WorldWideScience

Sample records for cell lines derived

  1. Induced pluripotent stem cell lines derived from human somatic cells.

    Science.gov (United States)

    Yu, Junying; Vodyanik, Maxim A; Smuga-Otto, Kim; Antosiewicz-Bourget, Jessica; Frane, Jennifer L; Tian, Shulan; Nie, Jeff; Jonsdottir, Gudrun A; Ruotti, Victor; Stewart, Ron; Slukvin, Igor I; Thomson, James A

    2007-12-21

    Somatic cell nuclear transfer allows trans-acting factors present in the mammalian oocyte to reprogram somatic cell nuclei to an undifferentiated state. We show that four factors (OCT4, SOX2, NANOG, and LIN28) are sufficient to reprogram human somatic cells to pluripotent stem cells that exhibit the essential characteristics of embryonic stem (ES) cells. These induced pluripotent human stem cells have normal karyotypes, express telomerase activity, express cell surface markers and genes that characterize human ES cells, and maintain the developmental potential to differentiate into advanced derivatives of all three primary germ layers. Such induced pluripotent human cell lines should be useful in the production of new disease models and in drug development, as well as for applications in transplantation medicine, once technical limitations (for example, mutation through viral integration) are eliminated.

  2. Derivation and Utilization of Functional CD8(+) Dendritic Cell Lines.

    Science.gov (United States)

    Pigni, Matteo; Ashok, Devika; Acha-Orbea, Hans

    2016-01-01

    It is notoriously difficult to obtain large quantities of non-activated dendritic cells ex vivo. For this reason, we produced and characterized a mouse model expressing the large T oncogene under the CD11c promoter (Mushi mice), in which CD8α(+) dendritic cells transform after 4 months. We derived a variety of stable cell lines from these primary lines. These cell lines reproducibly share with freshly isolated dendritic cells most surface markers, mRNA and protein expression, and all tested biological functions. Cell lines can be derived from various strains and knockout mice and can be easily transduced with lentiviruses. In this article, we describe the derivation, culture, and lentiviral transduction of these dendritic cell lines.

  3. Derivation of the human embryonic stem cell line RCM1

    Directory of Open Access Journals (Sweden)

    P.A. De Sousa

    2016-03-01

    Full Text Available The human embryonic stem cell line RCM-1 was derived from a failed to fertilise egg undergoing parthenogenetic stimulation. The cell line shows normal pluripotency marker expression and differentiation to three germ layers in vitro and in vivo. It has a normal 46XX female karyotype and microsatellite PCR identity, HLA and blood group typing data is available.

  4. Derivation of human embryonic stem cell line Genea022

    Directory of Open Access Journals (Sweden)

    Biljana Dumevska

    2016-03-01

    Full Text Available The Genea022 human embryonic stem cell line was derived from a donated, fully commercially consented ART blastocyst, through ICM outgrowth on inactivated feeders. The line showed pluripotent cell morphology and genomic analysis verified a 46, XY karyotype and male allele pattern through CGH and STR analysis. Pluripotency of Genea022 was demonstrated with 84% of cells expressed Nanog, 98% Oct4, 55% Tra1–60 and 97% SSEA4, gave a Pluritest Pluripotency score of 42.95, Novelty of 1.23, demonstrated Alkaline Phosphatase activity and tri-lineage teratoma formation. The cell line was negative for Mycoplasma and visible contamination.

  5. Heterozygous embryonic stem cell lines derived from nonhuman primate parthenotes.

    Science.gov (United States)

    Dighe, Vikas; Clepper, Lisa; Pedersen, Darlene; Byrne, James; Ferguson, Betsy; Gokhale, Sumita; Penedo, M Cecilia T; Wolf, Don; Mitalipov, Shoukhrat

    2008-03-01

    Monoparental parthenotes represent a potential source of histocompatible stem cells that should be isogenic with the oocyte donor and therefore suitable for use in cell or tissue replacement therapy. We generated five rhesus monkey parthenogenetic embryonic stem cell (PESC) lines with stable, diploid female karyotypes that were morphologically indistinguishable from biparental controls, expressed key pluripotent markers, and generated cell derivatives representative of all three germ layers following in vivo and in vitro differentiation. Interestingly, high levels of heterozygosity were observed at the majority of loci that were polymorphic in the oocyte donors. Some PESC lines were also heterozygous in the major histocompatibility complex region, carrying haplotypes identical to those of the egg donor females. Expression analysis revealed transcripts from some imprinted genes that are normally expressed from only the paternal allele. These results indicate that limitations accompanying the potential use of PESC-derived phenotypes in regenerative medicine, including aberrant genomic imprinting and high levels of homozygosity, are cell line-dependent and not always present. PESC lines were derived in high enough yields to be practicable, and their derivatives are suitable for autologous transplantation into oocyte donors or could be used to establish a bank of histocompatible cell lines for a broad spectrum of patients.

  6. Optimized protocol for derivation of human embryonic stem cell lines.

    Science.gov (United States)

    Camarasa, María Vicenta; Galvez, Víctor Miguel; Brison, Daniel Roy; Bachiller, Daniel

    2012-09-01

    For the past 12 years, the biology and applications of human embryonic stem cells (hESCs) have received great attention from the scientific community. Derivatives of the first hESC line obtained by J. Thomson's group (Science 282(5391):1145-1147, 1998) have been used in clinical trials in patients with spinal cord injury, and other hESC lines have now been used to generate cells for use in treating blindness (Lancet 379(9817):713-720, 2012). In addition to the classical protocol based on mouse or human feeder layers using open culture methods (In Vitro Cellular & Developmental Biology - Animal 46(3-4):386-394, 2010; Stem Cells 23(9):1221-1227, 2005; Nature Biotechnology 24(2):185-187, 2006; Human Reproduction 21(2):503-511, 2006; Human Reproduction 20(8):2201-2206, 2005; Fertility and Sterility 83(5):1517-1529, 2005), novel hESC lines have been derived xeno-free (without using animal derived reagents) (PLoS One 5 (4):1024-1026, 2010), feeder-free (without supporting cell monolayers) (Lancet 365(9471):1601-1603, 2005), in microdrops under oil (In Vitro Cellular & Developmental Biology - Animal 46(3-4):236-41, 2010) and in suspension with ROCK inhibitor (Nature Biotechnology 28(4):361-4, 2010). Regardless of the culture system, successful hESC derivation usually requires optimization of embryo culture, the careful and timely isolation of its inner cell mass (ICM), and precise culture conditions up to the establishment of pluripotent cell growth during hESC line derivation. Herein we address the crucial steps of the hESC line derivation protocol, and provide tips to apply quality control to each step of the procedure.

  7. Derivation of human embryonic stem cell line Genea019

    Directory of Open Access Journals (Sweden)

    Biljana Dumevska

    2016-03-01

    Full Text Available The Genea019 human embryonic stem cell line was derived from a donated, fully commercially consented ART blastocyst, through ICM outgrowth on inactivated feeders. The line showed pluripotent cell morphology and genomic analysis verified a 46, XX karyotype, female Allele pattern and unaffected Htt CAG repeat length, compared to HD affected sibling Genea020. Pluripotency of Genea019 was demonstrated with 75% of cells expressing Nanog, 89% Oct4, 48% Tra1-60 and 85% SSEA4, a Pluritest Pluripotency score of 22.97, Novelty score of 1.42, tri-lineage teratoma formation and Alkaline Phosphatase activity. The cell line was negative for Mycoplasma and any visible contamination.

  8. Derivation of human embryonic stem cell lines from parthenogenetic blastocysts

    Institute of Scientific and Technical Information of China (English)

    Qingyun Mai; Yang Yu; Tao Li; Liu Wang; Mei-jue Chen; Shu-zhen Huang; Canquan Zhou; Qi Zhou

    2007-01-01

    Parthenogenesis is one of the main, and most useful, methods to derive embryonic stem cells (ESCs), which may be an important source of histocompatible cells and tissues for cell therapy. Here we describe the derivation and characterization of two ESC lines (hPES-1 and hPES-2) from in vitro developed blastocysts following parthenogenetic activation of human oocytes. Typical ESC morphology was seen, and the expression of ESC markers was as expected for alkaline phosphatase, octamer-binding transcription factor 4, stage-specific embryonic antigen 3, stage-specific embryonic antigen 4, TRA-1-60, and TRA-1-81, and there was absence of expression of negative markers such as stage-specific embryonic antigen 1. Expression of genes specific for different embryonic germ layers was detected from the embryoid bodies (EBs) of both hESC lines, suggesting their differentiation potential in vitro. However, in vivo, only hPES-1 formed teratoma consisting of all three embryonic germ layers (hPES-2 did not). Interestingly, after continuous proliferation for more than 100 passages, hPES-1 cells still maintained a normal 46 XX karyotype; hPES-2 displayed abnormalities such as chromosome translocation after long term passages. Short Tandem Repeat (STR) results demonstrated that the hPES lines were genetic matches with the egg donors, and gene imprinting data confirmed the parthenogenetic origin of these ES cells. Genome-wide SNP analysis showed a pattern typical of parthenogenesis. All of these results demonstrated the feasibility to isolate and establish human parthenogenetic ESC lines, which provides an important tool for studying epigenetic effects in ESCs as well as for future therapeutic interventions in a clinical setting.

  9. Human embryonic stem cell lines derived from the Chinese population

    Institute of Scientific and Technical Information of China (English)

    Zhen Fu FANG; Fan JIN; Hui GAI; Ying CHEN; Li WU; Ai Lian LIU; Bin CHEN; Hui Zhen SHENG

    2005-01-01

    Six human embryonic stem cell lines were established from surplus blastocysts. The cell lines expressed alkaline phosphatase and molecules typical of primate embryonic stem cells, including Oct-4, Nanog, TDGF1, Sox2, EBAF,Thy-1, FGF4, Rex-1, SSEA-3, SSEA-4, TRA-1-60 and TRA-1-81. Five of the six lines formed embryoid bodies that expressed markers of a variety of cell types; four of them formed teratomas with tissue types representative of all three embryonic germ layers. These human embryonic stem cells are capable of producing clones of undifferentiated morphology, and one of them was propagated to become a subline. Human embryonic stem cell lines from the Chinese population should facilitate stem cell research and may be valuable in studies of population genetics and ecology.

  10. Derivation of Human Skin Fibroblast Lines for Feeder Cells of Human Embryonic Stem Cells.

    Science.gov (United States)

    Unger, Christian; Felldin, Ulrika; Rodin, Sergey; Nordenskjöld, Agneta; Dilber, Sirac; Hovatta, Outi

    2016-02-03

    After the first derivations of human embryonic stem cell (hESC) lines on fetal mouse feeder cell layers, the idea of using human cells instead of mouse cells as feeder cells soon arose. Mouse cells bear a risk of microbial contamination, and nonhuman immunogenic proteins are absorbed from the feeders to hESCs. Human skin fibroblasts can be effectively used as feeder cells for hESCs. The same primary cell line, which can be safely used for up to 15 passages after stock preparations, can be expanded and used for large numbers of hESC derivations and cultures. These cells are relatively easy to handle and maintain. No animal facilities or animal work is needed. Here, we describe the derivation, culture, and cryopreservation procedures for research-grade human skin fibroblast lines. We also describe how to make feeder layers for hESCs using these fibroblasts.

  11. Deriving cell lines from zebrafish embryos and tumors.

    Science.gov (United States)

    Choorapoikayil, Suma; Overvoorde, John; den Hertog, Jeroen

    2013-09-01

    Over the last two decades the zebrafish has emerged as a powerful model organism in science. The experimental accessibility, the broad range of zebrafish mutants, and the highly conserved genetic and biochemical pathways between zebrafish and mammals lifted zebrafish to become one of the most attractive vertebrate models to study gene function and to model human diseases. Zebrafish cell lines are highly attractive to investigate cell biology and zebrafish cell lines complement the experimental tools that are available already. We established a straightforward method to culture cells from a single zebrafish embryo or a single tumor. Here we describe the generation of fibroblast-like cell lines from wild-type and ptenb(-/-) embryos and an endothelial-like cell line from a tumor of an adult ptena(+/-)ptenb(-/-) zebrafish. This protocol can easily be adapted to establish stable cell lines from any mutant or transgenic zebrafish line and the average time to obtain a pro-stable cell line is 3-5 months.

  12. Transfection of the glial cell line-derived neurotrophic factor gene promotes neuronal differentiation

    Institute of Scientific and Technical Information of China (English)

    Jie Du; Xiaoqing Gao; Li Deng; Nengbin Chang; Huailin Xiong; Yu Zheng

    2014-01-01

    Glial cell line-derived neurotrophic factor recombinant adenovirus vector-transfected bone marrow mesenchymal stem cells were induced to differentiate into neuron-like cells using inductive medium containing retinoic acid and epidermal growth factor. Cell viability, micro-tubule-associated protein 2-positive cell ratio, and the expression levels of glial cell line-derived neurotrophic factor, nerve growth factor and growth-associated protein-43 protein in the su-pernatant were signiifcantly higher in glial cell line-derived neurotrophic factor/bone marrow mesenchymal stem cells compared with empty virus plasmid-transfected bone marrow mes-enchymal stem cells. Furthermore, microtubule-associated protein 2, glial cell line-derived neurotrophic factor, nerve growth factor and growth-associated protein-43 mRNA levels in cell pellets were statistically higher in glial cell line-derived neurotrophic factor/bone marrow mesen-chymal stem cells compared with empty virus plasmid-transfected bone marrow mesenchymal stem cells. These results suggest that glial cell line-derived neurotrophic factor/bone marrow mesenchymal stem cells have a higher rate of induction into neuron-like cells, and this enhanced differentiation into neuron-like cells may be associated with up-regulated expression of glial cell line-derived neurotrophic factor, nerve growth factor and growth-associated protein-43.

  13. Derivation of a Homozygous Human Androgenetic Embryonic Stem Cell Line.

    Science.gov (United States)

    Ding, Chenhui; Huang, Sunxing; Qi, Quan; Fu, Rui; Zhu, Wanwan; Cai, Bing; Hong, Pingping; Liu, Zhengxin; Gu, Tiantian; Zeng, Yanhong; Wang, Jing; Xu, Yanwen; Zhao, Xiaoyang; Zhou, Qi; Zhou, Canquan

    2015-10-01

    Human embryonic stem cells (hESCs) have long been considered as a promising source for cell replacement therapy. However, one major obstacle for the use of these cells is immune compatibility. Histocompatible human parthenogenetic ESCs have been reported as a new method for generating human leukocyte antigen (HLA)-matched hESCs. To further investigate the possibility of obtaining histocompatible stem cells from uniparental embryos, we tried to produce androgenetic haploid human embryos by injecting a single spermatozoon into enucleated human oocyte, and establish human androgenetic embryonic stem (hAGES) cell lines from androgenetic embryos. In the present study, a diploid hAGES cell line has been established, which exhibits typical features of human ESCs, including the expression of pluripotency markers, having differentiation potential in vitro and in vivo, and stable propagation in an undifferentiated state (>P40). Bisulfite sequencing of the H19, Snrpn, Meg3, and Kv imprinting control regions suggested that hAGES cells maintained to a certain extent a sperm methylation pattern. Genome-wide single nucleotide polymorphism, short tandem repeat, and HLA analyses revealed that the hAGES cell genome was highly homozygous. These results suggest that hAGES cells from spermatozoon could serve as a useful tool for studying the mechanisms underlying genomic imprinting in humans. It might also be used as a potential resource for cell replacement therapy as parthenogenetic stem cells.

  14. Analysis of G-banding in tumor cell lines derived from human neural stem cells

    Institute of Scientific and Technical Information of China (English)

    Junhua Zou; Yanhui Li

    2006-01-01

    BACKGROUND: The application of neural stem cell (NSC) is restricted because of its tumorigenesis, and the possible pathogenesis needs investigation.OBJECTIVE: To compare the differences of chromosomal G-banding between human NSCs (hNSCs) derived tumor cell line and hNSCs derived normal cell lines.DESIGN: A randomized controlled observation.SETTING: Building of Anatomy, Peking University Health Science Center.MATERIALS: The hNSC lines and hNSC-derived tumor cell lines were provided by the Research Center of Stem Cells, Peking University; DMEM/F12 (1:1) medium, N2 additive, B27 additive epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF) were produced by GIBCO BRL Company (USA); fetal bovine serum by HYCLONE Company (USA).METHODS: The experiments were carried out in the Department of Genetics, Peking University Health Science Center from February 2003 to July 2004. Human fetal striatal NSCs were inoculated hypodermically on the right scapular of nude mice; Normal human fetal striatal NSCs were cultured to 5-8 passages as controls. Karyotyping was performed on the 5th passage of hNSC-derived tumor cells at 6 weeks after hN-SC transplantation into nude mice (T1) and tumor cells at 15 weeks after transplantation (T2). Metaphase chromosomes were examined with microscope, G-banding cytogenetic analysis and karyotyping were performed according to the Cytoscan Karyotyping FISH and CGH software system (United biotechnology USA Corporation).MAIN OUTCOME MEASURES: G-banded analytical results of human fetal striatal nerve stem cells derived tumor cell lines (T1 and T2) of metaphase chromosomes were observed.RESULTS: ① Chromosome analysis of hNSC-derived tumor cell lines 1 (T1): Twenty-five well-spread metaphases were randomly selected for analysis. The karyotypes were 64, XX (8, 32%); 65, XX (1, 4%); 67,XX (5, 20%); 68, XX (11, 44%). The modal number of chromosomes in this cell lines was 68, which were all hypotriploid. The analysis of 8 G

  15. Comprehensive characterization of genomic instability in pluripotent stem cells and their derived neuroprogenitor cell lines

    Directory of Open Access Journals (Sweden)

    Nestor Luis Lopez Corrales

    2012-12-01

    Full Text Available The genomic integrity of two human pluripotent stem cells and their derived neuroprogenitor cell lines was studied, applying a combination of high-resolution genetic methodologies. The usefulness of combining array-comparative genomic hybridization (aCGH and multiplex fluorescence in situ hybridization (M-FISH techniques should be delineated to exclude/detect a maximum of possible genomic structural aberrations. Interestingly, in parts different genomic imbalances at chromosomal and subchromosomal levels were detected in pluripotent stem cells and their derivatives. Some of the copy number variations were inherited from the original cell line, whereas other modifications were presumably acquired during the differentiation and manipulation procedures. These results underline the necessity to study both pluripotent stem cells and their differentiated progeny by as many approaches as possible in order to assess their genomic stability before using them in clinical therapies.

  16. Derivation and characterization of matched cell lines from primary and recurrent serous ovarian cancer

    Directory of Open Access Journals (Sweden)

    Létourneau Isabelle J

    2012-08-01

    Full Text Available Abstract Background Cell line models have proven to be effective tools to investigate a variety of ovarian cancer features. Due to the limited number of cell lines, particularly of the serous subtype, the heterogeneity of the disease, and the lack of cell lines that model disease progression, there is a need to further develop cell line resources available for research. This study describes nine cell lines derived from three ovarian cancer cases that were established at initial diagnosis and at subsequent relapse after chemotherapy. Methods The cell lines from three women diagnosed with high-grade serous ovarian cancer (1369, 2295 and 3133 were derived from solid tumor (TOV and ascites (OV, at specific time points at diagnosis and relapse (R. Primary treatment was a combination of paclitaxel/carboplatin (1369, 3133, or cisplatin/topotecan (2295. Second line treatment included doxorubicin, gemcitabine and topotecan. In addition to molecular characterization (p53, HER2, the cell lines were characterized based on cell growth characteristics including spheroid growth, migration potential, and anchorage independence. The in vivo tumorigenicity potential of the cell lines was measured. Response to paclitaxel and carboplatin was assessed using a clonogenic assay. Results All cell lines had either a nonsense or missense TP53 mutations. The ability to form compact spheroids or aggregates was observed in six of nine cell lines. Limited ability for migration and anchorage independence was observed. The OV3133(R cell line, formed tumors at subcutaneous sites in SCID mice. Based on IC50 values and dose response curves, there was clear evidence of acquired resistance to carboplatin for TOV2295(R and OV2295(R2 cell lines. Conclusion The study identified nine new high-grade serous ovarian cancer cell lines, derived before and after chemotherapy that provides a unique resource for investigating the evolution of this common histopathological subtype of ovarian

  17. Electrophysiological Characteristics of Embryonic Stem Cell-Derived Cardiomyocytes are Cell Line-Dependent

    Directory of Open Access Journals (Sweden)

    Tobias Hannes

    2015-01-01

    Full Text Available Background: Modelling of cardiac development, physiology and pharmacology by differentiation of embryonic stem cells (ESCs requires comparability of cardiac differentiation between different ESC lines. To investigate whether the outcome of cardiac differentiation is consistent between different ESC lines, we compared electrophysiological properties of ESC-derived cardiomyocytes (ESC-CMs of different murine ESC lines. Methods: Two wild-type (D3 and R1 and two transgenic ESC lines (D3/aPIG44 and CGR8/AMPIGX-7 were differentiated under identical culture conditions. The transgenic cell lines expressed enhanced green fluorescent protein (eGFP and puromycin-N-acetyltransferase under control of the cardiac specific α-myosin heavy chain (αMHC promoter. Action potentials (APs were recorded using sharp electrodes and multielectrode arrays in beating clusters of ESC-CMs. Results: Spontaneous AP frequency and AP duration (APD as well as maximal upstroke velocity differed markedly between unpurified CMs of the four ESC lines. APD heterogeneity was negligible in D3/aPIG44, moderate in D3 and R1 and extensive in CGR8/AMPIGX-7. Interspike intervals calculated from long-term recordings showed a high degree of variability within and between recordings in CGR8/AMPIGX-7, but not in D3/aPIG44. Purification of the αMHC+ population by puromycin treatment posed only minor changes to APD in D3/aPIG44, but significantly shortened APD in CGR8/AMPIGX-7. Conclusion: Electrophysiological properties of ESC-CMs are strongly cell line-dependent and can be influenced by purification of cardiomyocytes by antibiotic selection. Thus, conclusions on cardiac development, physiology and pharmacology derived from single stem cell lines have to be interpreted carefully.

  18. Derivation and osmotolerance characterization of three immortalized tilapia (Oreochromis mossambicus) cell lines.

    Science.gov (United States)

    Gardell, Alison M; Qin, Qin; Rice, Robert H; Li, Johnathan; Kültz, Dietmar

    2014-01-01

    Fish cell cultures are becoming more widely used models for investigating molecular mechanisms of physiological response to environmental challenge. In this study, we derived two immortalized Mozambique tilapia (Oreochromis mossambicus) cell lines from brain (OmB) and lip epithelium (OmL), and compared them to a previously immortalized bulbus arteriosus (TmB) cell line. The OmB and OmL cell lines were generated without or with Rho-associated kinase (ROCK) inhibitor/3T3 feeder layer supplementation. Although both approaches were successful, ROCK inhibitor/feeder layer supplementation was found to offer the advantages of selecting for epithelial-like cell type and decreasing time to immortalization. After immortalization (≥ passage 5), we characterized the proteomes of the newly derived cell lines (OmB and OmL) using LCMS and identified several unique cell markers for each line. Subsequently, osmotolerance for each of the three cell lines following acute exposure to elevated sodium chloride was evaluated. The acute maximum osmotolerance of these tilapia cell lines (>700 mOsm/kg) was markedly higher than that of any other known vertebrate cell line, but was significantly higher in the epithelial-like OmL cell line. To validate the physiological relevance of these tilapia cell lines, we quantified the effects of acute hyperosmotic challenge (450 mOsm/kg and 700 mOsm/kg) on the transcriptional regulation of two enzymes involved in biosynthesis of the compatible organic osmolyte, myo-inositol. Both enzymes were found to be robustly upregulated in all three tilapia cell lines. Therefore, the newly established tilapia cells lines represent valuable tools for studying molecular mechanisms involved in the osmotic stress response of euryhaline fish.

  19. Characterization of spheres derived from canine mammary gland adenocarcinoma cell lines.

    Science.gov (United States)

    Michishita, Masaki; Akiyoshi, Rui; Yoshimura, Hisashi; Katsumoto, Takuo; Ichikawa, Hitoshi; Ohkusu-Tsukada, Kozo; Nakagawa, Takayuki; Sasaki, Nobuo; Takahashi, Kimimasa

    2011-10-01

    There is increasing evidence for the presence of cancer stem cells in several solid tumors, and these cancer stem cells have a potential role in tumor initiation, aggression, and recurrence. The stem cell-like properties of spheres derived from canine mammary tumors remain largely elusive. We attempted to induce sphere formation using four cell lines of canine mammary adenocarcinoma, and characterized the spheres derived from a CHMp line in vitro and in vivo. The CHMp-derived spheres showed predominantly CD44+CD24- population, higher expression of stem cell-related genes, such as CD133, Notch3 and MDR, and higher resistance to doxorubicin compared with the CHMp-derived adherent cells. Xenograft transplantations in nude mice demonstrated that only 1 × 10(4)sphere cells were sufficient for tumor formation. Use of the sphere assay on these sphere-derived tumors showed that sphere-forming cells were present in the tumors, and were maintained in serial transplantation. We propose that spheres derived from canine mammary adenocarcinoma cell lines possess a potential characteristic of cancer stem cells. Spheres derived from canine mammary tumors could be a powerful tool with which to investigate novel therapeutic drugs and to elucidate the molecular and cellular mechanisms that underlie tumorigenesis.

  20. Derivation and transcriptional profiling analysis of pluripotent stem cell lines from rat blastocysts

    Institute of Scientific and Technical Information of China (English)

    Chunliang Li; Ying Yang; Junjie Gu; Yu Ma; Ying Jin

    2009-01-01

    Embryonic stem (ES) cells are derived from blastocyst-stage embryos. Their unique properties of self-renewal and pluripotency make them an attractive tool for basic research and a potential cell resource for therapy. ES cells of mouse and human have been successfully generated and applied in a wide range of research. However, no genuine ES cell lines have been obtained from rat to date. In this study, we identified pluripotent cells in early rat embryos using specific antibodies against markers of pluripotent stem cells. Subsequently, by modifying the culture medium for rat blastocysts, we derived pluripotent rat ES-llke cell lines, which expressed pluripotency markers and formed embryoid bodies (EBs) in vitro. Importantly, these rat ES-like cells were able to produce teratomas. Both EBs and teratomas contained tissues from all three embryonic germ layers, in addition, from the rat ES-like cells, we derived a rat primitive endoderm (PrE) cell line. Furthermore, we conducted transcriptional profiling of the rat ES-like cells and identified the unique molecular signature of the rat pluripotent stem cells. Our analysis demonstrates that multiple signaling pathways, including the BMP, Activin and roTOR pathways, may be involved in keeping the rat ES-like cells in an undifferentiated state. The cell lines and information obtained in this study will accelerate our understanding of the molecular regulation underlying pluripotency and guide us in the appropriate manipulation of ES cells from a particular species.

  1. Efficient derivation and genetic modifications of human pluripotent stem cells on engineered human feeder cell lines.

    Science.gov (United States)

    Zou, Chunlin; Chou, Bin-Kuan; Dowey, Sarah N; Tsang, Kitman; Huang, Xiaosong; Liu, Cyndi F; Smith, Cory; Yen, Jonathan; Mali, Prashant; Zhang, Yu Alex; Cheng, Linzhao; Ye, Zhaohui

    2012-08-10

    Derivation of pluripotent stem cells (iPSCs) induced from somatic cell types and the subsequent genetic modifications of disease-specific or patient-specific iPSCs are crucial steps in their applications for disease modeling as well as future cell and gene therapies. Conventional procedures of these processes require co-culture with primary mouse embryonic fibroblasts (MEFs) to support self-renewal and clonal growth of human iPSCs as well as embryonic stem cells (ESCs). However, the variability of MEF quality affects the efficiencies of all these steps. Furthermore, animal sourced feeders may hinder the clinical applications of human stem cells. In order to overcome these hurdles, we established immortalized human feeder cell lines by stably expressing human telomerase reverse transcriptase, Wnt3a, and drug resistance genes in adult mesenchymal stem cells. Here, we show that these immortalized human feeders support efficient derivation of virus-free, integration-free human iPSCs and long-term expansion of human iPSCs and ESCs. Moreover, the drug-resistance feature of these feeders also supports nonviral gene transfer and expression at a high efficiency, mediated by piggyBac DNA transposition. Importantly, these human feeders exhibit superior ability over MEFs in supporting homologous recombination-mediated gene targeting in human iPSCs, allowing us to efficiently target a transgene into the AAVS1 safe harbor locus in recently derived integration-free iPSCs. Our results have great implications in disease modeling and translational applications of human iPSCs, as these engineered human cell lines provide a more efficient tool for genetic modifications and a safer alternative for supporting self-renewal of human iPSCs and ESCs.

  2. Derivation of the human embryonic stem cell line RCe006-A (RC-2)

    OpenAIRE

    P.A. De Sousa; B. Tye; Bruce, K.; P. Dand; RUSSELL, G.; Gardner, J.; J.M. Downie; M. Bateman; A. Courtney

    2016-01-01

    The human embryonic stem cell line RCe006-A (RC-2) was derived from a frozen and thawed blastocyst voluntarily donated as surplus to fertility requirements following ethics committee approved informed consent under licence from the UK Human Fertilisation and Embryology Authority. The cell line exhibits expression of expected pluripotency markers and in vitro differentiation potential to three germinal lineage representative cell populations. It has a male trisomy 12 karyotype (47XY, +12). Mic...

  3. Glial cell line-derived neurotrophic factor influences proliferation of osteoblastic cells.

    Science.gov (United States)

    Gale, Zoe; Cooper, Paul R; Scheven, Ben A

    2012-02-01

    Little is known about the role of neurotrophic growth factors in bone metabolism. This study investigated the short-term effects of glial cell line-derived neurotrophic factor (GDNF) on calvarial-derived MC3T3-E1 osteoblasts. MC3T3-E1 expressed GDNF as well as its canonical receptors, GFRα1 and RET. Addition of recombinant GDNF to cultures in serum-containing medium modestly inhibited cell growth at high concentrations; however, under serum-free culture conditions GDNF dose-dependently increased cell proliferation. GDNF effects on cell growth were inversely correlated with its effect on alkaline phosphatase (AlP) activity showing a significant dose-dependent inhibition of relative AlP activity with increasing concentrations of GDNF in serum-free culture medium. Live/dead and lactate dehydrogenase assays demonstrated that GDNF did not significantly affect cell death or survival under serum-containing and serum-free conditions. The effect of GDNF on cell growth was abolished in the presence of inhibitors to GFRα1 and RET indicating that GDNF stimulated calvarial osteoblasts via its canonical receptors. Finally, this study found that GDNF synergistically increased tumor necrosis factor-α (TNF-α)-stimulated MC3T3-E1 cell growth suggesting that GDNF interacted with TNF-α-induced signaling in osteoblastic cells. In conclusion, this study provides evidence for a direct, receptor-mediated effect of GDNF on osteoblasts highlighting a novel role for GDNF in bone physiology.

  4. No relationship between embryo morphology and successful derivation of human embryonic stem cell lines.

    Directory of Open Access Journals (Sweden)

    Susanne Ström

    Full Text Available BACKGROUND: The large number (30 of permanent human embryonic stem cell (hESC lines and additional 29 which did not continue growing, in our laboratory at Karolinska Institutet have given us a possibility to analyse the relationship between embryo morphology and the success of derivation of hESC lines. The derivation method has been improved during the period 2002-2009, towards fewer xeno-components. Embryo quality is important as regards the likelihood of pregnancy, but there is little information regarding likelihood of stem cell derivation. METHODS: We evaluated the relationship of pronuclear zygote stage, the score based on embryo morphology and developmental rate at cleavage state, and the morphology of the blastocyst at the time of donation to stem cell research, to see how they correlated to successful establishment of new hESC lines. RESULTS: Derivation of hESC lines succeeded from poor quality and good quality embryos in the same extent. In several blastocysts, no real inner cell mass (ICM was seen, but permanent well growing hESC lines could be established. One tripronuclear (3PN zygote, which developed to blastocyst stage, gave origin to a karyotypically normal hESC line. CONCLUSION: Even very poor quality embryos with few cells in the ICM can give origin to hESC lines.

  5. Derivation of Huntington Disease affected Genea046 human embryonic stem cell line

    Directory of Open Access Journals (Sweden)

    Biljana Dumevska

    2016-03-01

    Full Text Available The Genea046 human embryonic stem cell line was derived from a donated, fully commercially consented ART blastocyst, carrying HTT gene CAG expansion of 45 repeats, indicative of Huntington Disease. Following ICM outgrowth on inactivated human feeders, karyotype was confirmed as 46, XX by CGH and STR analysis demonstrated a female Allele pattern. The hESC line had pluripotent cell morphology, 85% of cells expressed Nanog, 92% Oct4, 75% Tra1–60 and 99% SSEA4 and demonstrated Alkaline Phosphatase activity. The cell line was negative for Mycoplasma and visible contamination.

  6. Derivation of Trisomy 21 affected human embryonic stem cell line Genea021

    Directory of Open Access Journals (Sweden)

    Biljana Dumevska

    2016-03-01

    Full Text Available The Genea021 human embryonic stem cell line was derived from a donated, fully commercially consented ART blastocyst, carrying Trisomy 21, indicative of Down Syndrome. Following ICM outgrowth on inactivated human feeders, CGH and STR analyses demonstrated a 47, XY, +21 karyotype and male allele pattern. The hESC line had pluripotent cell morphology, 71% of cells expressed Nanog, 84% Oct4, 23% Tra1–60 and 95% SSEA4, gave a Pluritest Pluripotency score of 21.85, Novelty of 1.42, demonstrated Alkaline Phosphatase activity and tri-lineage teratoma formation. The cell line was negative for Mycoplasma and visible contamination.

  7. Morphological and molecular characterization of an undifferentiated soft tissue sarcoma cell line and derivative clones.

    Science.gov (United States)

    Taubert, H; Schmidt, H; Wurl, P; Hinze, R; Meye, A; Bache, M; Berger, D; Holzhausen, H; Dralle, H; Rath, F

    1997-09-01

    From an undifferentiated soft tissue sarcoma (STS) a cell line designated US8-93 has been established. At subcloning the cell line US8-93 three different lines (US8-93A, B and C) could be set up. In a subsequent study characteristics for ultrastructure, growth, cell cycle distribution, karyotype, protein overexpression detected by immunohistochemistry (IHC) and p53 mutational status were determined. The cell line US8-93 as well as subclones contain mainly bipolar spindle-shaped cells and additionally some polygonal and multinucleated cells. Cells possess the characteristics of primitive mesenchymal cells based on their positive reactions with anti-vimentin and negative reactions for desmin, cytokeratin, myoglobin, S100, and NSE, implying a classification as an undifferentiated STS. Cytogenetic analysis revealed nearly diploid cells with several structural and numerical aberrations for chromosomes 1, 3, 4, 6, 9, 10, 12, 13, 15 and 18. IHC positivity was found for the tumor suppressor proteins p53 and Rb, the oncogene products Bcl-2, K-ras, N-ras, P-glycoprotein Mdr-1 and MDM-2. In the p53 gene a nonsense mutation in exon 4 was detected, that was confirmed in the original primary tumor and in three derivative clonal lines. The described STS cell line represents a valuable supplementation to the relatively small number of human STS cell lines currently available and may also provide a good in vitro model for studies of STS tumorigenesis in respect to a mutated p53 gene.

  8. Derivation of the human embryonic stem cell line RCe008-A (RC-4

    Directory of Open Access Journals (Sweden)

    P.A. De Sousa

    2016-05-01

    Full Text Available The human embryonic stem cell line RCe008-A (RC-4 was derived from a blastocyst voluntarily donated as unsuitable and surplus to fertility requirements following ethics committee approved informed consent under licence from the UK Human Fertilisation and Embryology Authority. The cell line shows normal pluripotency marker expression and differentiation to ectoderm and mesoderm in vitro. It has a mixed 46XX/45X female karyotype and microsatellite PCR identity and blood group typing data is available.

  9. Derivation of the human embryonic stem cell line RCe012-A (RC-8)

    OpenAIRE

    P.A. De Sousa; B.J. Tye; Bruce, K.; P. Dand; RUSSELL, G.; Collins, D. M.; Greenshields, A.; H. Bradburn; J.M. Downie; M. Bateman; A. Courtney

    2016-01-01

    The human embryonic stem cell line RCe012-A (RC-8) was derived from a frozen and thawed day 5 embryo cultivated to the blastocyst stage. The embryo was voluntarily donated as unsuitable and surplus to fertility requirements following ethics committee approved informed consent under licence from the UK Human Fertilisation and Embryology Authority. The cell line shows normal pluripotency marker expression and differentiation to the three germ layers in vitro. It has a normal 46XX female karyoty...

  10. Derivation of the human embryonic stem cell line RCe011-A (RC-7)

    OpenAIRE

    P.A. De Sousa; B.J. Tye; Collins, D. M.; Bruce, K.; P. Dand; RUSSELL, G.; H. Bradburn; J.M. Downie; M. Bateman; A. Courtney

    2016-01-01

    The human embryonic stem cell line RCe011-A (RC-7) was derived from a failed to fertilise oocyte voluntarily donated as unsuitable and surplus to fertility requirements following ethics committee approved informed consent under licence from the UK Human Fertilisation and Embryology Authority. The cell line shows normal pluripotency marker expression and differentiation to the three germ layers in vitro. It has a normal 46XY male karyotype and microsatellite PCR identity, HLA and blood group t...

  11. Derivation of the human embryonic stem cell line RCe007-A (RC-3

    Directory of Open Access Journals (Sweden)

    P.A. De Sousa

    2016-05-01

    Full Text Available The human embryonic stem cell line RCe007-A (RC-3 was derived from a blastocyst voluntarily donated as unsuitable and surplus to fertility requirements following ethics committee approved informed consent under licence from the UK Human Fertilisation and Embryology Authority. The cell line shows normal pluripotency marker expression and differentiation to the three germ layers in vitro. It has a normal 46XX female karyotype and HLA and blood group typing data is available.

  12. Derivation of the human embryonic stem cell line RCe007-A (RC-3)

    OpenAIRE

    P.A. De Sousa; B. Tye; Bruce, K.; P. Dand; RUSSELL, G.; Gardner, J.; J.M. Downie; M. Bateman; A. Courtney

    2016-01-01

    The human embryonic stem cell line RCe007-A (RC-3) was derived from a blastocyst voluntarily donated as unsuitable and surplus to fertility requirements following ethics committee approved informed consent under licence from the UK Human Fertilisation and Embryology Authority. The cell line shows normal pluripotency marker expression and differentiation to the three germ layers in vitro. It has a normal 46XX female karyotype and HLA and blood group typing data is available.

  13. Derivation of the human embryonic stem cell line RCe010-A (RC-6)

    OpenAIRE

    P.A. De Sousa; B.J. Tye; Bruce, K.; P. Dand; RUSSELL, G.; Collins, D. M.; H. Bradburn; Gardner, J.; J.M. Downie; M. Bateman; A. Courtney

    2016-01-01

    The human embryonic stem cell line RCe010-A (RC-6) was derived from a frozen and thawed blastocyst voluntarily donated as unsuitable and surplus to fertility requirements following ethics committee approved informed consent under licence from the UK Human Fertilisation and Embryology Authority. The cell line shows normal pluripotency marker expression and differentiation to the three germ layers in vitro. It has a normal 46XY male karyotype and microsatellite PCR identity, HLA and blood group...

  14. Derivation of the human embryonic stem cell line RCe014-A (RC-10)

    OpenAIRE

    P.A. De Sousa; B.J. Tye; Bruce, K.; P. Dand; RUSSELL, G.; Collins, D. M.; Greenshields, A.; H. Bradburn; J.M. Downie; M. Bateman; A. Courtney

    2016-01-01

    The human embryonic stem cell line RCe014-A (RC-10) was derived from a fresh oocyte voluntarily donated as unsuitable and surplus to fertility requirements following ethics committee approved informed consent under licence from the UK Human Fertilisation and Embryology Authority. The cell line shows normal pluripotency marker expression and differentiation to the three germ layers in vitro. It has a mixed 46XY and 47XY +12 male karyotype and microsatellite PCR identity, HLA and blood group ty...

  15. Derivation of the human embryonic stem cell line RCe008-A (RC-4)

    OpenAIRE

    P.A. De Sousa; B. Tye; Bruce, K.; P. Dand; Gardner, J.; J.M. Downie; M. Bateman; A. Courtney

    2016-01-01

    The human embryonic stem cell line RCe008-A (RC-4) was derived from a blastocyst voluntarily donated as unsuitable and surplus to fertility requirements following ethics committee approved informed consent under licence from the UK Human Fertilisation and Embryology Authority. The cell line shows normal pluripotency marker expression and differentiation to ectoderm and mesoderm in vitro. It has a mixed 46XX/45X female karyotype and microsatellite PCR identity and blood group typing data is av...

  16. Derivation of the King's College London human embryonic stem cell lines.

    Science.gov (United States)

    Stephenson, Emma L; Braude, Peter R

    2010-04-01

    Since the derivation of the first human embryonic stem cell (hESC) line in 1998, there has been substantial interest in the potential of these cells for regenerative medicine and cell therapy and in the use of hESCs carrying clinically relevant genetic mutations as models for disease research and therapeutic target identification. There is still a need to improve derivation efficiency and further the understanding of the basic biology of these cells and to develop clinical grade culture systems with the aim of producing cell lines suitable for subsequent manipulation for therapy. The derivation of initial hESC lines at King's College London is discussed here, with focus on derivation methodology. Each of the derivations was distinctive. Although the stage and morphology of each blastocyst were generally similar in each attempt, the behaviour of the colonies was unpredictable; colony morphology and development was different with each attempt. Days 5, 6 and 7 blastocysts were used successfully, and the number of days until appearance of stem-like cells varied from 4 to 14 d. Routine characterisation analyses were performed on three lines, all of which displayed appropriate marker expression and survived cryopreservation-thaw cycles. From the lines discussed, four are at various stages of the deposition process with the UKSCB, one is pending submission and two are unsuitable for banking. Continued open and transparent reporting of results and collaborations will maximise the efficiency of derivation and facilitate the development of standardised protocols for the derivation and early culture of hESC lines.

  17. Genomic and phenotypic profiles of two Brazilian breast cancer cell lines derived from primary human tumors

    DEFF Research Database (Denmark)

    Corrêa, Natássia C R; Kuasne, Hellen; Faria, Jerusa A Q A

    2013-01-01

    Breast cancer is the most common type of cancer among women worldwide. Research using breast cancer cell lines derived from primary tumors may provide valuable additional knowledge regarding this type of cancer. Therefore, the aim of this study was to investigate the phenotypic profiles of MACL-1...... and MGSO-3, the only Brazilian breast cancer cell lines available for comparative studies. We evaluated the presence of hormone receptors, proliferation, differentiation and stem cell markers, using immunohistochemical staining of the primary tumor, cultured cells and xenografts implanted....... This shift in expression may be due to the selection of an 'establishment' phenotype in vitro. Whole-genome DNA evaluation showed a large amount of copy number alterations (CNAs) in the two cell lines. These findings render MACL-1 and MGSO-3 the first characterized Brazilian breast cancer cell lines...

  18. Derivation of the clinical grade human embryonic stem cell line RCe013-A (RC-9

    Directory of Open Access Journals (Sweden)

    P.A. De Sousa

    2016-07-01

    Full Text Available The human embryonic stem cell line RCe013-A (RC-9 was derived under quality assured compliance with UK regulation, European Union Directives and International guidance for tissue procurement, processing and storage according to Good Manufacturing Practice (GMP standards. The cell line was derived from a failed to fertilise oocyte voluntarily donated as unsuitable and surplus to fertility requirements following informed consent. RCe013-A (RC-9 shows normal pluripotency marker expression and differentiation to the three germ layers in vitro and in vivo. It has a normal 46XY male karyotype and microsatellite PCR identity, HLA and blood group typing data are available.

  19. Derivation of the clinical grade human embryonic stem cell line RCe021-A (RC-17

    Directory of Open Access Journals (Sweden)

    P.A. De Sousa

    2016-07-01

    Full Text Available The human embryonic stem cell line RCe021-A (RC-17 was derived under quality assured compliance with UK regulation, European Union Directives and International guidance for tissue procurement, processing and storage according to Good Manufacturing Practice (GMP standards. The cell line was derived from a day 3 embryo voluntarily donated as unsuitable or surplus to fertility requirements following informed consent. RCe021-A (RC-17 shows normal pluripotency marker expression and differentiation to the three germ layers in vitro. It has a normal 46XX female karyotype and microsatellite PCR identity, HLA and blood group typing data are available.

  20. Derivation of the clinical grade human embryonic stem cell line RCe019-A (RC-15

    Directory of Open Access Journals (Sweden)

    P.A. De Sousa

    2016-05-01

    Full Text Available The human embryonic stem cell line RCe019-A (RC-15 was derived under quality assured compliance with UK regulation, European Union Directives and International guidance for tissue procurement, processing and storage according to Good Manufacturing Practice (GMP standards. The cell line was derived from a cleavage stage embryo voluntarily donated as unsuitable or surplus to fertility requirements following informed consent. RCe019-A (RC-15 shows normal pluripotency marker expression and differentiation to the three germ layers in vitro. It has a mixed 46XX/47XX, +8 female karyotype and microsatellite PCR identity, HLA and blood group typing data is available.

  1. Derivation of the clinical grade human embryonic stem cell line RCe016-A (RC-12

    Directory of Open Access Journals (Sweden)

    P.A. De Sousa

    2016-05-01

    Full Text Available The human embryonic stem cell line RCe016-A (RC-12 was derived under quality assured compliance with UK regulations, EU Directives and International guidance for tissue procurement, processing and storage according to good manufacturing practice (GMP standards. The cell line was derived from a cryopreserved blastocyst stage embryo voluntarily donated as surplus to fertility requirements following informed consent. RCe016-A (RC-12 shows normal pluripotency marker expression and differentiation to three germ layers in vitro. Karyology revealed a mixed male karyotype at early passage (P15, which resolved as normal 46XY by passage 33. Microsatellite PCR identity, HLA and blood group typing data is available.

  2. Derivation of the clinical grade human embryonic stem cell line RCe015-A (RC-11

    Directory of Open Access Journals (Sweden)

    P.A. De Sousa

    2016-07-01

    Full Text Available The human embryonic stem cell line RCe015-A (RC-11 was derived under quality assured compliance with UK regulation, European Union Directives and International guidance for tissue procurement, processing and storage according to Good Manufacturing Practice (GMP standards. The cell line was derived from a fragmented cleavage stage embryo voluntarily donated as unsuitable or surplus to fertility requirements following informed consent. RCe015-A (RC-11 shows normal pluripotency marker expression and differentiation to the three germ layers in vitro and in vivo. It has a normal 46XX female karyotype and microsatellite PCR identity, HLA and blood group typing data are available.

  3. Derivation of the human embryonic stem cell line RCe006-A (RC-2

    Directory of Open Access Journals (Sweden)

    P.A. De Sousa

    2016-03-01

    Full Text Available The human embryonic stem cell line RCe006-A (RC-2 was derived from a frozen and thawed blastocyst voluntarily donated as surplus to fertility requirements following ethics committee approved informed consent under licence from the UK Human Fertilisation and Embryology Authority. The cell line exhibits expression of expected pluripotency markers and in vitro differentiation potential to three germinal lineage representative cell populations. It has a male trisomy 12 karyotype (47XY, +12. Microsatellite DNA marker identity and HLA and blood group typing data are available.

  4. Effects of chitin and its derivatives on human cancer cells lines.

    Science.gov (United States)

    Bouhenna, M; Salah, R; Bakour, R; Drouiche, N; Abdi, N; Grib, H; Lounici, H; Mameri, N

    2015-10-01

    The present study is focused on the effect of chitin derivatives against human cancer cell lines RD and Hep2. As an outcome from this research, chitin was cytotoxic at IC50 = 400 μg/ml and 200 μg/ml against Hep2 cells and RD cells lines, respectively. Irradiated chitin had an IC50 value of 450 μg/ml for Hep2 and an IC50 of 200 μg/ml for RD. The lowest IC50 is attributed to chitosan, 300 μg/ml in Hep2 and 190 μg/ml in RD.

  5. Use of RNAi silencing to target preconditioned glial cell line-derived neurotrophic factor in neuronal apoptosis

    Institute of Scientific and Technical Information of China (English)

    Hongliang Guo; Zhongxin Xu; Xinhua Li; Jing Mang; Ying Xing; Jinting He; Guihua Xu; Shijun Yan; Lifeng Liu; Chunli Mei

    2011-01-01

    Several studies have suggested that exogenous glial cell line-derived neurotrophic factor may protect neurons from cerebral ischemic injury. However, the mechanisms underlying the neuroprotective effects of endogenous glial cell line-derived neurotrophic factor remain unclear. The present experiments sought to elucidate the influence of various conditioned media on neuronal apoptosis, using a normal culture medium for astrocytes, an astrocyte medium highly expressing glial cell line-derived neurotrophic factor, and an astrocyte medium in which glial cell line-derived neurotrophic factor expression was silenced using RNAi technology. The results confirmed that the use of RNAi silencing to target pretreated glial cell line-derived neurotrophic factor expression promoted neuronal apoptosis. In addition, oxygen and glucose deprivation preconditioning was found to upregulate glial cell line-derived neurotrophic factor expression, and significantly reduce neuronal apoptosis.

  6. Characterization of human PGD blastocysts with unbalanced chromosomal translocations and human embryonic stem cell line derivation?

    Science.gov (United States)

    Frydman, N; Féraud, O; Bas, C; Amit, M; Frydman, R; Bennaceur-Griscelli, A; Tachdjian, G

    2009-01-01

    Novel embryonic stem cell lines derived from embryos carrying structural chromosomal abnormalities obtained after preimplantation genetic diagnosis (PGD) are of interest to study in terms of the influence of abnormalities on further development. A total of 22 unbalanced blastocysts obtained after PGD were analysed for structural chromosomal defects. Morphological description and chromosomal status of these blastocysts was established and they were used to derive human embryonic stem cell (ESC) lines. An outgrowth of cells was observed for six blastocysts (6/22; 27%). For two blastocysts, the exact morphology was unknown since they were at early stage, and for four blastocysts, the inner cell mass was clearly visible. Fifteen blastocysts carried an unbalanced chromosomal defect linked to a reciprocal translocation, resulting in a positive outgrowth of cells for five blastocysts. One human ESC line was obtained from a blastocyst carrying a partial chromosome-21 monosomy and a partial chromosome-1 trisomy. Six blastocysts carried an unbalanced chromosomal defect linked to a Robertsonian translocation, and one showed a positive outgrowth of cells. One blastocyst carried an unbalanced chromosomal defect linked to an insertion and no outgrowth was observed. The efficiency of deriving human ESC lines with constitutional chromosomal disorders was low and probably depends on the initial morphological aspect of the blastocysts and/or the type of the chromosomal disorders.

  7. Glial cell line-derived neurotrophic factor induces cell proliferation in the mouse urogenital sinus.

    Science.gov (United States)

    Park, Hyun-Jung; Bolton, Eric C

    2015-02-01

    Glial cell line-derived neurotrophic factor (GDNF) is a TGFβ family member, and GDNF signals through a glycosyl-phosphatidylinositol-linked cell surface receptor (GFRα1) and RET receptor tyrosine kinase. GDNF signaling plays crucial roles in urogenital processes, ranging from cell fate decisions in germline progenitors to ureteric bud outgrowth and renal branching morphogenesis. Gene ablation studies in mice have revealed essential roles for GDNF signaling in urogenital development, although its role in prostate development is unclear. We investigated the functional role of GDNF signaling in the urogenital sinus (UGS) and the developing prostate of mice. GDNF, GFRα1, and RET show time-specific and cell-specific expression during prostate development in vivo. In the UGS, GDNF and GFRα1 are expressed in the urethral mesenchyme (UrM) and epithelium (UrE), whereas RET is restricted to the UrM. In each lobe of the developing prostate, GDNF and GFRα1 expression declines in the epithelium and becomes restricted to the stroma. Using a well-established organ culture system, we determined that exogenous GDNF increases proliferation of UrM and UrE cells, altering UGS morphology. With regard to mechanism, GDNF signaling in the UrM increased RET expression and phosphorylation of ERK1/2. Furthermore, inhibition of RET kinase activity or ERK kinases suppressed GDNF-induced proliferation of UrM cells but not UrE cells. We therefore propose that GDNF signaling in the UGS increases proliferation of UrM and UrE cells by different mechanisms, which are distinguished by the role of RET receptor tyrosine kinase and ERK kinase signaling, thus implicating GDNF signaling in prostate development and growth.

  8. Derivation of NEM2 affected human embryonic stem cell line Genea079

    Directory of Open Access Journals (Sweden)

    Biljana Dumevska

    2016-03-01

    Full Text Available The Genea079 human embryonic stem cell line was derived from a donated, fully commercially consented ART blastocyst, carrying compound heterozygous mutations in the NEB gene, exon 55 deletion & c.15110dupA, indicative of Nemaline Myopathy Type 2 (NEM2. Following ICM outgrowth on inactivated human feeders, karyotype was confirmed as 46, XY and STR analysis demonstrated a male Allele pattern. The hESC line had pluripotent cell morphology, 86% of cells expressed Nanog, 95% Oct4, 54% Tra1-60 and 98% SSEA4 and gave a PluriTest Pluripotency score of 30.25, Novelty of 1.21. The cell line was negative for Mycoplasma and visible contamination.

  9. Establishment and cryopreservation of a giant panda skeletal muscle-derived cell line.

    Science.gov (United States)

    Yu, Fang-Jian; Zeng, Chang-Jun; Zhang, Yan; Wang, Cheng-Dong; Xiong, Tie-Yi; Fang, Sheng-Guo; Zhang, He-Min

    2015-06-01

    The giant panda Ailuropoda melanoleuca is an endangered species and is a symbol for wildlife conservation. Although efforts have been made to protect this rare and endangered species through breeding and conservative biology, the long-term preservation of giant panda genome resources (gametes, tissues, organs, genomic libraries, etc.) is still a practical option. In this study, the giant panda skeletal muscle-derived cell line was successfully established via primary explants culture and cryopreservation techniques. The population doubling time of giant panda skeletal cells was approximately 33.8 h, and this population maintained a high cell viability before and after cryopreservation (95.6% and 90.7%, respectively). The two skeletal muscle-specific genes SMYD1 and MYF6 were expressed and detected by RT-PCR in the giant panda skeletal muscle-derived cell line. Karyotyping analysis revealed that the frequencies of giant panda skeletal muscle cells showing a chromosome number of 2n=42 ranged from 90.6∼94.2%. Thus, the giant panda skeletal muscle-derived cell line provides a vital resource and material platform for further studies and is likely to be useful for the protection of this rare and endangered species.

  10. Derivation of the human embryonic stem cell line RCe011-A (RC-7

    Directory of Open Access Journals (Sweden)

    P.A. De Sousa

    2016-03-01

    Full Text Available The human embryonic stem cell line RCe011-A (RC-7 was derived from a failed to fertilise oocyte voluntarily donated as unsuitable and surplus to fertility requirements following ethics committee approved informed consent under licence from the UK Human Fertilisation and Embryology Authority. The cell line shows normal pluripotency marker expression and differentiation to the three germ layers in vitro. It has a normal 46XY male karyotype and microsatellite PCR identity, HLA and blood group typing data are available.

  11. Derivation of the human embryonic stem cell line RCe012-A (RC-8

    Directory of Open Access Journals (Sweden)

    P.A. De Sousa

    2016-03-01

    Full Text Available The human embryonic stem cell line RCe012-A (RC-8 was derived from a frozen and thawed day 5 embryo cultivated to the blastocyst stage. The embryo was voluntarily donated as unsuitable and surplus to fertility requirements following ethics committee approved informed consent under licence from the UK Human Fertilisation and Embryology Authority. The cell line shows normal pluripotency marker expression and differentiation to the three germ layers in vitro. It has a normal 46XX female karyotype and microsatellite PCR identity, HLA and blood group typing data is available.

  12. Derivation of the human embryonic stem cell line RCe014-A (RC-10

    Directory of Open Access Journals (Sweden)

    P.A. De Sousa

    2016-03-01

    Full Text Available The human embryonic stem cell line RCe014-A (RC-10 was derived from a fresh oocyte voluntarily donated as unsuitable and surplus to fertility requirements following ethics committee approved informed consent under licence from the UK Human Fertilisation and Embryology Authority. The cell line shows normal pluripotency marker expression and differentiation to the three germ layers in vitro. It has a mixed 46XY and 47XY +12 male karyotype and microsatellite PCR identity, HLA and blood group typing data is available.

  13. Derivation of the human embryonic stem cell line RCe010-A (RC-6

    Directory of Open Access Journals (Sweden)

    P.A. De Sousa

    2016-03-01

    Full Text Available The human embryonic stem cell line RCe010-A (RC-6 was derived from a frozen and thawed blastocyst voluntarily donated as unsuitable and surplus to fertility requirements following ethics committee approved informed consent under licence from the UK Human Fertilisation and Embryology Authority. The cell line shows normal pluripotency marker expression and differentiation to the three germ layers in vitro. It has a normal 46XY male karyotype and microsatellite PCR identity, HLA and blood group typing data are available.

  14. Genetic instability of cell lines derived from a single human small cell carcinoma of the lung

    DEFF Research Database (Denmark)

    Engelholm, S A; Vindeløv, L L; Spang-Thomsen, M

    1985-01-01

    Specimens from a human small cell carcinoma of the lung were established as a cell line in vitro. Flow cytometric DNA analysis demonstrated only one tumor cell population in the parent tumor as well as in the early passages in vitro. After six passages in vitro, two new subpopulations with differ......Specimens from a human small cell carcinoma of the lung were established as a cell line in vitro. Flow cytometric DNA analysis demonstrated only one tumor cell population in the parent tumor as well as in the early passages in vitro. After six passages in vitro, two new subpopulations...

  15. Synthesis of indazole based diarylurea derivatives and their antiproliferative activity against tumor cell lines.

    Science.gov (United States)

    Zhao, Cui-rong; Wang, Rui-qi; Li, Gang; Xue, Xiao-xia; Sun, Chang-jun; Qu, Xian-jun; Li, Wen-bao

    2013-04-01

    New series of indazole based diarylureas were synthesized and their anticancer activity against cancer cells H460, A549, OS-RC-2, HT-29, Lovo, HepG2, Bel-7402, SGC-7901 and MDA-MB-231 were examined. These derivatives of diarylureas, except azaindazole based diarylureas 5f, 5l and 5m, showed superior or similar activity against most of these selected cancer cell lines to the reference compound sorafenib. The effect of substituents on the indazole ring was also investigated. Derivatives with trifluoromenthy or halogen substituent on the indazole ring showed higher activity against the selected cancer cell lines than sorafenib. The acute toxicity assay showed that compounds 5a, 5b and 5i possessed lower toxicity than sorafenib. Compound 5i with 4-(trifluoromenthy)-1H-indazole and 4-(trifluoromenthy) benzene moieties exhibited the most potent anticancer activity.

  16. Morphologic, immunologic, enzymehistochemical and chromosomal analysis of a cell line derived from Hodgkin's disease : Evidence for a B-cell origin of Sternberg-Reed cells

    NARCIS (Netherlands)

    Poppema, Sibrand; de Jong, Bauke; Atmosoerodjo, Jane; Idenburg, Vera; Visser, Lydia; de Ley, Lou

    1985-01-01

    Cell lines derived from Hodgkin's disease may provide a clue to the nature of Sternberg-Reed cells. In the current study, the establishment of an Epstein-Barr-virus-negative lymphoblastoid cell line, derived from the pleural fluid of a patient with the nodular sclerosis type of Hodgkin's disease, is

  17. LACK OF HETEROTRANSPLANTATION OF MAREK'S DISEASE LYMPHOMA-DERIVED CELL LINES AND MD LYMPHOMA CELLS TO NUDE MICE

    OpenAIRE

    1980-01-01

    Nude mice of BALB/c background were used for the heterotransplantation of Marek's Disease (MD) lymphoma-derived cell lines (MDCC-MSB 1,MDCC-RP 1 and MDCC-JP 2) or MD lymphoma developed in a Marek's disease virus-inoculated chicken. None out of the 57 nude mice developed tumors at the site of inoculation. These nude mice formed cytotoxic antibody against MD lymphoma-derived line cells 6-14 weeks after inoculation. The lack of heterotransplantation of cells from avian origin into nude mice is d...

  18. Synthesis and Biological Evaluation of Lipophilic 1,4-Naphthoquinone Derivatives against Human Cancer Cell Lines

    Directory of Open Access Journals (Sweden)

    Shao-Hung Wang

    2015-06-01

    Full Text Available To examine the effect of hydrophobicity on the anticancer activity of 1,4-naphthoquinone derivatives, a series of compounds bearing a 2-O-alkyl-, 3-C-alkyl- or 2/3-N-morpholinoalkyl group were synthesized and evaluated for their anticancer activity against five human cancer cell lines in vitro. The cytotoxicity of these derivatives was assayed against HT-29, SW480, HepG2, MCF-7 and HL-60 cells by the MTT assay. Among them, 2-hydroxy-3-farnesyl-1,4-naphthoquinone (11a was found to be the most cytotoxic against these cell lines. Our results showed that the effectiveness of compound 11a may be attributed to its suppression of the survival of HT-29. Secondly, in the Hoechst 33258 staining test, compound 11a-treated cells exhibited nuclear condensation typical of apoptosis. Additionally, cell cycle analysis by flow cytometry indicated that compound 11a arrested HT-29 cells in the S phase. Furthermore, cell death detected by Annexin V-FITC/propidium iodide staining showed that compound 11a efficiently induced apoptosis of HT-29 in a concentration-dependent manner. Taken together, compound 11a effectively inhibits colon cancer cell proliferation and may be a potent anticancer agent.

  19. Established preblastocyst- and blastocyst-derived ES cell lines have highly similar gene expression profiles, despite their differing requirements for derivation culture conditions.

    Science.gov (United States)

    Kim, Chul; Park, Joonghoon; Amano, Tomokazu; Xu, Ren-He; Lin, Ge; Carter, Mark G; Tian, Xiuchun Cindy

    2012-02-01

    The efficiency of embryonic stem (ES) cell derivation relies on an optimized culture medium and techniques for treating preimplantation stage embryos. Recently, ES cell derivation from the preblastocyst developmental stage was reported by removing the zona pellucida from embryos of the most efficient strain for ES cell derivation (129Sv) during early preimplantation. Here, we showed that ES cells can be efficiently derived and maintained in a modified medium (MEMα), from preblastocysts of a low-efficiency mouse strain (a hybrid consisting of 50% B6, 25% CBA, and 25% DBA). Preblastocyst-derived ES cell lines were normal in terms of pluripotency-related protein expression, and chromosome number. Also, preblastocyst-derived ES cell lines from various culture conditions showed pluripotency in vivo through teratoma analysis. Interestingly, ES cell lines produced from preblastocysts and blastocysts, regardless of the derivation culture conditions, are nearly indistinguishable by their global gene expression profiles.

  20. Derivation and characterization of human embryonic stem cell lines from the Chinese population

    Institute of Scientific and Technical Information of China (English)

    Zhao Wu; Huimin Dai; Lei Qian; Qing Tian; Lei Xiao; Xiaojun Tan; Hui Li; Lingjun Rao; Lixiazi He; Lei Bao; Jing Liao; Chun Cui; Zhenyu Zuo; Qiao Li

    2011-01-01

    Human embryonic stem cells (hESCs) can self-renew indefinitely and differentiate into all cell types in the human body. Therefore, they are valuable in regenerative medicine, human developmental biology and drug discovery. A number of hESC lines have been derived from the Chinese population,but limited of them are available for research purposes. Here we report the derivation and characterization of two hESC lines derived from human blastocysts of Chinese origin. These hESCs express alkaline phosphatase and hESC-specific markers, including Oct4, Nanog, SSEA-3, SSEA-4,TRA-1-60 and TRA-1-81. They also have high levels of telomerase activity and normal karyotypes. These cells can form embryoid body in vitro and can be differentiated into all three germ layers in vivo by teratoma formation. The newly established hESCs will be distributed for research purposes.The availability of hESC lines from the Chinese population will facilitate studies on the differences in hESCs from different ethnic groups.

  1. Cancer-initiating cells derived from established cervical cell lines exhibit stem-cell markers and increased radioresistance

    Directory of Open Access Journals (Sweden)

    López Jacqueline

    2012-01-01

    Full Text Available Abstract Background Cancer-initiating cells (CICs are proposed to be responsible for the generation of metastasis and resistance to therapy. Accumulating evidences indicates CICs are found among different human cancers and cell lines derived from them. Few studies address the characteristics of CICs in cervical cancer. We identify biological features of CICs from four of the best-know human cell lines from uterine cervix tumors. (HeLa, SiHa, Ca Ski, C-4 I. Methods Cells were cultured as spheres under stem-cell conditions. Flow cytometry was used to detect expression of CD34, CD49f and CD133 antigens and Hoechst 33342 staining to identify side population (SP. Magnetic and fluorescence-activated cell sorting was applied to enrich and purify populations used to evaluate tumorigenicity in nude mice. cDNA microarray analysis and in vitro radioresistance assay were carried out under standard conditions. Results CICs, enriched as spheroids, were capable to generate reproducible tumor phenotypes in nu-nu mice and serial propagation. Injection of 1 × 103 dissociated spheroid cells induced tumors in the majority of animals, whereas injection of 1 × 105 monolayer cells remained nontumorigenic. Sphere-derived CICs expressed CD49f surface marker. Gene profiling analysis of HeLa and SiHa spheroid cells showed up-regulation of CICs markers characteristic of the female reproductive system. Importantly, epithelial to mesenchymal (EMT transition-associated markers were found highly expressed in spheroid cells. More importantly, gene expression analysis indicated that genes required for radioresistance were also up-regulated, including components of the double-strand break (DSB DNA repair machinery and the metabolism of reactive oxygen species (ROS. Dose-dependent radiation assay indicated indeed that CICs-enriched populations exhibit an increased resistance to ionizing radiation (IR. Conclusions We characterized a self-renewing subpopulation of CICs found among

  2. Invasion of primary glioma- and cell line-derived spheroids implanted into corticostriatal slice cultures

    DEFF Research Database (Denmark)

    Aaberg-Jessen, Charlotte; Nørregaard, Annette; Christensen, Karina

    2013-01-01

    Gliomas are highly invasive tumors and the pronounced invasive features of gliomas prevent radical surgical resection. In the search for new therapeutics targeting invasive glioma cells, in vivo-like in vitro models are of great interest. We developed and evaluated an in vivo-like in vitro model...... preserving the invasive features and stem cell features of glioma cells. Fluorescently labelled primary glioma spheroids and U87MG cell line-derived spheroids were implanted into organotypic rat corticostriatal slice cultures and the invasion was followed over time by confocal microscopy. The invasion...... that the primary glioma spheroid area was constant or decreasing after implantation, with a clear increase in the number of invading cells over time. In contrast, the U87MG spheroid area increased after implantation, with no convincing tumor cell invasion. High levels of Bmi-1 and nestin were found in all...

  3. Derivation and characterisation of the human embryonic stem cell lines, NOTT1 and NOTT2.

    Science.gov (United States)

    Priddle, Helen; Allegrucci, Cinzia; Burridge, Paul; Munoz, Maria; Smith, Nigel M; Devlin, Lyndsey; Sjoblom, Cecilia; Chamberlain, Sarah; Watson, Sue; Young, Lorraine E; Denning, Chris

    2010-04-01

    The ability to maintain human embryonic stem cells (hESCs) during long-term culture and yet induce differentiation to multiple lineages potentially provides a novel approach to address various biomedical problems. Here, we describe derivation of hESC lines, NOTT1 and NOTT2, from human blastocysts graded as 3BC and 3CB, respectively. Both lines were successfully maintained as colonies by mechanical passaging on mouse embryonic feeder cells or as monolayers by trypsin-passaging in feeder-free conditions on Matrigel. Undifferentiated cells retained expression of pluripotency markers (OCT4, NANOG, SSEA-4, TRA-1-60 and TRA-1-81), a stable karyotype during long-term culture and could be transfected efficiently with plasmid DNA and short interfering RNA. Differentiation via formation of embryoid bodies resulted in expression of genes associated with early germ layers and terminal lineage specification. The electrophysiology of spontaneously beating NOTT1-derived cardiomyocytes was recorded and these cells were shown to be pharmacologically responsive. Histological examination of teratomas formed by in vivo differentiation of both lines in severe immunocompromised mice showed complex structures including cartilage or smooth muscle (mesoderm), luminal epithelium (endoderm) and neuroectoderm (ectoderm). These observations show that NOTT1 and NOTT2 display the accepted characteristics of hESC pluripotency.

  4. Design, synthesis and cytotoxicity studies of dithiocarbamate ester derivatives of emetine in prostate cancer cell lines.

    Science.gov (United States)

    Akinboye, Emmanuel S; Bamji, Zebalda D; Kwabi-Addo, Bernard; Ejeh, David; Copeland, Robert L; Denmeade, Samuel R; Bakare, Oladapo

    2015-09-01

    A small library of emetine dithiocarbamate ester derivatives were synthesized in 25-86% yield via derivatization of the N2'- position of emetine. Anticancer evaluation of these compounds in androgen receptor positive LNCaP and androgen receptor negative PC3 and DU145 prostate cancer cell lines revealed time dependent and dose-dependent cytotoxicity. With the exception of compound 4c, all the dithiocarbamate ester analogs in this study showed appreciable potency in all the prostate cancer cell lines (regardless of whether it is androgen receptor positive or negative) with a cytotoxicity IC50 value ranging from 1.312 ± 0.032 μM to 5.201 ± 0.125 μM by day 7 of treatment. Compared to the sodium dithiocarbamate salt 1, all the dithiocarbamate ester analogs (2 and 4a-4 g) displayed lower cytotoxicity than compound 1 (PC3, IC50 = 0.087 ± 0.005 μM; DU145, IC50 = 0.079 ± 0.003 μM and LNCaP, IC50 = 0.079 ± 0.003 μM) on day 7 of treatment. Consequently, it appears that S-alkylation of compound 1 leads to a more stable dithiocarbamate ester derivative that resulted in lower anticancer activity in the prostate cancer cell lines.

  5. The procurement of cells for the derivation of human embryonic stem cell lines for therapeutic use: recommendations for good practice.

    Science.gov (United States)

    Murdoch, Alison; Braude, Peter; Courtney, Aidan; Brison, Daniel; Hunt, Charles; Lawford-Davies, James; Moore, Harry; Stacey, Glyn; Sethe, Sebastian

    2012-03-01

    The donation of human embryos for the derivation of embryonic stem cell lines that may be used in the development of therapeutic products raises more complex ethical, practical and regulatory problems than the donation of embryos for non-clinical research. This review considers these issues and offers recommendations for good practice.

  6. Pharmacokinetics of intravitreal glial cell line-derived neurotrophic factor: experimental studies in pigs

    DEFF Research Database (Denmark)

    Ejstrup, Rasmus; Kiilgaard, J F; Tucker, B A;

    2010-01-01

    The purpose of this study was to establish the intravitreal (ITV) pharmacokinetics of glial cell line-derived neurotrophic factor (GDNF) and observe possible complications after ITV injection. Twenty Danish landrace pigs and 34 eyes were included in the study; 30 were injected with 100 ng of GDNF......, two controls were injected without GDNF, and two received no injection. At post-injection time points of 1, 2, 3, 6 hours (h), 1, 2, 4 or 7 days (d) eyes were enucleated and the ITV concentration of GDNF (cGDNF) was determined by enzyme-linked immunosorbent assay, and activity was tested using...... a retinal ganglion cell line (RGC5) bioassay. Indirect ophthalmoscopy, intraocular pressure assessment, and fundus photography were performed before enucleation. There was initial variability in the cGDNF, but after 24h GDNF was cleared in a monoexponential fashion with a half-life of 37 h (CL 33-43 h...

  7. Glial cell line-derived neurotrophic factor induced the differentiation of amniotic fluid-derived stem cells into vascular endothelial-like cells in vitro.

    Science.gov (United States)

    Zhang, Ruyu; Lu, Ying; Li, Ju; Wang, Jia; Liu, Caixia; Gao, Fang; Sun, Dong

    2016-02-01

    Amniotic fluid-derived stem cells (AFSCs) are a novel source of stem cells that are isolated and cultured from second trimester amniocentesis. Glial cell line-derived neurotrophic factor (GDNF) acts as a tissue morphogen and regulates stem cell proliferation and differentiation. This study investigated the effect of an adenovirus-mediated GDNF gene, which was engineered into AFSCs, on the cells' biological properties and whether GDNF in combination with AFSCs can be directionally differentiated into vascular endothelial-like cells in vitro. AFSCs were isolated and cultured using the plastic adherence method in vitro and identified by the transcription factor Oct-4, which is the primary marker of pluripotent stem cells. AFSCs were efficiently transfected by a GFP-labeled plasmid system of an adenovirus vector carrying the GDNF gene (Ad-GDNF-GFP). Transfected AFSCs stably expressed GDNF. Transfected AFSCs were cultured in endothelial growth medium-2 containing vascular endothelial growth factor. After 1 week, AFSCs were positive for von Willebrand factor (vWF) and CD31, which are markers of endothelial cells, and the recombinant GDNF group was significantly higher than undifferentiated controls and the GFP only group. These results demonstrated that AFSCs differentiated into vascular endothelial-like cells in vitro, and recombinant GDNF promoted differentiation. The differentiation-induced AFSCs may be used as seed cells to provide a new manner of cell and gene therapies for transplantation into the vascular injury site to promote angiogenesis.

  8. Derivation of Two New Human Embryonic Stem Cell Lines from Nonviable Human Embryos

    Directory of Open Access Journals (Sweden)

    Svetlana Gavrilov

    2011-01-01

    Full Text Available We report the derivation and characterization of two new human embryonic stem cells (hESC lines (CU1 and CU2 from embryos with an irreversible loss of integrated organismic function. In addition, we analyzed retrospective data of morphological progression from embryonic day (ED 5 to ED6 for 2480 embryos not suitable for clinical use to assess grading criteria indicative of loss of viability on ED5. Our analysis indicated that a large proportion of in vitro fertilization (IVF embryos not suitable for clinical use could be used for hESC derivation. Based on these combined findings, we propose that criteria commonly used in IVF clinics to determine optimal embryos for uterine transfer can be employed to predict the potential for hESC derivation from poor quality embryos without the destruction of vital human embryos.

  9. Hypoxia-regulated gene expression explains differences between melanoma cell line-derived xenografts and patient-derived xenografts.

    Science.gov (United States)

    Bhadury, Joydeep; Einarsdottir, Berglind O; Podraza, Agnieszka; Bagge, Roger Olofsson; Stierner, Ulrika; Ny, Lars; Dávila López, Marcela; Nilsson, Jonas A

    2016-04-26

    Cell line-derived xenografts (CDXs) are an integral part of drug efficacy testing during development of new pharmaceuticals against cancer but their accuracy in predicting clinical responses in patients have been debated. Patient-derived xenografts (PDXs) are thought to be more useful for predictive biomarker identification for targeted therapies, including in metastatic melanoma, due to their similarities to human disease. Here, tumor biopsies from fifteen patients and ten widely-used melanoma cell lines were transplanted into immunocompromised mice to generate PDXs and CDXs, respectively. Gene expression profiles generated from the tumors of these PDXs and CDXs clustered into distinct groups, despite similar mutational signatures. Hypoxia-induced gene signatures and overexpression of the hypoxia-regulated miRNA hsa-miR-210 characterized CDXs. Inhibition of hsa-miR-210 with decoys had little phenotypic effect in vitro but reduced sensitivity to MEK1/2 inhibition in vivo, suggesting down-regulation of this miRNA could result in development of resistance to MEK inhibitors.

  10. Characterization of HGF/Met Signaling in Cell Lines Derived From Urothelial Carcinoma of the Bladder

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young H. [Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 (United States); Apolo, Andrea B. [Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 (United States); Agarwal, Piyush K.; Bottaro, Donald P., E-mail: dbottaro@helix.nih.gov [Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 (United States)

    2014-11-25

    There is mounting evidence of oncogenic hepatocyte growth factor (HGF)/Met signaling in urothelial carcinoma (UC) of the bladder. The effects of three kinase inhibitors, cabozantinib, crizotinib and EMD1214063, on HGF-driven signaling and cell growth, invasion and tumorigenicity were analyzed in cultured UC cell lines. SW780 xenograft growth in SCID and human HGF knock-in SCID (hHGF/SCID) mice treated with cabozantinib or vehicle, as well as tumor levels of Met and pMet, were also determined. Met content was robust in most UC-derived cell lines. Basal pMet content and effector activation state in quiescent cells were low, but significantly enhanced by added HGF, as were cell invasion, proliferation and anchorage independent growth. These HGF-driven effects were reversed by Met inhibitor treatment. Tumor xenograft growth was significantly higher in hHGF/SCID mice vs. SCID mice and significantly inhibited by cabozantinib, as was tumor phospho-Met content. These studies indicate the prevalence and functionality of the HGF/Met signaling pathway in UC cells, suggest that paracrine HGF may contribute to UC tumor growth and progression, and that support further preclinical investigation of Met inhibitors for the treatment of UC is warranted.

