WorldWideScience

Sample records for cell lines antiproliferative

  1. Antiproliferative activity of flavonoids on several cancer cell lines.

    Science.gov (United States)

    Kawaii, S; Tomono, Y; Katase, E; Ogawa, K; Yano, M

    1999-05-01

    Twenty-seven Citrus flavonoids were examined for their antiproliferative activities against several tumor and normal human cell lines. As a result, 7 flavonoids were judged to be active against the tumor cell lines, while they had weak antiproliferative activity against the normal human cell lines. The rank order of potency was luteolin, natsudaidain, quercetin, tangeretin, eriodictyol, nobiletin, and 3,3',4',5,6,7,8-heptamethoxyflavone. The structure-activity relationship established from comparison among these flavones and flavanones showed that the ortho-catechol moiety in ring B and a C2-C3 double bond were important for the antiproliferative activity. As to polymethoxylated flavones, C-3 hydroxyl and C-8 methoxyl groups were essential for high activity.

  2. Antiproliferative effect of isopentenylated coumarins on several cancer cell lines.

    Science.gov (United States)

    Kawaii, S; Tomono, Y; Ogawa, K; Sugiura, M; Yano, M; Yoshizawa, Y; Ito, C; Furukawa, H

    2001-01-01

    33 coumarins, mainly the simple isopentenylated coumarins and derived pyrano- and furanocoumarins, were examined for their antiproliferative activity towards several cancer and normal human cell lines. The pyrano- and furanocoumarins showed strong activity against the cancer cell lines, whereas they had weak antiproliferative activity against the normal human cell lines. The decreasing rank order of potency was osthenone (10), clausarin (25), clausenidin (26), dentatin (24), nordentatin (23), imperatorin (29), seselin (27), xanthyletin (21), suberosin (17), phebalosin (8) and osthol (12). The structure-activity relationship established from the results revealed that the 1,1-dimethylallyl and isopentenyl groups have an important role for antiproliferative activity.

  3. The antiproliferative effect of acridone alkaloids on several cancer cell lines.

    Science.gov (United States)

    Kawaii, S; Tomono, Y; Katase, E; Ogawa, K; Yano, M; Takemura, Y; Ju-ichi, M; Ito, C; Furukawa, H

    1999-04-01

    Fifteen acridone alkaloids were examined for their antiproliferative activity toward monolayers and suspension of several types of cancer and normal human cell lines. As a result, atalaphyllidine (9), 5-hydroxy-N-methylseverifoline (11), atalaphyllinine (12), and des-N-methylnoracronycine (13) showed potent antiproliferative activity against tumor cell lines, whereas they have weak cytotoxicity on normal human cell lines. The structure-activity relationship established from the results revealed that a secondary amine, hydroxyl groups at C-1 and C-5, and a prenyl group at C-2 played an important role for antiproliferative activities of the tetracyclic acridones.

  4. The antiproliferative effect of coumarins on several cancer cell lines.

    Science.gov (United States)

    Kawaii, S; Tomono, Y; Ogawa, K; Sugiura, M; Yano, M; Yoshizawa, Y

    2001-01-01

    Twenty-one coumarins were examined for their antiproliferative activity towards several cancer cell lines, namely lung carcinoma (A549), melanin pigment producing mouse melanoma (B16 melanoma 4A5), human T-cell leukemia (CCRF-HSB-2), and human gastric cancer, lymph node metastasized (TGBC11TKB). The structure-activity relationship established from the results revealed that the 6,7-dihydroxy moiety had an important role for their antiproliferative activity. Analysis of cell cycle distribution indicated that esculetin-treated cells accumulated in the G1 (at 400 microM) or in S phase (at 100 microM).

  5. Antiproliferative effect of Tualang honey on oral squamous cell carcinoma and osteosarcoma cell lines

    Directory of Open Access Journals (Sweden)

    Ismail Noorliza M

    2010-09-01

    Full Text Available Abstract Background The treatment of oral squamous cell carcinomas (OSCC and human osteosarcoma (HOS includes surgery and/or radiotherapy which often lead to reduced quality of life. This study was aimed to study the antiproliferative activity of local honey (Tualang on OSCC and HOS cell lines. Methods Several concentrations of Tualang honey (1% - 20% were applied on OSCC and HOS cell lines for 3, 6, 12, 24, 48 and 72 hours. Morphological characteristics were observed under light and fluorescent microscope. Cell viability was assessed using MTT assay and the optical density for absorbance values in each experiment was measured at 570 nm by an ELISA reader. Detection of cellular apoptosis was done using the Annexin V-FITC Apoptosis Detection Kit. Results Morphological appearance showed apoptotic cellular changes like becoming rounded, reduction in cell number, blebbed membrane and apoptotic nuclear changes like nuclear shrinkage, chromatin condensation and fragmented nucleus on OSCC and HOS cell lines. Cell viability assay showed a time and dose-dependent inhibitory effect of honey on both cell lines. The 50% inhibitory concentration (IC50 for OSCC and HOS cell lines was found to be 4% and 3.5% respectively. The maximum inhibition of cell growth of ≥80% was obtained at 15% for both cell lines. Early apoptosis was evident by flow cytometry where percentage of early apoptotic cells increased in dose and time dependent manner. Conclusion Tualang honey showed antiproliferative effect on OSCC and HOS cell lines by inducing early apoptosis.

  6. In vitro antiproliferative activity of partially purified Trigona laeviceps propolis from Thailand on human cancer cell lines

    Directory of Open Access Journals (Sweden)

    Puthong Songchan

    2011-05-01

    Full Text Available Abstract Background Cancers are some of the leading causes of human deaths worldwide and their relative importance continues to increase. Since an increasing proportion of cancer patients are acquiring resistance to traditional chemotherapeutic agents, it is necessary to search for new compounds that provide suitable specific antiproliferative affects that can be developed as anticancer agents. Propolis from the stingless bee, Trigona laeviceps, is one potential interesting source that is widely available and cultivatable (as bee hives in Thailand. Methods Propolis (90 g was initially extracted by 95% (v/v ethanol and then solvent partitioned by sequential extractions of the crude ethanolic extract with 40% (v/v MeOH, CH2Cl2 and hexane. After solvent removal by evaporation, each extract was solvated in DMSO and assayed for antiproliferative activity against five cancer (Chago, KATO-III, SW620, BT474 and Hep-G2 and two normal (HS27 fibroblast and CH-liver cell lines using the MTT assay. The cell viability (% and IC50 values were calculated. Results The hexane extract provided the highest in vitro antiproliferative activity against the five tested cancer cell lines and the lowest cytotoxicity against the two normal cell lines. Further fractionation of the hexane fraction by quick column chromatography using eight solvents of increasing polarity for elution revealed the two fractions eluted with 30% and 100% (v/v CH2Cl2 in hexane (30DCM and 100DCM, respectively had a higher anti-proliferative activity. Further fractionation by size exclusion chromatography lead to four fractions for each of 30DCM and 100DCM, with the highest antiproliferative activity on cancer but not normal cell lines being observed in fraction# 3 of 30DCM (IC50 value of 4.09 - 14.7 μg/ml. Conclusions T. laeviceps propolis was found to contain compound(s with antiproliferative activity in vitro on cancer but not normal cell lines in tissue culture. The more enriched propolis

  7. Antiproliferative Evaluation of Isofuranodiene on Breast and Prostate Cancer Cell Lines

    Directory of Open Access Journals (Sweden)

    Michela Buccioni

    2014-01-01

    Full Text Available The anticancer activity of isofuranodiene, extracted from Smyrnium olusatrum, was evaluated in human breast adenocarcinomas MDA-MB 231 and BT 474, and Caucasian prostate adenocarcinoma PC 3 cell lines by MTS assay. MTS assay showed a dose-dependent growth inhibition in the tumor cell lines after isofuranodiene treatment. The best antiproliferative activity of the isofuranodiene was found on PC 3 cells with an IC50 value of 29 μM, which was slightly less than the inhibition against the two breast adenocarcinoma cell lines with IC50 values of 59 and 55 μM on MDA-MB 231 and BT 474, respectively. Hoechst 33258 assay was performed in order to study the growth inhibition mechanism in prostate cancer cell line; the results indicate that isofuranodiene induces apoptosis. Overall, the understudy compound has a good anticancer activity especially towards the PC 3. On the contrary, it is less active on Chinese hamster ovary cells (CHO and human embryonic kidney (HEK 293 appearing as a good candidate as a potential natural anticancer drug with low side effects.

  8. New Sorafenib Derivatives: Synthesis, Antiproliferative Activity Against Tumour Cell Lines and Antimetabolic Evaluation

    Directory of Open Access Journals (Sweden)

    Branka Zorc

    2012-01-01

    Full Text Available Sorafenib is a relatively new cytostatic drug approved for the treatment of renal cell and hepatocellular carcinoma. In this report we describe the synthesis of sorafenib derivatives 4a–e which differ from sorafenib in their amide part. A 4-step synthetic pathway includes preparation of 4-chloropyridine-2-carbonyl chloride hydrochloride (1, 4-chloro-pyridine-2-carboxamides 2a–e, 4-(4-aminophenoxy-pyridine-2-carboxamides 3a–e and the target compounds 4-[4-[[4-chloro-3-(trifluoromethylphenyl]carbamoylamino]-phenoxy]-pyridine-2-carboxamides 4a–e. All compounds were fully chemically characterized and evaluated for their cytostatic activity against a panel of carcinoma, lymphoma and leukemia tumour cell lines. In addition, their antimetabolic potential was investigated as well. The most prominent antiproliferative activity was obtained for compounds 4a–e (IC50 = 1-4.3 μmol·L−1. Their potency was comparable to the potency of sorafenib, or even better. The compounds inhibited DNA, RNA and protein synthesis to a similar extent and did not discriminate between tumour cell lines and primary fibroblasts in terms of their anti-proliferative activity.

  9. Antiproliferative effects of the readily extractable fractions prepared from various citrus juices on several cancer cell lines.

    Science.gov (United States)

    Kawaii, S; Tomono, Y; Katase, E; Ogawa, K; Yano, M

    1999-07-01

    To eliminate the masking effect by flavonoid glycosides, which comprise approximately 70% of conventionally prepared sample, the readily extractable fraction from Citrus juice, which was prepared by adsorbing on HP-20 resin and eluting with ethanol and acetone from the resin, was subjected to antiproliferative tests against several cancer cell lines. Screening of 34 Citrus juices indicated that King (Citrus nobilis) strongly inhibited proliferation of all cancer cell lines examined. Sweet lime and Kabuchi inhibited three of the four cancer cell lines. In contrast, these samples were substantially less cytotoxic toward normal human cell lines.

  10. Anti-proliferative effect of 20-hydroxyecdysone in a lepidopteran cell line.

    Science.gov (United States)

    Auzoux-Bordenave, Stéphanie; Hatt, Philippe-Jacques; Porcheron, Patrick

    2002-02-01

    Ecdysteroids are steroid hormones involved in the epidermal growth of arthropods, controlling cell proliferation and further differentiation of target cells. The epidermal cell line IAL-PID2, established from imaginal discs of the Indian meal moth Plodia interpunctella kept its sensitivity to ecdysteroids in vitro, cells being able to respond to them by cytological and biochemical changes. When added to the culture medium, 20-hydroxyecdysone (20E) stopped cell proliferation and induced formation of epithelial-like aggregates. In order to better understand the cellular sequence of ecdysteroids signalling in epidermal cells we used the IAL-PID2 cell line for in vitro investigations of cytological events induced by the moulting hormone. After a 40 h serum deprivation, formazan assay (XTT) was routinely used to evaluate anti-proliferative effects of 20E during cell cycle. We established a more precise timing of the period of cell sensitivity to the hormone during the cell cycle, by the use of the mitotic index and the BrdU incorporation test. These in vitro assays were performed in parallel with the description of some hormone dependant cytological events, using immunofluorescent labelling with anti-beta tubulin/FITC antibodies and DNA staining.

