1 in radioresistance in NSCLC as well as the underlying mechanism. Our data showed that the protein levels of STMN1 were significantly upregulated in NSCLC cells subjected to radiation, accompanied with the activation of autophagy. Knockdown of STMN1 expression enhanced the sensitivity of NSCLC cells to X-ray, and the radiation-induced autophagy was also inhibited. Molecular mechanism investigation showed that knockdown of STMN1 expression upregulated the activity of phosphoinositide 3-kinase (PI3K/mammalian target of rapamycin (mTOR signaling pathway in NSCLC cells. Moreover, the activation of PI3K/mTOR signaling showed an inhibitory effect on the autophagy and radioresistance induced by STMN1 in NSCLC cells. In addition, luciferase reporter assay data indicated that STMN1 was a direct target gene of miR-101, which had been reported to be an inhibitor of autophagy. Based on these data, we suggest that as a target gene of miR-101, STMN1 promotes the radioresistance by induction of autophagy through PI3K/mTOR signaling pathway in NSCLC. Therefore, STMN1 may become a potential therapeutic target for NSCLC radiotherapy. Keywords: radioresistance, non-small-cell

  11. Solitary Lung Tumors and Their Spontaneous Metastasis in Athymic Nude Mice Orthotopically Implanted with Human Non-Small Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Takeshi Yamaura

    2000-07-01

    Full Text Available We examined the tumorigenic and metastatic potentials of three human non-small cell lung cancer (NSCLC cell lines. PC-14, A549 or Lu-99 cell lines suspended in Matrigel-containing phosphate-buffered saline were orthotopically implanted into the lungs of nude mice. The formation of a solitary tumor nodule in the lung was observed after the implantation of all cell lines. Intrapulmonary implantation of PC-14 or Lu-99 cells resulted in spontaneous distant metastases. In contrast, A549 cells caused multiple intrapulmonary metastases to the right and left lobes of the lung without producing visible lymphatic metastasis. We also investigated the expression of matrix metal loproteinases (MMPs, urokinase-type plasminogen activator (u-PA, u-PA receptor (u-PAR and c-MET in these cell lines in vitro and in vivo. Reverse transcription polymerase chain reaction (RT-PCR analysis showed that the expression of MMP-2 and membrane-type 1 MMP (MT1-MMP was elevated in PC-14 as compared with the other two cell lines. In contrast, stronger expression of c-METwas observed in A549 than in PC-14 or Lu-99. These results indicate that differential patterns of metastasis of lung cancer might be associated with differential expression of metastasis-associated molecules. Our orthotopic implantation models display clinical features resembling those of NSCLC, may provide a useful basis for lung cancer research.

  12. Enhancement of radiosensitivity by CpG-oligodeoxyribonucleotide-7909 in human non-small cell lung cancer A549 cells.

    Science.gov (United States)

    Zha, Lin; Qiao, Tiankui; Yuan, Sujuan; Lei, Linjie

    2010-04-01

    CpG-oligodeoxyribonucleotides (CpG-ODNs), which induce signaling through the toll-like receptor 9, are currently under investigation as immunity stimulators against cancer. It has recently been suggested that CpG-ODNs may also enhance sensitivity to traditional therapies including chemotherapy in certain cancer-cell lines. The purpose of this study was to define the activity of CpG-ODN7909 in increasing radiosensitivity of the human non-small cell lung cancer cell line A549 in vitro. First, a dose- and time-dependent inhibitory effect on cell viability was observed after A549 cells were treated with different concentrations of CpG-ODN7909 (5, 10, 30, and 60 microg/mL). Second, decreased cell clonogenic survival, enhanced cell apoptotic index, accumulated percentage of cells in the G2/M phase, and increased tumor necrosis factor (TNF)-alpha secretion were found after combined treatments with 10 microg/mL of CpG-ODN7909 and radiation compared to either treatment alone (p CpG-ODN7909 can increase the radiosensitivity of human non-small cell lung cancer A549 cells, which may be associated with reduced cell clonogenic survival, enhanced apoptosis, prolonged cell-cycle arrest in G2/M, and stimulation of TNF-alpha secretion.

  13. Immune-dependent antineoplastic effects of cisplatin plus pyridoxine in non-small-cell lung cancer.

    Science.gov (United States)

    Aranda, F; Bloy, N; Pesquet, J; Petit, B; Chaba, K; Sauvat, A; Kepp, O; Khadra, N; Enot, D; Pfirschke, C; Pittet, M; Zitvogel, L; Kroemer, G; Senovilla, L

    2015-06-04

    cis-Diamminedichloroplatinum(II) (CDDP), which is mostly referred to as cisplatin, is a widely used antineoplastic. The efficacy of cisplatin can be improved by combining it with the vitamin B6 precursor pyridoxine. Here, we evaluated the putative synergistic interaction of CDDP with pyridoxine in the treatment of an orthotopic mouse model of non-small-cell lung cancer (NSCLC). CDDP and pyridoxine exhibited hyperadditive therapeutic effects. However, this synergy was only observed in the context of an intact immune system and disappeared when the otherwise successful drug combination was applied to the same NSCLC cancer implanted in the lungs of athymic mice (which lack T lymphocytes). Immunocompetent mice that had been cured from NSCLC by the combined regimen of CDDP plus pyridoxine became resistant against subcutaneous rechallenge with the same (but not with an unrelated) cancer cell line. In vitro, CDDP and pyridoxine did not only cause synergistic killing of NSCLC cells but also elicited signs of immunogenic cell death including an endoplasmic reticulum stress response and exposure of calreticulin at the surface of the NSCLC cells. NSCLC cells treated with CDDP plus pyridoxine in vitro elicited a protective anticancer immune response upon their injection into immunocompetent mice. Altogether, these results suggest that the combined regimen of cisplatin plus pyridoxine mediates immune-dependent antineoplastic effects against NSCLC.

  14. Overexpression of SAMD9 suppresses tumorigenesis and progression during non small cell lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Qing; Yu, Tao; Ren, Yao-Yao; Gong, Ting; Zhong, Dian-Sheng, E-mail: zhongdsyx@126.com

    2014-11-07

    Highlights: • SAMD9 is down-regulated in human non-small cell lung cancer (NSCLC). • Knockdown of SAMD9 expression is increased the invasion, migration and proliferation in H1299 cells in vitro. • Overexpression of SAMD9 suppressed proliferation and invasion in A549 cells in vitro. • Depletion of SAMD9 increases tumor formation in vivo. - Abstract: The Sterile Alpha Motif Domain-containing 9 (SAMD9) gene has been recently emphasized during the discovery that it is expressed at a lower level in aggressive fibromatosis and some cases of breast and colon cancer, however, the underlying mechanisms are poorly understood. Here, we found that SAMD9 is down-regulated in human non-small cell lung cancer (NSCLC). Furthermore, knockdown of SAMD9 expression is increased the invasion, migration and proliferation in H1299 cells in vitro and overexpression of SAMD9 suppressed proliferation and invasion in A549 cells. Finally, depletion of SAMD9 increases tumor formation in vivo. Our results may provide a strategy for blocking NSCLC tumorigenesis and progression.