  11. Characterization of HGF/Met Signaling in Cell Lines Derived From Urothelial Carcinoma of the Bladder

    Directory of Open Access Journals (Sweden)

    Young H. Lee

    2014-11-01

    Full Text Available There is mounting evidence of oncogenic hepatocyte growth factor (HGF/Met signaling in urothelial carcinoma (UC of the bladder. The effects of three kinase inhibitors, cabozantinib, crizotinib and EMD1214063, on HGF-driven signaling and cell growth, invasion and tumorigenicity were analyzed in cultured UC cell lines. SW780 xenograft growth in SCID and human HGF knock-in SCID (hHGF/SCID mice treated with cabozantinib or vehicle, as well as tumor levels of Met and pMet, were also determined. Met content was robust in most UC-derived cell lines. Basal pMet content and effector activation state in quiescent cells were low, but significantly enhanced by added HGF, as were cell invasion, proliferation and anchorage independent growth. These HGF-driven effects were reversed by Met inhibitor treatment. Tumor xenograft growth was significantly higher in hHGF/SCID mice vs. SCID mice and significantly inhibited by cabozantinib, as was tumor phospho-Met content. These studies indicate the prevalence and functionality of the HGF/Met signaling pathway in UC cells, suggest that paracrine HGF may contribute to UC tumor growth and progression, and that support further preclinical investigation of Met inhibitors for the treatment of UC is warranted.

  12. Characterization of HGF/Met Signaling in Cell Lines Derived From Urothelial Carcinoma of the Bladder.

    Science.gov (United States)

    Lee, Young H; Apolo, Andrea B; Agarwal, Piyush K; Bottaro, Donald P

    2014-11-25

    There is mounting evidence of oncogenic hepatocyte growth factor (HGF)/Met signaling in urothelial carcinoma (UC) of the bladder. The effects of three kinase inhibitors, cabozantinib, crizotinib and EMD1214063, on HGF-driven signaling and cell growth, invasion and tumorigenicity were analyzed in cultured UC cell lines. SW780 xenograft growth in SCID and human HGF knock-in SCID (hHGF/SCID) mice treated with cabozantinib or vehicle, as well as tumor levels of Met and pMet, were also determined. Met content was robust in most UC-derived cell lines. Basal pMet content and effector activation state in quiescent cells were low, but significantly enhanced by added HGF, as were cell invasion, proliferation and anchorage independent growth. These HGF-driven effects were reversed by Met inhibitor treatment. Tumor xenograft growth was significantly higher in hHGF/SCID mice vs. SCID mice and significantly inhibited by cabozantinib, as was tumor phospho-Met content. These studies indicate the prevalence and functionality of the HGF/Met signaling pathway in UC cells, suggest that paracrine HGF may contribute to UC tumor growth and progression, and that support further preclinical investigation of Met inhibitors for the treatment of UC is warranted.

  13. APP-dependent glial cell line-derived neurotrophic factor gene expression drives neuromuscular junction formation.

    Science.gov (United States)

    Stanga, Serena; Zanou, Nadège; Audouard, Emilie; Tasiaux, Bernadette; Contino, Sabrina; Vandermeulen, Gaëlle; René, Frédérique; Loeffler, Jean-Philippe; Clotman, Frédéric; Gailly, Philippe; Dewachter, Ilse; Octave, Jean-Noël; Kienlen-Campard, Pascal

    2016-05-01

    Besides its crucial role in the pathogenesis of Alzheimer's disease, the knowledge of amyloid precursor protein (APP) physiologic functions remains surprisingly scarce. Here, we show that APP regulates the transcription of the glial cell line-derived neurotrophic factor (GDNF). APP-dependent regulation of GDNF expression affects muscle strength, muscular trophy, and both neuronal and muscular differentiation fundamental for neuromuscular junction (NMJ) maturation in vivo In a nerve-muscle coculture model set up to modelize NMJ formation in vitro, silencing of muscular APP induces a 30% decrease in secreted GDNF levels and a 40% decrease in the total number of NMJs together with a significant reduction in the density of acetylcholine vesicles at the presynaptic site and in neuronal maturation. These defects are rescued by GDNF expression in muscle cells in the conditions where muscular APP has been previously silenced. Expression of GDNF in muscles of amyloid precursor protein null mice corrected the aberrant synaptic morphology of NMJs. Our findings highlight for the first time that APP-dependent GDNF expression drives the process of NMJ formation, providing new insights into the link between APP gene regulatory network and physiologic functions.-Stanga, S., Zanou, N., Audouard, E., Tasiaux, B., Contino, S., Vandermeulen, G., René, F., Loeffler, J.-P., Clotman, F., Gailly, P., Dewachter, I., Octave, J.-N., Kienlen-Campard, P. APP-dependent glial cell line-derived neurotrophic factor gene expression drives neuromuscular junction formation.

  14. Exposure to cobalt causes transcriptomic and proteomic changes in two rat liver derived cell lines.

    Science.gov (United States)

    Permenter, Matthew G; Dennis, William E; Sutto, Thomas E; Jackson, David A; Lewis, John A; Stallings, Jonathan D

    2013-01-01

    Cobalt is a transition group metal present in trace amounts in the human diet, but in larger doses it can be acutely toxic or cause adverse health effects in chronic exposures. Its use in many industrial processes and alloys worldwide presents opportunities for occupational exposures, including military personnel. While the toxic effects of cobalt have been widely studied, the exact mechanisms of toxicity remain unclear. In order to further elucidate these mechanisms and identify potential biomarkers of exposure or effect, we exposed two rat liver-derived cell lines, H4-II-E-C3 and MH1C1, to two concentrations of cobalt chloride. We examined changes in gene expression using DNA microarrays in both cell lines and examined changes in cytoplasmic protein abundance in MH1C1 cells using mass spectrometry. We chose to closely examine differentially expressed genes and proteins changing in abundance in both cell lines in order to remove cell line specific effects. We identified enriched pathways, networks, and biological functions using commercial bioinformatic tools and manual annotation. Many of the genes, proteins, and pathways modulated by exposure to cobalt appear to be due to an induction of a hypoxic-like response and oxidative stress. Genes that may be differentially expressed due to a hypoxic-like response are involved in Hif-1α signaling, glycolysis, gluconeogenesis, and other energy metabolism related processes. Gene expression changes linked to oxidative stress are also known to be involved in the NRF2-mediated response, protein degradation, and glutathione production. Using microarray and mass spectrometry analysis, we were able to identify modulated genes and proteins, further elucidate the mechanisms of toxicity of cobalt, and identify biomarkers of exposure and effect in vitro, thus providing targets for focused in vivo studies.

  15. Exposure to Cobalt Causes Transcriptomic and Proteomic Changes in Two Rat Liver Derived Cell Lines

    Science.gov (United States)

    Permenter, Matthew G.; Dennis, William E.; Sutto, Thomas E.; Jackson, David A.; Lewis, John A.; Stallings, Jonathan D.

    2013-01-01

    Cobalt is a transition group metal present in trace amounts in the human diet, but in larger doses it can be acutely toxic or cause adverse health effects in chronic exposures. Its use in many industrial processes and alloys worldwide presents opportunities for occupational exposures, including military personnel. While the toxic effects of cobalt have been widely studied, the exact mechanisms of toxicity remain unclear. In order to further elucidate these mechanisms and identify potential biomarkers of exposure or effect, we exposed two rat liver-derived cell lines, H4-II-E-C3 and MH1C1, to two concentrations of cobalt chloride. We examined changes in gene expression using DNA microarrays in both cell lines and examined changes in cytoplasmic protein abundance in MH1C1 cells using mass spectrometry. We chose to closely examine differentially expressed genes and proteins changing in abundance in both cell lines in order to remove cell line specific effects. We identified enriched pathways, networks, and biological functions using commercial bioinformatic tools and manual annotation. Many of the genes, proteins, and pathways modulated by exposure to cobalt appear to be due to an induction of a hypoxic-like response and oxidative stress. Genes that may be differentially expressed due to a hypoxic-like response are involved in Hif-1α signaling, glycolysis, gluconeogenesis, and other energy metabolism related processes. Gene expression changes linked to oxidative stress are also known to be involved in the NRF2-mediated response, protein degradation, and glutathione production. Using microarray and mass spectrometry analysis, we were able to identify modulated genes and proteins, further elucidate the mechanisms of toxicity of cobalt, and identify biomarkers of exposure and effect in vitro, thus providing targets for focused in vivo studies. PMID:24386269

  16. Exposure to cobalt causes transcriptomic and proteomic changes in two rat liver derived cell lines.

    Directory of Open Access Journals (Sweden)

    Matthew G Permenter

    Full Text Available Cobalt is a transition group metal present in trace amounts in the human diet, but in larger doses it can be acutely toxic or cause adverse health effects in chronic exposures. Its use in many industrial processes and alloys worldwide presents opportunities for occupational exposures, including military personnel. While the toxic effects of cobalt have been widely studied, the exact mechanisms of toxicity remain unclear. In order to further elucidate these mechanisms and identify potential biomarkers of exposure or effect, we exposed two rat liver-derived cell lines, H4-II-E-C3 and MH1C1, to two concentrations of cobalt chloride. We examined changes in gene expression using DNA microarrays in both cell lines and examined changes in cytoplasmic protein abundance in MH1C1 cells using mass spectrometry. We chose to closely examine differentially expressed genes and proteins changing in abundance in both cell lines in order to remove cell line specific effects. We identified enriched pathways, networks, and biological functions using commercial bioinformatic tools and manual annotation. Many of the genes, proteins, and pathways modulated by exposure to cobalt appear to be due to an induction of a hypoxic-like response and oxidative stress. Genes that may be differentially expressed due to a hypoxic-like response are involved in Hif-1α signaling, glycolysis, gluconeogenesis, and other energy metabolism related processes. Gene expression changes linked to oxidative stress are also known to be involved in the NRF2-mediated response, protein degradation, and glutathione production. Using microarray and mass spectrometry analysis, we were able to identify modulated genes and proteins, further elucidate the mechanisms of toxicity of cobalt, and identify biomarkers of exposure and effect in vitro, thus providing targets for focused in vivo studies.

  17. Synthesis of kaempferide Mannich base derivatives and their antiproliferative activity on three human cancer cell lines.

    Science.gov (United States)

    Nguyen, Van-Son; Shi, Ling; Luan, Fang-Qian; Wang, Qiu-An

    2015-01-01

    Kaempferide (3,5,7-trihydroxy-4'-methoxyflavone, 1), a naturally occurring flavonoid with potent anticancer activity in a number of human tumour cell lines, was first semisynthesized from naringin. Based on Mannich reaction of kaempferide with various secondary amines and formaldehyde, nine novel kaempferide Mannich base derivatives 2-10 were synthesized. The aminomethylation occurred preferentially in the position at C-6 and C-8 of the A-ring of kaempferide. All the synthetic compounds were tested for antiproliferative activity against three human cancer cell lines (Hela, HCC1954, SK-OV-3) by the standard MTT method. The results showed that compounds 1, 2 and 5-10 were more potent against Hela cells with IC50 values of 12.47-28.24 μM than the positive control cis-platin (IC50 41.25 μM), compounds 5, 6, 8 and 10 were more potent against HCC1954 cells with IC50 values of 8.82-14.97 μM than the positive control cis-platin (IC50 29.68 μM), and compounds 2, 3, 5, 6 and 10 were more potent against SK-OV-3 cells with IC50 values of 7.67-18.50 μM than the positive control cis-platin (IC50 21.27 μM).

  18. Induction of cell death by ascorbic acid derivatives in human renal carcinoma and glioblastoma cell lines.

    Science.gov (United States)

    Makino, Y; Sakagami, H; Takeda, M

    1999-01-01

    Sodium-L-ascorbate, L-ascorbic acid, D-isoascorbic acid, sodium 5,6-benzylidene-L-ascorbate and sodium-6-beta-O-galactosyl-L-ascorbate, which produce ascorbyl radicals during the oxidative degradation, also induced cytotoxicity against cultured human renal carcinoma (TC-1) and glioblastoma multiform tumor (T98G) cell lines. On the other hand, L-ascorbic acid 2-phosphate magnesium and L-ascorbic acid 2-sulfate dipotassium salt, which do not produce the ascorbyl radical, were inactive. This suggests the possible role of the ascorbyl radical for cell death induction. T98G cells were more resistant to ascorbate analogs than TC-1 and HL-60 cells, possibly due to higher intracellular glutathione concentrations. Ascorbate treatment induced rapid elevation of both intracellular concentration of cAMP and Ca2+ in HL-60 cells, but not in TC-1 and T98G cells. However, the elevation of cAMP by theophyline and N,2-dibutyryl adenosine 3,5 cyclic monophosphate (dibutyryl cAMP) resulted in a decrease in the viable cell number. This suggests the possible role of cAMP for ascorbate-induced cell death.

  19. Natural bizbenzoquinoline derivatives protect zebrafish lateral line sensory hair cells from aminoglycoside toxicity

    Directory of Open Access Journals (Sweden)

    Matthew eKruger

    2016-03-01

    Full Text Available Moderate to severe hearing loss affects 360 million people worldwide and most often results from damage to sensory hair cells. Hair cell damage can result from aging, genetic mutations, excess noise exposure, and certain medications including aminoglycoside antibiotics. Aminoglycosides are effective at treating infections associated with cystic fibrosis and other life-threatening conditions such as sepsis, but cause hearing loss in 20-30% of patients. It is therefore imperative to develop new therapies to combat hearing loss and allow safe use of these potent antibiotics. We approach this drug discovery question using the larval zebrafish lateral line because zebrafish hair cells are structurally and functionally similar to mammalian inner ear hair cells and respond similarly to toxins. We screened a library of 502 natural compounds in order to identify novel hair cell protectants. Our screen identified four bisbenzylisoquinoline derivatives: berbamine, E6 berbamine, hernandezine, and isotetrandrine, each of which robustly protected hair cells from aminoglycoside-induced damage. Using fluorescence microscopy and electrophysiology, we demonstrated that the natural compounds confer protection by reducing antibiotic uptake into hair cells and showed that hair cells remain functional during and after incubation in E6 berbamine. We also determined that these natural compounds do not reduce antibiotic efficacy. Together, these natural compounds represent a novel source of possible otoprotective drugs that may offer therapeutic options for patients receiving aminoglycoside treatment.

  20. Growth of Coxiella burnetii in the Ixodes scapularis-derived IDE8 tick cell line.

    Science.gov (United States)

    Herrin, Brian; Mahapatra, Saugata; Blouin, Edmour F; Shaw, Edward I

    2011-07-01

    Q fever, a zoonotic disease, is caused by a gram-negative intracellular bacterium, Coxiella burnetii. Although normally transmitted during exposure to infectious aerosols, C. burnetii is also found in arthropod vectors. In the environment, ticks are thought to play a crucial role in bacterial maintenance and transmission by infecting various mammalian species. However, the nature of the pathogen-tick relationship is not well defined. To determine C. burnetii's interactions with a cultured tick cell line, we introduced purified C. burnetii NMII into Ixodes scapularis-derived IDE8 cells and assayed for bacterial presence, replication, gene expression, and subsequent infectivity for mammalian cells. Tick cells were harvested at 24 h, 72 h, 7 days, and 11 days postinfection (PI). C. burnetii uptake and subsequent replication was demonstrated by indirect immunofluorescence assay, electron microscopy, and real-time polymerase chain reaction (PCR). When a genome equivalent multiplicity of infection of 30 was used, 30%-40% of exposed cells were seen to have small, rounded, vacuoles at 72 h PI, whereas at 7 and 11 days PI, 60%-70% of cells contained enlarged vacuoles harboring large numbers of bacteria. Quantitative PCR analysis of total genomic DNA confirmed that C. burnetii genome numbers increased significantly from 24 h to 11 days PI. Expression of C. burnetii type four secretion system homologs at 7 days PI was demonstrated by reverse transcriptase PCR. Finally, indirect immunofluorescence assay demonstrated that C. burnetii propagated within IDE8 cells were infectious for mammalian cells. These studies demonstrate the utility of cultured tick cell lines as a model to investigate C. burnetii's molecular interactions with its arthropod vectors.

  1. Novel pancreatic cancer cell lines derived from genetically engineered mouse models of spontaneous pancreatic adenocarcinoma: applications in diagnosis and therapy.

    Directory of Open Access Journals (Sweden)

    María P Torres

    Full Text Available Pancreatic cancer (PC remains one of the most lethal human malignancies with poor prognosis. Despite all advances in preclinical research, there have not been significant translation of novel therapies into the clinics. The development of genetically engineered mouse (GEM models that produce spontaneous pancreatic adenocarcinoma (PDAC have increased our understanding of the pathogenesis of the disease. Although these PDAC mouse models are ideal for studying potential therapies and specific genetic mutations, there is a need for developing syngeneic cell lines from these models. In this study, we describe the successful establishment and characterization of three cell lines derived from two (PDAC mouse models. The cell line UN-KC-6141 was derived from a pancreatic tumor of a Kras(G12D;Pdx1-Cre (KC mouse at 50 weeks of age, whereas UN-KPC-960 and UN-KPC-961 cell lines were derived from pancreatic tumors of Kras(G12D;Trp53(R172H;Pdx1-Cre (KPC mice at 17 weeks of age. The cancer mutations of these parent mice carried over to the daughter cell lines (i.e. Kras(G12D mutation was observed in all three cell lines while Trp53 mutation was observed only in KPC cell lines. The cell lines showed typical cobblestone epithelial morphology in culture, and unlike the previously established mouse PDAC cell line Panc02, expressed the ductal marker CK19. Furthermore, these cell lines expressed the epithelial-mesenchymal markers E-cadherin and N-cadherin, and also, Muc1 and Muc4 mucins. In addition, these cell lines were resistant to the chemotherapeutic drug Gemcitabine. Their implantation in vivo produced subcutaneous as well as tumors in the pancreas (orthotopic. The genetic mutations in these cell lines mimic the genetic compendium of human PDAC, which make them valuable models with a high potential of translational relevance for examining diagnostic markers and therapeutic drugs.

  2. Differences between the genomes of lymphoblastoid cell lines and blood-derived samples

    Directory of Open Access Journals (Sweden)

    Joesch-Cohen LM

    2017-02-01

    Full Text Available Lena M Joesch-Cohen, Gustavo Glusman Institute for Systems Biology, Seattle, WA, USA Abstract: Lymphoblastoid cell lines (LCLs represent a convenient research tool for expanding the amount of biologic material available from an individual. LCLs are commonly used as reference materials, most notably from the Genome in a Bottle Consortium. However, the question remains how faithfully LCL-derived genome assemblies represent the germline genome of the donor individual as compared to the genome assemblies derived from peripheral blood mononuclear cells. We present an in-depth comparison of a large collection of LCL- and peripheral blood mononuclear cell-derived genomes in terms of distributions of coverage and copy number alterations. We found significant differences in the depth of coverage and copy number calls, which may be driven by differential replication timing. Importantly, these copy number changes preferentially affect regions closer to genes and with higher GC content. This suggests that genomic studies based on LCLs may display locus-specific biases, and that conclusions based on analysis of depth of coverage and copy number variation may require further scrutiny. Keywords: genomics, whole-genome sequencing, viral transformation, copy number changes, bioinformatics

  3. Effect of glial cell line-derived neurotrophic factor on retinal function after experimental branch retinal vein occlusion

    DEFF Research Database (Denmark)

    Ejstrup, Rasmus; Dornonville de la Cour, Morten; Kyhn, Maria Voss;

    2012-01-01

    The objective of the study was to investigate the effect of glial cell line-derived neurotrophic factor (GDNF) on the multifocal electroretinogram (mfERG) following an induced branch retinal vein occlusion (BRVO) in pigs.......The objective of the study was to investigate the effect of glial cell line-derived neurotrophic factor (GDNF) on the multifocal electroretinogram (mfERG) following an induced branch retinal vein occlusion (BRVO) in pigs....

  4. Multiple breast cancer cell-lines derived from a single tumor differ in their molecular characteristics and tumorigenic potential.

    Directory of Open Access Journals (Sweden)

    Goar Mosoyan

    Full Text Available BACKGROUND: Breast cancer cell lines are widely used tools to investigate breast cancer biology and to develop new therapies. Breast cancer tissue contains molecularly heterogeneous cell populations. Thus, it is important to understand which cell lines best represent the primary tumor and have similarly diverse phenotype. Here, we describe the development of five breast cancer cell lines from a single patient's breast cancer tissue. We characterize the molecular profiles, tumorigenicity and metastatic ability in vivo of all five cell lines and compare their responsiveness to 4-hydroxytamoxifen (4-OHT treatment. METHODS: Five breast cancer cell lines were derived from a single patient's primary breast cancer tissue. Expression of different antigens including HER2, estrogen receptor (ER, CK8/18, CD44 and CD24 was determined by flow cytometry, western blotting and immunohistochemistry (IHC. In addition, a Fluorescent In Situ Hybridization (FISH assay for HER2 gene amplification and p53 genotyping was performed on all cell lines. A xenograft model in nude mice was utilized to assess the tumorigenic and metastatic abilities of the breast cancer cells. RESULTS: We have isolated, cloned and established five new breast cancer cell lines with different tumorigenicity and metastatic abilities from a single primary breast cancer. Although all the cell lines expressed low levels of ER, their growth was estrogen-independent and all had high-levels of expression of mutated non-functional p53. The HER2 gene was rearranged in all cell lines. Low doses of 4-OHT induced proliferation of these breast cancer cell lines. CONCLUSIONS: All five breast cancer cell lines have different antigenic expression profiles, tumorigenicity and organ specific metastatic abilities although they derive from a single tumor. None of the studied markers correlated with tumorigenic potential. These new cell lines could serve as a model for detailed genomic and proteomic analyses to

  5. Muscarinic receptors stimulate cell proliferation in the human urothelium-derived cell line UROtsa.

    Science.gov (United States)

    Arrighi, Nicola; Bodei, Serena; Lucente, Alessandra; Michel, Martin C; Zani, Danilo; Simeone, Claudio; Cunico, Sergio Cosciani; Spano, PierFranco; Sigala, Sandra

    2011-10-01

    The widespread non-neuronal synthesis of acetylcholine (ACh) has changed the paradigm of ACh acting solely as a neurotransmitter. Indeed, the presence of ACh in many types of proliferating cells suggests a role for this neurotransmitter in the control of cell division. The parasympathetic system is a major pathway regulating micturition, but ACh-mediated control plays a more complex role than previously described, acting not only in the detrusor muscle, but also influencing detrusor function through the activity of urothelial muscarinic receptors. Here we investigated the role of muscarinic receptors in mediating cell proliferation in the human UROtsa cell line, which is a widely used experimental model to study urothelium physiology and pathophysiology. Our results demonstrate that UROtsa cells express the machinery for ACh synthesis and that muscarinic receptors, with the rank order of M3>M2>M5>M1=M4, are present and functionally linked to their known second messengers. Indeed, the cholinergic receptor agonist carbachol (CCh) (1-100 μM) concentration-dependently raised IP(3) levels, reaching 66±5% over basal. The forskolin-mediated adenylyl cyclase activation was reduced by CCh exposure (forskolin: 1.4±0.14 pmol/ml; forskolin+100 μM CCh: 0.84±0.12 pmol/ml). CCh (1-100 μM) concentration-dependently increased UROtsa cell proliferation and this effect was inhibited by the non-selective antagonist atropine and the M(3)-selective antagonists darifenacin and J104129. Finally, CCh-induced cell proliferation was blocked by selective PI-3 kinase and ERK activation inhibitors, strongly suggesting that these intracellular pathways mediate, at least in part, the muscarinic receptor-mediated cell proliferation.

  6. The niche-derived glial cell line-derived neurotrophic factor (GDNF) induces migration of mouse spermatogonial stem/progenitor cells.

    Science.gov (United States)

    Dovere, Lisa; Fera, Stefania; Grasso, Margherita; Lamberti, Dante; Gargioli, Cesare; Muciaccia, Barbara; Lustri, Anna Maria; Stefanini, Mario; Vicini, Elena

    2013-01-01

    In mammals, the biological activity of the stem/progenitor compartment sustains production of mature gametes through spermatogenesis. Spermatogonial stem cells and their progeny belong to the class of undifferentiated spermatogonia, a germ cell population found on the basal membrane of the seminiferous tubules. A large body of evidence has demonstrated that glial cell line-derived neurotrophic factor (GDNF), a Sertoli-derived factor, is essential for in vivo and in vitro stem cell self-renewal. However, the mechanisms underlying this activity are not completely understood. In this study, we show that GDNF induces dose-dependent directional migration of freshly selected undifferentiated spermatogonia, as well as germline stem cells in culture, using a Boyden chamber assay. GDNF-induced migration is dependent on the expression of the GDNF co-receptor GFRA1, as shown by migration assays performed on parental and GFRA1-transduced GC-1 spermatogonial cell lines. We found that the actin regulatory protein vasodilator-stimulated phosphoprotein (VASP) is specifically expressed in undifferentiated spermatogonia. VASP belongs to the ENA/VASP family of proteins implicated in actin-dependent processes, such as fibroblast migration, axon guidance, and cell adhesion. In intact seminiferous tubules and germline stem cell cultures, GDNF treatment up-regulates VASP in a dose-dependent fashion. These data identify a novel role for the niche-derived factor GDNF, and they suggest that GDNF may impinge on the stem/progenitor compartment, affecting the actin cytoskeleton and cell migration.

  7. The niche-derived glial cell line-derived neurotrophic factor (GDNF induces migration of mouse spermatogonial stem/progenitor cells.

    Directory of Open Access Journals (Sweden)

    Lisa Dovere

    Full Text Available In mammals, the biological activity of the stem/progenitor compartment sustains production of mature gametes through spermatogenesis. Spermatogonial stem cells and their progeny belong to the class of undifferentiated spermatogonia, a germ cell population found on the basal membrane of the seminiferous tubules. A large body of evidence has demonstrated that glial cell line-derived neurotrophic factor (GDNF, a Sertoli-derived factor, is essential for in vivo and in vitro stem cell self-renewal. However, the mechanisms underlying this activity are not completely understood. In this study, we show that GDNF induces dose-dependent directional migration of freshly selected undifferentiated spermatogonia, as well as germline stem cells in culture, using a Boyden chamber assay. GDNF-induced migration is dependent on the expression of the GDNF co-receptor GFRA1, as shown by migration assays performed on parental and GFRA1-transduced GC-1 spermatogonial cell lines. We found that the actin regulatory protein vasodilator-stimulated phosphoprotein (VASP is specifically expressed in undifferentiated spermatogonia. VASP belongs to the ENA/VASP family of proteins implicated in actin-dependent processes, such as fibroblast migration, axon guidance, and cell adhesion. In intact seminiferous tubules and germline stem cell cultures, GDNF treatment up-regulates VASP in a dose-dependent fashion. These data identify a novel role for the niche-derived factor GDNF, and they suggest that GDNF may impinge on the stem/progenitor compartment, affecting the actin cytoskeleton and cell migration.

  8. Synthesis and cytotoxic activity of certain benzothiazole derivatives against human MCF-7 cancer cell line.

    Science.gov (United States)

    Mohamed, Lamia W; Taher, Azza T; Rady, Ghada S; Ali, Mamdouh M; Mahmoud, Abeer E

    2016-10-04

    A new series of benzothiazole has been synthesized as cytotoxic agents. The new derivatives were tested for their cytotoxic activity toward the human breast cancer MCF-7 cell line against cisplatin as the reference drug. Many derivatives revealed good cytotoxic effect, whereas four of them, 4, 5c, 5d, and 6b, were more potent than cisplatin, with IC50 values being 8.64, 7.39, 7.56, and 5.15 μm compared to 13.33 μm of cisplatin. The four derivatives' cytotoxic activity was accompanied by regulating free radicals production, by increasing the activity of superoxide dismutase and depletion of intracellular reduced glutathione, catalase, and glutathione peroxidase activities, accordingly, the high production of hydrogen peroxide, nitric oxide, and other free radicals causing tumor cell death as monitored by reduction in the synthesis of protein and nucleic acids. Most of the tested compounds showed potent to moderate growth inhibitory activity; in particular, compound 6b exhibited the highest activity suggesting it is a lead compound in cytotoxic activity.

  9. A Tetrameric Peptide Derived from Bovine Lactoferricin Exhibits Specific Cytotoxic Effects against Oral Squamous-Cell Carcinoma Cell Lines

    Science.gov (United States)

    Solarte, Víctor A.; Rosas, Jaiver E.; Rivera, Zuly J.; Arango-Rodríguez, Martha L.; García, Javier E.; Vernot, Jean-Paul

    2015-01-01

    Several short linear peptides derived from cyclic bovine lactoferricin were synthesized and tested for their cytotoxic effect against the oral cavity squamous-cell carcinoma (OSCC) cell lines CAL27 and SCC15. As a control, an immortalized and nontumorigenic cell line, Het-1A, was used. Linear peptides based on the RRWQWR core sequence showed a moderate cytotoxic effect and specificity towards tumorigenic cells. A tetrameric peptide, LfcinB(20–25)4, containing the RRWQWR motif, exhibited greater cytotoxic activity (>90%) in both OSCC cell lines compared to the linear lactoferricin peptide or the lactoferrin protein. Additionally, this tetrameric peptide showed the highest specificity towards tumorigenic cells among the tested peptides. Interestingly, this effect was very fast, with cell shrinkage, severe damage to cell membrane permeability, and lysis within one hour of treatment. Our results are consistent with a necrotic effect rather than an apoptotic one and suggest that this tetrameric peptide could be considered as a new candidate for the therapeutic treatment of OSCC. PMID:26609531

  10. A Tetrameric Peptide Derived from Bovine Lactoferricin Exhibits Specific Cytotoxic Effects against Oral Squamous-Cell Carcinoma Cell Lines

    Directory of Open Access Journals (Sweden)

    Víctor A. Solarte

    2015-01-01

    Full Text Available Several short linear peptides derived from cyclic bovine lactoferricin were synthesized and tested for their cytotoxic effect against the oral cavity squamous-cell carcinoma (OSCC cell lines CAL27 and SCC15. As a control, an immortalized and nontumorigenic cell line, Het-1A, was used. Linear peptides based on the RRWQWR core sequence showed a moderate cytotoxic effect and specificity towards tumorigenic cells. A tetrameric peptide, LfcinB(20–254, containing the RRWQWR motif, exhibited greater cytotoxic activity (>90% in both OSCC cell lines compared to the linear lactoferricin peptide or the lactoferrin protein. Additionally, this tetrameric peptide showed the highest specificity towards tumorigenic cells among the tested peptides. Interestingly, this effect was very fast, with cell shrinkage, severe damage to cell membrane permeability, and lysis within one hour of treatment. Our results are consistent with a necrotic effect rather than an apoptotic one and suggest that this tetrameric peptide could be considered as a new candidate for the therapeutic treatment of OSCC.

  11. Impairment of mineralization by metavanadate and decavanadate solutions in a fish bone-derived cell line.

    Science.gov (United States)

    Tiago, Daniel M; Laizé, Vincent; Cancela, M Leonor; Aureliano, Manuel

    2008-06-01

    Vanadium, a trace metal known to accumulate in bone and to mimic insulin, has been shown to regulate mammalian bone formation using in vitro and in vivo systems. In the present work, short- and long-term effects of metavanadate (containing monomeric, dimeric, tetrameric and pentameric vanadate species) and decavanadate (containing decameric vanadate species) solutions on the mineralization of a fish bone-derived cell line (VSa13) were studied and compared to that of insulin. After 2 h of incubation with vanadate (10 microM in monomeric vanadate), metavanadate exhibited higher accumulation rates than decavanadate (6.85 +/- 0.40 versus 3.95 +/- 0.10 microg V/g of protein, respectively) in fish VSa13 cells and was also shown to be less toxic when applied for short periods. In longer treatments with both metavanadate and decavanadate solutions, similar effects were promoted: stimulation of cell proliferation and strong impairment (75%) of extracellular matrix (ECM) mineralization. The effect of both vanadate solutions (5 microM in monomeric vanadate), on ECM mineralization was increased in the presence of insulin (10 nM). It is concluded that chronic treatment with both vanadate solutions stimulated fish VSa13 cells proliferation and prevented ECM mineralization. Newly developed VSa13 fish cells appeared to be appropriate in the characterization of vanadate effects on vertebrate bone formation, representing a good alternative to mammalian systems.

  12. Putative porcine embryonic stem cell lines derived from aggregated four-celled cloned embryos produced by oocyte bisection cloning.

    Science.gov (United States)

    Siriboon, Chawalit; Lin, Yu-Hsuan; Kere, Michel; Chen, Chun-Da; Chen, Lih-Ren; Chen, Chien-Hong; Tu, Ching-Fu; Lo, Neng-Wen; Ju, Jyh-Cherng

    2015-01-01

    We attempted to isolate ES cell lines using inner cell masses from high-quality cloned porcine blastocysts. After being seeded onto feeders, embryos had better (P cloned embryos (62.8, 42.6 and 12.8% vs. 76.2, 55.2 and 26.2%, respectively) compared to the non-aggregated group (41.6, 23.4 and 3.9%). Effects of feeder types (STO vs. MEF) and serum sources (FBS vs. KSR) on extraction of cloned embryo-derived porcine ES cells were examined. More (17.1%) ntES cell lines over Passage 3 were generated in the MEF/KSR group. However, ntES cells cultured in KSR-supplemented medium had a low proliferation rate with defective morphology, and eventually underwent differentiation or apoptosis subsequently. Approximately 26.1, 22.7 and 35.7% of primary colonies were formed after plating embryos in DMEM, DMEM/F12 and α-MEM media, respectively. Survival rates of ntES cells cultured in α-MEM, DMEM and DMEM/F12 were 16.7, 4.3 and 6.8%, respectively (P > 0.05). We further examined the beneficial effect of TSA treatment of 3× aggregated cloned embryos on establishment of ntES cell lines. Primary colony numbers and survival rates of ntES cells beyond passage 3 were higher (P cloned embryos produced by embryo aggregation, and optimized the ES cell culture system suitable for establishing and maintaining ntES cell lines in undifferentiated state.

  13. Dysregulation of the TGF-β Postreceptor Signaling Pathway in Cell Lines Derived from Primary or Metastatic Ovarian Cancer

    Institute of Scientific and Technical Information of China (English)

    奚玲; 胡伟; 孟力; 周剑峰; 卢运萍; 王常玉; 马丁

    2004-01-01

    Summary: Transforming growth factor-beta (TGF-β) may cause cell cycle arrest, terminal differentiation, or apoptosis in most normal epithelial cells, whereas most malignant cell lines are resistant to TGF-β. Mechanisms of resistance to TGF-β caused by modulation of cell cycle regulators and/or inactivation of components of the TGF-β signaling transduction pathway such as C-myc and Smad4are not well understood. To investigate the potential association between loss of sensitivity to TGFβ and expression status of transforming growth factor receptor Ⅱ (TβR Ⅱ ), Smad4, CDC25A and C-myc in 14 cell lines derived from ovarian cancer, the expression levels of these genes were detected by semi-quantitative RT-PCR. Normal ovarian surface tissues were used as controls. The expression of TβR Ⅱ was detectable in all of 14 cell lines. The expression of Smad4 was decreased in 10 cell lines and 9 cell lines overexpressed CDC25A, as compared to normal controls. CDC25A gene was overexpressed with 88 % (8/9) in tumorigenic cell lines as determined by xenografts in nude mice, and only in 20 % (1/5) of non-tumorigenic cell lines (P<0.05). C-myc was not overexpressed in any of these cell lines. The loss of sensitivity to TGF-β of cell lines derived from ovarian cancers may be related to a decreased expression of Smad4, which mediates TGF-β induced growth inhibition, and/or an overexpression of CDC25A. This overexpression of CDC25A correlates with increased tumorigenicity of ovarian cancer cell lines. The loss of sensitivity to TGF-β is not associated with a lack of TβR Ⅱ.

  14. Effect of glial cell line-derived neurotrophic factor on peripheral nerve regeneration in adult rat

    Institute of Scientific and Technical Information of China (English)

    CHEN Zhe-yu; LI Jian-hong; ZHENG Xing-dong; LU Chang-lin; HE Cheng

    2001-01-01

    Objective: To study the effect of glial cell line-derived neurotrophic (GDNF) on adult peripheral nerve regeneration. Methods: Transectioned sciatic nerve in adult rats was sutured into silicone channel. GDNF or SAL solution was injected into the silicone channels during operation. Four weeks later, the effect of GDNF on axonal regeneration was evaluated by degenerative neurofiber staining and HRP retrograde tracing. Results: Compared with SAL group, the percentage of degenerative neurofiber areas decreased from 17.3% to 1.9% ( P<0.01 ) and the ratio of labeled spinal somas number was significantly increased from 43.5% to 68.3% ( P<0.01 ) in GDNF group. Conclusion: The results suggest that exogenous GDNF can obviously enhance adult peripheral nerve regeneration.

  15. Glial cell line-derived neurotrophic factor (GDNF therapy for Parkinson's disease.

    Directory of Open Access Journals (Sweden)

    Shingo,Tetsuro

    2007-04-01

    Full Text Available Many studies using animals clarify that glial cell line-derived neurotrophic factor (GDNF has strong neuroprotective and neurorestorative effects on dopaminergic neurons. Several pilot studies clarified the validity of continuous intraputaminal GDNF infusion to patients with Parkinson's disease (PD, although a randomized controlled trial of GDNF therapy published in 2006 resulted in negative outcomes, and controversy remains about the efficacy and safety of the treatment. For a decade, our laboratory has investigated the efficacy and the most appropriate method of GDNF administration using animals, and consequently we have obtained some solid data that correspond to the results of clinical trials. In this review, we present an outline of our studies and other key studies related to GDNF, the current state of the research, problems to be overcome, and predictions regarding the use of GDNF therapy for PD in the future.

  16. Postnatal roles of glial cell line-derived neurotrophic factor family members in nociceptors plasticity

    Institute of Scientific and Technical Information of China (English)

    Sacha A. Malin; Brian M. Davis

    2008-01-01

    The neurotrophin and glial cell line-derived neurotrophic factor (GDNF) family of growth factors have been extensively studied because of their proven ability to regulate development of the peripheral nervous system. The neurotrophin family,which includes nerve growth factor (NGF), NT-3, NT4/5 and BDNF, is also known for its ability to regulate the function of adult sensory neurons. Until recently, little was known concerning the role of the GNDF-family (that includes GDNF, artemin, neurturin and persephin) in adult sensory neuron function. Here we describe recent data that indicates that the GDNF family can regulate sensory neuron function, that some of its members are elevated in inflammatory pain models and that application of these growth factors produces pain in vivo. Finally we discuss how these two families of growth factors may converge on a single membrane receptor, TRPV 1, to produce long-lasting hyperalgesia.

  17. Cell type-specific and common characteristics of exosomes derived from mouse cell lines: Yield, physicochemical properties, and pharmacokinetics.

    Science.gov (United States)

    Charoenviriyakul, Chonlada; Takahashi, Yuki; Morishita, Masaki; Matsumoto, Akihiro; Nishikawa, Makiya; Takakura, Yoshinobu

    2017-01-01

    Exosomes are small membrane vesicles secreted from cells and are expected to be used as drug delivery systems. Important characteristics of exosomes, such as yield, physicochemical properties, and pharmacokinetics, may be different among different cell types. However, there is limited information about the effect of cell type on these characteristics. In the present study, we evaluated these characteristics of exosomes derived from five different types of mouse cell lines: B16BL6 murine melanoma cells, C2C12 murine myoblast cells, NIH3T3 murine fibroblasts cells, MAEC murine aortic endothelial cells, and RAW264.7 murine macrophage-like cells. Exosomes were collected using a differential ultracentrifugation method. The exosomes collected from all the cell types were negatively charged globular vesicles with a diameter of approximately 100nm. C2C12 and RAW264.7 cells produced more exosomes than the other types of cells. The exosomes were labeled with a fusion protein of Gaussia luciferase and lactadherin to evaluate their pharmacokinetics. After intravenous injection into mice, all the exosomes rapidly disappeared from the systemic circulation and mainly distributed to the liver. In conclusion, the exosome yield was significantly different among the cell types, and all the exosomes evaluated in this study showed comparable physicochemical and pharmacokinetic properties.

  18. Chordoma-derived cell line U-CH1-N recapitulates the biological properties of notochordal nucleus pulposus cells.

    Science.gov (United States)

    Fujita, Nobuyuki; Suzuki, Satoshi; Watanabe, Kota; Ishii, Ken; Watanabe, Ryuichi; Shimoda, Masayuki; Takubo, Keiyo; Tsuji, Takashi; Toyama, Yoshiaki; Miyamoto, Takeshi; Horiuchi, Keisuke; Nakamura, Masaya; Matsumoto, Morio

    2016-08-01

    Intervertebral disc degeneration proceeds with age and is one of the major causes of lumbar pain and degenerative lumbar spine diseases. However, studies in the field of intervertebral disc biology have been hampered by the lack of reliable cell lines that can be used for in vitro assays. In this study, we show that a chordoma-derived cell line U-CH1-N cells highly express the nucleus pulposus (NP) marker genes, including T (encodes T brachyury transcription factor), KRT19, and CD24. These observations were further confirmed by immunocytochemistry and flow cytometry. Reporter analyses showed that transcriptional activity of T was enhanced in U-CH1-N cells. Chondrogenic capacity of U-CH1-N cells was verified by evaluating the expression of extracellular matrix (ECM) genes and Alcian blue staining. Of note, we found that proliferation and synthesis of chondrogenic ECM proteins were largely dependent on T in U-CH1-N cells. In accordance, knockdown of the T transcripts suppressed the expression of PCNA, a gene essential for DNA replication, and SOX5 and SOX6, the master regulators of chondrogenesis. On the other hand, the CD24-silenced cells showed no reduction in the mRNA expression level of the chondrogenic ECM genes. These results suggest that U-CH1-N shares important biological properties with notochordal NP cells and that T plays crucial roles in maintaining the notochordal NP cell-like phenotype in this cell line. Taken together, our data indicate that U-CH1-N may serve as a useful tool in studying the biology of intervertebral disc. © 2016 The Authors. Journal of Orthopaedic Research Published by Wiley Periodicals, Inc. on behalf of Orthopaedic Research Society. J Orthop Res 34:1341-1350, 2016.

  19. Porcine circovirus type 2 morphogenesis in a clone derived from the l35 lymphoblastoid cell line.

    Science.gov (United States)

    Rodríguez-Cariño, C; Duffy, C; Sánchez-Chardi, A; McNeilly, F; Allan, G M; Segalés, J

    2011-01-01

    Porcine circovirus type 2 (PCV2) is the essential infectious agent of post-weaning multisystemic wasting syndrome (PMWS), one of the most important diseases of swine. Although several studies have described different biological properties of the virus, some aspects of its replication cycle, including ultrastructural alterations, remain unknown. The aim of the present study was to describe for the first time a complete morphogenesis study of PCV2 in a clone of the lymphoblastoid L35 cell line at the ultrastructural level using electron microscopy techniques. Cells were infected with PCV2 at a multiplicity of infection of 10 and examined at 0, 6, 12, 24, 48, 60 and 72h post-infection. PCV2 was internalized by endocytosis, after which the virus aggregated in intracytoplasmic inclusion bodies (ICIs). Subsequently, PCV2 was closely associated with mitochondria, completing a first cytoplasmic phase. The virus entered the nucleus for replication and virus assembly and encapsidation occurred with the participation of the nuclear membrane. Immature virions left the nucleus and formed ICIs in a second cytoplasmic phase. The results suggest that at the end of the replication cycle (between 24 and 48h), PCV2 was released either by budding of mature virion clusters or by lysis of apoptotic or dead cells. In conclusion, the L35-derived clone represents a suitable in-vitro model for PCV2 morphogenesis studies and characterization of the PCV2 replication cycle.

  20. Glial cell line-derived neurotrophic factor protects against high-fat diet-induced obesity.

    Science.gov (United States)

    Mwangi, Simon Musyoka; Nezami, Behtash Ghazi; Obukwelu, Blessing; Anitha, Mallappa; Marri, Smitha; Fu, Ping; Epperson, Monica F; Le, Ngoc-Anh; Shanmugam, Malathy; Sitaraman, Shanthi V; Tseng, Yu-Hua; Anania, Frank A; Srinivasan, Shanthi

    2014-03-01

    Obesity is a growing epidemic with limited effective treatments. The neurotrophic factor glial cell line-derived neurotrophic factor (GDNF) was recently shown to enhance β-cell mass and improve glucose control in rodents. Its role in obesity is, however, not well characterized. In this study, we investigated the ability of GDNF to protect against high-fat diet (HFD)-induced obesity. GDNF transgenic (Tg) mice that overexpress GDNF under the control of the glial fibrillary acidic protein promoter and wild-type (WT) littermates were maintained on a HFD or regular rodent diet for 11 wk, and weight gain, energy expenditure, and insulin sensitivity were monitored. Differentiated mouse brown adipocytes and 3T3-L1 white adipocytes were used to study the effects of GDNF in vitro. Tg mice resisted the HFD-induced weight gain, insulin resistance, dyslipidemia, hyperleptinemia, and hepatic steatosis seen in WT mice despite similar food intake and activity levels. They exhibited significantly (PGDNF enhanced β-adrenergic-mediated cAMP release in brown adipocytes and suppressed lipid accumulation in differentiated 3T3L-1 cells through a p38MAPK signaling pathway. Our studies demonstrate a novel role for GDNF in the regulation of high-fat diet-induced obesity through increased energy expenditure. They show that GDNF and its receptor agonists may be potential targets for the treatment or prevention of obesity.

  1. Intraspinal transplantation of motoneuron-like cell combined with delivery of polymer-based glial cell line-derived neurotrophic factor for repair of spinal cord contusion injury

    Institute of Scientific and Technical Information of China (English)

    Alireza Abdanipour; Taki Tiraihi; Taher Taheri

    2014-01-01

    To evaluate the effects of glial cell line-derived neurotrophic factor transplantation combined with adipose-derived stem cells-transdifferentiated motoneuron delivery on spinal cord con-tusion injury, we developed rat models of spinal cord contusion injury, 7 days later, injected adipose-derived stem cells-transdifferentiated motoneurons into the epicenter, rostral and caudal regions of the impact site and simultaneously transplanted glial cell line-derived neuro-trophic factor-gelfoam complex into the myelin sheath. Motoneuron-like cell transplantation combined with glial cell line-derived neurotrophic factor delivery reduced cavity formations and increased cell density in the transplantation site. The combined therapy exhibited superior promoting effects on recovery of motor function to transplantation of glial cell line-derived neurotrophic factor, adipose-derived stem cells or motoneurons alone. These ifndings suggest that motoneuron-like cell transplantation combined with glial cell line-derived neurotrophic factor delivery holds a great promise for repair of spinal cord injury.

  2. TAP-deficient human iPS cell-derived myeloid cell lines as unlimited cell source for dendritic cell-like antigen-presenting cells.

    Science.gov (United States)

    Haruta, M; Tomita, Y; Yuno, A; Matsumura, K; Ikeda, T; Takamatsu, K; Haga, E; Koba, C; Nishimura, Y; Senju, S

    2013-05-01

    We previously reported a method to generate dendritic cell (DC)-like antigen-presenting cells (APC) from human induced pluripotent stem (iPS) cells. However, the method is relatively complicated and laborious. In the current study, we attempted to establish a method through which we could obtain a large number of functional APC with a simple procedure. We transduced iPS cell-derived CD11b(+) myeloid cells with genes associated with proliferative or anti-senescence effects, enabling the cells to propagate for more than 4 months in a macrophage colony-stimulating factor (M-CSF)-dependent manner while retaining their capacity to differentiate into functional APC. We named these iPS cell-derived proliferating myeloid cells 'iPS-ML', and the iPS-ML-derived APC 'ML-DC'. In addition, we generated TAP2-deficient iPS cell clones by zinc finger nuclease-aided targeted gene disruption. TAP2-deficient iPS cells and iPS-ML avoided recognition by pre-activated allo-reactive CD8(+) T cells. TAP2-deficient ML-DC expressing exogenously introduced HLA-A2 genes stimulated HLA-A2-restricted MART-1-specific CD8(+) T cells obtained from HLA-A2-positive allogeneic donors, resulting in generation of MART-1-specific cytotoxic T lymphocyte (CTL) lines. TAP-deficient iPS-ML introduced with various HLA class I genes may serve as an unlimited source of APC for vaccination therapy. If administered into allogeneic patients, ML-DC with appropriate genetic modifications may survive long enough to stimulate antigen-specific CTL and, after that, be completely eliminated. Based on the present study, we propose an APC-producing system that is simple, safe and applicable to all patients irrespective of their HLA types.

  3. Comparison of human tenascin expression in normal, simian-virus-40-transformed and tumor-derived cell lines.

    Science.gov (United States)

    Carnemolla, B; Borsi, L; Bannikov, G; Troyanovsky, S; Zardi, L

    1992-04-15

    Tenascin is a polymorphic high-molecular-mass extracellular-matrix glycoprotein composed of six similar subunits. Using two-domain-specific anti-tenascin monoclonal antibodies, we have studied the expression and distribution of tenascin in four cultured normal human fibroblasts, two simian-virus-40-(SV40)-transformed and three tumor-derived (melanoma, rhabdomyosarcoma and fibrosarcoma) cell lines. We found that (a) cultured normal human fibroblasts accumulate considerable amounts of tenascin and retain 60-90% in the extracellular matrix, while they release the remainder into the tissue-culture medium; (b) of the two SV40-transformed counterparts we have tested, the AG-280 cell line accumulates no detectable amounts of tenascin and the WI-38-VA cell line accumulates about 10-times less tenascin than its normal counterpart and releases about 90% of it into the culture medium; (c) some tumor-derived cell lines accumulate considerable amounts of tenascin, but in these cases, more than 90% is released into the culture media; (d) in normal human fibroblasts, two major tenascin isoforms, generated by alternative splicing of the mRNA precursor, are detectable (280 kDa and 190 kDa, respectively) and the lower-molecular-mass tenascin isoform is accumulated preferentially in the extracellular matrix; (e) in SV40-transformed or tumor-derived cell lines, only the higher-molecular-mass isoform is detectable and it is more sialylated than the tenascin produced by the normal human fibroblast cell lines.

  4. siRNA targeting stathmin inhibits invasion and enhances chemotherapy sensitivity of stem cells derived from glioma cell lines.

    Science.gov (United States)

    Song, Yuwen; Mu, Luyan; Han, Xuezhe; Liu, Xiaoqian; Fu, Songbin

    2014-12-01

    Glioma is one of the most highly angiogenic tumors, and glioma stem cells (GSCs) are responsible for resistance to chemotherapy and radiotherapy, as well as recurrence after operation. Stathmin is substantial for mitosis and plays an important role in proliferation and migration of glioma-derived endothelial cells. However, the relationship between stathmin and GSCs is incompletely understood. Here we isolated GSCs from glioma cell lines U87MG and U251, and then used siRNA targeting stathmin for silencing. We showed that silencing of stathmin suppressed the proliferation, increased the apoptosis rate, and arrested the cell cycle at G2/M phase in GSCs. Silencing of stathmin in GSCs also resulted in inhibited the migration/invasion as well as the capability of vasculogenic mimicry. The susceptibility of GSCs to temozolomide was also enhanced by stathmin silencing. Our findings suggest stathmin as a potential target in GSCs for glioma treatment.

  5. A cell line derived from the red flour beetle Tribolium castaneum (Coleoptera: Tenebrionidae).

    Science.gov (United States)

    Goodman, Cynthia L; Stanley, David; Ringbauer, Joseph A; Beeman, Richard W; Silver, Kristopher; Park, Yoonseong

    2012-08-01

    The red flour beetle, Tribolium castaneum, is a model organism for agricultural and medical research and its complete genome is sequenced. We established a continuously replicating T. castaneum cell line to complement existing physiological, genetic, and genomic research tools. We set up trial cell cultures from egg, pupa, and adult stages as tissue sources and incubated them in six separate cell culture media to determine the optimal combination of tissue source and medium for cell replication. Our most promising culture was generated by co-culturing adult (∼75 %) and pupal tissues in EX-CELL 420 medium containing 9 % FBS. Our new cell culture is designated BCIRL-TcA-CLG1 (TcA) and it has been subcultured more than 90 times. Amplification of genomic DNA with species-specific primers yielded DNA fragments of the expected sizes and with sequences identical to those from the published Tribolium genome. Additionally, we characterized this line using DNA fingerprinting (DAF-PCR) and compared it with three other coleopteran cell lines and its conspecific pupae to confirm identity. Its doubling time is 155.2 hr. Early passages consisted of attached cells and vesicles in suspension, whereas later passages consisted primarily of attached, spherical cells. Similar to other established cell lines, the ploidy of TcA cells was variable, ranging from 20 chromosomes/cell (diploid) to above 30 chromosomes/cell. TcA cells withstood incubation at 40°C for 1 h with no decrease in viability. We recorded increased levels of one heat shock protein (43 kDa) and of the hsp68a transcript following exposure to 40°C. Taken together, this represents the first report of a continuously replicating T. castaneum cell line. We expect the BCIRL-TcA-CLG1 line will become a useful tool in Tribolium research.

  6. Characterization of cell lines derived from breast cancers and normal mammary tissues for the study of the intrinsic molecular subtypes.

    Science.gov (United States)

    Prat, Aleix; Karginova, Olga; Parker, Joel S; Fan, Cheng; He, Xiaping; Bixby, Lisa; Harrell, J Chuck; Roman, Erick; Adamo, Barbara; Troester, Melissa; Perou, Charles M

    2013-11-01

    Five molecular subtypes (luminal A, luminal B, HER2-enriched, basal-like, and claudin-low) with clinical implications exist in breast cancer. Here, we evaluated the molecular and phenotypic relationships of (1) a large in vitro panel of human breast cancer cell lines (BCCLs), human mammary fibroblasts (HMFs), and human mammary epithelial cells (HMECs); (2) in vivo breast tumors; (3) normal breast cell subpopulations; (4) human embryonic stem cells (hESCs); and (5) bone marrow-derived mesenchymal stem cells (hMSC). First, by integrating genomic data of 337 breast tumor samples with 93 cell lines we were able to identify all the intrinsic tumor subtypes in the cell lines, except for luminal A. Secondly, we observed that the cell lines recapitulate the differentiation hierarchy detected in the normal mammary gland, with claudin-low BCCLs and HMFs cells showing a stromal phenotype, HMECs showing a mammary stem cell/bipotent progenitor phenotype, basal-like cells showing a luminal progenitor phenotype, and luminal B cell lines showing a mature luminal phenotype. Thirdly, we identified basal-like and highly migratory claudin-low subpopulations of cells within a subset of triple-negative BCCLs (SUM149PT, HCC1143, and HCC38). Interestingly, both subpopulations within SUM149PT were enriched for tumor-initiating cells, but the basal-like subpopulation grew tumors faster than the claudin-low subpopulation. Finally, claudin-low BCCLs resembled the phenotype of hMSCs, whereas hESCs cells showed an epithelial phenotype without basal or luminal differentiation. The results presented here help to improve our understanding of the wide range of breast cancer cell line models through the appropriate pairing of cell lines with relevant in vivo tumor and normal cell counterparts.

  7. Echinococcus granulosus-specific T-cell lines derived from patients at various clinical stages of cystic echinococcosis.

    Science.gov (United States)

    Riganò, R; Buttari, B; De Falco, E; Profumo, E; Ortona, E; Margutti, P; Scottà, C; Teggi, A; Siracusano, A

    2004-01-01

    To investigate the role of T lymphocytes in the immune response to Echinococcus granulosus, using sheep hydatid fluid (SHF) and antigen B (AgB), we generated T-cell lines from patients with active, transitional and inactive hydatid cysts. We established 16 T-cell lines, eight specific to SHF and eight specific to AgB. At surface phenotyping 88-98% of cells displayed the helper/inducer CD4 antigen. In all patients, at all clinical stages of hydatid cyst disease, T-cell stimulation with SHF and AgB invariably amplified a large number of almost identical Vbeta subfamily fragments. Irrespective of antigen-specificity, the two cell lines from the patient with an inactive cyst had a Th1 profile, because they exclusively expressed and produced IFN-gamma. Conversely, the T-cell lines derived from the seven patients with active and transitional hydatid cysts had mixed Th1/Th2 and Th0 clones. The functional characteristics of the 16 T-cell lines differed markedly in the various clinical stages of cystic echinococcosis, thus providing new in vitro evidence that Th1 lymphocytes contribute decisively to the inactive stage of hydatid disease, Th2 lymphocytes in the active and transitional stages. The parasite-specific T-cell lines, especially the two Th1 lines from the patient with an inactive cyst, may help identify Th1 protective epitopes on SHF and AgB.

  8. The establishment of 20 different human embryonic stem cell lines and subclones; a report on derivation, culture, characterisation and banking.

    Science.gov (United States)

    Englund, Mikael C O; Caisander, Gunilla; Noaksson, Karin; Emanuelsson, Katarina; Lundin, Kersti; Bergh, Christina; Hansson, Charles; Semb, Henrik; Strehl, Raimund; Hyllner, Johan

    2010-04-01

    This report summarises our efforts in deriving, characterising and banking of 20 different human embryonic stem cell lines. We have derived a large number of human embryonic stem cell lines between 2001 and 2005. One of these cell lines was established under totally xeno-free culture conditions. In addition, several subclones have been established, including a karyoptypical normal clone from a trisomic mother line. A master cell banking system has been utilised in concert with an extensive characterisation programme, ensuring a supply of high quality pluripotent stem cells for further research and development. In this report we also present the first data on a proprietary novel antibody, hES-Cellect, that exhibits high specificity for undifferentiated hES cells. In addition to the traditional manual dissection approach of propagating hES cells, we here also report on the successful approaches of feeder-free cultures as well as single cell cultures based on enzymatic digestion. All culture systems used as reported here have maintained the hES cells in a karyotypical normal and pluripotent state. These systems also have the advantage of being the principal springboards for further scale up of cultures for industrial or clinical applications that would require vastly more cells that can be produced by mechanical means.

  9. A cell line resource derived from honey bee (Apis mellifera embryonic tissues.

    Directory of Open Access Journals (Sweden)

    Michael J Goblirsch

    Full Text Available A major hindrance to the study of honey bee pathogens or the effects of pesticides and nutritional deficiencies is the lack of controlled in vitro culture systems comprised of honey bee cells. Such systems are important to determine the impact of these stress factors on the developmental and cell biology of honey bees. We have developed a method incorporating established insect cell culture techniques that supports sustained growth of honey bee cells in vitro. We used honey bee eggs mid to late in their embryogenesis to establish primary cultures, as these eggs contain cells that are progressively dividing. Primary cultures were initiated in modified Leibovitz's L15 medium and incubated at 32(°C. Serial transfer of material from several primary cultures was maintained and has led to the isolation of young cell lines. A cell line (AmE-711 has been established that is composed mainly of fibroblast-type cells that form an adherent monolayer. Most cells in the line are diploid (2n = 32 and have the Apis mellifera karyotype as revealed by Giemsa stain. The partial sequence for the mitochondrial-encoded cytochrome c oxidase subunit I (Cox 1 gene in the cell line is identical to those from honey bee tissues and a consensus sequence for A. mellifera. The population doubling time is approximately 4 days. Importantly, the cell line is continuously subcultured every 10-14 days when split at a 1:3 ratio and is cryopreserved in liquid nitrogen. The cell culture system we have developed has potential application for studies aimed at honey bee development, genetics, pathogenesis, transgenesis, and toxicology.

  10. Glial cell line-derived neurotrophic factor gene delivery via a polyethylene imine grafted chitosan carrier.

    Science.gov (United States)

    Peng, Yu-Shiang; Lai, Po-Liang; Peng, Sydney; Wu, His-Chin; Yu, Siang; Tseng, Tsan-Yun; Wang, Li-Fang; Chu, I-Ming

    2014-01-01

    Parkinson's disease is known to result from the loss of dopaminergic neurons. Direct intracerebral injections of high doses of recombinant glial cell line-derived neurotrophic factor (GDNF) have been shown to protect adult nigral dopaminergic neurons. Because GDNF does not cross the blood-brain barrier, intracerebral gene transfer is an ideal option. Chitosan (CHI) is a naturally derived material that has been used for gene transfer. However, the low water solubility often leads to decreased transfection efficiency. Grafting of highly water-soluble polyethylene imines (PEI) and polyethylene glycol onto polymers can increase their solubility. The purpose of this study was to design a non-viral gene carrier with improved water solubility as well as enhanced transfection efficiency for treating Parkinsonism. Two molecular weights (Mw =600 and 1,800 g/mol) of PEI were grafted onto CHI (PEI600-g-CHI and PEI1800-g-CHI, respectively) by opening the epoxide ring of ethylene glycol diglycidyl ether (EX-810). This modification resulted in a non-viral gene carrier with less cytotoxicity. The transfection efficiency of PEI600-g-CHI/deoxyribonucleic acid (DNA) polyplexes was significantly higher than either PEI1800-g-CHI/DNA or CHI/DNA polyplexes. The maximal GDNF expression of PEI600-g-CHI/DNA was at the polymer:DNA weight ratio of 10:1, which was 1.7-fold higher than the maximal GDNF expression of PEI1800-g-CHI/DNA. The low toxicity and high transfection efficiency of PEI600-g-CHI make it ideal for application to GDNF gene therapy, which has potential for the treatment of Parkinson's disease.

  11. Somatic cell nuclear transfer-derived embryonic stem cell lines in humans: pros and cons.

    Science.gov (United States)

    Langerova, Alena; Fulka, Helena; Fulka, Josef

    2013-12-01

    The recent paper, published by Mitalipov's group in Cell (Tachibana et al., 2013 ), reporting the production of human somatic cell nuclear transfer (SCNT) embryonic stem cells (ESCs), opens again the debate if, in the era of induced pluripotent stem cells (iPSCs), the production of these cells is indeed necessary and, if so, whether they are different from ESCs produced from spare embryos and iPSCs. It is our opinion that these questions are very difficult to answer because it is still unclear whether and how normal ESCs differ from iPSCs.

  12. Axon guidance of sympathetic neurons to cardiomyocytes by glial cell line-derived neurotrophic factor (GDNF).

    Science.gov (United States)

    Miwa, Keiko; Lee, Jong-Kook; Takagishi, Yoshiko; Opthof, Tobias; Fu, Xianming; Hirabayashi, Masumi; Watabe, Kazuhiko; Jimbo, Yasuhiko; Kodama, Itsuo; Komuro, Issei

    2013-01-01

    Molecular signaling of cardiac autonomic innervation is an unresolved issue. Here, we show that glial cell line-derived neurotrophic factor (GDNF) promotes cardiac sympathetic innervation in vitro and in vivo. In vitro, ventricular myocytes (VMs) and sympathetic neurons (SNs) isolated from neonatal rat ventricles and superior cervical ganglia were cultured at a close distance. Then, morphological and functional coupling between SNs and VMs was assessed in response to GDNF (10 ng/ml) or nerve growth factor (50 ng/ml). As a result, fractions of neurofilament-M-positive axons and synapsin-I-positive area over the surface of VMs were markedly increased with GDNF by 9-fold and 25-fold, respectively, compared to control without neurotrophic factors. Pre- and post-synaptic stimulation of β1-adrenergic receptors (BAR) with nicotine and noradrenaline, respectively, resulted in an increase of the spontaneous beating rate of VMs co-cultured with SNs in the presence of GDNF. GDNF overexpressing VMs by adenovirus vector (AdGDNF-VMs) attracted more axons from SNs compared with mock-transfected VMs. In vivo, axon outgrowth toward the denervated myocardium in adult rat hearts after cryoinjury was also enhanced significantly by adenovirus-mediated GDNF overexpression. GDNF acts as a potent chemoattractant for sympathetic innervation of ventricular myocytes, and is a promising molecular target for regulation of cardiac function in diseased hearts.

  13. Axon guidance of sympathetic neurons to cardiomyocytes by glial cell line-derived neurotrophic factor (GDNF.

    Directory of Open Access Journals (Sweden)

    Keiko Miwa

    Full Text Available Molecular signaling of cardiac autonomic innervation is an unresolved issue. Here, we show that glial cell line-derived neurotrophic factor (GDNF promotes cardiac sympathetic innervation in vitro and in vivo. In vitro, ventricular myocytes (VMs and sympathetic neurons (SNs isolated from neonatal rat ventricles and superior cervical ganglia were cultured at a close distance. Then, morphological and functional coupling between SNs and VMs was assessed in response to GDNF (10 ng/ml or nerve growth factor (50 ng/ml. As a result, fractions of neurofilament-M-positive axons and synapsin-I-positive area over the surface of VMs were markedly increased with GDNF by 9-fold and 25-fold, respectively, compared to control without neurotrophic factors. Pre- and post-synaptic stimulation of β1-adrenergic receptors (BAR with nicotine and noradrenaline, respectively, resulted in an increase of the spontaneous beating rate of VMs co-cultured with SNs in the presence of GDNF. GDNF overexpressing VMs by adenovirus vector (AdGDNF-VMs attracted more axons from SNs compared with mock-transfected VMs. In vivo, axon outgrowth toward the denervated myocardium in adult rat hearts after cryoinjury was also enhanced significantly by adenovirus-mediated GDNF overexpression. GDNF acts as a potent chemoattractant for sympathetic innervation of ventricular myocytes, and is a promising molecular target for regulation of cardiac function in diseased hearts.

  14. Cytotoxicity of Silver Nanoparticles in Human Embryonic Stem Cell-Derived Fibroblasts and an L-929 Cell Line

    Directory of Open Access Journals (Sweden)

    Hui Peng

    2012-01-01

    Full Text Available Consensus about the toxicity of silver nanoparticles (Ag-NPs has not been reached, even though extensive attention has been paid to this issue. This confusion may be due to physicochemical factors of Ag-NPs and the cell model used for biological safety evaluation. In the present study, human embryonic stem cell-derived fibroblasts (EBFs, which have been considered a closer representative of the in vivo response, were used as a novel cell model to assess the cytotoxicity of Ag-NPs (~20 nm and ~100 nm in comparison with L-929 fibroblast cell line. Cell proliferation, cell cycle, apoptosis, p53 expression, and cellular uptake were examined. Results showed that Ag-NPs presented higher cytotoxicity to EBF than to L-929. EBF demonstrated a stronger capacity to ingest Ag-NPs, a higher G2/M arrest, and more upgraduated p53 expression after exposed to Ag-NPs for 48 h when compared with L-929. It could be concluded that EBF exhibited a more sensitive response to Ag-NPs compared with L-929 cells, indicating that EBF may be a valid candidate for cytotoxicity screening assays of nanoparticles.

  15. Characterisation of a mouse tumour cell line with in vitro derived resistance to verapamil.

    OpenAIRE

    Twentyman, P. R.; Wright, K A; Fox, N. E.

    1990-01-01

    We have established a subline (EMT6/VRP) of the mouse tumour cell line EMT6/P with acquired resistance to the calcium transport blocker verapamil (VRP). The subline was 4-fold resistant to the cytoxicity of VRP alone compared with the parent line but of similar sensitivity to adriamycin, vincristine or colchicine. EMT6/VRP cells growing in 75 micrograms ml-1 VRP were morphologically different from and larger in diameter than EMT6/P cells, but these two parameters reverted almost to normal wit...

  16. Characterization of murine pituitary-derived cell lines Tpit/F1, Tpit/E and TtT/GF.

    Science.gov (United States)

    Yoshida, Saishu; Higuchi, Masashi; Ueharu, Hiroki; Nishimura, Naoto; Tsuda, Mitsuyoshi; Yako, Hideji; Chen, Mo; Mitsuishi, Hideo; Sano, Yoshiya; Kato, Takako; Kato, Yukio

    2014-01-01

    The pituitary is an important endocrine tissue of the vertebrate that produces and secretes many hormones. Accumulating data suggest that several types of cells compose the pituitary, and there is growing interest in elucidating the origin of these cell types and their roles in pituitary organogenesis. Therein, the histogenous cell line is an extremely valuable experimental tool for investigating the function of derived tissue. In this study, we compared gene expression profiles by microarray analysis and real-time PCR for murine pituitary tumor-derived non-hormone-producing cell lines TtT/GF, Tpit/F1 and Tpit/E. Several genes are characteristically expressed in each cell line: Abcg2, Nestin, Prrx1, Prrx2, CD34, Eng, Cspg4 (Ng2), S100β and nNos in TtT/GF; Cxcl12, Raldh1, Msx1 and Twist1 in Tpit/F1; and Cxadr, Sox9, Cdh1, EpCAM and Krt8 in Tpit/E. Ultimately, we came to the following conclusions: TtT/GF cells show the most differentiated state, and may have some properties of the pituitary vascular endothelial cell and/or pericyte. Tpit/F1 cells show the epithelial and mesenchymal phenotypes with stemness still in a transiting state. Tpit/E cells have a phenotype of epithelial cells and are the most immature cells in the progression of differentiation or in the initial endothelial-mesenchymal transition (EMT). Thus, these three cell lines must be useful model cell lines for investigating pituitary stem/progenitor cells as well as organogenesis.

  17. Multilineage potential of stable human mesenchymal stem cell line derived from fetal marrow.

    Directory of Open Access Journals (Sweden)

    Atsushi Nagai

    Full Text Available Human bone marrow contains two major cell types, hematopoietic stem cells (HSCs and mesenchymal stem cells (MSCs. MSCs possess self-renewal capacity and pluripotency defined by their ability to differentiate into osteoblasts, chondrocytes, adipocytes and muscle cells. MSCs are also known to differentiate into neurons and glial cells in vitro, and in vivo following transplantation into the brain of animal models of neurological disorders including ischemia and intracerebral hemorrhage (ICH stroke. In order to obtain sufficient number and homogeneous population of human MSCs, we have clonally isolated permanent and stable human MSC lines by transfecting primary cell cultures of fetal human bone marrow MSCs with a retroviral vector encoding v-myc gene. One of the cell lines, HM3.B10 (B10, was found to differentiate into neural cell types including neural stem cells, neurons, astrocytes and oligodendrocytes in vitro as shown by expression of genetic markers for neural stem cells (nestin and Musashi1, neurons (neurofilament protein, synapsin and MAP2, astrocytes (glial fibrillary acidic protein, GFAP and oligodendrocytes (myelin basic protein, MBP as determined by RT-PCR assay. In addition, B10 cells were found to differentiate into neural cell types as shown by immunocytochical demonstration of nestin (for neural stem cells, neurofilament protein and beta-tubulin III (neurons GFAP (astrocytes, and galactocerebroside (oligodendrocytes. Following brain transplantation in mouse ICH stroke model, B10 human MSCs integrate into host brain, survive, differentiate into neurons and astrocytes and induce behavioral improvement in the ICH animals. B10 human MSC cell line is not only a useful tool for the studies of organogenesis and specifically for the neurogenesis, but also provides a valuable source of cells for cell therapy studies in animal models of stroke and other neurological disorders.

  18. S100B protein, brain-derived neurotrophic factor, and glial cell line-derived neurotrophic factor in human milk.

    Directory of Open Access Journals (Sweden)

    Ruisong Li

    Full Text Available BACKGROUND: Human milk contains a wide variety of nutrients that contribute to the fulfillment of its functions, which include the regulation of newborn development. However, few studies have investigated the concentrations of S100B protein, brain-derived neurotrophic factor (BDNF, and glial cell line-derived neurotrophic factor (GDNF in human milk. The associations of the concentrations of S100B protein, BDNF, and GDNF with maternal factors are not well explored. METHODOLOGY/PRINCIPAL FINDINGS: To investigate the concentrations of S100B protein, BDNF, and GDNF in human milk and characterize the maternal factors associated with their levels in human milk, human milk samples were collected at days 3, 10, 30, and 90 after parturition. Levels of S100B protein, BDNF, and GDNF, and their mRNAs in the samples were detected. Then, these concentrations were compared with lactation and other maternal factors. S100B protein levels in human milk samples collected at 3, 10, 30, and 90 d after parturition were 1249.79±398.10, 1345.05±539.16, 1481.83±573.30, and 1414.39±621.31 ng/L, respectively. On the other hand, the BDNF concentrations in human milk samples were 10.99±4.55, 13.01±5.88, 13.35±6.43, and 2.83±5.47 µg/L, while those of GDNF were 10.90±1.65, 11.38±1., 11.29±3.10, and 11.40±2.21 g/L for the same time periods. Maternal post-pregnancy body mass index was positively associated with S100B levels in human milk (r = 0.335, P = 0.030<0.05. In addition, there was a significant correlation between the levels of S100B protein and BDNF (z = 2.09, P = 0.037<0.05. Delivery modes were negatively associated with the concentration of GDNF in human milk. CONCLUSIONS: S100B protein, BDNF, and GDNF are present in all samples of human milk, and they may be responsible for the long term effects of breast feeding.

  19. Presynaptic modulation of spinal nociceptive transmission by glial cell line-derived neurotrophic factor (GDNF).

    Science.gov (United States)

    Salio, Chiara; Ferrini, Francesco; Muthuraju, Sangu; Merighi, Adalberto

    2014-10-01

    The role of glial cell line-derived neurotrophic factor (GDNF) in nociceptive pathways is still controversial, as both pronociceptive and antinociceptive actions have been reported. To elucidate this role in the mouse, we performed combined structural and functional studies in vivo and in acute spinal cord slices where C-fiber activation was mimicked by capsaicin challenge. Nociceptors and their terminals in superficial dorsal horn (SDH; laminae I-II) constitute two separate subpopulations: the peptidergic CGRP/somatostatin+ cells expressing GDNF and the nonpeptidergic IB4+ neurons expressing the GFRα1-RET GDNF receptor complex. Ultrastructurally the dorsal part of inner lamina II (LIIid) harbors a mix of glomeruli that either display GDNF/somatostatin (GIb)-IR or GFRα1/IB4 labeling (GIa). LIIid thus represents the preferential site for ligand-receptor interactions. Functionally, endogenous GDNF released from peptidergic CGRP/somatostatin+ nociceptors upon capsaicin stimulation exert a tonic inhibitory control on the glutamate excitatory drive of SDH neurons as measured after ERK1/2 phosphorylation assay. Real-time Ca(2+) imaging and patch-clamp experiments with bath-applied GDNF (100 nM) confirm the presynaptic inhibition of SDH neurons after stimulation of capsaicin-sensitive, nociceptive primary afferent fibers. Accordingly, the reduction of the capsaicin-evoked [Ca(2+)]i rise and of the frequency of mEPSCs in SDH neurons is specifically abolished after enzymatic ablation of GFRα1. Therefore, GDNF released from peptidergic CGRP/somatostatin+ nociceptors acutely depresses neuronal transmission in SDH signaling to nonpeptidergic IB4+ nociceptors at glomeruli in LIIid. These observations are of potential pharmacological interest as they highlight a novel modality of cross talk between nociceptors that may be relevant for discrimination of pain modalities.

  20. Immunotherapy against Metastatic Melanoma with Human iPS Cell-Derived Myeloid Cell Lines Producing Type I Interferons.

    Science.gov (United States)

    Miyashita, Azusa; Fukushima, Satoshi; Nakahara, Satoshi; Kubo, Yosuke; Tokuzumi, Aki; Yamashita, Junji; Aoi, Jun; Haruta, Miwa; Senju, Satoru; Nishimura, Yasuharu; Jinnin, Masatoshi; Ihn, Hironobu

    2016-03-01

    In recent years, immunotherapy for advanced melanoma has been gaining increased attention. The efficacy of anti-cytotoxic T-lymphocyte antigen 4 antibodies, anti-programmed cell death 1 antibodies, and the BRAF(V600E) kinase inhibitor has been proven in metastatic melanoma. At the same time, adoptive cell transfer has significant effects against metastatic melanoma; however, it is difficult to apply on a broad scale because of the problems related to cell preparation. To overcome these problems, we developed immune cell therapy using induced pluripotent stem (iPS) cells. The benefit of our method is that a large number of cells can be readily obtained. We focused on macrophages for immune cell therapy because macrophage infiltration is frequently observed in solid cancers. In this study, the efficacy of human iPS cell-derived myeloid cell lines (iPS-ML) genetically modified to express type I IFNs against human melanoma cells was examined. The morphology, phagocytic ability, and surface markers of iPS-ML were similar to those of macrophages. The iPS-ML that express type I IFNs (iPS-ML-IFN) showed significant effects in inhibiting the growth of disseminated human melanoma cells in SCID mice. The infiltration of iPS-ML into the tumor nests was confirmed immunohistologically. The iPS-ML-IFNs increased the expression of CD169, a marker of M1 macrophages that can activate antitumor immunity. The iPS-ML-IFNs could infiltrate into tumor tissue and exert anticancer effects in the local tumor tissue. In conclusion, this method will provide a new therapeutic modality for metastatic melanoma.

  1. Derivation and characterization of novel nonhuman primate embryonic stem cell lines from in vitro-fertilized baboon preimplantation embryos.

    Science.gov (United States)

    Chang, Tien-Cheng; Liu, Ya-Guang; Eddy, Carlton A; Jacoby, Ethan S; Binkley, Peter A; Brzyski, Robert G; Schenken, Robert S

    2011-06-01

    The development of nonhuman primate (NHP) embryonic stem cell (ESC) models holds great promise for cell-mediated treatment of debilitating diseases and to address numerous unanswered questions regarding the therapeutic efficacy of ESCs while supplanting ethical considerations involved with human studies. Here we report successful establishment and characterization of 3 novel baboon (Papio cynocephalus) ESC lines from the inner cell mass of intracytoplasmic sperm injection-derived blastocysts. Embryos were cultured in an improved baboon embryo in vitro culture protocol. The inner cell mass of blastocyst was laser-dissected and plated on mouse embryonic fibroblast feeder cell monolayer in the NHP ESC culture medium. Three cell lines with characteristic ESC morphology have been cultured through an extended period (>14 months), with 2 male cell lines (UT-1 and -2) and 1 female cell line (UT-3) displaying normal baboon karyotypes. Reverse transcription-polymerase chain reaction analysis confirmed that all 3 lines express primate ESC pluripotency markers, including OCT-4, NANOG, SOX-2, TERT, TDGF, LEFTYA, and REX-1. All 3 lines demonstrated positive immunocytochemical staining for OCT-4, stage-specific embryonic antigen-3, stage-specific embryonic antigen-4, TRA-1-60, and TRA-1-81. Baboon ESCs injected into NOD/SCID mice formed teratomas with all 3 germ layers. In addition, embryoid body-like spherical structures were derived and initial outgrowth was observed when embedded into extracellular matrix Matrigel. The ESC lines established in this NHP model have the potential to extend our knowledge in the fields of developmental biology, regenerative medicine, and future applications, including preclinical safety assessment of in vivo stem cell therapy.