  11. Antiproliferative activity in tumor cell lines, antioxidant capacity and total phenolic, flavonoid and tannin contents of Myrciaria floribunda

    Directory of Open Access Journals (Sweden)

    LUIS A.C. TIETBOHL

    Full Text Available ABSTRACT Myrciaria floribunda (H. West ex Willd. O. Berg, Myrtaceae, is a native plant species of the Atlantic Rain Forest, from north to south of Brazil. The lyophilized ethyl acetate extract from the leaves of M. floribunda was investigated for its antiproliferative activity in tumor cell lines, antioxidant capacity and its total phenolic, flavonoid and tannin contents. Antiproliferative activity was tested in vitro against seven human cancer cells and against immortalized human skin keratinocytes line (HaCat, no cancer cell. Antioxidant activity was determined using 1-diphenyl-2-picrylhydrazyl (DPPH radical scavenging and oxygen radical absorbing capacity (ORAC assays and total phenolic, flavonoid and tannin contents were determined by spectrophotometric techniques. Ethyl acetate extract of M. floribunda exhibited antiproliferative activity against cancer cell lines with total growth inhibition (TGI between 69.70 and 172.10 µg/mL. For HaCat cell, TGI value was 213.60 µg/mL. M. floribunda showed a strong antioxidant potential: EC50 of 45.89±0.42 µg/mL and 0.55±0.05 mmol TE/g for DPPH and ORAC, respectively. Total phenolic content was 0.23±0.013g gallic acid equivalents (GAE/g extract and exhibited 13.10±1.60% of tannins content. The content of flavonoid was 24.08±0.44% expressed as rutin equivalents. These results provide a direction for further researches about the antitumoral potential of M. floribunda.

  12. Anti-Proliferative and Apoptotic Effects of Beta-Ionone in Human Leukemia Cell Line K562

    Directory of Open Access Journals (Sweden)

    Zohreh Faezizadeh

    2016-06-01

    Full Text Available Background Beta-ionone is an aroma compound found in the Rosaceae family. Some evidence supported that beta-ionone has a great potential for cancer prevention. To date, the anti-proliferative and apoptotic effects of beta-ionone in human leukemia cell line K562 were not studied. Objectives Hence, we investigated whether beta-ionone could inhibit cell growth and induce apoptosis in the K562 cells. Materials and Methods In this experimental study, human leukemia cell line K562 was cultured and anti-proliferation effect of beta-ionone with different doses (25 - 400 µm at different times (24 - 96 hours on treated cells was evaluated by the MTT assay. To determine apoptosis rate, the Hoechst 33342 staining and flow cytometry was performed. Results The MTT assay showed that beta-ionone inhibited proliferation of K562 cells in a dose-dependent manner significantly (P = 0.0008. Moreover, the increased apoptotic rate was found after incubation of K562 cells with 200 µm beta-ionone. The Hoechst staining and flow cytometry analysis indicated that beta-ionone could increase apoptosis of K562 cells in a dose-dependent manner. Conclusions The results demonstrated that beta-ionone has anti-proliferative and apoptotic effects on K562 cells, and in the future may be used in the treatment of some leukemia sub-types.

  13. Antiproliferative Properties Against Human Breast, Cervical and Ovarian Cancer Cell Lines, and Antioxidant Capacity of Leaf Aqueous Ethanolic Extract from Cotinus coggygria Scop.

    Directory of Open Access Journals (Sweden)

    Gospodinova Z.

    2017-10-01

    Full Text Available Cotinus coggygria Scop. leaf aqueous ethanolic extract was examined for its in vitro antiproliferative and antioxidant activity. Antiproliferative effect was assessed on four human gynecological cancer cell lines: breast (MCF7, T47D, cervical (HeLa and ovarian (A2780 and compared to the cell growth inhibitory effect on non-cancerous breast epithelial cell line MCF10A using MTT cell proliferation assay. Radical scavenging assay with DPPH was applied to evaluate antioxidant potential of the extract. The obtained results showed that the herb inhibited cell growth of all of the tested cancer cell lines and the highest was the cytostatic effect on A2780 cells with a half maximal inhibitory concentration (IC50 value of 30.8 μg/ml. For the other cell lines the IC50 values were in the range of 55-122.7 μg/ml. Additionally, the extract exerted considerably weaker reduction in cell proliferation of the non-cancerous cell line MCF10A compared to cancer cells, which indicates for antiproliferative selectivity. C. coggygria extract showed high free radical scavenging activity with an IC50 value of 11.2 μg/ml. The obtained data provide evidence for pharmacological potential of the tested extract and future more detailed studies concerning the molecular mechanisms of the anticancer effect of the herb are needed.

  14. Antiproliferative effects of Plumbago rosea and its purified constituent plumbagin on SK-MEL 28 melanoma cell lines.

    Science.gov (United States)

    Anuf, Alexander Ronaldo; Ramachandran, Rajesh; Krishnasamy, Rajaram; Gandhi, P S Sudhakar; Periyasamy, Sureshkumar

    2014-10-01

    Plumbago rosea is used in traditional systems of medicine for the preparation of formulations used for treating inflammations, cough, bronchitis, and gastrointestinal disorders, and also in conjunction with cancer chemotherapy. In the present study, the cytotoxic and anti-proliferative effects of plumbagin, and the ethanolic root extract of P. rosea (ETPR) was evaluated on SK-MEL 28 melanoma cell lines and human lymphocytes. MTT and apoptotic assays were used for the evaluation of cytotoxic and anti-proliferative effects, respectively. In addition, the effect of Plumbagin and ETPR in down regulation of BCL-2 expression is investigated using RT-PCR analysis. Both plumbagin and ETPR dose-dependently decreased the cell viability more potently in melanoma cell lines. P. rosea extract demonstrated significant synergy in inhibiting BCL-2 expression than plumbagin. Moreover plumbagin showed more toxicity in human lymphocytes. Plumbagin has anti-cancer potential, but the side effects limits its use; yet plumbagin, in combination with other ingredients in Plumbago rosea extract, displays significant synergy leading to a stronger anticancer effect with significantly less toxicity.

  15. Proliferative and antiproliferative effects of interferon-gamma and tumor necrosis factor-alpha on cell lines derived from cervical and ovarian malignancies

    International Nuclear Information System (INIS)

    Mutch, D.G.; Massad, L.S.; Kao, M.S.; Collins, J.L.

    1990-01-01

    Four human cell lines derived from cervical carcinomas (ME-180, SiHa, HT-3, and MS751) and three human cell lines derived from ovarian carcinomas (SK-OV-3, Caov-3, and NIH:OVCAR-3) were analyzed in vitro to determine the effect of recombinant interferon-gamma and recombinant human tumor necrosis factor-alpha on cell growth and survival. The effects of interferon-gamma, tumor necrosis factor-alpha, and both interferon-gamma and tumor necrosis factor-alpha on cell growth were measured after 24 and 72 hours of incubation by the incorporation of chromium 51. The results of this analysis showed that all seven cell lines were resistant to the antiproliferative action of tumor necrosis factor-alpha, that the growth of most cell lines was inhibited by interferon-gamma by 72 hours of incubation, and that after 72 hours of incubation all cell lines demonstrated a synergistic antiproliferative response to the combination of interferon-gamma and tumor necrosis factor-alpha. However, the effects of these cytokines on cell growth were found to differ among cell lines and varied with the concentration and the duration of incubation. The growth of one cell line (Caov-3) was stimulated by both tumor necrosis factor-alpha and interferon-gamma. These results suggest that the clinical effects of these cytokines on the growth of gynecologic cancers may be more complex than previously supposed

  16. Polish natural bee honeys are anti-proliferative and anti-metastatic agents in human glioblastoma multiforme U87MG cell line.

    Directory of Open Access Journals (Sweden)

    Justyna Moskwa

    Full Text Available Honey has been used as food and a traditional medicament since ancient times. However, recently many scientists have been concentrating on the anti-oxidant, anti-proliferative, anti-inflammatory and other properties of honey. In this study, we investigated for the first time an anticancer effect of different honeys from Poland on tumor cell line - glioblastoma multiforme U87MG. Anti-proliferative activity of honeys and its interferences with temozolomide were determined by a cytotoxicity test and DNA binding by [H3]-thymidine incorporation. A gelatin zymography was used to conduct an evaluation of metalloproteinases (MMP-2 and MMP-9 expression in U87MG treatment with honey samples. The honeys were previously tested qualitatively (diastase activity, total phenolic content, lead and cadmium content. The data demonstrated that the examined honeys have a potent anti-proliferative effect on U87MG cell line in a time- and dose-dependent manner, being effective at concentrations as low as 0.5% (multifloral light honey - viability 53% after 72 h of incubation. We observed that after 48 h, combining honey with temozolomide showed a significantly higher inhibitory effect than the samples of honey alone. We observed a strong inhibition of MMP-2 and MMP-9 for the tested honeys (from 20 to 56% and from 5 to 58% compared to control, respectively. Our results suggest that Polish honeys have an anti-proliferative and anti-metastatic effect on U87MG cell line. Therefore, natural bee honey can be considered as a promising adjuvant treatment for brain tumors.

  17. Antiproliferative activity of Eremanthus crotonoides extracts and centratherin demonstrated in brain tumor cell lines

    Directory of Open Access Journals (Sweden)

    Jonathas F. R. Lobo

    2012-12-01

    Full Text Available The genus Eremanthus is recognized by the predominance of sesquiterpene lactones from the furanoheliangolide type, a class of substances extensively tested against cancer cell lines. Thus, the species E. crotonoides (DC. Sch. Bip., Asteraceae, obtained on "restinga" vegetation was evaluated against U251 and U87-MG glioma cell lines using the MTT colorimetric assay. Dichloromethane fraction was cytotoxic to both glioblastoma multiforme cell lines. We then conducted UPLC-PDA-ESI-MS/MS analysis of the dichloromethane fraction, which allowed the identification of the sesquiterpene lactones centratherin and goyazensolide. The isolation of centratherin was performed using chromatographic techniques and the identification of this substance was confirmed according to NMR data. Cytotoxic activity of centratherin alone was also evaluated against both U251 and U87-MG cells, which showed IC50 values comparable with those obtained for the commercial anticancer drug doxorubicin. All the tested samples showed cytotoxic activity against glioblastoma multiforme cells which suggests that E. crotonoides extracts may be important sources of antiproliferative substances and that the centratherin may serve as prototype for developing new antiglioblastoma drugs.

  18. Identification of pyrogallol as an antiproliferative compound present in extracts from the medicinal plant Emblica officinalis: effects on in vitro cell growth of human tumor cell lines.

    Science.gov (United States)

    Khan, Mahmud Tareq Hassan; Lampronti, Ilaria; Martello, Dino; Bianchi, Nicoletta; Jabbar, Shaila; Choudhuri, Mohammad Shahabuddin Kabir; Datta, Bidduyt Kanti; Gambari, Roberto

    2002-07-01

    In this study we compared the in vitro antiproliferative activity of extracts from medicinal plants toward human tumor cell lines, including human erythromyeloid K562, B-lymphoid Raji, T-lymphoid Jurkat, erythroleukemic HEL cell lines. Extracts from Emblica officinalis were the most active in inhibiting in vitro cell proliferation, after comparison to those from Terminalia arjuna, Aphanamixis polystachya, Oroxylum indicum, Cuscuta reflexa, Aegle marmelos, Saraca asoka, Rumex maritimus, Lagerstroemia speciosa, Red Sandalwood. Emblica officinalis extracts have been studied previously, due to their hepatoprotective, antioxidant, antifungal, antimicrobial and anti-inflammatory medicinal activities. Gas chromatography/mass spectrometry analyses allowed to identify pyrogallol as the common compound present both in unfractionated and n-butanol fraction of Emblica officinalis extracts. Antiproliferative effects of pyrogallol were therefore determined on human tumor cell lines thus identifying pyrogallol as an active component of Emblica officinalis extracts.