  15. Circulating Tumor DNA in Predicting Outcomes in Patients With Stage IV Head and Neck Cancer or Stage III-IV Non-small Cell Lung Cancer

    Science.gov (United States)

    2016-10-19

    Metastatic Squamous Neck Cancer With Occult Primary Squamous Cell Carcinoma; Salivary Gland Squamous Cell Carcinoma; Stage IIIA Non-small Cell Lung Cancer; Stage IIIB Non-small Cell Lung Cancer; Stage IV Non-small Cell Lung Cancer; Stage IV Squamous Cell Carcinoma of the Hypopharynx; Stage IV Squamous Cell Carcinoma of the Nasopharynx; Stage IVA Salivary Gland Cancer; Stage IVA Squamous Cell Carcinoma of the Larynx; Stage IVA Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage IVA Squamous Cell Carcinoma of the Oropharynx; Stage IVA Squamous Cell Carcinoma of the Paranasal Sinus and Nasal Cavity; Stage IVA Verrucous Carcinoma of the Larynx; Stage IVA Verrucous Carcinoma of the Oral Cavity; Stage IVB Salivary Gland Cancer; Stage IVB Squamous Cell Carcinoma of the Larynx; Stage IVB Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage IVB Squamous Cell Carcinoma of the Oropharynx; Stage IVB Squamous Cell Carcinoma of the Paranasal Sinus and Nasal Cavity; Stage IVB Verrucous Carcinoma of the Larynx; Stage IVB Verrucous Carcinoma of the Oral Cavity; Stage IVC Salivary Gland Cancer; Stage IVC Squamous Cell Carcinoma of the Larynx; Stage IVC Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage IVC Squamous Cell Carcinoma of the Oropharynx; Stage IVC Squamous Cell Carcinoma of the Paranasal Sinus and Nasal Cavity; Stage IVC Verrucous Carcinoma of the Larynx; Stage IVC Verrucous Carcinoma of the Oral Cavity; Tongue Cancer; Untreated Metastatic Squamous Neck Cancer With Occult Primary

  16. Expression of myc family oncoproteins in small-cell lung-cancer cell lines and xenografts

    DEFF Research Database (Denmark)

    Rygaard, K; Vindeløv, L L; Spang-Thomsen, M

    1993-01-01

    A number of genes have altered activity in small-cell lung cancer (SCLC), but especially genes of the myc family (c-myc, L-myc and N-myc) are expressed at high levels in SCLC. Most studies have explored expression at the mRNA level, whereas studies of myc family oncoprotein expression are sparse....... WE examined the expression of myc proto-oncogenes at the mRNA and protein level in 23 cell lines or xenografts. In the cell lines, the doubling time and the cell-cycle distribution, as determined by flow-cytometric DNA analysis, were examined to establish whether the level of myc-gene-family...... expression correlated with proliferative parameters. All tumours expressed at least one myc family member at the mRNA level. Exclusive c-myc mRNA expression was demonstrated in 8 tumours, L-myc in 7 and N-myc in I. Five tumours expressed both c-myc and L-myc, and 2 tumours expressed both c-myc and N...

  17. Thiazolidinediones enhance vascular endothelial growth factor expression and induce cell growth inhibition in non-small-cell lung cancer cells

    OpenAIRE

    Yoshizaki Yumiko; Kumei Shima; Tanno Sachie; Motomura Wataru; Yoshizaki Takayuki; Tanno Satoshi; Okumura Toshikatsu

    2010-01-01

    Abstract Background It is known that thiazolidinediones are involved in regulating the expression of various genes, including the vascular endothelial growth factor (VEGF) gene via peroxisome proliferator-activated receptor γ (PPARγ); VEGF is a prognostic biomarker for non-small-cell lung cancer (NSCLC). Methods In this study, we investigated the effects of troglitazone and ciglitazone on the mRNA expression of VEGF and its receptors in human NSCLC cell lines, RERF-LC-AI, SK-MES-1, PC-14, and...

  18. Nintedanib plus docetaxel as second-line therapy in patients with non-small-cell lung cancer

    DEFF Research Database (Denmark)

    Popat, Sanjay; Mellemgaard, Anders; Fahrbach, Kyle

    2015-01-01

    BACKGROUND: Nintedanib plus docetaxel has proven an overall survival benefit over docetaxel monotherapy in second-line treatment of non-small-cell lung cancer of adenocarcinoma histology in the LUME-Lung 1 pivotal trial. No published trials have previously compared nintedanib plus docetaxel with ...

  19. Neuroendocrine differentiation as a survival prognostic factor in advanced non-small cell lung cancer

    Directory of Open Access Journals (Sweden)

    Petrović Marina

    2007-01-01

    Full Text Available Beckground/Aim. Neuroendrocine lung tumors are histologically heterogenous group of cancers with different clinical progression. In non-small cell lung cancer (NSCLC neuroendocrine differentiation exists in 10-30% of patients. The aim of this study was to determine the frequency and influence of neuroendocrine differentiation on survival of treated patients with advanced non-small cell lung cancer (NSCLC. Methods. A clinical trial included 158 patients (74% males and 26% females, with the diagnosis of NSCLC, determined by histological verification. The patients were treated by combined chemo - and X-ray therapy in stage III (without pleural effusion or chemotherapy only in stage III (with pleural effusion and stage IV. Chemotherapy was conducted until progression of the disease, but no more than six cycles. When the progression had been noted in stage III (without pleural effusion, the treatment was continued with X-ray therapy. Neuron specific enolase, chromogranin A, as well as synapthophysin expression in tissue examples were determined by immunohistochemical analysis with monoclonal mouse anti-human-bodies. Survival was assessed within a year and two years follow-up examination. Results. A total of 53 patients (34% had NSCLC with neuroendocrine differentiation, confirmed rather in large cell lung cancer and lung adenocarcinoma (66.7% and 40%, respectively. Neuron specific enolase, chromogranin A and synapthophysin expression was noted in 45 (28.5%, 34 (21.5% and 33 (20.1% patients, respectively. The one year and two years follow-up survival periods were confirmed in 39% and 17% of patients respectively. The median survival time in the patients with the neuroendocrine expression as compared to those without the expression was 15.6 vs 10.8 months; one year survival time with the expression compared to those without the expression achieved in 62% vs 27% of the patients, (p < 0.001; a two - year survival time noted in 30% of the patients (p = 0

  20. miR-98 targets ITGB3 to inhibit proliferation, migration, and invasion of non-small-cell lung cancer

    Directory of Open Access Journals (Sweden)

    Ni R

    2015-09-01

    Full Text Available Ran Ni,1 Yongjie Huang,2 Jing Wang11Department of Respiration Medicine, 2Department of Geriatric Respiration and Sleep, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People’s Republic of ChinaBackground: Accumulating evidence has emphasized causative links between aberrant microRNA (miR expression patterns and cancer development. Abnormally expressed miRNA-98 (miR-98 was found in certain types of human cancers. The biological roles of miR-98 in lung cancer, however, remain largely undefined.Methods: We evaluated the expression of miR-98 in normal lung tissues, lung cancer tissues, normal human bronchial epithelial cells, and lung cancer cells using quantitative real-time polymerase chain reaction. Effect of miR-98 on proliferation of lung cancer cells was investigated using MTT assay and colony formation assay. Transwell assay was used to assess the effects of miR-98 on migration and invasion of lung cancer cells. Whether miR-98 targets the 3'-untranslated region (3'-UTR of integrin β3 (ITGB3 coding gene ITGB3 mRNA was ascertained using luciferase reporter assay. Finally, we transplanted miR-98 expressing A549 cells into nude mice to observe the effect of miR-98 on tumor growth in vivo.Results: We confirmed that miR-98 was frequently low expressed in lung cancer tissues and human lung cancer cells. Reintroduction of miR-98 into lung cancer cells inhibited cell proliferation, migration, and invasion in vitro and suppressed tumor formation in a nude mouse model. Furthermore, we identified that miR-98 exerted inhibitory roles by directly binding to 3'-UTR of ITGB3 mRNA, thus negatively regulated the expression of ITGB3. Interestingly, upon restoring the expression of ITGB3, the effect of miR-98 on cell proliferation was partially reversed.Conclusion: Our findings suggest that miR-98 prevents proliferation, migration, and invasion of lung cancer cells by directly binding to the 3'-UTR of ITGB3 mRNA and could be a