  2. Glial cell line-derived neurotrophic factor promotes barrier maturation and wound healing in intestinal epithelial cells in vitro.

    Science.gov (United States)

    Meir, Michael; Flemming, Sven; Burkard, Natalie; Bergauer, Lisa; Metzger, Marco; Germer, Christoph-Thomas; Schlegel, Nicolas

    2015-10-15

    Recent data suggest that neurotrophic factors from the enteric nervous system are involved in intestinal epithelial barrier regulation. In this context the glial cell line-derived neurotrophic factor (GDNF) was shown to affect gut barrier properties in vivo directly or indirectly by largely undefined processes in a model of inflammatory bowel disease (IBD). We further investigated the potential role and mechanisms of GDNF in the regulation of intestinal barrier functions. Immunostaining of human gut specimen showed positive GDNF staining in enteric neuronal plexus and in enterocytes. In Western blots of the intestinal epithelial cell lines Caco2 and HT29B6, significant amounts of GDNF were detected, suggesting that enterocytes represent an additional source of GDNF. Application of recombinant GDNF on Caco2 and HT29B6 cells for 24 h resulted in significant epithelial barrier stabilization in monolayers with immature barrier functions. Wound-healing assays showed a significantly faster closure of the wounded areas after GDNF application. GDNF augmented cAMP levels and led to significant inactivation of p38 MAPK in immature cells. Activation of p38 MAPK signaling by SB-202190 mimicked GDNF-induced barrier maturation, whereas the p38 MAPK activator anisomycin blocked GDNF-induced effects. Increasing cAMP levels had adverse effects on barrier maturation, as revealed by permeability measurements. However, increased cAMP augmented the proliferation rate in Caco2 cells, and GDNF-induced proliferation of epithelial cells was abrogated by the PKA inhibitor H89. Our data show that enterocytes represent an additional source of GDNF synthesis. GDNF contributes to wound healing in a cAMP/PKA-dependent manner and promotes barrier maturation in immature enterocytes cells by inactivation of p38 MAPK signaling.

  3. Polyketide Derivatives from Annona muricata Linn Leaves as Potencial Anticancer Material by Combination Treatment With Doxorubicin on Hela Cell Line

    Science.gov (United States)

    Artanti, A. N.; Astirin, O. P.; Prayito, A.; Widiyaningsih, R. F.; Prihapsara, F.

    2017-02-01

    One of the compounds found effication as an anticancer agent on cervical cancer is acetogenin, a polyketide compound that is abundant in Annona muricata L. leaves. This study has been done to examine polyketide derivatives was isolated from Annona muricata L. which has potency to induce apoptosis by p53 expression on hela cell line. An approach recently develop to overcome side effect of chemoterapeutic agent is used of combined chemoterapeutic agent, i.e doxorubicin. The determination of cytotoxic combination activity from polyketide derivative and doxorubicin was evaluated using MTT assay to obtain the value of CI (combination index). The expression of p53 profile was evaluated by immunohistochemistry on hela cell line. Data analysis showed that combination of polyketide derivative from Annona muricata L. (38,5 µg/ml) and doxorubicin with all of concentration performed synergistic effect on hela cell line with CI value from 0,33 – 0,65. The analysis on immucytochemistry showed that polyketide derivative from Annona muricata L. leaves could enhance p53 pathway significantly on hela cell line.

  4. Human Umbilical Cord Blood-Derived Serum for Culturing the Supportive Feeder Cells of Human Pluripotent Stem Cell Lines

    Directory of Open Access Journals (Sweden)

    Ruttachuk Rungsiwiwut

    2016-01-01

    Full Text Available Although human pluripotent stem cells (hPSCs can proliferate robustly on the feeder-free culture system, genetic instability of hPSCs has been reported in such environment. Alternatively, feeder cells enable hPSCs to maintain their pluripotency. The feeder cells are usually grown in a culture medium containing fetal bovine serum (FBS prior to coculture with hPSCs. The use of FBS might limit the clinical application of hPSCs. Recently, human cord blood-derived serum (hUCS showed a positive effect on culture of mesenchymal stem cells. It is interesting to test whether hUCS can be used for culture of feeder cells of hPSCs. This study was aimed to replace FBS with hUCS for culturing the human foreskin fibroblasts (HFFs prior to feeder cell preparation. The results showed that HFFs cultured in hUCS-containing medium (HFF-hUCS displayed fibroblastic features, high proliferation rates, short population doubling times, and normal karyotypes after prolonged culture. Inactivated HFF-hUCS expressed important genes, including Activin A, FGF2, and TGFβ1, which have been implicated in the maintenance of hPSC pluripotency. Moreover, hPSC lines maintained pluripotency, differentiation capacities, and karyotypic stability after being cocultured for extended period with inactivated HFF-hUCS. Therefore, the results demonstrated the benefit of hUCS for hPSCs culture system.

  5. Glial cell line-derived neurotrophic factor gene delivery via a polyethylene imine grafted chitosan carrier

    Directory of Open Access Journals (Sweden)

    Peng YS

    2014-06-01

    Full Text Available Yu-Shiang Peng,1,* Po-Liang Lai,2,* Sydney Peng,1 His-Chin Wu,3 Siang Yu,1 Tsan-Yun Tseng,4 Li-Fang Wang,5 I-Ming Chu1 1Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 2Department of Orthopedic Surgery, Chang Gung Memorial Hospital at Linkou, Chang Gung University College of Medicine, Taoyuan, 3Department of Materials Engineering, Tatung University, Taipei, 4Graduate School of Biotechnology and Bioengineering, College of Engineering, Yuan Ze University, Chung-Li, 5Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, Taiwan *Yu-Shiang Peng and Po-Liang Lai contributed equally to this work Abstract: Parkinson’s disease is known to result from the loss of dopaminergic neurons. Direct intracerebral injections of high doses of recombinant glial cell line-derived neurotrophic factor (GDNF have been shown to protect adult nigral dopaminergic neurons. Because GDNF does not cross the blood–brain barrier, intracerebral gene transfer is an ideal option. Chitosan (CHI is a naturally derived material that has been used for gene transfer. However, the low water solubility often leads to decreased transfection efficiency. Grafting of highly water-soluble polyethylene imines (PEI and polyethylene glycol onto polymers can increase their solubility. The purpose of this study was to design a non-viral gene carrier with improved water solubility as well as enhanced transfection efficiency for treating Parkinsonism. Two molecular weights (Mw =600 and 1,800 g/mol of PEI were grafted onto CHI (PEI600-g-CHI and PEI1800-g-CHI, respectively by opening the epoxide ring of ethylene glycol diglycidyl ether (EX-810. This modification resulted in a non-viral gene carrier with less cytotoxicity. The transfection efficiency of PEI600-g-CHI/deoxyribonucleic acid (DNA polyplexes was significantly higher than either PEI1800-g-CHI/DNA or CHI/DNA polyplexes. The maximal GDNF expression of PEI600-g-CHI/DNA was at the

  6. Solutions for the Cell Cycle in Cell Lines Derived from Human Tumors

    Directory of Open Access Journals (Sweden)

    B. Zubik-Kowal

    2006-01-01

    Full Text Available The goal of the paper is to compute efficiently solutions for model equations that have the potential to describe the growth of human tumor cells and their responses to radiotherapy or chemotherapy. The mathematical model involves four unknown functions of two independent variables: the time variable t and dimensionless relative DNA content x. The unknown functions can be thought of as the number density of cells and are solutions of a system of four partial differential equations. We construct solutions of the system, which allow us to observe the number density of cells for different t and x values. We present results of our experiments which simulate population kinetics of human cancer cells in vitro. Our results show a correspondence between predicted and experimental data.

  7. Enhanced Replication of Hepatitis E Virus Strain 47832c in an A549-Derived Subclonal Cell Line

    Science.gov (United States)

    Schemmerer, Mathias; Apelt, Silke; Trojnar, Eva; Ulrich, Rainer G.; Wenzel, Jürgen J.; Johne, Reimar

    2016-01-01

    Hepatitis E virus (HEV) is a human pathogen with increasing importance. The lack of efficient cell culture systems hampers systematic studies on its replication cycle, virus neutralization and inactivation. Here, several cell lines were inoculated with the HEV genotype 3c strain 47832c, previously isolated from a chronically infected transplant patient. At 14 days after inoculation the highest HEV genome copy numbers were found in A549 cells, followed by PLC/PRF/5 cells, whereas HepG2/C3A, Huh-7 Lunet BLR and MRC-5 cells only weakly supported virus replication. Inoculation of A549-derived subclone cell lines resulted in most cases in reduced HEV replication. However, the subclone A549/D3 was susceptible to lower virus concentrations and resulted in higher virus yields as compared to parental A549 cells. Transcriptome analysis indicated a downregulation of genes for carcinoembryonic antigen-related cell adhesion molecules (CEACAM) 5 and 6, and an upregulation of the syndecan 2 (SDC2) gene in A549/D3 cells compared to A549 cells. However, treatment of A549/D3 cells or A549 cells with CEACAM- or syndecan 2-specific antisera did not influence HEV replication. The results show that cells supporting more efficient HEV replication can be selected from the A549 cell line. The specific mechanisms responsible for the enhanced replication remain unknown. PMID:27690085

  8. Variations in Humanized and Defined Culture Conditions Supporting Derivation of New Human Embryonic Stem Cell Lines

    DEFF Research Database (Denmark)

    Fletcher, Judy M; Ferrier, Patricia M; Gardner, John O

    2006-01-01

    and the potential to form cells representative of all three germinal lineages in vitro and in vivo, when transitioned off of feeders onto Laminin or Matrigel. Our study thus demonstrates the capacity to integrate derivation strategies eliminating a requirement for animal immune compliment and serum products......, with a transitional requirement for human feeder cells. This represents another sequential step in the generation of therapeutic grade stem cells with reduced risk of zoonotic pathogen transmission....

  9. Dysfunctional p53 deletion mutants in cell lines derived from Hodgkin's lymphoma

    DEFF Research Database (Denmark)

    Feuerborn, Alexander; Moritz, Constanze; von Bonin, Frederike;

    2006-01-01

    Classical Hodgkin's lymphoma (cHL) is a distinct malignancy of the immune system. Despite the progress made in the understanding of the pathology of cHL, the transforming events remain to be elucidated. It has been proposed that mutations in the TP53 gene in biopsy material as well as cell lines ...... loss of exons 10 - 11 (L1236) or exons 8 - 11 (HDLM-2), respectively. These changes were found in otherwise rarely mutated regions of TP53. Cell lines L1236 and HDLM-2 harbour fusions with alu-repeats in their TP53 mRNA 3'-ends, resulting in the carboxyterminal truncation and loss...

  10. Secretion of nerve growth factor, brain-derived neurotrophic factor, and glial cell-line derived neurotrophic factor in co-culture of four cell types in cerebrospinal fluid-containing medium

    Institute of Scientific and Technical Information of China (English)

    Sanjiang Feng; Minghua Zhuang; Rui Wu

    2012-01-01

    The present study co-cultured human embryonic olfactory ensheathing cells, human Schwann cells, human amniotic epithelial cells and human vascular endothelial cells in complete culture medium- containing cerebrospinal fluid. Enzyme linked immunosorbent assay was used to detect nerve growth factor, brain-derived neurotrophic factor, and glial cell line-derived neurotrophic factor secretion in the supernatant of co-cultured cells. Results showed that the number of all cell types reached a peak at 7–10 days, and the expression of nerve growth factor, brain-derived neurotrophic factor, and glial cell line-derived neurotrophic factor peaked at 9 days. Levels of secreted nerve growth factor were four-fold higher than brain-derived neurotrophic factor, which was three-fold higher than glial cell line-derived neurotrophic factor. Increasing concentrations of cerebrospinal fluid (10%, 20% and 30%) in the growth medium caused a decrease of neurotrophic factor secretion. Results indicated co-culture of human embryonic olfactory ensheathing cells, human Schwann cells, human amniotic epithelial cells and human vascular endothelial cells improved the expression of nerve growth factor, brain-derived neurotrophic factor, and glial cell line-derived neurotrophic factor. The reduction of cerebrospinal fluid extravasation at the transplant site after spinal cord injury is beneficial for the survival and secretion of neurotrophic factors from transplanted cells.

  11. Longitudinal Claudin Gene Expression Analyses in Canine Mammary Tissues and Thereof Derived Primary Cultures and Cell Lines

    Science.gov (United States)

    Hammer, Susanne C.; Becker, Annegret; Rateitschak, Katja; Mohr, Annika; Lüder Ripoli, Florenza; Hennecke, Silvia; Junginger, Johannes; Hewicker-Trautwein, Marion; Brenig, Bertram; Ngezahayo, Anaclet; Nolte, Ingo; Murua Escobar, Hugo

    2016-01-01

    Human and canine mammary tumours show partial claudin expression deregulations. Further, claudins have been used for directed therapeutic approaches. However, the development of claudin targeting approaches requires stable claudin expressing cell lines. This study reports the establishment and characterisation of canine mammary tissue derived cell lines, analysing longitudinally the claudin-1, -3, -4 and -7 expressions in original tissue samples, primary cultures and developed cell lines. Primary cultures were derived from 17 canine mammary tissues: healthy, lobular hyperplasia, simple adenoma, complex adenoma, simple tubular carcinoma, complex carcinoma, carcinoma arising in a benign mixed tumour and benign mixed tissue. Cultivation was performed, if possible, until passage 30. Claudin mRNA and protein expressions were analysed by PCR, QuantiGene Plex Assay, immunocytochemistry and immunofluorescence. Further, cytokeratin expression was analysed immunocytochemically. Cultivation resulted in 11 established cell lines, eight showing epithelial character. In five of the early passages the claudin expressions decreased compared to the original tissues. In general, claudin expressions were diminished during cultivation. Three cell lines kept longitudinally claudin, as well as epithelial marker expressions, representing valuable tools for the development of claudin targeted anti-tumour therapies. PMID:27690019

  12. Whole-blastocyst culture followed by laser drilling technology enhances the efficiency of inner cell mass isolation and embryonic stem cell derivation from good- and poor-quality mouse embryos: new insights for derivation of human embryonic stem cell lines.

    Science.gov (United States)

    Cortes, J L; Sánchez, L; Catalina, P; Cobo, F; Bueno, C; Martínez-Ramirez, A; Barroso, A; Cabrera, C; Ligero, G; Montes, R; Rubio, R; Nieto, A; Menendez, P

    2008-04-01

    The optimization of human embryonic stem (hES) cell line derivation methods is challenging because many worldwide laboratories have neither access to spare human embryos nor ethical approval for using supernumerary human embryos for hES cell derivation purposes. Additionally, studies performed directly on human embryos imply a waste of precious human biological material. In this study, we developed a new strategy based on the combination of whole-blastocyst culture followed by laser drilling destruction of the trophoectoderm for improving the efficiency of inner cell mass (ICM) isolation and ES cell derivation using murine embryos. Embryos were divided into good- and poor-quality embryos. We demonstrate that the efficiency of both ICM isolation and ES cell derivation using this strategy is significantly superior to whole-blastocyst culture or laser drilling technology itself. Regardless of the ICM isolation method, the ES cell establishment depends on a feeder cell growth surface. Importantly, this combined methodology can be successfully applied to poor-quality blastocysts that otherwise would not be suitable for laser drilling itself nor immunosurgery in an attempt to derive ES cell lines due to the inability to distinguish the ICM. The ES cell lines derived by this combined method were characterized and shown to maintain a typical morphology, undifferentiated phenotype, and in vitro and in vivo three germ layer differentiation potential. Finally, all ES cell lines established using either technology acquired an aneuploid karyotype after extended culture periods, suggesting that the method used for ES cell derivation does not seem to influence the karyotype of the ES cells after extended culture. This methodology may open up new avenues for further improvements for the derivation of hES cells, the majority of which are derived from frozen, poor-quality human embryos.

  13. Synthesis of 2,3-diyne-1,4-naphthoquinone derivatives and evaluation of cytotoxic activity against tumor cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Mauro G.; Camara, Celso A.; Silva, Tania M.S., E-mail: ccelso@dcm.ufrpe.br [Universidade Federal Rural de Pernambuco (LSCB/UFRPE), Recife, PE (Brazil). Dept. de Ciencias Moleculares. Lab. de Sintese de Compostos Bioativos; Feitosa, Anderson C.S.; Meira, Assuero S.; Pessoa, Claudia [Universidade Federal do Ceara (LOE/UFC), Fortaleza, CE (Brazil). Dept. de Fisiologia e Farmacologia. Lab. de Oncologia Experimental

    2013-09-15

    A series of 2,3-diyne-1,4-naphthoquinone derivatives was synthesized from 2,3-dibromo- 1,4-naphthoquinone and various functionalized terminal alkynes using palladium-catalyzed Sonogashira cross-coupling reaction. The diynes were evaluated as potential cytotoxic agents against three tumor cell lines: human ovarian adenocarcinoma (OVCAR-8), human metastatic prostate cancer (PC-3M) and human bronchoalveolar lung carcinoma (NCI-H358M), presenting, in general, satisfactory results for inhibition of cell growth. (author)

  14. Dopamine receptor activation increases glial cell line-derived neurotrophic factor in experimental stroke.

    Science.gov (United States)

    Kuric, Enida; Wieloch, Tadeusz; Ruscher, Karsten

    2013-09-01

    Treatment with levodopa enhances functional recovery after experimental stroke but its mechanisms of action are elusive. Reactive astrocytes in the ischemic hemisphere are involved in mechanisms promoting recovery and also express dopamine 1 (D1) and dopamine 2 (D2) receptors. Here we investigated if the activation of astrocytic dopamine receptors (D1 and D2) regulates the expression of glial cell line-derived neurotrophic factor (GDNF) after combined in vitro hypoxia/aglycemia (H/A) and studied the expression of GDNF in the ischemic brain after treatment with levodopa/benserazide following transient occlusion of the middle cerebral artery (tMCAO) in the rat. Twenty-four hours after H/A, GDNF levels were upregulated in exposed astrocytes compared to normoxic control cultures and further elevated by the addition of the selective D1 receptor agonist (R)-(+)-SKF-38393 hydrochloride while D1 receptor antagonism by R(+)-SCH-23390 hydrochloride significantly reduced GDNF. No effect on GDNF levels was observed by the application of the D2 receptor agonist R(-)-2,10,11-trihydroxy-N-propyl-noraporphine hydrobromide hydrate or S-(-)-eticlopride hydrochloride (D2 receptor antagonist). After tMCAO, GDNF was upregulated in D1 expressing reactive astrocytes in the peri-infarct area. In addition, treatment with levodopa/benserazide significantly increased GDNF levels in the infarct core and peri-infarct area after tMCAO without affecting the expression of glial fibrillar acidic protein (GFAP), an intermediate filament and marker of reactive gliosis. After stroke, GDNF levels increase in the ischemic hemisphere in rats treated with levodopa, implicating GDNF in the mechanisms of tissue reorganization and plasticity and in l-DOPA enhanced recovery of lost brain function. Our results support levodopa treatment as a potential recovery enhancing therapy in stroke patients.

  15. Association between smoking behaviour and genetic variants of glial cell line-derived neurotrophic factor

    Indian Academy of Sciences (India)

    ESZTER KOTYUK; NORA NEMETH; ZSOLT RONAI; ZSOLT DEMETROVICS; MARIA SASVARI-SZEKELY; ANNA SZEKELY

    2016-12-01

    Glial cell line-derived neurotrophic factor (GDNF) promotes development and differentiation of dopaminergic neurons, thus it has an important role in dopamine-related neuropsychiatric disorders. Since the role of dopamine system in smoking iswell established, we hypothesized that GDNF gene variants may affect smoking behaviour. Self-reported data on smoking behaviour (never smoked, quit, occasional, or regular smokers) and level of nicotine addiction (Hooked on Nicotine Checklist and Fagerstrom Nicotine Addiction Scale), anxiety, as well as buccal samples were obtained from 930 Hungarian young adults (18–35 years). Genetic analysis involved eight GDNF single-nucleotide polymorphisms (SNP) (rs1981844, rs3812047, rs3096140, rs2973041, rs2910702, rs1549250, rs2973050 and rs11111). Allele-wise association analyses of the eight GDNF SNPs provided a significant association between smoking behaviour and rs3096140 (P = 0.0039). The minor allele (C) was more frequent in those groups who smoked in some form (quit, occasional or regular smokers) as compared to those who neversmoked (P = 0.0046). This result remained significant after Bonferroni correction for multiple testing. In the ever smoking group, no significant differences were found in the level of nicotine addiction by the alleles of these polymorphisms. Also, nosignificant interaction of rs3096140 and smoking categories were observed on anxiety mean scores. Although previous data demonstrated an association between GDNF rs2910704 and severity of methamphetamine use to the best of our knowledge, this is the first study on the role of GDNF genetic variations in smoking behaviour. Our results suggest that GDNF rs3096140 might be involved in the genetic background of smoking, independent of anxiety characteristics.

  16. Glial cell line-derived neurotrophic factor (GDNF) as a novel candidate gene of anxiety.

    Science.gov (United States)

    Kotyuk, Eszter; Keszler, Gergely; Nemeth, Nora; Ronai, Zsolt; Sasvari-Szekely, Maria; Szekely, Anna

    2013-01-01

    Glial cell line-derived neurotrophic factor (GDNF) is a neurotrophic factor for dopaminergic neurons with promising therapeutic potential in Parkinson's disease. A few association analyses between GDNF gene polymorphisms and psychiatric disorders such as schizophrenia, attention deficit hyperactivity disorder and drug abuse have also been published but little is known about any effects of these polymorphisms on mood characteristics such as anxiety and depression. Here we present an association study between eight (rs1981844, rs3812047, rs3096140, rs2973041, rs2910702, rs1549250, rs2973050 and rs11111) GDNF single nucleotide polymorphisms (SNPs) and anxiety and depression scores measured by the Hospital Anxiety and Depression Scale (HADS) on 708 Caucasian young adults with no psychiatric history. Results of the allele-wise single marker association analyses provided significant effects of two single nucleotide polymorphisms on anxiety scores following the Bonferroni correction for multiple testing (p = 0.00070 and p = 0.00138 for rs3812047 and rs3096140, respectively), while no such result was obtained on depression scores. Haplotype analysis confirmed the role of these SNPs; mean anxiety scores raised according to the number of risk alleles present in the haplotypes (p = 0.00029). A significant sex-gene interaction was also observed since the effect of the rs3812047 A allele as a risk factor of anxiety was more pronounced in males. In conclusion, this is the first demonstration of a significant association between the GDNF gene and mood characteristics demonstrated by the association of two SNPs of the GDNF gene (rs3812047 and rs3096140) and individual variability of anxiety using self-report data from a non-clinical sample.

  17. Glial cell line-derived neurotrophic factor (GDNF as a novel candidate gene of anxiety.

    Directory of Open Access Journals (Sweden)

    Eszter Kotyuk

    Full Text Available Glial cell line-derived neurotrophic factor (GDNF is a neurotrophic factor for dopaminergic neurons with promising therapeutic potential in Parkinson's disease. A few association analyses between GDNF gene polymorphisms and psychiatric disorders such as schizophrenia, attention deficit hyperactivity disorder and drug abuse have also been published but little is known about any effects of these polymorphisms on mood characteristics such as anxiety and depression. Here we present an association study between eight (rs1981844, rs3812047, rs3096140, rs2973041, rs2910702, rs1549250, rs2973050 and rs11111 GDNF single nucleotide polymorphisms (SNPs and anxiety and depression scores measured by the Hospital Anxiety and Depression Scale (HADS on 708 Caucasian young adults with no psychiatric history. Results of the allele-wise single marker association analyses provided significant effects of two single nucleotide polymorphisms on anxiety scores following the Bonferroni correction for multiple testing (p = 0.00070 and p = 0.00138 for rs3812047 and rs3096140, respectively, while no such result was obtained on depression scores. Haplotype analysis confirmed the role of these SNPs; mean anxiety scores raised according to the number of risk alleles present in the haplotypes (p = 0.00029. A significant sex-gene interaction was also observed since the effect of the rs3812047 A allele as a risk factor of anxiety was more pronounced in males. In conclusion, this is the first demonstration of a significant association between the GDNF gene and mood characteristics demonstrated by the association of two SNPs of the GDNF gene (rs3812047 and rs3096140 and individual variability of anxiety using self-report data from a non-clinical sample.

  18. Diatom-derived polyunsaturated aldehydes activate cell death in human cancer cell lines but not normal cells.

    Directory of Open Access Journals (Sweden)

    Clementina Sansone

    Full Text Available Diatoms are an important class of unicellular algae that produce bioactive polyunsaturated aldehydes (PUAs that induce abortions or malformations in the offspring of invertebrates exposed to them during gestation. Here we compare the effects of the PUAs 2-trans,4-trans-decadienal (DD, 2-trans,4-trans-octadienal (OD and 2-trans,4-trans-heptadienal (HD on the adenocarcinoma cell lines lung A549 and colon COLO 205, and the normal lung/brunch epithelial BEAS-2B cell line. Using the viability MTT/Trypan blue assays, we show that PUAs have a toxic effect on both A549 and COLO 205 tumor cells but not BEAS-2B normal cells. DD was the strongest of the three PUAs tested, at all time-intervals considered, but HD was as strong as DD after 48 h. OD was the least active of the three PUAs. The effect of the three PUAs was somewhat stronger for A549 cells. We therefore studied the death signaling pathway activated in A549 showing that cells treated with DD activated Tumor Necrosis Factor Receptor 1 (TNFR1 and Fas Associated Death Domain (FADD leading to necroptosis via caspase-3 without activating the survival pathway Receptor-Interacting Protein (RIP. The TNFR1/FADD/caspase pathway was also observed with OD, but only after 48 h. This was the only PUA that activated RIP, consistent with the finding that OD causes less damage to the cell compared to DD and HD. In contrast, cells treated with HD activated the Fas/FADD/caspase pathway. This is the first report that PUAs activate an extrinsic apoptotic machinery in contrast to other anticancer drugs that promote an intrinsic death pathway, without affecting the viability of normal cells from the same tissue type. These findings have interesting implications also from the ecological viewpoint considering that HD is one of the most common PUAs produced by diatoms.

  19. Diatom-derived polyunsaturated aldehydes activate cell death in human cancer cell lines but not normal cells.

    Science.gov (United States)

    Sansone, Clementina; Braca, Alessandra; Ercolesi, Elena; Romano, Giovanna; Palumbo, Anna; Casotti, Raffaella; Francone, Maria; Ianora, Adrianna

    2014-01-01

    Diatoms are an important class of unicellular algae that produce bioactive polyunsaturated aldehydes (PUAs) that induce abortions or malformations in the offspring of invertebrates exposed to them during gestation. Here we compare the effects of the PUAs 2-trans,4-trans-decadienal (DD), 2-trans,4-trans-octadienal (OD) and 2-trans,4-trans-heptadienal (HD) on the adenocarcinoma cell lines lung A549 and colon COLO 205, and the normal lung/brunch epithelial BEAS-2B cell line. Using the viability MTT/Trypan blue assays, we show that PUAs have a toxic effect on both A549 and COLO 205 tumor cells but not BEAS-2B normal cells. DD was the strongest of the three PUAs tested, at all time-intervals considered, but HD was as strong as DD after 48 h. OD was the least active of the three PUAs. The effect of the three PUAs was somewhat stronger for A549 cells. We therefore studied the death signaling pathway activated in A549 showing that cells treated with DD activated Tumor Necrosis Factor Receptor 1 (TNFR1) and Fas Associated Death Domain (FADD) leading to necroptosis via caspase-3 without activating the survival pathway Receptor-Interacting Protein (RIP). The TNFR1/FADD/caspase pathway was also observed with OD, but only after 48 h. This was the only PUA that activated RIP, consistent with the finding that OD causes less damage to the cell compared to DD and HD. In contrast, cells treated with HD activated the Fas/FADD/caspase pathway. This is the first report that PUAs activate an extrinsic apoptotic machinery in contrast to other anticancer drugs that promote an intrinsic death pathway, without affecting the viability of normal cells from the same tissue type. These findings have interesting implications also from the ecological viewpoint considering that HD is one of the most common PUAs produced by diatoms.

  20. Derivation and characterization of Chinese human embryonic stem cell line with high potential to differentiate into pancreatic and hepatic cells

    Institute of Scientific and Technical Information of China (English)

    SHI Cheng; SHEN Huan; JIANG Wei; SONG Zhi-hua; WANG Cheng-yan; WEI Li-hui

    2011-01-01

    Background Human embryonic stem cells have prospective uses in regenerative medicine and drug screening. Every human embryonic stem cell line has its own genetic background,which determines its specific ability for differentiation as well as susceptibility to drugs. It is necessary to compile many human embryonic stem cell lines with various backgrounds for future clinical use,especially in China due to its large population. This study contributes to isolating new Chinese human embryonic stem cell lines with clarified directly differentiation ability.Methods Donated embryos that exceeded clinical use in our in vitro fertilization-embryo transfer (IVF-ET) center were collected to establish human embryonic stem cells lines with informed consent. The classic growth factors of basic fibroblast growth factor (bFGF) and recombinant human leukaemia inhibitory factor (hLIF) for culturing embryonic stem cells were used to capture the stem cells from the plated embryos. Mechanical and enzymetic methods were used to propogate the newly established human embryonic stem cells line. The new cell line was checked for pluripotent characteristics with detecting the expression of stemness genes and observing spontaneous differentiation both in vitro and in vivo. Finally similar step-wise protocols from definitive endoderm to target specific cells were used to check the cell line's ability to directly differentiate into pancreatic and hepatic cells.Results We generated a new Chinese human embryonic stem cells line,CH1. This cell line showed the same characteristics as other reported Chinese human embryonic stem cells lines:normal morphology,karyotype and pluripotency in vitro and in vivo. The CH1 cells could be directly differentiated towards pancreatic and hepatic cells with equal efficiency compared to the H1 cell line.Conclusions This newly established Chinese cell line,CH1,which is pluripotent and has high potential to differentiate into pancreatic and hepatic cells,will provide

  1. Methoxyflavone derivatives modulate the effect of TRAIL-induced apoptosis in human leukemic cell lines

    Directory of Open Access Journals (Sweden)

    Wudtiwai Benjawan

    2011-12-01

    Full Text Available Abstract Background Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL induces apoptosis in various tumor cells, but does not affect normal cells or human leukemic cells, such as MOLT-4 and U937 cells, which are relatively resistant to TRAIL. Three flavonoids extracted from the rhizome of K. parviflora were 5,7-dimethoxyflavone (DMF, 5,7,4'-trimethoxyflavone (TMF and 3,5,7,3',4'-pentamethoxyflavone (PMF, and synthetic flavonoids including 5-methoxyflavone (5-MF and 2'-methoxyflavone (2"-MF were chosen for testing in this study. The aims of this study were to examine whether the treatment of TRAIL-resistant leukemia MOLT-4 and U937 cells, with methoxyflavone derivatives could enhance the apoptotic response and to identify the mechanism involved. Methods The cytotoxic effect of methoxyflavone (MF derivatives in MOLT-4, U937 and peripheral blood mononuclear cells (PBMCs was analyzed by the MTT assay. The induction of apoptosis and the reduction of mitochondrial transmembrane potential (ΔΨm after staining with annexin V FITC and propidium iodide (PI, and 3,3'-dihexyloxacarbocyanine iodide (DiOC6, respectively, were performed using flow cytometry. ROS production was determined by staining with 2',7'-dichlorofluorescin diacetate and processed with a flow cytometer. DR4, DR5, cFLIP, Mcl-1, BAX and Bid expression were demonstrated by immunoblotting. Caspase-8 and -3 activities were determined by using IETD-AFC and DEVD-AFC substrates and the fluorescence intensity was measured. Results All methoxyflavone derivatives were cytotoxic to MOLT-4, U937 cells and PBMCs, except DMF, TMF and PMF were not toxic to PBMCs. All MF derivatives induced human leukemic MOLT-4 cell apoptosis, but not in U937 cells. Percentage of MOLT-4 cells with (ΔΨm was increased when treated with DMF, TMF, PMF, 5-MF and 2'-MF in the presence of TRAIL. 5-MF and 2'-MF enhanced TRAIL-induced apoptosis through the up-regulation of both DRs and the down-regulation of c

  2. Pluripotent embryonal carcinoma clones derived from the human teratocarcinoma cell line Tera-2. Differentiation in vivo and in vitro.

    Science.gov (United States)

    Andrews, P W; Damjanov, I; Simon, D; Banting, G S; Carlin, C; Dracopoli, N C; Føgh, J

    1984-02-01

    We have derived and characterized single cell clones from a xenograft tumor of the teratocarcinoma cell line Tera-2. Isozyme and chromosomal analyses confirmed their common origin. When cultures of the clones were maintained at a high cell density, many cells exhibited a morphology and cell surface antigen phenotype typical of human embryonal carcinoma cells. These features included a high nucleo-cytoplasmic ratio, prominent nucleoli, and the expression of the globoseries glycolipid antigen SSEA-3. In addition, other cells, in many respects resembling these typical embryonal carcinoma cells, were distinguished by a marked tendency to accumulate cytoplasmic glycogen. Similar cells, together with more differentiated cells, were seen in low passage cultures of Tera-2 itself. When the clones were grown at a low cell density many cells assumed a larger, flatter shape, a few with multiple nucleoli. Also, the fucosylated lactosamine antigen SSEA-1 appeared on some cells, whereas expression of SSEA-3 and HLA-A,B,C tended to be reduced. Often the synthesis of fibronectin was increased. However, no obvious cytoplasmic differentiation was seen upon ultrastructural examination, and synthesis of human chorionic gonadotropin, alpha-fetoprotein, and laminin was not detected. In contrast to the limited spontaneous changes seen in culture, marked differentiation occurred in tumors obtained following injection of the cells into athymic (nu/nu) mice. In additional to embryonal carcinoma cells, these tumors contained a variety of somatic tissues that included glandular structures, possibly related to the primitive gut, and neural elements. These cell lines derived from Tera-2 constitute the first example of clonal human embryonal carcinoma cells, adapted to growth in vitro, that have retained the capacity for differentiation into diverse somatic tissues.

  3. Immunophenotypic, cytogenetic, and mutational characterization of cell lines derived from myelodysplastic syndrome patients after progression to acute myeloid leukemia.

    Science.gov (United States)

    Palau, Anna; Mallo, Mar; Palomo, Laura; Rodríguez-Hernández, Ines; Diesch, Jeannine; Campos, Diana; Granada, Isabel; Juncà, Jordi; Drexler, Hans G; Solé, Francesc; Buschbeck, Marcus

    2017-03-01

    Leukemia cell lines have been widely used in the hematology field to unravel mechanistic insights and to test new therapeutic strategies. Myelodysplastic syndromes (MDS) comprise a heterogeneous group of diseases that are characterized by ineffective hematopoiesis and frequent progress to acute myeloid leukemia (AML). A few cell lines have been established from MDS patients after progression to AML but their characterization is incomplete. Here we provide a detailed description of the immunophenotypic profile of the MDS-derived cell lines SKK-1, SKM-1, F-36P; and MOLM-13. Specifically, we analyzed a comprehensive panel of markers that are currently applied in the diagnostic routine for myeloid disorders. To provide high-resolution genetic data comprising copy number alterations and losses of heterozygosity we performed whole genome single nucleotide polymorphism-based arrays and included the cell line OHN-GM that harbors the frequent chromosome arm 5q deletion. Furthermore, we assessed the mutational status of 83 disease-relevant genes. Our results provide a resource to the MDS and AML field that allows researchers to choose the best-matching cell line for their functional studies. © 2016 Wiley Periodicals, Inc.

  4. Inhibition of Cancer Derived Cell Lines Proliferation by Synthesized Hydroxylated Stilbenes and New Ferrocenyl-Stilbene Analogs. Comparison with Resveratrol

    Directory of Open Access Journals (Sweden)

    Malik Chalal

    2014-06-01

    Full Text Available Further advances in understanding the mechanism of action of resveratrol and its application require new analogs to identify the structural determinants for the cell proliferation inhibition potency. Therefore, we synthesized new trans-resveratrol derivatives by using the Wittig and Heck methods, thus modifying the hydroxylation and methoxylation patterns of the parent molecule. Moreover, we also synthesized new ferrocenylstilbene analogs by using an original protective group in the Wittig procedure. By performing cell proliferation assays we observed that the resveratrol derivatives show inhibition on the human colorectal tumor SW480 cell line. On the other hand, cell viability/cytotoxicity assays showed a weaker effects on the human hepatoblastoma HepG2 cell line. Importantly, the lack of effect on non-tumor cells (IEC18 intestinal epithelium cells demonstrates the selectivity of these molecules for cancer cells. Here, we show that the numbers and positions of hydroxy and methoxy groups are crucial for the inhibition efficacy. In addition, the presence of at least one phenolic group is essential for the antitumoral activity. Moreover, in the series of ferrocenylstilbene analogs, the presence of a hidden phenolic function allows for a better solubilization in the cellular environment and significantly increases the antitumoral activity.

  5. Differential effects and transport kinetics of ascorbate derivatives in leukemic cell lines.

    Science.gov (United States)

    Koh, W S; Lee, S J; Lee, H; Park, C; Park, M H; Kim, W S; Yoon, S S; Park, K; Hong, S I; Chung, M H; Park, C H

    1998-01-01

    In order to investigate the differential effects of ascorbate derivatives on leukemic cell growth, we examined their stabilities and transmembrane transport efficiencies. The growth of HL-60 and U937 cells was dose-dependently inhibited by ascorbic acid and sodium ascorbate, but not by dehydroascorbic acid and magnesium ascorbyl 2-phosphate up to 200 microM. The growth-suppression by ascorbic acid was dependent on its redox state, showing a complete or partial reversion by ascorbate oxidase or FeCl3 addition, respectively. Three different patterns of intracellular ascorbic acid accumulation were observed by HPLC according to the species of ascorbate derivative applied for the incubation. Compared with the reduced form of ascorbic acid, the oxidized forms (dehydroascorbic acid, ascorbic acid plus ascorbate oxidase or FeCl3) were rapidly transported into cells and readily degraded, while magnesium ascorbyl 2-phosphate, a stable derivative of ascorbic acid, slowly elevated the intracellular level of ascorbic acid, reaching a plateau at 24 hours. We also measured the differential kinetics of ascorbic acid levels In culture supernatants following the addition of ascorbate derivatives. Ascorbic acid at 40, 10, or 1 microM was observed 3 hours following treatment with 100 microM of ascorbic acid, ascorbic acid plus FeCl3, or magnesium ascorbyl 2-phosphate, respectively. No ascorbic acid was found in the culture supernatant treated with dehydroascorbic acid. This order of ascorbic acid concentrations in culture supernatant reflects their growth-inhibitory effects. Thus the growth inhibitory effect of ascorbic acid appears to be dependent on its concentration in culture medium rather than its intracellular concentration. In conclusion, the results in this study indicate that the differential effects of ascorbate derivatives appear to be due to the actual concentration differences of the reduced form of ascorbic acid in culture medium following their addition, which is

  6. A CLONALLY DERIVED CELL LINE,9L-EGFR IS USEFUL FOR THE STUDIES OF CANCER CELLS BEARING EGF RECEPTOR

    Institute of Scientific and Technical Information of China (English)

    Lin Qi; Rajesh Agarwal; Rana Singh; Gail S. Harrisona; L.Michael Glodea

    2003-01-01

    Since the epidermal growth factor receptor (EGFR) is a key regulator in cell signaling pathways of cancer cell. To investigate the mechanism between cancer cells survival and its EGFR expression, drug selection of cancer cells target therapy, we generated a cell line, 9L-EGFR, which stably expressed human EGFR; the parental rat glioma cell line, 9L, does not contain endogenous EGFR message or protein. Our results show that 9L-EGFR cells had high levels of EGFR on their cell surface by using RT-PCR, Western analysis and Flow cytometry analysis. The EGFR transfected into 9L cells was capable of being activated by EGF, in which either phosphorylated (p-EGFR) or total (EGFR) was showed by Western blot. This investigation may contribute to the further studies of cancer cells bearing EGFR.

  7. Establishment of a pig fibroblast-derived cell line for locus-directed transgene expression in cell cultures and blastocysts

    DEFF Research Database (Denmark)

    Jakobsen, Jannik E; Li, Juan; Moldt, Brian;

    2011-01-01

    We report the establishment of a spontaneously immortalized pig cell line designated Pig Flip-in Visualize (PFV) for locus-directed transgene expression in pig cells and blastocysts. The PFV cell line was isolated from pig ear fibroblasts transfected with a Sleeping Beauty DNA transposon......-based docking vector harbouring a selection gene, an eGFP reporter gene, and an Flp recombinase site for locus-directed gene insertion. PFV cells have insertion of a single docking vector with stable eGFP expression and generated phenotypic normal blastocysts with transgene expression after somatic cell nuclear...

  8. Oxidative Stress Triggered by Apigenin Induces Apoptosis in a Comprehensive Panel of Human Cervical Cancer-Derived Cell Lines

    Science.gov (United States)

    Souza, Raquel P.; Gimenes, Fabrícia; Ratti, Bianca A.; Kaplum, Vanessa; Bruschi, Marcos L.; Nakamura, Celso V.; Maria-Engler, Silvya S.

    2017-01-01

    Recently, the cytotoxic effects of apigenin (4′,5,7-trihydroxyflavone), particularly its marked inhibition of cancer cell viability both in vitro and in vivo, have attracted the attention of the anticancer drug discovery field. Despite this, there are few studies of apigenin in cervical cancer, and these studies have mostly been conducted using HeLa cells. To evaluate the possibility of apigenin as a new therapeutic candidate for cervical cancer, we evaluated its cytotoxic effects in a comprehensive panel of human cervical cancer-derived cell lines including HeLa (human papillomavirus/HPV 18-positive), SiHa (HPV 16-positive), CaSki (HPV 16 and HPV 18-positive), and C33A (HPV-negative) cells in comparison to a nontumorigenic spontaneously immortalized human epithelial cell line (HaCaT). Our results demonstrated that apigenin had a selective cytotoxic effect and could induce apoptosis in all cervical cancer cell lines which were positively marked with Annexin V, but not in HaCaT (control cells). Additionally, apigenin was able to induce mitochondrial redox impairment, once it increased ROS levels and H2O2, decreased the Δψm, and increased LPO. Still, apigenin was able to inhibit migration and invasion of cancer cells. Thus, apigenin appears to be a promising new candidate as an anticancer drug for cervical cancer induced by different HPV genotypes. PMID:28191273

  9. Effects of acetylcholine and electrical stimulation on glial cell line-derived neurotrophic factor production in skeletal muscle cells.

    Science.gov (United States)

    Vianney, John-Mary; Miller, Damon A; Spitsbergen, John M

    2014-11-01

    Glial cell line-derived neurotrophic factor (GDNF) is a neurotrophic factor required for survival of neurons in the central and peripheral nervous system. Specifically, GDNF has been characterized as a survival factor for spinal motor neurons. GDNF is synthesized and secreted by neuronal target tissues, including skeletal muscle in the peripheral nervous system; however, the mechanisms by which GDNF is synthesized and released by skeletal muscle are not fully understood. Previous results suggested that cholinergic neurons regulate secretion of GDNF by skeletal muscle. In the current study, GDNF production by skeletal muscle myotubes following treatment with acetylcholine was examined. Acetylcholine receptors on myotubes were identified with labeled alpha-bungarotoxin and were blocked using unlabeled alpha-bungarotoxin. The question of whether electrical stimulation has a similar effect to that of acetylcholine was also investigated. Cells were stimulated with voltage pulses; at 1 and 5 Hz frequencies for times ranging from 30 min to 48 h. GDNF content in myotubes and GDNF in conditioned culture medium were quantified by enzyme-linked immunosorbant assay. Results suggest that acetylcholine and short-term electrical stimulation reduce GDNF secretion, while treatment with carbachol or long-term electrical stimulation enhances GDNF production by skeletal muscle.

  10. Canine distemper virus induces apoptosis in cervical tumor derived cell lines

    Directory of Open Access Journals (Sweden)

    Rajão Daniela S

    2011-06-01

    Full Text Available Abstract Apoptosis can be induced or inhibited by viral proteins, it can form part of the host defense against virus infection, or it can be a mechanism for viral spread to neighboring cells. Canine distemper virus (CDV induces apoptotic cells in lymphoid tissues and in the cerebellum of dogs naturally infected. CDV also produces a cytopathologic effect, leading to apoptosis in Vero cells in tissue culture. We tested canine distemper virus, a member of the Paramyxoviridae family, for the ability to trigger apoptosis in HeLa cells, derived from cervical cancer cells resistant to apoptosis. To study the effect of CDV infection in HeLa cells, we examined apoptotic markers 24 h post infection (pi, by flow cytometry assay for DNA fragmentation, real-time PCR assay for caspase-3 and caspase-8 mRNA expression, and by caspase-3 and -8 immunocytochemistry. Flow cytometry showed that DNA fragmentation was induced in HeLa cells infected by CDV, and immunocytochemistry revealed a significant increase in the levels of the cleaved active form of caspase-3 protein, but did not show any difference in expression of caspase-8, indicating an intrinsic apoptotic pathway. Confirming this observation, expression of caspase-3 mRNA was higher in CDV infected HeLa cells than control cells; however, there was no statistically significant change in caspase-8 mRNA expression profile. Our data suggest that canine distemper virus induced apoptosis in HeLa cells, triggering apoptosis by the intrinsic pathway, with no participation of the initiator caspase -8 from the extrinsic pathway. In conclusion, the cellular stress caused by CDV infection of HeLa cells, leading to apoptosis, can be used as a tool in future research for cervical cancer treatment and control.

  11. Cytotoxic, Antiproliferative and Apoptotic Effects of New Benzimidazole Derivatives on A549 Lung Carcinoma and C6 Glioma Cell Lines.

    Science.gov (United States)

    Yurttas, Leyla; Demirayak, Seref; Ciftci, Gulsen Akalın

    2015-01-01

    Benzimidazole ring is a versatile structure which has been extensively utilized in medicinal chemistry. Since we are working on 1,2-disubstutited benzimidazoles, we have reported new antitumor active derivatives. As a continuation to our previous work, we have synthesized a new series of 1-(2-aryl-2-oxoethyl)-2-[(N,Ndimethylamino/pyrrolidinyl/piperidinyl)thiocarbamoyl] benzimidazole derivatives. Anticancer activity of the compounds was evaluated using MTT assay, BrdU assay and flow cytometric analysis on A549 human lung carcinoma and C6 rat glioma cell lines. Compounds bearing dimethylamino moiety exhibited higher antitumor activity.

  12. Synthesis and apoptotic activity of new pyrazole derivatives in cancer cell lines.

    Science.gov (United States)

    Nitulescu, George Mihai; Draghici, Constantin; Olaru, Octavian Tudorel; Matei, Lilia; Ioana, Aldea; Dragu, Laura Denisa; Bleotu, Coralia

    2015-09-01

    We designed and synthesized new pyrazole thiourea chimeric derivatives and confirmed their structures by NMR and IR spectra. Apoptotic effects were studied in human cancer cells. The N-[(1-methyl-1H-pyrazol-4-yl)carbonyl]-N'-(3-bromophenyl)-thiourea compound (4b) exhibited the highest apoptosis-inducing effect. Compound 4b and the thiazole derivatives, 5b and 6b, increased the expression of tumor necrosis factor receptors TRAIL-R2 and TRAIL-R1, accompanied by down-modulation of pro-caspase 3 levels, and the augmentation of cleaved caspase 3. They also reduced the levels of apoptosis inhibitory proteins and the expression of the heat-shock proteins Hsp27 and Hsp70. All the tested pyrazole derivatives induced a concentration-dependent increase of cells in G2/M phases. The analysis of the experimental data indicates the reduction of Akt phosphorylation as the most probable cellular mechanism of action for the tested compounds. The in vitro study indicated that compound 4b could be a promising anti-cancer drug, to be further developed in animal models of cancer.

  13. Ins1 Gene Up-Regulated in a β-Cell Line Derived from Ins2 Knockout Mice

    OpenAIRE

    2003-01-01

    The authors have derived a new β-cell line (βIns2−/−lacZ) from Ins2−/− mice that carry the lacZ reporter gene under control of the Ins2 promoter. βIns2−/−lacZ cells stained positively using anti-insulin antibody, expressed β-cell–specific genes encoding the transcription factor PDX-1, glucokinase, and Glut-2, retained glucose-responsiveness for insulin secretion, and expressed the lacZ gene. Analysis of Ins1 expression by reverse transcriptase–polymerase chain reaction (RT-PCR) showed that In...

  14. Anti-proliferation effects of benzimidazole derivatives on HCT-116 colon cancer and MCF-7 breast cancer cell lines.

    Science.gov (United States)

    Al-Douh, Mohammed Hadi; Sahib, Hayder B; Osman, Hasnah; Abd Hamid, Shafida; Salhimi, Salizawati M

    2012-01-01

    Benzimidazoles 1-4 were obtained using modified synthesis methods and studied for their ability to inhibit cell proliferation of colon cancer cell HCT-116 and breast cancer cell MCF-7 using MTT assays. In the HCT-116 cell line, benzimidazole 2 was found to have an IC50 value of 16.2 ± 3.85 μg/mL and benzimidazole 1 a value of 28.5 ± 2.91 μg/mL, while that for benzimidazole 4 was 24.08 ± 0.31 μg/mL. In the MCF-7 cell line, benzimidazole 4 had an IC50 value of 8.86 ± 1.10 μg/mL, benzimidazole 2 a value of 30.29 ± 6.39 μg/mL, and benzimidazole 1 a value of 31.2 ± 4.49 μg/mL. Benzimidazole 3 exerted no cytotoxicity in either of the cell lines, with IC50 values >50 μg/mL. The results suggest that benzimidazoles derivatives may have chemotherapeutic potential for treatment of both colon and breast cancers.

  15. SET-NUP214 fusion in acute myeloid leukemia- and T-cell acute lymphoblastic leukemia-derived cell lines

    Directory of Open Access Journals (Sweden)

    Zaborski Margarete

    2009-01-01

    Full Text Available Abstract Background SET-NUP214 fusion resulting from a recurrent cryptic deletion, del(9(q34.11q34.13 has recently been described in T-cell acute lymphoblastic leukemia (T-ALL and in one case of acute myeloid leukemia (AML. The fusion protein appears to promote elevated expression of HOXA cluster genes in T-ALL and may contribute to the pathogenesis of the disease. We screened a panel of ALL and AML cell lines for SET-NUP214 expression to find model systems that might help to elucidate the cellular function of this fusion gene. Results Of 141 human leukemia/lymphoma cell lines tested, only the T-ALL cell line LOUCY and the AML cell line MEGAL expressed the SET(TAF-Iβ-NUP214 fusion gene transcript. RT-PCR analysis specifically recognizing the alternative first exons of the two TAF-I isoforms revealed that the cell lines also expressed TAF-Iα-NUP214 mRNA. Results of fluorescence in situ hybridization (FISH and array-based copy number analysis were both consistent with del(9(q34.11q34.13 as described. Quantitative genomic PCR also confirmed loss of genomic material between SET and NUP214 in both cell lines. Genomic sequencing localized the breakpoints of the SET gene to regions downstream of the stop codon and to NUP214 intron 17/18 in both LOUCY and MEGAL cells. Both cell lines expressed the 140 kDa SET-NUP214 fusion protein. Conclusion Cell lines LOUCY and MEGAL express the recently described SET-NUP214 fusion gene. Of special note is that the formation of the SET exon 7/NUP214 exon 18 gene transcript requires alternative splicing as the SET breakpoint is located downstream of the stop codon in exon 8. The cell lines are promising model systems for SET-NUP214 studies and should facilitate investigating cellular functions of the the SET-NUP214 protein.

  16. Optimization of protocols for derivation of mouse embryonic stem cell lines from refractory strains, including the non obese diabetic mouse.

    Science.gov (United States)

    Davies, Timothy J; Fairchild, Paul J

    2012-07-01

    The derivation of pluripotent embryonic stem cells (ESCs) from a variety of genetic backgrounds remains a desirable objective in the generation of mice functionally deficient in genes of interest and the modeling of human disease. Nevertheless, disparity in the ease with which different strains of mice yield ESC lines has long been acknowledged. Indeed, the generation of bona fide ESCs from the non obese diabetic (NOD) mouse, a well-characterized model of human type I diabetes, has historically proved especially difficult to achieve. Here, we report the development of protocols for the derivation of novel ESC lines from C57Bl/6 mice based on the combined use of high concentrations of leukemia inhibitory factor and serum-replacement, which is equally applicable to fresh and cryo-preserved embryos. Further, we demonstrate the success of this approach using Balb/K and CBA/Ca mice, widely considered to be refractory strains. CBA/Ca ESCs contributed to the somatic germ layers of chimeras and displayed a very high competence at germline transmission. Importantly, we were able to use the same protocol for the derivation of ESC lines from nonpermissive NOD mice. These ESCs displayed a normal karyotype that was robustly stable during long-term culture, were capable of forming teratomas in vivo and germline competent chimeras after injection into recipient blastocysts. Further, these novel ESC lines efficiently formed embryoid bodies in vitro and could be directed in their differentiation along the dendritic cell lineage, thus illustrating their potential application to the generation of cell types of relevance to the pathogenesis of type I diabetes.

  17. A Comparitive Assessement of Cytokine Expression in Human-Derived Cell Lines Exposed to Alpha Particles and X-Rays

    Directory of Open Access Journals (Sweden)

    Vinita Chauhan

    2012-01-01

    Full Text Available Alpha- (α- particle radiation exposure has been linked to the development of lung cancer and has been identified as a radiation type likely to be employed in radiological dispersal devices. Currently, there exists a knowledge gap concerning cytokine modulations associated with exposure to α-particles. Bio-plex technology was employed to investigate changes in proinflammatory cytokines in two human-derived cell lines. Cells were irradiated at a dose of 1.5 Gy to either α-particles or X-rays at equivalent dose rates. The two cell lines exhibited a unique pattern of cytokine expression and the response varied with radiation type. Of the 27 cytokines assessed, only vascular endothelin growth factor (VEGF was observed to be modulated in both cell lines solely after α-particle exposure, and the expression of VEGF was shown to be dose responsive. These results suggest that certain proinflammatory cytokines may be involved in the biological effects related to α- particle exposure and the responses are cell type and radiation type specific.

  18. Cell Line Derived 5-FU and Irinotecan Drug-Sensitivity Profiles Evaluated in Adjuvant Colon Cancer Trial Data

    DEFF Research Database (Denmark)

    Buhl, Ida Kappel; Gerster, Sarah; Delorenzi, Mauro

    2016-01-01

    PURPOSE: This study evaluates whether gene signatures for chemosensitivity for irinotecan and 5-fluorouracil (5-FU) derived from in vitro grown cancer cell lines can predict clinical sensitivity to these drugs. METHODS: To test if an irinotecan signature and a SN-38 signature could identify...... patients who benefitted from the addition of irinotecan to 5-FU, we used gene expression profiles based on cell lines and clinical tumor material. These profiles were applied to expression data obtained from pretreatment formalin fixed paraffin embedded (FFPE) tumor tissue from 636 stage III colon cancer...... patients enrolled in the PETACC-3 prospective randomized clinical trial. A 5-FU profile developed similarly was assessed by comparing the PETACC-3 cohort with a cohort of 359 stage II colon cancer patients who underwent surgery but received no adjuvant therapy. RESULTS: There was no statistically...

  19. The effects of ultraviolet light on aspects of DNA metabolism in cell lines derived from plodia interpunctella and Trichoplusia ni

    Energy Technology Data Exchange (ETDEWEB)

    Styer, S.C.

    1991-01-01

    Insect cells are significantly more resistant to the lethal effects of 254 nm ultraviolet light (UV) than mammalian cells. The predominant photoproduct produced by UV is the (5-6) cyclobutyl pyrimidine dimer. There is controversy whether this lesion, or another, the pyrimidine (6-4) pyrimidone, is responsible for the biological effects of UV. Insect cells contain a photolyase which selectively removes the (5-6), but not the (6-4) lesion, so that the relative roles of these lesions can be studied. Insect cell lines derived from the cabbage looper and the Indian meal moth were exposed to UV and analyzed for their ability to incorporate [sup 3]H-thymidine. After exposure, cells from the Indian meal moth exhibited a rapid and prolonged depression in the rate of thymidine incorporation, whereas cells from the cabbage looper showed only a slight drop in incorporation and a rapid recovery. The extent of depression in thymidine incorporation was not correlated to the amount of cell killing by UV in these cell lines. Blockage of fork progression was correlated to the depression in thymidine incorporation. Photoreactivation did not entirely relieve blockage, depression in thymidine incorporation or cell killing, indicating that although the (5-6) dimer appears to be the major lesion responsible for these effects, other lesions, such as the (6-4) photoproduct, may play a role. In addition, activation of alternative sites of replicon initiation appeared to correlate with the depression in thymidine incorporation and the excision capabilities in these cells. The resistance to UV in these insect cells compared to mammalian cells may be due to their ability to rapidly remove the (5-6) lesion, which is the critical lesion in these insect cells.

  20. Development, characterization and use of a porcine epiblast-derived liver stem cell line: ARS-PICM-19

    Science.gov (United States)

    Totipotent embryonic stem cell lines have not been established from ungulates, however, we have developed several somatic cell lines from the in vitro culture of pig epiblast cells. One such cell line, PICM-19, was isolated via colony-cloning and was found to spontaneously differentiate into hepati...

  1. Effect of insulin on functional status of cord blood-derived dendritic cells and on dendritic cell-induced CTL cytotoxicity against pancreatic cancer cell lines

    Institute of Scientific and Technical Information of China (English)

    Qiu-Liang Liu; Yi-Sheng Wang; Jia-Xiang Wang

    2009-01-01

    BACKGROUND: Dendritic cells (DCs) are the most important antigen-presenting cells in the human body, and DCs with different mature status possess different or even opposite functions. This study was designed to explore the influence of insulin on the functional status of cord blood-derived DCs and on DC-induced cytotoxic T lymphocyte (CTL) activity against pancreatic cancer cell lines. METHODS: Mononuclear cells were isolated from fresh cord blood. Interleukin-4 (IL-4) and granulocyte-macrophage colony-stimulating factor (GM-CSF) were used to induce or stimulate the mononuclear cells. Insulin at different concentrations served to modify DCs, and then DC morphology, number, and growth status were assessed. The DC immunophenotype was detected with a flow cytometer. The IL-12 in DC supernatant was determined by ELISA. DC functional status was evaluated by the autologous mixed lymphocyte reaction. T lymphocytes were induced by insulin-modified DCs to become CTLs. The CTL cytotoxicity against pancreatic cancer cell lines was determined. RESULTS:  Mononuclear cells from cord blood can be differentiated into DCs by cytokine induction and insulin modification. With the increase in insulin concentration (2.5-25 mg/L), the expression of DC HLA-DR, CD1α, CD80, and CD83 was significantly increased, the DC ability to secrete IL-12 was significantly improved, DC function to activate autologous lymphocytes was significantly enhanced, and the cytotoxicity of CTLs induced by insulin-modified DCs against pancreatic cancer cell lines was significantly strengthened. CONCLUSIONS: Insulin may facilitate DC induction and maturation, and improve the reproductive activity of autologous lymphocytes. The cytotoxicity of CTLs induced by insulin-modified DCs against pancreatic cancer cell lines was significantly enhanced. Insulin may serve as a factor modifying DCs and inducing CTLs in vitro in insulin biotherapy.

  2. MIO-M1 cells and similar muller glial cell lines derived from adult human retina exhibit neural stem cell characteristics.

    Science.gov (United States)

    Lawrence, Jean M; Singhal, Shweta; Bhatia, Bhairavi; Keegan, David J; Reh, Thomas A; Luthert, Philip J; Khaw, Peng T; Limb, Gloria Astrid

    2007-08-01

    Growing evidence suggests that glial cells may have a role as neural precursors in the adult central nervous system. Although it has been shown that Müller cells exhibit progenitor characteristics in the postnatal chick and rat retinae, their progenitor-like role in developed human retina is unknown. We first reported the Müller glial characteristics of the spontaneously immortalized human cell line MIO-M1, but recently we have derived similar cell lines from the neural retina of several adult eye donors. Since immortalization is one of the main properties of stem cells, we investigated whether these cells expressed stem cell markers. Cells were grown as adherent monolayers, responded to epidermal growth factor, and could be expanded indefinitely without growth factors under normal culture conditions. They could be frozen and thawed without losing their characteristics. In the presence of extracellular matrix and fibroblast growth factor-2 or retinoic acid, they acquired neural morphology, formed neurospheres, and expressed neural stem cell markers including betaIII tubulin, Sox2, Pax6, Chx10, and Notch 1. They also expressed markers of postmitotic retinal neurons, including peripherin, recoverin, calretinin, S-opsin, and Brn3. When grafted into the subretinal space of dystrophic Royal College of Surgeons rats or neonatal Lister hooded rats, immortalized cells migrated into the retina, where they expressed various markers of retinal neurons. These observations indicate that adult human neural retina harbors a population of cells that express both Müller glial and stem cell markers and suggest that these cells may have potential use for cell-based therapies to restore retinal function. Disclosure of potential conflicts of interest is found at the end of this article.

  3. Diverse HLA-I Peptide Repertoires of the APC Lines MUTZ3-Derived Immature and Mature Dendritic Cells and THP1-Derived Macrophages.

    Science.gov (United States)

    Nyambura, Lydon Wainaina; Jarmalavicius, Saulius; Baleeiro, Renato Brito; Walden, Peter

    2016-09-15

    Dendritic cells (DCs) and macrophages are specialized APCs that process and present self-Ags for induction of tolerance and foreign Ags to initiate T cell-mediated immunity. Related to differentiation states they have specific phenotypes and functions. However, the impact of these differentiations on Ag processing and presentation remains poorly defined. To gain insight into this, we analyzed and compared the HLA-I peptidomes of MUTZ3-derived human immature and mature DC lines and THP1-derived macrophages by liquid chromatography tandem mass spectrometry. We found that the HLA-I peptidomes were heterogeneous and individualized and were dominated by nonapeptides with similar HLA-I binding affinities and anchor residues. MUTZ3-derived DCs and THP1-derived macrophages were able to sample peptides from source proteins of almost all subcellular locations and were involved in various cellular functions in similar proportion, with preference to proteins involved in cell communication, signal transduction, protein metabolism, and transcription factor/regulator activity.

  4. Investigation of Content, Stoichiometry and Transfer of miRNA from Human Neural Stem Cell Line Derived Exosomes.

    Science.gov (United States)

    Stevanato, Lara; Thanabalasundaram, Lavaniya; Vysokov, Nickolai; Sinden, John D

    2016-01-01

    Exosomes are small (30-100 nm) membrane vesicles secreted by a variety of cell types and only recently have emerged as a new avenue for cell-to-cell communication. They are natural shuttles of RNA and protein cargo, making them attractive as potential therapeutic delivery vehicles. MicroRNAs (miRNAs) are short non-coding RNAs which regulate biological processes and can be found in exosomes. Here we characterized the miRNA contents of exosomes derived from human neural stem cells (hNSCs). Our investigated hNSC line is a clonal, conditionally immortalized cell line, compliant with good manufacturing practice (GMP), and in clinical trials for stroke and critical limb ischemia in the UK (clinicaltrials.gov: NCT01151124, NCT02117635, and NCT01916369). By using next generation sequencing (NGS) technology we identified the presence of a variety of miRNAs in both exosomal and cellular preparations. Many of these miRNAs were enriched in exosomes indicating that cells specifically sort them for extracellular release. Although exosomes have been proven to contain miRNAs, the copy number quantification per exosome of a given miRNA remains unclear. Herein we quantified by real-time PCR a highly shuttled exosomal miRNA subtype (hsa-miR-1246) in order to assess its stoichiometry per exosome. Furthermore, we utilized an in vitro system to confirm its functional transfer by measuring the reduction in luciferase expression using a 3' untranslated region dual luciferase reporter assay. In summary, NGS analysis allowed the identification of a unique set of hNSC derived exosomal miRNAs. Stoichiometry and functional transfer analysis of one of the most abundant identified miRNA, hsa-miR-1246, were measured to support biological relevance of exosomal miRNA delivery.

  5. Investigation of Content, Stoichiometry and Transfer of miRNA from Human Neural Stem Cell Line Derived Exosomes.

    Directory of Open Access Journals (Sweden)

    Lara Stevanato

    Full Text Available Exosomes are small (30-100 nm membrane vesicles secreted by a variety of cell types and only recently have emerged as a new avenue for cell-to-cell communication. They are natural shuttles of RNA and protein cargo, making them attractive as potential therapeutic delivery vehicles. MicroRNAs (miRNAs are short non-coding RNAs which regulate biological processes and can be found in exosomes. Here we characterized the miRNA contents of exosomes derived from human neural stem cells (hNSCs. Our investigated hNSC line is a clonal, conditionally immortalized cell line, compliant with good manufacturing practice (GMP, and in clinical trials for stroke and critical limb ischemia in the UK (clinicaltrials.gov: NCT01151124, NCT02117635, and NCT01916369. By using next generation sequencing (NGS technology we identified the presence of a variety of miRNAs in both exosomal and cellular preparations. Many of these miRNAs were enriched in exosomes indicating that cells specifically sort them for extracellular release. Although exosomes have been proven to contain miRNAs, the copy number quantification per exosome of a given miRNA remains unclear. Herein we quantified by real-time PCR a highly shuttled exosomal miRNA subtype (hsa-miR-1246 in order to assess its stoichiometry per exosome. Furthermore, we utilized an in vitro system to confirm its functional transfer by measuring the reduction in luciferase expression using a 3' untranslated region dual luciferase reporter assay. In summary, NGS analysis allowed the identification of a unique set of hNSC derived exosomal miRNAs. Stoichiometry and functional transfer analysis of one of the most abundant identified miRNA, hsa-miR-1246, were measured to support biological relevance of exosomal miRNA delivery.

  6. Influence of vitamin D on cisplatin sensitivity in testicular germ cell cancer-derived cell lines and in a NTera2 xenograft model

    DEFF Research Database (Denmark)

    Jørgensen, Anne; Blomberg Jensen, Martin; Nielsen, John Erik;

    2013-01-01

    cisplatin, which may have clinical relevance. Given the pro-differentiation effect of vitamin D recently demonstrated in testicular germ cell tumors (TGCTs), we hypothesized that 1,25(OH)(2)D(3) could be a beneficial adjunctive to existing chemotherapy regime used to treat these tumors. In this study, cell...... survival effects of 1,25(OH)(2)D(3), another pro-differentiation compound, retinoic acid and cisplatin were investigated in TGCT-derived cell lines in vitro. 1,25(OH)(2)D(3) augmented the effect of cisplatin in an embryonal carcinoma-derived cell line (NTera2), possibly through downregulation......), and cisplatin were subsequently tested in vivo, in a NTera2 xenograft tumor model in nude mice. In xenograft tumors, co-treatment with 1,25(OH)(2)D(3) and cisplatin resulted in downregulation of OCT4 and simultaneous upregulation of p21 and p73, but did not reduce tumor growth significantly more than cisplatin...

  7. Lipid-mediated glial cell line-derived neurotrophic factor gene transfer to cultured porcine ventral mesencephalic tissue

    DEFF Research Database (Denmark)

    Bauer, Matthias; Meyer, Morten; Brevig, Thomas;

    2002-01-01

    -mediated transfer of the gene for human glial cell line-derived neurotrophic factor (GDNF) to embryonic (E27/28) porcine VM tissue kept as organotypic explant cultures. Treatment of the developing VM with two mitogens, basic fibroblast growth factor and epidermal growth factor, prior to transfection significantly...... numbers of tyrosine hydroxylase-positive neurons in the cultured VM tissue. We conclude that lipid-mediated gene transfer employed on embryonic pig VM explant cultures is a safe and effective method to improve survival of dopaminergic neurons and may become a valuable tool to improve allo......Transplantation of dopaminergic ventral mesencephalic (VM) tissue into the basal ganglia of patients with Parkinson's disease (PD) shows at best moderate symptomatic relief in some of the treated cases. Experimental animal studies and clinical trials with allogenic and xenogenic pig-derived VM...

  8. Human Brain Microvascular Endothelial Cells Derived from the BC1 iPS Cell Line Exhibit a Blood-Brain Barrier Phenotype.

    Science.gov (United States)

    Katt, Moriah E; Xu, Zinnia S; Gerecht, Sharon; Searson, Peter C

    2016-01-01

    The endothelial cells that form capillaries in the brain are highly specialized, with tight junctions that minimize paracellular transport and an array of broad-spectrum efflux pumps that make drug delivery to the brain extremely challenging. One of the major limitations in blood-brain barrier research and the development of drugs to treat central nervous system diseases is the lack of appropriate cell lines. Recent reports indicate that the derivation of human brain microvascular endothelial cells (hBMECs) from human induced pluripotent stem cells (iPSCs) may provide a solution to this problem. Here we demonstrate the derivation of hBMECs extended to two new human iPSC lines: BC1 and GFP-labeled BC1. These hBMECs highly express adherens and tight junction proteins VE-cadherin, ZO-1, occludin, and claudin-5. The addition of retinoic acid upregulates VE-cadherin expression, and results in a significant increase in transendothelial electrical resistance to physiological values. The permeabilities of tacrine, rhodamine 123, and Lucifer yellow are similar to values obtained for MDCK cells. The efflux ratio for rhodamine 123 across hBMECs is in the range 2-4 indicating polarization of efflux transporters. Using the rod assay to assess cell organization in small vessels and capillaries, we show that hBMECs resist elongation with decreasing diameter but show progressive axial alignment. The derivation of hBMECs with a blood-brain barrier phenotype from the BC1 cell line highlights that the protocol is robust. The expression of GFP in hBMECs derived from the BC1-GFP cell line provides an important new resource for BBB research.

  9. Human Brain Microvascular Endothelial Cells Derived from the BC1 iPS Cell Line Exhibit a Blood-Brain Barrier Phenotype

    OpenAIRE

    Katt, Moriah E.; Xu, Zinnia S.; Gerecht, Sharon; Searson, Peter C.

    2016-01-01

    The endothelial cells that form capillaries in the brain are highly specialized, with tight junctions that minimize paracellular transport and an array of broad-spectrum efflux pumps that make drug delivery to the brain extremely challenging. One of the major limitations in blood-brain barrier research and the development of drugs to treat central nervous system diseases is the lack of appropriate cell lines. Recent reports indicate that the derivation of human brain microvascular endothelial...

  10. Conditioned Media from Human Adipose Tissue-Derived Mesenchymal Stem Cells and Umbilical Cord-Derived Mesenchymal Stem Cells Efficiently Induced the Apoptosis and Differentiation in Human Glioma Cell Lines In Vitro

    Directory of Open Access Journals (Sweden)

    Chao Yang

    2014-01-01

    Full Text Available Human mesenchymal stem cells (MSCs have an intrinsic property for homing towards tumor sites and can be used as tumor-tropic vectors for tumor therapy. But very limited studies investigated the antitumor properties of MSCs themselves. In this study we investigated the antiglioma properties of two easily accessible MSCs, namely, human adipose tissue-derived mesenchymal stem cells (ASCs and umbilical cord-derived mesenchymal stem cells (UC-MSCs. We found (1 MSC conditioned media can significantly inhibit the growth of human U251 glioma cell line; (2 MSC conditioned media can significantly induce apoptosis in human U251 cell line; (3 real-time PCR experiments showed significant upregulation of apoptotic genes of both caspase-3 and caspase-9 and significant downregulation of antiapoptotic genes such as survivin and XIAP after MSC conditioned media induction in U 251 cells; (4 furthermore, MSCs conditioned media culture induced rapid and complete differentiation in U251 cells. These results indicate MSCs can efficiently induce both apoptosis and differentiation in U251 human glioma cell line. Whereas UC-MSCs are more efficient for apoptosis induction than ASCs, their capability of differentiation induction is not distinguishable from each other. Our findings suggest MSCs themselves have favorable antitumor characteristics and should be further explored in future glioma therapy.

  11. A novel rat fibrosarcoma cell line from transformed bone marrow-derived mesenchymal stem cells with maintained in vitro and in vivo stemness properties.

    Science.gov (United States)

    Wang, Meng-Yu; Nestvold, Janne; Rekdal, Øystein; Kvalheim, Gunnar; Fodstad, Øystein

    2017-02-09

    Increasing evidence suggests a possible relationship between mesenchymal stem cells (MSCs) and sarcoma. MSCs are hypothesized to be the cells initiating sarcomagenesis, and cancer stem cells (CSCs) sharing features of MSCs have been identified in sarcomas. Here, we report on the characteristics of a bone marrow-derived rat mesenchymal stem cell line that spontaneously transformed in long-term culture. The rat transformed mesenchymal stem cells (rTMSCs) produced soft-tissue fibrosarcomas in immunocompromised mice and immunocompetent rats. In vitro, the rTMSCs displayed increased proliferation capacity compared to the untransformed cell line. The transformed MSCs maintained the mesenchymal phenotype by expression of the stem cell marker CD 90 and the lack of hematopoietic and endothelial markers. Cytogenetic analysis detected trisomy 6 in the rTMSCs. Side population (SP) isolation and tumorsphere cultivation of the transformed cells confirmed the presence of CSCs among the rTMSCs. Importantly, the rTMSCs retained their differentiation capacity towards osteogenic and adipogenic lineages. This transformed MSC-based cell line may be valuable in examining the balance in a mixed cell population between cancer stem cell properties and the ability to differentiate to specific non-transformed cell populations. Moreover, it may also be a useful tool to evaluate the efficacy of novel targeted immunotherapies in vivo.

  12. Urea derivates of ursolic, oleanolic and maslinic acid induce apoptosis and are selective cytotoxic for several human tumor cell lines.

    Science.gov (United States)

    Sommerwerk, Sven; Heller, Lucie; Kuhfs, Julia; Csuk, René

    2016-08-25

    2,3-Di-O-acetyl-maslinic acid benzylamide (5) has previously been shown to possess high cytotoxicity for a variety of human tumor cell lines while being of low cytotoxicity to non-malignant cells. Structural modifications performed on 5 revealed that the presence of these acetyl groups in 5 and the presence of (2β,3β)-configurated centers seems necessary for obtaining high cytotoxicity combined with best selectivity between malignant cells and non-malignant mouse fibroblasts. Compounds carrying an ursane skeleton showed weaker cytotoxicity than their oleanane derived analogs. In addition, the benzylamide function in compound 5 should be replaced by a phenylurea moiety to gain better cytotoxicity while retaining and improving the selectivity. Thus, maslinic acid derived N-[2β,3β-di-O-acetyl-17β-amino-28-norolean-12-en-17-yl]phenylurea (45) gave best results showing EC50 = 0.9 μM (for A2780 ovarian cancer cells) with EC50 > 120 μM for fibroblasts (NIH 3T3) and triggered apoptosis while caspase-3 was not activated by this compound.

  13. Sequence analysis and functional study of the Han Nationality glial cell line-derived neurotrophic factor transcript

    Institute of Scientific and Technical Information of China (English)

    CHEN Zhe-yu; HUANG Ai-jun; LU Chang-lin; WU Xiang-fu; HE Cheng

    2001-01-01

    To study the sequence and function of the glial cell line-derived neurotrophic factor (GDNF) transcript in subjects of Han nationality. Methods: The Han nationality GDNF transcript was amplified by RT-PCR and expressed by baculovirus expression system. Biological activity of the expressed product was measured by the primary culture of midbrain dopaminergic neurons. Results: There only existed the shorter GDNF transcript of 555 bp in the Han nationality. The secretory expression product of the shorter transcript in insect cells promoted the survival and differentiation of dopaminergic neurons. Conclusion: It is found that there is a 78 bp deletion in the Han nationality GDNF transcript compared with the reported 633 bp GDNF transcript. The 78 bp deletion does not affect the secretory expression and biological activity of GDNF mature protein.

  14. New cancer cachexia rat model generated by implantation of a peritoneal dissemination-derived human stomach cancer cell line.