  19. Antiproliferative/cytotoxic effects of molecular iodine, povidone-iodine and Lugol's solution in different human carcinoma cell lines.

    Science.gov (United States)

    Rösner, Harald; Möller, Wolfgang; Groebner, Sabine; Torremante, Pompilio

    2016-09-01

    Clinical trials have revealed that molecular iodine (I 2 ) has beneficial effects in fibrocystic breast disease and in cyclic mastalgia. Likewise, povidone-iodine (PVP-I), which is widely used in clinical practice as an antiseptic agent following tumour surgery, has been demonstrated to have cytotoxic effects on colon cancer and ascites tumour cells. Our previous study indicated that the growth of breast cancer and seven other human malignant cell lines was variably diminished by I 2 and iodolactones. With the intention of developing an iodine-based anticancer therapy, the present investigations extended these studies by comparing the cytotoxic capacities of I 2 , potassium iodide (KJ), PVP-I and Lugol's solution on various human carcinoma cell lines. Upon staining the cell nuclei with Hoechst 33342, the cell densities were determined microscopically. While KJ alone did not affect cell proliferation, it enhanced the antiproliferative activity of I 2 . In addition, PVP-I significantly inhibited the proliferation of human MCF-7 breast carcinoma, IPC melanoma, and A549 and H1299 lung carcinoma cells in a concentration corresponding to 20 µM I 2 . Likewise, Lugol's solution in concentrations corresponding to 20-80 µM I 2 were observed to reduce the growth of MCF-7 cells. Experiments with fresh human blood samples revealed that the antiproliferative activity of PVP-I and I 2 is preserved in blood plasma to a high degree. These findings suggest that PVP-I, Lugol's solution, and a combination of iodide and I 2 may be potent agents for use in the development of antitumour strategies.

  20. The Acetone Extract of Sclerocarya birrea (Anacardiaceae) Possesses Antiproliferative and Apoptotic Potential against Human Breast Cancer Cell Lines (MCF-7)

    Science.gov (United States)

    Tanih, Nicoline Fri; Ndip, Roland Ndip

    2013-01-01

    Interesting antimicrobial data from the stem bark of Sclerocarya birrea, which support its use in traditional medicine for the treatment of many diseases, have been delineated. The current study was aimed to further study some pharmacological and toxicological properties of the plant to scientifically justify its use. Anticancer activity of water and acetone extracts of S. birrea was evaluated on three different cell lines, HT-29, HeLa, and MCF-7 using the cell titre blue viability assay in 96-well plates. Apoptosis was evaluated using the acridine orange and propidium iodide staining method, while morphological structure of treated cells was examined using SEM. The acetone extract exhibited remarkable antiproliferative activities on MCF-7 cell lines at dose- and time-dependent manners (24 h and 48 h of incubation). The extract also exerted apoptotic programmed cell death in MCF-7 cells with significant effect on the DNA. Morphological examination also displayed apoptotic characteristics in the treated cells, including clumping, condensation, and culminating to budding of the cells to produce membrane-bound fragmentation, as well as formation of apoptotic bodies. The acetone extract of S. birrea possesses antiproliferative and apoptotic potential against MCF-7-treated cells and could be further exploited as a potential lead in anticancer therapy. PMID:23576913

  1. Antiproliferative activity of flower hexane extract obtained from Mentha spicata associated with Mentha rotundifolia against the MCF7, KB, and NIH/3T3 cell lines.

    Science.gov (United States)

    Nedel, Fernanda; Begnini, Karine; Carvalho, Pedro Henrique de Azambuja; Lund, Rafael Guerra; Beira, Fátima T A; Del Pino, Francisco Augusto B

    2012-11-01

    This study assessed the antiproliferative effect in vitro of the flower hexane extract obtained from Mentha spicata associated with Mentha rotundifolia against the human breast adenocarcinoma (MCF-7), human mouth epidermal carcinoma (KB), and mouse embryonic fibroblast (NIH 3T3) cell lines, using sulforhodamine B (SRB) assay. A cell density of 2×10(4)/well was seeded in 96-well plates, and samples at different concentrations ranging from 10 to 500 mg/mL were tested. The optical density was determined in an ELISA multiplate reader (Thermo Plate TP-Reader). Results demonstrated that the hexane extract presented antiproliferative activity against both the tumor cell lines KB and MCF-7, presenting a GI(50) (MCF-7=13.09 mg/mL), TGI (KB=37.76 mg/mL), and IL(50) (KB=291.07 mg/mL). Also, the hexane extract presented antiproliferative activity toward NIH 3T3 cells GI(50) (183.65 mg/mL), TGI (280.54 mg/mL), and IL(50) (384.59 mg/mL). The results indicate that the flower hexane extract obtained from M. spicata associated with M. rotundifolia presents an antineoplastic activity against KB and MCF-7, although an antiproliferative effect at a high concentration of the extract was observed toward NIH 3T3.

  2. Antiproliferative study of B. javanica extracts against head and neck cancer cells

    International Nuclear Information System (INIS)

    Mohd Noor Hidayat Adenan; Zainah Adam; Shafii Khamis; Fazliana Mohd Saaya

    2014-01-01

    Brucea javanica or locally known as Meladapahit, are being used in Malaysia as traditional medicine mainly for the treatment of diabetes mellitus and hypertension. In order to study the potential use of this plant for cancer treatment, we have prepared crude extracts of the leaves and fruits, and assessed them for antiproliferative activities against head and neck cancer cell line which is HTB-43. The dried and ground leaves and fruits of the plant were successively extracted using hexane, chloroform, methanol and water, respectively. Inhibition of growth of the cultured cancer cells line was measured using a standard Micro culture Tetrazolium Technique (MTT) assay. The crude extracts were also subjected to toxicity test using brine shrimp lethality assay. Most of the tested crude extracts exhibited significant antiproliferative activities against the HTB-43 cell with IC 50 ranging from 8.46 μg/ml to 47.25 μg/ml. The chloroform extract from the leaves gave the highest antiproliferative activity (IC 50 , 8.46 μg/ml). Hexane extract from the fruits, aqueous and hexane extracts from B. javanica leaves showed low antiproliferative activities to the HTB-43 cell line with an IC 50 values >100 μg/ml. The chloroform extracts from fruits and leaves and methanol extract from fruits induced toxicity against brine shrimps with LC 50 values of 118.7 μg/ml, 512.44 μg/ml and 75.27 μg/ml respectively. It indicated that bioactive components presence in the crude extracts for its pharmacologic effects against head and neck cancer cells. Methanolic extract of Brucea javanica fruit was selected as the most effective extract to inhibit the growth of head and neck cancer cells (HTB-43) by the two different assays used. (author)

  3. Anti-proliferative activity of 2,6-dichloro-9- or 7-(ethoxycarbonylmethyl)-9H- or 7H-purines against several human solid tumour cell lines.

    Science.gov (United States)

    Morales, Fátima; Ramírez, Alberto; Conejo-García, Ana; Morata, Cynthia; Marchal, Juan A; Campos, Joaquín M

    2014-04-09

    As leads we took several benzo-fused seven- and six-membered scaffolds linked to the pyrimidine or purine moieties with notable anti-proliferative activity against human breast, colon and melanoma cancerous cell lines. We then decided to maintain the double-ringed nitrogenous bases and change the other components to the ethyl acetate moiety. This way six purine and two 5-fluorouracil derivatives were obtained and evaluated against the MCF-7, HCT-116, A-375 and G-361 cancer cell lines. Two QSARs are obtained between the anti-proliferative IC₅₀ values for compounds 26-33 and the clog P against the melanoma cell lines A-375 and G-361. Our results show that two of the analogues [ethyl 2-(2,6-dichloro-9H- or 7H-purine-9- or 7-yl)acetates (30 and 33, respectively)] are potent cytotoxic agents against all the tumour cell lines assayed, showing single-digit micromolar IC₅₀ values. This exemplifies the potential of our previously reported purine compounds to qualify as lead structures for medicinal chemistry campaigns, affording simplified analogues easy to synthesize and with a noteworthy bioactivity. The selective activity of 30 and 33 against the melanoma cell line A-375, via apoptosis, supposes a great advantage for a future therapeutic use. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  4. Essential Oil Content of the Rhizome of Curcuma purpurascens Bl. (Temu Tis) and Its Antiproliferative Effect on Selected Human Carcinoma Cell Lines

    Science.gov (United States)

    Hong, Sok-Lai; Lee, Guan-Serm; Ahmed Hamdi, Omer Abdalla; Awang, Khalijah; Aznam Nugroho, Nurfina

    2014-01-01

    Curcuma purpurascens Bl., belonging to the Zingiberaceae family, is known as temu tis in Yogyakarta, Indonesia. In this study, the hydrodistilled dried ground rhizome oil was investigated for its chemical content and antiproliferative activity against selected human carcinoma cell lines (MCF7, Ca Ski, A549, HT29, and HCT116) and a normal human lung fibroblast cell line (MRC5). Results from GC-MS and GC-FID analysis of the rhizome oil of temu tis showed turmerone as the major component, followed by germacrone, ar-turmerone, germacrene-B, and curlone. The rhizome oil of temu tis exhibited strong cytotoxicity against HT29 cells (IC50 value of 4.9 ± 0.4 μg/mL), weak cytotoxicity against A549, Ca Ski, and HCT116 cells (with IC50 values of 46.3 ± 0.7, 32.5 ± 1.1, and 35.0 ± 0.3 μg/mL, resp.), and no inhibitory effect against MCF7 cells. It exhibited mild cytotoxicity against a noncancerous human lung fibroblast cell line (MRC5), with an IC50 value of 25.2 ± 2.7 μg/mL. This is the first report on the chemical composition of this rhizome's oil and its selective antiproliferative effect on HT29. The obtained data provided a basis for further investigation of the mode of cell death. PMID:25177723

  5. Anti-proliferative effects of Bifidobacterium adolescentis SPM0212 extract on human colon cancer cell lines

    International Nuclear Information System (INIS)

    Lee, Do Kyung; Jang, Seok; Kim, Mi Jin; Kim, Jung Hyun; Chung, Myung Jun; Kim, Kyung Jae; Ha, Nam Joo

    2008-01-01

    Lactic acid bacteria (LAB) are beneficial probiotic organisms that contribute to improved nutrition, microbial balance, and immuno-enhancement of the intestinal tract, as well as anti-tumor activity. The aim of the present work was to study the growth inhibition of tumor cells by butanol extract of Bifidobacterium adolescentis isolated from healthy young Koreans. The anti-proliferative activity of B. adolescentis isolates was assessed by XTT assays on three human colon cancer cell lines (Caco-2, HT-29, and SW480). The effects of B. adolescentis SPM0212 butanol extract on tumor necrosis factor-α (TNF-α) and nitric oxide (NO) production were tested using the murine macrophage RAW 264.7 cell line. The butanol extract of B. adolescentis SPM0212 dose-dependently inhibited the growth of Caco-2, HT-29, and SW480 cells by 70%, 30%, and 40%, respectively, at 200 μg/mL. Additionally, the butanol extract of B. adolescentis SPM0212 induced macrophage activation and significantly increased the production of TNF-α and NO, which regulate immune modulation and are cytotoxic to tumor cells. The butanol extract of B. adolescentis SPM0212 increased activity of the host immune system and may improve human health by helping to prevent colon cancer as a biological response modifier

  6. Composition and antiproliferative effect of essential oil of Origanum vulgare against tumor cell lines.

    Science.gov (United States)

    Begnini, Karine Rech; Nedel, Fernanda; Lund, Rafael Guerra; Carvalho, Pedro Henrique de Azambuja; Rodrigues, Maria Regina Alves; Beira, Fátima Tereza Alves; Del-Pino, Francisco Augusto Burkert

    2014-10-01

    Cancer is a leading cause of death and is responsible for one in eight deaths worldwide. The use of herbs as complementary medicine for cancer, especially advanced cancer, has recently increased. The aim of this study was to evaluate in vitro, the antiproliferative effect of Origanum vulgare against human breast adenocarcinoma (MCF-7), and human colon adenocarcinoma (HT-29). The essential oil (EO) was extracted from a bought amount of O. vulgare dried leaves and analyzed in a gas chromatograph interfaced with a mass selective detector. The cytotoxicity test was performed by sulforhodamine B assay. The results show that the EO is composed mostly of 4-terpineol and induces a high cytotoxicity effect in HT-29. In the MCF-7 cell line the EO was less effective. In conclusion, this study showed that O. vulgare main component is 4-terpineol and was effective in inducing cancer cell growth inhibition.