  1. SOX2 gene regulates the transcriptional network of oncogenes and affects tumorigenesis of human lung cancer cells.

    Science.gov (United States)

    Chen, Si; Xu, Yingxi; Chen, Yanan; Li, Xuefei; Mou, Wenjun; Wang, Lina; Liu, Yanhua; Reisfeld, Ralph A; Xiang, Rong; Lv, Dan; Li, Na

    2012-01-01

    Recent studies demonstrated that cancer stem cells (CSCs) have higher tumorigenesis properties than those of differentiated cancer cells and that transcriptional factor-SOX2 plays a vital role in maintaining the unique properties of CSCs; however, the function and underlying mechanism of SOX2 in carcinogenesis of lung cancer are still elusive. This study applied immunohistochemistry to analyze the expression of SOX2 in human lung tissues of normal individuals as well as patients with adenocarcinoma, squamous cell carcinoma, and large cell and small cell carcinoma and demonstrated specific overexpression of SOX2 in all types of lung cancer tissues. This finding supports the notion that SOX2 contributes to the tumorigenesis of lung cancer cells and can be used as a diagnostic probe. In addition, obviously higher expression of oncogenes c-MYC, WNT1, WNT2, and NOTCH1 was detected in side population (SP) cells than in non-side population (NSP) cells of human lung adenocarcinoma cell line-A549, revealing a possible mechanism for the tenacious tumorigenic potential of CSCs. To further elucidate the function of SOX2 in tumorigenesis of cancer cells, A549 cells were established with expression of luciferase and doxycycline-inducible shRNA targeting SOX2. We found silencing of SOX2 gene reduces the tumorigenic property of A549 cells with attenuated expression of c-MYC, WNT1, WNT2, and NOTCH1 in xenografted NOD/SCID mice. By using the RNA-Seq method, an additional 246 target cancer genes of SOX2 were revealed. These results present evidence that SOX2 may regulate the expression of oncogenes in CSCs to promote the development of human lung cancer.

  2. SOX2 gene regulates the transcriptional network of oncogenes and affects tumorigenesis of human lung cancer cells.

    Directory of Open Access Journals (Sweden)

    Si Chen

    Full Text Available Recent studies demonstrated that cancer stem cells (CSCs have higher tumorigenesis properties than those of differentiated cancer cells and that transcriptional factor-SOX2 plays a vital role in maintaining the unique properties of CSCs; however, the function and underlying mechanism of SOX2 in carcinogenesis of lung cancer are still elusive. This study applied immunohistochemistry to analyze the expression of SOX2 in human lung tissues of normal individuals as well as patients with adenocarcinoma, squamous cell carcinoma, and large cell and small cell carcinoma and demonstrated specific overexpression of SOX2 in all types of lung cancer tissues. This finding supports the notion that SOX2 contributes to the tumorigenesis of lung cancer cells and can be used as a diagnostic probe. In addition, obviously higher expression of oncogenes c-MYC, WNT1, WNT2, and NOTCH1 was detected in side population (SP cells than in non-side population (NSP cells of human lung adenocarcinoma cell line-A549, revealing a possible mechanism for the tenacious tumorigenic potential of CSCs. To further elucidate the function of SOX2 in tumorigenesis of cancer cells, A549 cells were established with expression of luciferase and doxycycline-inducible shRNA targeting SOX2. We found silencing of SOX2 gene reduces the tumorigenic property of A549 cells with attenuated expression of c-MYC, WNT1, WNT2, and NOTCH1 in xenografted NOD/SCID mice. By using the RNA-Seq method, an additional 246 target cancer genes of SOX2 were revealed. These results present evidence that SOX2 may regulate the expression of oncogenes in CSCs to promote the development of human lung cancer.

  3. Oestrogen receptor beta over expression in males with non-small cell lung cancer is associated with better survival

    DEFF Research Database (Denmark)

    Skov, Birgit Guldhammer; Sode, Birgitte M Fischer; Pappot, H.

    2008-01-01

    BACKGROUND: Adenocarcinoma of the lung is more frequent in females than in males and the association with smoking is less pronounced than for the other histological subtypes of lung cancer. Oestrogen induction of cell proliferation has been found in breast adenocarcinomas, and since oestrogen...... receptors (ER) have been demonstrated in lung tumours, a similar role of oestrogens in the development of lung cancer has been suggested. We examined the expression of ERalpha, ERbeta and progesterone in a well defined cohort of patients with NSCLC with more than 15 years of follow up, and related...... of the clinical variables, including survival. None of the 104 patients had tumours positive for progesterone. CONCLUSION: The presence of ERbeta in a tumour seems to be a positive prognostic factor for men with non-small cell lung cancer. The finding confirms another recent study and suggests that the relation...

  4. Small Cell Lung Cancer Presenting as Severe Thrombocytopenia and Refractory Hypokalemia

    Directory of Open Access Journals (Sweden)

    Rohan Mandaliya

    2014-01-01

    Full Text Available A 70-year-old female with a history of mild cirrhosis was referred by her primary care provider for a platelet count of 36,000/μL which had dropped from 47,000/μL in a week along with mild pain in extremities. Serum potassium was low (2.9 mEq/L in spite of the patient being recently started on potassium supplement on outpatient for hypokalemia. Initially thrombocytopenia was attributed to cirrhosis. However, platelet counts continued to drop to a nadir of 9000/μL in spite of several platelet transfusions. Hypokalemia was refractory to potassium supplements. Subsequent bone marrow biopsy revealed extensive marrow necrosis with a focus of small cell tumor cells of pulmonary origin. CT scan of the chest showed a spiculated left lung mass. The ACTH level was high, with normal rennin and aldosterone levels. The patient likely had ectopic ACTH syndrome from small cell lung cancer. She died within few days of diagnosis. Severe thrombocytopenia and refractory hypokalemia can rarely be initial presentations of small cell lung cancer. Thrombocytopenia should prompt an evaluation for bone marrow metastases and a search for undiagnosed systemic malignancy. In severe cases of metastases, bone marrow necrosis can be present. Refractory hypokalemia can be the sole presentation of ectopic ACTH production.

  5. Epidermal Growth Factor Receptor Mutations and Radiotherapy 
in Non-small Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Xing ZHONG

    2013-03-01

    Full Text Available Radiotherapy plays a pivotal role in the treatment for lung cancer. Epidermal growth factor receptor (EGFR mutation in non-small cell lung cancer (NSCLC which predicts tyrosine kinase inhibitor (TKI treatment response may also has effect on radiation response. NSCLC harboring kinase-domain mutations in EGFR exhibits enhanced radio-sensitivity due to dramatically diminished capacity to resolve radiation-induced DSBs (DNA double-strand breaks associating with the inefficiency of EGFR nuclear translocation. Recently, several preliminary clinical studies show certain efficacy of concurrent EGFR tyrosine kinase inhibitors and radiotherapy. However its further response in EGFR-mutated NSCLC is unclear. The correlation between EGFR mutation genotype and the radiotherapy response and clinical outcome is worthy of further study.