    Science.gov (United States)

    Terawaki, Kiyoshi; Sawada, Yumi; Kashiwase, Yohei; Hashimoto, Hirofumi; Yoshimura, Mitsuhiro; Suzuki, Masami; Miyano, Kanako; Sudo, Yuka; Shiraishi, Seiji; Higami, Yoshikazu; Yanagihara, Kazuyoshi; Kase, Yoshio; Ueta, Yoichi; Uezono, Yasuhito

    2014-02-15

    Cancer cachexia (CC), a syndrome characterized by anorexia and body weight loss due to low fat-free mass levels, including reduced musculature, markedly worsens patient quality of life. Although stomach cancer patients have the highest incidence of cachexia, few experimental models for the study of stomach CC have been established. Herein, we developed stomach CC animal models using nude rats subcutaneously implanted with two novel cell lines, i.e., MKN45c185, established from the human stomach cancer cell line MKN-45, and 85As2, derived from peritoneal dissemination of orthotopically implanted MKN45c185 cells in mice. Both CC models showed marked weight loss, anorexia, reduced musculature and muscle strength, increased inflammatory markers, and low plasma albumin levels; however, CC developed earlier and was more severe in rats implanted with 85As2 than in those implanted with MKN45cl85. Moreover, human leukemia inhibitory factor (LIF), a known cachectic factor, and hypothalamic orexigenic peptide mRNA levels increased in the models, whereas hypothalamic anorexigenic peptide mRNA levels decreased. Surgical removal of the tumor not only abolished cachexia symptoms but also reduced plasma LIF levels to below detectable limits. Importantly, oral administration of rikkunshito, a traditional Japanese medicine, substantially ameliorated CC-related anorexia and body composition changes. In summary, our novel peritoneal dissemination-derived 85As2 rat model developed severe cachexia, possibly caused by LIF from cancer cells, that was ameliorated by rikkunshito. This model should provide a useful tool for further study into the mechanisms and treatment of stomach CC.

  15. Cytotoxicity of nano-hydroxyapatite on human-derived oral epithelium cell line: an in vitro study

    Directory of Open Access Journals (Sweden)

    Farid Abassi

    2016-08-01

    Full Text Available Background: Hydroxyapatite nanoparticles have a more surface contact and solubility than conventional hydroxyapatite. Hydroxynanoparticles enhances the biological and mechanical properties of new regenerated tissues. The hydroxyapatite nanoparticles have received attention as a new and effective osseous graft for using as scaffolds in bone regeneration. The reports on hydroxyapatite nanoparticles biocompatibility are controversial. It has been shown that hydroxyapatite nanoparticles induces inflammatory reaction and apoptosis. The aim of the present study was to evaluate the cytotoxicity of nano-hydroxyapatite on the human epithelial cells. Methods: The study was experimental and completed in vitro. The study was carried out in department of Immonulogy, Faculty of Medicine, Shahid Beheshti University of Medical Sciences in November 2014. The human-derived oral epithelium cell line (KB obtained from Pasteur Institute, Tehran, Iran were exposed to hydroxyapatite nanoparticles at 0.01, 0.05, 0.1, 0.5, 0.75, 1, 2.5 and 5 mg/ml concentrations in 24, 48 and 72 hours. Rod-shaped hydroxyapatite nanoparticles with 99% purity and maximum 100 nm sized particles were used. Methylthiazol tetrazolium bromide (MTT method was employed for cell vitality evaluation. Enzyme-linked immunosorbent assay (ELISA was used for assessing the viability of cells. Distilled water and fetal bovine serum (FBS were positive and negative controls. ANOVA and Duncan tests were used for statistical analysis. Results: The cytotoxicity of different concentrations of hydroxyapatite nanoparticles on human-derived oral epithelium cell line in 24 (P< 0.001, 48 (P< 0.001 and 72 hours (P< 0.001 was significantly different. The nano-hydroxyapatite particles at 0.5 to 1 mg/ml had the highest cytotoxicity effect on human-derived oral epithelium cells in 24, 48 and 72 hours. Lower concentrations than 0.05 mg/ml had the best biocompatibility properties in 24, 48 and 72 hours. Conclusion

  16. Understanding the role of keratins 8 and 18 in neoplastic potential of breast cancer derived cell lines.

    Directory of Open Access Journals (Sweden)

    Sapna V Iyer

    Full Text Available BACKGROUND: Breast cancer is a complex disease which cannot be defined merely by clinical parameters like lymph node involvement and histological grade, or by routinely used biomarkers like estrogen receptor (ER, progesterone receptor (PGR and epidermal growth factor receptor 2 (HER2 in diagnosis and prognosis. Breast cancer originates from the epithelial cells. Keratins (K are cytoplasmic intermediate filament proteins of epithelial cells and changes in the expression pattern of keratins have been seen during malignant transformation in the breast. Expression of the K8/18 pair is seen in the luminal cells of the breast epithelium, and its role in prognostication of breast cancer is not well understood. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we have modulated K8 expression to understand the role of the K8/18 pair in three different breast epithelium derived cell lines: non-transformed MCF10A, transformed but poorly invasive MDA MB 468 and highly invasive MDA MB 435. The up-regulation of K8 in the invasive MDA MB 435 cell line resulted in a significant decrease in proliferation, motility, in-vitro invasion, tumor volume and lung metastasis. The down-regulation of K8 in MDA MB 468 resulted in a significant increase in transformation potential, motility and invasion in-vitro, while MCF10A did not show any changes in cell transformation assays. CONCLUSIONS/SIGNIFICANCE: These results indicate the role of K8/18 in modulating invasion in breast cancer -its presence correlating with less invasive phenotype and absence correlating with highly invasive, dedifferentiated phenotype. These data may have important implications for prognostication of breast cancer.

  17. Establishment and Molecular Characterization of Mesenchymal Stem Cell Lines Derived From Human Visceral & Subcutaneous Adipose Tissues

    Directory of Open Access Journals (Sweden)

    Jyoti Prakash Sutar

    2010-01-01

    Full Text Available Mesenchymal stem cells (MSCs, are multipotent stem cells that can differentiate into osteoblasts, chondrocytes, myocytes and adipocytes. We utilized adipose tissue as our primary source, since it is a rich source of MSCs as well as it can be harvested using a minimally invasive surgical procedure. Both visceral and subcutaneous adipose tissue (VSAT, SCAT respectively samples were cultured using growth medium without using any substratum for their attachment. We observed growth of mesenchymal like cells within 15 days of culturing. In spite of the absence of any substratum, the cells adhered to the bottom of the petri dish, and spread out within 2 hours. Presently VSAT cells have reached at passage 10 whereas; SCAT cells have reached at passage 14. Morphologically MSCs obtained from visceral adipose tissue were larger in shape than subcutaneous adipose tissue. We checked these cells for presence or absence of specific stem cell molecular markers. We found that VSAT and SCAT cells confirmed their MSC phenotype by expression of specific MSC markers CD 105 and CD13 and absence of CD34 and CD 45 markers which are specific for haematopoietic stem cells. These cells also expressed SOX2 gene confirming their ability of self-renewal as well as expressed OCT4, LIF and NANOG for their properties for pluripotency & plasticity. Overall, it was shown that adipose tissue is a good source of mesenchymal stem cells. It was also shown that MSCs, isolated from adipose tissue are multipotent stem cells that can differentiate into osteoblasts, chondrocytes, cardiomyocytes, adipocytes and liver cells which may open a new era for cell based regenerative therapies for bone, cardiac and liver disorders.

  18. A thermoreversible polymer mediates controlled release of glial cell line-derived neurotrophic factor to enhance kidney regeneration.

    Science.gov (United States)

    Gheisari, Yousof; Yokoo, Takashi; Matsumoto, Kei; Fukui, Akira; Sugimoto, Naomi; Ohashi, Toya; Kawamura, Tetsuya; Hosoya, Tatsuo; Kobayashi, Eiji

    2010-08-01

    Previously, we reported that human mesenchymal stem cells (hMSCs) that were cultivated in growing embryos differentiated in an appropriate developmental milieu, thereby facilitating the development of a functional renal unit. However, this approach required transfection with an adenovirus that expressed glial cell line-derived neurotrophic factor (GDNF) to enhance the development of hMSC-derived renal tissue, and safety issues restrict the clinical use of such viral vectors. To circumvent this problem, we tested an artificial polymer as a means to diffuse GDNF. This GDNF-polymer, which exists in liquid form at 4 degrees C but becomes a hydrogel upon heating to 37 degrees C, was used as a thermoreversible switch, allowing the injection of hMSCs at low viscosity using a mouth pipette, with subsequent slow diffusion of GDNF as it solidified. The polymer, which was dissolved in a solution of GDNF at 4 degrees C and then maintained at 37 degrees C, acted as a diffuser of GDNF for more than 48 h. LacZ-transfected hMSCs and the GDNF-polymer (at 4 degrees C) were placed in the nephrogenic sites of growing rat embryos that were maintained at 37 degrees C. Forty-eight hours later, the resultant kidney anlagen were dissected out and allowed to continue developing for 6 days in vitro. Whole-organ X-Gal staining and fluorescence activated cell sorter analysis showed that the number of hMSC-derived cells was significantly increased in developed anlagen that have been generated from hMSCs plus GDNF-polymer compared with those from hMSCs plus GDNF-containing medium and was comparable to those from adenovirus-transfected hMSCs. These findings suggest that the GDNF-polymer can be used as a diffuser of GDNF for kidney organogenesis.

  19. Comparison of gene-specific DNA methylation patterns in equine induced pluripotent stem cell lines with cells derived from equine adult and fetal tissues.

    Science.gov (United States)

    Hackett, Catherine H; Greve, Line; Novakofski, Kira D; Fortier, Lisa A

    2012-07-01

    Cellular pluripotency is associated with expression of the homeobox transcription factor genes NANOG, SOX2, and POU5F1 (OCT3/4 protein). Some reports suggest that mesenchymal progenitor cells (MPCs) may express increased quantities of these genes, creating the possibility that MPCs are more "pluripotent" than other adult cell types. The objective of this study was to determine whether equine bone marrow-derived MPCs had gene expression or DNA methylation patterns that differed from either early fetal-derived or terminally differentiated adult cells. Specifically, this study compared DNA methylation of the NANOG and SOX2 promoter regions and concurrent gene expression of NANOG, SOX2, and POU5F1 in equine induced pluripotent stem (iPS) cells, fetal fibroblasts, fetal brain cells, adult chondrocytes, and MPCs. Results indicate that NANOG and POU5F1 were not detectable in appreciable quantities in tissues other than the equine iPS cell lines. Equine iPS cells expressed large quantities of all three genes examined. Significantly increased quantities of SOX2 were noted in iPS cells and both fetal-derived cell types compared with adult cells. MPCs and adult chondrocytes expressed equivalent, low quantities of SOX2. Further, NANOG and SOX2 expression inversely correlated with the DNA methylation pattern in the promoter region, such that as gene expression increased, DNA methylation decreased. The equine iPS cell lines examined demonstrated DNA methylation and gene expression patterns that were consistent with pluripotency features described in other species. Results do not support previous reports that NANOG, SOX2, and POU5F1 are poised for increased activity in MPCs compared with other adult cells.

  20. Comparative study on the cytotoxic effects of benzalkonium chloride on the Wong-Kilbourne derivative of Chang conjunctival and IOBA-NHC cell lines

    Science.gov (United States)

    Brasnu, E.; Brignole-Baudouin, F.; Riancho, L.; Warnet, J.-M.

    2008-01-01

    Purpose The Wong-Kilbourne derivative of Chang conjunctiva-derived cell line has been widely used for toxicological and functional in vitro studies on the ocular surface. The common reserve to this cell line is the reported contamination with HeLa cells. Thus, the IOBA-NHC spontaneously immortalized conjunctival epithelial cell line has been recently developed and did not show other cell type contamination. Our purpose was to determine whether both cell lines would be equally suitable for in vitro toxicological studies. Therefore, we compared in these two cell types the toxic effects of the preservative, benzalkonium chloride (BAC); its toxicity has been often reported on conjunctival in vivo and in vitro models. Methods The necrotic, apoptotic, and oxidative effects of BAC were evaluated on Chang and IOBA-NHC cell lines using microplate cytofluorometry tests (neutral red, 2,7- dichlorofluorescein diacetate dye [H2DCF-DA], hydroethidine, and Yopro-1), flow cytometry (Annexin V/7-AAD and DNA content tests), and standard immunofluorescence stainings. Cells were exposed to five concentrations of BAC (10−2%, 5.10−3%, 10−3%, 10−4%, and 10−5%) for two incubation times: 15 min of treatment and 15 min of treatment followed by 24 h of cell recovery in complete medium. Results All parameters of toxicity increased in a BAC dose-dependent manner on both cell lines. Conclusions The comparison of BAC toxicity on both cell lines supported the use of IOBA-NHC and Chang cells for toxicological in vitro studies. Drawbacks of both cell lines have to be known and considered in studies performed on these cell lines. PMID:18334956

  1. Introducing a single-cell-derived human mesenchymal stem cell line expressing hTERT after lentiviral gene transfer.

    Science.gov (United States)

    Böcker, Wolfgang; Yin, Zhanhai; Drosse, Inga; Haasters, Florian; Rossmann, Oliver; Wierer, Matthias; Popov, Cvetan; Locher, Melanie; Mutschler, Wolf; Docheva, Denitsa; Schieker, Matthias

    2008-08-01

    Human mesenchymal stem cells (hMSCs) can be readily isolated from bone marrow and differentiate into multiple tissues, making them a promising target for future cell and gene therapy applications. The low frequency of hMSCs in bone marrow necessitates their isolation and expansion in vitro prior to clinical use, but due to senescence-associated growth arrest during culture, limited cell numbers can be generated. The lifespan of hMSCs has been extended by ectopic expression of human telomerase reverse transcriptase (hTERT) using retroviral vectors. Since malignant transformation was observed in hMSCs and retroviral vectors cause insertional mutagenesis, we ectopically expressed hTERT using lentiviral gene transfer. Single-cell-derived hMSC clones expressing hTERT did not show malignant transformation in vitro and in vivo after extended culture periods. There were no changes observed in the expression of tumour suppressor genes and karyotype. Cultured hMSCs lack telomerase activity, but it was significantly increased by ectopic expression of hTERT. HTERT expression prevented hMSC senescence and the cells showed significantly higher and unlimited proliferation capacity. Even after an extended culture period, hMSCs expressing hTERT preserved their stem cells character as shown by osteogenic, adipogenic and chondrogenic differentiation. In summary, extending the lifespan of human mesenchymal stem cells by ectopic expression of hTERT using lentiviral gene transfer may be an attractive and safe way to generate appropriate cell numbers for cell and gene therapy applications.

  2. The effect of the two epipodophyllotoxin derivatives etoposide (VP-16) and teniposide (VM-26) on cell lines established from patients with small cell carcinoma of the lung

    DEFF Research Database (Denmark)

    Roed, H; Vindeløv, Lars; Christensen, I J;

    1987-01-01

    To determine whether there is any difference between the two epipodophyllotoxin derivatives etoposide and teniposide in their therapeutic effect in small cell carcinoma of the lung (SCCL), they were compared against five human SCCL cell lines in vitro. When the two were compared at equimolar...... is not accompanied by an equivalent increase in toxicity. The concentrations used for the 1-h incubation were about 100-fold the concentrations used in the experiments with continuous incubation to obtain the same degree of cell kill for both drugs. This suggests that they should be given according to a continuous...

  3. Characterization of the attachment mechanisms of tissue-derived cell lines to blood-compatible polymers.

    Science.gov (United States)

    Hoshiba, Takashi; Nikaido, Mayo; Tanaka, Masaru

    2014-05-01

    Recent advances in biomedical engineering require the development of new types of blood-compatible polymers that also allow non-blood cell attachment for the isolation of stem cells and circulating tumor cells (CTCs) from blood and for the development of artificial organs for use under blood-contact conditions. Poly(2-methoxyethyl acrylate) (PMEA) and poly(tetrafurfuryl acrylate) (PTHFA) were previously identified as blood-compatible polymers. Here, it is demonstrated that cancer cells can attach to the PMEA and PTHFA substrates, and the differences in the attachment mechanisms to the PMEA and PTHFA substrates between cancer cells and platelets are investigated. It is also found that the adsorption-induced deformation of fibrinogen, which is required for the attachment and activation of platelets, does not occur on the PMEA and PTHFA substrates. In contrast, fibronectin is deformed on the PMEA and PTHFA substrates. Therefore, it is concluded that cancer cells and not platelets can attach to the PMEA and PTHFA substrates based on this protein-deformation difference between these substrates. Moreover, it is observed that cancer cells attach to the PMEA substrate via both integrin-dependent and -independent mechanisms and attach to the PTHFA substrate only through an integrin-dependent mechanism. It is expected that PMEA and PTHFA will prove useful for blood-contact biomedical applications.

  4. An occult hepatitis B-derived hepatoma cell line carrying persistent nuclear viral DNA and permissive for exogenous hepatitis B virus infection.

    Science.gov (United States)

    Lin, Chih-Lang; Chien, Rong-Nan; Lin, Shi-Ming; Ke, Po-Yuan; Lin, Chen-Chun; Yeh, Chau-Ting

    2013-01-01

    Occult hepatitis B virus (HBV) infection is defined as persistence of HBV DNA in liver tissues, with or without detectability of HBV DNA in the serum, in individuals with negative serum HBV surface antigen (HBsAg). Despite accumulating evidence suggesting its important clinical roles, the molecular and virological basis of occult hepatitis B remains unclear. In an attempt to establish new hepatoma cell lines, we achieved a new cell line derived from a hepatoma patient with chronic hepatitis C virus (HCV) and occult HBV infection. Characterization of this cell line revealed previously unrecognized properties. Two novel human hepatoma cell lines were established. Hep-Y1 was derived from a male hepatoma patient negative for HCV and HBV infection. Hep-Y2 was derived from a female hepatoma patient suffering from chronic HCV and occult HBV infection. Morphological, cytogenetic and functional studies were performed. Permissiveness to HBV infection was assessed. Both cell lines showed typical hepatocyte-like morphology under phase-contrast and electron microscopy and expressed alpha-fetoprotein, albumin, transferrin, and aldolase B. Cytogenetic analysis revealed extensive chromosomal anomalies. An extrachromosomal form of HBV DNA persisted in the nuclear fraction of Hep-Y2 cells, while no HBsAg was detected in the medium. After treated with 2% dimethyl sulfoxide, both cell lines were permissive for exogenous HBV infection with transient elevation of the replication intermediates in the cytosol with detectable viral antigens by immunoflurescence analysis. In conclusions, we established two new hepatoma cell lines including one from occult HBV infection (Hep-Y2). Both cell lines were permissive for HBV infection. Additionally, Hep-Y2 cells carried persistent extrachromosomal HBV DNA in the nuclei. This cell line could serve as a useful tool to establish the molecular and virological basis of occult HBV infection.

  5. An occult hepatitis B-derived hepatoma cell line carrying persistent nuclear viral DNA and permissive for exogenous hepatitis B virus infection.

    Directory of Open Access Journals (Sweden)

    Chih-Lang Lin

    Full Text Available Occult hepatitis B virus (HBV infection is defined as persistence of HBV DNA in liver tissues, with or without detectability of HBV DNA in the serum, in individuals with negative serum HBV surface antigen (HBsAg. Despite accumulating evidence suggesting its important clinical roles, the molecular and virological basis of occult hepatitis B remains unclear. In an attempt to establish new hepatoma cell lines, we achieved a new cell line derived from a hepatoma patient with chronic hepatitis C virus (HCV and occult HBV infection. Characterization of this cell line revealed previously unrecognized properties. Two novel human hepatoma cell lines were established. Hep-Y1 was derived from a male hepatoma patient negative for HCV and HBV infection. Hep-Y2 was derived from a female hepatoma patient suffering from chronic HCV and occult HBV infection. Morphological, cytogenetic and functional studies were performed. Permissiveness to HBV infection was assessed. Both cell lines showed typical hepatocyte-like morphology under phase-contrast and electron microscopy and expressed alpha-fetoprotein, albumin, transferrin, and aldolase B. Cytogenetic analysis revealed extensive chromosomal anomalies. An extrachromosomal form of HBV DNA persisted in the nuclear fraction of Hep-Y2 cells, while no HBsAg was detected in the medium. After treated with 2% dimethyl sulfoxide, both cell lines were permissive for exogenous HBV infection with transient elevation of the replication intermediates in the cytosol with detectable viral antigens by immunoflurescence analysis. In conclusions, we established two new hepatoma cell lines including one from occult HBV infection (Hep-Y2. Both cell lines were permissive for HBV infection. Additionally, Hep-Y2 cells carried persistent extrachromosomal HBV DNA in the nuclei. This cell line could serve as a useful tool to establish the molecular and virological basis of occult HBV infection.

  6. In vitro characterization of cells derived from chordoma cell line U-CH1 following treatment with X-rays, heavy ions and chemotherapeutic drugs

    Directory of Open Access Journals (Sweden)

    Uesaka Mitsuru

    2011-09-01

    Full Text Available Abstract Background Chordoma, a rare cancer, is usually treated with surgery and/or radiation. However, very limited characterizations of chordoma cells are available due to a minimal availability (only two lines validated by now and the extremely long doubling time. In order to overcome this situation, we successfully derived a cell line with a shorter doubling time from the first validated chordoma line U-CH1 and obtained invaluable cell biological data. Method After isolating a subpopulation of U-CH1 cells with a short doubling time (U-CH1-N, cell growth, cell cycle distribution, DNA content, chromosome number, p53 status, and cell survival were examined after exposure to X-rays, heavy ions, camptothecin, mitomycin C, cisplatin and bleocin. These data were compared with those of HeLa (cervical cancer and U87-MG (glioblastoma cells. Results The cell doubling times for HeLa, U87-MG and U-CH1-N were approximately 18 h, 24 h and 3 days respectively. Heavy ion irradiation resulted in more efficient cell killing than x-rays in all three cell lines. Relative biological effectiveness (RBE at 10% survival for U-CH1-N was about 2.45 for 70 keV/μm carbon and 3.86 for 200 keV/μm iron ions. Of the four chemicals, bleocin showed the most marked cytotoxic effect on U-CH1-N. Conclusion Our data provide the first comprehensive cellular characterization using cells of chordoma origin and furnish the biological basis for successful clinical results of chordoma treatment by heavy ions.

  7. Glial cell line-derived neurotrophic factor (GDNF) expression and NMJ plasticity in skeletal muscle following endurance exercise.

    Science.gov (United States)

    Gyorkos, A M; McCullough, M J; Spitsbergen, J M

    2014-01-17

    Glial cell line-derived neurotrophic factor (GDNF) supports and maintains the neuromuscular system during development and through adulthood by promoting neuroplasticity. The aim of this study was to determine if different modes of exercise can promote changes in GDNF expression and neuromuscular junction (NMJ) morphology in slow- and fast-twitch muscles. Rats were randomly assigned to a run training (run group), swim training (swim group), or sedentary control group. GDNF protein content was determined by enzyme-linked immunosorbant assay. GDNF protein content increased significantly in soleus (SOL) following both training protocols (PGDNF content and total end plate area were positively correlated. End plate area decreased in EDL of the run group and increased in SOL of the swim group. The results indicate that GDNF expression and NMJ morphological changes are activity dependent and that different changes may be observed by varying the exercise intensity in slow- and fast-twitch fibers.

  8. Glial cell line-derived neurotrophic factor alters the growth characteristics and genomic imprinting of mouse multipotent adult germline stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Yoon Hee [Department of Bioscience and Biotechnology, Bio-Organ Research Center/Animal Resources Research Center, Konkuk University, Hwayang-dong, Gwangjin-Gu, Seoul 143 701 (Korea, Republic of); Gupta, Mukesh Kumar, E-mail: goops@konkuk.ac.kr [Department of Animal Biotechnology, Bio-Organ Research Center/Animal Resources Research Center, Konkuk University, Hwayang-dong, Gwangjin-Gu, Seoul 143 701 (Korea, Republic of); Oh, Shin Hye [Department of Bioscience and Biotechnology, Bio-Organ Research Center/Animal Resources Research Center, Konkuk University, Hwayang-dong, Gwangjin-Gu, Seoul 143 701 (Korea, Republic of); Uhm, Sang Jun [Department of Animal Biotechnology, Bio-Organ Research Center/Animal Resources Research Center, Konkuk University, Hwayang-dong, Gwangjin-Gu, Seoul 143 701 (Korea, Republic of); Lee, Hoon Taek, E-mail: htl3675@konkuk.ac.kr [Department of Bioscience and Biotechnology, Bio-Organ Research Center/Animal Resources Research Center, Konkuk University, Hwayang-dong, Gwangjin-Gu, Seoul 143 701 (Korea, Republic of); Department of Animal Biotechnology, Bio-Organ Research Center/Animal Resources Research Center, Konkuk University, Hwayang-dong, Gwangjin-Gu, Seoul 143 701 (Korea, Republic of)

    2010-03-10

    This study evaluated the essentiality of glial cell line-derived neurotrophic factor (GDNF) for in vitro culture of established mouse multipotent adult germline stem (maGS) cell lines by culturing them in the presence of GDNF, leukemia inhibitory factor (LIF) or both. We show that, in the absence of LIF, GDNF slows the proliferation of maGS cells and result in smaller sized colonies without any change in distribution of cells to different cell-cycle stages, expression of pluripotency genes and in vitro differentiation potential. Furthermore, in the absence of LIF, GDNF increased the expression of male germ-line genes and repopulated the empty seminiferous tubule of W/W{sup v} mutant mouse without the formation of teratoma. GDNF also altered the genomic imprinting of Igf2, Peg1, and H19 genes but had no effect on DNA methylation of Oct4, Nanog and Stra8 genes. However, these effects of GDNF were masked in the presence of LIF. GDNF also did not interfere with the multipotency of maGS cells if they are cultured in the presence of LIF. In conclusion, our results suggest that, in the absence of LIF, GDNF alters the growth characteristics of maGS cells and partially impart them some of the germline stem (GS) cell-like characteristics.

  9. Exposure to Cobalt Causes Transcriptomic and Proteomic Changes in Two Rat Liver Derived Cell Lines

    Science.gov (United States)

    2013-12-01

    cadmium, and chromium in H4-II-E-C3 cells. Nickel, Cadmium, Chromium, Microarray, Gene Expression, Heavy Metals U U U SAR 12 Carol O’Brien 301-619... Reese SE (2010) Detection call algorithms for high-throughput gene expression microarray data. Brief Bioinform 11: 244–252. 30. Hochberg Y, Benjamini

  10. Exposure to 1800 MHz radiofrequency electromagnetic radiation induces oxidative DNA base damage in a mouse spermatocyte-derived cell line.

    Science.gov (United States)

    Liu, Chuan; Duan, Weixia; Xu, Shangcheng; Chen, Chunhai; He, Mindi; Zhang, Lei; Yu, Zhengping; Zhou, Zhou

    2013-03-27

    Whether exposure to radiofrequency electromagnetic radiation (RF-EMR) emitted from mobile phones can induce DNA damage in male germ cells remains unclear. In this study, we conducted a 24h intermittent exposure (5 min on and 10 min off) of a mouse spermatocyte-derived GC-2 cell line to 1800 MHz Global System for Mobile Communication (GSM) signals in GSM-Talk mode at specific absorption rates (SAR) of 1 W/kg, 2 W/kg or 4 W/kg. Subsequently, through the use of formamidopyrimidine DNA glycosylase (FPG) in a modified comet assay, we determined that the extent of DNA migration was significantly increased at a SAR of 4 W/kg. Flow cytometry analysis demonstrated that levels of the DNA adduct 8-oxoguanine (8-oxoG) were also increased at a SAR of 4 W/kg. These increases were concomitant with similar increases in the generation of reactive oxygen species (ROS); these phenomena were mitigated by co-treatment with the antioxidant α-tocopherol. However, no detectable DNA strand breakage was observed by the alkaline comet assay. Taking together, these findings may imply the novel possibility that RF-EMR with insufficient energy for the direct induction of DNA strand breaks may produce genotoxicity through oxidative DNA base damage in male germ cells.

  11. Zirconium oxide ceramic foam: a promising supporting biomaterial for massive production of glial cell line-derived neurotrophic factor.

    Science.gov (United States)

    Liu, Zhong-wei; Li, Wen-qiang; Wang, Jun-kui; Ma, Xian-cang; Liang, Chen; Liu, Peng; Chu, Zheng; Dang, Yong-hui

    2014-12-01

    This study investigated the potential application of a zirconium oxide (ZrO2) ceramic foam culturing system to the production of glial cell line-derived neurotrophic factor (GDNF). Three sets of ZrO2 ceramic foams with different pore densities of 10, 20, and 30 pores per linear inch (PPI) were prepared to support a 3D culturing system. After primary astrocytes were cultured in these systems, production yields of GDNF were evaluated. The biomaterial biocompatibility, cell proliferation and activation of cellular signaling pathways in GDNF synthesis and secretion in the culturing systems were also assessed and compared with a conventional culturing system. In this study, we found that the ZrO2 ceramic foam culturing system was biocompatible, using which the GDNF yields were elevated and sustained by stimulated cell proliferation and activation of signaling pathways in astrocytes cultured in the system. In conclusion, the ZrO2 ceramic foam is promising for the development of a GDNF mass production device for Parkinson's disease treatment.

  12. Association between serum levels of glial cell-line derived neurotrophic factor and attention deficits in schizophrenia.

    Science.gov (United States)

    Niitsu, Tomihisa; Shirayama, Yukihiko; Matsuzawa, Daisuke; Shimizu, Eiji; Hashimoto, Kenji; Iyo, Masaomi

    2014-07-11

    Several lines of evidence suggest that glial cell-line derived neurotrophic factor (GDNF) plays an important role in the pathophysiology of neuropsychiatric and neurodegenerative disorders. In this study, we investigated the association between GDNF serum levels and the clinical status of medicated patients with schizophrenia. Sixty-three medicated patients with schizophrenia and 52 age- and sex-matched healthy controls were recruited. Patients were evaluated using the brief psychiatry rating scale, the scale for the assessment of negative symptoms (SANS) and neuropsychological tests. Serum levels of GDNF were determined using an ELISA method. Serum levels of GDNF did not differ between schizophrenia patients and controls. Higher GDNF serum levels were associated with better performances on the Digit Span in healthy controls but not in schizophrenics. At the same time, higher GDNF serum levels were associated with severe attention deficits on the SANS subscale, in schizophrenics. Our preliminary study suggests that serum levels of GDNF may be an unsuitable biomarker for schizophrenia, although it may be associated with working memory in healthy controls and the pathophysiology of attention deficits in schizophrenia.

  13. A cell line derived from BBN (N-butyl-N-[4-hydroxybutyl]-nitrosamine-induced rat bladder cancer: establishment and scanning electron microscopic cell surface characteristics

    Directory of Open Access Journals (Sweden)

    Nishi,Mitsuo

    1978-07-01

    Full Text Available This research was performed to establish a cell line from experimental bladder tumor and to discuss the biological characteristics of the cell line so established. Tissue cultures of epithelial cells were derived from a rat bladder cancer induced by BBN. The cells showed loss of contact inhibition and the phenomenon of piling up after several subcultures. Colonial cloning was used. The population doubling time of the wild strain and the colonial clones was about 30 h. The chromosomal mode ranged from triploid to tetraploid to tetraploid. Plating efficiency was well below 20%. Intraperitoneal backtransplantation into newborn Wister rats resulted in tumors in all cases. These tumors, in some parts, resembled primary transitional cell carcinoma. The major tumor cell groups, however, showed marked keratinization and the picture of squamous cell carcinoma. The nucleus/cytoplasm ratio and the numbers of nuclei, free ribosomes and intracytoplasmic microfibrils were increased. Dense microvillus arrangements characterized the electron microscopic picture. During the mitotic phase, the cells became large and globular whereas the microvilli were relatively short and were gathered profusely over the whole surface. Cells in the gap 1-synthetic phase developed lamellipodia and pseudpodia-like cytoplasmic processes and were polygonal in shape. Microvilli were present in the central part containing the nucleus, but their numbers were somewhat decreased and their height increased (scanning electron microscopy.

  14. Mast cell growth-enhancing activity (MEA) stimulates interleukin 6 production in a mouse bone marrow-derived mast cell line and a malignant subline.

    Science.gov (United States)

    Hültner, L; Moeller, J

    1990-09-01

    A novel mast cell growth-enhancing activity (MEA/P40/interleukin 9 [IL-9]) purified from the conditioned medium of a murine interleukin 2 (IL-2)-dependent Mlsa-specific T-cell line (MLS4.2) was tested for its capacity to induce interleukin 6 (IL-6) production in a mouse bone marrow-derived factor-dependent mast cell line (L138.8A). This interleukin 3 (IL-3)/interleukin 4 (IL-4)/MEA-responsive cell line was demonstrated recently to express IL-6 mRNA and to secrete IL-6 when cultured with IL-3/IL-4. Now we were able to show that conditioned medium from L138.8A mast cells stimulated with MEA alone contained growth factor activity for the IL-6-dependent mouse hybridoma cell line 7TD1 that was completely blocked by the monoclonal anti-IL-6 antibody 6B4. A dose-response study including IL-3, IL-4, and MEA tested either alone or in different combinations revealed that among these growth factors MEA was the most potent inducer of IL-6 in L138.8A cells. Moreover, IL-4 but not IL-3 had a strong synergistic effect on MEA-induced IL-6 production. The autonomous malignant mast cell subline L138Cauto also showed enhanced IL-6 production when stimulated with MEA. Our findings indicate that MEA (IL-9) not only provides a proliferation signal, but also leads to a marked functional activation of responsive mast cells.

  15. Calcitonin gene-related peptide regulation of glial cell-line derived neurotrophic factor in differentiated rat myotubes.

    Science.gov (United States)

    Rosa, Elyse; Cha, Jieun; Bain, James R; Fahnestock, Margaret

    2015-03-01

    Glial cell-line derived neurotrophic factor (GDNF) is the most potent trophic factor for motoneuron survival and neuromuscular junction formation. GDNF is upregulated in injured or denervated skeletal muscle and returns to normal levels following reinnervation. However, the mechanism by which GDNF is regulated in denervated muscle is not well understood. The nerve-derived neurotransmitter calcitonin gene-related peptide (CGRP) is upregulated following neuromuscular injury and is subsequently released from motoneurons at the neuromuscular junction. CGRP also promotes nerve regeneration, but the mechanism is not well understood. The current study investigates whether this increase in CGRP regulates GDNF, thus playing a key role in promoting regeneration of injured nerves. This study demonstrates that CGRP increases GDNF secretion without affecting its transcription or translation. Rat L6 myoblasts were differentiated into myotubes and subsequently treated with CGRP. GDNF mRNA expression levels were quantified by quantitative real-time reverse transcription-polymerase chain reaction, and secreted GDNF was quantified in the conditioned medium by ELISA. CGRP treatment increased secreted GDNF protein without altering GDNF mRNA levels. The translational inhibitor cycloheximide did not affect CGRP-induced GDNF secreted protein levels, whereas the secretional inhibitor brefeldin A blocked the CGRP-induced increase in GDNF. This study highlights the importance of injury-induced upregulation of CGRP by exposing its ability to increase GDNF levels and demonstrates a secretional mechanism for regulation of this key regeneration-promoting neurotrophic factor.

  16. Glial cell line-derived neurotrophic factor (GDNF) enhances sympathetic neurite growth in rat hearts at early developmental stages.

    Science.gov (United States)

    Miwa, Keiko; Lee, Jong-Kook; Takagishi, Yoshiko; Opthof, Tobias; Fu, Xianming; Kodama, Itsuo

    2010-12-01

    Molecular signaling of sympathetic innervation of myocardium is an unresolved issue. The purpose of this study was to investigate the effect of neurotrophic factors on sympathetic neurite growth towards cardiomyocytes. Cardiomyocytes (CMs) and sympathetic neurons (SNs) were isolated from neonatal rat hearts and superior cervical ganglia, and were co-cultured, either in a random or localized way. Neurite growth from SNs toward CMs was assessed by immunohistochemistry for neurofilament M and α-actinin in response to neurotrophic factors-nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), glial cell line-derived neurotrophic factor (GDNF), ciliary neurotrophic factor (CNTF) and a chemical repellent, semaphorin 3A. As a result, GDNF as well as NGF and BDNF stimulated neurite growth. GDNF enhanced neurite outgrowth even under the NGF-depleted culture condition, excluding an indirect effect of GDNF via NGF. Quantification of mRNA and protein by real-time PCR and immunohistochemistry at different developmental stages revealed that GDNF is abundantly expressed in the hearts of embryos and neonates, but not in adult hearts. GDNF plays an important role in inducing cardiac sympathetic innervation at the early developmental stages. A possible role in (re)innervation of injured or transplanted or cultured and transplanted myocardium may deserve investigation.

  17. Effective and Steady Differentiation of a Clonal Derivative of P19CL6 Embryonal Carcinoma Cell Line into Beating Cardiomyocytes

    Directory of Open Access Journals (Sweden)

    Itsuki Mueller

    2010-01-01

    Full Text Available The P19CL6 cell line is a useful model to study cardiac differentiation in vitro. However, large variations were noticed in the differentiation rates among previous reports as well as our individual experiments. To overcome the unstable differentiation, we established P19CL6-A1, a new clonal derivative of P19CL6 that could differentiate into cardiomyocytes more efficiently and stably than the parent using the double stimulation with 5-Aza and DMSO based on the previous report. We also introduced a new software, Visorhythm, that can analyze the temporal variations in the beating rhythms and can chart correlograms displaying the oscillated rhythms. Using P19CL6-A1-derived cardiomyocytes and the software, we demonstrated that the correlograms could clearly display the enhancement of beating rates by cardiotonic reagents. These indicate that a combination of P19CL6-A1 and Visorhythm is a useful tool that can provide invaluable assistance in inotropic drug discovery, drug screening, and toxicity testing.

  18. Photophysical Properties of Pheophorbide-a Derivatives and Their Photodynamic Therapeutic Effects on a Tumor Cell Line In Vitro

    Directory of Open Access Journals (Sweden)

    Kang-Kyun Wang

    2014-01-01

    Full Text Available Pheophorbide-a derivatives have been reported to be potential photosensitizers for photodynamic therapy (PDT. In this study, photophysics of pheophorbide-a derivatives (PaDs were investigated along with their photodynamic tumoricidal effect in vitro. PaDs were modified by changing the coil length and/or making the hydroxyl group (–OH substitutions. Their photophysical properties were studied by steady-state and time-resolved spectroscopic methods. The photodynamic tumoricidal effect was evaluated in the mouse breast cancer cell line (EMT6. Lifetime and quantum yield of fluorescence and quantum yields of triplet state and singlet oxygen were studied to determine the dynamic energy flow. The coil length of the substituted alkyl group did not significantly affect the spectroscopic properties. However, the substitution with the hydroxyl group increased the quantum yields of the triplet state and the singlet oxygen due to the enhanced intersystem crossing. In order to check the application possibility as a photodynamic therapy agent, the PaDs with hydroxyl group were studied for the cellular affinity and the photodynamic tumoricidal effect of EMT6. The results showed that the cellular affinity and the photodynamic tumoricidal effect of PaDs with the hydroxyl group depended on the coil-length of the substituted alkyl group.

  19. Effect of dehydroepiandrosterone derivatives on the activity of 5α-reductase isoenzymes and on cancer cell line PC-3.

    Science.gov (United States)

    Bratoeff, Eugene; Garrido, Mariana; Ramírez-Apan, Teresa; Heuze, Yvonne; Sánchez, Araceli; Soriano, Juan; Cabeza, Marisa

    2014-11-01

    It is well known that testosterone (T) under the influence of 5α-reductase enzyme is converted to dihydrotestosterone (DHT), which causes androgen-dependent diseases. The aim of this study was to synthesize new dehydroepiandrosterone derivatives (3a-e, 4a-i, 6 and 7) having potential inhibitory activity against the 5α-reductase enzyme. This paper also reports the in vivo pharmacological effect of these steroidal molecules. The results from this study showed that all compounds exhibited low inhibitory activity for 5α-reductase type 1 and 2 enzymes and they failed to bind to the androgen receptor. Furthermore, in the in vivo experiment, steroids 3b, 4f, and 4 g showed comparable antiandrogenic activity to that of finasteride; only derivatives 4d and 7 produced a considerable decrease in the weight of the prostate gland of gonadectomized hamsters treated with (T). On the other hand, compounds 4a, f and h showed 100% inhibition of the growth of prostate cancer cell line PC-3, with compound 4 g having a 98.2% antiproliferative effect at 50 μM. The overall data indicated that these steroidal molecules, having an aromatic ester moiety at C-3 (4f-h), could have anticancer properties.

  20. Derivation and long-term culture of an embryonic stem cell-like line from zebrafish blastomeres under feeder-free condition.

    Science.gov (United States)

    Ho, Sing Yee; Goh, Crystal Wei Pin; Gan, Jen Yang; Lee, Youn Sing; Lam, Millie Kuen Kuen; Hong, Ni; Hong, Yunhan; Chan, Woon Khiong; Shu-Chien, Alexander Chong

    2014-10-01

    Existing zebrafish embryonic stem (ES) cell lines are derived and maintained using feeder layers. We describe here the derivation and long-term culture of an ES cell-like line derived from zebrafish blastomeres without the use of feeder cells. This line, designated as ZES1, has been maintained for more than 800 days in defined Dulbecco's modified Eagle's medium supplemented with fetal bovine serum, zebrafish embryo extract, trout serum, and human basic fibroblast growth factor. ZES1 cells possessed a morphology typical of ES cells, being round or polygonal in shape with a large nucleus and sparse cytoplasm and were mostly diploid. The cells formed individual colonies consisting of tightly packed cells that stained positively for alkaline phosphatase. ZES1 cells also formed embryoid bodies when transferred onto uncoated wells. The pluripotent nature of ZES1 cells was confirmed when they could be induced to differentiate in vitro into several cell types, through low- or high-density culture conditions. Treatment with retinoic acid also induced the differentiation of ZES1 cells into primarily neuronal cells. Using immunostaining and real-time polymerase chain reaction, we showed that Sox2, a known pluripotent marker in mammalian ES cells, was also present in ZES1 cells. Chimera experiments revealed that fluorescent-labeled ZES1 cells microinjected into zebrafish blastulas participated in the formation of all three germ layers. Using GFP-labeled ZES1 cells, chimera germline transmission was also demonstrated at the F1 generation. In conclusion, ZES1 cells possess both in vitro and in vivo pluripotency characteristics, indicating that nonmammalian ES cells can be readily derived and maintained for a long term under feeder-free culture conditions.

  1. High cleavage efficiency of a 2A peptide derived from porcine teschovirus-1 in human cell lines, zebrafish and mice.

    Directory of Open Access Journals (Sweden)

    Jin Hee Kim

    Full Text Available When expression of more than one gene is required in cells, bicistronic or multicistronic expression vectors have been used. Among various strategies employed to construct bicistronic or multicistronic vectors, an internal ribosomal entry site (IRES has been widely used. Due to the large size and difference in expression levels between genes before and after IRES, however, a new strategy was required to replace IRES. A self-cleaving 2A peptide could be a good candidate to replace IRES because of its small size and high cleavage efficiency between genes upstream and downstream of the 2A peptide. Despite the advantages of the 2A peptides, its use is not widespread because (i there are no publicly available cloning vectors harboring a 2A peptide gene and (ii comprehensive comparison of cleavage efficiency among various 2A peptides reported to date has not been performed in different contexts. Here, we generated four expression plasmids each harboring different 2A peptides derived from the foot-and-mouth disease virus, equine rhinitis A virus, Thosea asigna virus and porcine teschovirus-1, respectively, and evaluated their cleavage efficiency in three commonly used human cell lines, zebrafish embryos and adult mice. Western blotting and confocal microscopic analyses revealed that among the four 2As, the one derived from porcine teschovirus-1 (P2A has the highest cleavage efficiency in all the contexts examined. We anticipate that the 2A-harboring cloning vectors we generated and the highest efficiency of the P2A peptide we demonstrated would help biomedical researchers easily adopt the 2A technology when bicistronic or multicistronic expression is required.

  2. International Conference on Harmonisation; guidance on viral safety evaluation of biotechnology products derived from cell lines of human or animal origin; availability--FDA. Notice.

    Science.gov (United States)

    1998-09-24

    The Food and Drug Administration (FDA) is publishing a guidance entitled "Q5A Viral Safety Evaluation of Biotechnology Products Derived From Cell Lines of Human or Animal Origin." The guidance was prepared under the auspices of the International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use (ICH). The guidance describes the testing and evaluation of the viral safety of biotechnology products derived from characterized cell lines of human or animal origin, and outlines data that should be submitted in marketing applications.

  3. Signaling of glial cell line-derived neurotrophic factor and its receptor GFRα1 induce Nurr1 and Pitx3 to promote survival of grafted midbrain-derived neural stem cells in a rat model of Parkinson disease.

    Science.gov (United States)

    Lei, Zhinian; Jiang, Yu; Li, Tao; Zhu, Jianbao; Zeng, Shuilin

    2011-09-01

    Glial cell line-derived neurotrophic factor (GDNF) and its receptor GFRα1 have been implicated in the survival of ventral midbrain dopaminergic (DA) neurons, but the molecular mechanisms bywhich GDNF generates DA neurons in grafted midbrain-derived neural stem cells (mNSCs) are not understood. Midbrain-derived neural stem cells isolated from rat embryonic mesencephalon (embryonic day 12) were treated with GDNF or in combination with GFRα1 small interfering RNA. Reverse transcription-polymerase chain reaction, Western blot, and immunocytochemistry were used totest the expression of the orphan nuclear receptor Nurr1 and thetranscription factor Pitx3 and newborn tyrosine hydroxylase (TH)-positive cells. Treatment of mNSCs with GDNF increased mNSCs' sphere diameter, reduced expression of caspase 3, and increased expression of Bcl-2. Glial cell line-derived neurotrophic factor-treated mNSCs enhanced Nurr1 and Pitx3 expression and the fraction of TH-, TH/Pitx3-, and TH/Nurr1-positive cells in culture. Grafted GDNF-treated mNSCs significantly decreased apomorphine-induced rotation behavior in 6-hydroxydopamine-lesioned rats. Glialcell line-derived neurotrophic factor-treated mNSCs showed increased numbers of TH/Pitx3- and TH/Nurr1-postivie cells. The effect elicited by GDNF was inhibited by small interfering RNA-mediated knockdown of GFRα1. Our data demonstrate the contribution of GDNF to DA neuron development and may also elucidate pathogenetic mechanisms in Parkinson disease and contribute to the development of novel therapies for the disorder.

  4. INCREASED EXPRESSION OF GLIAL CELL LINE-DERIVED NEUROTROPHIC FACTOR IN RAT BRAIN AFTER TRAUMATIC BRAIN INJURY

    Directory of Open Access Journals (Sweden)

    V. Rahimi-Movaghar

    2005-04-01

    Full Text Available Glial cell line-derived neurotrophic factor (GDNF plays important roles not only for the differentiation of neurons during normal development but also for the survival and recovery of many populations of mature neurons. The effect of traumatic brain injury (TBI on the expression of GDNF is currently unknown. To determine if there is alteration in GDNF after TBI we examined the effect of controlled cortical impact (CCI injury on GDNF protein levels at 6 hours, 1 day, 1 week, and 4 weeks following injury by utilizing a commercially available antibody specific to GDNF. Rats were anesthetized and surgically prepared for CCI injury (4 m/sec, 2.7 mm and sham surgery. Injured and sham animals (n=6 per group were sacrificed at 6 hours, 1 day, 1 week, and 4 weeks and perfused with 4% paraformaldehyde. Coronal sections (35 mm thick were cut through the hippocampus. An increased expression of GDNF protein was observed by immunohistochemistry in the dentate gyrus of hippocampus and the cortex in injured rats compared to sham controls. The increased expression of GDNF was more evidently observed in the ipsilateral dentate gyrus and the area around the contusion in the cortex. In the cortex, GDNF immunoreactivity appeared greatest in cells with glial morphology but in the hippocampus, GDNF immunoreactivity was greatest in neuronal-like cells. These changes were observed at 1 day, 1 and 4 weeks postinjury. We speculate that the up-regulation of the GDNF protein may reflect its neurotrophic and neuroprotective effect on dopaminergic system responding to the TBI insult.

  5. MicroRNA regulation of central glial cell line-derived neurotrophic factor (GDNF) signalling in depression.

    Science.gov (United States)

    Maheu, M; Lopez, J P; Crapper, L; Davoli, M A; Turecki, G; Mechawar, N

    2015-02-17

    Although multiple studies have reported that peripheral glial cell line-derived neurotrophic factor (GDNF) is reduced in depression, cerebral GDNF signalling has yet to be examined in this condition. Here, we report an isoform-specific decrease in GDNF family receptor alpha 1 (GFRA1) mRNA expression, resulting in lowered GFRα1a protein levels in basolateral amygdala (BLA) samples from depressed subjects. Downregulation of GFRα1a was associated with increased expression of microRNAs, including miR-511, predicted to bind to long 3' untranslated region (3'-UTR)-containing transcripts (GFRA1-L) coding for GFRα1a. Transfection of human neural progenitor cells (NPCs) with a miR-511 mimic was sufficient to repress GFRA1-L/GFRα1a without altering GFRα1b, and resulted in pathway-specific changes in immediate early gene activity. Unexpectedly, GFRα1a knockdown did not reduce NPC responses to GDNF. Rather, it greatly enhanced mitogen-activated protein kinase signalling. This effect appeared to be mediated by GDNF/soluble GFRα1/neural cell adhesion molecule binding, and substituting the soluble GFRα1a/GFRα1b content of miR-511-transfected NPCs with that of controls rescued signalling. In light of previous reports suggesting that GFRα1b can inhibit GFRα1a-induced neuroplasticity, we also assessed the association between GFRα1 and doublecortin (DCX; a hyperplastic marker) in human BLA. Although controls displayed coordinated expression of GFRα1a and b isoforms and these correlated positively with DCX, the only significant association observed among depressed subjects was a strongly negative correlation between GFRα1b and DCX. Taken together, these results suggest that microRNA-mediated reductions of GFRα1a in depression change the quality, rather than the quantity, of GDNF signalling. They also suggest that central GDNF signalling may represent a novel target for antidepressant treatment.

  6. A transgenic Bm cell line of piggyBac transposon-derived targeting expression of humanized glycoproteins through N-glycosylation.

    Science.gov (United States)

    Hu, Jia-Biao; Zhang, Peng; Wang, Mei-Xian; Zhou, Fang; Niu, Yan-Shan; Miao, Yun-Gen

    2012-08-01

    Glycoproteins have been implicated in a wide variety of important biochemical and biological functions, including protein stability, immune function, enzymatic function, cellular adhesion and others. Unfortunately, there is no therapeutic protein produced in insect system to date, due to the expressed glycoproteins are paucimannosidic N-glycans, rather than the complex, terminally sialylated N-glycans in mammalian cells. In this paper, we cloned the necessary genes in glycosylation of mammalian cells, such as N-acetylglucosaminyltransferase II (Gn-TII), galactosyltransferases (Gal-Ts), 2,6-Sial-T (ST6 GalII)and 2,3-Sial-T (ST3GalIII), and transformed them to silkworm genome of BmN cell line through transgenesis to establish a transgenic Bm cell line of piggyBac transposon-derived targeting expression of humanized glycoproteins. The study supplied a new insect cell line which is practically to produce "bisected" complex N-glycans like in mammalian cells.

  7. Synthesis and Pharmacophore Modelling of 2,6,9-Trisubstituted Purine Derivatives and Their Potential Role as Apoptosis-Inducing Agents in Cancer Cell Lines

    Directory of Open Access Journals (Sweden)

    Jeannette Calderón-Arancibia

    2015-04-01

    Full Text Available A series of 2,6,9-trisubstituted purine derivatives have been synthesized and investigated for their potential role as antitumor agents. Twelve compounds were obtained by a three step synthetic procedure using microwave irradiation in a pivotal step. All compounds were evaluated in vitro to determine their potential effect on cell toxicity by the MTT method and flow cytometry analysis on four cancer cells lines and Vero cells. Three out of twelve compounds were found to be promising agents compared to a known and effective anticancer drug, etoposide, in three out of four cancer cell lines assayed with considerable selectivity. Preliminary flow cytometry data suggests that compounds mentioned above induce apoptosis on these cells. The main structural requirements for their activity for each cancer cell line were characterized with a preliminary pharmacophore model, which identified aromatic centers, hydrogen acceptor/donor center and a hydrophobic area. These features were consistent with the cytotoxic activity of the assayed compounds.

  8. Decreased glial cell line-derived neurotrophic factor levels in patients with depression: a meta-analytic study.

    Science.gov (United States)

    Lin, Pao-Yen; Tseng, Ping-Tao

    2015-04-01

    Glial cell-line derived neurotrophic factor (GDNF) has been shown to promote development, differentiation, and protection of CNS neurons and was thought to play an important role in various neuropsychiatric disorders. Several studies have examined the GDNF levels in patients with depression but shown inconsistent results. In this study, we compared blood GDNF levels between depressive patients and control subjects through meta-analytic method. The effect sizes (ESs) from all eligible studies were synthesized by using a random effect model. In this meta-analysis, we included 526 patients and 502 control subjects from 12 original articles. Compared to control subjects, blood GDNF levels are significantly decreased in patients with depression (ES = -0.62, p = 0.0011). However, significant heterogeneity was found among included studies. Through subgroup analysis, we found that GDNF was still decreased in studies with major depressive disorder (ES = -0.73, p = 0.0001); in studies with non-old-age depression (ES = -1.25, p = 0.0001), but not with old-age depression; and in studies using serum samples (ES = -0.86, p GDNF levels as a biomarker of depression as a whole, but the results were modulated by psychiatric diagnosis, age of included subjects, and sampling sources. With these results, future studies are required to examine whether effective antidepressant treatment is associated with an increase in serum GDNF levels.

  9. Sympathetic Innervation Induced in Engrafted Engineered Cardiomyocyte Sheets by Glial Cell Line Derived Neurotrophic Factor In Vivo

    Directory of Open Access Journals (Sweden)

    Xian-ming Fu

    2013-01-01

    Full Text Available The aim of myocardial tissue engineering is to repair or regenerate damaged myocardium with engineered cardiac tissue. However, this strategy has been hampered by lack of functional integration of grafts with native myocardium. Autonomic innervation may be crucial for grafts to function properly with host myocardium. In this study, we explored the feasibility of in vivo induction of autonomic innervation to engineered myocardial tissue using genetic modulation by adenovirus encoding glial cell line derived neurotrophic factor (GDNF. GFP-transgene (control group or GDNF overexpressing (GDNF group engineered cardiomyocyte sheets were transplanted on cryoinjured hearts in rats. Nerve fibers in the grafts were examined by immunohistochemistry at 1, 2, and 4 weeks postoperatively. Growth associated protein-43 positive growing nerves and tyrosine hydroxylase positive sympathetic nerves were first detected in the grafts at 2 weeks postoperatively in control group and 1 week in GDNF group. The densities of growing nerve and sympathetic nerve in grafts were significantly increased in GDNF group. No choline acetyltransferase immunopositive parasympathetic nerves were observed in grafts. In conclusion, sympathetic innervation could be effectively induced into engrafted engineered cardiomyocyte sheets using GDNF.

  10. Constitutive phosphorylation of the mTORC2/Akt/4E-BP1 pathway in newly derived canine hemangiosarcoma cell lines

    Directory of Open Access Journals (Sweden)

    Murai Atsuko

    2012-07-01

    Full Text Available Abstract Background Canine hemangiosarcoma (HSA is a malignant tumor with poor long-term prognosis due to development of metastasis despite aggressive treatment. The phosphatidyl-inositol-3 kinase/Akt/mammalian target of rapamycin (PI3K/Akt/mTOR pathway is involved in its endothelial pathologies; however, it remains unknown how this pathway plays a role in canine HSA. Here, we characterized new canine HSA cell lines derived from nude mice-xenografted canine HSAs and investigated the deregulation of the signaling pathways in these cell lines. Results Seven canine HSA cell lines were established from 3 xenograft canine HSAs and showed characteristics of endothelial cells (ECs, that is, uptake of acetylated low-density lipoprotein and expression of canine-specific CD31 mRNA. They showed varied morphologies and mRNA expression levels for VEGF-A, bFGF, HGF, IGF-I, EGF, PDGF-B, and their receptors. Cell proliferation was stimulated by these growth factors and fetal bovine serum (FBS in 1 cell line and by FBS alone in 3 cell lines. However, cell proliferation was not stimulated by growth factors and FBS in the remaining 3 cell lines. Phosphorylated p44/42 Erk1/2 was increased by FBS stimulation in 4 cell lines. In contrast, phosphorylation of Akt at Ser473, mTOR complex 1 (mTORC1 at Ser2448, and eukaryotic translation initiation factor 4E-binding protein 1 (4E-BP1 at Ser65 was high in serum-starved condition and not altered by FBS stimulation in 6 cell lines, despite increased phosphorylation of these residues in normal canine ECs. This suggested that the mTORC2/Akt/4E-BP1 pathway was constitutively activated in these 6 canine HSA cell lines. After cell inoculation into nude mice, canine HSA tumors were formed from 4 cell lines and showed Akt and 4E-BP1 phosphorylation identical to the parental cell lines. Conclusions Our findings suggest that the present cell lines may be useful tools for investigating the role of the mTORC2/Akt/4E-BP1 pathway in

  11. Role of PI3-K/Akt pathway and its effect on glial cell line-derived neurotrophic factor in midbrain dopamine cells

    Institute of Scientific and Technical Information of China (English)

    Hong-jun WANG; Jun-ping CAO; Jing-kao YU; Dian-shuai GAO

    2007-01-01

    Aim: To explore the intracellular mechanisms underlying the survival/differentia-don effect of the glial cell line-derived neurotrophic factor (GDNF) on dopamine(DA) cells. Methods: Midbrain slice culture and primary cell culture were established, and the cultures were divided into 3 groups: control group, GDNF group, and the phosphatidylinositol 3-kinase/Akt (PI3-K/Akt) pathway-inhibited group. Then the expression of tyrosine hydroxylase (TH) was detected by immunostaining as well as Western blotting. Results: GDNF treatment induced an increase in the number of TH-immunoreactive (ir) cells and the neurite number of TH-ir cells, as well as in the level of TH expression in cultures (Number of TH-ir cells in the slice culture: control group, 8.76±0.75; GDNF group, 18.63±0.95.Number of TH-ir cells and neurite number of TH-ir cells in cell culture: controlgroup, 3.65±0.88 and 2.49±0.42; GDNF group, 6.01±0.43 and 4.89±0.46). Meanwhile, the stimulation of cultured cells with GDNF increased the phosphorylation of Akt, which is a downstream effector of PI3-K/Akt. The effects of GDNF were specifically blocked by the inhibitor of the PI3-K/Akt pathway, wortmannin (Number of TH-ir cells in slice culture: PI3-K/Akt pathway-inhibited group, 6.98±0.58. Num-ber of TH-ir cells and neurite number of TH-ir cells in cell culture: PI3-K/Aktpathway-inhibited group, 3.79±0.62 and 2.50±0.25, respectively). Conclusion: The PI3-K/Akt pathway mediates the survival/differentiation effect of GDNF on DA cells.8±0.58.

  12. Expression of glial cell line-derived neurotrophic factor and its receptors in cultured retinal Müller cells under high glucose circumstance.

    Science.gov (United States)

    Zhu, Xinping; Sun, Yan; Wang, Zhongping; Cui, Weigang; Peng, Yuwen; Li, Ruixi

    2012-03-01

    This study aimed to explore the effect of high glucose concentration on the expression of glial cell line-derived neurotrophic factor (GDNF) and its family ligand receptors (GFRs) GFRα1 and GFRα2 in Müller cells and the protective role of GDNF in cultured Müller cells under high glucose circumstance. Cultured Müller cells (untreated or treated with 200 ng/mL of GDNF) were exposed to high glucose conditions (20 mmol/L glucose). We found that the expression levels of GDNF and GFRα1 mRNA and protein increased gradually over time under high glucose and exogenous GDNF-treated conditions, whereas the upregulation in GFRα2 expression was observed only in the early stage of high glucose conditions. Exogenous GDNF not only decreased apoptosis in cultured Müller cells under high glucose circumstance, but also accelerated the levels and speed of synthesis of GDNF and GFRα1 proteins in Müller cells. These results suggest that Müller cells can synthesize GDNF and GFRs under high glucose conditions, and GDNF may play important role in protecting Müller cells during the early stage of diabetic retinopathy. The difference in GFRs expression indicated that GDNF and neurturin may exert different effects on Müller cells under high glucose circumstance.

  13. Inhibitory effect of vitamin D-binding protein-derived macrophage activating factor on DMBA-induced hamster cheek pouch carcinogenesis and its derived carcinoma cell line.

    Science.gov (United States)

    Toyohara, Yukiyo; Hashitani, Susumu; Kishimoto, Hiromitsu; Noguchi, Kazuma; Yamamoto, Nobuto; Urade, Masahiro

    2011-07-01

    This study investigated the inhibitory effect of vitamin D-binding protein-derived macrophage-activating factor (GcMAF) on carcinogenesis and tumor growth, using a 9,10-dimethyl-1,2-benzanthracene (DMBA)-induced hamster cheek pouch carcinogenesis model, as well as the cytocidal effect of activated macrophages against HCPC-1, a cell line established from DMBA-induced cheek pouch carcinoma. DMBA application induced squamous cell carcinoma in all 15 hamsters of the control group at approximately 10 weeks, and all 15 hamsters died of tumor burden within 20 weeks. By contrast, 2 out of the 14 hamsters with GcMAF administration did not develop tumors and the remaining 12 hamsters showed a significant delay of tumor development for approximately 3.5 weeks. The growth of tumors formed was significantly suppressed and none of the hamsters died within the 20 weeks during which they were observed. When GcMAF administration was stopped at the 13th week of the experiment in 4 out of the 14 hamsters in the GcMAF-treated group, tumor growth was promoted, but none of the mice died within the 20-week period. On the other hand, when GcMAF administration was commenced after the 13th week in 5 out of the 15 hamsters in the control group, tumor growth was slightly suppressed and all 15 hamsters died of tumor burden. However, the mean survival time was significantly extended. GcMAF treatment activated peritoneal macrophages in vitro and in vivo, and these activated macrophages exhibited a marked cytocidal effect on HCPC-1 cells. Furthermore, the cytocidal effect of activated macrophages was enhanced by the addition of tumor-bearing hamster serum. These findings indicated that GcMAF possesses an inhibitory effect on tumor development and growth in a DMBA-induced hamster cheek pouch carcinogenesis model.

  14. Preservation of biological activity of glial cell line-derived neurotrophic factor (GDNF) after microencapsulation and sterilization by gamma irradiation.

    Science.gov (United States)

    Checa-Casalengua, P; Jiang, C; Bravo-Osuna, I; Tucker, B A; Molina-Martínez, I T; Young, M J; Herrero-Vanrell, R

    2012-10-15

    A main issue in controlled delivery of biotechnological products from injectable biodegradable microspheres is to preserve their integrity and functional activity after the microencapsulation process and final sterilization. The present experimental work tested different technological approaches to maintain the biological activity of an encapsulated biotechnological product within PLGA [poly (lactic-co-glycolic acid)] microspheres (MS) after their sterilization by gamma irradiation. GDNF (glial cell line-derived neurotrophic factor), useful in the treatment of several neurodegenerative diseases, was chosen as a labile model protein. In the particular case of optic nerve degeneration, GDNF has been demonstrated to improve the damaged retinal ganglion cells (RGC) survival. GDNF was encapsulated in its molecular state by the water-in-oil-in-water (W/O/W) technique or as solid according to the solid-in-oil-in-water (S/O/W) method. Based on the S/O/W technique, GDNF was included in the PLGA microspheres alone (S/O/W 1) or in combination with an antioxidant (vitamin E, Vit E) (S/O/W 2). Microspheres were sterilized by gamma-irradiation (dose of 25 kGy) at room and low (-78 °C) temperatures. Functional activity of GDNF released from the different microspheres was evaluated both before and after sterilization in their potential target cells (retinal cells). Although none of the systems proposed achieved with the goal of totally retain the structural stability of the GDNF-dimer, the protein released from the S/O/W 2 microspheres was clearly the most biologically active, showing significantly less retinal cell death than that released from either W/O/W or S/O/W 1 particles, even in low amounts of the neurotrophic factor. According to the results presented in this work, the biological activity of biotechnological products after microencapsulation and sterilization can be further preserved by the inclusion of the active molecule in its solid state in combination with

  15. Derivation of HVR1, HVR2 and HVR3 human embryonic stem cell lines from IVF embryos after preimplantation genetic diagnosis (PGD for monogenic disorder

    Directory of Open Access Journals (Sweden)

    Abdelkrim Hmadcha

    2016-05-01

    Full Text Available From 106 human blastocyts donate for research after in vitro fertilization (IVF and preimplantation genetic diagnosis (PGD for monogenetic disorder, 3 human embryonic stem cells (hESCs HVR1, HVR2 and HVR3 were successfully derived. HVR1 was assumed to be genetically normal, HVR2 carrying Becker muscular dystrophy and HVR3 Hemophilia B. Despite the translocation t(9;15(q34.3;q14 detected in HVR2, all the 3 cell lines were characterised in vitro and in vivo as normal hESCs lines and were registered in the Spanish Stem Cell Bank.

  16. Imipramine activates glial cell line-derived neurotrophic factor via early growth response gene 1 in astrocytes.

    Science.gov (United States)

    Kim, Yeni; Kim, Se Hyun; Kim, Yong Sik; Lee, Young Han; Ha, Kyooseob; Shin, Soon Young

    2011-06-01

    Recent evidence has suggested that deficits in glial plasticity contribute to the pathophysiology of depressive disorders. The present study explored early growth response 1 (EGR-1) transcriptional regulation of imipramine-induced glial cell line-derived neurotrophic factor (GDNF) expression in astrocytes. After we observed the induction of GDNF mRNA expression in rat astrocytes in response to imipramine, deletion mutant studies showed that the proximal region between -493 and -114 of the GDNF promoter, which contains three binding sites for EGR-1, was essential for maximal imipramine-induced activation of GDNF promoter. The dose-dependent upregulation of EGR-1 by imipramine, the activation of GDNF by the over-expression of EGR-1 without imipramine and the reduction in the imipramine-induced GDNF mRNA expression after silencing of endogenous EGR-1 demonstrated that EGR-1 is upregulated by imipramine to activate the GDNF promoter. Furthermore, imipramine-induced GDNF mRNA expression was strongly attenuated in primary astrocytes from Egr-1(-/-) mice, and the immunoreactivity to an anti-GDNF antibody in glial fibrillary acidic protein-positive cells was lower in imipramine-treated astrocytes from Egr-1(-/-) mice than in those from Egr-1(+/-) mice. To determine whether mitogen-activated protein kinases (MAPKs) were associated with imipramine-induced EGR-1 expression, we examined the induction of MAPK phosphorylation in response to imipramine. Pretreatment of rat primary astrocytes with the MAPK kinase inhibitor U0126 or the JNK inhibitor SP600125 strongly inhibited imipramine-stimulated EGR-1 expression. In conclusion, we found that imipramine induction of EGR-1 upregulated GDNF in astrocytes in a dose-dependent manner. This upregulation may occur through the MEK/ERK and JNK MAPK pathways, which suggests a new therapeutic mechanism of action for depressive disorders.

  17. Acidosis-Induced Changes in Proteome Patterns of the Prostate Cancer-Derived Tumor Cell Line AT-1.

    Science.gov (United States)

    Ihling, Angelika; Ihling, Christian H; Sinz, Andrea; Gekle, Michael

    2015-09-04

    Under various pathological conditions, such as inflammation, ischemia and in solid tumors, physiological parameters (local oxygen tension or extracellular pH) show distinct tissue abnormalities (hypoxia and acidosis). For tumors, the prevailing microenvironment exerts a strong influence on the phenotype with respect to proliferation, invasion, and metastasis formation and therefore influences prognosis. In this study, we investigate the impact of extracellular metabolic acidosis (pH 7.4 versus 6.6) on the proteome patterns of a prostate cancer-derived tumor cell type (AT-1) using isobaric labeling and LC-MS/MS analysis. In total, 2710 proteins were identified and quantified across four biological replicates, of which seven were significantly affected with changes >50% and used for validation. Glucose transporter 1 and farnesyl pyrophosphatase were found to be down-regulated after 48 h of acidic treatment, and metallothionein 2A was reduced after 24 h and returned to control values after 48 h. After 24 and 48 h at pH 6.6, glutathione S transferase A3 and NAD(P)H dehydrogenase 1, cellular retinoic acid-binding protein 2, and Na-bicarbonate transporter 3 levels were found to be increased. The changes in protein levels were confirmed by transcriptome and functional analyses. In addition to the experimental in-depth investigation of proteins with changes >50%, functional profiling (statistical enrichment analysis) including proteins with changes >20% revealed that acidosis upregulates GSH metabolic processes, citric acid cycle, and respiratory electron transport. Metabolism of lipids and cholesterol biosynthesis were downregulated. Our data comprise the first comprehensive report on acidosis-induced changes in proteome patterns of a tumor cell line.

  18. Generation and Characterization of Vascular Smooth Muscle Cell Lines Derived from a Patient with a Bicuspid Aortic Valve

    Directory of Open Access Journals (Sweden)

    Pamela Lazar-Karsten

    2016-04-01

    Full Text Available Thoracic aortic dilation is the most common malformation of the proximal aorta and is responsible for 1%–2% of all deaths in industrialized countries. In approximately 50% of patients with a bicuspid aortic valve (BAV, dilation of any or all segments of the aorta occurs. BAV patients with aortic dilation show an increased incidence of cultured vascular smooth muscle cell (VSMC loss. In this study, VSMC, isolated from the ascending aorta of BAV, was treated with Simian virus 40 to generate a BAV-originated VSMC cell line. To exclude any genomic DNA or cross-contamination, highly polymorphic short tandem repeats of the cells were profiled. The cells were then characterized using flow cytometry and karyotyping. The WG-59 cell line created is the first reported VSMC cell line isolated from a BAV patient. Using an RT2 Profiler PCR Array, genes within the TGFβ/BMP family that are dependent on losartan treatment were identified. Endoglin was found to be among the regulated genes and was downregulated in WG-59 cells following treatment with different losartan concentrations, when compared to untreated WG-59 cells.

  19. Mechanisms for the activity of heterocyclic cyclohexanone curcumin derivatives in estrogen receptor negative human breast cancer cell lines.

    Science.gov (United States)

    Somers-Edgar, Tiffany J; Taurin, Sebastien; Larsen, Lesley; Chandramouli, Anupama; Nelson, Mark A; Rosengren, Rhonda J

    2011-02-01

    Estrogen receptor (ER)-negative breast cancer is an aggressive form that currently requires more drug treatment options. Thus, we have further modified cyclohexanone derivatives of curcumin and examined them for cytotoxicity towards ER-negative human breast cancer cells. Two of the analogs screened elicited increased cytotoxic potency compared to curcumin and other previously studied derivatives. Specifically, 2,6-bis(pyridin-3-ylmethylene)-cyclohexanone (RL90) and 2,6-bis(pyridin-4-ylmethylene)-cyclohexanone (RL91) elicited EC(50) values of 1.54 and 1.10 µM, respectively, in MDA-MB-231 cells and EC(50) values of 0.51 and 0.23 in SKBr3 cells. All other new compounds examined were less potent than curcumin, which elicited EC(50) values of 7.6 and 2.4 µM in MDA-MB-231 and SKBr3 cells, respectively. Mechanistic analyses demonstrated that RL90 and RL91 significantly induced G(2)/M-phase cell cycle arrest and apoptosis. RL90 and RL91 also modulated the expression of key cell signaling proteins, specifically, in SKBr3 cells, protein levels of Her-2, Akt, and NFκB were decreased in a time-dependent manner, while activity of stress kinases JNK1/2 and P38 MAPK were increased. Signaling events in MDA-MB-231 cells were differently implicated, as EGFR protein levels were decreased and activity of GSK-3β transiently decreased, while β-catenin protein level and activity of P38 MAPK, Akt, and JNK1/2 were transiently increased. In conclusion replacement of the phenyl group of cyclohexanone derived curcumin derivatives with heterocyclic rings forms a class of second-generation analogs that are more potent than both curcumin and other derivatives. These new derivatives provide a platform for the further development of drugs for the treatment of ER-negative breast cancer.

  20. Generation, isolation, and maintenance of human mast cells and mast cell lines derived from peripheral blood or cord blood

    DEFF Research Database (Denmark)

    Rådinger, Madeleine; Jensen, Bettina M; Kuehn, Hye Sun;

    2010-01-01

    Antigen-mediated mast cell activation is a pivotal step in the initiation of allergic disorders including anaphylaxis and atopy. To date, studies aimed at investigating the mechanisms regulating these responses, and studies designed to identify potential ways to prevent them, have primarily been...... conducted in rodent mast cells. However, to understand how these responses pertain to human disease, and to investigate and develop novel therapies for the treatment of human mast cell-driven disease, human mast cell models may have greater relevance. Recently, a number of systems have been developed...... to allow investigators to readily obtain sufficient quantities of human mast cells to conduct these studies. These mast cells release the appropriate suite of inflammatory mediators in response to known mast cell activators including antigen. These systems have also been employed to examine the signaling...

  1. Characterization of cells recovered from the xenotransplanted NG97 human-derived glioma cell line subcultured in a long-term in vitro

    Directory of Open Access Journals (Sweden)

    Heinrich Juliana K

    2008-10-01

    Full Text Available Abstract Background In order to elucidate tumoral progression and drug resistance, cultured cell lines are valuable tools applied on tumor related assays provided they are well established and characterized. Our laboratory settled the NG97 cell line derived from a human astrocytoma grade III, which started to develop and express important phenotypical characteristics of an astrocytoma grade IV after injection in the flank of nude mice. Astrocytomas are extremely aggressive malignancies of the Central Nervous System (CNS and account for 46% of all primary malignant brain tumors. Progression to worse prognosis occurs in 85% of the cases possibly due to changes in cell tumor microenvironment and through biological pathways that are still unclear. Methods This work focused on characterizing the NG97 cell line specifically after being recovered from the xenotransplant, who maintained their undifferentiated characteristics along the following 60th passages in vitro. These cells were subcultivated to evaluate the possible contribution of these undifferentiated characteristics to the malignant progression phenotype. These characteristics were the expression of molecules involved in the processes of migration, dedifferentiation and chromosomal instability. Results Results showed that NG97(ht had an decrease in doubling time through sub cultivation, which was characterized by a converse modulation between the expression of glial fibrillary acidic protein (GFAP and vimentin. In addition, β1 integrins were present in intermediate levels while α5 integrins had a high expression profile as well as fibronectin and laminin. Cytogenetic analysis of NG97(ht revealed several chromosomal abnormalities, 89% of the cells showed to be hyperdiploid and the modal number was assigned to be 63. Several acrocentric chromosomes were visualized and at least 30 figures were attributed to be murine. These findings suggest a possible fusion between the original NG97 cells

  2. Insulin-like growth factors and the multiplication of Tera-2, a human teratoma-derived cell line.

    Science.gov (United States)

    Biddle, C; Li, C H; Schofield, P N; Tate, V E; Hopkins, B; Engstrom, W; Huskisson, N S; Graham, C F

    1988-07-01

    A human teratoma cell line (Tera-2) was grown in serum-free medium, and the population multiplication was stimulated by the addition of somatomedins/insulin-like growth factors (IGFs). Both IGF-I and IGF-II gave maximal stimulation when added daily at 10 ng ml-1. The IGFs did not substantially change the labelling index of the cells, and the IGFs appeared to exert their effect on population multiplication by increasing cell survival. Membranes isolated from Tera-2 cells displayed both type 1 and type 2 IGF receptors.

  3. Derivation of mouse embryonic stem cell lines from tyrosine hydroxylase reporter mice crossed with a human SNCA transgenic mouse model of Parkinson's disease

    Directory of Open Access Journals (Sweden)

    Margarita Chumarina

    2017-03-01

    Full Text Available Mouse embryonic stem cell (mESC lines were derived by crossing heterozygous transgenic (tg mice expressing green fluorescent protein (GFP under the control of the rat tyrosine hydroxylase (TH promoter, with homozygous alpha-synuclein (aSYN mice expressing human mutant SNCAA53T under the control of the mouse Prion promoter (MoPrP, or wildtype (WT mice. The expression of GFP and human aSYN was validated by immunocytochemistry in midbrain neuron cultures upon differentiation of mESC lines using stromal cell-derived inducing activity. These mESC lines can help to study the impact of human aSYN expression in neurons and oligodendrocytes, and also trace GFP-expressing midbrain neurons.

  4. Distribution of glial cell line-derived neurotrophic factor receptor alpha-1 in the brain of adult zebrafish.

    Science.gov (United States)

    Lucini, Carla; Carla, Lucini; Facello, Bruna; Bruna, Facello; Maruccio, Lucianna; Lucianna, Maruccio; Langellotto, Fernanda; Fernanda, Langellotto; Sordino, Paolo; Paolo, Sordino; Castaldo, Luciana; Luciana, Castaldo

    2010-08-01

    Glial cell line-derived neurotrophic factor (GDNF) is a potent trophic factor for several types of neurons in the central and peripheral nervous systems. The biological activity of GDNF is mediated by a multicomponent receptor complex that includes a common transmembrane signaling component (the rearranged during transfection (RET) proto-oncogene product, a tyrosine kinase receptor) as well as a GDNF family receptor alpha (GFRalpha) subunit, a high-affinity glycosyl phosphatidylinositol (GPI)-linked binding element. Among the four known GFRalpha subunits, GFRalpha1 preferentially binds to GDNF. In zebrafish (Danio rerio) embryos, the expression of the GFRalpha1a and GFRalpha1b genes has been shown in primary motor neurons, the kidney, and the enteric nervous system. To examine the activity of GFRalpha in the adult brain of a lower vertebrate, we have investigated the localization of GFRalpha1a and GFRalpha1b mRNA and the GFRalpha1 protein in zebrafish. GFRalpha1a and GFRalpha1b transcripts were observed in brain extracts by reverse transcription-polymerase chain reaction. Whole-mount in-situ hybridization experiments revealed a wide distribution of GFRalpha1a and GFRalpha1b mRNAs in various regions of the adult zebrafish brain. These included the olfactory bulbs, dorsal and ventral telencephalic area (telencephalon), preoptic area, dorsal and ventral thalamus, posterior tuberculum and hypothalamus (diencephalon), optic tectum (mesencephalon), cerebellum, and medulla oblongata (rhombencephalon). Finally, expression patterns of the GFRalpha1 protein, detected immunohistochemically, correlated well with the mRNA expression and provided further insights into translational activity at the neuroanatomical level. In conclusion, the current study demonstrated that the presence of GFRalpha1 persists beyond the embryonic development of the zebrafish brain and, together with the GDNF ligand, is probably implicated in the brain physiology of an adult teleost fish.