  7. Heme oxygenase is not involved in the anti-proliferative effects of statins on pancreatic cancer cells

    International Nuclear Information System (INIS)

    Vanova, K.; Boukalova, S.; Gbelcova, H.; Muchova, L.; Neuzil, J.; Gurlich, R.; Ruml, T.; Vitek, L.

    2016-01-01

    Pancreatic cancer is recognized as one of the most fatal tumors due to its aggressiveness and resistance to therapy. Statins were previously shown to inhibit the proliferation of cancer cells via various signaling pathways. In healthy tissues, statins activate the heme oxygenase pathway, nevertheless the role of heme oxygenase in pancreatic cancer is still controversial. The aim of this study was to evaluate, whether anti-proliferative effects of statins in pancreatic cancer cells are mediated via the heme oxygenase pathway. In vitro effects of various statins and hemin, a heme oxygenase inducer, on cell proliferation were evaluated in PA-TU-8902, MiaPaCa-2 and BxPC-3 human pancreatic cancer cell lines. The effect of statins on heme oxygenase activity was assessed and heme oxygenase-silenced cells were used for pancreatic cancer cell proliferation studies. Cell death rate and reactive oxygen species production were measured in PA-TU-8902 cells, followed by evaluation of the effect of cerivastatin on GFP-K-Ras trafficking and expression of markers of invasiveness, osteopontin (SPP1) and SOX2. While simvastatin and cerivastatin displayed major anti-proliferative properties in all cell lines tested, pravastatin did not affect the cell growth at all. Strong anti-proliferative effect was observed also for hemin. Co-treatment of cerivastatin and hemin increased anti-proliferative potential of these agents, via increased production of reactive oxygen species and cell death compared to individual treatment. Heme oxygenase silencing did not prevent pancreatic cancer cells from the tumor-suppressive effect of cerivastatin or hemin. Cerivastatin, but not pravastatin, protected Ras protein from trafficking to the cell membrane and significantly reduced expressions of SPP1 (p < 0.05) and SOX2 (p < 0.01). Anti-proliferative effects of statins and hemin on human pancreatic cancer cell lines do not seem to be related to the heme oxygenase pathway. While hemin triggers reactive

  8. Screening of antiproliferative effect of aqueous extracts of plant foods consumed in México on the breast cancer cell line MCF-7.

    Science.gov (United States)

    García-Solís, Pablo; Yahia, Elhadi M; Morales-Tlalpan, Verónica; Díaz-Muñoz, Mauricio

    2009-01-01

    We evaluated the antiproliferative effect of aqueous extracts of 14 plant foods consumed in Mexico on the breast cancer cell line MCF-7. The plant foods used were avocado, black sapote, guava, mango, prickly pear cactus stems (called nopal in Mexico, cooked and raw), papaya, pineapple, four different cultivars of prickly pear fruit, grapes and tomato. β-Carotene, total phenolics and gallic acid contents and the antioxidant capacity, measured by the ferric reducing/antioxidant power and the 2,2-diphenyl-1,1-picrylhydrazyl radical scavenging assays, were analyzed in each aqueous extract. Only the papaya extract had a significant antiproliferative effect measured with the methylthiazolydiphenyl-tetrazolium bromide assay. We did not notice a relationship between the total phenolic content and the antioxidant capacity with antiproliferative effect. It is suggested that each extract of plant food has a unique combination of the quantity and quality of phytochemicals that could determine its biological activity. Besides, papaya represents a very interesting fruit to explore its antineoplastic activities.

  9. In vitro assessment of antiproliferative action selectivity of dietary isothiocyanates for tumor versus normal human cells

    Directory of Open Access Journals (Sweden)

    Konić-Ristić Aleksandra

    2016-01-01

    Full Text Available Background/Aim. Numerous epidemiological studies have shown beneficial effects of cruciferous vegetables consumption in cancer chemoprevention. Biologically active compounds of different Brassicaceae species with antitumor potential are isothiocyanates, present in the form of their precursors - glucosinolates. The aim of this study was to determine the selectivity of antiproliferative action of dietary isothiocyanates for malignant versus normal cells. Methods. Antiproliferative activity of three isothiocyanates abundant in human diet: sulforaphane, benzyl isothiocyanate (BITC and phenylethyl isothiocyanate, on human cervix carcinoma cell line - HeLa, melanoma cell line - Fem-x, and colon cancer cell line - LS 174, and on peripheral blood mononuclear cells (PBMC, with or without mitogen, were determined by MTT colorimetric assay 72 h after their continuous action. Results. All investigated isothiocyanates inhibited the proliferation of HeLa, Fem-x and LS 174 cells. On all cell lines treated, BITC was the most potent inhibitor of cell proliferation with half-maximum inhibitory concentration (IC50 values of 5.04 mmoL m-3 on HeLa cells, 2.76 mmol m-3 on Fem-x, and 14.30 mmol m-3 on LS 174 cells. Antiproliferative effects on human PBMC were with higher IC50 than on malignant cells. Indexes of selectivity, calculated as a ratio between IC50 values obtained on PBMC and malignant cells, were between 1.12 and 16.57, with the highest values obtained for the action of BITC on melanoma Fem-x cells. Conclusion. Based on its antiproliferative effects on malignant cells, as well as the selectivity of the action to malignant vs normal cells, benzyl isothiocyanate can be considered as a promising candidate in cancer chemoprevention. In general, the safety of investigated compounds, in addition to their antitumor potential, should be considered as an important criterion in cancer chemoprevention. Screening of selectivity is a plausible approach to the evaluation

  10. Antiproliferative and apoptotic activities of extracts of Asclepias subulata.

    Science.gov (United States)

    Rascón Valenzuela, Luisa Alondra; Jiménez Estrada, Manuel; Velázquez Contreras, Carlos Arturo; Garibay Escobar, Adriana; Medina Juárez, Luis Angel; Gámez Meza, Nohemi; Robles Zepeda, Ramón Enrique

    2015-01-01

    Asclepias subulata Decne. (Apocynaceae) is a shrub used in the Mexican traditional medicine for the treatment of cancer. The objective of this study was to evaluate the antiproliferative activity of methanol extract of aerial parts of A. subulata and its fractions against different cancer cell lines. Additionally, we analyzed the mechanism of action of the active fractions. Methanol extract fractions were prepared by serial extraction with n-hexane, ethyl acetate, and ethanol. The antiproliferative activity of methanol extract and its fractions was evaluated, against several murine (M12.C3.F6, RAW 264.7, and L929) and human (HeLa, A549, PC-3, LS 180, and ARPE-19) cell lines by the MTT assay, using concentrations of 0.4-400 µg/mL for 48 h. Ethanol and residual fractions were separated using silica gel column. Apoptosis induction of cancer cells was evaluated by Annexin and JC-1 staining using flow cytometry. Methanol extract and its fractions showed antiproliferative activity against all human cancer cell lines tested. Methanol extract had the highest antiproliferative activity on A549 and HeLa cells (IC50 values < 0.4 and 8.7 µg/mL, respectively). Ethanol and residual fractions exerted significant antiproliferative effect on A549 (IC50 < 0.4 µg/mL) and PC3 cells (IC50 1.4 and 5.1 µg/mL). Apoptotic assays showed that CEF7, CEF9, CRF6, and CRF5 fractions induced mitochondrial depolarization in A549 cells, 70, 73, 77, and 80%, respectively. Those fractions triggered the apoptosis mitochondrial pathway. Our data show that A. subulata extracts have potent antiproliferative properties on human cancer cell lines. This plant should be considered an important source of potent anticancer compounds.

  11. Antiproliferative and Pro-Apoptotic Effect of Novel Nitro-Substituted Hydroxynaphthanilides on Human Cancer Cell Lines

    Directory of Open Access Journals (Sweden)

    Tereza Kauerova

    2016-07-01

    Full Text Available Ring-substituted hydroxynaphthanilides are considered as cyclic analogues of salicylanilides, compounds possessing a wide range of pharmacological activities, including promising anticancer properties. The aim of this study was to evaluate the potential anticancer effect of novel nitro-substituted hydroxynaphthanilides with a special focus on structure-activity relationships. The antiproliferative effect was assessed by Water Soluble Tetrazolium Salts-1 (WST-1 assay, and cytotoxicity was evaluated via dye exclusion test. Flow cytometry was used for cell cycle analysis and detection of apoptosis using Annexin V-FITC/PI assay. Protein expression was estimated by Western blotting. Our data indicate that the potential to cause the antiproliferative effect increases with the shift of the nitro substituent from the ortho- to the para-position. The most potent compounds, 3-hydroxy-N-(3-nitrophenylnaphthalene-2-carboxamide (2, and 2-hydroxy-N-(4-nitrophenyl-naphthalene-1-carboxamide (6 showed antiproliferative activity against THP-1 and MCF-7 cancer cells without affecting the proliferation of 3T3-L1 non-tumour cells. Compounds 2 and 6 induced the accumulation of THP-1 and MCF-7 cells in G1 phase associated with the downregulation of cyclin E1 protein levels, while the levels of cyclin B1 were not affected. Moreover, compound 2 was found to exert the pro-apoptotic effect on the THP-1 cells. These results suggest that hydroxynaphthanilides might represent a potential model structure for the development of novel anticancer agents.

  12. Anti-proliferative and apoptosis-inducing activity of lycopene against three subtypes of human breast cancer cell lines

    Science.gov (United States)

    Takeshima, Mikako; Ono, Misaki; Higuchi, Takako; Chen, Chen; Hara, Takayuki; Nakano, Shuji

    2014-01-01

    Although lycopene, a major carotenoid component of tomatoes, has been suggested to attenuate the risk of breast cancer, the underlying preventive mechanism remains to be determined. Moreover, it is not known whether there are any differences in lycopene activity among different subtypes of human breast cancer cells. Using ER/PR positive MCF-7, HER2-positive SK-BR-3 and triple-negative MDA-MB-468 cell lines, we investigated the cellular and molecular mechanism of the anticancer activity of lycopene. Lycopene treatment for 168 consecutive hours exhibited a time-dependent and dose-dependent anti-proliferative activity against these cell lines by arresting the cell cycle at the G0/G1 phase at physiologically achievable concentrations found in human plasma. The greatest growth inhibition was observed in MDA-MB-468 where the sub-G0/G1 apoptotic population was significantly increased, with demonstrable cleavage of PARP. Lycopene induced strong and sustained activation of the ERK1/2, with concomitant cyclin D1 suppression and p21 upregulation in these three cell lines. In triple negative cells, lycopene inhibited the phosphorylation of Akt and its downstream molecule mTOR, followed by subsequent upregulation of proapoptotic Bax without affecting anti-apoptotic Bcl-xL. Taken together, these data indicate that the predominant anticancer activity of lycopene in MDA-MB-468 cells suggests a potential role of lycopene for the prevention of triple negative breast cancer. PMID:24397737

  13. 1,1-Diphenyl-2-picrylhydrazyl radical-scavenging compounds from soybean miso and antiproliferative activity of isoflavones from soybean miso toward the cancer cell lines.

