WorldWideScience

Sample records for cell lines exposed

  1. Gene expression profiles of human promyelocytic leukemia cell lines exposed to volatile organic compounds.

    Science.gov (United States)

    Sarma, Sailendra Nath; Kim, Youn-Jung; Ryu, Jae-Chun

    2010-05-27

    Benzene, toluene, o-xylene, ethylbenzene, trichloroethylene and dichloromethane are the most widely used volatile organic compounds (VOCs), and their toxic mechanisms are still undefined. This study analyzed the genome-wide expression profiles of human promyelocytic leukemia HL-60 cells exposed to VOCs using a 35-K whole human genome oligonucleotide microarray to ascertain potential biomarkers. Genes with a significantly increased expression levels (over 1.5-fold and p-values lines to VOC exposure.

  2. Apoptosis and necroptosis are induced in rainbow trout cell lines exposed to cadmium

    Energy Technology Data Exchange (ETDEWEB)

    Krumschnabel, Gerhard, E-mail: Gerhard.Krumschnabel@i-med.ac.at [Division of Developmental Immunology, Biocenter, Medical University Innsbruck, Fritz-Preglstr. 3, Innsbruck (Austria); Ebner, Hannes L.; Hess, Michael W. [Division of Histology and Embryology, Medical University Innsbruck, Innsbruck (Austria); Villunger, Andreas [Division of Developmental Immunology, Biocenter, Medical University Innsbruck, Fritz-Preglstr. 3, Innsbruck (Austria)

    2010-08-01

    Cadmium is an important environmental toxicant that can kill cells. A number of studies have implicated apoptosis as well as necrosis and, most recently, a form of programmed necrosis termed necroptosis in the process of cadmium-mediated toxicity, but the exact mechanism remains ill-defined and may depend on the affected cell type. This study investigated which mode of cell death may be responsible for cell death induction in cadmium-exposed trout cell lines from gill and liver and if this cell death was sensitive to inhibitors of necroptosis or apoptosis, respectively. It was observed that intermediate levels of cadmium that killed approximately 50% of the cells over 96-120 h of exposure caused cell death that morphologically resembled apoptosis and was associated with an increase of apoptotic markers such as the number of cells with diminished DNA content (sub-G1 cells), condensed or fragmented nuclei, and elevation of caspase-3 activity. At the same time, however, cells also lost plasma membrane integrity, as indicated by uptake of propidium iodide, showed a decrease of ATP levels and mitochondrial membrane potential, and displayed cell swelling, signs associated with secondary necrosis, or equally possible, necroptotic cell death. Importantly, many of these alterations were at least partly inhibited by the necroptosis inhibitor necrostatin-1 and were to a lesser extent also sensitive to the pan-caspase inhibitor zVAD-fmk, indicating that multiple modes of cell death are concurrently induced in cadmium-exposed trout cells, including necroptosis and apoptosis. Cell death appeared to lack concurrent radical formation, consistent with genetically regulated necroptotic cell death, but was characterized by the rapid induction of DNA damage markers, and the early onset of disintegration of the Golgi complex. Comparative experiments evaluating copper-toxicity indicated that in comparison to cadmium much higher concentrations of this metal were required to induce cell

  3. Gene expression profiles in asbestos-exposed epithelial and mesothelial lung cell lines

    Directory of Open Access Journals (Sweden)

    Kaski Samuel

    2007-03-01

    Full Text Available Abstract Background Asbestos has been shown to cause chromosomal damage and DNA aberrations. Exposure to asbestos causes many lung diseases e.g. asbestosis, malignant mesothelioma, and lung cancer, but the disease-related processes are still largely unknown. We exposed the human cell lines A549, Beas-2B and Met5A to crocidolite asbestos and determined time-dependent gene expression profiles by using Affymetrix arrays. The hybridization data was analyzed by using an algorithm specifically designed for clustering of short time series expression data. A canonical correlation analysis was applied to identify correlations between the cell lines, and a Gene Ontology analysis method for the identification of enriched, differentially expressed biological processes. Results We recognized a large number of previously known as well as new potential asbestos-associated genes and biological processes, and identified chromosomal regions enriched with genes potentially contributing to common responses to asbestos in these cell lines. These include genes such as the thioredoxin domain containing gene (TXNDC and the potential tumor suppressor, BCL2/adenovirus E1B 19kD-interacting protein gene (BNIP3L, GO-terms such as "positive regulation of I-kappaB kinase/NF-kappaB cascade" and "positive regulation of transcription, DNA-dependent", and chromosomal regions such as 2p22, 9p13, and 14q21. We present the complete data sets as Additional files. Conclusion This study identifies several interesting targets for further investigation in relation to asbestos-associated diseases.

  4. Transcriptome and coexpression network analysis of the human glioma cell line Hs683 exposed to candoxin.

    Science.gov (United States)

    Jiang, Y X; Ma, Y; Cheng, Y

    2012-01-01

    Gliomas are the most common primary tumours of the central nervous system. Snake venom, such as candoxin (CDX) isolated from Bungarus candidus, inhibits glioma cell proliferation. This study explored the gene regulation profile of CDX-treated human glioma Hs683 cells. Using microarray technology and bioinformatics analyses the underlying molecular mechanism of action of CDX was evaluated by constructing gene regulation and protein-protein interaction co expression networks. CDX treatment induced a large number of related genes at the transcriptional level. The MYC gene (v-myc myelocytomatosis viral oncogene homologue [avian]) had a key role in the response of Hs683 cells to CDX treatment. Activation of MYC upregulated NDRG1 (N-myc downstream regulated 1), WNT10B (wingless-type mouse mammary tumour virus integration site family, member 10B), CASP9 (caspase 9, apoptosis-related cysteine peptidase) and CDKN2A (cyclin-dependent kinase inhibitor 2A), and downregulated ID3 (inhibitor of DNA binding 3, dominant negative helix-loop-helix protein) and SLC1A4 (solute carrier family 1 [glutamate/neutral amino acid transporter], member 4). In addition, a subnetwork was constructed among SPP1 (secreted phosphoprotein 1), SDC1 (syndecan 1) and CD44 based on protein-protein interactions, and these genes were predicted to be involved in glioma cell invasion. These findings might provide novel therapeutic targets for glioma chemotherapy.

  5. Analysis of miRNA expression profiles in melatonin-exposed GC-1 spg cell line.

    Science.gov (United States)

    Zhu, Xiaoling; Chen, Shuxiong; Jiang, Yanwen; Xu, Ying; Zhao, Yun; Chen, Lu; Li, Chunjin; Zhou, Xu

    2018-02-05

    Melatonin is an endocrine neurohormone secreted by pinealocytes in the pineal gland. It exerts diverse physiological effects, such as circadian rhythm regulator and antioxidant. However, the functional importance of melatonin in spermatogenesis regulation remains unclear. The objectives of this study are to: (1) detect melatonin affection on miRNA expression profiles in GC-1 spg cells by miRNA deep sequencing (DeepSeq) and (2) define melatonin affected miRNA-mRNA interactions and associated biological processes using bioinformatics analysis. GC-1 spg cells were cultured with melatonin (10 -7 M) for 24h. DeepSeq data were validated using quantitative real-time reverse transcription polymerase chain reaction analysis (qRT-PCR). A total of 176 miRNA expressions were found to be significantly different between two groups (fold change of >2 or melatonin could regulate the expression of miRNA to perform its physiological effects in GC-1 spg cells. These results should be useful to investigate the biological function of miRNAs regulated by melatonin in spermatogenesis and testicular germ cell tumor. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Transcriptome analysis of the human T lymphocyte cell line Jurkat and human peripheral blood mononuclear cells exposed to deoxynivalenol (DON): New mechanistic insights

    Energy Technology Data Exchange (ETDEWEB)

    Katika, Madhumohan R. [RIKILT-Institute of Food Safety, Wageningen University and Research Centre, Wageningen (Netherlands); Department of Health Risk Analysis and Toxicology, Maastricht University (Netherlands); Netherlands Toxicogenomics Centre (Netherlands); Hendriksen, Peter J.M. [RIKILT-Institute of Food Safety, Wageningen University and Research Centre, Wageningen (Netherlands); Netherlands Toxicogenomics Centre (Netherlands); Shao, Jia [RIKILT-Institute of Food Safety, Wageningen University and Research Centre, Wageningen (Netherlands); Department of Health Risk Analysis and Toxicology, Maastricht University (Netherlands); Netherlands Toxicogenomics Centre (Netherlands); Loveren, Henk van [Department of Health Risk Analysis and Toxicology, Maastricht University (Netherlands); National Institute for Public Health and the Environment (RIVM), Bilthoven (Netherlands); Netherlands Toxicogenomics Centre (Netherlands); Peijnenburg, Ad, E-mail: ad.peijnenburg@wur.nl [RIKILT-Institute of Food Safety, Wageningen University and Research Centre, Wageningen (Netherlands); Netherlands Toxicogenomics Centre (Netherlands)

    2012-10-01

    Deoxynivalenol (DON) or vomitoxin is a commonly encountered type-B trichothecene mycotoxin, produced by Fusarium species predominantly found in cereals and grains. DON is known to exert toxic effects on the gastrointestinal, reproductive and neuroendocrine systems, and particularly on the immune system. Depending on dose and exposure time, it can either stimulate or suppress immune function. The main objective of this study was to obtain a deeper insight into DON-induced effects on lymphoid cells. For this, we exposed the human T-lymphocyte cell line Jurkat and human peripheral blood mononuclear cells (PBMCs) to various concentrations of DON for various times and examined gene expression changes by DNA microarray analysis. Jurkat cells were exposed to 0.25 and 0.5 μM DON for 3, 6 and 24 h. Biological interpretation of the microarray data indicated that DON affects various processes in these cells: It upregulates genes involved in ribosome structure and function, RNA/protein synthesis and processing, endoplasmic reticulum (ER) stress, calcium-mediated signaling, mitochondrial function, oxidative stress, the NFAT and NF-κB/TNF-α pathways, T cell activation and apoptosis. The effects of DON on the expression of genes involved in ER stress, NFAT activation and apoptosis were confirmed by qRT-PCR. Other biochemical experiments confirmed that DON activates calcium-dependent proteins such as calcineurin and M-calpain that are known to be involved in T cell activation and apoptosis. Induction of T cell activation was also confirmed by demonstrating that DON activates NFATC1 and induces its translocation from the cytoplasm to the nucleus. For the gene expression profiling of PBMCs, cells were exposed to 2 and 4 μM DON for 6 and 24 h. Comparison of the Jurkat microarray data with those obtained with PBMCs showed that most of the processes affected by DON in the Jurkat cell line were also affected in the PBMCs. -- Highlights: ► The human T cell line Jurkat and human

  7. In vitro response of the human breast cancer cell line MDAMB-231 and human peripheral blood mononuclear cells exposed to 60Co at single fraction

    International Nuclear Information System (INIS)

    Andrade, Lidia Maria; Campos, Tarcisio Passos Ribeiro de; Leite, M.F.; Goes, A.M.

    2005-01-01

    Radiotherapy using gamma rays is a common modality of breast cancer treatment. The aim of this research is to investigate the biological response of the human breast cancer cell line MDAMB-231 and human peripheral blood mononuclear cells (PBMC) exposed in vitro to 60 Co irradiation at a single fraction of 10 Gy, 25 Gy and 50 Gy doses at 136,4 cGy.min -1 rate. Cells were irradiated at room temperature by the Theratron 80 radiotherapy system. Biological response was evaluated through cellular viability using MTT assay and nucleus damages visualized by Propidium Iodide assay and electrophoresis agarose gel after gamma irradiation. Nucleus damages induced by 60 Co irradiation were compared to damage caused by cell exposure to 10% methanol. The 50 Gy dose of irradiation did not stimulate nucleus damages at the same level as that affected by 10% methanol induction in the MDAMB-231. Further studies are necessary to understand these mechanisms in the MDAMB-231 human breast carcinoma cell line.(author)

  8. In vitro response of the human breast cancer cell line MDAMB-231 and human peripheral blood mononuclear cells exposed to {sup 60}Co at single fraction

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, Lidia Maria; Campos, Tarcisio Passos Ribeiro de [Universidade Federal de Minas Gerais, Belo Horizonte, MG (Brazil). Dept. de Engenharia Nuclear]. E-mail: lidia.andrade@unifenas.br; Leite, M.F. [Universidade Federal de Minas Gerais, Belo Horizonte, MG (Brazil). Dept. de Fisiologia e Biofisica; Goes, A.M. [Universidade Federal de Minas Gerais, Belo Horizonte, MG (Brazil). Dept. de Bioquimica e Imunologia

    2005-10-15

    Radiotherapy using gamma rays is a common modality of breast cancer treatment. The aim of this research is to investigate the biological response of the human breast cancer cell line MDAMB-231 and human peripheral blood mononuclear cells (PBMC) exposed in vitro to {sup 60} Co irradiation at a single fraction of 10 Gy, 25 Gy and 50 Gy doses at 136,4 cGy.min{sup -1} rate. Cells were irradiated at room temperature by the Theratron 80 radiotherapy system. Biological response was evaluated through cellular viability using MTT assay and nucleus damages visualized by Propidium Iodide assay and electrophoresis agarose gel after gamma irradiation. Nucleus damages induced by {sup 60} Co irradiation were compared to damage caused by cell exposure to 10% methanol. The 50 Gy dose of irradiation did not stimulate nucleus damages at the same level as that affected by 10% methanol induction in the MDAMB-231. Further studies are necessary to understand these mechanisms in the MDAMB-231 human breast carcinoma cell line.(author)

  9. DNA-protein crosslinking in normal and solar UV-sensitive ICR 2A frog cell lines exposed to solar UV-radiation

    International Nuclear Information System (INIS)

    Rosenstein, B.S.; Lai, L.-W.; Ducore, J.M.; Rosenstein, R.S.

    1989-01-01

    DNA-protein crosslinks (DPC) were measured following exposure to the solar UV wavelength in ICR 2A frog cells and two solar UV-sensitive mutants derived from this cell line. Approx. 5-7 DPC per 10 10 dalton were induced in these cells by either 150 kJ/m 2 of sunlamp UV > 315 nm plus photoreactivating light (PRL) or 10 kJ/m 2 of sunlamp UV > 295 nm. It was found for the ICR 2A cells exposed to sunlamp UV > 315 nm that the level of DPC increased about 3-fold during a 2-h postirradiation incubation and then decreased. The mutant cell lines also showed an enhancement in the level of DPC following irradiation. In a similar fashion, the level of DPC increased in ICR 2A cells exposed to sunlamp UV > 295 nm with more than a 5-fold enhancement after a 4-h incubation. Once again, the mutant cell lines showd an increase in the level of DPC that was smaller and more transient than the effect in the ICR 2A cells. These results suggests that this enhancement in DPC may be indicative of a process that plays a role in cellular survival following solar UV-irradiation. (author), 25 refs.; 5 figs.; 2 tabs

  10. A Comparitive Assessement of Cytokine Expression in Human-Derived Cell Lines Exposed to Alpha Particles and X-Rays

    Directory of Open Access Journals (Sweden)

    Vinita Chauhan

    2012-01-01

    Full Text Available Alpha- (α- particle radiation exposure has been linked to the development of lung cancer and has been identified as a radiation type likely to be employed in radiological dispersal devices. Currently, there exists a knowledge gap concerning cytokine modulations associated with exposure to α-particles. Bio-plex technology was employed to investigate changes in proinflammatory cytokines in two human-derived cell lines. Cells were irradiated at a dose of 1.5 Gy to either α-particles or X-rays at equivalent dose rates. The two cell lines exhibited a unique pattern of cytokine expression and the response varied with radiation type. Of the 27 cytokines assessed, only vascular endothelin growth factor (VEGF was observed to be modulated in both cell lines solely after α-particle exposure, and the expression of VEGF was shown to be dose responsive. These results suggest that certain proinflammatory cytokines may be involved in the biological effects related to α- particle exposure and the responses are cell type and radiation type specific.

  11. Evaluation of HSP70 expression and DNA damage in cells of a human trophoblast cell line exposed to 1.8 GHz amplitude-modulated radiofrequency fields.

    Science.gov (United States)

    Valbonesi, Paola; Franzellitti, Silvia; Piano, Annamaria; Contin, Andrea; Biondi, Carla; Fabbri, Elena

    2008-03-01

    The aim of this study was to determine whether high-frequency electromagnetic fields (EMFs) could induce cellular effects. The human trophoblast cell line HTR-8/SVneo was used as a model to evaluate the expression of proteins (HSP70 and HSC70) and genes (HSP70A, B, C and HSC70) of the HSP70 family and the primary DNA damage response after nonthermal exposure to pulse-modulated 1817 MHz sinusoidal waves (GSM-217 Hz; 1 h; SAR of 2 W/kg). HSP70 expression was significantly enhanced by heat, which was applied as the prototypical stimulus. The HSP70A, B and C transcripts were differentially expressed under basal conditions, and they were all significantly induced above basal levels by thermal stress. Conversely, HSC70 protein and gene expression was not influenced by heat. Exposing HTR-8/SVneo cells to high-frequency EMFs did not change either HSP70 or HSC70 protein or gene expression. A significant increase in DNA strand breaks was caused by exposure to H(2)O(2), which was used as a positive stimulus; however, no effect was observed after exposure of cells to high-frequency EMFs. Overall, no evidence was found that a 1-h exposure to GSM-217 Hz induced a HSP70-mediated stress response or primary DNA damage in HTR-8/SVneo cells. Nevertheless, further investigations on trophoblast cell responses after exposure to GSM signals of different types and durations are needed.

  12. In vitro response of the human breast cancer cell line MDAMB-231 and human peripheral blood mononuclear cells exposed to 60Co at single fraction

    Directory of Open Access Journals (Sweden)

    Lídia Maria Andrade

    2005-10-01

    Full Text Available Radiotherapy using gamma rays is a common modality of breast cancer treatment. The aim of this research is to investigate the biological response of the human breast cancer cell line MDAMB-231 and human peripheral blood mononuclear cells (PBMC exposed in vitro to 60 Co irradiation at a single fraction of 10 Gy, 25 Gy and 50 Gy doses at 136,4 cGy.min-1 rate. Cells were irradiated at room temperature by the Theratron 80 radiotherapy system. Biological response was evaluated through cellular viability using MTT assay and nucleus damages visualized by Propidium Iodide assay and electrophoresis agarose gel after gamma irradiation. Nucleus damages induced by 60Co irradiation were compared to damage caused by cell exposure to 10% methanol. The 50 Gy dose of irradiation did not stimulate nuclus damages at the same level as that affected by 10% methanol induction in the MDAMB-231. Further studies are necessary to understand these mechanisms in the MDAMB-231 human breast carcinoma cell line.Radioterapia utilizando radiação gama é uma modalidade comum no tratamento do câncer de mama. A proposta deste estudo é investigar a resposta biológica in vitro da linhagem celular MDAMB-231 de câncer de mama humano e células do sangue periférico humano (PBMC expostas à irradiação pelo Co60 em frações simples de 10Gy, 25Gy e 50Gy e 136,4cGy min-1 rate. As células foram irradiadas a temperatura ambiente usando o equipamento de radioterapia Theratron 80 radiotherapy system. A resposta biológica, após irradiação gama, foi avaliada através do ensaio do MTT para viabilidade celular e o do ensaio com Iodeto de Propídio para visualização do dano nuclear, além da eletroforese em gel de agarose. Os danos nucleares induzidos pelo Co60 foram comparados aos danos causados pela exposição das células à solução de metanol a 10%. Nós observamos que a dose de 50Gy não estimulou a mesma quantidade de danos nucleares que a solução de metanol a 10% nas c

  13. Dose-response relationships in gene expression profiles in a harbor seal B lymphoma cell line exposed to 17α-ethinyl estradiol

    Directory of Open Access Journals (Sweden)

    Christine Kleinert

    2017-05-01

    Full Text Available The determination of changes in gene expression profiles with xenobiotic dose will allow identifying biomarkers and modes of toxicant action. The harbor seal (Phoca vitulina 11B7501 B lymphoma cell line was exposed to 1, 10, 100, 1000, 10,000, or 25,000 μg/L 17α-ethinyl estradiol (EE2, the active compound of the contraceptive pill for 24 h. Following exposure, RNA was extracted and transformed into cDNA. Transcript expression in exposed vs. control lymphocytes was analyzed via RT-qPCR to identify genes with altered expression. Our analysis indicates that gene expression for all but the reference gene varied with dose, suggesting that different doses induce distinct physiological responses. These findings demonstrate that RT-qPCR could be used to identify immunotoxicity and relative dose in harbor seal leukocytes.

  14. Radiosensitivity variations in human tumor cell lines exposed in vitro to p(66)/Be neutrons or 60Co γ-rays

    International Nuclear Information System (INIS)

    Slabbert, J.P.; Theron, T.; Serafin, A.; Jones, D.T.L.; Boehm, L.; Schmitt, G.

    1996-01-01

    Neutron therapy should be beneficial to patients with tumor types which are resistant to photons but relatively sensitive to high-LET radiation. In this work the potential therapeutic gain of a clinical neutron beam is evaluated by quantifying the variations in radiosensitivity of different cell lines to neutrons and photons. Different cell lines were exposed in vitro to p(66)/Be neutrons or 60 Co γ-rays. Micronuclei frequencies in binucleated cells and surviving fractions were determined for each cell type. Following exposure to either 1 or 1.5 Gy neutrons, micronuclei frequencies were significantly correlated with that observed for 2 Gy photons. A weak but significant correlation between the variation in neutron RBE values, determined from survival curve inactivation parameters and the mean inactivation doses for photon exposures, was also established. It is concluded that although neutron and photon sensitivities are related, the use of this high energy neutron source may constitute a potential therapeutic gain for tumor types that can be identified as very resistant to photons. Considering that a definitive oxygen gain factor has been established for this neutron beam the observed therapeutic gain is expected to be further enhanced in tumors where hypoxia protects cells from conventional radiation damage. (orig.) [de

  15. Biotransformation and oxidative stress responses in rat hepatic cell-line (H4IIE) exposed to racemic ketoprofen (RS-KP) and its enantiomer, dexketoprofen (S(+)-KP).

    Science.gov (United States)

    Mennillo, Elvira; Krøkje, Åse; Pretti, Carlo; Meucci, Valentina; Arukwe, Augustine

    2018-03-30

    Pharmaceuticals such as racemate ketoprofen (RS-KP) and its enantiomer, dexketoprofen (S(+)-KP) are highly detectable non-steroidal anti-inflammatory drugs (NSAIDs) in the aquatic environment and therefore are designated as one of the most emerging groups of pollutants that can affect environmental and human health. The potential impact of these pharmaceuticals was assessed for the first time in vitro using a rat hepatocellular carcinoma cell line (H4IIE). Cells were exposed to low and high concentrations of these drugs. Cytotoxicity was determined by MTT reduction assay; CYP1A1 transcriptional and enzymatic levels together with canonical oxidative stress responsive markers (GPx, GR, GST and CAT) were also investigated. Cells exposed to RS-KP and S(+)-KP did not show cytotoxicity effect at the concentrations tested. However, this study highlighted differences between RS-KP and S(+)-KP in most of the evaluated markers, showing compound-, concentration- and time-specific effect patterns which suggest a potential stereo-selective toxicity of these drugs. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Effect of taurine on expressions of MMP-2 in K562 leukemia cell line exposed to γ-rays

    International Nuclear Information System (INIS)

    Fan Yan; Wu Shiliang; Xu Lan; Chou Hao; Zhou Yinghui

    2003-01-01

    Objective: To study the effect of γ-irradiation on expressions of MMP-2 in leukaemia cells and the suppressive effect of taurine(Tau) on irradiated tumour cells in terms of cellular level. Methods: The cells in the control group and Tau (50 mg/L, 100 mg/L, 200 mg/L) groups were irradiated with 15 Gy γ-rays. The expressions of MMP-2 were examined through Western-blotting after handled with gel-loading buffer within 12 h. Results: The expressions of MMP-2 were enhanced evidently in the positive control group, while they were less in the negative control group. In the Tau(50 mg/L, 100 mg/L, 200 mg/L) groups, the expressions of MMP-2 were diminished in turns, and they were almost identical between the negative control group and the Tau 200 mg/L group. Conclusion: Irradiation with γ-rays at a dose of 15 Gy can significantly stimulate the expressions of MMP-2 in K562 cells; Tau can inhibit the expressions of MMP-2 and its effect depends on to its dosage; Tau can inhabit the invasiveness and migration of irradiated tumour cells, so it has the biologic protective and therapeutic effects

  17. In Vitro Evaluation of Mitochondrial Function and Estrogen Signaling in Cell Lines Exposed to the Antiseptic Cetylpyridinium Chloride.

    Science.gov (United States)

    Datta, Sandipan; He, Guochun; Tomilov, Alexey; Sahdeo, Sunil; Denison, Michael S; Cortopassi, Gino

    2017-08-22

    Quaternary ammonium salts (QUATS), such as cetylpyridinium chloride (CPC) and benzalkonium chloride (BAK), are frequently used in antiseptic formulations, including toothpastes, mouthwashes, lozenges, throat and nasal sprays, and as biocides. Although in a recent ruling, the U.S. Food and Drug Administration (FDA) banned CPC from certain products and requested more data on BAK's efficacy and safety profile, QUATS, in general, and CPC and BAK, in particular, continue to be used in personal health care, food, and pharmaceutical and cleaning industries. We aimed to assess CPC's effects on mitochondrial toxicity and endocrine disruption in vitro . Mitochondrial O 2 consumption and adenosine triphosphate (ATP) synthesis rates of osteosarcoma cybrid cells were measured before and after CPC and BAK treatment. Antiestrogenic effects of the compounds were measured by a luciferase-based assay using recombinant human breast carcinoma cells (VM7Luc4E2, ERalpha-positive). CPC inhibited both mitochondrial O 2 consumption [half maximal inhibitory concentration (IC 50 ): 3.8μM] and ATP synthesis (IC 50 : 0.9μM), and additional findings supported inhibition of mitochondrial complex 1 as the underlying mechanism for these effects. In addition, CPC showed concentration-dependent antiestrogenic activity half maximal effective concentration [(EC 50 ): 4.5μM)]. BAK, another antimicrobial QUATS that is structurally similar to CPC, and the pesticide rotenone, a known complex 1 inhibitor, also showed mitochondrial inhibitory and antiestrogenic effects. In all three cases, there was overlap of the antiestrogenic activity with the mitochondrial inhibitory activity. Mitochondrial inhibition in vitro occurred at a CPC concentration that may be relevant to human exposures. The antiestrogenic activity of CPC, BAK, rotenone, and triclosan may be related to their mitochondrial inhibitory activity. Our findings support the need for additional research on the mitochondrial inhibitory and

  18. Cell line provenance.

    Science.gov (United States)

    Freshney, R Ian

    2002-07-01

    Cultured cell lines have become an extremely valuable resource, both in academic research and in industrial biotechnology. However, their value is frequently compromised by misidentification and undetected microbial contamination. As detailed elsewhere in this volume, the technology, both simple and sophisticated, is available to remedy the problems of misidentification and contamination, given the will to apply it. Combined with proper records of the origin and history of the cell line, assays for authentication and contamination contribute to the provenance of the cell line. Detailed records should start from the initiation or receipt of the cell line, and should incorporate data on the donor as well as the tissue from which the cell line was derived, should continue with details of maintenance, and include any accidental as well as deliberate deviations from normal maintenance. Records should also contain details of authentication and regular checks for contamination. With this information, preferably stored in a database, and suitable backed up, the provenance of the cell line so created makes the cell line a much more valuable resource, fit for validation in industrial applications and more likely to provide reproducible experimental results when disseminated for research in other laboratories.

  19. Cell diameter measurements obtained with a handheld cell counter could be used as a surrogate marker of G2/M arrest and apoptosis in colon cancer cell lines exposed to SN-38

    International Nuclear Information System (INIS)

    Tahara, Makiko; Inoue, Takeshi; Miyakura, Yasuyuki; Horie, Hisanaga; Yasuda, Yoshikazu; Fujii, Hirofumi; Kotake, Kenjiro; Sugano, Kokichi

    2013-01-01

    Highlights: •Chemo-sensitivity to SN-38 was assayed by the automated cell counter. •Colon cancer cell line, HCT116 cells were more sensitive to SN-38 than HT29 cells. •Increase of cell size reflects G2/M arrest. •Appearance of small particles indicates cell apoptosis. -- Abstract: In vitro assessment of chemosensitivity are important for experiments evaluating cancer therapies. The Scepter 2.0 cell counter, an automated handheld device based on the Coulter principle of impedance-based particle detection, enables the accurate discrimination of cell populations according to cell size and volume. In this study, the effects of SN-38, the active metabolite of irinotecan, on the colon cancer cell lines HCT116 and HT29 were evaluated using this device. The cell count data obtained with the Scepter counter were compared with those obtained with the 3 H-thymidine uptake assay, which has been used to measure cell proliferation in many previous studies. In addition, we examined whether the changes in the size distributions of these cells reflected alterations in the frequency of cell cycle arrest and/or apoptosis induced by SN-38 treatment. In our experiments using the Scepter 2.0 cell counter, the cell counts were demonstrated to be accurate and reproducible measure and alterations of cell diameter reflected G2/M cell cycle arrest and apoptosis. Our data show that easy-to-use cell counting tools can be utilized to evaluate the cell-killing effects of novel treatments on cancer cells in vitro

  20. Radiosensitivity of mesothelioma cell lines

    International Nuclear Information System (INIS)

    Haekkinen, A.M.; Laasonen, A.; Linnainmaa, K.; Mattson, K.; Pyrhoenen, S.

    1996-01-01

    The present study was carried out in order to examine the radiosensitivity of malignant pleural mesothelioma cell lines. Cell kinetics, radiation-induced delay of the cell cycle and DNA ploidy of the cell lines were also determined. For comparison an HeLa and a human foetal fibroblast cell line were simultaneously explored. Six previously cytogenetically and histologically characterized mesothelioma tumor cell lines were applied. A rapid tiazolyl blue microtiter (MTT) assay was used to analyze radiosensitivity and cell kinetics and DNA ploidy of the cultured cells were determined by flow cytometry. The survival fraction after a dose of 2 Gy (SF2), parameters α and β of the linear quadratic model (LQ-model) and mean inactivation dose (D MID ) were also estimated. The DNA index of four cell lines equaled 1.0 and two cell lines equaled 1.5 and 1.6. Different mesothelioma cell lines showed a great variation in radiosensitivity. Mean survival fraction after a radiation dose of 2 Gy (SF2) was 0.60 and ranged from 0.36 to 0.81 and mean α value was 0.26 (range 0.48-0.083). The SF2 of the most sensitive diploid mesothelioma cell line was 0.36: Less than that of the foetal fibroblast cell line (0.49). The survival fractions (0.81 and 0.74) of the two most resistant cell lines, which also were aneuploid, were equal to that of the HeLa cell line (0.78). The α/β ratios of the most sensitive cell lines were almost an order of magnitude greater than those of the two most resistant cell lines. Radiation-induced delay of the most resistant aneuploid cell line was similar to that of HeLa cells but in the most sensitive (diploid cells) there was practically no entry into the G1 phase following the 2 Gy radiation dose during 36 h. (orig.)

  1. CLO : The cell line ontology

    NARCIS (Netherlands)

    Sarntivijai, Sirarat; Lin, Yu; Xiang, Zuoshuang; Meehan, Terrence F.; Diehl, Alexander D.; Vempati, Uma D.; Schuerer, Stephan C.; Pang, Chao; Malone, James; Parkinson, Helen; Liu, Yue; Takatsuki, Terue; Saijo, Kaoru; Masuya, Hiroshi; Nakamura, Yukio; Brush, Matthew H.; Haendel, Melissa A.; Zheng, Jie; Stoeckert, Christian J.; Peters, Bjoern; Mungall, Christopher J.; Carey, Thomas E.; States, David J.; Athey, Brian D.; He, Yongqun

    2014-01-01

    Background: Cell lines have been widely used in biomedical research. The community-based Cell Line Ontology (CLO) is a member of the OBO Foundry library that covers the domain of cell lines. Since its publication two years ago, significant updates have been made, including new groups joining the CLO

  2. A prototype methodology combining surface-enhanced laser desorption/ionization protein chip technology and artificial neural network algorithms to predict the chemoresponsiveness of breast cancer cell lines exposed to Paclitaxel and Doxorubicin under in vitro conditions.

    Science.gov (United States)

    Mian, Shahid; Ball, Graham; Hornbuckle, Jo; Holding, Finn; Carmichael, James; Ellis, Ian; Ali, Selman; Li, Geng; McArdle, Stephanie; Creaser, Colin; Rees, Robert

    2003-09-01

    An ability to predict the likelihood of cellular response towards particular chemotherapeutic agents based upon protein expression patterns could facilitate the identification of biological molecules with previously undefined roles in the process of chemoresistance/chemosensitivity, and if robust enough these patterns might also be exploited towards the development of novel predictive assays. To ascertain whether proteomic based molecular profiling in conjunction with artificial neural network (ANN) algorithms could be applied towards the specific recognition of phenotypic patterns between either control or drug treated and chemosensitive or chemoresistant cellular populations, a combined approach involving MALDI-TOF matrix-assisted laser desorption/ionization-time of flight mass spectrometry, Ciphergen protein chip technology and ANN algorithms have been applied to specifically identify proteomic 'fingerprints' indicative of treatment regimen for chemosensitive (MCF-7, T47D) and chemoresistant (MCF-7/ADR) breast cancer cell lines following exposure to Doxorubicin or Paclitaxel. The results indicate that proteomic patterns can be identified by ANN algorithms to correctly assign 'class' for treatment regimen (e.g. control/drug treated or chemosensitive/chemoresistant) with a high degree of accuracy using boot-strap statistical validation techniques and that biomarker ion patterns indicative of response/non-response phenotypes are associated with MCF-7 and MCF-7/ADR cells exposed to Doxorubicin. We have also examined the predictive capability of this approach towards MCF-7 and T47D cells to ascertain whether prediction could be made based upon treatment regimen irrespective of cell lineage. Models were identified that could correctly assign class (control or Paclitaxel treatment) for 35/38 samples of an independent dataset. A similar level of predictive capability was also found (> 92%; n = 28) when proteomic patterns derived from the drug resistant cell line MCF-7

  3. Radiosensitivity of mesothelioma cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Haekkinen, A.M. [Dept. of Oncology, Univ. Central Hospital, Helsinki (Finland); Laasonen, A. [Dept. of Pathology, Central Hospital of Etelae-Pohjanmaa, Seinaejoki (Finland); Linnainmaa, K. [Dept. of Industrial Hygiene and Toxicology, Inst. of Occupational Health, Helsinki (Finland); Mattson, K. [Dept. Pulmonary Medicine, Univ. Central Hospital, Helsinki (Finland); Pyrhoenen, S. [Dept. of Oncology, Univ. Central Hospital, Helsinki (Finland)

    1996-10-01

    The present study was carried out in order to examine the radiosensitivity of malignant pleural mesothelioma cell lines. Cell kinetics, radiation-induced delay of the cell cycle and DNA ploidy of the cell lines were also determined. For comparison an HeLa and a human foetal fibroblast cell line were simultaneously explored. Six previously cytogenetically and histologically characterized mesothelioma tumor cell lines were applied. A rapid tiazolyl blue microtiter (MTT) assay was used to analyze radiosensitivity and cell kinetics and DNA ploidy of the cultured cells were determined by flow cytometry. The survival fraction after a dose of 2 Gy (SF2), parameters {alpha} and {beta} of the linear quadratic model (LQ-model) and mean inactivation dose (D{sub MID}) were also estimated. The DNA index of four cell lines equaled 1.0 and two cell lines equaled 1.5 and 1.6. Different mesothelioma cell lines showed a great variation in radiosensitivity. Mean survival fraction after a radiation dose of 2 Gy (SF2) was 0.60 and ranged from 0.36 to 0.81 and mean {alpha} value was 0.26 (range 0.48-0.083). The SF2 of the most sensitive diploid mesothelioma cell line was 0.36: Less than that of the foetal fibroblast cell line (0.49). The survival fractions (0.81 and 0.74) of the two most resistant cell lines, which also were aneuploid, were equal to that of the HeLa cell line (0.78). The {alpha}/{beta} ratios of the most sensitive cell lines were almost an order of magnitude greater than those of the two most resistant cell lines. Radiation-induced delay of the most resistant aneuploid cell line was similar to that of HeLa cells but in the most sensitive (diploid cells) there was practically no entry into the G1 phase following the 2 Gy radiation dose during 36 h. (orig.).

  4. Testicular atrophy and loss of nerve growth factor-immunoreactive germ cell line in rats exposed to n-hexane and a protective effect of simultaneous exposure to toluene or xylene

    Energy Technology Data Exchange (ETDEWEB)

    Nylen, P.; Johnson, A.C.; Hoeglund, G.; Ebendal, T.; Eriksdotter-Nilsson, M.; Henschen, A.; Olson, L.; Hansson, T.; Kronevi, T.; Kvist, U.

    1989-07-01

    Testicular and germ cell line morphology in rats were studied 2 weeks, 10 months and 14 months after cessation of a 61-day inhalation exposure to 1000 ppm n-hexane. Androgen biosynthetic capacity of testis, testosterone blood concentration, vas deferens morphology and noradrenaline (NA) concentration, epididymal sperm morphology, and fertility were also studied. Severe testicular atrophy involving the seminiferous tubules with loss of the nerve growth factor (NGF) immunoreactive germ cell line was found. Total loss of the germ cell line was found in a fraction of animals up to 14 months post-exposure, indicating permanent testicular damage. No impairment of androgen synthesis or androgen dependent accessory organs was observed. Simultaneous administration of 1000 ppm n-hexane and 1000 ppm toluene, or 1000 ppm n-hexane and 1000 ppm xylene, did not cause germ cell line alterations or testicular atrophy. Toluene and xylene were thus found to protect from n-hexane induced testicular atrophy. (orig.).

  5. Thyroid cell lines in research on goitrogenesis.

    Science.gov (United States)

    Gerber, H; Peter, H J; Asmis, L; Studer, H

    1991-12-01

    Thyroid cell lines have contributed a lot to the understanding of goitrogenesis. The cell lines mostly used in thyroid research are briefly discussed, namely the rat thyroid cell lines FRTL and FRTL-5, the porcine thyroid cell lines PORTHOS and ARTHOS, The sheep thyroid cell lines OVNIS 5H and 6H, the cat thyroid cell lines PETCAT 1 to 4 and ROMCAT, and the human thyroid cell lines FTC-133 and HTh 74. Chinese hamster ovary (CHO) cells and COS-7 cells, stably transfected with TSH receptor cDNA and expressing a functional TSH receptor, are discussed as examples for non-thyroidal cells, transfected with thyroid genes.

  6. Mammalian cells exposed to ionizing radiation: structural and biochemical aspects

    International Nuclear Information System (INIS)

    Sabanero, M.; Flores V, L. L.; Azorin V, J. C.; Vallejo, M. A.; Cordova F, T.; Sosa A, M.; Castruita D, J. P.; Barbosa S, G.

    2015-10-01

    Acute or chronic exposure to ionizing radiation is a factor that may be hazardous to health. It has been reported that exposure to low doses of radiation (less than 50 mSv / year) and subsequently exposure to high doses have greater effects in people. However, it is unknown molecular and biochemical level alteration. This study, analyzes the susceptibility of a biological system (HeLa Atcc CCL-2 human cervix cancer cell line) to ionizing radiation (6 and 60 mSv/ 90). Our evaluate multiple variables such as: total protein profile, mitochondrial metabolic activity (XTT assay), cell viability (Trypan blue exclusion assay), cytoskeleton (actin micro filaments), nuclei (D API), genomic DNA. The results indicate, that cells exposed to ionizing radiation structurally show alterations in nuclear phenotype and aneuploidy, further disruption in the tight junctions and consequently on the distribution of actin micro filaments. Similar alterations were observed in cells treated with a genotoxic agent (200μM H 2 O 2 /1 h). In conclusion, this multi-criteria assessment enables precise comparisons of the effects of radiation between any biological systems. However, it is necessary to determine stress markers for integration of the effects of ionizing radiation. (Author)

  7. Mammalian cells exposed to ionizing radiation: structural and biochemical aspects

    Energy Technology Data Exchange (ETDEWEB)

    Sabanero, M.; Flores V, L. L. [Universidad de Guanajuato, Departamento de Biologia, DCNE, Noria Alta s/n, 36250 Guanajuato, Gto. (Mexico); Azorin V, J. C.; Vallejo, M. A.; Cordova F, T.; Sosa A, M. [Universidad de Guanajuato, Departamento de Ingenieria Fisica, DCI, Loma del Bosque 103, Col. Lomas del Campestre, 37150 Leon, Guanajuato (Mexico); Castruita D, J. P. [Universidad de Guadalajara, Departamento de Ecologia, CUCBA, Las Agujas, 45100 Zapopan, Jalisco (Mexico); Barbosa S, G., E-mail: myrna.sabanero@gmail.com [Universidad de Guanajuato, Departamento de Ciencias Medicas, DCS, 20 de Enero No. 929, Col. Obregon, 37000 Leon, Guanajuato (Mexico)

    2015-10-15

    Acute or chronic exposure to ionizing radiation is a factor that may be hazardous to health. It has been reported that exposure to low doses of radiation (less than 50 mSv / year) and subsequently exposure to high doses have greater effects in people. However, it is unknown molecular and biochemical level alteration. This study, analyzes the susceptibility of a biological system (HeLa Atcc CCL-2 human cervix cancer cell line) to ionizing radiation (6 and 60 mSv/ 90). Our evaluate multiple variables such as: total protein profile, mitochondrial metabolic activity (XTT assay), cell viability (Trypan blue exclusion assay), cytoskeleton (actin micro filaments), nuclei (D API), genomic DNA. The results indicate, that cells exposed to ionizing radiation structurally show alterations in nuclear phenotype and aneuploidy, further disruption in the tight junctions and consequently on the distribution of actin micro filaments. Similar alterations were observed in cells treated with a genotoxic agent (200μM H{sub 2}O{sub 2}/1 h). In conclusion, this multi-criteria assessment enables precise comparisons of the effects of radiation between any biological systems. However, it is necessary to determine stress markers for integration of the effects of ionizing radiation. (Author)

  8. Multiplication of human NHIK 3025 cells exposed to porphyrins in combination with light.

    OpenAIRE

    Christensen, T.

    1981-01-01

    Cells from the established line NHIK 3025 were exposed to haematoporphyrin derivative and light. After this photodynamic treatment the first interphase of surviving cells was prolonged. Furthermore, a pronounced effect on the progression through the first mitosis was observed. Mainly the duration of metaphase was increased. Some of the cells were irreversibly arrested in mitosis and the cells that were able to complete mitosis after treatment multiplied in the subsequent generations at the sa...

  9. Estrogen receptor α and aryl hydrocarbon receptor cross-talk in a transfected hepatoma cell line (HepG2 exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin

    Directory of Open Access Journals (Sweden)

    Manuela Göttel

    2014-01-01

    Full Text Available The prototype dioxin congener 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD is known to exert anti-estrogenic effects via activation of the aryl hydrocarbon receptor (AhR by interfering with the regulation of oestrogen homeostasis and the estrogen receptor α (ERα signalling pathway. The AhR/ER cross-talk is considered to play a crucial role in TCDD- and E2-dependent mechanisms of carcinogenesis, though the concerted mechanism of action in the liver is not yet elucidated. The present study investigated TCDD's impact on the transcriptional cross-talk between AhR and ERα and its modulation by 17β-estradiol (E2 in the human hepatoma cell line HepG2, which is AhR-responsive but ERα-negative. Transient transfection assays with co-transfection of hERα and supplementation of receptor antagonists showed anti-estrogenic action of TCDD via down-regulation of E2-induced ERα signaling. In contrast, enhancement of AhR signaling dependent on ERα was observed providing evidence for increased cytochrome P450 (CYP induction to promote E2 metabolism. However, relative mRNA levels of major E2-metabolizing CYP1A1 and 1B1 and the main E2-detoxifying catechol-O-methyltransferase were not affected by the co-treatments. This study provides new evidence of a TCDD-activated AhR-mediated molecular AhR/ERα cross-talk mechanism at transcriptional level via indirect inhibition of ERα and enhanced transcriptional activity of AhR in HepG2 cells.

  10. Biological behaviour of buccal cells exposed to blue light

    International Nuclear Information System (INIS)

    Gritsch, Kerstin; Ponsonnet, Laurence; Schembri, Catherine; Farge, Pierre; Pourreyron, Laurence; Grosgogeat, Brigitte

    2008-01-01

    Blue light is used in dental practise to cure resin-based materials, but the path of the light often includes oral tissues such as gingival tissues. While adverse effects of blue light exposure on cells - such as retina cells - are well known, few studies have investigated the impact of blue light exposure on oral cells. The aim of the present in vitro study was to assess the biological effects of blue light emitted by two dental curing devices (a plasma-arc and a light-emitting diode curing unit) on human gingival fibroblasts. Light intensities and light-induced temperature rise were respectively measured with a radiometer and a thermocouple. Cellular response to blue light exposure was assessed by the observation of cell morphology (scanning electron microscopy) and the estimation of cell mitochondrial activity (MTT assay). Light intensities measured at the clinical distance were 488 ± 42 mW/cm 2 for the plasma-arc unit and ranged from 61 ± 5 to 140 ± 16 mW/cm 2 for the light-emitting diodes unit, according to the curing program used. The highest temperature rise was 0.5 and 3.5 deg. C for exposure to the plasma-arc light and to the light-emitting diodes light, respectively. Results showed no differences between exposed- and non-exposed cells in regards to cell morphology. However, cells exposed to blue light presented an increased mitochondrial activity compared to control cells (non-exposed), and mostly those exposed to plasma-arc light

  11. Fraction against Human Cancer Cell Lines

    African Journals Online (AJOL)

    kidney carcinoma cell lines of hamsters (BSR). [11]. While, in another article, A. sieberia unrefined extract exhibited dose dependent antiproliferative activity against several cancer cell lines (human bladder carcinoma RT112, human laryngeal carcinoma and human myelogenous leukaemia K562), with IC50. = 81.59, 59.05 ...

  12. Difference in membrane repair capacity between cancer cell lines and a normal cell line

    DEFF Research Database (Denmark)

    Frandsen, Stine Krog; McNeil, Anna K.; Novak, Ivana

    2016-01-01

    repair was investigated by disrupting the plasma membrane using laser followed by monitoring fluorescent dye entry over time in seven cancer cell lines, an immortalized cell line, and a normal primary cell line. The kinetics of repair in living cells can be directly recorded using this technique......, providing a sensitive index of repair capacity. The normal primary cell line of all tested cell lines exhibited the slowest rate of dye entry after laser disruption and lowest level of dye uptake. Significantly, more rapid dye uptake and a higher total level of dye uptake occurred in six of the seven tested...

  13. Biophysical Profiling of Tumor Cell Lines

    Directory of Open Access Journals (Sweden)

    Frederick Coffman

    2011-01-01

    Full Text Available Despite significant differences in genetic profiles, cancer cells share common phenotypic properties, including membrane-associated changes that facilitate invasion and metastasis. The Corning Epic® optical biosensor was used to monitor dynamic mass rearrangements within and proximal to the cell membrane in tumor cell lines derived from cancers of the colon, bone, cervix, lung and breast. Data was collected in real time and required no exogenously added signaling moiety (signal-free technology. Cell lines displayed unique profiles over the time-courses: the time-courses all displayed initial signal increases to maximal values, but the rate of increase to those maxima and the value of those maxima were distinct for each cell line. The rate of decline following the maxima also differed among cell lines. There were correlations between the signal maxima and the observed metastatic behavior of the cells in xenograft experiments; for most cell types the cells that were more highly metastatic in mice had lower time-course maxima values, however the reverse was seen in breast cancer cells. The unique profiles of these cell lines and the correlation of at least one profile characteristic with metastatic behavior demonstrate the potential utility of biophysical tumor cell profiling in the study of cancer biology.

  14. Establishment of cell lines with rat spermatogonial stem cell characteristics

    NARCIS (Netherlands)

    van Pelt, Ans M. M.; Roepers-Gajadien, Hermien L.; Gademan, Iris S.; Creemers, Laura B.; de Rooij, Dirk G.; van Dissel-Emiliani, Federica M. F.

    2002-01-01

    Spermatogonial cell lines were established by transfecting a mixed population of purified rat A(s) (stem cells), A(pr) and A(al) spermatogonia with SV40 large T antigen. Two cell lines were characterized and found to express Hsp90alpha and oct-4, specific markers for germ cells and A spermatogonia,

  15. T-cell homeostasis in mice exposed to airborne xenobiotics

    Science.gov (United States)

    Drela, Nadzieja; Bień, Justyna; Kozłowska, Ewa

    2005-01-01

    Many effects of environmental toxic agents contribute to the deregulation of immune system homeostasis. Here we demonstrate that the effect of airborne suspended matter (ASM) on the generation of mouse T cells is reversible. This reversal can be achieved by an active process that returns the T cells to homeostasis and does not result from the simple effect of ASM deprivation. An accelerated development of thymocytes and increased influx of T-cell progenitors to the thymus in mice exposed to environmental xenobiotics has been postulated. This hypothesis has been confirmed by parallel increases in the percentages of single-positive and triple-negative thymocytes. Enhanced expression of thymocyte surface markers related to positive selection has also been observed. The pathway of T-cell progenitor development is favoured in the bone marrow of mice exposed to ASM. PMID:15804284

  16. BHD Tumor Cell Line and Renal Cell Carcinoma Line | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    Scientists at the National Cancer Institute  have developed a novel renal cell carcinoma (RCC) cell line designated UOK257, which was derived from the surgical kidney tissue of a patient with hereditary Birt-Hogg-Dube''''(BHD) syndrome and companion cell line UOK257-2 in which FLCN expression has been restored by lentivirus infection. The NCI Urologic Oncology Branch seeks parties interested in licensing or collaborative research to co-develop, evaluate, or commercialize kidney cancer tumor cell lines.

  17. Differences in radiosensitivity between three HER2 overexpressing cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Steffen, Ann-Charlott; Tolmachev, Vladimir; Stenerloew, Bo [Uppsala University, Unit of Biomedical Radiation Sciences, Department of Oncology, Radiology and Clinical Immunology, Rudbeck Laboratory, Uppsala (Sweden); Goestring, Lovisa [Affibody AB, Bromma (Sweden); Palm, Stig [Sahlgrenska Academy at Goeteborg University, Department of Radiation Physics, Goeteborg (Sweden); Carlsson, Joergen [Uppsala University, Unit of Biomedical Radiation Sciences, Department of Oncology, Radiology and Clinical Immunology, Rudbeck Laboratory, Uppsala (Sweden); Rudbeck Laboratory, Biomedical Radiation Sciences, Uppsala (Sweden)

    2008-06-15

    HER2 is a potential target for radionuclide therapy, especially when HER2 overexpressing breast cancer cells are resistant to Herceptin {sup registered} treatment. Therefore, it is of interest to analyse whether HER2 overexpressing tumour cells have different inherent radiosensitivity. The radiosensitivity of three often used HER2 overexpressing cell lines, SKOV-3, SKBR-3 and BT-474, was analysed. The cells were exposed to conventional photon irradiation, low linear energy transfer (LET), to characterise their inherent radiosensitivity. The analysis was made with clonogenic survival and growth extrapolation assays. The cells were also exposed to alpha particles, high LET, from {sup 211}At decays using the HER2-binding affibody molecule {sup 211}At-(Z{sub HER2:4}){sub 2} as targeting agent. Assays for studies of internalisation of the affibody molecule were applied. SKOV-3 cells were most radioresistant, SKBR-3 cells were intermediate and BT-474 cells were most sensitive as measured with the clonogenic and growth extrapolation assays after photon irradiation. The HER2 dependent cellular uptake of {sup 211}At was qualitatively similar for all three cell lines. However, the sensitivity to the alpha particles from {sup 211}At differed; SKOV-3 was most resistant, SKBR-3 intermediate and BT-474 most sensitive. These differences were unexpected because it is assumed that all types of cells should have similar sensitivity to high-LET radiation. The sensitivity to alpha particle exposure correlated with internalisation of the affibody molecule and with size of the cell nucleus. There can be differences in radiosensitivity, which, if they also exist between patient breast cancer cells, are important to consider for both conventional radiotherapy and for HER2-targeted radionuclide therapy. (orig.)

  18. Differences in radiosensitivity between three HER2 overexpressing cell lines

    International Nuclear Information System (INIS)

    Steffen, Ann-Charlott; Tolmachev, Vladimir; Stenerloew, Bo; Goestring, Lovisa; Palm, Stig; Carlsson, Joergen

    2008-01-01

    HER2 is a potential target for radionuclide therapy, especially when HER2 overexpressing breast cancer cells are resistant to Herceptin registered treatment. Therefore, it is of interest to analyse whether HER2 overexpressing tumour cells have different inherent radiosensitivity. The radiosensitivity of three often used HER2 overexpressing cell lines, SKOV-3, SKBR-3 and BT-474, was analysed. The cells were exposed to conventional photon irradiation, low linear energy transfer (LET), to characterise their inherent radiosensitivity. The analysis was made with clonogenic survival and growth extrapolation assays. The cells were also exposed to alpha particles, high LET, from 211 At decays using the HER2-binding affibody molecule 211 At-(Z HER2:4 ) 2 as targeting agent. Assays for studies of internalisation of the affibody molecule were applied. SKOV-3 cells were most radioresistant, SKBR-3 cells were intermediate and BT-474 cells were most sensitive as measured with the clonogenic and growth extrapolation assays after photon irradiation. The HER2 dependent cellular uptake of 211 At was qualitatively similar for all three cell lines. However, the sensitivity to the alpha particles from 211 At differed; SKOV-3 was most resistant, SKBR-3 intermediate and BT-474 most sensitive. These differences were unexpected because it is assumed that all types of cells should have similar sensitivity to high-LET radiation. The sensitivity to alpha particle exposure correlated with internalisation of the affibody molecule and with size of the cell nucleus. There can be differences in radiosensitivity, which, if they also exist between patient breast cancer cells, are important to consider for both conventional radiotherapy and for HER2-targeted radionuclide therapy. (orig.)

  19. p53-dependent adaptive responses in human cells exposed to space radiations.

    Science.gov (United States)

    Takahashi, Akihisa; Su, Xiaoming; Suzuki, Hiromi; Omori, Katsunori; Seki, Masaya; Hashizume, Toko; Shimazu, Toru; Ishioka, Noriaki; Iwasaki, Toshiyasu; Ohnishi, Takeo

    2010-11-15

    It has been reported that priming irradiation or conditioning irradiation with a low dose of X-rays in the range of 0.02-0.1 Gy induces a p53-dependent adaptive response in mammalian cells. The aim of the present study was to clarify the effect of space radiations on the adaptive response. Two human lymphoblastoid cell lines were used; one cell line bears a wild-type p53 (wtp53) gene, and another cell line bears a mutated p53 (mp53) gene. The cells were frozen during transportation on the space shuttle and while in orbit in the International Space Station freezer for 133 days between November 15, 2008 and March 29, 2009. After the frozen samples were returned to Earth, the cells were cultured for 6 h and then exposed to a challenging X-ray-irradiation (2 Gy). Cellular sensitivity, apoptosis, and chromosome aberrations were scored using dye-exclusion assays, Hoechst33342 staining assays, and chromosomal banding techniques, respectively. In cells exposed to space radiations, adaptive responses such as the induction of radioresistance and the depression of radiation-induced apoptosis and chromosome aberrations were observed in wtp53 cells but not in mp53 cells. These results have confirmed the hypothesis that p53-dependent adaptive responses are apparently induced by space radiations within a specific range of low doses. The cells exhibited this effect owing to space radiations exposure, even though the doses in space were very low. Copyright © 2010 Elsevier Inc. All rights reserved.

  20. Non-targeted radiation effects in vertebrate cell lines

    Science.gov (United States)

    Ryan, Lorna

    Radiation effects, such as bystander effects, hyper radiosensitivity/induced radioresistance (HRS/IRR) and adaptive response that are not related to direct DNA damage are now accepted. However the inter-relationship between them and the possible impact on the scientific basis for radiation protection are highly controversial. This thesis attempts to elucidate the mechanisms of some of these well known but little understood effects. Each paper examines some aspect of bystander effects, adaptive responses and HRS/IRR in an effort to understand how they vary with cell type, dose and time of exposure to single or multiple doses. All the effects involve non-linear dose effect curves and are mainly evident following low doses. Overall findings of the thesis include (1) A clear difference was observed between radioresistant, tumorigenic cell lines with mutant p53 gene expression, and radiosensitive, more normal, cell lines with wild type p53. In general death inducing bystander responses are induced in normal cell populations exposed to low doses of radiation while survival inducing IRR and adaptive responses are seen in the radioresistant tumorigenic cell lines. (2) A cohort of fish cell lines which demonstrated survival promoting bystander effects, also did not show a protective adaptive responses. (3) Adaptive responses traditionally occur when a large challenge dose is given 4--6hrs following low (10--100mGy) priming doses but this thesis shows that for the epithelial cell lines tested, the size of the priming dose (range 0.1--2Gy) does not appear to alter the size of the recovery response. Additionally increased survival could be detected in some cases when the challenge dose was given within one hour of the priming dose. The overall conclusion is that cell lines induce either a bystander response or a protective/adaptive response depending on genetic background and other factors. Care is needed in the interpretation of data generated from only one or two cell lines

  1. Graphene Oxide Nanoribbons Induce Autophagic Vacuoles in Neuroblastoma Cell Lines

    Directory of Open Access Journals (Sweden)

    Emanuela Mari

    2016-11-01

    Full Text Available Since graphene nanoparticles are attracting increasing interest in relation to medical applications, it is important to understand their potential effects on humans. In the present study, we prepared graphene oxide (GO nanoribbons by oxidative unzipping of single-wall carbon nanotubes (SWCNTs and analyzed their toxicity in two human neuroblastoma cell lines. Neuroblastoma is the most common solid neoplasia in children. The hallmark of these tumors is the high number of different clinical variables, ranging from highly metastatic, rapid progression and resistance to therapy to spontaneous regression or change into benign ganglioneuromas. Patients with neuroblastoma are grouped into different risk groups that are characterized by different prognosis and different clinical behavior. Relapse and mortality in high risk patients is very high in spite of new advances in chemotherapy. Cell lines, obtained from neuroblastomas have different genotypic and phenotypic features. The cell lines SK-N-BE(2 and SH-SY5Y have different genetic mutations and tumorigenicity. Cells were exposed to low doses of GO for different times in order to investigate whether GO was a good vehicle for biological molecules delivering individualized therapy. Cytotoxicity in both cell lines was studied by measuring cellular oxidative stress (ROS, mitochondria membrane potential, expression of lysosomial proteins and cell growth. GO uptake and cytoplasmic distribution of particles were studied by Transmission Electron Microscopy (TEM for up to 72 h. The results show that GO at low concentrations increased ROS production and induced autophagy in both neuroblastoma cell lines within a few hours of exposure, events that, however, are not followed by growth arrest or death. For this reason, we suggest that the GO nanoparticle can be used for therapeutic delivery to the brain tissue with minimal effects on healthy cells.

  2. Genomic characterisation of acral melanoma cell lines.

    Science.gov (United States)

    Furney, Simon J; Turajlic, Samra; Fenwick, Kerry; Lambros, Maryou B; MacKay, Alan; Ricken, Gerda; Mitsopoulos, Costas; Kozarewa, Iwanka; Hakas, Jarle; Zvelebil, Marketa; Lord, Christopher J; Ashworth, Alan; Reis-Filho, Jorge S; Herlyn, Meenhard; Murata, Hiroshi; Marais, Richard

    2012-07-01

    Acral melanoma is a rare melanoma subtype with distinct epidemiological, clinical and genetic features. To determine if acral melanoma cell lines are representative of this melanoma subtype, six lines were analysed by whole-exome sequencing and array comparative genomic hybridisation. We demonstrate that the cell lines display a mutation rate that is comparable to that of published primary and metastatic acral melanomas and observe a mutational signature suggestive of UV-induced mutagenesis in two of the cell lines. Mutations were identified in oncogenes and tumour suppressors previously linked to melanoma including BRAF, NRAS, KIT, PTEN and TP53, in cancer genes not previously linked to melanoma and in genes linked to DNA repair such as BRCA1 and BRCA2. Our findings provide strong circumstantial evidence to suggest that acral melanoma cell lines and acral tumours share genetic features in common and that these cells are therefore valuable tools to investigate the biology of this aggressive melanoma subtype. Data are available at: http://rock.icr.ac.uk/collaborations/Furney_et_al_2012/. © 2012 John Wiley & Sons A/S.

  3. Metronidazole affects breast cancer cell lines.

    Science.gov (United States)

    Sadowska, A; Prokopiuk, S; Miltyk, W; Surażyński, A; Konończuk, J; Sawicka, D; Car, H

    2013-01-01

    The aim of our study was to evaluate the impact of metronidazole (MTZ) on cytotoxicity and DNA synthesis in MCF-7 (estrogen receptor positive) and MDA-MB-231 (estrogen receptor negative) breast cancer cell lines. Toxicity of MTZ was determined by MTT test. MCF-7 and MDA-MB-231 cells were incubated with metronidazole used in different concentrations for 24, 48 and 72 hours. The effect of MTZ on DNA synthesis was measured as [3H]-thymidine incorporation. We showed that MTZ in concentration 250 μg/ml significantly increases the growth of MCF-7 cell lines after 24 hours of incubation, but it reduces cell viability in concentrations 1 and 10 μg/ml 72 hours after the drug application. Significant increase of MDA-MB-231 cell viability was obtained in MTZ concentration of 250 μg/ml after 24 and 72 hours. The increase of [3H]-thymidine incorporation in MCF-7 cell line treated with MTZ in concentration 250 μg/ml was statistically significant after 24 hours. Great suppression of cell proliferation was obtained in MDA-MB-231 breast cell line after application of the following concentrations of MTZ: 0.1 μg/ml (after 24 hours) and 0.1, 10, 50, 250 μg/ml (after 72h). We found that metronidazole exerts different dose- and time- dependent effects on human breast cancer cell lines characterized by presence or absence of estrogen receptors. We suggest that these discrepancies may be influenced by the estrogen signaling.

  4. Chromosome aberrations in ataxia telangiectasia cells exposed to heavy ions

    Science.gov (United States)

    Kawata, T.; Cucinotta, F.; George, K.; Wu, H.; Shigematsu, N.; Furusawa, Y.; Uno, T.; Isobe, K.; Ito, H.

    Understanding of biological effects of heavy ions is important to assess healt h risk in space. One of the most important issues may be to take into account individual susceptibility. Ataxia telangiectasia (A-T) cells are known to exhibit abnormal responses to radiations but the mechanism of hyper radiosensitivity of A-T still remains unknown. We report chromosome aberrations in normal human fibroblasts and AT fibroblasts exposed to low- and high-LET radiations. A chemical-induced premature chromosome condensation (PCC) technique combined with chromosome- painting technique was applied to score chromosome aberrations in G2/M-phase cells. Following gamma irradiation, GM02052 cells were approximately 5 times more sensitive to g-rays than AG1522 cells. GM02052 cells had a much higher frequency of deletions and misrejoining than AG1522 cells. When the frequency of complex type aberrations was compared, GM02052 cells showed more than 10 times higher frequency than AG1522 cells. The results will be compared with those obtained from high-LET irradiations.

  5. Modulatory effects of quercetin on proliferation and differentiation of the human colorectal cell line Caco-2

    NARCIS (Netherlands)

    Dihal, A.A.; Woutersen, R.A.; Ommen, van B.; Rietjens, I.M.C.M.; Stierum, R.H.

    2006-01-01

    The effect of the dietary flavonoid quercetin was investigated on proliferation and differentiation of the human colon cancer cell line Caco-2. Confluent Caco-2 monolayers exposed to quercetin showed a biphasic effect on cell proliferation and a decrease in cell differentiation (0.001

  6. Modulatory effects of quercetin on proliferation and differentiation of the human colorectal cell line Caco-2

    NARCIS (Netherlands)

    Dihal, A.A.; Woutersen, R.A.; Ommen, B.v.; Rietjens, I.M.C.M.; Stierum, R.H.

    2006-01-01

    The effect of the dietary flavonoid quercetin was investigated on proliferation and differentiation of the human colon cancer cell line Caco-2. Confluent Caco-2 monolayers exposed to quercetin showed a biphasic effect on cell proliferation and a decrease in cell differentiation (0.001

  7. Cell Line Data Base: structure and recent improvements towards molecular authentication of human cell lines.

    Science.gov (United States)

    Romano, Paolo; Manniello, Assunta; Aresu, Ottavia; Armento, Massimiliano; Cesaro, Michela; Parodi, Barbara

    2009-01-01

    The Cell Line Data Base (CLDB) is a well-known reference information source on human and animal cell lines including information on more than 6000 cell lines. Main biological features are coded according to controlled vocabularies derived from international lists and taxonomies. HyperCLDB (http://bioinformatics.istge.it/hypercldb/) is a hypertext version of CLDB that improves data accessibility by also allowing information retrieval through web spiders. Access to HyperCLDB is provided through indexes of biological characteristics and navigation in the hypertext is granted by many internal links. HyperCLDB also includes links to external resources. Recently, an interest was raised for a reference nomenclature for cell lines and CLDB was seen as an authoritative system. Furthermore, to overcome the cell line misidentification problem, molecular authentication methods, such as fingerprinting, single-locus short tandem repeat (STR) profile and single nucleotide polymorphisms validation, were proposed. Since this data is distributed, a reference portal on authentication of human cell lines is needed. We present here the architecture and contents of CLDB, its recent enhancements and perspectives. We also present a new related database, the Cell Line Integrated Molecular Authentication (CLIMA) database (http://bioinformatics.istge.it/clima/), that allows to link authentication data to actual cell lines.

  8. Subcloning of ovarian cancer cell lines.

    Science.gov (United States)

    Grunt, T W

    2001-01-01

    Cellular heterogeneity of malignant tissues is a well-known phenomenon (1). Intralineal/intraclonal diversity may be explained in part by proposing the concept of a hierarchically ordered, differentiating and self-renewing stem cell system for transformed cell populations (2). However, in many solid tumors, the stem cells are not easily accessible to phenotypic identification. In the past, density gradient centrifugation was successfully used to separate cells from tumors and from cell lines into distinct subpopulations (3-5). Using Percoll density gradients, we isolated undifferentiated clonogenic tumor stem-cell fractions from HOC-7 human ovarian adenocarcinoma cells. In addition, we also identified a low-density cell subpopulation formed by large, vacuolated, slowly growing, adenoid differentiated cells with very low clonogenic activity (6-11). Further characterization of these cell fractions in terms of stability of the isolated phenotypes is essential for the assessment of their biological significance. Subcloning of the isolated cell fractions by limiting dilution culture (12) followed by long-term culture yielded three permanent monoclonal sublines, which reveal a stable adenoid differentiated phenotype, and three subclones representing undifferentiated, clonogenic tumor stem cells (13). These data demonstrate that the isolated phenotypes represent distinct cell entities reflecting specific stages of ovarian surface epithelial cell differentiation.

  9. (Asteraceae) Fraction against Human Cancer Cell Lines

    African Journals Online (AJOL)

    Purpose: To investigate the anti-proliferative and apoptotic activity of crude and dichloromethane fraction of A. sieberi against seven cancer cell lines (Colo20, HCT116, DLD, MCF7, Jurkat, HepG2 and L929). Methods: A. sieberi was extracted with methanol and further purification was carried out using liquidliquid extraction ...

  10. Breast cancer cell lines: friend or foe?

    International Nuclear Information System (INIS)

    Burdall, Sarah E; Hanby, Andrew M; Lansdown, Mark RJ; Speirs, Valerie

    2003-01-01

    The majority of breast cancer research is conducted using established breast cancer cell lines as in vitro models. An alternative is to use cultures established from primary breast tumours. Here, we discuss the pros and cons of using both of these models in translational breast cancer research

  11. Synthesis of protein in intestinal cells exposed to cholera toxin

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, J.W.; Berg, W.D. Jr.; Coppenhaver, D.H.

    1987-11-01

    The mechanism by which cyclic adenosine monophosphate (AMP), formed by intestinal epithelial cells in response to cholera toxin, ultimately results in alterations in water and electrolyte transport is poorly understood. Several studies have indicated that inhibitors of transcription or translation block much of the transport of ions and water in the intestine and edema formation in tissue elicited by cholera toxin. Data presented in this study confirmed the inhibitory effects of cycloheximide on cholera toxin-induced fluid accumulation in the rabbit intestinal loop model. Neither cycloheximide nor actinomycin D altered the amount of cyclic AMP that accumulated in intestinal cells and Chinese hamster ovary cells exposed to cholera toxin. An increase in (/sup 3/H) leucine incorporation was readily demonstrable in intestinal epithelial cells from rabbits challenged with Vibrio cholerae. Similarly, intestinal epithelial cells incubated with cholera toxin for 4 hr synthesized substantially more protein than controls as determined by relative incorporation of (/sup 35/S) methionine. Most of the new protein synthesized in response to cholera toxin was membrane associated and of high molecular weight. The possible significance of the toxin-induced protein relative to cholera pathogenesis was discussed.

  12. Synthesis of protein in intestinal cells exposed to cholera toxin

    International Nuclear Information System (INIS)

    Peterson, J.W.; Berg, W.D. Jr.; Coppenhaver, D.H.

    1987-01-01

    The mechanism by which cyclic adenosine monophosphate (AMP), formed by intestinal epithelial cells in response to cholera toxin, ultimately results in alterations in water and electrolyte transport is poorly understood. Several studies have indicated that inhibitors of transcription or translation block much of the transport of ions and water in the intestine and edema formation in tissue elicited by cholera toxin. Data presented in this study confirmed the inhibitory effects of cycloheximide on cholera toxin-induced fluid accumulation in the rabbit intestinal loop model. Neither cycloheximide nor actinomycin D altered the amount of cyclic AMP that accumulated in intestinal cells and Chinese hamster ovary cells exposed to cholera toxin. An increase in [ 3 H] leucine incorporation was readily demonstrable in intestinal epithelial cells from rabbits challenged with Vibrio cholerae. Similarly, intestinal epithelial cells incubated with cholera toxin for 4 hr synthesized substantially more protein than controls as determined by relative incorporation of [ 35 S] methionine. Most of the new protein synthesized in response to cholera toxin was membrane associated and of high molecular weight. The possible significance of the toxin-induced protein relative to cholera pathogenesis was discussed

  13. Radiosensitization of colorectal carcinoma cell lines by histone deacetylase inhibition

    International Nuclear Information System (INIS)

    Flatmark, Kjersti; Nome, Ragnhild V; Folkvord, Sigurd; Bratland, Åse; Rasmussen, Heidi; Ellefsen, Mali Strand; Fodstad, Øystein; Ree, Anne Hansen

    2006-01-01

    The tumor response to preoperative radiotherapy of locally advanced rectal cancer varies greatly, warranting the use of experimental models to assay the efficacy of molecular targeting agents in rectal cancer radiosensitization. Histone deacetylase (HDAC) inhibitors, agents that cause hyperacetylation of histone proteins and thereby remodeling of chromatin structure, may override cell cycle checkpoint responses to DNA damage and amplify radiation-induced tumor cell death. Human colorectal carcinoma cell lines were exposed to ionizing radiation and HDAC inhibitors, and cell cycle profiles and regulatory factors, as well as clonogenicity, were analyzed. In addition to G 2 /M phase arrest following irradiation, the cell lines displayed cell cycle responses typical for either intact or defective p53 function (the presence or absence, respectively, of radiation-induced expression of the cell cycle inhibitor p21 and subsequent accumulation of G 1 phase cells). In contrast, histone acetylation was associated with complete depletion of the G 1 population of cells with functional p53 but accumulation of both G 1 and G 2 /M populations of cells with defective p53. The cellular phenotypes upon HDAC inhibition were consistent with the observed repression of Polo-like kinase-1, a regulatory G 2 /M phase kinase. Following pre-treatment with HDAC inhibitors currently undergoing clinical investigation, the inhibitory effect of ionizing radiation on clonogenicity was significantly amplified. In these experimental models, HDAC inhibition sensitized the tumor cells to ionizing radiation, which is in accordance with the concept of increased probability of tumor cell death when chromatin structure is modified

  14. Polyamines and polyamine biosynthesis in cells exposed to hyperthermia

    Energy Technology Data Exchange (ETDEWEB)

    Gerner, E.W.; Stickney, D.G.; Herman, T.S.; Fuller, D.J.

    1983-02-01

    The issue of how polyamines act to sensitize cultured cells to the lethal effects of hyperthermia was investigated using Chinese hamster cells which were induced to express thermotolerance. Intracellular levels of these naturally occurring polycations were manipulated in certain situations by treating whole cells with methylglyoxal bis-(guanylhydrazone), an inhibitor of the S-adenosyl-L-methionine decarboxylases. Exogenous spermine as low as 100 ..mu..M in the culture media dramatically sensitized cells expressing thermotolerance to the lethal effects of subsequent 42/sup 0/C exposures. When thermotolerance was differentially induced in cultures exposed to 42.4/sup 0/C by varying the rate of heating from 37 to 42.4/sup 0/C, the most resistant cells and the highest levels of intracellular spermidine and spermine. This finding was explainable in part by the observation that the putrescine-dependent S-adenosyl-L-methionine decarboxylase activity was minimally affected in cells expressng the greatest degree of thermotolerance. When this enzyme activity was inhibited by drug, lowered intracellular polyamine levels did not correspond with subsequent survival responses to heat. Interestingly, cultures treated with methylglyoxal bis-(guanylhydrazone) 24 hr previous to heat exposure showed a reduced capacity to express rate of heating-induced thermotolerance. Together, these results demonstrate that the polyamines, especially spermidine and spermine, enhance hyperthermia-induced cell killing by some mechanism involving the plasma membrane. Further, our data suggest that methylglyoxal bis-(guanylhydrazone) can act to affect thermal responses by a mechanism(s) other than modification of intracellular polyamine levels.

  15. Mechanisms of mutagenesis in human cells exposed to 55 MeV protons

    Science.gov (United States)

    Gauny, S.; Wiese, C.; Kronenberg, A.