  6. Tailoring treatment of nonsmall cell lung cancer by tissue type: role of pemetrexed

    Directory of Open Access Journals (Sweden)

    Steven F Powell

    2009-06-01

    Full Text Available Steven F Powell1, Arkadiusz Z Dudek21Department of Medicine, University of Minnesota, Minneapolis, MN, USA; 2Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN, USAAbstract: Pemetrexed (ALIMTA, LY231514, MTA is a novel multitargeted antifolate that is currently approved for the treatment of metastatic nonsmall cell lung cancer (NSCLC. Recent evidence reveals that the drug’s efficacy is limited to nonsquamous lung cancer histology. As we further understand the drug’s mechanisms of action, new genomic and proteomic evidence is shedding light on why some patients respond while others do not. The first goal of this review is to briefly review pemetrexed’s mechanism of action, resistance patterns, toxicity profile, and pharmacokinetics. We will also review the clinical trials that led to its use in NSCLC, with special attention to data showing that pemetrexed has greater efficacy in nonsquamous histologies of NSCLC. Furthermore, we will discuss the hypotheses for the genomic and proteomic basis for this variation in efficacy. Finally, we will report the future directions for pemetrexed as a personalized agent for nonsquamous NSCLC.Keywords: nonsmall cell lung cancer, pemetrexed, antifoliate

  7. Controversies in the management of stage IIIA non-small-cell lung cancer.

    Science.gov (United States)

    Santos, Edgardo S; Castrellon, Aurelio; Blaya, Marcelo; Raez, Luis E

    2008-12-01

    New developments in the management of non-small-cell lung cancer, as well as recent proposals for changing the current lung cancer staging system, are posing a challenge in the therapeutic decision making regarding this disease. For the last two decades, the management of stage IIIA (N2) disease has been controversial and the target for clinical trials has been to determine the best therapeutic approach that may result in better survival outcomes without increasing toxicity. For many years, combined modality treatment (systemic chemotherapy plus radiation therapy) became the standard of care in this setting. However, the poor outcomes seen with combined modality for N2 has obligated us to explore other possibilities. In this sense, recent clinical trials in the neoadjuvant setting using chemotherapy alone or combined modality are providing fruitful results and shifting the paradigm on this stage. A recent, large randomized multicenter trial argues against what has slowly become a current practice in some centers - the use of preoperative modality for N2 disease. Another controversy that we will discuss here is the acceptance of adjuvant therapy for resected stage IB-IIIA non-small-cell lung cancer. It was not long ago that adjuvant radiation therapy was still the standard of care for patients who have pathological nodal disease. We will present the current data on these debatable issues and how to implement this new knowledge into clinical practice.

  8. The expression of GST isoenzymes and p53 in non-small cell lung cancer.

    Directory of Open Access Journals (Sweden)

    MĂźzeyyen Ozhavzali

    2010-06-01

    Full Text Available This study investigated the immunohistochemical staining characteristics of glutathione-S-transferase alpha, pi, mu, theta and p53 in non-small cell lung carcinoma and normal lung tissue from 50 patients. The relationships between expressions of the Glutathione-S-transferase isoenzymes and some clinicopathological features were also examined. Expression of glutathione-S-transferase pi, mu, alpha, theta and p53 was assessed by immunohistochemistry for primary lung carcinomas of 50 patients from the Sanitarium Education and Research Hospital, Ankara lung cancer collection. The relationships between expression of the glutathione-S-transferase isoenzymes, p53 in normal and tumor tissue by Student T test and the clinicopathological data were also examined by Spearman Rank tests. When the normal and tumor tissue of these cases were compared according to their staining intensity and percentage of positive staining, glutathione-S-transferase alpha, pi, mu, theta expressions in tumor cells was significantly higher than normal cells (p<0.05. There was no significant difference in the expression of p53 between normal and tumor cells (p>0.05. When the immunohistochemical results of glutathione-S-transferase isoenzymes and p53 were correlated with the clinical parameters, there were no significant associations between glutathione-S-transferases and p53 expressions and tumor stage, tumor grade and smoking status (p>0.05.

  9. Chloroquine enhances gefitinib cytotoxicity in gefitinib-resistant nonsmall cell lung cancer cells.

    Directory of Open Access Journals (Sweden)

    Mei-Chuan Tang

    Full Text Available Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs, including gefitinib, are effective for non-small cell lung cancer (NSCLC patients with EGFR mutations. However, these patients eventually develop resistance to EGFR-TKI. The goal of the present study was to investigate the involvement of autophagy in gefitinib resistance. We developed gefitinib-resistant cells (PC-9/gef from PC-9 cells (containing exon 19 deletion EGFR after long-term exposure in gefitinib. PC-9/gef cells (B4 and E3 were 200-fold more resistant to gefitinib than PC-9/wt cells. Compared with PC-9/wt cells, both PC-9/gefB4 and PC-9/gefE3 cells demonstrated higher basal LC3-II levels which were inhibited by 3-methyladenine (3-MA, an autophagy inhibitor and potentiated by chloroquine (CQ, an inhibitor of autophagolysosomes formation, indicating elevated autophagy in PC-9/gef cells. 3-MA and CQ concentration-dependently inhibited cell survival of both PC-9wt and PC-9/gef cells, suggesting that autophagy may be pro-survival. Furthermore, gefitinib increased LC3-II levels and autolysosome formation in both PC-9/wt cells and PC-9/gef cells. In PC-9/wt cells, CQ potentiated the cytotoxicity by low gefitinib (3 nM. Moreover, CQ overcame the acquired gefitinib resistance in PC-9/gef cells by enhancing gefitinib-induced cytotoxicity, activation of caspase 3 and poly (ADP-ribose polymerase cleavage. Using an in vivo model xenografting with PC-9/wt and PC-9/gefB4 cells, oral administration of gefitinib (50 mg/kg completely inhibited the tumor growth of PC-9/wt but not PC-9/gefB4cells. Combination of CQ (75 mg/kg, i.p. and gefitinib was more effective than gefitinib alone in reducing the tumor growth of PC-9/gefB4. Our data suggest that inhibition of autophagy may be a therapeutic strategy to overcome acquired resistance of gefitinib in EGFR mutation NSCLC patients.

  10. Electromechanical transducer for rapid detection, discrimination and quantification of lung cancer cells

    Science.gov (United States)

    Ali, Waqas; Jalvhei Moghaddam, Fatemeh; Usman Raza, Muhammad; Bui, Loan; Sayles, Bailey; Kim, Young-Tae; Iqbal, Samir M.

    2016-05-01

    Tumor cells are malignant derivatives of normal cells. There are characteristic differences in the mechanophysical properties of normal and tumor cells, and these differences stem from the changes that occur in the cell cytoskeleton during cancer progression. There is a need for viable whole blood processing techniques for rapid and reliable tumor cell detection that do not require tagging. Micropore biosensors have previously been used to differentiate tumor cells from normal cells and we have used a micropore-based electromechanical transducer to differentiate one type of tumor cells from the other types. This device generated electrical signals that were characteristic of the cell properties. Three non-small cell lung cancer (NSCLC) cell lines, NCl-H1155, A549 and NCI-H460, were successfully differentiated. NCI-H1155, due to their comparatively smaller size, were found to be the quickest in translocating through the micropore. Their translocation through a 15 μm micropore caused electrical pulses with an average translocation time of 101 ± 9.4 μs and an average peak amplitude of 3.71 ± 0.42 μA, whereas translocation of A549 and NCI-H460 caused pulses with average translocation times of 126 ± 17.9 μs and 148 ± 13.7 μs and average peak amplitudes of 4.58 ± 0.61 μA and 5.27 ± 0.66 μA, respectively. This transformation of the differences in cell properties into differences in the electrical profiles (i.e. the differences in peak amplitudes and translocation times) with this electromechanical transducer is a quantitative way to differentiate these lung cancer cells. The solid-state micropore device processed whole biological samples without any pre-processing requirements and is thus ideal for point-of-care applications.