  5. The cytoskeleton of Drosophila-derived Schneider line-1 and Kc23 cells undergoes significant changes during long-term culture

    Science.gov (United States)

    Schatten, H.; Hedrick, J.; Chakrabarti, A.

    1998-01-01

    Insect cell cultures derived from Drosophila melanogaster are increasingly being used as an alternative system to mammalian cell cultures, as they are amenable to genetic manipulation. Although Drosophila cells are an excellent tool for the study of genes and expression of proteins, culture conditions have to be considered in the interpretation of biochemical results. Our studies indicate that significant differences occur in cytoskeletal structure during the long-term culture of the Drosophila-derived cell lines Schneider Line-1 (S1) and Kc23. Scanning, transmission-electron, and immunofluorescence microscopy studies reveal that microfilaments, microtubules, and centrosomes become increasingly different during the culture of these cells from 24 h to 7-14 days. Significant cytoskeletal changes are observed at the cell surface where actin polymerizes into microfilaments, during the elongation of long microvilli. Additionally, long protrusions develop from the cell surface; these protrusions are microtubule-based and establish contact with neighboring cells. In contrast, the microtubule network in the interior of the cells becomes disrupted after four days of culture, resulting in altered transport of mitochondria. Microtubules and centrosomes are also affected in a small percent of cells during cell division, indicating an instability of centrosomes. Thus, the cytoskeletal network of microfilaments, microtubules, and centrosomes is affected in Drosophila cells during long-term culture. This implies that gene regulation and post-translational modifications are probably different under different culture conditions.

  6. MSLN Gene Silencing Has an Anti-Malignant Effect on Cell Lines Overexpressing Mesothelin Deriving from Malignant Pleural Mesothelioma

    Science.gov (United States)

    Melaiu, Ombretta; Stebbing, Justin; Lombardo, Ylenia; Bracci, Elisa; Uehara, Norihisa; Bonotti, Alessandra; Cristaudo, Alfonso; Foddis, Rudy; Mutti, Luciano; Barale, Roberto; Gemignani, Federica

    2014-01-01

    Genes involved in the carcinogenetic mechanisms underlying malignant pleural mesothelioma (MPM) are still poorly characterized. So far, mesothelin (MSLN) has aroused the most interest. It encodes for a membrane glycoprotein, frequently over-expressed in various malignancies such as MPM, and ovarian and pancreatic cancers. It has been proposed as a diagnostic and immunotherapeutic target with promising results. However, an alternative therapeutic approach seems to rise, whereby synthetic molecules, such as antisense oligonucleotides, could be used to inhibit MSLN activity. To date, such a gene-level inhibition has been attempted in two studies only, both on pancreatic and ovarian carcinoma cell lines, with the use of silencing RNA approaches. With regard to MPM, only one cell line (H2373) has been employed to study the effects of MSLN depletion. Indeed, the knowledge on the role of MSLN in MPM needs expanding. Accordingly, we investigated the expression of MSLN in a panel of three MPM cell lines, i.e. NCI-H28, Mero-14, and IstMes2; one non-MPM cell line was used as reference (Met5A). MSLN knock-down experiments on MSLN-overexpressing cells were also performed through silencing RNA (siRNA) to verify whether previous findings could be generalized to a different set of cell cultures. In agreement with previous studies, transient MSLN-silencing caused decreased proliferation rate and reduced invasive capacity and sphere formation in MSLN-overexpressing Mero-14 cells. Moreover, MSLN-siRNA combined with cisplatin, triggered a marked increase in apoptosis and a decrease in proliferation as compared to cells treated with each agent alone, thereby suggesting a sensitizing effect of siRNA towards cisplatin. In summary, our findings confirm that MSLN should be considered a key molecular target for novel gene-based targeted therapies of cancer. PMID:24465798

  7. MSLN gene silencing has an anti-malignant effect on cell lines overexpressing mesothelin deriving from malignant pleural mesothelioma.

    Directory of Open Access Journals (Sweden)

    Ombretta Melaiu

    Full Text Available Genes involved in the carcinogenetic mechanisms underlying malignant pleural mesothelioma (MPM are still poorly characterized. So far, mesothelin (MSLN has aroused the most interest. It encodes for a membrane glycoprotein, frequently over-expressed in various malignancies such as MPM, and ovarian and pancreatic cancers. It has been proposed as a diagnostic and immunotherapeutic target with promising results. However, an alternative therapeutic approach seems to rise, whereby synthetic molecules, such as antisense oligonucleotides, could be used to inhibit MSLN activity. To date, such a gene-level inhibition has been attempted in two studies only, both on pancreatic and ovarian carcinoma cell lines, with the use of silencing RNA approaches. With regard to MPM, only one cell line (H2373 has been employed to study the effects of MSLN depletion. Indeed, the knowledge on the role of MSLN in MPM needs expanding. Accordingly, we investigated the expression of MSLN in a panel of three MPM cell lines, i.e., NCI-H28, Mero-14, and IstMes2; one non-MPM cell line was used as reference (Met5A. MSLN knock-down experiments on MSLN-overexpressing cells were also performed through silencing RNA (siRNA to verify whether previous findings could be generalized to a different set of cell cultures. In agreement with previous studies, transient MSLN-silencing caused decreased proliferation rate and reduced invasive capacity and sphere formation in MSLN-overexpressing Mero-14 cells. Moreover, MSLN-siRNA combined with cisplatin, triggered a marked increase in apoptosis and a decrease in proliferation as compared to cells treated with each agent alone, thereby suggesting a sensitizing effect of siRNA towards cisplatin. In summary, our findings confirm that MSLN should be considered a key molecular target for novel gene-based targeted therapies of cancer.

  8. Establishment of a preadipocyte cell line derived from mature adipocytes of GFP transgenic mice and formation of adipose tissue.

    Science.gov (United States)

    Nobusue, Hiroyuki; Endo, Tsuyoshi; Kano, Koichiro

    2008-06-01

    We established a preadipocyte cell line from mature adipocytes obtained from subcutaneous fat tissue of green fluorescent protein (GFP) transgenic mice. The floating top layer, containing mature adipocytes, was isolated from subcutaneous fat tissue by collagenase digestion and filtration. Fluorescence-activated cell sorting and microscopic analysis revealed that the floating cell fraction comprised a highly homogeneous adipocyte population with no adipose stromal-vascular cells. Isolated mature adipocytes dedifferentiated into fibroblast-like cells and actively proliferated in ceiling culture. In vitro studies showed that the cells could redifferentiate into mature adipocytes in an identical way to 3T3-L1 preadipocytes. No changes in the differentiation pattern were observed during the propagation of our cells. They were successfully maintained and differentiated for at least 22 passages. We named these cells dedifferentiated fat (DFAT-GFP) cells. When DFAT-GFP cells were implanted subcutaneously into C57BL/6N mice, they developed highly vascularized fat pads that morphologically resembled normal subcutaneous adipose tissue and consisted of GFP-positive cells; however, implanted 3T3-L1 cells did not have such an effect on the mice. We conclude that DFAT-GFP cells provide a model that should enable us to study the mechanisms of adipocyte differentiation and adipose tissue formation in vivo and in vitro.

  9. Apoptosis Activation in Human Lung Cancer Cell Lines by a Novel Synthetic Peptide Derived from Conus californicus Venom

    Directory of Open Access Journals (Sweden)

    Irasema Oroz-Parra

    2016-02-01

    Full Text Available Lung cancer is one of the most common types of cancer in men and women and a leading cause of death worldwide resulting in more than one million deaths per year. The venom of marine snails Conus contains up to 200 pharmacologically active compounds that target several receptors in the cell membrane. Due to their diversity and specific binding properties, Conus toxins hold great potential as source of new drugs against cancer. We analyzed the cytotoxic effect of a 17-amino acid synthetic peptide (s-cal14.1a that is based on a native toxin (cal14.1a isolated from the sea snail Conus californicus. Cytotoxicity studies in four lung cancer cell lines were complemented with measurement of gene expression of apoptosis-related proteins Bcl-2, BAX and the pro-survival proteins NFκB-1 and COX-2, as well as quantification of caspase activity. Our results showed that H1299 and H1437 cell lines treated with s-call4.1a had decreased cell viability, activated caspases, and reduced expression of the pro-survival protein NFκB-1. To our knowledge, this is the first report describing activation of apoptosis in human lung cancer cell lines by s-cal14.1a and we offer insight into the possible mechanism of action.

  10. Characterisation Of Forebrain Neurons Derived From Late-Onset Huntington’s Disease Human Embryonic Stem Cell Lines

    Directory of Open Access Journals (Sweden)

    Jonathan Christos Niclis

    2013-04-01

    Full Text Available Huntington's Disease (HD is an incurable neurodegenerative disorder caused by a CAG repeat expansion in exon 1 of the Huntingtin gene. Recently, induced pluripotent stem cell lines carrying atypical and aggressive (CAG60+ HD variants have been generated, and perplexingly exhibit disparate molecular pathologies. Here we investigate two human embryonic stem cell (hESC lines carrying CAG37 and CAG51 repeats to assess whether typical late-onset expansions exhibit HD pathologies. HD hESC properties were assessed in comparison to wildtype control lines at undifferentiated states and throughout forebrain neuronal differentiation. Pluripotent HD lines demonstrate growth, viability, pluripotent gene expression, mitochondrial activity and forebrain specification that is indistinguishable from control lines. Expression profiles of crucial genes known to be dysregulated in HD remain unperturbed in the presence of mutant protein and throughout differentiation; however, elevated glutamate responses were observed in HD CAG51 neurons. These findings suggest typical late-onset HD mutations do not alter pluripotent parameters or differentiation mechanics but that neuronal progeny may possess the capacity to recapitulate neuropathologies seen in human patients. Such HD models will help further our understanding of the cascade of pathological events leading to disease onset and progression, while simultaneously facilitating the identification of candidate HD therapeutics.

  11. Low or undetectable TPO receptor expression in malignant tissue and cell lines derived from breast, lung, and ovarian tumors

    Directory of Open Access Journals (Sweden)

    Erickson-Miller Connie L

    2012-09-01

    Full Text Available Abstract Background Numerous efficacious chemotherapy regimens may cause thrombocytopenia. Thrombopoietin receptor (TPO-R agonists, such as eltrombopag, represent a novel approach for the treatment of chemotherapy-induced thrombocytopenia. The TPO-R MPL is expressed on megakaryocytes and megakaryocyte precursors, although little is known about its expression on other tissues. Methods Breast, lung, and ovarian tumor samples were analyzed for MPL expression by microarray and/or quantitative reverse transcription-polymerase chain reaction (qRT-PCR, and for TPO-R protein expression by immunohistochemistry (IHC. Cell line proliferation assays were used to analyze the in vitro effect of eltrombopag on breast, lung, and ovarian tumor cell proliferation. The lung carcinoma cell lines were also analyzed for TPO-R protein expression by Western blot. Results MPL mRNA was not detectable in 118 breast tumors and was detectable at only very low levels in 48% of 29 lung tumors studied by microarray analysis. By qRT-PCR, low but detectable levels of MPL mRNA were detectable in some normal (14-43% and malignant (3-17% breast, lung, and ovarian tissues. A comparison of MPL to EPOR, ERBB2, and IGF1R mRNA demonstrates that MPL mRNA levels were far lower than those of EPOR and ERBB2 mRNA in the same tissues. IHC analysis showed negligible TPO-R protein expression in tumor tissues, confirming mRNA analysis. Culture of breast, lung, and ovarian carcinoma cell lines showed no increase, and in fact, showed a decrease in proliferation following incubation with eltrombopag. Western blot analyses revealed no detectable TPO-R protein expression in the lung carcinoma cell lines. Conclusions Multiple analyses of breast, lung, and ovarian tumor samples and/or cell lines show no evidence of MPL mRNA or TPO-R protein expression. Eltrombopag does not stimulate growth of breast, lung, or ovarian tumor cell lines at doses likely to exert their actions on megakaryocytes and

  12. Storage of cell lines.

    Science.gov (United States)

    Parker, Katharine A

    2011-01-01

    The successful storage of cell lines depends upon many factors, including the condition of the cells to be frozen and the experience of the operator. Attempting to freeze down unhealthy, contaminated or poorly labelled cells can have huge implications for a research laboratory. This chapter outlines the importance of good record keeping, vigilant monitoring, aseptic technique, and high-quality reagents in the successful storage and downstream propagation of cell lines.

  13. Identification of a small, naked virus in tumor-like aggregates in cell lines derived from a green turtle, Chelonia mydas, with fibropapillomas

    Science.gov (United States)

    Lu, Y.; Aguirre, A.A.; Work, T.M.; Balazs, G.H.; Nerurkar, V.R.; Yanagihara, R.

    2000-01-01

    Serial cultivation of cell lines derived from lung, testis, periorbital and tumor tissues of a green turtle (Chelonia mydas) with fibropapillomas resulted in the in vitro formation of tumor-like cell aggregates, ranging in size from 0.5 to 2.0 mm in diameter. Successful induction of tumor-like aggregates was achieved in a cell line derived from lung tissue of healthy green turtles, following inoculation with cell-free media from these tumor-bearing cell lines, suggesting the presence of a transmissible agent. Thin-section electron microscopy of the cell aggregates revealed massive collagen deposits and intranuclear naked viral particles, measuring 50??5 nm in diameter. These findings, together with the morphological similarity between these tumor-like cell aggregates and the naturally occurring tumor, suggest a possible association between this novel virus and the disease. Further characterization of this small naked virus will clarify its role in etiology of green turtle fibropapilloma, a life-threatening disease of this endangered marine species. Copyright (C) 2000 Elsevier Science B.V.

  14. Analysis of STAT4 expression in cutaneous T-cell lymphoma (CTCL) patients and patient-derived cell lines

    DEFF Research Database (Denmark)

    Litvinov, Ivan V; Cordeiro, Brendan; Fredholm, Simon Mayland;

    2014-01-01

    R-155 leads to upregulation in STAT4 expression in MyLa cells. In summary, our results suggest that loss of STAT4 expression and associated switch to Th2 phenotype during Mycosis Fungoides progression may be driven via aberrant histone acetylation and/or upregulation of oncogenic miR-155 microRNA....

  15. A novel cell line derived from pleomorphic adenoma expresses MMP2, MMP9, TIMP1, TIMP2, and shows numeric chromosomal anomalies.

    Directory of Open Access Journals (Sweden)

    Aline Semblano Carreira Falcão

    Full Text Available Pleomorphic adenoma is the most common salivary gland neoplasm, and it can be locally invasive, despite its slow growth. This study aimed to establish a novel cell line (AP-1 derived from a human pleomorphic adenoma sample to better understand local invasiveness of this tumor. AP-1 cell line was characterized by cell growth analysis, expression of epithelial and myoepithelial markers by immunofluorescence, electron microscopy, 3D cell culture assays, cytogenetic features and transcriptomic study. Expression of matrix metalloproteinases (MMPs and their tissue inhibitors (TIMPs was also analyzed by immunofluorescence and zymography. Furthermore, epithelial and myoepithelial markers, MMPs and TIMPs were studied in the tumor that originated the cell line. AP-1 cells showed neoplastic epithelial and myoepithelial markers, such as cytokeratins, vimentin, S100 protein and smooth-muscle actin. These molecules were also found in vivo, in the tumor that originated the cell line. MMPs and TIMPs were observed in vivo and in AP-1 cells. Growth curve showed that AP-1 exhibited a doubling time of 3.342 days. AP-1 cells grown inside Matrigel recapitulated tumor architecture. Different numerical and structural chromosomal anomalies were visualized in cytogenetic analysis. Transcriptomic analysis addressed expression of 7 target genes (VIM, TIMP2, MMP2, MMP9, TIMP1, ACTA2 e PLAG1. Results were compared to transcriptomic profile of non-neoplastic salivary gland cells (HSG. Only MMP9 was not expressed in both libraries, and VIM was expressed solely in AP-1 library. The major difference regarding gene expression level between AP-1 and HSG samples occurred for MMP2. This gene was 184 times more expressed in AP-1 cells. Our findings suggest that AP-1 cell line could be a useful model for further studies on pleomorphic adenoma biology.

  16. A novel cell line derived from pleomorphic adenoma expresses MMP2, MMP9, TIMP1, TIMP2, and shows numeric chromosomal anomalies.

    Science.gov (United States)

    Falcão, Aline Semblano Carreira; Kataoka, Maria Sueli da Silva; Ribeiro, Nélson Antonio Bailão; Diniz, José Antonio Picanço; Alves, Sérgio Melo; Ribeiro, André L Ribeiro; de Siqueira, Adriane Sousa; da Silva, Artur Luiz; Ramos, Rommel Thiago Jucá; Freitas, Vanessa M; Jaeger, Ruy G; Pinheiro, João J V

    2014-01-01

    Pleomorphic adenoma is the most common salivary gland neoplasm, and it can be locally invasive, despite its slow growth. This study aimed to establish a novel cell line (AP-1) derived from a human pleomorphic adenoma sample to better understand local invasiveness of this tumor. AP-1 cell line was characterized by cell growth analysis, expression of epithelial and myoepithelial markers by immunofluorescence, electron microscopy, 3D cell culture assays, cytogenetic features and transcriptomic study. Expression of matrix metalloproteinases (MMPs) and their tissue inhibitors (TIMPs) was also analyzed by immunofluorescence and zymography. Furthermore, epithelial and myoepithelial markers, MMPs and TIMPs were studied in the tumor that originated the cell line. AP-1 cells showed neoplastic epithelial and myoepithelial markers, such as cytokeratins, vimentin, S100 protein and smooth-muscle actin. These molecules were also found in vivo, in the tumor that originated the cell line. MMPs and TIMPs were observed in vivo and in AP-1 cells. Growth curve showed that AP-1 exhibited a doubling time of 3.342 days. AP-1 cells grown inside Matrigel recapitulated tumor architecture. Different numerical and structural chromosomal anomalies were visualized in cytogenetic analysis. Transcriptomic analysis addressed expression of 7 target genes (VIM, TIMP2, MMP2, MMP9, TIMP1, ACTA2 e PLAG1). Results were compared to transcriptomic profile of non-neoplastic salivary gland cells (HSG). Only MMP9 was not expressed in both libraries, and VIM was expressed solely in AP-1 library. The major difference regarding gene expression level between AP-1 and HSG samples occurred for MMP2. This gene was 184 times more expressed in AP-1 cells. Our findings suggest that AP-1 cell line could be a useful model for further studies on pleomorphic adenoma biology.

  17. Evaluation of the Cytotoxicity of α-Cyclodextrin Derivatives on the Caco-2 Cell Line and Human Erythrocytes

    Directory of Open Access Journals (Sweden)

    Eszter Róka

    2015-11-01

    Full Text Available Cyclodextrins, even the 6-membered α-cyclodextrin, are approved in the various pharmacopoeias as pharmaceutical excipients for solubilizing and stabilizing drugs as well as for controlling drug release. Recently α-cyclodextrin has also been marketed as health food with beneficial effects on blood lipid profiles. However, the concentration of α-cyclodextrin used may be very high in these cases, and its toxic attributes have to be seriously considered. The objective of this study was to investigate the cytotoxicity of various, differently substituted α-cyclodextrin derivatives and determine relationship between the structures and cytotoxicity. Three different methods were used, viability tests (MTT assay and Real Time Cell Electronic Sensing on Caco-2 cells as well as hemolysis test on human red blood cells. The effect of α-cyclodextrin derivatives resulted in concentration-dependent cytotoxicity, so the IC50 values have been determined. Based on our evaluation, the Real Time Cell Electronic Sensing method is the most accurate for describing the time and concentration dependency of the observed toxic effects. Regarding the cytotoxicity on Caco-2 cells, phosphatidylcholine extraction may play a main role in the mechanism. Our results should provide help in selecting those α-cyclodextrin derivatives which have the potential of being used safely in medical formulations.

  18. Apoptotic induction by pinobanksin and some of its ester derivatives from Sonoran propolis in a B-cell lymphoma cell line.

    Science.gov (United States)

    Alday, Efrain; Valencia, Dora; Carreño, Ana Laura; Picerno, Patrizia; Piccinelli, Anna Lisa; Rastrelli, Luca; Robles-Zepeda, Ramon; Hernandez, Javier; Velazquez, Carlos

    2015-12-01

    Propolis is a resinous substance produced by honeybees (Apis mellifera) from the selective collection of exudates and bud secretions from several plants. In previous works, we reported the antiproliferative activity of Sonoran propolis (SP) on cancer cells; in addition we suggested the induction of apoptosis after treatment with SP due to the presence of morphological changes and a characteristic DNA fragmentation pattern. Herein, in this study we demonstrated that the antiproliferative effect of SP is induced through apoptosis in a B-cell lymphoma cancer cell line, M12.C3.F6, by an annexin V-FITC/Propidium iodide double labeling. This apoptotic effect of SP resulted to be mediated by modulations in the loss of mitochondrial membrane potential (ΔΨm) and through activation of caspases signaling pathway (3, 8 and 9). Afterward, in order to characterize the chemical constituents of SP that induce apoptosis in cancer cells, an HPLC-PDA-ESI-MS/MS method followed by a preparative isolation procedure and NMR spectroscopy analysis have been used. Eighteen flavonoids, commonly described in propolis from temperate regions, were characterized. Chrysin, pinocembrin, pinobanksin and its ester derivatives are the main constituents of SP and some of them have never been reported in SP. In addition, two esters of pinobanksin (8 and 13) are described by first time in propolis samples in general. The antiproliferative activity on M12.C3.F6 cells through apoptosis induction was exhibited by pinobanksin (4), pinobanksin-3-O-propanoate (14), pinobanksin-3-O-butyrate (16), pinobanksin-3-O-pentanoate (17), and the already reported galangin (11), chrysin (9) and CAPE. To our knowledge this is the first report of bioactivity of pinobanksin and some of its ester derivatives as apoptosis inducers. Further studies are needed to advance in the understanding of the molecular basis of apoptosis induction by SP and its constituents, as well as the structure-activity relationship of them.

  19. Generation of spinocerebellar ataxia type 3 patient-derived induced pluripotent stem cell line SCA3.B11

    DEFF Research Database (Denmark)

    Hansen, Susanne Kofoed; Borland, Helena; Hasholt, Lis Frydenreich;

    2016-01-01

    Spinocerebellar ataxia type 3 (SCA3) is a dominantly inherited neurodegenerative disease caused by an expansion of the CAG-repeat in ATXN3. In this study, induced pluripotent stem cells (iPSCs) were generated from SCA3 patient dermal fibroblasts by electroporation with episomal plasmids encoding L......PSC line could be a useful tool for the investigation of SCA3 disease mechanisms....

  20. A highly homozygous and parthenogenetic human embryonic stem cell line derived from a one-pronuclear oocyte following in vitro fertilization procedure

    Institute of Scientific and Technical Information of China (English)

    Ge Lin; Qi OuYang; Xiaoying Zhou; Yifan Gu; Ding Yuan; Wen Li; Gang Liu; Tiancheng Liu; Guanexiu Lu

    2007-01-01

    Homozygous human embryonic stem cells (hESCs) are thought to be better cell sources for hESC banking because their human leukocyte antigen (HLA) haplotype would strongly increase the degree of matching for certain populations with relatively smaller cohorts of cell lines. Homozygous hESCs can be generated from parthenogenetic embryos, but only heterozygous hESCs have been established using the current strategy to artificially activate the oocyte without second polar body extrusion. Here we report the first successful derivation of a human homozygous ESC line (chHES-32) from a one-pronuclear oocyte following routine in vitro fertilization treatment. cAHES-32 cells express common markers and genes with normal hESCs. They have been propagated in an undifferentiated state for more than a year (>P50) and have maintained a stable karyotype of 46, XX. When differentiated in vivo and in vitro, c/zHES-32 cells can form derivatives from all three embryonic germ layers. The almost undetectable expression of five paternally expressed imprinted genes and their HLA genotype identical to the oocyte donor indicated their parthenogenetic origin. Using genome-wide single-nucleotide polymorphism analysis and DNA fingerprinting, the homozygosity of c/zHES-32 cells was further confirmed. The results indicated that 'unwanted' one-pronuclear oocytes might be a potential source for human homozygous and parthenogenetic ESCs, and suggested an alternative strategy for obtaining homozygous hESC lines from parthenogenetic haploid oocytes.

  1. Primary cultured fibroblasts derived from patients with chronic wounds: a methodology to produce human cell lines and test putative growth factor therapy such as GMCSF

    Directory of Open Access Journals (Sweden)

    Coppock Donald L

    2008-12-01

    Full Text Available Abstract Background Multiple physiologic impairments are responsible for chronic wounds. A cell line grown which retains its phenotype from patient wounds would provide means of testing new therapies. Clinical information on patients from whom cells were grown can provide insights into mechanisms of specific disease such as diabetes or biological processes such as aging. The objective of this study was 1 To culture human cells derived from patients with chronic wounds and to test the effects of putative therapies, Granulocyte-Macrophage Colony Stimulating Factor (GM-CSF on these cells. 2 To describe a methodology to create fibroblast cell lines from patients with chronic wounds. Methods Patient biopsies were obtained from 3 distinct locations on venous ulcers. Fibroblasts derived from different wound locations were tested for their migration capacities without stimulators and in response to GM-CSF. Another portion of the patient biopsy was used to develop primary fibroblast cultures after rigorous passage and antimicrobial testing. Results Fibroblasts from the non-healing edge had almost no migration capacity, wound base fibroblasts were intermediate, and fibroblasts derived from the healing edge had a capacity to migrate similar to healthy, normal, primary dermal fibroblasts. Non-healing edge fibroblasts did not respond to GM-CSF. Six fibroblast cell lines are currently available at the National Institute on Aging (NIA Cell Repository. Conclusion We conclude that primary cells from chronic ulcers can be established in culture and that they maintain their in vivo phenotype. These cells can be utilized for evaluating the effects of wound healing stimulators in vitro.

  2. Preliminary evaluation of the toxicity of some synthetic furan derivatives in two cell lines and Artemia salina.

    Science.gov (United States)

    Amaro, María I; Monasterios, Melina; Avendaño, Milagros; Charris, Jaime

    2009-01-01

    This study describes the preliminary toxicity evaluation of five new furan derivatives, 2-[2-acetylamino-2-[(benzothiazolyl-substituted)aminocarbonyl]vinyl]-5-nitro furane (compounds A, B, D and E) and 2-[2-phenylamino-2-[benzothiazolylaminocarbonyl]vinyl]furane (compound C). Cytotoxicity was determined using the MTT (tetrazolium salt) method over BHK21 (Syrian baby hamster kidney) and Hep-2 (human larynx carcinoma) cells, which had previously been used to evaluate the cytotoxicity of the 5-nitrofuran derivatives. The lethal concentration 50 (LC(50)) was determined using brine shrimp (Artemia salina) bioassay. Nitrofurantoin was used as reference compound. The results demonstrate that BHK21 cells are more sensitive than Hep-2 cells. This structurally related serial of compounds shows a differential toxicity, which is an indication that the toxicity naturally arising from the nitro group can be modulated by the substituents over the furan ring. Additionally, compound C, the only derivative with no nitro group, was least toxic to Hep-2, but exhibits toxicity to BHK21 cells and brine shrimp. The LC(50 )brine shrimp test (BST) bioassay results were as follows: A, 654.2 microg ml(-1); B, 50.0 microg ml(-1); C, 533.4 microg ml(-1); D, 172.1 microg ml(-1); E, 76.4 microg ml(-1), and NF, >1000 microg ml(-1).

  3. Glial cell line-derived neurotrophic factor (GDNF) induced migration of spermatogonial cells in vitro via MEK and NF-kB pathways.

    Science.gov (United States)

    Huleihel, M; Fadlon, E; Abuelhija, A; Piltcher Haber, E; Lunenfeld, E

    2013-01-01

    Glial cell line-derived neurotrophic factor (GDNF) regulates spermatogonial stem cell (SSC) maintenance. In the present study, we examined the levels and the cellular origin of GDNF in mouse testes during age-development, and the capacity of GDNF to induce migration of enriched GFR-α1 positive cells in vitro. The involvement of MAP kinase (MEK) and NF-kB signal pathways were examined. Our results show high levels of GDNF in testicular tissue of one-week-old mice which significantly decreased with age when examined by ELISA, real time PCR (qPCR) and immunofluorescence staining (IF) analysis. GDNF receptor (GFR-α1) expression was similar to GDNF when examined by qPCR analysis. Only Sertoli cell cultures (SCs) from one-week-old mice produced GDNF compared to SCs from older mice. However, peritubular cells from all the examined ages did not produce GDNF. The addition of recombinant GDNF (rGDNF) or supernatant from SCs from one-week-old mice to GFR-α1 positive cells induced their migration in vitro. This effect was significantly reduced by the addition of inhibitors to MEK (PD98059, U0126), NF-kB (PDTC) and IkB protease inhibitor (TPCK). Our results show for the first time the capacity of rGDNF and supernatant from SCs to induce migration of enriched GFR-α1 positive cells, and the possible involvement of MEK, NF-kB and IkB in this process. This study may suggest a novel role for GDNF in the regulation SSC niches and spermatogenesis.

  4. Derivation, Characterization, and Neural Differentiation of Integration-Free Induced Pluripotent Stem Cell Lines from Parkinson's Disease Patients Carrying SNCA, LRRK2, PARK2, and GBA Mutations

    DEFF Research Database (Denmark)

    Momcilovic, Olga; Sivapatham, Renuka; Oron, Tal Ronnen;

    2016-01-01

    We report generation of induced pluripotent stem cell (iPSC) lines from ten Parkinson's disease (PD) patients carrying SNCA, PARK2, LRRK2, and GBA mutations, and one age-matched control. After validation of pluripotency, long-term genome stability, and integration-free reprogramming, eight of the...... not be sufficient to determine the cause or mechanism of the disease, and highlights the need to use more focused strategies for large-scale data analysis....... of these lines (one of each SNCA, LRRK2 and GBA, four PARK2 lines, and the control) were differentiated into neural stem cells (NSC) and subsequently to dopaminergic cultures. We did not observe significant differences in the timeline of neural induction and NSC derivation between the patient and control line......, nor amongst the patient lines, although we report considerable variability in the efficiency of dopaminergic differentiation among patient lines. We performed whole genome expression analyses of the lines at each stage of differentiation (fibroblast, iPSC, NSC, and dopaminergic culture) in an attempt...

  5. The gene coding for glial cell line derived neurotrophic factor (GDNF) maps to chromosome 5p12-p13.1

    Energy Technology Data Exchange (ETDEWEB)

    Schindelhauer, D.; Schuffenhauer, S.; Meitinger, T. [Maximiland-Universitaet, Munich (Germany)] [and others

    1995-08-10

    The gene coding for glial cell line derived neurotrophic factor (GDNF) has biological properties that may have potential as a treatment for Parkinson`s and motoneuron diseases. Using the NIGMS Mapping Panel 2, we have localized the GDNF gene to human chromosome 5p12-p13.1. Large NruI and NotI fragments on chromosome 5 will facilitate the construction of a long-range map of the region. 26 refs., 1 fig., 1 tab.

  6. Induction of apoptosis in the human promyelocytic leukemia cell line HL60 by falconensone A and its derivatives, new polyenes.

    Science.gov (United States)

    Takahashi, N; Kubo, Y; Iwahori, A; Kawai, K I; Fukui, T

    2000-06-01

    Falconensones A and B are a new type of yellow pigment with structural similarity to retinoic acid isolated from the mycelial extract of ascomycetous fungi, Emericella falconensis or Emericella fruticulosa. In the present study we show that falconensone A alone induced apoptosis of HL60 human leukemia cells, while falconensone B, the 4'-nor-methyl derivative of falconensone A, had much lower activity. The synthetic derivatives of falconensone A, falconensone A p-bromophenylhydrazone and falconensone A dioxime, were more potent than natural falconensone A and B as far as the induction of apoptosis was concerned. The induction of apoptosis by the falconensones correlated with their inhibition of cell growth. In addition, falconensones A and B, and falconensone A dioxime, increased the generation of intracellular reactive oxygen species, while falconensone A p-bromophenylhydrazone was inactive. These results suggest that falconensone A, falconensone A p-bromophenylhydrazone and falconensone A dioxime are potential new apoptosis-inducing agents. The enhanced generation of reactive oxygen species in cells may be involved in apoptosis induced by falconensone A and falconensone A dioxime, but not by falconensone A p-bromophenylhydrazone. It is also suggested that the methyl residue at the 4' position of the falconensone A cyclopentenone ring may be essential for the induction of apoptosis. Based on these results, falconensone A and its derivatives may be clinically useful in the treatment of some leukemias.

  7. Soy promotes juvenile granulosa cell tumor development in mice and in the human granulosa cell tumor-derived COV434 cell line.

    Science.gov (United States)

    Mansouri-Attia, Nadéra; James, Rebecca; Ligon, Alysse; Li, Xiaohui; Pangas, Stephanie A

    2014-10-01

    Soy attracts attention for its health benefits, such as lowering cholesterol or preventing breast and colon cancer. Soybeans contain isoflavones, which act as phytoestrogens. Even though isoflavones have beneficial health effects, a role for isoflavones in the initiation and progression of diseases including cancer is becoming increasingly recognized. While data from rodent studies suggest that neonatal exposure to genistein (the predominant isoflavone in soy) disrupts normal reproductive function, its role in ovarian cancers, particularly granulosa cell tumors (GCT), is largely unknown. Our study aimed to define the contribution of a soy diet in GCT development using a genetically modified mouse model for juvenile GCTs (JGCT; Smad1 Smad5 conditional double knockout mice) as well as a human JGCT cell line (COV434). While dietary soy cannot initiate JGCT development in mice, we show that it has dramatic effects on GCT growth and tumor progression compared to a soy-free diet. Loss of Smad1 and Smad5 alters estrogen receptor alpha (Esr1) expression in granulosa cells, perhaps sensitizing the cells to the effects of genistein. In addition, we found that genistein modulates estrogen receptor expression in the human JGCT cell line and positively promotes cell growth in part by suppressing caspase-dependent apoptosis. Combined, our work suggests that dietary soy consumption has deleterious effects on GCT development.

  8. Murine leukemia virus-derived retroviral vector has differential integration patterns in human cell lines used to produce recombinant factor VIII

    Directory of Open Access Journals (Sweden)

    Marcela Cristina Correa de Freitas

    2014-06-01

    Full Text Available OBJECTIVE: Nowadays recombinant factor VIII is produced in murine cells including in Chinese hamster ovary (CHO and baby hamster kidney cells (BHK. Previous studies, using the murine leukemia virus-derived retroviral vector pMFG-FVIII-P140K, modified two recombinant human cell lines, HepG2 and Hek293 to produce recombinant factor VIII. In order to characterize these cells, the present study aimed to analyze the integration pattern of retroviral vector pMFG-FVIII-P140K.METHODS: This study used ligation-mediated polymerase chain reaction to locate the site of viral vector integration by sequencing polymerase chain reaction products. The sequences were compared to genomic databases to characterize respective clones.RESULTS: The retroviral vector presented different and non-random profiles of integration between cells lines. A preference of integration for chromosomes 19, 17 and 11 was observed for HepG2FVIIIdB/P140K and chromosome 9 for Hek293FVIIIdB/P140K. In genomic regions such as CpG islands and transcription factor binding sites, there was no difference in the integration profiles for both cell lines. Integration in intronic regions of encoding protein genes (RefSeq genes was also observed in both cell lines. Twenty percent of integrations occurred at fragile sites in the genome of the HepG2 cell line and 17% in Hek293.CONCLUSION: The results suggest that the cell type can affect the profile of chromosomal integration of the retroviral vector used; these differences may interfere in the level of expression of recombinant proteins.

  9. Glial cell line-derived neurotrophic factor (GDNF) induces neuritogenesis in the cochlear spiral ganglion via neural cell adhesion molecule (NCAM).

    Science.gov (United States)

    Euteneuer, Sara; Yang, Kuo H; Chavez, Eduardo; Leichtle, Anke; Loers, Gabriele; Olshansky, Adel; Pak, Kwang; Schachner, Melitta; Ryan, Allen F

    2013-05-01

    Glial cell line-derived neurotrophic factor (GDNF) increases survival and neurite extension of spiral ganglion neurons (SGNs), the primary neurons of the auditory system, via yet unknown signaling mechanisms. In other cell types, signaling is achieved by the GPI-linked GDNF family receptor α1 (GFRα1) via recruitment of transmembrane receptors: Ret (re-arranged during transformation) and/or NCAM (neural cell adhesion molecule). Here we show that GDNF enhances neuritogenesis in organotypic cultures of spiral ganglia from 5-day-old rats and mice. Addition of GFRα1-Fc increases this effect. GDNF/GFRα1-Fc stimulation activates intracellular PI3K/Akt and MEK/Erk signaling cascades as detected by Western blot analysis of cultures prepared from rats at postnatal days 5 (P5, before the onset of hearing) and 20 (P20, after the onset of hearing). Both cascades mediate GDNF stimulation of neuritogenesis, since application of the Akt inhibitor Wortmannin or the Erk inhibitor U0126 abolished GDNF/GFRα1-Fc stimulated neuritogenesis in P5 rats. Since cultures of P5 NCAM-deficient mice failed to respond by neuritogenesis to GDNF/GFRα1-Fc, we conclude that NCAM serves as a receptor for GDNF signaling responsible for neuritogenesis in early postnatal spiral ganglion.

  10. Combined 5-FU and ChoKα inhibitors as a new alternative therapy of colorectal cancer: evidence in human tumor-derived cell lines and mouse xenografts.

    Directory of Open Access Journals (Sweden)

    Ana de la Cueva

    Full Text Available BACKGROUND: Colorectal cancer (CRC is the third major cause of cancer related deaths in the world. 5-fluorouracil (5-FU is widely used for the treatment of colorectal cancer but as a single-agent renders low response rates. Choline kinase alpha (ChoKα, an enzyme that plays a role in cell proliferation and transformation, has been reported overexpressed in many different tumors, including colorectal tumors. ChoKα inhibitors have recently entered clinical trials as a novel antitumor strategy. METHODOLOGY/PRINCIPAL FINDINGS: ChoKα specific inhibitors, MN58b and TCD-717, have demonstrated a potent antitumoral activity both in vitro and in vivo against several tumor-derived cell line xenografts including CRC-derived cell lines. The effect of ChoKα inhibitors in combination with 5-FU as a new alternative for the treatment of colon tumors has been investigated both in vitro in CRC-tumour derived cell lines, and in vivo in mouse xenografts models. The effects on thymidilate synthase (TS and thymidine kinase (TK1 levels, two enzymes known to play an essential role in the mechanism of action of 5-FU, were analyzed by western blotting and quantitative PCR analysis. The combination of 5-FU with ChoKα inhibitors resulted in a synergistic effect in vitro in three different human colon cancer cell lines, and in vivo against human colon xenografts in nude mice. ChoKα inhibitors modulate the expression levels of TS and TK1 through inhibition of E2F production, providing a rational for its mechanism of action. CONCLUSION/SIGNIFICANCE: Our data suggest that both drugs in combination display a synergistic antitumoral effect due to ChoKα inhibitors-driven modulation of the metabolization of 5-FU. The clinical relevance of these findings is strongly supported since TCD-717 has recently entered Phase I clinical trials against solid tumors.

  11. Generation of spinocerebellar ataxia type 3 patient-derived induced pluripotent stem cell line SCA3.A11

    DEFF Research Database (Denmark)

    Hansen, Susanne Kofoed; Borland, Helena; Hasholt, Lis Frydenreich;

    2016-01-01

    Spinocerebellar ataxia type 3 (SCA3) is a dominantly inherited neurodegenerative disease caused by a CAG-repeat expanding mutation in ATXN3. We generated induced pluripotent stem cells (iPSCs) from a SCA3 patient by electroporation of dermal fibroblasts with episomal plasmids encoding L-MYC, LIN28......, SOX2, KLF4, OCT4 and short hairpin RNA targeting P53. The resulting iPSCs had normal karyotype, were free of genomically integrated episomal plasmids, expressed pluripotency markers, could differentiate into the three germ layers in vitro and retained the disease-causing ATXN3 mutation. This iPSC line...

  12. Tricyclic Antidepressant Amitriptyline-induced Glial Cell Line-derived Neurotrophic Factor Production Involves Pertussis Toxin-sensitive Gαi/o Activation in Astroglial Cells.

    Science.gov (United States)

    Hisaoka-Nakashima, Kazue; Miyano, Kanako; Matsumoto, Chie; Kajitani, Naoto; Abe, Hiromi; Okada-Tsuchioka, Mami; Yokoyama, Akinobu; Uezono, Yasuhito; Morioka, Norimitsu; Nakata, Yoshihiro; Takebayashi, Minoru

    2015-05-29

    Further elaborating the mechanism of antidepressants, beyond modulation of monoaminergic neurotransmission, this study sought to elucidate the mechanism of amitriptyline-induced production of glial cell line-derived neurotrophic factor (GDNF) in astroglial cells. Previous studies demonstrated that an amitriptyline-evoked matrix metalloproteinase (MMP)/FGF receptor (FGFR)/FGFR substrate 2α (FRS2α)/ERK cascade is crucial for GDNF production, but how amitriptyline triggers this cascade remains unknown. MMP is activated by intracellular mediators such as G proteins, and this study sought to clarify the involvement of G protein signaling in amitriptyline-evoked GDNF production in rat C6 astroglial cells (C6 cells), primary cultured rat astrocytes, and normal human astrocytes. Amitriptyline-evoked GDNF mRNA expression and release were inhibited by pertussis toxin (PTX), a Gα(i/o) inhibitor, but not by NF449, a Gα(s) inhibitor, or YM-254890, a Gαq inhibitor. The activation of the GDNF production cascade (FGFR/FRS2α/ERK) was also inhibited by PTX. Deletion of Gα(ο1) and Gα(i3) by RNAi demonstrated that these G proteins play important roles in amitriptyline signaling. G protein activation was directly analyzed by electrical impedance-based biosensors (CellKey(TM) assay), using a label-free (without use of fluorescent proteins/probes or radioisotopes) and real time approach. Amitriptyline increased impedance, indicating Gα(i/o) activation that was suppressed by PTX treatment. The impedance evoked by amitriptyline was not affected by inhibitors of the GDNF production cascade. Furthermore, FGF2 treatment did not elicit any effect on impedance, indicating that amitriptyline targets PTX-sensitive Gα(i/o) upstream of the MMP/FGFR/FRS2α/ERK cascade. These results suggest novel targeting for the development of antidepressants.

  13. Ultrastructural characteristics of three undifferentiated mouse embryonic stem cell lines and their differentiated three-dimensional derivatives: a comparative study.

    Science.gov (United States)

    Alharbi, Suzan; Elsafadi, Mona; Mobarak, Mohammed; Alrwili, Ali; Vishnubalaji, Radhakrishnan; Manikandan, Muthurangan; Al-Qudsi, Fatma; Karim, Saleh; Al-Nabaheen, May; Aldahmash, Abdullah; Mahmood, Amer

    2014-04-01

    The fine structures of mouse embryonic stem cells (mESCs) grown as colonies and differentiated in three-dimensional (3D) culture as embryoid bodies (EBs) were analyzed by transmission electron microscopy. Undifferentiated mESCs expressed markers that proved their pluripotency. Differentiated EBs expressed different differentiation marker proteins from the three germ layers. The ultrastructure of mESCs revealed the presence of microvilli on the cell surfaces, large and deep infolded nuclei, low cytoplasm-to-nuclear ratios, frequent lipid droplets, nonprominent Golgi apparatus, and smooth endoplasmic reticulum. In addition, we found prominent juvenile mitochondria and free ribosomes-rich cytoplasm in mESCs. Ultrastructure of the differentiated mESCs as EBs showed different cell arrangements, which indicate the different stages of EB development and differentiation. The morphologies of BALB/c and 129 W9.5 EBs were very similar at day 4, whereas C57BL/6 EBs were distinct from the others at day 4. This finding suggested that differentiation of EBs from different cell lines occurs in the same pattern but not at the same rate. Conversely, the ultrastructure results of BALB/c and 129 W9.5 ESCs revealed differentiating features, such as the dilated profile of a rough endoplasmic reticulum. In addition, we found low expression levels of undifferentiated markers on the outer cells of BALB/c and 129 W9.5 mESC colonies, which suggests a faster differentiation potential.

  14. A Spirulina maxima-derived peptide inhibits HIV-1 infection in a human T cell line MT4

    Directory of Open Access Journals (Sweden)

    In-Seung Jang

    2016-11-01

    Full Text Available Abstract Human immunodeficiency virus (HIV is the causative agent of acquired immune deficiency syndrome (AIDS. Anti-HIV agents targeting various steps in HIV life cycle have been developed; however, so far, no effective drugs have been found. We show here that a peptide isolated from Spirulina maxima (SM-peptide inhibits HIV-1 infection in a human T cell line MT4. SM-peptide inhibited HIV-1IIIB-induced cell lysis with a half-maximal inhibitory concentration (IC50 of 0.691 mM, while its 50 % cytotoxic concentration (CC50 was greater than 1.457 mM. Furthermore, the SM-peptide inhibited the HIV-1 reverse transcriptase activity and p24 antigen production. This suggests that SM-peptide is a novel candidate peptide, which may be developed as a therapeutic agent for acquired immunodeficiency syndrome patients.

  15. Whole-exome sequencing of fibroblast and its iPS cell lines derived from a patient diagnosed with xeroderma pigmentosum

    Directory of Open Access Journals (Sweden)

    Kohji Okamura

    2015-12-01

    Full Text Available Cells from a patient with a DNA repair-deficiency disorder are anticipated to bear a large number of somatic mutations. Because such mutations occur independently in each cell, there is a high degree of mosaicism in patients' tissues. While major mutations that have been expanded in many cognate cells are readily detected by sequencing, minor ones are overlaid with a large depth of non-mutated alleles and are not detected. However, cell cloning enables us to observe such cryptic mutations as well as major mutations. In the present study, we focused on a fibroblastic cell line that is derived from a patient diagnosed with xeroderma pigmentosum (XP, which is an autosomal recessive disorder caused by a deficiency in nucleotide excision repair. By making a list of somatic mutations, we can expect to see a characteristic pattern of mutations caused by the hereditary disorder. We cloned a cell by generating an iPS cell line and performed a whole-exome sequencing analysis of the progenitor and its iPS cell lines. Unexpectedly, we failed to find causal mutations in the XP-related genes, but we identified many other mutations including homozygous deletion of GSTM1 and GSTT1. In addition, we found that the long arm of chromosome 9 formed uniparental disomy in the iPS cell line, which was also confirmed by a structural mutation analysis using a SNP array. Type and number of somatic mutations were different from those observed in XP patients. Taken together, we conclude that the patient might be affected by a different type of the disorder and that some of the mutations that we identified here may be responsible for exhibiting the phenotype. Sequencing and SNP-array data have been submitted to SRA and GEO under accession numbers SRP059858 and GSE55520, respectively.

  16. Evaluation of the sensitizing potential of antibiotics in vitro using the human cell lines THP-1 and MUTZ-LC and primary monocyte-derived dendritic cells.

    Science.gov (United States)

    Sebastian, Katrin; Ott, Hagen; Zwadlo-Klarwasser, Gabriele; Skazik-Voogt, Claudia; Marquardt, Yvonne; Czaja, Katharina; Merk, Hans F; Baron, Jens Malte

    2012-08-01

    Since the 7th amendment to the EU cosmetics directive foresees a complete ban on animal testing, alternative in vitro methods have been established to evaluate the sensitizing potential of small molecular weight compounds. To find out whether these novel in vitro assays are also capable to predict the sensitizing potential of small molecular weight drugs, model compounds such as beta-lactams and sulfonamides - which are the most frequent cause of adverse drug reactions - were co-incubated with THP-1, MUTZ-LC, or primary monocyte-derived dendritic cells for 48 h and subsequent expression of selected marker genes (IL-8, IL-1β, CES1, NQO1, GCLM, PIR and TRIM16) was studied by real time PCR. Benzylpenicillin and phenoxymethylpenicillin were recognized as sensitizing compounds because they are capable to induce the mRNA expression of these genes in moDCs and, except for IL-8, in THP-1 cells but not in MUTZ-LC. Ampicillin stimulated the expression of some marker genes in moDCs and THP-1 cells. SMX did not affect the expression of these genes in THP-1, however, in moDCs, at least PIR was enhanced and there was an increase of the release of IL-8. These data reveal that novel in vitro DC based assays might play a role in the evaluation of the allergenic potential of novel drug compounds, but these systems seem to lack the ability to detect the sensitizing potential of prohaptens that require metabolic activation prior to sensitization and moDCs seem to be superior with regard to the sensitivity compared with THP-1 and MUTZ-3 cell lines.

  17. Sensitivity to cisplatin in primary cell lines derived from human glioma correlates with levels of EGR-1 expression

    Directory of Open Access Journals (Sweden)

    Ponti Donatella

    2011-03-01

    Full Text Available Abstract Background Less than 30% of malignant gliomas respond to adjuvant chemotherapy. Here, we have asked whether variations in the constitutive expression of early-growth response factor 1 (EGR-1 predicted acute cytotoxicity and clonogenic cell death in vitro, induced by six different chemotherapics. Materials and methods Cytotoxicity assays were performed on cells derived from fresh tumor explants of 18 human cases of malignant glioma. In addition to EGR-1, tumor cultures were investigated for genetic alterations and the expression of cancer regulating factors, related to the p53 pathway. Results We found that sensitivity to cisplatin correlates significantly with levels of EGR-1 expression in tumors with wild-type p53/INK4a/p16 status. Conclusion Increased knowledge of the mechanisms regulating EGR-1 expression in wild-type p53/INK4a/p16 cases of glioma may help in the design of new chemotherapeutic strategies for these tumors.

  18. Efficient propagation of progressive multifocal leukoencephalopathy-type JC virus in COS-7-derived cell lines stably expressing Tat protein of human immunodeficiency virus type 1.

    Science.gov (United States)

    Nukuzuma, Souichi; Nakamichi, Kazuo; Kameoka, Masanori; Sugiura, Shigeki; Nukuzuma, Chiyoko; Miyoshi, Isao; Takegami, Tsutomu

    2010-12-01

    The high incidence of progressive multifocal leukoencephalopathy (PML) in AIDS patients compared with many other immunosuppressive diseases suggests that HIV-1 infection is strictly related to the activation of JC virus (JCV) propagation. In this report, propagation of PML-type JCV in COS-7-derived cell lines stably expressing HIV-1 Tat (COS-tat cells) has been examined. In COS-tat cells, production of viral particles and replication of genomic DNA were markedly increased compared to COS-7 cells, as judged by HA and real-time PCR analyses. These results demonstrate that COS-tat cells provide a useful model system for studying HIV-1 Tat-mediated propagation of PML-type JCV.

  19. Epigenetic status of H19/IGF2 and SNRPN imprinted genes in aborted and successfully derived embryonic stem cell lines in non-human primates

    Directory of Open Access Journals (Sweden)

    Florence Wianny

    2016-05-01

    Full Text Available The imprinted genes of primate embryonic stem cells (ESCs often show altered DNA methylation. It is unknown whether these alterations emerge while deriving the ESCs. Here we studied the methylation patterns of two differentially methylated regions (DMRs, SNRPN and H19/IGF2 DMRs, during the derivation of monkey ESCs. We show that the SNRPN DMR is characteristically methylated at maternal alleles, whereas the H19/IGF2 DMR is globally highly methylated, with unusual methylation on the maternal alleles. These methylation patterns remain stable from the early stages of ESC derivation to late passages of monkey ESCs and following differentiation. Importantly, the methylation status of H19/IGF2 DMR and the expression levels of IGF2, H19, and DNMT3B mRNAs in early embryo-derived cells were correlated with their capacity to generate genuine ESC lines. Thus, we propose that these markers could be useful to predict the outcomes of establishing an ESC line in primates.

  20. Chemo-sensitivity in a panel of B-cell precursor acute lymphoblastic leukemia cell lines, YCUB series, derived from children.

    Science.gov (United States)

    Goto, Hiroaki; Naruto, Takuya; Tanoshima, Reo; Kato, Hiromi; Yokosuka, Tomoko; Yanagimachi, Masakatsu; Fujii, Hisaki; Yokota, Shumpei; Komine, Hiromi

    2009-10-01

    Sensitivity to 10 anticancer drugs was evaluated in 6 childhood B-cell precursor acute lymphoblastic leukemia (BCP-ALL) cell lines. Authenticity of newly established cell lines was confirmed by genomic fingerprinting. The line YCUB-5R established at relapse was more resistant to 4-hydroperoxy-cyclophosphamide, cytarabine, L-asparaginase, topotecan, fludarabine, and etoposide than YCUB-5 from the same patient at diagnosis. Of the drugs tested, etoposide and SN-38 (irinotecan) showed highest efficacy in the panel, with 50% growth inhibition at 0.22-1.8 microg/ml and 0.57-3.6 ng/ml, respectively. This cell line panel offers an in vitro model for the development of new therapies for childhood BCP-ALL.

  1. Heterogeneity of chemosensitivity in six clonal cell lines derived from a spontaneous murine astrocytoma and its relationship to genotypic and phenotypic characteristics.

    Science.gov (United States)

    Bradford, R; Koppel, H; Pilkington, G J; Thomas, D G; Darling, J L

    1997-09-01

    Heterogeneity in drug sensitivity must, in part, account for the relative lack of success with single agent chemotherapy for glioblastoma multiforme (GBM). In order to develop in vitro model systems to investigate this, clones derived from the VM spontaneous murine astrocytoma have been characterised with regard to drug sensitivity. Six clonal cell lines have been tested for sensitivity to a panel of cytotoxic drugs using an intermediate duration 35S-methionine uptake assay. These lines have previously been extensively characterised with regard to morphological, antigenic, kinetic, tumourigenic potential in syngeneic animals and chromosomal properties and display considerable heterogeneity. The present study indicates that heterogeneity extends to sensitivity to all classes of cytotoxic drugs. The greatest difference in sensitivity between the clones was seen in response to cell cycle-specific drugs like the Vinca alkaloids (14-fold and 20-fold for vincristine (VCR) and vindesine (VIND) respectively), while the nitrosoureas, CCNU and BCNU displayed a smaller fold difference in sensitivity (4.3 and 3.6-fold difference respectively). All the clones were considerably more resistant to the adriamycin (ADM), cis-platinum (C-PLAT) and the Vinca alkaloids than the parental cell line although the difference in sensitivity between the clones and parental cell line were less marked for the nitrosoureas and procarbazine (PCB). It has also been possible to examine the relationship between drug sensitivity and the phenotypic and genotypic properties of these clonal cell lines. There is a relationship between chromosome number and sensitivity of a wide variety of cytotoxic drugs including the nitrosoureas, Vinca alkaloids, PCB, C-PLAT, BLEO but not ADR or 5-FU. Clones with small numbers of chromosomes were more resistant than clones with gross polyploidy. Similarly, sensitivity to Vinca alkaloids and ADM, but not other classes of drugs, was greatest in cells with numerous

  2. Synergistic Antiproliferative Effects of a New Cucurbitacin B Derivative and Chemotherapy Drugs on Lung Cancer Cell Line A549.

    Science.gov (United States)

    Marostica, Lucas Lourenço; Silva, Izabella Thaís; Kratz, Jadel Müller; Persich, Lara; Geller, Fabiana Cristina; Lang, Karen Luise; Caro, Miguel Soriano Balparda; Durán, Fernando Javier; Schenkel, Eloir Paulo; Simões, Cláudia Maria Oliveira

    2015-10-19

    Nonsmall cell lung cancer (NSCLC) represents an important cause of mortality worldwide due to its aggressiveness and growing resistance to currently available therapy. Cucurbitacins have emerged as novel potential anticancer agents showing strong antiproliferative effects and can be promising candidates for combined treatments with clinically used anticancer agents. This study investigates the synergistic antiproliferative effects of a new semisynthetic derivative of cucurbitacin B (DACE) with three chemotherapy drugs: cisplatin (CIS), irinotecan (IRI), and paclitaxel (PAC) on A549 cells. The most effective combinations were selected for studies of the mechanism of action. Using an in silico tool, DACE seems to act by a different mechanism of action when compared with that of different classes of drugs already used in clinical settings. DACE also showed potent synergic effects with drugs, and the most potent combinations induced G2/M cell cycle arrest by modulating survivin and p53 expression, disruption of F-actin cytoskeleton, and cell death by apoptosis. These treatments completely inhibited the clonogenic potential and did not reduce the proliferation of nontumoral lung cells (MRC-5). DACE also showed relevant antimigratory and anti-invasive effects, and combined treatments modulated cell migration signaling pathways evolved with metastasis progression. The effects of DACE associated with drugs was potentiated by the oxidant agent l-buthionine-sulfoximine (BSO), and attenuated by N-acetilcysteine (NAC), an antioxidant agent. The antiproliferative effects induced by combined treatments were attenuated by a pan-caspase inhibitor, indicating that the effects of these treatments are dependent on caspase activity. Our data highlight the therapeutic potential of DACE used in combination with known chemotherapy drugs and offer important insights for the development of more effective and selective therapies against lung cancer.

  3. Synthesis of an anthraquinone derivative (DHAQC and its effect on induction of G2/M arrest and apoptosis in breast cancer MCF-7 cell line

    Directory of Open Access Journals (Sweden)

    Yeap SK

    2015-02-01

    Full Text Available SweeKeong Yeap,1 Muhammad Nadeem Akhtar,2 Kian Lam Lim,3 Nadiah Abu,4,5 Wan Yong Ho,6 Seema Zareen,2 Kiarash Roohani,1 Huynh Ky,4 Sheau Wei Tan,1 Nordin Lajis,7 Noorjahan Banu Alitheen1,4 1Institute of Bioscience, Universiti Putra Malaysia, Selangor Darul Ehsan, Malaysia; 2Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, Kuantan, Pahang, Malaysia; 3Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Selangor Darul Ehsan, Malaysia; 4Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Selangor Darul Ehsan, Malaysia; 5Bright Sparks Unit, University of Malaya, Kuala Lumpur, Malaysia; 6School of Biomedical Sciences, University of Nottingham Malaysia Campus, Selangor Darul Ehsan, Malaysia; 7Scientific Chairs Unit, Taibah University, Medina, Saudi Arabia Abstract: Anthraquinones are an important class of naturally occurring biologically active compounds. In this study, anthraquinone derivative 1,3-dihydroxy-9,10-anthraquinone-2-carboxylic acid (DHAQC (2 was synthesized with 32% yield through the Friedel–Crafts condensation reaction. The mechanisms of cytotoxicity of DHAQC (2 in human breast cancer MCF-7 cells were further investigated. Results from the 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay showed that DHAQC (2 exhibited potential cytotoxicity and selectivity in the MCF-7 cell line, comparable with the naturally occurring anthraquinone damnacanthal. DHAQC (2 showed a slightly higher IC50 (inhibitory concentration with 50% cell viability value in the MCF-7 cell line compared to damnacanthal, but it is more selective in terms of the ratio of IC50 on MCF-7 cells and normal MCF-10A cells. (selective index for DHAQC (2 was 2.3 and 1.7 for damnacanthal. The flow cytometry cell cycle analysis on the MCF-7 cell line treated with the IC50 dose of DHAQC (2 for 48 hours showed that DHAQC (2 arrested MCF-7 cell line at the G2/M phase in association with an

  4. Signaling via class IA Phosphoinositide 3-kinases (PI3K in human, breast-derived cell lines.

    Directory of Open Access Journals (Sweden)

    Veronique Juvin

    Full Text Available We have addressed the differential roles of class I Phosphoinositide 3-kinases (PI3K in human breast-derived MCF10a (and iso-genetic derivatives and MDA-MB 231 and 468 cells. Class I PI3Ks are heterodimers of p110 catalytic (α, β, δ and γ and p50-101 regulatory subunits and make the signaling lipid, phosphatidylinositol (3,4,5-trisphosphate (PtdIns(3,4,5P3 that can activate effectors, eg protein kinase B (PKB, and responses, eg migration. The PtdIns(3,4,5P3-3-phosphatase and tumour-suppressor, PTEN inhibits this pathway. p110α, but not other p110s, has a number of onco-mutant variants that are commonly found in cancers. mRNA-seq data shows that MCF10a cells express p110β>>α>δ with undetectable p110γ. Despite this, EGF-stimulated phosphorylation of PKB depended upon p110α-, but not β- or δ- activity. EGF-stimulated chemokinesis, but not chemotaxis, was also dependent upon p110α, but not β- or δ- activity. In the presence of single, endogenous alleles of onco-mutant p110α (H1047R or E545K, basal, but not EGF-stimulated, phosphorylation of PKB was increased and the effect of EGF was fully reversed by p110α inhibitors. Cells expressing either onco-mutant displayed higher basal motility and EGF-stimulated chemokinesis.This latter effect was, however, only partially-sensitive to PI3K inhibitors. In PTEN(-/- cells, basal and EGF-stimulated phosphorylation of PKB was substantially increased, but the p110-dependency was variable between cell types. In MDA-MB 468s phosphorylation of PKB was significantly dependent on p110β, but not α- or δ- activity; in PTEN(-/- MCF10a it remained, like the parental cells, p110α-dependent. Surprisingly, loss of PTEN suppressed basal motility and EGF-stimulated chemokinesis. These results indicate that; p110α is required for EGF signaling to PKB and chemokinesis, but not chemotaxis; onco-mutant alleles of p110α augment signaling in the absence of EGF and may increase motility, in part, via acutely

  5. EFFECTS OF LIMONENE, SALVIA MILTIORRHIZA AND TURMERIC DERIVATIVES ON H-RAS ONCOGENE EXPRESSION AND GAP JUNCTION INTERCELLULAR COMMUNICATION IN HUMAN SOLID TUMOR CELL LINES

    Institute of Scientific and Technical Information of China (English)

    Chen Xiaoguang; Taday oshi Hasuma; Yoshihisa Yano; Toshiko Yoshimata; Hiyoshi Kamoi; Shuzo Otani

    1998-01-01

    Objective: To study gap junction intercellular communication (GJIC), H-ras oncogene expression and ras oncogene product (P21 ras protein) expression in four human solid tumor cell lines, W1-38, CACO2, A549 and PaCa, and the effects of four compounds, Salvia miltiorrhiza derivative (SMD), d-Limonene, Turmeric derivative Ⅰ (TD-Ⅰ) and Turmeric derivative Ⅱ (TD-Ⅱ), on them. Methods: The abilities of the four solid tumor cell lines to transfer dye to adjacent cells were examined by the scrape-loading/dye transfer technique, and the Hras oncogene expression by Northern blotting and P21 ras protein expression by Western blotting. Results: The results showed the loss of intercellular coupling in PaCa cells, slight GJIC in A549 and CACO2 cells, and a good GJIC in W1-38 cells. The four compounds could improve the GJIC of PaCa to different extents. The amount of total and membrane associated P21 ras in PaCa cells were decreased after treatment with SMD, d-Limonene and TD-Ⅰ (2.5 μg/ml) for 48 h. Concomitantly, the growth of PaCa cells decreased in soft agar and had enhanced GJIC.The relative potency was found to be:d-Limonene>SMD >TD-Ⅰ=TD-Ⅱ. There was no significant effect of the four compounds on H-ras oncogene expression. Conclusion:It was suggested that there was an excellent correlation between loss of Lucifer Yellow dye transfer and ras gene mutation rate in the four solid tumor cell lines (ras gene mutation rate inversely correlated with average cell number coupled, r=0.98) i.e., the high ras gene mutation was closely correlated with loss of GJIC in these malignant human tumor cells; The antitumor effect of the monoterpene d-Limonene and the phenol compound,SMD, might be related to inhibition of P21 ras membrane association and enhancement of GJIC, whilst that of the others may be by a different mechanism; The inhibition of p21 ras membrane association was directly related to the enhancement of gap junction intercellular communication.

  6. Generation of spinocerebellar ataxia type 3 patient-derived induced pluripotent stem cell line SCA3.A11

    Directory of Open Access Journals (Sweden)

    Susanne K. Hansen

    2016-05-01

    Full Text Available Spinocerebellar ataxia type 3 (SCA3 is a dominantly inherited neurodegenerative disease caused by a CAG-repeat expanding mutation in ATXN3. We generated induced pluripotent stem cells (iPSCs from a SCA3 patient by electroporation of dermal fibroblasts with episomal plasmids encoding L-MYC, LIN28, SOX2, KLF4, OCT4 and short hairpin RNA targeting P53. The resulting iPSCs had normal karyotype, were free of genomically integrated episomal plasmids, expressed pluripotency markers, could differentiate into the three germ layers in vitro and retained the disease-causing ATXN3 mutation. This iPSC line could be useful for the investigation of SCA3 disease mechanisms.

  7. Generation of spinocerebellar ataxia type 3 patient-derived induced pluripotent stem cell line SCA3.B11

    Directory of Open Access Journals (Sweden)

    Susanne K. Hansen

    2016-05-01

    Full Text Available Spinocerebellar ataxia type 3 (SCA3 is a dominantly inherited neurodegenerative disease caused by an expansion of the CAG-repeat in ATXN3. In this study, induced pluripotent stem cells (iPSCs were generated from SCA3 patient dermal fibroblasts by electroporation with episomal plasmids encoding L-MYC, LIN28, SOX2, KLF4, OCT4 and short hairpin RNA targeting P53. The resulting iPSCs had normal karyotype, were free of integrated episomal plasmids, expressed pluripotency markers, could differentiate into the three germ layers in vitro and retained the disease-causing ATXN3 mutation. Potentially, this iPSC line could be a useful tool for the investigation of SCA3 disease mechanisms.

  8. Transplantation of neural stem cells overexpressing glial cell line-derived neurotrophic factor enhances Akt and Erk1/2 signaling and neurogenesis in rats after stroke

    Institute of Scientific and Technical Information of China (English)

    YUAN Miao; WEN Sheng-jun; YANG Chao-xian; PANG Yuan-guang; GAO Xiao-qing; LIU Xiao-qing; HUANG Liang

    2013-01-01

    Background Our previous studies have indicated that the beneficial effects of grafting neural stem cells (NSCs) overexpressing glial cell line-derived neurotrophic factor (GDNF) in rats after stroke.However,the underlying mechanisms are highly debatable.In this study,we investigated whether neurogenesis,Akt,and extracellular signalregulated kinase 1/2 (Erk1/2) signaling were involved in this process.Methods Transient ischemic stroke were induced by occluding middle cerebral artery for 2 hours and reperfusion.At 3 days after reperfusion,GDNF/NSCs,NSCs,and vehicle were administered.Immunohistochemical staining was used to evaluate neurogenesis by nestin antibody; phosphorylation of Akt and Erk1/2 was investigated by Western blotting analysis.Results Transplantation of GDNF/NSCs and NSCs significantly increased nestin-positive cells compared to control group (vehicle) from 1 to 7 weeks after reperfusion,and GDNF/NSCs showed stronger effect than NSCs at 2 and 3 weeks after reperfusion.Meanwhile,enhanced phosphorylation level of Erk1/2 was observed in the GDNF/NSCs and NSCs groups compared with control group,and phosphorylation level of Erk1/2 in GDNF/NSCs group was remarkably higher than that of NSCs group at any given time.In contrast,expression of mitogen-activated protein kinase phosphatase-1 (MKP-1),known as inhibitor of Erk1/2 signaling,was significantly decreased in the GDNF/NSCs and NSCs groups compared with the control group.Moreover,much enhanced and prolonged phosphorylation level of Akt of GDNF/NSCs group was detected compared with control and NSCs group.Conclusion Grafting GDNF/NSCs enhances neurogenesis and activates Akt and Erk1/2 signaling,that may provide the potential for GDNF/NSCs in stroke treatment.

  9. Proline modulates the effect of bisphosphonate on calcium levels and adenosine triphosphate production in cell lines derived from bovine Echinococcus granulosus protoscoleces.

    Science.gov (United States)

    Fuchs, A G; Echeverría, C I; Pérez Rojo, F G; Prieto González, E A; Roldán, E J A

    2014-12-01

    Bisphosphonates have been proposed as pharmacological agents against parasite and cancer cell growth. The effect of these compounds on helminthic cell viability and acellular compartment morphology, however, has not yet been studied. The effects of different types of bisphosphonates, namely etidronate (EHDP), pamidronate (APD), alendronate (ABP), ibandronate (IB) and olpadronate (OPD), and their interaction with amiloride, 1,25-dihydroxycholecalciferol (D3) and proline were evaluated on a cell line derived from bovine Echinococcus granulousus protoscoleces (EGPE) that forms cystic colonies in agarose. The EGPE cell line allowed testing the effect of bisphosphonates alone and in association with other compounds that could modulate calcium apposition/deposition, and were useful in measuring the impact of these compounds on cell growth, cystic colony formation and calcium storage. Decreased cell growth and cystic colony formation were found with EHDP, IB and OPD, and increased calcium storage with EHDP only. Calcium storage in EGPE cells appeared to be sensitive to the effect of amiloride, D3 and proline. Proline decreased calcium storage and increased colony formation. Changes in calcium storage may be associated with degenerative changes of the cysts, as shown in the in vitro colony model and linked to an adenosine triphosphate (ATP) decrease. In conclusion, bisphosphonates could be suitable tempering drugs to treat cestode infections.

  10. Synthesis of 17β-N-arylcarbamoylandrost-4-en-3-one derivatives and their anti-proliferative effect on human androgen-sensitive LNCaP cell line.

    Science.gov (United States)

    Cortés-Benítez, Francisco; Cabeza, Marisa; Ramírez-Apan, María Teresa; Alvarez-Manrique, Berenice; Bratoeff, Eugene

    2016-10-04

    In this study, we report the synthesis and anti-proliferative effect of a set of eight androst-4-ene-3-one derivatives with different arylcarbamoyl groups at C-17. The novel compounds were prepared from commercially available 3β-hydroxy-5-pregnen-20-one and evaluated against the androgen-sensitive human prostate adenocarcinoma LNCaP cell line. The cancerous cells were exposed to 50 μM of each compound and the proliferating agent testosterone (T) or dihydrotestosterone (DHT). The most potent compounds from this assay were further tested against the androgen-insensitive PC3 cell line. We also demonstrate the activity of these compounds on rat peripheral blood mononuclear cells for comparison. Both 17β-N-[3,5-bis(trifluoromethyl)phenylcarbamoyl]androst-4-ene-3-one (6f) and 17β-N-(1,3-thiazol-2-ylcarbamoyl)androst-4-ene-3-one (6g) exhibited a higher growth inhibitory effect than commercially available drugs finasteride, flutamide and ketoconazole on LNCaP cells in the presence and absence of androgens. In addition, 6f and 6g demonstrated high potency on PC3 cells suggesting an androgen-independent anti-proliferative effect. Moreover, the novel compounds showed a small effect on rat mononuclear cells, an indication of low toxicity.

  11. Crude extracts of marine-derived and soil fungi of the genus Neosartorya exhibit selective anticancer activity by inducing cell death in colon, breast and skin cancer cell lines

    Directory of Open Access Journals (Sweden)

    Alice Abreu Ramos

    2016-01-01

    Full Text Available Background: The crude ethyl acetate extracts of marine-derived fungi Neosartorya tsunodae KUFC 9213 (E1 and N. laciniosa KUFC 7896 (E2, and soil fungus N. fischeri KUFC 6344 (E3 were evaluated for their in vitro anticancer activities on a panel of seven human cancer cell lines. Materials and Methods: The 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide assay was performed, after 48 h treatments with different concentrations of extracts, to determine their concentration of the extract or Dox that inhibits cell viability by 50% for each cell line. The effects of the crude extracts on DNA damage, clonogenic potential and their ability to induce cell death were also assessed. Results: E1 was found to the void of anti-proliferative effects. E2 was shown to decrease the clonogenic potential in human colorectal carcinoma cell line (HCT116, human malignant melanoma cell line (A375, human breast adenocarcinoma cell line (MCF7, and human caucasian colon adenocarcinoma Grade II cell line (HT29 cells, whereas E3 showed such effect only in HCT116 and MCF7 cells. Both extracts were found to increase DNA damage in some cell lines. E2 was found to induce cell death in HT29, HCT116, MCF7, and A375 cells while extract E3 increased cell death in MCF7 and HCT116 cell lines. Conclusion: The results reveal that E2 and E3 possess anticancer activities in human colon carcinoma, breast adenocarcinoma, and melanoma cells, validating the interest for an identification of molecular targets involved in the anticancer activity.

  12. Flavokawain derivative FLS induced G2/M arrest and apoptosis on breast cancer MCF-7 cell line

    Directory of Open Access Journals (Sweden)

    Ali NM

    2016-06-01

    Full Text Available Norlaily Mohd Ali,1 M Nadeem Akhtar,2 Huynh Ky,3 Kian Lam Lim,1 Nadiah Abu,4 Seema Zareen,2 Wan Yong Ho,5 Han Kiat Alan-Ong,1 Sheau Wei Tan,6 Noorjahan Banu Alitheen,4 Jamil bin Ismail,2 Swee Keong Yeap,6 Tunku Kamarul7 1Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Selangor, 2Department of Industrial Biotechnology, Faculty of Industrial Sciences & Technology, Universiti Malaysia Pahang, Pahang, Malaysia; 3Department of Agriculture Genetics and Breeding, College of Agriculture and Applied Biology, Cantho University, CanTho City, Vietnam; 4Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 5School of Biomedical Sciences, The University of Nottingham Malaysia Campus, 6Institute of Bioscience, Universiti Putra Malaysia, Selangor, 7Tissue Engineering Group, National Orthopaedic Centre of Excellence for Research and Learning, Department of Orthopaedic Surgery, Faculty of Medicine, University Malaya, Kuala Lumpur, Malaysia Abstract: Known as naturally occurring biologically active compounds, flavokawain A and B are the leading chalcones that possess anticancer properties. Another flavokawain derivative, (E-1-(2'-Hydroxy-4',6'-dimethoxyphenyl-3-(4-methylthiophenylprop-2-ene-1-one (FLS was characterized with 1H-nuclear magnetic resonance, electron-impact mas spectrometry, infrared spectroscopy, and ultraviolet (1H NMR, EI-MS, IR, and UV spectroscopic techniques. FLS cytotoxic efficacy against human cancer cells (MCF-7, MDA-MB-231, and MCF-10A resulted in the reduction of IC50 values in a time- and dose-dependent mode with high specificity on MCF-7 (IC50 of 36 µM at 48 hours against normal breast cell MCF-10A (no IC50 detected up to 180 µM at 72 hours. Light, scanning electron, and fluorescent microscopic analysis of MCF-7 cell treated with 36 µM of FLS displayed cell shrinkage, apoptotic body, and DNA fragmentation. Additionally, induction of G2/M cell

  13. Evaluation of the sensitizing potential of antibiotics in vitro using the human cell lines THP-1 and MUTZ-LC and primary monocyte‐derived dendritic cells

    Energy Technology Data Exchange (ETDEWEB)

    Sebastian, Katrin, E-mail: ksebastian@ukaachen.de [Department of Dermatology and Allergology, RWTH Aachen University Hospital, D-52074 Aachen (Germany); Ott, Hagen [Department of Dermatology and Allergology, RWTH Aachen University Hospital, D-52074 Aachen (Germany); Zwadlo-Klarwasser, Gabriele [IZKF (BIOMAT), RWTH Aachen University Hospital, D-52074 Aachen (Germany); Skazik-Voogt, Claudia; Marquardt, Yvonne; Czaja, Katharina; Merk, Hans F.; Baron, Jens Malte [Department of Dermatology and Allergology, RWTH Aachen University Hospital, D-52074 Aachen (Germany)

    2012-08-01

    Since the 7th amendment to the EU cosmetics directive foresees a complete ban on animal testing, alternative in vitro methods have been established to evaluate the sensitizing potential of small molecular weight compounds. To find out whether these novel in vitro assays are also capable to predict the sensitizing potential of small molecular weight drugs, model compounds such as beta-lactams and sulfonamides – which are the most frequent cause of adverse drug reactions – were co-incubated with THP-1, MUTZ-LC, or primary monocyte‐derived dendritic cells for 48 h and subsequent expression of selected marker genes (IL-8, IL-1β, CES1, NQO1, GCLM, PIR and TRIM16) was studied by real time PCR. Benzylpenicillin and phenoxymethylpenicillin were recognized as sensitizing compounds because they are capable to induce the mRNA expression of these genes in moDCs and, except for IL-8, in THP-1 cells but not in MUTZ-LC. Ampicillin stimulated the expression of some marker genes in moDCs and THP-1 cells. SMX did not affect the expression of these genes in THP-1, however, in moDCs, at least PIR was enhanced and there was an increase of the release of IL-8. These data reveal that novel in vitro DC based assays might play a role in the evaluation of the allergenic potential of novel drug compounds, but these systems seem to lack the ability to detect the sensitizing potential of prohaptens that require metabolic activation prior to sensitization and moDCs seem to be superior with regard to the sensitivity compared with THP-1 and MUTZ-3 cell lines. -- Highlights: ► We tested the sensitizing potential of small molecular weight drugs in vitro. ► In vitro assays were performed with moDCs and THP-1 cells. ► Beta-lactam antibiotics can be recognized as sensitizing compounds. ► They affect the expression of metabolic enzymes, cytokines and transcription factors. ► Sulfamethoxazole has no measurable effect on THP-1 cells and moDCs.