    2001-01-01

    Protons represent the major type of charged particle radiation in spaceflight environments. The purpose of this study was to assess mutations arising in human lymphoid cells exposed to protons. Mutations were quantitated at the thymidine kinase (TK1) locus in cell lines derived from the same donor: TK6 cells (wt TP53) and WTK1 cells (mutant TP53). WTK1 cells were much more susceptible to mutagenesis following proton exposure than TK6 cells. Intragenic deletions were observed among early-arising TK1 mutants in TK6 cells, but not in WTK1 cells where all of the mutants arose by LOH. Deletion was the predominant mode of LOH in TK6 cells, while allelic recombination was the major mode of LOH in WTK1 cells. Deletions were of variable lengths, from recombination often extended to the telomere. In summary, proton exposures elicited many types of mutations at an autosomal locus in human cells. Most involved large scale loss of genetic information, either through deletion or by recombination.

  16. Internalization of cystatin C in human cell lines.

    Science.gov (United States)

    Ekström, Ulf; Wallin, Hanna; Lorenzo, Julia; Holmqvist, Bo; Abrahamson, Magnus; Avilés, Francesc X

    2008-09-01

    Altered protease activity is considered important for tumour invasion and metastasis, processes in which the cysteine proteases cathepsin B and L are involved. Their natural inhibitor cystatin C is a secreted protein, suggesting that it functions to control extracellular protease activity. Because cystatins added to cell cultures can inhibit polio, herpes simplex and coronavirus replication, which are intracellular processes, the internalization and intracellular regulation of cysteine proteases by cystatin C should be considered. The extension, mechanism and biological importance of this hypothetical process are unknown. We investigated whether internalization of cystatin C occurs in a set of human cell lines. Demonstrated by flow cytometry and confocal microscopy, A-431, MCF-7, MDA-MB-453, MDA-MB-468 and Capan-1 cells internalized fluorophore-conjugated cystatin C when exposed to physiological concentrations (1 microm). During cystatin C incubation, intracellular cystatin C increased after 5 min and accumulated for at least 6 h, reaching four to six times the baseline level. Western blotting showed that the internalized inhibitor was not degraded. It was functionally intact and extracts of cells exposed to cystatin C showed a higher capacity to inhibit papain and cathepsin B than control cells (decrease in enzyme activity of 34% and 37%, respectively). The uptake of labelled cystatin C was inhibited by unlabelled inhibitor, suggesting a specific pathway for the internalization. We conclude that the cysteine protease inhibitor cystatin C is internalized in significant quantities in various cancer cell lines. This is a potentially important physiological phenomenon not previously described for this group of inhibitors.

  17. Cellular radiosensitivity of small-cell lung cancer cell lines

    DEFF Research Database (Denmark)

    Krarup, M; Poulsen, H S; Spang-Thomsen, M

    1997-01-01

    PURPOSE: The objective of this study was to determine the radiobiological characteristics of a panel of small-cell lung cancer (SCLC) cell lines by use of a clonogenic assay. In addition, we tested whether comparable results could be obtained by employing a growth extrapolation method based...

  18. Cellular radiosensitivity of small-cell lung cancer cell lines

    DEFF Research Database (Denmark)

    Krarup, M; Poulsen, H S; Spang-Thomsen, M

    1997-01-01

    PURPOSE: The objective of this study was to determine the radiobiological characteristics of a panel of small-cell lung cancer (SCLC) cell lines by use of a clonogenic assay. In addition, we tested whether comparable results could be obtained by employing a growth extrapolation method based...... on the construction of continuous exponential growth curves. METHODS AND MATERIALS: Fifteen SCLC cell lines were studied, applying a slightly modified clonogenic assay and a growth extrapolation method. A dose-survival curve was obtained for each experiment and used for calculating several survival parameters...... to calculate the surviving fraction after 2-Gy irradiation (SF2). RESULTS: In our investigation, the extrapolation method proved to be inappropriate for the study of in vitro cellular radiosensitivity due to lack of reproducibility. The results obtained by the clonogenic assay showed that the cell lines...

  19. Ceftaroline modulates the innate immune and host defense responses of immunocompetent cells exposed to cigarette smoke.

    Science.gov (United States)

    Bruno, A; Cipollina, C; Di Vincenzo, S; Siena, L; Dino, P; Di Gaudio, F; Gjomarkaj, M; Pace, E

    2017-09-05

    Cigarette smoke, the principal risk factor for chronic obstructive pulmonary disease (COPD), negatively influences the effectiveness of the immune system's response to a pathogen. The antibiotic ceftaroline exerts immune-modulatory effects in bronchial epithelial cells exposed to cigarette smoke. The present study aims to assess the effects of ceftaroline on TLR2 and TLR4 expression, LPS binding and TNF-α and human beta defensin (HBD2) release in an undifferentiated and PMA-differentiated human monocyte cell line (THP-1) exposed or not to cigarette smoke extracts (CSE). TLR2, TLR4, and LPS binding were assessed by flow cytometry, TNF-α and HBD2 release were evaluated by ELISA. The constitutive expression of TLR2 and TLR4 and LPS binding were higher in differentiated compared to undifferentiated THP-1 cells. In undifferentiated THP-1 cells, CSE increased TLR2 and TLR4 protein levels, LPS binding and TNF-α release and reduced HBD2 release and ceftaroline counteracted all these effects. In differentiated THP-1, CSE did not significantly affect TLR2 and TLR4 expression and LPS binding but reduced HBD2 release and increased TNF-α release. Ceftaroline counteracted the effects of CSE on HBD2 release in differentiated THP-1. Ceftaroline counteracts the effect of CSE in immune cells by increasing the effectiveness of the innate immune system. This effect may also assist in reducing pathogen activity and recurrent exacerbations in COPD patients. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Chromosomal Aberrations in Normal and AT Cells Exposed to High Dose of Low Dose Rate Irradiation

    Science.gov (United States)

    Kawata, T.; Shigematsu, N.; Kawaguchi, O.; Liu, C.; Furusawa, Y.; Hirayama, R.; George, K.; Cucinotta, F.

    2011-01-01

    Ataxia telangiectasia (A-T) is a human autosomally recessive syndrome characterized by cerebellar ataxia, telangiectases, immune dysfunction, and genomic instability, and high rate of cancer incidence. A-T cell lines are abnormally sensitive to agents that induce DNA double strand breaks, including ionizing radiation. The diverse clinical features in individuals affected by A-T and the complex cellular phenotypes are all linked to the functional inactivation of a single gene (AT mutated). It is well known that cells deficient in ATM show increased yields of both simple and complex chromosomal aberrations after high-dose-rate irradiation, but, less is known on how cells respond to low-dose-rate irradiation. It has been shown that AT cells contain a large number of unrejoined breaks after both low-dose-rate irradiation and high-dose-rate irradiation, however sensitivity for chromosomal aberrations at low-dose-rate are less often studied. To study how AT cells respond to low-dose-rate irradiation, we exposed confluent normal and AT fibroblast cells to up to 3 Gy of gamma-irradiation at a dose rate of 0.5 Gy/day and analyzed chromosomal aberrations in G0 using fusion PCC (Premature Chromosomal Condensation) technique. Giemsa staining showed that 1 Gy induces around 0.36 unrejoined fragments per cell in normal cells and around 1.35 fragments in AT cells, whereas 3Gy induces around 0.65 fragments in normal cells and around 3.3 fragments in AT cells. This result indicates that AT cells can rejoin breaks less effectively in G0 phase of the cell cycle? compared to normal cells. We also analyzed chromosomal exchanges in normal and AT cells after exposure to 3 Gy of low-dose-rate rays using a combination of G0 PCC and FISH techniques. Misrejoining was detected in the AT cells only? When cells irradiated with 3 Gy were subcultured and G2 chromosomal aberrations were analyzed using calyculin-A induced PCC technique, the yield of unrejoined breaks decreased in both normal and AT

  1. Cell-line dependent effects of hypoxia prior to irradiation in squamous cell carcinoma lines

    Directory of Open Access Journals (Sweden)

    Franziska Hauth

    2017-08-01

    Conclusion: We herein report a key role of ATM in the cellular fitness of cells exposed to prolonged moderate hypoxia prior to irradiation. While DNA damage response post-irradiation seem to be mainly driven by non-homologous end joining repair pathway in these conditions, our data suggest an important role for ATM kinase in hypoxia-driven modification of radiation response.

  2. Induced pluripotent stem cell lines derived from human somatic cells.

    Science.gov (United States)

    Yu, Junying; Vodyanik, Maxim A; Smuga-Otto, Kim; Antosiewicz-Bourget, Jessica; Frane, Jennifer L; Tian, Shulan; Nie, Jeff; Jonsdottir, Gudrun A; Ruotti, Victor; Stewart, Ron; Slukvin, Igor I; Thomson, James A

    2007-12-21

    Somatic cell nuclear transfer allows trans-acting factors present in the mammalian oocyte to reprogram somatic cell nuclei to an undifferentiated state. We show that four factors (OCT4, SOX2, NANOG, and LIN28) are sufficient to reprogram human somatic cells to pluripotent stem cells that exhibit the essential characteristics of embryonic stem (ES) cells. These induced pluripotent human stem cells have normal karyotypes, express telomerase activity, express cell surface markers and genes that characterize human ES cells, and maintain the developmental potential to differentiate into advanced derivatives of all three primary germ layers. Such induced pluripotent human cell lines should be useful in the production of new disease models and in drug development, as well as for applications in transplantation medicine, once technical limitations (for example, mutation through viral integration) are eliminated.

  3. Susceptibility testing of fish cell lines for virus isolation

    DEFF Research Database (Denmark)

    Ariel, Ellen; Skall, Helle Frank; Olesen, Niels Jørgen

    2009-01-01

    compare susceptibility between cell lines and between lineages within a laboratory and between laboratories (Inter-laboratory Proficiency Test). The objective being that the most sensitive cell line and lineages are routinely selected for diagnostic purposes.In comparing cell lines, we simulated "non......-cell-culture-adapted" virus by propagating the virus in heterologous cell lines to the one tested. A stock of test virus was produced and stored at - 80 °C and tests were conducted biannually. This procedure becomes complicated when several cell lines are in use and does not account for variation among lineages. In comparing...... cell lineages, we increased the number of isolates of each virus, propagated stocks in a given cell line and tested all lineages of that line in use in the laboratory. Testing of relative cell line susceptibility between laboratories is carried out annually via the Inter-laboratory Proficiency Test...

  4. Genotoxic Changes to Rodent Cells Exposed in Vitro to Tungsten, Nickel, Cobalt and Iron

    Directory of Open Access Journals (Sweden)

    Stephanie Bardack

    2014-03-01

    Full Text Available Tungsten-based materials have been proposed as replacements for depleted uranium in armor-penetrating munitions and for lead in small-arms ammunition. A recent report demonstrated that a military-grade composition of tungsten, nickel, and cobalt induced a highly-aggressive, metastatic rhabdomyosarcoma when implanted into the leg muscle of laboratory rats to simulate a shrapnel wound. The early genetic changes occurring in response to embedded metal fragments are not known. In this study, we utilized two cultured rodent myoblast cell lines, exposed to soluble tungsten alloys and the individual metals comprising the alloys, to study the genotoxic effects. By profiling cell transcriptomes using microarray, we found slight, yet distinct and unique, gene expression changes in rat myoblast cells after 24 h metal exposure, and several genes were identified that correlate with impending adverse consequences of ongoing exposure to weapons-grade tungsten alloy. These changes were not as apparent in the mouse myoblast cell line. This indicates a potential species difference in the cellular response to tungsten alloy, a hypothesis supported by current findings with in vivo model systems. Studies examining genotoxic-associated gene expression changes in cells from longer exposure times are warranted.

  5. Engineered cell lines for fish health research.

    Science.gov (United States)

    Collet, Bertrand; Collins, Catherine; Lester, Katherine

    2018-03-01

    As fish farming continues to increase worldwide, the related research areas of fish disease and immunology are also expanding, aided by the revolution in access to genomic information and molecular technology. The genomes of most fish species of economic importance are now available and annotation based on sequence homology with characterised genomes is underway. However, while useful, functional homology is more difficult to determine, there being a lack of widely distributed and well characterised reagents such as monoclonal antibodies, traditionally used in mammalian studies, to help with confirming functions and cellular interactions of fish molecules. In this context, fish cell lines and the possibility of their genetic engineering offer good prospects for studying functional genomics with respect to fish diseases. In this review, we will give an overview of available permanently genetically engineered fish cell lines, as cell-based reporter systems or platforms for expression of endogenous immune or pathogen genes, to investigate interactions and function. The advantages of such systems and the technical challenge for their development will be discussed. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  6. Single-dose and fractionated irradiation of four human lung cancer cell lines in vitro

    International Nuclear Information System (INIS)

    Brodin, O.; Lennartsson, L.; Nilsson, S.

    1991-01-01

    Four established human lung cancer cell lines were exposed to single-dose irradiation. The survival curves of 2 small cell lung carcinomas (SCLC) were characterized by a limited capacity for repair with small and moderate shoulders with extrapolation numbers (n) of 1.05 and 1.60 respectively. Two non-small cell lung carcinoma (NSCLC) cell lines, one squamous cell (SQCLC) and one large cell (LCLC) had large shoulders with n-values of 73 and 15 respectively. The radiosensitivity when measured as D 0 did not, however, differ as much from cell line to cell line, with values from 1.22 to 1.65. The surviving fraction after 2 Gy (SF2) was 0.24 and 0.42 respectively in the SCLC cell lines and 0.90 and 0.88 respectively in the NSCLC cell lines. Fractionated irradiation delivered according to 3 different schedules was also investigated. All the schedules delivered a total dose of 10 Gy in 5 days and were applied in 1, 2 and 5 Gy dose fractions respectively. Survival followed the pattern found after single-dose irradiation; it was lowest in the SCLC cell line with the lowest SF and highest in the two NSCLC cell lines. In the SCLC cell lines all schedules were approximately equally efficient. In the LCLC and in the SQCLC cell lines, the 5 Gy schedule killed more cells than the 1 and 2 Gy schedules. The results indicate that the size of the shoulder of the survival curve is essential when choosing the most tumoricidal fractionation schedule. (orig.)

  7. Response of the MG-63 human osteosarcoma cell line grown as multicellular spheroids to neutron irradiation

    International Nuclear Information System (INIS)

    Kubota, Nobuo; Kakehi, Masae; Matsubara, Shou; Koike, Sachiko; Ando, Koichi.

    1993-01-01

    Multicellular tumor spheroids are composed of the mixed populations of cells with regard to cell proliferation, nutrition, oxygenation and radiosensitivity. Human osteogenic sarcoma is generally considered clinically radioresistant. However, the in vitro cell survival curves for human osteogenic sarcoma cell lines do not differ from those of other tumor cell lines. In this study, the responses of human osteogenic sarcoma cell line to gamma ray and neutrons were investigated by using spheroid system. The spheroids of the osteogenic sarcoma cell line are considered to be a good in vitro model of radioresistant tumors. The purpose of this study is to measure the response of the spheroids to fast neutron irradiation. MG-63 human osteogenic sarcoma cell line was used for this study. The cell line was cultured in alpha-MEM with supplement. Cell survival was estimated after the trypsinization of spheroids 24 hours after irradiation. The method of measuring spheroid cure is explained. The mean number of surviving cells per spheroid can be obtained from the mean clonogenic number and cell survival curve. The cell survival of MG-63 spheroids exposed to gamma ray and neutrons and the dose effect curves for spheroid cure after irradiation are shown. (K.I.)

  8. Induction of chromosomal aberrations in human primary fibroblasts and immortalized cancer cells exposed to extremely-low-frequency electromagnetic fields

    International Nuclear Information System (INIS)

    Seyyedi, S. S.; Mozdarani, H.; Rezaei Tavirani, M.; Heydari, S.

    2010-01-01

    Rapidly increasing possibilities of exposure to environmental extremely low-frequency electromagnetic fields have become a topic of worldwide investigation. Epidemiological and laboratory studies suggest that exposure to extremely low-frequency electromagnetic fields may increase cancer risk therefore assessment of chromosomal damage in various cell lines might be of predictive value for future risk estimation. Materials and Methods: Primary cultures of fibroblasts from human skin biopsy were exposed to continuous extremely low-frequency electromagnetic fields (3, 50 and 60 Hz, sinusoidal, 3h, and 4 m T). Also immortalized cell lines, SW480, MCF-7 and 1321N1 were exposed to continuous extremely low-frequency electromagnetic fields (50 Hz, sinusoidal, 3 h, 4 m T). Metaphase plates Were prepared according to standard methods and stained in 5% Giemsa solution. Chromosomal aberrations of both chromosome and chromatid types were scored to evaluate the effects of extremely low-frequency electromagnetic fields on primary or established cell lines. Results: Results indicate that by increasing the frequency of extremely low-frequency electromagnetic fields, chromosomal aberrations were increased up to 7-fold above background levels in primary human fibroblast cells. In addition, continuous exposure to a 50 Hz electromagnetic field led to a significant increase in chromosomal aberrations in SW480, MCF-7 and 1321N1 cell lines compared to sham control. Conclusion: Results obtained indicate that extremely low-frequency electromagnetic fields has the potential for induction of chromosomal aberrations in all cell types.

  9. Radiosensitivity of Human Melanoma Cell Lines

    Energy Technology Data Exchange (ETDEWEB)

    Bergoc, R. M.; Medina, V.; Cricco, G.; Mohamed, N.; Martin, G.; Nunez, M.; Croci, M.; Crescenti, E. J.; Rivera, E. S.

    2004-07-01

    Cutaneous melanoma is a skin cancer resulting from the malign transformation of skin-pigment cells, the melanocytes. The radiotherapy, alone or in combination with other treatment, is an important therapy for this disease. the objective of this paper was to determine in vitro the radiosensitivity of two human melanoma cell lines with different metastatic capability: WM35 and MI/15, and to study the effect of drugs on radiobiological parameters. The Survival Curves were adjusted to the mathematical Linear-quadratic model using GrapsPad Prism software. Cells were seeded in RPMI medium (3000-3500 cells/flask), in triplicate and irradiated 24 h later. The irradiation was performed using an IBL 437C H Type equipment (189 TBq, 7.7 Gy/min) calibrated with a TLD 700 dosimeter. The range of Doses covered from 0 to 10 Gy and the colonies formed were counted at day 7th post-irradiation. Results obtained were: for WM35, {alpha}=0.37{+-}0.07 Gy''-1 and {beta}=0.06{+-}0.02 Gy''-2, for M1/15m {alpha}=0.47{+-}0.03 Gy''-1 and {beta}=0.06{+-}0.01 Gy''-2. The {alpha}/{beta} values WM35: {alpha}/{beta} values WM35: {alpha}/{beta}=6.07 Gy and M1/15: {alpha}/{beta}{sub 7}.33 Gy were similar, independently of their metastatic capabillity and indicate that both lines exhibit high radioresistance. Microscopic observation of irradiated cells showed multinuclear cells with few morphologic changes non-compatible with apoptosis. By means of specific fluorescent dyes and flow cytometry analysis we determined the intracellular levels of the radicals superoxide and hydrogen peroxide and their modulation in response to ionizing radiation. The results showed a marked decreased in H{sub 2}O{sub 2} intracellular levels with a simultaneous increase in superoxide that will be part of a mechanism responsible for induction of cell radioresistance. This response triggered by irradiated cells could not be abrogated by different treatments like histamine or the

  10. Histone signature of metanephric mesenchyme cell lines.

    Science.gov (United States)

    McLaughlin, Nathan; Yao, Xiao; Li, Yuwen; Saifudeen, Zubaida; El-Dahr, Samir S

    2013-09-01

    The metanephric mesenchyme (MM) gives rise to nephrons, the filtering units of the mature kidney. The MM is composed of uninduced (Six2(high)/Lhx1(low)) and induced (Wnt-stimulated, Six2(low)/Lhx1(high)) cells. The global epigenetic state of MM cells is unknown, partly due to technical difficulty in isolating sufficient numbers of homogenous cell populations. We therefore took advantage of two mouse clonal cell lines representing the uninduced (mK3) and induced (mK4) metanephric mesenchyme (based on gene expression profiles and ability to induce branching of ureteric bud). ChIP-Seq revealed that whereas H3K4me3 active region "peaks" are enriched in metabolic genes, H3K27me3 peaks decorate mesenchyme and epithelial cell fate commitment genes. In uninduced mK3 cells, promoters of "stemness" genes (e.g., Six2, Osr1) are enriched with H3K4me3 peaks; these are lost in induced mK4 cells. ChIP-qPCR confirmed this finding and further demonstrated that G9a/H3K9me2 occupy the promoter region of Six2 in induced cells, consistent with the inactive state of transcription. Conversely, genes that mark the induced epithelialized state (e.g., Lhx1, Pax8), transition from a non-permissive to an active chromatin signature in mK3 vs. mK4 cells, respectively. Importantly, stimulation of Wnt signaling in uninduced mK3 cells provokes an active chromatin state (high H3K4me3, low H3K27me3), recruitment of β-catenin, and loss of pre-bound histone methyltransferase Ezh2 in silent induced genes followed by activation of transcription. We conclude that the chromatin signature of uninduced and induced cells correlates strongly with their gene expression states, suggesting a role of chromatin-based mechanisms in MM cell fate.

  11. Menadione inhibits MIBG uptake in two neuroendocrine cell lines

    NARCIS (Netherlands)

    Cornelissen, J.; Tytgat, G. A.; van den Brug, M.; van Kuilenburg, A. B.; Voûte, P. A.; van Gennip, A. H.

    1997-01-01

    In this paper we report on our studies of the effect of menadione on the uptake of MIBG in the neuroendocrine cell lines PC12 and SK-N-SH. Menadione inhibits the uptake of MIBG in both cell lines in a dose-dependent manner. Inhibition of MIBG uptake is most pronounced in the PC12 cell line.

  12. 77 FR 5489 - Identification of Human Cell Lines Project

    Science.gov (United States)

    2012-02-03

    ... selection of this technology over other possible candidates for this project include: (i) The ability to... cell line, whether the cell line is misidentified, cross- contaminated, or genetically unstable... database. Submission Process: Submitters should contact Margaret Kline with a list of proposed cell lines...

  13. Fate of D3 mouse embryonic stem cells exposed to X-rays or carbon ions.

    Science.gov (United States)

    Luft, S; Pignalosa, D; Nasonova, E; Arrizabalaga, O; Helm, A; Durante, M; Ritter, S

    2014-01-15

    The risk of radiation exposure during embryonic development is still a major problem in radiotoxicology. In this study we investigated the response of the murine embryonic stem cell (mESC) line D3 to two radiation qualities: sparsely ionizing X-rays and densely ionizing carbon ions. We analyzed clonogenic cell survival, proliferation, induction of chromosome aberrations as well as the capability of cells to differentiate to beating cardiomyocytes up to 3 days after exposure. Our results show that, for all endpoints investigated, carbon ions are more effective than X-rays at the same radiation dose. Additionally, in long term studies (≥8 days post-irradiation) chromosomal damage and the pluripotency state were investigated. These studies reveal that pluripotency markers are present in the progeny of cells surviving the exposure to both radiation types. However, only in the progeny of X-ray exposed cells the aberration frequency was comparable to that of the control population, while the progeny of carbon ion irradiated cells harbored significantly more aberrations than the control, generally translocations. We conclude that cells surviving the radiation exposure maintain pluripotency but may carry stable chromosomal rearrangements after densely ionizing radiation. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Application of fish cell lines for evaluating the chromium induced cytotoxicity, genotoxicity and oxidative stress.

    Science.gov (United States)

    Taju, G; Abdul Majeed, S; Nambi, K S N; Sahul Hameed, A S

    2017-10-01

    In the present study, we hypothesize that cytotoxicity, genotoxicity and oxidative stress play a key role in chromium induced toxicity in SISS, SISK, IEE, IEK, IEG, SICH and ICG cell lines after 24 h exposure. Three fish species namely Lates calcarifer, Etroplus suratensis and Catla catla were exposed to the concentrations of 0, 10, 20, 30, 40 and 50 mg/L of chromium for 96 h under static conditions for conducting acute toxicity tests. LC 50 was then calculated. The percentage cell survival was assessed by multiple endpoints such as MTT, NR, AB and CB assays in the seven fish cell lines exposed to different concentrations of chromium and EC 50 values of all the four endpoints were calculated. High significances were noted in the correlations between each in vitro cytotoxicity assays and in vivo mortality data. Cell shrinkage, cell detachment, vacuolations and cell swelling at the highest concentration of chromium (50 mg/L) were seen on microscopic examination of cell morphology. Comet assay and Hoechst staining were carried out to assess DNA damage and nuclear fragmentation in the seven fish lines exposed to chromium. The results of antioxidant parameters obtained indicate a significant reduction in the level of catalase, superoxide dismutase, glutathione S-transferase and Glutathione peroxidase, and increased level of lipid peroxidation in all the cell lines exposed to chromium. These results confirm that fish cell lines could be used as an alternative to whole fish for cytotoxicity, genotoxicity and oxidative stress assessment in chromium toxicity studies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Bimodal cell death induced by high radiation doses in the radioresistant sf9 insect cell line

    International Nuclear Information System (INIS)

    Chandna, S.

    2003-01-01

    Full text: This study was conducted to investigate the mode(s) of cell death induced by high radiation doses in the highly radioresistant Sf9 insect ovarian cell line. Methods: Cells were exposed to γ-radiation doses 200Gy and 500Gy, harvested at various time intervals (6h-72h) following irradiation, and subjected to cell morphology assay, DNA agarose gel electrophoresis, single cell gel electrophoresis (SCGE; comet assay) and Annexin-V labeling for the detection of membrane phosphatidylserine externalization. Cell morphology was assessed in cells entrapped and fixed in agarose gel directly from the cell suspension, thus preventing the possible loss of fragments/ apoptotic bodies. Surviving fraction of Sf9 cells was 0.01 at 200Gy and 98%) undergoing extensive DNA fragmentation at 500Gy, whereas the frequency of cells with DNA fragmentation was considerably less (∼12%) at 200Gy. Conclusions: While the mode of cell death at 200Gy seems to be different from typical apoptosis, a dose of 500Gy induced bimodal cell death, with typical apoptotic as well as the atypical cell death observed at 200Gy

  16. Cell growth, intracellular calcium concentration and metabolic cooperation measured in cells exposed to 50 Hz electromagnetic fields

    International Nuclear Information System (INIS)

    Skauli, K.S.

    1996-08-01

    Colony-forming efficiency, DNA/protein and DNA/cell were measured in cells exposed to magnetic fields of 0.2 and 1 mT at a frequency of 50 Hz. Intracellular calcium concentrations were measured in cells exposed to 0.3 and 1 mT at 50 Hz. Metabolic cooperation was measured in cells exposed to 1 mT at 50 Hz. No significant effects of the fields were observed. 20 refs., 10 figs

  17. Experimental investigation of the cytotoxicity of medium-borne signals in human prostate cancer cell line

    International Nuclear Information System (INIS)

    Sjostedt, Svetlana; Bezak, Eva

    2012-01-01

    Introduction. Evidence exists that exposure of non-irradiated cells to Irradiated Cell Conditioned Medium (ICCM) can cause effects similar to those resulting from direct radiation damage. This study attempts to validate the stochastic model, relating absorbed dose to the emission and processing of cell death signals by non-irradiated cells, in vitro in PC3 human prostate cancer cell line. Methods. The recipient cell survival was measured after exposure of cells to ICMM derived from donor cells: a) exposed to radiation doses from 2 Gy to 8 Gy and b) of concentrations varying from 2 x 10 2 to 6 x 10 6 irradiated with 2 Gy. Results. Exposure to ICCM, irradiated with doses between 2-8 Gy, resulted in a significant (p 2 cells was significantly higher (p < 0.5) compared to the rest of donor cell concentrations, indicating that the toxicity of ICCM depends on the cellular concentration of donor cells. Non-linear regression data fitting provided reasonable agreement with the microdosimetric model for the induction of cell killing through medium-borne signals. Conclusion. For the given cell line and given experimental conditions, significant decreases in cell survival were observed in non-irradiated cells exposed to ICCM derived from donor cells of various concentrations and irradiated with different doses

  18. Cellular radiosensitivity of small-cell lung cancer cell lines

    International Nuclear Information System (INIS)

    Krarup, Marianne; Poulsen, Hans Skovgaard; Spang-Thomsen, Mogens

    1997-01-01

    Purpose: The objective of this study was to determine the radiobiological characteristics of a panel of small-cell lung cancer (SCLC) cell lines by use of a clonogenic assay. In addition, we tested whether comparable results could be obtained by employing a growth extrapolation method based on the construction of continuous exponential growth curves. Methods and Materials: Fifteen SCLC cell lines were studied, applying a slightly modified clonogenic assay and a growth extrapolation method. A dose-survival curve was obtained for each experiment and used for calculating several survival parameters. The multitarget single hit model was applied to calculate the cellular radiosensitivity (D 0 ), the capacity for sublethal damage repair (D q ), and the extrapolation number (n). Values for α and β were determined from best-fit curves according to the linear-quadratic model and these values were applied to calculate the surviving fraction after 2-Gy irradiation (SF 2 ). Results: In our investigation, the extrapolation method proved to be inappropriate for the study of in vitro cellular radiosensitivity due to lack of reproducibility. The results obtained by the clonogenic assay showed that the cell lines studied were radiobiologically heterogeneous with no discrete features of the examined parameters including the repair capacity. Conclusion: The results indicate that SCLC tumors per se are not generally candidates for hyperfractionated radiotherapy

  19. Low dose perfluorooctanoate exposure promotes cell proliferation in a human non-tumor liver cell line

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hongxia; Cui, Ruina [Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101 (China); Guo, Xuejiang [State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029 (China); Hu, Jiayue [Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101 (China); Dai, Jiayin, E-mail: daijy@ioz.ac.cn [Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101 (China)

    2016-08-05

    Highlights: • Differential expression of proteins induced by PFOA in HL-7702 was identified. • Most of the differentially expressed proteins are related to cell proliferation. • A low dose of PFOA stimulates HL-7702 cell proliferation. • A high dose of PFOA inhibits HL-7702 cell proliferation. - Abstract: Perfluorooctanoate (PFOA) is a well-known persistent organic pollutant widely found in the environment, wildlife and humans. Medical surveillance and experimental studies have investigated the potential effects of PFOA on human livers, but the hepatotoxicity of PFOA on humans and its underlying mechanism remain to be clarified. We exposed a human liver cell line (HL-7702) to 50 μM PFOA for 48 h and 96 h, and identified 111 significantly differentially expressed proteins by iTRAQ analysis. A total of 46 proteins were related to cell proliferation and apoptosis. Through further analysis of the cell cycle, apoptosis and their related proteins, we found that low doses of PFOA (50–100 μM) promoted cell proliferation and numbers by promoting cells from the G1 to S phases, whereas high doses of PFOA (200–400 μM) led to reduced HL-7702 cell numbers compared with that of the control mainly due to cell cycle arrest in the G0/G1 phase. To our knowledge, this is the first report on the promotion of cell cycle progression in human cells following PFOA exposure.

  20. Low dose perfluorooctanoate exposure promotes cell proliferation in a human non-tumor liver cell line

    International Nuclear Information System (INIS)

    Zhang, Hongxia; Cui, Ruina; Guo, Xuejiang; Hu, Jiayue; Dai, Jiayin

    2016-01-01

    Highlights: • Differential expression of proteins induced by PFOA in HL-7702 was identified. • Most of the differentially expressed proteins are related to cell proliferation. • A low dose of PFOA stimulates HL-7702 cell proliferation. • A high dose of PFOA inhibits HL-7702 cell proliferation. - Abstract: Perfluorooctanoate (PFOA) is a well-known persistent organic pollutant widely found in the environment, wildlife and humans. Medical surveillance and experimental studies have investigated the potential effects of PFOA on human livers, but the hepatotoxicity of PFOA on humans and its underlying mechanism remain to be clarified. We exposed a human liver cell line (HL-7702) to 50 μM PFOA for 48 h and 96 h, and identified 111 significantly differentially expressed proteins by iTRAQ analysis. A total of 46 proteins were related to cell proliferation and apoptosis. Through further analysis of the cell cycle, apoptosis and their related proteins, we found that low doses of PFOA (50–100 μM) promoted cell proliferation and numbers by promoting cells from the G1 to S phases, whereas high doses of PFOA (200–400 μM) led to reduced HL-7702 cell numbers compared with that of the control mainly due to cell cycle arrest in the G0/G1 phase. To our knowledge, this is the first report on the promotion of cell cycle progression in human cells following PFOA exposure.

  1. In vitro radiosensitivity of human leukemia cell lines

    International Nuclear Information System (INIS)

    Weichselbaum, R.R.; Greenberger, J.S.; Schmidt, A.; Karpas, A.; Moloney, W.C.; Little, J.B.

    1981-01-01

    The in vitro radiobiologic survival values (anti n, D 0 ) of four tumor lines derived from human hematopoietic tumors were studied. These cell lines were HL60 promyelocytic leukemia; K562 erythroleukemia; 45 acute lymphocytic leukemia; and 176 acute monomyelogenous leukemia. More cell lines must be examined before the exact relationship between in vitro radiosensitivity and clinical radiocurability is firmly established

  2. Potassium ion influx measurements on cultured Chinese hamster cells exposed to 60-hertz electromagnetic fields

    International Nuclear Information System (INIS)

    Stevenson, A.P.; Tobey, R.A.

    1985-01-01

    Potassium ion influx was measured by monitoring 42 KCl uptake by Chinese hamster ovary (CHO) cells grown in suspension culture and exposed in the culture medium to 60-Hz electromagnetic fields up to 2.85 V/m. In the presence of the field CHO cells exhibited two components of uptake, the same as previously observed for those grown under normal conditions; both these components of influx were decreased when compared to sham-exposed cells. Although decreases were consistently observed in exposed cells when plotted as loge of uptake, the differences between the means of the calculated fluxes of exposed and sham-exposed cells were quite small (on the order of 4-7%). When standard deviations were calculated, there was no significant difference between these means; however, when time-paired uptake data were analyzed, the differences were found to be statistically significant. Cells exposed only to the magnetic field exhibited similar small decreases in influx rates when compared to sham-exposed cells, suggesting that the reduction in K+ uptake could be attributed to the magnetic field. Additionally, intracellular K+ levels were measured over a prolonged exposure period (96 h), and no apparent differences in intracellular K+ levels were observed between field-exposed and sham-exposed cultures. These results indicate that high-strength electric fields have a small effect on the rate of transport of potassium ions but no effect on long-term maintenance of intracellular K+

  3. Analysis of renal cancer cell lines from two major resources enables genomics-guided cell line selection

    Science.gov (United States)

    Sinha, Rileen; Winer, Andrew G.; Chevinsky, Michael; Jakubowski, Christopher; Chen, Ying-Bei; Dong, Yiyu; Tickoo, Satish K.; Reuter, Victor E.; Russo, Paul; Coleman, Jonathan A.; Sander, Chris; Hsieh, James J.; Hakimi, A. Ari

    2017-05-01

    The utility of cancer cell lines is affected by the similarity to endogenous tumour cells. Here we compare genomic data from 65 kidney-derived cell lines from the Cancer Cell Line Encyclopedia and the COSMIC Cell Lines Project to three renal cancer subtypes from The Cancer Genome Atlas: clear cell renal cell carcinoma (ccRCC, also known as kidney renal clear cell carcinoma), papillary (pRCC, also known as kidney papillary) and chromophobe (chRCC, also known as kidney chromophobe) renal cell carcinoma. Clustering copy number alterations shows that most cell lines resemble ccRCC, a few (including some often used as models of ccRCC) resemble pRCC, and none resemble chRCC. Human ccRCC tumours clustering with cell lines display clinical and genomic features of more aggressive disease, suggesting that cell lines best represent aggressive tumours. We stratify mutations and copy number alterations for important kidney cancer genes by the consistency between databases, and classify cell lines into established gene expression-based indolent and aggressive subtypes. Our results could aid investigators in analysing appropriate renal cancer cell lines.

  4. Quantifying differences in cell line population dynamics using CellPD.

    Science.gov (United States)

    Juarez, Edwin F; Lau, Roy; Friedman, Samuel H; Ghaffarizadeh, Ahmadreza; Jonckheere, Edmond; Agus, David B; Mumenthaler, Shannon M; Macklin, Paul

    2016-09-21

    The increased availability of high-throughput datasets has revealed a need for reproducible and accessible analyses which can quantitatively relate molecular changes to phenotypic behavior. Existing tools for quantitative analysis generally require expert knowledge. CellPD (cell phenotype digitizer) facilitates quantitative phenotype analysis, allowing users to fit mathematical models of cell population dynamics without specialized training. CellPD requires one input (a spreadsheet) and generates multiple outputs including parameter estimation reports, high-quality plots, and minable XML files. We validated CellPD's estimates by comparing it with a previously published tool (cellGrowth) and with Microsoft Excel's built-in functions. CellPD correctly estimates the net growth rate of cell cultures and is more robust to data sparsity than cellGrowth. When we tested CellPD's usability, biologists (without training in computational modeling) ran CellPD correctly on sample data within 30 min. To demonstrate CellPD's ability to aid in the analysis of high throughput data, we created a synthetic high content screening (HCS) data set, where a simulated cell line is exposed to two hypothetical drug compounds at several doses. CellPD correctly estimates the drug-dependent birth, death, and net growth rates. Furthermore, CellPD's estimates quantify and distinguish between the cytostatic and cytotoxic effects of both drugs-analyses that cannot readily be performed with spreadsheet software such as Microsoft Excel or without specialized computational expertise and programming environments. CellPD is an open source tool that can be used by scientists (with or without a background in computational or mathematical modeling) to quantify key aspects of cell phenotypes (such as cell cycle and death parameters). Early applications of CellPD may include drug effect quantification, functional analysis of gene knockout experiments, data quality control, minable big data generation, and

  5. Quantitative proteomics and transcriptomics addressing the estrogen receptor subtype-mediated effects in T47D breast cancer cells exposed to the phytoestrogen genistein

    NARCIS (Netherlands)

    Sotoca Covaleda, A.M.; Sollewijn Gelpke, M.D.; Boeren, S.; Ström, A.; Gustafsson, J.A.; Murk, A.J.; Rietjens, I.M.C.M.; Vervoort, J.J.M.

    2011-01-01

    The present study addresses, by transcriptomics and quantitative SILAC-based proteomics, the estrogen receptor alpha (ER) and beta (ERß)-mediated effects on gene and protein expression in T47D breast cancer cells exposed to the phytoestrogen genistein. Using the T47D human breast cancer cell line

  6. Heterogeneity in cancer cells: variation in drug response in different primary and secondary colorectal cancer cell lines in vitro.

    Science.gov (United States)

    Arul, Melanie; Roslani, April Camilla; Cheah, Swee Hung

    2017-05-01

    Tumor heterogeneity may give rise to differential responses to chemotherapy drugs. Therefore, unraveling tumor heterogeneity has an implication for biomarker discovery and cancer therapeutics. To test this phenomenon, we investigated the differential responses of three secondary colorectal cancer cell lines of different origins (HCT116, HT29, and SW620 cells) and four novel primary cell lines obtained from different colorectal cancer patients to 5-fluorouracil (5-FU) and oxaliplatin (L-OHP) and explored the differences in gene expression among the primary cell lines in response to exposure to cytotoxic drugs. Cells were exposed to different doses of 5-FU and L-OHP separately or in combinations of equitoxic drug or equimolar drug ratios (median effect of Chou-Talalay principle). Cell viability was assessed using MTT assay and the respective IC 50 values were determined. Changes in gene expression in primary cell lines after exposure to the same drug doses were compared using real-time PCR array. The sensitivities (IC 50 ) of different cell lines, both secondary and primary, to 5-FU and L-OHP were significantly different, whether in monotherapy or combined treatment. Primary cell lines needed higher doses to reach IC 50 . There were variations in gene expression among the primary cell lines of different chemosensitivities to the challenge of the same combined dose of 5-FU and L-OHP. The results confirm the heterogeneous nature of colorectal cancer cells from different patient tumors. Studies using primary cancer cells established from patient's tumors rather than secondary cell lines will more closely reflect the actual character of the disease.

  7. MODERATE CYTOTOXICITY OF PROANTHOCYANIDINS TO HUMAN TUMOR-CELL LINES

    NARCIS (Netherlands)

    KOLODZIEJ, H; HABERLAND, C; WOERDENBAG, HJ; KONINGS, AWT

    In the present study the cytotoxicity of 16 proanthocyanidins was evaluated in GLC(4), a human small cell lung carcinoma cell line, and in COLO 320, a human colorectal cancer cell line, using the microculture tetrazolium (MTT) assay. With IC50 values ranging from 18 to >200 mu m following continuous

  8. Cell-killing induced by 125I seeds in CL187 cell line

    International Nuclear Information System (INIS)

    Zhuang Hongqing; Wang Junjie; Wang Jidong; Liao Anyan; Wang Yong

    2008-01-01

    Objective: To study the response patterns of CL187 cell lines irradiated with low dose rates of 125 I seeds. Methods: CL187 cells were exposed with radioactive 125 I seeds and 60 Co source, which were put under culture plate. The radiation response at different doses and dose-rates were evaluated through cell- proliferation assessed by the colony-forming assay and death rate after irradiation. Meanwhile, cell cycle arrest and apoptosis were measured by flow cytometry after 2, 5 and 10 Gy of low dose rate irradiation. Results: It was shown that the cell-killing effects were related to the doses and dose-rates. At 1 Gy, comparison of the death rate between the low and high dose rate showed that the higher dose rate led to increased cell responses, but at the doses higher than 2 Gy, the effect of the low dose rate were more efficient. At the same dose, the survival fraction of 125 I was always lower than that of 60 Co. Exposed to the low dose rate irradiation, apoptosis and G 2 /M cell cycle arrest rose a little at 2 Gy, the peak appeared at 5 Gy, and the ratio at 10 Gy was also high but lower than at 5 Gy. Furthermore, the G 2 /M cell cycle arrest and apoptosis changed together along with the doses. Conclusions: At the same dose, 125 I seeds have more cell-killing effects than 60 Co at high dose rate irradiation. Apoptosis following the G 2 /M cell cycle arrest were the main mechanism of cell-killing effects under low dose rate irradiation. (authors)

  9. Modeling Adenovirus Latency in Human Lymphocyte Cell Lines ▿ †

    OpenAIRE

    Zhang, Yange; Huang, Wen; Ornelles, David A.; Gooding, Linda R.

    2010-01-01

    Species C adenovirus establishes a latent infection in lymphocytes of the tonsils and adenoids. To understand how this lytic virus is maintained in these cells, four human lymphocytic cell lines that support the entire virus life cycle were examined. The T-cell line Jurkat ceased proliferation and died shortly after virus infection. BJAB, Ramos (B cells), and KE37 (T cells) continued to divide at nearly normal rates while replicating the virus genome. Viral genome numbers peaked and then decl...

  10. Isolation of a Wheat Cell Line with Altered Membrane Properties

    Science.gov (United States)

    Erdei, László; Vigh, László; Dudits, Dénes

    1982-01-01

    A spontaneous dimethylsulfoxide (DMSO)-tolerant cell line was isolated from a cell culture of wheat (Triticum monococcum L.). The tolerant cells were able to grow in the presence of 4% DMSO. Cells formed from protoplasts of the tolerant line required DMSO for division in culture medium of high osmotic value. Fatty acid composition and the molar ratio of phospholipids/sterols suggest a more ordered membrane structure in the tolerant line. Accordingly, a lower K+ influx rate was detected in the tolerant cells in comparison with the original line. These characteristics were maintained after 6 months' cultivation of the cells in DMSO-free growth medium. This suggested that genetic changes could be responsible for differences between the two cell lines. PMID:16662251

  11. Investigation of the selenium metabolism in cancer cell lines

    DEFF Research Database (Denmark)

    Lunøe, Kristoffer; Gabel-Jensen, Charlotte; Stürup, Stefan

    2011-01-01

    incubated with cells for 24 h and the induction of cell death was measured using flow cytometry. The amounts of total selenium in cell medium, cell lysate and the insoluble fractions was determined by ICP-MS. Speciation analysis of cellular fractions was performed by reversed phase, anion exchange and size......The aim of this work was to compare different selenium species for their ability to induce cell death in different cancer cell lines, while investigating the underlying chemistry by speciation analysis. A prostate cancer cell line (PC-3), a colon cancer cell line (HT-29) and a leukaemia cell line...... (Jurkat E6-1) were incubated with five selenium compounds representing inorganic as well as organic Se compounds in different oxidation states. Selenomethionine (SeMet), Se-methylselenocysteine (MeSeCys), methylseleninic acid (MeSeA), selenite and selenate in the concentration range 5-100 mu M were...

  12. The pursuit of ES cell lines of domesticated ungulates

    Science.gov (United States)

    In contrast to differentiated cells, embryonic stem cells (ESC) maintain an undifferentiated state, have the ability to self-renew, and exhibit pluripotency, i.e., they can give rise to most if not all somatic cell types and to the germ cells, egg and sperm. These characteristics make ES cell lines...

  13. VOLIN and KJON-Two novel hyperdiploid myeloma cell lines.

    Science.gov (United States)

    Våtsveen, Thea Kristin; Børset, Magne; Dikic, Aida; Tian, Erming; Micci, Francesca; Lid, Ana H B; Meza-Zepeda, Leonardo A; Coward, Eivind; Waage, Anders; Sundan, Anders; Kuehl, W Michael; Holien, Toril

    2016-11-01

    Multiple myeloma can be divided into two distinct genetic subgroups: hyperdiploid (HRD) or nonhyperdiploid (NHRD) myeloma. Myeloma cell lines are important tools to study myeloma cell biology and are commonly used for preclinical screening and testing of new drugs. With few exceptions human myeloma cell lines are derived from NHRD patients, even though about half of the patients have HRD myeloma. Thus, there is a need for cell lines of HRD origin to enable more representative preclinical studies. Here, we present two novel myeloma cell lines, VOLIN and KJON. Both of them were derived from patients with HRD disease and shared the same genotype as their corresponding primary tumors. The cell lines' chromosomal content, genetic aberrations, gene expression, immunophenotype as well as some of their growth characteristics are described. Neither of the cell lines was found to harbor immunoglobulin heavy chain translocations. The VOLIN cell line was established from a bone marrow aspirate and KJON from peripheral blood. We propose that these unique cell lines may be used as tools to increase our understanding of myeloma cell biology. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  14. Xenobiotic metabolism in the fish hepatic cell lines Hepa-E1 and RTH-149, and the gill cell lines RTgill-W1 and G1B: Biomarkers of CYP450 activity and oxidative stress.

    Science.gov (United States)

    Franco, Marco E; Sutherland, Grace E; Lavado, Ramon

    2018-02-27

    The use of fish cell cultures has proven to be an effective tool in the study of environmental and aquatic toxicology. Valuable information can be obtained from comparisons between cell lines from different species and organs. In the present study, specific chemicals were used and biomarkers (e.g. 7-Ethoxyresorufin-O-deethylase (EROD) activity and reactive oxygen species (ROS)) were measured to assess the metabolic capabilities and cytotoxicity of the fish hepatic cell lines Hepa-E1 and RTH-149, and the fish gill cell lines RTgill-W1 and G1B. These cell lines were exposed to β-naphthoflavone (BNF) and benzo[a]pyrene (BaP), the pharmaceutical tamoxifen (TMX), and the organic peroxide tert-butylhydroperoxide (tBHP). Cytotoxicity in gill cell lines was significantly higher than in hepatic cells, with BNF and TMX being the most toxic compounds. CYP1-like associated activity, measured through EROD activity, was only detected in hepatic cells; Hepa-E1 cells showed the highest activity after exposure to both BNF and BaP. Significantly higher levels of CYP3A-like activity were also observed in Hepa-E1 cells exposed to TMX, while gill cell lines presented the lowest levels. Measurements of ROS and antioxidant enzymes indicated that peroxide levels were higher in gill cell lines in general. However, levels of superoxide were significantly higher in RTH-149 cells, where no distinctive increase of superoxide-related antioxidants was observed. The present study demonstrates the importance of selecting adequate cell lines in measuring specific metabolic parameters and provides strong evidence for the fish hepatocarcinoma Hepa-E1 cells to be an excellent alternative in assessing metabolism of xenobiotics, and in expanding the applicability of fish cell lines for in vitro studies. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Sildenafil Prevents Apoptosis of Human First-Trimester Trophoblast Cells Exposed to Oxidative Stress

    Science.gov (United States)

    Bolnick, Jay M.; Kilburn, Brian A.; Bolnick, Alan D.; Diamond, Michael P.; Singh, Manvinder; Hertz, Michael; Dai, Jing

    2015-01-01

    Human first-trimester trophoblast cells proliferate at low O2, but survival is compromised by oxidative stress, leading to uteroplacental insufficiency. The vasoactive drug, sildenafil citrate (Viagra, Sigma, St Louis, Missouri), has proven useful in reducing adverse pregnancy outcomes. An important biological function of this pharmaceutical is its action as an inhibitor of cyclic guanosine monophosphate (cGMP) phosphodiesterase type 5 activity, which suggests that it could have beneficial effects on trophoblast survival. To investigate whether sildenafil can prevent trophoblast cell death, human first-trimester villous explants and the HTR-8/SVneo cytotrophoblast cell line were exposed to hypoxia and reoxygenation (H/R) to generate oxidative stress, which induces apoptosis. Apoptosis was optimally inhibited during H/R by 350 ng/mL sildenafil. Sildenafil-mediated survival was reversed by l-NG-nitro-l-arginine methyl ester hydrochloride or cGMP antagonist, indicating a dependence on both nitric oxide (NO) and cGMP. Indeed, either a cGMP agonist or an NO generator was cytoprotective independent of sildenafil. These findings suggest a novel intervention route for patients with recurrent pregnancy loss or obstetrical placental disorders. PMID:25431453

  16. Responses of well-differentiated nasal epithelial cells exposed to particles: Role of the epithelium in airway inflammation

    International Nuclear Information System (INIS)

    Auger, Floriane; Gendron, Marie-Claude; Chamot, Christophe; Marano, Francelyne; Dazy, Anne-Catherine

    2006-01-01

    Numerous epidemiological studies support the contention that ambient air pollution particles can adversely affect human health. To explain the acute inflammatory process in airways exposed to particles, a number of in vitro studies have been performed on cells grown submerged on plastic and poorly differentiated, and on cell lines, the physiology of which is somewhat different from that of well-differentiated cells. In order to obtain results using a model system in which epithelial cells are similar to those of the human airway in vivo, apical membranes of well-differentiated human nasal epithelial (HNE) cells cultured in an air-liquid interface (ALI) were exposed for 24 h to diesel exhaust particles (DEP) and Paris urban air particles (PM 2.5 ). DEP and PM 2.5 (10-80 μg/cm 2 ) stimulated both IL-8 and amphiregulin (ligand of EGFR) secretion exclusively towards the basal compartment. In contrast, there was no IL-1β secretion and only weak non-reproducible secretion of TNF-α. IL-6 and GM-CSF were consistently stimulated towards the apical compartment and only when cells were exposed to PM 2.5 . ICAM-1 protein expression on cell surfaces remained low after particle exposure, although it increased after TNF-α treatment. Internalization of particles, which is believed to initiate oxidative stress and proinflammatory cytokine expression, was restricted to small nanoparticles (≤ 40 nm). Production of reactive oxygen species (ROS) was detected, and DEP were more efficient than PM 2.5 . Collectively, our results suggest that airway epithelial cells exposed to particles augment the local inflammatory response in the lung but cannot alone initiate a systemic inflammatory response

  17. Overexpression of TIMP-1 and Sensitivity to Topoisomerase Inhibitors in Glioblastoma Cell Lines

    DEFF Research Database (Denmark)

    Aaberg-Jessen, Charlotte; Fogh, Louise; Sørensen, Mia Dahl

    2018-01-01

    influence the efficacy of such treatment. In the present study, we aimed to investigate whether a high TIMP-1 expression in glioblastoma cell lines would affect the sensitivity to TOP inhibitors, and whether TIMP-1 overexpressing cells would have alterered growth and invasion. We established TIMP-1...... overexpressing subclones from two human glioblastoma cell lines. TIMP-1 overexpressing U87MG cells were significantly more resistant than low TIMP-1 expressing clones and parental cells when exposed to SN-38 (TOP1 inhibitor) or epirubicin (TOP2 inhibitor). No significant differences were observed for the TIMP-1...... transfected A172 cells. Implantation of both U87MG and A172 spheroids into organotypic brain slice cultures revealed a reduced growth of TIMP-1 overexpressing U87MG spheroids, however, no significant differences in invasion were observed. The present study suggests that TIMP-1 overexpression reduces...

  18. Authentication of M14 melanoma cell line proves misidentification of MDA-MB-435 breast cancer cell line.

    Science.gov (United States)

    Korch, Christopher; Hall, Erin M; Dirks, Wilhelm G; Ewing, Margaret; Faries, Mark; Varella-Garcia, Marileila; Robinson, Steven; Storts, Douglas; Turner, Jacqueline A; Wang, Ying; Burnett, Edward C; Healy, Lyn; Kniss, Douglas; Neve, Richard M; Nims, Raymond W; Reid, Yvonne A; Robinson, William A; Capes-Davis, Amanda

    2018-02-01

    A variety of analytical approaches have indicated that melanoma cell line UCLA-SO-M14 (M14) and breast carcinoma cell line MDA-MB-435 originate from a common donor. This indicates that at some point in the past, one of these cell lines became misidentified, meaning that it ceased to correspond to the reported donor and instead became falsely identified (through cross-contamination or other means) as a cell line from a different donor. Initial studies concluded that MDA-MB-435 was the misidentified cell line and M14 was the authentic cell line, although contradictory evidence has been published, resulting in further confusion. To address this question, we obtained early samples of the melanoma cell line (M14), a lymphoblastoid cell line from the same donor (ML14), and donor serum preserved at the originator's institution. M14 samples were cryopreserved in December 1975, before MDA-MB-435 cells were established in culture. Through a series of molecular characterizations, including short tandem repeat (STR) profiling and cytogenetic analysis, we demonstrated that later samples of M14 and MDA-MB-435 correspond to samples of M14 frozen in 1975, to the lymphoblastoid cell line ML14, and to the melanoma donor's STR profile, sex and blood type. This work demonstrates conclusively that M14 is the authentic cell line and MDA-MB-435 is misidentified. With clear provenance information and authentication testing of early samples, it is possible to resolve debates regarding the origins of problematic cell lines that are widely used in cancer research. © 2017 The Authors International Journal of Cancer published by John Wiley & Sons Ltd on behalf of UICC.

  19. Authentication of M14 melanoma cell line proves misidentification of MDA‐MB‐435 breast cancer cell line

    Science.gov (United States)

    Korch, Christopher; Hall, Erin M.; Dirks, Wilhelm G.; Ewing, Margaret; Faries, Mark; Varella‐Garcia, Marileila; Robinson, Steven; Storts, Douglas; Turner, Jacqueline A.; Wang, Ying; Burnett, Edward C.; Healy, Lyn; Kniss, Douglas; Neve, Richard M.; Nims, Raymond W.; Reid, Yvonne A.; Robinson, William A.

    2017-01-01

    A variety of analytical approaches have indicated that melanoma cell line UCLA‐SO‐M14 (M14) and breast carcinoma cell line MDA‐MB‐435 originate from a common donor. This indicates that at some point in the past, one of these cell lines became misidentified, meaning that it ceased to correspond to the reported donor and instead became falsely identified (through cross‐contamination or other means) as a cell line from a different donor. Initial studies concluded that MDA‐MB‐435 was the misidentified cell line and M14 was the authentic cell line, although contradictory evidence has been published, resulting in further confusion. To address this question, we obtained early samples of the melanoma cell line (M14), a lymphoblastoid cell line from the same donor (ML14), and donor serum preserved at the originator's institution. M14 samples were cryopreserved in December 1975, before MDA‐MB‐435 cells were established in culture. Through a series of molecular characterizations, including short tandem repeat (STR) profiling and cytogenetic analysis, we demonstrated that later samples of M14 and MDA‐MB‐435 correspond to samples of M14 frozen in 1975, to the lymphoblastoid cell line ML14, and to the melanoma donor's STR profile, sex and blood type. This work demonstrates conclusively that M14 is the authentic cell line and MDA‐MB‐435 is misidentified. With clear provenance information and authentication testing of early samples, it is possible to resolve debates regarding the origins of problematic cell lines that are widely used in cancer research. PMID:28940260

  20. Derivation of the human embryonic stem cell line RCM1

    Directory of Open Access Journals (Sweden)

    P.A. De Sousa

    2016-03-01

    Full Text Available The human embryonic stem cell line RCM-1 was derived from a failed to fertilise egg undergoing parthenogenetic stimulation. The cell line shows normal pluripotency marker expression and differentiation to three germ layers in vitro and in vivo. It has a normal 46XX female karyotype and microsatellite PCR identity, HLA and blood group typing data is available.

  1. Beryllium-stimulated apoptosis in macrophage cell lines.

    Science.gov (United States)

    Sawyer, R T; Fadok, V A; Kittle, L A; Maier, L A; Newman, L S

    2000-08-21

    In vitro stimulation of bronchoalveolar lavage cells from patients with chronic beryllium disease (CBD) induces the production of TNF-alpha. We tested the hypothesis that beryllium (Be)-stimulated TNF-alpha might induce apoptosis in mouse and human macrophage cell lines. These cell lines were selected because they produce a range of Be-stimulated TNF-alpha. The mouse macrophage cell line H36.12j produces high levels of Be-stimulated TNF-alpha. The mouse macrophage cell line P388D.1 produces low, constitutive, levels of TNF-alpha and does not up-regulate Be-stimulated TNF-alpha production. The DEOHS-1 human CBD macrophage cell line does not produce constitutive or Be-stimulated TNF-alpha. Apoptosis was determined by microscopic observation of propidium iodide stained fragmented nuclei in unstimulated and BeSO(4)-stimulated macrophage cell lines. BeSO(4) induced apoptosis in all macrophage cell lines tested. Beryllium-stimulated apoptosis was dose-responsive and maximal after 24 h of exposure to 100 microM BeSO(4). In contrast, unstimulated and Al(2)(SO(4))(3)-stimulated macrophage cell lines did not undergo apoptosis. The general caspase inhibitor BD-fmk inhibited Be-stimulated macrophage cell line apoptosis at concentrations above 50 microM. Our data show that Be-stimulated macrophage cell line apoptosis was caspase-dependent and not solely dependent on Be-stimulated TNF-alpha levels. We speculate that the release of Be-antigen from apoptotic macrophages may serve to re-introduce Be material back into the lung microenvironment, make it available for uptake by new macrophages, and thereby amplify Be-stimulated cytokine production, promoting ongoing inflammation and granuloma maintenance in CBD.

  2. Effect of botulinum toxin A on proliferation and apoptosis in the T47D breast cancer cell line.

    Science.gov (United States)

    Bandala, Cindy; Perez-Santos, Jose Luis Martin; Lara-Padilla, Eleazar; Delgado Lopez, Guadalupe; Anaya-Ruiz, Maricruz

    2013-01-01

    The present study was performed to assess the activity of the botulinum toxin A on breast cancer cells. The T47D cell line was exposed to diverse concentrations of the botulinum toxin A and cell viability and apoptosis were estimated using MTT and propidium iodine/annexin V methods, respectively. Botulinum toxin A exerted greater cytotoxic activity in T47D cells in comparison with MCF10A normal cells; this appeared to be via apoptotic processes caspase-3 and -7. In conclusion, botulinum toxin A induces caspase-3 and -7 dependent apoptotic processes in the T47D breast cancer cell line.

  3. B cells exposed to enterobacterial components suppress development of experimental colitis

    DEFF Research Database (Denmark)

    Schmidt, Esben Gjerløff Wedebye; Larsen, Hjalte List; Kristensen, Nanna Ny

    2012-01-01

    ). RESULTS: We demonstrate that splenic B cells exposed to ebx produce large amounts of IL-10 in vitro and express CD1d and CD5 previously known to be associated with regulatory B cells. In SCID mice transplanted with colitogenic CD4(+) CD25(-) T cells, co-transfer of ebx-B cells significantly suppressed...... development of colitis. Suppression was dependent on B cell-derived IL-10, as co-transfer of IL-10 knockout ebx-B cells failed to suppress colitis. Ebx-B cell-mediated suppression of colitis was associated with a decrease in interferon gamma (IFN-¿)-producing T(H) 1 cells and increased frequencies of Foxp3......-expressing T cells. CONCLUSIONS: These data demonstrate that splenic B cells exposed to enterobacterial components acquire immunosuppressive functions by which they can suppress development of experimental T cell-mediated colitis in an IL-10-dependent way. (Inflamm Bowel Dis 2011;)....

  4. Microculture-based chemosensitivity testing: a feasibility study comparing freshly explanted human melanoma cells with human melanoma cell lines.

    Science.gov (United States)

    Marshall, E S; Finlay, G J; Matthews, J H; Shaw, J H; Nixon, J; Baguley, B C

    1992-03-04

    The culture of cancer cells has many applications in chemosensitivity testing and new drug development. Our goal was to adapt simple semiautomated microculture methods for testing the chemosensitivity of melanoma cells freshly recovered from patients' tumors. Cells were cultured on a substrate of agarose and exposed continuously to cytotoxic drugs, the effects of which were measured by determining the uptake of [3H]thymidine 4-7 days later. Immunocytochemical staining of cells cultured with 5-bromo-2'-deoxyuridine demonstrated that tumor cells were responsible for the measured thymidine incorporation. The effects of cytotoxic drugs were calculated as logarithmic 50% inhibitory concentrations and expressed as divergences from the mean in a log-mean graph. The inhibitory effects of amsacrine, etoposide, doxorubicin, cisplatin, mitomycin C, and fluorouracil were tested. Tumors differed widely in their sensitivity to these drugs, although sensitivity to the three topoisomerase-II-directed agents was highly correlated. Cells from two non-neoplastic hematopoietic progenitor cell lines (FT and 32D) showed chemosensitivity patterns distinct from those in the melanoma cells, indicating tissue selectivity. Two established melanoma cell lines, MM-96 and FME, were tested under the same conditions and showed sensitivity typical of at least some fresh specimens. These results support the validity of melanoma cell lines as models of freshly resected melanoma cells. If successfully applied to other tumor types, such semiautomated approaches could find wide application in routine hospital laboratories for the chemosensitivity testing of patients' tumor cells.

  5. Differential biological effects of iodoacetate in mammalian cell lines; radio sensitization and radio protection

    International Nuclear Information System (INIS)

    Yadav, Usha; Anjaria, K.B.; Desai, Utkarsha N.; Chaurasia, Rajesh K.; Shirsath, K.B.; Bhat, Nagesh N.; Balakrishnan, Sreedevi; Sapra, B.K.; Nairy, Rajesha

    2014-01-01

    There are several studies where it has been shown that Iodoacetate (IA) possesses in vivo anti-tumor activity. The fact that it is a model glycolytic inhibitor makes it more interesting. As seen in recent trends, glycolytic inhibitors are emerging as new strategy for cancer therapeutic research taking advantage of glycolytic phenotype of cancerous tissues. IA has been reported to have radioprotective effects in yeast cells and human lymphocytes. Biological effects of IA in response to radiation in mammalian cell lines are not well documented. We screened IA for cytotoxicity using clonogenic assay at different concentrations ranging from 0.1 to 2.5 μg/ml using three different mammalian cell lines; A-549 (human lung carcinoma cell line), MCF-7 (human mammary cancer cell line) and a noncancerous CHO (Chinese hamster ovary cell line). For studying radioprotective/radio sensitizing efficacy, cells were exposed to 4 Gy of 60 Co-γ radiation using a teletherapy source at a dose rate of 1 Gy/min, following which IA post-treatment was carried out. Clonogenic and micronucleus assay were performed to assess radioprotection/sensitization. The results indicated that IA was highly cytotoxic in cancerous cell lines A-549 (IC 50 =1.25 μg/ml) and MCF-7 (IC 50 = 1.9 μg/ml). In contrast, it was totally non-toxic in non-cancerous cell line, viz. CHO, in the same concentration range. In addition, IA exhibited radio protective effect in CHO cell line, whereas in other two cancer cell lines, viz. A-549 and MCF-7, radio sensitizing effect was seen as judged by induction of cell killing and micronuclei. In conclusion, lA, a model glycolytic inhibitor, was found to be selectively cytotoxic in cancer cells as compared to normal cells. Further, it reduced radiation induced damage (micronuclei and cell killing) in normal cells but increased it in cancer cells indicating its potential use in cancer therapy. (author)

  6. Susceptibility of various cell lines to Neospora caninum tachyzoites cultivation

    Directory of Open Access Journals (Sweden)

    Khordadmehr, M.,

    2014-05-01

    Full Text Available Neospora caninum is a coccidian protozoan parasite which is a major cause of bovine abortions and neonatal mortality in cattle, sheep, goat and horse. Occasionally, cultured cells are used for isolation and multiplication of the agent in vitro with several purposes. In this study the tachyzoite yields of N. caninum were compared in various cell cultures as the host cell lines. Among the cell cultures tested, two presented good susceptibility to the agent: cell lines Vero and MA-104. SW742 and TLI (in vitro suspension culture of lymphoid cells infected with Theileria lestoquardi showed moderate sensitivity. No viable tachyzoite were detected in the culture of MDCK and McCoy cell lines. These results demonstrate that MA-104 and SW742 cells present adequate susceptibility to N. caninum compared to Vero cells, which have been largely used to multiply the parasite in vitro. Moreover, these have easy manipulation, fast multiplication and relatively low nutritional requirements. In addition, the result of this study showed that TLI cell line as a suspension cell culture is susceptible to Nc-1 tachyzoites infection and could be used as an alternative host cell line for tachyzoites culture in vitro studies.

  7. A non-toxic dose of cobalt chloride blocks hair cells of the zebrafish lateral line.

    Science.gov (United States)

    Stewart, William J; Johansen, Jacob L; Liao, James C

    2017-07-01

    Experiments on the flow-sensitive lateral line system of fishes have provided important insights into the function and sensory transduction of vertebrate hair cells. A common experimental approach has been to pharmacologically block lateral line hair cells and measure how behavior changes. Cobalt chloride (CoCl 2 ) blocks the lateral line by inhibiting calcium movement through the membrane channels of hair cells, but high concentrations can be toxic, making it unclear whether changes in behavior are due to a blocked lateral line or poor health. Here, we identify a non-toxic treatment of cobalt that completely blocks lateral line hair cells. We exposed 5-day post fertilization zebrafish larvae to CoCl 2 concentrations ranging from 1 to 20 mM for 15 min and measured 1) the spiking rate of the afferent neurons contacting hair cells and 2) the larvae's health and long-term survival. Our results show that a 15-min exposure to 5 mM CoCl 2 abolishes both spontaneous and evoked afferent firing. This treatment does not change swimming behavior, and results in >85% survival after 5 days. Weaker treatments of CoCl 2 did not eliminate afferent activity, while stronger treatments caused close to 50% mortality. Our work provides a guideline for future zebrafish investigations where physiological confirmation of a blocked lateral line system is required. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Molecular characterization of irinotecan (SN-38) resistant human breast cancer cell lines

    DEFF Research Database (Denmark)

    Jandu, Haatisha; Aluzaite, Kristina; Fogh, Louise

    2016-01-01

    or an initial high dose of SN-38 (the active metabolite of irinotecan), respectively. The resistant cell lines were analyzed for cross-resistance to other anti-cancer drugs, global gene expression, growth rates, TOP1 and TOP2A gene copy numbers and protein expression, and inhibition of the breast cancer......Background: Studies in taxane and/or anthracycline refractory metastatic breast cancer (mBC) patients have shown approximately 30 % response rates to irinotecan. Hence, a significant number of patients will experience irinotecan-induced side effects without obtaining any benefit. The aim...... of this study was to lay the groundwork for development of predictive biomarkers for irinotecan treatment in BC.Methods: We established BC cell lines with acquired or de novo resistance to SN-38, by exposing the human BC cell lines MCF 7 and MDA MB 231 to either stepwise increasing concentrations over 6 months...

  9. Natural killer cells for immunotherapy – Advantages of cell lines over blood NK cells

    Directory of Open Access Journals (Sweden)

    Hans eKlingemann

    2016-03-01

    Full Text Available Natural killer cells are potent cytotoxic effector cells for cancer therapy and potentially for severe viral infections. However, there are technical challenges to obtain sufficient numbers of functionally active NK cells form a patient’s blood since they represent only 10% of the lymphocytes. Especially, cancer patients are known to have dysfunctional NK cells. The alternative is to obtain cells from a healthy donor, which requires depletion of the allogeneic T-cells. Establishing cell lines from donor blood NK cells have not been successful, in contrast to blood NK cells obtained from patients with a clonal NK cell lymphoma. Those cells can be expanded in culture in the presence of IL-2. However, except for the NK-92 cell line none of the other six known cell lines has consistent and reproducibly high anti-tumor cytotoxicity, nor can they be easily genetically manipulated to recognize specific tumor antigens or to augment monoclonal antibody activity through ADCC. NK-92 is also the only cell line product that has been widely given to patients with advanced cancer with demonstrated efficiency and minimal side effects.

  10. Germ-line mutations, DNA damage, and global hypermethylation in mice exposed to particulate air pollution in an urban/industrial location.

    Science.gov (United States)

    Yauk, Carole; Polyzos, Aris; Rowan-Carroll, Andrea; Somers, Christopher M; Godschalk, Roger W; Van Schooten, Frederik J; Berndt, M Lynn; Pogribny, Igor P; Koturbash, Igor; Williams, Andrew; Douglas, George R; Kovalchuk, Olga

    2008-01-15

    Particulate air pollution is widespread, yet we have little understanding of the long-term health implications associated with exposure. We investigated DNA damage, mutation, and methylation in gametes of male mice exposed to particulate air pollution in an industrial/urban environment. C57BL/CBA mice were exposed in situ to ambient air near two integrated steel mills and a major highway, alongside control mice breathing high-efficiency air particulate (HEPA) filtered ambient air. PCR analysis of an expanded simple tandem repeat (ESTR) locus revealed a 1.6-fold increase in sperm mutation frequency in mice exposed to ambient air for 10 wks, followed by a 6-wk break, compared with HEPA-filtered air, indicating that mutations were induced in spermatogonial stem cells. DNA collected after 3 or 10 wks of exposure did not exhibit increased mutation frequency. Bulky DNA adducts were below the detection threshold in testes samples, suggesting that DNA reactive chemicals do not reach the germ line and cause ESTR mutation. In contrast, DNA strand breaks were elevated at 3 and 10 wks, possibly resulting from oxidative stress arising from exposure to particles and associated airborne pollutants. Sperm DNA was hypermethylated in mice breathing ambient relative to HEPA-filtered air and this change persisted following removal from the environmental exposure. Increased germ-line DNA mutation frequencies may cause population-level changes in genetic composition and disease. Changes in methylation can have widespread repercussions for chromatin structure, gene expression and genome stability. Potential health effects warrant extensive further investigation.

  11. Differential Radiosensitizing Potential of Temozolomide in MGMT Promoter Methylated Glioblastoma Multiforme Cell Lines

    International Nuclear Information System (INIS)

    Nifterik, Krista A. van; Berg, Jaap van den; Stalpers, Lukas J.A.; Lafleur, M. Vincent M.; Leenstra, Sieger; Slotman, Ben J.; Hulsebos, Theo J.M.; Sminia, Peter

    2007-01-01

    Purpose: To investigate the radiosensitizing potential of temozolomide (TMZ) for human glioblastoma multiforme (GBM) cell lines using single-dose and fractionated γ-irradiation. Methods and Materials: Three genetically characterized human GBM cell lines (AMC-3046, VU-109, and VU-122) were exposed to various single (0-6 Gy) and daily fractionated doses (2 Gy per fraction) of γ-irradiation. Repeated TMZ doses were given before and concurrent with irradiation treatment. Immediately plated clonogenic cell-survival curves were determined for both the single-dose and the fractionated irradiation experiments. To establish the net effect of clonogenic cell survival and cell proliferation, growth curves were determined, expressed as the number of surviving cells. Results: All three cell lines showed MGMT promoter methylation, lacked MGMT protein expression, and were sensitive to TMZ. The isotoxic TMZ concentrations used were in a clinically feasible range of 10 μmol/L (AMC-3046), 3 μmol/L (VU-109), and 2.5 μmol/L (VU-122). Temozolomide was able to radiosensitize two cell lines (AMC 3046 and VU-122) using single-dose irradiation. A reduction in the number of surviving cells after treatment with the combination of TMZ and fractionated irradiation was seen in all three cell lines, but only AMC 3046 showed a radiosensitizing effect. Conclusions: This study on TMZ-sensitive GBM cell lines shows that TMZ can act as a radiosensitizer and is at least additive to γ-irradiation. Enhancement of the radiation response by TMZ seems to be independent of the epigenetically silenced MGMT gene

  12. Radiation of different human melanoma cell lines increased expression of RHOB. Level of this tumor suppressor gene in different cell lines

    International Nuclear Information System (INIS)

    Notcovich, C.; Molinari, B.; Duran, H.; Delgado González, D.; Sánchez Crespo, R.

    2013-01-01

    Previous results of our group show that a correlation exists between intrinsic radiosensitivity of human melanoma cells and cell death by apoptosis. RhoB is a small GTPase that regulates cytoskeletal organization. Besides, is related to the process of apoptosis in cells exposed to DNA damage as radiation. Also, RhoB levels decrease in a wide variety of tumors with the tumor stage, being considered a tumor suppressor gene due to its antiproliferative and proapoptotic effect. The aim of this study was to analyze the expression of RhoB in different human melanoma cell lines in relation to melanocytes, and evaluate the effect of gamma radiation on the expression of RhoB. We used the A375, SB2 and Meljcell lines, and the derived from melanocytes Pig1. It was found for all three tumor lines RhoB expression levels significantly lower than those of Pig1 (p <0.05), as assessed by semiquantitative RT-PCR . When tumor cells were irradiated to a dose of 2Gyinduction was observed at 3 hours RhoB irradiation. RhoB expression increased in all lines relative to non-irradiated control, showing a greater induction ( p< 0.05) for the more radiosensitive line SB2, consistent with apoptosis in response to radiation. The results allow for the first time in melanoma demonstrate that RhoB, as well as in other tumor types, has a lower expression in tumor cells than their normal counterparts. Moreover, induction in the expression of RhoB in irradiated cells may be associated with the process of radiation-induced apoptosis. The modulation of RhoB could be a new tool to sensitize radioresistant melanoma. (author)

  13. Radiation sensitivity of human lung cancer cell lines

    International Nuclear Information System (INIS)

    Carmichael, J.; Degraff, W.G.; Gamson, J.; Russo, G.; Mitchell, J.B.; Gazdar, A.F.; Minna, J.D.; Levitt, M.L.