    Science.gov (United States)

    Hirota, A; Taki, S; Kawaii, S; Yano, M; Abe, N

    2000-05-01

    Guided by their DPPH radical-scavenging activity, nine compounds were isolated from soybean miso. Of these, 8-hydroxydaidzein, 8-hydroxygenistein and syringic acid had as high DPPH radical-scavenging activity as that of alpha-tocopherol. The antiproliferative activity of four of the isolated isoflavones toward three cancer cell lines was examined. 8-Hydroxygenistein showed the highest activity (IC50=5.2 microM) toward human promyelocytic leukemia cells (HL-60).

  14. In vitro anti-proliferative activity on colon cancer cell line (HT-29) of Thai medicinal plants selected from Thai/Lanna medicinal plant recipe database "MANOSROI III".

    Science.gov (United States)

    Manosroi, Aranya; Akazawa, Hiroyuki; Akihisa, Toshihiro; Jantrawut, Pensak; Kitdamrongtham, Worapong; Manosroi, Worapaka; Manosroi, Jiradej

    2015-02-23

    Thai/Lanna region has its own folklore wisdoms including the traditional medicinal plant recipes. Thai/Lanna medicinal plant recipe database "MANOSROI III" has been developed by Prof. Dr. Jiradej Manosroi. It consists of over 200,000 recipes for all diseases including cancer. To investigate the anti-proliferative and apoptotic activities on human colon cancer cell line (HT-29) as well as the cancer cell selectivity of the methanolic extracts (MEs) and fractions of the 23 selected plants from the "MANOSROI III" database. The 23 selected plants were extracted with methanol under reflux and evaluated for their anti-proliferative activity by sulforhodamine B assay. The 5 plants (Gloriosa superba, Caesalpinia sappan, Fibraurea tinctoria, Ventilago denticulata and Psophocarpus tetragonolobus) with potent anti-proliferative activity were fractionated by liquid-liquid partition to give 4 fractions including each hexane (HF), methanol-water (MF), n-butanol (BF) and water (WF) fractions. They were tested for anti-proliferative activity and cancer cell selectivity. The ME and fractions of G. superba which showed potent anti-proliferative activity were further examined for morphological changes and apoptotic activities by acridine orange (AO)/ethidium bromide (EB) staining. The ME of G. superba root showed active with the highest anti-proliferative activity at 9.17 and 1.58 folds of cisplatin and doxorubicin, respectively. After liquid-liquid partition, HF of V. denticulata, MFs of F. tinctoria, V. denticulata and BF of P. tetragonolobus showed higher anti-proliferative activities than their MEs. The MF of G. superba indicated the highest anti-proliferative activity at 7.73 and 1.34 folds of cisplatin and doxorubicin, respectively, but only 0.86 fold of its ME. The ME and HF, MF and BF of G. superba and MF of F. tinctoria demonstrated high cancer cell selectivity. At 50 µg/ml, ME, HF, MF and BF of G. superba demonstrated higher apoptotic activities than the two standard drugs

  15. Antiproliferative effect of alcoholic extracts of some Gabonese ...

    African Journals Online (AJOL)

    Extracts from Piptadeniastrum africanum Brenan (Mimosaceae), Petersianthus macrocarpus (Breauv) L. (Lecydaceae), Cissus debilis Planch (Vitaceae) and Dieffenbachia seguine Jacq. (Araceae) were tested in vitro for their antiproliferative activity on human colon cancer cell line (CaCo-2). The highest antiproliferative ...

  16. Antiproliferative activity of synthetic fatty acid amides from renewable resources.

    Science.gov (United States)

    dos Santos, Daiane S; Piovesan, Luciana A; D'Oca, Caroline R Montes; Hack, Carolina R Lopes; Treptow, Tamara G M; Rodrigues, Marieli O; Vendramini-Costa, Débora B; Ruiz, Ana Lucia T G; de Carvalho, João Ernesto; D'Oca, Marcelo G Montes

    2015-01-15

    In the work, the in vitro antiproliferative activity of a series of synthetic fatty acid amides were investigated in seven cancer cell lines. The study revealed that most of the compounds showed antiproliferative activity against tested tumor cell lines, mainly on human glioma cells (U251) and human ovarian cancer cells with a multiple drug-resistant phenotype (NCI-ADR/RES). In addition, the fatty methyl benzylamide derived from ricinoleic acid (with the fatty acid obtained from castor oil, a renewable resource) showed a high selectivity with potent growth inhibition and cell death for the glioma cell line-the most aggressive CNS cancer. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Evaluation of Antiproliferative Activity of Red Sorghum Bran Anthocyanin on a Human Breast Cancer Cell Line (MCF-7)

    International Nuclear Information System (INIS)

    Devi, P.S.; Kumar, M.S.; Das, A.S.M.

    2011-01-01

    Breast cancer is a leading cause of death in women worldwide both in the developed and developing countries. Thus effective treatment of breast cancer with potential antitumour drugs is important. In this paper, human breast cancer cell line MCF-7 has been employed to evaluate the antiproliferative activity of red sorghum bran anthocyanin. The present investigation showed that red sorghum bran anthocyanin induced growth inhibition of MCF-7 cells at significant level. The growth inhibition is dose dependent and irreversible in nature. When MCF-7 cells were treated with red sorghum bran anthocyanins due to activity of anthocyanin morphological changes were observed. The morphological changes were identified through the formation of apoptopic bodies. The fragmentation by these anthocyanins on DNA to oligonuleosomal-sized fragments, is a characteristic of apoptosis, and it was observed as concentration-dependent. Thus, this paper clearly demonstrates that human breast cancer cell MCF-7 is highly responsive by red sorghum bran anthocyanins result from the induction of apoptosis in MCF-7 cells.

  18. Esculetin exerts anti-proliferative effects against non-small-cell lung carcinoma by suppressing specificity protein 1 in vitro.

    Science.gov (United States)

    Lee, Ra H; Jeon, Young-Joo; Cho, Jin H; Jang, Jeong-Yun; Kong, Il-Keun; Kim, Seok-Ho; Kim, MinSeok S; Chung, Hak-Jae; Oh, Keon B; Park, Seon-Min; Shin, Jae-Cheon; Seo, Jae-Min; Ko, Sungho; Shim, Jung-Hyun; Chae, Jung-Il

    2017-01-01

    Esculetin, a coumarin derivative, is a phenolic compound isolated from Artemisia capillaris, Citrus limonia, and Euphorbia lathyris. Although it has been reported to have anti-inflammatory, anti-oxidant, and anti-proliferative activities in several human cancers, its anti-proliferative activity against non-small-cell lung carcinoma (NSCLC) and the molecular mechanisms involved have not been adequately elucidated. In this study, we used two NSCLC cell lines (NCI-H358 and NCI-H1299) to investigate the anti-proliferative activity and apoptotic effect of esculetin. Our data showed that esculetin-treated cells exhibited reduced proliferation and apoptotic cell morphologies. Intriguingly, the transcription factor specificity protein 1 (Sp1) was significantly suppressed by esculetin in a dose- and time-dependent manner. Furthermore, the levels of p27 and p21, two key regulators of the cell cycle, were up-regulated by the esculetin-mediated down-regulation of Sp1; the level of a third cell-cycle regulator, survivin, was decreased, resulting in caspase-dependent apoptosis. Therefore, we conclude that esculetin could be a potent anti-proliferative agent in patients with NSCLC.

  19. Antiproliferative effect of isolated isoquinoline alkaloid from Mucuna pruriens seeds in hepatic carcinoma cells.

    Science.gov (United States)

    Kumar, Pranesh; Rawat, Atul; Keshari, Amit K; Singh, Ashok K; Maity, Siddhartha; De, Arnab; Samanta, Amalesh; Saha, Sudipta

    2016-01-01

    The present study was undertaken to investigate the antiproliferative action of isolated M1 (6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid) from Mucuna pruriens seeds using human hepatic carcinoma cell line (Huh-7 cells). Initially, docking studies was performed to find out the binding affinities of M1 to caspase-3 and 8 enzymes. Later, cytotoxic action of M1 was measured by cell growth inhibition (MTT), followed by caspase-3 and 8 enzymes assay colorimetrically. Our results collectively suggested that M1 had strong binding affinity to caspase-8 in molecular modelling. M1 possessed antiproliferative activity on Huh-7 cells (EC50 = 13.97 μM) and also inhibited the action of caspase-8 enzyme, signified process of apoptosis. M1 was active against Huh-7 cells that may be useful for future hepatic cancer treatment.

  20. Lactobacillus casei Exerts Anti-Proliferative Effects Accompanied by Apoptotic Cell Death and Up-Regulation of TRAIL in Colon Carcinoma Cells

    Science.gov (United States)

    Santarmaki, Valentina; Aindelis, Georgios; Tompoulidou, Evgenia; Lamprianidou, Eleftheria E.; Saxami, Georgia; Ypsilantis, Petros; Lampri, Evangeli S.; Simopoulos, Constantinos; Kotsianidis, Ioannis; Galanis, Alex; Kourkoutas, Yiannis; Dimitrellou, Dimitra; Chlichlia, Katerina

    2016-01-01

    Probiotic microorganisms such as lactic acid bacteria (LAB) exert a number of strain-specific health-promoting activities attributed to their immunomodulatory, anti-inflammatory and anti-carcinogenic properties. Despite recent attention, our understanding of the biological processes involved in the beneficial effects of LAB strains is still limited. To this end, the present study investigated the growth-inhibitory effects of Lactobacillus casei ATCC 393 against experimental colon cancer. Administration of live Lactobacillus casei (as well as bacterial components thereof) on murine (CT26) and human (HT29) colon carcinoma cell lines raised a significant concentration- and time-dependent anti-proliferative effect, determined by cell viability assays. Specifically, a dramatic decrease in viability of colon cancer cells co-incubated with 109 CFU/mL L. casei for 24 hours was detected (78% for HT29 and 52% for CT26 cells). In addition, live L. casei induced apoptotic cell death in both cell lines as revealed by annexin V and propidium iodide staining. The significance of the in vitro anti-proliferative effects was further confirmed in an experimental tumor model. Oral daily administration of 109 CFU live L. casei for 13 days significantly inhibited in vivo growth of colon carcinoma cells, resulting in approximately 80% reduction in tumor volume of treated mice. Tumor growth inhibition was accompanied by L. casei-driven up-regulation of the TNF-related apoptosis-inducing ligand TRAIL and down-regulation of Survivin. Taken together, these findings provide evidence for beneficial tumor-inhibitory, anti-proliferative and pro-apoptotic effects driven by this probiotic LAB strain. PMID:26849051

  1. Lactobacillus casei Exerts Anti-Proliferative Effects Accompanied by Apoptotic Cell Death and Up-Regulation of TRAIL in Colon Carcinoma Cells.