  14. A novel approach to evaluate the pharmacokinetic biocomparability of a monoclonal antibody derived from two different cell lines using simultaneous crossover design.

    Science.gov (United States)

    Han, Chao; McIntosh, Thomas S; Geist, Brian J; Jiao, Trina; Puchalski, Thomas A; Goldberg, Kenneth M; Yang, Tong-Yuan; Pendley, Charles E; Zhou, Honghui; Davis, Hugh M

    2014-01-01

    A parallel study design with a large number of subjects has been a typical path for pharmacokinetic (PK) biocomparability assessment of biotherapeutics with long half-lives and immunogenic propensity, for example, monoclonal antibodies (mAb). A recently published innovative bioanalytical method that can quantify mAb produced from two different cell lines in the same sample opened an avenue to exploring a simultaneous crossover study design for PK biocomparability assessment of biotherapeutics. Siltuximab, a chimeric IgG1 mAb-targeting interleukin-6, was studied as an example. The pharmacokinetic biocomparability of siltuximab derived from mouse myeloma (Sp2/0) cells and Chinese hamster ovary cells was previously assessed and demonstrated in a clinical PK biocomparability study that enrolled more than 140 healthy subjects using a parallel trial design. The biocomparability was successfully shown in six cynomolgus monkeys in a preclinical proof-of-concept study using the new crossover study design supported by the analytical method. The impact of antidrug antibodies on the assessment of biocomparability was minimal. This novel approach opened up a new arena for the evaluation of PK biocomparability of biotherapeutics with unique molecular signatures such as a mAb derived from different cell lines.

  15. Technical advance: Langerhans cells derived from a human cell line in a full-thickness skin equivalent undergo allergen-induced maturation and migration.

    Science.gov (United States)

    Ouwehand, Krista; Spiekstra, Sander W; Waaijman, Taco; Scheper, Rik J; de Gruijl, Tanja D; Gibbs, Susan

    2011-11-01

    In this report, the construction of a functional, immunocompetent, full-thickness skin equivalent (SE) is described, consisting of an epidermal compartment containing keratinocytes, melanocytes, and human LCs derived from the MUTZ-3 cell line (MUTZ-LC) and a fibroblast-populated dermal compartment. The CD1a(+)Langerin(+)HLA-DR(+) MUTZ-LCs populate the entire epidermis at a similar density to that found in native skin. Exposure of the SE to subtoxic concentrations of the allergens NiSO(4) and resorcinol resulted in LC migration out of the epidermis toward the fibroblast-populated dermal compartment. A significant dose-dependent up-regulation of the DC maturation-related CCR7 and IL-1β transcripts and of CD83 at the protein level upon epidermal exposure to both allergens was observed, indicative of maturation and migration of the epidermally incorporated LC. We have thus successfully developed a reproducible and functional full-thickness SE model containing epidermal MUTZ-LC. This model offers an alternative to animal testing for identifying potential chemical sensitizers and for skin-based vaccination strategies and provides a unique research tool to study human LC biology in situ under controlled in vitro conditions.

  16. Organ heterogeneity of host-derived matrix metalloproteinase expression and its involvement in multiple-organ metastasis by lung cancer cell lines.

    Science.gov (United States)

    Shiraga, Minoru; Yano, Seiji; Yamamoto, Akihiko; Ogawa, Hirohisa; Goto, Hisatsugu; Miki, Toyokazu; Miki, Keisuke; Zhang, Helong; Sone, Saburo

    2002-10-15

    Cancer metastasis is tightly regulated by the interaction of tumor cells and host organ microenvironments. Matrix metalloproteinases (MMPs), produced by both tumor cells and host stromal cells, play a central role in tumor invasion and angiogenesis. We determined whether metastatic potential of lung cancer to multiple organs is dependent solely on the expression of MMPs by tumor cells, using two metastasis models of human lung cancer cell lines expressing various levels of MMPs and a MMP inhibitor (ONO-4817). In the lung metastasis model, tumor cells (PC14, PC14PE6, H226, A549) inoculated i.v. into nude or SCID mice metastasized only in the lung. In the multiple-organ metastasis model, tumor cells (RERF-LC-AI, SBC-3/DOX, H69/VP, which express low levels of MMPs) inoculated i.v. into natural killer cell-depleted SCID mice metastasized into the liver, kidneys, and systemic lymph nodes. Film in situ zymography analysis revealed that the nontumor parenchyma of the lung had no gelatinolytic activity, whereas gelatinolytic activity of the liver and kidney was high and low, respectively. In the lung metastasis model, gelatinolytic activity of lung nodules directly correlated with the in vitro expression of MMP-2 and MMP-9 by tumor cells. Inhibition of MMP activity by ONO-4817 suppressed lung metastasis by the cell lines that expressed MMPs, but not those that did not express MMP, via the inhibition of MMP activity of lung tumors. In the multiple-organ metastasis model, liver parenchyma, but not liver nodules, showed gelatinolytic activity. The MMP inhibition reduced metastasis to the liver, but not to the kidney or lymph nodes, via inhibition of MMP activity of liver parenchyma. These findings suggest that MMP expression varies among the host organ microenvironments and that stromal MMPs may promote metastasis of lung cancer. Therefore, antimetastatic effects based on MMP inhibition may be dependent on MMPs derived not only from tumor cells but also from organ

  17. A Euploid Line of Human Embryonic Stem Cells Derived from a 43,XX,dup(9q),+12,-14,-15,-18,-21 Embryo

    Science.gov (United States)

    Fonseca, Simone Aparecida Siqueira; Costas, Roberta Montero; Morato-Marques, Mariana; Costa, Silvia; Alegretti, Jose Roberto; Rosenberg, Carla; da Motta, Eduardo Leme Alves; Serafini, Paulo C.; Pereira, Lygia V.

    2015-01-01

    Aneuploid embryos diagnosed by FISH-based preimplantation genetic screening (PGS) have been shown to yield euploid lines of human embryonic stem cells (hESCs) with a relatively high frequency. Given that the diagnostic procedure is usually based on the analysis of 1–2 blastomeres of 5 to 10-cell cleavage-stage embryos, mosaicism has been a likely explanation for the phenomena. However, FISH-based PGS can have a significant rate of misdiagnosis, and therefore some of those lines may have been derived from euploid embryos misdiagnosed as aneuploid. More recently, coupling of trophectoderm (TE) biopsy at the blastocyst stage and array-CGH lead to a more informative form of PGS. Here we describe the establishment of a new line of hESCs from an embryo with a 43,XX,dup(9q),+12,-14,-15,-18,-21 chromosomal content based on array-CGH of TE biopsy. We show that, despite the complex chromosomal abnormality, the corresponding hESC line BR-6 is euploid (46,XX). Single nucleotide polymorphism analysis showed that the embryo´s missing chromosomes were not duplicated in BR-6, suggesting the existence of extensive mosaicism in the TE lineage. PMID:26540511

  18. Derivation of feline vaccine-associated fibrosarcoma cell line and its growth on chick embryo chorioallantoic membrane - a new in vivo model for veterinary oncological studies.

    Science.gov (United States)

    Zabielska, K; Lechowski, R; Król, M; Pawłowski, K M; Motyl, T; Dolka, I; Zbikowski, A

    2012-12-01

    Feline vaccine associated fibrosarcomas are the second most common skin tumor in cats. Methods of treatment are: surgery, chemotherapy and radiotherapy. Nevertheless, the usage of cytostatics in feline vaccine associated sarcoma therapy is limited due to their adverse side effects, high toxicity and low biodistribution after i.v. injection. Therefore, much research on new therapeutic drugs is being conducted. In human medicine, the chick embryo chorioallantoic membrane (CAM) model is used as a cheap and easy to perform assay to assess new drug effectiveness in cancer treatment. Various human cell lines have different tumors growth on CAM. In veterinary medicine such model has not been described yet. In the present article derivation of feline vaccine associated fibrosarcoma cell line and its growth on CAM is described. The cell line and the tumor grown were confirmed by histopathological and immunohistochemical examination. As far as we believe, this is the first attempt to create such model, which may be used for further in vivo studies in veterinary oncology.

  19. Glial cell line-derived neurotrophic factor attenuates behavioural deficits and regulates nigrostriatal dopaminergic and peptidergic markers in 6-hydroxydopamine-lesioned adult rats: comparison of intraventricular and intranigral delivery.

    Science.gov (United States)

    Lapchak, P A; Miller, P J; Collins, F; Jiao, S

    1997-05-01

    The effects of intranigrally- or intraventricularly-administered glial cell line-derived neurotrophic factor were tested on low dose (0.05 mg/kg) apomorphine-induced rotations and tyrosine hydroxylase activity in the substantia nigra and striatum of stable 6-hydroxydopamine-lesioned rats. In addition, we determined if 6-hydroxydopamine lesions in the absence or presence of treatment affected neuropeptide (substance P, met-enkephalin, dynorphin) content in the striatum. Glial cell line-derived neurotrophic factor, when administered intranigrally, prevented apomorphine-induced rotational behaviour for 11 weeks following a single injection. In comparison, intraventricularly-administered glial cell line-derived neurotrophic factor produced a transient reduction in rotational behaviour that lasted for two to three weeks following a single injection. We also show that rotational behaviour is reduced following each subsequent intraventricular injection of glial cell line-derived neurotrophic factor given every six weeks, a time-point when baseline rotation deficits were re-established. Intranigrally- or intraventricularly-administered glial cell line-derived neurotrophic factor significantly reduced weight gain in all 6-hydroxydopamine-lesioned rats in this study. Following behavioural analysis where a confirmed improvement of behaviour was established, tissues were dissected for neurochemical analysis. In lesioned rats with intranigral injections of administered glial cell line-derived neurotrophic factor, significant increases of nigral, but not striatal tyrosine hydroxylase activity were measured. Additionally, 6-hydroxydopamine lesions significantly increased striatal dynorphin (61-139%) and met-enkephalin (81-139%), but not substance P levels. In these rats, intranigrally-administered glial cell line-derived neurotrophic factor injections reversed lesion-induced increases in nigral dynorphin A levels and increased nigral dopamine levels, but did not alter nigral met

  20. Patient-Derived Antibody Targets Tumor Cells

    Science.gov (United States)

    An NCI Cancer Currents blog on an antibody derived from patients that killed tumor cells in cell lines of several cancer types and slowed tumor growth in mouse models of brain and lung cancer without evidence of side effects.

  1. Molecular association of 2-(n-alkylamino)-1,4-naphthoquinone derivatives: Electrochemical, DFT studies and antiproliferative activity against leukemia cell lines

    Science.gov (United States)

    Patil, Rishikesh; Bhand, Sujit; Konkimalla, V. Badireenath; Banerjee, Priyabrata; Ugale, Bharat; Chadar, Dattatray; Saha, Sourav Kr.; Praharaj, Prakash Priyadarshi; Nagaraja, C. M.; Chakrovarty, Debamitra; Salunke-Gawali, Sunita

    2016-12-01

    Molecular structures and their molecular association of 2-(n-alkylamino)-1,4-naphthoquinone, viz., LH-3; propyl, LH-4; butyl and LH-8; octyl derivatives were studied by single crystal X-ray diffraction studies. Synthesis and characterization of 2-octylamino-1,4-naphthoquinone; LH-8 was discussed. The molecule of LH-3 crystallizes in orthorhombic space group P21/c, while the LH-4 and LH-8 molecule crystallizes in triclinic space group P-1. LH-3, LH-4 and LH-8 showed intermolecular N-H⋯O and C-H⋯O interactions, LH-3 showed unique C(3)-H(3)⋯O(1) interaction. Interchain π-π stacking, slipped π-π stacking and C⋯O close contacts was respectively observed in LH-3, LH-4 and LH-8. Electrochemical studies were performed on first eight members of homologous series of 2-(n-alkylamino)-1,4-naphthoquinone (LH-1 to LH-8) by cyclic voltammetry. Naphthoquinone to naphthosemiquinone reversible redox couple was observed in all compounds ∼ E1/2 = -0.657 ± 0.05 V. HOMO-LUMO band gap was determined for the neutral form as well as the monoanionic radical form viz. naphthosemiquinone form of selected derivatives by DFT studies. It has been observed that the electron density is delocalized in the naphthoquinone ring in both neutral as well as one electron reduced form of compounds. Antiproliferative activity of LH-1 to LH-8 was evaluated against two cancer cell lines, THP1(acute monocytic leukemia) and K562(human immortalized myelogenous leukemia cell line) cells. It was observed that, in THP1 cells, compounds LH-2 and LH-3 are very active while LH-1, LH-4 and LH-6 were moderately active and LH-5, LH-7 and LH-8 were totally inactive. Contrastingly, in K562 cells all of the compounds were moderately active.

  2. In Vitro Evaluation of the Antimicrobial Ability and Cytotoxicity on Two Melanoma Cell Lines of a Benzylamide Derivative of Maslinic Acid

    Science.gov (United States)

    Dehelean, Cristina Adriana; Muntean, Delia; Csuk, René

    2016-01-01

    Maslinic acid is a pentacyclic triterpene extracted from olives that has been systematically reported to exert several therapeutic effects, such as antitumoral, antidiabetic, antioxidant, anti-inflammatory, antiparasitic, and antiviral properties. Recently, new derivatives of maslinic acid have been obtained and expanded the spectrum of biological activities and improved the existing ones. The present study was meant to perform the in vitro assessment of the (i) cytotoxic effects of a benzylamide derivative of maslinic acid (“EM2”) (benzyl (2α, 3β) 2,3-diacetoxy-olean-12-en-28-amide) on B164A5 murine melanoma and A375 human malignant melanoma cell lines and the (ii) antimicrobial activity of the compound on several bacterial strains, respectively. We obtained a dose-dependent cytotoxic effect of EM2 that was particularly relevant to the murine cell line. As on the antibacterial activity, EM2 was tested on 10 bacterial strains Bacillus cereus, Staphylococcus aureus, Streptococcus pyogenes, Streptococcus pneumoniae, Enterococcus faecalis, Escherichia coli, Yersinia enterocolitica, Klebsiella pneumoniae, Proteus mirabilis, and Pseudomonas aeruginosa and one fungus Candida albicans. A significant antimicrobial effect was recorded for Streptococcus pyogenes and Staphylococcus aureus. PMID:28050335

  3. In Vitro Evaluation of the Antimicrobial Ability and Cytotoxicity on Two Melanoma Cell Lines of a Benzylamide Derivative of Maslinic Acid

    Directory of Open Access Journals (Sweden)

    Ioana Zinuca Pavel

    2016-01-01

    Full Text Available Maslinic acid is a pentacyclic triterpene extracted from olives that has been systematically reported to exert several therapeutic effects, such as antitumoral, antidiabetic, antioxidant, anti-inflammatory, antiparasitic, and antiviral properties. Recently, new derivatives of maslinic acid have been obtained and expanded the spectrum of biological activities and improved the existing ones. The present study was meant to perform the in vitro assessment of the (i cytotoxic effects of a benzylamide derivative of maslinic acid (“EM2” (benzyl (2α, 3β 2,3-diacetoxy-olean-12-en-28-amide on B164A5 murine melanoma and A375 human malignant melanoma cell lines and the (ii antimicrobial activity of the compound on several bacterial strains, respectively. We obtained a dose-dependent cytotoxic effect of EM2 that was particularly relevant to the murine cell line. As on the antibacterial activity, EM2 was tested on 10 bacterial strains Bacillus cereus, Staphylococcus aureus, Streptococcus pyogenes, Streptococcus pneumoniae, Enterococcus faecalis, Escherichia coli, Yersinia enterocolitica, Klebsiella pneumoniae, Proteus mirabilis, and Pseudomonas aeruginosa and one fungus Candida albicans. A significant antimicrobial effect was recorded for Streptococcus pyogenes and Staphylococcus aureus.

  4. Derivation of completely cell culture-derived mice from early-passage embryonic stem cells.

    OpenAIRE

    Nagy, A.; Rossant, J.; Nagy, R.; Abramow-Newerly, W; Roder, J C

    1993-01-01

    Several newly generated mouse embryonic stem (ES) cell lines were tested for their ability to produce completely ES cell-derived mice at early passage numbers by ES cell tetraploid embryo aggregation. One line, designated R1, produced live offspring which were completely ES cell-derived as judged by isoenzyme analysis and coat color. These cell culture-derived animals were normal, viable, and fertile. However, prolonged in vitro culture negatively affected this initial totipotency of R1, and...

  5. Up-regulation of lymphocyte antigen 6 complex expression in side-population cells derived from a human trophoblast cell line HTR-8/SVneo.

    Science.gov (United States)

    Inagaki, Tetsunori; Kusunoki, Soshi; Tabu, Kouichi; Okabe, Hitomi; Yamada, Izumi; Taga, Tetsuya; Matsumoto, Akemi; Makino, Shintaro; Takeda, Satoru; Kato, Kiyoko

    2016-01-01

    The continual proliferation and differentiation of trophoblasts are critical for the maintenance of pregnancy. It is well known that the tissue stem cells are associated with the development of tissues and pathologies. It has been demonstrated that side-population (SP) cells identified by fluorescence-activated cell sorting (FACS) are enriched with stem cells. The SP cells in HTR-8/SVneo cells derived from human primary trophoblast cells were isolated by FACS. HTR-8/SVneo-SP cell cultures generated both SP and non-SP (NSP) subpopulations. In contrast, NSP cell cultures produced NSP cells and failed to produce SP cells. These SP cells showed self-renewal capability by serial colony-forming assay. Microarray expression analysis using a set of HTR-8/SVneo-SP and -NSP cells revealed that SP cells overexpressed several stemness genes including caudal type homeobox2 (CDX2) and bone morphogenic proteins (BMPs), and lymphocyte antigen 6 complex locus D (LY6D) gene was the most highly up-regulated in HTR-8/SVneo-SP cells. LY6D gene reduced its expression in the course of a 7-day cultivation in differentiation medium. SP cells tended to reduce its fraction by treatment of LY6D siRNA indicating that LY6D had potential to maintain cell proliferation of HTR-8/SVneo-SP cells. On ontology analysis, epithelial-mesenchymal transition (EMT) pathway was involved in the up-regulated genes on microarray analysis. HTR-SVneo-SP cells showed enhanced migration. This is the first report that LY6D was important for the maintenance of HTR-8/SVneo-SP cells. EMT was associated with the phenotype of these SP cells.

  6. Multidrug resistance-associated protein 3 (Mrp3/Abcc3/Moat-D) is expressed in the SAE Squalus acanthias shark embryo-derived cell line.

    Science.gov (United States)

    Kobayashi, Hiroshi; Parton, Angela; Czechanski, Anne; Durkin, Christopher; Kong, Chi-Chon; Barnes, David

    2007-01-01

    The multidrug resistance-associated protein 3 (MRP3/Mrp3) is a member of the ATP-binding cassette (ABC) protein family of membrane transporters and related proteins that act on a variety of xenobiotic and anionic molecules to transfer these substrates in an ATP-dependent manner. In recent years, useful comparative information regarding evolutionarily conserved structure and transport functions of these proteins has accrued through the use of primitive marine animals such as cartilaginous fish. Until recently, one missing tool in comparative studies with cartilaginous fish was cell culture. We have derived from the embryo of Squalus acanthias, the spiny dogfish shark, the S. acanthias embryo (SAE) mesenchymal stem cell line. This is the first continuously proliferating cell line from a cartilaginous fish. We identified expression of Mrp3 in this cell line, cloned the molecule, and examined molecular and cellular physiological aspects of the protein. Shark Mrp3 is characterized by three membrane-spanning domains and two nucleotide-binding domains. Multiple alignments with other species showed that the shark Mrp3 amino acid sequence was well conserved. The shark sequence was overall 64% identical to human MRP3, 72% identical to chicken Mrp3, and 71% identical to frog and stickleback Mrp3. Highest identity between shark and human amino acid sequence (82%) was seen in the carboxyl-terminal nucleotide-binding domain of the proteins. Cell culture experiments showed that mRNA for the protein was induced as much as 25-fold by peptide growth factors, fetal bovine serum, and lipid nutritional components, with the largest effect mediated by a combination of lipids including unsaturated and saturated fatty acids, cholesterol, and vitamin E.

  7. Molecular mechanisms of antiproliferative effects induced by Schisandra-derived dibenzocyclooctadiene lignans (+)-deoxyschisandrin and (-)-gomisin N in human tumour cell lines.

    Science.gov (United States)

    Casarin, Elisabetta; Dall'Acqua, Stefano; Smejkal, Karel; Slapetová, Tereza; Innocenti, Gabbriella; Carrara, Maria

    2014-10-01

    A different behavior of the two dibenzocyclooctadiene lignans (+)-deoxyschisandrin (1) and (-)-gomisin N (2), from Schisandra chinensis fruits, was observed against two human tumour cell lines, (2008 and LoVo). These lignans inhibited cell growth in a dose-dependent manner on both cell lines, but inducing different types of cell death. In particular, (+)-deoxyschisandrin (1) caused apoptosis in colon adenocarcinoma cells (LoVo) but not in ovarian adenocarcinoma cells (2008), while (-)-gomisin N (2) induced apoptosis on both the cell lines used. Mitochondrial-mediated pathway was not involved in apoptotic stimuli. Both compounds caused G2/M phase cell growth arrest correlated with tubulin polymerization.

  8. Anti-cancer effects of 2-oxoquinoline derivatives on the HCT116 and LoVo human colon cancer cell lines.

    Science.gov (United States)

    Fang, Feng-Qi; Guo, Hui-Shu; Zhang, Jie; Ban, Li-Ying; Liu, Ji-Wei; Yu, Pei-Yao

    2015-12-01

    The present study demonstrated the anti-tumor effects of the quinoline derivative [5-(3-chloro-oxo-4-phenyl-cyclobutyl)-quinoli-8-yl-oxy] acetic acid hydrazide (CQAH) against colorectal carcinoma. Substantial apoptotic effects of CQAH on HCT116 and LoVo human colon cancer cell lines were observed. Apoptosis was identified based on cell morphological characteristics, including cell shrinkage and chromatin condensation as well as Annexin V/propidium iodide double staining followed by flow cytometric analysis and detection of apoptosis-associated proteins by western blot analysis. CQAH induced caspase-3 and PARP cleavage, reduced the expression of the anti-apoptotic proteins myeloid cell leukemia-1 and B-cell lymphoma (Bcl) extra large protein and elevated the expression of the pro-apoptotic protein Bcl-2 homologous antagonist killer. In addition, pharmacological inhibition of c-Jun N-terminal kinase (JNK), but not extracellular signal-regulated kinase or p38, significantly reduced CQAH-mediated cell death as well as cleavage of caspase-3 and PARP. Co-treatment of CQAH with the commercial chemotherapeutics 5-fluorouracil and camptothecin-11 significantly improved their efficacies. Comparison of the apoptotic effects of CQAH with those of two illustrated structure-activity associations for this compound type, indicating that substitution at position-4 of the azetidine phenyl ring is pivotal for inducing apoptosis. In conclusion, the results of the present study indicated CQAH and its analogues are potent candidate drugs for the treatment of colon carcinoma.

  9. Proteomic investigation of embryonic rat heart-derived H9c2 cell line sheds new light on the molecular phenotype of the popular cell model.

    Science.gov (United States)

    Lenčo, Juraj; Lenčová-Popelová, Olga; Link, Marek; Jirkovská, Anna; Tambor, Vojtěch; Potůčková, Eliška; Stulík, Jiří; Šimůnek, Tomáš; Štěrba, Martin

    2015-12-10

    Due to their cardiac origin, H9c2 cells rank among the most popular cell lines in current cardiovascular research, yet molecular phenotype remains elusive. Hence, in this study we used proteomic approach to describe molecular phenotype of H9c2 cells in their undifferentiated (i.e., most frequently used) state, and its functional response to cardiotoxic drug doxorubicin. Of 1671 proteins identified by iTRAQ IEF/LC-MSMS analysis, only 12 proteins were characteristic for striated muscle cells and none was cardiac phenotype-specific. Targeted LC-SRM and western blot analyses confirmed that undifferentiated H9c2 cells are phenotypically considerably different to both primary neonatal cardiomyocytes and adult myocardium. These cells lack proteins essential for formation of striated muscle myofibrils or they express only minor amounts thereof. They also fail to express many proteins important for metabolism of muscle cells. The challenge with clinically relevant concentrations of doxorubicin did not induce a proteomic signature that has been previously noted in primary cardiomyocytes or adult hearts. Instead, several alterations previously described in other cells of mesodermal origin, such as fibroblasts, were observed (e.g., severe down-regulation of collagen synthesis pathway). In conclusion, the molecular phenotype of H9c2 cells resembles very immature myogenic cells with skeletal muscle commitment upon differentiation and thus, translatability of findings obtained in these cells deserves caution.

  10. Differential growth of U and M type infectious haematopoietic necrosis virus in a rainbow trout–derived cell line, RTG-2

    Science.gov (United States)

    Kurath, Gael; Purcell, Maureen K.; Wargo, Andrew; Park, Jeong Woo; Moon, Chang Hoon

    2010-01-01

    Infectious haematopoietic necrosis virus (IHNV) is one of the most important viral pathogens of salmonids. In rainbow trout, IHNV isolates in the M genogroup are highly pathogenic, while U genogroup isolates are significantly less pathogenic. We show here that, at a multiplicity of infection (MOI) of 1, a representative U type strain yielded 42-fold less infectious virus than an M type strain in the rainbow trout–derived RTG-2 cell line at 24 h post-infection (p.i.). However, at an MOI of 10, there was only fivefold difference in the yield of infectious virus between the U and M strains. Quantification of extracellular viral genomic RNA suggested that the number of virus particles released from cells infected with the U strain at a MOI of 1 was 47-fold lower than from M-infected cells, but U and M virions were equally infectious by particle to infectivity ratios. At an MOI of 1, U strain intracellular viral genome accumulation and transcription were 37- and 12-fold lower, respectively, than those of the M strain at 24 h p.i. Viral nucleocapsid (N) protein accumulation in U strain infections was fivefold lower than in M strain infections. These results suggest that the block in U type strain growth in RTG-2 cells was because of the effects of reduced genome replication and transcription. The reduced growth of the U strain does not seem to be caused by defective genes, because the U and M strains grew equally well in the permissive epithelioma papulosum cyprini cell line at an MOI of 1. This suggests that host-specific factors in RTG-2 cells control the growth of the IHNV U and M strains differently, leading to growth restriction of the U type virus during the RNA synthesis step.

  11. Differential growth of U and M type infectious haematopoietic necrosis virus in a rainbow trout-derived cell line, RTG-2.

    Science.gov (United States)

    Park, J W; Moon, C H; Wargo, A R; Purcell, M K; Kurath, G

    2010-07-01

    Infectious haematopoietic necrosis virus (IHNV) is one of the most important viral pathogens of salmonids. In rainbow trout, IHNV isolates in the M genogroup are highly pathogenic, while U genogroup isolates are significantly less pathogenic. We show here that, at a multiplicity of infection (MOI) of 1, a representative U type strain yielded 42-fold less infectious virus than an M type strain in the rainbow trout-derived RTG-2 cell line at 24 h post-infection (p.i.). However, at an MOI of 10, there was only fivefold difference in the yield of infectious virus between the U and M strains. Quantification of extracellular viral genomic RNA suggested that the number of virus particles released from cells infected with the U strain at a MOI of 1 was 47-fold lower than from M-infected cells, but U and M virions were equally infectious by particle to infectivity ratios. At an MOI of 1, U strain intracellular viral genome accumulation and transcription were 37- and 12-fold lower, respectively, than those of the M strain at 24 h p.i. Viral nucleocapsid (N) protein accumulation in U strain infections was fivefold lower than in M strain infections. These results suggest that the block in U type strain growth in RTG-2 cells was because of the effects of reduced genome replication and transcription. The reduced growth of the U strain does not seem to be caused by defective genes, because the U and M strains grew equally well in the permissive epithelioma papulosum cyprini cell line at an MOI of 1. This suggests that host-specific factors in RTG-2 cells control the growth of the IHNV U and M strains differently, leading to growth restriction of the U type virus during the RNA synthesis step.

  12. Derivation, characterization and differentiation of a new human embryonic stem cell line from a Chinese hatched blastocyst assisted by a non-contact laser system.

    Science.gov (United States)

    Wu, Rongrong; Xu, Chenming; Jin, Fan; Tan, Zhou; Gu, Bin; Chen, Liangbiao; Yao, Xing; Zhang, Ming

    2010-08-01

    Currently worldwide attention has focused on the derivation of human embryonic stem cells (hESCs) for future therapeutic medicine. However, the majority of existing hESCs are directly or indirectly exposed to non-human materials during their derivation and/or propagation, which greatly restrict their therapeutic potential. Besides the efforts to improve culture systems, the derivation procedure, especially blastocyst manipulation, needs to be optimized. We adopted a non-contact laser-assisted hatching system in combination with sequential culture process to obtain hatched blastocysts as materials for hESC derivation, and derived a hESC line ZJUhES-1 of a Chinese population without exposure to any non-human materials during blastocyst manipulation. ZJUhES-1 satisfies the criteria of pluripotent hESCs: typically morphological characteristics; the expression of alkaline phosphatase, human telomerase reverse transcriptase and multiple hESC-specific markers including SSEA-3, SSEA-4, TRA-1-60, TRA-1-81, OCT-4, Nanog, Rex-1, Sox-2, UTF-1, Connexins 43 and 45, TERF-1 and TERF-2, Glut-1, BCRP-1/ABCG-2, GDF3, LIN28, FGF4, Thy-1, Cripto1/TDGF1, AC133 as well as SMAD1/2/3/5; extended proliferative capacity; maintenance of a stable male karyotype after long-term cultivation; and robust multiple-lineage developmental potentials both in vivo and in vitro. Moreover, ZJUhES-1 has distinct identity revealed from DNA fingerprinting. Our xeno-free blastocyst manipulation procedure may promote the progression toward clinical-grade hESC derivation.

  13. Study of orexins signal transduction pathways in rat olfactory mucosa and in olfactory sensory neurons-derived cell line Odora: multiple orexin signalling pathways.

    Science.gov (United States)

    Gorojankina, Tatiana; Grébert, Denise; Salesse, Roland; Tanfin, Zahra; Caillol, Monique

    2007-06-07

    Orexins A and B (OxA and OxB) are multifunctional neuropeptides implicated in the regulation of energy metabolism, wakefulness but also in a broad range of motivated behaviours. They signal through two G-protein-coupled receptors: orexin receptor 1 and 2 (Ox1R and Ox2R). The orexins and their receptors are present at all levels of the rat olfactory system: epithelium, bulb, piriform cortex but their signalling mechanisms remain unknown. We have studied orexins signal transduction pathways in the rat olfactory mucosa (OM) and in the Odora cell line derived from olfactory sensory neurons and heterologously expressing Ox1R or Ox2R. We have demonstrated by western blot and RT-PCR that multiple components of adenylyl cyclase (AC) and phospholipase C (PLC) signalling pathways were identical in OM and Odora cells. OxA and OxB induced a weak increase in IP3 in OM; they induced a significant rise in cAMP and IP3 in Odora transfected cells, suggesting the activation of AC and PLC pathways. Both OxA and OxB induced intracellular calcium elevation and transient activation of MAP kinases (ERK42/44) in Odora/Ox1R and Odora/Ox2R cells. These results suggest the existence of multiple orexins signalling pathways in Odora cells and probably in OM, corresponding to different possible roles of these peptides.

  14. Aurora kinases are expressed in medullary thyroid carcinoma (MTC and their inhibition suppresses in vitro growth and tumorigenicity of the MTC derived cell line TT

    Directory of Open Access Journals (Sweden)

    Morrone Stefania

    2011-09-01

    Full Text Available Abstract Background The Aurora kinase family members, Aurora-A, -B and -C, are involved in the regulation of mitosis, and alterations in their expression are associated with cell malignant transformation. To date no information on the expression of these proteins in medullary thyroid carcinoma (MTC are available. We here investigated the expression of the Aurora kinases in human MTC tissues and their potential use as therapeutic targets. Methods The expression of the Aurora kinases in 26 MTC tissues at different TNM stages was analyzed at the mRNA level by quantitative RT-PCR. We then evaluated the effects of the Aurora kinase inhibitor MK-0457 on the MTC derived TT cell line proliferation, apoptosis, soft agar colony formation, cell cycle and ploidy. Results The results showed the absence of correlation between tumor tissue levels of any Aurora kinase and tumor stage indicating the lack of prognostic value for these proteins. Treatment with MK-0457 inhibited TT cell proliferation in a time- and dose-dependent manner with IC50 = 49.8 ± 6.6 nM, as well as Aurora kinases phosphorylation of substrates relevant to the mitotic progression. Time-lapse experiments demonstrated that MK-0457-treated cells entered mitosis but were unable to complete it. Cytofluorimetric analysis confirmed that MK-0457 induced accumulation of cells with ≥ 4N DNA content without inducing apoptosis. Finally, MK-0457 prevented the capability of the TT cells to form colonies in soft agar. Conclusions We demonstrate that Aurora kinases inhibition hampered growth and tumorigenicity of TT cells, suggesting its potential therapeutic value for MTC treatment.

  15. In vivo toxicity study of N-1-sulfonylcytosine derivatives and their mechanisms of action in cervical carcinoma cell line.

    Science.gov (United States)

    Kašnar-Šamprec, Jelena; Ratkaj, Ivana; Mišković, Katarina; Pavlak, Marina; Baus-Lončar, Mirela; Kraljević Pavelić, Sandra; Glavaš-Obrovac, Ljubica; Žinić, Biserka

    2012-06-01

    New N-1-sulfonylpyrimidines showed potent growth inhibitory activity against human and mouse tumour cells of different origin. 1-(p-toluenesulfonyl)cytosine (TsC) and 1-(p-toluenesulfonyl)cytosine hydrochloride (TsC × HCl) inhibited the growth of human cervical carcinoma cells (HeLa), and had no significant cytotoxic effects on normal human foreskin fibroblasts (BJ). TsC and TsC × HCl interfered with the HeLa cell cycle progression bringing about the accumulation of G1 phase cells and the induction of apoptosis. Antiproliferative effects of TsC and TsC × HCl were additionally confirmed by investigating de novo synthesis of RNA, DNA and proteins in HeLa cells. Monitoring gene expression using DNA Chip Analysis and quantitative PCR showed that TsC × HCl affects the expression of several cell-cycle regulating genes implying that cell cycle arrest and DNA damage-induced apoptosis might account for the observed cellular effects. In vivo experiments revealed low toxicity of TsC × HCl, as demonstrated by unaltered haematological and metabolic blood parameters. In conclusion, potent antitumour efficacy and low toxicity of new compounds in comparison with the common chemotherapy drug 5-FU make them promising anticancer agents. Additional pre-clinical and clinical studies are warranted to illuminate the mode of action of these newly synthesized compounds in vivo, which would lay the groundwork for their further optimization.

  16. Nerve injury induces glial cell line-derived neurotrophic factor (GDNF) expression in Schwann cells through purinergic signaling and the PKC-PKD pathway.

    Science.gov (United States)

    Xu, Pin; Rosen, Kenneth M; Hedstrom, Kristian; Rey, Osvaldo; Guha, Sushovan; Hart, Courtney; Corfas, Gabriel

    2013-07-01

    Upon peripheral nerve injury, specific molecular events, including increases in the expression of selected neurotrophic factors, are initiated to prepare the tissue for regeneration. However, the mechanisms underlying these events and the nature of the cells involved are poorly understood. We used the injury-induced upregulation of glial cell-derived neurotrophic factor (GDNF) expression as a tool to gain insights into these processes. We found that both myelinating and nonmyelinating Schwann cells are responsible for the dramatic increase in GDNF expression after injury. We also demonstrate that the GDNF upregulation is mediated by a signaling cascade involving activation of Schwann cell purinergic receptors, followed by protein kinase C signaling which activates protein kinase D (PKD), which leads to increased GDNF transcription. Given the potent effects of GDNF on survival and repair of injured peripheral neurons, we propose that targeting these pathways may yield therapeutic tools to treat peripheral nerve injury and neuropathies.

  17. A combination of chondroitinase ABC, glial cell line-derived neurotrophic factor, and Nogo A antibody delayed-release microspheres for the treatment of spinal cord injury

    Institute of Scientific and Technical Information of China (English)

    Yu Zhang; Yueming Song

    2011-01-01

    The purpose of this study was to evaluate the effect of poly(lactide-co-glycolic acid) delayed-release microspheres, which were prepared using glial cell line-derived neurotrophic factor (GDNF), on the delayed-release, controllability, and protection of GDNF activity. The present study is the first to combine chondroitinase ABC, GDNF, and Nogo A antibody delayed-release microspheres for the treatment of spinal cord injury. Results show that the combined therapy of chondroitinase ABC,GDNF, and Nogo A antibody microspheres can increase the immunoreaction of neurofilament 200in the injured spinal cord, and this therapeutic effect was better than chondroitinase ABC, GDNF, or Nogo A antibody microspheres administered singularly.

  18. Glial cell line-derived neurotrophic factor up-regulates GTP-cyclohydrolase I activity and tetrahydrobiopterin levels in primary dopaminergic neurones

    DEFF Research Database (Denmark)

    Bauer, M; Suppmann, S; Meyer, M;

    2002-01-01

    Glial cell line-derived neurotrophic factor (GDNF) protects dopaminergic neurones against toxic and physical damage. In addition, GDNF promotes differentiation and structural integrity of dopaminergic neurones. Here we show that GDNF can support the function of primary dopaminergic neurones...... by triggering activation of GTP-cyclohydrolase I (GTPCH I), a key enzyme in catecholamine biosynthesis. GDNF stimulation of primary dopaminergic neurones expressing both tyrosine 3-monooxygenase and GTPCH I resulted in a dose-dependent doubling of GTPCH I activity, and a concomitant increase...... in tetrahydrobiopterin levels whereas tyrosine 3-monooxygenase activity was not altered. Actinomycin D, asan inhibitor of de novo biosynthesis, abolished any GDNF-mediated up-regulation of GTPCH I activity. However, GTPCH I mRNA levels in primary dopaminergic neurones were not altered by GDNF treatment, suggesting...

  19. Combination effects of epidermal growth factor and glial cell line-derived neurotrophic factor on the in vitro developmental potential of porcine oocytes

    DEFF Research Database (Denmark)

    Valleh, Mehdi Vafaye; Rasmussen, Mikkel Aabech; Hyttel, Poul

    2016-01-01

    of improving this issue, the single and combined effects of epidermal growth factor (EGF) and glial cell line-derived neurotrophic factor (GDNF) on oocyte developmental competence were investigated. Porcine cumulus–oocyte cell complexes (COCs) were matured in serum-free medium supplemented with EGF (0, 10...... or 50 ng/ml) and/or GDNF (0, 10 or 50 ng/ml) for 44 h, and subsequently subjected to fertilization and cultured for 7 days in vitro. The in vitro-formed blastocysts derived from selected growth factor groups (i.e. EGF = 50 ng/ml; GDNF = 50 ng/ml; EGF = 50 ng/ml + GDNF = 50 ng/ml) were also used for m......RNA expression analysis, or were subjected to Hoechst staining. The results showed that the addition of EGF and/or GDNF during oocyte maturation dose dependently enhanced oocyte developmental competence. Compared with the embryos obtained from control or single growth factor-treated oocytes, treatment...

  20. CLO : The cell line ontology

    NARCIS (Netherlands)

    Sarntivijai, Sirarat; Lin, Yu; Xiang, Zuoshuang; Meehan, Terrence F.; Diehl, Alexander D.; Vempati, Uma D.; Schuerer, Stephan C.; Pang, Chao; Malone, James; Parkinson, Helen; Liu, Yue; Takatsuki, Terue; Saijo, Kaoru; Masuya, Hiroshi; Nakamura, Yukio; Brush, Matthew H.; Haendel, Melissa A.; Zheng, Jie; Stoeckert, Christian J.; Peters, Bjoern; Mungall, Christopher J.; Carey, Thomas E.; States, David J.; Athey, Brian D.; He, Yongqun

    2014-01-01

    Background: Cell lines have been widely used in biomedical research. The community-based Cell Line Ontology (CLO) is a member of the OBO Foundry library that covers the domain of cell lines. Since its publication two years ago, significant updates have been made, including new groups joining the CLO

  1. Effects of hypoxia on expression of a panel of stem cell and chemosensitivity markers in glioblastoma cell line-derived spheroids

    DEFF Research Database (Denmark)

    Kolenda, Jesper; Jensen, Stine Skov; Aaberg-Jessen, Charlotte;

    immunohistochemical panel included hypoxia (HIF-1α, HIF-2α), proliferation (Ki-67) and stem cell (CD133, nestin, podoplanin, Bmi-1, Sox-2) markers as well as markers related to chemosensitivity (MGMT, MDR-1, TIMP-1, Lamp-1). Since spheroids derived in hypoxia were smaller than in normoxia, a set of experiments...... for podoplanin, nestin and TIMP-1 as well as for Ki-67. Hif-2α, Sox-2, MGMT and MDR-1 were not detectable in normoxic and hypoxic U87 spheroids. In conclusion, the expression of tumor stem cell and chemosensitivity markers seems to depend on the oxygen tension suggesting that future development of therapeutic...

  2. Growth and Development Symposium: Development, characterization, and use of a porcine epiblast-derived liver stem cell line: ARS-PICM-19.

    Science.gov (United States)

    Talbot, N C; Caperna, T J; Garrett, W M

    2013-01-01

    Totipotent embryonic stem cell lines have not been established from ungulates; however, we have developed a somatic stem cell line from the in vitro culture of pig epiblast cells. The cell line, ARS-PICM-19, was isolated via colony cloning and was found to spontaneously differentiate into hepatic parenchymal epithelial cell types, namely hepatocytes and bile duct cells. Hepatocytes form as monolayers and bile duct cells as 3-dimensional bile ductules. Transmission electron microscopy revealed that the ductules were composed of radially arranged, monociliated cells with their cilia projecting into the lumen of the ductule whereas hepatocytes were arranged in monolayers with lateral canalicular structures containing numerous microvilli and connected by tight junctions and desmosomes. Extensive Golgi and rough endoplasmic reticulum networks were also present, indicative of active protein synthesis. Analysis of conditioned medium by 2-dimensional electrophoresis and mass spectrometry indicated a spectrum of serum-protein secretion by the hepatocytes. The PICM-19 cell line maintains a range of inducible cytochrome P450 activities and, most notably, is the only nontransformed cell line that synthesizes urea in response to ammonia challenge. The PICM-19 cell line has been used for several biomedical- and agricultural-related purposes, such as the in vitro replication of hepatitis E virus, a zoonotic virus of pigs, and a spaceflight experiment to evaluate somatic stem cell differentiation and liver cell function in microgravity. The cell line was also evaluated as a platform for toxicity testing and has been used in a commercial artificial liver rescue device bioreactor. A PICM-19 subclone, PICM-19H, which only differentiates into hepatocytes, was isolated and methods are currently under development to grow PICM-19 cells without feeder cells. Feeder-cell-independent growth will facilitate the study of mesenchymal-parenchymal interactions that influence the divergent

  3. Generation of an isogenic, gene-corrected control cell line of the spinocerebellar ataxia type 2 patient-derived iPSC line H196

    DEFF Research Database (Denmark)

    Marthaler, Adele G; Schmid, Benjamin; Tubsuwan, Alisa;

    2016-01-01

    Spinocerebellar ataxia type 2 (SCA2) is a neurodegenerative disease primarily affecting the cerebellum. Very little is known about the molecular mechanisms underlying the disease and, to date, no cure or treatment is available. We have successfully generated bona fide induced pluripotent stem cell...

  4. Generation of an isogenic, gene-corrected control cell line of the spinocerebellar ataxia type 2 patient-derived iPSC line H271

    DEFF Research Database (Denmark)

    Marthaler, Adele G; Schmid, Benjamin; Tubsuwan, Alisa;

    2016-01-01

    Spinocerebellar ataxia type 2 (SCA2) is a neurodegenerative disease primarily affecting the cerebellum. Very little is known about the molecular mechanisms underlying the disease and, to date, no cure or treatment is available. We have successfully generated bona fide induced pluripotent stem cell...

  5. Generation of an isogenic, gene-corrected control cell line of the spinocerebellar ataxia type 2 patient-derived iPSC line H266

    DEFF Research Database (Denmark)

    Marthaler, Adele G; Tubsuwan, Alisa; Schmid, Benjamin;

    2016-01-01

    Spinocerebellar ataxia type 2 (SCA2) is a neurodegenerative disease primarily affecting the cerebellum. Very little is known about the molecular mechanisms underlying the disease and, to date, no cure or treatment is available. We have successfully generated bona fide induced pluripotent stem cell...

  6. The roles of glial cell line-derived neurotrophic factor, brain-derived neurotrophic factor and nerve growth factor during the final stage of folliculogenesis: a focus on oocyte maturation.

    Science.gov (United States)

    Linher-Melville, Katja; Li, Julang

    2013-02-01

    Neurotrophic factors were first identified to promote the growth, survival or differentiation of neurons and have also been associated with the early stages of ovarian folliculogenesis. More recently, their effects on the final stage of follicular development, including oocyte maturation and early embryonic development, have been reported. Glial cell line-derived neurotrophic factor (GDNF), brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF), which are expressed in numerous peripheral tissues outside of the CNS, most notably the ovary, are now known to stimulate oocyte maturation in various species, also enhancing developmental competence. The mechanisms that underlie their actions in antral follicles, as well as the targets ultimately controlled by these factors, are beginning to emerge. GDNF, BDNF and NGF, alone or in combination, could be added to the media currently utilized for in vitro oocyte maturation, thereby potentially increasing the production and/or quality of early embryos.

  7. Generation of spinocerebellar ataxia type 3 patient-derived induced pluripotent stem cell line SCA3.B11

    DEFF Research Database (Denmark)

    Hansen, Susanne Kofoed; Borland, Helena; Hasholt, Lis Frydenreich

    2016-01-01

    Spinocerebellar ataxia type 3 (SCA3) is a dominantly inherited neurodegenerative disease caused by an expansion of the CAG-repeat in ATXN3. In this study, induced pluripotent stem cells (iPSCs) were generated from SCA3 patient dermal fibroblasts by electroporation with episomal plasmids encoding L...

  8. Generation of spinocerebellar ataxia type 3 patient-derived induced pluripotent stem cell line SCA3.A11

    DEFF Research Database (Denmark)

    Hansen, Susanne Kofoed; Borland, Helena; Hasholt, Lis Frydenreich

    2016-01-01

    Spinocerebellar ataxia type 3 (SCA3) is a dominantly inherited neurodegenerative disease caused by a CAG-repeat expanding mutation in ATXN3. We generated induced pluripotent stem cells (iPSCs) from a SCA3 patient by electroporation of dermal fibroblasts with episomal plasmids encoding L-MYC, LIN28...

  9. Opposite Effects of Two-Derived Antioxidants from Physalis pubescens L. on Hepatocellular Carcinoma Cell Line Malhavu.

    Science.gov (United States)

    Wang, Jing-Jing; Yu, Yang; Zhang, Bai-Qing; Du, Yu-Hui; MacArthur, Roseline L; Dong, Ping; Su, Rong-Jian; Feng, Xu-Qiao

    Physalis pubescens L. (P. pubescens) is an edible plant used in folk medicine in China. There is traditional, but not scientific, evidence for the anti-tumour effects of P. pubescens. This study aimed to identify whether, or not, antioxidants rich in phenols and flavonoids from fruits and calyxes of P. pubescens can be the candidates for further development of an anti-hepatoma fraction, and if such biological effects coupled with reactive oxygen species (ROS) changes, can provide a direction for subsequent biological action. The effects of calyx-origin (or fruit-origin) total phenol and flavonoid (CTPF or FTPF) from P. pubescens on Malhavu cell viability were evaluated by using a counting-kit-8 (CCK-8) method. Morphological characterisation of cells was undertaken and the structures were photographed (200 × magnification) using Hoechst 3348 staining after exposure to different concentrations of CTPF or FTPF. Induced-apoptosis activity was determined using flow cytometry (FC) after Annexin VFITC/ PI staining. The corresponding ROS changes in Malhavu cells were observed and quantified by the uploading of 2', 7'-dichlorofluorescin diacetate (DCFH-DA). Anti-oxidation was evaluated by a cellular oxidation-stress model and chemical assessments for DPPH, hydroxyl radial, super-oxide radicals, and reducing power. Result shows that CTPF led to significant anti-proliferation in a time- and dosedependent manner. However, FTPF promoted cell viability at 100-1000 μg/mL with a dose-response manner in 24 h. With the extension of exposure time to 48 h, the cell viability did not increase with the growth of FTPF. Morphological characterisation and FC assay both demonstrated that CTPF, and not FTPF possessed induced-apoptotic activity. CTPF potentially induced cell apoptosis by promoting oxidative stress. FTPF indicated pro-oxidation at a concentration of 10 μg/mL and anti-oxidation capabilities at higher concentrations. ROS scavenging assay by oxidation-stress model indicated

  10. Efficient Transduction of Feline Neural Progenitor Cells for Delivery of Glial Cell Line-Derived Neurotrophic Factor Using a Feline Immunodeficiency Virus-Based Lentiviral Construct

    Directory of Open Access Journals (Sweden)

    X. Joann You

    2011-01-01

    Full Text Available Work has shown that stem cell transplantation can rescue or replace neurons in models of retinal degenerative disease. Neural progenitor cells (NPCs modified to overexpress neurotrophic factors are one means of providing sustained delivery of therapeutic gene products in vivo. To develop a nonrodent animal model of this therapeutic strategy, we previously derived NPCs from the fetal cat brain (cNPCs. Here we use bicistronic feline lentiviral vectors to transduce cNPCs with glial cell-derived neurotrophic factor (GDNF together with a GFP reporter gene. Transduction efficacy is assessed, together with transgene expression level and stability during induction of cellular differentiation, together with the influence of GDNF transduction on growth and gene expression profile. We show that GDNF overexpressing cNPCs expand in vitro, coexpress GFP, and secrete high levels of GDNF protein—before and after differentiation—all qualities advantageous for use as a cell-based approach in feline models of neural degenerative disease.

  11. Development of an OP9 derived cell line as a robust model to rapidly study adipocyte differentiation.

    Directory of Open Access Journals (Sweden)

    Jacqueline M Lane

    Full Text Available One hallmark of obesity is adipocyte hypertrophy and hyperplasia. To gain novel insights into adipose biology and therapeutics, there is a pressing need for a robust, rapid, and informative cell model of adipocyte differentiation for potential RNAi and drug screens. Current models are prohibitive for drug and RNAi screens due to a slow differentiation time course and resistance to transfection. We asked if we could create a rapid, robust model of adipogenesis to potentially enable rapid functional and obesity therapeutic screens. We generated the clonal population OP9-K, which differentiates rapidly and reproducibly, and displays classic adipocyte morphology: rounded cell shape, lipid accumulation, and coalescence of lipids into a large droplet. We further validate the OP9-K cells as an adipocyte model system by microarray analysis of the differentiating transcriptome. OP9-K differentiates via known adipogenic pathways, involving the transcriptional activation and repression of common adipose markers Plin1, Gata2, C/Ebpα and C/Ebpβ and biological pathways, such as lipid metabolism, PPARγ signaling, and osteogenesis. We implemented a method to quantify lipid accumulation using automated microscopy and tested the ability of our model to detect alterations in lipid accumulation by reducing levels of the known master adipogenic regulator Pparγ. We further utilized our model to query the effects of a novel obesity therapeutic target, the transcription factor SPI1. We determine that reduction in levels of Spi1 leads to an increase in lipid accumulation. We demonstrate rapid, robust differentiation and efficient transfectability of the OP9-K cell model of adipogenesis. Together with our microscopy based lipid accumulation assay, adipogenesis assays can be achieved in just four days' time. The results of this study can contribute to the development of rapid screens with the potential to deepen our understanding of adipose biology and efficiently

  12. Establishment and characterization of two human breast carcinoma cell lines by spontaneous immortalization: Discordance between Estrogen, Progesterone and HER2/neu receptors of breast carcinoma tissues with derived cell lines

    Directory of Open Access Journals (Sweden)

    Kamalidehghan Behnam

    2012-10-01

    Full Text Available Abstract Background Breast cancer is one of the most common cancers among women throughout the world. Therefore, established cell lines are widely used as in vitro experimental models in cancer research. Methods Two continuous human breast cell lines, designated MBC1 and MBC2, were successfully established and characterized from invasive ductal breast carcinoma tissues of Malaysian patients. MBC1 and MBC2 have been characterized in terms of morphology analysis, population doubling time, clonogenic formation, wound healing assay, invasion assay, cell cycle, DNA profiling, fluorescence immunocytochemistry, Western blotting and karyotyping. Results MBC1 and MBC2 exhibited adherent monolayer epithelial morphology at a passage number of 150. Receptor status of MBC1 and MBC2 show (ER+, PR+, HER2+ and (ER+, PR-, HER2+, respectively. These results are in discordance with histopathological studies of the tumoral tissues, which were triple negative and (ER-, PR-, HER2+ for MBC1 and MBC2, respectively. Both cell lines were capable of growing in soft agar culture, which suggests their metastatic potential. The MBC1 and MBC2 metaphase spreads showed an abnormal karyotype, including hyperdiploidy and complex rearrangements with modes of 52–58 chromosomes per cell. Conclusions Loss or gain in secondary properties, deregulation and specific genetic changes possibly conferred receptor changes during the culturing of tumoral cells. Thus, we hypothesize that, among heterogenous tumoral cells, only a small minority of ER+/PR+/HER2+ and ER+/PR-/HER2+ cells with lower energy metabolism might survive and adjust easily to in vitro conditions. These cell lines will pave the way for new perspectives in genetic and biological investigations, drug resistance and chemotherapy studies, and would serve as prototype models in Malaysian breast carcinogenesis investigations.

  13. Effect of Metformin on Viability, Morphology, and Ultrastructure of Mouse Bone Marrow-Derived Multipotent Mesenchymal Stromal Cells and Balb/3T3 Embryonic Fibroblast Cell Line

    Directory of Open Access Journals (Sweden)

    Agnieszka Śmieszek

    2015-01-01

    Full Text Available Metformin, a popular drug used to treat diabetes, has recently gained attention as a potentially useful therapeutic agent for treating cancer. In our research metformin was added to in vitro cultures of bone marrow-derived multipotent mesenchymal stromal cells (BMSCs and Balb/3T3 fibroblast at concentration of 1 mM, 5 mM, and 10 mM. Obtained results indicated that metformin negatively affected proliferation activity of investigated cells. The drug triggered the formation of autophagosomes and apoptotic bodies in all tested cultures. Additionally, we focused on determination of expression of genes involved in insulin-like growth factor 2 (IGF2 signaling pathway. The most striking finding was that the mRNA level of IGF2 was constant in both BMSCs and Balb/3T3. Further, the analysis of IGF2 concentration in cell supernatants showed that it decreased in BMSC cultures after 5 and 10 mM metformin treatments. In case of Balb/3T3 the concentration of IGF2 in culture supernatants decreased after 1 and 5 mM and increased after 10 mM of metformin. Our results suggest that metformin influences the cytophysiology of somatic cells in a dose- and time-dependent manner causing inhibition of proliferation and abnormalities of their morphology and ultrastructure.

  14. Inhibition of Mevalonate Pathway and Synthesis of the Storage Lipids in Human Liver-Derived and Non-liver Cell Lines by Lippia alba Essential Oils.

    Science.gov (United States)

    Montero-Villegas, Sandra; Polo, Mónica; Galle, Marianela; Rodenak-Kladniew, Boris; Castro, María; Ves-Losada, Ana; Crespo, Rosana; García de Bravo, Margarita

    2017-01-01

    The essential oils (EOs) of Lippia alba, an herb extensively used as a folk medicine in Latin America, are today promoted as an effective means of eliminating problems caused by hyperlipemia. We hypothesized that L.alba EOs inhibited cholesterol and triacylglycerols synthesis and decreased the intracellular depots of those lipids (lipid droplets), mechanisms involving the induction of a hypolipidemic response. Our aim was, therefore, to evaluate the hypolipogenic capability of the EOs of four L. alba chemotypes on liver-derived (HepG2) and non-liver (A549) human cell lines and to identify the potential biochemical targets of those chemotypes, particularly within the mevalonate pathway (MP). [(14)C]Acetate was used as radioactive precursor for assays. Lipid analyses were performed by thin-layer and capillary gas chromatography, lipid droplets analyzed by fluorescence microscopy, and HMGCR levels determined by Western blot. In both cell lines, all four chemotypes exerted hypocholesterogenic effects within a concentration range of 3.2-32 µg/mL. Nonsaponifiable lipids manifested a decrease in incorporation of [(14)C]acetate into squalene, lanosterol, lathosterol, and cholesterol, but not into ubiquinone, thus suggesting an inhibition of enzymes in the MP downstream from farnesyl pyrophosphate. The tagetenone chemotype, the most efficacious hypocholesterogenic L. alba EO, lowered HMGCR protein levels; inhibited triacylglycerols, cholesteryl esters, and phospholipids synthesis; and diminished lipid droplets in size and volume. These results revealed that L. alba EOs inhibited different lipogenic pathways and such lipid-lowering effects could prove essential to prevent cardiovascular diseases.

  15. Glial cell line-derived neurotrophic factor protects against high-fat diet-induced hepatic steatosis by suppressing hepatic PPAR-γ expression.

    Science.gov (United States)

    Mwangi, Simon Musyoka; Peng, Sophia; Nezami, Behtash Ghazi; Thorn, Natalie; Farris, Alton B; Jain, Sanjay; Laroui, Hamed; Merlin, Didier; Anania, Frank; Srinivasan, Shanthi

    2016-01-15

    Glial cell line-derived neurotrophic factor (GDNF) protects against high-fat diet (HFD)-induced hepatic steatosis in mice, however, the mechanisms involved are not known. In this study we investigated the effects of GDNF overexpression and nanoparticle delivery of GDNF in mice on hepatic steatosis and fibrosis and the expression of genes involved in the regulation of hepatic lipid uptake and de novo lipogenesis. Transgenic overexpression of GDNF in liver and other metabolically active tissues was protective against HFD-induced hepatic steatosis. Mice overexpressing GDNF had significantly reduced P62/sequestosome 1 protein levels suggestive of accelerated autophagic clearance. They also had significantly reduced peroxisome proliferator-activated receptor-γ (PPAR-γ) and CD36 gene expression and protein levels, and lower expression of mRNA coding for enzymes involved in de novo lipogenesis. GDNF-loaded nanoparticles were protective against short-term HFD-induced hepatic steatosis and attenuated liver fibrosis in mice with long-standing HFD-induced hepatic steatosis. They also suppressed the liver expression of steatosis-associated genes. In vitro, GDNF suppressed triglyceride accumulation in Hep G2 cells through enhanced p38 mitogen-activated protein kinase-dependent signaling and inhibition of PPAR-γ gene promoter activity. These results show that GDNF acts directly in the liver to protect against HFD-induced cellular stress and that GDNF may have a role in the treatment of nonalcoholic fatty liver disease.

  16. Glial Cell Line-Derived Neurotrophic Factor Family Members Reduce Microglial Activation via Inhibiting p38MAPKs-Mediated Inflammatory Responses

    Directory of Open Access Journals (Sweden)

    Uta Rickert

    2014-01-01

    Full Text Available Previous studies have shown that glial cell line-derived neurotrophic factor (GDNF family ligands (GFL are potent survival factors for dopaminergic neurons and motoneurons with therapeutic potential for Parkinson’s disease. However, little is known about direct influences of the GFL on microglia function, which are known to express part of the GDNF receptor system. Using RT-PCR and immunohistochemistrym we investigated the expression of the GDNF family receptor alpha 1 (GFR alpha and the coreceptor transmembrane receptor tyrosine kinase (RET in rat microglia in vitro as well as the effect of GFL on the expression of proinflammatory molecules in LPS activated microglia. We could show that GFL are able to regulate microglia functions and suggest that part of the well known neuroprotective action may be related to the suppression of microglial activation. We further elucidated the functional significance and pathophysiological implications of these findings and demonstrate that microglia are target cells of members of the GFL (GDNF and the structurally related neurotrophic factors neurturin (NRTN, artemin (ARTN, and persephin (PSPN.

  17. In Vivo Rescue of a Silent tax-Deficient Bovine Leukemia Virus from a Tumor-Derived Ovine B-Cell Line by Recombination with a Retrovirally Transduced Wild-Type tax Gene

    Science.gov (United States)

    Van Den Broeke, Anne; Bagnis, Claude; Ciesiolka, Malgorzata; Cleuter, Yvette; Gelderblom, Hans; Kerkhofs, Pierre; Griebel, Philip; Mannoni, Patrice; Burny, Arsene

    1999-01-01

    The lack of bovine leukemia virus (BLV) expression is a consistent finding in freshly isolated ovine tumor cells and in the B-cell lines derived from these tumors. In order to gain further insight into the mechanisms of BLV silencing in these tumors, we have used the YR2 B-cell line, which was derived from the leukemic cells of a BLV-infected sheep. This cell line contains a single, monoclonally integrated, silent provirus, which cannot be reactivated either by stimulation in vitro or by in vivo injection of the tumor cells or cloned proviral DNA in sheep. Sequence analysis of the tax gene from the YR2 cell line identified two G-to-A transitions (G7924 to A7924 and G8149 to A8149) that result in E-to-K amino acid changes at positions 228 and 303 in the Tax protein. Following retroviral vector-mediated transfer of a wild-type tax gene into YR2 cells, we showed that BLV mRNA, viral proteins, and virions were produced, demonstrating that the cellular factors required for virus expression were present in the original YR2 cell line. Injection of this transduced YR2 cell line in sheep led to the rescue of replication-competent BLV proviruses. The integrated competent proviruses exhibited unique chimeric tax genes, which arose from homologous recombination between the transduced wild-type tax and the YR2-derived tax sequences. Furthermore, in one of these functional recombinant proviruses, only the A8149-to-G8149 reversion was present, providing clear evidence that the defect underlying the silent phenotype in YR2 cells results from a single C-terminal E303-to-K303 amino acid substitution in the BLV Tax protein. Our observations suggest that a single strategically located mutation in tax provides a mechanism for BLV inactivation in B-cell tumors. PMID:9882306

  18. Two epithelial tumor cell lines (HNE-1 and HONE-1) latently infected with Epstein-Barr virus that were derived from nasopharyngeal carcinomas

    Energy Technology Data Exchange (ETDEWEB)

    Glaser, R.; Zhang, Haizhang (Ohio State Univ. Medical Center, Columbus (USA)); Yao, Kaitai; Zhu, Hecheng; Wang, Fuxi; Li, Guiyuan; Wen, Dongseng; Li, Yingping (Hunan Medical Univ., Changsha (China))

    1989-12-01

    Two epithelia tumor cell lines were established from biopsy specimens of nasopharyngeal carcinomas (NPC). The specimens were taken from poorly differentiated squamous cell carcinomas of the nasopharynx. The tissues were prepared for cell culture and eventually two continuous epithelia cell lines were obtained and designated HONE-1 and HNE-1. Light and electron microscopic examination of these two cell lines demonstrated cells with an epithelial morphology including the presence of desmosomes. It was found that early-passage uncloned HNE-1 cells (passage 23) could be superinfected with B95-8 and NPC-EBV isolates as demonstrated by the induction of Epstein-Barr virus (EBV)-specific early antigen(s) in a small percentage of the cells; HONE-1 cells could also be superinfected with EBV. Southern blot analysis detected EBV DNA in samples from uncloned HNE-1 cells at passages 12, 17, 21, 27, and 35. However, by passage 45, EBV DNA could no longer be detected in HNE-1 cells by Southern blot analysis. The EBV genome was detected in parental HONE-1 cells at subculture 9 and in clone 40 cells up to passage 40 thus far. The data suggest that EBV genome-positive HNE-1 and HONE-1 cells were lost as the cells were cultivated in vitro and that cloning the cells at an early passage level may be critical in maintaining EBV genome-positive epithelial NPC cells. These EBV genome-positive epithelia NPC cell lines will be useful for studying the association of EBV and NPC.

  19. Lipid Rafts Are Physiologic Membrane Microdomains Necessary for the Morphogenic and Developmental Functions of Glial Cell Line-Derived Neurotrophic Factor In Vivo.

    Science.gov (United States)

    Tsui, Cynthia C; Gabreski, Nicole A; Hein, Sarah J; Pierchala, Brian A

    2015-09-23

    Glial cell line-derived neurotrophic factor (GDNF) promotes PNS development and kidney morphogenesis via a receptor complex consisting of the glycerophosphatidylinositol (GPI)-anchored, ligand binding receptor GDNF family receptor α1 (GFRα1) and the receptor tyrosine kinase Ret. Although Ret signal transduction in vitro is augmented by translocation into lipid rafts via GFRα1, the existence and importance of lipid rafts in GDNF-Ret signaling under physiologic conditions is unresolved. A knock-in mouse was produced that replaced GFRα1 with GFRα1-TM, which contains a transmembrane (TM) domain instead of the GPI anchor. GFRα1-TM still binds GDNF and promotes Ret activation but does not translocate into rafts. In Gfrα1(TM/TM) mice, GFRα1-TM is expressed, trafficked, and processed at levels identical to GFRα1. Although Gfrα1(+/TM) mice are viable, Gfrα1(TM/TM) mice display bilateral renal agenesis, lack enteric neurons in the intestines, and have motor axon guidance deficits, similar to Gfrα1(-/-) mice. Therefore, the recruitment of Ret into lipid rafts by GFRα1 is required for the physiologic functions of GDNF in vertebrates. Significance statement: Membrane microdomains known as lipid rafts have been proposed to be unique subdomains in the plasma membrane that are critical for the signaling functions of multiple receptor complexes. Their existence and physiologic relevance has been debated. Based on in vitro studies, lipid rafts have been reported to be necessary for the function of the Glial cell line-derived neurotrophic factor (GDNF) family of neurotrophic factors. The receptor for GDNF comprises the lipid raft-resident, glycerophosphatidylinositol-anchored receptor GDNF family receptor α1 (GFRα1) and the receptor tyrosine kinase Ret. Here we demonstrate, using a knock-in mouse model in which GFRα1 is no longer located in lipid rafts, that the developmental functions of GDNF in the periphery require the translocation of the GDNF receptor complex

  20. Development of a human breast-cancer derived cell line stably expressing a bioluminescence resonance energy transfer (BRET-based phosphatidyl inositol-3 phosphate (PIP3 biosensor.

    Directory of Open Access Journals (Sweden)

    Mei-Shiue Kuo

    Full Text Available Stimulation of tyrosine kinase receptors initiates a signaling cascade that activates PI3K. Activated PI3K uses PIP2 to generate PIP3, which recruit Akt to the plasma membrane through its pleckstrin homology (PH domain, permitting its activation by PDKs. Activated Akt controls important biological functions, including cell metabolism, proliferation and survival. The PI3K pathway is therefore an attractive target for drug discovery. However, current assays for measurement of PIP3 production are technically demanding and not amenable to high-throughput screening. We have established a MCF-7-derived breast cancer cell line, that stably co-expresses the PH domain of Akt fused to Renilla luciferase and YFP fused to a membrane localization signal. This BRET biosensor pair permits to monitor, in real time, in living cells, PIP3 production at the plasma membrane upon stimulation by different ligands, including insulin, the insulin analogue glargine, IGF1, IGF2 and EGF. Moreover, several known inhibitors that target different steps of the PI3K/Akt pathway caused inhibition of ligand-induced BRET. Cetuximab, a humanized anti-EGF receptor monoclonal antibody used for the treatment of cancer, completely inhibited EGF-induced BRET, and the tyrosine kinase inhibitor tyrphostine AG1024 inhibited insulin effect on PIP3 production. Moreover, the effects of insulin and IGF1 were inhibited by molecules that inhibit PI3K catalytic activity or the interaction between PIP3 and the PH domain of Akt. Finally, we showed that human serum induced a dose-dependent increase in BRET signal, suggesting that this stable clone may be used as a prognostic tool to evaluate the PI3K stimulatory activity present in serum of human patients. We have thus established a cell line, suitable for the screening and/or the study of molecules with stimulatory or inhibitory activities on the PI3K/Akt pathway that will constitute a new tool for translational research in diabetes and cancer.

  1. A novel,rapid strategy to form dendritomas from human dendritic cells and hepatocellular carcinoma cell line HCCLM3 cells using mature dendritic cells derived from human peripheral blood CD14+monocytes within 48 hours of in vitro culture

    Institute of Scientific and Technical Information of China (English)

    Xin Guan; Ji-Run Peng; Lan Yuan; Hui Wang; Yu-Hua Wei; Xi-Sheng Leng

    2004-01-01

    AIM: Dendritomas formed by fusing cancer cells to dendritic cells have already been applied to clinical treatment trial of several types of cancers. Dendritic cells for the fusion in most trials and experiments were from blood monocytes in standard 7-d protocol culture, which requires 5-7 d of culture with granulocyte-macrophage-colony-stimulating factor (GM-CSF) and interleukin-4 (IL-4), followed by 2-3 d of activation with a combination of proinflammatory mediators such as tumor necrosis factorα (TNFα), interleukin1β (IL-1β), interleukin-6 (IL-6)and prostaglandin E2 (PGE2).One study showed that mature monocyte-derived dendritic cells could be obtained within 48 h ofin vitro culture with the same protocol as standard 7-d culture and referred to as FastDCs. Here we aimed to fuse human hepatocellular carcinoma cell line HCCLM3 cells with mature monocytederived dendritic cells within 48 h ofin vitro culture (FastDC).METHODS: HCCLMl3 cells were cultured in RPMI 1640 with 150 mL/L fetal calf serum (FCS). CD14+monocytes from healthy human peripheral blood were purified with MACS CD14 isolation kit and cultured in six-well plates in fresh complete DC medium containing RPMI-1640, 20 mL/Lheat inactivated human AB serum, 2 mmol/L L-glutamine,100 μg/mL gentamicin, 1000 U/mL GM-CSF and 500 U/mL IL-4 for 24 h, then proinflammatory mediators such as TNFα(1000 U/mL), IL-1β (10 ng/mL), IL-6 (10 ng/mL) and PGE2(1μg/mL) were supplemented for another 24 h, and thus mature FastDCs were generated. HCCLM3 cells and FastDCs were labeled with red fluorescent dye PKH26-GL and green fluorescent dye PKH67-GL respectively. After the red fluorescent-stained HCCLM3 cells were irradiated with 50 Gy, FastDCs and irradiated HCCLM3 cells were fused in 500 mL/L polyethylene glycol(PEG)+100 mL/L dimethyl sulfoxide (DMSO) to generate novel dendritomas. The FastDCs and novel dendritomas were immunostained with antiCD80, anti-CD86, anti-CD83, anti-HLA-DR mAbs and analyzed by fluorescence

  2. Deconstructing the Iboga Alkaloid Skeleton: Potentiation of FGF2-induced Glial Cell Line-Derived Neurotrophic Factor Release by a Novel Compound.

    Science.gov (United States)

    Gassaway, Madalee M; Jacques, Teresa L; Kruegel, Andrew C; Karpowicz, Richard J; Li, Xiaoguang; Li, Shu; Myer, Yves; Sames, Dalibor

    2016-01-15

    Modulation of growth factor signaling pathways in the brain represents a new experimental approach to treating neuropsychiatric disorders such as depression, anxiety, and addiction. Neurotrophins and growth factors exert synaptic, neuronal, and circuit level effects on a wide temporal range, which suggests a possibility of rapid and lasting therapeutic effects. Consequently, identification of small molecules that can either enhance the release of growth factors or potentiate their respective pathways will provide a drug-like alternative to direct neurotrophin administration or viral gene delivery and thus represents an important frontier in chemical biology and drug design. Glial cell line-derived neurotrophic factor (GDNF), in particular, has been implicated in marked reduction of alcohol consumption in rodent addiction models, and the natural product ibogaine, a substance used traditionally in ritualistic ceremonies, has been suggested to increase the synthesis and release of GDNF in the dopaminergic system in rats. In this report, we describe a novel iboga analog, XL-008, created by unraveling the medium size ring of the ibogamine skeleton, and its ability to induce release of GDNF in C6 glioma cells. Additionally, XL-008 potentiates the release of GDNF induced by fibroblast growth factor 2 (FGF2), another neurotrophin implicated in major depressive disorder, increasing potency more than 2-fold (from 7.85 ± 2.59 ng/mL to 3.31 ± 0.98 ng/mL) and efficacy more than 3-fold. The GDNF release by both XL-008 and the FGF2/XL-008 mixture was found to be mediated through the MEK and PI3K signaling pathways but not through PLCγ in C6 glioma cells.

  3. Inhibition of TRPA1 channel activity in sensory neurons by the glial cell line-derived neurotrophic factor family member, artemin

    Directory of Open Access Journals (Sweden)

    Wang Shenglan

    2011-05-01

    Full Text Available Abstract Background The transient receptor potential (TRP channel subtype A1 (TRPA1 is known to be expressed on sensory neurons and respond to changes in temperature, pH and local application of certain noxious chemicals such as allyl isothiocyanate (AITC. Artemin is a neuronal survival and differentiation factor and belongs to the glial cell line-derived neurotrophic factor (GDNF family. Both TRPA1 and artemin have been reported to be involved in pathological pain initiation and maintenance. In the present study, using whole-cell patch clamp recording technique, in situ hybridization and behavioral analyses, we examined the functional interaction between TRPA1 and artemin. Results We found that 85.8 ± 1.9% of TRPA1-expressing neurons also expressed GDNF family receptor alpha 3 (GFR α3, and 87.5 ± 4.1% of GFRα3-expressing neurons were TRPA1-positive. In whole-cell patch clamp analysis, a short-term treatment of 100 ng/ml artemin significantly suppressed the AITC-induced TRPA1 currents. A concentration-response curve of AITC resulting from the effect of artemin showed that this inhibition did not change EC50 but did lower the AITC-induced maximum response. In addition, pre-treatment of artemin significantly suppressed the number of paw lifts induced by intraplantar injection of AITC, as well as the formalin-induced pain behaviors. Conclusions These findings that a short-term application of artemin inhibits the TRPA1 channel's activity and the sequential pain behaviors suggest a role of artemin in regulation of sensory neurons.

  4. Glial cell line-derived neurotrophic factor-induced mice liver defatting: A novel strategy to enable transplantation of steatotic livers.

    Science.gov (United States)

    Taba Taba Vakili, Sahar; Kailar, Roshni; Rahman, Khalidur; Nezami, Behtash Ghazi; Mwangi, Simon Musyoka; Anania, Frank A; Srinivasan, Shanthi

    2016-04-01

    Moderate macrovesicular steatosis (>30%), which is present in almost 50% of livers considered for transplantation, increases the risk of primary graft dysfunction. Our previously published data showed that glial cell line-derived neurotrophic factor (GDNF) is protective against high-fat diet (HFD)-induced hepatic steatosis in mice. Hence, we hypothesized that perfusion of steatotic livers with GDNF may reduce liver fat content before transplantation. Livers from 8 weeks of regular diet (RD) and of HFD-fed mice were perfused ex vivo for 4 hours with either vehicle, GDNF, or a previously described defatting cocktail. The liver's residual fat was quantified colorimetrically using a triglyceride (TG) assay kit and by Oil Red O (ORO) and Nile red/Hoechst staining. Liver tissue injury was assessed by using a lactate dehydrogenase (LDH) activity assay. In vitro induction of lipolysis in HepG2 cells was assessed by measuring glycerol and free fatty acid release. ORO staining showed significantly more steatosis in livers from HFD-fed mice compared with RD-fed mice (P defatting compared to the defatting cocktail; however, GDNF induces less liver damage than the defatting cocktail. These observations were consistent with data obtained from assessment of liver TG content. Assessment of liver injury revealed significant hepatocyte injury in livers perfused with the control defatting cocktail but no evidence of injury in livers perfused with either GDNF or vehicle. In vitro, GDNF reduced TG accumulation in HepG2 cells and stimulated increased TG lipolysis. In conclusion, GDNF can decrease mice liver fat content to an acceptable range and could be a potential defatting agent before liver transplantation.

  5. Transport of Glial Cell Line-Derived Neurotrophic Factor into Liposomes across the Blood-Brain Barrier: In Vitro and in Vivo Studies

    Directory of Open Access Journals (Sweden)

    Shaoling Wu

    2014-02-01

    Full Text Available Glial cell line-derived neurotrophic factor (GDNF was encapsulated into liposomes in order to protect it from enzyme degradation in vivo and promote its permeability across the blood-brain barrier (BBB. In this study, GDNF conventional liposomes (GDNF-L and GDNF target sterically stabilized liposomes (GDNF-SSL-T were prepared. The average size of liposomes was below 90 nm. A primary model of BBB was established and evaluated by transendothelial electrical resistance (TEER and permeability. This BBB model was employed to study the permeability of GDNF liposomes in vitro. The results indicated that the liposomes could enhance transport of GDNF across the BBB and GDNF-SSL-T had achieved the best transport efficacy. The distribution of GDNF liposomes was studied in vivo. Free GDNF and GDNF-L were eliminated rapidly in the circulation. GDNF-SSL-T has a prolonged circulation time in the blood and favorable brain delivery. The values of the area under the curve (AUC(0–1 h in the brain of GDNF-SSL-T was 8.1 times and 6.8 times more than that of free GDNF and GDNF-L, respectively. These results showed that GDNF-SSL-T realized the aim of targeted delivery of therapeutic proteins to central nervous system.