    1989-01-01

    X-Ray survival curves were determined using a panel of 17 human lung cancer cell lines, with emphasis on non-small cell lung cancer (NSCLC). In contrast to classic small cell lung cancer (SCLC) cell lines, NSCLC cell lines were generally less sensitive to radiation as evidenced by higher radiation survival curve extrapolation numbers, surviving fraction values following a 2Gy dose (SF2) and the mean inactivation dose values (D) values. The spectrum of in vitro radiation responses observed was similar to that expected in clinical practice, although mesothelioma was unexpectedly sensitive in vitro. Differences in radiosensitivity were best distinguished by comparison of SF2 values. Some NSCLC lines were relatively sensitive, and in view of this demonstrable variability in radiation sensitivity, the SF2 value may be useful for in vitro predictive assay testing of clinical specimens. (author)

  14. Establishment and characterization of rat portal myofibroblast cell lines.

    Directory of Open Access Journals (Sweden)

    Michel Fausther

    Full Text Available The major sources of scar-forming myofibroblasts during liver fibrosis are activated hepatic stellate cells (HSC and portal fibroblasts (PF. In contrast to well-characterized HSC, PF remain understudied and poorly defined. This is largely due to the facts that isolation of rodent PF for functional studies is technically challenging and that PF cell lines had not been established. To address this, we have generated two polyclonal portal myofibroblast cell lines, RGF and RGF-N2. RGF and RGF-N2 were established from primary PF isolated from adult rat livers that underwent culture activation and subsequent SV40-mediated immortalization. Specifically, Ntpdase2/Cd39l1-sorted primary PF were used to generate the RGF-N2 cell line. Both cell lines were functionally characterized by RT-PCR, immunofluorescence, immunoblot and bromodeoxyuridine-based proliferation assay. First, immortalized RGF and RGF-N2 cells are positive for phenotypic myofibroblast markers alpha smooth muscle actin, type I collagen alpha-1, tissue inhibitor of metalloproteinases-1, PF-specific markers elastin, type XV collagen alpha-1 and Ntpdase2/Cd39l1, and mesenchymal cell marker ecto-5'-nucleotidase/Cd73, while negative for HSC-specific markers desmin and lecithin retinol acyltransferase. Second, both RGF and RGF-N2 cell lines are readily transfectable using standard methods. Finally, RGF and RGF-N2 cells attenuate the growth of Mz-ChA-1 cholangiocarcinoma cells in co-culture, as previously demonstrated for primary PF. Immortalized rat portal myofibroblast RGF and RGF-N2 cell lines express typical markers of activated PF-derived myofibroblasts, are suitable for DNA transfection, and can effectively inhibit cholangiocyte proliferation. Both RGF and RGF-N2 cell lines represent novel in vitro cellular models for the functional studies of portal (myofibroblasts and their contribution to the progression of liver fibrosis.

  15. An experimental study on the radiosensitivity and chemosensitivity of MG-63 cell line

    International Nuclear Information System (INIS)

    Lee, Un Gyeong; Koh, Kwang Joon

    1996-01-01

    The purpose of this study was to aid in the prediction of tumor cell tolerance to radiotherapy and/or chemotherapy. For this study, cell surviving curves were obtained for human osteosarcoma MG-63 cell line using semiautomated MTT ass ay. 2, 4, 6, 8, 10 Gy were irradiated at a dose rate of 210 cGy/min using 60 Co Irradiator ALDORADO 8. After irradiation, MG- 63 cell lines (3X10 4 cells/ml) were exposed to bleomycin and cisplatin at concentration of 0.2, 2, 20 μg/ml for 1 hour respectively. The viable cells were determined for each radiation dose and/or each concentration of drug. And they were compared to control values. The obtained results were as follows: 1. There was significant difference of surviving fraction at 4, 6, 8, 10 Gy on MG-63 cell line (p<0.05). 2. There was significant difference of cytotoxicity of bleomycin or cisplatin at all concentration of 0.2, 2, 20 μg/ml (p<0.05) on mg-63 cell line. The cytotoxicity of cisplatin was more effective than bleomycin at concentration after irradiation of 2 Gy on MG-63 cell line. 3. there was significant difference of cytotoxicity of bleomycin or cisplatin at all concentration after irradiation of Gy on MG-63 cell line. 4. There was significant difference of cytotoxicity of bloeomycin or cisplatin at concentration of 20 μg/ml after irradiation than that of irradiation alone (p<0.01). but there was no significant difference of cytotoxicity of bleomycin at concentration of 20 μg/ml after irradiation of 10 Gy than that of irradiation alone.

  16. UCI-VULV-1, a vulvar squamous carcinoma cell line.

    Science.gov (United States)

    Carpenter, P M; Gamboa-Vujicic, G; Mascarello, J T; Wilczynski, S; Bhaumik, M; Dorion, G; Manetta, A

    1995-05-01

    Squamous carcinoma of the vulva (SCV) is an uncommon neoplasm of uncertain etiology. There is evidence that there are two subgroups of SCV, one associated with human papilloma virus (HPV) and a second HPV-negative group. The UCI-VULV-1 cell line, obtained from a lymph node metastasis of an SCV, grows with a population doubling time of approximately 60 hr. The saturation density is 10(5) cells/cm2. The cell line does not exhibit anchorage independence and is weakly tumorigenic. The cells range in appearance from an abundant spindle cell to a less common larger, flat cell. All of the cells are immunoreactive for high-molecular-weight keratin, but only the flat cells, which form squamous pearls in vivo, are immunoreactive for low-molecular-weight keratin. The cell line expresses epidermal growth factor (EGF), transforming growth factor-alpha, the EGF receptor, and p53 protein. Polymerase chain reaction revealed no HPV DNA within the cells. Early passage cells exhibited karyotypic heterogeneity with few similarities to previous described SCV karyotypes. The cells display sensitivity to cis-platinum in concentrations toxic to many ovarian and cervical carcinoma lines. UCI-VULV-1 may be helpful for studying the properties of the HPV-negative form of SCV.

  17. Differential effects of bisphosphonates on breast cancer cell lines

    NARCIS (Netherlands)

    Verdijk, R.; Franke, H.R.; Wolbers, F.; Vermes, I.

    2007-01-01

    Bisphosphonates may induce direct anti-tumor effects in breast cancers cells in virtro. In this study, six bisphosphonates were administered to three breast caner cell lines. Cell proliferation was measured by quantification of th expressio of Cyclin D1 mRNA. Apoptosis was determined by flow

  18. A stromal myoid cell line provokes thymic erythropoiesis between ...

    African Journals Online (AJOL)

    Background: The thymus provides an optimal cellular and humoral microenvironment for cell line committed differentiation of haematopoietic stem cells. The immigration process requires the secretion of at least one peptide called thymotaxine by cells of the reticulo-epithelial (RE) network of the thymic stromal cellular ...

  19. Cytotoxicity against MCF-7 breast cancer cell line and interaction ...

    African Journals Online (AJOL)

    N6-furfuryladenine (kinetin) is a cytokinin growth factor with several biological effects observed in human cells and fruit flies. Kinetin exists naturally in the DNA of almost all organisms tested so far, including human cells and various plants. The cytotoxicity effect of kinetin on MCF-7 breast cancer cell lines was measured by ...

  20. Susceptibilities of medaka (Oryzias latipes cell lines to a betanodavirus

    Directory of Open Access Journals (Sweden)

    Adachi Kei

    2010-07-01

    Full Text Available Abstract Background Betanodaviruses, members of the family Nodaviridae, have bipartite, positive-sense RNA genomes and are the causal agents of viral nervous necrosis in many marine fish species. Recently, the viruses were shown to infect a few freshwater fish species including a model fish medaka (Oryzias latipes. Although virological study using cultured medaka cells would provide a lot of insight into virus-fish interactions in molecular aspects, no such cells have yet been tested for virus susceptibility. Results We tested ten medaka cell lines for susceptibilities to redspotted grouper nervous necrosis virus (RGNNV. Although the viral coat protein was detected in all the cell lines inoculated, the levels of cytopathic effect development and viral propagation were quite different among the cell lines. Those levels were especially high in OLHNI-1 and OLHNI-2 cells, but were extremely low in OLME-104 cells. Some cell lines entered into antiviral state after RGNNV infections probably because of inducing an antiviral system. This is the first report to examine the susceptibilities of cultured medaka cells against a virus. Conclusion OLHNI-1 and OLHNI-2 cells are candidates of new standard cells for betanodavirus study because of their high susceptibilities to the virus and their several advantages as model fish cells.

  1. Establishment and characterization of a chicken mononuclear cell line.

    Science.gov (United States)

    Qureshi, M A; Miller, L; Lillehoj, H S; Ficken, M D

    1990-11-01

    A new chicken mononuclear cell line (MQ-NCSU) has been established. The starting material used to initiate this cell line was a transformed spleen from a female Dekalb XL chicken which had been experimentally challenged with the JM/102W strain of the Marek's disease virus. After homogenization, a single cell suspension of splenic cells was cultured using L.M. Hahn medium supplemented with 10 microM 2-mercaptoethanol. Under these culture conditions, a rapidly proliferating cell was observed and then expanded after performing limiting dilution cultures. These cells were moderately adherent and phagocytic for sheep red blood cells and Salmonella typhimurium. When tested against a panel of monoclonal antibodies (mAb) using the flow cytometry, MQ-NCSU cells stained readily with anti-chicken monocyte specific (K-1) mAb but did not stain with mAb detecting T-helper, T-cytotoxic/suppressor, and NK cells. MQ-NCSU cells expressed very high levels of Ia antigens and transferrin receptors. In addition, cell-free supernatant obtained from MQ-NCSU culture contained a factor which exhibited cytolytic activity against tumor cell targets. Based on their cultural, morphological, and functional characteristics and mAb reactivity profile, we conclude that MQ-NCSU cell line represents a malignantly-transformed cell which shares features characteristic of cells of the mononuclear phagocyte lineage.

  2. Analysis of P53 mutations and their expression in 56 colorectal cancer cell lines

    DEFF Research Database (Denmark)

    Liu, Ying; Bodmer, Walter F

    2006-01-01

    A comprehensive analysis of the TP53 gene and its protein status was carried out on a panel of 56 colorectal cancer cell lines. This analysis was based on a combination of denaturing HPLC mutation screening of all exons of the p53 gene, sequencing the cDNA, and assessing the function of the p53...... protein by assaying the induced expression of phosphorylated p53 and p21 after exposing cells to gamma-rays. In a few cases where there was no production of p53 message nor evidence of functional p53 protein, all of the p53 exons were sequenced directly. Thirteen of the 56 cell lines had functional p53......, 21 lines had missense mutations (one of which made no detectable protein), 4 lines produced no p53 transcripts, and the remaining 18 lines carried truncating TP53 mutations. Thus, our results showed a relatively high frequency of TP53 mutations (76.8%) in our cell lines, with almost half...

  3. Global Conservation of Protein Status between Cell Lines and Xenografts

    Directory of Open Access Journals (Sweden)

    Julian Biau

    2016-08-01

    Full Text Available Common preclinical models for testing anticancer treatment include cultured human tumor cell lines in monolayer, and xenografts derived from these cell lines in immunodeficient mice. Our goal was to determine how similar the xenografts are compared with their original cell line and to determine whether it is possible to predict the stability of a xenograft model beforehand. We studied a selection of 89 protein markers of interest in 14 human cell cultures and respective subcutaneous xenografts using the reverse-phase protein array technology. We specifically focused on proteins and posttranslational modifications involved in DNA repair, PI3K pathway, apoptosis, tyrosine kinase signaling, stress, cell cycle, MAPK/ERK signaling, SAPK/JNK signaling, NFκB signaling, and adhesion/cytoskeleton. Using hierarchical clustering, most cell culture-xenograft pairs cluster together, suggesting a global conservation of protein signature. Particularly, Akt, NFkB, EGFR, and Vimentin showed very stable protein expression and phosphorylation levels highlighting that 4 of 10 pathways were highly correlated whatever the model. Other proteins were heterogeneously conserved depending on the cell line. Finally, cell line models with low Akt pathway activation and low levels of Vimentin gave rise to more reliable xenograft models. These results may be useful for the extrapolation of cell culture experiments to in vivo models in novel targeted drug discovery.

  4. Pathway-specific differences between tumor cell lines and normal and tumor tissue cells

    Directory of Open Access Journals (Sweden)

    Tozeren Aydin

    2006-11-01

    Full Text Available Abstract Background Cell lines are used in experimental investigation of cancer but their capacity to represent tumor cells has yet to be quantified. The aim of the study was to identify significant alterations in pathway usage in cell lines in comparison with normal and tumor tissue. Methods This study utilized a pathway-specific enrichment analysis of publicly accessible microarray data and quantified the gene expression differences between cell lines, tumor, and normal tissue cells for six different tissue types. KEGG pathways that are significantly different between cell lines and tumors, cell lines and normal tissues and tumor and normal tissue were identified through enrichment tests on gene lists obtained using Significance Analysis of Microarrays (SAM. Results Cellular pathways that were significantly upregulated in cell lines compared to tumor cells and normal cells of the same tissue type included ATP synthesis, cell communication, cell cycle, oxidative phosphorylation, purine, pyrimidine and pyruvate metabolism, and proteasome. Results on metabolic pathways suggested an increase in the velocity nucleotide metabolism and RNA production. Pathways that were downregulated in cell lines compared to tumor and normal tissue included cell communication, cell adhesion molecules (CAMs, and ECM-receptor interaction. Only a fraction of the significantly altered genes in tumor-to-normal comparison had similar expressions in cancer cell lines and tumor cells. These genes were tissue-specific and were distributed sparsely among multiple pathways. Conclusion Significantly altered genes in tumors compared to normal tissue were largely tissue specific. Among these genes downregulation was a major trend. In contrast, cell lines contained large sets of significantly upregulated genes that were common to multiple tissue types. Pathway upregulation in cell lines was most pronounced over metabolic pathways including cell nucleotide metabolism and oxidative

  5. Induction of apoptosis by opium in some tumor cell lines.

    Science.gov (United States)

    Khaleghi, M; Farsinejad, A; Dabiri, S; Asadikaram, G

    2016-09-30

    The current study is aimed at investigation of the opium effects on the apoptosis of different cell lines in culture medium and compares such effects with one another. The study is carried out on over 8 cell lines (AA8, AGS, Hela, HepG2, MCF7, N2a, PC12, WEHI). A 2.86 x 10-4 g/ml opium concentration was prepared and added to the culture medium of the cell lines for 48 hours. Cytotoxicity was tested by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay. The apoptotic effect of opium on the cell lines was analyzed by Annexin-PI test. Opium with concentration of 2.86 x 10-4 g/ml in 48 hours significantly induces apoptosis in certain cell lines (i.e. AA8, N2a, WEHI), apoptosis and necrosis in some others (i.e. Hela, HepG2, MCF7, and PC12), and also solely necrosis in the AGS cell line. One could infer that the usage of opium with different levels in different tissues leads to certain disorders in some tissues and may have therapeutic effects under distinctive conditions (i.e. unchecked growth of cells) as confirmed by the results.

  6. Fish cell lines as a tool in aquatic toxicology.

    Science.gov (United States)

    Segner, H

    1998-01-01

    In aquatic toxicology, cytotoxicity tests using continuous fish cell lines have been suggested as a tool for (1) screening or toxicity ranking of anthropogenic chemicals, compound mixtures and environmental samples, (2) establishment of structure-activity relationships, and (3) replacement or supplementation of in vivo animal tests. Due to the small sample volumes necessary for cytotoxicity tests, they appear to be particularly suited for use in chemical fractionation studies. The present contribution reviews the existing literature on cytotoxicity studies with fish cells and considers the influence of cell line and cytotoxicity endpoint selection on the test results. Furthermore, in vitro/in vivo correlations between fish cell lines and intact fish are discussed. During recent years, fish cell lines have been increasingly used for purposes beyond their meanwhile established role for cytotoxicity measurements. They have been successfully introduced for detection of genotoxic effects, and cell lines are now applied for investigations on toxic mechanisms and on biomarkers such as cytochrome P4501A. The development of recombinant fish cell lines may further support their role as a bioanalytical tool in environmental diagnostics.

  7. Effects of phthalates on the human corneal endothelial cell line B4G12

    DEFF Research Database (Denmark)

    Krüger, Tanja; Cao, Yi; Kjærgaard, Søren K.

    2012-01-01

    Phthalates are industrial chemicals used in many cosmetics. We evaluated an in vitro model for eye irritancy testing using the human corneal endothelial cell line B4G12. Cell proliferation and toxicity were assessed after exposing to di-n-butyl phthalate (DBP), benzyl butyl phthalate (BBP), di-2......-ethylhexyl phthalate (DEHP), diisodecyl phthalate (DIDP), di-n-octyl phthalate (DnOP), and di-isononyl phthalate (DINP). Gene expression and secretion of inflammatory cytokines were evaluated after exposure to DBP. Decreased cell proliferation was observed for the phthalates DBP, BBP, and DEHP, and cell...... line B4G12 may be a potential model for inflammatory eye irritancy testing of phthalates....

  8. Lining cells on normal human vertebral bone surfaces

    International Nuclear Information System (INIS)

    Henning, C.B.; Lloyd, E.L.

    1982-01-01

    Thoracic vertebrae from two individuals with no bone disease were studied with the electron microscope to determine cell morphology in relation to bone mineral. The work was undertaken to determine if cell morphology or spatial relationships between the bone lining cells and bone mineral could account for the relative infrequency of bone tumors which arise at this site following radium intake, when compared with other sites, such as the head of the femur. Cells lining the vertebral mineral were found to be generally rounded in appearance with varied numbers of cytoplasmic granules, and they appeared to have a high density per unit of surface area. These features contrasted with the single layer of flattened cells characteristic of the bone lining cells of the femur. A tentative discussion of the reasons for the relative infrequency of tumors in the vertebrae following radium acquisition is presented

  9. MORPHOMETRIC SUBTYPING FOR A PANEL OF BREAST CANCER CELL LINES

    Energy Technology Data Exchange (ETDEWEB)

    Han, Ju; Chang, Hang; Fontenay, Gerald; Wang, Nicholas J.; Gray, Joe W.; Parvin, Bahram

    2009-05-08

    A panel of cell lines of diverse molecular background offers an improved model system for high-content screening, comparative analysis, and cell systems biology. A computational pipeline has been developed to collect images from cell-based assays, segment individual cells and colonies, represent segmented objects in a multidimensional space, and cluster them for identifying distinct subpopulations. While each segmentation strategy can vary for different imaging assays, representation and subpopulation analysis share a common thread. Application of this pipeline to a library of 41 breast cancer cell lines is demonstrated. These cell lines are grown in 2D and imaged through immunofluorescence microscopy. Subpopulations in this panel are identified and shown to correlate with previous subtyping literature that was derived from transcript data.

  10. DNA fingerprinting of the NCI-60 cell line panel.

    Science.gov (United States)

    Lorenzi, Philip L; Reinhold, William C; Varma, Sudhir; Hutchinson, Amy A; Pommier, Yves; Chanock, Stephen J; Weinstein, John N

    2009-04-01

    The National Cancer Institute's NCI-60 cell line panel, the most extensively characterized set of cells in existence and a public resource, is frequently used as a screening tool for drug discovery. Because many laboratories around the world rely on data from the NCI-60 cells, confirmation of their genetic identities represents an essential step in validating results from them. Given the consequences of cell line contamination or misidentification, quality control measures should routinely include DNA fingerprinting. We have, therefore, used standard DNA microsatellite short tandem repeats to profile the NCI-60, and the resulting DNA fingerprints are provided here as a reference. Consistent with previous reports, the fingerprints suggest that several NCI-60 lines have common origins: the melanoma lines MDA-MB-435, MDA-N, and M14; the central nervous system lines U251 and SNB-19; the ovarian lines OVCAR-8 and OVCAR-8/ADR (also called NCI/ADR); and the prostate lines DU-145, DU-145 (ATCC), and RC0.1. Those lines also show that the ability to connect two fingerprints to the same origin is not affected by stable transfection or by the development of multidrug resistance. As expected, DNA fingerprints were not able to distinguish different tissues-of-origin. The fingerprints serve principally as a barcodes.

  11. Characterization of newly established colorectal cancer cell lines ...

    Indian Academy of Sciences (India)

    Unknown

    2000-12-19

    Gastroenterology Service,. Department of Medicine, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021, USA. Abstract. We have established a series of 20 colorectal cancer cell lines and performed ...

  12. Establishment and cell cycle distribution pattern of a radioresistant subline from human lung cancer D6 cell line

    International Nuclear Information System (INIS)

    Wei Qichun; Zheng Shu

    2003-01-01

    Objective: To establish a radioresistant cell subline from a human D6 lung cancer cell line and investigate the mechanism of radioresistance. Methods: D6 human NSCLC cells were exposed to X-rays generated by a linear accelerator(650 cGy per fraction). After a total exposure dose of 5200 cGy, a monoclone was obtained. The radiosensitivity and cell cycle distribution of this clone, together with its parent D6 cells, were measured by clonogenic assay and flow cytometry. Results: The new clone, namely D 6 -R subline, had a higher D 0 (D 0 =2.08 Gy) and a broader initial shoulder(Dq=1.64 Gy, N=2.20) than those of the parent D6 cell line (D 0 =1.84 Gy, Dq=0.34 Gy, N=1.20), being 1.65-fold increase in radioresistance as regards to the SF 2 . The D6-R subline also showed higher percentage of cells in S phase(53.4% vs 37.8%), but lower percentages in G 1 (44.1% vs 57.2%) and G 2 /M(2.5% vs 5%) phases. Conclusion: The new subline D6-R is more radioresistant as compare to its parent D6 cell line, and has a different cell cycle distribution

  13. Isolation of two chloroethylnitrosourea-sensitive Chinese hamster cell lines

    International Nuclear Information System (INIS)

    Hata, H.; Numata, M.; Tohda, H.; Yasui, A.; Oikawa, A.

    1991-01-01

    1-[(4-Amino-2-methylpyrimidin-5-yl)methyl]-3-(2-chloroethyl)-3- nitrosourea hydrochloride (ACNU), a cancer chemotherapeutic bifunctional alkylating agent, causes chloroethylation of DNA and subsequent DNA strand cross-linking through an ethylene bridge. We isolated and characterized two ACNU-sensitive mutants from mutagenized Chinese hamster ovary cells and found them to be new drug-sensitive recessive Chinese hamster mutants. Both mutants were sensitive to various monofunctional alkylating agents in a way similar to that of the parental cell lines CHO9. One mutant (UVS1) was cross-sensitive to UV and complemented the UV sensitivity of all Chinese hamster cell lines of 7 established complementation groups. Since UV-induced unscheduled DNA synthesis was very low, a new locus related to excision repair is thought to be defective in this cell line. Another ACNU-sensitive mutant, CNU1, was slightly more sensitive to UV than the parent cell line. CNU1 was cross-sensitive to 1-(2-chloroethyl)-3-cyclohexyl-1-nitrosourea and slightly more sensitive to mitomycin C. No increased accumulation of ACNU and a low level of UV-induced unscheduled DNA synthesis in this cell as compared with the parental cell line suggest that there is abnormality in a repair response of this mutant cell to some types of DNA cross-links

  14. In vitro Rb-1 gene transfer to retinoblastoma cell lines

    International Nuclear Information System (INIS)

    Choi, Sang Wook; Ham, Yong Hoh; Kim, Mee Heui

    1994-04-01

    After transfection of Rb-vector to packaging cell line (CRIP) by Ca-P precipitation method, we could select nineteen colonies of G-418 resistant clone by ring cloning. Each colony was transduced to NIH3T3 cells to select the one which produces high titer virus. After NIH3T3 cells transduction, we could get 28 colony counts for the high, 127 for the middle, and 6 for the low viral titer. With the supernatant of the high viral titer colony (CRIPRb 2-5). We transduct retinoblastoma cell lines. 5 figs, 11 refs. (Author)

  15. Assessment of cancer cell line representativeness using microarrays for Merkel cell carcinoma.

    Science.gov (United States)

    Daily, Kenneth; Coxon, Amy; Williams, Jonathan S; Lee, Chyi-Chia R; Coit, Daniel G; Busam, Klaus J; Brownell, Isaac

    2015-04-01

    When using cell lines to study cancer, phenotypic similarity to the original tumor is paramount. Yet, little has been done to characterize how closely Merkel cell carcinoma (MCC) cell lines model native tumors. To determine their similarity to MCC tumor samples, we characterized MCC cell lines via gene expression microarrays. Using whole transcriptome gene expression signatures and a computational bioinformatic approach, we identified significant differences between variant cell lines (UISO, MCC13, and MCC26) and fresh frozen MCC tumors. Conversely, the classic WaGa and Mkl-1 cell lines more closely represented the global transcriptome of MCC tumors. When compared with publicly available cancer lines, WaGa and Mkl-1 cells were similar to other neuroendocrine tumors, but the variant cell lines were not. WaGa and Mkl-1 cells grown as xenografts in mice had histological and immunophenotypical features consistent with MCC, whereas UISO xenograft tumors were atypical for MCC. Spectral karyotyping and short tandem repeat analysis of the UISO cells matched the original cell line's description, ruling out contamination. Our results validate the use of transcriptome analysis to assess the cancer cell line representativeness and indicate that UISO, MCC13, and MCC26 cell lines are not representative of MCC tumors, whereas WaGa and Mkl-1 more closely model MCC.

  16. Establishment of cell lines from adult T-cell leukemia cells dependent on negatively charged polymers.

    Science.gov (United States)

    Kagami, Yoshitoyo; Uchiyama, Susumu; Kato, Harumi; Okada, Yasutaka; Seto, Masao; Kinoshita, Tomohiro

    2017-07-05

    Growing adult T-cell leukemia/lymphoma (ATLL) cells in vitro is difficult. Here, we examined the effects of static electricity in the culture medium on the proliferation of ATLL cells. Six out of 10 ATLL cells did not proliferate in vitro and thus had to be cultured in a medium containing negatively charged polymers. In the presence of poly-γ-glutamic acid (PGA) or chondroitin sulfate (CDR), cell lines (HKOX3-PGA, HKOX3-CDR) were established from the same single ATLL case using interleukin (IL)-2, IL-4, and feeder cells expressing OX40L (OX40L + HK). Dextran sulfate inhibited growth in both HKOX3 cell lines. Both PGA and OX40L + HK were indispensable for HKOX3-PGA growth, but HKOX3-CDR could proliferate in the presence of CDR or OX40L + HK alone. Thus, the specific action of each negatively charged polymer promoted the growth of specific ATLL cells in vitro.

  17. A generalised age- and phase-structured model of human tumour cell populations both unperturbed and exposed to a range of cancer therapies.

    Science.gov (United States)

    Basse, Britta; Ubezio, Paolo

    2007-07-01

    We develop a general mathematical model for a population of cells differentiated by their position within the cell division cycle. A system of partial differential equations governs the kinetics of cell densities in certain phases of the cell division cycle dependent on time t (hours) and an age-like variable tau (hours) describing the time since arrival in a particular phase of the cell division cycle. Transition rate functions control the transfer of cells between phases. We first obtain a theoretical solution on the infinite domain -infinity course, these age distributions are unknown. All is not lost, however, because a cell line before treatment usually lies in a state of asynchronous balanced growth where the proportion of cells in each phase of the cell cycle remain constant. We assume that an unperturbed cell line has four distinct phases and that the rate of transition between phases is constant within a short period of observation ('short' relative to the whole history of the tumour growth) and we show that under certain conditions, this is equivalent to exponential growth or decline. We can then gain expressions for the age distributions. So, in short, our approach is to assume that we have an unperturbed cell line on t cell line is exposed to cancer therapy. This corresponds to a change in the transition rate functions and perhaps incorporation of additional phases of the cell cycle. We discuss a number of these cancer therapies and applications of the model.

  18. B-cell infiltration in the respiratory mucosa of turkeys exposed to subtype C avian metapneumovirus.

    Science.gov (United States)

    Cha, Ra Mi; Khatri, Mahesh; Sharma, Jagdev M

    2007-09-01

    Turkeys exposed to avian metapneumovirus (aMPV) subtype C showed extensive lymphoid cell infiltrations in the nasal turbinates of the upper respiratory tract. The cellular infiltration occurred after the first virus exposure but not after re-exposure. Quantitation of the relative proportions of mucosal immunoglobulin (Ig)A+, IgG+, and IgM+ cells in controls and virus-exposed turkeys revealed that at 7 days after the first virus exposure, when mucosal infiltration was well pronounced, there was a significant increase (P < 0.05) in the numbers of infiltrating IgA+ but not of IgG+ and IgM+ cells. After the second virus exposure, although the overall numbers of mucosal lymphoid cells were similar in the virus-exposed and control turkeys, the relative proportions of IgA+ and IgG+ cells were significantly higher in the virus-exposed turkeys (P < 0.05) than in controls. Furthermore, elevated levels of aMPV-specific IgA were detected in the nasal secretions and the bile of virus-exposed birds after the second but not after the first virus exposure. These results suggest, for the first time, the possible involvement of local mucosal immunoglobulins in the pathogenesis of aMPV in turkeys.

  19. Antitumor Activity of Propolis on Differantiated Cancer Cell Lines

    OpenAIRE

    , Neşe Ersöz Gülçelik, Dilara Zeybek, Fige

    2012-01-01

    Propolis is a natural bee product with several pharmacological activities. Nowadays, it is also investigated for its antitumor properties. There are contraversies on the antitumor activity of propolis, not all tumour cells seem to respond to propolis treatment. The aim of our study is to evaluate the activity of propolis on differantiated thyroid cancer cell lines. Tyripan blue test and MTT assay were performed to evaluate the cell viability of B-CPAP cells after propolis treatment and compar...

  20. Diatom-derived polyunsaturated aldehydes activate cell death in human cancer cell lines but not normal cells.

    Directory of Open Access Journals (Sweden)

    Clementina Sansone

    Full Text Available Diatoms are an important class of unicellular algae that produce bioactive polyunsaturated aldehydes (PUAs that induce abortions or malformations in the offspring of invertebrates exposed to them during gestation. Here we compare the effects of the PUAs 2-trans,4-trans-decadienal (DD, 2-trans,4-trans-octadienal (OD and 2-trans,4-trans-heptadienal (HD on the adenocarcinoma cell lines lung A549 and colon COLO 205, and the normal lung/brunch epithelial BEAS-2B cell line. Using the viability MTT/Trypan blue assays, we show that PUAs have a toxic effect on both A549 and COLO 205 tumor cells but not BEAS-2B normal cells. DD was the strongest of the three PUAs tested, at all time-intervals considered, but HD was as strong as DD after 48 h. OD was the least active of the three PUAs. The effect of the three PUAs was somewhat stronger for A549 cells. We therefore studied the death signaling pathway activated in A549 showing that cells treated with DD activated Tumor Necrosis Factor Receptor 1 (TNFR1 and Fas Associated Death Domain (FADD leading to necroptosis via caspase-3 without activating the survival pathway Receptor-Interacting Protein (RIP. The TNFR1/FADD/caspase pathway was also observed with OD, but only after 48 h. This was the only PUA that activated RIP, consistent with the finding that OD causes less damage to the cell compared to DD and HD. In contrast, cells treated with HD activated the Fas/FADD/caspase pathway. This is the first report that PUAs activate an extrinsic apoptotic machinery in contrast to other anticancer drugs that promote an intrinsic death pathway, without affecting the viability of normal cells from the same tissue type. These findings have interesting implications also from the ecological viewpoint considering that HD is one of the most common PUAs produced by diatoms.

  1. Estrogen enhanced cell-cell signalling in breast cancer cells exposed to targeted irradiation

    International Nuclear Information System (INIS)

    Shao, Chunlin; Folkard, Melvyn; Held, Kathryn D; Prise, Kevin M

    2008-01-01

    Radiation-induced bystander responses, where cells respond to their neighbours being irradiated are being extensively studied. Although evidence shows that bystander responses can be induced in many types of cells, it is not known whether there is a radiation-induced bystander effect in breast cancer cells, where the radiosensitivity may be dependent on the role of the cellular estrogen receptor (ER). This study investigated radiation-induced bystander responses in estrogen receptor-positive MCF-7 and estrogen receptor-negative MDA-MB-231 breast cancer cells. The influence of estrogen and anti-estrogen treatments on the bystander response was determined by individually irradiating a fraction of cells within the population with a precise number of helium-3 using a charged particle microbeam. Damage was scored as chromosomal damage measured as micronucleus formation. A bystander response measured as increased yield of micronucleated cells was triggered in both MCF-7 and MDA-MB-231 cells. The contribution of the bystander response to total cell damage in MCF-7 cells was higher than that in MDA-MB-231 cells although the radiosensitivity of MDA-MB-231 was higher than MCF-7. Treatment of cells with 17β-estradiol (E2) increased the radiosensitivity and the bystander response in MCF-7 cells, and the effect was diminished by anti-estrogen tamoxifen (TAM). E2 also increased the level of intracellular reactive oxygen species (ROS) in MCF-7 cells in the absence of radiation. In contrast, E2 and TAM had no influence on the bystander response and ROS levels in MDA-MB-231 cells. Moreover, the treatment of MCF-7 cells with antioxidants eliminated both the E2-induced ROS increase and E2-enhanced bystander response triggered by the microbeam irradiation, which indicates that ROS are involved in the E2-enhanced bystander micronuclei formation after microbeam irradiation. The observation of bystander responses in breast tumour cells may offer new potential targets for radiation

  2. Drug/Cell-line Browser: interactive canvas visualization of cancer drug/cell-line viability assay datasets.

    Science.gov (United States)

    Duan, Qiaonan; Wang, Zichen; Fernandez, Nicolas F; Rouillard, Andrew D; Tan, Christopher M; Benes, Cyril H; Ma'ayan, Avi

    2014-11-15

    Recently, several high profile studies collected cell viability data from panels of cancer cell lines treated with many drugs applied at different concentrations. Such drug sensitivity data for cancer cell lines provide suggestive treatments for different types and subtypes of cancer. Visualization of these datasets can reveal patterns that may not be obvious by examining the data without such efforts. Here we introduce Drug/Cell-line Browser (DCB), an online interactive HTML5 data visualization tool for interacting with three of the recently published datasets of cancer cell lines/drug-viability studies. DCB uses clustering and canvas visualization of the drugs and the cell lines, as well as a bar graph that summarizes drug effectiveness for the tissue of origin or the cancer subtypes for single or multiple drugs. DCB can help in understanding drug response patterns and prioritizing drug/cancer cell line interactions by tissue of origin or cancer subtype. DCB is an open source Web-based tool that is freely available at: http://www.maayanlab.net/LINCS/DCB CONTACT: avi.maayan@mssm.edu Supplementary data are available at Bioinformatics online. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  3. Oxidative stress and apoptosis induction in human thyroid carcinoma cells exposed to the essential oil from Pistacia lentiscus aerial parts.

    Science.gov (United States)

    Catalani, Simona; Palma, Francesco; Battistelli, Serafina; Benedetti, Serena

    2017-01-01

    Essential oils from the aerial parts (leaves, twigs and berries) of Pistacia lentiscus (PLEO) have been well characterized for their antibacterial and anti-inflammatory properties; however, poor information exists on their potential anticancer activity. Increasing concentrations of PLEO (0.01-0.1% v/v, 80-800 μg/ml) were administered to a wide variety of cultured cancer cells from breast, cervix, colon, liver, lung, prostate, and thyroid carcinomas. Fibroblasts were also included as healthy control cells. Cell viability was monitored by WST-8 assay up to 72 hours after PLEO administration. The intracellular formation of reactive oxygen species (ROS), the induction of apoptosis, and the enhancement of chemotherapeutic drug cytotoxicity by PLEO were further investigated in the most responsive cancer cell line. A dose-dependent reduction of tumor cell viability was observed upon PLEO exposure; while no cytotoxic effect was revealed in healthy fibroblasts. FTC-133 thyroid cancer cells were found to be the most sensitive cells to PLEO treatment; accordingly, an intracellular accumulation of ROS and an activation of both the extrinsic and intrinsic apoptotic pathways were evidenced in FTC-133 cells after PLEO administration. Furthermore, the cytotoxic effect of the antineoplastic drugs cisplatin, 5-fluorouracil and etoposide was enhanced in PLEO-exposed FTC-133 cells. Taking into account its mode of action, PLEO might be considered as a promising source of natural antitumor agents which might have therapeutic potential in integrated oncology.

  4. Oxidative stress and apoptosis induction in human thyroid carcinoma cells exposed to the essential oil from Pistacia lentiscus aerial parts.

    Directory of Open Access Journals (Sweden)

    Simona Catalani

    Full Text Available Essential oils from the aerial parts (leaves, twigs and berries of Pistacia lentiscus (PLEO have been well characterized for their antibacterial and anti-inflammatory properties; however, poor information exists on their potential anticancer activity.Increasing concentrations of PLEO (0.01-0.1% v/v, 80-800 μg/ml were administered to a wide variety of cultured cancer cells from breast, cervix, colon, liver, lung, prostate, and thyroid carcinomas. Fibroblasts were also included as healthy control cells. Cell viability was monitored by WST-8 assay up to 72 hours after PLEO administration. The intracellular formation of reactive oxygen species (ROS, the induction of apoptosis, and the enhancement of chemotherapeutic drug cytotoxicity by PLEO were further investigated in the most responsive cancer cell line.A dose-dependent reduction of tumor cell viability was observed upon PLEO exposure; while no cytotoxic effect was revealed in healthy fibroblasts. FTC-133 thyroid cancer cells were found to be the most sensitive cells to PLEO treatment; accordingly, an intracellular accumulation of ROS and an activation of both the extrinsic and intrinsic apoptotic pathways were evidenced in FTC-133 cells after PLEO administration. Furthermore, the cytotoxic effect of the antineoplastic drugs cisplatin, 5-fluorouracil and etoposide was enhanced in PLEO-exposed FTC-133 cells.Taking into account its mode of action, PLEO might be considered as a promising source of natural antitumor agents which might have therapeutic potential in integrated oncology.

  5. Effect of failures and repairs on multiple cell production lines

    Energy Technology Data Exchange (ETDEWEB)

    Legato, P.; Bobbio, A.; Roberti, L.

    1989-01-01

    This paper examines a production line composed of multiple stages, or cells, which are passed in sequential order to arrive to the final product. Two possible coordination disciplines are considered, namely: the classical tandem arrangement of sequential working centers with input buffer and the kanban scheme, considered the Japanese shop floor realization of the Just-In-Time (JIT) manifacturing approach. The production line is modelled and analysed by means of Stochastic Petri Nets (SPN). Finally an analysis is made of the possibility that the working cells can incur failure/repair cycles perturbing the production flow of the line and thus reduce performance indices.

  6. Dexamethasone Protects Against Apoptotic Cell Death of Cisplatin-exposed Auditory Hair Cells In Vitro.

    Science.gov (United States)

    Dinh, Christine T; Chen, Si; Bas, Esperanza; Dinh, John; Goncalves, Stefania; Telischi, Fred; Angeli, Simon; Eshraghi, Adrien A; Van De Water, Thomas

    2015-09-01

    Dexamethasone (DXM) protects against cisplatin-induced auditory hair cell (HC) loss in rat organ of Corti (OC) explants in vitro by reducing levels of oxidative stress and NADPH-Oxidase-3 (NOX-3). Intratympanic DXM has demonstrated protective effects against cisplatin-induced hearing loss in a few animal studies and one clinical trial. However, levels of protection with intratympanic DXM vary significantly between studies, which may not be a result of the intrinsic properties of DXM but rather reflect the diffusion of DXM into the cochlea. The molecular mechanisms and degree of DXM protection against cisplatin ototoxicity are currently unknown. OC explants from 3-day-old rats were cultured with no treatment or various concentrations of cisplatin (2, 5, or 10 μM) and DXM (75, 150, or 300 μg/mL) in vitro. HC viability and TUNEL assay were performed after 72 hours in vitro and levels of oxidative stress and NOX-3 were evaluated with confocal microscopy after 48 hours in vitro. Analysis of variance with Tukey's post hoc testing was performed. Cisplatin initiated dose-dependent losses of outer HCs (OHCs) in the basal turns of exposed explants (p < 0.001). DXM protected against cisplatin (2 μM)-induced OHC loss in a dose-dependent manner with complete protection at 300 μg/mL of DXM (p < 0.001). DXM (150 μg/mL) significantly reduced levels of oxidative stress, NOX-3, and apoptosis in the basal turn of explants exposed to cisplatin (2 μM). DXM protects against cisplatin-induced loss of OHCs in the basal turn of rat OC explants as demonstrated by reductions in oxidative stress and NOX-3 production and decreased levels of apoptotic cell death.

  7. Neurohypophysial Receptor Gene Expression by Thymic T Cell Subsets and Thymic T Cell Lymphoma Cell Lines

    Directory of Open Access Journals (Sweden)

    I. Hansenne

    2004-01-01

    transcribed in thymic epithelium, while immature T lymphocytes express functional neurohypophysial receptors. Neurohypophysial receptors belong to the G protein-linked seven-transmembrane receptor superfamily and are encoded by four distinct genes, OTR, V1R, V2R and V3R. The objective of this study was to identify the nature of neurohypophysial receptor in thymic T cell subsets purified by immunomagnetic selection, as well as in murine thymic lymphoma cell lines RL12-NP and BW5147. OTR is transcribed in all thymic T cell subsets and T cell lines, while V3R transcription is restricted to CD4+ CD8+ and CD8+ thymic cells. Neither V1R nor V2R transcripts are detected in any kind of T cells. The OTR protein was identified by immunocytochemistry on thymocytes freshly isolated from C57BL/6 mice. In murine fetal thymic organ cultures, a specific OTR antagonist does not modify the percentage of T cell subsets, but increases late T cell apoptosis further evidencing the involvement of OT/OTR signaling in the control of T cell proliferation and survival. According to these data, OTR and V3R are differentially expressed during T cell ontogeny. Moreover, the restriction of OTR transcription to T cell lines derived from thymic lymphomas may be important in the context of T cell leukemia pathogenesis and treatment.

  8. Membrane lipidome of an epithelial cell line

    DEFF Research Database (Denmark)

    Sampaio, Julio L; Gerl, Mathias J; Klose, Christian

    2011-01-01

    Tissue differentiation is an important process that involves major cellular membrane remodeling. We used Madin-Darby canine kidney cells as a model for epithelium formation and investigated the remodeling of the total cell membrane lipidome during the transition from a nonpolarized morphology...... to an epithelial morphology and vice versa. To achieve this, we developed a shotgun-based lipidomics workflow that enabled the absolute quantification of mammalian membrane lipidomes with minimal sample processing from low sample amounts. Epithelial morphogenesis was accompanied by a major shift from sphingomyelin...... to glycosphingolipid, together with an increase in plasmalogen, phosphatidylethanolamine, and cholesterol content, whereas the opposite changes took place during an epithelial-to-mesenchymal transition. Moreover, during polarization, the sphingolipids became longer, more saturated, and more hydroxylated as required...

  9. Solid Oxide Fuel Cell Systems PVL Line

    International Nuclear Information System (INIS)

    Shearer, Susan; Rush, Gregory

    2012-01-01

    In July 2010, Stark State College (SSC), received Grant DE-EE0003229 from the U.S. Department of Energy (DOE), Golden Field Office, for the development of the electrical and control systems, and mechanical commissioning of a unique 20kW scale high-pressure, high temperature, natural gas fueled Stack Block Test System (SBTS). SSC worked closely with subcontractor, Rolls-Royce Fuel Cell Systems (US) Inc. (RRFCS) over a 13 month period to successfully complete the project activities. This system will be utilized by RRFCS for pre-commercial technology development and training of SSC student interns. In the longer term, when RRFCS is producing commercial products, SSC will utilize the equipment for workforce training. In addition to DOE Hydrogen, Fuel Cells, and Infrastructure Technologies program funding, RRFCS internal funds, funds from the state of Ohio, and funding from the DOE Solid State Energy Conversion Alliance (SECA) program have been utilized to design, develop and commission this equipment. Construction of the SBTS (mechanical components) was performed under a Grant from the State of Ohio through Ohio's Third Frontier program (Grant TECH 08-053). This Ohio program supported development of a system that uses natural gas as a fuel. Funding was provided under the Department of Energy (DOE) Solid-state Energy Conversion Alliance (SECA) program for modifications required to test on coal synthesis gas. The subject DOE program provided funding for the electrical build, control system development and mechanical commissioning. Performance testing, which includes electrical commissioning, was subsequently performed under the DOE SECA program. Rolls-Royce Fuel Cell Systems is developing a megawatt-scale solid oxide fuel cell (SOFC) stationary power generation system. This system, based on RRFCS proprietary technology, is fueled with natural gas, and operates at elevated pressure. A critical success factor for development of the full scale system is the capability to

  10. Novel human multiple myeloma cell line UHKT-893

    Czech Academy of Sciences Publication Activity Database

    Uherková, L.; Vančurová, I.; Vyhlídalová, I.; Pleschnerová, M.; Špička, I.; Mihalová, R.; Březinová, J.; Hodný, Zdeněk; Čermáková, K.; Polanská, V.; Marinov, I.; Jedelský, P.L.; Kuželová, K.; Stöckbauer, P.

    2013-01-01

    Roč. 37, č. 3 (2013), s. 320-326 ISSN 0145-2126 Institutional support: RVO:68378050 Keywords : human myeloma cell line * human multiple myeloma * plasma cell * IL-6 dependence * immunoglobulin * free light chain Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.692, year: 2013

  11. a stromal myoid cell line provokes thymic erythropoiesis between

    African Journals Online (AJOL)

    hi-tech

    81 No. 2 February 2004. A STROMAL MYOID CELL LINE PROVOKES THYMIC ERYTHROPOIESIS BETWEEN 16TH TO 20TH WEEKS OF INTRAUTERINE LIFE ... proliferation and differentiation in different stages of development: the stromal myoid cells. Design: ... human myasthenia gravis (MG) has been suggested(3).

  12. Frequency and distribution of Notch mutations in tumor cell lines

    International Nuclear Information System (INIS)

    Mutvei, Anders Peter; Fredlund, Erik; Lendahl, Urban

    2015-01-01

    Deregulated Notch signaling is linked to a variety of tumors and it is therefore important to learn more about the frequency and distribution of Notch mutations in a tumor context. In this report, we use data from the recently developed Cancer Cell Line Encyclopedia to assess the frequency and distribution of Notch mutations in a large panel of cancer cell lines in silico. Our results show that the mutation frequency of Notch receptor and ligand genes is at par with that for established oncogenes and higher than for a set of house-keeping genes. Mutations were found across all four Notch receptor genes, but with notable differences between protein domains, mutations were for example more prevalent in the regions encoding the LNR and PEST domains in the Notch intracellular domain. Furthermore, an in silico estimation of functional impact showed that deleterious mutations cluster to the ligand-binding and the intracellular domains of NOTCH1. For most cell line groups, the mutation frequency of Notch genes is higher than in associated primary tumors. Our results shed new light on the spectrum of Notch mutations after in vitro culturing of tumor cells. The higher mutation frequency in tumor cell lines indicates that Notch mutations are associated with a growth advantage in vitro, and thus may be considered to be driver mutations in a tumor cell line context. The online version of this article (doi:10.1186/s12885-015-1278-x) contains supplementary material, which is available to authorized users

  13. Clonogenic cell line survival of a human liver cancer cell line SMMC-7721 after carbon ion irradiation with different LET

    International Nuclear Information System (INIS)

    Lei Suwen; Su Xu; Wang Jifang; Li Wenjian

    2003-01-01

    Objective: To investigate the survival fraction of a human liver cancer cell line SMMC-7721 following irradiation with carbon ions with different LET. Methods: cells of the human liver cancer cell line SMMC-7721 were irradiated with carbon ions (LET=30 and 70 keV/μm). The survival fraction was determined with clonogenic assay after 9 days incubation in a 5% CO 2 incubator at 37 degree C. Results: When the survival fractions of 70 keV/μm were D s = 0.1 and D s=0.01 absorption dose were 2.94 and 5.88 Gy respectively, and those of 30 keV/μm were 4.00 and 8.00 Gy respectively. Conclusion: For the SMMC-7721 cell line, 70 keV/μm is more effective for cell killing than 30 keV/μm

  14. A Comparison between the Cytotoxicity Induced by Gossypol in Two Testicular Cell Lines

    Directory of Open Access Journals (Sweden)

    Neda MahdinezhadGorji

    2014-12-01

    Full Text Available Background: Gossypol is a yellow toxic pigment from the cottonseed that can cause acute or chronic toxicity in humans and animals by affecting the testicular tissues. Nowadays cottonseed is used as food supplement for ruminants specially the sheep. In this study, two different stem cell lines of testicular tissue including GC1-spg (mouse testis and SFTF-PI43 (sheep testis cells were used to evaluation of gossypol cytotoxicity. Methods: The GC-1spg and the SFTF_PI43 cells were cultured in RPMI-1640 supplemented with fetal bovine serum (10% and antibiotic (penicillin 105/ml, streptomycin100μg/ml, and then 5×104 cells/well were seeded in 24 well plates. Cultured cells were exposed to four different concentrations of gossypol (1.25, 2.5, 5 and 10μM. After 24 h incubation, cells viability test was performed using Trypan Blue dye exclusion and MTT assay. The Thiobarbituric Acid Reacting Substances (TBARS and Ferric Reducing Activity Potential (FRAP assays was performed on media. Result: In high concentrations (over than 2.5μM, Gossypol showed cytotoxic effects on cells. The IC50 for gossypol (using MTT assays on SFTF-PI43 and GC-1spg cell lines was 2.2 μM and 3.2 μM, respectively. While the results for FRAP assay did not show any significant differences between the test and control groups, significantly higher lipid peroxidation was observed in SFTF-PI43 cells that were treated with higher doses of gossypol (10μM. Conclusion: In this research, we found that gossypol has cytotoxic effects on both examined testicular cell lines and increased lipid peroxidation, which is a probable mechanism of its toxicity on cell lines.

  15. Guidelines for the use of cell lines in biomedical research.

    Science.gov (United States)

    Geraghty, R J; Capes-Davis, A; Davis, J M; Downward, J; Freshney, R I; Knezevic, I; Lovell-Badge, R; Masters, J R W; Meredith, J; Stacey, G N; Thraves, P; Vias, M

    2014-09-09

    Cell-line misidentification and contamination with microorganisms, such as mycoplasma, together with instability, both genetic and phenotypic, are among the problems that continue to affect cell culture. Many of these problems are avoidable with the necessary foresight, and these Guidelines have been prepared to provide those new to the field and others engaged in teaching and instruction with the information necessary to increase their awareness of the problems and to enable them to deal with them effectively. The Guidelines cover areas such as development, acquisition, authentication, cryopreservation, transfer of cell lines between laboratories, microbial contamination, characterisation, instability and misidentification. Advice is also given on complying with current legal and ethical requirements when deriving cell lines from human and animal tissues, the selection and maintenance of equipment and how to deal with problems that may arise.

  16. Guidelines for the use of cell lines in biomedical research

    Science.gov (United States)

    Geraghty, R J; Capes-Davis, A; Davis, J M; Downward, J; Freshney, R I; Knezevic, I; Lovell-Badge, R; Masters, J R W; Meredith, J; Stacey, G N; Thraves, P; Vias, M

    2014-01-01

    Cell-line misidentification and contamination with microorganisms, such as mycoplasma, together with instability, both genetic and phenotypic, are among the problems that continue to affect cell culture. Many of these problems are avoidable with the necessary foresight, and these Guidelines have been prepared to provide those new to the field and others engaged in teaching and instruction with the information necessary to increase their awareness of the problems and to enable them to deal with them effectively. The Guidelines cover areas such as development, acquisition, authentication, cryopreservation, transfer of cell lines between laboratories, microbial contamination, characterisation, instability and misidentification. Advice is also given on complying with current legal and ethical requirements when deriving cell lines from human and animal tissues, the selection and maintenance of equipment and how to deal with problems that may arise. PMID:25117809

  17. Establishment of mesenchymal cell line derived from human developing odontoma.

    Science.gov (United States)

    Hatano, H; Kudo, Y; Ogawa, I; Shimasue, H; Shigeishi, H; Ohta, K; Higashikawa, K; Takechi, M; Takata, T; Kamata, N

    2012-11-01

    An odontoma, which shows proliferating odontogenic epithelium and mesenchymal tissue, is one of the most common odontogenic tumors encountered. These are commonly found in tooth-bearing regions, although the etiology remains unknown. There are no previous reports of an established line of immortalized human odontoma cells. Using odontoma fragments obtained from a girl treated at our department, we established an immortalized human odontoma cell line and investigated cell morphology, dynamic proliferation, the presence of contamination, and karyotype. Moreover, cell characterization was examined using osteogenic and odontogenic markers. We successfully established a mesenchymal odontoma cell (mOd cells). The cells were found to be fibroblastic and had a high level of telomerase activity. Cell growth was confirmed after more than 200 population doublings without significant growth retardation. mOd cells expressed mRNA for differentiation markers, including collagen type I (COLI), alkaline phosphatase, bone sialoprotein, osteopontin, osteocalcin, cementum-derived protein (CP-23), dentin sialophosphoprotein (DSPP), and distal-less homeobox 3 (DLX3), as well as bone morphogenetic proteins (BMPs). In addition, they showed a high level of calcified nodule formation activity in vitro. We successfully established a cell line that may be useful for investigating the mechanisms of normal odontogenesis as well as characteristics of odontoma tumors. © 2012 John Wiley & Sons A/S.

  18. Physiological Gut Oxygenation Alters GLP-1 Secretion from the Enteroendocrine Cell Line STC-1.

    Science.gov (United States)

    Kondrashina, Alina; Papkovsky, Dmitri; Giblin, Linda

    2018-02-01

    Enteroendocrine cell lines are routinely assayed in simple buffers at ≈20% oxygen to screen foods for bioactives that boost satiety hormone levels. However, in vivo, enteroendocrine cells are exposed to different phases of food digestion and function at low oxygen concentration, ranging from 7.5% in the stomach to 0.5% in the colon-rectal junction. The objective of this study is to investigate the effect of physiologically relevant O 2 concentrations of the gut on the production and secretion of the satiety hormone, glucagon-like peptide 1 (GLP-1), from the murine enteroendocrine cell line, secretin tumor cell line (STC-1), in response to dairy macronutrients as they transit the gut. GLP-1 exocytosis from STC-1 cells is influenced by both oxygen concentration and by individual macronutrients. At low oxygen, STC-1 cell viability is significantly improved for all macronutrient stimulations and cyclic adenosine monophosphate levels are dampened. GLP-1 secretion from STC-1 cells is influenced by both the phase of yogurt digestion and corresponding O 2 concentration. Atmospheric oxygen at 4.5% combined with upper gastric digesta, which simulates ileum conditions, yields the highest GLP-1 response. This demonstrates the importance of considering physiological oxygen levels and food digestion along gastrointestinal tract for reliable in vitro analysis of gut hormone secretion. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Anti-HIV designer T cells progressively eradicate a latently infected cell line by sequentially inducing HIV reactivation then killing the newly gp120-positive cells.

    Science.gov (United States)

    Sahu, Gautam K; Sango, Kaori; Selliah, Nithianandan; Ma, Qiangzhong; Skowron, Gail; Junghans, Richard P

    2013-11-01

    The current antiretroviral therapy (ART) can effectively reduce plasma HIV loads to undetectable levels, but cannot eliminate latently infected resting memory CD4 T cells that persist for the lifetime of infected patients. Therefore, designing new therapeutic approaches to eliminate these latently infected cells or the cells that produce HIV upon reactivation from latency is a priority in the ART era in order to progress to a cure of HIV. Here, we show that "designer" T cells expressing chimeric antigen receptor (CAR), CD4-CD28-CD3ζ, can target and kill HIV Env-expressing cells. Further, they secrete effector cytokines upon contact with HIV Env+ target cells that can reactivate latent HIV in a cell line model, thereby exposing those cells to recognition and killing by anti-HIV CAR+ T cells. Taken to the limit, this process could form the basis for an eventual functional or sterilizing cure for HIV in patients. © 2013 Elsevier Inc. All rights reserved.

  20. Isolation of Oct4-expressing extraembryonic endoderm precursor cell lines.

    Directory of Open Access Journals (Sweden)

    Bisrat G Debeb

    Full Text Available BACKGROUND: The extraembryonic endoderm (ExEn defines the yolk sac, a set of membranes that provide essential support for mammalian embryos. Recent findings suggest that the committed ExEn precursor is present already in the embryonic Inner Cell Mass (ICM as a group of cells that intermingles with the closely related epiblast precursor. All ICM cells contain Oct4, a key transcription factor that is first expressed at the morula stage. In vitro, the epiblast precursor is most closely represented by the well-characterized embryonic stem (ES cell lines that maintain the expression of Oct4, but analogous ExEn precursor cell lines are not known and it is unclear if they would express Oct4. METHODOLOGY/PRINCIPAL FINDINGS: Here we report the isolation and characterization of permanently proliferating Oct4-expressing rat cell lines ("XEN-P cell lines", which closely resemble the ExEn precursor. We isolated the XEN-P cell lines from blastocysts and characterized them by plating and gene expression assays as well as by injection into embryos. Like ES cells, the XEN-P cells express Oct4 and SSEA1 at high levels and their growth is stimulated by leukemia inhibitory factor, but instead of the epiblast determinant Nanog, they express the ExEn determinants Gata6 and Gata4. Further, they lack markers characteristic of the more differentiated primitive/visceral and parietal ExEn stages, but exclusively differentiate into these stages in vitro and contribute to them in vivo. CONCLUSIONS/SIGNIFICANCE: Our findings (i suggest strongly that the ExEn precursor is a self-renewable entity, (ii indicate that active Oct4 gene expression (transcription plus translation is part of its molecular identity, and (iii provide an in vitro model of early ExEn differentiation.

  1. Establishment, immortalisation and characterisation of pteropid bat cell lines.

    Directory of Open Access Journals (Sweden)

    Gary Crameri

    Full Text Available BACKGROUND: Bats are the suspected natural reservoir hosts for a number of new and emerging zoonotic viruses including Nipah virus, Hendra virus, severe acute respiratory syndrome coronavirus and Ebola virus. Since the discovery of SARS-like coronaviruses in Chinese horseshoe bats, attempts to isolate a SL-CoV from bats have failed and attempts to isolate other bat-borne viruses in various mammalian cell lines have been similarly unsuccessful. New stable bat cell lines are needed to help with these investigations and as tools to assist in the study of bat immunology and virus-host interactions. METHODOLOGY/FINDINGS: Black flying foxes (Pteropus alecto were captured from the wild and transported live to the laboratory for primary cell culture preparation using a variety of different methods and culture media. Primary cells were successfully cultured from 20 different organs. Cell immortalisation can occur spontaneously, however we used a retroviral system to immortalise cells via the transfer and stable production of the Simian virus 40 Large T antigen and the human telomerase reverse transcriptase protein. Initial infection experiments with both cloned and uncloned cell lines using Hendra and Nipah viruses demonstrated varying degrees of infection efficiency between the different cell lines, although it was possible to infect cells in all tissue types. CONCLUSIONS/SIGNIFICANCE: The approaches developed and optimised in this study should be applicable to bats of other species. We are in the process of generating further cell lines from a number of different bat species using the methodology established in this study.

  2. Micronucleus frequency in exfoliated buccal cells from hairdresser who expose to hair products

    Directory of Open Access Journals (Sweden)

    Koh Hui Yee

    2015-06-01

    Full Text Available Background: Hairdresser is one of the fastest growing occupations in today’s society. Hairdresser help styling, cutting, colouring, perming, curling, straightening hair and various treatment to customer. Somehow, hairdresser are constantly exposed to chemical substances such as aromatic amines, hydrogen peroxide, thioglycolic acid, formaldehyde in hair products which can cause damage to human’s genome. Micronucleus is one of the effective biomarker for processes associated with the induction of DNA damage. Purpose: The aim of this study was to determine the micronucleus frequencies in buccal mucosa epithelial cells of hairdresser who were exposed to chemical of hair products. Method: This study was conducted on twenty female subjects, who were divided into 2 groups: exposed and non-exposed (control group. All subjects recruited were working in the same beauty salon. Buccal cells were obtained from each individual by using cytobrush. The cells were stained with modified Feulgen-Ronssenback method and counting of micronucleus per 1000 cell was done under light microscope. The data were analyzed using independent t-test and one-way Anova (p<0.05. Result: The result showed a significant difference in micronucleus frequency between 2 groups. There were a significantly increase of micronucleus frequency in hairdressers and increase of  micronucleus frequency with the longer duration of exposure. Conclusion: It concluded that the chemical substances of hair products had affected the micronucleus frequency ofthe epithelial cells in buccal mucosa of hairdressers.

  3. Characterization of a human ovarian carcinoma cell line: UCI 101.

    Science.gov (United States)

    Fuchtner, C; Emma, D A; Manetta, A; Gamboa, G; Bernstein, R; Liao, S Y

    1993-02-01

    A new epithelial ovarian carcinoma cell line (UCI 101) has been established from the ascitic fluids and solid tumor of a patient with progressive papillary adenocarcinoma of the ovary shown previously to be refractory to combination chemotherapy consisting of cyclophosphamide, Adriamycin, and cisplatin as well as single-agent chemotherapy of taxol and high-dose cisplatin. The UCI 101 cell line grows well with an in vitro doubling time of 24 hr. The cell line expresses the B 72.3 (Tag 72), CA125, MH99 (ESA), and E29 (EMA) cell surface antigens and AE1/AE3 cytokeratins. This cell line overexpresses (as determined by immunocytochemistry) both p-glycoprotein and the epidermal growth factor receptor. The in vitro drug response to single agents including Adriamycin, cisplatin, dequalinium chloride, etoposide, 5-fluorouracil, taxol, and tumor necrosis factor was examined. Intraperitoneal transplantation of the cells into athymic mice resulted in foci of tumor on all peritoneal surfaces including the viscera and diaphragm ultimately leading to solid bulky disease with massive production of ascites. High levels of CA125 (> 500 units/ml) were detected in the serum of tumor-bearing mice. Cytogenetic analysis of cultured cells shows several marker chromosomes containing deletions, duplications, and translocations. Cytologic and histologic evaluation of the xenograft revealed morphological characteristics identical to those of the original tumor.

  4. SENSORY HAIR CELL REGENERATION IN THE ZEBRAFISH LATERAL LINE

    Science.gov (United States)

    Lush, Mark E.; Piotrowski, Tatjana

    2014-01-01

    Damage or destruction of sensory hair cells in the inner ear leads to hearing or balance deficits that can be debilitating, especially in older adults. Unfortunately, the damage is permanent, as regeneration of the inner ear sensory epithelia does not occur in mammals. Zebrafish and other non-mammalian vertebrates have the remarkable ability to regenerate sensory hair cells and understanding the molecular and cellular basis for this regenerative ability will hopefully aid us in designing therapies to induce regeneration in mammals. Zebrafish not only possess hair cells in the ear but also in the sensory lateral line system. Hair cells in both organs are functionally analogous to hair cells in the inner ear of mammals. The lateral line is a mechanosensory system found in most aquatic vertebrates that detects water motion and aids in predator avoidance, prey capture, schooling and mating. Although hair cell regeneration occurs in both the ear and lateral line, most research to date has focused on the lateral line due to its relatively simple structure and accessibility. Here we review the recent discoveries made during the characterization of hair cell regeneration in zebrafish. PMID:25045019

  5. Nestin expression in the cell lines derived from glioblastoma multiforme

    International Nuclear Information System (INIS)

    Veselska, Renata; Kuglik, Petr; Cejpek, Pavel; Svachova, Hana; Neradil, Jakub; Loja, Tomas; Relichova, Jirina

    2006-01-01

    Nestin is a protein belonging to class VI of intermediate filaments that is produced in stem/progenitor cells in the mammalian CNS during development and is consecutively replaced by other intermediate filament proteins (neurofilaments, GFAP). Down-regulated nestin may be re-expressed in the adult organism under certain pathological conditions (brain injury, ischemia, inflammation, neoplastic transformation). Our work focused on a detailed study of the nestin cytoskeleton in cell lines derived from glioblastoma multiforme, because re-expression of nestin together with down-regulation of GFAP has been previously reported in this type of brain tumor. Two cell lines were derived from the tumor tissue of patients treated for glioblastoma multiforme. Nestin and other cytoskeletal proteins were visualized using imunocytochemical methods: indirect immunofluorescence and immunogold-labelling. Using epifluorescence and confocal microscopy, we described the morphology of nestin-positive intermediate filaments in glioblastoma cells of both primary cultures and the derived cell lines, as well as the reorganization of nestin during mitosis. Our most important result came through transmission electron microscopy and provided clear evidence that nestin is present in the cell nucleus. Detailed information concerning the pattern of the nestin cytoskeleton in glioblastoma cell lines and especially the demonstration of nestin in the nucleus represent an important background for further studies of nestin re-expression in relationship to tumor malignancy and invasive potential

  6. Pluronic polyols in human lymphocyte cell line cultures.

    Science.gov (United States)

    Mizrahi, A

    1975-01-01

    Pluronic polyols markedly improved the growth of two human lymphocyte cell lines when added to the growth medium in concentrations of 0.05 to 0.1%. The results of the current studies suggest that, in addition to the protective effect of polyols against mechanical damage of mammalian cells in submerged cultures, the pluronic compounds may also, by lowering surface tension, facilitate transport of metabolites into cells and thus increase the growth rate. PMID:1063740

  7. Additive effects of vorinostat and MLN8237 in pediatric leukemia, medulloblastoma, and neuroblastoma cell lines.

    Science.gov (United States)

    Muscal, Jodi A; Scorsone, Kathleen A; Zhang, Linna; Ecsedy, Jeffrey A; Berg, Stacey L

    2013-02-01

    Histone deacetylase (HDAC) inhibitors, such as vorinostat, decrease Aurora kinase activity by a variety of mechanisms. Vorinostat and MLN8237, a selective Aurora A kinase inhibitor, disrupt the spindle assembly and the mitotic checkpoint at different points, suggesting that the combination could have increased antitumor activity. The purpose of this study was to determine the cytotoxicity of vorinostat and MLN8237 in pediatric tumor cell lines. Cell survival was measured after 72 h of drug treatment using a modified methyl tetrazolium assay. For drug combination experiments, cells were exposed to medium alone (controls), single drug alone, or to different concentrations of the combination of the two drugs, for a total of 36 concentration pairs per plate. The interaction of the drug combination was analyzed using the universal response surface approach. The cells express the target of MLN8237, Aurora A. For each cell line, the single agent IC(50) for MLN8237 and for vorinostat was in the clinically relevant range. Both drugs inhibited cell survival in a concentration-dependent fashion. At concentrations of MLN8237 exceeding approximately 1 μM, there was a paradoxical increase in viability signal in all three lines that may be explained by inhibition of Aurora B kinase. The combination of MLN8237 and vorinostat showed additive cytotoxicity in all three cell lines and nearly abrogated the paradoxical increase in survival noted at high single-agent MLN8237 concentrations. MLN8237 and vorinostat are active in vitro against cancer cell lines. These results provide important preclinical support for the development of future clinical studies of MLN8237and vorinostat.

  8. Unirradiated cells rescue cells exposed to ionizing radiation: Activation of NF-κB pathway in irradiated cells

    Energy Technology Data Exchange (ETDEWEB)

    Lam, R.K.K. [Department of Physics and Materials Science, City University of Hong Kong (Hong Kong); Han, Wei [Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031 (China); Yu, K.N., E-mail: peter.yu@cityu.edu.hk [Department of Physics and Materials Science, City University of Hong Kong (Hong Kong); State Key Laboratory in Marine Pollution, City University of Hong Kong (Hong Kong)

    2015-12-15

    Highlights: • Rescue effect was observed in both irradiated and HeLa and NIH/3T3 cells. • Novel setup and procedures to separate the rescue signals and the bystander signals. • Confirmed activation of NF-κB pathway in rescue effect using activation inhibitor. • Confirmed activation of NF-κB pathway in rescue effect using anti-NF-κB p65 antibody. - Abstract: We studied the involvement of NF-κB pathway activation in the rescue effect in HeLa and NIH/3T3 cells irradiated by α particles. Firstly, upon irradiation by 5 cGy of α particles, for both cell lines, the numbers of 53BP1 foci/cell at 12 h post-irradiation were significantly smaller when only 2.5% of the cell population was irradiated as compared to 100% irradiation, which demonstrated the rescue effect. Secondly, we studied the effect of NF-κB on the rescue effect through the use of the NF-κB activation inhibitor BAY-11-7082. Novel experimental setup and procedures were designed to prepare the medium (CM) which had conditioned the bystander cells previously partnered with irradiated cells, to ensure physical separation between rescue and bystander signals. BAY-11-7082 itself did not inflict DNA damages in the cells or have effects on activation of the NF-κB response pathway in the irradiated cells through direct irradiation. The rescue effect was induced in both cell lines by the CM, which was abrogated if BAY-11-7082 was added to the CM. Thirdly, we studied the effect of NF-κB on the rescue effect through staining for phosphorylated NF-κB (p-NF-κB) expression using the anti-NF-κB p65 (phospho S536) antibody. When the fraction of irradiated cells dropped from 100% to 2.5%, the p-NF-κB expression in the cell nuclei of irradiated NIH/3T3 cells increased significantly, while that in the cell nuclei of irradiated HeLa cells also increased although not significantly. Moreover, the p-NF-κB expression in the cell nuclei of irradiated HeLa cells and NIH/3T3 cells treated with CM also increased

  9. Alterations of zinc homeostasis in response to Cryptococcus neoformans in a murine macrophage cell line.

    Science.gov (United States)

    Dos Santos, Francine Melise; Piffer, Alícia Corbellini; Schneider, Rafael de Oliveira; Ribeiro, Nicole Sartori; Garcia, Ane Wichine Acosta; Schrank, Augusto; Kmetzsch, Lívia; Vainstein, Marilene Henning; Staats, Charley Christian

    2017-05-01

    To evaluate alterations of zinc homeostasis in macrophages exposed to Cryptococcus neoformans. Materials & methods: Using a fluorescent zinc probe-based flow cytometry and atomic absorption spectrometry, zinc levels were evaluated in J774.A1 cell lines exposed to C. neoformans H99 cells. The transcription profile of macrophage zinc related homeostasis genes - metallothioneins and zinc transporters (ZnTs) of the SLC30 and SLC39 (Zrt-Irt-protein) families - was analyzed by quantitative PCR. Macrophage intracellular labile zinc levels decreased following exposure to C. neoformans. A significant decrease in transcription levels was detected in specific ZnTs from both the Zrt-Irt-protein and ZnT families, especially 24 h after infection. These findings suggest that macrophages may exhibit zinc depletion in response to C. neoformans infection.

  10. Human squamous cell carcinoma. Establishment and characterization of new permanent cell lines.

    Science.gov (United States)

    Krause, C J; Carey, T E; Ott, R W; Hurbis, C; McClatchey, K D; Regezi, J A

    1981-11-01

    Squamous cell carcinoma is the most common of human cancers, and yet because it is poorly represented by cultured cell lines, little is known about the characteristic cell biology and the cell-surface antigenic phenotypes of such tumors. To develop a continuously available source of squamous cell carcinoma for repeated and reproducible serologic analysis and for better understanding of its biologic characteristics, tissue culture methods and nude mice were used to establish new cell lines of squamous carcinoma. Special media, serum supplements from several sources, and methods of handling fresh tissue specimens were all examined as a means of improving the survival of tumor cell lines. Several new cell lines were established. Features characteristic of a squamous cell origin, eg, microvilli, desmosomes, tonofilaments, and the squamous cell differentiation antigen (pemphigus antigen), were found. The clinical course of disease in individual donor patients has been examined.

  11. Gene expression profile in bone marrow and hematopoietic stem cells in mice exposed to inhaled benzene

    International Nuclear Information System (INIS)

    Faiola, Brenda; Fuller, Elizabeth S.; Wong, Victoria A.; Recio, Leslie

    2004-01-01

    Acute myeloid leukemia and chronic lymphocytic leukemia are associated with benzene exposure. In mice, benzene induces chromosomal breaks as a primary mode of genotoxicity in the bone marrow (BM). Benzene-induced DNA lesions can lead to changes in hematopoietic stem cells (HSC) that give rise to leukemic clones. To gain insight into the mechanism of benzene-induced leukemia, we investigated the DNA damage repair and response pathways in total bone marrow and bone marrow fractions enriched for HSC from male 129/SvJ mice exposed to benzene by inhalation. Mice exposed to 100 ppm benzene for 6 h per day, 5 days per week for 2 week showed significant hematotoxicity and genotoxicity compared to air-exposed control mice. Benzene exposure did not alter the level of apoptosis in BM or the percentage of HSC in BM. RNA isolated from total BM cells and the enriched HSC fractions from benzene-exposed and air-exposed mice was used for microarray analysis and quantitative real-time RT-PCR. Interestingly, mRNA levels of DNA repair genes representing distinct repair pathways were largely unaffected by benzene exposure, whereas altered mRNA expression of various apoptosis, cell cycle, and growth control genes was observed in samples from benzene-exposed mice. Differences in gene expression profiles were observed between total BM and HSC. Notably, p21 mRNA was highly induced in BM but was not altered in HSC following benzene exposure. The gene expression pattern suggests that HSC isolated immediately following a 2 weeks exposure to 100 ppm benzene were not actively proliferating. Understanding the toxicogenomic profile of the specific target cell population involved in the development of benzene-associated diseases may lead to a better understanding of the mechanism of benzene-induced leukemia and may identify important interindividual and tissue susceptibility factors

  12. Detection of genomic instability in normal human bronchial epithelial cells exposed to 238Pu

    International Nuclear Information System (INIS)

    Kennedy, C.H.; Fukushima, N.H.; Neft, R.E.; Lechner, J.F.