  11. Adjuvant chemotherapy for completely resected non-small-cell lung cancer

    Directory of Open Access Journals (Sweden)

    Toyooka,Shinichi

    2009-10-01

    Full Text Available For many years, surgery alone was the standard treatment for patients with stage I-IIIA non-small-cell lung cancer (NSCLC. However, recent studies have demonstrated that adjuvant chemotherapy provides a survival benefit. The first adjuvant chemotherapy for NSCLC was performed in the 1960s using a key drug known as cyclophosphamide. In the 1980s and early 1990s, a new anti-cancer drug, cisplatin, was developed. The first meta-analysis of this drug was conducted by the Non-small Cell Lung Cancer Collaborative Group in 1995. This analysis comparing surgery with surgery plus chemotherapy containing cisplatin produced a hazard ratio of 0.87 and suggested an absolute benefit of chemotherapy of 5% at 5 years;this difference was not statistically significant (p0.08. Several clinical trials of adjuvant chemotherapy were planned after the meta-analysis conducted in 1995, but the efficacy of adjuvant chemotherapy remained a matter of controversy. However, useful evidence was reported after 2003. The International Adjuvant Lung Cancer Collaborative Group Trial (IALT demonstrated a 4.1% improvement in survival for patients with stage I to III NSCLC. The JBR. 10 trial demonstrated a 15% improvement in 5-year survival for the adjuvant chemotherapy arm in stage IB or II (excluding T3N0 patients. The Adjuvant Navelbine International Trialist Association (ANITA trial reported that the overall survival at 5 years improved by 8.6% in the chemotherapy arm and that this survival rate was maintained at 7 years (8.4% in stage II and IIIA patients. A meta-analysis based on collected and pooled individual patient data from the 5 largest randomized trials was conducted by the Lung Adjuvant Cisplatin Evaluation (LACE. This analysis demonstrated that cisplatin-based adjuvant chemotherapy improved survival in patients with stage II or III cancer. Alterna-tively, uracil-tegafur has been developed and tested in Japan. The Japan Lung Cancer Research Group (JLCRG on Postsurgical

  12. DNA Repair Gene Polymorphisms in Relation to Non-Small Cell Lung Cancer Survival

    Directory of Open Access Journals (Sweden)

    Yuliang Su

    2015-07-01

    Full Text Available Background: Single nucleotide polymorphisms (SNPs in the DNA repair genes are suspected to be related to the survival of lung cancer patients due to their possible influence on DNA repair capacity (DRC. However, the study results are inconsistent. Methods: A follow-up study of 610 non-small cell lung cancer (NSCLC patients was conducted to investigate genetic polymorphisms associated with the DNA repair genes in relation to NSCLC survival; 6 SNPs were genotyped, including XRCC1 (rs25487 G>A, hOGG1 (rs1052133 C>G, MUTYH (rs3219489 G>C, XPA (rs1800975 G>A, ERCC2 (rs1799793 G>A and XRCC3 (rs861539 C>T. Kaplan-Meier survival curve and Cox proportional hazards regression analyses were performed. SNP-SNP interaction was also examined using the survival tree analysis. Results: Advanced disease stage and older age at diagnosis were associated with poor prognosis of NSCLC. Patients with the variant ‘G' allele of hOGG1 rs1052133 had poor overall survival compared with those with the homozygous wild ‘CC' genotype, especially in female patients, adenocarcinoma histology, early stage, light smokers and without family history of cancer. For never smoking female lung cancer patients, individuals carrying homozygous variant ‘AA' genotype of XPA had shorter survival time compared to those with wild ‘G' alleles. Furthermore, females carrying homozygous variant XPA and hOGG1 genotypes simultaneously had 2.78-fold increased risk for death. Among all 6 polymorphisms, the homozygous variant ‘AA' of XPA carriers had poor prognosis compared to the carriers of wild ‘G' alleles of XPA together with other base excision repair (BER polymorphisms. Conclusions: Besides disease stage and age, the study found DNA repair gene polymorphisms were associated with lung cancer survival.

  13. Spotlight on pembrolizumab in non-small cell lung cancer: the evidence to date

    Directory of Open Access Journals (Sweden)

    Vachhani P

    2016-09-01

    Full Text Available Pankit Vachhani, Hongbin Chen Department of Medicine, Roswell Park Cancer Institute, Buffalo, NY, USA Abstract: Immunotherapy with immune checkpoint inhibitors has opened a new arena in cancer therapeutics. Pembrolizumab is a highly selective anti-programmed cell death protein 1 (PD-1 antibody that has shown efficacy, leading to survival benefit and durable responses, in some patients with non-small cell lung cancer (NSCLC. It has been approved by the US Food and Drug Administration for the treatment of patients with metastatic NSCLC, whose tumors express PD-1 ligand 1 (PD-L1, with disease progression on or after platinum-containing chemotherapy. Here, we briefly discuss the PD-1/PD-L1 pathway and pembrolizumab before delving into the clinical trials that have led to its just-mentioned approval in NSCLC and ongoing clinical trials. Finally, we discuss the use of biomarkers, primarily PD-L1, in the context of pembrolizumab and NSCLC. Keywords: pembrolizumab, KEYNOTE, non-small cell lung cancer 

  14. Inhibitory effect of Trolox on the migration and invasion of human lung and cervical cancer cells.

    Science.gov (United States)

    Sung, Ho Joong; Kim, Yoonseo; Kang, Hyereen; Sull, Jae Woong; Kim, Yoon Suk; Jang, Sung-Wuk; Ko, Jesang

    2012-02-01

    The antioxidant 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (Trolox) is implicated in migration and invasion of metastatic tumors. However, the molecular mechanism underlying the effect of Trolox on metastatic cancer cells is not known. We found that a non-cytotoxic dose of Trolox decreased phorbol 12-myristate 13-acetate (PMA)-induced invasion and migration of both A549 and HeLa cancer cells. We also found that Trolox suppressed both the expression and the proteolytic activity of matrix metalloproteinase-9 (MMP-9), and that the promoter activity of PMA-induced MMP-9 was inhibited by Trolox. Our results show that Trolox inhibits the transcriptional activity of MMP-9 by suppression of NF-κB transactivation. These results indicate that Trolox inhibits NF-κB-mediated MMP-9 expression, leading to the suppression of migration and invasion in lung and cervical cancer cells. Trolox is a potential agent for clinical use in preventing the invasion and metastasis of human malignant lung and cervical cancers.

  15. Octamer-binding protein 4 affects the cell biology and phenotypic transition of lung cancer cells involving β-catenin/E-cadherin complex degradation.

    Science.gov (United States)

    Chen, Zhong-Shu; Ling, Dong-Jin; Zhang, Yang-De; Feng, Jian-Xiong; Zhang, Xue-Yu; Shi, Tian-Sheng

    2015-03-01

    Clinical studies have reported evidence for the involvement of octamer‑binding protein 4 (Oct4) in the tumorigenicity and progression of lung cancer; however, the role of Oct4 in lung cancer cell biology in vitro and its mechanism of action remain to be elucidated. Mortality among lung cancer patients is more frequently due to metastasis rather than their primary tumors. Epithelial‑mesenchymal transition (EMT) is a prominent biological event for the induction of epithelial cancer metastasis. The aim of the present study was to investigate whether Oct4 had the capacity to induce lung cancer cell metastasis via the promoting the EMT in vitro. Moreover, the effect of Oct4 on the β‑catenin/E‑cadherin complex, associated with EMT, was examined using immunofluorescence and immunoprecipitation assays as well as western blot analysis. The results demonstrated that Oct4 enhanced cell invasion and adhesion accompanied by the downregulation of epithelial marker cytokeratin, and upregulation of the mesenchymal markers vimentin and N‑cadherin. Furthermore, Oct4 induced EMT of lung cancer cells by promoting β‑catenin/E‑cadherin complex degradation and regulating nuclear localization of β‑catenin. In conclusion, the present study indicated that Oct4 affected the cell biology of lung cancer cells in vitro through promoting lung cancer cell metastasis via EMT; in addition, the results suggested that the association and degradation of the β‑catenin/E‑cadherin complex was regulated by Oct4 during the process of EMT.