  6. Combination of chondroitinase ABC, glial cell line-derived neurotrophic factor and Nogo A antibody delayed-release microspheres promotes the functional recovery of spinal cord injury.

    Science.gov (United States)

    Zhang, Yu; Gu, Zuchao; Qiu, Guixing; Song, Yueming

    2013-11-01

    Spinal cord injury (SCI) is one of the most devastating injuries for patients. Glial cell line-derived neurotrophic factor (GDNF) is an important neurotrophic factor for the regeneration of the spinal neuraxial bundle, but GDNF would degrade rapidly if the protein was injected into the site of injury; thus, it cannot exert its fullest effects. Therefore, we introduced a delivery system of GDNF, poly(lactide-co-glycolic acid) (PLGA) delayed-release microspheres, in the current study and observed the effect of PLGA-GDNF and the combination of PLGA-GDNF and another 2 agents PLGA-chondroitinase ABC (ChABC) and PLGA-Nogo A antibody in the treatment of SCI rats. Our results showed that PLGA-GDNF and the combination of chABC, GDNF, and Nogo A antibody microspheres could elevate the locomotor scores of SCI rats. The effect of PLGA-GDNF was much better than that of GDNF. The cortical somatosensory evoked potential was also improved by PLGA-GDNF and the combination of chABC, GDNF, and Nogo A antibody microspheres. Our results suggest that PLGA delayed-release microsphere may be a useful and effective tool in delivering protein agents into the injury sites of patients with SCI. This novel combination therapy may provide a new idea in promoting the functional recovery of the damaged spinal cord.

  7. Glial cell line-derived neurotrophic factor (GDNF) is an endogenous protector in the mesolimbic system against excessive alcohol consumption and relapse.

    Science.gov (United States)

    Barak, Segev; Wang, Jun; Ahmadiantehrani, Somayeh; Ben Hamida, Sami; Kells, Adrian P; Forsayeth, John; Bankiewicz, Krystof S; Ron, Dorit

    2015-07-01

    Moderate social consumption of alcohol is common; however, only a small percentage of individuals transit from social to excessive, uncontrolled alcohol drinking. This suggests the existence of protective mechanisms that prevent the development of alcohol addiction. Here, we tested the hypothesis that the glial cell line-derived neurotrophic factor (GDNF) in the mesolimbic system [e.g. the nucleus accumbens (Acb) and ventral tegmental area (VTA)] is part of such a mechanism. We found that GDNF knockdown, by infecting rat Acb neurons with a small hairpin RNA (shRNA) targeting the GDNF gene, produced a rapid escalation to excessive alcohol consumption and enhanced relapse to alcohol drinking. Conversely, viral-mediated overexpression of the growth factor in the mesolimbic system blocked the escalation from moderate to excessive alcohol drinking. To access the mechanism underlying GDNF's actions, we measured the firing rate of dopaminergic (DAergic) neurons in the VTA after a history of excessive alcohol intake with or without elevating GDNF levels. We found that the spontaneous firing rate of DAergic neurons in the VTA was reduced during alcohol withdrawal and that GDNF reversed this alcohol-induced DA deficiency. Together, our results suggest that endogenous GDNF in the mesolimbic system controls the transition from moderate to excessive alcohol drinking and relapse via reversal of alcohol-dependent neuro-adaptations in DAergic VTA neurons.

  8. Transport of glial cell line-derived neurotrophic factor into liposomes across the blood-brain barrier: in vitro and in vivo studies.

    Science.gov (United States)

    Wu, Shaoling; Li, Guoqi; Li, Xiao; Lin, Caina; Yu, Ding; Luan, Shuo; Ma, Chao

    2014-02-27

    Glial cell line-derived neurotrophic factor (GDNF) was encapsulated into liposomes in order to protect it from enzyme degradation in vivo and promote its permeability across the blood-brain barrier (BBB). In this study, GDNF conventional liposomes (GDNF-L) and GDNF target sterically stabilized liposomes (GDNF-SSL-T) were prepared. The average size of liposomes was below 90 nm. A primary model of BBB was established and evaluated by transendothelial electrical resistance (TEER) and permeability. This BBB model was employed to study the permeability of GDNF liposomes in vitro. The results indicated that the liposomes could enhance transport of GDNF across the BBB and GDNF-SSL-T had achieved the best transport efficacy. The distribution of GDNF liposomes was studied in vivo. Free GDNF and GDNF-L were eliminated rapidly in the circulation. GDNF-SSL-T has a prolonged circulation time in the blood and favorable brain delivery. The values of the area under the curve (AUC(0-1 h)) in the brain of GDNF-SSL-T was 8.1 times and 6.8 times more than that of free GDNF and GDNF-L, respectively. These results showed that GDNF-SSL-T realized the aim of targeted delivery of therapeutic proteins to central nervous system.

  9. Harpagoside attenuates MPTP/MPP⁺ induced dopaminergic neurodegeneration and movement disorder via elevating glial cell line-derived neurotrophic factor.

    Science.gov (United States)

    Sun, Xiaoyu; Xiong, Zhongkui; Zhang, Yongfang; Meng, Ya; Xu, Gang; Xia, Zhiming; Li, Jiamei; Zhang, Rui; Ke, Zunji; Xia, Zongqin; Hu, Yaer

    2012-03-01

    Parkinson's disease is a chronic neurodegenerative movement disorder characterized by the loss of dopaminergic neurons in the substantia nigra pars compacta. New therapeutic approaches aiming at delaying or reversing the neurodegenerative process are under active investigations. In this work, we found that harpagoside, an iridoid purified from the Chinese medicinal herb Scrophularia ningpoensis, could not only prevent but also rescue the dopaminergic neurodegeneration in MPTP/MPP(+) intoxication with promising efficacy. Firstly, in cultured mesencephalic neurons, harpagoside significantly attenuated the loss of TH-positive neuron numbers and the shortening of axonal length. Secondly, in a chronic MPTP mouse model, harpagoside dose-dependently improved the loco-motor ability (rotarod test), increased the TH-positive neuron numbers in the substantia nigra pars compacta (unbiased stereological counting) and increased the striatal DAT density ((125) I-FP-CIT autoradiography). Thirdly, harpagoside markedly elevated the GDNF mRNA and GDNF protein levels in MPTP/MPP(+) lesioned models. However, the protecting effect of harpagoside on the dopaminergic degeneration disappeared when the intrinsic GDNF action was blocked by either the Ret inhibitor PP1 or the neutralizing anti-GDNF antibody. Taken together, we conclude that harpagoside attenuates the dopaminergic neurodegeneration and movement disorder mainly through elevating glial cell line-derived neurotrophic factor.

  10. Efficient cDNA cloning by direct phenotypic correction of a mutant human cell line (HPRT-) using an Epstein-Barr virus derived cDNA expression vector.

    NARCIS (Netherlands)

    P.B.G.M. Belt; W. Jongmans; J. de Wit (Jan); J.H.J. Hoeijmakers (Jan); C.M.P. Backendorf (Claude); P. van de Putte (Pieter)

    1991-01-01

    textabstractHuman cells are, in general, poor recipients of foreign DNA, which has severely hampered the cloning of genes by direct phenotypic correction of deficient human cell lines after DNA mediated gene transfer. In this communication a methodology is presented which largely circumvents this pr

  11. Role of glial cell line-derived neurotrophic factor (GDNF)-neural cell adhesion molecule (NCAM) interactions in induction of neurite outgrowth and identification of a binding site for NCAM in the heel region of GDNF

    DEFF Research Database (Denmark)

    Nielsen, Janne; Gotfryd, Kamil; Li, Shizhong

    2009-01-01

    The formation of appropriate neuronal circuits is an essential part of nervous system development and relies heavily on the outgrowth of axons and dendrites and their guidance to their respective targets. This process is governed by a large array of molecules, including glial cell line-derived ne......The formation of appropriate neuronal circuits is an essential part of nervous system development and relies heavily on the outgrowth of axons and dendrites and their guidance to their respective targets. This process is governed by a large array of molecules, including glial cell line...... that NCAM-mediated GDNF-induced signaling leading to neurite outgrowth is more complex than previously reported. It not only involves NCAM-140 and the Src family kinase Fyn but also uses NCAM-180 and the fibroblast growth factor receptor. We find that induction of neurite outgrowth by GDNF via NCAM...

  12. Inefficiency in GM2 ganglioside elimination by human lysosomal beta-hexosaminidase beta-subunit gene transfer to fibroblastic cell line derived from Sandhoff disease model mice.

    Science.gov (United States)

    Itakura, Tomohiro; Kuroki, Aya; Ishibashi, Yasuhiro; Tsuji, Daisuke; Kawashita, Eri; Higashine, Yukari; Sakuraba, Hitoshi; Yamanaka, Shoji; Itoh, Kohji

    2006-08-01

    Sandhoff disease (SD) is an autosomal recessive GM2 gangliosidosis caused by the defect of lysosomal beta-hexosaminidase (Hex) beta-subunit gene associated with neurosomatic manifestations. Therapeutic effects of Hex subunit gene transduction have been examined on Sandhoff disease model mice (SD mice) produced by the allelic disruption of Hexb gene encoding the murine beta-subunit. We demonstrate here that elimination of GM2 ganglioside (GM2) accumulated in the fibroblastic cell line derived from SD mice (FSD) did not occur when the HEXB gene only was transfected. In contrast, a significant increase in the HexB (betabeta homodimer) activity toward neutral substrates, including GA2 (asialo-GM2) and oligosaccharides carrying the terminal N-acetylglucosamine residues at their non-reducing ends (GlcNAc-oligosaccharides) was observed. Immunoblotting with anti-human HexA (alphabeta heterodimer) serum after native polyacrylamide gel electrophoresis (Native-PAGE) revealed that the human HEXB gene product could hardly form the chimeric HexA through associating with the murine alpha-subunit. However, co-introduction of the HEXA encoding the human alpha-subunit and HEXB genes caused significant corrective effect on the GM2 degradation by producing the human HexA. These results indicate that the recombinant human HexA could interspeciesly associate with the murine GM2 activator protein to degrade GM2 accumulated in the FSD cells. Thus, therapeutic effects of the recombinant human HexA isozyme but not human HEXB gene product could be evaluated by using the SD mice.

  13. Intrathecal injection of lentivirus-mediated glial cell line-derived neurotrophic factor RNA interference relieves bone cancer-induced pain in rats.

    Science.gov (United States)

    Meng, Fu-Fen; Xu, Yang; Dan, Qi-Qin; Wei, La; Deng, Ying-Jie; Liu, Jia; He, Mu; Liu, Wei; Xia, Qing-Jie; Zhou, Fiona H; Wang, Ting-Hua; Wang, Xi-Yan

    2015-04-01

    Bone cancer pain is a common symptom in cancer patients with bone metastases and the underlying mechanisms are largely unknown. The aim of this study is to explore the endogenous analgesic mechanisms to develop new therapeutic strategies for bone-cancer induced pain (BCIP) as a result of metastases. MRMT-1 tumor cells were injected into bilateral tibia of rats and X-rays showed that the area suffered from bone destruction, accompanied by an increase in osteoclast numbers. In addition, rats with bone cancer showed apparent mechanical and thermal hyperalgesia at day 28 after intratibial MRMT-1 inoculation. However, intrathecal injection of morphine or lentivirus-mediated glial cell line-derived neurotrophic factor RNAi (Lvs-siGDNF) significantly attenuated mechanical and thermal hyperalgesia, as shown by increases in paw withdrawal thresholds and tail-flick latencies, respectively. Furthermore, Lvs-siGDNF interference not only substantially downregulated GDNF protein levels, but also reduced substance P immunoreactivity and downregulated the ratio of pERK/ERK, where its activation is crucial for pain signaling, in the spinal dorsal horn of this model of bone-cancer induced pain. In this study, Lvs-siGDNF gene therapy appeared to be a beneficial method for the treatment of bone cancer pain. As the effect of Lvs-siGDNF to relieve pain was similar to morphine, but it is not a narcotic, the use of GDNF RNA interference may be considered as a new therapeutic strategy for the treatment of bone cancer pain in the future.

  14. In vitro and in silico derived relative effect potencies of ah-receptor-mediated effects by PCDD/Fs and PCBs in rat, mouse, and guinea pig CALUX cell lines

    NARCIS (Netherlands)

    Ghorbanzadeh, Mehdi; Van Ede, Karin I.; Larsson, Malin; Van Duursen, Majorie B M; Poellinger, Lorenz; Lücke-Johansson, Sandra; Machala, Miroslav; Pěnčíková, Kateřina; Vondráček, Jan; Van Den Berg, Martin; Denison, Michael S.; Ringsted, Tine; Andersson, Patrik L.

    2014-01-01

    For a better understanding of species-specific relative effect potencies (REPs), responses of dioxin-like compounds (DLCs) were assessed. REPs were calculated using chemical-activated luciferase gene expression assays (CALUX) derived from guinea pig, rat, and mouse cell lines. Almost all 20 congener

  15. Cell Line Derived Multi-Gene Predictor of Pathologic Response to Neoadjuvant Chemotherapy in Breast Cancer: A Validation Study on US Oncology 02-103 Clinical Trial

    Directory of Open Access Journals (Sweden)

    Shen Kui

    2012-11-01

    Full Text Available Abstract Background The purpose of this study is to assess the predictive accuracy of a multi-gene predictor of response to docetaxel, 5-fluorouracil, epirubicin and cyclophosphamide combination chemotherapy on gene expression data from patients who received these drugs as neoadjuvant treatment. Methods Tumor samples were obtained from patients with stage II-III breast cancer before starting neoadjuvant chemotherapy with four cycles of 5-fluorouracil/epirubicin/cyclophosphamide (FEC followed by four cycles of docetaxel/capecitabine (TX on US Oncology clinical trial 02-103. Most patients with HER-2-positive cancer also received trastuzumab (H. The chemotherapy predictor (TFEC-MGP was developed from publicly available gene expression data of 42 breast cancer cell-lines with corresponding in vitro chemotherapy sensitivity results for the four chemotherapy drugs. No predictor was developed for treatment with trastuzumab. The predictive performance of TFEC-MGP in distinguishing cases with pathologic complete response from those with residual disease was evaluated for the FEC/TX and FEC/TX plus H group separately. The area under the receiver-operating characteristic curve (AU-ROC was used as the metric of predictive performance. Genomic predictions were performed blinded to clinical outcome. Results The AU-ROC was 0.70 (95% CI: 0.57-0.82 for the FEC/TX group (n=66 and 0.43 (95% CI: 0.20-0.66 for the FEC/TX plus H group (n=25. Among the patients treated with FEC/TX, the AU-ROC was 0.69 (95% CI: 0.52-0.86 for estrogen receptor (ER-negative (n=28 and it was 0.59 (95% CI: 0.36-0.82 for ER-positive cancers (n=37. ER status was not reported for one patient. Conclusions Our results indicate that the cell line derived 291-probeset genomic predictor of response to FEC/TX combination chemotherapy shows good performance in a blinded validation study, particularly in ER-negative patients.

  16. Crude Extracts of Marine-derived and Soil Fungi of the Genus Neosartorya Exhibit Selective Anticancer Activity by Inducing Cell Death in Colon, Breast and Skin Cancer Cell Lines

    OpenAIRE

    Alice Abreu Ramos; Bruno Castro-Carvalho; Maria Prata-Sena; Tida Dethoup; Suradet Buttachon; Anake Kijjoa; Eduardo Rocha

    2016-01-01

    Background: The crude ethyl acetate extracts of marine-derived fungi Neosartorya tsunodae KUFC 9213 (E1) and N. laciniosa KUFC 7896 (E2), and soil fungus N. fischeri KUFC 6344 (E3) were evaluated for their in vitro anticancer activities on a panel of seven human cancer cell lines. Materials and Methods: The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay was performed, after 48 h treatments with different concentrations of extracts, to determine their concentration of the e...

  17. Changes in skin levels of two neutotrophins (glial cell line derived neurotrohic factor and neurotrophin-3) cause alterations in cutaneous neuron responses to mechanical stimuli

    Institute of Scientific and Technical Information of China (English)

    Jeffrey Lawson; Sabrina L. Mcllwrath; H. Richard Koerber

    2008-01-01

    Neurotrophins are important for the development and maintenance of both high and low threshold mechanoreceptors (HTMRs and LTMRs). In this series of studies, the effects of constitutive overexpression of two different neurotrophins, neurotrophin-3 (NT-3) and glial cell line derived neurotrohic factor (GDNF), were examined. Previous studies indicated that both of them may be implicated in the normal development of mouse dorsal root ganglion (DRG) neurons. Neurons from mice transgenically altered to overexpress NT-3 or GDNF (NT-3-OE or GDNF-OE mice) in the skin were examined using several physiological, immunohistochemi-cal and molecular techniques. Ex vivo skin/nerve/DRG/spinal cord and skin/nerve preparations were used to determine the response characteristics of the cutaneous neurons; immunohistochemistry was used to examine the biochemical phenotype of DRG cells and the skin; RT-PCR was used to examine the levels of candidate ion channels in skin and DRG that may correlate with changes in physiologi-cal responses. In GDNF-OE mice, I-isolectin B4 (IB4)-immunopositive C-HTMRs (nociceptors), a large percentage of which are sensitive to GDNF, had significantly lower mechanical thresholds than wildtype (WT) neurons. Heat thresholds for the same cells were not different. Mechanical sensitivity changes in GDNF-OE mice were correlated with significant increases in acid sensing ion channels 2a (ASIC2a) and 2b (ASIC2b) and transient receptor potential channel AI (TRPAI), all of which are putative mechanosensitive ion channels. Overexpression of NT-3 affected the responses of A-LTMRs and A-HTMRs, hut had no effect on C-HTMRs. Slowly adapting type 1 (SA1) LTMRs and A-HTMRs had increased mechanical sensitivity compared to WT. Mechanical sensitivity was correlated with significant increases in acid-sensing ion channels ASIC1 and ASIC3. This data indicates that both neurotrophins play roles in determining mechanical thresholds of cutaneous HTMRs and LTMRs and that sensitivity

  18. Adenoviral-mediated glial cell line-derived neurotrophic factor gene transfer has a protective effect on sciatic nerve following constriction-induced spinal cord injury.

    Science.gov (United States)

    Chou, An-Kuo; Yang, Ming-Chang; Tsai, Hung-Pei; Chai, Chee-Yin; Tai, Ming-Hong; Kwan, Aij-Li; Hong, Yi-Ren

    2014-01-01

    Neuropathic pain due to peripheral nerve injury may be associated with abnormal central nerve activity. Glial cell-line-derived neurotrophic factor (GDNF) can help attenuate neuropathic pain in different animal models of nerve injury. However, whether GDNF can ameliorate neuropathic pain in the spinal cord dorsal horn (SCDH) in constriction-induced peripheral nerve injury remains unknown. We investigated the therapeutic effects of adenoviral-mediated GDNF on neuropathic pain behaviors, microglial activation, pro-inflammatory cytokine expression and programmed cell death in a chronic constriction injury (CCI) nerve injury animal model. In this study, neuropathic pain was produced by CCI on the ipsilateral SCDH. Mechanical allodynia was examined with von Frey filaments and thermal sensitivity was tested using a plantar test apparatus post-operatively. Target proteins GDNF-1, GDNFRa-1, MMP2, MMP9, p38, phospho-p38, ED1, IL6, IL1β, AIF, caspase-9, cleaved caspase-9, caspase-3, cleaved caspase-3, PARP, cleaved PARP, SPECTRIN, cleaved SPECTRIN, Beclin-1, PKCσ, PKCγ, iNOS, eNOS and nNOS were detected. Microglial activity was measured by observing changes in immunoreactivity with OX-42. NeuN and TUNEL staining were used to reveal whether apoptosis was attenuated by GDNF. Results showed that administrating GDNF began to attenuate both allodynia and thermal hyperalgesia at day 7. CCI-rats were found to have lower GDNF and GDNFRa-1 expression compared to controls, and GDNF re-activated their expression. Also, GDNF significantly down-regulated CCI-induced protein expression except for MMP2, eNOS and nNOS, indicating that the protective action of GDNF might be associated with anti-inflammation and prohibition of microglia activation. Immunocytochemistry staining showed that GDNF reduced CCI-induced neuronal apoptosis. In sum, GDNF enhanced the neurotrophic effect by inhibiting microglia activation and cytokine production via p38 and PKC signaling. GDNF could be a good

  19. False leukemia-lymphoma cell lines: an update on over 500 cell lines.

    Science.gov (United States)

    Drexler, H G; Dirks, W G; Matsuo, Y; MacLeod, R A F

    2003-02-01

    Human leukemia-lymphoma (LL) cell lines represent an extremely important resource for research in a variety of fields and disciplines. As the cell lines are used as in vitro model systems in lieu of primary cell material, it is crucial that the cells in the culture flasks faithfully correspond to the purported objects of study. Obviously, proper authentication of cell line derivation and precise characterization are indispensable requirements to use as model systems. A number of studies has shown an unacceptable level of LL cell lines to be false. We present here the results of authenticating a comprehensively large sample (n = 550) of LL cell lines mainly by DNA fingerprinting and cytogenetic evaluation. Surprisingly, near-identical incidences (ca 15%) of false cell lines were observed among cell lines obtained directly from original investigators (59/395: 14.9%) and from secondary sources (23/155: 14.8%) implying that most cross-contamination is perpetrated by originators, presumably during establishment. By comparing our data with those published, we were further able to subclassify the false cell lines as (1) virtual: cross-contaminated with and unretrievably overgrown by other cell lines during initiation, never enjoying independent existence; (2) misidentified: cross-contaminated subsequent to establishment so that an original prototype may still exist; or (3) misclassified: unwittingly established from an unintended (often normal) cell type. Prolific classic leukemia cell lines were found to account for the majority of cross-contaminations, eg CCRF-CEM, HL-60, JURKAT, K-562 and U-937. We discuss the impact of cross-contaminations on scientific research, the reluctance of scientists to address the problem, and consider possible solutions. These findings provide a rationale for mandating the procurement of reputably sourced LL cell lines and their regular authentication thereafter.

  20. Association of ABCC2 and CDDP-Resistance in Two Sublines Resistant to CDDP Derived from a Human Nasopharyngeal Carcinoma Cell Line

    Directory of Open Access Journals (Sweden)

    Si Ming Xie

    2010-01-01

    Full Text Available Cisplatin (CDDP is one of the most active drugs to treat nasopharyngeal carcinoma (NPC patients. To further understand the mechanisms of CDDP-resistance in NPC, two CDDP-resistant sublines (CNE2-CDDP and CNE2-CDDP-5Fu derived from parental NPC cell line CNE2 were established. It was found that at the IC50 level, the resistance of CNE2-CDDP and CNE2-CDDP-5Fu against CDDP was 2.63-fold and 5.35-fold stronger than that of parental CNE2, respectively. Of the four ABC transporters (ABCB1, ABCC1, ABCC2 and ABCG2 related to MDR, only ABCC2 was found to be elevated both in CDDP-resistant sublines, with ABCC2 located in nucleus of CNE2-CDDP-5Fu but not in CNE2-CDDP and parental CNE2. Further research showed that compared to untreated CNE2, the intracellular levels of CDDP were decreased by 2.03-fold in CNE2-CDDP and 2.78-fold in CNE2-CDDP-5Fu. After treatment with PSC833, a modulator of MDR associated transporters including ABCC2, the intracellular level of CDDP was increased in CDDP-resistant sublines, and the resistance to CDDP was partially reversed from 2.63-fold to 1.62-fold in CNE2-CDDP and from 5.35-fold to 4.62-fold in CNE2-CDDP-5Fu. These data indicate that ABCC2 may play an important role in NPC resistant to CDDP.

  1. Glial cell-line derived neurotrophic factor (GDNF) replacement attenuates motor impairments and nigrostriatal dopamine deficits in 12-month-old mice with a partial deletion of GDNF.

    Science.gov (United States)

    Littrell, Ofelia M; Granholm, Ann-Charlotte; Gerhardt, Greg A; Boger, Heather A

    2013-03-01

    Glial cell-line derived neurotrophic factor (GDNF) has been established as a growth factor for the survival and maintenance of dopamine (DA) neurons. In phase I clinical trials, GDNF treatment in Parkinson's disease patients led to improved motor function and GDNF has been found to be down regulated in Parkinson's disease patients. Studies using GDNF heterozygous (Gdnf(+/-)) mice have demonstrated that a partial reduction of GDNF leads to an age-related accelerated decline in nigrostriatal DA system- and motor-function and increased neuro-inflammation and oxidative stress in the substantia nigra (SN). Therefore, the purpose of the current studies was to determine if GDNF replacement restores motor function and functional markers within the nigrostriatal DA system in middle-aged Gdnf(+/-) mice. At 11months of age, male Gdnf(+/-) and wildtype (WT) mice underwent bilateral intra-striatal injections of GDNF (10μg) or vehicle. Locomotor activity was assessed weekly 1-4weeks after treatment. Four weeks after treatment, their brains were processed for analysis of GDNF levels and various DAergic and oxidative stress markers. An intrastriatal injection of GDNF increased motor activity in Gdnf(+/-) mice to levels comparable to WT mice (1week after injection) and this effect was maintained through the 4-week time point. This increase in locomotion was accompanied by a 40% increase in striatal GDNF protein levels and SN GDNF expression in Gdnf(+/-) mice. Additionally, GDNF treatment significantly increased the number of tyrosine hydroxylase (TH)-positive neurons in the SN of middle-aged Gdnf(+/-) mice, but not WT mice, which was coupled with reduced oxidative stress in the SN. These studies further support that long-term changes related to the dysfunction of the nigrostriatal pathway are influenced by GDNF expression and add that this dysfunction appears to be responsive to GDNF treatment. Additionally, these studies suggest that long-term GDNF depletion alters the biological

  2. Effect of glial cell line-derived neurotrophic factor on behavior and key members of the brain serotonin system in mouse strains genetically predisposed to behavioral disorders.

    Science.gov (United States)

    Naumenko, Vladimir S; Bazovkina, Daria V; Semenova, Alina A; Tsybko, Anton S; Il'chibaeva, Tatyana V; Kondaurova, Elena M; Popova, Nina K

    2013-12-01

    The effect of glial cell line-derived neurotrophic factor (GDNF) on behavior and on the serotonin (5-HT) system of a mouse strain predisposed to depressive-like behavior, ASC/Icg (Antidepressant Sensitive Cataleptics), in comparison with the parental "nondepressive" CBA/Lac mice was studied. Within 7 days after acute administration, GDNF (800 ng, i.c.v.) decreased cataleptic immobility but increased depressive-like behavioral traits in both investigated mouse strains and produced anxiolytic effects in ASC mice. The expression of the gene encoding the key enzyme for 5-HT biosynthesis in the brain, tryptophan hydroxylase-2 (Tph-2), and 5-HT1A receptor gene in the midbrain as well as 5-HT2A receptor gene in the frontal cortex were increased in GDNF-treated ASC mice. At the same time, GDNF decreased 5-HT1A and 5-HT2A receptor gene expression in the hippocampus of ASC mice. GDNF failed to change Tph2, 5-HT1A , or 5-HT2A receptor mRNA levels in CBA mice as well as 5-HT transporter gene expression and 5-HT1A and 5-HT2A receptor functional activity in both investigated mouse strains. The results show 1) a GDNF-induced increase in the expression of key genes of the brain 5-HT system, Tph2, 5-HT1A , and 5-HT2A receptors, and 2) significant genotype-dependent differences in the 5-HT system response to GDNF treatment. The data suggest that genetically defined cross-talk between neurotrophic factors and the brain 5-HT system underlies the variability in behavioral response to GDNF.

  3. Relationship Between Chronic Tinnitus and Glial Cell Line-Derived Neurotrophic Factor Gene rs3812047, rs1110149, and rs884344 Polymorphisms in a Turkish Population.

    Science.gov (United States)

    Orenay-Boyacioglu, Seda; Coskunoglu, Aysun; Caki, Zerrin; Cam, Fethi Sirri

    2016-08-01

    Glial cell line-derived neurotrophic factor (GDNF) plays a key role in early development of central auditory pathway and the inner ear. However, the auditory pathway studies of GDNF gene polymorphisms are scarce in the literature, and the studies especially associated with tinnitus are limited. Our study aimed to identify whether GDNF gene polymorphisms play any roles in the pathophysiology of tinnitus by investigating the relationship between tinnitus and GDNF polymorphisms. A total of 52 patients with chronic tinnitus and ages ranging from 18 to 55 were admitted to the Ear-Nose-Throat outpatient clinic of Celal Bayar University Medical Faculty Hospital of Manisa, Turkey and constituted the study group. Another 42 patients of the same age range, without tinnitus symptoms and lacking any systemic disease, were also admitted to the clinic and formed the control group. The tympanometric, audiological, and psychoacoustic assessments of the subjects were performed. Deoxyribonucleic acid samples obtained using venous blood taken for routine inspections were used to investigate GDNF gene polymorphisms (rs884344, rs3812047, and rs1110149) by polymerase chain reaction-based restriction fragment length polymorphism method. No correlation could be detected between GDNF rs884344 and rs3812047 polymorphisms and subjects with tinnitus (p > 0.05). Heterozygosity was significantly lower for GDNF rs1110149 polymorphism in tinnitus subjects compared to the controls (p tinnitus and control groups (p > 0.05). Failure to detect correlations between tinnitus and GDNF gene polymorphisms suggests this may be due to the fact that the GDNF gene has a variable expression pattern in different tissues and pathologies. Therefore, the study should be improved and its scope should be expanded by including a larger group of patients and different tissues to investigate the expression pattern of GDNF.

  4. Diet-induced obesity has neuroprotective effects in murine gastric enteric nervous system: involvement of leptin and glial cell line-derived neurotrophic factor.

    Science.gov (United States)

    Baudry, Charlotte; Reichardt, François; Marchix, Justine; Bado, André; Schemann, Michael; des Varannes, Stanislas Bruley; Neunlist, Michel; Moriez, Raphaël

    2012-02-01

    Nutritional factors can induce profound neuroplastic changes in the enteric nervous system (ENS), responsible for changes in gastrointestinal (GI) motility. However, long-term effects of a nutritional imbalance leading to obesity, such as Western diet (WD), upon ENS phenotype and control of GI motility remain unknown. Therefore, we investigated the effects of WD-induced obesity (DIO) on ENS phenotype and function as well as factors involved in functional plasticity. Mice were fed with normal diet (ND) or WD for 12 weeks. GI motility was assessed in vivo and ex vivo. Myenteric neurons and glia were analysed with immunohistochemical methods using antibodies against Hu, neuronal nitric oxide synthase (nNOS), Sox-10 and with calcium imaging techniques. Leptin and glial cell line-derived neurotrophic factor (GDNF) were studied using immunohistochemical, biochemical or PCR methods in mice and primary culture of ENS. DIO prevented the age-associated decrease in antral nitrergic neurons observed in ND mice. Nerve stimulation evoked a stronger neuronal Ca(2+) response in WD compared to ND mice. DIO induced an NO-dependent increase in gastric emptying and neuromuscular transmission in the antrum without any change in small intestinal transit. During WD but not ND, a time-dependent increase in leptin and GDNF occurred in the antrum. Finally, we showed that leptin increased GDNF production in the ENS and induced neuroprotective effects mediated in part by GDNF. These results demonstrate that DIO induces neuroplastic changes in the antrum leading to an NO-dependent acceleration of gastric emptying. In addition, DIO induced neuroplasticity in the ENS is likely to involve leptin and GDNF.

  5. Umbelliprenin is Potentially Toxic Against the HT29, CT26, MCF-7, 4T1, A172, and GL26 Cell Lines, Potentially Harmful Against Bone Marrow-Derived Stem Cells, and Non-Toxic Against Peripheral Blood Mononuclear Cells

    Science.gov (United States)

    Rashidi, Mohsen; Ziai, Seyed Ali; Moini Zanjani, Taraneh; Khalilnezhad, Ahad; Jamshidi, Hamidreza; Amani, Davar

    2016-01-01

    Background Resistance to chemotherapy is a growing concern, thus natural anticancer agents are drawing the attention of many scientists and clinicians. One natural anticancer agent, umbelliprenin, is a coumarin produced by many species of Ferula. Objectives We aimed to examine the inhibitory effect of umbelliprenin on human and mouse bone marrow-derived stem cells (BMDSCs), peripheral blood mononuclear cells (PBMCs), and different cancer cell lines. Materials and Methods In this in vitro experimental study, the HT29, CT26, MCF-7, 4T1, A172, and GL26 cancer cells and human and mouse BMDSCs and PBMCs were cultured in RPMI-1640 medium supplemented with 10% fetal bovine serum (FBS), incubated at 37°C for 24 hours in a 5% CO2 atmosphere, and then were treated with different concentrations of umbelliprenin dissolved in dimethyl sulfoxide (DMSO) (3, 6, 12, 25, 50, 100, and 200 µg/mL) for 24, 48, and 72 hours at 37°C. Each experiment was performed in triplicate. Finally, the cell survival rate was assessed by MTT assay. The IC50 values were calculated based on the log values using GraphPad Prism version 5 software for windows (La Jolla CA, USA) and were expressed as mean ± SEM. Results Umbelliprenin inhibited the cancer cells in a concentration-dependent (P 0.05). The most sensitive and resistant cell lines at the 24-hour incubation time were 4T1 (IC50, 30.9 ± 3.1 µg/mL) and A172 (IC50, 51.9 ± 6.7 µg/mL); at the 48-hour incubation time: 4T1 (IC50, 30.6 ± 2.6 µg/mL) and CT26 (IC50, 53.2 ± 3.6 µg/mL); and at the 72-hour incubation time: HT29 (IC50, 37.1 ± 1.4 µg/mL) and 4T1 (IC50, 62.2 ± 4.8 µg/mL). Both human and mouse BMDSCs showed the highest resistance at the 24-hour incubation time (IC50s, 254.7 ± 21 and 204.4 ± 4.5 µg/mL, respectively) and the highest sensitivity at the 72-hour incubation time (IC50s, 120.4 ± 5 and 159.0 ± 7.3 µg/mL, respectively). The PBMCs of both human and mouse origin revealed very strong resistance to the studied

  6. Upregulation of glutathione peroxidase-1 expression and activity by glial cell line-derived neurotrophic factor promotes high-level protection of PC12 cells against 6-hydroxydopamine and hydrogen peroxide toxicities.

    Science.gov (United States)

    Gharib, Ehsan; Gardaneh, Mossa; Shojaei, Sahar

    2013-06-01

    We examined the impact of strong co-presence and function of glutathione peroxidase-1 (GPX-1) and glial cell line-derived neurotrophic factor (GDNF) on protecting the rat dopaminergic pheochromocytoma cell line PC12 against 6-hydroxydopamine (6-OHDA) and hydrogen peroxide (H₂O₂) toxicities. Primarily, GPX-1 over-expression by PC12 cells infected with pLV-GPX1 lentivirus vectors significantly increased cell survival against 6-OHDA toxicity (pcells with astro-CM of GDNF-over-secreting astrocytes (Test astro-CM) significantly induced GPX-1 expression, peroxidase enzymatic activity, and intra-cellular glutathione (GSH) levels. These changes paralleled with protection of 90% of GDNF⁺/GPX1⁺ PC12 cells against toxicity, a rate that was 37% up from their un-infected un-treated (GDNF⁻/GPX1⁻) controls (pcells that received only Control astro-CM (GPX⁺/GDNF⁻) (pcell groups, increased cell survival against either compound was further confirmed by increased live cell counts measured by double staining. Following depletion of intra-cellular GSH, only 46% of pLV-GPX1 cells survived 6-OHDA toxicity, whereas over 70% of them were saved upon GDNF treatment (pcells and maximized by addition of GDNF. Comparison analyses established correlations between GPX-1-GDNF co-presence and both enhanced cell protection and diminished levels of activated caspase-3. Our data collectively indicate that GDNF is capable of inducing anti-oxidant activities of intra-cellular GPX-1 and that growth-promoting potential of GDNF and anti-oxidant properties of GPX-1 can, in concert, maximize survival of dopaminergic neurons.

  7. Synthesis and evaluation of the cytotoxic activity of novel ethyl 4-[4-(4-substitutedpiperidin-1-yl)]benzyl-phenylpyrrolo[1,2-a]quinoxaline-carboxylate derivatives in myeloid and lymphoid leukemia cell lines.

    Science.gov (United States)

    Desplat, Vanessa; Vincenzi, Marian; Lucas, Romain; Moreau, Stéphane; Savrimoutou, Solène; Pinaud, Noël; Lesbordes, Jordi; Peyrilles, Elodie; Marchivie, Mathieu; Routier, Sylvain; Sonnet, Pascal; Rossi, Filomena; Ronga, Luisa; Guillon, Jean

    2016-05-01

    Leukemia is the most common blood cancer, and its development starts at diverse points, leading to distinct subtypes that respond differently to therapy. This heterogeneity is rarely taken into account in therapies, so it is still essential to look for new specific drugs for leukemia subtypes or even for therapy-resistant cases. Among heterocyclic compounds that attracted a lot of attention because of its wide spread biological activities, the pyrrolo[1,2-a]quinoxaline heterocyclic framework has been identified as interesting scaffolds for antiproliferative activity against various human cancer cell lines. In the present study, novel ethyl 4-[4-(4-substitutedpiperidin-1-yl)]benzyl-phenylpyrrolo[1,2-a]quinoxaline-carboxylate derivatives 1a-l have been designed and synthesized. Their cytotoxicities were evaluated against five different leukemia cell lines, including Jurkat and U266 (lymphoid cell lines), and K562, U937, HL60 (myeloid cell lines), as well as normal human peripheral blood mononuclear cells (PBMNCs). Then, apoptosis study was performed with the more interesting compounds. The new pyrrolo[1,2-a]quinoxaline series showed promising cytotoxic potential against all leukemia cell lines tested, and some compounds showed better results than the reference compound A6730. Some compounds, such as 1a, 1e, 1g and 1h are promising because of their high activity against leukemia and their low activity against normal hematopoietic cells. Structure-activity relationships of these new synthetic compounds 1a-l are here also discussed.

  8. Comparison of the effect of cortisol on aromatase activity and androgen metabolism in two human fibroblast cell lines derived from the same individual

    DEFF Research Database (Denmark)

    Svenstrup, B; Brünner, N; Dombernowsky, P

    1990-01-01

    The effect of preincubation with cortisol on estrogen and androgen metabolism was investigated in human fibroblast monolayers grown from biopsies of genital and non-genital skin of the same person. The activity in the cells of aromatase, 5 alpha-reductase, 17 beta-hydroxysteroid oxidoreductase.......5-1.0 x 10(-6) M in both cell lines. When preincubation with cortisol was omitted no estrogen synthesis was detected. The formation of androgen was not altered after preincubation with cortisol. Pronounced differences were found in estrogen and in androgen metabolism in the two cell lines suggesting...... a local regulation of the hormonal environment. The aromatase activity, which is low in many tissues could be stimulated by cortisol without altering the androgen metabolism was found to be a suitable system for investigations of the cellular interconversion of androgens and estrogens...

  9. In vitro radiosensitivity of human leukemia cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Weichselbaum, R.R.; Greenberger, J.S.; Schmidt, A.; Karpas, A.; Moloney, W.C.; Little, J.B.

    1981-05-01

    The in vitro radiobiologic survival values (anti n, D/sub 0/) of four tumor lines derived from human hematopoietic tumors were studied. These cell lines were HL60 promyelocytic leukemia; K562 erythroleukemia; 45 acute lymphocytic leukemia; and 176 acute monomyelogenous leukemia. More cell lines must be examined before the exact relationship between in vitro radiosensitivity and clinical radiocurability is firmly established.

  10. Virus Discovery Using Tick Cell Lines

    Science.gov (United States)

    Bell-Sakyi, Lesley; Attoui, Houssam

    2016-01-01

    While ticks have been known to harbor and transmit pathogenic arboviruses for over 80 years, the application of high-throughput sequencing technologies has revealed that ticks also appear to harbor a diverse range of endogenous tick-only viruses belonging to many different families. Almost nothing is known about these viruses; indeed, it is unclear in most cases whether the identified viral sequences are derived from actual replication-competent viruses or from endogenous virus elements incorporated into the ticks’ genomes. Tick cell lines play an important role in virus discovery and isolation through the identification of novel viruses chronically infecting such cell lines and by acting as host cells to aid in determining whether or not an entire replication-competent, infective virus is present in a sample. Here, we review recent progress in tick-borne virus discovery and comment on the actual and potential applications for tick cell lines in this emerging research area. PMID:27679414

  11. Effects of glial cell line-derived neurotrophic factor, fibroblast growth factor 2 and epidermal growth factor on proliferation and the expression of some genes in buffalo (Bubalus bubalis) spermatogonial cells.

    Science.gov (United States)

    Kadam, Prashant H; Kala, Sushila; Agrawal, Himanshu; Singh, Karn P; Singh, Manoj K; Chauhan, Manmohan S; Palta, Prabhat; Singla, Suresh K; Manik, Radhay S

    2013-01-01

    The present study evaluated the effects of glial cell line-derived neurotrophic factor (GDNF), fibroblast growth factor (FGF) 2 and epidermal growth factor (EGF) on proliferation and the expression of some genes in spermatogonial cells. Spermatogonial cells were isolated from prepubertal buffalo testes and enriched by double enzyme treatment, filtration through 80- and 60-μm nylon mesh filters, differential plating on lectin-coated dishes and Percoll density gradient centrifugation. Cells were then cultured on a buffalo Sertoli cell feeder layer and formed colonies within 15-18 days. The colonies were found to predominantly contain undifferentiated Type A spermatogonia because they bound Dolichos biflorus agglutinin and did not express c-kit. The colonies expressed alkaline phosphatase, NANOG, octamer-binding transcription factor (OCT)-4 and tumour rejection antigen (TRA)-1-60. Cells were subcultured for 15 days, with or without growth factor supplementation. After 15 days, colony area and the relative mRNA abundance of PLZF were higher (Pgrowth factor supplementation. In the Sertoli cell feeder layer, EGF and FGF2 decreased (Pgrowth factors was developed for the short-term culture of buffalo spermatogonia.

  12. Expression of osteoprotegerin, receptor activator of nuclear factor kappa-B ligand, tumor necrosis factor-related apoptosis-inducing ligand, stromal cell-derived factor-1 and their receptors in epithelial metastatic breast cancer cell lines

    Directory of Open Access Journals (Sweden)

    Labovsky Vivian

    2012-06-01

    Full Text Available Abstract Background While breast cancer (BC is the major cause of death among women worldwide, there is no guarantee of better patient survival because many of these patients develop primarily metastases, despite efforts to detect it in its early stages. Bone metastasis is a common complication that occurs in 65-80 % of patients with disseminated disease, but the molecular basis underlying dormancy, dissemination and establishment of metastasis is not understood. Our objective has been to evaluate simultaneously osteoprotegerin (OPG, receptor activator of nuclear factor kappa B ligand (RANKL, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL, stromal cell-derived factor-1 (SDF-1, and their receptors (R in 2 human BC cell lines, MDA-MB-231 and MCF-7. Methods OPG, RANKL, TRAIL and SDF-1 expression and release, in addition to the expression of their receptors has been investigated using immunofluorescence, immunocytochemistry and ELISA analyses. Results MCF-7 cells released higher levels of OPG in conditioned media (CM than MDA-MB-231 cells; 100 % of both types of cell expressed OPG, RANKL, TRAIL and SDF-1. Moreover, 100 % in both lines expressed membrane RANKL and RANK, whereas only 50 % expressed CXCR4. Furthermore, 100 % expressed TRAIL-R1 and R4, 30-50 % TRAIL-R2, and 40-55 % TRAIL-R3. Conclusions MCF-7 and MDA-MB-231 cells not only released OPG, but expressed RANKL, TRAIL and SDF-1. The majority of the cells also expressed RANK, CXCR4 and TRAIL-R. Since these ligands and their receptors are implicated in the regulation of proliferation, survival, migration and future bone metastasis during breast tumor progression, assessment of these molecules in tumor biopsies of BC patients could be useful in identifying patients with more aggressive tumors that are also at risk of bone metastasis, which may thus improve the available options for therapeutic intervention.

  13. Cell Line Data Base: structure and recent improvements towards molecular authentication of human cell lines.

    Science.gov (United States)

    Romano, Paolo; Manniello, Assunta; Aresu, Ottavia; Armento, Massimiliano; Cesaro, Michela; Parodi, Barbara

    2009-01-01

    The Cell Line Data Base (CLDB) is a well-known reference information source on human and animal cell lines including information on more than 6000 cell lines. Main biological features are coded according to controlled vocabularies derived from international lists and taxonomies. HyperCLDB (http://bioinformatics.istge.it/hypercldb/) is a hypertext version of CLDB that improves data accessibility by also allowing information retrieval through web spiders. Access to HyperCLDB is provided through indexes of biological characteristics and navigation in the hypertext is granted by many internal links. HyperCLDB also includes links to external resources. Recently, an interest was raised for a reference nomenclature for cell lines and CLDB was seen as an authoritative system. Furthermore, to overcome the cell line misidentification problem, molecular authentication methods, such as fingerprinting, single-locus short tandem repeat (STR) profile and single nucleotide polymorphisms validation, were proposed. Since this data is distributed, a reference portal on authentication of human cell lines is needed. We present here the architecture and contents of CLDB, its recent enhancements and perspectives. We also present a new related database, the Cell Line Integrated Molecular Authentication (CLIMA) database (http://bioinformatics.istge.it/clima/), that allows to link authentication data to actual cell lines.

  14. CD133/CD15 defines distinct cell subpopulations with differential in vitro clonogenic activity and stem cell-related gene expression profile in in vitro propagated glioblastoma multiforme-derived cell line with a PNET-like component.

    Science.gov (United States)

    Kahlert, Ulf D; Bender, Noemi O; Maciaczyk, Donata; Bogiel, Tomasz; Bar, Eli E; Eberhart, Charles G; Nikkhah, Guido; Maciaczyk, Jarosław

    2012-01-01

    Glioblastoma multiforme (GBM), as many other solid tumours, contains a subpopulation of cells termed cancer stem-like cells responsible for the initiation and propagation of tumour growth. However, a unique immunophenotype/surface antigen composition for the clear identification of brain tumour stem cells (BTSC) has not yet been found. Here we report a novel code of cell surface markers for the identification of different cell subpopulations in neurospheres derived from a GBM with a primitive neuroectodermal tumour (PNET)-like component (GBM-PNET). These subgroups differ in their CD133/CD15 expression pattern and resemble cells with different stem-like genotype and developmental pathway activation levels. Strikingly, clonogenic analysis of cultures differentially expressing the investigated markers enabled the identification of distinct subpopulations of cells endowed with stem cell characteristics. High clonogenicity could be found in CD133(-)/CD15(-) and CD133(+)/CD15(+) but not in CD133(-)/CD15(+) cells. Moreover, cell subpopulations with pronounced clonogenic growth were characterized by high expression of stem cell-related genes. Interestingly, these observations were unique for GBM-PNET and differed from ordinary GBM cultures derived from tumours lacking a PNET component. This work elucidates the complex molecular heterogeneity of in vitro propagated glioblastoma-derived cells and potentially contributes to the development of novel diagnostic modalities aiming at the identification of the brain tumour stem-like cell population in a subgroup of GBMs.

  15. Exposure to Nickel, Chromium, or Cadmium Causes Distinct Changes in the Gene Expression Patterns of Rat Liver-Derived Cell Lines

    Science.gov (United States)

    2010-05-22

    skin epidermal cell line. Toxicological Sciences: An Official Journal of the Society of Toxicology 113(1): 127-137. Stohs SJ, Bagchi D, Hassoun E...related lipid transfer (START) domain containing 10 Yellow 1388985_at --- --- Blue 1388986_at --- --- Green 1389014_at Nampt nicotinamide ...B230212L03Rik protein Blue 1395744_at --- --- Yellow 1395896_at --- --- Blue 1396262_at Nampt nicotinamide phosphoribosyltransferase Blue 1396539_at

  16. Protective effect of liposome-mediated glial cell line-derived neurotrophic factor gene transfer in vivo on motoneurons following spinal cord injury in rats

    Institute of Scientific and Technical Information of China (English)

    鲁凯伍; 陈哲宇; 侯铁胜

    2004-01-01

    Objective:To investigate the effect of liposomemediated glial cell line-derived neurotrophic factor (GDNF) gene transfer in vivo on spinal cord motoneurons after spinal cord injury (SCI) in adult rats.Methods: Sixty male Sprague-Dawley rats were divided equally into two groups: GDNF group and control group. The SCI model was established according to the method of Nystrom, and then the DC-Chol liposomes and recombinant plasmid pEGFP-GDNF cDNA complexes were injected into the injured spinal cord. The expression of GDNF cDNA 1 week after injection was detected by RTPCR and fluorescence microscope. We observed the remaining motoneurons in the anterior horn and the changes of cholinesterase (CHE) and acid phosphatase (ACP) activity using Nissl and enzyme histochemistry staining. The locomotion function of hind limbs of rats was evaluated using inclined plane test and BBB locomotor scale.Results: RT-PCR and fluorescence observation confirmed the presence of expression of GDNF cDNA 1week and 4 weeks after injection. At 1, 2, 4 weeks after SCI, the number of motoneurons in the anterior horn in GDNF group (20.4±3.2, 21.7±3.6, 22.5±3.4) was more than that in control group ( 16.8±2.8, 17.3 ± 2.7,18.2±3.2, P<0.05). At 1, 2 weeks after SCI, the mean gray of the CHE-stained spinal motoneurons in GDNF group (74.2± 25.8, 98.7± 31.6 was less than that in control group (98.5 ±32.2, 134.6 ±45.2, P<0.01), and the mean gray of ACP in GDNF group (84.5±32.6, 79.5±28.4) was more than that in control group (61.2±24.9,52.6±19.9, P<0.01). The locomotion functional scales in GDNF group were higher than that in control group within 1 to 4 weeks after SCI (P<0.05).Conclusions: GDNF gene transfer in vivo can protect motoneurons from death and degeneration induced by incompleted spinal cord injury as well as enhance locomotion functional restoration of hind limbs. These results suggest that liposome-mediated delivery of GDNF cDNA might be a practical method for treating

  17. Thyroid cell lines in research on goitrogenesis.

    Science.gov (United States)

    Gerber, H; Peter, H J; Asmis, L; Studer, H

    1991-12-01

    Thyroid cell lines have contributed a lot to the understanding of goitrogenesis. The cell lines mostly used in thyroid research are briefly discussed, namely the rat thyroid cell lines FRTL and FRTL-5, the porcine thyroid cell lines PORTHOS and ARTHOS, The sheep thyroid cell lines OVNIS 5H and 6H, the cat thyroid cell lines PETCAT 1 to 4 and ROMCAT, and the human thyroid cell lines FTC-133 and HTh 74. Chinese hamster ovary (CHO) cells and COS-7 cells, stably transfected with TSH receptor cDNA and expressing a functional TSH receptor, are discussed as examples for non-thyroidal cells, transfected with thyroid genes.

  18. Generation of GFAP::GFP astrocyte reporter lines from human adult fibroblast-derived iPS cells using zinc-finger nuclease technology.

    Science.gov (United States)

    Zhang, Ping-Wu; Haidet-Phillips, Amanda M; Pham, Jacqueline T; Lee, Youngjin; Huo, Yuqing; Tienari, Pentti J; Maragakis, Nicholas J; Sattler, Rita; Rothstein, Jeffrey D

    2016-01-01

    Astrocytes are instrumental to major brain functions, including metabolic support, extracellular ion regulation, the shaping of excitatory signaling events and maintenance of synaptic glutamate homeostasis. Astrocyte dysfunction contributes to numerous developmental, psychiatric and neurodegenerative disorders. The generation of adult human fibroblast-derived induced pluripotent stem cells (iPSCs) has provided novel opportunities to study mechanisms of astrocyte dysfunction in human-derived cells. To overcome the difficulties of cell type heterogeneity during the differentiation process from iPSCs to astroglial cells (iPS astrocytes), we generated homogenous populations of iPS astrocytes using zinc-finger nuclease (ZFN) technology. Enhanced green fluorescent protein (eGFP) driven by the astrocyte-specific glial fibrillary acidic protein (GFAP) promoter was inserted into the safe harbor adeno-associated virus integration site 1 (AAVS1) locus in disease and control-derived iPSCs. Astrocyte populations were enriched using Fluorescence Activated Cell Sorting (FACS) and after enrichment more than 99% of iPS astrocytes expressed mature astrocyte markers including GFAP, S100β, NFIA and ALDH1L1. In addition, mature pure GFP-iPS astrocytes exhibited a well-described functional astrocytic activity in vitro characterized by neuron-dependent regulation of glutamate transporters to regulate extracellular glutamate concentrations. Engraftment of GFP-iPS astrocytes into rat spinal cord grey matter confirmed in vivo cell survival and continued astrocytic maturation. In conclusion, the generation of GFAP::GFP-iPS astrocytes provides a powerful in vitro and in vivo tool for studying astrocyte biology and astrocyte-driven disease pathogenesis and therapy.

  19. Susceptibility to AcMNPV and Expression of Recombinant Proteins by a Novel Cell Clone Derived from a Trichoplusia ni QAU-BTI-Tn9-4s Cell Line

    Institute of Scientific and Technical Information of China (English)

    Ming Shan; Shi-ying Zhang; Lei Jiang; Ming Ma; Guo-xun Li

    2011-01-01

    It is well known that Tn5B1-4(commercially known as the High Five)cell line is highly susceptible to baculovirus and provides superior production of recombinant proteins when compared to other insect cell lines.But the characteristics of the cell line do not always remain stable and may change upon continuous passage.Recently an alphanodavirus,named Tn5 Cell Line Virus(or TNCL Virus),was identified in High Five cells in particular. Therefore,we established a new cell line,QB-Tn9-4s,from Trichoplusia ni,which was determined to be free of TNCL virus by RT-PCR analysis. In this paper,we describe the development of a novel cell clone,QB-CL-B,from a low passage QB-Tn9-4s cell line and report its susceptibility to ACMNPV,and the level of recombinant protein production. This cell clone was similar to its parental cells QB-Tn9-4s and Tn5B 1-4 cells in morphology and growth rate;although it also showed approximately the same responses to AcMNPV infection and production of occlusion bodies,there were higher levels of recombinant protein production in comparison to QB-Tn9-4s(parental cells)and High5 cells.

  20. Human Embryonic St me Cell Lines fromthe Chinese Population and Differentiation to Liver and Muscle Cell Types

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    We have established 6 hES cell lines from IVF surplus blastocysts. Characterization of these lines have shown that 4 of the 6 lines meet all of the criterion (Science) for hES cell lines and 2 of them display most characteristics of hES cells but do not form teratoma. In order to produce hES cell lines without using mouse feeders, we have produced a hES cell line using feeders derived from hES cells themselves, and showed that hES-derived feeders are capable of supporting the derivation of new hES cell line...

  1. Epithelial-to-Mesenchymal Transition in Pancreatic Ductal Adenocarcinoma and Pancreatic Tumor Cell Lines: The Role of Neutrophils and Neutrophil-Derived Elastase

    Directory of Open Access Journals (Sweden)

    Thomas Große-Steffen

    2012-01-01

    Full Text Available Pancreatic ductal adenocarcinoma (PDAC is frequently associated with fibrosis and a prominent inflammatory infiltrate in the desmoplastic stroma. Moreover, in PDAC, an epithelial-to-mesenchymal transition (EMT is observed. To explore a possible connection between the infiltrating cells, particularly the polymorphonuclear neutrophils (PMN and the tumor cell transition, biopsies of patients with PDAC (n=115 were analysed with regard to PMN infiltration and nuclear expression of β-catenin and of ZEB1, well-established indicators of EMT. In biopsies with a dense PMN infiltrate, a nuclear accumulation of β-catenin and of ZEB1 was observed. To address the question whether PMN could induce EMT, they were isolated from healthy donors and were cocultivated with pancreatic tumor cells grown as monolayers. Rapid dyshesion of the tumor cells was seen, most likely due to an elastase-mediated degradation of E-cadherin. In parallel, the transcription factor TWIST was upregulated, β-catenin translocated into the nucleus, ZEB1 appeared in the nucleus, and keratins were downregulated. EMT was also induced when the tumor cells were grown under conditions preventing attachment to the culture plates. Here, also in the absence of elastase, E-cadherin was downmodulated. PMN as well as prevention of adhesion induced EMT also in liver cancer cell line. In conclusion, PMN via elastase induce EMT in vitro, most likely due to the loss of cell-to-cell contact. Because in pancreatic cancers the transition to a mesenchymal phenotype coincides with the PMN infiltrate, a contribution of the inflammatory response to the induction of EMT and—by implication—to tumor progression is possible.

  2. Delayed administration of glial cell line-derived neurotrophic factor (GDNF) protects retinal ganglion cells in a pig model of acute retinal ischemia

    DEFF Research Database (Denmark)

    Kyhn, Maria Voss; Klassen, Henry; Johansson, Ulrica Englund

    2009-01-01

    Hg below mean arterial blood pressure for 2 h. The mean IOP during the ischemic insult was 79.5 mmHg (s.e.m. 2.1 mmHg, n = 15). Three days after the insult the pigs received an intravitreal injection of GDNF microspheres or blank microspheres. The pigs were evaluated by way of multifocal.......04-0.16) in eyes treated with blank microspheres, and 0.24 (95% CI: 0.18-0.32) and 0.23 (95% CI: 0.15-0.33) in eyes treated with GDNF microspheres. These differences were statistically significant (P ... injected with GDNF microspheres compared to eyes injected with blank microspheres. In eyes injected with GDNF microspheres the ganglion cell count was 9.5/field (s.e.m.: 2.1, n = 8), in eyes injected with blank microspheres it was 3.5/field (s.e.m.: 1.2, n = 7). This difference was statistically...

  3. Intrastriatal glial cell line-derived neurotrophic factors for protecting dopaminergic neurons in the substantia nigra of mice with Parkinson disease

    Institute of Scientific and Technical Information of China (English)

    Chenghua Xiao; Yanqiang Wang; Hongmei Liu; Hongjun Wang; Junping Cao; Dianshuai Gao

    2007-01-01

    BACKGROUND: Substantia nigra is deep in position and limited in range, the glial cell line-derived neurotrophic factor (GDNF) injection directly into substantia nigra has relatively greater damages with higher difficulty. GDNF injection into striatum, the target area of dopaminergic neuron, may protect the dopaminergic neurons in the compact part of substantia nigra through retrograde transport.OBJECTIVE: To investigate the protective effect of intrastriatal GDNF on dopaminergic neurons in the substantia nigra of mice with Parkinson disease (PD), and analyze the action pathway.DESIGN: A controlled observation.SETTING: Neurobiological Laboratory of Xuzhou Medical College.MATERIALS: Twenty-four male Kunming mice of 7 - 8 weeks old were used. GDNF,1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) were purchased from Sigma Company (USA);LEICAQWin image processing and analytical system.METHODS: The experiments were carried out in the Neurobiological Laboratory of Xuzhou Medical College from September 2005 to October 2006. The PD models were established in adult KunMing mice by intraperitoneal injection of MPTP. The model mice were were randomly divided into four groups with 6 mice in each group: GDNF 4-day group, phosphate buffer solution (PSB) 4-day group, GDNF 6-day group and PSB 6-day group. Mice in the GDNF 4 and 6-day groups were administrated with 1 μL GDNF solution (20 μg/L, dispensed with 0.01 mol/L PBS) injected into right striatum at 4 and 6 days after model establishment. Mice in the PSB 4 and 6-day groups were administrated with 0.01 mol/L PBS of the same volume to the same injection at corresponding time points. ② On the 12th day after model establishment, the midbrain tissue section of each mice was divided into 3 areas from rostral to caudal sides. The positive neurons of tyroxine hydroxylase (TH) and calcium binding protein (CB) with obvious nucleolus and clear outline were randomly selected for the measurement, and the number of positive neurons

  4. Biological characteristics of cell lines of human dental alveolus

    Institute of Scientific and Technical Information of China (English)

    陈世璋; 黄靖香; 孙明学; 赵斌

    2003-01-01

    Objective To investigate the biological characteristics of cell lines of healthy and diseased human dental alveoli. Methods Primary cell lines from either healthy or diseased human dental alveoli were obtained. Two cell lines, H-258 and H-171 derived from healthy and diseased human tissues respectively, were selected for morphological study and research on their growth and aging, using cell counting, and histochemical and immunohistochemical staining. Results Primary cell lines were successfully established from innormal dental alveoli. After freezing and thawing for three times, cell growth was continued and no morphological alterations were observed. The doubling time was 53.4 hours and mean division index (MDI) was 4‰. Cells were kept normal after twenty generations with no obvious reduction of doubling time and MDI. Of twenty-six primary cell lines derived from healthy human dental alveoli, only three cell lines achieved generation. After freezing and thawing for twice, cultured cells were still alive at a decreased growth speed, with doubling time of 85.9 hours and MDI of 3‰. Both cell lines, H-171 and H-258, shared the characteristics of osteoblast. Conclusions Primary cell lines of diseased human dental alveoli show greater growth potential. All cell lines of dental alveoli share characteristics of osteoblast. The technique we developed may be put into practice for the treatment of abnormal dental alveoli.

  5. Radiation sensitivity of Merkel cell carcinoma cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Leonard, J.H.; Ramsay, J.R.; Birrell, G.W. [Queensland Institute of Medical Research (Australia)] [and others

    1995-07-30

    Merkel cell carcinoma (MCC), being a small cell carcinoma, would be expected to be sensitive to radiation. Clinical analysis of patients at our center, especially those with macroscopic disease, would suggest the response is quite variable. We have recently established a number of MCC cell lines from patients prior to radiotherapy, and for the first time are in a position to determine their sensitivity under controlled conditions. Some of the MCC lines grew as suspension cultures and could not be single cell cloned; therefore, it was not possible to use clonogenic survival for all cell lines. A tetrazolium based (MTT) assay was used for these lines, to estimate cell growth after {gamma} irradiation. Control experiments were conducted on lymphoblastoid cell lines (LCL) and the adherent MCC line, MCC13, to demonstrate that the two assays were comparable under the conditions used. We have examined cell lines from MCC, small cell lung cancer (SCLC), malignant melanomas, Epstein Barr virus (EBV) transformed lymphocytes (LCL), and skin fibroblasts for their sensitivity to {gamma} irradiation using both clonogenic cell survival and MTT assays. The results show that the tumor cell lines have a range of sensitivities, with melanoma being more resistant (surviving fraction at 2 Gy (SF2) 0.57 and 0.56) than the small cell carcinoma lines, MCC (SF2 range 0.21-0.45, mean SF2 0.30, n = 8) and SCLC (SF2 0.31). Fibroblasts were the most sensitive (SF2 0.13-0.20, mean 0.16, n = 5). The MTT assay, when compared to clonogenic assay for the MCC13 adherent line and the LCL, gave comparable results under the conditions used. Both assays gave a range of SF2 values for the MCC cell lines, suggesting that these cancers would give a heterogeneous response in vivo. The results with the two derivative clones of MCC14 (SF2 for MCC14/1 0.38, MCC14/2 0.45) would further suggest that some of them may develop resistance during clonogenic evolution. 25 refs., 3 figs., 1 tab.

  6. Cystathionine β-synthase-derived hydrogen sulfide regulates lipopolysaccharide-induced apoptosis of the BRL rat hepatic cell line in vitro.

    Science.gov (United States)

    Yan, Jun; Teng, Feixiang; Chen, Weiwei; Ji, Yinglei; Gu, Zhenyong

    2012-11-01

    Hydrogen sulfide (H(2)S), is a member of the novel family of endogenous gaseous transmitters, termed "gasotransmitters exhibiting diverse physiological activities, and is generated in mammalian tissues mainly by cystathionine β-synthase (CBS), cystathionine γ-lyase (CSE) and 3-mercaptopyruvate sulfurtransferase (3MST) in conjunction with cysteine (aspartate) aminotranferase (CAT). The distributions of these enzymes are species- and tissue-specific. The liver, as the main organ that generates H(2)S in vivo, functions in biotransformation and metabolism. However, the liver is vulnerable to damage from internal and external factors, including inflammatory mediators, drugs and poisons. The present study evaluated the endogenous CBS-H(2)S synthesis regulating lipopolysaccharide (LPS)-induced apoptosis of hepatic cells. The rat hepatic cell line, BRL, was incubated with LPS for various time periods to establish a cell-damage model. Incubation with LPS resulted in a significant increase in CBS expression and H(2)S production. It also stimulated apoptosis and decreased the mitochondrial membrane potential. Pretreatment with the CBS inhibitor aminooxyacetic acid (AOAA) or CBS small interfering RNA (siRNA) decreased LPS-enhanced H(2)S production. Notably, apoptosis increased for a short period and then decreased gradually, while the mitochondrial membrane potential demonstrated the opposite trend. These results showed that endogenous CBS-H(2)S synthesis demonstrated early anti-apoptotic activity and subsequent pro-apoptotic activity in LPS-induced apoptosis. These results suggest a new approach for developing novel drugs for this condition.

  7. Absence of XMRV and closely related viruses in primary prostate cancer tissues used to derive the XMRV-infected cell line 22Rv1.

    Directory of Open Access Journals (Sweden)

    Jaydip Das Gupta

    Full Text Available The 22Rv1 cell line is widely used for prostate cancer research and other studies throughout the world. These cells were established from a human prostate tumor, CWR22, that was serially passaged in nude mice and selected for androgen independence. The 22Rv1 cells are known to produce high titers of xenotropic murine leukemia virus-related virus (XMRV. Recent studies suggested that XMRV was inadvertently created in the 1990's when two murine leukemia virus (MLV genomes (pre-XMRV1 and pre-XMRV-2 recombined during passaging of the CWR22 tumor in mice. The conclusion that XMRV originated from mice and not the patient was based partly on the failure to detect XMRV in early CWR22 xenografts. While that deduction is certainly justified, we examined the possibility that a closely related virus could have been present in primary tumor tissue. Here we report that we have located the original prostate tumor tissue excised from patient CWR22 and have assayed the corresponding DNA by PCR and the tissue sections by fluorescence in situ hybridization for the presence of XMRV or a similar virus. The primary tumor tissues lacked mouse DNA as determined by PCR for intracisternal A type particle DNA, thus avoiding one of the limitations of studying xenografts. We show that neither XMRV nor a closely related virus was present in primary prostate tissue of patient CWR22. Our findings confirm and reinforce the conclusion that XMRV is a recombinant laboratory-generated mouse virus that is highly adapted for human prostate cancer cells.

  8. A One Line Derivation of EGARCH

    Directory of Open Access Journals (Sweden)

    Michael McAleer

    2014-06-01

    Full Text Available One of the most popular univariate asymmetric conditional volatility models is the exponential GARCH (or EGARCH specification. In addition to asymmetry, which captures the different effects on conditional volatility of positive and negative effects of equal magnitude, EGARCH can also accommodate leverage, which is the negative correlation between returns shocks and subsequent shocks to volatility. However, the statistical properties of the (quasi- maximum likelihood estimator of the EGARCH parameters are not available under general conditions, but rather only for special cases under highly restrictive and unverifiable conditions. It is often argued heuristically that the reason for the lack of general statistical properties arises from the presence in the model of an absolute value of a function of the parameters, which does not permit analytical derivatives, and hence does not permit (quasi- maximum likelihood estimation. It is shown in this paper for the non-leverage case that: (1 the EGARCH model can be derived from a random coefficient complex nonlinear moving average (RCCNMA process; and (2 the reason for the lack of statistical properties of the estimators of EGARCH under general conditions is that the stationarity and invertibility conditions for the RCCNMA process are not known.

  9. Quantitative Structure-Activity Relationship Analysis of Xanthone Derivates as Cytotoxic Agents in Liver Cancer Cell Line HepG2

    Directory of Open Access Journals (Sweden)

    Isnatin Miladiyah

    2016-05-01

    Full Text Available The study of xanthone derivatives as cytotoxic agents in cancer is increasing. This study was conducted to explore the Quantitative Structure-Activity Relationship (QSAR of xanthones as cytotoxic agents in HepG2 cells, to find compounds with better potency. The data set were taken from the previous study, involving 26 xanthone derivates and their cytotoxic activities in Inhibitory Concentration 50% (IC50. The parameters (descriptors were obtained from quantum mechanics calculation using semiempirical AM1 method and QSAR models determined with principle component regression, with log (1/IC50 as a dependent variable and five latent variables as independent variables. From the 26 main descriptors, PCR reduced them to five latent variables (1st– 5th LV. The QSAR analysis gave the best model as follows: log (1/IC50 = 4.592 – 0.204 LV1 + 0.295 LV2 + 0.028 LV3 (n = 26, r = 0.571, SE = 0.234, Fcount/Ftable ratio = 1.165, PRESS value = 3.766. The study concluded that the descriptors contributed to anticancer activity were volume, mass, surface area, log P, dipole moment, HOMO energy, LUMO energy, and atomic net charge of some atoms. Modifications of substitution that would contribute to cytotoxic activity can be performed at phenyl ring A and C, but not at B.

  10. Derivation and characterisation of hESC lines from supernumerary embryos, experience from Odense, Denmark

    DEFF Research Database (Denmark)

    Harkness, Linda; Rasmussen, Iben Anne; Erb, Karin;

    2010-01-01

    The derivation and characterisation of human embryonic stem cells provides a source of pluripotent stem cells with potential for clinical applications. Utilising locally sourced embryos from two IVF clinics, we derived and characterised five new cell lines for use in a non-clinical setting....... Analysis of clinical data showed that the majority of embryos (94.5%) failed to reach the blastocyst stage of development and of all embryos, regardless of developmental status, 248 embryos were needed to create one stem cell line. From the number of embryos (69) which developed to the blastocyst stage 8...

  11. Calcium insensitivity of FA-6, a cell line derived from a pancreatic cancer associated with humoral hypercalcemia, is mediated by the significantly reduced expression of the Calcium Sensitive Receptor transduction component p38 MAPK

    Directory of Open Access Journals (Sweden)

    Fairfax Benjamin

    2006-11-01

    Full Text Available Abstract The Calcium-Sensing Receptor is a key component of Calcium/Parathyroid hormone homeostatic system that helps maintain appropriate plasma Ca2+ concentrations. It also has a number of non-homeostatic functions, including cell cycle regulation through the p38 MAPK pathway, and recent studies have indicated that it is required for Ca2+ mediated growth arrest in pancreatic carcinoma cells. Some pancreatic cancers produce pathogenic amounts of parathyroid like hormones, however, which significantly increase Ca2+ plasma concentrations and might be expected to block further cell growth. In this study we have investigated the expression and function of the p38 MAPK signaling pathway in Ca2+ sensitive (T3M-4 and insensitive (FA6 pancreatic cancer cell lines. FA-6 cells, which are derived from a pancreatic adenocarcinoma that secretes a parathyroid hormone related peptide, exhibit only very low levels of p38 MAPK expression, relative to T3M-4 cells. Transfecting FA-6 cells with a p38 MAPK expression construct greatly increases their sensitivity to Ca2+. Furthermore, the reduction of p38 MAPK in T3M-4 cells significantly reduces the extent to which high levels of Ca2+ inhibit proliferation. These results suggest that the low levels of p38 MAPK expression in FA-6 cells may serve to reduce their sensitivity to high concentrations of external Ca2+ that would otherwise block proliferation.

  12. Synthesis, characterization of 1,2,4-triazole Schiff base derived 3d-metal complexes: Induces cytotoxicity in HepG2, MCF-7 cell line, BSA binding fluorescence and DFT study

    Science.gov (United States)

    Tyagi, Prateek; Tyagi, Monika; Agrawal, Swati; Chandra, Sulekh; Ojha, Himanshu; Pathak, Mallika

    2017-01-01

    Two novel Schiff base ligands H2L1 and H2L2 have been synthesized by condensation reaction of amine derivative of 1,2,4-triazole moiety with 2-hydroxy-4-methoxybenzaldehyde. Co(II), Ni(II), Cu(II) and Zn(II) of the synthesized Schiff bases were prepared by using a molar ratio of ligand:metal as 1:1. The structure of the Schiff bases and synthesized metal complexes were established by 1H NMR, UV-Vis, IR, Mass spectrometry and molar conductivity. The thermal stability of the complexes was study by TGA. Fluorescence quenching mechanism of metal complexes 1-4 show that Zn(II) and Cu(II) complex binds more strongly to BSA. In DFT studies the geometries of Schiff bases and metal complexes were fully optimized with respect to the energy using the 6-31 + g(d,p) basis set. The spectral data shows that the ligands behaves as binegative tridentate. On the basis of the spectral studies, TGA and DFT data an octahedral geometry has been assigned for Co(II), Ni(II), square planar for Cu(II) and tetrahedral for Zn(II) complexes. The anticancer activity were screened against human breast cancer cell line (MCF-7) and human hepatocellular liver carcinoma cell line (Hep-G2). Result indicates that metal complexes shows increase cytotoxicity in proliferation to cell lines as compared to free ligand.

  13. NCI-H295R, a human adrenal cortex-derived cell line, expresses purinergic receptors linked to Ca²⁺-mobilization/influx and cortisol secretion.

    Directory of Open Access Journals (Sweden)

    Haruhisa Nishi

    Full Text Available Purinergic receptor expression and involvement in steroidogenesis were examined in NCI-H295R (H295R, a human adrenal cortex cell line which expresses all the key enzymes necessary for steroidogenesis. mRNA/protein for multiple P1 (A(2A and A(2B, P2X (P2X₅ and P2X₇, and P2Y (P2Y₁, P2Y₂, P2Y₆, P2Y₁₂, P2Y₁₃, and P2Y₁₄ purinergic receptors were detected in H295R. 2MeS-ATP (10-1000 µM, a P2Y₁ agonist, induced glucocorticoid (GC secretion in a dose-dependent manner, while other extracellular purine/pyrimidine agonists (1-1000 µM had no distinct effect on GC secretion. Extracellular purines, even non-steroidogenic ones, induced Ca²⁺-mobilization in the cells, independently of the extracellular Ca²⁺ concentration. Increases in intracellular Ca²⁺ concentration induced by extracellular purine agonists were transient, except when induced by ATP or 2MeS-ATP. Angiotensin II (AngII: 100 nM and dibutyryl-cyclic AMP (db-cAMP: 500 µM induced both GC secretion and Ca²⁺-mobilization in the presence of extracellular Ca²⁺ (1.2 mM. GC secretion by AngII was reduced by nifedipine (10-100 µM; whereas the Ca²⁺ channel blocker did not inhibit GC secretion by 2MeS-ATP. Thapsigargin followed by extracellular Ca²⁺ exposure induced Ca²⁺-influx in H295R, and the cells expressed mRNA/protein of the component molecules for store-operated calcium entry (SOCE: transient receptor C (TRPC channels, calcium release-activated calcium channel protein 1 (Orai-1, and the stromal interaction molecule 1 (STIM1. In P2Y₁-knockdown, 2MeS-ATP-induced GC secretion was significantly inhibited. These results suggest that H295R expresses a functional P2Y₁ purinergic receptor for intracellular Ca²⁺-mobilization, and that P2Y₁ is linked to SOCE-activation, leading to Ca²⁺-influx which might be necessary for glucocorticoid secretion.

  14. Human embryonic stem cells derived by somatic cell nuclear transfer.

    Science.gov (United States)

    Tachibana, Masahito; Amato, Paula; Sparman, Michelle; Gutierrez, Nuria Marti; Tippner-Hedges, Rebecca; Ma, Hong; Kang, Eunju; Fulati, Alimujiang; Lee, Hyo-Sang; Sritanaudomchai, Hathaitip; Masterson, Keith; Larson, Janine; Eaton, Deborah; Sadler-Fredd, Karen; Battaglia, David; Lee, David; Wu, Diana; Jensen, Jeffrey; Patton, Phillip; Gokhale, Sumita; Stouffer, Richard L; Wolf, Don; Mitalipov, Shoukhrat

    2013-06-06

    Reprogramming somatic cells into pluripotent embryonic stem cells (ESCs) by somatic cell nuclear transfer (SCNT) has been envisioned as an approach for generating patient-matched nuclear transfer (NT)-ESCs for studies of disease mechanisms and for developing specific therapies. Past attempts to produce human NT-ESCs have failed secondary to early embryonic arrest of SCNT embryos. Here, we identified premature exit from meiosis in human oocytes and suboptimal activation as key factors that are responsible for these outcomes. Optimized SCNT approaches designed to circumvent these limitations allowed derivation of human NT-ESCs. When applied to premium quality human oocytes, NT-ESC lines were derived from as few as two oocytes. NT-ESCs displayed normal diploid karyotypes and inherited their nuclear genome exclusively from parental somatic cells. Gene expression and differentiation profiles in human NT-ESCs were similar to embryo-derived ESCs, suggesting efficient reprogramming of somatic cells to a pluripotent state.