    1994-01-01

    Alpha particle-emitting radon daughters constitute a risk for development of lung cancer in humans. The development of this disease involves multiple genetic alterations. These changes and the time course they follow are not yet defined despite numerous in vitro endeavors to transform human lung cells with various physical or chemical agents. However, genomic instability, characterized both by structural and numerical chromosomal aberrations and by elevated rates of point mutations, is a common feature of tumor cells. Further, both types of genomic instability have been reported in the noncancerous progeny of normal murine hemopoietic cells exposed in vitro to α-particles. The purpose of this investigation was to determine if genomic instability is also a prominent feature of normal human bronchial epithelial cells exposed to α-particle irradiation from the decay of inhaled radon daughters

  13. Differential responses of the antioxidant defence system and ultrastructure in a salt-adapted potato cell line.

    Science.gov (United States)

    Queirós, Filipa; Rodrigues, José A; Almeida, José M; Almeida, Domingos P F; Fidalgo, Fernanda

    2011-12-01

    Changes in lipid peroxidation and ion content and the possible involvement of the antioxidant system in salt tolerance at the cellular level was studied in a potato (Solanum tuberosum L.) callus line grown on 150 mM NaCl (salt-adapted) and in a non-adapted line exposed to 150 mM NaCl (salt-stressed). Salinity reduced the growth rate and increased lipid peroxidation in salt-stressed line, which remained unaltered in the adapted line. Na⁺ and Cl⁻ content increased due to salinity in both lines, but the adapted line displayed greater K⁺/Na⁺ ratio than the stressed one. Total superoxide dismutase (SOD, EC 1.15.1.1), ascorbate peroxidase (APX, EC 1.11.1.11), and glutathione reductase (GR, EC 1.6.4.2) activities decreased in both salt-exposed lines; catalase (CAT, EC 1.11.1.6) activity did not change in the adapted line, but decreased in the stressed cell line. Salinity caused the suppression of one GR isoform, while the isozyme patterns of SOD, APX, and CAT were not affected. Ascorbate and reduced glutathione increased in both salt-exposed calli lines. α-Tocopherol increased as a result of salt exposure, with higher levels found in adapted calli. Electron microscopy showed that neither the structural integrity of the cells nor membrane structure were affected by salinity, but plastids from adapted cells had higher starch content. The results suggest that the enzymic and non-enzymic components of the antioxidant system are differentially modulated by salt. Different concentrations of antioxidant metabolites are more relevant to the adaptive response to salinity in potato calli than the differences in activity of the antioxidant enzymes. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  14. DNA fragmentation and apoptosis induced by safranal in human prostate cancer cell line

    Directory of Open Access Journals (Sweden)

    Saeed Samarghandian

    2013-01-01

    Full Text Available Objectives: Apoptosis, an important mechanism that contributes to cell growth reduction, is reported to be induced by Crocus sativus (Saffron in different cancer types. However, limited effort has been made to correlate these effects to the active ingredients of saffron. The present study was designed to elucidate cytotoxic and apoptosis induction by safranal, the major coloring compound in saffron, in a human prostate cancer cell line (PC-3. Materials and Methods: PC-3 and human fetal lung fibroblast (MRC-5 cells were cultured and exposed to safranal (5, 10, 15, and 20 μg/ml. The 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay was performed to assess cytotoxicity. DNA fragmentation was assessed by gel electrophoresis. Cells were incubated with different concentrations of safranal, and cell morphologic changes and apoptosis were determined by the normal inverted microscope, Annexin V, and propidium iodide, followed by flow cytometric analysis, respectively. Results: MTT assay revealed a remarkable and concentration-dependent cytotoxic effect of safranal on PC-3 cells in comparison with non-malignant cell line. The morphologic alterations of the cells confirmed the MTT results. The IC 50 values against PC-3 cells were found to be 13.0 ΁ 0.07 and 6.4 ΁ 0.09 μg/ml at 48 and 72 h, respectively. Safranal induced an early and late apoptosis in the flow cytometry histogram of treated cells, indicating apoptosis is involved in this toxicity. DNA analysis revealed typical ladders as early as 48 and 72 h after treatment, indicative of apoptosis. Conclusions: Our preclinical study demonstrated a prostate cancer cell line to be highly sensitive to safranal-mediated growth inhibition and apoptotic cell death. Although the molecular mechanisms of safranal action are not clearly understood, it appears to have potential as a therapeutic agent.

  15. Distinct metabolic responses of an ovarian cancer stem cell line.

    Science.gov (United States)

    Vermeersch, Kathleen A; Wang, Lijuan; McDonald, John F; Styczynski, Mark P

    2014-12-18

    Cancer metabolism is emerging as an important focus area in cancer research. However, the in vitro cell culture conditions under which much cellular metabolism research is performed differ drastically from in vivo tumor conditions, which are characterized by variations in the levels of oxygen, nutrients like glucose, and other molecules like chemotherapeutics. Moreover, it is important to know how the diverse cell types in a tumor, including cancer stem cells that are believed to be a major cause of cancer recurrence, respond to these variations. Here, in vitro environmental perturbations designed to mimic different aspects of the in vivo environment were used to characterize how an ovarian cancer cell line and its derived, isogenic cancer stem cells metabolically respond to environmental cues. Mass spectrometry was used to profile metabolite levels in response to in vitro environmental perturbations. Docetaxel, the chemotherapeutic used for this experiment, caused significant metabolic changes in amino acid and carbohydrate metabolism in ovarian cancer cells, but had virtually no metabolic effect on isogenic ovarian cancer stem cells. Glucose deprivation, hypoxia, and the combination thereof altered ovarian cancer cell and cancer stem cell metabolism to varying extents for the two cell types. Hypoxia had a much larger effect on ovarian cancer cell metabolism, while glucose deprivation had a greater effect on ovarian cancer stem cell metabolism. Core metabolites and pathways affected by these perturbations were identified, along with pathways that were unique to cell types or perturbations. The metabolic responses of an ovarian cancer cell line and its derived isogenic cancer stem cells differ greatly under most conditions, suggesting that these two cell types may behave quite differently in an in vivo tumor microenvironment. While cancer metabolism and cancer stem cells are each promising potential therapeutic targets, such varied behaviors in vivo would need to

  16. Modeling adenovirus latency in human lymphocyte cell lines.

    Science.gov (United States)

    Zhang, Yange; Huang, Wen; Ornelles, David A; Gooding, Linda R

    2010-09-01

    Species C adenovirus establishes a latent infection in lymphocytes of the tonsils and adenoids. To understand how this lytic virus is maintained in these cells, four human lymphocytic cell lines that support the entire virus life cycle were examined. The T-cell line Jurkat ceased proliferation and died shortly after virus infection. BJAB, Ramos (B cells), and KE37 (T cells) continued to divide at nearly normal rates while replicating the virus genome. Viral genome numbers peaked and then declined in BJAB cells below one genome per cell at 130 to 150 days postinfection. Ramos and KE37 cells maintained the virus genome at over 100 copies per cell over a comparable period of time. BJAB cells maintained the viral DNA as a monomeric episome. All three persistently infected cells lost expression of the cell surface coxsackie and adenovirus receptor (CAR) within 24 h postinfection, and CAR expression remained low for at least 340 days postinfection. CAR loss proceeded via a two-stage process. First, an initial loss of cell surface staining for CAR required virus late gene expression and a CAR-binding fiber protein even while CAR protein and mRNA levels remained high. Second, CAR mRNA disappeared at around 30 days postinfection and remained low even after virus DNA was lost from the cells. At late times postinfection (day 180), BJAB cells could not be reinfected with adenovirus, even when CAR was reintroduced to the cells via retroviral transduction, suggesting that the expression of multiple genes had been stably altered in these cells following infection.

  17. Differential heat shock response of primary human cell cultures and established cell lines

    DEFF Research Database (Denmark)

    Richter, W W; Issinger, O G

    1986-01-01

    degrees C treatment, whereas in immortalized cell lines usually 90% of the cells were found in suspension. Enhanced expression of the major heat shock protein (hsp 70) was found in all heat-treated cells. In contrast to the primary cell cultures, established and transformed cell lines synthesized...... a protein with an apparent molecular mass of 70 kDa and an isoelectric pH of 7.0 as early as 3 h after the initial hyperthermal treatment....

  18. Immune cells in Chernobyl radiation workers exposed to low-dose irradiation

    International Nuclear Information System (INIS)

    Bazyka, D.; Chumak, A.; Byelyaeva, N.; Gulaya, N.; Margytich, V.; Thevenon, C.; Guichardant, M.; Lagarde, M.

    2002-01-01

    the aim of this work was to study immune response parameters in Chernobyl emergency and recovery operation radiation workers and nuclear industry workers exposed under professional limits. The monohydroxylated fatty acid content in peripheral blood mononuclear cell of radiation workers compared to unexposed control at the 12-th year after Chernobyl NPP accident was studied too

  19. Dipeptidyl peptidase IV in two human glioma cell lines

    Directory of Open Access Journals (Sweden)

    A Sedo

    2009-12-01

    Full Text Available There is growing evidence that dipeptidyl peptidase IV [DPP-IV, EC 3.4.14.5] takes part in the metabolism of biologically active peptides participating in the regulation of growth and transformation of glial cells. However, the knowledge on the DPP-IV expression in human glial and glioma cells is still very limited. In this study, using histochemical and biochemical techniques, the DPP-IV activity was demonstrated in two commercially available human glioma cell lines of different transformation degree, as represented by U373 astrocytoma (Grade III and U87 glioblastoma multiforme (Grade IV lines. Higher total activity of the enzyme, as well as its preferential localisation in the plasma membrane, was observed in U87 cells. Compared to U373 population, U87 cells were morphologically more pleiomorphic, they were cycling at lower rate and expressing less Glial Fibrillary Acidic Protein. The data revealed positive correlation between the degree of transformation of cells and activity of DPP-IV. Great difference in expression of this enzyme, together with the phenotypic differences of cells, makes these lines a suitable standard model for further 57 studies of function of this enzyme in human glioma cells.

  20. Effect of Predatory Bacteria on Human Cell Lines.

    Directory of Open Access Journals (Sweden)

    Shilpi Gupta

    Full Text Available Predatory bacteria are Gram-negative bacteria that prey on other Gram-negative bacteria and have been considered as potential therapeutic agents against multi-drug resistant pathogens. In vivo animal models have demonstrated that predatory bacteria are non-toxic and non-immunogenic in rodents. In order to consider the use of predatory bacteria as live antibiotics, it is important to investigate their effect on human cells. The aim of this study was to determine the effect of Bdellovibrio bacteriovorus strains 109J and HD100, and Micavibrio aeruginosavorus strain ARL-13 on cell viability and inflammatory responses of five human cell lines, representative of clinically relevant tissues. We found that the predators were not cytotoxic to any of the human cell lines tested. Microscopic imaging showed no signs of cell detachment, as compared to predator-free cells. In comparison to an E. coli control, exposure to higher concentrations of the predators did not trigger a significant elevation of pro-inflammatory cytokines in four of the five human cell lines tested. Our work underlines the non-pathogenic attributes of predatory bacteria on human cells and highlights their potential use as live antibiotics against human pathogens.

  1. Pheochromocytoma cell lines from heterozygous neurofibromatosis knockout mice.

    Science.gov (United States)

    Powers, J F; Evinger, M J; Tsokas, P; Bedri, S; Alroy, J; Shahsavari, M; Tischler, A S

    2000-12-01

    Transplantable tumors and cell lines have been developed from pheochromocytomas arising in mice with a heterozygous knockout mutation of the neurofibromatosis gene, Nf1. Nf1 encodes a ras-GTPase-activating protein, neurofibromin, and mouse pheochromocytoma (MPC) cells in primary cultures typically show extensive spontaneous neuronal differentiation that may result from the loss of the remaining wild-type allele and defective regulation of ras signaling. However, all MPC cell lines express neurofibromin, suggesting that preservation of the wild-type allele may be required to permit the propagation of MPC cells in vitro. MPC lines differ from PC12 cells in that they express both endogenous phenylethanolamine N-methyltransferase (PNMT) and full-length PNMT reporter constructs. PNMT expression is increased by dexamethasone and by cell-cell contact in suspension cultures. Mouse pheochromocytomas are a new tool for studying genes and signaling pathways that regulate cell growth and differentiation in adrenal medullary neoplasms and are a unique model for studying the regulation of PNMT expression.

  2. Effects of nicotine on zebrafish: A comparative response between a newly established gill cell line and whole gills.

    Science.gov (United States)

    Nathiga Nambi, K S; Abdul Majeed, S; Taju, G; Sivasubbu, Sridhar; Sarath Babu, V; Sahul Hameed, A S

    2017-05-01

    A novel cell line, Danio rerio gill (DrG), derived from the gill tissue of zebrafish, was established and characterized. The cells were able to grow at a wide range of temperatures from 25°C to 32°C in Leibovitz's L-15 medium. The DrG cell line consists of epithelial-like cells with a diameter of 18-22μm. The cell line was characterized by mitochondrial 12S rRNA gene. Acute toxicity tests were conducted on D. rerio by exposing them to nicotine for 96h under static conditions. In vitro cytotoxicity of nicotine was assessed in DrG cell line using multiple endpoints such as 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT), Neutral Red assay, Alamar Blue assay and Coomassie Blue protein assay. Linear correlations between each in vitro cytotoxicity assay and the in vivo mortality data were highly significant. Nicotine induced intracellular reactive oxygen species generation in DrG cell line in a concentration dependent manner. DrG cell line and zebrafish exposed to nicotine significantly increased the elevation of lipid peroxidation (LPO) while depletion of reduced glutathione (GSH), manganese superoxide dismutase (MnSOD), catalase (CAT), glutathione S-transferase (GST) and glutathione peroxidise(GPx1a) was observed. In nicotine treated fish and cells a negative correlation between reduced glutathione and LPO was observed. In addition, the production of ROS and the resulting oxidative stress resulted in increased expression of apoptosis related genes p53 and cas3.Collectively, our result suggests that nicotine has the potential to induce reactive oxygen species (ROS) production, oxidative stress and apoptosis in DrG cell line and zebrafish. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Antiproliferative effect of Tualang honey on oral squamous cell carcinoma and osteosarcoma cell lines

    Directory of Open Access Journals (Sweden)

    Ismail Noorliza M

    2010-09-01

    Full Text Available Abstract Background The treatment of oral squamous cell carcinomas (OSCC and human osteosarcoma (HOS includes surgery and/or radiotherapy which often lead to reduced quality of life. This study was aimed to study the antiproliferative activity of local honey (Tualang on OSCC and HOS cell lines. Methods Several concentrations of Tualang honey (1% - 20% were applied on OSCC and HOS cell lines for 3, 6, 12, 24, 48 and 72 hours. Morphological characteristics were observed under light and fluorescent microscope. Cell viability was assessed using MTT assay and the optical density for absorbance values in each experiment was measured at 570 nm by an ELISA reader. Detection of cellular apoptosis was done using the Annexin V-FITC Apoptosis Detection Kit. Results Morphological appearance showed apoptotic cellular changes like becoming rounded, reduction in cell number, blebbed membrane and apoptotic nuclear changes like nuclear shrinkage, chromatin condensation and fragmented nucleus on OSCC and HOS cell lines. Cell viability assay showed a time and dose-dependent inhibitory effect of honey on both cell lines. The 50% inhibitory concentration (IC50 for OSCC and HOS cell lines was found to be 4% and 3.5% respectively. The maximum inhibition of cell growth of ≥80% was obtained at 15% for both cell lines. Early apoptosis was evident by flow cytometry where percentage of early apoptotic cells increased in dose and time dependent manner. Conclusion Tualang honey showed antiproliferative effect on OSCC and HOS cell lines by inducing early apoptosis.

  4. Characterization of cloned cells from an immortalized fetal pulmonary type II cell line

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, R.F.; Waide, J.J.; Lechner, J.F.

    1995-12-01

    A cultured cell line that maintained expression of pulmonary type II cell markers of differentiation would be advantageous to generate a large number of homogenous cells in which to study the biochemical functions of type II cells. Type II epithelial cells are the source of pulmonary surfactant and a cell of origin for pulmonary adenomas. Last year our laboratory reported the induction of expression of two phenotypic markers of pulmonary type II cells (alkaline phosphatase activity and surfactant lipid synthesis) in cultured fetal rat lung epithelial (FRLE) cells, a spontaneously immortalized cell line of fetal rat lung type II cell origin. Subsequently, the induction of the ability to synthesize surfactant lipid became difficult to repeat. We hypothesized that the cell line was heterogenuous and some cells were more like type II cells than others. The purpose of this study was to test this hypothesis and to obtain a cultured cell line with type II cell phenotypic markers by cloning several FRLE cells and characterizing them for phenotypic markers of type II cells (alkaline phosphatase activity and presence of surfactant lipids). Thirty cloned cell lines were analyzed for induced alkaline phosphatase activity (on x-axis) and for percent of phospholipids that were disaturated (i.e., surfactant).

  5. Ultrastructure of cells of Ulmus americana cultured in vitro and exposed to the culture filtrate of Ceratocystis ulmi

    Science.gov (United States)

    Paula M. Pijut; R. Daniel Lineberger; Subhash C. Domir; Jann M. Ichida; Charles R. Krause

    1990-01-01

    Calli of American elm susceptible and resistant to Dutch elm disease were exposed to a culture filtrate of a pathogenic isolate of Ceratocystis ulmi. Cells from untreated tissue exhibited typical internal composition associated with healthy, actively growing cells. All cells exposed to culture filtrate showed appreciable ultrastructural changes....

  6. Expression of the epidermal growth factor receptor in human small cell lung cancer cell lines

    DEFF Research Database (Denmark)

    Damstrup, L; Rygaard, K; Spang-Thomsen, M

    1992-01-01

    Epidermal growth factor (EGF) receptor expression was evaluated in a panel of 21 small cell lung cancer cell lines with radioreceptor assay, affinity labeling, and Northern blotting. We found high-affinity receptors to be expressed in 10 cell lines. Scatchard analysis of the binding data...... lung cancer cell lines express the EGF receptor....... of EGF receptor mRNA in all 10 cell lines that were found to be EGF receptor-positive and in one cell line that was found to be EGF receptor-negative in the radioreceptor assay and affinity labeling. Our results provide, for the first time, evidence that a large proportion of a broad panel of small cell...

  7. HSP70 expression in human trophoblast cells exposed to different 1.8 Ghz mobile phone signals.

    Science.gov (United States)

    Franzellitti, Silvia; Valbonesi, Paola; Contin, Andrea; Biondi, Carla; Fabbri, Elena

    2008-10-01

    The heat-shock proteins (HSPs) are important cellular stress markers and have been proposed as candidates to infer biological effects of high-frequency electromagnetic fields (EMFs). In the current study, HSP70 gene and protein expression were evaluated in cells of the human trophoblast cell line HTR-8/SVneo after prolonged exposure (4 to 24 h) to 1.8 GHz continuous-wave (CW) and different GSM signals (GSM-217Hz and GSM-Talk) to assess the possible effects of time and modulation schemes on cell responses. Inducible HSP70 protein expression was not modified by high-frequency EMFs under any condition tested. The inducible HSP70A, HSP70B and the constitutive HSC70 transcripts did not change in cells exposed to high-frequency EMFs with the different modulation schemes. Instead, levels of the inducible HSP70C transcript were significantly enhanced after 24 h exposure to GSM-217Hz signals and reduced after 4 and 16 h exposure to GSM-Talk signals. As in other cell systems, in HTR-8/SVneo cells the response to high-frequency EMFs was detected at the mRNA level after exposure to amplitude-modulated GSM signals. The present results suggest that the expression analysis for multiple transcripts, though encoding the same or similar protein products, can be highly informative and may account for subtle changes not detected at the protein level.

  8. TKTL1 expression in human malign and benign cell lines.

    Science.gov (United States)

    Kämmerer, Ulrike; Gires, Olivier; Pfetzer, Nadja; Wiegering, Armin; Klement, Rainer Johannes; Otto, Christoph

    2015-06-10

    Overexpression of transketolase-like 1 protein TKTL1 in cancer cells has been reported to correlate with enhanced glycolysis and lactic acid production. Furthermore, enhanced TKTL1 expression was put into context with resistance to chemotherapy and ionizing radiation. Here, a panel of human malign and benign cells, which cover a broad range of chemotherapy and radiation resistance as well as reliance on glucose metabolism, was analyzed in vitro for TKTL1 expression. 17 malign and three benign cell lines were characterized according to their expression of TKTL1 on the protein level with three commercially available anti-TKTL1 antibodies utilizing immunohistochemistry and Western blot, as well as on mRNA level with three published primer pairs for RT-qPCR. Furthermore, sensitivities to paclitaxel, cisplatin and ionizing radiation were assessed in cell survival assays. Glucose consumption and lactate production were quantified as surrogates for the "Warburg effect". Considerable amounts of tktl1 mRNA and TKTL1 protein were detected only upon stable transfection of the human embryonic kidney cell line HEK293 with an expression plasmid for human TKTL1. Beyond that, weak expression of endogenous tktl1 mRNA was measured in the cell lines JAR and U251. Western blot analysis of JAR and U251 cells did not detect TKTL1 at the expected size of 65 kDa with all three antibodies specific for TKTL1 protein and immunohistochemical staining was observed with antibody JFC12T10 only. All other cell lines tested here revealed expression of tktl1 mRNA below detection limits and were negative for TKTL1 protein. However, in all cell lines including TKTL1-negative HEK293-control cells, antibody JFC12T10 detected multiple proteins with different molecular weights. Importantly, JAR and U251 did neither demonstrate an outstanding production of lactic acid nor increased resistance against chemotherapeutics or to ionizing radiation, respectively. Using RT-qPCR and three different antibodies we

  9. TKTL1 expression in human malign and benign cell lines

    International Nuclear Information System (INIS)

    Kämmerer, Ulrike; Gires, Olivier; Pfetzer, Nadja; Wiegering, Armin; Klement, Rainer Johannes; Otto, Christoph

    2015-01-01

    Overexpression of transketolase-like 1 protein TKTL1 in cancer cells has been reported to correlate with enhanced glycolysis and lactic acid production. Furthermore, enhanced TKTL1 expression was put into context with resistance to chemotherapy and ionizing radiation. Here, a panel of human malign and benign cells, which cover a broad range of chemotherapy and radiation resistance as well as reliance on glucose metabolism, was analyzed in vitro for TKTL1 expression. 17 malign and three benign cell lines were characterized according to their expression of TKTL1 on the protein level with three commercially available anti-TKTL1 antibodies utilizing immunohistochemistry and Western blot, as well as on mRNA level with three published primer pairs for RT-qPCR. Furthermore, sensitivities to paclitaxel, cisplatin and ionizing radiation were assessed in cell survival assays. Glucose consumption and lactate production were quantified as surrogates for the “Warburg effect”. Considerable amounts of tktl1 mRNA and TKTL1 protein were detected only upon stable transfection of the human embryonic kidney cell line HEK293 with an expression plasmid for human TKTL1. Beyond that, weak expression of endogenous tktl1 mRNA was measured in the cell lines JAR and U251. Western blot analysis of JAR and U251 cells did not detect TKTL1 at the expected size of 65 kDa with all three antibodies specific for TKTL1 protein and immunohistochemical staining was observed with antibody JFC12T10 only. All other cell lines tested here revealed expression of tktl1 mRNA below detection limits and were negative for TKTL1 protein. However, in all cell lines including TKTL1-negative HEK293-control cells, antibody JFC12T10 detected multiple proteins with different molecular weights. Importantly, JAR and U251 did neither demonstrate an outstanding production of lactic acid nor increased resistance against chemotherapeutics or to ionizing radiation, respectively. Using RT-qPCR and three different antibodies

  10. Development of disease preventive method using radiated pathogenic microorganisms, cell lines and animals

    Energy Technology Data Exchange (ETDEWEB)

    Murakami, Yosuke; Sakamoto, Kenichi; Yamakawa, Mutsumi [National Inst. of Animal Health, Kodaira, Tokyo (Japan)] [and others

    1999-02-01

    A radiated bone marrow chimera mouse has been constructed by grafting. This chimera mouse was thought useful for analyzing gene specific functions in vivo. This study aimed to construct a vector available for a study on the functions of various genes that were cloned from animals through their constitutive expressions. Construction of a retroviral vector was attempted using spleen focus forming virus (SFFV), a mouse leukemia virus. The virus thus obtained was demonstrated to be able to express the gene when infected to NIH3T3, a mouse fibroblast cell line. Furthermore, packaging cells were constructed by transfecting the retroviral vector into the fibroblast cell. Bone marrow cells were incubated with the packaging cells for several days to make gene transfection into the bone marrow cells. After radiation exposure at a lethal dose, the mouse was grafted with the bone marrow cells. Thus, it became possible to investigate in vivo functions of a cloned gene through its expression in the cells. Then, development of a retroviral vector was attempted to use for transfection into bone marrow cells. Aujeszky`s disease virus, a large size DNA virus was exposed to Co radiation at -78degC, but the infectivity of the irradiated virus was not detectable. Since viral RNA was demonstrated to be already broken 24 hours after the exposure to {beta}-ray, the effects of {beta}-radiation were examined with swine vesicular disease virus, a small RNA virus. This virus was exposed to {alpha}-{sup 32}dATP (37MBq) as a {beta}-ray source for 1 hour to 96 hours. However, there were no significant differences in the infectivity titer between the virus exposed for any of the durations and the control, non-radiated virus. This suggested that the virus was not inactivated under the present conditions. Further investigation to determine exposure conditions is under way. (M.N.)

  11. Maslinic acid inhibits proliferation of renal cell carcinoma cell lines and suppresses angiogenesis of endothelial cells

    Directory of Open Access Journals (Sweden)

    Parth Thakor

    2017-03-01

    Full Text Available Despite the introduction of many novel therapeutics in clinical practice, metastatic renal cell carcinoma (RCC remains a treatment-re-sistant cancer. As red and processed meat are considered risk factors for RCC, and a vegetable-rich diet is thought to reduce this risk, research into plant-based therapeutics may provide valuable complementary or alternative therapeutics for the management of RCC. Herein, we present the antiproliferative and antiangiogenic effects of maslinic acid, which occurs naturally in edible plants, particularly in olive fruits, and also in a variety of medicinal plants. Human RCC cell lines (ACHN, Caki-1, and SN12K1, endothelial cells (human umbilical vein endothelial cell line [HUVEC], and primary cultures of kidney proximal tubular epithelial cells (PTEC were treated with maslinic acid. Maslinic acid was relatively less toxic to PTEC when compared with RCC under similar experimental conditions. In RCC cell lines, maslinic acid induced a significant reduction in proliferation, proliferating cell nuclear antigen, and colony formation. In HUVEC, maslinic acid induced a significant reduction in capillary tube formation in vitro and vascular endothelial growth factor. This study provides a rationale for incorporating a maslinic acid–rich diet either to reduce the risk of developing kidney cancer or as an adjunct to existing antiangiogenic therapy to improve efficacy.

  12. Characterization of stem-like cells in a new astroblastoma cell line

    Energy Technology Data Exchange (ETDEWEB)

    Coban, Esra Aydemir; Kasikci, Ezgi [Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, Istanbul (Turkey); Karatas, Omer Faruk [Molecular Biology and Genetics Department, Erzurum Technical University, Erzurum (Turkey); Suakar, Oznur; Kuskucu, Aysegul [Department of Medical Genetics, Yeditepe University Medical School and Yeditepe University Hospital, Istanbul (Turkey); Altunbek, Mine [Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, Istanbul (Turkey); Türe, Uğur [Department of Neurosurgery, Yeditepe University School of Medicine, Istanbul (Turkey); Sahin, Fikrettin [Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, Istanbul (Turkey); Bayrak, Omer Faruk, E-mail: ofbayrak@yeditepe.edu.tr [Department of Medical Genetics, Yeditepe University Medical School and Yeditepe University Hospital, Istanbul (Turkey)

    2017-03-15

    Cell lines established from tumors are the most commonly used models in cancer research, and their use in recent years has enabled a greater understanding of the biology of cancer and the means to develop effective treatment strategies. Astroblastomas are uncommon neuroepithelial tumors of glial origin, predominantly affecting young people, mainly teenagers and children, predominantly females. To date, only a single study has reported that astroblastomas contain a large number of neural stem-like cells, which had only a partial proliferation capacity and differentiation. Our objective was to establish an astroblastoma cell line to investigate the presence of astroblastic cells and cancer stem-like cells. The migratory and invasion abilities of the cells were quantified with invasion and migration assays and compared to a glioblastoma cell line. The presence of stem cells was detected with surface-marker analysis by using flow cytometry, and measuring the differentiation ability with a differentiation assay and the self-renewal capacity with a sphere-forming assay. These characteristics may determine whether this novel cell line is a model for astroblastomas that may have stem-cell characteristics. With this novel cell line, scientists can investigate the molecular pathways underlying astroblastomas and develop new therapeutic strategies for patients with these tumors. - Highlights: • An establishment of a novel astroblastoma cell line was proposed. • The presence of astroblastic cells and cancer stem-like cells was investigated. • The molecular pathways underlying astroblastomas may be investigated. • New therapeutic strategies for patients with astroblastoma may be developed.

  13. In vitro invasion of small-cell lung cancer cell lines correlates with expression of epidermal growth factor receptor

    DEFF Research Database (Denmark)

    Damstrup, L; Rude Voldborg, B; Spang-Thomsen, M

    1998-01-01

    receptor (EGFR) in a panel of 21 small-cell lung cancer (SCLC) cell lines. We have previously reported that ten of these cell lines expressed EGFR protein detected by radioreceptor and affinity labelling assays. In 11 small-cell lung cancer (SCLC) cell lines, EGFR mRNA was detected by Northern blot...... analysis. In vitro invasion in a Boyden chamber assay was found in all EGFR-positive cell lines, whereas no invasion was detected in the EGFR-negative cell lines. Quantification of the in vitro invasion in 12 selected SCLC cell lines demonstrated that, in the EGFR-positive cell lines, between 5% and 16......-PCR). However, in vitro invasive SCLC cell lines could not be distinguished from non-invasive cell lines based on the expression pattern of these molecules. In six SCLC cell lines, in vitro invasion was also determined in the presence of the EGFR-neutralizing monoclonal antibody mAb528. The addition...

  14. [Cytotoxicity and genotoxicity of human cells exposed in vitro to glyphosate].

    Science.gov (United States)

    Monroy, Claudia Milena; Cortés, Andrea Carolina; Sicard, Diana Mercedes; de Restrepo, Helena Groot

    2005-09-01

    Glyphosate is a broad-spectrum non-selective herbicide, used to eliminate unwanted weeds in agricultural and forest settings. Herbicide action is achieved through inhibition of aromatic amino acid biosynthesis in plant cells. Since this is not a conserved mechanism between human and plant cells, glyphosate is considered to be a low health risk substance for humans. However, the occurrence of possible harmful side effects of glyphosate use is not well documented and controversial. Toxicity and genotoxicity studies indicate that glyphosate is not harmful, although several investigations suggest that it can alter various cellular processes in animals. Therfore this has potential as a health and environmental risk factor in areas where glyphosate is widely used. The present study evaluated glyphosate cytotoxic and genotoxic effects in normal human cells (GM38) and human fibrosarcoma (HT1080) cells. Acute and chronic cytotoxicity were determined through the exposure of cultured cells to graded concentrations of glyphosate, and cell viability analysis was performed with crystal violet and Trypan blue staining. Genotoxicity was determined using the comet assay and data significance was evaluated with Dunnet's test. For chronic cytotoxicity a dose-dependent effect was observed in both GM38 and HT1080 cells after treatment with 5.2-8.5 mM and 0.9-3.0 mM glyphosate, respectively. In the acute cytotoxicity study, GM38 cells exposed to 4.0-7.0 mM glyphosate and HT1080 cells exposed to 4.5-5.8 mM glyphosate, had cell viability counts higher than 80%. Genotoxic effects were evidenced in GM38 cells at glyphosate concentrations of 4.0-6.5 mM and in HT1080 cells at glyphosate concentrations of 4.75 -5.75 mM. The levels of cytotoxicity and genotoxicity of glyphosate occurring in mammalian cells suggested that its mechanism of action is not limited to plant cells.

  15. Changes in Chromosome Counts and Patterns in CHO Cell Lines upon Generation of Recombinant Cell Lines and Subcloning.

    Science.gov (United States)

    Vcelar, Sabine; Melcher, Michael; Auer, Norbert; Hrdina, Astrid; Puklowski, Anja; Leisch, Friedrich; Jadhav, Vaibhav; Wenger, Till; Baumann, Martina; Borth, Nicole

    2018-03-01

    Chinese hamster ovary (CHO) cells are the number one production system for therapeutic proteins. A pre-requirement for their use in industrial production of biopharmaceuticals is to be clonal, thus originating from a single cell in order to be phenotypically and genomically identical. In the present study it was evaluated whether standard procedures, such as the generation of a recombinant cell line in combination with selection for a specific and stable phenotype (expression of the recombinant product) or subcloning have any impact on karyotype stability or homogeneity in CHO cells. Analyses used were the distribution of chromosome counts per cell as well as chromosome painting to identify specific karyotype patterns within a population. Results indicate that subclones both of the host and the recombinant cell line are of comparable heterogeneity and (in)stability as the original pool. In contrast, the rigorous selection for a stably expressing phenotype generated cell lines with fewer variation and more stable karyotypes, both at the level of the sorted pool and derivative subclones. We conclude that the process of subcloning itself does not contribute to an improved karyotypic homogeneity of a population, while the selection for a specific cell property inherently can provide evolutionary pressure that may lead to improved chromosomal stability as well as to a more homogenous population. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Cytotoxicity and Genotoxicity of Ceria Nanoparticles on Different Cell Lines in Vitro

    Directory of Open Access Journals (Sweden)

    Sandro Santucci

    2013-02-01

    Full Text Available Owing to their radical scavenging and UV-filtering properties, ceria nanoparticles (CeO2-NPs are currently used for various applications, including as catalysts in diesel particulate filters. Because of their ability to filter UV light, CeO2-NPs have garnered significant interest in the medical field and, consequently, are poised for use in various applications. The aim of this work was to investigate the effects of short-term (24 h and long-term (10 days CeO2-NP exposure to A549, CaCo2 and HepG2 cell lines. Cytotoxicity assays tested CeO2-NPs over a concentration range of 0.5 μg/mL to 5000 μg/mL, whereas genotoxicity assays tested CeO2-NPs over a concentration range of 0.5 μg/mL to 5000 μg/mL. In vitro assays showed almost no short-term exposure toxicity on any of the tested cell lines. Conversely, long-term CeO2-NP exposure proved toxic for all tested cell lines. NP genotoxicity was detectable even at 24-h exposure. HepG2 was the most sensitive cell line overall; however, the A549 line was most sensitive to the lowest concentration tested. Moreover, the results confirmed the ceria nanoparticles’ capacity to protect cells when they are exposed to well-known oxidants such as H2O2. A Comet assay was performed in the presence of both H2O2 and CeO2-NPs. When hydrogen peroxide was maintained at 25 μM, NPs at 0.5 μg/mL, 50 μg/mL, and 500 μg/mL protected the cells from oxidative damage. Thus, the NPs prevented H2O2-induced genotoxic damage.

  17. 'Rogue' cells observed in children exposed to radiation from the Chernobyl accident

    International Nuclear Information System (INIS)

    Sevan'kaev, A.V.; Tsyb, A.F.; Zhloba, A.A.; Moiseenko, V.V.; Skrjabin, A.M.; Climov, V.M.

    1993-01-01

    Eight 'rogue' lymphocyte metaphases containing a large number of aberrant chromosomes were noted during a survey of chromosomal damage in 328 Belarussian children. The study population comprised children of families living in territory contaminated by radiation from the Chernobyl accident. The majority of the sample had been evacuated within 1 week from very heavily polluted territory to areas that had received much less fallout. Two hundred cells were scored per subject and one rogue cell was found in a child exposed in utero; one in a child conceived after the accident and six in the postnatally exposed group. The possibility that the damage was due to exposure to radio-iodine concentrated in the thyroid gland, or to radiation from incorporated hot particles' of an alpha or beta/gamma emitter is discussed. It is concluded that the damage to these cells is unlikely to have been caused by radiation. (Author)

  18. Cellular and exosome mediated molecular defense mechanism in bovine granulosa cells exposed to oxidative stress.

    Science.gov (United States)

    Saeed-Zidane, Mohammed; Linden, Lea; Salilew-Wondim, Dessie; Held, Eva; Neuhoff, Christiane; Tholen, Ernst; Hoelker, Michael; Schellander, Karl; Tesfaye, Dawit

    2017-01-01

    Various environmental insults including diseases, heat and oxidative stress could lead to abnormal growth, functions and apoptosis in granulosa cells during ovarian follicle growth and oocyte maturation. Despite the fact that cells exposed to oxidative stress are responding transcriptionally, the potential release of transcripts associated with oxidative stress response into extracellular space through exosomes is not yet determined. Therefore, here we aimed to investigate the effect of oxidative stress in bovine granulosa cells in vitro on the cellular and exosome mediated defense mechanisms. Bovine granulosa cells were aspirated from ovarian follicles and cultured in DMEM/F-12 Ham culture medium supplemented with 10% exosome-depleted fetal bovine serum. In the first experiment sub-confluent cells were treated with 5 μM H2O2 for 40 min to induce oxidative stress. Thereafter, cells were subjected to ROS and mitochondrial staining, cell proliferation and cell cycle assays. Furthermore, gene and protein expression analysis were performed in H2O2-challenged versus control group 24 hr post-treatment using qRT-PCR and immune blotting or immunocytochemistry assay, respectively. Moreover, exosomes were isolated from spent media using ultracentrifugation procedure, and subsequently used for RNA isolation and qRT-PCR. In the second experiment, exosomes released by granulosa cells under oxidative stress (StressExo) or those released by granulosa cells without oxidative stress (NormalExo) were co-incubated with bovine granulosa cells in vitro to proof the potential horizontal transfer of defense molecules from exosomes to granulosa cells and investigate any phenotype changes. Exposure of bovine granulosa cells to H2O2 induced the accumulation of ROS, reduced mitochondrial activity, increased expression of Nrf2 and its downstream antioxidant genes (both mRNA and protein), altered the cell cycle transitions and induced cellular apoptosis. Granulosa cells exposed to oxidative

  19. Derivation of Ethnically Diverse Human Induced Pluripotent Stem Cell Lines.

    Science.gov (United States)

    Chang, Eun Ah; Tomov, Martin L; Suhr, Steven T; Luo, Jiesi; Olmsted, Zachary T; Paluh, Janet L; Cibelli, Jose

    2015-10-20

    The human genome with all its ethnic variations contributes to differences in human development, aging, disease, repair, and response to medical treatments and is an exciting area of research and clinical study. The availability of well-characterized ethnically diverse stem cell lines is limited and has not kept pace with other advances in stem cell research. Here we derived xenofree ethnically diverse-human induced pluripotent stem cell (ED-iPSC) lines from fibroblasts obtained from individuals of African American, Hispanic-Latino, Asian, and Caucasian ethnic origin and have characterized the lines under a uniform platform for comparative analysis. Derived ED-iPSC lines are low passage number and evaluated in vivo by teratoma formation and in vitro by high throughput microarray analysis of EB formation and early differentiation for tri-lineage commitment to endoderm, ectoderm and mesoderm. These new xenofree ED-iPSC lines represent a well-characterized valuable resource with potential for use in future research in drug discovery or clinical investigations.

  20. Dipeptidyl peptidase IV in two human glioma cell lines

    Czech Academy of Sciences Publication Activity Database

    Šedo, A.; Malík, Radek; Drbal, K.; Lisá, Věra; Vlašicová, K.; Mareš, Vladislav

    2000-01-01

    Roč. 44, č. 1 (2000), s. 57-63 ISSN 1121-760X Grant - others:GA UK(XC) 58/1999/C; GA UK(XC) 206019-2 Institutional research plan: CEZ:AV0Z5011922 Keywords : dipeptidyl peptidase IV * glioma cell lines * cell proliferation and differentiation Subject RIV: FH - Neurology Impact factor: 1.039, year: 2000

  1. Cysteine modified polyaniline films improve biocompatibility for two cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Yslas, Edith I., E-mail: eyslas@exa.unrc.edu.ar [Departamento de Biología Molecular, Universidad Nacional de Río Cuarto, Agencia Postal Nro3, X580BYA Río Cuarto (Argentina); Cavallo, Pablo; Acevedo, Diego F.; Barbero, César A. [Departamento de Química, Universidad Nacional de Río Cuarto, Agencia Postal Nro3, X580BYA Río Cuarto (Argentina); Rivarola, Viviana A. [Departamento de Biología Molecular, Universidad Nacional de Río Cuarto, Agencia Postal Nro3, X580BYA Río Cuarto (Argentina)

    2015-06-01

    This work focuses on one of the most exciting application areas of conjugated conducting polymers, which is cell culture and tissue engineering. To improve the biocompatibility of conducting polymers we present an easy method that involves the modification of the polymer backbone using L-cysteine. In this publication, we show the synthesis of polyaniline (PANI) films supported onto Polyethylene terephthalate (PET) films, and modified using cysteine (PANI-Cys) in order to generate a biocompatible substrate for cell culture. The PANI-Cys films are characterized by Fourier Transform infrared and UV–visible spectroscopy. The changes in the hydrophilicity of the polymer films after and before the modification were tested using contact angle measurements. After modification the contact angle changes from 86° ± 1 to 90° ± 1, suggesting a more hydrophylic surface. The adhesion properties of LM2 and HaCaT cell lines on the surface of PANI-Cys films in comparison with tissue culture plastic (TCP) are studied. The PANI-Cys film shows better biocompatibility than PANI film for both cell lines. The cell morphologies on the TCP and PANI-Cys film were examined by florescence and Atomic Force Microscopy (AFM). Microscopic observations show normal cellular behavior when PANI-Cys is used as a substrate of both cell lines (HaCaT and LM2) as when they are cultured on TCP. The ability of these PANI-Cys films to support cell attachment and growth indicates their potential use as biocompatible surfaces and in tissue engineering. - Highlights: • A new surface PANI-Cys was produced on films of polyethylene terephthalate. • The relationship between surface characteristics and biocompatibility is analyzed. • The PANI-Cys film presents good biocompatibility for two cell lines.

  2. Establishment of clinically relevant radioresistant cell lines and their characteristics

    International Nuclear Information System (INIS)

    Fukumoto, Manabu; Kuwahara, Yoshikazu; Suzuki, Masatoshi

    2014-01-01

    Although radiotherapy is one of the major therapeutic modalities for eradicating malignant tumors, the existence of radioresistant cells remains one of the most critical obstacles. Standard radiotherapy consists of fractionated radiation (FR) of 2-Gy X-rays once a day, 5 days a week, over 60 Gy in total. To understand the characteristics of radioresistant cells and to develop more effective radiotherapy, we have established novel radioresistant cell lines by long-term (> 5 years) exposure to moderate doses of fractionated X-rays. While all the parental human cancer cells ceased, their radioresistant derivatives continue to proliferate with daily exposure to 2-Gy FR for more than 30 days. We have coined those cells as 'clinically relevant radioresistant' (CRR) cells. Transplanted tumors into nude mice were also CRR, indicating that CRR cell lines are powerful tools to improve cancer radiotherapy. We have shown that the suppression of autophagic cell death but not apoptosis was mainly involved in cellular radioresistance. An inhibitor of the mTOR pathway which enhances autophagy was effective to overcome CRR tumors induced in nude mice. But the underlined mechanism was not through the inhibition of autophagy. Guanine nucleotide-binding protein 1 (GBP1) over expression was necessary for maintaining the CRR phenotype, but radioresistant cells were not necessarily cancer stem cells (CSCs). Targeting GBP1 positive cancer cells may be a more efficient method in conquering cancer than targeting CSCs. Slight but significant radioresistance was acquired by 0.5 Gy/12 hrs of long-term FR exposures to parental cells for more than 31 days in accordance with cyclinD1 over expression. This acquired radioresistance (ARR) was stably maintained in the tumor cells even on 31 days after the cessation of 0.5-Gy FR. Present observations give a mechanistic insight for ARR of tumor cells through long-term FR exposure, and provide novel therapeutic targets for radiosensitization

  3. Myelinating cocultures of rodent stem cell line-derived neurons and immortalized Schwann cells.

    Science.gov (United States)

    Ishii, Tomohiro; Kawakami, Emiko; Endo, Kentaro; Misawa, Hidemi; Watabe, Kazuhiko

    2017-10-01

    Myelination is one of the most remarkable biological events in the neuron-glia interactions for the development of the mammalian nervous system. To elucidate molecular mechanisms of cell-to-cell interactions in myelin synthesis in vitro, establishment of the myelinating system in cocultures of continuous neuronal and glial cell lines are desirable. In the present study, we performed co-culture experiments using rat neural stem cell-derived neurons or mouse embryonic stem (ES) cell-derived motoneurons with immortalized rat IFRS1 Schwann cells to establish myelinating cultures between these cell lines. Differentiated neurons derived from an adult rat neural stem cell line 1464R or motoneurons derived from a mouse ES cell line NCH4.3, were mixed with IFRS1 Schwann cells, plated, and maintained in serum-free F12 medium with B27 supplement, ascorbic acid, and glial cell line-derived neurotrophic factor. Myelin formation was demonstrated by electron microscopy at 4 weeks in cocultures of 1464R-derived neurons or NCH4.3-derived motoneurons with IFRS1 Schwann cells. These in vitro coculture systems utilizing the rodent stable stem and Schwann cell lines can be useful in studies of peripheral nerve development and regeneration. © 2017 Japanese Society of Neuropathology.

  4. Increased frequency of micronucleated exfoliated cells among humans exposed in vivo to mobile telephone radiations

    International Nuclear Information System (INIS)

    Manoj Kumar Sharma; Abhay Singh Yadav

    2007-01-01

    Complete text of publication follows. The health concerns have been raised following the enormous increase in the use of wireless mobile telephones through out the world. This investigation had been taken, with the motive to find out whether mobile phone radiations cause any in vivo effects on the frequency of micronucleated exfoliated cells in the exposed subjects. A total of 109 subjects including 85 regular mobile phone users (exposed) and 24 non-users (controls) had participated in this study. Exfoliated cells were obtained by swabbing the buccal-mucosa from exposed as well as sex-age-matched controls. One thousand exfoliated cells were screened from each individual for nuclear anomalies including micronuclei (MN), karyolysis (KL), karyorrhexis (KH), broken egg (BE) and bi-nucleated (BN) cells. The average daily duration of exposure to mobile phone radiations is 61.26 minutes with an overall average duration of exposure in term of years is 2.35 years in exposed subjects along with the 9.84±0.745 MNC (micronucleated cells) and 10.72±0.889 TMN (total micronuclei) as compared to zero duration of exposure along with average 3.75±0.774 MNC and 4.00±0.808 TMN in controls. The means are significantly different in case MNC and TMN at 0.01% level of significance. For all other nuclear anomalies (KL, KH, BE and BN cells) the means are found statistically nonsignificant. A positive correlation was found in the frequency of MNC and TMN with respect to duration of exposure time.

  5. CellMinerHCC: a microarray-based expression database for hepatocellular carcinoma cell lines.

    Science.gov (United States)

    Staib, Frank; Krupp, Markus; Maass, Thorsten; Itzel, Timo; Weinmann, Arndt; Lee, Ju-Seog; Schmidt, Bertil; Müller, Martina; Thorgeirsson, Snorri S; Galle, Peter R; Teufel, Andreas

    2014-04-01

    Therapeutic options for hepatocellular carcinoma (HCC) still remain limited. Development of gene targeted therapies is a promising option. A better understanding of the underlying molecular biology is gained in in vitro experiments. However, even with targeted manipulation of gene expression varying treatment responses were observed in diverse HCC cell lines. Therefore, information on gene expression profiles of various HCC cell lines may be crucial to experimental designs. To generate a publicly available database containing microarray expression profiles of diverse HCC cell lines. Microarray data were analyzed using an individually scripted R program package. Data were stored in a PostgreSQL database with a PHP written web interface. Evaluation and comparison of individual cell line expression profiles are supported via public web interface. This database allows evaluation of gene expression profiles of 18 HCC cell lines and comparison of differential gene expression between multiple cell lines. Analysis of commonly regulated genes for signaling pathway enrichment and interactions demonstrates a liver tumor phenotype with enrichment of major cancer related KEGG signatures like 'cancer' and 'inflammatory response'. Further molecular associations of strong scientific interest, e.g. 'lipid metabolism', were also identified. We have generated CellMinerHCC (http://www.medicalgenomics.org/cellminerhcc), a publicly available database containing gene expression data of 18 HCC cell lines. This database will aid in the design of in vitro experiments in HCC research, because the genetic specificities of various HCC cell lines will be considered. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Cell lines radiosensitization of thyroid cancer by histone deacetylase inhibitors

    International Nuclear Information System (INIS)

    Perona, M; Dagrosa, M A; Rossich, L; Casal, M; Pisarev, M A; Thomasz, L; Juvenal G J

    2012-01-01

    Introduction: Thyroid cancer is the most common endocrine neoplasia. Surgical resection and radioactive iodine is an effective treatment for well-differentiated tumors. Histone deacetylase inhibitors (HDAC-I) are agents that cause hyperacetylation of histone proteins and as a consequence remodeling of chromatin structure. They can induce growth arrest, differentiation and apoptotic cell death in different tumor cells. The use of HDAC-I agents could be of utility to enhance the response to external radiation therapy of those thyroid cancers that are refractory to most conventional therapeutic treatments. Objective: To study the effect of HDAC-I as radiosensitizers for the treatment of thyroid cancer and their ability to induce differentiation of thyroid cancer cells. Materials and methods: The human thyroid follicular (WRO) and papillary (TPC-1) carcinoma cell lines were seeded and incubated with increasing doses (0, 0.3, 0.5, 1 and 1.5 mM) of the HDAC-I sodium butirate (NaB) and valproic acid (VA) to evaluate cell proliferation and iodide uptake. Cells were irradiated with a 60 Co γ-ray source (1 ± 5% Gy/min) and postirradiation survival was quantified with the colony formation assay. Survival fraction at 2 Gy (SF2) was calculated for each cell line. Cell cycle and cell death were evaluated at a dose of 3 Gy. Iodide uptake, PCR analysis and transient transfection studies were performed. Results: Cell proliferation was not significantly suppressed after 24 hours of incubation with both drugs at all assayed doses. Iodide uptake was not modified after incubation with HDAC-I of both cell lines. SF2 was reduced from 68 ± 1.6 % in the control WRO cells to 42 ± 3.8 % (P<0.001) in NaB-treated cells. In TPC-1 SF2 was reduced from 32 ± 1.1 % in the control cells to 24 ± 0.8 % (P<0.01). In VA-treated cells SF2 was reduced from 69 ± 0.02 % in control WRO cells to 56 ± 0.01 % (P<0.01) and from 31 ± 2 % in control TPC-1 cells to 11 ± 1 % (P<0.01). There was an arrest

  7. Detection of immunotoxicity using T-cell based cytokine reporter cell lines ('Cell Chip')

    International Nuclear Information System (INIS)

    Ringerike, Tove; Ulleraas, Erik; Voelker, Rene; Verlaan, Bert; Eikeset, Aase; Trzaska, Dominika; Adamczewska, Violetta; Olszewski, Maciej; Walczak-Drzewiecka, Aurelia; Arkusz, Joanna; Loveren, Henk van; Nilsson, Gunnar; Lovik, Martinus; Dastych, Jaroslaw; Vandebriel, Rob J.

    2005-01-01

    Safety assessment of chemicals and drugs is an important regulatory issue. The evaluation of potential adverse effects of compounds on the immune system depends today on animal experiments. An increasing demand, however, exists for in vitro alternatives. Cytokine measurement is a promising tool to evaluate chemical exposure effects on the immune system. Fortunately, this type of measurement can be performed in conjunction with in vitro exposure models. We have taken these considerations as the starting point to develop an in vitro method to efficiently screen compounds for potential immunotoxicity. The T-cell lymphoma cell line EL-4 was transfected with the regulatory sequences of interleukin (IL)-2, IL-4, IL-10, interferon (IFN)-γ or actin fused to the gene for enhanced green fluorescent protein (EGFP) in either a stabile or a destabilised form. Consequently, changes in fluorescence intensity represent changes in cytokine expression with one cell line per cytokine. We used this prototype 'Cell Chip' to test, by means of flow cytometry, the immunomodulatory potential of 13 substances and were able to detect changes in cytokine expression in 12 cases (successful for cyclosporine, rapamycin, pentamidine, thalidomide, bis(tri-n-butyltin)oxide, house dust mite allergen (Der p I), 1-chloro-2,4-dinitrobenzene, benzocaine, tolylene 2,4-diisocyanate, potassium tetrachloroplatinate, sodium dodecyl sulphate and mercuric chloride; unsuccessful for penicillin G). In conclusion, this approach seems promising for in vitro screening for potential immunotoxicity, especially when additional cell lines besides T-cells are included

  8. DNA methylation and sensitivity to antimetabolites in cancer cell lines.

    Science.gov (United States)

    Sasaki, Shin; Kobunai, Takashi; Kitayama, Joji; Nagawa, Hirokazu

    2008-02-01

    The prediction of the cellular direction of metabolic pathways toward either DNA synthesis or DNA methylation is crucial for determining the susceptibility of cancers to anti-metabolites such as fluorouracil (5-FU). We genotyped the methylenetetrahydrofolate reductase (MTHFR) gene in NCI-60 cancer cell lines, and identified the methylation status of 24 tumor suppressor genes using methylation-specific multiplex ligation-dependent probe amplification. The susceptibility of the cancer cell lines to seven antimetabolites was then determined. Cells homozygous for CC at MTHFR-A1298C were significantly more sensitive to cyclocytidine, cytarabine (AraC) and floxuridine than those with AA or AC (p=0.0215, p=0.0166, and p=0.0323, respectively), and carried more methylated tumor suppressor genes (p=0.0313). Among the 12 tumor suppressor genes which were methylated in >25% of cancer cell lines, the methylation status of TIMP3, APC and IGSF4 significantly correlated with sensitivity to pyrimidine synthesis inhibitors. In particular, cells with methylated TIMP3 had reduced mRNA levels and were significantly more sensitive to aphidicolin-glycinate, AraC and 5-FU than cells with unmethylated TIMP3. We speculate that MTHFR-A1298C homozygous CC might direct the methylation rather than the synthesis of DNA, and result in the methylation of several tumor suppressor genes such as TIMP3. These genes could be useful biological markers for predicting the efficacy of antimetabolites.

  9. Establishment of the first humpback whale fibroblast cell lines and their application in chemical risk assessment.

    Science.gov (United States)

    Burkard, Michael; Whitworth, Deanne; Schirmer, Kristin; Nash, Susan Bengtson

    2015-10-01

    This paper reports the first successful derivation and characterization of humpback whale fibroblast cell lines. Primary fibroblasts were isolated from the dermal connective tissue of skin biopsies, cultured at 37 °C and 5% CO2 in the standard mammalian medium DMEM/F12 supplemented with 10% fetal bovine serum (FBS). Of nine initial biopsies, two cell lines were established from two different animals and designated HuWa1 and HuWa2. The cells have a stable karyotype with 2n=44, which has commonly been observed in other baleen whale species. Cells were verified as being fibroblasts based on their spindle-shaped morphology, adherence to plastic and positive immunoreaction to vimentin. Population doubling time was determined to be ∼41 h and cells were successfully cryopreserved and thawed. To date, HuWa1 cells have been propagated 30 times. Cells proliferate at the tested temperatures, 30, 33.5 and 37 °C, but show the highest rate of proliferation at 37 °C. Short-term exposure to para,para'-dichlorodiphenyldichloroethylene (p,p'-DDE), a priority compound accumulating in southern hemisphere humpback whales, resulted in a concentration-dependent loss of cell viability. The effective concentration which caused a 50% reduction in HuWa1 cell viability (EC50 value) was approximately six times greater than the EC50 value for the same chemical measured with human dermal fibroblasts. HuWa1 exposed to a natural, p,p'-DDE-containing, chemical mixture extracted from whale blubber showed distinctively higher sensitivity than to p,p'-DDE alone. Thus, we provide the first cytotoxicological data for humpback whales and with establishment of the HuWa cell lines, a unique in vitro model for the study of the whales' sensitivity and cellular response to chemicals and other environmental stressors. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Cryopreservation of specialized chicken lines using cultured primordial germ cells.

    Science.gov (United States)

    Nandi, S; Whyte, J; Taylor, L; Sherman, A; Nair, V; Kaiser, P; McGrew, M J

    2016-08-01

    Biosecurity and sustainability in poultry production requires reliable germplasm conservation. Germplasm conservation in poultry is more challenging in comparison to other livestock species. Embryo cryopreservation is not feasible for egg-laying animals, and chicken semen conservation has variable success for different chicken breeds. A potential solution is the cryopreservation of the committed diploid stem cell precursors to the gametes, the primordial germ cells ( PGCS: ). Primordial germ cells are the lineage-restricted cells found at early embryonic stages in birds and form the sperm and eggs. We demonstrate here, using flocks of partially inbred, lower-fertility, major histocompatibility complex- ( MHC-: ) restricted lines of chicken, that we can easily derive and cryopreserve a sufficient number of independent lines of male and female PGCs that would be sufficient to reconstitute a poultry breed. We demonstrate that germ-line transmission can be attained from these PGCs using a commercial layer line of chickens as a surrogate host. This research is a major step in developing and demonstrating that cryopreserved PGCs could be used for the biobanking of specialized flocks of birds used in research settings. The prospective application of this technology to poultry production will further increase sustainability to meet current and future production needs. © The Author 2016. Published by Oxford University Press on behalf of Poultry Science Association.

  11. Antibacterial and anti-breast cancer cell line activities of ...

    African Journals Online (AJOL)

    Purpose: To evaluate the activity of extracts of Sanghuangporus sp.1 fungus against pathogenic bacteria and a breast cancer cell line. Methods: The wild fruiting body and mycelium of Sanghuangporus sp.1 were extracted with water and ethanol by ultrasonication extraction. The activity of the extracts against pathogenic ...

  12. Characterization of newly established colorectal cancer cell lines

    Indian Academy of Sciences (India)

    We have established a series of 20 colorectal cancer cell lines and performed cytogenetic and RFLP analyses to show that the recurrent genetic abnormalities of chromosomes 1, 5, 17 and 18 associated with multistep tumorigenesis in colorectal cancer, and frequently detected as recurrent abnormalities in primary tumours, ...

  13. Apoptosis induction of epifriedelinol on human cervical cancer cell line

    African Journals Online (AJOL)

    Background: Present investigation evaluates the antitumor activity of epifriedelinol for the management of cervical cancer by inducing process of apoptosis. Methods: Human Cervical Cancer Cell Line, C33A and HeLa were selected for study and treated with epifriedelinol at a concentration of (50-1000 μg/ml). Cytotoxicity of ...

  14. Characterization of newly established colorectal cancer cell lines ...

    Indian Academy of Sciences (India)

    We have established a series of 20 colorectal cancer cell lines and performed cytogenetic and RFLP analyses to show that the recurrent genetic abnormalities of chromosomes 1, 5, 17 and 18 associated with multistep tumorigenesis in colorectal cancer, and frequently detected as recurrent abnormalities in primary tumours, ...

  15. AAVS1-Targeted Plasmid Integration in AAV Producer Cell Lines.

    Science.gov (United States)

    Luo, Yuxia; Frederick, Amy; Martin, John M; Scaria, Abraham; Cheng, Seng H; Armentano, Donna; Wadsworth, Samuel C; Vincent, Karen A

    2017-06-01

    Adeno-associated virus (AAV) producer cell lines are created via transfection of HeLaS3 cells with a single plasmid containing three components (the vector sequence, the AAV rep and cap genes, and a selectable marker gene). As this plasmid contains both the cis (Rep binding sites) and trans (Rep protein encoded by the rep gene) elements required for site-specific integration, it was predicted that plasmid integration might occur within the AAVS1 locus on human chromosome 19 (chr19). The objective of this study was to investigate whether integration in AAVS1 might be correlated with vector yield. Plasmid integration sites within several independent cell lines were assessed via Southern, fluorescence in situ hybridization (FISH) and PCR analyses. In the Southern analyses, the presence of fragments detected by both rep- and AAVS1-specific probes suggested that for several mid- and high-producing lines, plasmid DNA had integrated into the AAVS1 locus. Analysis with puroR and AAVS1-specific probes suggested that integration in AAVS1 was a more widespread phenomenon. High-producing AAV2-secreted alkaline phosphatase (SEAP) lines (masterwell 82 [MW82] and MW278) were evaluated via FISH using probes specific for the plasmid, AAVS1, and a chr19 marker. FISH analysis detected two plasmid integration sites in MW278 (neither in AAVS1), while a total of three sites were identified in MW82 (two in AAVS1). An inverse PCR assay confirmed integration within AAVS1 for several mid- and high-producing lines. In summary, the FISH, Southern, and PCR data provide evidence of site-specific integration of the plasmid within AAVS1 in several AAV producer cell lines. The data also suggest that integration in AAVS1 is a general phenomenon that is not necessarily restricted to high producers. The results also suggest that plasmid integration within the AAVS1 locus is not an absolute requirement for a high vector yield.

  16. Sphere-forming cell subpopulations with cancer stem cell properties in human hepatoma cell lines

    Directory of Open Access Journals (Sweden)

    Chen Lei

    2011-06-01

    Full Text Available Abstract Background Cancer stem cells (CSCs are regarded as the cause of tumor formation and recurrence. The isolation and identification of CSCs could help to develop novel therapeutic strategies specifically targeting CSCs. Methods Human hepatoma cell lines were plated in stem cell conditioned culture system allowed for sphere forming. To evaluate the stemness characteristics of spheres, the self-renewal, proliferation, chemoresistance, tumorigenicity of the PLC/PRF/5 sphere-forming cells, and the expression levels of stem cell related proteins in the PLC/PRF/5 sphere-forming cells were assessed, comparing with the parental cells. The stem cell RT-PCR array was performed to further explore the biological properties of liver CSCs. Results The PLC/PRF/5, MHCC97H and HepG2 cells could form clonal nonadherent 3-D spheres and be serially passaged. The PLC/PRF/5 sphere-forming cells possessed a key criteria that define CSCs: persistent self-renewal, extensive proliferation, drug resistance, overexpression of liver CSCs related proteins (Oct3/4, OV6, EpCAM, CD133 and CD44. Even 500 sphere-forming cells were able to form tumors in NOD/SCID mice, and the tumor initiating capability was not decreased when spheres were passaged. Besides, downstream proteins DTX1 and Ep300 of the CSL (CBF1 in humans, Suppressor of hairless in Drosophila and LAG1 in C. elegans -independent Notch signaling pathway were highly expressed in the spheres, and a gamma-secretase inhibitor MRK003 could significantly inhibit the sphere formation ability. Conclusions Nonadherent tumor spheres from hepatoma cell lines cultured in stem cell conditioned medium possess liver CSC properties, and the CSL-independent Notch signaling pathway may play a role in liver CSCs.

  17. Induction of apoptosis in the human mast cell leukemia cell line HMC-1 by various antineoplastic drugs.

    Science.gov (United States)

    Samorapoompichit, Puchit; Steiner, Marianne; Lucas, Trevor; Wachtler, Franz; Schedled, Andreas; Sperr, Wolfgang R; Valent, Peter

    2003-03-01

    Mast cell leukemia (MCL) is a rare disorder characterized by rapid disease progression, resistance against conventional cytoreductive drugs, and short survival. In an attempt to identify drugs that show significant antiproliferative effects on neoplastic mast cells (MC), we exposed the MCL-derived cell line HMC-1 to various cytotoxic drugs including 2-chlorodeoxyadenosine [2CdA], fludarabine and cytosine arabinoside [ARA-C]. The effects of these drugs on 3H-thymidine incorporation, electron microscopic signs of apoptosis, and DNA fragmentation in HMC-1 cells, were analyzed. As assessed by 3H-thymidine incorporation, all drugs produced inhibition of proliferation in HMC-1 cells with the following rank order of potency: ARA-C > doxorubicine > 2-CdA > etoposide > vincristine > fludarabine > cisplatin. Fludarabin, cisplatin, etoposide and 2-CdA also induced ladder-type fragmentation of DNA, endonuclease activity in a Tunel assay, and electron microscopic signs of apoptosis in HMC-1 cells. Together, our data show that various cytostatic drugs can induce apoptosis and inhibition of proliferation in the human MCL cell line HMC-1. Whether these drugs, alone or in combination, are also effective in patients with MCL, remains to be determined.

  18. Differential responses to radiation and hyperthermia of cloned cell lines derived from a single human melanoma xenograft

    International Nuclear Information System (INIS)

    Rofstad, E.K.; Brustad, T.

    1984-01-01

    One uncloned and five cloned cell lines were derived from a single human melanoma xenograft. Cells from passages 7-12 were exposed to either radiation or hyperthermia (42.5 0 C, pH = 7.4) under aerobic conditions and the colony forming ability of the cells was assayed in soft agar. The five cloned lines showed individual and characteristic responses to radiation as well as to hyperthermia. The variation in the response to radiation was mainly reflected in the size of the shoulders of the survival curves rather than in the D 0 -values. The variation in the response to hyperthermia was mainly reflected in the terminal slopes of the survival curves. The survival curve of cells from the uncloned line, both when exposed to radiation and hyperthermia, was positioned in the midst of those of the cloned lines. The response of the cloned lines to radiation did not correlate with the response to hyperthermia, indicating that tumor cell subpopulations which are resistant to radiation may respond well to hyperthermia

  19. Establishment of the first humpback whale fibroblast cell lines and their application in chemical risk assessment

    Energy Technology Data Exchange (ETDEWEB)

    Burkard, Michael, E-mail: Michael.burkard@eawag.ch [Griffith University, Environmental Futures Research Institute, Southern Ocean Persistent Organic Pollutants Program, Brisbane, QLD (Australia); Eawag, Swiss Federal Institute of Technology, Dübendorf (Switzerland); Whitworth, Deanne [The University of Queensland, School of Veterinary Science, Gatton, QLD (Australia); Schirmer, Kristin [Eawag, Swiss Federal Institute of Technology, Dübendorf (Switzerland); ETH Zürich, Institute of Biogechemistry and Pollutant Dynamics, Zürich (Switzerland); EPF Lausanne, School of Architecture, Civil and Environmental Engineering, Lausanne (Switzerland); Nash, Susan Bengtson [Griffith University, Environmental Futures Research Institute, Southern Ocean Persistent Organic Pollutants Program, Brisbane, QLD (Australia)

    2015-10-15

    Highlights: • We established and characterised the first humpback whale fibroblast cell lines. • Cell lines have a stable karyotype with 2n = 44. • Exposure to p,p′-DDE resulted in a concentration-dependent loss of cell viability. • p,p′-DDE sensitivity differed considerably from human fibroblasts. • Exposure to a whale blubber extract showed higher sensitivity than to p,p′-DDE alone. - Abstract: This paper reports the first successful derivation and characterization of humpback whale fibroblast cell lines. Primary fibroblasts were isolated from the dermal connective tissue of skin biopsies, cultured at 37 °C and 5% CO{sub 2} in the standard mammalian medium DMEM/F12 supplemented with 10% fetal bovine serum (FBS). Of nine initial biopsies, two cell lines were established from two different animals and designated HuWa1 and HuWa2. The cells have a stable karyotype with 2n = 44, which has commonly been observed in other baleen whale species. Cells were verified as being fibroblasts based on their spindle-shaped morphology, adherence to plastic and positive immunoreaction to vimentin. Population doubling time was determined to be ∼41 h and cells were successfully cryopreserved and thawed. To date, HuWa1 cells have been propagated 30 times. Cells proliferate at the tested temperatures, 30, 33.5 and 37 °C, but show the highest rate of proliferation at 37 °C. Short-term exposure to para,para′-dichlorodiphenyldichloroethylene (p,p′-DDE), a priority compound accumulating in southern hemisphere humpback whales, resulted in a concentration-dependent loss of cell viability. The effective concentration which caused a 50% reduction in HuWa1 cell viability (EC{sub 50} value) was approximately six times greater than the EC{sub 50} value for the same chemical measured with human dermal fibroblasts. HuWa1 exposed to a natural, p,p′-DDE-containing, chemical mixture extracted from whale blubber showed distinctively higher sensitivity than to p,p′-DDE alone

  20. Establishment of the first humpback whale fibroblast cell lines and their application in chemical risk assessment

    International Nuclear Information System (INIS)

    Burkard, Michael; Whitworth, Deanne; Schirmer, Kristin; Nash, Susan Bengtson

    2015-01-01

    Highlights: • We established and characterised the first humpback whale fibroblast cell lines. • Cell lines have a stable karyotype with 2n = 44. • Exposure to p,p′-DDE resulted in a concentration-dependent loss of cell viability. • p,p′-DDE sensitivity differed considerably from human fibroblasts. • Exposure to a whale blubber extract showed higher sensitivity than to p,p′-DDE alone. - Abstract: This paper reports the first successful derivation and characterization of humpback whale fibroblast cell lines. Primary fibroblasts were isolated from the dermal connective tissue of skin biopsies, cultured at 37 °C and 5% CO 2 in the standard mammalian medium DMEM/F12 supplemented with 10% fetal bovine serum (FBS). Of nine initial biopsies, two cell lines were established from two different animals and designated HuWa1 and HuWa2. The cells have a stable karyotype with 2n = 44, which has commonly been observed in other baleen whale species. Cells were verified as being fibroblasts based on their spindle-shaped morphology, adherence to plastic and positive immunoreaction to vimentin. Population doubling time was determined to be ∼41 h and cells were successfully cryopreserved and thawed. To date, HuWa1 cells have been propagated 30 times. Cells proliferate at the tested temperatures, 30, 33.5 and 37 °C, but show the highest rate of proliferation at 37 °C. Short-term exposure to para,para′-dichlorodiphenyldichloroethylene (p,p′-DDE), a priority compound accumulating in southern hemisphere humpback whales, resulted in a concentration-dependent loss of cell viability. The effective concentration which caused a 50% reduction in HuWa1 cell viability (EC 50 value) was approximately six times greater than the EC 50 value for the same chemical measured with human dermal fibroblasts. HuWa1 exposed to a natural, p,p′-DDE-containing, chemical mixture extracted from whale blubber showed distinctively higher sensitivity than to p,p′-DDE alone. Thus, we

  1. Effects of hypoxia on human cancer cell line chemosensitivity

    Science.gov (United States)

    2013-01-01

    Background Environment inside even a small tumor is characterized by total (anoxia) or partial oxygen deprivation, (hypoxia). It has been shown that radiotherapy and some conventional chemotherapies may be less effective in hypoxia, and therefore it is important to investigate how different drugs act in different microenvironments. In this study we perform a large screening of the effects of 19 clinically used or experimental chemotherapeutic drugs on five different cell lines in conditions of normoxia, hypoxia and anoxia. Methods A panel of 19 commercially available drugs: 5-fluorouracil, acriflavine, bortezomib, cisplatin, digitoxin, digoxin, docetaxel, doxorubicin, etoposide, gemcitabine, irinotecan, melphalan, mitomycin c, rapamycin, sorafenib, thalidomide, tirapazamine, topotecan and vincristine were tested for cytotoxic activity on the cancer cell lines A2780 (ovarian), ACHN (renal), MCF-7 (breast), H69 (SCLC) and U-937 (lymphoma). Parallel aliquots of the cells were grown at different oxygen pressures and after 72 hours of drug exposure viability was measured with the fluorometric microculture cytotoxicity assay (FMCA). Results Sorafenib, irinotecan and docetaxel were in general more effective in an oxygenated environment, while cisplatin, mitomycin c and tirapazamine were more effective in a low oxygen environment. Surprisingly, hypoxia in H69 and MCF-7 cells mostly rendered higher drug sensitivity. In contrast ACHN appeared more sensitive to hypoxia, giving slower proliferating cells, and consequently, was more resistant to most drugs. Conclusions A panel of standard cytotoxic agents was tested against five different human cancer cell lines cultivated at normoxic, hypoxic and anoxic conditions. Results show that impaired chemosensitivity is not universal, in contrast different cell lines behave different and some drugs appear even less effective in normoxia than hypoxia. PMID:23829203

  2. Crude subcellular fractionation of cultured mammalian cell lines

    Directory of Open Access Journals (Sweden)

    Holden Paul

    2009-12-01

    Full Text Available Abstract Background The expression and study of recombinant proteins in mammalian culture systems can be complicated during the cell lysis procedure by contaminating proteins from cellular compartments distinct from those within which the protein of interest resides and also by solubility issues that may arise from the use of a single lysis buffer. Partial subcellular fractionation using buffers of increasing stringency, rather than whole cell lysis is one way in which to avoid or reduce this contamination and ensure complete recovery of the target protein. Currently published protocols involve time consuming centrifugation steps which may require expensive equipment and commercially available kits can be prohibitively expensive when handling large or multiple samples. Findings We have established a protocol to sequentially extract proteins from cultured mammalian cells in fractions enriched for cytosolic, membrane bound organellar, nuclear and insoluble proteins. All of the buffers used can be made inexpensively and easily and the protocol requires no costly equipment. While the method was optimized for a specific cell type, we demonstrate that the protocol can be applied to a variety of commonly used cell lines and anticipate that it can be applied to any cell line via simple optimization of the primary extraction step. Conclusion We describe a protocol for the crude subcellular fractionation of cultured mammalian cells that is both straightforward and cost effective and may facilitate the more accurate study of recombinant proteins and the generation of purer preparations of said proteins from cell extracts.

  3. Glucocorticoid inhibition of cellular proliferation in rat hepatoma cell lines

    International Nuclear Information System (INIS)

    Cook, P.W.