  16. Leptomeningeal carcinomatosis in non-small cell lung cancer patients: A continuing challenge in the personalized treatment era.

    Science.gov (United States)

    Remon, J; Le Rhun, E; Besse, B

    2017-02-01

    Leptomeningeal metastasis is a fatal manifestation seen in advanced cancer patients. Its incidence is increasing, reaching 3.8% in molecularly unselected non-small cell lung cancer patients and up to 5% and 9% in ALK-rearranged and EGFR-mutant lung cancer patients, respectively. The prognosis remains poor despite systemic treatment, intrathecal chemotherapy, radiation therapy and personalized treatments in molecularly selected patients. However, new therapies with improved cerebral-spinal fluid penetration have been developed for subgroups of molecular selected patients indicating they could be promising therapeutic options for managing leptomeningeal disease. Systemic chemotherapy, which may be combined with intrathecal chemotherapy, remains standard treatment for lung cancer patients with leptomeningeal disease and a good-risk profile. We summarize evidence reported in the literature for managing this complication in lung cancer patients. Based on this, we have selected potential therapeutic strategies that could be used in daily clinical practice.

  17. Arctigenin Inhibits Lung Metastasis of Colorectal Cancer by Regulating Cell Viability and Metastatic Phenotypes.

    Science.gov (United States)

    Han, Yo-Han; Kee, Ji-Ye; Kim, Dae-Seung; Mun, Jeong-Geon; Jeong, Mi-Young; Park, Sang-Hyun; Choi, Byung-Min; Park, Sung-Joo; Kim, Hyun-Jung; Um, Jae-Young; Hong, Seung-Heon

    2016-08-27

    Arctigenin (ARC) has been shown to have an anti-cancer effect in various cell types and tissues. However, there have been no studies concerning metastatic colorectal cancer (CRC). In this study, we investigated the anti-metastatic properties of ARC on colorectal metastasis and present a potential candidate drug. ARC induced cell cycle arrest and apoptosis in CT26 cells through the intrinsic apoptotic pathway via MAPKs signaling. In several metastatic phenotypes, ARC controlled epithelial-mesenchymal transition (EMT) through increasing the expression of epithelial marker E-cadherin and decreasing the expressions of mesenchymal markers; N-cadherin, vimentin, β-catenin, and Snail. Moreover, ARC inhibited migration and invasion through reducing of matrix metalloproteinase-2 (MMP-2) and MMP-9 expressions. In an experimental metastasis model, ARC significantly inhibited lung metastasis of CT26 cells. Taken together, our study demonstrates the inhibitory effects of ARC on colorectal metastasis.

  18. Optimization of Intracellular Transportation of Gene Therapeutic DNA in Small Cell Lung Cancer (Ph.d.)

    DEFF Research Database (Denmark)

    Cramer, Frederik

    2013-01-01

    Small cell lung cancer (SCLC) is a highly malignant disease characterized as being very aggressive and metastasizing at a rapid pace. The malevolent pace of SCLC cell migration results in almost three out of four SCLC patients having disseminated SCLC at the time of diagnosis. Unfortunately...... and thereby improving the efficacy of the treatment. By implementing what is known as a DNA nuclear targeting sequence (DTS) strategy, we found that we could utilize the SCLC cells own transportation system thereby manipulating the cancer cells to bring our therapeutic plasmids from the cytoplasm......, there are currently no satisfactory treatments for SCLC and the prognosis is poor. New treatments are therefore in high demand and one such could potentially be gene therapy. However, curing a metastasizing disease such as SCLC by gene therapy requires a systemically applied delivery system. Such a delivery system...

  19. Arctigenin Inhibits Lung Metastasis of Colorectal Cancer by Regulating Cell Viability and Metastatic Phenotypes

    Directory of Open Access Journals (Sweden)

    Yo-Han Han

    2016-08-01

    Full Text Available Arctigenin (ARC has been shown to have an anti-cancer effect in various cell types and tissues. However, there have been no studies concerning metastatic colorectal cancer (CRC. In this study, we investigated the anti-metastatic properties of ARC on colorectal metastasis and present a potential candidate drug. ARC induced cell cycle arrest and apoptosis in CT26 cells through the intrinsic apoptotic pathway via MAPKs signaling. In several metastatic phenotypes, ARC controlled epithelial-mesenchymal transition (EMT through increasing the expression of epithelial marker E-cadherin and decreasing the expressions of mesenchymal markers; N-cadherin, vimentin, β-catenin, and Snail. Moreover, ARC inhibited migration and invasion through reducing of matrix metalloproteinase-2 (MMP-2 and MMP-9 expressions. In an experimental metastasis model, ARC significantly inhibited lung metastasis of CT26 cells. Taken together, our study demonstrates the inhibitory effects of ARC on colorectal metastasis.

  20. Base excision repair activities differ in human lung cancer cells and corresponding normal controls

    DEFF Research Database (Denmark)

    Karahalil, Bensu; Bohr, Vilhelm A; De Souza-Pinto, Nadja C

    2010-01-01

    Oxidative damage to DNA is thought to play a role in carcinogenesis by causing mutations, and indeed accumulation of oxidized DNA bases has been observed in samples obtained from tumors but not from surrounding tissue within the same patient. Base excision repair (BER) is the main pathway...... for the repair of oxidized modifications both in nuclear and mitochondrial DNA. In order to ascertain whether diminished BER capacity might account for increased levels of oxidative DNA damage in cancer cells, the activities of BER enzymes in three different lung cancer cell lines and their non......-cancerous counterparts were measured using oligonucleotide substrates with single DNA lesions to assess specific BER enzymes. The activities of four BER enzymes, OGG1, NTH1, UDG and APE1, were compared in mitochondrial and nuclear extracts. For each specific lesion, the repair activities were similar among the three...

  1. Rapid response of advanced squamous non-small cell lung cancer with thrombocytopenia after first-line treatment with pembrolizumab plus autologous cytokine-induced killer cells

    Directory of Open Access Journals (Sweden)

    Zhenzhen eHui

    2015-12-01

    Full Text Available We present the first clinical evidence of advanced squamous non-small cell lung cancer with severe thrombocytopenia showing dramatic improvement after first-line treatment with pembrolizumab plus cytokine-induced killer cells.