  15. The experimental study of effect of exosomes derived from breast cancer cell line on human umbilical vein endothelial cells%乳腺癌细胞exosomes对人脐静脉内皮作用的实验研究

    Institute of Scientific and Technical Information of China (English)

    谢莹珊; 沈宜; 隆霜; 孙迪; 姜蓉; 陈黎

    2011-01-01

    Objective:To observe the effect of exosomes derived from MDA- MB- 231 cell line on proliferation, immigration and capillary- like tube formation of Human Umbilical Vein Endothelial cells. Method: Exosomes were puried by serial ultracentrifugation and sugar density ultracentrifugation, MTT assay was used to observe the effect of exosomes on proliferation of HUVECs;HUVECs were treated with exosomes for 24 h,the change of cell migration was detected by Transwell chamber method. The capillary-like tube formations by HUVECs were observed. Result: MTT result showed that the concentration range of exosomes significantly increased HUVECs proliferation in a concentration - and time - dependent manner ( P < 0.01 ); It may significantly enhance the migration of HUVECs after treated with 200 μ/ml exosomes for 24 h ( P < 0.01 ) , and may significantly promoted the capability of capillary - like tube formation of HUVECs ( P < 0.05 ) Conclusion: Exosomes derived from MDA - MB - 231 cell line significantly increased HUVECs proliferation in a concentration - and time - dependent manner and it may promote the migration and the capability of capillary - like tube formation of HUVECs.%目的:观察人乳腺癌细胞株MDA-MB-231细胞源exosomes对人脐静脉内皮细胞株(HUVECs)增殖、迁移能力及血管样结构形成的影响.方法:超速离心及密度梯度离心法提取exosomes;MTT法检测MDA-MB-231细胞源exosomes对HUVECs增殖的影响;Transwell小室法检测HUVECs与exosomes混合培养24h后迁移能力的影响;观察HUVECs与exosomes混合培养24h后管腔样结构形成变化.结果:各浓度exosomes均具有促进HUVECs细胞增殖作用,且以时间剂量依赖性促进HUVEC细胞增殖(P

  16. Molluscan cells in culture: primary cell cultures and cell lines.

    Science.gov (United States)

    Yoshino, T P; Bickham, U; Bayne, C J

    2013-06-01

    In vitro cell culture systems from molluscs have significantly contributed to our basic understanding of complex physiological processes occurring within or between tissue-specific cells, yielding information unattainable using intact animal models. In vitro cultures of neuronal cells from gastropods show how simplified cell models can inform our understanding of complex networks in intact organisms. Primary cell cultures from marine and freshwater bivalve and gastropod species are used as biomonitors for environmental contaminants, as models for gene transfer technologies, and for studies of innate immunity and neoplastic disease. Despite efforts to isolate proliferative cell lines from molluscs, the snail Biomphalaria glabrata Say, 1818 embryonic (Bge) cell line is the only existing cell line originating from any molluscan species. Taking an organ systems approach, this review summarizes efforts to establish molluscan cell cultures and describes the varied applications of primary cell cultures in research. Because of the unique status of the Bge cell line, an account is presented of the establishment of this cell line, and of how these cells have contributed to our understanding of snail host-parasite interactions. Finally, we detail the difficulties commonly encountered in efforts to establish cell lines from molluscs and discuss how these difficulties might be overcome.

  17. Feeder-independent continuous culture of the PICM-19 pig liver stem cell line

    Science.gov (United States)

    The PICM-19 pig liver stem cell line is a bipotent cell line, i.e., capable of forming either bile ductules or hepatocyte monolayers in vitro, that was derived from the primary culture of pig embryonic stem cells. The cell line has been strictly feeder-dependent in that cell replication morphology,...

  18. Derivation of naive human embryonic stem cells.

    Science.gov (United States)

    Ware, Carol B; Nelson, Angelique M; Mecham, Brigham; Hesson, Jennifer; Zhou, Wenyu; Jonlin, Erica C; Jimenez-Caliani, Antonio J; Deng, Xinxian; Cavanaugh, Christopher; Cook, Savannah; Tesar, Paul J; Okada, Jeffrey; Margaretha, Lilyana; Sperber, Henrik; Choi, Michael; Blau, C Anthony; Treuting, Piper M; Hawkins, R David; Cirulli, Vincenzo; Ruohola-Baker, Hannele

    2014-03-25

    The naïve pluripotent state has been shown in mice to lead to broad and more robust developmental potential relative to primed mouse epiblast cells. The human naïve ES cell state has eluded derivation without the use of transgenes, and forced expression of OCT4, KLF4, and KLF2 allows maintenance of human cells in a naïve state [Hanna J, et al. (2010) Proc Natl Acad Sci USA 107(20):9222-9227]. We describe two routes to generate nontransgenic naïve human ES cells (hESCs). The first is by reverse toggling of preexisting primed hESC lines by preculture in the histone deacetylase inhibitors butyrate and suberoylanilide hydroxamic acid, followed by culture in MEK/ERK and GSK3 inhibitors (2i) with FGF2. The second route is by direct derivation from a human embryo in 2i with FGF2. We show that human naïve cells meet mouse criteria for the naïve state by growth characteristics, antibody labeling profile, gene expression, X-inactivation profile, mitochondrial morphology, microRNA profile and development in the context of teratomas. hESCs can exist in a naïve state without the need for transgenes. Direct derivation is an elusive, but attainable, process, leading to cells at the earliest stage of in vitro pluripotency described for humans. Reverse toggling of primed cells to naïve is efficient and reproducible.

  19. Stable low-level expression of p21WAF1/CIP1 in A549 human bronchogenic carcinoma cell line-derived clones down-regulates E2F1 mRNA and restores cell proliferation control

    Directory of Open Access Journals (Sweden)

    Crawford Erin L

    2006-01-01

    Full Text Available Abstract Background Deregulated cell cycle progression and loss of proliferation control are key properties of malignant cells. In previous studies, an interactive transcript abundance index (ITAI comprising three cell cycle control genes, [MYC × E2F1]/p21 accurately distinguished normal from malignant bronchial epithelial cells (BEC, using a cut-off threshold of 7,000. This cut-off is represented by a line with a slope of 7,000 on a bivariate plot of p21 versus [MYC × E2F1], with malignant BEC above the line and normal BEC below the line. This study was an effort to better quantify, at the transcript abundance level, the difference between normal and malignant BEC. The hypothesis was tested that experimental elevation of p21 in a malignant BEC line would decrease the value of the [MYC × E2F1]/p21 ITAI to a level below this line, resulting in loss of immortality and limited cell population doubling capacity. In order to test the hypothesis, a p21 expression vector was transfected into the A549 human bronchogenic carcinoma cell line, which has low constitutive p21 TA expression relative to normal BEC. Results Following transfection of p21, four A549/p21 clones with stable two-fold up-regulated p21 expression were isolated and expanded. For each clone, the increase in p21 transcript abundance (TA was associated with increased total p21 protein level, more than 5-fold reduction in E2F1 TA, and 10-fold reduction in the [MYC × E2F1]/p21 ITAI to a value below the cut-off threshold. These changes in regulation of cell cycle control genes were associated with restoration of cell proliferation control. Specifically, each transfectant was capable of only 15 population doublings compared with unlimited population doublings for parental A549. This change was associated with an approximate 2-fold increase in population doubling time to 38.4 hours (from 22.3 hrs, resumption of contact-inhibition, and reduced dividing cell fraction as measured by flow

  20. The Derivation of Skeleton Lines for Terrain Features

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The geometric and physical analysis methods are conventional methods for the derivation of skeleton lines in the fields of cartography,digital photogrammetry,and related areas.This paper proposes a stepwise approach that uses the physical analysis method in the first stage and the geometric analysis method in the subsequent stage.The physical analysis method analyses the terrain globally to obtain a rough set of skeleton lines for a terrain surface.The rough skeleton lines help to structure the ordering of feature points by the geometric analysis method.

  1. Adipose-Derived Stem Cells

    DEFF Research Database (Denmark)

    Toyserkani, Navid Mohamadpour; Quaade, Marlene Louise; Sheikh, Søren Paludan

    2015-01-01

    Emerging evidence has shown that adipose tissue is the richest and most accessible source of mesenchymal stem cells. Many different therapies for chronic wounds exist with varying success rates. The capacity of adipose-derived stem cells (ASCs) to promote angiogenesis, secrete growth factors......, regulate the inflammatory process, and differentiate into multiple cell types makes them a potential ideal therapy for chronic wounds. The aim of this article was to review all preclinical trials using ASCs in problem wound models. A systematic search was performed and 12 studies were found where different...

  2. Derivation of induced pluripotent stem cells from pig somatic cells.

    Science.gov (United States)

    Ezashi, Toshihiko; Telugu, Bhanu Prakash V L; Alexenko, Andrei P; Sachdev, Shrikesh; Sinha, Sunilima; Roberts, R Michael

    2009-07-07

    For reasons that are unclear the production of embryonic stem cells from ungulates has proved elusive. Here, we describe induced pluripotent stem cells (iPSC) derived from porcine fetal fibroblasts by lentiviral transduction of 4 human (h) genes, hOCT4, hSOX2, hKLF4, and hc-MYC, the combination commonly used to create iPSC in mouse and human. Cells were cultured on irradiated mouse embryonic fibroblasts (MEF) and in medium supplemented with knockout serum replacement and FGF2. Compact colonies of alkaline phosphatase-positive cells emerged after approximately 22 days, providing an overall reprogramming efficiency of approximately 0.1%. The cells expressed porcine OCT4, NANOG, and SOX2 and had high telomerase activity, but also continued to express the 4 human transgenes. Unlike human ESC, the porcine iPSC (piPSC) were positive for SSEA-1, but negative for SSEA-3 and -4. Transcriptional profiling on Affymetrix (porcine) microarrays and real time RT-PCR supported the conclusion that reprogramming to pluripotency was complete. One cell line, ID6, had a normal karyotype, a cell doubling time of approximately 17 h, and has been maintained through >220 doublings. The ID6 line formed embryoid bodies, expressing genes representing all 3 germ layers when cultured under differentiating conditions, and teratomas containing tissues of ectoderm, mesoderm, and endoderm origin in nude mice. We conclude that porcine somatic cells can be reprogrammed to form piPSC. Such cell lines derived from individual animals could provide a means for testing the safety and efficacy of stem cell-derived tissue grafts when returned to the same pigs at a later age.

  3. A novel, rapid strategy to form dendritomas from human dendritic cells and hepatocellular carcinoma cell line HCCLM3 cells using mature dendritic cells derived from human peripheral blood CD14+ monocytes within 48 hours of in vitro culture

    OpenAIRE

    Guan, Xin; Peng, Ji-Run; Yuan, Lan; Wang, Hui; Wei, Yu-Hua; Leng, Xi-Sheng

    2004-01-01

    AIM: Dendritomas formed by fusing cancer cells to dendritic cells have already been applied to clinical treatment trial of several types of cancers. Dendritic cells for the fusion in most trials and experiments were from blood monocytes in standard 7-d protocol culture, which requires 5-7 d of culture with granulocyte-macrophage–colony-stimulating factor (GM-CSF) and interleukin-4 (IL-4), followed by 2-3 d of activation with a combination of proinflammatory mediators such as tumor necrosis fa...

  4. Extracellular poly(ADP-ribose) is a neurotrophic signal that upregulates glial cell line-derived neurotrophic factor (GDNF) levels in vitro and in vivo.

    Science.gov (United States)

    Nakajima, Hidemitsu; Itakura, Masanori; Sato, Keishi; Nakamura, Sunao; Azuma, Yasu-Taka; Takeuchi, Tadayoshi

    2017-03-04

    Synthesis of poly(ADP-ribose) (PAR) is catalyzed by PAR polymerase-1 (PARP-1) in neurons. PARP1 plays a role in various types of brain damage in neurodegenerative disorders. In neurons, overactivation of PARP-1 during oxidative stress induces robust PAR formation, which depletes nicotinamide adenine dinucleotide levels and leads to cell death. However, the role of the newly-formed PAR in neurodegenerative disorders remains elusive. We hypothesized that the effects of PAR could occur in the extracellular space after it is leaked from damaged neurons. Here we report that extracellular PAR (EC-PAR) functions as a neuroprotective molecule by inducing the synthesis of glial cell line-derived neurotrophic factor (GDNF) in astrocytes during neuronal cell death, both in vitro and in vivo. In primary rat astrocytes, exogenous treatment with EC-PAR produced GDNF but not other neurotrophic factors. The effect was concentration-dependent and did not affect cell viability in rat C6 astrocytoma cells. Topical injection of EC-PAR into rat striatum upregulated GDNF levels in activated astrocytes and improved pathogenic rotation behavior in a unilateral 6-hydroxydopamine model of Parkinson disease in rats. These findings indicate that EC-PAR acts as a neurotrophic enhancer by upregulating GDNF levels. This effect protects the remaining neurons following oxidative stress-induced brain damage, such as that seen with Parkinson disease.

  5. Establishment of Germ-line Competent C57BL/6J Embryonic Stem Cell Lines

    Institute of Scientific and Technical Information of China (English)

    Gui-jun YAN; Zheng GU; Jian WANG; Jia-ke TSO

    2004-01-01

    Objective To establish C57BL/6J embryonic stem (ES) cell lines with potential germline contribution Methods ES cells were isolated from blastocyst inner cell mass of C57BL/6J mice, and cultured for 15 passages, and then injected into blastococels of lCR mice blastocysts to establish chimeric mice.Results Three ES cell lines (mC57ESl,mC57ES3, mC57ES7) derived from the inner cell mass of C57BL/6J mice blastocysts were established. They were characteristic of undifferentiated state, including normal XY karyotype, expression of a specific cell surface marker "stage-specific embryonic antigen-1" and alkaline phosphatase in continuous passage. When injected into immunodeficient mice, mC5 7ES1 cells consis tently differentiated into derivatives of all three embryonic germ layers. When mC57ES1cells were transferred into ICR mice blastocysts, 4 chimeric mice have been obtained.One male of them revealed successful germ-line transmission. Conclussion We have obtained C57BL/6J ES cell lines with a potential germ-line contribution, which can be used to generate transgenic and gene knock-out mice.

  6. Establishment of Jurkat tet-on cell line

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Tet-control system is developed to tightly control target gene expression in mammalian cells by using the regulatory elements of tetracycline-repressor of the transposor Tn10 from E.Coli.We have transfected reverse tetracycline-controlled transactivator gene (rtTA) into genome of Jurkat cells and established two Jurkat tet-on cell lines.Induction of luciferase reporter activity with doxycycline,a tetracycline derivative,is dose-dependent with a peak value of 32-fold increment.Establishment of Jurkat tet-on cell lines greatly facilitates quantitative studies on target gene functions in the cells.

  7. Further characterization of the first seminoma cell line TCam-2.

    Science.gov (United States)

    de Jong, Jeroen; Stoop, Hans; Gillis, Ad J M; Hersmus, Remko; van Gurp, Ruud J H L M; van de Geijn, Gert-Jan M; van Drunen, Ellen; Beverloo, H Berna; Schneider, Dominik T; Sherlock, Jon K; Baeten, John; Kitazawa, Sohei; van Zoelen, E Joop; van Roozendaal, Kees; Oosterhuis, J Wolter; Looijenga, Leendert H J

    2008-03-01

    Testicular germ cell tumors of adolescents and adults (TGCTs) can be classified into seminomatous and nonseminomatous tumors. Various nonseminomatous cell lines, predominantly embryonal carcinoma, have been established and proven to be valuable for pathobiological and clinical studies. So far, no cell lines have been derived from seminoma which constitutes more than 50% of invasive TGCTs. Such a cell line is essential for experimental investigation of biological characteristics of the cell of origin of TGCTs, i.e., carcinoma in situ of the testis, which shows characteristics of a seminoma cell. Before a cell line can be used as model, it must be verified regarding its origin and characteristics. Therefore, a multidisciplinary approach was undertaken on TCam-2 cells, supposedly the first seminoma cell line. Fluorescence in situ hybridization, array comparative genomic hybridization, and spectral karyotyping demonstrated an aneuploid DNA content, with gain of 12p, characteristic for TGCTs. Genome wide mRNA and microRNA expression profiling supported the seminoma origin, in line with the biallelic expression of imprinted genes IGF2/H19 and associated demethylation of the imprinting control region. Moreover, the presence of specific markers, demonstrated by immunohistochemistry, including (wild type) KIT, stem cell factor, placental alkaline phosphatase, OCT3/4 (also demonstrated by a specific Q-PCR) and NANOG, and the absence of CD30, SSX2-4, and SOX2, confirms that TCam-2 is a seminoma cell line. Although mutations in oncogenes and tumor suppressor genes are rather rare in TGCTs, TCam-2 had a mutated BRAF gene (V600E), which likely explains the fact that these cells could be propagated in vitro. In conclusion, TCam-2 is the first well-characterized seminoma-derived cell line, with an exceptional mutation, rarely found in TGCTs.

  8. Comparative effects of food-derived polyphenols on the viability and apoptosis of a human hepatoma cell line (HepG2).

    Science.gov (United States)

    Ramos, Sonia; Alía, Mario; Bravo, Laura; Goya, Luis

    2005-02-23

    Consumption of fruits and vegetables, which are rich in polyphenols, has been associated with a reduced risk of chronic diseases such as cancer. Dietary polyphenols have antioxidant and antiproliferative properties that might explain their beneficial effect on cancer prevention. The aim of this study was to investigate the effects of different pure polyphenols [quercetin, chlorogenic acid, and (-)-epicatechin] and natural fruit extracts (strawberry and plum) on viability or apoptosis of human hepatoma HepG2 cells. The treatment of cells for 18 h with quercetin and fruit extracts reduced cell viability in a dose-dependent manner; however, chlorogenic acid and (-)-epicatechin had no prominent effects on the cell death rate. Similarly, quercetin and strawberry and plum extracts, rather than chlorogenic acid and (-)-epicatechin, induced apoptosis in HepG2 cells. Moreover, quercetin and fruit extracts arrested the G1 phase in the cell cycle progression prior to apoptosis. Quercetin and strawberry and plum extracts may induce apoptosis and contribute to a reduced cell viability in HepG2 cells.

  9. Bacterial toxin-inducible gene expression of cathelicidin-B1 in the chicken bursal lymphoma-derived cell line DT40: functional characterization of cathelicidin-B1.

    Science.gov (United States)

    Takeda, Asuna; Tsubaki, Takashi; Sagae, Nozomi; Onda, Yumiko; Inada, Yuri; Mochizuki, Takuya; Okumura, Kazuo; Kikuyama, Sakae; Kobayashi, Tetsuya; Iwamuro, Shawichi

    2014-09-01

    Chicken cathelicidin-B1 (chCATH-B1) is a major host defense peptide of the chicken bursa of Fabricius (BF). To investigate the mechanisms of chCATH-B1 gene expression in the BF, we focused on the DT40 cell line derived from chicken bursal lymphoma as a model for analysis. A cDNA encoding chCATH-B1 precursor was cloned from DT40 cells. The nucleotide sequence of the cDNA was identical with that of the BF chCATH-B1. A broth dilution analysis showed that the synthetic chCATH-B1 exhibited a significant defensive activity against both Escherichia coli and Staphylococcus aureus. A scanning microscopic analysis demonstrated that chCATH-B1 inhibited bacterial growth through membrane destruction with formation of blebs and spheroplasts. Limulus amoebocyte lysate assay and electromobility shift assay results revealed that chCATH-B1 bound to lipopolysaccharide (LPS) and lipoteichoic acid (LTA), which are the surface substances of the E. coli and S. aureus cell, respectively. A chemotactic assay results revealed that chCATH-B1 showed mouse-derived P-815 mastocytoma migrating activity dose-dependently but with a higher concentration, resulting in a loss of the activity. A semi-quantitative real-time RT-PCR analysis revealed that LPS stimulated chCATH-B1 gene expression in a dose-dependent manner and that the LPS-inducible chCATH-B1 gene expression was inhibited by the administration of dexamethasone. The chCATH-B1 mRNA levels in DT40 cells were also increased by the administration of bacterial LTA. The results indicate that bacterial toxins induce chCATH-B1 gene expression in the chicken BF and the peptide expressed in the organ would act against pathogenic microorganisms not only directly but also indirectly by attracting mast cells.

  10. Parameters influencing derivation of embryonic stem cells from murine embryos.

    Science.gov (United States)

    Batlle-Morera, Laura; Smith, Austin; Nichols, Jennifer

    2008-12-01

    The derivation of ES cells is poorly understood and varies in efficiency between different strains of mice. We have investigated potential differences between embryos of permissive and recalcitrant strains during diapause and ES cell derivation. We found that in diapause embryos of the recalcitrant C57BL/6 and CBA strains, the epiblast failed to expand during the primary explant phase of ES cell derivation, whereas in the permissive 129 strain, it expanded dramatically. Epiblasts from the recalcitrant strains could be expanded by reducing Erk activation. Isolation of 129 epiblasts facilitated very efficient derivation of ES cell lines in serum- and feeder-free conditions, but reduction of Erk activity was required for derivation of ES cells from isolated C57BL/6 or CBA epiblasts. The results suggest that the discrepancy in ES cell derivation efficiency is not attributable merely to variable prodifferentiative effects of the extra-embryonic lineages but also to an intrinsic variability within the epiblast to maintain pluripotency.

  11. PrP{sup C} displays an essential protective role from oxidative stress in an astrocyte cell line derived from PrP{sup C} knockout mice

    Energy Technology Data Exchange (ETDEWEB)

    Bertuchi, Fernanda R. [Center for Natural Sciences and Humanities, Federal University of ABC - UFABC, Avenida dos Estados, 5001, Bloco B, 09210-170, Santo Andre, SP (Brazil); Bourgeon, Dominique M.G.; Landemberger, Michele C.; Martins, Vilma R. [International Center for Research and Education, A.C. Camargo Hospital, Rua Tagua 440, 01505-010 Sao Paulo, SP (Brazil); Cerchiaro, Giselle, E-mail: giselle.cerchiaro@ufabc.edu.br [Center for Natural Sciences and Humanities, Federal University of ABC - UFABC, Avenida dos Estados, 5001, Bloco B, 09210-170, Santo Andre, SP (Brazil)

    2012-02-03

    Highlights: Black-Right-Pointing-Pointer PrP{sup C} in solution acts as a radical scavenger. Black-Right-Pointing-Pointer PrP{sup C} reduces hydrogen peroxide toxicity in astrocytes. Black-Right-Pointing-Pointer Increase in ROS disrupted the cell cycle in the PrP{sup C}-knockout astrocytes. Black-Right-Pointing-Pointer PrP{sup C} prevents the cell death independently of an SOD-like activity. -- Abstract: The PrP{sup C} protein, which is especially present in the cellular membrane of nervous system cells, has been extensively studied for its controversial antioxidant activity. In this study, we elucidated the free radical scavenger activity of purified murine PrP{sup C} in solution and its participation as a cell protector in astrocytes that were subjected to treatment with an oxidant. In vitro and using an EPR spin-trapping technique, we observed that PrP{sup C} decreased the oxidation of the DMPO trap in a Fenton reaction system (Cu{sup 2+}/ascorbate/H{sub 2}O{sub 2}), which was demonstrated by approximately 70% less DMPO/OH{sup {center_dot}}. In cultured PrP{sup C}-knockout astrocytes from mice, the absence of PrP{sup C} caused an increase in intracellular ROS (reactive oxygen species) generation during the first 3 h of H{sub 2}O{sub 2} treatment. This rapid increase in ROS disrupted the cell cycle in the PrP{sup C}-knockout astrocytes, which increased the population of cells in the sub-G1 phase when compared with cultured wild-type astrocytes. We conclude that PrP{sup C} in solution acts as a radical scavenger, and in astrocytes, it is essential for protection from oxidative stress caused by an external chemical agent, which is a likely condition in human neurodegenerative CNS disorders and pathological conditions such as ischemia.

  12. JKT-1 is not a human seminoma cell line.

    Science.gov (United States)

    de Jong, Jeroen; Stoop, Hans; Gillis, Ad J M; van Gurp, Ruud J H L M; van Drunen, Ellen; Beverloo, H Berna; Lau, Yun-Fai Chris; Schneider, Dominik T; Sherlock, Jon K; Baeten, John; Hatakeyama, Shingo; Ohyama, Chikara; Oosterhuis, J Wolter; Looijenga, Leendert H J

    2007-08-01

    The JKT-1 cell line has been used in multiple independent studies as a representative model of human testicular seminoma. However, no cell line for this specific tumour type has been independently confirmed previously; and therefore, the seminomatous origin of JKT-1 must be proven. The genetic constitution of the JKT-1 cells was determined using flow cytometry and spectral karyotyping, as well as array comparative genomic hybridization and fluorescent in situ hybridization. Marker profiling, predominantly based on differentially expressed proteins during normal germ cell development, was performed by immunohistochemistry and Western blot analyses. Moreover, genome wide affymetrix mRNA expression and profiling of 157 microRNAs was performed, and the status of genomic imprinting was determined. A germ cell origin of the JKT-1 cells was in line with genomic imprinting status and marker profile (including positive staining for several cancer-testis antigens). However, the supposed primary tumour, from which the cell line was derived, being indeed a classical seminoma, was molecularly proven not to be the origin of the cell line. The characteristic chromosomal anomalies of seminoma, e.g. gain of the short arm of chromosome 12, as well as the informative marker profile (positive staining for OCT3/4, NANOG, among others) were absent in the various JKT-1 cell lines investigated, irrespective of where the cells were cultured. All results indicate that the JKT-1 cell line is not representative of human seminoma. Although it can originate from an early germ cell, a non-germ cell derivation cannot be excluded.

  13. Derivation of human embryonic stem cells in defined conditions.

    Science.gov (United States)

    Ludwig, Tenneille E; Levenstein, Mark E; Jones, Jeffrey M; Berggren, W Travis; Mitchen, Erika R; Frane, Jennifer L; Crandall, Leann J; Daigh, Christine A; Conard, Kevin R; Piekarczyk, Marian S; Llanas, Rachel A; Thomson, James A

    2006-02-01

    We have previously reported that high concentrations of basic fibroblast growth factor (bFGF) support feeder-independent growth of human embryonic stem (ES) cells, but those conditions included poorly defined serum and matrix components. Here we report feeder-independent human ES cell culture that includes protein components solely derived from recombinant sources or purified from human material. We describe the derivation of two new human ES cell lines in these defined culture conditions.

  14. Investigation of radiosensitivity gene signatures in cancer cell lines.

    Directory of Open Access Journals (Sweden)

    John S Hall

    Full Text Available Intrinsic radiosensitivity is an important factor underlying radiotherapy response, but there is no method for its routine assessment in human tumours. Gene signatures are currently being derived and some were previously generated by expression profiling the NCI-60 cell line panel. It was hypothesised that focusing on more homogeneous tumour types would be a better approach. Two cell line cohorts were used derived from cervix [n = 16] and head and neck [n = 11] cancers. Radiosensitivity was measured as surviving fraction following irradiation with 2 Gy (SF2 by clonogenic assay. Differential gene expression between radiosensitive and radioresistant cell lines (SF2 median was investigated using Affymetrix GeneChip Exon 1.0ST (cervix or U133A Plus2 (head and neck arrays. There were differences within cell line cohorts relating to tissue of origin reflected by expression of the stratified epithelial marker p63. Of 138 genes identified as being associated with SF2, only 2 (1.4% were congruent between the cervix and head and neck carcinoma cell lines (MGST1 and TFPI, and these did not partition the published NCI-60 cell lines based on SF2. There was variable success in applying three published radiosensitivity signatures to our cohorts. One gene signature, originally trained on the NCI-60 cell lines, did partially separate sensitive and resistant cell lines in all three cell line datasets. The findings do not confirm our hypothesis but suggest that a common transcriptional signature can reflect the radiosensitivity of tumours of heterogeneous origins.

  15. Violacein, an indole-derived purple-colored natural pigment produced by Janthinobacterium lividum, inhibits the growth of head and neck carcinoma cell lines both in vitro and in vivo.

    Science.gov (United States)

    Masuelli, Laura; Pantanella, Fabrizio; La Regina, Giuseppe; Benvenuto, Monica; Fantini, Massimo; Mattera, Rosanna; Di Stefano, Enrica; Mattei, Maurizio; Silvestri, Romano; Schippa, Serena; Manzari, Vittorio; Modesti, Andrea; Bei, Roberto

    2016-03-01

    Violacein (VIO; 3-[1,2-dihydro-5-(5-hydroxy-1H-indol-3-yl)-2-oxo-3H-pyrrol-3-ylidene]-1,3-dihydro-2H-indol-2-one), an indole-derived purple-colored pigment, produced by a limited number of Gram-negative bacteria species, including Chromobacterium violaceum and Janthinobacterium lividum, has been demonstrated to have anti-cancer activity, as it interferes with survival transduction signaling pathways in different cancer models. Head and neck carcinoma (HNC) represents the sixth most common and one of the most fatal cancers worldwide. We determined whether VIO was able to inhibit head and neck cancer cell growth both in vitro and in vivo. We provide evidence that VIO treatment of human and mouse head and neck cancer cell lines inhibits cell growth and induces autophagy and apoptosis. In fact, VIO treatment increased PARP-1 cleavage, the Bax/Bcl-2 ratio, the inhibition of ERK1 and ERK2 phosphorylation, and the expression of light chain 3-II (LC3-II). Moreover, VIO was able to induce p53 degradation, cytoplasmic nuclear factor kappa B (NF-κB) accumulation, and reactive oxygen species (ROS) production. VIO induced a significant increase in ROS production. VIO administration was safe in BALB/c mice and reduced the growth of transplanted salivary gland cancer cells (SALTO) in vivo and prolonged median survival. Taken together, our results indicate that the treatment of head and neck cancer cells with VIO can be useful in inhibiting in vivo and in vitro cancer cell growth. VIO may represent a suitable tool for the local treatment of HNC in combination with standard therapies.

  16. Transfection of recombinant retrovirus vector pLXSN-glial cell line-derived neurotrophic factor into umbilical cord-derived mesenchymal stem cells%pLXSN-胶质细胞源性神经营养因子重组载体转染脐带间充质干细胞的研究

    Institute of Scientific and Technical Information of China (English)

    吴学建; 韩克; 朱旭

    2012-01-01

    目的 构建大鼠胶质细胞源性神经营养因子(GDNF)基因修饰的脐带间充质干细胞(UCMSCs).方法 鉴定重组体中目的基因.脂质体包裹法将pLXSN-GDNF(携带大鼠胶质细胞源性生长因子的重组逆转录病毒载体)包装到PA317细胞中.NIH3T3细胞测定逆转录病毒滴度.病毒转染增殖旺盛的UCMSCs.免疫组织化学染色法和逆转录-聚合酶链反应(RT-PCR)法检测GDNF基因的表达.结果 目的基因正确.脂质体包裹法成功将pLXSN-GDNF载体转染入包装细胞PA317中.NIH3T3细胞测定最高病毒滴度为1×104 CFU/mt.免疫组织化学染色结果示:GDNF-UCMSCs抗GDNF蛋白染色阳性.RT-PCR结果示:转染后GDNF-UCMSCs表达GDNF mRNA的水平明显高于未转染的UCMSCs,差异有统计学意义(P<0.01).结论 成功构建GDNF基因修饰的UCMSCs.%Objective To construct human umbilical cord-derived mesenchymal stem cells which were modified by glial cell line-derived neurotrophic factor gene.Methods The target gene in was identified.PA317 cells were transfected with recombinant retroviral vector pLXSN-glial cell line-derived neurotrophic factor (GDNF) using liposomes.The retrovirus titers were determined.Then the umbilical cord-derived mesenchymal stem cells (UCMSCs) were infected by pLXSN-GDNF.Finally,the immunocytochemistry and reverse transcription-polymerase chain reaction (RT-PCR) were used to detect the expression of GDNF.Results The target gene was correct.The pLXSN-GDNF vector was successfully transfected into the PA317 cells using liposomes.The highest virus titre of the clone was 1 x 104 CFU/ml.Cells in both groups were immunohistochemically positive for GDNF expression.Staining for GDNF was more prominent in the UCMSCs infected with pLXSN-GDNF.RT-PCR revealed the UCMSCs modified by GDNF gene expressed GDNF mRNA obviously higher than the UCMSCs which were not decorated by GDNF gene (P <0.01).Conclusion The UCMSCs modified by GDNF were successfully constructed.

  17. Establishment of human embryonic stem cell line from gamete donors

    Institute of Scientific and Technical Information of China (English)

    LI Tao; ZHOU Can-quan; MAI Qing-yun; ZHUANG Guang-lun

    2005-01-01

    Background Human embryonic stem (HES) cell derived from human blastocyst can be propagated indefinitely in the primitive undifferentiated state while remaining pluripotent. It has exciting potential in human developmental biology, drug discovery, and transplantation medicine. But there are insufficient HES cell lines for further study. Methods Three oocyte donors were studied, and 3 in vitro fertilization (IVF) cycles were carried out to get blastocysts for the establishment of HES cell line. Isolated from blastocysts immunosurgically, inner cell mass (ICM) was cultured and propagated on mouse embryonic fibroblasts (MEFs). Once established, morphology, cell surface markers, karyotype and differentiating ability of the cell line were thoroughly analyzed.Results Four ICMs from 7 blastocysts were cultured on MEFs. After culture, one cell line (cHES-1) was established and met the criteria for defining human pluripotent stem cells including a series of markers used to identify pluripotent stem cells, morphological similarity to primate embryonic stem cells and HES reported else where. Normal and stable karyotype maintained over 60 passages, and demonstrated ability to differentiate into a wide variety of cell types.Conclusions HES cell lines can be established from gamete donors at a relatively highly efficient rate. The establishment will exert a widespread impact on biomedical research.

  18. In vitro radiosensitivity of human leukemia cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Weichselbaum, R.R.; Greenberger, J.S.; Schmidt, A.; Karpas, A.; Moloney, W.C.; Little, J.B.

    1981-05-01

    The in vitro radiobiologic survival values (n, D0) of four tumor lines derived from human hematopoietic tumors were studied. These cell lines were HL50 (n . 1.3, D0 . 117 rad(1.17 Gy)), promyelocytic leukemia; K562 (n . 1.4, D0 . 165 rad(1.65 Gy)), erythroleukemia; 45 (n . 1.1, D0 . 147 rad(1.47 Gy)), acute lymphocyte leukemia; and 176 (n . 4.0, D0 . 76 rad(0.76 Gy)), acute monomyelogenous leukemia. More cell lines must be examined before the exact relationship between in vitro radiosensitivity and clinical radiocurability is firmly established.

  19. Hypoxia perturbs aryl hydrocarbon receptor signaling and CYP1A1 expression induced by PCB 126 in human skin and liver-derived cell lines.

    Science.gov (United States)

    Vorrink, Sabine U; Severson, Paul L; Kulak, Mikhail V; Futscher, Bernard W; Domann, Frederick E

    2014-02-01

    The aryl hydrocarbon receptor (AhR) is an important mediator of toxic responses after exposure to xenobiotics including 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and dioxin-like polychlorinated biphenyls (PCBs). Activation of AhR responsive genes requires AhR dimerization with the aryl hydrocarbon receptor nuclear translocator (ARNT), a heterodimeric partner also shared by the hypoxia-inducible factor-1α (HIF-1α) protein. TCDD-stimulated AhR transcriptional activity can be influenced by hypoxia; however, it less well known whether hypoxia interferes with AhR transcriptional transactivation in the context of PCB-mediated AhR activation in human cells. Elucidation of this interaction is important in liver hepatocytes which extensively metabolize ingested PCBs and experience varying degrees of oxygen tension during normal physiologic function. This study was designed to assess the effect of hypoxia on AhR transcriptional responses after exposure to 3,3',4,4',5-pentachlorobiphenyl (PCB 126). Exposure to 1% O2 prior to PCB 126 treatment significantly inhibited CYP1A1 mRNA and protein expression in human HepG2 and HaCaT cells. CYP1A1 transcriptional activation was significantly decreased upon PCB 126 stimulation under conditions of hypoxia. Additionally, hypoxia pre-treatment reduced PCB 126 induced AhR binding to CYP1 target gene promoters. Importantly, ARNT overexpression rescued cells from the inhibitory effect of hypoxia on XRE-luciferase reporter activity. Therefore, the mechanism of interference of the signaling crosstalk between the AhR and hypoxia pathways appears to be at least in part dependent on ARNT availability. Our results show that AhR activation and CYP1A1 expression induced by PCB 126 were significantly inhibited by hypoxia and hypoxia might therefore play an important role in PCB metabolism and toxicity.

  20. Establishment of human infancy hemangioma-derived endothelial cell line XPTS-1 and animal model of human infancy hemangioma%婴幼儿血管瘤细胞系XPTS-1和动物模型的建立

    Institute of Scientific and Technical Information of China (English)

    李鹏; 肖小娥; 徐泉; 郭正团

    2011-01-01

    Objective To establish an immortalized human infancy hemangioma-derived endothelial cell line (HemEC) and animal model of human infancy hemangioma. Methods Hemangioma-derived endothelial cells from specimen of human infancy hemangioma were cultured in vitro and monocloed, and then its growth curve was made, karyomorphism of chromosome analyzed, morphologic characteristics observe,factor Ⅷ related antigen identified by immunohistochemical method. Vascular endothelial growth factor receptor 2(VEGFR-2) was detected by flow cytometry. HemEC were inoculated subcutaneously in athymicmouse to establish animal model of infancy hemangioma. The animal model was observed closely and its pathological characteristic was also studied. Results The cultural cells grew active, and immortalized spontaneously when they were subcultured on sixteenth generation. This cell line was cultivated for more than 70 times within one year and in good condition after freezing and resuscitating once and again, and had the morphologic character of HemEC. The cell population doubling time was 22 h. Factor Ⅷ and VEGFR-2 were expressed positively. Karyo type analysis of the cell line showed abnormal diploid with the modal chromosomal number varying between diploid and triploid. The cell line was then named XPTS-1. The animal model of infancy hemangioma was successfully established and its character of histopathology was similar with that of infancy hemangioma. Conclusions The cell line of HemEC was successfully established and immortalized spontaneously, and had the morphologic and biological character of HemEC. The animal model of infancy hemangioma was successfully established and showed the character of histopathology similar with that of infancy hemangioma.%目的 建立婴幼儿血管瘤源性血管内皮细胞系(hemangioma-derived endothelial cell line,HemEC)及其动物模型.方法 采用组织块法进行HemEC体外培养,制作HemEC生长曲线,免疫组化法行Ⅷ因子相关抗原

  1. Stemness is derived from thyroid cancer cells

    Directory of Open Access Journals (Sweden)

    Risheng eMa

    2014-07-01

    Full Text Available Background: One hypothesis for thyroid cancer development is its derivation from thyroid cancer stem cells (CSCs. Such cells could arise via different paths including from mutated resident stem cells within the thyroid gland or via epithelial to mesenchymal transition (EMT from malignant cells since EMT is known to confer stem-like characteristics. Methods: To examine the status of stemness in thyroid papillary cancer we employed a murine model of thyroid papillary carcinoma and examined the expression of stemness and EMT using qPCR and histochemistry in mice with a thyroid-specific knock-in of oncogenic Braf (LSL-Braf(V600E/TPO-Cre. This construct is only activated at the time of thyroid peroxidase (TPO expression in differentiating thyroid cells and cannot be activated by undifferentiated stem cells which do not express TPO.Results: There was decreased expression of thyroid specific genes such as Tg and NIS and increased expression of stemness markers such as Oct4, Rex1, CD15 and Sox2 in the thyroid carcinoma tissue from 6 week old BRAFV600E mice. The decreased expression of the epithelial marker E-cadherin and increased EMT regulators including Snail, Slug, and TGF-β1 and TGF-β3, and the mesenchymal marker vimentin demonstrated the simultaneous progression of EMT and the CSC-like phenotype. Stemness was also found in a derived cancer thyroid cell line in which overexpression of Snail caused up-regulation of vimentin expression and up regulation of stemness markers Oct4, Rex1, CD15 with enhanced migration ability of the cells. Conclusions: Our findings support our earlier hypothesis that stemness in thyroid cancer is derived via EMT rather than from resident thyroid stem cells. In mice with a thyroid-specific knock-in of oncogenic Braf (LSL-Braf(V600E/TPO-Cre the neoplastic changes were dependent on thyroid cell differentiation and the onset of stemness must have been derived from differentiated thyroid epithelial cells.

  2. Hypoxia perturbs aryl hydrocarbon receptor signaling and CYP1A1 expression induced by PCB 126 in human skin and liver-derived cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Vorrink, Sabine U. [Interdisciplinary Graduate Program in Human Toxicology, The University of Iowa, Iowa City, IA (United States); Department of Radiation Oncology, The University of Iowa, Iowa City, IA (United States); Severson, Paul L. [Department of Pharmacology and Toxicology, The University of Arizona, Tucson, AZ (United States); Kulak, Mikhail V. [Department of Surgery, The University of Iowa, Iowa City, IA (United States); Futscher, Bernard W. [Department of Pharmacology and Toxicology, The University of Arizona, Tucson, AZ (United States); Domann, Frederick E., E-mail: frederick-domann@uiowa.edu [Interdisciplinary Graduate Program in Human Toxicology, The University of Iowa, Iowa City, IA (United States); Department of Radiation Oncology, The University of Iowa, Iowa City, IA (United States); Department of Surgery, The University of Iowa, Iowa City, IA (United States)

    2014-02-01

    The aryl hydrocarbon receptor (AhR) is an important mediator of toxic responses after exposure to xenobiotics including 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and dioxin-like polychlorinated biphenyls (PCBs). Activation of AhR responsive genes requires AhR dimerization with the aryl hydrocarbon receptor nuclear translocator (ARNT), a heterodimeric partner also shared by the hypoxia-inducible factor-1α (HIF-1α) protein. TCDD-stimulated AhR transcriptional activity can be influenced by hypoxia; however, it less well known whether hypoxia interferes with AhR transcriptional transactivation in the context of PCB-mediated AhR activation in human cells. Elucidation of this interaction is important in liver hepatocytes which extensively metabolize ingested PCBs and experience varying degrees of oxygen tension during normal physiologic function. This study was designed to assess the effect of hypoxia on AhR transcriptional responses after exposure to 3,3′,4,4′,5-pentachlorobiphenyl (PCB 126). Exposure to 1% O{sub 2} prior to PCB 126 treatment significantly inhibited CYP1A1 mRNA and protein expression in human HepG2 and HaCaT cells. CYP1A1 transcriptional activation was significantly decreased upon PCB 126 stimulation under conditions of hypoxia. Additionally, hypoxia pre-treatment reduced PCB 126 induced AhR binding to CYP1 target gene promoters. Importantly, ARNT overexpression rescued cells from the inhibitory effect of hypoxia on XRE-luciferase reporter activity. Therefore, the mechanism of interference of the signaling crosstalk between the AhR and hypoxia pathways appears to be at least in part dependent on ARNT availability. Our results show that AhR activation and CYP1A1 expression induced by PCB 126 were significantly inhibited by hypoxia and hypoxia might therefore play an important role in PCB metabolism and toxicity. - Highlights: • Significant crosstalk exists between AhR and HIF-1α signaling. • Hypoxia perturbs PCB 126 induced AhR function and

  3. In vitro and in silico derived relative effect potencies of ah-receptor-mediated effects by PCDD/Fs and PCBs in rat, mouse, and guinea pig CALUX cell lines.

    Science.gov (United States)

    Ghorbanzadeh, Mehdi; van Ede, Karin I; Larsson, Malin; van Duursen, Majorie B M; Poellinger, Lorenz; Lücke-Johansson, Sandra; Machala, Miroslav; Pěnčíková, Kateřina; Vondráček, Jan; van den Berg, Martin; Denison, Michael S; Ringsted, Tine; Andersson, Patrik L

    2014-07-21

    For a better understanding of species-specific relative effect potencies (REPs), responses of dioxin-like compounds (DLCs) were assessed. REPs were calculated using chemical-activated luciferase gene expression assays (CALUX) derived from guinea pig, rat, and mouse cell lines. Almost all 20 congeners tested in the rodent cell lines were partial agonists and less efficacious than 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). For this reason, REPs were calculated for each congener using concentrations at which 20% of the maximal TCDD response was reached (REP20TCDD). REP20TCDD values obtained for PCDD/Fs were comparable with their toxic equivalency factors assigned by the World Health Organization (WHO-TEF), while those for PCBs were in general lower than the WHO-TEF values. Moreover, the guinea pig cell line was the most sensitive as indicated by the 20% effect concentrations of TCDD of 1.5, 5.6, and 11.0 pM for guinea pig, rat, and mouse cells, respectively. A similar response pattern was observed using multivariate statistical analysis between the three CALUX assays and the WHO-TEFs. The mouse assay showed minor deviation due to higher relative induction potential for 2,3,7,8-tetrachlorodibenzofuran and 2,3,4,6,7,8-hexachlorodibenzofuran and lower for 1,2,3,4,6,7,8-heptachlorodibenzofuran and 3,3',4,4',5-pentachlorobiphenyl (PCB126). 2,3,7,8-Tetrachlorodibenzofuran was more than two times more potent in the mouse assay as compared with that of rat and guinea pig cells, while measured REP20TCDD for PCB126 was lower in mouse cells (0.05) as compared with that of the guinea pig (0.2) and rat (0.07). In order to provide REP20TCDD values for all WHO-TEF assigned compounds, quantitative structure-activity relationship (QSAR) models were developed. The QSAR models showed that specific electronic properties and molecular surface characteristics play important roles in the AhR-mediated response. In silico derived REP20TCDD values were generally consistent with the WHO

  4. Transcription of LINE-derived sequences in exercise-induced stress in horses.

    Science.gov (United States)

    Capomaccio, S; Verini-Supplizi, A; Galla, G; Vitulo, N; Barcaccia, G; Felicetti, M; Silvestrelli, M; Cappelli, K

    2010-12-01

    A large proportion of mammalian genomes is represented by transposable elements (TE), most of them being long interspersed nuclear elements 1 (LINE-1 or L1). An increased expression of LINE-1 elements may play an important role in cellular stress-related conditions exerting drastic effects on the mammalian transcriptome. To understand the impact of TE on the known horse transcriptome, we masked the horse EST database, pointing out that the amount is consistent with other major vertebrates. A previously developed transcript-derived fragments (TDFs) dataset, deriving from exercise-stimulated horse peripheral blood mononuclear cells (PBMCs), was found to be enriched with L1 (26.8% in terms of bp). We investigated the involvement of TDFs in exercise-induced stress through bioinformatics and gene expression analysis. Results indicate that LINE-derived sequences are not only highly but also differentially expressed during physical effort, hinting at interesting scenarios in the regulation of gene expression in relation to exercise.

  5. Cold storage and cryopreservation of tick cell lines

    Directory of Open Access Journals (Sweden)

    Lallinger Gertrud

    2010-04-01

    Full Text Available Abstract Background Tick cell lines are now available from fifteen ixodid and argasid species of medical and veterinary importance. However, some tick cell lines can be difficult to cryopreserve, and improved protocols for short- and long-term low temperature storage will greatly enhance their use as tools in tick and tick-borne pathogen research. In the present study, different protocols were evaluated for cold storage and cryopreservation of tick cell lines derived from Rhipicephalus (Boophilus decoloratus, Rhipicephalus (Boophilus microplus, Ixodes ricinus and Ixodes scapularis. For short-term cold storage, cells were kept under refrigeration at 6°C for 15, 30 and 45 days. For cryopreservation in liquid nitrogen, use of a sucrose-phosphate-glutamate freezing buffer (SPG as cryoprotectant was compared with dimethylsulfoxide (DMSO supplemented with sucrose. Cell viability was determined by the trypan blue exclusion test and cell morphology was evaluated in Giemsa-stained cytocentrifuge smears. Results Cold storage at 6°C for up to 30 days was successful in preserving R. (B. microplus, R. (B. decoloratus, I. ricinus and I. scapularis cell lines; lines from the latter three species could be easily re-cultivated after 45 days under refrigeration. While cell lines from all four tick species cryopreserved with 6% DMSO were successfully resuscitated, the R. (B. decoloratus cells did not survive freezing in SPG and of the other three species, only the R. (B. microplus cells resumed growth during the observation period. Conclusions This constitutes the first report on successful short-term refrigeration of cells derived from R. (B. decoloratus, R. (B. microplus, and I. ricinus, and use of SPG as an alternative to DMSO for cryopreservation, thus making an important contribution to more reliable and convenient tick cell culture maintenance.

  6. Characterisation of thyroid medullary carcinoma TT cell line.

    Science.gov (United States)

    Zabel, M; Grzeszkowiak, J

    1997-01-01

    TT cell line is the best known stabilized cell line derived from the human medullary thyroid carcinoma. The ultrastructural characteristics of these cells include well developed rough endoplasmic reticulum, a prominent Golgi apparatus and a considerable number of secretory granules. Numerous hormones were immunocytochemically demonstrated in TT cells of which calcitonin and calcitonin gene-related peptide (CGRP) are the products of the same gene but an alternative RNA processing. TT cells were found to produce some other hormones as well, namely ACTH, neurotensin, enkephalin, PTHrP, gastrin-releasing peptide (GRP), serotonin but also functional proteins of the chromogranin group, synaptophysin, NSE, calbindin and tyrosine hydroxylase. Some marker proteins have been detected in the cytosol (CEA) and in the cytoskeleton (alpha-tubulin, cytokeratin). The influence of numerous factors on the secretory activity of these cells has been demonstrated so far, including effects of 1,25-dihydroxycholecalciferol, glucocorticoids, sex steroids, cAMP, gastrin-releasing peptide, sodium butyrate, phorbol esters, ionomycin and forskolin. The investigators performed on the TT cell line demonstrate that this is the most reliable model system for the human parafollicular cells developed so far, in comparison to other cell lines derived from the medullary carcinoma of the thyroid.

  7. Mistaken identity of widely used esophageal adenocarcinoma cell line TE-7.

    Science.gov (United States)

    Boonstra, Jurjen J; van der Velden, Albertina W; Beerens, Erwin C W; van Marion, Ronald; Morita-Fujimura, Yuiko; Matsui, Yasuhisa; Nishihira, Tetsuro; Tselepis, Chris; Hainaut, Pierre; Lowe, Anson W; Beverloo, Berna H; van Dekken, Herman; Tilanus, Hugo W; Dinjens, Winand N M

    2007-09-01

    Cancer of the esophagus is the seventh leading cause of cancer death worldwide. Esophageal carcinoma cell lines are useful models to study the biological and genetic alterations in these tumors. An important prerequisite of cell line research is the authenticity of the used cell lines because the mistaken identity of a cell line may lead to invalid conclusions. Estimates indicate that up to 36% of the cell lines are of a different origin or species than supposed. The TE series, established in late 1970s and early 1980s by Nishihira et al. in Japan, is one of the first esophageal cancer cell line series that was used throughout the world. Fourteen TE cell lines were derived from human esophageal squamous cell carcinomas and one, TE-7, was derived from a primary esophageal adenocarcinoma. In numerous studies, this TE-7 cell line was used as a model for esophageal adenocarcinoma because it is one of the few esophageal adenocarcinoma cell lines existing. We investigated the authenticity of the esophageal adenocarcinoma cell line TE-7 by xenografting, short tandem repeat profiling, mutation analyses, and array-comparative genomic hybridization and showed that cell line TE-7 shared the same genotype as the esophageal squamous cell carcinoma cell lines TE-2, TE-3, TE-12, and TE-13. In addition, for more than a decade, independent TE-7 cultures from Japan, United States, United Kingdom, France, and the Netherlands had the same genotype. Examination of the TE-7 cell line xenograft revealed the histology of a squamous cell carcinoma. We conclude that the TE-7 cell line, used in several laboratories throughout the world, is not an adenocarcinoma, but a squamous cell carcinoma cell line. Furthermore, the cell lines TE-2, TE-3, TE-7, TE-12, and TE-13 should be regarded as one single squamous cell carcinoma cell line.

  8. OVCAR-3 spheroid-derived cells display distinct metabolic profiles.

    Directory of Open Access Journals (Sweden)

    Kathleen A Vermeersch

    Full Text Available Recently, multicellular spheroids were isolated from a well-established epithelial ovarian cancer cell line, OVCAR-3, and were propagated in vitro. These spheroid-derived cells displayed numerous hallmarks of cancer stem cells, which are chemo- and radioresistant cells thought to be a significant cause of cancer recurrence and resultant mortality. Gene set enrichment analysis of expression data from the OVCAR-3 cells and the spheroid-derived putative cancer stem cells identified several metabolic pathways enriched in differentially expressed genes. Before this, there had been little previous knowledge or investigation of systems-scale metabolic differences between cancer cells and cancer stem cells, and no knowledge of such differences in ovarian cancer stem cells.To determine if there were substantial metabolic changes corresponding with these transcriptional differences, we used two-dimensional gas chromatography coupled to mass spectrometry to measure the metabolite profiles of the two cell lines.These two cell lines exhibited significant metabolic differences in both intracellular and extracellular metabolite measurements. Principal components analysis, an unsupervised dimensional reduction technique, showed complete separation between the two cell types based on their metabolite profiles. Pathway analysis of intracellular metabolomics data revealed close overlap with metabolic pathways identified from gene expression data, with four out of six pathways found enriched in gene-level analysis also enriched in metabolite-level analysis. Some of those pathways contained multiple metabolites that were individually statistically significantly different between the two cell lines, with one of the most broadly and consistently different pathways, arginine and proline metabolism, suggesting an interesting hypothesis about cancerous and stem-like metabolic phenotypes in this pair of cell lines.Overall, we demonstrate for the first time that metabolism

  9. 大豆异黄酮及其衍生物对宫颈癌细胞增殖的影响%Effect of Soyisoflavone and Its Derivatives on Proliferation of Human Cervical Carcinoma Cell Line:A Review

    Institute of Scientific and Technical Information of China (English)

    蒋葭蒹; 冉昇; 吴婷婷; 颜云荞; 朱双良; 任娇

    2012-01-01

    Recently soybean and its derivatives have been found to be a potential resource, full of pharmacological properties, such as antioxidant, anticancer and antimutation etc, numerous studies have reported about the pharmacological functions of soyisoflavone, which is one of the most important components in soybean and its phytochemicals. As the most serious disease threatening to women' s lives worldwide, cervical cancer is still a tough issue which amends some brand new innovation of drugs to patients' therapy. In this paper,the effect about cell proliferation of soyisoflavone and its derivatives on human cervical carcinoma cell line( Hela,CaSki,Mel80,Siha)is summarized. The concrete mechanism will be sum up and provide a new clue for cervical cancer therapy.%近年来的研究发现大豆异黄酮及其衍生物具有抗癌、抗氧化、抗突变等多种药理学作用.目前宫颈癌仍是严重威胁广大女性生命的恶性肿瘤之一,因此开发新的药物非常重要.本文对大豆异黄酮及其衍生物对宫颈癌细胞(Hela、CaSki、Me180、Siha)增殖方面的影响进行了综述,并对其作用途径进行了归纳总结,为研究开发宫颈癌药物提供了新思路.

  10. Recombinant adeno-associated virus-mediated global anterograde delivery of glial cell line-derived neurotrophic factor to the spinal cord: comparison of rubrospinal and corticospinal tracts in the rat.

    Science.gov (United States)

    Foust, Kevin D; Flotte, Terence R; Reier, Paul J; Mandel, Ronald J

    2008-01-01

    Amyotrophic lateral sclerosis (ALS) is characterized by progressive loss of spinal lower motoneurons. Gene delivery is a promising strategy to deliver therapeutic molecules to these vulnerable cells. However, definition of an optimal route of delivery capable of accessing neurons over a considerable extent of the neuraxis represents a significant logistical problem. Intramuscular vector injections are not ideal as this approach would involve hundreds of injections to completely treat an ALS patient and also would be dependent on retrograde transport of the viral platform of choice. Alternatively, upper motoneurons could deliver trophic factors over considerable distances by anterograde transport after a relatively localized intracerebral injection. To test this approach, the present study was designed to compare the corticospinal (CST) and rubrospinal (RST) tracts for their ability to transport recombinant adeno-associated virus serotype 5 (rAAV5)-derived green fluorescent protein (GFP) or glial cell line-derived neurotrophic factor (GDNF) to the spinal cord. Unilateral injections of rAAV5-GFP into the red nucleus (RN) or motor cortex of normal rats produced GFP-positive fibers in the appropriate descending tracts extending to the lumbar spinal cord. For both tracts, GFP-positive axonal projections into the spinal gray matter were consistently observed. GDNF immunohistochemistry demonstrated that confirmed RN injections resulted in GDNF-positive fibers projecting into spinal gray matter as seen in the GFP group. In contrast, confirmed cortical rAAV5-GDNF injections resulted in less evident staining in spinal cord. Spinal cord GDNF levels were elevated at distances up to 72 mm from the injection sites, and confirmed that RST-related GDNF transport to spinal cord surpassed CST-associated delivery.

  11. UV light blocks EGFR signalling in human cancer cell lines

    DEFF Research Database (Denmark)

    Olsen, BB; Neves-Petersen, M T; Klitgaard, S

    2007-01-01

    UV light excites aromatic residues, causing these to disrupt nearby disulphide bridges. The EGF receptor is rich in aromatic residues near the disulphide bridges. Herein we show that laser-pulsed UV illumination of two different skin-derived cancer cell lines i.e. Cal-39 and A431, which both...

  12. Global Conservation of Protein Status between Cell Lines and Xenografts

    Directory of Open Access Journals (Sweden)

    Julian Biau

    2016-08-01

    Full Text Available Common preclinical models for testing anticancer treatment include cultured human tumor cell lines in monolayer, and xenografts derived from these cell lines in immunodeficient mice. Our goal was to determine how similar the xenografts are compared with their original cell line and to determine whether it is possible to predict the stability of a xenograft model beforehand. We studied a selection of 89 protein markers of interest in 14 human cell cultures and respective subcutaneous xenografts using the reverse-phase protein array technology. We specifically focused on proteins and posttranslational modifications involved in DNA repair, PI3K pathway, apoptosis, tyrosine kinase signaling, stress, cell cycle, MAPK/ERK signaling, SAPK/JNK signaling, NFκB signaling, and adhesion/cytoskeleton. Using hierarchical clustering, most cell culture-xenograft pairs cluster together, suggesting a global conservation of protein signature. Particularly, Akt, NFkB, EGFR, and Vimentin showed very stable protein expression and phosphorylation levels highlighting that 4 of 10 pathways were highly correlated whatever the model. Other proteins were heterogeneously conserved depending on the cell line. Finally, cell line models with low Akt pathway activation and low levels of Vimentin gave rise to more reliable xenograft models. These results may be useful for the extrapolation of cell culture experiments to in vivo models in novel targeted drug discovery.

  13. Growth dynamics and cyclin expression in cutaneous T-cell lymphoma cell lines

    Directory of Open Access Journals (Sweden)

    Edyta Biskup

    2010-05-01

    Full Text Available We have investigated cell growth dynamics and cyclins B1 and E expression in cell lines derived from mycosis fungoides (MyLa, Sézary syndrome (SeAx, and CD30+ lympho-proliferative diseases (Mac1, Mac2a, JK. Mac1 and Mac2a had the highest growth rate (doubling time 18-28 h, >90% cycling cells whereas SeAx was proliferating slowly (doub-ling time 55 h, approximately 35% cycling cells. Expression of cyclin B1 correlated positively with doubling time whereas expression of cyclin E was unscheduled and constant across the investigated cell lines. All cell lines exhibited high expression of PCNA. Thus, we concluded that cyclin B1 could be used for rapid screening of cell proliferation in malignant lymphocytes derived from cutaneous T-cell lymphoma.

  14. Efficient genetic method for establishing Drosophila cell lines unlocks the potential to create lines of specific genotypes.

    Science.gov (United States)

    Simcox, Amanda; Mitra, Sayan; Truesdell, Sharon; Paul, Litty; Chen, Ting; Butchar, Jonathan P; Justiniano, Steven

    2008-08-01

    Analysis of cells in culture has made substantial contributions to biological research. The versatility and scale of in vitro manipulation and new applications such as high-throughput gene silencing screens ensure the continued importance of cell-culture studies. In comparison to mammalian systems, Drosophila cell culture is underdeveloped, primarily because there is no general genetic method for deriving new cell lines. Here we found expression of the conserved oncogene Ras(V12) (a constitutively activated form of Ras) profoundly influences the development of primary cultures derived from embryos. The cultures become confluent in about three weeks and can be passaged with great success. The lines have undergone more than 90 population doublings and therefore constitute continuous cell lines. Most lines are composed of spindle-shaped cells of mesodermal type. We tested the use of the method for deriving Drosophila cell lines of a specific genotype by establishing cultures from embryos in which the warts (wts) tumor suppressor gene was targeted. We successfully created several cell lines and found that these differ from controls because they are primarily polyploid. This phenotype likely reflects the known role for the mammalian wts counterparts in the tetraploidy checkpoint. We conclude that expression of Ras(V12) is a powerful genetic mechanism to promote proliferation in Drosophila primary culture cells and serves as an efficient means to generate continuous cell lines of a given genotype.

  15. Efficient genetic method for establishing Drosophila cell lines unlocks the potential to create lines of specific genotypes.

    Directory of Open Access Journals (Sweden)

    Amanda Simcox

    2008-08-01

    Full Text Available Analysis of cells in culture has made substantial contributions to biological research. The versatility and scale of in vitro manipulation and new applications such as high-throughput gene silencing screens ensure the continued importance of cell-culture studies. In comparison to mammalian systems, Drosophila cell culture is underdeveloped, primarily because there is no general genetic method for deriving new cell lines. Here we found expression of the conserved oncogene Ras(V12 (a constitutively activated form of Ras profoundly influences the development of primary cultures derived from embryos. The cultures become confluent in about three weeks and can be passaged with great success. The lines have undergone more than 90 population doublings and therefore constitute continuous cell lines. Most lines are composed of spindle-shaped cells of mesodermal type. We tested the use of the method for deriving Drosophila cell lines of a specific genotype by establishing cultures from embryos in which the warts (wts tumor suppressor gene was targeted. We successfully created several cell lines and found that these differ from controls because they are primarily polyploid. This phenotype likely reflects the known role for the mammalian wts counterparts in the tetraploidy checkpoint. We conclude that expression of Ras(V12 is a powerful genetic mechanism to promote proliferation in Drosophila primary culture cells and serves as an efficient means to generate continuous cell lines of a given genotype.

  16. Establishment and characterization of rat portal myofibroblast cell lines.

    Directory of Open Access Journals (Sweden)

    Michel Fausther

    Full Text Available The major sources of scar-forming myofibroblasts during liver fibrosis are activated hepatic stellate cells (HSC and portal fibroblasts (PF. In contrast to well-characterized HSC, PF remain understudied and poorly defined. This is largely due to the facts that isolation of rodent PF for functional studies is technically challenging and that PF cell lines had not been established. To address this, we have generated two polyclonal portal myofibroblast cell lines, RGF and RGF-N2. RGF and RGF-N2 were established from primary PF isolated from adult rat livers that underwent culture activation and subsequent SV40-mediated immortalization. Specifically, Ntpdase2/Cd39l1-sorted primary PF were used to generate the RGF-N2 cell line. Both cell lines were functionally characterized by RT-PCR, immunofluorescence, immunoblot and bromodeoxyuridine-based proliferation assay. First, immortalized RGF and RGF-N2 cells are positive for phenotypic myofibroblast markers alpha smooth muscle actin, type I collagen alpha-1, tissue inhibitor of metalloproteinases-1, PF-specific markers elastin, type XV collagen alpha-1 and Ntpdase2/Cd39l1, and mesenchymal cell marker ecto-5'-nucleotidase/Cd73, while negative for HSC-specific markers desmin and lecithin retinol acyltransferase. Second, both RGF and RGF-N2 cell lines are readily transfectable using standard methods. Finally, RGF and RGF-N2 cells attenuate the growth of Mz-ChA-1 cholangiocarcinoma cells in co-culture, as previously demonstrated for primary PF. Immortalized rat portal myofibroblast RGF and RGF-N2 cell lines express typical markers of activated PF-derived myofibroblasts, are suitable for DNA transfection, and can effectively inhibit cholangiocyte proliferation. Both RGF and RGF-N2 cell lines represent novel in vitro cellular models for the functional studies of portal (myofibroblasts and their contribution to the progression of liver fibrosis.

  17. Difference in Membrane Repair Capacity Between Cancer Cell Lines and a Normal Cell Line.

    Science.gov (United States)

    Frandsen, Stine Krog; McNeil, Anna K; Novak, Ivana; McNeil, Paul L; Gehl, Julie

    2016-08-01

    Electroporation-based treatments and other therapies that permeabilize the plasma membrane have been shown to be more devastating to malignant cells than to normal cells. In this study, we asked if a difference in repair capacity could explain this observed difference in sensitivity. Membrane repair was investigated by disrupting the plasma membrane using laser followed by monitoring fluorescent dye entry over time in seven cancer cell lines, an immortalized cell line, and a normal primary cell line. The kinetics of repair in living cells can be directly recorded using this technique, providing a sensitive index of repair capacity. The normal primary cell line of all tested cell lines exhibited the slowest rate of dye entry after laser disruption and lowest level of dye uptake. Significantly, more rapid dye uptake and a higher total level of dye uptake occurred in six of the seven tested cancer cell lines (p normal cell line (98 % viable cells) was higher than in the three tested cancer cell lines (81-88 % viable cells). These data suggest more effective membrane repair in normal, primary cells and supplement previous explanations why electroporation-based therapies and other therapies permeabilizing the plasma membrane are more effective on malignant cells compared to normal cells in cancer treatment.

  18. Origin of the U87MG glioma cell line: Good news and bad news.

    Science.gov (United States)

    Allen, Marie; Bjerke, Mia; Edlund, Hanna; Nelander, Sven; Westermark, Bengt

    2016-08-31

    Human tumor-derived cell lines are indispensable tools for basic and translational oncology. They have an infinite life span and are easy to handle and scalable, and results can be obtained with high reproducibility. However, a tumor-derived cell line may not be authentic to the tumor of origin. Two major questions emerge: Have the identity of the donor and the actual tumor origin of the cell line been accurately determined? To what extent does the cell line reflect the phenotype of the tumor type of origin? The importance of these questions is greatest in translational research. We have examined these questions using genetic profiling and transcriptome analysis in human glioma cell lines. We find that the DNA profile of the widely used glioma cell line U87MG is different from that of the original cells and that it is likely to be a bona fide human glioblastoma cell line of unknown origin.

  19. Casein gene expression in mouse mammary epithelial cell lines: Dependence upon extracellular matrix and cell type

    Energy Technology Data Exchange (ETDEWEB)

    Medina, D.; Oborn, C.J. (Baylor College of Medicine, Houston, TX (USA)); Li, M.L.; Bissell, M.J. (Univ. of California, Berkeley (USA))

    1987-09-01

    The COMMA-D mammary cell line exhibits mammary-specific functional differentiation under appropriate conditions in cell culture. The cytologically heterogeneous COMMA-D parental line and the clonal lines DB-1, TA-5, and FA-1 derived from the COMMA-D parent were examined for similar properties of functional differentiation. In monolayer cell culture, the cell lines DB-1, TA-5, FA-1, and MA-4 were examined for expression of mammary-specific and epithelial-specific proteins by an indirect immunofluorescence assay. The clonal cell lines were relatively homogeneous in their respective staining properties and seemed to represent three subpopulations found in the heterogeneous parental COMMA-D lines. None of the four clonal lines appeared to represent myoepithelial cells. The cell lines were examined for expression of {beta}-casein mRNA in the presence or absence of prolactin. The inducibility of {beta}-casein in the COMMA-D cell line was further enhanced by a reconstituted basement membrane preparation enriched in laminin, collagen IV, and proteoglycans. These results support the hypothesis that the functional response of inducible mammary cell populations is a result of interaction among hormones, multiple extracellular matrix components, and specific cell types.

  20. Multiple Effects of Berberine Derivatives on Colon Cancer Cells

    Directory of Open Access Journals (Sweden)

    Luis Miguel Guamán Ortiz

    2014-01-01

    Full Text Available The pharmacological use of the plant alkaloid berberine is based on its antibacterial and anti-inflammatory properties; recently, anticancer activity has been attributed to this compound. To exploit this interesting feature, we synthesized three berberine derivatives, namely, NAX012, NAX014, and NAX018, and we tested their effects on two human colon carcinoma cell lines, that is, HCT116 and SW613-B3, which are characterized by wt and mutated p53, respectively. We observed that cell proliferation is more affected by cell treatment with the derivatives than with the lead compound; moreover, the derivatives proved to induce cell cycle arrest and cell death through apoptosis, thus suggesting that they could be promising anticancer drugs. Finally, we detected typical signs of autophagy in cells treated with berberine derivatives.

  1. Phenotypes and karyotypes of human malignant mesothelioma cell lines.

    Directory of Open Access Journals (Sweden)

    Vandana Relan

    Full Text Available BACKGROUND: Malignant mesothelioma is an aggressive tumour of serosal surfaces most commonly pleura. Characterised cell lines represent a valuable tool to study the biology of mesothelioma. The aim of this study was to develop and biologically characterise six malignant mesothelioma cell lines to evaluate their potential as models of human malignant mesothelioma. METHODS: Five lines were initiated from pleural biopsies, and one from pleural effusion of patients with histologically proven malignant mesothelioma. Mesothelial origin was assessed by standard morphology, Transmission Electron Microscopy (TEM and immunocytochemistry. Growth characteristics were assayed using population doubling times. Spectral karyotyping was performed to assess chromosomal abnormalities. Authentication of donor specific derivation was undertaken by DNA fingerprinting using a panel of SNPs. RESULTS: Most of cell lines exhibited spindle cell shape, with some retaining stellate shapes. At passage 2 to 6 all lines stained positively for calretinin and cytokeratin 19, and demonstrated capacity for anchorage-independent growth. At passage 4 to 16, doubling times ranged from 30-72 hours, and on spectral karyotyping all lines exhibited numerical chromosomal abnormalities ranging from 41 to 113. Monosomy of chromosomes 8, 14, 22 or 17 was observed in three lines. One line displayed four different karyotypes at passage 8, but only one karyotype at passage 42, and another displayed polyploidy at passage 40 which was not present at early passages. At passages 5-17, TEM showed characteristic features of mesothelioma ultrastructure in all lines including microvilli and tight intercellular junctions. CONCLUSION: These six cell lines exhibit varying cell morphology, a range of doubling times, and show diverse passage-dependent structural chromosomal changes observed in malignant tumours. However they retain characteristic immunocytochemical protein expression profiles of

  2. Establishment of a new bovine leukosis virus producing cell line.

    Science.gov (United States)

    Beier, D; Riebe, R; Blankenstein, P; Starick, E; Bondzio, A; Marquardt, O

    2004-11-01

    Due to the prevalence of different bovine leukosis virus (BLV) species in the cattle population in Europe, problems may arise in the serological diagnosis of BLV infections. In addition, earlier investigations demonstrated that contamination of the BLV antigen-producing cell culture systems by bovine viral diarrhea virus (BVDV) may give rise to misinterpretation of serological test results after BVDV vaccination of cattle. By co-cultivation of peripheral leukocytes of a BLV-infected cow with a permanent sheep kidney cell line, a new BLV-producing cell line named PO714 was established. This line carries a BLV provirus of the Belgian species and has been tested to be free of a variety of possibly contaminating viruses and mycoplasms. Investigations of a panel of well-characterised sera by agar gel immunodiffusion (AGID) and capture ELISA (cELISA) tests using antigen prepared from this new cell line in comparison with antigen of the well-known cell line FLK/BLV yielded comparable results. False positive results caused by BVDV cross-reactions could be eliminated when tests were carried out with antigen derived from the new cell line.

  3. Apoptotic effect of noscapine in breast cancer cell lines.

    Science.gov (United States)

    Quisbert-Valenzuela, Edwin O; Calaf, Gloria M

    2016-06-01

    Cancer is a public health problem in the world and breast cancer is the most frequently cancer in women. Approximately 15% of the breast cancers are triple-negative. Apoptosis regulates normal growth, homeostasis, development, embryogenesis and appropriate strategy to treat cancer. Bax is a protein pro-apoptotic enhancer of apoptosis in contrast to Bcl-2 with antiapoptotic properties. Initiator caspase-9 and caspase-8 are features of intrinsic and extrinsic apoptosis pathway, respectively. NF-κB is a transcription factor known to be involved in the initiation and progression of breast cancer. Noscapine, an alkaloid derived from opium is used as antitussive and showed antitumor properties that induced apoptosis in cancer cell lines. The aim of the present study was to determine the apoptotic effect of noscapine in breast cancer cell lines compared to breast normal cell line. Three cell lines were used: i) a control breast cell line MCF-10F; ii) a luminal-like adenocarcinoma triple-positive breast cell line MCF-7; iii) breast cancer triple-negative cell line MDA-MB-231. Our results showed that noscapine had lower toxicity in normal cells and was an effective anticancer agent that induced apoptosis in breast cancer cells because it increases Bax gene and protein expression in three cell lines, while decreases Bcl-xL gene expression, and Bcl-2 protein expression decreased in breast cancer cell lines. Therefore, Bax/Bcl-2 ratio increased in the three cell lines. This drug increased caspase-9 gene expression in breast cancer cell lines and caspase-8 gene expression increased in MCF-10F and MDA-MB-231. Furthermore, it increased cleavage of caspase-8, suggesting that noscapine-induced apoptosis is probably due to the involvement of extrinsic and intrinsic apoptosis pathways. Antiapoptotic gene and protein expression diminished and proapoptotic gene and protein expression increased noscapine-induced expression, probably due to decrease in NF-κB gene and protein expression

  4. Guidelines for the use of cell lines in biomedical research.

    Science.gov (United States)

    Geraghty, R J; Capes-Davis, A; Davis, J M; Downward, J; Freshney, R I; Knezevic, I; Lovell-Badge, R; Masters, J R W; Meredith, J; Stacey, G N; Thraves, P; Vias, M

    2014-09-09

    Cell-line misidentification and contamination with microorganisms, such as mycoplasma, together with instability, both genetic and phenotypic, are among the problems that continue to affect cell culture. Many of these problems are avoidable with the necessary foresight, and these Guidelines have been prepared to provide those new to the field and others engaged in teaching and instruction with the information necessary to increase their awareness of the problems and to enable them to deal with them effectively. The Guidelines cover areas such as development, acquisition, authentication, cryopreservation, transfer of cell lines between laboratories, microbial contamination, characterisation, instability and misidentification. Advice is also given on complying with current legal and ethical requirements when deriving cell lines from human and animal tissues, the selection and maintenance of equipment and how to deal with problems that may arise.

  5. Pluripotent stem cell-derived hepatocyte-like cells.

    Science.gov (United States)

    Schwartz, R E; Fleming, H E; Khetani, S R; Bhatia, S N

    2014-01-01

    Liver disease is an important clinical problem, impacting over 30 million Americans and over 600 million people worldwide. It is the 12th leading cause of death in the United States and the 16th worldwide. Due to a paucity of donor organs, several thousand Americans die yearly while waiting for liver transplantation. Unfortunately, alternative tissue sources such as fetal hepatocytes and hepatic cell lines are unreliable, difficult to reproduce, and do not fully recapitulate hepatocyte phenotype and functions. As a consequence, alternative cell sources that do not have these limitations have been sought. Human embryonic stem (hES) cell- and induced pluripotent stem (iPS) cell-derived hepatocyte-like cells may enable cell based therapeutics, the study of the mechanisms of human disease and human development, and provide a platform for screening the efficacy and toxicity of pharmaceuticals. iPS cells can be differentiated in a step-wise fashion with high efficiency and reproducibility into hepatocyte-like cells that exhibit morphologic and phenotypic characteristics of hepatocytes. In addition, iPS-derived hepatocyte-like cells (iHLCs) possess some functional hepatic activity as they secrete urea, alpha-1-antitrypsin, and albumin. However, the combined phenotypic and functional traits exhibited by iHLCs resemble a relatively immature hepatic phenotype that more closely resembles that of fetal hepatocytes rather than adult hepatocytes. Specifically, iHLCs express fetal markers such as alpha-fetoprotein and lack key mature hepatocyte functions, as reflected by drastically reduced activity (~0.1%) of important detoxification enzymes (i.e. CYP2A6, CYP3A4). These key differences between iHLCs and primary adult human hepatocytes have limited the use of stem cells as a renewable source of functional adult hepatocytes for in vitro and in vivo applications. Unfortunately, the developmental pathways that control hepatocyte maturation from a fetal into an adult hepatocyte are

  6. In vitro platinum drug chemosensitivity of human cervical squamous cell carcinoma cell lines with intrinsic and acquired resistance to cisplatin.

    OpenAIRE

    Mellish, K. J.; Kelland, L R; Harrap, K. R.

    1993-01-01

    The platinum drug chemosensitivity of five human cervical squamous cell carcinoma cell lines (HX/151, HX/155, HX/156, HX/160 and HX/171) derived from previously untreated patients has been determined. Compared to our data obtained previously using human ovarian carcinoma cell lines, all five lines were relatively resistant to cisplatin, carboplatin, iproplatin and tetraplatin. One of the lines (HX/156) was exceptionally sensitive to the novel platinum (IV) ammine/amine dicarboxylates JM216 [b...

  7. Neurohypophysial Receptor Gene Expression by Thymic T Cell Subsets and Thymic T Cell Lymphoma Cell Lines

    Directory of Open Access Journals (Sweden)

    I. Hansenne

    2004-01-01

    transcribed in thymic epithelium, while immature T lymphocytes express functional neurohypophysial receptors. Neurohypophysial receptors belong to the G protein-linked seven-transmembrane receptor superfamily and are encoded by four distinct genes, OTR, V1R, V2R and V3R. The objective of this study was to identify the nature of neurohypophysial receptor in thymic T cell subsets purified by immunomagnetic selection, as well as in murine thymic lymphoma cell lines RL12-NP and BW5147. OTR is transcribed in all thymic T cell subsets and T cell lines, while V3R transcription is restricted to CD4+ CD8+ and CD8+ thymic cells. Neither V1R nor V2R transcripts are detected in any kind of T cells. The OTR protein was identified by immunocytochemistry on thymocytes freshly isolated from C57BL/6 mice. In murine fetal thymic organ cultures, a specific OTR antagonist does not modify the percentage of T cell subsets, but increases late T cell apoptosis further evidencing the involvement of OT/OTR signaling