    1987-01-01

    Glucocorticoids were shown to inhibit the growth rate of Fu5 rat hepatoma cells cultured in the presence or absence of serum and thus, induced a more stringent dependence on serum for growth in this cell line. Fu5 cells, made quiescent at low cell density by continuous exposure to glucocorticoid in the absence of serum, were induced with serum and insulin, which subsequently caused a rapid reinitiation of cellular proliferation. Analysis of total RNA isolated from hormone treated Fu5 cells undergoing serum/insulin induction of DNA synthesis revealed a sequential expression of cellular proto-oncogene products in the absence of any immediate changes in intracellular Ca ++ levels. Introduction of functional glucocorticoid receptor genes into both classes of dexamethasone resistant variants restored glucocorticoid responsiveness and suppression of cell growth. The BDS1 rat hepatoma cell line, an Fu5 derived subclone hypersensitive to the antiprofliferation effects of glucocorticoid, was observed to externalize a glucocorticoid suppressible mitogen (GSM) activity capable of mimicking EGF and insulin induced stimulation of [ 3 H]thymidine incorporation into serum starved, competant Balb/c 3T3 cells

  4. α1-Antitrypsin reduces rhinovirus infection in primary human airway epithelial cells exposed to cigarette smoke

    Directory of Open Access Journals (Sweden)

    Berman R

    2016-06-01

    Full Text Available Reena Berman, Di Jiang, Qun Wu, Hong Wei Chu Department of Medicine, National Jewish Health, Denver, CO, USA Abstract: Human rhinovirus (HRV infections target airway epithelium and are the leading cause of acute exacerbations of COPD. Cigarette smoke (CS increases the severity of viral infections, but there is no effective therapy for HRV infection. We determined whether α1-antitrypsin (A1AT reduces HRV-16 infection in CS-exposed primary human airway epithelial cells. Brushed bronchial epithelial cells from normal subjects and patients diagnosed with COPD were cultured at air–liquid interface to induce mucociliary differentiation. These cells were treated with A1AT or bovine serum albumin for 2 hours and then exposed to air or whole cigarette smoke (WCS with or without HRV-16 (5×104 50% Tissue Culture Infective Dose [TCID50]/transwell infection for 24 hours. WCS exposure significantly increased viral load by an average of fivefold and decreased the expression of antiviral genes interferon-λ1, OAS1, and MX1. When A1AT was added to WCS-exposed cells, viral load significantly decreased by an average of 29-fold. HRV-16 infection significantly increased HRV-16 receptor intercellular adhesion molecule-1 messenger RNA expression in air-exposed cells, which was decreased by A1AT. A1AT-mediated reduction of viral load was not accompanied by increased epithelial antiviral gene expression or by inhibiting the activity of 3C protease involved in viral replication or maturation. Our findings demonstrate that A1AT treatment prevents a WCS-induced increase in viral load and for the first time suggest a therapeutic effect of A1AT on HRV infection. Keywords: α1-antitrypsin, rhinovirus, COPD, cigarette smoke, ICAM-1

  5. Plasmids and packaging cell lines for use in phage display

    Science.gov (United States)

    Bradbury, Andrew M.

    2012-07-24

    The invention relates to a novel phagemid display system for packaging phagemid DNA into phagemid particles which completely avoids the use of helper phage. The system of the invention incorporates the use of bacterial packaging cell lines which have been transformed with helper plasmids containing all required phage proteins but not the packaging signals. The absence of packaging signals in these helper plasmids prevents their DNA from being packaged in the bacterial cell, which provides a number of significant advantages over the use of both standard and modified helper phage. Packaged phagemids expressing a protein or peptide of interest, in fusion with a phage coat protein such as g3p, are generated simply by transfecting phagemid into the packaging cell line.

  6. Subcloning of three osteoblastic cell lines with distinct differentiation phenotypes from the mouse osteoblastic cell line KS-4.

    Science.gov (United States)

    Yamashita, T; Ishii, H; Shimoda, K; Sampath, T K; Katagiri, T; Wada, M; Osawa, T; Suda, T

    1996-11-01

    Three distinct osteoblastic cell lines (KS418, KS460, and KS483) were subcloned from the mouse osteoblastic KS-4 cells, which possessed the abilities not only to differentiate into mature osteoblasts, but also to support osteoclast differentiation in coculture with spleen cells. The order of the magnitude of the basal alkaline phosphatase (ALP) activity was KS483 > KS418 > KS460. KS483 cells were also more differentiated than KS418 and KS460 in terms of ALP activity and osteocalcin production, when cultured in growth medium containing 10% fetal bovine serum. In long-term culture, KS418 and KS483 apparently differentiated into mature osteoblasts and formed calcified nodules without addition of beta-glycerophosphate. Electron microscopic analysis demonstrated that calcification occurring in the nodules was initiated in the matrix vesicles as observed in bone formation in vivo. Nodule formation and mineral deposition occurred simultaneously in the presence of beta-glycerophosphate, but the former always preceded the latter without addition of beta-glycerophosphate. In contrast, KS460 cells did not show time-dependent increases of ALP activity, type I collagen expression and osteocalcin production, which were induced by treatment with recombinant osteogenic protein-1 (OP-1). The three cell lines similarly supported osteoclast differentiation in coculture with spleen cells in response to 1,25-dihydroxyvitamin D3. These results indicate that the three cell lines subcloned from the original KS-4 cells represent phenotypically distinct osteoblasts during osteoblast differentiation, but are equipped similarly with the capacity to support osteoclast differentiation. The subcloned cells of the KS-4 series may provide useful systems in which to study osteoblast differentiation and function.

  7. DNA DAMAGE IN BUCCAL EPITHELIAL CELLS FROM INDIVIDUALS CHRONICALLY EXPOSED TO ARSENIC VIA DRINKING WATER IN INNER MONGOLIA, CHINA

    Science.gov (United States)

    The purpose of this pilot study was to assess DNA damage in buccal cells from individuals chronically exposed to arsenic via drinking water in Ba Men, Inner Mongolia. Buccal cells were collected from 19 Ba Men residents exposed to arsenic at 527.5 ? 23.7 g/L (mean ? SEM) and ...

  8. Cytotoxicity evaluation of silica nanoparticles using fish cell lines.

    Science.gov (United States)

    Vo, Nguyen T K; Bufalino, Mary R; Hartlen, Kurtis D; Kitaev, Vladimir; Lee, Lucy E J

    2014-01-01

    Nanoparticles (NPs) have extensive industrial, biotechnological, and biomedical/pharmaceutical applications, leading to concerns over health risks to humans and biota. Among various types of nanoparticles, silica nanoparticles (SiO2 NPs) have become popular as nanostructuring, drug delivery, and optical imaging agents. SiO2 NPs are highly stable and could bioaccumulate in the environment. Although toxicity studies of SiO2 NPs to human and mammalian cells have been reported, their effects on aquatic biota, especially fish, have not been significantly studied. Twelve adherent fish cell lines derived from six species (rainbow trout, fathead minnow, zebrafish, goldfish, haddock, and American eel) were used to comparatively evaluate viability of cells by measuring metabolic impairment using Alamar Blue. Toxicity of SiO2 NPs appeared to be size-, time-, temperature-, and dose-dependent as well as tissue-specific. However, dosages greater than 100 μg/mL were needed to achieve 24 h EC50 values (effective concentrations needed to reduce cell viability by 50%). Smaller SiO2 NPs (16 nm) were relatively more toxic than larger sized ones (24 and 44 nm) and external lining epithelial tissue (skin, gills)-derived cells were more sensitive than cells derived from internal tissues (liver, brain, intestine, gonads) or embryos. Higher EC50 values were achieved when toxicity assessment was performed at higher incubation temperatures. These findings are in overall agreement with similar human and mouse cell studies reported to date. Thus, fish cell lines could be valuable for screening emerging contaminants in aquatic environments including NPs through rapid high-throughput cytotoxicity bioassays.

  9. Frequency patterns of T-cell exposed motifs in immunoglobulin heavy chain peptides presented by MHCs

    Directory of Open Access Journals (Sweden)

    Robert D. Bremel

    2014-10-01

    Full Text Available Immunoglobulins are highly diverse protein sequences that are processed and presented to T-cells by B-cells and other antigen presenting cells. We examined a large dataset of immunoglobulin heavy chain variable regions (IGHV to assess the diversity of T-cell exposed motifs (TCEM. TCEM comprise those amino acids in a MHC-bound peptide which face outwards, surrounded by the MHC histotope, and which engage the T-cell receptor. Within IGHV there is a distinct pattern of predicted MHC class II binding and a very high frequency of re-use of the TCEMs. The re-use frequency indicates that only a limited number of different cognate T-cells are required to engage many different clonal B-cells. The amino acids in each outward-facing TCEM are intercalated with the amino acids of inward-facing MHC groove-exposed motifs (GEM. Different GEM may have differing, allele-specific, MHC binding affinities. The intercalation of TCEM and GEM in a peptide allows for a vast combinatorial repertoire of epitopes, each eliciting a different response. Outcome of T-cell receptor binding is determined by overall signal strength, which is a function of the number of responding T-cells and the duration of engagement. Hence, the frequency of T-cell exposed motif re-use appears to be an important determinant of whether a T-cell response is stimulatory or suppressive. The frequency distribution of TCEMs implies that somatic hypermutation is followed by clonal expansion that develop along repeated pathways. The observations of TCEM and GEM derived from immunoglobulins suggest a relatively simple, yet powerful, mechanism to correlate T-cell polyspecificity, through re-use of TCEMs, with a very high degree of specificity achieved by combination with a diversity of GEMs. The frequency profile of TCEMs also points to an economical mechanism for maintaining T-cell memory, recall, and self-discrimination based on an endogenously generated profile of motifs.

  10. Multidrug resistance and retroviral transduction potential in human small cell lung cancer cell lines

    DEFF Research Database (Denmark)

    Theilade, M D; Gram, G J; Jensen, P B

    1999-01-01

    for the gibbon ape leukemia virus (GALV-1) receptor or had specificity for the amphotropic murine leukemia virus (MLV-A) receptor were used for transduction of five SCLC cell lines differing by a range of MDR mechanisms. Transduction efficiencies in these cell lines were compared by calculating the percentage...... of blue colonies after X-Gal staining of the cells grown in soft agar. All examined SCLC cell lines were transducible with either vector. Transduction efficiencies varied from 5.7% to 33.5% independent of the presence of MDR. These results indicate that MDR does not severely impair transduction of SCLC...

  11. Interactions between carbo-platin, cisplatin and ionising radiation in an human ovarian cancer cell line

    International Nuclear Information System (INIS)

    Scalliet, P.

    1999-01-01

    Cisplatin (CDDP) and radiotherapy are frequently used concomitantly in the treatment of various malignant conditions. Because of its toxicity, cisplatin tends to be replaced by carbo-platin (CBDCA) in several indications. Available data regarding the combined effects of cisplatin and carbo-platin with ionising radiation are contradictory. Various concentrations of cisplatin and carbo-platin and various timing of association with radiation have been tested in vitro in a human ovarian cancer cell line. The parental cell line (AOvC-0) and a cisplatin-resistant stable sub-line (AOvC-CDDP/O) (De Pooter et al., Cn Res, 1991) were exposed to carbo-platin (2.5, 5 and 10 M) and to CDDP (1, 2.5 and 5 M), 16 h and 4 h before and 4 h and 16 h after irradiation, respectively. Cell survival was evaluated by a classical clonogenic assay. Exposure of AOvC-0 to 5M CBDCA and of AOvC-CDDDP/O to 10 M CBDCA, before or shortly after radiation exposure, increased cell lethality in a clear supra-additive way, with the highest DEF in the shoulder region of the survival curve and at radiation doses relevant to clinical radiotherapy. In the sensitive cell line, 5 M carbo-platin resulted in an additional lethality equivalent to 4.5 Gy; in the resistant cells, 10M carbo-platin was equivalent to 3.6 Gy. Replacing carbo-platin by cisplatin in an identical set-up demonstrated exclusively simple additivity (DEF = 1). These data suggest that carbo-platin and cisplatin delivered at equi-toxic doses interact with radiation a different way and that, in the present set-up, only carbo-platin enhanced the effects of radiation. Carbo-platin might consequently be a better candidate than cisplatin in some concomitant combinations with radiotherapy. (authors)

  12. In vitro acute cytotoxicity of neonicotinoid insecticide imidacloprid to gill cell line of flounder Paralichthy olivaceus

    Science.gov (United States)

    Su, Feng; Zhang, Shicui; Li, Hongyan; Guo, Huarong

    2007-04-01

    In vitro acute cytotoxicity of neonicotinoid insecticide imidacloprid (IMI) to the gill cell line of flounder (FG) that collected in the gill of Paralichthys olivaceus, was examined by 3 widely used endpoint bioassays: NR (neutral red), MTT (3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide) and TCP (total cell protein). The result shows that the IMI increased at concentrations ≥0.5 μg/ml. The IC50 value of NR. MTT, and TCP was 41.86, 38.46, and 39.08 μg/ml, respectively. The ultrastructural observation revealed that the mitochondria of the cells exposed to 60 μg/ml IMI for 48 h were severely damaged, swollen or disrupted, while their nuclei and rough endoplasmic reticulum (RER) remained normal. This would suggest that the mitochondria are probably the primary target of IMI.

  13. Change of cell cycle arrest of tumor cell lines after 60Co γ-irradiation

    International Nuclear Information System (INIS)

    Tang Yi; Liu Wenli; Zhou Jianfeng; Gao Qinglei; Wu Jianhong

    2003-01-01

    Objective: To observe the cell cycle arrest changes in peripheral blood mononuclear cells (PBMNCs) of normal persons and several kinds of tumor cell lines after 60 Co γ-irradiation. Methods: PBMNCs of normal persons, HL-60, K562, SiHA and 113 tumor cell lines were irradiated with 60 Co γ-rays at the absorbed doses of 6, 10,15 Gy. Cell cycles changes were checked 6, 12, 24, 48 and 60 h after the irradiation. Results: A stasis state was observed in normal person PBMNCs, 95 percents of which were in G 1 phase, and they still remained stasis after the irradiation. Except the 113 cell line manifesting G 1 phase arrest, all other tumor cell lines showed G 2 /M phase arrest after irradiation. The radiation sensitivity of HL-60 was higher than that of SiHA cell line. Conclusion: Different cell lines have different cell cycle arrest reaction to radiation and their radiation sensitivity are also different

  14. Quantitative proteomics and transcriptomics addressing the estrogen receptor subtype-mediated effects in T47D breast cancer cells exposed to the phytoestrogen genistein.

    Science.gov (United States)

    Sotoca, Ana M; Gelpke, Maarten D Sollewijn; Boeren, Sjef; Ström, Anders; Gustafsson, Jan-Åke; Murk, Albertinka J; Rietjens, Ivonne M C M; Vervoort, Jacques

    2011-01-01

    The present study addresses, by transcriptomics and quantitative stable isotope labeling by amino acids in cell culture (SILAC)-based proteomics, the estrogen receptor α (ERα) and β (ERβ)-mediated effects on gene and protein expression in T47D breast cancer cells exposed to the phytoestrogen genistein. Using the T47D human breast cancer cell line with tetracycline-dependent ERβ expression (T47D-ERβ), the effect of a varying intracellular ERα/ERβ ratio on genistein-induced gene and protein expression was characterized. Results obtained reveal that in ERα-expressing T47D-ERβ cells with inhibited ERβ expression genistein induces transcriptomics and proteomics signatures pointing at rapid cell growth and migration by dynamic activation of cytoskeleton remodeling. The data reveal an interplay between integrins, focal adhesion kinase, CDC42, and actin cytoskeleton signaling cascades, occurring upon genistein treatment, in the T47D-ERβ breast cancer cells with low levels of ERα and no expression of ERβ. In addition, data from our study indicate that ERβ-mediated gene and protein expression counteracts ERα-mediated effects because in T47D-ERβ cells expressing ERβ and exposed to genistein transcriptomics and proteomics signatures pointing at a clear down-regulation of cell growth and induction of cell cycle arrest and apoptosis were demonstrated. These results suggest that ERβ decreases cell motility and metastatic potential as well as cell survival of the breast cancer cell line. It is concluded that the effects of genistein on proteomics and transcriptomics end points in the T47D-ERβ cell model are comparable with those reported previously for estradiol with the ultimate estrogenic effect being dependent on the relative affinity for both receptors and on the receptor phenotype (ERα/ERβ ratio) in the cells or tissue of interest.

  15. Sensitivity of morphological change of Vero cells exposed to lipophilic compounds and its mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Liao Tingting, E-mail: liaotingting_82@163.com [College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai (China); Shi Yanling; Jia Jianwei; Jia Ruwen [College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai (China); Wang Lei, E-mail: celwang@yahoo.com [College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai (China)

    2010-07-15

    To find a sensitive cytotoxic response to reflect the toxicity of trace organic pollutants, the sensitivity and reliability of morphological change and proliferation inhibition of Vero cells exposed to lipophilic compounds and the leachate from products related to drinking water (PRDW) were compared, and the mechanism of the morphological change in Vero cells was studied. Results showed the proportion of morphologically changed cells increased with increasing 2,4,6-trichlorophenol (TCP)/perfluorooctane sulfonate (PFOS) concentration. However, at low TCP concentrations, inhibition of cell proliferation did not correlate to TCP concentration. After exposure to the leachate from PRDW extracted at different temperatures, the percentage of morphologically changed cells increased with extracting temperature, but the inhibition of cell proliferation failed to reflect the correlation to extracting temperature. These imply cell morphological change is a more sensitive and reliable method to reflect toxicity of trace organic pollutants than proliferation inhibition. Flow cytometry analysis indicated cell membrane damage was an early and sensitive cytotoxic response comparing with necrosis, resulting in cell morphological change, which may be due to the interference of lipophilic compounds. Lipophilic compound accumulated in cell membrane to interfere the assembly process of membrane protein and phospholipid.

  16. Sensitivity of breast cancer cell lines to recombinant thiaminase I.

    Science.gov (United States)

    Liu, Shuqian; Monks, Noel R; Hanes, Jeremiah W; Begley, Tadhg P; Yu, Hui; Moscow, Jeffrey A

    2010-05-01

    We have previously shown that the expression of the thiamine transporter THTR2 is decreased sevenfold in breast cancer, which may leave breast cancer cells vulnerable to acute thiamine starvation. This concept was supported by the observation that MDA231 breast cancer xenografts demonstrated growth inhibition in mice fed a thiamine-free diet. We purified recombinant Bacillus thiaminolyticus thiaminase I enzyme, which digests thiamine, to study acute thiamine starvation in breast cancer. Thiaminase I enzyme was cytotoxic in six breast cancer cell lines with IC(50)s ranging from 0.012 to 0.022 U/ml. The growth inhibitory effects of the combination of thiaminase I with either doxorubicin or paclitaxel were also examined. Over a wide range of drug concentrations, thiaminase 1 was consistently synergistic or additive with doxorubicin and paclitaxel in MCF-7, ZR75, HS578T and T47D cell lines, with most combinations having a calculated combination index (CI) of less than 0.8, indicating synergy. Although thiaminase I exposure did not stimulate the energy-sensing signaling kinases AKT, AMPK and GSK-3beta in MCF-7, ZR75, HS578T and T47D cell lines, thiaminase I exposure did stimulate expression of the ER stress response protein GRP78. In summary, thiaminase I is cytotoxic in breast cancer cell lines and triggers the unfolded protein response. These findings suggest that THTR2 down-regulation in breast tumors may present a nutritional vulnerability that could be exploited by thiaminase I enzyme therapy.

  17. Thyroid hormone suppression and cell-mediated immunomodulation in American kestrels (Falco sparverius) exposed to PCBs.

    Science.gov (United States)

    Smits, J E; Fernie, K J; Bortolotti, G R; Marchant, T A

    2002-10-01

    Exposure to environmental contaminants can induce physiological changes in animals through various mechanisms. One manifestation of subclinical toxicity from polychlorinated biphenyl (PCB) exposure is the disruption of normal immune function described in numerous species, including American kestrels (Falco sparverius). In 1998, 152 mature male and female kestrels were fed either a mixture of Aroclor 1248:1254:1260 (approximately 7 mg/kg kestrel/day) through their food items, or control diets. Offspring produced by 50 breeding pairs (thus, half received in ovo PCB exposure only) were also studied. Total and differential white blood cell counts, the phytohemagglutinin (PHA) skin response, as well as thyroid hormone levels were tested in vivo in nonbreeding adults (1998 only) and nestlings (1998 and 1999). In 1999, nestlings came from three parental groups; adults exposed in 1998, birds produced by PCB-exposed parents, and unexposed birds. In 1998, directly exposed males but not females had increased total white blood cell counts driven by lymphocytosis, plus a decreased heterophil-to-lymphocyte ratio relative to controls. PCB-exposed birds had a significantly greater response to PHA than did controls, with sex as a significant factor and plasma triiodothyonine (T(3)) as a significant covariate. Levels of T(3) were significantly depressed in PCB-exposed birds of both sexes. The 1999 nestlings (F1 generation with respect to PCB exposure) did not show any effect of parental treatment group on the PHA skin response, yet T(3) remained as a significant covariate. Immunological effects are discussed in light of the antibody-mediated immunotoxicity found in the same birds and reported previously.

  18. Preliminary screening of methanolic plant extracts against human rhabdomyosarcoma cell line from salt range, pakistan

    International Nuclear Information System (INIS)

    Maqsood, M.; Qureshi, R.; Ali, S.; Ikram, M.; Khan, J.A.

    2015-01-01

    The aim of this study was to investigate the mechanism of cell death by plant extract in the Rhabdomyosarcoma (RD) cell line by using human muscle cancer cells as an experimental model. The optimal uptake of plant extracts in RD cells was investigated by means of spectrometric measurements, while cytotoxicity and cellular viability of the RD cells were estimated by means of neutral red assay (NRA). RD cells were exposed to plant extracts at the concentrations of 150 micro g/mL dissolved in dimethyle sulphoxide (DMSO) at 24, 48, 72 and 96 hours. Results indicated that maximum cellular uptake was occurred after 1 hour in vitro incubation, while plant extracts induced killing of more than 70 to 80% of the cells at 150 micro g/mL. The methanolic extracts killed 88-93% cancer cells, while the chemo-drug killed 23% cells after 48 hours that clearly indicated anticancer activity of plant extracts. Based on the results, it can be concluded that further study is required to isolate and characterize bioactive compounds responsible for anti-cancer activity established by this study. (author)

  19. Caffeine markedly sensitizes human mesothelioma cell lines to pemetrexed

    Science.gov (United States)

    Min, Sang Hee; Goldman, I. David; Zhao, Rongbao

    2013-01-01

    Pemetrexed is a new generation antifolate approved for the treatment of mesothelioma and non-small cell lung cancer. Caffeine is known to augment radiation or chemotherapeutic drug-induced cell killing. The current study addresses the impact of caffeine on the activity of pemetrexed in mesothelioma cell lines. Caffeine enhanced pemetrexed activity in all four mesothelioma cell lines tested (H2052, H2373, H28 and MSTO-211H). Caffeine sensitized H2052 cells in a dose- and schedule-dependent manner, and was associated with a markedly decreased clonogenic survival. Caffeine sensitization occurred only in cells subjected to pulse, but not continuous, exposure to pemetrexed. Similar pemetrexed sensitization was also observed with the clinically better tolerated caffeine analog, theobromine. Pemetrexed sensitization by caffeine was associated with an increase in pemetrexed-induced phosphorylation of ataxia-telangiectasia-mutated (ATM) and Chk1. These data indicate that caffeine and its analog, theobromine, may be a useful approach to enhance pemetrexed-based chemotherapy. PMID:17594092

  20. Systemic alteration of cell-surface and secreted glycoprotein expression in malignant breast cancer cell lines

    OpenAIRE

    Timpe, Leslie C; Yen, Roger; Haste, Nicole V; Litsakos-Cheung, Christina; Yen, Ten-Yang; Macher, Bruce A

    2013-01-01

    Breast cancer cell lines express fewer transmembrane and secreted glycoproteins than nonmalignant ones. The objective of these experiments was to characterize the changes in the expression of several hundred glycoproteins quantitatively. Secreted and cell-surface glycoproteins were isolated using a glycoprotein capture protocol and then identified by tandem mass spectrometry. Glycoproteins expressed by a group of cell lines originating from malignant tumors of the breast were compared with th...

  1. Cell viability and leakage of electrolytes in Avicennia germinans exposed to heavy metals.

    Science.gov (United States)

    Gonzalez-Mendoza, Daniel; Quiroz-Moreno, Adriana; Medrano, Rosa Escobedo Gracia; Grimaldo-Juarez, Onecimo; Zapata-Perez, Omar

    2009-01-01

    The effect of heavy metal stress on the cell viability and leakage of electrolytes of Avicennia germinans leaf discs was investigated by the tissue tolerance test. Foliar discs were incubated with different Cd2+ or CU2+ concentrations for 24 h; thereafter, the cell membrane stability of the tissue was assayed by the cell viability Evans blue and leakage electrolytes methods. The results indicated that electrolyte leakage of the leaf discs increased 24 h after exposure to heavy metal stress, as shown by a reduction of the cell viability by 30% in discs exposed to higher doses of Cd2+ (0.546 M) and Cu2+ (0.7 M), respectively. Additionally, the histological analysis of the leaf discs exposed to heavy metal stress revealed that at higher Cd2+ and/or Cu2+ concentrations an increase in the intercellular spaces and destruction of mesophyll cells was observed 24 h after exposure. In summary, the biochemical and structural changes observed in foliar tissues of A. germinans suggest that higher cadmium and copper concentrations may result in structural changes and altered physiological characters in leaves.

  2. Monitoring cell line identity in collections of human induced pluripotent stem cells.

    Science.gov (United States)

    Sarafian, Raquel; Morato-Marques, Mariana; Borsoi, Juliana; Pereira, Lygia Veiga

    2018-01-31

    The ability to reprogram somatic cells into induced pluripotent stem cells (hiPSCs) has led to the generation of large collections of cell lines from thousands of individuals with specific phenotypes, many of which will be shared among different research groups as invaluable tools for biomedical research. As hiPSC-based research involves extensive culture of many cell lines, the issue periodic cell line identification is particularly important to ensure that cell line identity remains accurate. Here we analyzed the different commercially available genotyping methods considering ease of in-house genotyping, cost and informativeness, and applied one of them in our workflow for hiPSC generation. We show that the chosen STR method was able to establish a unique DNA profile for each of the 35 individuals/hiPSC lines at the examined sites, as well as identify two discrepancies resulting from inadvertently exchanged samples. Our results highlight the importance of hiPSC line genotyping by an in-house method that allows periodic cell line identification and demonstrate that STR is a useful approach to supplement less frequent karyotyping and epigenetic evaluations. Copyright © 2018. Published by Elsevier B.V.

  3. Cell surface differences of Naegleria fowleri and Naegleria lovaniensis exposed with surface markers.

    Science.gov (United States)

    González-Robles, Arturo; Castañón, Guadalupe; Cristóbal-Ramos, Ana Ruth; Hernández-Ramírez, Verónica Ivonne; Omaña-Molina, Maritza; Martínez-Palomo, Adolfo

    2007-12-01

    Differences in the distribution of diverse cell surface coat markers were found between Naegleria fowleri and Naegleria lovaniensis. The presence of carbohydrate-containing components in the cell coat of the two species was detected by selective staining with ruthenium red and alcian blue. Using both markers, N. fowleri presented a thicker deposit than N. lovaniensis. The existence of exposed mannose or glucose residues was revealed by discriminatory agglutination with the plant lectin Concanavalin A. These sugar residues were also visualized at the cell surface of these parasites either by transmission electron microscopy or by fluorescein-tagged Concanavalin A. Using this lectin cap formation was induced only in N. fowleri. The anionic sites on the cell surface detected by means of cationized ferritin were more apparent in N. fowleri. Biotinylation assays confirmed that even though the two amoebae species have some analogous plasma membrane proteins, there is a clear difference in their composition.

  4. Designing of promiscuous inhibitors against pancreatic cancer cell lines

    Science.gov (United States)

    Kumar, Rahul; Chaudhary, Kumardeep; Singla, Deepak; Gautam, Ankur; Raghava, Gajendra P. S.

    2014-04-01

    Pancreatic cancer remains the most devastating disease with worst prognosis. There is a pressing need to accelerate the drug discovery process to identify new effective drug candidates against pancreatic cancer. We have developed QSAR models for predicting promiscuous inhibitors using the pharmacological data. Our models achieved maximum Pearson correlation coefficient of 0.86, when evaluated on 10-fold cross-validation. Our models have also successfully validated the drug-to-oncogene relationship and further we used these models to screen FDA approved drugs and tested them in vitro. We have integrated these models in a webserver named as DiPCell, which will be useful for screening and designing novel promiscuous drug molecules. We have also identified the most and least effective drugs for pancreatic cancer cell lines. On the other side, we have identified resistant pancreatic cancer cell lines, which need investigative scanner on them to put light on resistant mechanism in pancreatic cancer.

  5. Two-dimensional electrophoretic analysis of radio frequency radiation-exposed MCF7 breast cancer cells

    International Nuclear Information System (INIS)

    Kim, Ki-Bum; Ko, Young-Gyu; Byun, Hae-Ok; Han, Na-Kyung; Lee, Jae-Seon; Choi, Hyung-Do; Kim, Nam; Pack, Jeong-Ki

    2010-01-01

    Although many in vitro studies have previously been conducted to elucidate the biological effects of radio frequency (RF) radiation over the past decades, the existence and nature of any effects is still inconclusive. In an effort to further elucidate this question, we have monitored changes in protein expression profiles in RF-exposed MCF7 human breast cancer cells using two-dimensional gel electrophoresis. MCF7 cells were exposed to 849 MHz RF radiation for 1 h per day for three consecutive days at specific absorption rates (SARs) of either 2 W/Kg or 10 W/kg. During exposure, the temperature in the exposure chamber was kept in an isothermal condition. Twenty-four hours after the final RF exposure, the protein lysates from MCF cells were prepared and two-dimensional electrophoretic analyses were conducted. The protein expression profiles of the MCF cells were not significantly altered as the result of RF exposure. None of the protein spots on the two-dimensional electrophoretic gels showed reproducible changes in three independent experiments. To determine effect of RF radiation on protein expression profiles more clearly, three spots showing altered expression without reproducibility were identified using electrospray ionization tandem mass spectrometry analysis and their expressions were examined with reverse transcription polymerase chain reaction (RT-PCR) and Western blot assays. There was no alteration in their mRNA and protein levels. As we were unable to observe any significant and reproducible changes in the protein expression profiles of the RF radiation-exposed MCF7 cells using high throughput and non-high throughput techniques, it seems unlikely that RF exposure modulates the protein expression profile. (author)

  6. Protective Effects of Hydroalcoholic Extract of Nasturtium officinale on Rat Blood Cells Exposed to Arsenic

    Directory of Open Access Journals (Sweden)

    Felor Zargari

    2015-06-01

    Full Text Available Background: Arsenic is one of the most toxic metalloids. Anemia and leukopenia are common results of poisoning with arsenic, which may happen due to a direct hemolytic or cytotoxic effect on blood cells. The aim of this study was to examine the effects of hydroalcoholic extract of Nasturtium officinale on blood cells and antioxidant enzymes in rats exposed to sodium (metaarsenite. Methods: 32 Male Sprague Dawley rats were randomly divided into four groups; Group I (normal healthy rats, Group II (treated with 5.5mg/kg of body weight of NaAsO2, Group III (treated with 500mg/kg of body weight of hydro-alcoholic extract of N. officinale, and Group IV (treated with group II and III supplementations. Blood samples were collected and red blood cell, white blood cell, hematocrit, hemoglobin, platelet, total protein and albumin levels and total antioxidant capacity were measured. Data was analyzed with Mann-Whitney U test. Results: WBC, RBC and Hct were decreased in the rats exposed to NaAsO2 (p<0.05. A significant increase was seen in RBC and Hct after treatment with the plant extract (p<0.05. There was no significant decrease in serum albumin and total protein in the groups exposed to NaAsO2 compared to the group I, but NaAsO2 decreased the total antioxidant capacity, significantly. Conclusion: The Nasturtium officinale extract have protective effect on arsenic-induced damage of blood cells.

  7. Antiproliferative effect of a food coloring on colon cancer cell line.

    Science.gov (United States)

    Norizadeh Tazehkand, M

    2017-01-01

    4-MEI (4-Methylimidazole) is used as a chemical intermediate, crude material or component in the manufacture of pharmaceuticals, photographic and photothermographic chemicals, dyes and pigments and agricultural chemicals. 4-MEI is unintentionally found in our food. Caramel colour (which is the most used beverage colouring and food), dark beers and common brands of cola drinks may comprise more than 100 μg of this compound per 12-ounce serving. 4-MEI is widely used by people and colon cancer is common in our countries. So, it was decided to do in vitro analysis of anti-cancer effect of 4-MEI by MTT test using htc-116 cell line.In this study, mouse Htc-116 cell line was treated with 4-MEI concentrations of 300, 450, 600 and 750 µg/mL for 24 hours and 48 hours periods, after that antiproliferative effect of the 4-MEI was studied by MTT assay. In this study 4-MEI at highest concentration of 24h and at all concentration for 48 h treatment time significantly inhibited cell proliferation when it was compared to control. Also, exposing to the 4-MEI for 48 hours led to a decrease in cells proliferation by concentration dependent manner. This result showed that 4-MEI had anticancer effect in htc-116 cells. However, it has to be evaluated with different new studies (Tab. 1, Fig. 4, Ref. 19).

  8. Exposure to cobalt causes transcriptomic and proteomic changes in two rat liver derived cell lines.

    Directory of Open Access Journals (Sweden)

    Matthew G Permenter

    Full Text Available Cobalt is a transition group metal present in trace amounts in the human diet, but in larger doses it can be acutely toxic or cause adverse health effects in chronic exposures. Its use in many industrial processes and alloys worldwide presents opportunities for occupational exposures, including military personnel. While the toxic effects of cobalt have been widely studied, the exact mechanisms of toxicity remain unclear. In order to further elucidate these mechanisms and identify potential biomarkers of exposure or effect, we exposed two rat liver-derived cell lines, H4-II-E-C3 and MH1C1, to two concentrations of cobalt chloride. We examined changes in gene expression using DNA microarrays in both cell lines and examined changes in cytoplasmic protein abundance in MH1C1 cells using mass spectrometry. We chose to closely examine differentially expressed genes and proteins changing in abundance in both cell lines in order to remove cell line specific effects. We identified enriched pathways, networks, and biological functions using commercial bioinformatic tools and manual annotation. Many of the genes, proteins, and pathways modulated by exposure to cobalt appear to be due to an induction of a hypoxic-like response and oxidative stress. Genes that may be differentially expressed due to a hypoxic-like response are involved in Hif-1α signaling, glycolysis, gluconeogenesis, and other energy metabolism related processes. Gene expression changes linked to oxidative stress are also known to be involved in the NRF2-mediated response, protein degradation, and glutathione production. Using microarray and mass spectrometry analysis, we were able to identify modulated genes and proteins, further elucidate the mechanisms of toxicity of cobalt, and identify biomarkers of exposure and effect in vitro, thus providing targets for focused in vivo studies.

  9. Exposure to Cobalt Causes Transcriptomic and Proteomic Changes in Two Rat Liver Derived Cell Lines

    Science.gov (United States)

    Permenter, Matthew G.; Dennis, William E.; Sutto, Thomas E.; Jackson, David A.; Lewis, John A.; Stallings, Jonathan D.

    2013-01-01

    Cobalt is a transition group metal present in trace amounts in the human diet, but in larger doses it can be acutely toxic or cause adverse health effects in chronic exposures. Its use in many industrial processes and alloys worldwide presents opportunities for occupational exposures, including military personnel. While the toxic effects of cobalt have been widely studied, the exact mechanisms of toxicity remain unclear. In order to further elucidate these mechanisms and identify potential biomarkers of exposure or effect, we exposed two rat liver-derived cell lines, H4-II-E-C3 and MH1C1, to two concentrations of cobalt chloride. We examined changes in gene expression using DNA microarrays in both cell lines and examined changes in cytoplasmic protein abundance in MH1C1 cells using mass spectrometry. We chose to closely examine differentially expressed genes and proteins changing in abundance in both cell lines in order to remove cell line specific effects. We identified enriched pathways, networks, and biological functions using commercial bioinformatic tools and manual annotation. Many of the genes, proteins, and pathways modulated by exposure to cobalt appear to be due to an induction of a hypoxic-like response and oxidative stress. Genes that may be differentially expressed due to a hypoxic-like response are involved in Hif-1α signaling, glycolysis, gluconeogenesis, and other energy metabolism related processes. Gene expression changes linked to oxidative stress are also known to be involved in the NRF2-mediated response, protein degradation, and glutathione production. Using microarray and mass spectrometry analysis, we were able to identify modulated genes and proteins, further elucidate the mechanisms of toxicity of cobalt, and identify biomarkers of exposure and effect in vitro, thus providing targets for focused in vivo studies. PMID:24386269

  10. Embryonic liver cells and permanent lines as models for hepatocyte and bile duct cell differentiation.

    Science.gov (United States)

    Strick-Marchand, Hélène; Weiss, Mary C

    2003-01-01

    Analysis of liver cells during development is facilitated by the possibility of complementing in vivo analysis with experiments on cultured cells. In this review, we discuss results from several laboratories concerning bipotential hepatic stem cells from mouse (HBC-3, H-CFU-C, MMH and BMEL), rat (rhe14321) and primate (IPFLS) embryos. Several groups have used fluorescence-activated cell sorting to identify clonogenic bipotential cells; others have derived bipotential cell lines by plating liver cell suspensions and cloning. The bipotential cells, which probably originate from hepatoblasts, can differentiate as hepatocytes or bile duct cells, and undergo morphogenesis in culture. Disparities in differentiation can be explained by distinct medium compositions, extracellular matrix coated culture surfaces, and gene expression detection methods. Potential applications of these cell lines are discussed.

  11. Off-line test of the KISS gas cell

    Energy Technology Data Exchange (ETDEWEB)

    Hirayama, Yoshikazu, E-mail: yoshikazu.hirayama@kek.jp [Institute of Particle and Nuclear Studies (IPNS), High Energy Accelerator Research Organization (KEK), Ibaraki 305-0801 (Japan); Watanabe, Yutaka; Imai, Nobuaki; Ishiyama, Hironobu; Jeong, Sun-Chan; Miyatake, Hiroari; Oyaizu, Michihiro [Institute of Particle and Nuclear Studies (IPNS), High Energy Accelerator Research Organization (KEK), Ibaraki 305-0801 (Japan); Kim, Yung Hee [Seoul National University, Seoul 151 742 (Korea, Republic of); Mukai, Momo [Tsukuba University, Ibaraki 305 0006 (Japan); Matsuo, Yukari; Sonoda, Tetsu; Wada, Michiharu [Nishina Center for Accelerator-Based Science, RIKEN, Wako, Saitama 351 0198 (Japan); Huyse, Mark; Kudryavtsev, Yuri; Van Duppen, Piet [Instituut voor Kern-en Stralingsfysica, KU Leuven, B-3001 Leuven (Belgium)

    2013-12-15

    Highlights: • Construction of the KEK Isotope Separation System (KISS) at RIKEN. • Ionization scheme of an iron. • Measurement of transport time profile in a gas cell. -- Abstract: The KEK Isotope Separation System (KISS) has been constructed at RIKEN to study the β-decay properties of neutron-rich isotopes with neutron numbers around N = 126 for application to astrophysics. A key component of KISS is a gas cell filled with argon gas at a pressure of 50 kPa to stop and collect the unstable nuclei, where the isotopes of interest will be selectively ionized using laser resonance ionization. We have performed off-line tests to study the basic properties of the gas cell and of KISS using nickel and iron filaments placed in the gas cell.

  12. Destabilization of Akt Promotes the Death of Myeloma Cell Lines

    Directory of Open Access Journals (Sweden)

    Yanan Zhang

    2014-01-01

    Full Text Available Constitutive activation of Akt is believed to be an oncogenic signal in multiple myeloma and is associated with poor patient prognosis and resistance to available treatment. The stability of Akt proteins is regulated by phosphorylating the highly conserved turn motif (TM of these proteins and the chaperone protein HSP90. In this study we investigate the antitumor effects of inhibiting mTORC2 plus HSP90 in myeloma cell lines. We show that chronic exposure of cells to rapamycin can inhibit mTORC2 pathway, and AKT will be destabilized by administration of the HSP90 inhibitor 17-allylamino-geldanamycin (17-AAG. Finally, we show that the rapamycin synergizes with 17-AAG and inhibits myeloma cells growth and promotes cell death to a greater extent than either drug alone. Our studies provide a clinical rationale of use mTOR inhibitors and chaperone protein inhibitors in combination regimens for the treatment of human blood cancers.

  13. RBE of neutrons for induction of cell reproductive death and chromosome aberrations in three cell lines

    International Nuclear Information System (INIS)

    Zoetelief, J.; Kuijpers, W.C.; Baten-Wittwer, A.; Barendsen, G.W.

    1983-01-01

    The authors have compared the RBE values for induction of dicentrics and centric rings with those for cell inactivation and with the mean or effective quality factors (Q) recommended for radiation protection. The induction of cell reproductive death and chromosome aberrations has been investigated in plateau phase cultures of established lines of a rat rhabdomyosarcoma, a rat ureter carcinoma and Chinese hamster cells for single doses of 300 kV X-rays and 0.5, 4.2 and 15 MeV neutrons. The different cell lines show considerable variations in sensitivity and the RBE values obtained are presented in tabular form. The mean RBE values for the rat rhabdomyosarcoma cells are lower than those for the other two relatively resistant cell lines. Those for the Chinese hamster cells extrapolated to levels according to low doses of X-rays are in good agreement with the quoted Q values. (Auth./C.F.)

  14. Establishment of human cell lines showing circadian rhythms of bioluminescence.

    Science.gov (United States)

    Yoshikawa, Aki; Shimada, Hiroko; Numazawa, Kahori; Sasaki, Tsukasa; Ikeda, Masaaki; Kawashima, Minae; Kato, Nobumasa; Tokunaga, Katsushi; Ebisawa, Takashi

    2008-11-28

    We have established human retinal pigment epithelial cell lines stably expressing the luciferase gene, driven by the human Bmal1 promoter, to obtain human-derived cells that show circadian rhythms of bioluminescence after dexamethasone treatment. The average circadian period of bioluminescence for the obtained clones was 24.07+/-0.48 h. Lithium (10 mM) in the medium significantly lengthened the circadian period of bioluminescence, which is consistent with previous reports, while 2 mM or 5 mM lithium had no effect. This is the first report on the establishment of human-derived cell lines that proliferate infinitely and show circadian rhythms of bioluminescence, and also the first to investigate the effects of low-dose lithium on the circadian rhythms of human-derived cells in vitro. The established cells will be useful for various in vitro studies of human circadian rhythms and for the development of new therapies for human disorders related to circadian rhythm disturbances.

  15. Proteomics of cancer cell lines resistant to microtubule-stabilizing agents

    DEFF Research Database (Denmark)

    Albrethsen, Jakob; Angeletti, Ruth H; Horwitz, Susan Band

    2014-01-01

    was compared with two drug-resistant daughter cell lines, an EpoB-resistant cell line (EpoB8) and an ixabepilone-resistant cell line (Ixab80). All 2D DIGE results were validated by Western blot analyses. A variety of cytoskeletal and cytoskeleton-associated proteins were differentially expressed in drug......Despite the clinical success of microtubule-interacting agents (MIA), a significant challenge for oncologists is the inability to predict the response of individual patients with cancer to these drugs. In the present study, six cell lines were compared by 2D DIGE proteomics to investigate cellular...... resistance to the class of MIAs known as microtubule-stabilizing agents (MSA). The human lung cancer cell line A549 was compared with two drug-resistant daughter cell lines, a taxol-resistant cell line (AT12) and an epothilone B (EpoB)-resistant cell line (EpoB40). The ovarian cancer cell line Hey...

  16. Live-Cell Imaging Visualizes Frequent Mitotic Skipping During Senescence-Like Growth Arrest in Mammary Carcinoma Cells Exposed to Ionizing Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Masatoshi, E-mail: msuzuki@nagasaki-u.ac.jp [Department of Radiation Medical Sciences, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki (Japan); Yamauchi, Motohiro; Oka, Yasuyoshi; Suzuki, Keiji; Yamashita, Shunichi [Department of Radiation Medical Sciences, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki (Japan)

    2012-06-01

    Purpose: Senescence-like growth arrest in human solid carcinomas is now recognized as the major outcome of radiotherapy. This study was designed to analyze cell cycle during the process of senescence-like growth arrest in mammary carcinoma cells exposed to X-rays. Methods and Materials: Fluorescent ubiquitination-based cell cycle indicators were introduced into the human mammary carcinoma cell line MCF-7. Cell cycle was sequentially monitored by live-cell imaging for up to 5 days after exposure to 10 Gy of X-rays. Results: Live-cell imaging revealed that cell cycle transition from G2 to G1 phase without mitosis, so-called mitotic skipping, was observed in 17.1% and 69.8% of G1- and G2-irradiated cells, respectively. Entry to G1 phase was confirmed by the nuclear accumulation of mKO{sub 2}-hCdt1 as well as cyclin E, which was inversely correlated to the accumulation of G2-specific markers such as mAG-hGeminin and CENP-F. More than 90% of cells skipping mitosis were persistently arrested in G1 phase and showed positive staining for the senescent biochemical marker, which is senescence-associated ss-galactosidase, indicating induction of senescence-like growth arrest accompanied by mitotic skipping. While G2 irradiation with higher doses of X-rays induced mitotic skipping in approximately 80% of cells, transduction of short hairpin RNA (shRNA) for p53 significantly suppressed mitotic skipping, suggesting that ionizing radiation-induced mitotic skipping is associated with p53 function. Conclusions: The present study found the pathway of senescence-like growth arrest in G1 phase without mitotic entry following G2-irradiation.

  17. Live-Cell Imaging Visualizes Frequent Mitotic Skipping During Senescence-Like Growth Arrest in Mammary Carcinoma Cells Exposed to Ionizing Radiation

    International Nuclear Information System (INIS)

    Suzuki, Masatoshi; Yamauchi, Motohiro; Oka, Yasuyoshi; Suzuki, Keiji; Yamashita, Shunichi

    2012-01-01

    Purpose: Senescence-like growth arrest in human solid carcinomas is now recognized as the major outcome of radiotherapy. This study was designed to analyze cell cycle during the process of senescence-like growth arrest in mammary carcinoma cells exposed to X-rays. Methods and Materials: Fluorescent ubiquitination-based cell cycle indicators were introduced into the human mammary carcinoma cell line MCF-7. Cell cycle was sequentially monitored by live-cell imaging for up to 5 days after exposure to 10 Gy of X-rays. Results: Live-cell imaging revealed that cell cycle transition from G2 to G1 phase without mitosis, so-called mitotic skipping, was observed in 17.1% and 69.8% of G1- and G2-irradiated cells, respectively. Entry to G1 phase was confirmed by the nuclear accumulation of mKO 2 -hCdt1 as well as cyclin E, which was inversely correlated to the accumulation of G2-specific markers such as mAG-hGeminin and CENP-F. More than 90% of cells skipping mitosis were persistently arrested in G1 phase and showed positive staining for the senescent biochemical marker, which is senescence-associated ß-galactosidase, indicating induction of senescence-like growth arrest accompanied by mitotic skipping. While G2 irradiation with higher doses of X-rays induced mitotic skipping in approximately 80% of cells, transduction of short hairpin RNA (shRNA) for p53 significantly suppressed mitotic skipping, suggesting that ionizing radiation-induced mitotic skipping is associated with p53 function. Conclusions: The present study found the pathway of senescence-like growth arrest in G1 phase without mitotic entry following G2-irradiation.

  18. Live-cell imaging study of mitochondrial morphology in mammalian cells exposed to X-rays

    International Nuclear Information System (INIS)

    Noguchi, M.; Yokoya, A.; Narita, A.; Fujii, K.; Kanari, Y.

    2015-01-01

    Morphological changes in mitochondria induced by X-irradiation in normal murine mammary gland cells were studied with a live-cell microscopic imaging technique. Mitochondria were visualised by staining with a specific fluorescent probe in the cells, which express fluorescent ubiquitination-based cell-cycle indicator 2 (Fucci2) probes to visualise cell cycle. In unirradiated cells, the number of cells with fragmented mitochondria was about 20 % of the total cells through observation period (96 h). In irradiated cells, the population with fragmented mitochondria significantly increased depending on the absorbed dose. Particularly, for 8 Gy irradiation, the accumulation of fragmentation persists even in the cells whose cell cycle came to a stand (80 % in G1 (G0-like) phase). The fraction reached to a maximum at 96 h after irradiation. The kinetics of the fraction with fragmented mitochondria was similar to that for cells in S/G2/M phase (20 %) through the observation period (120 h). The evidences show that, in irradiated cells, some signals are continually released from a nucleus or cytoplasm even in the G0-like cells to operate some sort of protein machineries involved in mitochondrial fission. It is inferred that this delayed mitochondrial fragmentation is strongly related to their dysfunction, and hence might modulate radiobiological effects such as mutation or cell death. (authors)

  19. Live-cell imaging study of mitochondrial morphology in mammalian cells exposed to X-rays.

    Science.gov (United States)

    Noguchi, M; Kanari, Y; Yokoya, A; Narita, A; Fujii, K

    2015-09-01

    Morphological changes in mitochondria induced by X-irradiation in normal murine mammary gland cells were studied with a live-cell microscopic imaging technique. Mitochondria were visualised by staining with a specific fluorescent probe in the cells, which express fluorescent ubiquitination-based cell-cycle indicator 2 (Fucci2) probes to visualise cell cycle. In unirradiated cells, the number of cells with fragmented mitochondria was about 20 % of the total cells through observation period (96 h). In irradiated cells, the population with fragmented mitochondria significantly increased depending on the absorbed dose. Particularly, for 8 Gy irradiation, the accumulation of fragmentation persists even in the cells whose cell cycle came to a stand (80 % in G1 (G0-like) phase). The fraction reached to a maximum at 96 h after irradiation. The kinetics of the fraction with fragmented mitochondria was similar to that for cells in S/G2/M phase (20 %) through the observation period (120 h). The evidences show that, in irradiated cells, some signals are continually released from a nucleus or cytoplasm even in the G0-like cells to operate some sort of protein machineries involved in mitochondrial fission. It is inferred that this delayed mitochondrial fragmentation is strongly related to their dysfunction, and hence might modulate radiobiological effects such as mutation or cell death. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Comparative DNA microarray analysis of human monocyte derived dendritic cells and MUTZ-3 cells exposed to the moderate skin sensitizer cinnamaldehyde

    International Nuclear Information System (INIS)

    Python, Francois; Goebel, Carsten; Aeby, Pierre

    2009-01-01

    The number of studies involved in the development of in vitro skin sensitization tests has increased since the adoption of the EU 7th amendment to the cosmetics directive proposing to ban animal testing for cosmetic ingredients by 2013. Several studies have recently demonstrated that sensitizers induce a relevant up-regulation of activation markers such as CD86, CD54, IL-8 or IL-1β in human myeloid cell lines (e.g., U937, MUTZ-3, THP-1) or in human peripheral blood monocyte-derived dendritic cells (PBMDCs). The present study aimed at the identification of new dendritic cell activation markers in order to further improve the in vitro evaluation of the sensitizing potential of chemicals. We have compared the gene expression profiles of PBMDCs and the human cell line MUTZ-3 after a 24-h exposure to the moderate sensitizer cinnamaldehyde. A list of 80 genes modulated in both cell types was obtained and a set of candidate marker genes was selected for further analysis. Cells were exposed to selected sensitizers and non-sensitizers for 24 h and gene expression was analyzed by quantitative real-time reverse transcriptase-polymerase chain reaction. Results indicated that PIR, TRIM16 and two Nrf2-regulated genes, CES1 and NQO1, are modulated by most sensitizers. Up-regulation of these genes could also be observed in our recently published DC-activation test with U937 cells. Due to their role in DC activation, these new genes may help to further refine the in vitro approaches for the screening of the sensitizing properties of a chemical.

  1. Phosphatidylserine-exposing blood and endothelial cells contribute to the hypercoagulable state in essential thrombocythemia patients.

    Science.gov (United States)

    Tong, Dongxia; Yu, Muxin; Guo, Li; Li, Tao; Li, Jihe; Novakovic, Valerie A; Dong, Zengxiang; Tian, Ye; Kou, Junjie; Bi, Yayan; Wang, Jinghua; Zhou, Jin; Shi, Jialan

    2018-04-01

    The mechanisms of thrombogenicity in essential thrombocythemia (ET) are complex and not well defined. Our objective was to explore whether phosphatidylserine (PS) exposure on blood cells and endothelial cells (ECs) can account for the increased thrombosis and distinct thrombotic risks among mutational subtypes in ET. Using flow cytometry and confocal microscopy, we found that the levels of PS-exposing erythrocytes, platelets, leukocytes, and serum-cultured ECs were significantly higher in each ET group [JAK2, CALR, and triple-negative (TN) (all P cells and serum-cultured ECs led to markedly shortened coagulation time and dramatically increased levels of FXa, thrombin, and fibrin production. This procoagulant activity could be largely blocked by addition of lactadherin (approx. 70% inhibition). Confocal microscopy showed that the FVa/FXa complex and fibrin fibrils colocalized with PS on ET serum-cultured ECs. Additionally, we found a relationship between D-dimer, prothrombin fragment F1 + 2, and PS exposure. Our study reveals a previously unrecognized link between hypercoagulability and exposed PS on cells, which might also be associated with distinct thrombotic risks among mutational subtypes in ET. Thus, blocking PS-binding sites may represent a new therapeutic target for preventing thrombosis in ET.

  2. Differential CCR4 Expression And Function in Cutaneous T-Cell Lymphoma Cell Lines

    Directory of Open Access Journals (Sweden)

    Chieh-Shan Wu

    2008-11-01

    Full Text Available Cutaneous T cell lymphoma (CTCL is a clonal epidermotropic malignancy of memory T cells primarily involving the skin. However, the mechanisms governing migration of CTCL cells have not been fully clarified. It has been shown that certain chemokine receptors are upregulated in CTCL cells, but it remains unanswered whether these chemokine receptors play a critical role in the migration dynamics of CTCL. Using cell lines originally derived from patients with different subtypes of CTCL, we have shown higher CCR4 expression in the line derived from the mycosis fungoides (MJ, compared with the line derived from Sézary syndrome (Hut78. In specific responses to CCL22 (a CCR4 ligand treatments, MJ cells showed significant chemotactic migration, enhanced activation and adhesion of certain integrins (CD49d and CD29 in vitro, while the control cells (Hut78, CD4+CD45RO+ memory T cells, and Jurkat cells did not. Furthermore, compared with Hut78 cells, MJ cells manifested significantly more transendothelial migration in responses to treatments with either CCL22 or conditioned medium from dendritic cells in vitro. These results provide further dynamic evidence, in line with the multistep cascade paradigm for leukocyte transendothelial migration, to support a critical role for CCR4 in CTCL migration.

  3. Discovery of HeLa Cell Contamination in HES Cells: Call for Cell Line Authentication in Reproductive Biology Research.

    Science.gov (United States)

    Kniss, Douglas A; Summerfield, Taryn L

    2014-08-01

    Continuous cell lines are used frequently in reproductive biology research to study problems in early pregnancy events and parturition. It has been recognized for 50 years that many mammalian cell lines contain inter- or intraspecies contaminations with other cells. However, most investigators do not routinely test their culture systems for cross-contamination. The most frequent contributor to cross-contamination of cell lines is the HeLa cell isolated from an aggressive cervical adenocarcinoma. We report on the discovery of HeLa cell contamination of the human endometrial epithelial cell line HES isolated in our laboratory. Short tandem repeat analysis of 9 unique genetic loci demonstrated molecular identity between HES and HeLa cells. In addition, we verified that WISH cells, isolated originally from human amnion epithelium, were also contaminated with HeLa cells. Inasmuch as our laboratory did not culture HeLa cells at the time of HES cell derivations, the source of contamination was the WISH cell line. These data highlight the need for continued diligence in authenticating cell lines used in reproductive biology research. © The Author(s) 2014.

  4. Cellular Glycolysis and The Differential Survival of Lung Fibroblast and Lung Carcinoma Cell Lines.

    Science.gov (United States)

    Farah, Ibrahim O

    2016-04-01

    Tumor growth and abnormal cell survival were shown to be associated with a number of cellular metabolic abnormalities revealed by impaired oral glucose tolerance, depressed lipoprotein lipase activity leading to hypertriglyceridemia, and changes in amino acid profile as evidenced by increased plasma free tryptophan levels in patients with breast, lung, colon, stomach, and other cancers from various origins. The above findings seem to relate to or indicate a shift to non-oxidative metabolic pathways in cancer. In contrast to normal cells, cancer cells may lose the ability to utilize aerobic respiration due to either defective mitochondria or hypoxia within the tumor microenvironments. Glucose was shown to be the major energy source in cancer cells where it utilizes aerobic /anaerobic glycolysis with the resultant lactic acid formation. The role of energetic modulations and use of glycolytic inhibitors on cancer/normal cell survival is not clearly established in the literature. We hypothesize that natural intermediates of glycolysis and the citric acid cycle will differentially and negatively impact the cancer phenotype in contrast to their no effects on the normal cell phenotype. Therefore, the purpose of this study was to evaluate six potential glycolytic modulators namely, Pyruvic acid, oxalic acid, Zn acetate, sodium citrate, fructose diphosphate (FDP) and sodium bicarbonate at μM concentrations on growing A549 (lung cancer) and MRC-5 (normal; human lung fibroblast) cell lines with the objective of determining their influence on visual impact, cell metabolic activity, cell viability and end-point cell survival. Exposed and non-exposed cells were tested with phase-contrast micro-scanning, survival/death and metabolic activity trends through MTT-assays, as well as death end-point determinations by testing re-growth on complete media and T4 cellometer counts. Results showed that oxalic acid and Zn acetate both influenced the pH of the medium and resulted in

  5. Expression of cadherin and NCAM in human small cell lung cancer cell lines and xenografts

    DEFF Research Database (Denmark)

    Rygaard, K; Møller, C; Bock, E

    1992-01-01

    characterised, the cadherin family and the Ig superfamily member, neural cell adhesion molecule (NCAM). We investigated expression of these two adhesion molecule families in small cell lung cancer (SCLC) cell lines and xenografts by immunoblotting. Nineteen tumours established from 15 patients with SCLC were......Tumour cell adhesion, detachment and aggregation seem to play an important part in tumour invasion and metastasis, and numerous cell adhesion molecules are expressed by tumour cells. Several families of cell-cell adhesion molecules have been described, of which two groups are particularly well...... embryonic development, which may play a role in connection with tumour invasion and metastasis, was found in 14/18 NCAM expressing SCLC tumours. Individual tumours grown as cell lines and as nude mouse xenografts showed no qualitative differences in cadherin or NCAM expression....

  6. Raman spectroscopy of single human tumour cells exposed to ionizing radiation in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Matthews, Q; Jirasek, A [Department of Physics and Astronomy, University of Victoria, Victoria BC V8W 3P6 (Canada); Brolo, AG [Department of Chemistry, University of Victoria, Victoria BC V8W 3V6 (Canada); Lum, J; Duan, X, E-mail: qmatthew@uvic.c, E-mail: jirasek@uvic.c [Deeley Research Centre, BC Cancer Agency-Vancouver Island Centre, Victoria BC V8R 6V5 (Canada)

    2011-01-07

    This work investigates the capability of Raman spectroscopy (RS) to study the effects of ionizing radiation on single human tumour cells. Prostate tumour cells (cell line DU145) are cultured in vitro and irradiated to doses between 15 and 50 Gy with single fractions of 6 MV photons. Single-cell Raman spectra are acquired from irradiated and unirradiated cultures up to 5 days post-irradiation. Principal component analysis is used to distinguish the uniquely radiation-induced spectral changes from inherent sources of spectral variability arising from cell cycle differences and other known factors. We observe uniquely radiation-induced spectral changes which are correlated with both the irradiated dose and the incubation time post-irradiation. The spectral changes induced by radiation arise from biochemical differences in lipids, nucleic acids, amino acids and conformational protein structures between irradiated and unirradiated cells. To our knowledge, this study is the first use of RS to observe radiation-induced biochemical differences in single cells, and is the first use of vibrational spectroscopy to observe uniquely radiation-induced biochemical differences in single cells independent of concurrent cell-cycle- or cell-death-related processes.

  7. Characterization of stimulus-secretion coupling in the human pancreatic EndoC-βH1 beta cell line.

    Directory of Open Access Journals (Sweden)

    Lotta E Andersson

    Full Text Available Studies on beta cell metabolism are often conducted in rodent beta cell lines due to the lack of stable human beta cell lines. Recently, a human cell line, EndoC-βH1, was generated. Here we investigate stimulus-secretion coupling in this cell line, and compare it with that in the rat beta cell line, INS-1 832/13, and human islets.Cells were exposed to glucose and pyruvate. Insulin secretion and content (radioimmunoassay, gene expression (Gene Chip array, metabolite levels (GC/MS, respiration (Seahorse XF24 Extracellular Flux Analyzer, glucose utilization (radiometric, lactate release (enzymatic colorimetric, ATP levels (enzymatic bioluminescence and plasma membrane potential and cytoplasmic Ca2+ responses (microfluorometry were measured. Metabolite levels, respiration and insulin secretion were examined in human islets.Glucose increased insulin release, glucose utilization, raised ATP production and respiratory rates in both lines, and pyruvate increased insulin secretion and respiration. EndoC-βH1 cells exhibited higher insulin secretion, while plasma membrane depolarization was attenuated, and neither glucose nor pyruvate induced oscillations in intracellular calcium concentration or plasma membrane potential. Metabolite profiling revealed that glycolytic and TCA-cycle intermediate levels increased in response to glucose in both cell lines, but responses were weaker in EndoC-βH1 cells, similar to those observed in human islets. Respiration in EndoC-βH1 cells was more similar to that in human islets than in INS-1 832/13 cells.Functions associated with early stimulus-secretion coupling, with the exception of plasma membrane potential and Ca2+ oscillations, were similar in the two cell lines; insulin secretion, respiration and metabolite responses were similar in EndoC-βH1 cells and human islets. While both cell lines are suitable in vitro models, with the caveat of replicating key findings in isolated islets, EndoC-βH1 cells have the

  8. Assessment of citalopram and escitalopram on neuroblastoma cell lines: Cell toxicity and gene modulation

    Science.gov (United States)

    Sakka, Laurent; Delétage, Nathalie; Chalus, Maryse; Aissouni, Youssef; Sylvain-Vidal, Valérie; Gobron, Stéphane; Coll, Guillaume

    2017-01-01

    Selective serotonin reuptake inhibitors (SSRI) are common antidepressants which cytotoxicity has been assessed in cancers notably colorectal carcinomas and glioma cell lines. We assessed and compared the cytotoxicity of 2 SSRI, citalopram and escitalopram, on neuroblastoma cell lines. The study was performed on 2 non-MYCN amplified cell lines (rat B104 and human SH-SY5Y) and 2 human MYCN amplified cell lines (IMR32 and Kelly). Citalopram and escitalopram showed concentration-dependent cytotoxicity on all cell lines. Citalopram was more cytotoxic than escitalopram. IMR32 was the most sensitive cell line. The absence of toxicity on human primary Schwann cells demonstrated the safety of both molecules for myelin. The mechanisms of cytotoxicity were explored using gene-expression profiles and quantitative real-time PCR (qPCR). Citalopram modulated 1 502 genes and escitalopram 1 164 genes with a fold change ≥ 2. 1 021 genes were modulated by both citalopram and escitalopram; 481 genes were regulated only by citalopram while 143 genes were regulated only by escitalopram. Citalopram modulated 69 pathways (KEGG) and escitalopram 42. Ten pathways were differently modulated by citalopram and escitalopram. Citalopram drastically decreased the expression of MYBL2, BIRC5 and BARD1 poor prognosis factors of neuroblastoma with fold-changes of -107 (pescitalopram. PMID:28467792

  9. Assessment of citalopram and escitalopram on neuroblastoma cell lines. Cell toxicity and gene modulation.

    Science.gov (United States)

    Sakka, Laurent; Delétage, Nathalie; Chalus, Maryse; Aissouni, Youssef; Sylvain-Vidal, Valérie; Gobron, Stéphane; Coll, Guillaume

    2017-06-27

    Selective serotonin reuptake inhibitors (SSRI) are common antidepressants which cytotoxicity has been assessed in cancers notably colorectal carcinomas and glioma cell lines. We assessed and compared the cytotoxicity of 2 SSRI, citalopram and escitalopram, on neuroblastoma cell lines. The study was performed on 2 non-MYCN amplified cell lines (rat B104 and human SH-SY5Y) and 2 human MYCN amplified cell lines (IMR32 and Kelly). Citalopram and escitalopram showed concentration-dependent cytotoxicity on all cell lines. Citalopram was more cytotoxic than escitalopram. IMR32 was the most sensitive cell line. The absence of toxicity on human primary Schwann cells demonstrated the safety of both molecules for myelin. The mechanisms of cytotoxicity were explored using gene-expression profiles and quantitative real-time PCR (qPCR). Citalopram modulated 1 502 genes and escitalopram 1 164 genes with a fold change ≥ 2. 1 021 genes were modulated by both citalopram and escitalopram; 481 genes were regulated only by citalopram while 143 genes were regulated only by escitalopram. Citalopram modulated 69 pathways (KEGG) and escitalopram 42. Ten pathways were differently modulated by citalopram and escitalopram. Citalopram drastically decreased the expression of MYBL2, BIRC5 and BARD1 poor prognosis factors of neuroblastoma with fold-changes of -107 (pescitalopram.

  10. Establishment of a novel human medulloblastoma cell line characterized by highly aggressive stem-like cells.

    Science.gov (United States)

    Silva, Patrícia Benites Gonçalves da; Rodini, Carolina Oliveira; Kaid, Carolini; Nakahata, Adriana Miti; Pereira, Márcia Cristina Leite; Matushita, Hamilton; Costa, Silvia Souza da; Okamoto, Oswaldo Keith

    2016-08-01

    Medulloblastoma is a highly aggressive brain tumor and one of the leading causes of morbidity and mortality related to childhood cancer. These tumors display differential ability to metastasize and respond to treatment, which reflects their high degree of heterogeneity at the genetic and molecular levels. Such heterogeneity of medulloblastoma brings an additional challenge to the understanding of its physiopathology and impacts the development of new therapeutic strategies. This translational effort has been the focus of most pre-clinical studies which invariably employ experimental models using human tumor cell lines. Nonetheless, compared to other cancers, relatively few cell lines of human medulloblastoma are available in central repositories, partly due to the rarity of these tumors and to the intrinsic difficulties in establishing continuous cell lines from pediatric brain tumors. Here, we report the establishment of a new human medulloblastoma cell line which, in comparison with the commonly used and well-established cell line Daoy, is characterized by enhanced proliferation and invasion capabilities, stem cell properties, increased chemoresistance, tumorigenicity in an orthotopic metastatic model, replication of original medulloblastoma behavior in vivo, strong chromosome structural instability and deregulation of genes involved in neural development. These features are advantageous for designing biologically relevant experimental models in clinically oriented studies, making this novel cell line, named USP-13-Med, instrumental for the study of medulloblastoma biology and treatment.

  11. Abnormal G1 arrest in the cell lines from LEC strain rats after X-irradiation

    International Nuclear Information System (INIS)

    Hayashi, M.; Uehara, K.; Kirisawa, R.; Endoh, D.; Arai, S.; Okui, T.

    1997-01-01

    The effect of X-irradiation of cell lines from LEC and WKAH strain rats on a progression o cell cycle was investigated. When WKAH rat ells were exposed to 5 Gy of X-rays and their cell cycle distribution was determined by a flow cytometer, the proportion of S-phase cells decrease and that of G2/M-phase cells in creased at 8 hr post-irradiation. At 18 and 24 hr post-irradiation, approximately 80% of the cells appeared in the G1 phase. On the contrary, the proportion of S-phase cells increased and that of G1-phase cells decreased in LEC rats during 8-24 hr post-irradiation, compared with that at 0 hr post-irradiation. Thus, radiation-induced delay in the progression from the G1 phase to S phase (G1 arrest) was observed inWKAH rat cells but not in LEC rat cells. In the case of WKAH rat cells, the intensities of the bands of p53 protein increased at 1 and 2 hr after X-irradiation at 5 Gy, compared with those of un-irradiated cells and at 0 hr post-irradiation. In contrast, the intensities of the bands were faint and did not significantly increase in LEC rat ells during 0-6 hr incubation after X-irradiation. Present results suggested that the radioresistant DNA synthesis in LEC rat cells is thought to be due to the abnormal G1 arrest following X-irradiation

  12. Hypoxia induces adipogenic differentitation of myoblastic cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Itoigawa, Yoshiaki [Tohoku University School of Medicine, Sendai (Japan); Juntendo University School of Medicine, Tokyo (Japan); Kishimoto, Koshi N., E-mail: kishimoto@med.tohoku.ac.jp [Tohoku University School of Medicine, Sendai (Japan); Okuno, Hiroshi; Sano, Hirotaka [Tohoku University School of Medicine, Sendai (Japan); Kaneko, Kazuo [Juntendo University School of Medicine, Tokyo (Japan); Itoi, Eiji [Tohoku University School of Medicine, Sendai (Japan)

    2010-09-03

    Research highlights: {yields} C2C12 and G8 myogenic cell lines treated by hypoxia differentiate into adipocytes. {yields} The expression of C/EBP{beta}, {alpha} and PPAR{gamma} were increased under hypoxia. {yields} Myogenic differentiation of C2C12 was inhibited under hypoxia. -- Abstract: Muscle atrophy usually accompanies fat accumulation in the muscle. In such atrophic conditions as back muscles of kyphotic spine and the rotator cuff muscles with torn tendons, blood flow might be diminished. It is known that hypoxia causes trans-differentiation of mesenchymal stem cells derived from bone marrow into adipocytes. However, it has not been elucidated yet if hypoxia turned myoblasts into adipocytes. We investigated adipogenesis in C2C12 and G8 murine myogenic cell line treated by hypoxia. Cells were also treated with the cocktail of insulin, dexamethasone and IBMX (MDI), which has been known to inhibit Wnt signaling and promote adipogenesis. Adipogenic differentiation was seen in both hypoxia and MDI. Adipogenic marker gene expression was assessed in C2C12. CCAAT/enhancer-binding protein (C/EBP) {beta}, {alpha} and peroxisome proliferator activating receptor (PPAR) {gamma} were increased by both hypoxia and MDI. The expression profile of Wnt10b was different between hypoxia and MDI. The mechanism for adipogenesis of myoblasts in hypoxia might be regulated by different mechanism than the modification of Wnt signaling.

  13. CD3 receptor modulation in Jurkat leukemic cell line.

    Directory of Open Access Journals (Sweden)

    Jacek M Witkowski

    2004-03-01

    Full Text Available CD3 antigen is a crucial molecule in T cell signal transduction. Although its expression on cell surface is constitutive, dynamic regulation of TCR-CD3 level is probably the most important mechanism allowing T cells to calibrate their response to different levels of stimuli. In our study we examined the role of two main T cell signal transduction pathways in controlling the surface level of CD3 antigen, one based on protein kinase C activity and the other dependent on calcineurin. As an experimental model we used three clones derived from Jurkat cell line, expressing different levels of CD3 antigen surface expression: CD3(low (217.6, CD3+(217.9 or CD3(low (217.7. The cells were stimulated with PMA or ionomycin, acting directly on PKC and calcineurin, respectively. Prior to the stimulation cells were incubated with PKC inhibitor--chelerythrine or calcineurin blocker--cyclosporine A. Changes in CD3 surface expression were measured by flow cytometry. Only PMA and chelerythrine were able to change CD3 expression suggesting important involvement of PKC in the regulation of its expression. To confirm these findings, PKC activity was estimated in Jurkat clones. Our data demonstrated that Jurkat clones with different CD3 expression showed also different PKC activities, so we conclude that PKC-dependent pathway is the main way of controlling CD3 level on Jurkat clones.

  14. Characterization of cell lines stably transfected with rubella virus replicons

    International Nuclear Information System (INIS)

    Tzeng, Wen-Pin; Xu, Jie; Frey, Teryl K.

    2012-01-01

    Rubella virus (RUBV) replicons expressing a drug resistance gene and a gene of interest were used to select cell lines uniformly harboring the replicon. Replicons expressing GFP and a virus capsid protein GFP fusion (C-GFP) were compared. Vero or BHK cells transfected with either replicon survived drug selection and grew into a monolayer. However, survival was ∼9-fold greater following transfection with the C-GFP-replicon than with the GFP-expressing replicon and while the C-GFP-replicon cells grew similarly to non-transfected cells, the GFP-replicon cells grew slower. Neither was due to the ability of the CP to enhance RNA synthesis but survival during drug selection was correlated with the ability of CP to inhibit apoptosis. Additionally, C-GFP-replicon cells were not cured of the replicon in the absence of drug selection. Interferon-alpha suppressed replicon RNA and protein synthesis, but did not cure the cells, explaining in part the ability of RUBV to establish persistent infections.

  15. Characterization of cell lines stably transfected with rubella virus replicons

    Energy Technology Data Exchange (ETDEWEB)

    Tzeng, Wen-Pin; Xu, Jie [Department of Biology, Georgia State University, P.O. Box 4010, Atlanta GA 30302-4010 (United States); Frey, Teryl K., E-mail: tfrey@gsu.edu [Department of Biology, Georgia State University, P.O. Box 4010, Atlanta GA 30302-4010 (United States)

    2012-07-20

    Rubella virus (RUBV) replicons expressing a drug resistance gene and a gene of interest were used to select cell lines uniformly harboring the replicon. Replicons expressing GFP and a virus capsid protein GFP fusion (C-GFP) were compared. Vero or BHK cells transfected with either replicon survived drug selection and grew into a monolayer. However, survival was {approx}9-fold greater following transfection with the C-GFP-replicon than with the GFP-expressing replicon and while the C-GFP-replicon cells grew similarly to non-transfected cells, the GFP-replicon cells grew slower. Neither was due to the ability of the CP to enhance RNA synthesis but survival during drug selection was correlated with the ability of CP to inhibit apoptosis. Additionally, C-GFP-replicon cells were not cured of the replicon in the absence of drug selection. Interferon-alpha suppressed replicon RNA and protein synthesis, but did not cure the cells, explaining in part the ability of RUBV to establish persistent infections.