    Directory of Open Access Journals (Sweden)

    Angeliki Tiptiri-Kourpeti

    Full Text Available Probiotic microorganisms such as lactic acid bacteria (LAB exert a number of strain-specific health-promoting activities attributed to their immunomodulatory, anti-inflammatory and anti-carcinogenic properties. Despite recent attention, our understanding of the biological processes involved in the beneficial effects of LAB strains is still limited. To this end, the present study investigated the growth-inhibitory effects of Lactobacillus casei ATCC 393 against experimental colon cancer. Administration of live Lactobacillus casei (as well as bacterial components thereof on murine (CT26 and human (HT29 colon carcinoma cell lines raised a significant concentration- and time-dependent anti-proliferative effect, determined by cell viability assays. Specifically, a dramatic decrease in viability of colon cancer cells co-incubated with 10(9 CFU/mL L. casei for 24 hours was detected (78% for HT29 and 52% for CT26 cells. In addition, live L. casei induced apoptotic cell death in both cell lines as revealed by annexin V and propidium iodide staining. The significance of the in vitro anti-proliferative effects was further confirmed in an experimental tumor model. Oral daily administration of 10(9 CFU live L. casei for 13 days significantly inhibited in vivo growth of colon carcinoma cells, resulting in approximately 80% reduction in tumor volume of treated mice. Tumor growth inhibition was accompanied by L. casei-driven up-regulation of the TNF-related apoptosis-inducing ligand TRAIL and down-regulation of Survivin. Taken together, these findings provide evidence for beneficial tumor-inhibitory, anti-proliferative and pro-apoptotic effects driven by this probiotic LAB strain.

  2. Lactobacillus casei Exerts Anti-Proliferative Effects Accompanied by Apoptotic Cell Death and Up-Regulation of TRAIL in Colon Carcinoma Cells.

    Science.gov (United States)

    Tiptiri-Kourpeti, Angeliki; Spyridopoulou, Katerina; Santarmaki, Valentina; Aindelis, Georgios; Tompoulidou, Evgenia; Lamprianidou, Eleftheria E; Saxami, Georgia; Ypsilantis, Petros; Lampri, Evangeli S; Simopoulos, Constantinos; Kotsianidis, Ioannis; Galanis, Alex; Kourkoutas, Yiannis; Dimitrellou, Dimitra; Chlichlia, Katerina

    2016-01-01

    Probiotic microorganisms such as lactic acid bacteria (LAB) exert a number of strain-specific health-promoting activities attributed to their immunomodulatory, anti-inflammatory and anti-carcinogenic properties. Despite recent attention, our understanding of the biological processes involved in the beneficial effects of LAB strains is still limited. To this end, the present study investigated the growth-inhibitory effects of Lactobacillus casei ATCC 393 against experimental colon cancer. Administration of live Lactobacillus casei (as well as bacterial components thereof) on murine (CT26) and human (HT29) colon carcinoma cell lines raised a significant concentration- and time-dependent anti-proliferative effect, determined by cell viability assays. Specifically, a dramatic decrease in viability of colon cancer cells co-incubated with 10(9) CFU/mL L. casei for 24 hours was detected (78% for HT29 and 52% for CT26 cells). In addition, live L. casei induced apoptotic cell death in both cell lines as revealed by annexin V and propidium iodide staining. The significance of the in vitro anti-proliferative effects was further confirmed in an experimental tumor model. Oral daily administration of 10(9) CFU live L. casei for 13 days significantly inhibited in vivo growth of colon carcinoma cells, resulting in approximately 80% reduction in tumor volume of treated mice. Tumor growth inhibition was accompanied by L. casei-driven up-regulation of the TNF-related apoptosis-inducing ligand TRAIL and down-regulation of Survivin. Taken together, these findings provide evidence for beneficial tumor-inhibitory, anti-proliferative and pro-apoptotic effects driven by this probiotic LAB strain.

  3. Bioactive Lipidic Extracts from Octopus (Paraoctopus limaculatus: Antimutagenicity and Antiproliferative Studies

    Directory of Open Access Journals (Sweden)

    Carolina Moreno-Félix

    2013-01-01

    Full Text Available Fractions from an organic extract from fresh octopus (Paraoctopus limaculatus were studied for biological activities such as antimutagenic and antiproliferative properties using Salmonella tester strains TA98 and TA100 with metabolic activation (S9 and a cancer cell line (B-cell lymphoma, respectively. A chloroform extract obtained from octopus tentacles was sequentially fractionated using thin layer chromatography (TLC, and each fraction was tested for antimutagenic and antiproliferative activities. Organic extract reduced the number of revertants caused by aflatoxin B1 showing a dose-response type of relationship. Sequential TLC fractionation of the active extracts produced several antimutagenic and/or antiproliferative fractions. Based on the results obtained, the isolated fractions obtained from octopus contain compounds with chemoprotective properties that reduce the mutagenicity of AFB1 and proliferation of cancer cell lines.

  4. faloabi@uniben.edu Antiproliferative and Pro-apoptotic activities

    African Journals Online (AJOL)

    MICHAEL HORSFALL

    Keyword: Persea americana, antiproliferative activity, apoptotic effect, flow ... of the stem bark of Persea americana in MCF-7 cell line by flow cytometer. .... of an electric milling machine. ... Flow Cytometric Measurement Of Cell Proliferation:.

  5. Backbone modified TBA analogues endowed with antiproliferative activity.

    Science.gov (United States)

    Esposito, Veronica; Russo, Annapina; Amato, Teresa; Varra, Michela; Vellecco, Valentina; Bucci, Mariarosaria; Russo, Giulia; Virgilio, Antonella; Galeone, Aldo

    2017-05-01

    The thrombin binding aptamer (TBA) is endowed with antiproliferative properties but its potential development is counteracted by the concomitant anticoagulant activity. Five oligonucleotides (ODNs) based on TBA sequence (GGTTGGTGTGGTTGG) and containing l-residues or both l-residues and inversion of polarity sites have been investigated by NMR and CD techniques for their ability to form G-quadruplex structures. Furthermore, their anticoagulant (PT assay) and antiproliferative properties (MTT assay), and their resistance in fetal bovine serum have been tested. CD and NMR data suggest that the investigated ODNs are able to form right- and left-handed G-quadruplex structures. All ODNs do not retain the anticoagulant activity characteristic of TBA but are endowed with a significant antiproliferative activity against two cancerous cell lines. Their resistance in biological environment after six days is variable, depending on the ODN. A comparison between results and literature data suggests that the antiproliferative activity of the TBA analogues investigated could depends on two factors: a) biological pathways and targets different from those already identified or proposed for other antiproliferative G-quadruplex aptamers, and b) the contribution of the guanine-based degradation products. Modified TBA analogues containing l-residues and inversion of polarity sites lose the anticoagulant activity but gain antiproliferative properties against two cancer cell lines. This article is part of a Special Issue entitled "G-quadruplex" Guest Editor: Dr. Concetta Giancola and Dr. Daniela Montesarchio. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Arctigenin in combination with quercetin synergistically enhances the antiproliferative effect in prostate cancer cells.

    Science.gov (United States)

    Wang, Piwen; Phan, Tien; Gordon, David; Chung, Seyung; Henning, Susanne M; Vadgama, Jaydutt V

    2015-02-01

    We investigated whether a combination of two promising chemopreventive agents arctigenin (Arc) and quercetin (Q) increases the anticarcinogenic potency at lower concentrations than necessary when used individually in prostate cancer. Androgen-dependent LAPC-4 and LNCaP prostate cancer cells were treated with low doses of Arc and Q alone or in combination for 48 h. The antiproliferative activity of Arc was 10- to 20-fold stronger than Q in both cell lines. Their combination synergistically enhanced the antiproliferative effect, with a stronger effect in androgen receptor (AR) wild-type LAPC-4 cells than in AR mutated LNCaP cells. Arc demonstrated a strong ability to inhibit AR protein expression in LAPC-4 cells. The combination treatment significantly inhibited both AR and PI3K/Akt pathways compared to control. A protein array analysis revealed that the mixture targets multiple pathways particularly in LAPC-4 cells including Stat3 pathway. The mixture significantly inhibited the expression of several oncogenic microRNAs including miR-21, miR-19b, and miR-148a compared to control. The mixture also enhanced the inhibition of cell migration in both cell lines compared to individual compounds tested. The combination of Arc and Q that target similar pathways, at low physiological doses, provides a novel regimen with enhanced chemoprevention in prostate cancer. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Antioxidative and in vitro antiproliferative activity of Arctium lappa root extracts

    Science.gov (United States)

    2011-01-01

    Background Arctium lappa, known as burdock, is widely used in popular medicine for hypertension, gout, hepatitis and other inflammatory disorders. Pharmacological studies indicated that burdock roots have hepatoprotective, anti-inflammatory, free radical scavenging and antiproliferative activities. The aim of this study was to evaluate total phenolic content, radical scavenging activity by DPPH and in vitro antiproliferative activity of different A. lappa root extracts. Methods Hot and room temperature dichloromethanic, ethanolic and aqueous extracts; hydroethanolic and total aqueous extract of A. lappa roots were investigated regarding radical scavenging activity by DPPH, total phenolic content by Folin-Ciocalteau method and antiproliferative in vitro activity was evaluated in human cancer cell lines. The hydroethanolic extract analyzed by high-resolution electrospray ionization mass spectroscopy. Results Higher radical scavenging activity was found for the hydroethanolic extract. The higher phenolic contents were found for the dichloromethane, obtained both by Soxhlet and maceration extraction and hydroethanolic extracts. The HRESI-MS demonstrated the presence of arctigenin, quercetin, chlorogenic acid and caffeic acid compounds, which were identified by comparison with previous data. The dichloromethane extracts were the only extracts that exhibited activity against cancer cell lines, especially for K562, MCF-7 and 786-0 cell lines. Conclusions The hydroethanolic extracts exhibited the strongest free radical scavenging activity, while the highest phenolic content was observed in Soxhlet extraction. Moreover, the dichloromethanic extracts showed selective antiproliferative activity against K562, MCF-7 and 786-0 human cancer cell lines. PMID:21429215

  8. Antioxidative and in vitro antiproliferative activity of Arctium lappa root extracts.

    Science.gov (United States)

    Predes, Fabricia S; Ruiz, Ana L T G; Carvalho, João E; Foglio, Mary A; Dolder, Heidi

    2011-03-23

    Arctium lappa, known as burdock, is widely used in popular medicine for hypertension, gout, hepatitis and other inflammatory disorders. Pharmacological studies indicated that burdock roots have hepatoprotective, anti-inflammatory, free radical scavenging and antiproliferative activities. The aim of this study was to evaluate total phenolic content, radical scavenging activity by DPPH and in vitro antiproliferative activity of different A. lappa root extracts. Hot and room temperature dichloromethanic, ethanolic and aqueous extracts; hydroethanolic and total aqueous extract of A. lappa roots were investigated regarding radical scavenging activity by DPPH, total phenolic content by Folin-Ciocalteau method and antiproliferative in vitro activity was evaluated in human cancer cell lines. The hydroethanolic extract analyzed by high-resolution electrospray ionization mass spectroscopy. Higher radical scavenging activity was found for the hydroethanolic extract. The higher phenolic contents were found for the dichloromethane, obtained both by Soxhlet and maceration extraction and hydroethanolic extracts. The HRESI-MS demonstrated the presence of arctigenin, quercetin, chlorogenic acid and caffeic acid compounds, which were identified by comparison with previous data. The dichloromethane extracts were the only extracts that exhibited activity against cancer cell lines, especially for K562, MCF-7 and 786-0 cell lines. The hydroethanolic extracts exhibited the strongest free radical scavenging activity, while the highest phenolic content was observed in Soxhlet extraction. Moreover, the dichloromethanic extracts showed selective antiproliferative activity against K562, MCF-7 and 786-0 human cancer cell lines. © 2011 Predes et al; licensee BioMed Central Ltd.