  2. Rapamycin induces Bad phosphorylation in association with its resistance to human lung cancer cells.

    Science.gov (United States)

    Liu, Yan; Sun, Shi-Yong; Owonikoko, Taofeek K; Sica, Gabriel L; Curran, Walter J; Khuri, Fadlo R; Deng, Xingming

    2012-01-01

    Inhibition of mTOR signaling by rapamycin has been shown to activate extracellular signal-regulated kinase 1 or 2 (ERK1/2) and Akt in various types of cancer cells, which contributes to rapamycin resistance. However, the downstream effect of rapamycin-activated ERKs and Akt on survival or death substrate(s) remains unclear. We discovered that treatment of human lung cancer cells with rapamycin results in enhanced phosphorylation of Bad at serine (S) 112 and S136 but not S155 in association with activation of ERK1/2 and Akt. A higher level of Bad phosphorylation was observed in rapamycin-resistant cells compared with parental rapamycin-sensitive cells. Thus, Bad phosphorylation may contribute to rapamycin resistance. Mechanistically, rapamycin promotes Bad accumulation in the cytosol, enhances Bad/14-3-3 interaction, and reduces Bad/Bcl-XL binding. Rapamycin-induced Bad phosphorylation promotes its ubiquitination and degradation, with a significant reduction of its half-life (i.e., from 53.3-37.5 hours). Inhibition of MEK/ERK by PD98059 or depletion of Akt by RNA interference blocks rapamycin-induced Bad phosphorylation at S112 or S136, respectively. Simultaneous blockage of S112 and S136 phosphorylation of Bad by PD98059 and silencing of Akt significantly enhances rapamycin-induced growth inhibition in vitro and synergistically increases the antitumor efficacy of rapamycin in lung cancer xenografts. Intriguingly, either suppression of Bad phosphorylation at S112 and S136 sites or expression of the nonphosphorylatable Bad mutant (S112A/S136A) can reverse rapamycin resistance. These findings uncover a novel mechanism of rapamycin resistance, which may promote the development of new strategies for overcoming rapamycin resistance by manipulating Bad phosphorylation at S112 and S136 in human lung cancer.

  3. SKA1 regulates the metastasis and cisplatin resistance of non-small cell lung cancer

    Science.gov (United States)

    SHEN, LIHUA; YANG, MIN; LIN, QIONGHUA; ZHANG, ZHONGWEI; MIAO, CHANGHONG; ZHU, BIAO

    2016-01-01

    Currently, chemotherapy with platinum-based drugs including cisplatin is the most effective therapy for the treatment of non-small cell lung carcinoma (NSCLC). However, the efficacy of chemotherapy is limited due to commonly developed drug resistance. Spindle and kinetochore-associated complex subunit 1 (SKA1) is part of a complex essential for stabilizing the attachment of spindle microtubules to kinetochores and for maintaining the metaphase plate during mitosis. In the present study, we aimed to investigate the role of SKA1 in the process of metastasis and drug resistance of NSCLC. We completed a series of experiments to investigate the function of SKA1 in NSCLC metastasis and drug resistance including qRT-PCR, immunohistochemistry and western blotting, as well as MTT, BrdU, wounded healing, Transwell and gelatin zymography assays. We demonstrated that the expression levels of SKA1 were elevated in NSCLC and were correlated with cancer progression and malignancy. We also reported that SKA1 positively regulated the proliferation and metastatic ability of NSCLC cells. In addition, we determined that SKA1 contributed to cisplatin resistance in NSCLC cells by protecting these cells from cisplatin-induced cell apoptosis. SKA1 also appeared to regulate the ERK1/2 and the Akt-mediated signaling pathways in NSCLC cells. SKA1 is required for metastasis and cisplatin resistance of non-small cell lung cancer. PMID:26985856

  4. Prognostic significance of Notch ligands in patients with non-small cell lung cancer.

    Science.gov (United States)

    Pancewicz-Wojtkiewicz, Joanna; Eljaszewicz, Andrzej; Kowalczuk, Oksana; Niklinska, Wieslawa; Charkiewicz, Radoslaw; Kozłowski, Miroslaw; Miasko, Agnieszka; Moniuszko, Marcin

    2017-01-01

    The Notch signaling pathway is deregulated in numerous solid types of cancer including non-small cell lung cancer (NSCLC). However, the profile of Notch ligand expression remains unclear. Therefore, the present study aimed to determine the profile of Notch ligands in NSCLC patients and to investigate whether quantitative assessment of Notch ligand expression may have prognostic significance in NSCLC patients. The study was performed in 61 pairs of tumor and matched unaffected lung tissue specimens obtained from patients with various stages of NSCLC, which were analyzed by reverse transcription-polymerase chain reaction. The marked expression levels of certain analyzed genes were detected in NSCLC samples and in noncancerous lung samples. Of the five Notch ligands, jagged 1 (Jag1), jagged 2, delta-like protein 1 and delta-like protein 4 were expressed in the majority of tissues, but their expression levels were reduced in NSCLC when compared with noncancerous lung tissue (PNotch ligands are expressed in NSCLC. However, the expression level is reduced when compared to noncancerous tissue. Furthermore, the present study revealed that quantitative assessment of Jag1 expression in NSCLC may improve prognostication of patient survival.

  5. The significance of PIWI family expression in human lung embryogenesis and non-small cell lung cancer.

    Science.gov (United States)

    Navarro, Alfons; Tejero, Rut; Viñolas, Nuria; Cordeiro, Anna; Marrades, Ramon M; Fuster, Dolors; Caritg, Oriol; Moises, Jorge; Muñoz, Carmen; Molins, Laureano; Ramirez, Josep; Monzo, Mariano

    2015-10-13

    The expression of Piwi-interacting RNAs, small RNAs that bind to PIWI proteins, was until recently believed to be limited to germinal stem cells. We have studied the expression of PIWI genes during human lung embryogenesis and in paired tumor and normal tissue prospectively collected from 71 resected non-small-cell lung cancer patients. The mRNA expression analysis showed that PIWIL1 was highly expressed in 7-week embryos and downregulated during the subsequent weeks of development. PIWIL1 was expressed in 11 of the tumor samples but in none of the normal tissue samples. These results were validated by immunohistochemistry, showing faint cytoplasmic reactivity in the PIWIL1-positive samples. Interestingly, the patients expressing PIWIL1 had a shorter time to relapse (TTR) (p = 0.006) and overall survival (OS) (p = 0.0076) than those without PIWIL1 expression. PIWIL2 and 4 were downregulated in tumor tissue in comparison to the normal tissue (p < 0.001) and the patients with lower levels of PIWIL4 had shorter TTR (p = 0.048) and OS (p = 0.033). In the multivariate analysis, PIWIL1 expression emerged as an independent prognostic marker. Using 5-Aza-dC treatment and bisulfite sequencing, we observed that PIWIL1 expression could be regulated in part by methylation. Finally, an in silico study identified a stem-cell expression signature associated with PIWIL1 expression.

  6. Overexpression of stathmin 1 is a poor prognostic biomarker in non-small cell lung cancer.

    Science.gov (United States)

    Nie, Wei; Xu, Mi-die; Gan, Lu; Huang, Hai; Xiu, Qingyu; Li, Bing

    2015-01-01

    Stathmin 1 (STMN1), a major microtubule-depolymerizing protein, is involved in cell cycle progression and cell motility. However, the clinical significance of STMN1 expression in non-small cell lung cancer (NSCLC) has not been determined. The expression pattern of STMN1 mRNA was analyzed by quantitative real-time PCR (qRT-PCR) in 37 cases of NSCLC and in the corresponding non-tumor tissue samples. Furthermore, immunohistochemistry was performed to detect STMN1 protein expression in 113 primary NSCLC tissues. The functional role of STMN1 in lung cancer cell lines was evaluated by small interfering RNA-mediated depletion followed by analyses of cell proliferation and invasion. We found that the STMN1 mRNA and protein levels in NSCLC tissues were significantly higher than those in the corresponding non-tumor tissues (P<0.001). In addition, increased STMN1 expression was correlated with poor tumor differentiation (P<0.001), large tumor size (P=0.022), advanced N stage (P=0.033), and advanced TNM stage (P<0.001). Kaplan-Meier analysis indicates that NSCLC patients with higher STMN1 expression showed significantly worse survival. Moreover, multivariate analysis indicates that higher STMN1 protein expression was an independent prognostic factor of disease-specific survival (HR 2.247, 95%CI 1.320-3.825, P=0.003). Finally, the knockdown of STMN1 in lung cancer cells resulted in a decrease in cellular proliferation and invasion. Our findings suggest that STMN1 may have an important role in NSCLC progression and could serve as a potential prognostic marker for patients with NSCLC.