  16. Influence of shear stress and size on viability of endothelial cells exposed to gold nanoparticles

    Science.gov (United States)

    Fede, C.; Albertin, Giovanna; Petrelli, L.; De Caro, R.; Fortunati, I.; Weber, V.; Ferrante, Camilla

    2017-09-01

    Screening nanoparticle toxicity directly on cell culture can be a fast and cheap technique. Nevertheless, to obtain results in accordance with those observed in live animals, the conditions in which cells are cultivated should resemble the one encountered in live systems. Microfluidic devices offer the possibility to satisfy this requirement, in particular with endothelial cell lines, because they are capable to reproduce the flowing media and shear stress experienced by these cell lines in vivo. In this work, we exploit a microfluidic device to observe how human umbilical vein endothelial cells (HUVEC) viability changes when subject to a continuous flow of culture medium, in which spherical citrate-stabilized gold nanoparticles of different sizes and at varying doses are investigated. For comparison, the same experiments are also run in multiwells where the cells do not experience the shear stress induced by the flowing medium. We discuss the results considering the influence of mode of exposure and nanoparticle size (24 and 13 nm). We observed that gold nanoparticles show a lower toxicity under flow conditions with respect to static and the HUVEC viability decreases as the nanoparticle surface area per unit volume increases, regardless of size.

  17. Spinocerebellar ataxia: miRNAs expose biological pathways underlying pervasive Purkinje cell degeneration.

    Science.gov (United States)

    van der Stijl, Rogier; Withoff, Sebo; Verbeek, Dineke S

    2017-12-01

    Recent work has demonstrated the importance of miRNAs in the pathogenesis of various brain disorders including the neurodegenerative disorder spinocerebellar ataxia (SCA). This review focuses on the role of miRNAs in the shared pathogenesis of the different SCA types. We examine the novel findings of a recent cell-type-specific RNA-sequencing study in mouse brain and discuss how the identification of Purkinje-cell-enriched miRNAs highlights biological pathways that expose the mechanisms behind pervasive Purkinje cell degeneration in SCA. These key pathways are likely to contain targets for therapeutic development and represent potential candidate genes for genetically unsolved SCAs. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Multidrug resistance and retroviral transduction potential in human small cell lung cancer cell lines

    DEFF Research Database (Denmark)

    Theilade, M D; Gram, G J; Jensen, P B

    1999-01-01

    Multidrug resistance (MDR) remains a major problem in the successful treatment of small cell lung cancer (SCLC). New treatment strategies are needed, such as gene therapy specifically targeting the MDR cells in the tumor. Retroviral LacZ gene-containing vectors that were either pseudotyped...... for the gibbon ape leukemia virus (GALV-1) receptor or had specificity for the amphotropic murine leukemia virus (MLV-A) receptor were used for transduction of five SCLC cell lines differing by a range of MDR mechanisms. Transduction efficiencies in these cell lines were compared by calculating the percentage...... of blue colonies after X-Gal staining of the cells grown in soft agar. All examined SCLC cell lines were transducible with either vector. Transduction efficiencies varied from 5.7% to 33.5% independent of the presence of MDR. These results indicate that MDR does not severely impair transduction of SCLC...

  19. Human papillomavirus-exposed Langerhans cells are activated by stabilized Poly-I:C

    Directory of Open Access Journals (Sweden)

    Diane M. Da Silva

    2015-12-01

    Full Text Available Human papillomaviruses (HPV establish persistent infections because of evolved immune evasion mechanisms, particularly HPV-mediated suppression of the immune functions of Langerhans cells (LC, the antigen presenting cells of the epithelium. Polyinosinic-polycytidilic acid (Poly-I:C is broadly immunostimulatory with the ability to enhance APC expression of costimulatory molecules and inflammatory cytokines resulting in T cell activation. Here we investigated the activation of primary human LC derived from peripheral blood monocytes after exposure to HPV16 virus like particles followed by treatment with stabilized Poly-I:C compounds (s-Poly-I:C, and their subsequent induction of HPV16-specific T cells. Our results indicate that HPV16 particles alone were incapable of inducing LC activation as demonstrated by the lack of costimulatory molecules, inflammatory cytokines, chemokine-directed migration, and HPV16-specific CD8+ T cells in vitro. Conversely, s-Poly-I:C caused significant upregulation of costimulatory molecules and induction of chemokine-directed migration of LC that were pre-exposed to HPV16. In HLA-A*0201-positive donors, s-Poly-I:C treatment was able to induce CD8+ T cell immune responses against HPV16-derived peptides. Thus, s-Poly-I:C compounds are attractive for translation into therapeutics in which they could potentially mediate clearance of persistent HPV infection. Keywords: Papillomavirus, HPV16, Langerhans cells, Immune escape

  20. Radiation-induced apoptosis and cell cycle checkpoints in human colorectal tumour cell lines

    International Nuclear Information System (INIS)

    Playle, L.C.

    2001-03-01

    The p53 tumour suppressor gene is mutated in 75% of colorectal carcinomas and is critical for DNA damage-induced G1 cell cycle arrest. Data presented in this thesis demonstrate that after treatment with Ionizing Radiation (IR), colorectal tumour cell lines with mutant p53 are unable to arrest at G1 and undergo cell cycle arrest at G2. The staurosporine derivative, UCN-01, was shown to abrogate the IR-induced G2 checkpoint in colorectal tumour cell lines. Furthermore, in some cell lines, abrogation of the G2 checkpoint was associated with radiosensitisation. Data presented in this study demonstrate that 2 out of 5 cell lines with mutant p53 were sensitised to IR by UCN-01. In order to determine whether radiosensitisation correlated with lack of functional p53, transfected derivatives of an adenoma-derived cell line were studied, in which endogenous wild type p53 was disrupted by expression of a dominant negative p53 mutant protein (and with a vector control). In both these cell lines UCN-01 abrogated the G2 arrest however this was not associated with radiosensitisation, indicating that radiosensitisation is a cell type-specific phenomenon. Although 2 colorectal carcinoma cell lines, with mutant p53, were sensitised to IR by UCN-01, the mechanisms of p53-independent IR-induced apoptosis in the colon are essentially unknown. The mitogen-activated protein kinase (MAPK) pathways (that is the JNK, p38 and ERK pathways) have been implicated in apoptosis in a range of cell systems and in IR-induced apoptosis in some cell types. Data presented in this study show that, although the MAPKs can be activated by the known activator anisomycin, there is no evidence of a role for MAPKs in IR-induced apoptosis in colorectal tumour cell lines, regardless of p53 status. In summary, some colorectal tumour cell lines with mutant p53 can be sensitised to IR-induced cell death by G2 checkpoint abrogation and this may be an important treatment strategy, however mechanisms of IR-induced p53

  1. Transcriptional signature of accessory cells in the lateral line, using the Tnk1bp1:EGFP transgenic zebrafish line.

    Science.gov (United States)

    Behra, Martine; Gallardo, Viviana E; Bradsher, John; Torrado, Aranza; Elkahloun, Abdel; Idol, Jennifer; Sheehy, Jessica; Zonies, Seth; Xu, Lisha; Shaw, Kenna M; Satou, Chie; Higashijima, Shin-ichi; Weinstein, Brant M; Burgess, Shawn M

    2012-01-24

    Because of the structural and molecular similarities between the two systems, the lateral line, a fish and amphibian specific sensory organ, has been widely used in zebrafish as a model to study the development/biology of neuroepithelia of the inner ear. Both organs have hair cells, which are the mechanoreceptor cells, and supporting cells providing other functions to the epithelium. In most vertebrates (excluding mammals), supporting cells comprise a pool of progenitors that replace damaged or dead hair cells. However, the lack of regenerative capacity in mammals is the single leading cause for acquired hearing disorders in humans. In an effort to understand the regenerative process of hair cells in fish, we characterized and cloned an egfp transgenic stable fish line that trapped tnks1bp1, a highly conserved gene that has been implicated in the maintenance of telomeres' length. We then used this Tg(tnks1bp1:EGFP) line in a FACsorting strategy combined with microarrays to identify new molecular markers for supporting cells. We present a Tg(tnks1bp1:EGFP) stable transgenic line, which we used to establish a transcriptional profile of supporting cells in the zebrafish lateral line. Therefore we are providing a new set of markers specific for supporting cells as well as candidates for functional analysis of this important cell type. This will prove to be a valuable tool for the study of regeneration in the lateral line of zebrafish in particular and for regeneration of neuroepithelia in general.

  2. Altered global gene expression profiles in human gastrointestinal epithelial Caco2 cells exposed to nanosilver

    Directory of Open Access Journals (Sweden)

    Saura C. Sahu

    Full Text Available Extensive consumer exposure to food- and cosmetics-related consumer products containing nanosilver is of public safety concern. Therefore, there is a need for suitable in vitro models and sensitive predictive rapid screening methods to assess their toxicity. Toxicogenomic profile showing subtle changes in gene expressions following nanosilver exposure is a sensitive toxicological endpoint for this purpose. We evaluated the Caco2 cells and global gene expression profiles as tools for predictive rapid toxicity screening of nanosilver. We evaluated and compared the gene expression profiles of Caco-2 cells exposed to 20 nm and 50 nm nanosilver at a concentration 2.5 μg/ml. The global gene expression analysis of Caco2 cells exposed to 20 nm nanosilver showed that a total of 93 genes were altered at 4 h exposure, out of which 90 genes were up-regulated and 3 genes were down-regulated. The 24 h exposure of 20 nm silver altered 15 genes in Caco2 cells, out of which 14 were up-regulated and one was down-regulated. The most pronounced changes in gene expression were detected at 4 h. The greater size (50 nm nanosilver at 4 h exposure altered more genes by more different pathways than the smaller (20 nm one. Metallothioneins and heat shock proteins were highly up-regulated as a result of exposure to both the nanosilvers. The cellular pathways affected by the nanosilver exposure is likely to lead to increased toxicity. The results of our study presented here suggest that the toxicogenomic characterization of Caco2 cells is a valuable in vitro tool for assessing toxicity of nanomaterials such as nanosilver. Keywords: Nanosilver, Silver nanoparticles, Nanoparticles, Toxicogenomics, DNA microarray, Global gene expression profiles, Caco2 cells

  3. Molecular signatures in response to Isoliquiritigenin in lymphoblastoid cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae-Eun; Hong, Eun-Jung; Nam, Hye-Young [National Biobank of Korea, Center for Genome Science, Korea National Institute of Health, Korea Centers for Disease Control and Prevention (Korea, Republic of); Hwang, Meeyul [Research Center for Biomedical Resource of Oriental Medicine, Daegu Haany University (Korea, Republic of); Kim, Ji-Hyun [National Biobank of Korea, Center for Genome Science, Korea National Institute of Health, Korea Centers for Disease Control and Prevention (Korea, Republic of); Han, Bok-Ghee, E-mail: bokghee@nih.go.kr [National Biobank of Korea, Center for Genome Science, Korea National Institute of Health, Korea Centers for Disease Control and Prevention (Korea, Republic of); Jeon, Jae-Pil, E-mail: jpjeon@cdc.go.kr [National Biobank of Korea, Center for Genome Science, Korea National Institute of Health, Korea Centers for Disease Control and Prevention (Korea, Republic of)

    2012-10-19

    Highlights: Black-Right-Pointing-Pointer We identified the inhibitory effect of ISL on cell proliferation of LCLs. Black-Right-Pointing-Pointer We found ISL-induced genes and miRNAs through microarray approach. Black-Right-Pointing-Pointer ISL-treated LCLs represented gene expression changes in cell cycle and p53 pathway. Black-Right-Pointing-Pointer We revealed 12 putative mRNA-miRNA functional pairs associated with ISL effect. -- Abstract: Isoliquiritigenin (ISL) has been known to induce cell cycle arrest and apoptosis of various cancer cells. However, genetic factors regulating ISL effects remain unclear. The aim of this study was to identify the molecular signatures involved in ISL-induced cell death of EBV-transformed lymphoblastoid cell lines (LCLs) using microarray analyses. For gene expression and microRNA (miRNA) microarray experiments, each of 12 LCL strains was independently treated with ISL or DMSO as a vehicle control for a day prior to total RNA extraction. ISL treatment inhibited cell proliferation of LCLs in a dose-dependent manner. Microarray analysis showed that ISL-treated LCLs represented gene expression changes in cell cycle and p53 signaling pathway, having a potential as regulators in LCL survival and sensitivity to ISL-induced cytotoxicity. In addition, 36 miRNAs including five miRNAs with unknown functions were differentially expressed in ISL-treated LCLs. The integrative analysis of miRNA and gene expression profiles revealed 12 putative mRNA-miRNA functional pairs. Among them, miR-1207-5p and miR-575 were negatively correlated with p53 pathway- and cell cycle-associated genes, respectively. In conclusion, our study suggests that miRNAs play an important role in ISL-induced cytotoxicity in LCLs by targeting signaling pathways including p53 pathway and cell cycle.

  4. UV light blocks EGFR signalling in human cancer cell lines

    DEFF Research Database (Denmark)

    Olsen, BB; Neves-Petersen, M T; Klitgaard, S

    2007-01-01

    UV light excites aromatic residues, causing these to disrupt nearby disulphide bridges. The EGF receptor is rich in aromatic residues near the disulphide bridges. Herein we show that laser-pulsed UV illumination of two different skin-derived cancer cell lines i.e. Cal-39 and A431, which both...... antibodies. There was a threshold level, below which the receptor could not be blocked. In addition, illumination caused the cells to upregulate the cyclin-dependent kinase inhibitor p21WAF1, irrespective of the p53 status. Since the EGF receptor is often overexpressed in cancers and other proliferative skin...... disorders, it might be possible to significantly reduce the proliferative potential of these cells making them good targets for laser-pulsed UV light treatment....

  5. Cytotoxicity of Silver Nanoparticles in Human Embryonic Stem Cell-Derived Fibroblasts and an L-929 Cell Line

    Directory of Open Access Journals (Sweden)

    Hui Peng

    2012-01-01

    Full Text Available Consensus about the toxicity of silver nanoparticles (Ag-NPs has not been reached, even though extensive attention has been paid to this issue. This confusion may be due to physicochemical factors of Ag-NPs and the cell model used for biological safety evaluation. In the present study, human embryonic stem cell-derived fibroblasts (EBFs, which have been considered a closer representative of the in vivo response, were used as a novel cell model to assess the cytotoxicity of Ag-NPs (~20 nm and ~100 nm in comparison with L-929 fibroblast cell line. Cell proliferation, cell cycle, apoptosis, p53 expression, and cellular uptake were examined. Results showed that Ag-NPs presented higher cytotoxicity to EBF than to L-929. EBF demonstrated a stronger capacity to ingest Ag-NPs, a higher G2/M arrest, and more upgraduated p53 expression after exposed to Ag-NPs for 48 h when compared with L-929. It could be concluded that EBF exhibited a more sensitive response to Ag-NPs compared with L-929 cells, indicating that EBF may be a valid candidate for cytotoxicity screening assays of nanoparticles.

  6. Expression of cadherin and NCAM in human small cell lung cancer cell lines and xenografts

    DEFF Research Database (Denmark)

    Rygaard, K; Møller, C; Bock, E

    1992-01-01

    characterised, the cadherin family and the Ig superfamily member, neural cell adhesion molecule (NCAM). We investigated expression of these two adhesion molecule families in small cell lung cancer (SCLC) cell lines and xenografts by immunoblotting. Nineteen tumours established from 15 patients with SCLC were...... embryonic development, which may play a role in connection with tumour invasion and metastasis, was found in 14/18 NCAM expressing SCLC tumours. Individual tumours grown as cell lines and as nude mouse xenografts showed no qualitative differences in cadherin or NCAM expression....

  7. Oxidative and endoplasmic reticulum stress defense mechanisms of bovine granulosa cells exposed to heat stress.

    Science.gov (United States)

    Alemu, Teshome Wondie; Pandey, Hari Om; Salilew Wondim, Dessie; Gebremedhn, Samuel; Neuhof, Christiane; Tholen, Ernst; Holker, Michael; Schellander, Karl; Tesfaye, Dawit

    2018-04-01

    In most mammalian species including cattle, heat stress has detrimental effects on ovarian function through disturbing estradiol production and viability of granulosa cells. However, effect of heat stress and underlying cellular defense mechanisms of bovine granulosa cells is not fully understood. Here, we aimed to investigate the effect of heat stress on granulosa cells function and the associated defense mechanism. For this an in vitro granulosa cell model was used to investigate the role of elevated temperature (41 °C) on granulosa cell functions at 24 h and 48 h exposure compared to the control cultured at 37 °C. The results showed that reactive oxygen species level was higher in cells under 41 °C at 24 h compared to control. In response to increased reactive oxygen species level, the expression of NRF2 and its antioxidant genes, CAT and PRDX1 were higher in bovine granulosa cells exposed to heat stress. Interestingly, heat stress markedly increased expression of endoplasmic reticulum stress marker genes; GRP78 and GRP94, in cultured bovine granulosa cells at 24 h, and higher protein accumulation of GRP78 accompanied by increased expression of apoptotic genes, BAX and CASPASE-3. Moreover, heat stress significantly decreased the bovine granulosa cells proliferation, which was supported by decreased in the expression of proliferation marker gene PCNA. All in all heat stress induce reactive oxygen species accumulation, apoptosis and reduced proliferation, which trigger the NRF2 mediated oxidative stress and endoplasmic reticulum stress response by bovine granulosa cells. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Detection of circulating tumour cells on mRNA levels with established breast cancer cell lines.

    Science.gov (United States)

    Zebisch, Michael; Kölbl, Alexandra C; Andergassen, Ulrich; Hutter, Stephan; Neugebauer, Julia; Engelstädter, Verena; Günthner-Biller, Maria; Jeschke, Udo; Friese, Klaus; Rack, Brigitte

    2013-03-01

    Circulating tumour cells were detected and quantified by real-time polymerase chain reaction (PCR) in peripheral blood, based on the fact that the expression of certain genes is upregulated in tumour tissues in comparison to surrounding blood cells. Calibration curves showing gene expression as functions of the number of tumour cells within a blood sample were prepared. Blood samples were therefore spiked with cells of breast cancer cell lines, RNA was extracted, transcribed to complementary DNA (cDNA) and used in real-time PCR reaction on the Cytokeratins (CK) 8, 18 and 19. Calibration curves were generated by Microsoft™ Excel®. Relative quantification curves of gene expression in different breast cancer cell lines showed no unitary tendencies. The oscillations in the relative quantification curves of gene expression suggested an occurrence of immunological effects, leading to an apparent agglutination of added tumour cells together with the blood cells of the sample. Thus, strategies to obtain evaluable results should be considered.

  9. Mechanisms of cell sensitization to alpha radioimmunotherapy by doxorubicin or paclitaxel in multiple myeloma cell lines.

    Science.gov (United States)

    Supiot, Stephane; Gouard, Sebastien; Charrier, Josiane; Apostolidis, Christos; Chatal, Jean-Francois; Barbet, Jacques; Davodeau, François; Cherel, Michel

    2005-10-01

    The purpose of this study was to analyze different mechanisms (cell cycle synchronization, DNA damage, and apoptosis) that might underlie potential synergy between chemotherapy (paclitaxel or doxorubicin) and radioimmunotherapy with alpha radionuclides. Three multiple myeloma cell lines (LP1, RMI 8226, and U266) were treated with 213Bi-radiolabeled B-B4, a monoclonal antibody that recognizes syndecan-1 (CD138) 24 hours after paclitaxel (1 nmol/L) or doxorubicin (10 nmol/L) treatment. Cell survival was assessed using a clonogenic survival assay. Cell cycle modifications were assessed by propidium iodide staining and DNA strand breaks by the comet assay. Level of apoptosis was determined by Apo 2.7 staining. Radiation enhancement ratio showed that paclitaxel and doxorubicin were synergistic with alpha radioimmunotherapy. After a 24-hour incubation, paclitaxel and doxorubicin arrested all cell lines in the G2-M phase of the cell cycle. Doxorubicin combined with alpha radioimmunotherapy increased tail DNA in the RPMI 8226 cell line but not the LP1 or U266 cell lines compared with doxorubicin alone or alpha radioimmunotherapy alone. Neither doxorubicin nor paclitaxel combined with alpha radioimmunotherapy increased the level of apoptosis induced by either drug alone or alpha radioimmunotherapy alone. Both cell cycle arrest in the G2-M phase and an increase in DNA double-strand breaks could lead to radiosensitization of cells by doxorubicin or paclitaxel, but apoptosis would not be involved in radiosensitization mechanisms.

  10. Changes in protein expression of U937 and Jurkat cells exposed to nanosecond pulsed electric fields

    Science.gov (United States)

    Moen, Erick K.; Roth, Caleb C.; Cerna, Caesar; Estalck, Larry; Wilmink, Gerald; Ibey, Bennett L.

    2013-02-01

    Application of nanosecond pulsed electric fields (nsPEF) to various biological cell lines has been to shown to cause many diverse effects, including poration of the plasma membrane, depolarization of the mitochondrial membrane, blebbing, apoptosis, and intracellular calcium bursts. The underlying mechanism(s) responsible for these diverse responses are poorly understood. Of specific interest in this paper are the long-term effects of nsPEF on cellular processes, including the regulation of genes and production of proteins. Previous studies have reported transient activation of select signaling pathways involving mitogen-activated protein kinases (MAPKs), protein phosphorylation and downstream gene expression following nsPEF application. We hypothesize that nsPEF represents a unique stimulus that could be used to externally modulate cellular processes. To validate our hypothesis, we performed a series of cuvette-based exposures at 10 and 600ns pulse widths using a custom Blumlien line pulser system. We measured acute changes in the plasma membrane structure using flow cytometry by tracking phosphatidylserine externalization via FITC-Annexin V labeling and poration via propidium iodide uptake. We then compared these results to viability of the cells at 24 hours post exposure using MTT assay and changes in the MAPK family of proteins at 8 hours post-exposure using Luminex assay. By comparing exposures at 10 and 600ns duration, we found that most MAPK family-protein expression increased in Jurkat and U937 cell lines following exposure and compared well with drops in viability and changes in plasma membrane asymmetry. What proved interesting is that some MAPK family proteins (e.g. p53, STAT1), were expressed in one cell line, but not the other. This difference may point to an underlying mechanism for observed difference in cellular sensitivity to nsPEFinduced stresses.

  11. Functional somatostatin receptors on a rat pancreatic acinar cell line

    International Nuclear Information System (INIS)

    Viguerie, N.; Tahiri-Jouti, N.; Esteve, J.P.; Clerc, P.; Logsdon, C.; Svoboda, M.; Susini, C.; Vaysse, N.; Ribet, A.

    1988-01-01

    Somatostatin receptors from a rat pancreatic acinar cell line, AR4-2J, were characterized biochemically, structurally, and functionally. Binding of 125 I-[Tyr 11 ]Somatostatin to AR4-2J cells was saturable, exhibiting a single class of high-affinity binding sites with a maximal binding capacity of 258 ± 20 fmol/10 6 cells. Somatostatin receptor structure was analyzed by covalently cross-linking 125 I-[Tyr 11 ]somatostatin to its plasma membrane receptors. Gel electrophoresis and autoradiography of cross-linked proteins revealed a peptide containing the somatostatin receptor. Somatostatin inhibited vasoactive intestinal peptide (VIP)-stimulated adenosine 3',5'-cyclic monophosphate (cAMP) formation in a dose-dependent manner. The concentration of somatostatin that caused half-maximal inhibition of cAMP formation was close to the receptor affinity for somatostatin. Pertussis toxin pretreatment of AR4-2J cells prevented somatostatin inhibition of VIP-stimulated cAMP formation as well as somatostatin binding. The authors conclude that AR4-2J cells exhibit functional somatostatin receptors that retain both specificity and affinity of the pancreatic acinar cell somatostatin receptors and act via the pertussis toxin-sensitive guanine nucleotide-binding protein N i to inhibit adenylate cyclase

  12. New model for gastroenteropancreatic large-cell neuroendocrine carcinoma: establishment of two clinically relevant cell lines.

    Directory of Open Access Journals (Sweden)

    Andreas Krieg

    Full Text Available Recently, a novel WHO-classification has been introduced that divided gastroenteropancreatic neuroendocrine neoplasms (GEP-NEN according to their proliferation index into G1- or G2-neuroendocrine tumors (NET and poorly differentiated small-cell or large-cell G3-neuroendocrine carcinomas (NEC. Our knowledge on primary NECs of the GEP-system is limited due to the rarity of these tumors and chemotherapeutic concepts of highly aggressive NEC do not provide convincing results. The aim of this study was to establish a reliable cell line model for NEC that could be helpful in identifying novel druggable molecular targets. Cell lines were established from liver (NEC-DUE1 or lymph node metastases (NEC-DUE2 from large cell NECs of the gastroesophageal junction and the large intestine, respectively. Morphological characteristics and expression of neuroendocrine markers were extensively analyzed. Chromosomal aberrations were mapped by array comparative genomic hybridization and DNA profiling was analyzed by DNA fingerprinting. In vitro and in vivo tumorigenicity was evaluated and the sensitivity against chemotherapeutic agents assessed. Both cell lines exhibited typical morphological and molecular features of large cell NEC. In vitro and in vivo experiments demonstrated that both cell lines retained their malignant properties. Whereas NEC-DUE1 and -DUE2 were resistant to chemotherapeutic drugs such as cisplatin, etoposide and oxaliplatin, a high sensitivity to 5-fluorouracil was observed for the NEC-DUE1 cell line. Taken together, we established and characterized the first GEP large-cell NEC cell lines that might serve as a helpful tool not only to understand the biology of these tumors, but also to establish novel targeted therapies in a preclinical setup.

  13. Comparison between half-cell potential of reinforced concrete exposed to carbon dioxide and chloride environment

    Directory of Open Access Journals (Sweden)

    Somnuk Tangtermsirikul

    2010-10-01

    Full Text Available The objective of this study is to investigate the effect of concrete mix proportion and fly ash on half-cell potential (HCPand corrosion current density (icorr of steel in concrete exposed to different environments. Reinforced concrete specimenswith different fly ash replacement percentages and water to binder ratios (w/b were studied in this paper. The specimenswere subjected to two highly corrosive environments which are chloride and carbon dioxide. HCP and icorr were used tomonitor the corrosion process. Results of this study demonstrate that both HCP and icorr indicated the same tendency,especially for corroded specimens after being exposed to chloride. This means that HCP can be used to inspect corrosion ofsteel due to chloride. In case of carbonation, concrete specimens with fly ash showed more negative potential values thanconcrete without fly ash. However, chloride exposure test exhibited that specimen with higher fly ash replacement corrodedearlier. Moreover, HCP measurement presented different values between concrete exposed to chloride and carbon dioxide.There was an effect of carbonation to increase HCP during the initiation stage. A proper evaluation guideline for steelcorrosion due to carbonation needs to be further studied.

  14. Heterogeneity in 2-deoxy-D-glucose-induced modifications in energetics and radiation responses of human tumor cell lines

    International Nuclear Information System (INIS)

    Dwarkanath, Bilikere S.; Zolzer, Frido; Chandana, Sudhir; Bauch, Thomas; Adhikari, Jawahar S.; Muller, Wolfgang U.; Streffer, Christian; Jain, Viney

    2001-01-01

    Purpose: The glucose analog and glycolytic inhibitor, 2-deoxy-D-glucose (2-DG), has been shown to differentially enhance the radiation damage in tumor cells by inhibiting the postirradiation repair processes. The present study was undertaken to examine the relationship between 2-DG-induced modification of energy metabolism and cellular radioresponses and to identify the most relevant parameter(s) for predicting the tumor response to the combined treatment of radiation + 2-DG. Methods and Materials: Six human tumor cell lines (glioma: BMG-1 and U-87, squamous cell carcinoma: 4451 and 4197, and melanoma: MeWo and Be-11) were investigated. Cells were exposed to 2 Gy of Co-60 γ-rays or 250 kVP X-rays and maintained under liquid-holding conditions 2-4 h to facilitate repair. 2-DG (5 mM, equimolar with glucose) that was added at the time of irradiation was present during the liquid holding. Glucose utilization, lactate production (enzymatic assays), and adenine nucleotides (high performance liquid chromatography and capillary isotachophoresis) were investigated as parameters of energy metabolism. Induction and repair of DNA damage (comet assay), cytogenetic damage (micronuclei formation), and cell death (macrocolony assay) were analyzed as parameters of radiation response. Results: The glucose consumption and lactate production of glioma cell lines (BMG-1 and U-87) were nearly 2-fold higher than the squamous carcinoma cell lines (4197 and 4451). The ATP content varied from 3.0 to 6.5 femto moles/cell among these lines, whereas the energy charge (0.86-0.90) did not show much variation. Presence of 2-DG inhibited the rate of glucose usage and glycolysis by 30-40% in glioma cell lines and by 15-20% in squamous carcinoma lines, while ATP levels reduced by nearly 40% in all the four cell lines. ATP:ADP ratios decreased to a greater extent (∼40%) in glioma cells than in squamous carcinoma 4451 and MeWo cells; in contrast, presence of 2-DG reduced ADP:AMP ratios by 3-fold in

  15. Characterization of the novel Sezary lymphoma cell line BKP1.

    Science.gov (United States)

    Boudjarane, John; Essaydi, Arnaud; Farnault, Laure; Popovici, Cornel; Lafage-Pochitaloff, Marina; Beaufils, Nathalie; Berda-Haddad, Yaël; Lacroix, Romaric; Nicolino-Brunet, Corinne; Le Treut, Thérèse; Zattara, Hélène; Gabert, Jean; Kahn-Perlès, Brigitte; Costello, Régis

    2015-01-01

    Cutaneous T-cell lymphomas (CTCL) are a heterogeneous group of lymphomas primarily involving the skin. The most common types are mycosis fungoides (MF) and Sezary Syndrome (SS). We report a novel long-term fast-growing SS line termed BKP1 that was characterized by flow cytometry (FC), conventional and molecular cytogenetic [FISH/multi-FISH together with array comparative genomic hybridization (aCGH)]. FC immunophenotype of the BKP1 is CD2+CD5+CD3+CD4+CD8-CD7-CD25-CD26-CD30-CD158k+. The TCRγ characterization of BKP1 by PCR identified a clonal rearrangement. The conventional cytogenetic and Multi-FISH analysis showed complex chromosomal rearrangements. aCGH analysis highlighted the loss of genes involved in cell cycle control, in immune response (HLA, complement complex) and DNA damage repair mechanisms. The BKP1 is another lymphoma cell line thoroughly characterized that can be a valuable tool for both basic and applied research such as identification of deregulated genes and/or pathways and screening for new antilymphoma drugs. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Gene expression signatures in peripheral blood cells from Japanese women exposed to environmental cadmium

    International Nuclear Information System (INIS)

    Dakeshita, Satoru; Kawai, Tomoko; Uemura, Hirokazu; Hiyoshi, Mineyoshi; Oguma, Etsuko; Horiguchi, Hyogo; Kayama, Fujio; Aoshima, Keiko; Shirahama, Satoshi; Rokutan, Kazuhito; Arisawa, Kokichi

    2009-01-01

    The objective of this study was to examine the effects of environmental cadmium (Cd) exposure on the gene expression profile of peripheral blood cells, using an original oligoDNA microarray. The study population consisted of 20 female residents in a Cd-polluted area (Cd-exposed group) and 20 female residents in a non-Cd-polluted area individually matched for age (control group). The mRNA levels in Cd-exposed subjects were compared with those in respective controls, using a microarray containing oligoDNA probes for 1867 genes. Median Cd concentrations in blood (3.55 μg/l) and urine (8.25 μg/g creatinine) from the Cd-exposed group were 2.4- and 1.9-times higher than those of the control group, respectively. Microarray analysis revealed that the Cd-exposed group significantly up-regulated 137 genes and down-regulated 80 genes, compared with the control group. The Ingenuity Pathway Analysis Application (IPA) revealed that differentially expressed genes were likely to modify oxidative stress and mitochondria-dependent apoptosis pathways. Among differentially expressed genes, the expression of five genes was positively correlated with Cd concentrations in blood or urine. Quantitative real-time PCR (RT-PCR) analysis validated the significant up-regulation of CASP9, TNFRSF1B, GPX3, HYOU1, SLC3A2, SLC19A1, SLC35A4 and ITGAL, and down-regulation of BCL2A1 and COX7B. After adjustment for differences in the background characteristics of the two groups, we finally identified seven Cd-responsive genes (CASP9, TNFRSF1B, GPX3, SLC3A2, ITGAL, BCL2A1, and COX7B), all of which constituted a network that controls oxidative stress response by IPA. These seven genes may be marker genes useful for the health risk assessment of chronic low level exposure to Cd

  17. Radiation-Induced Bystander Effects in A549 Cells Exposed to 6 MV X-rays.

    Science.gov (United States)

    Yang, Shuning; Xu, Jing; Shao, Weixian; Geng, Chong; Li, Jia; Guo, Feng; Miao, Hui; Shen, Wenbin; Ye, Tao; Liu, Yazhou; Xu, Haiting; Zhang, Xuguang

    2015-07-01

    The aim of the study is to explore the bystander effects in A549 cells that have been exposed to 6MV X-ray. Control group, irradiated group, irradiated conditioned medium (ICM)-received group, and fresh medium group were designed in this study. A549 cells in the logarithmic growth phase were irradiated with 6MV X-ray at 0, 0.5, 1, 1.5, and 2. In ICM-received group, post-irradiation A549 cells were cultured for 3 h and were transferred into non-irradiated A549 cells for further cultivation. Clone forming test was applied to detect the survival fraction of cells. Annexin V-FITC/PI double-staining assay was used to detect the apoptosis of A549 cells 24, 48, 72, and 96 h after 2-Gy 6MV X-ray irradiation, and the curves of apoptosis were drawn. The changes in the cell cycles 4, 48, 72, and 96 h after 2-Gy 6MV X-ray irradiation were detected using PI staining flow cytometry. With the increase of irradiation dose, the survival fraction of A549 cells after the application of 0.5 Gy irradiation was decreasing continuously. In comparison to the control group, the apoptosis rate of the ICM-received group was increased in a time-dependent pattern, with the highest apoptosis rate observed at 72 h (p X-ray irradiation can induce bystander effect on A549 cells, which reaches a peak at 72 h.

  18. Establishment of immortalized human erythroid progenitor cell lines able to produce enucleated red blood cells.

    Directory of Open Access Journals (Sweden)

    Ryo Kurita

    Full Text Available Transfusion of red blood cells (RBCs is a standard and indispensable therapy in current clinical practice. In vitro production of RBCs offers a potential means to overcome a shortage of transfusable RBCs in some clinical situations and also to provide a source of cells free from possible infection or contamination by microorganisms. Thus, in vitro production of RBCs may become a standard procedure in the future. We previously reported the successful establishment of immortalized mouse erythroid progenitor cell lines that were able to produce mature RBCs very efficiently. Here, we have developed a reliable protocol for establishing immortalized human erythroid progenitor cell lines that are able to produce enucleated RBCs. These immortalized cell lines produce functional hemoglobin and express erythroid-specific markers, and these markers are upregulated following induction of differentiation in vitro. Most importantly, these immortalized cell lines all produce enucleated RBCs after induction of differentiation in vitro, although the efficiency of producing enucleated RBCs remains to be improved further. To the best of our knowledge, this is the first demonstration of the feasibility of using immortalized human erythroid progenitor cell lines as an ex vivo source for production of enucleated RBCs.

  19. Sourcing human embryos for embryonic stem cell lines: Problems & perspectives

    Directory of Open Access Journals (Sweden)

    Rajvi H Mehta

    2014-01-01

    Full Text Available The ability to successfully derive human embryonic stem cells (hESC lines from human embryos following in vitro fertilization (IVF opened up a plethora of potential applications of this technique. These cell lines could have been successfully used to increase our understanding of human developmental biology, transplantation medicine and the emerging science of regenerative medicine. The main source for human embryos has been ′discarded′ or ′spare′ fresh or frozen human embryos following IVF. It is a common practice to stimulate the ovaries of women undergoing any of the assisted reproductive technologies (ART and retrieve multiple oocytes which subsequently lead to multiple embryos. Of these, only two or maximum of three embryos are transferred while the rest are cryopreserved as per the decision of the couple. In case a couple does not desire to ′cryopreserve′ their embryos then all the embryos remaining following embryo transfer can be considered ′spare′ or if a couple is no longer in need of the ′cryopreserved′ embryos then these also can be considered as ′spare′. But, the question raised by the ethicists is, "what about ′slightly′ over-stimulating a woman to get a few extra eggs and embryos? The decision becomes more difficult when it comes to ′discarded′ embryos. As of today, the quality of the embryos is primarily assessed based on morphology and the rate of development mainly judged by single point assessment. Despite many criteria described in the literature, the quality assessment is purely subjective. The question that arises is on the decision of ′discarding′ embryos. What would be the criteria for discarding embryos and the potential ′use′ of ESC derived from the ′abnormal appearing′ embryos? This paper discusses some of the newer methods to procure embryos for the derivation of embryonic stem cell lines which will respect the ethical concerns but still provide the source material.

  20. Sourcing human embryos for embryonic stem cell lines: problems & perspectives.

    Science.gov (United States)

    Mehta, Rajvi H

    2014-11-01

    The ability to successfully derive human embryonic stem cells (hESC) lines from human embryos following in vitro fertilization (IVF) opened up a plethora of potential applications of this technique. These cell lines could have been successfully used to increase our understanding of human developmental biology, transplantation medicine and the emerging science of regenerative medicine. The main source for human embryos has been 'discarded' or 'spare' fresh or frozen human embryos following IVF. It is a common practice to stimulate the ovaries of women undergoing any of the assisted reproductive technologies (ART) and retrieve multiple oocytes which subsequently lead to multiple embryos. Of these, only two or maximum of three embryos are transferred while the rest are cryopreserved as per the decision of the couple. in case a couple does not desire to 'cryopreserve' their embryos then all the embryos remaining following embryo transfer can be considered 'spare' or if a couple is no longer in need of the 'cryopreserved' embryos then these also can be considered as 'spare'. But, the question raised by the ethicists is, "what about 'slightly' over-stimulating a woman to get a few extra eggs and embryos? The decision becomes more difficult when it comes to 'discarded' embryos. As of today, the quality of the embryos is primarily assessed based on morphology and the rate of development mainly judged by single point assessment. Despite many criteria described in the literature, the quality assessment is purely subjective. The question that arises is on the decision of 'discarding' embryos. What would be the criteria for discarding embryos and the potential 'use' of ESC derived from the 'abnormal appearing' embryos? This paper discusses some of the newer methods to procure embryos for the derivation of embryonic stem cell lines which will respect the ethical concerns but still provide the source material.

  1. The effect of serum from women with preeclampsia on JAR (trophoblast-like) cell line.

    Science.gov (United States)

    Mahameed, Safa; Goldman, Shlomit; Gabarin, Diane; Weiss, Amir; Shalev, Eliezer

    2005-09-01

    Pathologic placentation has been implicated in the pathogenesis of preeclamsia. We sought to assess the effect serum obtained from women with preeclampsia would have on JAR human choriocarcinoma cells regarding growth, invasiveness, and matrix metalloproteinase (MMP) secretion as compared to normotensive pregnant woman. Blood was collected from 11 healthy pregnant women and from10 patients with preeclampsia at 28-33 weeks of gestation. The JAR human choriocarcinoma cell line was cultured in the presence of 10% serum obtained from each group. Cell proliferation, invasiveness, and MMP secretion was measured using a cell proliferation kit, the Matrigel (BD Biosciences, Beit-Ha'Emek, Israel) invasion assay, and gel zymography, respectively. Cell growth increased by 6% when exposed to serum from patients with preeclampsia compared to 30% from controls (P <.01). Trophoblast invasion was significantly (P <.01) reduced in the preeclampsia group (21 +/- 1.9%) compared to controls (27 +/- 2.5%). Valid MMP-2 secretion was reduced by 51% in the preeclampsia group compared to controls (P <.05). Serum obtained from women with preeclampsia contains a factor or factors that exhibit an inhibitory effect on JAR trophoblast cell proliferation, invasiveness, and MMP-2 secretion. These factors may be involved in the pathologic placentation associated with the pathogenesis of preeclampsia.

  2. Development of buffalo (Bubalus bubalis embryonic stem cell lines from somatic cell nuclear transferred blastocysts

    Directory of Open Access Journals (Sweden)

    Syed Mohmad Shah

    2015-11-01

    Full Text Available We developed buffalo embryonic stem cell lines from somatic cell nuclear transfer derived blastocysts, produced by hand-guided cloning technique. The inner cell mass of the blastocyst was cut mechanically using a Microblade and cultured onto feeder cells in buffalo embryonic stem (ES cell culture medium at 38 °C in a 5% CO2 incubator. The stem cell colonies were characterized for alkaline phosphatase activity, karyotype, pluripotency and self-renewal markers like OCT4, NANOG, SOX2, c-Myc, FOXD3, SSEA-1, SSEA-4, TRA-1-60, TRA-1-81 and CD90. The cell lines also possessed the capability to differentiate across all the three germ layers under spontaneous differentiation conditions.

  3. Microarray analysis of gene expression in peripheral blood mononuclear cells from dioxin-exposed human subjects

    International Nuclear Information System (INIS)

    McHale, Cliona M.; Zhang, Luoping; Hubbard, Alan E.; Zhao, Xin; Baccarelli, Andrea; Pesatori, Angela C.; Smith, Martyn T.; Landi, Maria Teresa

    2007-01-01

    Tetrachlorodibenzo-p-dioxin (TCDD) is classified as a human carcinogen and exerts toxic effects on the skin (chloracne). Effects on reproductive, immunological, and endocrine systems have also been observed in animal models. TCDD acts through the aryl hydrocarbon receptor (AhR) pathway influencing largely unknown gene networks. An industrial accident in Seveso, Italy in 1976 exposed thousands of people to substantial quantities of TCDD. Twenty years after the exposure, this study examines global gene expression in the mononuclear cells of 26 Seveso female never smokers, with similar age, alcohol consumption, use of medications, and background plasma levels of 22 dioxin congeners unrelated to the Seveso accident. Plasma dioxin levels were still elevated in the exposed subjects. We performed analyses in two different comparison groups. The first included high-exposed study subjects compared with individuals with background TCDD levels (average plasma levels 99.4 and 6.7 ppt, respectively); the second compared subjects who developed chloracne after the accident, and those who did not develop this disease. Overall, we observed a modest alteration of gene expression based on dioxin levels or on chloracne status. In the comparison between high levels and background levels of TCDD, four histone genes were up-regulated and modified expression of HIST1H3H was confirmed by real-time PCR. In the comparison between chloracne case-control subjects, five hemoglobin genes were up-regulated. Pathway analysis revealed two major networks for each comparison, involving cell proliferation, apoptosis, immunological and hematological disease, and other pathways. Further examination of the role of these genes in dioxin induced-toxicity is warranted

  4. Mitochondrial viability and apoptosis induced by aluminum, mercuric mercury and methylmercury in cell lines of neural origin

    Energy Technology Data Exchange (ETDEWEB)

    Toimela, Tarja; Taehti, Hanna [University of Tampere, Medical School, Cell Research Center, Tampere (Finland)

    2004-10-01

    Mercury and aluminum are considered to be neurotoxic metals, and they are often connected with the onset of neurodegenerative diseases. In this study, mercuric mercury, methylmercury and aluminum were studied in three different cell lines of neural origin. To evaluate the effects, mitochondrial cytotoxicity and apoptosis induced by the metals were measured after various incubation times. SH-SY5Y neuroblastoma, U 373MG glioblastoma, and RPE D407 retinal pigment epithelial cells were subcultured to appropriate cell culture plates and 0.01-1,000 {mu}M concentrations of methylmercury, mercuric and aluminum chloride were added into the growth medium. In the assay measuring the mitochondrial dehydrogenase activity, WST-1, the cultures were exposed for 15 min, 24 or 48 h before measurement. Cells were allowed to recover from the exposure in part of the study. Apoptosis induced by the metals was measured after 6-, 24- and 48-h exposure times with the determination of activated caspase 3 enzyme. Mitochondrial assays showed a clear dose-response and exposure time-response to the metals. The most toxic was methylmercury (EC50{proportional_to}0.8{mu}M, 48 h), and the most sensitive cell line was the neuroblastoma cell line SH-SY5Y. Furthermore, there was marked mitochondrial activation, especially in connection with aluminum and methylmercury at low concentrations. This activation may be important during the initiation of cellular processes. All the metals tested induced apoptosis, but with a different time-course and cell-line specificity. In microscopic photographs, glioblastoma cells formed fibrillary tangles, and neuroblastoma cells settled along the fibrilles in cocultures of glial and neuronal cell lines during aluminum exposure. The study emphasized the toxicity of methylmercury to neural cells and showed that aluminum alters various cellular activities. (orig.)

  5. DNA damage and apoptosis induced by Pteridium aquilinum aqueous extract in the oral cell lines HSG and OSCC-3.

    Science.gov (United States)

    Pereira, Luciana Oliveira; Bicalho, Leandro Santos; Campos-da-Paz Lopes, Mariana; de Sousa, Thiago Machado Mello; Báo, Sônia Nair; de Fátima Menezes Almeida Santos, Maria; Fonseca, Marcio José Poças

    2009-05-01

    Bracken fern (Pteridium aquilinum) has been consumed by humans and animals for centuries. However, its consumption is associated with a high incidence of cancer in the upper digestory tract of different species. Although the oral cavity is the first site of contact with ingested toxic substances, the interaction of bracken fern composites with oral cell lines has not yet been studied. In order to study the biological responses of oral cells exposed to bracken fern, we evaluated the genotoxic and cytotoxic effects of a bracken fern aqueous extract in oral cell lines. Human submandibular gland (HSG) and human oral epithelium cells (OSCC-3) cells were treated with three different concentrations of the extract. DNA damage was determined by the comet assay, and cellular morphology was examined by light microscopy. Apoptotic changes were evaluated by transmission electron microscopy and TUNEL assay. The comet assay revealed that the extract was genotoxic for both cell lines but the results were not dose-dependent. The morphological and ultrastructural analyses showed that the extract caused conspicuous alterations in both cell types: uncommon chromatin condensation, nuclear picnosis, cellular volume decrease, nuclear envelope disruption, formation of numerous vacuoles of different sizes and apoptotic bodies. The TUNEL assay confirmed apoptosis induction. These results demonstrate that the extract was cytotoxic to HSG and OSCC-3 cells, and that cellular degeneration occurred mainly by apoptosis. We believe that oral cells could trigger apoptosis after bracken fern induced DNA damage, in order to avoid the malignant transformation.

  6. Characterization of UV radiation sensitive frog cell lines

    International Nuclear Information System (INIS)

    Smith-Stein, A.C.

    1983-01-01

    Twenty-one subclones of nine frog cell isolates were tested for sensitivity to a panel of DNA damaging agents. Two clones were identified which had a greater than wild type level of sensitivity to UV radiation but had a wild type level of sensitivity to the other agents. These clones were the haploid RRP602-7 and the diploid RRP802-1. RRP802-1 was found to be unstable with respect to UV sensitivity. The line was cloned in order to isolate stable sensitive and wild type derivatives. RRP802-1-16, a UV sensitive clone and RRP802-1-13, a clone with a wild type level of sensitivity to UV radiation, were isolated. The UV radiation sensitivity of RRP602-7, RRP802-1 and RRP802-1-16 did not correlate with cell size, cell shape, cell cycle distribution or ploidy. The cell cycle distribution after UV irradiation, the rate of DNA synthesis after UV-irradiation, the DNA polymerase α activity and the sister chromatid exchange frequency were all measured in RRP602-7, RRP802-1 and RRP802-1-16 in order to examine the DNA repair capacity. The presence of DNA repair pathways was examined directly in RRP602-7, RRP802-1 and RRP802-1-16. All were found to be proficient in photo-reactivation repair and postreplication repair of UV elicited DNA damage

  7. DNA damage induction in human cells exposed to vanadium oxides in vitro.

    Science.gov (United States)

    Rodríguez-Mercado, Juan J; Mateos-Nava, Rodrigo A; Altamirano-Lozano, Mario A

    2011-12-01

    Vanadium and vanadium salts cause genotoxicity and elicit variable biological effects depending on several factors. In the present study, we analyzed and compared the DNA damage and repair processes induced by vanadium in three oxidation states. We used human blood leukocytes in vitro and in a single cell gel electrophoresis assay at two pH values. We observed that vanadium(III) trioxide and vanadium(V) pentoxide produced DNA single-strand breaks at all of the concentrations (1, 2, 4, or 8 μg/ml) and treatment times (2, 4, or 6 h) tested. Vanadium(IV) tetraoxide treatment significantly increased DNA damage at all concentrations for 4 or 6 h of treatment but not for 2 h of treatment. The DNA repair kinetics indicated that most of the cells exposed to vanadium III and V for 4 h recovered within the repair incubation time of 90 min; however, those exposed to vanadium(IV) repaired their DNA within 120 min. The data at pH 9 indicated that vanadium(IV) tetraoxide induced DNA double-strand breaks. Our results show that the genotoxic effect of vanadium can be produced by any of its three oxidation states. However, vanadium(IV) induces double-strand breaks, and it is known that these lesions are linked with forming structural chromosomal aberrations. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Heavy metals produce toxicity, oxidative stress and apoptosis in the marine teleost fish SAF-1 cell line.

    Science.gov (United States)

    Morcillo, Patricia; Esteban, María Á; Cuesta, Alberto

    2016-02-01

    The use of cell lines to test the toxicity of aquatic pollutants is a valuable alternative to fish bioassays. In this study, fibroblast SAF-1 cells from the marine gilthead seabream (Sparus aurata L.) were exposed for 24 h to the heavy metals Cd, Hg, MeHg (Methylmercury), As or Pb and the resulting cytotoxicity was assessed. Neutral red (NR), MTT-tetrazolio (MTT), crystal violet (CV) and lactate dehydrogenase (LDH) viability tests showed that SAF-1 cells exposed to the above heavy metals produced a dose-dependent reduction in the number of viable cells. Methylmercury showed the highest toxicity (EC50 = 0.01 mM) followed by As, Cd, Hg and Pb. NR was the most sensitive method followed by MTT, CV and LDH. SAF-1 cells incubated with each of the heavy metals also exhibited an increase in the production of reactive oxygen species and apoptosis cell death. Moreover, the corresponding gene expression profiles pointed to the induction of the metallothionein protective system, cellular and oxidative stress and apoptosis after heavy metal exposure for 24 h. This report describes and compares tools for evaluating the potential effects of marine contamination using the SAF-1 cell line. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Gene expression profile of Jurkat cells exposed to high power terahertz radiation

    Science.gov (United States)

    Grundt, Jessica E.; Roth, Caleb C.; Rivest, Benjamin D.; Doroski, Michael L.; Payne, Jason; Ibey, Bennett L.; Wilmink, Gerald J.

    2011-03-01

    Terahertz (THz) radiation sources are now being used in a host of military, defense, and medical applications. Widespread employment of these applications has prompted concerns regarding the health effects associated with THz radiation. In this study, we examined the gene expression profile of mammalian cells exposed to THz radiation. We hypothesized that if THz radiation couples directly to cellular constituents, then exposed cells may express a specific gene expression profile indicative of ensuing damage. To test this hypothesis, Jurkat cells were irradiated with a molecular gas THz laser (2.52 THz, 636 mWcm-2, durations: 5, 10, 20, 30, 40, or 50 minutes). Viability was assessed 24 h post-exposure using MTT assays, and gene expression profiles were evaluated 4 h post-exposure using mRNA microarrays. Comparable analyses were also performed for hyperthermic positive controls (44°C for 40 minutes). We found that cellular temperatures increased by ~6 °C during THz exposures. We also found that cell death increased with exposure duration, and the median lethal dose (LD50) was calculated to be ~44 minutes. The microarray data showed that THz radiation induced the transcriptional activation of genes associated with cellular proliferation, differentiation, transcriptional activation, chaperone protein stabilization, and apoptosis. For most genes, we found that the magnitude of differential expression was comparable for both the THz and thermal exposure groups; however, several genes were specifically activated by the THz exposure. These results suggest that THz radiation may elicit effects that are not exclusively due to the temperature rise created during THz exposures (i.e. thermal effects). In future work, we plan to verify the results of our microarray experiments using qPCR techniques.

  10. Purinergic signaling mediates oxidative stress in UVA-exposed THP-1 cells

    Directory of Open Access Journals (Sweden)

    Ayumi Kawano

    2015-01-01

    Full Text Available Ultraviolet A (UVA radiation, the major UV component of solar radiation, can penetrate easily to the dermis, where it causes significant damage to cellular components by inducing formation of reactive oxygen species (ROS. On the other hand, extracellular ATP is released in response to various stimuli, and activates purinergic P2X7 receptor, triggering ROS production and cell death. Here, we examined the hypothesis that ATP release followed by activation of P2X7 receptor plays a role in UVA-induced oxidative cell damage, using human acute monocytic leukemia cell line THP-1. Indeed, UVA irradiation of THP-1 cells induced ATP release and activation of P2X7 receptor. Irradiated cells showed a rapid increase of both p67phox in membrane fraction and intracellular ROS. Pretreatment with ecto-nucleotidase or P2X7 receptor antagonist blocked the UVA-initiated membrane translocation of p67phox and ROS production. Furthermore, pretreatment with antioxidant or P2X7 receptor antagonist efficiently protected UVA-irradiated cells from caspase-dependent cell death. These findings show that autocrine signaling through release of ATP and activation of P2X7 receptor is required for UVA-induced stimulation of oxidative stress in monocytes.

  11. Radiosensitization of human prostate cell line LNCAP by [6]- gingerol

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Josias Paulino Leal; Bellini, Maria Helena [Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN-SP), São Paulo, SP (Brazil)

    2017-07-01

    significant. Results: Our results demonstrated that [6]-Gingerol treatment induced a dose-dependent decrease in the cell viability. Compared with the vehicle control, the cell viabilities were 75.99 ± 3.56% and 43.06 ± 7.82% when the cells were exposed to 150 μg/mL and 300 μg/mL of [6]-Gingerol, respectively. Therefore, we observed a significant difference between the treatment groups; (P<0.01). Then, the effect of [6]-Gingerol (300 μg/mL) on cell radiosensitivity was evaluated. The clonogenic cell survival assay showed a significant difference between dose-survival curves of group (A) and (B), (P<0.05) and between the group (C) and (D), (P<0.05). Therefore, [6]-Gingerol treatment increased the radiosensitivity of LNCaP cells. Conclusions: The results demonstrated that, besides inducing a dose-dependent apoptosis in LNCaP human prostate cancer cells, [6]-Gingerol showed a radiosensitizing activity. These findings suggests it potential as candidate phytochemical agent for combined therapy for prostate cancer. (author)

  12. Electrophysiological characterization of volume-activated chloride currents in mouse cholangiocyte cell line.

    Science.gov (United States)

    Chen, Biyi; Nicol, Grant; Cho, Won Kyoo

    2004-12-01

    Recent electrophysiological and radioisotope efflux studies have demonstrated various Cl(-) channels in cholangiocytes including volume-activated Cl(-) channels (VACC). Because VACCs play prominent roles in many vital cellular functions and physiology in cholangiocytes, we have examined their electrophysiological characteristics in mouse cholangiocytes to provide an important framework for studying in the future. The present study is to characterize VACCs expressed in the mouse bile duct cell (MBDC) line, conditionally immortalized by SV40 virus. Conventional whole cell patch-clamp techniques were used to study the electrophysiological characteristics of VACC in MBDC. When the MBDCs were exposed to hypotonic solution, they exhibited an outwardly rectified current, which was significantly inhibited by replacing chloride in the bath solution with gluconate or glutamate and by administration of classic chloride channel inhibitors 5-nitro-2-(3-phenylpropylamino)-benzoate, glybenclamide, DIDS, and tamoxifen. These inhibitory effects were reversible with washing them out from the bath solution. Moreover, the ion selectivity of the volume-activated channel to different anions indicates that it is more permeable to SCN(-) > I(-) >/= Cl(-) > F(-) >/= acetate >/= glutamate >/= gluconate. These electrophysiological characteristics demonstrate that the volume-activated current observed is a VACC. In addition, the VACC in MBDC has electrophysiological characteristics similar to those of the VACC in human cholangiocarcinoma cell line. The present study is the first to characterize the VACC in mouse cholangiocyte and will provide an important framework for further studies to examine and understand the role of the VACC in biliary secretion and ion-transport physiology.

  13. Identification of genes associated with cisplatin resistance in human oral squamous cell carcinoma cell line

    Directory of Open Access Journals (Sweden)

    Zhang Ping

    2006-09-01

    Full Text Available Abstract Background Cisplatin is widely used for chemotherapy of head and neck squamous cell carcinoma. However, details of the molecular mechanism responsible for cisplatin resistance are still unclear. The aim of this study was to identify the expression of genes related to cisplatin resistance in oral squamous cell carcinoma cells. Methods A cisplatin-resistant cell line, Tca/cisplatin, was established from a cisplatin-sensitive cell line, Tca8113, which was derived from moderately-differentiated tongue squamous cell carcinoma. Global gene expression in this resistant cell line and its sensitive parent cell line was analyzed using Affymetrix HG-U95Av2 microarrays. Candidate genes involved in DNA repair, the MAP pathway and cell cycle regulation were chosen to validate the microarray analysis results. Cell cycle distribution and apoptosis following cisplatin exposure were also investigated. Results Cisplatin resistance in Tca/cisplatin cells was stable for two years in cisplatin-free culture medium. The IC50 for cisplatin in Tca/cisplatin was 6.5-fold higher than that in Tca8113. Microarray analysis identified 38 genes that were up-regulated and 25 that were down-regulated in this cell line. Some were novel candidates, while others are involved in well-characterized mechanisms that could be relevant to cisplatin resistance, such as RECQL for DNA repair and MAP2K6 in the MAP pathway; all the genes were further validated by Real-time PCR. The cell cycle-regulated genes CCND1 and CCND3 were involved in cisplatin resistance; 24-hour exposure to 10 μM cisplatin induced a marked S phase block in Tca/cisplatin cells but not in Tca8113 cells. Conclusion The Tca8113 cell line and its stable drug-resistant variant Tca/cisplatin provided a useful model for identifying candidate genes responsible for the mechanism of cisplatin resistance in oral squamous cell carcinoma. Our data provide a useful basis for screening candidate targets for early diagnosis

  14. Identification of genes associated with cisplatin resistance in human oral squamous cell carcinoma cell line

    International Nuclear Information System (INIS)

    Zhang, Ping; Zhang, Zhiyuan; Zhou, Xiaojian; Qiu, Weiliu; Chen, Fangan; Chen, Wantao

    2006-01-01

    Cisplatin is widely used for chemotherapy of head and neck squamous cell carcinoma. However, details of the molecular mechanism responsible for cisplatin resistance are still unclear. The aim of this study was to identify the expression of genes related to cisplatin resistance in oral squamous cell carcinoma cells. A cisplatin-resistant cell line, Tca/cisplatin, was established from a cisplatin-sensitive cell line, Tca8113, which was derived from moderately-differentiated tongue squamous cell carcinoma. Global gene expression in this resistant cell line and its sensitive parent cell line was analyzed using Affymetrix HG-U95Av2 microarrays. Candidate genes involved in DNA repair, the MAP pathway and cell cycle regulation were chosen to validate the microarray analysis results. Cell cycle distribution and apoptosis following cisplatin exposure were also investigated. Cisplatin resistance in Tca/cisplatin cells was stable for two years in cisplatin-free culture medium. The IC50 for cisplatin in Tca/cisplatin was 6.5-fold higher than that in Tca8113. Microarray analysis identified 38 genes that were up-regulated and 25 that were down-regulated in this cell line. Some were novel candidates, while others are involved in well-characterized mechanisms that could be relevant to cisplatin resistance, such as RECQL for DNA repair and MAP2K6 in the MAP pathway; all the genes were further validated by Real-time PCR. The cell cycle-regulated genes CCND1 and CCND3 were involved in cisplatin resistance; 24-hour exposure to 10 μM cisplatin induced a marked S phase block in Tca/cisplatin cells but not in Tca8113 cells. The Tca8113 cell line and its stable drug-resistant variant Tca/cisplatin provided a useful model for identifying candidate genes responsible for the mechanism of cisplatin resistance in oral squamous cell carcinoma. Our data provide a useful basis for screening candidate targets for early diagnosis and further intervention in cisplatin resistance

  15. Doxycycline alters metabolism and proliferation of human cell lines.

    Directory of Open Access Journals (Sweden)

    Ethan Ahler

    Full Text Available The tetracycline antibiotics are widely used in biomedical research as mediators of inducible gene expression systems. Despite many known effects of tetracyclines on mammalian cells-including inhibition of the mitochondrial ribosome-there have been few reports on potential off-target effects at concentrations commonly used in inducible systems. Here, we report that in human cell lines, commonly used concentrations of doxycycline change gene expression patterns and concomitantly shift metabolism towards a more glycolytic phenotype, evidenced by increased lactate secretion and reduced oxygen consumption. We also show that these concentrations are sufficient to slow proliferation. These findings suggest that researchers using doxycycline in inducible expression systems should design appropriate controls to account for potential confounding effects of the drug on cellular metabolism.

  16. [Expression of human Jagged-1 protein on eukaryotic cells and establishment of stable transfectant cell line].

    Science.gov (United States)

    Gan, Zhi-Hua; Chen, Yu; Yan, Hua; Wang, Kan-Kan

    2010-08-01

    Jagged-1 protein is one of the ligands belonging to Notch signaling pathway. Notch signaling pathway is one of the major signaling pathways mediated by contact between cells and plays an important role to regulate the process of proliferation and differentiation of hematopoietic cells in the hematopoietic microenvironment. To study the biological effect after the combination of receptor and ligand in Notch signaling pathway and the mechanism of Notch signaling pathway in bone marrow stromal cells mediated-drug resistance, a NIH-3T3 cell line over-expressing Jagged-1 protein was constructed for further research purposes. A full coding region of Jagged-1 gene was cloned and inserted into eukaryotic expression plasmid to construct pEGFP-IRES2-Jagged-1 eukaryotic expression vector, then transfected into NIH-3T3 cell line, a mammalian cells. As a result Western blot analysis confirmed that the transfectant NIH-3T3 cells highly expressed Jagged-1 protein and flow cytometry analysis confirmed that the NIH-3T3-pEGFP-IRES2-Jagged-1 cell line over-expressed Jagged-1 protein was monoclonal after screened by selective medium and limiting dilution analysis. It is concluded that the pEGFP-IRES2-Jagged-1 eukaryotic expression vector and a stable transfectant monoclonal NIH-3T3 cell line are successfully established. The construction of the stable transfectant monoclonal NIH-3T3 cell line which overexpressed Jagged-1 protein, provides the conditions to further study the mechanism of the bone marrow stromal cell-mediated drug resistance and to discover the new drug targets.

  17. A vertically integrated dynamic RAM-cell: Buried bit line memory cell with floating transfer layer

    NARCIS (Netherlands)

    Mouthaan, A.J.; Vertregt, Maarten

    1986-01-01

    A charge injection device has been realized in which charge can be injected on to an MOS-capacitor from a buried layer via an isolated transfer layer. The cell is positioned vertically between word and bit line. LOCOS (local oxidation) is used to isolate the cells and (deep) ion implantation to

  18. Role of free radicals in an adriamycin-resistant human small cell lung cancer cell line

    NARCIS (Netherlands)

    Meijer, C.; Mulder, N H; Timmer-Bosscha, H; Zijlstra, J G; de Vries, E G

    1987-01-01

    In two Adriamycin (Adr) resistant sublines (GLC4-Adr1 and GLC4-Adr2) of a human small cell lung carcinoma cell line, GLC4, cross-resistance for radiation was found. GLC4-Adr1 has an acquired Adr resistance factor of 44 after culturing without Adr for 20 days and GLC4-Adr2, the same subline cultured

  19. Multidrug resistance and retroviral transduction potential in human small cell lung cancer cell lines

    DEFF Research Database (Denmark)

    Theilade, M D; Gram, G J; Jensen, P B

    1999-01-01

    of blue colonies after X-Gal staining of the cells grown in soft agar. All examined SCLC cell lines were transducible with either vector. Transduction efficiencies varied from 5.7% to 33.5% independent of the presence of MDR. These results indicate that MDR does not severely impair transduction of SCLC...

  20. 3-Bromopyruvate induces necrotic cell death in sensitive melanoma cell lines

    International Nuclear Information System (INIS)

    Qin, J.-Z.; Xin, H.; Nickoloff, B.J.

    2010-01-01

    Clinicians successfully utilize high uptake of radiolabeled glucose via PET scanning to localize metastases in melanoma patients. To take advantage of this altered metabolome, 3-bromopyruvate (BrPA) was used to overcome the notorious resistance of melanoma to cell death. Using four melanoma cell lines, BrPA triggered caspase independent necrosis in two lines, whilst the other two lines were resistant to killing. Mechanistically, sensitive cells differed from resistant cells by; constitutively lower levels of glutathione, reduction of glutathione by BrPA only in sensitive cells; increased superoxide anion reactive oxygen species, loss of outer mitochondrial membrane permeability, and rapid ATP depletion. Sensitive cell killing was blocked by N-acetylcysteine or glutathione. When glutathione levels were reduced in resistant cell lines, they became sensitive to killing by BrPA. Taken together, these results identify a metabolic-based Achilles' heel in melanoma cells to be exploited by use of BrPA. Future pre-clinical and clinical trials are warranted to translate these results into improved patient care for individuals suffering from metastatic melanoma.

  1. In vitro evaluation of a new nitrosourea, TCNU, against human small cell lung cancer cell lines

    DEFF Research Database (Denmark)

    Roed, H; Vindeløv, L L; Spang-Thomsen, M

    1987-01-01

    The cytotoxic activity of a new nitrosourea, TCNU, was compared with that of BCNU in five human small cell lung cancer cell lines in vitro. TCNU was found to be equivalent or inferior to BCNU when compared on a microgram to microgram basis. If the potential of in vitro phase II trials for selection...

  2. Characterisation and Manipulation of Docetaxel Resistant Prostate Cancer Cell Lines

    LENUS (Irish Health Repository)

    O'Neill, Amanda J

    2011-10-07

    Abstract Background There is no effective treatment strategy for advanced castration-resistant prostate cancer. Although Docetaxel (Taxotere®) represents the most active chemotherapeutic agent it only gives a modest survival advantage with most patients eventually progressing because of inherent or acquired drug resistance. The aims of this study were to further investigate the mechanisms of resistance to Docetaxel. Three Docetaxel resistant sub-lines were generated and confirmed to be resistant to the apoptotic and anti-proliferative effects of increasing concentrations of Docetaxel. Results The resistant DU-145 R and 22RV1 R had expression of P-glycoprotein and its inhibition with Elacridar partially and totally reversed the resistant phenotype in the two cell lines respectively, which was not seen in the PC-3 resistant sublines. Resistance was also not mediated in the PC-3 cells by cellular senescence or autophagy but multiple changes in pro- and anti-apoptotic genes and proteins were demonstrated. Even though there were lower basal levels of NF-κB activity in the PC-3 D12 cells compared to the Parental PC-3, docetaxel induced higher NF-κB activity and IκB phosphorylation at 3 and 6 hours with only minor changes in the DU-145 cells. Inhibition of NF-κB with the BAY 11-7082 inhibitor reversed the resistance to Docetaxel. Conclusion This study confirms that multiple mechanisms contribute to Docetaxel resistance and the central transcription factor NF-κB plays an immensely important role in determining docetaxel-resistance which may represent an appropriate therapeutic target.

  3. Epigenetic alterations differ in phenotypically distinct human neuroblastoma cell lines

    International Nuclear Information System (INIS)

    Yang, Qiwei; Tian, Yufeng; Ostler, Kelly R; Chlenski, Alexandre; Guerrero, Lisa J; Salwen, Helen R; Godley, Lucy A; Cohn, Susan L

    2010-01-01

    Epigenetic aberrations and a CpG island methylator phenotype have been shown to be associated with poor outcomes in children with neuroblastoma (NB). Seven cancer related genes (THBS-1, CASP8, HIN-1, TIG-1, BLU, SPARC, and HIC-1) that have been shown to have epigenetic changes in adult cancers and play important roles in the regulation of angiogenesis, tumor growth, and apoptosis were analyzed to investigate the role epigenetic alterations play in determining NB phenotype. Two NB cell lines (tumorigenic LA1-55n and non-tumorigenic LA1-5s) that differ in their ability to form colonies in soft agar and tumors in nude mice were used. Quantitative RNA expression analyses were performed on seven genes in LA1-5s, LA1-55n and 5-Aza-dC treated LA1-55n NB cell lines. The methylation status around THBS-1, HIN-1, TIG-1 and CASP8 promoters was examined using methylation specific PCR. Chromatin immunoprecipitation assay was used to examine histone modifications along the THBS-1 promoter. Luciferase assay was used to determine THBS-1 promoter activity. Cell proliferation assay was used to examine the effect of 5-Aza-dC on NB cell growth. The soft agar assay was used to determine the tumorigenicity. Promoter methylation values for THBS-1, HIN-1, TIG-1, and CASP8 were higher in LA1-55n cells compared to LA1-5s cells. Consistent with the promoter methylation status, lower levels of gene expression were detected in the LA1-55n cells. Histone marks associated with repressive chromatin states (H3K9Me3, H3K27Me3, and H3K4Me3) were identified in the THBS-1 promoter region in the LA1-55n cells, but not the LA1-5s cells. In contrast, the three histone codes associated with an active chromatin state (acetyl H3, acetyl H4, and H3K4Me3) were present in the THBS-1 promoter region in LA1-5s cells, but not the LA1-55n cells, suggesting that an accessible chromatin structure is important for THBS-1 expression. We also show that 5-Aza-dC treatment of LA1-55n cells alters the DNA methylation

  4. Cell cycle dependency of 67gallium uptake and cytotoxicity in human cell lines of hematological malignancies.

    Science.gov (United States)

    Van Leeuwen-Stok, E A; Jonkhoff, A R; Visser-Platier, A W; Dräger, L M; Teule, G J; Huijgens, P C; Schuurhuis, G J

    1998-11-01

    67Gallium (67Ga) is a radionuclide which accumulates in hematological malignancies and is used for diagnostic imaging. We investigated in this in vitro study the cell cycle dependency of cellular uptake and cytotoxicity of 67Ga. Cell cycle synchronization of cells was achieved by counterflow centrifugal elutriation and the use of cytostatic drugs. The human lymphoma cell lines U-937 and U-715 were used and in elutriation experiments we also used the leukemic cell line HL-60. The transferrin receptor (CD71) expression, 67Ga uptake and cell proliferation inhibition were the parameters measured. We also studied cytotoxicity in various schedules for combination of 67Ga and drugs and the residual proliferative capacity was measured. The CD71 expression in the three cell lines increased from 106-177% on S phase cells and from 118-233% on G2M cells, as compared to the G0/G1 cell fraction. The 67Ga uptake varied from 108-127% for S cells and 128-139% for G2M cells. The drugs chosen induced cell cycle phase accumulation in S and/or G2M phase during preincubation. 67Ga preincubation induced accumulation in the G2M phase. Almost all combinations of 67Ga and drugs resulted in a non-interactive effect, except for methotrexate which resulted in an antagonistic effect. No preferential effect of any of the incubation schemes was seen. CD71 expression and 67Ga uptake were increased in S and G2M cells. Combination of 67Ga with drugs which arrest cells in these cell cycle phases did not result in a change in cytotoxicity. However, these results implicate that 67Ga and the cytostatic drugs tested except for methotrexate might be used together or sequentially in therapy.

  5. Global Proteome Analysis of the NCI-60 Cell Line Panel

    Directory of Open Access Journals (Sweden)

    Amin Moghaddas Gholami

    2013-08-01

    Full Text Available The NCI-60 cell line collection is a very widely used panel for the study of cellular mechanisms of cancer in general and in vitro drug action in particular. It is a model system for the tissue types and genetic diversity of human cancers and has been extensively molecularly characterized. Here, we present a quantitative proteome and kinome profile of the NCI-60 panel covering, in total, 10,350 proteins (including 375 protein kinases and including a core cancer proteome of 5,578 proteins that were consistently quantified across all tissue types. Bioinformatic analysis revealed strong cell line clusters according to tissue type and disclosed hundreds of differentially regulated proteins representing potential biomarkers for numerous tumor properties. Integration with public transcriptome data showed considerable similarity between mRNA and protein expression. Modeling of proteome and drug-response profiles for 108 FDA-approved drugs identified known and potential protein markers for drug sensitivity and resistance. To enable community access to this unique resource, we incorporated it into a public database for comparative and integrative analysis (http://wzw.tum.de/proteomics/nci60.

  6. Cytotoxicity and Proliferation Studies with Arsenic in Established Human Cell Lines: Keratinocytes, Melanocytes, Dendritic Cells, Dermal Fibroblasts, Microvascular Endothelial Cells, Monocytes and T-Cells

    Directory of Open Access Journals (Sweden)

    Hari H. P. Cohly

    2003-01-01

    Full Text Available Abstract: Based on the hypothesis that arsenic exposure results in toxicity and mitogenecity, this study examined the dose-response of arsenic in established human cell lines of keratinocytes (HaCaT, melanocytes (1675, dendritic cells (THP-1/A23187, dermal fibroblasts (CRL1904, microvascular endothelial cells (HMEC, monocytes (THP-1, and T cells (Jurkat. Cytotoxicity was determined by incubating THP-1, THP-1+ A23187 and JKT cells in RPMI 1640, 1675 in Vitacell, HMEC in EBM, and dermal fibroblasts and HaCaT in DMEM with 10% fetal bovine serum, 1% streptomycin and penicillin for 72 hrs in 96-well microtiter plates, at 37oC in a 5% CO2 incubator with different concentrations of arsenic using fluorescein diacetate (FDA. Cell proliferation in 96-well plates was determined in cultured cells starved by prior incubation for 24 hrs in 1% FBS and exposed for 72 hours, using the 96 cell titer proliferation solution (Promega assay. Cytotoxicity assays yielded LD50s of 9 μg/mL for HaCaT, 1.5 μg/mL for CRL 1675, 1.5 μg/mL for dendritic cells, 37 μg/mL for dermal fibroblasts, 0.48 μg/mL for HMEC, 50 μg/mL for THP-1 cells and 50 μg/mL for JKT-T cells. The peak proliferation was observed at 6 μg/mL for HaCaT and THP-1 cells, 0.19 μg/mL for CRL 1675, dendritic cells, and HMEC, and 1.5 μg/mL for dermal fibroblasts and Jurkat T cells. These results show that arsenic is toxic at high doses to keratinocytes, fibroblasts, monocytes and T cells, and toxic at lower doses to melanocytes, microvascular endothelial cells and dendritic cells. Proliferation studies showed sub-lethal doses of arsenic to be mitogenic.