  9. Antioxidative and in vitro antiproliferative activity of Arctium lappa root extracts

    Directory of Open Access Journals (Sweden)

    Carvalho João E

    2011-03-01

    Full Text Available Abstract Background Arctium lappa, known as burdock, is widely used in popular medicine for hypertension, gout, hepatitis and other inflammatory disorders. Pharmacological studies indicated that burdock roots have hepatoprotective, anti-inflammatory, free radical scavenging and antiproliferative activities. The aim of this study was to evaluate total phenolic content, radical scavenging activity by DPPH and in vitro antiproliferative activity of different A. lappa root extracts. Methods Hot and room temperature dichloromethanic, ethanolic and aqueous extracts; hydroethanolic and total aqueous extract of A. lappa roots were investigated regarding radical scavenging activity by DPPH, total phenolic content by Folin-Ciocalteau method and antiproliferative in vitro activity was evaluated in human cancer cell lines. The hydroethanolic extract analyzed by high-resolution electrospray ionization mass spectroscopy. Results Higher radical scavenging activity was found for the hydroethanolic extract. The higher phenolic contents were found for the dichloromethane, obtained both by Soxhlet and maceration extraction and hydroethanolic extracts. The HRESI-MS demonstrated the presence of arctigenin, quercetin, chlorogenic acid and caffeic acid compounds, which were identified by comparison with previous data. The dichloromethane extracts were the only extracts that exhibited activity against cancer cell lines, especially for K562, MCF-7 and 786-0 cell lines. Conclusions The hydroethanolic extracts exhibited the strongest free radical scavenging activity, while the highest phenolic content was observed in Soxhlet extraction. Moreover, the dichloromethanic extracts showed selective antiproliferative activity against K562, MCF-7 and 786-0 human cancer cell lines.

  10. Neurotoxic, cytotoxic, apoptotic and antiproliferative effects of some marine algae extracts on the NA2B cell line.

    Science.gov (United States)

    Kurt, O; Özdal-Kurt, F; Akçora, C M; Özkut, M; Tuğlu, M I

    2018-02-01

    Oxidative stress contributes to cancer pathologies and to apoptosis. Marine algae exhibit cytotoxic, antiproliferative and apoptotic effects; their metabolites have been used to treat many types of cancer. We investigated in culture extracts of Petalonia fascia, Jania longifurca and Halimeda tuna to determine their effects on mouse neuroblastoma cell line, NA2B. NA2B cells were treated with algae extracts, and the survival and proliferation of NA2B cells were assessed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The effects of algae extracts on oxidative stress in NA2B cells also were investigated using nitric oxide synthase (NOS) immunocytochemistry and apoptosis was assessed using terminal deoxynucleotidyl transferase dUTP nick end labeling. We observed significant neurite inhibition with moderate damage by the neurotoxicity-screening test (NST) at IC 50 dilutions of the extracts. MTT demonstrated that J. longifurca extracts were more toxic than P. fascia and H. tuna extracts. We found an increase of endothelial and inducible NOS immunostaining for oxidative stress and TUNEL analysis revealed increased apoptosis after application of extract. Our findings suggest that the algae we tested may have potential use for treatment of cancer.

  11. Antimutagenicity and Antiproliferative Studies of Lipidic Extracts from White Shrimp (Litopenaeus vannamei

    Directory of Open Access Journals (Sweden)

    Carolina Moreno-Félix

    2010-11-01

    Full Text Available An organic extract from fresh shrimp (Litopenaeus vannamei was studied for antimutagenic and antiproliferative properties using Salmonella typhimurium tester strains TA98 and TA100 with metabolic activation (S9 and a cancer cell line (B-cell lymphoma, respectively. Shrimp extract was sequentially fractionated by thin layer chromatography (TLC and each fraction was tested for antimutagenic and antiproliferative activities. Crude organic extracts obtained from shrimp reduced the number of revertants caused by aflatoxina B1, showing a dose-response type of relationship. Sequential TLC fractionation of the active extracts produced several antimutagenic and/or antiproliferative fractions. These results suggested that the lipid fraction of the tested species contained compounds with chemoprotective properties that reduce the mutagenicity of AFB1 and proliferation of a cancer cell line.

  12. Antiproliferative activity of cardenolide glycosides from Asclepias subulata.

    Science.gov (United States)

    Rascón-Valenzuela, L; Velázquez, C; Garibay-Escobar, A; Medina-Juárez, L A; Vilegas, W; Robles-Zepeda, R E

    2015-08-02

    Asclepias subulata Decne. is a shrub occurring in Sonora-Arizona desert (Mexico-USA). The ethnic groups, Seris and Pimas, use this plant for the treatment of sore eyes, gastrointestinal disorders and cancer. To isolate the compounds responsible for antiproliferative activity of the methanol extract of A. subulata. A bioguided fractionation of methanol extract of A. subulata was performed using MTT assay to measure the antiproliferative activity of different compounds on three human cancer cell lines (A549, LS 180 and PC-3), one murine cancer cell line (RAW 264.7) and one human normal cell line (ARPE-19). The methanol extract was partitioned with hexane, ethyl acetate and ethanol. The active fractions, ethanol and residual, were fractioned by silica-column chromatography and active sub-fractions were separated using HPLC. The chemical structures of isolated compounds were elucidated with different chemical and spectroscopic methods. A new cardenolide glycoside, 12, 16-dihydroxycalotropin, and three known, calotropin, corotoxigenin 3-O-glucopyranoside and desglucouzarin, were isolated of active sub-fractions. All isolated compounds showed a strong antiproliferative activity in human cancer cells. Calotropin was the more active with IC50 values of 0.0013, 0.06 and 0.41 µM on A549, LS 180 and PC-3 cell lines, respectively; while 12, 16-dihydroxycalotropin reached values of 2.48, 5.62 and 11.70 µM, on the same cells; corotoxigenin 3-O-glucopyranoside had IC50 of 2.64, 3.15 and 6.62 µM and desglucouzarin showed values of 0.90, 6.57 and 6.62, µM. Doxorubicin, positive control, showed IC50 values of 1.78, 6.99 and 3.18 µM, respectively. The isolated compounds had a weak effect on murine cancer cells and human normal cells, exhibiting selectivity to human cancer cells. In this study, we found that 12, 16-dihydroxicalotropin, calotropin, corotoxigenin 3-O-glucopyranoside and desglucouzarin are responsible of antiproliferative properties of A. subulata, and that these

  13. Evaluation of Antiproliferative Activity of Some Traditional Anticancer ...

    African Journals Online (AJOL)

    antiproliferative activity against six human tumor cell lines (A375.S2, WM1361A, CACO-2, ... presence of cancer therapy-related problems. ... Table 1: Characteristics of the plants investigated in this study ... of cell viability using MTT (3-(4, 5-.

  14. Sechium edule (Jacq. Swartz, a New Cultivar with Antiproliferative Potential in a Human Cervical Cancer HeLa Cell Line

    Directory of Open Access Journals (Sweden)

    Sandra Salazar-Aguilar

    2017-07-01

    Full Text Available The Sechium edule Perla Negra cultivar is a recently-obtained biological material whose progenitors are S. edule var. nigrum minor and S. edule var. amarus silvestrys, the latter of which has been reported to have antiproliferative activity against the HeLa P-388 and L-929 cancer cell lines. The present study aimed to determine if the methanolic extract of the fruit of the Perla Negra cultivar had the same biological activity. The methanolic extract was phytochemically characterized by thin layer chromatography (TLC and column chromatography (CC, identifying the terpenes and flavonoids. The compounds identified via high performance liquid chromatography (HPLC were Cucurbitacins B, D, E, and I for the terpene fractions, and Rutin, Phlorizidin, Myricetin, Quercetin, Naringenin, Phloretin, Apigenin, and Galangin for the flavonoid fractions. Biological activity was evaluated with different concentrations of the methanolic extract in the HeLa cell line and normal lymphocytes. The methanolic extract inhibited the proliferation of HeLa cells (IC50 1.85 µg·mL−1, but the lymphocytes were affected by the extract (IC50 30.04 µg·mL−1. Some fractions, and the pool of all of them, showed inhibition higher than 80% at a concentration of 2.11 µg·mL−1. Therefore, the biological effect shown by the methanolic extract of the Perla Negra has some specificity in inhibiting tumor cells and not normal cells; an unusual feature among molecules investigated as potential biomedical agents.

  15. Sechium edule (Jacq.) Swartz, a New Cultivar with Antiproliferative Potential in a Human Cervical Cancer HeLa Cell Line.

    Science.gov (United States)

    Salazar-Aguilar, Sandra; Ruiz-Posadas, Lucero Del Mar; Cadena-Iñiguez, Jorge; Soto-Hernández, Marcos; Santiago-Osorio, Edelmiro; Aguiñiga-Sánchez, Itzen; Rivera-Martínez, Ana Rocío; Aguirre-Medina, Juan Francisco

    2017-07-25

    The Sechium edule Perla Negra cultivar is a recently-obtained biological material whose progenitors are S. edule var. nigrum minor and S. edule var. amarus silvestrys, the latter of which has been reported to have antiproliferative activity against the HeLa P-388 and L-929 cancer cell lines. The present study aimed to determine if the methanolic extract of the fruit of the Perla Negra cultivar had the same biological activity. The methanolic extract was phytochemically characterized by thin layer chromatography (TLC) and column chromatography (CC), identifying the terpenes and flavonoids. The compounds identified via high performance liquid chromatography (HPLC) were Cucurbitacins B, D, E, and I for the terpene fractions, and Rutin, Phlorizidin, Myricetin, Quercetin, Naringenin, Phloretin, Apigenin, and Galangin for the flavonoid fractions). Biological activity was evaluated with different concentrations of the methanolic extract in the HeLa cell line and normal lymphocytes. The methanolic extract inhibited the proliferation of HeLa cells (IC 50 1.85 µg·mL -1 ), but the lymphocytes were affected by the extract (IC 50 30.04 µg·mL -1 ). Some fractions, and the pool of all of them, showed inhibition higher than 80% at a concentration of 2.11 µg·mL -1 . Therefore, the biological effect shown by the methanolic extract of the Perla Negra has some specificity in inhibiting tumor cells and not normal cells; an unusual feature among molecules investigated as potential biomedical agents.

  16. Arctigenin in combination with quercetin synergistically enhances the anti-proliferative effect in prostate cancer cells

    Science.gov (United States)

    Wang, Piwen; Phan, Tien; Gordon, David; Chung, Seyung; Henning, Susanne M.; Vadgama, Jaydutt V.

    2014-01-01

    Scope We investigated whether a combination of two promising chemopreventive agents arctigenin and quercetin increases the anti-carcinogenic potency at lower concentrations than necessary when used individually in prostate cancer. Methods and results Androgen-dependent LAPC-4 and LNCaP prostate cancer cells were treated with low doses of arctigenin and quercetin alone or in combination for 48h. The anti-proliferative activity of arctigenin was 10-20 fold stronger than quercetin in both cell lines. Their combination synergistically enhanced the anti-proliferative effect, with a stronger effect in androgen receptor (AR) wild-type LAPC-4 cells than in AR mutated LNCaP cells. Arctigenin demonstrated a strong ability to inhibit AR protein expression in LAPC-4 cells. The combination treatment significantly inhibited both AR and PI3K/Akt pathways compared to control. A protein array analysis revealed that the mixture targets multiple pathways particularly in LAPC-4 cells including Stat3 pathway. The mixture significantly inhibited the expression of several oncogenic microRNAs including miR-21, miR-19b, and miR-148a compared to control. The mixture also enhanced the inhibition of cell migration in both cell lines compared to individual compounds tested. Conclusion The combination of arctigenin and quercetin, that target similar pathways, at low physiological doses, provides a novel regimen with enhanced chemoprevention in prostate cancer. PMID:25380086

  17. Stevia rebaudiana ethanolic extract exerts better antioxidant properties and antiproliferative effects in tumour cells than its diterpene glycoside stevioside.