  7. Can circulated lung cancer cells pass to the urine without apparent urine tract metastases? A single centre series.

    Science.gov (United States)

    Kamposioras, Konstantinos; Pentheroudakis, George; Malamou-Mitsi, Vassiliki; Pappa, Lina; Bafa, Maria; Pavlidis, Nicholas

    2008-04-01

    Urine cytology has been a useful tool for the diagnosis of urinary tract malignancies. However, the presence of tumor cells in the urine sediment without an obvious urothelial metastatic deposit is a rare phenomenon and in patients with lung cancer has never been reported. We present five cases with metastatic lung cancer and positive urine cytology. The possible mechanisms underlining this phenomenon and its implications are discussed.

  8. Fibroblast Growth Factor Receptor (FGFR): A New Target for Non-small Cell Lung Cancer Therapy.

    Science.gov (United States)

    Biello, Federica; Burrafato, Giovanni; Rijavec, Erika; Genova, Carlo; Barletta, Giulia; Truini, Anna; Coco, Simona; Bello, Maria Giovanna Dal; Alama, Angela; Boccardo, Francesco; Grossi, Francesco

    2016-01-01

    Lung cancer is still the leading cause of cancer related death worldwide. Fibroblast growth factor receptor (FGFR) is a tirosine-kinase receptor that is seen to be amplified or mutated in non-small cell lung cancer (NSCLC) and it plays a crucial role in tumour development and maintenance. The authors analyzed the state of the art of FGFR by reviewing the current literature. Fibroblast growth factor (FGF)-FGFR pathway and their aberrations are described, with the evaluation of their possible prognostic role in NSCLC and in particular in squamous cell carcinomas, in which FGFR is more often amplified. New therapeutic agents targeting FGFR signaling have been developed and are now in clinical evaluation. Dysregulation of FGF signaling in tumour cells is related to FGFR gene amplification or mutation, although it is still uncertain which of these aberrations represents a real predictor of response to specific inhibitors. However, recent evidence has questioned whether FGFR is a real target in squamous cell histology. The effectiveness of FGFR inhibitors is also still unclear since there are no clinical data on selected patients. Moreover, the management of specific side effects related to inhibition of the physiological role of FGF should be more thorough.

  9. Lycopene and Lung Cancer

    Science.gov (United States)

    Although epidemiological studies have shown dietary intake of lycopene is associated with decreased risk of lung cancer, the effect of lycopene on lung carcinogenesis has not been well studied. A better understanding of lycopene metabolism and the mechanistic basis of lycopene chemoprevention must ...

  10. Nutrition for Lung Cancer

    Science.gov (United States)

    ... seeds removed such as applesauce, canned peaches or bananas Breads, crackers and pasta made with refined white ... Downloadable Resources & Video Library Reports Lung Cancer Fact Sheet Our Researchers & Teams Latest News Sign up for ...

  11. IMMUNORESPONSES OF HUMANIZED SCID MICE TO HUMAN LUNG CANCER CELLS

    Institute of Scientific and Technical Information of China (English)

    陈力真; 王树蕙; 张云; 王世真

    1996-01-01

    HuPBL-SCID mice were used to explore how they would response to human ttmoor cells of 801/MLC.Living 801/MLC cells appeared to be fetal to the the mice due to the production of human TNF. The huP-BL-SCID rniee did not generate any noticeable amotmt of specific human immunoglobttlin either by single immunization with living 801/MLC cells or by repeated immunization with irradiated 801/MLC cells. Our preliminary experiments with huPBL-SCID mice showed that such chimeras would he a very useful models for tumor immunological researches.

  12. Effects of furanodiene on 95-D lung cancer cells: apoptosis, autophagy and G1 phase cell cycle arrest.

    Science.gov (United States)

    Xu, Wen-Shan; Li, Ting; Wu, Guo-Sheng; Dang, Yuan-Ye; Hao, Wen-Hui; Chen, Xiu-Ping; Lu, Jin-Jian; Wang, Yi-Tao

    2014-01-01

    Furanodiene (FUR) is a natural terpenoid isolated from Rhizoma curcumae, a well-known Chinese medicinal herb that presents anti-proliferative activities in several cancer cell lines. Herein, we systematically investigated the effects of FUR on the significant processes of tumor progression with the relatively low concentrations in 95-D lung cancer cells. FUR concentration-dependently inhibited cell proliferation and blocked the cell cycle progressions in G1 phase by down-regulating the protein levels of cyclin D1 and CDK6, and up-regulating those of p21 and p27 in 95-D cells. FUR also affected the signaling molecules that regulate apoptosis in 95-D cells revealed by the down-regulation of the protein levels of full PARP, pro-caspase-7, survivin, and Bcl-2, and the up-regulation of cleaved PARP. Further studies showed that FUR enhanced the expression of light chain 3-II (LC3-II) in the protein level, indicating that autophagy is involved in this process. Besides, the adhesion ability of 95-D cells to matrigel and fibronectin was slightly inhibited after FUR treatment for 1 h in our experimental condition. FUR also slightly suppressed cell migration and invasion in 95-D cells according to the data from wound healing and Transwell assays, respectively. Taken together, FUR activated the signal molecules regulating G1 cell cycle arrest, apoptosis and autophagy, while slightly affecting the key steps of cell metastasis in 95-D lung cancer cells in the relatively low concentrations.

  13. Fisetin induces apoptosis in human nonsmall lung cancer cells via a mitochondria-mediated pathway.

    Science.gov (United States)

    Kang, Kyoung Ah; Piao, Mei Jing; Hyun, Jin Won

    2015-03-01

    The present study investigated the apoptotic effects of fisetin, a phenolic compound, against the human nonsmall cell lung cancer cell line, NCI-H460. Fisetin showed dose-dependent cytotoxic activity against NCI-H460 cells, with 50% inhibition of cell viability occurring at a concentration of 75 μg/mL. Fisetin induced both the production of intracellular reactive oxygen species and apoptosis, as evidenced by apoptotic body formation, DNA fragmentation, an increase in the number of sub-G1 phase cells, and mitochondrial membrane depolarization. Moreover, fisetin significantly modulated the expression of apoptosis-associated proteins, resulting in reduced expression of B cell lymphoma-2, increased expression of Bcl-2-associated X protein, and activation of caspase-9 and caspase-3. In addition, pretreatment with a caspase inhibitor blocked fisetin-induced cell death.

  14. The role of RAD51 in etoposide (VP16) resistance in small cell lung cancer

    DEFF Research Database (Denmark)

    Hansen, Lasse Tengbjerg; Lundin, Cecilia; Spang-Thomsen, Mogens;

    2003-01-01

    Etoposide (VP16) is a potent inducer of DNA double-strand breaks (DSBs) and is efficiently used in small cell lung cancer (SCLC) therapy. However, acquired VP16 resistance remains an important barrier to effective treatment. To understand the underlying mechanisms for VP16 resistance in SCLC, we...... investigated DSB repair and cellular VP16 sen