  7. Growth inhibitory activity of Ankaferd hemostat on primary melanoma cells and cell lines

    Directory of Open Access Journals (Sweden)

    Seyhan Turk

    2017-02-01

    Full Text Available Objective: Ankaferd hemostat is the first topical hemostatic agent about the red blood cell–fibrinogen relations tested in the clinical trials. Ankaferd hemostat consists of standardized plant extracts including Alpinia officinarum, Glycyrrhiza glabra, Thymus vulgaris, Urtica dioica, and Vitis vinifera. The aim of this study was to determine the effect of Ankaferd hemostat on viability of melanoma cell lines. Methods: Dissimilar melanoma cell lines and primary cells were used in this study. These cells were treated with different concentrations of Ankaferd hemostat to assess the impact of different dosages of the drug. All cells treated with different concentrations were incubated for different time intervals. After the data had been obtained, one-tailed T-test was used to determine whether the Ankaferd hemostat would have any significant inhibitory impact on cell growth. Results: We demonstrated in this study that cells treated with Ankaferd hemostat showed a significant decrease in cell viability compared to control groups. The cells showed different resistances against Ankaferd hemostat which depended on the dosage applied and the time treated cells had been incubated. We also demonstrated an inverse relationship between the concentration of the drug and the incubation time on one hand and the viability of the cells on the other hand, that is, increasing the concentration of the drug and the incubation time had a negative impact on cell viability. Conclusion: The findings in our study contribute to our knowledge about the anticancer impact of Ankaferd hemostat on different melanoma cells.

  8. Neuroblastoma cell lines contain pluripotent tumor initiating cells that are susceptible to a targeted oncolytic virus.

    Directory of Open Access Journals (Sweden)

    Yonatan Y Mahller

    Full Text Available Although disease remission can frequently be achieved for patients with neuroblastoma, relapse is common. The cancer stem cell theory suggests that rare tumorigenic cells, resistant to conventional therapy, are responsible for relapse. If true for neuroblastoma, improved cure rates may only be achieved via identification and therapeutic targeting of the neuroblastoma tumor initiating cell. Based on cues from normal stem cells, evidence for tumor populating progenitor cells has been found in a variety of cancers.Four of eight human neuroblastoma cell lines formed tumorspheres in neural stem cell media, and all contained some cells that expressed neurogenic stem cell markers including CD133, ABCG2, and nestin. Three lines tested could be induced into multi-lineage differentiation. LA-N-5 spheres were further studied and showed a verapamil-sensitive side population, relative resistance to doxorubicin, and CD133+ cells showed increased sphere formation and tumorigenicity. Oncolytic viruses, engineered to be clinically safe by genetic mutation, are emerging as next generation anticancer therapeutics. Because oncolytic viruses circumvent typical drug-resistance mechanisms, they may represent an effective therapy for chemotherapy-resistant tumor initiating cells. A Nestin-targeted oncolytic herpes simplex virus efficiently replicated within and killed neuroblastoma tumor initiating cells preventing their ability to form tumors in athymic nude mice.These results suggest that human neuroblastoma contains tumor initiating cells that may be effectively targeted by an oncolytic virus.

  9. Generation of genome-modified Drosophila cell lines using SwAP.

    Science.gov (United States)

    Franz, Alexandra; Brunner, Erich; Basler, Konrad

    2017-10-02

    The ease of generating genetically modified animals and cell lines has been markedly increased by the recent development of the versatile CRISPR/Cas9 tool. However, while the isolation of isogenic cell populations is usually straightforward for mammalian cell lines, the generation of clonal Drosophila cell lines has remained a longstanding challenge, hampered by the difficulty of getting Drosophila cells to grow at low densities. Here, we describe a highly efficient workflow to generate clonal Cas9-engineered Drosophila cell lines using a combination of cell pools, limiting dilution in conditioned medium and PCR with allele-specific primers, enabling the efficient selection of a clonal cell line with a suitable mutation profile. We validate the protocol by documenting the isolation, selection and verification of eight independently Cas9-edited armadillo mutant Drosophila cell lines. Our method provides a powerful and simple workflow that improves the utility of Drosophila cells for genetic studies with CRISPR/Cas9.

  10. Transforming growth factor-β impairs glucocorticoid activity in the A549 lung adenocarcinoma cell line.

    Science.gov (United States)

    Salem, S; Harris, T; Mok, J S L; Li, M Y S; Keenan, C R; Schuliga, M J; Stewart, A G

    2012-08-01

    The lung adenocarcinoma cell line, A549, undergoes epithelial-mesenchymal cell transition (EMT) in response to TGF-β. Glucocorticoids do not prevent the EMT response, but TGF-β induced resistance to the cytokine-regulatory action of glucocorticoids. We sought to characterize the impairment of glucocorticoid response in A549 cells. A549 cells were exposed to TGF-β for up to 96 h before glucocorticoid treatment and challenge with IL-1α to assess glucocorticoid regulation of IL-6 and CXCL8 production. Nuclear localization of the glucocorticoid receptor α (GRα) was ascertained by immunofluorescence and Western blotting. Transactivation of the glucocorticoid response element (GRE) was measured with a transfected GRE-secreted human placental alkaline phosphatase reporter. TGF-β (40-400 pM) reduced the maximum inhibitory effect of dexamethasone on IL-1α-induced IL-6 and CXCL8 production. The impaired glucocorticoid response was detected with 4 h of TGF-β (40 pM) exposure (and 4 h IL-1α to induce CXCL8 expression) and therefore was not secondary to EMT, a process that requires longer incubation periods and higher concentrations of TGF-β. TGF-β also impaired dexamethasone regulation of granulocyte-macrophage colony-stimulating factor in thrombin-stimulated BEAS-2B epithelial cells. Impaired regulation of CXCL8 was associated with markedly reduced GRE transactivation and reduced induction of mRNA for IκBα, the glucocorticoid-inducible leucine zipper and the epithelial sodium channel (SCNN1A). The expression, cellular levels and nuclear localization of GRα were reduced by TGF-β. We have identified mechanisms underlying the impairment of responses to glucocorticoids by TGF-β in the A549 and BEAS-2B cell lines. © 2012 The Authors. British Journal of Pharmacology © 2012 The British Pharmacological Society.

  11. Probenecid is a chemosensitizer in cancer cell lines.

    Science.gov (United States)

    Campos-Arroyo, Denise; Martínez-Lazcano, Juan Carlos; Melendez-Zajgla, Jorge

    2012-02-01

    Resistance and toxicity are the major barriers to successful cancer chemotherapies. Developing molecules that reduce drug resistance and improve antineoplastic effects is of great interest for cancer research; ideally, these substances should not affect the pharmacodynamics of the chemotherapeutic agent while providing a synergistic antineoplastic effect. In this study, we tested in vitro co-administration of the antineoplastic agents cisplatin or paclitaxel with probenecid, an anion channel inhibitor, in a panel of cancer cell lines to determine the cytotoxicity and synergistic effects of these drug combinations. In addition, we measured the clonogenicity and apoptotic index in these cells. We observed a synergistic interaction between probenecid and the chemotherapeutic agents, and increasing doses of probenecid resulted in a significant decrease in the effective doses of the chemotherapeutic agents. For the antineoplastic agent and probenecid combinations, we found increased cell death, reduced colony formation, and a higher number of apoptotic cells, compared with treatment of cisplatin or paclitaxel alone. Further research is necessary to elucidate the molecular mechanisms by which the synergistic effect occurs. If these synergistic effects can be reproduced in vivo, the co-administration of probenecid with different chemotherapeutic agents may provide a valid treatment in patients with chemotherapy resistance.

  12. Assessing the survival of MRC5 and a549 cell lines upon exposure to pyruvic Acid, sodium citrate and sodium bicarbonate - biomed 2013.

    Science.gov (United States)

    Farah, Ibrahim O; Lewis, Veshell L; Ayensu, Wellington K; Cameron, Joseph A

    2013-01-01

    Lung cancer is among the most prevalent and deadly cancers in United States. In general, cancer cells are known to exhibit higher rates of glycolysis in comparison to normal cells. In attempting to exploit this unique cancer-dependent ATP generation phenomenon, it was our hypothesis that upon exposure to organic inhibitors of glycolysis, cancer cells would not survive normally and that their growth and viability would be vastly decreased; essential glycolytic ATP production will be exhausted to the point of collapsing energy utilization. Furthermore, we hypothesize that no negative effect would be seen with exposures to organic inhibitors for normal lung cells. The human lung fibroblast MRC-5 and the human A549 alveolar epithelial cell lines were used as in vitro models of normal lung and lung cancers respectively. Using standard methods, both cell lines were maintained and exposed to pyruvic acid, sodium citrate and sodium bicarbonate reagents at concentration levels ranging from 31.3-2,000 µg/ml in 96 well plates in quadruplets and experiments repeated at least three times using MTT, and cell counting (T4 Cellometer) assays as well as phase-contrast photo-imaging for parallel morphological displays of any changes in the course of their vitality and metabolic activities. Our results indicate that exposure of both cell lines to these organics resulted in concentration dependent cell destruction/cell survival depending on the cell line exposed. Pyruvic acid, sodium citrate and sodium bicarbonate showed statistically significant (pcancer biotherapeutics.

  13. Establishment of a pig fibroblast-derived cell line for locus-directed transgene expression in cell cultures and blastocysts

    DEFF Research Database (Denmark)

    Jakobsen, Jannik E.; Li, Juan; Moldt, Brian

    2011-01-01

    We report the establishment of a spontaneously immortalized pig cell line designated Pig Flip-in Visualize (PFV) for locus-directed transgene expression in pig cells and blastocysts. The PFV cell line was isolated from pig ear fibroblasts transfected with a Sleeping Beauty DNA transposon-based do......We report the establishment of a spontaneously immortalized pig cell line designated Pig Flip-in Visualize (PFV) for locus-directed transgene expression in pig cells and blastocysts. The PFV cell line was isolated from pig ear fibroblasts transfected with a Sleeping Beauty DNA transposon...... transfer. PFV cells supported Flp mediated cassette exchange for transgene substitution of eGFP with dsRED, and the dsRED transgenic PFV cells generated blastocysts with transgene expression. Hence, the PFV cell line constitutes a valuable pig equivalent to transformed cell lines from other mammalian...

  14. EVALUATION OF CELL CYCLE OF Aspergillus nidulans EXPOSED TO THE EXTRACT OF Copaifera officinalis L PLANT

    Directory of Open Access Journals (Sweden)

    Simone Jurema Ruggeri Chiuchetta, Uériton Dias de Oliveira e Josy Fraccaro de Marins

    2006-12-01

    Full Text Available The oil extracted from the Copaifera officinalis L plant has been used in popular medicine to the treatment of several diseases, like cancer. In eukaryotic cells, the process of cellular proliferation follows a standard cycle, named cellular cycle. The transformation of a normal cell in a malignant one requires several steps, in which genes that control normal cellular division or cellular death are modified. Aspergillus nidulans fungus is an excellent system for the study of the cellular differentiation. Its asexual cycle results in the formation of conidia, which are disposed like chains, constituting a structure named conidiophore. This structure consists in an aerial hifae, multinucleate vesicle and uninucleate cells. Current research evaluated the capacity of the C. officinalis L plant extract in promoting alterations in the cellular cycle of A. nidulans diploid strains, by observing macroscopic and microscopic alterations in cellular growth of this fungus. Results shown that no macroscopic alterations were observed in cellular growth of strains exposed to the extract, however, microscopic alterations of conidiophore have been observed in the different extract concentrations analyzed. In this way, the study of the action of C. officinalis L plant extract becomes important considering the fact that this substance is capable to promote alterations in cellular cycle of eukaryotic cells.

  15. Inhibitory effects of xanthohumol from hops (Humulus lupulus L.) on human hepatocellular carcinoma cell lines.

    Science.gov (United States)

    Ho, Yi-Chien; Liu, Chi-Hsien; Chen, Chien-Nan; Duan, Kow-Jen; Lin, Ming-Tse

    2008-11-01

    Xanthohumol is one of the main flavonoids in hop extracts and in beer. Very few investigations of xanthohumol have studied hepatocellular carcinoma. In this study, the inhibitory effects of xanthohumol on human hepatocellular carcinoma cell lines were investigated. The IC(50) values of xanthohumol for two hepatocellular carcinoma cell lines and one normal hepatocyte cell line were 108, 166 and 211 microm, respectively. Normal murine hepatocyte cell line had more resistance to xanthohumol than hepatocellular carcinoma cell lines. Besides, the inhibitory effects of xanthohumol on human hepatocellular carcinoma cell lines were attributed to apoptosis as indicated in the results of flow cytometry, fluorescent nuclear staining and electrophoresis of oligonucleosomal DNA fragments. Hop xanthohumol was more efficient in the growth inhibition of hepatocellular carcinoma cell lines than the flavonoids silibinin and naringin from thistle and citrus. It was shown for the first time that xanthohumol from hops effectively inhibits proliferation of human hepatocellular carcinoma cells in vitro.

  16. A human astrocytoma cell line is highly susceptible to infection with Trypanosoma cruzi

    Directory of Open Access Journals (Sweden)

    Juan Camilo Vargas-Zambrano

    2013-04-01

    Full Text Available Astrocytes play a vital role in neuronal protection, homeostasis, vascular interchange and the local immune response. Some viruses and parasites can cross the blood-brain barrier and infect glia. Trypanosoma cruzi, the aetiological agent of Chagas disease, can seriously compromise the central nervous system, mainly in immune-suppressed individuals, but also during the acute phase of the infection. In this report, the infective capacity of T. cruzi in a human astrocyte tumour-derived cell line was studied. Astrocytes exposed to trypomastigotes (1:10 ratio produced intracellular amastigotes and new trypomastigotes emerged by day 4 post-infection (p.i.. At day 6 p.i., 93% of the cells were infected. Using flow cytometry, changes were observed in both the expression of major histocompatibility complex class I and II molecules and the chemokine secretion pattern of astrocytes exposed to the parasite. Blocking the low-density lipoprotein receptor on astrocytes did not reduce parasite intracellular infection. Thus, T. cruzi can infect astrocytes and modulate the immune response during central nervous system infection.

  17. Dose and temporal effects on gene expression profiles of urothelial cells from rats exposed to diuron

    International Nuclear Information System (INIS)

    Ihlaseh-Catalano, Shadia M.; Bailey, Kathryn A.; Cardoso, Ana Paula F.; Ren, Hongzu; Fry, Rebecca C.; Camargo, João Lauro V.de; Wolf, Douglas C.

    2014-01-01

    Diuron (3-(3,4-dichlorophenyl)-1,1-dimethylurea) is a substituted urea herbicide that at high dietary levels (2500 ppm) induces rat urinary bladder hyperplasia after 20 weeks of exposure and neoplasia after 2 years. The effects on the urothelium after short-term exposure have not been described. The present 7-day study evaluated the dose-dependency of urothelial alterations in the urinary bladder using light microscopy, scanning electron microscopy, and genome-wide transcriptional profiling. Male Wistar rats were fed 0, 125, 500, 2500 ppm diuron for 7 days. The urinary bladder and isolated urothelial cells of these animals were processed for microscopic examination and gene expression profiling, respectively. No significant treatment-related morphologic effects were observed. The number of differentially expressed genes (DEGs) in the exposed groups increased with diuron levels. Diuron-altered genes involved in cell-to-cell interactions and tissue organization were identified in all treatment groups. After 7 days of diuron exposure, transcriptional responses were observed in the urothelium in the absence of clear morphologic changes. These morphological findings are different from those observed in a previous study in which 20 weeks of diuron exposure was associated with simple hyperplasia secondary to the persistent cytotoxicity and necrosis associated with continuous cellular regeneration. Comparison of the gene expression profiles of rats exposed to the 2500 ppm carcinogenic diuron dose for 7 days versus 20 weeks revealed few similarities between these two time points at the gene or pathway level. Taken together, these data provide insight into the dose- and temporal-dependent morphological and transcriptional changes associated with diuron exposure that may lead to the development of tumors in the rat urinary bladder

  18. Dose and temporal effects on gene expression profiles of urothelial cells from rats exposed to diuron.

    Science.gov (United States)

    Ihlaseh-Catalano, Shadia M; Bailey, Kathryn A; Cardoso, Ana Paula F; Ren, Hongzu; Fry, Rebecca C; de Camargo, João Lauro V; Wolf, Douglas C

    2014-11-05

    Diuron (3-(3,4-dichlorophenyl)-1,1-dimethylurea) is a substituted urea herbicide that at high dietary levels (2500 ppm) induces rat urinary bladder hyperplasia after 20 weeks of exposure and neoplasia after 2 years. The effects on the urothelium after short-term exposure have not been described. The present 7-day study evaluated the dose-dependency of urothelial alterations in the urinary bladder using light microscopy, scanning electron microscopy, and genome-wide transcriptional profiling. Male Wistar rats were fed 0, 125, 500, 2500 ppm diuron for 7 days. The urinary bladder and isolated urothelial cells of these animals were processed for microscopic examination and gene expression profiling, respectively. No significant treatment-related morphologic effects were observed. The number of differentially expressed genes (DEGs) in the exposed groups increased with diuron levels. Diuron-altered genes involved in cell-to-cell interactions and tissue organization were identified in all treatment groups. After 7 days of diuron exposure, transcriptional responses were observed in the urothelium in the absence of clear morphologic changes. These morphological findings are different from those observed in a previous study in which 20 weeks of diuron exposure was associated with simple hyperplasia secondary to the persistent cytotoxicity and necrosis associated with continuous cellular regeneration. Comparison of the gene expression profiles of rats exposed to the 2500 ppm carcinogenic diuron dose for 7 days versus 20 weeks revealed few similarities between these two time points at the gene or pathway level. Taken together, these data provide insight into the dose- and temporal-dependent morphological and transcriptional changes associated with diuron exposure that may lead to the development of tumors in the rat urinary bladder. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  19. Global gene expression profiling in human lung cells exposed to cobalt

    Energy Technology Data Exchange (ETDEWEB)

    Malard, V.; Berenguer, F.; Prat, O.; Ruat, S.; Steinmetz, G.; Quemeneur, E. [CEA VALRHO, Serv Biochim and Toxicol Nucl, DSV, iBEB, F-30207 Bagnols Sur Ceze (France)

    2007-06-06

    It has been estimated that more than 1 million workers in the United States are exposed to cobalt. Occupational exposure to {sup 59}Co occurs mainly via inhalation and leads to various lung diseases. Cobalt is classified by the IARC as a possible human carcinogen (group 2B). Although there is evidence for in vivo and in vitro toxicity, the mechanisms of cobalt-induced lung toxicity are not fully known. The purpose of this work was to identify potential signatures of acute cobalt exposure using a toxico-genomic approach. Data analysis focused on some cellular processes and protein targets that are thought to be relevant for carcinogenesis, transport and bio-marker research. Results: A time course transcriptome analysis was performed on A549 human pulmonary cells, leading to the identification of 85 genes which are repressed or induced in response to soluble 59 Co. A group of 29 of these genes, representing the main biological functions, was assessed by quantitative RT-PCR. The expression profiles of six of them were then tested by quantitative RT-PCR in a time-dependent manner and three modulations were confirmed by Western blotting. The 85 modulated genes include potential cobalt carriers (FBXL2, ZNT1, SLC12A5), tumor suppressors or transcription factors (MAZ, DLG1, MYC, AXL) and genes linked to the stress response (UBC, HSPCB, BN1P3L). We also identified nine genes coding for secreted proteins as candidates for bio-marker research. Of those, T1MP2 was found to be down-regulated and this modulation was confirmed, in a dose-dependent manner, at protein level in the supernatant of exposed cells. Conclusion: Most of these genes have never been described as related to cobalt stress and provide original hypotheses for further study of the effects of this metal ion on human lung epithelial cells. A putative bio-marker of cobalt toxicity was identified. (authors)

  20. Global gene expression profiling in human lung cells exposed to cobalt

    Directory of Open Access Journals (Sweden)

    Steinmetz Gerard

    2007-06-01

    Full Text Available Abstract Background It has been estimated that more than 1 million workers in the United States are exposed to cobalt. Occupational exposure to 59 Co occurs mainly via inhalation and leads to various lung diseases. Cobalt is classified by the IARC as a possible human carcinogen (group 2B. Although there is evidence for in vivo and in vitro toxicity, the mechanisms of cobalt-induced lung toxicity are not fully known. The purpose of this work was to identify potential signatures of acute cobalt exposure using a toxicogenomic approach. Data analysis focused on some cellular processes and protein targets that are thought to be relevant for carcinogenesis, transport and biomarker research. Results A time course transcriptome analysis was performed on A549 human pulmonary cells, leading to the identification of 85 genes which are repressed or induced in response to soluble 59 Co. A group of 29 of these genes, representing the main biological functions, was assessed by quantitative RT-PCR. The expression profiles of six of them were then tested by quantitative RT-PCR in a time-dependent manner and three modulations were confirmed by Western blotting. The 85 modulated genes include potential cobalt carriers (FBXL2, ZNT1, SLC12A5, tumor suppressors or transcription factors (MAZ, DLG1, MYC, AXL and genes linked to the stress response (UBC, HSPCB, BNIP3L. We also identified nine genes coding for secreted proteins as candidates for biomarker research. Of those, TIMP2 was found to be down-regulated and this modulation was confirmed, in a dose-dependent manner, at protein level in the supernatant of exposed cells. Conclusion Most of these genes have never been described as related to cobalt stress and provide original hypotheses for further study of the effects of this metal ion on human lung epithelial cells. A putative biomarker of cobalt toxicity was identified.

  1. Individualized medicine for renal cell carcinoma: establishment of primary cell line culture from surgical specimens.

    Science.gov (United States)

    Kim, Fernando J; Campagna, Adriano; Khandrika, Lakshmipathi; Koul, Sweaty; Byun, Seok-Soo; vanBokhoven, Adrie; Moore, Ernest E; Koul, Hari

    2008-10-01

    The lack of effective "in vivo" and "in vitro" models to predict success of pharmacological therapy for patients with renal cell carcinoma, as well as, the variety of cancer cell types demands the development of better experimental models to understand the pathophysiology of the disease and evaluate drug sensitivity in vitro. To develop primary renal cancer cell culture irrespective of tumor grade and tumor type, harvested from the patient's pathological specimen immediately after the laparoscopic radical nephrectomy to study potential "in vivo" pharmacological sensitivity. A total of 24 patients (17 males and 7 females). Mean age of 63.1+/-3.1 y.o. The mean size of the renal masses was 7.56+/-3.1 cm. Normal and pathological renal tissue was collected immediately after the specimen was extracted and submitted to enzymatic digestion for 16-24 hours. Clear cell carcinoma cells were selected through multiple passages in DMEM medium supplemented with glucose and antibiotics. Establishment of cell line culture from all the patients' specimens irrespective of tumor grade and tumor type was achieved successfully. In addition to the tumor cell line culture, normal parenchyma tissue yielded primary cell lines to allow testing the response of tumor types to various pharmacological therapeutic agents and toxicity of such treatments to healthy tissue. From the initial collection of the specimens obtained after the removal of the kidney to the development of cell lines took occurred in average 32+6 hrs. The cells in culture showed characteristics of epithelial cells; like expression on cytokeratin and were maintained in culture for more than 20 passages. The development of renal cancer cell cultures in vitro is labor intense but may yield a more realistic model to tailor pharmacological therapies and predict therapeutic success prior to "in vivo" application-a step in the direction of individualized medicine for RCC.

  2. Hypoxia and Human Genome Stability: Downregulation of BRCA2 Expression in Breast Cancer Cell Lines

    Directory of Open Access Journals (Sweden)

    Daniele Fanale

    2013-01-01

    Full Text Available Previously, it has been reported that hypoxia causes increased mutagenesis and alteration in DNA repair mechanisms. In 2005, an interesting study showed that hypoxia-induced decreases in BRCA1 expression and the consequent suppression of homologous recombination may lead to genetic instability. However, nothing is yet known about the involvement of BRCA2 in hypoxic conditions in breast cancer. Initially, a cell proliferation assay allowed us to hypothesize that hypoxia could negatively regulate the breast cancer cell growth in short term in vitro studies. Subsequently, we analyzed gene expression in breast cancer cell lines exposed to hypoxic condition by microarray analysis. Interestingly, genes involved in DNA damage repair pathways such as mismatch repair, nucleotide excision repair, nonhomologous end-joining and homologous recombination repair were downregulated. In particular, we focused on the BRCA2 downregulation which was confirmed at mRNA and protein level. In addition, breast cancer cells were treated with dimethyloxalylglycine (DMOG, a cell-permeable inhibitor of both proline and asparaginyl hydroxylases able to induce HIF-1α stabilization in normoxia, providing results comparable to those previously described. These findings may provide new insights into the mechanisms underlying genetic instability mediated by hypoxia and BRCA involvement in sporadic breast cancers.

  3. 'Fluorescent Cell Chip' for immunotoxicity testing: Development of the c-fos expression reporter cell lines

    International Nuclear Information System (INIS)

    Trzaska, Dominika; Zembek, Patrycja; Olszewski, Maciej; Adamczewska, Violetta; Ulleras, Erik; Dastych, JarosIaw

    2005-01-01

    The Fluorescent Cell Chip for in vitro immunotoxicity testing employs cell lines derived from lymphocytes, mast cells, and monocytes-macrophages transfected with various EGFP cytokine reporter gene constructs. While cytokine expression is a valid endpoint for in vitro immunotoxicity screening, additional marker for the immediate-early response gene expression level could be of interest for further development and refinement of the Fluorescent Cell Chip. We have used BW.5147.3 murine thymoma transfected with c-fos reporter constructs to obtain reporter cell lines expressing ECFP under the control of murine c-fos promoter. These cells upon serum withdrawal and readdition and incubation with heavy metal compounds showed paralleled induction of c-Fos expression as evidenced by Real-Time PCR and ECFP fluorescence as evidenced by computer-supported fluorescence microscopy. In conclusion, we developed fluorescent reporter cell lines that could be employed in a simple and time-efficient screening assay for possible action of chemicals on c-Fos expression in lymphocytes. The evaluation of usefulness of these cells for the Fluorescent Cell Chip-based detection of immunotoxicity will require additional testing with a larger number of chemicals

  4. Extracellular vesicles from a muscle cell line (C2C12) enhance cell survival and neurite outgrowth of a motor neuron cell line (NSC-34).

    Science.gov (United States)

    Madison, Roger D; McGee, Christopher; Rawson, Renee; Robinson, Grant A

    2014-01-01

    There is renewed interest in extracellular vesicles over the past decade or 2 after initially being thought of as simple cellular garbage cans to rid cells of unwanted components. Although there has been intense research into the role of extracellular vesicles in the fields of tumour and stem cell biology, the possible role of extracellular vesicles in nerve regeneration is just in its infancy. When a peripheral nerve is damaged, the communication between spinal cord motor neurons and their target muscles is disrupted and the result can be the loss of coordinated muscle movement. Despite state-of-the-art surgical procedures only approximately 10% of adults will recover full function after peripheral nerve repair. To improve upon such results will require a better understanding of the basic mechanisms that influence axon outgrowth and the interplay between the parent motor neuron and the distal end organ of muscle. It has previously been shown that extracellular vesicles are immunologically tolerated, display targeting ligands on their surface, and can be delivered in vivo to selected cell populations. All of these characteristics suggest that extracellular vesicles could play a significant role in nerve regeneration. We have carried out studies using 2 very well characterized cell lines, the C2C12 muscle cell line and the motor neuron cell line NSC-34 to ask the question: Do extracellular vesicles from muscle influence cell survival and/or neurite outgrowth of motor neurons? Our results show striking effects of extracellular vesicles derived from the muscle cell line on the motor neuron cell line in terms of neurite outgrowth and survival.

  5. Anti-leukemic activity of bortezomib and carfilzomib on B-cell precursor ALL cell lines.

    Directory of Open Access Journals (Sweden)

    Kazuya Takahashi

    Full Text Available Prognosis of childhood acute lymphoblastic leukemia (ALL has been dramatically improved. However, prognosis of the cases refractory to primary therapy is still poor. Recent phase 2 study on the efficacy of combination chemotherapy with bortezomib (BTZ, a proteasome inhibitor, for refractory childhood ALL demonstrated favorable clinical outcomes. However, septic death was observed in over 10% of patients, indicating the necessity of biomarkers that could predict BTZ sensitivity. We investigated in vitro BTZ sensitivity in a large panel of ALL cell lines that acted as a model system for refractory ALL, and found that Philadelphia chromosome-positive (Ph+ ALL, IKZF1 deletion, and biallelic loss of CDKN2A were associated with favorable response. Even in Ph-negative ALL cell lines, IKZF1 deletion and bilallelic loss of CDKN2A were independently associated with higher BTZ sensitivity. BTZ showed only marginal cross-resistance to four representative chemotherapeutic agents (vincristine, dexamethasone, l-asparaginase, and daunorubicin in B-cell precursor-ALL cell lines. To improve the efficacy and safety of proteasome inhibitor combination chemotherapy, we also analyzed the anti-leukemic activity of carfilzomib (CFZ, a second-generation proteasome inhibitor, as a substitute for BTZ. CFZ showed significantly higher activity than BTZ in the majority of ALL cell lines except for the P-glycoprotein-positive t(17;19 ALL cell lines, and IKZF1 deletion was also associated with a favorable response to CFZ treatment. P-glycoprotein inhibitors effectively restored the sensitivity to CFZ, but not BTZ, in P-glycoprotein-positive t(17;19 ALL cell lines. P-glycoprotein overexpressing ALL cell line showed a CFZ-specific resistance, while knockout of P-glycoprotein by genome editing with a CRISPR/Cas9 system sensitized P-glycoprotein-positive t(17;19 ALL cell line to CFZ. These observations suggested that IKZF1 deletion could be a useful biomarker to predict good

  6. The Bioeffects Resulting from Prokaryotic Cells and Yeast Being Exposed to an 18 GHz Electromagnetic Field.

    Directory of Open Access Journals (Sweden)

    The Hong Phong Nguyen

    Full Text Available The mechanisms by which various biological effects are triggered by exposure to an electromagnetic field are not fully understood and have been the subject of debate. Here, the effects of exposing typical representatives of the major microbial taxa to an 18 GHz microwave electromagnetic field (EMFwere studied. It appeared that the EMF exposure induced cell permeabilisation in all of the bacteria and yeast studied, while the cells remained viable (94% throughout the exposure, independent of the differences in cell membrane fatty acid and phospholipid composition. The resulting cell permeabilisation was confirmed by detection of the uptake of propidium iodine and 23 nm fluorescent silica nanospheres using transmission electron microscopy (TEM and confocal laser scanning microscopy (CLSM. Upon EMF exposure, the bacterial cell membranes are believed to become permeable through quasi-endocytosis processes. The dosimetry analysis revealed that the EMF threshold level required to induce the uptake of the large (46 nm nanopsheres was between three and six EMF doses, with a specific absorption rate (SAR of 3 kW/kg and 5 kW/kg per exposure, respectively, depending on the bacterial taxa being studied. It is suggested that the taxonomic affiliation and lipid composition (e.g. the presence of phosphatidyl-glycerol and/or pentadecanoic fatty acid may affect the extent of uptake of the large nanospheres (46 nm. Multiple 18 GHz EMF exposures over a one-hour period induced periodic anomalous increases in the cell growth behavior of two Staphylococcus aureus strains, namely ATCC 25923 and CIP 65.8T.

  7. Gene Expression Profiling of MCF10A Breast Epithelial Cells Exposed to IOERT.

    Science.gov (United States)

    Minafra, Luigi; Bravatà, Valentina; Russo, Giorgio; Forte, Giusi Irma; Cammarata, Francesco Paolo; Ripamonti, Marilena; Candiano, Giuliana; Cervello, Melchiorre; Giallongo, Agata; Perconti, Giovanni; Messa, Cristina; Gilardi, Maria Carla

    2015-06-01

    Intraoperative electron radiation therapy (IOERT) is a therapeutic approach that delivers a single high dose of ionizing radiation (IR) directly to the tumor bed during cancer surgery. The main goal of IOERT is to counteract tumor growth by acting on residual cancer cells as well as to preserve healthy surrounding tissue from the side-effects of radiation therapy. The radiobiology of the healthy tissue response to IR is a topic of interest which may contribute to avoiding impairment of normal tissue and organ function and to reducing the risks of secondary cancer. The purpose of the study was to highlight cell and gene expression responses following IOERT treatment in the human non-tumorigenic MCF10A cell line in order to find new potential biomarkers of radiosensitivity/radioresistance. Gene-expression profiling of MCF10A cells treated with 9 and 23 Gy doses (IOERT boost and exclusive treatment, respectively), was performed by whole-genome cDNA microarrays. Real-time quantitative reverse transcription (qRT-PCR), immunofluorescence and immunoblot experiments were carried out to validate candidate IOERT biomarkers. Clonogenic tests and morphological evaluations to examine cellular effects induced by radiation were also conducted. The study revealed a dose-dependent gene-expression profile and specific key genes that may be proposed as novel markers of radiosensitivity. Our results show consistent differences in non-tumorigenic cell tolerance and in the molecular response of MCF10A cells to different IOERTs. In particular, after 9 Gy of exposure, the selection of a radioresistant cell fraction was observed. The possibility of clarifying the molecular strategies adopted by cells in choosing between death or survival after IR-induced damage opens-up new avenues for the selection of a proper personalized therapy schedule. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  8. Electrophysiological Characteristics of Embryonic Stem Cell-Derived Cardiomyocytes are Cell Line-Dependent

    Directory of Open Access Journals (Sweden)

    Tobias Hannes

    2015-01-01

    Full Text Available Background: Modelling of cardiac development, physiology and pharmacology by differentiation of embryonic stem cells (ESCs requires comparability of cardiac differentiation between different ESC lines. To investigate whether the outcome of cardiac differentiation is consistent between different ESC lines, we compared electrophysiological properties of ESC-derived cardiomyocytes (ESC-CMs of different murine ESC lines. Methods: Two wild-type (D3 and R1 and two transgenic ESC lines (D3/aPIG44 and CGR8/AMPIGX-7 were differentiated under identical culture conditions. The transgenic cell lines expressed enhanced green fluorescent protein (eGFP and puromycin-N-acetyltransferase under control of the cardiac specific α-myosin heavy chain (αMHC promoter. Action potentials (APs were recorded using sharp electrodes and multielectrode arrays in beating clusters of ESC-CMs. Results: Spontaneous AP frequency and AP duration (APD as well as maximal upstroke velocity differed markedly between unpurified CMs of the four ESC lines. APD heterogeneity was negligible in D3/aPIG44, moderate in D3 and R1 and extensive in CGR8/AMPIGX-7. Interspike intervals calculated from long-term recordings showed a high degree of variability within and between recordings in CGR8/AMPIGX-7, but not in D3/aPIG44. Purification of the αMHC+ population by puromycin treatment posed only minor changes to APD in D3/aPIG44, but significantly shortened APD in CGR8/AMPIGX-7. Conclusion: Electrophysiological properties of ESC-CMs are strongly cell line-dependent and can be influenced by purification of cardiomyocytes by antibiotic selection. Thus, conclusions on cardiac development, physiology and pharmacology derived from single stem cell lines have to be interpreted carefully.

  9. Application of the inter-line PCR for the analyse of genomic rearrangements in radiation-transformed mammalian cell lines

    International Nuclear Information System (INIS)

    Leibhard, S.; Smida, J.

    1996-01-01

    Repetitive DNA sequences of the LINE-family (long interspersed elements) that are widely distributed among the mammalian genome can be activated or altered by the exposure to ionizing radiation [1]. By the integration at new sites in the genome alterations in the expression of genes that are involved in cell transformation and/or carcinogenesis may occur [2, 3]. A new technique -the inter-LINE PCR - has been developed in order to detect and analyse such genomic rearrangements in radiation-transformed cell lines. From the sites of transformation- or tumour-specific changes in the genome it might be possible to develop new tumour markers for diagnostic purpose. (orig.) [de

  10. Expression of myc family oncoproteins in small-cell lung-cancer cell lines and xenografts

    DEFF Research Database (Denmark)

    Rygaard, K; Vindeløv, L L; Spang-Thomsen, M

    1993-01-01

    A number of genes have altered activity in small-cell lung cancer (SCLC), but especially genes of the myc family (c-myc, L-myc and N-myc) are expressed at high levels in SCLC. Most studies have explored expression at the mRNA level, whereas studies of myc family oncoprotein expression are sparse....... WE examined the expression of myc proto-oncogenes at the mRNA and protein level in 23 cell lines or xenografts. In the cell lines, the doubling time and the cell-cycle distribution, as determined by flow-cytometric DNA analysis, were examined to establish whether the level of myc......-myc. In general, the level of expression of c-myc and N-myc was similar at the mRNA and the protein level. Expression of c-myc was positively correlated with the proliferative index (sum of S and G2+M phases) of cell lines, but not with the population doubling time. In general, L-myc-expressing cell lines had...

  11. Identification of replication competent murine gammaretroviruses in commonly used prostate cancer cell lines.

    Directory of Open Access Journals (Sweden)

    Karen Sandell Sfanos

    Full Text Available A newly discovered gammaretrovirus, termed XMRV, was recently reported to be present in the prostate cancer cell line CWR22Rv1. Using a combination of both immunohistochemistry with broadly-reactive murine leukemia virus (MLV anti-sera and PCR, we determined if additional prostate cancer or other cell lines contain XMRV or MLV-related viruses. Our study included a total of 72 cell lines, which included 58 of the 60 human cancer cell lines used in anticancer drug screens and maintained at the NCI-Frederick (NCI-60. We have identified gammaretroviruses in two additional prostate cancer cell lines: LAPC4 and VCaP, and show that these viruses are replication competent. Viral genome sequencing identified the virus in LAPC4 and VCaP as nearly identical to another known xenotropic MLV, Bxv-1. We also identified a gammaretrovirus in the non-small-cell lung carcinoma cell line EKVX. Prostate cancer cell lines appear to have a propensity for infection with murine gammaretroviruses, and we propose that this may be in part due to cell line establishment by xenograft passage in immunocompromised mice. It is unclear if infection with these viruses is necessary for cell line establishment, or what confounding role they may play in experiments performed with these commonly used lines. Importantly, our results suggest a need for regular screening of cancer cell lines for retroviral "contamination", much like routine mycoplasma testing.

  12. Tributyltin (TBT) increases TNFα mRNA expression and induces apoptosis in the murine macrophage cell line in vitro.

    Science.gov (United States)

    Nakano, Ken; Tsunoda, Masashi; Konno, Nobuhiro

    2004-11-01

    Tributyltin (TBT) compounds have been widely used as antifouling agents for shipbottom paint. The immune system is a target of TBT intoxication. We evaluated the effects of TBT chloride in macrophages, which have critical roles in the immune system, using a murine macrophage lineage cell line, J774.1,in vitro. We examined tumor necrosis factor α (TNFα), interleukin-1β (IL-1β) andc-jun mRNA expression in J774.1 cells. The effects of TBT on the apoptosis of J774.1 cells were examined by determining the percentage of TUNEL-positive cells and caspase-3 activity. The mean values of the viabilities of J774.1 cells exposed to TBT decreased dose-dependently. The relative mRNA expression of TNFα increased dose-dependently, however, that of IL-1β was not significantly different among the groups. The mean percentage of TUNEL-positive cells increased dose-dependently. Increases in the caspase-3 activities of J774.1 cells were observed in the groups exposed to higher concentrations of TBT. The mean value of relative mRNA expression of c-Jun transcription factor increased dose-dependently. The increases in the percentage of TUNEL-positive cells and in caspase-3 activity suggested that exposure to TBT induces apoptosis of J774.1 cells. The increases in the mRNA expression of TNFα andc-jun by TBT may be related to apoptosis in macrophages.

  13. Effects of in vitro Brevetoxin Exposure on Apoptosis and Cellular Metabolism in a Leukemic T Cell Line (Jurkat

    Directory of Open Access Journals (Sweden)

    John W. Sleasman

    2008-06-01

    Full Text Available Harmful algal blooms (HABs of the toxic dinoflagellate, Karenia brevis, produce red tide toxins, or brevetoxins. Significant health effects associated with red tide toxin exposure have been reported in sea life and in humans, with brevetoxins documented within immune cells from many species. The objective of this research was to investigate potential immunotoxic effects of brevetoxins using a leukemic T cell line (Jurkat as an in vitro model system. Viability, cell proliferation, and apoptosis assays were conducted using brevetoxin congeners PbTx-2, PbTx-3, and PbTx-6. The effects of in vitro brevetoxin exposure on cell viability and cellular metabolism or proliferation were determined using trypan blue and MTT (1-(4,5-dimethylthiazol-2-yl-3,5- diphenylformazan, respectively. Using MTT, cellular metabolic activity was decreased in Jurkat cells exposed to 5 - 10 μg/ml PbTx-2 or PbTx-6. After 3 h, no significant effects on cell viability were observed with any toxin congener in concentrations up to 10 μg/ml. Viability decreased dramatically after 24 h in cells treated with PbTx-2 or -6. Apoptosis, as measured by caspase-3 activity, was significantly increased in cells exposed to PbTx-2 or PbTx-6. In summary, brevetoxin congeners varied in effects on Jurkat cells, with PbTx-2 and PbTx-6 eliciting greater cellular effects compared to PbTx-3.

  14. Tualang Honey Promotes Apoptotic Cell Death Induced by Tamoxifen in Breast Cancer Cell Lines

    Directory of Open Access Journals (Sweden)

    Nik Soriani Yaacob

    2013-01-01

    Full Text Available Tualang honey (TH is rich in flavonoids and phenolic acids and has significant anticancer activity against breast cancer cells comparable to the effect of tamoxifen (TAM, in vitro. The current study evaluated the effects of TH when used in combination with TAM on MCF-7 and MDA-MB-231 cells. We observed that TH promoted the anticancer activity of TAM in both the estrogen receptor-(ER-responsive and ER-nonresponsive human breast cancer cell lines. Flow cytometric analyses indicated accelerated apoptosis especially in MDA-MB-231 cells and with the involvement of caspase-3/7, -8 and -9 activation as shown by fluorescence microscopy. Depolarization of the mitochondrial membrane was also increased in both cell lines when TH was used in combination with TAM compared to TAM treatment alone. TH may therefore be a potential adjuvant to be used with TAM for reducing the dose of TAM, hence, reducing TAM-induced adverse effects.

  15. Assessment of tumor characteristic gene expression in cell lines using a tissue similarity index (TSI).

    Science.gov (United States)

    Sandberg, Rickard; Ernberg, Ingemar

    2005-02-08

    The gene expression profiles of 60 cell lines, derived from nine different tissues, were compared with their corresponding in vivo tumors and tissues. Cell lines expressed few tissue-specific (2%) or tumor-specific (5%) genes when analyzed group-wise. A tissue similarity index (TSI) was designed based upon singular value decomposition that measured in vivo tumor characteristic gene expression in each cell line independently. Only 34 of the 60 cell lines received the highest TSI toward its tumor of origin. In addition, we identified the most appropriate cell lines to be used as model systems for different in vivo tumors. Seven cell lines were identified as being of another origin than the originally presumed one. The proposed TSI will likely become an important tool for the selection of the most appropriate cell lines in pharmaceutical screening programs and experimental and biomedical research.

  16. Transcriptional signature of accessory cells in the lateral line, using the Tnk1bp1:EGFP transgenic zebrafish line

    Directory of Open Access Journals (Sweden)

    Behra Martine

    2012-01-01

    Full Text Available Abstract Background Because of the structural and molecular similarities between the two systems, the lateral line, a fish and amphibian specific sensory organ, has been widely used in zebrafish as a model to study the development/biology of neuroepithelia of the inner ear. Both organs have hair cells, which are the mechanoreceptor cells, and supporting cells providing other functions to the epithelium. In most vertebrates (excluding mammals, supporting cells comprise a pool of progenitors that replace damaged or dead hair cells. However, the lack of regenerative capacity in mammals is the single leading cause for acquired hearing disorders in humans. Results In an effort to understand the regenerative process of hair cells in fish, we characterized and cloned an egfp transgenic stable fish line that trapped tnks1bp1, a highly conserved gene that has been implicated in the maintenance of telomeres' length. We then used this Tg(tnks1bp1:EGFP line in a FACsorting strategy combined with microarrays to identify new molecular markers for supporting cells. Conclusions We present a Tg(tnks1bp1:EGFP stable transgenic line, which we used to establish a transcriptional profile of supporting cells in the zebrafish lateral line. Therefore we are providing a new set of markers specific for supporting cells as well as candidates for functional analysis of this important cell type. This will prove to be a valuable tool for the study of regeneration in the lateral line of zebrafish in particular and for regeneration of neuroepithelia in general.

  17. Cytotoxic Effect Of Verapamil On Human Embryonic Kidney Cell Line

    Directory of Open Access Journals (Sweden)

    Jamil L Ahmad

    2015-08-01

    Full Text Available Introduction The link between long term use of verapamil and cancer development has been suggested in literature many years back. However there are numerous controversies surrounding this association with several epidemiological studies in the positive negative and non-association between verapamil and cancer development. Aim To investigate in mechanistic terms the link between chronic use of a calcium channel blocker verapamil and cancer development using human embryonic kidney HEK293 cell line. Method Trypan blue dye exclusion cell counting and 3-amp615314 5-Dimethylthiazol-2-ylamp61533-2 5-diphenyl-tetrazolium bromide MTT assays were used to determine the proliferative as well as cytotoxic effects of verapamil. Results Verapamil had a growth inhibitory rather than proliferative effect on HEK293 cells and the growth inhibition was found to be significant p0.05. Conclusion The long term use of verapamil is associated with cellular growth inhibition and this possibly explained the rationale behind its use as part of combination chemotherapy for some human cancers.

  18. Synergistic effects of coralyne and paclitaxel on cell migration and proliferation of breast cancer cells lines.

    Science.gov (United States)

    Kumari, Seema; Badana, Anil Kumar; Mohan, G Murali; Shailender Naik, G; Malla, RamaRao

    2017-07-01

    Breast cancer is one of the most frequently diagnosed cancer in woman. Triple-negative breast cancer (TNBC) is most aggressive form of breast cancer. There is a growing interest in the use of natural products in combinational chemotherapy to improve the effectiveness in combating proliferation of cancer cells. Here, we hypothesized that coralyne in combination with paclitaxel may exhibit synergistic effect on inhibition of proliferation, migration and induction of apoptosis in MCF-7 and MDA-MB-231 breast cancer cell lines. MTT and BrdU incorporation assays were performed to study the effect of drugs alone and in combination on cell cytotoxicity and proliferation of the breast cancer cell lines, respectively. Adhesion and wound healing assays were performed to study the cell and extracellular matrix interactions. In addition, expression of proliferation marker ki-67 and apoptotic markers Bax and Bcl-2 was determined to study the effect of coralyne in combination with paclitaxel by reverse transcriptase PCR and confirmed by Western blot. The results indicated the synergism between coralyne and paclitaxel on proliferation and migration of breast cancer cell lines. This study also showed that combinational drug treatment decreased the expression of ki-67 and there was an increase in pro apoptotic factor Bax with decreased in expression of anti-apoptotic factor Bcl-2 in breast cancer cell lines with negligible effect on normal breast cell line. Overall, our data described the promising therapeutic potential of coralyne in combination with paclitaxel in treating breast cancer at lower effective dose. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  19. Cyclic AMP response in cells exposed to electric fields of different frequencies and intensities

    Energy Technology Data Exchange (ETDEWEB)

    Knedlitschek, G. [Kernforschungszentrum Karlsruhe GmbH (Germany). Inst. fuer Toxikologie; Noszvai-Nagy, M. [Kernforschungszentrum Karlsruhe GmbH (Germany). Inst. fuer Toxikologie; Meyer-Waarden, H. [Kernforschungszentrum Karlsruhe GmbH (Germany). Inst. fuer Toxikologie; Schimmelpfeng, J. [Kernforschungszentrum Karlsruhe GmbH (Germany). Inst. fuer Toxikologie; Weibezahn, K.F. [Kernforschungszentrum Karlsruhe GmbH (Germany). Inst. fuer Toxikologie; Dertinger, H. [Kernforschungszentrum Karlsruhe GmbH (Germany). Inst. fuer Toxikologie

    1994-04-01

    The action on intracellular cyclic AMP (cAMP) of therapeutically used 4000-Hz electric fields was investigated and compared with 50-Hz data. Cultured mouse fibroblasts were exposed for 5 minutes to 4000-Hz sine wave internal electric fields between 3 mV/m and 30 V/m applied within culture medium. A statistically significant decrease in cellular cAMP concentration relative to unexposed cells was observed for fields higher than 10 mV/m. The drop in cAMP was ost pronounced at lower field strengths (71% of controls at 30 mV/m) and tended to disappear at higher field strengths. An increase of cAMP content was observed with 50-Hz electric fields, as was also the case when 4000-Hz fields were modulated with certain low frequencies. (orig.)

  20. Cellular processes involved in human epidermal cells exposed to extremely low frequency electric fields.

    Science.gov (United States)

    Collard, J-F; Hinsenkamp, M

    2015-05-01

    We observed on different tissues and organisms a biological response after exposure to pulsed low frequency and low amplitude electric or electromagnetic fields but the precise mechanism of cell response remains unknown. The aim of this publication is to understand, using bioinformatics, the biological relevance of processes involved in the modification of gene expression. The list of genes analyzed was obtained after microarray protocol realized on cultures of human epidermal explants growing on deepidermized human skin exposed to a pulsed low frequency electric field. The directed acyclic graph on a WebGestalt Gene Ontology module shows six categories under the biological process root: "biological regulation", "cellular process", "cell proliferation", "death", "metabolic process" and "response to stimulus". Enriched derived categories are coherent with the type of in vitro culture, the stimulation protocol or with the previous results showing a decrease of cell proliferation and an increase of differentiation. The Kegg module on WebGestalt has highlighted "cell cycle" and "p53 signaling pathway" as significantly involved. The Kegg website brings out interactions between FoxO, MAPK, JNK, p53, p38, PI3K/Akt, Wnt, mTor or NF-KappaB. Some genes expressed by the stimulation are known to have an exclusive function on these pathways. Analyses performed with Pathway Studio linked cell proliferation, cell differentiation, apoptosis, cell cycle, mitosis, cell death etc. with our microarrays results. Medline citation generated by the software and the fold change variation confirms a diminution of the proliferation, activation of the differentiation and a less well-defined role of apoptosis or wound healing. Wnt and DKK functional classes, DKK1, MACF1, ATF3, MME, TXNRD1, and BMP-2 genes proposed in previous publications after a manual analysis are also highlighted with other genes after Pathway Studio automatic procedure. Finally, an analysis conducted on a list of genes

  1. Regulation of cytochrome P4501A1 expression by hyperoxia in human lung cell lines: Implications for hyperoxic lung injury

    International Nuclear Information System (INIS)

    Bhakta, Kushal Y.; Jiang, Weiwu; Couroucli, Xanthi I.; Fazili, Inayat S.; Muthiah, Kathirvel; Moorthy, Bhagavatula

    2008-01-01

    Supplemental oxygen, used to treat pulmonary insufficiency in newborns, contributes to the development of bronchopulmonary dysplasia (BPD). Cytochrome P4501A enzymes are induced by hyperoxia in animal models, but their role in human systems is unknown. Here we investigated the molecular mechanisms of induction of CYP1A1 by hyperoxia in human lung cell lines. Three human lung cell lines were exposed to hyperoxia (95% O2) for 0-72 h, and CYP1A1 activities, apoprotein contents, and mRNA levels were determined. Hyperoxia significantly induced CYP1A1 activity and protein contents (2-4 fold), and mRNA levels (30-40 fold) over control in each cell line. Transfection of a CYP1A1 promoter/luciferase reporter construct, followed by hyperoxia (4-72 h), showed marked (2-6 fold) induction of luciferase expression. EMSA and siRNA experiments strongly suggest that the Ah receptor (AHR) is involved in the hyperoxic induction of CYP1A1. MTT reduction assays showed attenuation of cell injury with the CYP1A1 inducer beta-naphthoflavone (BNF). Our results strongly suggest that hyperoxia transcriptionally activates CYP1A1 expression in human lung cell lines by AHR-dependent mechanisms, and that CYP1A1 induction is associated with decreased toxicity. This novel finding of induction of CYP1A1 in the absence of exogenous AHR ligands could lead to novel interventions in the treatment of BPD

  2. [Neuronal differentiation of human small cell lung cancer cell line PC-6 by Solcoseryl].

    Science.gov (United States)

    Shimizu, T

    1997-11-01

    Solcoseryl is composed of extracts from calf blood, and is a drug known to activate tissue respiration. In the present study, I demonstrated the cell biological effects of Solcoseryl on a human small cell lung cancer cell line, PC-6, by analyzing cell morphology, cell growth, expression of neuronal differentiation markers, and the ras proto-oncogene product(ras p21). Exposure of PC-6 cells to Solcoseryl at the concentration of 200 microliters/ml induced (1) cell morphological changes, including neurodendrite-like projections from the cell surface, and (2) complete inhibition of cell growth, that was shown by the loss of Ki-67 expression. Solcoseryl also induced the expression of neurofilament protein and acetylcholinesterase, both of which are markers of neuronal differentiation. Moreover, it upregulated the expression of the ras proto-oncogene product, ras p21. Taken together, these data suggest that Solcoseryl is composed of component(s) which can induce neuronal differentiation of the human small cell lung cancer cell line, PC-6.

  3. Noise Removal with Maintained Spatial Resolution in Raman Images of Cells Exposed to Submicron Polystyrene Particles

    Directory of Open Access Journals (Sweden)

    Linnea Ahlinder

    2016-04-01

    Full Text Available The biodistribution of 300 nm polystyrene particles in A549 lung epithelial cells has been studied with confocal Raman spectroscopy. This is a label-free method in which particles and cells can be imaged without using dyes or fluorescent labels. The main drawback with Raman imaging is the comparatively low spatial resolution, which is aggravated in heterogeneous systems such as biological samples, which in addition often require long measurement times because of their weak Raman signal. Long measurement times may however induce laser-induced damage. In this study we use a super-resolution algorithm with Tikhonov regularization, intended to improve the image quality without demanding an increased number of collected pixels. Images of cells exposed to polystyrene particles have been acquired with two different step lengths, i.e., the distance between pixels, and compared to each other and to corresponding images treated with the super-resolution algorithm. It is shown that the resolution after application of super-resolution algorithms is not significantly improved compared to the theoretical limit for optical microscopy. However, to reduce noise and artefacts in the hyperspectral Raman images while maintaining the spatial resolution, we show that it is advantageous to use short mapping step lengths and super-resolution algorithms with appropriate regularization. The proposed methodology should be generally applicable for Raman imaging of biological samples and other photo-sensitive samples.

  4. DNA damage and the bystander response in tumor and normal cells exposed to X-rays.

    Science.gov (United States)

    Subhashree, M; Venkateswarlu, R; Karthik, K; Shangamithra, V; Venkatachalam, P

    2017-09-01

    Monolayer and suspension cultures of tumor (BMG-1, CCRF-CEM), normal (AG1522, HADF, lymphocytes) and ATM-mutant (GM4405) human cells were exposed to X-rays at doses used in radiotherapy (high dose and high dose-rate) or radiological imaging (low dose and low dose-rate). Radiation-induced DNA damage, its persistence, and possible bystander effects were evaluated, based on DNA damage markers (γ-H2AX, p53 ser15 ) and cell-cycle-specific cyclins (cyclin B1 and cyclin D1). Dose-dependent DNA damage and a dose-independent bystander response were seen after exposure to high dose and high dose-rate radiation. The level of induced damage (expression of p53 ser15 , γ-H2AX) depended on ATM status. However, low dose and dose-rate exposures neither increased expression of marker proteins nor induced a bystander response, except in the CCRF-CEM cells. Bystander effects after high-dose irradiation may contribute to stochastic and deterministic effects. Precautions to protect unexposed regions or to inhibit transmission of DNA damage signaling might reduce radiation risks. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Immunotropic potency of microwave fields: preliminary studies on immunocompetent cells exposed in vitro

    International Nuclear Information System (INIS)

    Stankiewicz, W.; Dabrowski, M.P.; Sobiczewska, E.; Kubacki, R.; Szmigielski, S.

    2006-01-01

    Exposure in radiofrequency (RF) and microwave (MW) fields can influence the function of the immune system, but the data available on the immunotropic potency of RF/MW radiation are still full of uncertainties and controversies. In the available literature there exist no reports on complex assessment of function and responsiveness of the immune system. All investigations have been aimed to evaluate selected, fragmentary reaction of the system and/or functional response of immunocompetent cells in RF/MW-exposed subjects. However, at the present state of knowledge it is not possible to conclude about the possible immunotropic potencies of RF/MW radiation. The undisturbed defensive, tolerogenic, and proregenerative activities of the immune system are commonly recognised as one of the most important homeostatic functions of the organism. Thus, basic immunoregulatory activities which can be observed and precisely quantified in microcultures of immune cells separated from the human blood, represent a unique and objective model for the investigation of possible immunotropic effects of electromagnetic fields (EMFs). To determine the potential immunomodulatory influences of EMFs, the immunotropic effects of pulse modulated microwave (1300 MHz) were investigated in the cultures of blood mononuclear cells from sixteen healthy donors

  6. Signaling molecules and cell death in Melissa officinalis plants exposed to ozone.

    Science.gov (United States)

    Pellegrini, Elisa; Trivellini, Alice; Campanella, Alessandra; Francini, Alessandra; Lorenzini, Giacomo; Nali, Cristina; Vernieri, Paolo

    2013-12-01

    The study focuses on the interaction between reactive oxygen species and hormones that regulate the programmed cell death in plants of Melissa officinalis exposed to ozone. Interaction between hormone and redox signaling pathways has been investigated in ozone-stressed (200 ppb, 5 h) lemon balm to verify if the response resembles the biotic defense reactions. In comparison to controls, plants exhibited foliar injury and the cell death was induced by (1) biphasic production of hydrogen peroxide and superoxide radical; (2) hormonal regulation of ozone-induced lesion formation with a significant production of ethylene, salicylic, jasmonic and abscisic acid; (3) ozone degradation to reactive oxygen species and their detoxification by some enzymatic (such as superoxide dismutase) and non-enzymatic antioxidant systems (such as ascorbic acid, glutathione and carotenoids), that worked in cooperation without providing a defense against free radicals (such as confirmed by the modification of the antioxidant properties of leaf tissue). This integrated view showed that reactive oxygen species interact with hormonal signaling pathway regulating cell death and the sensitivity of lemon balm to ozone.

  7. Oxidative stress response in neural stem cells exposed to different superparamagnetic iron oxide nanoparticles.

    Science.gov (United States)

    Pongrac, Igor M; Pavičić, Ivan; Milić, Mirta; Brkić Ahmed, Lada; Babič, Michal; Horák, Daniel; Vinković Vrček, Ivana; Gajović, Srećko

    2016-01-01

    Biocompatibility, safety, and risk assessments of superparamagnetic iron oxide nanoparticles (SPIONs) are of the highest priority in researching their application in biomedicine. One improvement in the biological properties of SPIONs may be achieved by different functionalization and surface modifications. This study aims to investigate how a different surface functionalization of SPIONs - uncoated, coated with d-mannose, or coated with poly-l-lysine - affects biocompatibility. We sought to investigate murine neural stem cells (NSCs) as important model system for regenerative medicine. To reveal the possible mechanism of toxicity of SPIONs on NSCs, levels of reactive oxygen species, intracellular glutathione, mitochondrial membrane potential, cell-membrane potential, DNA damage, and activities of SOD and GPx were examined. Even in cases where reactive oxygen species levels were significantly lowered in NSCs exposed to SPIONs, we found depleted intracellular glutathione levels, altered activities of SOD and GPx, hyperpolarization of the mitochondrial membrane, dissipated cell-membrane potential, and increased DNA damage, irrespective of the surface coating applied for SPION stabilization. Although surface coating should prevent the toxic effects of SPIONs, our results showed that all of the tested SPION types affected the NSCs similarly, indicating that mitochondrial homeostasis is their major cellular target. Despite the claimed biomedical benefits of SPIONs, the refined determination of their effects on various cellular functions presented in this work highlights the need for further safety evaluations. This investigation helps to fill the knowledge gaps on the criteria that should be considered in evaluating the biocompatibility and safety of novel nanoparticles.

  8. Analysis of differential protein expression in normal and neoplastic human breast epithelial cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Williams, K.; Chubb, C.; Huberman, E.; Giometti, C.S.

    1997-07-01

    High resolution two dimensional get electrophoresis (2DE) and database analysis was used to establish protein expression patterns for cultured normal human mammary epithelial cells and thirteen breast cancer cell lines. The Human Breast Epithelial Cell database contains the 2DE protein patterns, including relative protein abundances, for each cell line, plus a composite pattern that contains all the common and specifically expressed proteins from all the cell lines. Significant differences in protein expression, both qualitative and quantitative, were observed not only between normal cells and tumor cells, but also among the tumor cell lines. Eight percent of the consistently detected proteins were found in significantly (P < 0.001) variable levels among the cell lines. Using a combination of immunostaining, comigration with purified protein, subcellular fractionation, and amino-terminal protein sequencing, we identified a subset of the differentially expressed proteins. These identified proteins include the cytoskeletal proteins actin, tubulin, vimentin, and cytokeratins. The cell lines can be classified into four distinct groups based on their intermediate filament protein profile. We also identified heat shock proteins; hsp27, hsp60, and hsp70 varied in abundance and in some cases in the relative phosphorylation levels among the cell lines. Finally, we identified IMP dehydrogenase in each of the cell lines, and found the levels of this enzyme in the tumor cell lines elevated 2- to 20-fold relative to the levels in normal cells.

  9. Dysfunctional p53 deletion mutants in cell lines derived from Hodgkin's lymphoma

    DEFF Research Database (Denmark)

    Feuerborn, Alexander; Moritz, Constanze; von Bonin, Frederike

    2006-01-01

    derived from cHL are rare and therefore not notably involved in the pathogenesis of the malignant H&RS cells. Re-evaluating the expression in cHL-derived cell lines, we found that in 3/6 of these cell lines, TP53 transcripts are characterized by deletions within exon 4 (L428 cells) and nearly a complete...

  10. Lucifer Yellow uptake by CHO cells exposed to magnetic and electric pulses.

    Science.gov (United States)

    Towhidi, Leila; Firoozabadi, Seyed Mohammad P; Mozdarani, Hossein; Miklavcic, Damijan

    2012-06-01

    The cell membrane acts as a barrier that hinders free entrance of most hydrophilic molecules into the cell. Due to numerous applications in medicine, biology and biotechnology, the introduction of impermeant molecules into biological cells has drawn considerable attention in the past years. One of the most famous methods in this field is electroporation, in which electric pulses with high intensity and short duration are applied to the cells. The aim of our study was to investigate the effect of time-varying magnetic field with different parameters on transmembrane molecular transport. 'Moreover, a comparison was made between the uptake results due to magnetic pulse exposure and electroporation mediated uptake.' at the end of Background part. The Chinese hamster ovary (CHO) cells were exposed to magnetic pulses of 2.2 T peak strength and 250 μs duration delivered by Magstim stimulator and double 70 mm coil. Three different frequencies of 0.25, 1 and 10 Hz pulses with 112, 56 and 28 number of pulses were applied (altogether nine experimental groups) and Lucifer Yellow uptake was measured in each group. Moreover, maximum uptake of Lucifer Yellow obtained by magnetic pulses was compared to the measured uptake due to electroporation with typical parameters of 8 pulses of 100 μs, repetition frequency of 1 Hz and electric field intensities of 200 to 600 V/cm. Our results show that time-varying magnetic field exposure increases transmembrane molecular transport and this uptake is greater for lower frequencies and larger number of pulses. Besides, the comparison shows that electroporation is more effective than pulsed magnetic field, but the observed uptake enhancement due to magnetic exposure is still considerable.

  11. CYTOKINESIS-BLOCK MICRONUCLEUS ASSAY IN HUMAN GLIOMA CELLS EXPOSED TO RADIATION

    Directory of Open Access Journals (Sweden)

    Jerzy Slowinski

    2011-05-01

    Full Text Available Biological tests are efficient in reflecting the biological influences of several types of generally harmful exposures. The micronucleus assay is widely used in genotoxicity studies or studies on genomic damage in general. We present methodological aspects of cytokinesis-block micronucleus assay performed in human gliomas irradiated in vitro. Eight human glioblastoma cell lines obtained from DSMZ (Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Germany were gamma-irradiated (60Co over a dose range of 0-10 Gy. Cytokinesis-block micronucleus assay was performed to quantitate cytogenetic damage. The cells were fixed directly on dishes, stained with fluorochrome DAPI and evaluated under fluorescent and phase contrast microscope. The micronucleus frequency was expressed as a micronuclei (MN per binucleated cell (BNC ratio, calculated after scoring at least 100 BNC per dish. The frequency of spontaneous MN ranged from 0.17 to 0.613 (mean: 0.29 ± 0.14. After irradiation increase of MN frequency in the range of 0.312 - 2.241 (mean: 0.98 ± 0.68 was found at 10 Gy. Gliomas are extremely heterogenous in regard to cytogenetic effects of irradiation, as shown in this study by cytokinesis-block micronucleus assay. This test is easily performed on irradiated glioma cell lines and can assist in determining their radiosensitivity. However, in order to obtain reliable and reproducible results, precise criteria for MN scoring must be strictly followed. Simultaneous use of fluorescent and phase contrast equipment improves imaging of morphological details and can further optimize MN scoring.

  12. Novel stable HBV producing cell line systems for expression and screening antiviral inhibitor of hepatitis B virus in human hepatoma cell line.

    Science.gov (United States)

    Ogura, Naoki; Ogawa, Kazuya; Watashi, Koichi; Ito, Takayoshi; Wakita, Takaji

    2018-03-25

    Chronic hepatitis B virus (HBV) infection is currently a major public health burden. Therefore, there is an urgent need for the development of novel antiviral inhibitors. The stable HBV-producing cell lines of genotype D are widely used to investigate the HBV life cycle and to evaluate antiviral agents. However, stable HBV-producing cell lines of different genotypes do not exist. To construct more convenient and efficient novel cell systems, stable cell lines of genotypes A, B, and C were established using a full-length HBV genome sequence isolated from chronic HBV patients in human hepatoma HepG2 cells. Novel HBV clones were identified and stable HBV-producing cell lines derived from these clones were constructed. HBV replication activities demonstrated time-dependent expression, and the novel cell lines were susceptible to several antiviral inhibitors with no cytotoxicity. Furthermore, infectious viruses were produced from these cell lines. In conclusion, we have established novel stable HBV-producing cell line systems of genotypes A, B, and C. These systems can provide valuable tools for screening antiviral agents and analyzing viral phenotypes in vitro. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Anti-inflammatory activity of the basolateral fraction of Caco-2 cells exposed to a rosemary supercritical extract

    NARCIS (Netherlands)

    Arranz, E.; Mes, J.J.; Wichers, H.J.; Jaime, L.; Reglero, G.; Santoyo, S.

    2015-01-01

    The anti-inflammatory activity of the basolateral fraction of Caco-2 cells exposed to a rosemary supercritical extract was examined. Uptake of rosemary extract fractions was tested on Caco-2 cell monolayers (2–12 h incubation times) and the quantification of carnosic acid and carnosol was performed

  14. Cell death induced by Bothrops asper snake venom metalloproteinase on endothelial and other cell lines.

    Science.gov (United States)

    Brenes, Oscar; Muñóz, Eduardo; Roldán-Rodríguez, Raquel; Díaz, Cecilia

    2010-06-01

    Two adherent cell lines, BAEC and HeLa, and non-adherent Jurkat, were treated with snake venom metalloproteinase BaP1 to determine whether cytotoxicity, previously reported for this toxin, could be mediated by the process of anoikis. It was observed that there was no correlation between the ability of this toxin to induce loss of adherence, and the cytotoxic effect, since concentrations that do not induce loss of adherence (3-6 microg/mL), were able to trigger 50% of cytotoxicity in BAEC. In the case of HeLa, where toxicity was very low (less than 20% at maximun concentrations and times of exposure), significant detachment and no toxicity was observed at concentrations of 1.5 microg/mL, showing also no correlation between both events. We also observed differences between BAEC toxicity measured by XTT reduction and DNA fragmentation determined by flow cytometry (as an indicator of apoptosis), since concentrations that induce 100% of cytotoxicity barely showed any DNA fragmentation (12% at 24h), suggesting that if apoptosis was involved, DNA damage is still not present, although chromatin condensation, another indicator of apoptosis, is observed in 40% of the cells. Inhibition of BAEC cytotoxicity by caspase inhibitors indicate that apoptosis is playing a role in this process, but other mechanisms of cell death could be participating also. Another way to determine whether the mechanism of cell death was related to anoikis was using a non-adherent cell line, which should show substrate independence. We determined by TUNEL that at 50 microg/ml BaP1 triggered 50% of apoptosis at 96 h, an effect that was seen earlier, suggesting also that if this toxin was inducing apoptosis in a non-adherent cell line, the mechanism could not be related to loss of attachment. Cell cycle arrest in S phase was also observed in Jurkat cells, an effect that could be leading to apoptosis. In conclusion, since there was no correlation between cell detachment and cytotoxicity (and apoptosis

  15. Assessment of the U937 cell line for the detection of contact allergens

    International Nuclear Information System (INIS)

    Python, Francois; Goebel, Carsten; Aeby, Pierre

    2007-01-01

    The human myeloid cell line U937 was evaluated as an in vitro test system to identify contact sensitizers in order to develop alternatives to animal tests for the cosmetic industry. Specific culture conditions (i.e., presence of interleukin-4, IL-4) were applied to obtain a dendritic cell-like phenotype. In the described test protocol, these cells were exposed to test chemicals and then analyzed by flow cytometry for CD86 expression and by quantitative real-time reverse transcriptase-polymerase chain reaction for IL-1β and IL-8 gene expressions. Eight sensitizers, three non-sensitizers and five oxidative hair dye precursors were examined after 24-, 48- and 72-h exposure times. Test item-specific modulations of the chosen activation markers (CD86, IL-1β and IL-8) suggest that this U937 activation test could discriminate test items classified as contact sensitizers or non-sensitizers in the local lymph node assay in mice (LLNA). More specifically, a test item can be considered as a potential sensitizer when it significantly induced the upregulation of the expression of at least two markers. Using this approach, we could correctly evaluate the dendritic cell (DC) activation potential for 15 out of 16 tested chemicals. We conclude that the U937 activation test may represent an useful tool in a future in vitro test battery for predicting sensitizing properties of chemicals

  16. Proteomic changes in a childhood acute lymphoblastic leukemia cell line during the adaptation to vincristine.

    Science.gov (United States)

    Guzmán-Ortiz, Ana Laura; Aparicio-Ozores, Gerardo; Valle-Rios, Ricardo; Medina-Contreras, Oscar; Patiño-López, Genaro; Quezada, Héctor

    Relapse occurs in approximately 20% of Mexican patients with childhood acute lymphoblastic leukemia (ALL). In this group, chemoresistance may be one of the biggest challenges. An overview of complex cellular processes like drug tolerance can be achieved with proteomic studies. The B-lineage pediatric ALL cell line CCRF-SB was gradually exposed to the chemotherapeutic vincristine until proliferation was observed at 6nM, control cells were cultured in the absence of vincristine. The proteome from each group was analyzed by nanoHPLC coupled to an ESI-ion trap mass spectrometer. The identified proteins were grouped into overrepresented functional categories with the PANTHER classification system. We found 135 proteins exclusively expressed in the presence of vincristine. The most represented functional categories were: Toll receptor signaling pathway, Ras Pathway, B and T cell activation, CCKR signaling map, cytokine-mediated signaling pathway, and oxidative phosphorylation. Our study indicates that signal transduction and mitochondrial ATP production are essential during adaptation of leukemic cells to vincristine, these processes represent potential therapeutic targets. Copyright © 2017 Hospital Infantil de México Federico Gómez. Publicado por Masson Doyma México S.A. All rights reserved.

  17. The Cytotoxicity of Dextran-coated Iron Oxide Nanoparticles on Hela and MCF-7 Cancerous Cell Lines

    Directory of Open Access Journals (Sweden)

    Masoud Rezaei

    2017-09-01

    Full Text Available Background: Recently, iron oxide nanoparticles have attracted attention in various diagnosis and treatment fields. The aim of the present study was to investigate the cytotoxicity of various concentrations and incubation times of dextran-coated iron oxide nanoparticles (DIONPs on HeLa and MCF-7 cancerous cell lines. Methods: This in-vitro study was conducted at Pharmaceutical Sciences Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran in 2016. The dextran-coated iron oxide nanoparticles (DIONPs uptake and cytotoxicity at different concentrations (10, 40 and 80 µg/ml and different incubation times (6, 12 and 24 h were assessed on HeLa and MCF-7 cell lines. The viability of the cells was measured by MTT assay. Results: DIONPs entered into the HeLa and MCF-7 cells. After 6, 12 and 24 h incubation times and in all concentrations, the viability of HeLa cells was more than 94%. For MCF-7 cell line, increasing incubation time from 6 to 24 h at a concentration of 10 μg/ml decreased the cells viability from 98% to 95%. When the cells were exposed to concentrations of 40 and 80 μg/ml of the nanoparticles, significant reductions in the cells viability was observed from 98% to 91.6% and from 95% to 88%, respectively. Conclusion: DIONPs cytotoxicity increased by increasing the incubation time from 6 to 24 h and also increased with increasing the nanoparticles concentration from 0 to 80 μg/ml. In general, DIONPs did not cause considerable toxicity in both cell lines especially at lower concentrations. Therefore, these nanoparticles are good candidates for use in biomedical and cancer research studies.

  18. Cytotoxic Effects of Fascaplysin against Small Cell Lung Cancer Cell Lines

    Science.gov (United States)

    Hamilton, Gerhard

    2014-01-01

    Fascaplysin, the natural product of a marine sponge, exhibits anticancer activity against a broad range of tumor cells, presumably through interaction with DNA, and/or as a highly selective cyclin-dependent kinase 4 (CDK4) inhibitor. In this study, cytotoxic activity of fascaplysin against a panel of small cell lung cancer (SCLC) cell lines and putative synergism with chemotherapeutics was investigated. SCLC responds to first-line chemotherapy with platinum-based drugs/etoposide, but relapses early with topotecan remaining as the single approved therapeutic agent. Fascaplysin was found to show high cytotoxicity against SCLC cells and to induce cell cycle arrest in G1/0 at lower and S-phase at higher concentrations, respectively. The compound generated reactive oxygen species (ROS) and induced apoptotic cell death in the chemoresistant NCI-H417 SCLC cell line. Furthermore, fascaplysin revealed marked synergism with the topoisomerase I-directed camptothecin and 10-hydroxy-camptothecin. The Poly(ADP-ribose)-Polymerase 1 (PARP1) inhibitor BYK 204165 antagonized the cytotoxic activity of fascaplysin, pointing to the involvement of DNA repair in response to the anticancer activity of the drug. In conclusion, fascaplysin seems to be suitable for treatment of SCLC, based on high cytotoxic activity through multiple routes of action, affecting topoisomerase I, integrity of DNA and generation of ROS. PMID:24608973

  19. Cytotoxic Effects of Fascaplysin against Small Cell Lung Cancer Cell Lines

    Directory of Open Access Journals (Sweden)

    Gerhard Hamilton

    2014-03-01

    Full Text Available Fascaplysin, the natural product of a marine sponge, exhibits anticancer activity against a broad range of tumor cells, presumably through interaction with DNA, and/or as a highly selective cyclin-dependent kinase 4 (CDK4 inhibitor. In this study, cytotoxic activity of fascaplysin against a panel of small cell lung cancer (SCLC cell lines and putative synergism with chemotherapeutics was investigated. SCLC responds to first-line chemotherapy with platinum-based drugs/etoposide, but relapses early with topotecan remaining as the single approved therapeutic agent. Fascaplysin was found to show high cytotoxicity against SCLC cells and to induce cell cycle arrest in G1/0 at lower and S-phase at higher concentrations, respectively. The compound generated reactive oxygen species (ROS and induced apoptotic cell death in the chemoresistant NCI-H417 SCLC cell line. Furthermore, fascaplysin revealed marked synergism with the topoisomerase I-directed camptothecin and 10-hydroxy-camptothecin. The Poly(ADP-ribose-Polymerase 1 (PARP1 inhibitor BYK 204165 antagonized the cytotoxic activity of fascaplysin, pointing to the involvement of DNA repair in response to the anticancer activity of the drug. In conclusion, fascaplysin seems to be suitable for treatment of SCLC, based on high cytotoxic activity through multiple routes of action, affecting topoisomerase I, integrity of DNA and generation of ROS.

  20. Biologic characteristics of the side population of human small cell lung cancer cell line H446.

    Science.gov (United States)

    Wang, Bo; Yang, Huan; Huang, Yu-Zheng; Yan, Ru-Hong; Liu, Fen-Ju; Zhang, Jun-Ning

    2010-03-01

    Recently, the theory of cancer stem cells (CSCs) has presented new targets and orientations for tumor therapy. The major difficulties in researching CSCs include their isolation and purification. The aim of this study is to identify and characterize the side population (SP) cells in small cell lung cancer (SCLC) cell line H446, which lays the foundation for the isolation and purification of CSCs. Fluorescence-activated cell sorting (FACS) was used to sort SP and non-SP (NSP) cells from H446. Both subgroups were cultivated to survey the capacity to form into suspended tumor cell spheres. Reverse transcription-polymerase chain reaction (RT-PCR) and real-time PCR were used to evaluate the expression levels of the mRNA of CD133, ABCG2, and nucleostemin in both subgroups. The capacity of proliferation and the differences in drug resistance of both subgroups and unsorted cells were tested by the MTT method. The differentiation ability of both subgroups was determined by FACS. Proliferation was determined by subcutaneous tumor formation in nude mice. The percent of Hoechst 33342 negative cells was about (5.1 +/- 0.2)% in H446 by fluorescence microscopy. The percent of SP cells was (6.3 +/- 0.1)% by flow cytometry. SP cells had a stronger capability of forming into tumor spheres than NSP cells. The mRNA expression levels of ABCG2, CD133, and nucleostemin in SP cells were 21.60 +/- 0.26, 7.10 +/- 0.14, and 1.02 +/- 0.08 folds higher than that in NSP cells (P 0.05, respectively). In vivo, SP cells showed better proliferative ability and tougher viability when treated with drugs. SP cells can differentiate into NSP cells, but NSP cells cannot differentiate into SP cells. SP cells had a greater ability to form tumors. The H446 cell line contained some SP cells with stem cell properties. CD133 and ABCG2 may be cancer stem cell markers of SCLC.

  1. Alterations in body weight and blood glucose level of female hamsters exposed to electromagnetic fields of cell phones

    Directory of Open Access Journals (Sweden)

    A.R Lotfi

    2010-02-01

    Group 2 was exposed to electromagnetic field emitted by cell phones for 10 days (short term and group 3 for 50 day (long term. In the latter groups, the exposure was 1 hour per day. At the end of the experimental period, the animals were weighed and blood glucose concentrations were determined by obtaining blood samples from 8 randomly selected hamsters in each group.  The blood glucose level was significantly higher in long-term exposed group in comparison with the control and short-term exposed groups (175, 11.6 and 107 mg/dl, respectively (p

  2. Study of damage to red blood cells exposed to different doses of γ-ray irradiation

    Science.gov (United States)

    Xu, Deyi; Peng, Mingxi; Zhang, Zhe; Dong, Guofei; Zhang, Yiqin; Yu, Hongwei

    2012-01-01

    Background. The aims of this research were to study alterations in the ultrastructure of red blood cells, the changes in concentrations of plasma electrolytes and the killing effect of lymphocytes in samples of blood exposed to different doses of γ-ray irradiation. Materials and methods. Blood samples were treated with different doses of γ-ray irradiation and then preserved for different periods. Specimens were prepared for standard electron microscopy and transmission electron microscopy. At the same time, changes in the concentrations of Na+, K+ and Cl− and pH values in the plasma as well as Fas and FasL expression of lymphocytes before and after irradiation were determined. Results. The proportions of reversibly and irreversibly transformed cells, for example, echinocytes, sphero-echinocytes, and degenerated forms, increased with increasing doses of irradiation and storage period, while the number of discocyte shaped red blood cells decreased. The change in K+ concentration was greater than that of Na+ or Cl− after irradiation and was dosage-dependent. Plasma pH was influenced by different doses of radiation and storage time. After exposure to 137Cs γ-irradiation, the expression of both Fas and FasL in lymphocytes differed significantly from that in the control group: the expression was positively correlated with irradiation dose (r=0.95, 0.96), but no significant difference in the Fas/FasL ratio was observed (P>0.05). Discussion. We conclude that the ultrastructure of red blood cells is not changed obviously by irradiation with some doses of γ-rays and various periods of storage. However, irradiation does have some dose-dependent and time-dependent adverse effects on the erythrocytes. PMID:22682338

  3. Establishment and characterization of 7 novel hepatocellular carcinoma cell lines from patient-derived tumor xenografts.

    Directory of Open Access Journals (Sweden)

    Hong Xin

    Full Text Available Hepatocellular carcinoma (HCC is a common cancer with poor prognosis worldwide and the molecular mechanism is not well understood. This study aimed to establish a collection of human HCC cell lines from patient-derived xenograft (PDX models. From the 20 surgical HCC sample collections, 7 tumors were successfully developed in immunodeficient mice and further established 7 novel HCC cell lines (LIXC002, LIXC003, LIXC004, LIXC006, LIXC011, LIXC012 and CPL0903 by primary culture. The characterization of cell lines was defined by morphology, growth kinetics, cell cycle, chromosome analysis, short tandem repeat (STR analysis, molecular profile, and tumorigenicity. Additionally, response to clinical chemotherapeutics was validated both in vitro and in vivo. STR analysis indicated that all cell lines were unique cells different from known cell lines and free of contamination by bacteria or mycoplasma. The other findings were quite heterogeneous between individual lines. Chromosome aberration could be found in all cell lines. Alpha-fetoprotein was overexpressed only in 3 out of 7 cell lines. 4 cell lines expressed high level of vimentin. Ki67 was strongly stained in all cell lines. mRNA level of retinoic acid induced protein 3 (RAI3 was decreased in all cell lines. The 7 novel cell lines showed variable sensitivity to 8 tested compounds. LIXC011 and CPL0903 possessed multiple drug resistance property. Sorafenib inhibited xenograft tumor growth of LIXC006, but not of LIXC012. Our results indicated that the 7 novel cell lines with low passage maintaining their clinical and pathological characters could be good tools for further exploring the molecular mechanism of HCC and anti-cancer drug screening.

  4. Interaction between x-irradiated plateau-phase bone marrow stromal cell lines and co-cultivated factor-dependent cell lines leading to leukemogenesis in vitro

    International Nuclear Information System (INIS)

    Naparstek, E.; Anklesaria, P.; FitzGerald, T.J.; Sakakeeny, M.A.; Greenberger, J.S.

    1987-01-01

    Plateau-phase mouse clonal bone marrow stromal cell lines D2XRII and C3H cl 11 produce decreasing levels of M-CSF (CSF-1), a specific macrophage progenitor cell humoral regulator, following X-irradiation in vitro. The decrease did not go below 40% of control levels, even after irradiation doses of 50,000 rad (500 Gy). In contrast, a distinct humoral regulator stimulating growth of GM-CSF/IL-3 factor-dependent (FD) hematopoietic progenitor cell lines was detected following radiation to doses above 2000 rad. This humoral factor was not detectable in conditioned medium from irradiated cells, weakly detected using factor-dependent target cell populations in agar overlay, and was prominently detected by liquid co-cultivation of factor-dependent cells with irradiated stromal cell cultures. Subclonal lines of FD cells, derived after co-cultivation revealed karyotypic abnormalities and induced myeloblastic tumors in syngeneic mice. Five-eight weeks co-cultivation was required for induction of factor independence and malignancy and was associated with dense cell to cell contact between FD cells and stromal cells demonstrated by light and electron microscopy. Increases in hematopoietic to stromal cell surface area, total number of adherent cells per flask, total non-adherent cell colonies per flask, and cumulative non-adherent cell production were observed after irradiation. The present data may prove very relevant to an understanding of the cell to cell interactions during X-irradiation-induced leukemia

  5. Evaluation of Stem Cell Markers, CD44/CD24 in Breast Cancer Cell Lines

    Directory of Open Access Journals (Sweden)

    Masoud Hashemi Arabi

    2014-05-01

    Four breast cancer cell lines, MCF-7 ، T47D ، MDA-MB231 and MDA-MB468 were purchased from National cell Bank of Iran based in Iran Pasture Institute and were cultured in high glucose DMEM supplemented with 10% FCS. Cells were stained with antiCD44-PE and antiCD24-FITC antibodies and Status of CD44 and CD24 as markers of breast cancer stem cells were evaluated using flow cytometer and fluorescent microscopy.Evaluation of CD44 and CD24 as markers of breast cancer stem cells showed that MDA-MB231 with 97±1.2% CD44+/CD24-/low cells is significantly different from the others that they were mainly CD44 and CD24 positive cells(p

  6. Histamine as a Radiosensitizer of Malignant Cell Lines

    Energy Technology Data Exchange (ETDEWEB)

    Rivera, E. S.; Medina, V.; Cricco, G.; Mohamed, N.; Croci, M.; Martin, G.; Nunez, M.; Bergoc, R. M.

    2004-07-01

    It has been established that the treatment with Histamine (Hi) produces a significant growth inhibition of different cell lines derived from human neoplasia. In a model of Knockout mice completely depleted of endogenous Hi, it was observed a significant delay in bone marroe repopulation after whole body irradiation. These results are in agreement with the hypothesis that histamine has a role in the regulation of haematopoiesis as well as an inhibitory effect on apoptosis. The objective of this paper was to study the possible effect of Hi as protector of normal cells and radiosensitizer of malignant ones. To study the effect of Hi on small-intestine and bone marrow, thirty made mice were randomly separeted into two groups: Control irradiated (C), and irradiated receiving Histamine (HI-group). All animals received a single dose of 10 Gy on whole-body employing a ''137Cs source of 189 TB{sub q} (Dose rate: 7.7 Gy/min) calibrated with TLD 700 dosimeter. Hi-group recieved a daily se injection (0.1 mg/kg) starting 20 hs before irradiation. Mice were sacrificed 5 days after irradiation. Histopathological analysis indicated that intestinal mucosae of C group showed important injury, whist mucosae of Hi-treated mice showed mild mucosal atrophy with conservation of villous projections and absence of vascular congestive changes. In order to investigate the effect of Hi on radiosensitivity of transformed cells, MDA-MB-231 (human breast carcinoma cells) were irradiated in vitro with doses ranging from 0 to 10 Gy. Results of radiobiological parameters indicate a significant increase on radiosensitivity of malignant cells. Employing specific fluorescent dyes and flow cytometric analysis we determined that the intracellular levels of hydrogen peroxide (H{sub 2}O{sub 2}) are significant increased by Hi 10 {mu}M in control and also in irradiated MDA-MB-231 cells, while the levels of superoxide (SO{sub 2}) were not significantly modified by Hi-treatment. (Author) 9 refs.

  7. Cytotoxicity screening of essential oils in cancer cell lines

    Directory of Open Access Journals (Sweden)

    Pollyanna Francielli de Oliveira

    Full Text Available Abstract This study evaluated the cytotoxicity activity of the essential oils of Tagetes erecta L., Asteraceae (TE-OE, Tetradenia riparia (Hochst. Codd, Lamiaceae (TR-OE, Bidens sulphurea (Cav. Sch. Bip., Asteraceae (BS-OE, and Foeniculum vulgare Mill., Apiaceae (FV-OE, traditionally used in folk medicine, against the tumor cell lines murine melanoma (B16F10, human colon carcinoma (HT29, human breast adenocarcinoma (MCF-7, human cervical adenocarcinoma (HeLa, human hepatocellular liver carcinoma (HepG2, and human glioblastoma (MO59J, U343, and U251. Normal hamster lung fibroblasts (V79 cells were included as control. The cells were treated with essential oil concentrations ranging from 3.12 to 400 µg/ml for 24 h. The cytotoxic activity was evaluated using the XTT assay; results were expressed as IC50, and the selectivity index was calculated. The results were compared with those achieved for classic chemotherapeutic agents. TE-OE was the most promising among the evaluated oils: it afforded the lowest IC50 values for B16F10 cells (7.47 ± 1.08 µg/ml and HT29 cells (6.93 ± 0.77 µg/ml, as well as selectivity indices of 2.61 and 2.81, respectively. The major BS-EO, FV-EO and TE-EO chemical constituents were identified by gas chromatography mass spectrometry as being (E-caryophyllene (10.5%, germacrene D (35.0% and 2,6-di-tert-butyl-4-methylphenol (43.0% (BS-EO; limonene (21.3% and (E-anethole (70.2% (FV-EO; limonene (10.4%, dihydrotagetone (11.8%, α-terpinolene (18.1% and (E-ocimenone (13.0% (TE-EO; and fenchone (6.1%, dronabinol (11.0%, aromadendrene oxide (14.7% and (E,E–farnesol (15.0% (TR-EO. 2,6-di-tert-butyl-4-methylphenol (43.0%, (E-anethole (70.2% and α-terpinolene (18.1%, respectively. These results suggest that TE-OE may be used to treat cancer without affecting normal cells.

  8. Human adipose tissue-derived multilineage progenitor cells exposed to oxidative stress induce neurite outgrowth in PC12 cells through p38 MAPK signaling

    Directory of Open Access Journals (Sweden)

    Moriyama Mariko

    2012-08-01

    Full Text Available Abstract Background Adipose tissues contain populations of pluripotent mesenchymal stem cells that also secrete various cytokines and growth factors to support repair of damaged tissues. In this study, we examined the role of oxidative stress on human adipose-derived multilineage progenitor cells (hADMPCs in neurite outgrowth in cells of the rat pheochromocytoma cell line (PC12. Results We found that glutathione depletion in hADMPCs, caused by treatment with buthionine sulfoximine (BSO, resulted in the promotion of neurite outgrowth in PC12 cells through upregulation of bone morphogenetic protein 2 (BMP2 and fibroblast growth factor 2 (FGF2 transcription in, and secretion from, hADMPCs. Addition of N-acetylcysteine, a precursor of the intracellular antioxidant glutathione, suppressed the BSO-mediated upregulation of BMP2 and FGF2. Moreover, BSO treatment caused phosphorylation of p38 MAPK in hADMPCs. Inhibition of p38 MAPK was sufficient to suppress BMP2 and FGF2 expression, while this expression was significantly upregulated by overexpression of a constitutively active form of MKK6, which is an upstream molecule from p38 MAPK. Conclusions Our results clearly suggest that glutathione depletion, followed by accumulation of reactive oxygen species, stimulates the activation of p38 MAPK and subsequent expression of BMP2 and FGF2 in hADMPCs. Thus, transplantation of hADMPCs into neurodegenerative lesions such as stroke and Parkinson’s disease, in which the transplanted hADMPCs are exposed to oxidative stress, can be the basis for simple and safe therapies.

  9. Establishment and characterization of GSA-1, a human cell line highly susceptible to apoptosis after free-fall

    International Nuclear Information System (INIS)

    Nomura, Jun; Himeda, Jyuni; Chen, Zheng; Sugaya, Shigeru; Takahashi, Shunji; Kita, Kazuko; Ichinose, Masaharu; Suzuki, Nobuo

    2002-01-01

    The induction of apoptosis by microgravity and/or gravity-changing stress is considered to be one of the important causes of cell death, although the molecular mechanisms of the apoptotic event remain unclarified. In this study, we established a cell line,GSA-1, from ethyl methanesulfonate-treated human RSa cells. GSA-1 cells were highly susceptible to apoptosis after a free-fall; 24.4% of these cells underwent apoptosis after free-fall, compared with only 6% of the RSa cells. The apoptosis of GSA-1 cells was augmented by ultraviolet (UV, principally 254-nm wavelength) irradiation before free-fall to a greater extents than those in RSa cells. The molecular mechanisms of apoptosis included p53 and Bax proteins; the expression of nuclear p53 and cytoplasmic Bax in GSA-1 cells increased at 4 h after free-fall irrespective of irradiation. In addition, the rate of removal of cyclobutane pyrimidine dimer (CPD) in UV-irradiated GSA-1 cells was higher in cells exposed to free-fall than in those under the l-G condition. Our results suggested that in GSA-1 cells, free-fall accelerates apoptosis, and that this process is associated with the accumulation of p53 and Bax, as well as CPD removal. Thus, GSA-1 cells should be useful for investigating the mechanism of cellular response, including the induction of apoptosis under gravity-changing stress. (author)

  10. Effect of New Water-Soluble Dendritic Phthalocyanines on Human Colorectal and Liver Cancer Cell Lines

    Directory of Open Access Journals (Sweden)

    Ebru YABAŞ

    2017-08-01

    Full Text Available Human hepatocellular carcinoma (HepG2 cells and colorectal adenocarcinoma (DLD-1 cells were treated with the synthesized water soluble phthalocyanine derivatives to understand the effect of the compounds both on colorectal and liver cancer cells. The compounds inhibited cell proliferation and displayed cytotoxic effect on these cancer cell lines however; the effect of the compounds on healthy control fibroblast cell line was comparatively lower. The compounds can be employed for cancer treatment as anticancer agents.

  11. Effect Of Interferon-γ and TNF-α on MUCl MUCIN Expression in Ovarian Carcinoma Cell Lines

    Directory of Open Access Journals (Sweden)

    Sean Clark

    1994-01-01

    Full Text Available In view of the potential uses of cell surface tumour associated antigens in novel anticancer treatment. a study was designed to investigate whether the biological response modifiers interferon-gamma (IFN-γ and tumour necrosis factor-alpha (TNF-α could effect the expression of an epitope on the tumour associated MUC I epithelial mucin. Four ovarian carcinoma cell lines showing high (OAW42 and GG and low (JAM and PEO1 basal expression of MUC1 were treated with 10-1000 U/mL of IFN-γor TNF-α for one or five days. Changes in MUC1 expression in cells exposed to IFN-γ or TNF-α were monitored using an ELISA technique with the monoclonal antibody BC2 which reacts with a core protein epitope on the MUC1 mucin, and then corrected for the number of viable cells present. TNF-α had little effect on MUC1 expression, but one or five days exposure to IFN-γ significantly increased MUC1 expression (p < 0.01 in all cell lines including the two cell lines that initially showed little or no expression.

  12. Opioid binding site in EL-4 thymoma cell line

    Energy Technology Data Exchange (ETDEWEB)

    Fiorica, E.; Spector, S.

    1988-01-01

    Using EL-4 thymoma cell-line we found a binding site similar to the k opioid receptor of the nervous system. The Scatchard analysis of the binding of (/sup 3/H) bremazocine indicated a single site with a K/sub D/ = 60 +/- 17 nM and Bmax = 2.7 +/- 0.8 pmols/10/sup 6/ cells. To characterize this binding site, competition studies were performed using selective compounds for the various opioid receptors. The k agonist U-50,488H was the most potent displacer of (/sup 3/H) bremazocine with an IC/sub 50/ value = 0.57..mu..M. The two steroisomers levorphanol and dextrorphan showed the same affinity for this site. While morphine, (D-Pen/sup 2/, D-Pen/sup 5/) enkephalin and ..beta..-endorphin failed to displace, except at very high concentrations, codeine demonstrated a IC/sub 50/ = 60..mu..M, that was similar to naloxone. 32 references, 3 figures, 2 tables.

  13. The Ultrasound effects on non tumoral cell line at 1 MHz therapeutic frequency

    International Nuclear Information System (INIS)

    Di Giambattista, L; Grimaldi, P; Cassara, A M; Giansanti, A; Congiu Castellano, A; Udroiu, I; Bedini, A; Giliberti, C; Palomba, R; Pozzi, D; Cinque, G; Frogley, M D; Buogo, S

    2011-01-01

    The aim of this research is to investigate some bioeffects due to Therapeutic Ultrasound (1 MHz and 50 PA 2 ) which could allow to enhance drugs or genes delivery in non tumoral cells. Ultrasound (US) has been demonstrated to alter the cell membrane permeability due to a biophysical mechanism, Sonoporation, and exploited as a promising non-invasive gene transfer method. We have used the NIH-3T3 cell line as a model system and exposed it to US medical equipment for 15, 30, 45, 60 minutes at distances of 10 and 15 cm from the source transducer, corresponding to the far field region where z>α 2 /4/λ=4.0±0.4 cm. We have worked with the maximum power in pulsed system with 75% duty cycle. Characterization of the unfocused, planar and with a circular geometry 1 MHz source transducer, was performed and the acoustics pressure was measured by a calibrated 0.5 mm needle hydrophone; moreover, the pressure field generated by the source transducer was simulated. The US effects on cells were assessed by Fourier transform infrared (FTIR) Imaging with focal plane array (FPA) detector. By the IR analysis, the US exposure on non tumoral cells has induced a change of the intensity for CH 2 asymmetric stretching (2924 cm -1 ) band in the lipid region (3000-2800 cm -1 ) that it could detect an energy-dependent process. It has already shown that cells invest energy to catalyze lipid movement in order to maintain a specific transmembrane phospholipid distribution. Although asymmetry is the rule for control cells, the loss of asymmetry could be associated with the permeability change of plasma membrane inducing temporary pores.

  14. Synergistic cytotoxicity and mechanism of caffeine and lysozyme on hepatoma cell line HepG2

    Science.gov (United States)

    Yang, Hongchao; Li, Jingjuan; Cui, Lin; Ren, Yanqing; Niu, Liying; Wang, Xinguo; Huang, Yun; Cui, Lijian

    2018-03-01

    The influences of caffeine, lysozyme and the joint application of them on the hepatoma cell line HepG2 proliferation inhibition and cell apoptosis were observed by 3-(4, 5-dimethyl-2-thiazyl)-2, 5-diphenyl-2H-tetrazolium bromide assay and Hoechst 33342, which showed the proliferation inhibition rate of the joint application on HepG2 cells was 47.21%, significantly higher than caffeine or lysozyme, and the joint application promoted the apoptosis of HepG2 cells obviously. Van't Hoff classical thermodynamics formula, the Föster theory of non-radiation energy transfer and fluorescence phase diagram were used to manifest that the process of lysozyme binding to caffeine followed a two-state model, which was spontaneous at low temperature driven by enthalpy change, and the predominant intermolecular force was hydrogen bonding or Van der Waals force to stabilize caffeine-lysozyme complex with the distance 5.86 nm. The attenuated total reflection-Fourier transform infrared spectra indicated that caffeine decreased the relative contents of α-helix and β-turn, which inferred the structure of lysozyme tended to be "loose". Synchronous fluorescence spectra and ultraviolet spectra supported the above conclusion. The amino acid residues in the cleft of lysozyme were exposed and electropositivity was increased attributing to the loose structure, which were conducive to increasing caffeine concentration on the HepG2 cell surface by electrostatic interaction to show synergistic effect. The great quantities of microvilli on the liver cancer cell membrane surface, is beneficial for the lysozyme-caffeine compound to aggregate on cell surface to increase the concentration of caffeine to play stronger physiological role by electrostatic effect.

  15. Immune suppressor factor confers stromal cell line with enhanced supporting activity for hematopoietic stem cells

    International Nuclear Information System (INIS)

    Nakajima, Hideaki; Shibata, Fumi; Fukuchi, Yumi; Goto-Koshino, Yuko; Ito, Miyuki; Urano, Atsushi; Nakahata, Tatsutoshi; Aburatani, Hiroyuki; Kitamura, Toshio

    2006-01-01

    Immune suppressor factor (ISF) is a subunit of the vacuolar ATPase proton pump. We earlier identified a short form of ISF (ShIF) as a stroma-derived factor that supports cytokine-independent growth of mutant Ba/F3 cells. Here, we report that ISF/ShIF supports self-renewal and expansion of primary hematopoietic stem cells (HSCs). Co-culture of murine bone marrow cells with a stromal cell line overexpressing ISF or ShIF (MS10/ISF or MS10/ShIF) not only enhanced their colony-forming activity and the numbers of long-term culture initiating cells, but also maintained the competitive repopulating activity of HSC. This stem cell supporting activity depended on the proton-transfer function of ISF/ShIF. Gene expression analysis of ISF/ShIF-transfected cell lines revealed down-regulation of secreted frizzled-related protein-1 and tissue inhibitor of metalloproteinase-3, and the restoration of their expressions in MS10/ISF cells partially reversed its enhanced LTC-IC supporting activity to a normal level. These results suggest that ISF/ShIF confers stromal cells with enhanced supporting activities for HSCs by modulating Wnt-activity and the extracellular matrix

  16. Macrophage cell lines derived from major histocompatibility complex II-negative mice

    Science.gov (United States)

    Beharka, A. A.; Armstrong, J. W.; Chapes, S. K.; Spooner, B. S. (Principal Investigator)

    1998-01-01

    Two bone-marrow-derived macrophage cell lines, C2D and C2Dt, were isolated from major histocompatibility class II negative knock-out mice. The C2D cell line was stabilized by continuous culture in colony-stimulating factor-1 and the C2Dt cell line was transformed with SV40 virus large T antigen. These cells exhibited phenotypic properties of macrophages including morphology and expression of Mac 1 and Mac 2 cell surface molecules. These cells also had comparable growth to the bone-marrow-derived macrophage cell line B6MP102. These new cell lines were not spontaneously cytotoxic and were only capable of modest killing of F5b tumor cells when stimulated with LPS and interferon-gamma, but not when stimulated with LPS alone or with staphylococcal exotoxin. C2D and C2Dt cells phagocytosed labeled Staphylococcus aureus similarly to B6MP102 cells but less well than C2D peritoneal macrophages. These cell lines secreted interleukin-6, but not tumor necrosis factor or nitric oxide in response to LPS or staphlococcal enterotoxins A or B C2D(t) cells were tumorigenic in C2D and C57BL/6J mice but C2D cells were not. These data suggest that macrophage cell lines can be established from bone marrow cells of major histocompatibility complex II-negative mice.

  17. Influence of dietary vitamin E on the red cells of ozone-exposed rats

    Energy Technology Data Exchange (ETDEWEB)

    Chow, C.K. (Univ. of Kentucky, Lexington); Kaneko, J.J.

    1979-06-01

    The effect of dietary vitamin E on the susceptibility of red blood cells to ozone exposure was studied in rats. One- and two-month-old male Sprague-Dawley rats were fed a basal vitamin E-deficient diet with or without 45 ppM vitamin E for 4 and 3 months, respectively, and were exposed to 0 or 0.8 ppM ozone continuously for 7 days. Ozone exposure resulted in a significant increase in the activities of glutathione (GSH) peroxidase, pyruvate kinase, and lactate dehydrogenase, and a decrease in GSH level in the red cells of vitamin E-deficient rats, but not in those of the supplemented group. The activities of glucose-6-phosphate dehydrogenase, catalase, and superoxide dismutase and levels of thiobarbituric acid reactants, methemoglobin, hemoglobin, and reticulocytes were not significantly altered by ozone exposure or by the nutritional status of vitamin E. The results suggest that depletion of dietary vitamin E renders animals more susceptible to ozone exposure.

  18. DNA damage in blood cells exposed to low-level lasers.

    Science.gov (United States)

    Sergio, Luiz Philippe da Silva; Silva, Ana Paula Almeida da; Amorim, Philipi Freitas; Campos, Vera Maria Araújo; Magalhães, Luis Alexandre Gonçalves; de Paoli, Flavia; de Souza da Fonseca, Adenilson

    2015-04-01

    In regenerative medicine, there are increasing applications of low-level lasers in therapeutic protocols for treatment of diseases in soft and in bone tissues. However, there are doubts about effects on DNA, and an adequate dosimetry could improve the safety of clinical applications of these lasers. This work aimed to evaluate DNA damage in peripheral blood cells of Wistar rats induced by low-level red and infrared lasers at different fluences, powers, and emission modes according to therapeutic protocols. Peripheral blood samples were exposed to lasers and DNA damage was accessed by comet assay. In other experiments, DNA damage was accessed in blood cells by modified comet assay using formamidopyrimidine DNA glycosylase (Fpg) and endonuclease III enzymes. Data show that exposure to low-level red and infrared lasers induce DNA damage depending on fluence, power and emission mode, which are targeted by Fpg and endonuclease III. Oxidative DNA damage should be considered for therapeutic efficacy and patient safety in clinical applications based on low-level red and infrared lasers. © 2015 Wiley Periodicals, Inc.

  19. Comparison of mammalian and fish cell line cytotoxicity: impact of endpoint and exposure duration

    International Nuclear Information System (INIS)

    Guelden, Michael; Moerchel, Sabine; Seibert, Hasso

    2005-01-01

    Comparisons of acute toxic concentrations of chemicals to fish in vivo and cytotoxic concentrations to fish cell lines in vitro reveal rather good correlations of the toxic potencies in vitro and in vivo, but a clearly lower sensitivity of the fish cells. To examine whether the low sensitivity is specific for fish cells, cytotoxic potencies of reference chemicals from the Multicenter Evaluation of In Vitro Cytotoxicity program (MEIC) reported for the fish cell lines R1 and RTG-2 were compared with those obtained with the mouse Balb/c 3T3 cell line. Cytotoxic potencies (EC 50 values) for MEIC reference chemicals were determined with exponentially growing Balb/c 3T3 cells using three different test protocols. To assess both endpoints, cell proliferation and cell survival, EC 50 values were measured for the decrease in final cell protein after 24 and 72 h of exposure and for the reduction of cell protein increase during 24 h of exposure. EC 50 values obtained with the fish cell lines R1 and RTG-2 using cell survival as endpoint were taken from the MEIC data base. The comparison of cytotoxic potencies shows that, in general, the fish cell lines and the mammalian cell line are almost equally sensitive towards the cytotoxic action of chemicals. The mammalian cell line assay, however, becomes considerably more sensitive, by factors of 3.4-8.5, than the fish cell line assays, if cell growth instead of cell survival is used as endpoint. It is concluded, that cell proliferation might be a better endpoint than cell survival and that mammalian cell lines might be suited to assess fish acute toxicity

  20. Uveal Melanoma Cell Lines: Where do they come from? (An American Ophthalmological Society Thesis).

    Science.gov (United States)

    Jager, Martine J; Magner, J Antonio Bermudez; Ksander, Bruce R; Dubovy, Sander R

    2016-08-01

    To determine whether some of the most often used uveal melanoma cell lines resemble their original tumor. Analysis of the literature, patient charts, histopathology, mutations, chromosome status, HLA type, and expression of melanocyte markers on cell lines and their primary tumors. We examined five cell lines and the primary tumors from which they were derived. Four of the five examined primary tumors were unusual: one occupied the orbit, two were recurrences after prior irradiation, and one developed in an eye with a nevus of Ota. One cell line did not contain the GNA11 mutation, but it was present in the primary tumor. Three of the primary tumors had monosomy 3 (two of these lacked BAP1 expression); however, all five cell lines showed disomy 3 and BAP1 expression. All of the cell lines had gain of 8q. Two cell lines lacked expression of melanocyte markers, although these were present in the corresponding primary tumor. All cell lines could be traced back to their original uveal melanoma. Four of the five primary tumors were unusual. Cell lines often differed from their primary tumor in chromosome status and melanocyte markers. However, their specific chromosome aberrations and capacity to continue proliferation characterize them as uveal melanoma cell lines.

  1. Uveal Melanoma Cell Lines: Where do they come from? (An American Ophthalmological Society Thesis)

    Science.gov (United States)

    Jager, Martine J.; Magner, J. Antonio Bermudez; Ksander, Bruce R.; Dubovy, Sander R.

    2016-01-01

    Purpose To determine whether some of the most often used uveal melanoma cell lines resemble their original tumor. Methods Analysis of the literature, patient charts, histopathology, mutations, chromosome status, HLA type, and expression of melanocyte markers on cell lines and their primary tumors. We examined five cell lines and the primary tumors from which they were derived. Results Four of the five examined primary tumors were unusual: one occupied the orbit, two were recurrences after prior irradiation, and one developed in an eye with a nevus of Ota. One cell line did not contain the GNA11 mutation, but it was present in the primary tumor. Three of the primary tumors had monosomy 3 (two of these lacked BAP1 expression); however, all five cell lines showed disomy 3 and BAP1 expression. All of the cell lines had gain of 8q. Two cell lines lacked expression of melanocyte markers, although these were present in the corresponding primary tumor. Conclusions All cell lines could be traced back to their original uveal melanoma. Four of the five primary tumors were unusual. Cell lines often differed from their primary tumor in chromosome status and melanocyte markers. However, their specific chromosome aberrations and capacity to continue proliferation characterize them as uveal melanoma cell lines. PMID:28018010

  2. Adaptive Response to ionizing Radiation Induced by Low Doses of Gamma Rays in Human Lymphoblastoid Cell Lines

    International Nuclear Information System (INIS)

    Seong, Jin Sil; Suh, Chang Ok; Kim, Gwi Eon

    1994-01-01

    When cells are exposed to low doses of a mutagenic or clastogenic agents, they often become less sensitive to the effects of a higher does administered subsequently. Such adaptive responses were first described in Escherichia coli and mammalian cells to low doses of an alkylating agent. Since most of the studies have been carried out with human lymphocytes, it is urgently necessary to study this effect in different cellular systems. Its relation with inherent cellular radiosensitivity and underlying mechanism also remain to be answered. In this study, adaptive response by 1 cGy of gamma rays was investigated in three human lymphoblastoid cell lines which were derived from ataxia telangiectasia homozygote, ataxia telangiectasia heterozygote, and normal individual. Experiments were carried out by delivering 1 cGy followed by 50 cGy of gamma radiation and chromatid breaks were scored as an endpoint. The results indicate that prior exposure to 1 cGy of gamma rays reduces the number of chromatid breaks induced by subsequent higher does (50 cGy). The expression of this adaptive response was similar among three cell lines despite of their different radiosensitivity. When 3-aminobenzamide, an inhibitor of poly (ADP-ribose) polymerase, was added after 50 cGy, adaptive responses were abolished in all the tested cell lines. Therefore it is suggested that the adaptive response can be observed in human lymphoblastoid cell lines. Which was first documented through this study. The expression of adaptive response was similar among the cell lines regardless of their radiosensitivity. The elimination of the adaptive response by 3-aminobenzamide is consistent with the proposal that this adaptive response is the result of the induction of a certain chromosomal repair mechanism

  3. Mutagenic properties of linuron and chlorbromuron evaluated by means of cytogenetic biomarkers in mammalian cell lines.

    Science.gov (United States)

    Federico, Concetta; Palmieri, Cristina; Pappalardo, Anna Maria; Ferrito, Venera; Pappalardo, Matteo; Librando, Vito; Saccone, Salvatore

    2016-09-01

    Agricultural practices are usually supported by several chemical substances, such as herbicides. Linuron and chlorbromuron are phenylurea herbicides largely used to protect crops from weeds, blocking photosynthesis by inhibition of the photosystem II complex. The former, also commercially known as lorox or afalon, is selectively used to protect bean and French bean plants, fennels, and celeriacs; the second, commercially known as maloran, is selectively used for carrots, peas, potatoes, soy sprouts, and sunflowers. Considering the widespread use of herbicides and, more generally, pesticides, it is important to clarify their involvement on human health, one of them concerning the possible direct or indirect effect on the genome of exposed populations. Here, we show that these herbicides are endowed by mutagenic properties, as demonstrated by an increased number of chromosomal aberrations (CAs) in two exposed Chinese hamster cell lines derived from ovary and epithelial liver, respectively. This was also confirmed by sister chromatid exchange (SCE) and micronucleus (MN) assays. Our present and previously obtained data clearly indicate that phenylurea herbicides must be used with great caution, especially for agricultural workers who use large amounts of herbicides during their work, and particular attention should be given to residues of these herbicides and their involvement in environmental pollution.

  4. Imiquimod activates p53-dependent apoptosis in a human basal cell carcinoma cell line.

    Science.gov (United States)

    Huang, Shi-Wei; Chang, Shu-Hao; Mu, Szu-Wei; Jiang, Hsin-Yi; Wang, Sin-Ting; Kao, Jun-Kai; Huang, Jau-Ling; Wu, Chun-Ying; Chen, Yi-Ju; Shieh, Jeng-Jer

    2016-03-01

    The tumor suppressor p53 controls DNA repair, cell cycle, apoptosis, autophagy and numerous other cellular processes. Imiquimod (IMQ), a synthetic toll-like receptor (TLR) 7 ligand for the treatment of superficial basal cell carcinoma (BCC), eliminates cancer cells by activating cell-mediated immunity and directly inducing apoptosis and autophagy in cancer cells. To evaluate the role of p53 in IMQ-induced cell death in skin cancer cells. The expression, phosphorylation and subcellular localization of p53 were detected by real-time PCR, luciferase reporter assay, cycloheximide chase analysis, immunoblotting and immunocytochemistry. Using BCC/KMC1 cell line as a model, the upstream signaling of p53 activation was dissected by over-expression of TLR7/8, the addition of ROS scavenger, ATM/ATR inhibitors and pan-caspase inhibitor. The role of p53 in IMQ-induced apoptosis and autophagy was assessed by genetically silencing p53 and evaluated by a DNA content assay, immunoblotting, LC3 puncta detection and acridine orange staining. IMQ induced p53 mRNA expression and protein accumulation, increased Ser15 phosphorylation, promoted nuclear translocation and up-regulated its target genes in skin cancer cells in a TLR7/8-independent manner. In BCC/KMC1 cells, the induction of p53 by IMQ was achieved through increased ROS production to stimulate the ATM/ATR-Chk1/Chk2 axis but was not mediated by inducing DNA damage. The pharmacological inhibition of ATM/ATR significantly suppressed IMQ-induced p53 activation and apoptosis. Silencing of p53 significantly decreased the IMQ-induced caspase cascade activation and apoptosis but enhanced autophagy. Mutant p53 skin cancer cell lines were more resistant to IMQ-induced apoptosis than wildtype p53 skin cancer cell lines. IMQ induced ROS production to stimulate ATM/ATR pathways and contributed to p53-dependent apoptosis in a skin basal cell carcinoma cell line BCC/KMC1. Copyright © 2015 Japanese Society for Investigative Dermatology

  5. Identifying anti-growth factors for human cancer cell lines through genome-scale metabolic modeling

    DEFF Research Database (Denmark)

    Ghaffari, Pouyan; Mardinoglu, Adil; Asplund, Anna

    2015-01-01

    Human cancer cell lines are used as important model systems to study molecular mechanisms associated with tumor growth, hereunder how genomic and biological heterogeneity found in primary tumors affect cellular phenotypes. We reconstructed Genome scale metabolic models (GEMs) for eleven cell lines...... based on RNA-Seq data and validated the functionality of these models with data from metabolite profiling. We used cell line-specific GEMs to analyze the differences in the metabolism of cancer cell lines, and to explore the heterogeneous expression of the metabolic subsystems. Furthermore, we predicted...... for inhibition of cell growth may provide leads for the development of efficient cancer treatment strategies....

  6. Radiation response of mouse lymphoid and myeloid cell lines. Pt. 1

    International Nuclear Information System (INIS)

    Radford, I.R.

    1994-01-01

    The sensitivity of 10 mouse lymphoid or myeloid cell lines to γ-ray- and DNA-associated 125 I-decay-induced clonogenic cell killing have been compared with their rate of loss of viability (membrane integrity) and with their putative cell type of origin. The increased sensitivity of haematopoietic cell lines to killing by DNA dsb may be related to their mode of death (apoptosis versus necrosis). Mode of cell death may thus be an important factor in determining the 'inherent radiosensitivity' of normal cells/tissues. Haematopoietic cell lines that undergo rapid interphase apoptotic death showed extreme sensitivity to DNA dsb. (author)

  7. Establishment and characterization of a cell line (OMC-9) originating from a human endometrial stromal sarcoma.

    Science.gov (United States)

    Kakuno, Yoshiteru; Yamada, Takashi; Mori, Hiroshi; Narabayashi, Isamu

    2008-05-01

    Cell lines are very useful for clinical and basic research. The establishment of uterine malignant tumor cell lines with unusual histology is especially important. We describe the establishment and characterization of a new human endometrial stromal sarcoma cell line of the uterus. The cell line OMC-9 was established from a tumor mass in the uterine body of a 55-year-old woman. Characteristics of the cell line studied include morphology, chromosome analysis, heterotransplantation, tumor markers and chemosensitivity. This cell line has grown well for 196 months and has been subcultured more than 50 times. Monolayer cultured cells are polygonal in shape, appear to be spindle-shaped or multipolar and have a tendency to pile up without contact inhibition. The cells exhibit a human karyotype with a modal chromosomal number in the diploid range. The cells were able to be transplanted into the subcutis of nude mice and produced tumors resembling the original tumor. OMC-9 cells produced tissue polypeptide antigen. Both CD10, a sensitive and diagnostically useful marker of endometrial stromal neoplasms, and vimentin were identified immunohistochemically in the original tumor and the heterotransplanted tumor. The cells were sensitive to actinomycin D, doxorubicin, carboplatin, cisplatin and etoposide, drugs used commonly in the treatment of gynecologic cancer. Only three reports of uterine endometrial stromal sarcoma cell lines have thus far been reported in the literature. OMC-9 is the first endometrial stromal sarcoma cell line in which CD10 expression and chemosensitivity have been identified.

  8. Network signatures of cellular immortalization in human lymphoblastoid cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Shim, Sung-Mi; Jung, So-Young; Nam, Hye-Young; Kim, Hye-Ryun; Lee, Mee-Hee; Kim, Jun-Woo; Han, Bok-Ghee [National Biobank of Korea, Center for Genome Science, Korea National Institute of Health, Osong 363-951 (Korea, Republic of); Jeon, Jae-Pil, E-mail: jaepiljeon@hanmail.net [Division of Brain Diseases, Center for Biomedical Science, Korea National Institute of Health, Osong 363-951 (Korea, Republic of)

    2013-11-15

    Highlights: •We identified network signatures of LCL immortalization from transcriptomic profiles. •More than 41% of DEGs are possibly regulated by miRNAs in LCLs. •MicroRNA target genes in LCLs are involved in apoptosis and immune-related functions. •This approach is useful to find functional miRNA targets in specific cell conditions. -- Abstract: Human lymphoblastoid cell line (LCL) has been used as an in vitro cell model in genetic and pharmacogenomic studies, as well as a good model for studying gene expression regulatory machinery using integrated genomic analyses. In this study, we aimed to identify biological networks of LCL immortalization from transcriptomic profiles of microRNAs and their target genes in LCLs. We first selected differentially expressed genes (DEGs) and microRNAs (DEmiRs) between early passage LCLs (eLCLs) and terminally differentiated late passage LCLs (tLCLs). The in silico and correlation analysis of these DEGs and DEmiRs revealed that 1098 DEG–DEmiR pairs were found to be positively (n = 591 pairs) or negatively (n = 507 pairs) correlated with each other. More than 41% of DEGs are possibly regulated by miRNAs in LCL immortalizations. The target DEGs of DEmiRs were enriched for cellular functions associated with apoptosis, immune response, cell death, JAK–STAT cascade and lymphocyte activation while non-miRNA target DEGs were over-represented for basic cell metabolisms. The target DEGs correlated negatively with miR-548a-3p and miR-219-5p were significantly associated with protein kinase cascade, and the lymphocyte proliferation and apoptosis, respectively. In addition, the miR-106a and miR-424 clusters located in the X chromosome were enriched in DEmiR–mRNA pairs for LCL immortalization. In this study, the integrated transcriptomic analysis of LCLs could identify functional networks of biologically active microRNAs and their target genes involved in LCL immortalization.

  9. Derivation and Osmotolerance Characterization of Three Immortalized Tilapia (Oreochromis mossambicus) Cell Lines

    Science.gov (United States)

    Gardell, Alison M.; Qin, Qin; Rice, Robert H.; Li, Johnathan; Kültz, Dietmar

    2014-01-01

    Fish cell cultures are becoming more widely used models for investigating molecular mechanisms of physiological response to environmental challenge. In this study, we derived two immortalized Mozambique tilapia (Oreochromis mossambicus) cell lines from brain (OmB) and lip epithelium (OmL), and compared them to a previously immortalized bulbus arteriosus (TmB) cell line. The OmB and OmL cell lines were generated without or with Rho-associated kinase (ROCK) inhibitor/3T3 feeder layer supplementation. Although both approaches were successful, ROCK inhibitor/feeder layer supplementation was found to offer the advantages of selecting for epithelial-like cell type and decreasing time to immortalization. After immortalization (≥ passage 5), we characterized the proteomes of the newly derived cell lines (OmB and OmL) using LCMS and identified several unique cell markers for each line. Subsequently, osmotolerance for each of the three cell lines following acute exposure to elevated sodium chloride was evaluated. The acute maximum osmotolerance of these tilapia cell lines (>700 mOsm/kg) was markedly higher than that of any other known vertebrate cell line, but was significantly higher in the epithelial-like OmL cell line. To validate the physiological relevance of these tilapia cell lines, we quantified the effects of acute hyperosmotic challenge (450 mOsm/kg and 700 mOsm/kg) on the transcriptional regulation of two enzymes involved in biosynthesis of the compatible organic osmolyte, myo-inositol. Both enzymes were found to be robustly upregulated in all three tilapia cell lines. Therefore, the newly established tilapia cells lines represent valuable tools for studying molecular mechanisms involved in the osmotic stress response of euryhaline fish. PMID:24797371

  10. Derivation and osmotolerance characterization of three immortalized tilapia (Oreochromis mossambicus cell lines.

    Directory of Open Access Journals (Sweden)

    Alison M Gardell

    Full Text Available Fish cell cultures are becoming more widely used models for investigating molecular mechanisms of physiological response to environmental challenge. In this study, we derived two immortalized Mozambique tilapia (Oreochromis mossambicus cell lines from brain (OmB and lip epithelium (OmL, and compared them to a previously immortalized bulbus arteriosus (TmB cell line. The OmB and OmL cell lines were generated without or with Rho-associated kinase (ROCK inhibitor/3T3 feeder layer supplementation. Although both approaches were successful, ROCK inhibitor/feeder layer supplementation was found to offer the advantages of selecting for epithelial-like cell type and decreasing time to immortalization. After immortalization (≥ passage 5, we characterized the proteomes of the newly derived cell lines (OmB and OmL using LCMS and identified several unique cell markers for each line. Subsequently, osmotolerance for each of the three cell lines following acute exposure to elevated sodium chloride was evaluated. The acute maximum osmotolerance of these tilapia cell lines (>700 mOsm/kg was markedly higher than that of any other known vertebrate cell line, but was significantly higher in the epithelial-like OmL cell line. To validate the physiological relevance of these tilapia cell lines, we quantified the effects of acute hyperosmotic challenge (450 mOsm/kg and 700 mOsm/kg on the transcriptional regulation of two enzymes involved in biosynthesis of the compatible organic osmolyte, myo-inositol. Both enzymes were found to be robustly upregulated in all three tilapia cell lines. Therefore, the newly established tilapia cells lines represent valuable tools for studying molecular mechanisms involved in the osmotic stress response of euryhaline fish.

  11. Proliferation assay of mouse embryonic stem (ES) cells exposed to atmospheric-pressure plasmas at room temperature

    International Nuclear Information System (INIS)

    Miura, Taichi; Hirano, Kazumi; Ogura, Chika; Ikeguchi, Masamichi; Seki, Atsushi; Nishihara, Shoko; Ando, Ayumi; Kanazawa, Tatsuya; Hamaguchi, Satoshi

    2014-01-01

    Proliferation assays of mouse embryonic stem (ES) cells have been performed with cell culture media exposed to atmospheric-pressure plasmas (APPs), which generate reactive species in the media at room temperature. It is found that serum in cell culture media functions as a scavenger of highly reactive species and tends to protect cells in the media against cellular damage. On the other hand, if serum is not present in a cell culture medium when it is exposed to APP, the medium becomes cytotoxic and cannot be detoxified by serum added afterwards. Plasma-induced cytotoxic media hinder proliferation of mouse ES cells and may even cause cell death. It is also shown by nuclear magnetic resonance spectroscopy that organic compounds in cell culture media are in general not significantly modified by plasma exposure. These results indicate that if there is no serum in media when they are exposed to APPs, highly reactive species (such as OH radicals) generated in the media by the APP exposure are immediately converted to less reactive species (such as H 2 O 2 ), which can no longer readily react with serum that is added to the medium after plasma exposure. This study has clearly shown that it is these less reactive species, rather than highly reactive species, that make the medium cytotoxic to mouse ES cells. (paper)

  12. Proliferation assay of mouse embryonic stem (ES) cells exposed to atmospheric-pressure plasmas at room temperature

    Science.gov (United States)

    Miura, Taichi; Ando, Ayumi; Hirano, Kazumi; Ogura, Chika; Kanazawa, Tatsuya; Ikeguchi, Masamichi; Seki, Atsushi; Nishihara, Shoko; Hamaguchi, Satoshi

    2014-11-01

    Proliferation assays of mouse embryonic stem (ES) cells have been performed with cell culture media exposed to atmospheric-pressure plasmas (APPs), which generate reactive species in the media at room temperature. It is found that serum in cell culture media functions as a scavenger of highly reactive species and tends to protect cells in the media against cellular damage. On the other hand, if serum is not present in a cell culture medium when it is exposed to APP, the medium becomes cytotoxic and cannot be detoxified by serum added afterwards. Plasma-induced cytotoxic media hinder proliferation of mouse ES cells and may even cause cell death. It is also shown by nuclear magnetic resonance spectroscopy that organic compounds in cell culture media are in general not significantly modified by plasma exposure. These results indicate that if there is no serum in media when they are exposed to APPs, highly reactive species (such as OH radicals) generated in the media by the APP exposure are immediately converted to less reactive species (such as H2O2), which can no longer readily react with serum that is added to the medium after plasma exposure. This study has clearly shown that it is these less reactive species, rather than highly reactive species, that make the medium cytotoxic to mouse ES cells.

  13. Proteomic responses of human intestinal Caco-2 cells exposed to silver nanoparticles and ionic silver.

    Science.gov (United States)

    Oberemm, Axel; Hansen, Ulf; Böhmert, Linda; Meckert, Christine; Braeuning, Albert; Thünemann, Andreas F; Lampen, Alfonso

    2016-03-01

    Even although quite a number of studies have been performed so far to demonstrate nanoparticle-specific effects of substances in living systems, clear evidence of these effects is still under debate. The present study was designed as a comparative proteomic analysis of human intestinal cells exposed to a commercial silver nanoparticle reference material and ions from AgNO3. A two-dimensional gel electrophoresis/MALDI mass spectrometry (MS)-based proteomic analysis was conducted after 24-h incubation of differentiated Caco-2 cells with non-cytotoxic and low cytotoxic silver concentrations (2.5 and 25 µg ml(-1) nanosilver, 0.5 and 5 µg ml(-1) AgNO3). Out of an overall number of 316 protein spots differentially expressed at a fold change of ≥ 1.4 or ≤ -1.4 in all treatments, 169 proteins could be identified. In total, 231 spots were specifically deregulated in particle-treated groups compared with 41 spots, which were limited to AgNO3-treatments. Forty-four spots (14 %) were commonly deregulated by both types of treatment. A considerable fraction of the proteins differentially expressed after treatment with nanoparticles is related to protein folding, synthesis or modification of proteins as well as cellular assembly and organization. Overlays of networks obtained for particulate and ionic treatments showed matches, indicating common mechanisms of combined particle and ionic silver exposure and exclusive ionic silver treatment. However, proteomic responses of Caco-2 cells treated with higher concentrations of silver species also showed some differences, for example regarding proteins related to fatty acid and energy metabolism, suggesting an induction of also some different molecular mechanisms for particle exposure and ionic treatment. Copyright © 2015 John Wiley & Sons, Ltd.

  14. Hypertonic stress induces VEGF production in human colon cancer cell line Caco-2: inhibitory role of autocrine PGE₂.

    Directory of Open Access Journals (Sweden)

    Luciana B Gentile

    Full Text Available Vascular Endothelial Growth Factor (VEGF is a major regulator of angiogenesis. VEGF expression is up regulated in response to micro-environmental cues related to poor blood supply such as hypoxia. However, regulation of VEGF expression in cancer cells is not limited to the stress response due to increased volume of the tumor mass. Lipid mediators in particular arachidonic acid-derived prostaglandin (PGE₂ are regulators of VEGF expression and angiogenesis in colon cancer. In addition, increased osmolarity that is generated during colonic water absorption and feces consolidation seems to activate colon cancer cells and promote PGE₂ generation. Such physiological stimulation may provide signaling for cancer promotion. Here we investigated the effect of exposure to a hypertonic medium, to emulate colonic environment, on VEGF production by colon cancer cells. The role of concomitant PGE₂ generation and MAPK activation was addressed by specific pharmacological inhibition. Human colon cancer cell line Caco-2 exposed to a hypertonic environment responded with marked VEGF and PGE₂ production. VEGF production was inhibited by selective inhibitors of ERK 1/2 and p38 MAPK pathways. To address the regulatory role of PGE₂ on VEGF production, Caco-2 cells were treated with cPLA₂ (ATK and COX-2 (NS-398 inhibitors, that completely block PGE₂ generation. The Caco-2 cells were also treated with a non selective PGE₂ receptor antagonist. Each treatment significantly increased the hypertonic stress-induced VEGF production. Moreover, addition of PGE₂ or selective EP₂ receptor agonist to activated Caco-2 cells inhibited VEGF production. The autocrine inhibitory role for PGE₂ appears to be selective to hypertonic environment since VEGF production induced by exposure to CoCl₂ was decreased by inhibition of concomitant PGE₂ generation. Our results indicated that hypertonicity stimulates VEGF production in colon cancer cell lines. Also PGE

  15. Cytokine-Induced Killer Cells Modulates Resistance to Cisplatin in the A549/DDP Cell Line.

    Science.gov (United States)

    Yang, Lili; Du, Chunjuan; Wu, Lei; Yu, Jinpu; An, Xiumei; Yu, Wenwen; Cao, Shui; Li, Hui; Ren, Xiubao

    2017-01-01

    Background Cytokine-induced killer (CIK) cells can potentially enhance the tumor-killing activity of chemotherapy. Objective This study aimed to evaluate the effects of CIK cells on cisplatin (DDP) resistance in the human lung adenocarcinoma cell line A549/DDP. Methods The detect resistance index, drug resistance related-genes and cytokine secretion of A549/DDP co-cultured with CIK cells were assayed in vitro . Results After A549/DDP co-culture with CIK cells, the DDP resistance of A549/DDP significantly decreased in a time-dependent manner. The DDP resistance of A549/DDP co-cultured with CIK cells for 20 h decreased 4.93-fold compared with that of A549/DDP cells cultured alone ( P A549/DDP significantly decreased after co-culture with CIK cells ( P A549/DDP with CIK cells. The expression of GST-π was restored by adding the neutralizing IFN-γ. Conclusion CIK cells can reverse the drug resistance of A549/DDP in a time-dependent manner by reducing GST-π expression to increase the accumulation of DDP. The effect of CIK cells on re-sensitizing lung cancer cells to the chemotherapy drug was partially dependent on the secretion of IFN-γ.

  16. Low Dose Radiation Response Curves, Networks and Pathways in Human Lymphoblastoid Cells Exposed from 1 to 10 cGy of Acute Gamma Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Wyrobek, A. J.; Manohar, C. F.; Nelson, D. O.; Furtado, M. R.; Bhattacharya, M. S.; Marchetti, F.; Coleman, M.A.

    2011-04-18

    We investigated the low dose dependency of the transcriptional response of human cells to characterize the shape and biological functions associated with the dose response curve and to identify common and conserved functions of low dose expressed genes across cells and tissues. Human lymphoblastoid (HL) cells from two unrelated individuals were exposed to graded doses of radiation spanning the range of 1-10 cGy were analyzed by transcriptome profiling, qPCR and bioinformatics, in comparison to sham irradiated samples. A set of {approx}80 genes showed consistent responses in both cell lines; these genes were associated with homeostasis mechanisms (e.g., membrane signaling, molecule transport), subcellular locations (e.g., Golgi, and endoplasmic reticulum), and involved diverse signal transduction pathways. The majority of radiation-modulated genes had plateau-like responses across 1-10 cGy, some with suggestive evidence that transcription was modulated at doses below 1 cGy. MYC, FOS and TP53 were the major network nodes of the low-dose response in HL cells. Comparison our low dose expression findings in HL cells with those of prior studies in mouse brain after whole body exposure, in human keratinocyte cultures, and in endothelial cells cultures, indicates that certain components of the low dose radiation response are broadly conserved across cell types and tissues, independent of proliferation status.

  17. A novel cell growth-promoting factor identified in a B cell leukemia cell line, BALL-1

    International Nuclear Information System (INIS)

    Dao, T.; Holan, V.; Minowada, J.

    1993-01-01

    A novel leukemia cell growth-promoting activity has been identified in the culture supernatant from a human B cell leukemia cell line, BALL-1. The supernatant from unstimulated cultures of the BALL-1 cells significantly promoted the growth of 16 out of 24 leukemia/lymphoma cell lines of different lineages (T, B and non-lymphoid) in a minimal concentration of fetal bovine serum (FBS), and 5 out of 12 cases of fresh leukemia cells in FBS-free medium. The growth-promoting sieve filtration and dialysis. The MW of the factor was less than 10 kDa. The growth-promoting activity was heat and acid stable and resistant to trypsin treatment. The factor isolated from the BALL-1 supernatant was distinct from known polypeptide growth factors with MW below 10 kDa, such as epidermal growth factor, transforming growth factor α, insulin-like growth factor I (IGF-I), IGF-II and insulin, as determine by specific antibodies and by cell-growth-promoting tests. The factor is the BALL-1 supernatant did not promote the proliferation of normal human fresh peripheral blood lymphocytes or mouse fibroblast cell line, BALB/C 3T3. In addition to the BALL-1 supernatant, a similar growth-promoting activity was found in the culture supernatant from 13 of 17 leukemia/lymphoma cell lines tested. The activity in these culture supernatant promoted the growth of leukemia/lymphoma cell lines in autocrine and/or paracrine fashions. These observations suggest that the low MW cell growth-promoting activity found in the BALL-1 culture supernatant is mediated by a novel factor which may be responsible for the clonal expansion of particular leukemic clones. (author)

  18. LINES

    Directory of Open Access Journals (Sweden)

    Minas Bakalchev

    2015-10-01

    Full Text Available The perception of elements in a system often creates their interdependence, interconditionality, and suppression. The lines from a basic geometrical element have become the model of a reductive world based on isolation according to certain criteria such as function, structure, and social organization. Their traces are experienced in the contemporary world as fragments or ruins of a system of domination of an assumed hierarchical unity. How can one release oneself from such dependence or determinism? How can the lines become less “systematic” and forms more autonomous, and less reductive? How is a form released from modernistic determinism on the new controversial ground? How can these elements or forms of representation become forms of action in the present complex world? In this paper, the meaning of lines through the ideas of Le Corbusier, Leonidov, Picasso, and Hitchcock is presented. Spatial research was made through a series of examples arising from the projects of the architectural studio “Residential Transformations”, which was a backbone for mapping the possibilities ranging from playfulness to exactness, as tactics of transformation in the different contexts of the contemporary world.

  19. Rapid selection and proliferation of CD133+ cells from cancer cell lines: chemotherapeutic implications.

    Directory of Open Access Journals (Sweden)

    Sarah E Kelly

    2010-04-01

    Full Text Available Cancer stem cells (CSCs are considered a subset of the bulk tumor responsible for initiating and maintaining the disease. Several surface cellular markers have been recently used to identify CSCs. Among those is CD133, which is expressed by hematopoietic progenitor cells as well as embryonic stem cells and various cancers. We have recently isolated and cultured CD133 positive [CD133+] cells from various cancer cell lines using a NASA developed Hydrodynamic Focusing Bioreactor (HFB (Celdyne, Houston, TX. For comparison, another bioreactor, the rotary cell culture system (RCCS manufactured by Synthecon (Houston, TX was used. Both the HFB and the RCCS bioreactors simulate aspects of hypogravity. In our study, the HFB increased CD133+ cell growth from various cell lines compared to the RCCS vessel and to normal gravity control. We observed a +15-fold proliferation of the CD133+ cellular fraction with cancer cells that were cultured for 7-days at optimized conditions. The RCCS vessel instead yielded a (-4.8-fold decrease in the CD133+cellular fraction respect to the HFB after 7-days of culture. Interestingly, we also found that the hypogravity environment of the HFB greatly sensitized the CD133+ cancer cells, which are normally resistant to chemo treatment, to become susceptible to various chemotherapeutic agents, paving the way to less toxic and more effective chemotherapeutic treatment in patients. To be able to test the efficacy of cytotoxic agents in vitro prior to their use in clinical setting on cancer cells as well as on cancer stem cells may pave the way to more effective chemotherapeutic strategies in patients. This could be an important advancement in the therapeutic options of oncologic patients, allowing for more targeted and personalized chemotherapy regimens as well as for higher response rates.

  20. Elevated extracellular K+ inhibits apoptosis of corneal epithelial cells exposed to UV-B radiation.

    Science.gov (United States)

    Singleton, Katherine R; Will, David S; Schotanus, Mark P; Haarsma, Loren D; Koetje, Leah R; Bardolph, Susan L; Ubels, John L

    2009-08-01

    The goal of this study was to determine if the high [K(+)] in tears, 20-25 mM, serves to protect corneal epithelial cells from going into apoptosis after exposure to ambient UV-B radiation. Human corneal-limbal epithelial (HCLE) cells in culture were exposed to UV-B at doses of 50-200 mJ/cm(2) followed by measurement of K(+) channel activation and activity of apoptotic pathways. Patch-clamp recording showed activation of K(+) channels after UV-B exposure at 80 mJ/cm(2) or 150 mJ/cm(2) and a decrease in UV-induced K(+) efflux with increasing [K(+)](o). The UV-activated current was partially blocked by the specific K(+) channel blocker, BDS-1. DNA fragmentation, as measured by the TUNEL assay, was induced after exposure to UV-B at 100-200 mJ/cm(2). DNA fragmentation was significantly decreased when cells were incubated in 25, 50 or 100mM K(o)(+) after exposure to UV-B. The effector caspase, caspase-3, was activated by exposure to UV-B at 50-200 mJ/cm(2), but there was a significant decrease in activation when the cells were incubated in 25, 50 or 100mM K(o)(+) following exposure to UV-B. A decrease in mitochondrial potential, a possible activator of caspase-3, occurred after exposure to UV-B at 100-200 mJ/cm(2). This decrease in mitochondrial potential was prevented by 100mM K(o)(+); however, 25 or 50mM K(o)(+) provided minimal protection. Caspase-9, which is in the pathway from mitochondrial potential change to caspase-3 activation, showed little activation by UV-B radiation. Caspase-8, an initiator caspase that activates caspase-3, was activated by exposure to UV-B at 50-200 mJ/cm(2), and this UV-activation was significantly reduced by 25-100mM K(o)(+). The data show that the physiologically relevant [K(+)](o) of 25 mM can inhibit UV-B induced activation of apoptotic pathways. This suggests that the relatively high [K(+)] in tears reduces loss of K(+) from corneal epithelial cells in response to UV exposure, thereby contributing to the protection of the ocular

  1. Prediction of epigenetically regulated genes in breast cancer cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Loss, Leandro A; Sadanandam, Anguraj; Durinck, Steffen; Nautiyal, Shivani; Flaucher, Diane; Carlton, Victoria EH; Moorhead, Martin; Lu, Yontao; Gray, Joe W; Faham, Malek; Spellman, Paul; Parvin, Bahram

    2010-05-04

    Methylation of CpG islands within the DNA promoter regions is one mechanism that leads to aberrant gene expression in cancer. In particular, the abnormal methylation of CpG islands may silence associated genes. Therefore, using high-throughput microarrays to measure CpG island methylation will lead to better understanding of tumor pathobiology and progression, while revealing potentially new biomarkers. We have examined a recently developed high-throughput technology for measuring genome-wide methylation patterns called mTACL. Here, we propose a computational pipeline for integrating gene expression and CpG island methylation profles to identify epigenetically regulated genes for a panel of 45 breast cancer cell lines, which is widely used in the Integrative Cancer Biology Program (ICBP). The pipeline (i) reduces the dimensionality of the methylation data, (ii) associates the reduced methylation data with gene expression data, and (iii) ranks methylation-expression associations according to their epigenetic regulation. Dimensionality reduction is performed in two steps: (i) methylation sites are grouped across the genome to identify regions of interest, and (ii) methylation profles are clustered within each region. Associations between the clustered methylation and the gene expression data sets generate candidate matches within a fxed neighborhood around each gene. Finally, the methylation-expression associations are ranked through a logistic regression, and their significance is quantified through permutation analysis. Our two-step dimensionality reduction compressed 90% of the original data, reducing 137,688 methylation sites to 14,505 clusters. Methylation-expression associations produced 18,312 correspondences, which were used to further analyze epigenetic regulation. Logistic regression was used to identify 58 genes from these correspondences that showed a statistically signifcant negative correlation between methylation profles and gene expression in the

  2. Study of Alpha Tocopherol, Celecoxib Induced Apoptosis in Human Colorectal Carcinoma Cell Line

    Directory of Open Access Journals (Sweden)

    Solgui R

    2010-03-01

    Full Text Available Background and Objectives: Chronic, unbridled oxidative damages have been known as the culprits behind many chronic diseases, including cancers, atherosclerosis, diabetes and Alzheimer’s. Cyclooxygenase-2 (COX-2-the main enzyme involved in inducing these processes- plays an important role in tumor development and progression. COX-2 inhibitors should be used at high doses for a long time in order to bring about chemoprevention and induction of anti-tumor effects. For example, celecoxib prevents colorectal tumor growth and induces apoptosis in both in vitro and in vivo models. Disregulation of COX-2 expression coincides with the development of gastrointestinal malignancy in humans and in animal models of colorectal cancer. Increased COX-2 expression in human colorectal adeno-carcinomas has been elucidated when compared with normal adjacent colonic mucosa. The capacity of vitamin E, particularly in α form, to quench free radical damage, induces apoptosis and impact expression of oncogenes makes it an appropriate choice for chemotherapeutic strategies. Studies have shown that carcinogenesis and DNA damage due to UV are inhibited by vitamin E. The goal of this study was to investigate alpha tocopherol and celecoxib induced apoptosis in human colorectal carcinoma cell line.Methods: In this study, HT29 cells were exposed to different concentrations of tocopherol (5, 10, and 20µM and celecoxib (25, 50, 75, 100µM followed by DNA extraction and fragmentation for demonstrating cell death process. Results: The results indicated that celecoxib at lower doses (25, and 50µM could not induce cell death, but at higher doses (75, and 100 µM, DNA fragmentation results typically resembled programmed cell death.Conclusion: ocopherol (5, 10, and 20µM in combination with celecoxib improved the impact of celecoxib on cell death induction and made it the rational notion to be combined with vitamin E in clinical practice.

  3. The genomic sequence of the Chinese hamster ovary (CHO)-K1 cell line

    DEFF Research Database (Denmark)

    Xu, Xun; Pan, Shengkai; Liu, Xin

    2011-01-01

    Chinese hamster ovary (CHO)-derived cell lines are the preferred host cells for the production of therapeutic proteins. Here we present a draft genomic sequence of the CHO-K1 ancestral cell line. The assembly comprises 2.45 Gb of genomic sequence, with 24,383 predicted genes. We associate most...

  4. The genomic sequence of the Chinese hamster ovary (CHO)-K1 cell line

    DEFF Research Database (Denmark)

    Xu, Xun; Pan, Shengkai; Liu, Xin

    2011-01-01

    Chinese hamster ovary (CHO)-derived cell lines are the preferred host cells for the production of therapeutic proteins. Here we present a draft genomic sequence of the CHO-K1 ancestral cell line. The assembly comprises 2.45 Gb of genomic sequence, with 24,383 predicted genes. We associate most of...

  5. Electroporation enhances mitomycin C cytotoxicity on T24 bladder cancer cell line

    DEFF Research Database (Denmark)

    Vasquez, Juan Luis; Gehl, Julie; Hermann, Gregers G

    2012-01-01

    improves the cytotoxicity of mitomycin. In two cell lines, T24 (bladder cancer cell line) and DC3F (Chinese hamster fibroblast), exposure to different concentrations of mitomycin (0.01-2000μM) was tested with and without electroporation (6 pulses of 1kV/cm, duration: 99μs, frequency: 1Hz). Cell viability...

  6. Radiosensitivity evaluation of Human tumor cell lines by single cell gel electrophoresis

    International Nuclear Information System (INIS)

    Zhang Yipei; Cao Jia; Wang Yan; Du Liqing; Li Jin; Wang Qin; Fan Feiyue; Liu Qiang

    2011-01-01

    Objective: To explore the feasibility of determining radiosensitivity of human tumor cell lines in vitro using single cell gel electrophoresis (SCGE). Methods: Three human tumor cell lines were selected in this study, HepG 2 , EC-9706 and MCF-7. The surviving fraction (SF) and DNA damage were detected by MTT assay, nested PCR technique and comet assay respectively. Results: MTT assay: The SF of HepG 2 and EC-9706 after irradiated by 2, 4 and 8 Gy was lower significantly than that of MCF-7, which showed that the radiosensitivity of HepG 2 and EC-9706 was higher than that of MCF-7. But there was no statistical difference of SF between HepG 2 and EC-9706. SCGE: The difference of radiosensitivity among these three tumor cell lines was significant after 8 Gy γ-ray irradiation. Conclusion: The multi-utilization of many biological parameter is hopeful to evaluate the radiosensitivity of tumor cells more objectively and exactly. (authors)

  7. A comparative study of the FcepsilonRI molecule on human mast cell and basophil cell lines

    DEFF Research Database (Denmark)

    Jensen, Bettina Margrethe; Dissing, S; Skov, P S

    2005-01-01

    Mast cells and basophils express the high-affinity IgE receptor FcepsilonRI. We have analysed the human mast cell line LAD2 and four subclones of the basophil cell line KU812 in order to reveal possible differences concerning the FcepsilonRI surface regulation, anti-IgE-triggered activation...

  8. The Importance of Physiologically Relevant Cell Lines for Studying Virus–Host Interactions

    Directory of Open Access Journals (Sweden)

    David Hare

    2016-11-01

    Full Text Available Viruses interact intimately with the host cell at nearly every stage of replication, and the cell model that is chosen to study virus infection is critically important. Although primary cells reflect the phenotype of healthy cells in vivo better than cell lines, their limited lifespan makes experimental manipulation challenging. However, many tumor-derived and artificially immortalized cell lines have defects in induction of interferon-stimulated genes and other antiviral defenses. These defects can affect virus replication, especially when cells are infected at lower, more physiologically relevant, multiplicities of infection. Understanding the selective pressures and mechanisms underlying the loss of innate signaling pathways is helpful to choose immortalized cell lines without impaired antiviral defense. We describe the trials and tribulations we encountered while searching for an immortalized cell line with intact innate signaling, and how directed immortalization of primary cells avoids many of the pitfalls of spontaneous immortalization.

  9. Study of cancer cell lines with Fourier transform infrared (FTIR)/vibrational absorption (VA) spectroscopy

    DEFF Research Database (Denmark)

    Uceda Otero, E. P.; Eliel, G. S. N.; Fonseca, E. J. S.

    2013-01-01

    In this work we have used Fourier transform infrared (FTIR) / vibrational absorption (VA) spectroscopy to study two cancer cell lines: the Henrietta Lacks (HeLa) human cervix carcinoma and 5637 human bladder carcinoma cell lines. Our goal is to experimentally investigate biochemical changes...... and differences in these cells lines utilizing FTIR spectroscopy. We have used the chemometrical and statistical method principal component analysis (PCA) to investigate the spectral differences. We have been able to identify certain bands in the spectra which are so-called biomarkers for two types of cell lines......, three groups for the 5637 human bladder carcinoma cell line (5637A, 5637B and 5637C), and another one for the HeLa human cervix carcinoma cell line. The vibrational modes can be assigned to specific bands involving characteristic motions of the protein backbone. This work shows that infrared vibrational...

  10. Heterogeneity of cell lines derived after transformation of early passage rodent cells by the Ha-ras1 human oncogene.

    Science.gov (United States)

    Spandidos, D A; Freshney, M; Wilkie, N M

    1985-01-01

    The chromosome patterns of Chinese hamster cell lines derived after immortalization or tumorigenic conversion of early passage