    Science.gov (United States)

    López, Víctor; Pérez, Sergio; Vinuesa, Arturo; Zorzetto, Christian; Abian, Olga

    2016-04-01

    Steviol glycosides are currently being used as natural sweeteners by the food industry and Stevia rebaudiana has long been used as a sweet plant in South America for patients suffering from diabetes. In this study, a Stevia rebaudiana ethanolic extract (SREE) was prepared, analysed and tested for antioxidant activity in terms of free radical scavenging properties and antiproliferative effects in cervix (HeLa), pancreatic (MiaPaCa-2) and colonic (HCT116) cancer cells. The antiproliferative mechanism was confirmed by testing the effects on cyclin D1-CDK4. Bioassays were also performed for the diterpene glycoside stevioside. Our results demonstrate that the extract acts as an antioxidant being able to scavenge free radicals, but this activity was not due to stevioside. The extract also induced cell death in the three cell lines, being more active against cervix cancer cells (HeLa); however, the concentration of stevioside needed to produce antiproliferative effects was higher than the amount of steviol glycosides found in a lower dose of extract inducing cell death. In addition, the extract clearly inhibited CDK4 whereas stevioside did not, concluding that the antiproliferative activity of stevia may be due to inhibition of cyclin-dependent kinases performed by other compounds of the extract.

  18. Antiproliferative activity of some novel platinum complexes on C6 ...

    African Journals Online (AJOL)

    MCF-7) and glioma cells (C6). IC50 values of the three compounds were lower in the cisplatin-resistant cell type C6 cell lines than in MCF-7 cells. Key words: Cisplatin, antiproliferative activity, breast cancer cells (MCF-7), glioma cells (C6), IC50.

  19. Diethylene glycol monoethyl ether (Transcutol) displays antiproliferative properties alone and in combination with xanthines.

    Science.gov (United States)

    Levi-Schaffer, F; Dayan, N; Touitou, E

    1996-01-01

    In the present study we have investigated the effects of diethylene glycol monoethyl ether (Transcutol) in combination with theophylline, caffeine and dyphylline and alone on 3T3 mouse fibroblast proliferation. These three xanthines (1-0.01 mM) inhibited fibroblast proliferation by themselves. Enhancement of the effect was detected by addition of 1 and 0.1 mM Transcutol. Transcutol alone also displayed a dose-dependent inhibition (2-0.01 mM) of both 3T3 and human normal and psoriatic fibroblasts, although normal human fibroblasts were the least sensitive to Transcutol antiproliferative activity. Transcutol was assessed for its antiproliferative effects on YAC lymphoma and P-815 mastocytoma human cell lines. Transcutol inhibited cell proliferation of both these cell lines, being more effective towards P-815 mastocytoma (at 2 mM it displayed 3.95-fold vs. 2.4-fold inhibition towards YAC lymphoma). In conclusion, we have shown that Transcutol has antiproliferative effects on 3T3 murine, human normal and psoriatic fibroblasts and tumour cell lines. In addition it enhances xanthine antiproliferative effects on 3T3 fibroblasts. Therefore it might be a useful topical drug alone or in combination with xanthines in the treatment of skin hyperproliferative disorders.

  20. Parallel Solid-Phase Synthesis Using a New Diethylsilylacetylenic Linker and Leading to Mestranol Derivatives with Potent Antiproliferative Activities on Multiple Cancer Cell Lines.

    Science.gov (United States)

    Dutour, Raphael; Maltais, Rene; Perreault, Martin; Roy, Jenny; Poirier, Donald

    2018-03-07

    RM-133 belongs to a new family of aminosteroid derivatives demonstrating interesting anticancer properties, as confirmed in vivo in four mouse cancer xenograft models. However, the metabolic stability of RM-133 needs to be improved. After investigation, the replacement of its androstane scaffold by a more stable estrane scaffold led to the development of the mestranol derivative RM-581. Using solid-phase strategy involving five steps, we quickly synthesized a series of RM-581 analogs using the recently-developed diethylsilyl acetylenic linker. To establish structure-activity relationships, we then investigated their antiproliferative potency on a panel of cancer cell lines from various cancers (breast, prostate, ovarian and pancreatic). Some of the mestranol derivatives have shown in vitro anticancer activities that are close to, or better than those observed for RM-581. Compound 23, a mestranol derivative having a ((3,5-dimethylbenzoyl)-L-prolyl)piperazine side chain at position C2, was found to be active as an antiproliferative agent (IC50 = 0.38 ± 0.34 to 3.17 ± 0.10 µM) and to be twice as active as RM-581 on LNCaP, PC-3, MCF-7, PANC-1 and OVCAR-3 cancer cells (IC50 = 0.56 ± 0.30, 0.89 ± 0.63, 1.36 ± 0.31, 2.47 ± 0.91 and 3.17 ± 0.10 µM, respectively). Easily synthesized in good yields by both solid-phase organic synthesis and classic solution-phase chemistry, this promising candidate could be used as an antiproliferative agent on a variety of cancers, notably pancreatic and ovarian cancers, both having very bad prognoses. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. Antioxidative and antiproliferative activities of novel pyrido[1,2-a]benzimidazoles.

    Science.gov (United States)

    Tireli, Martina; Starčević, Kristina; Martinović, Tamara; Pavelić, Sandra Kraljević; Karminski-Zamola, Grace; Hranjec, Marijana

    2017-02-01

    A series of pyrido[1,2-a]benzimidazoles has been designed, and novel examples are synthesized and evaluated for their potential antiproliferative activity against four human tumour cell lines-cervical (HeLa), colorectal (SW620), breast (MCF-7) and hepatocellular carcinoma (HepG2). In addition, their antioxidative potency has been evaluated by in vitro spectrophotometric assays. Preliminary structure-activity relationships among the synthesized compounds are discussed. Evaluation of their antioxidative capacity has shown that two compounds (25 and 26) possess promising reducing characteristics and free radical scavenging activity. Selective antiproliferative effect in the single-digit micromolar range was observed for compound 25 on MCF-7 [Formula: see text] and HeLa [Formula: see text] cell lines, comparable to the standards 5-fluorouracil and cisplatin. The combination of the radical scavenging activity and antiproliferative activity of compound 25 positions this compound as a potential lead candidate for further optimization.

  2. (Asteraceae) Fraction against Human Cancer Cell Lines

    African Journals Online (AJOL)

    Purpose: To investigate the anti-proliferative and apoptotic activity of crude and dichloromethane fraction of A. sieberi against seven cancer cell lines (Colo20, HCT116, DLD, MCF7, Jurkat, HepG2 and L929). Methods: A. sieberi was extracted with methanol and further purification was carried out using liquidliquid extraction ...

  3. Syntehsis and antiproliferative activities of chloropyridazine derivatives retain alkylsulfonyl moiety

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chae Won; Park, Myung Sook [College of Pharmacy, Duksung Women' s University, Seoul (Korea, Republic of)

    2016-11-15

    Some chloropyridazine derivatives have shown interesting pharmacodynamics properties in terms of antioxidant and anti-human rotavirus (HRV) activities (Figure 1). To date, however, no study has evaluated the antiproliferative effects of chloropyridazines in other types of human cancer cells. In conclusion, we designed and synthesized a total of five groups of alkoxy-(or alkylthio-, alkylselenyl-, alkylsufinyl alkylsulfonyl-)chloropyridazines, and their antiproliferative activity was evaluated in the human cancer cell lines. IC{sub 50} values showed that the alkylsulfonylchloropyridazine compounds exhibited more active than the other four groups having alkoxy, alkylthio, alkylselenyl, alkylsulfinyl moieties against MCF-7 and Hep2B Cells.

  4. Syntehsis and antiproliferative activities of chloropyridazine derivatives retain alkylsulfonyl moiety

    International Nuclear Information System (INIS)

    Kim, Chae Won; Park, Myung Sook

    2016-01-01

    Some chloropyridazine derivatives have shown interesting pharmacodynamics properties in terms of antioxidant and anti-human rotavirus (HRV) activities (Figure 1). To date, however, no study has evaluated the antiproliferative effects of chloropyridazines in other types of human cancer cells. In conclusion, we designed and synthesized a total of five groups of alkoxy-(or alkylthio-, alkylselenyl-, alkylsufinyl alkylsulfonyl-)chloropyridazines, and their antiproliferative activity was evaluated in the human cancer cell lines. IC_5_0 values showed that the alkylsulfonylchloropyridazine compounds exhibited more active than the other four groups having alkoxy, alkylthio, alkylselenyl, alkylsulfinyl moieties against MCF-7 and Hep2B Cells

  5. CYP1-mediated antiproliferative activity of dietary flavonoids in MDA-MB-468 breast cancer cells

    International Nuclear Information System (INIS)

    Androutsopoulos, Vasilis P.; Ruparelia, Ketan; Arroo, Randolph R.J.; Tsatsakis, Aristidis M.; Spandidos, Demetrios A.

    2009-01-01

    Among the different mechanisms proposed to explain the cancer-protecting effect of dietary flavonoids, substrate-like interactions with cytochrome P450 CYP1 enzymes have recently been explored. In the present study, the metabolism of the flavonoids chrysin, baicalein, scutellarein, sinensetin and genkwanin by recombinant CYP1A1, CYP1B1 and CYP1A2 enzymes, as well as their antiproliferative activity in MDA-MB-468 human breast adenocarcinoma and MCF-10A normal breast cell lines, were investigated. Baicalein and 6-hydroxyluteolin were the only conversion products of chrysin and scutellarein metabolism by CYP1 family enzymes, respectively, while baicalein itself was not metabolized further. Sinensetin and genkwanin produced a greater number of metabolites and were shown to inhibit strongly in vitro proliferation of MDA-MB-468 cells at submicromolar and micromolar concentrations, respectively, without essentially affecting the viability of MCF-10A cells. Cotreatment of the CYP1 family inhibitor acacetin reversed the antiproliferative activity noticed for the two flavones in MDA-MB-468 cells to 13 and 14 μM respectively. In contrast chrysin, baicalein and scutellarein inhibited proliferation of MDA-MB-468 cells to a lesser extent than sinensetin and genkwanin. The metabolism of genkwanin to apigenin and of chrysin to baicalein was favored by CYP1B1 and CYP1A1, respectively. Taken together the data suggests that CYP1 family enzymes enhance the antiproliferative activity of dietary flavonoids in breast cancer cells, through bioconversion to more active products.

  6. Antiproliferative effects of prenylflavonoids from hops on human colon cancer cell lines

    Czech Academy of Sciences Publication Activity Database

    Hudcová, T.; Bryndová, Jana; Fialová, K.; Fiala, J.; Karabín, M.; Jelínek, L.; Dostalek, P.

    2014-01-01

    Roč. 120, č. 3 (2014), s. 225-230 ISSN 0046-9750 Institutional support: RVO:67985823 Keywords : hop * prenylflavonoids * xanthohumol * isoxanthohumol * antiproliferative * colon cancer Subject RIV: GM - Food Processing Impact factor: 1.240, year: 2014

  7. Synthesis and in vitro anti-proliferative effects of 3-(hetero)aryl substituted 3-[(prop-2-ynyloxy)(thiophen-2-yl)methyl]pyridine derivatives on various cancer cell lines.

    Science.gov (United States)

    Reddy Chamakura, Upendar; Sailaja, E; Dulla, Balakrishna; Kalle, Arunasree M; Bhavani, S; Rambabu, D; Kapavarapu, Ravikumar; Rao, M V Basaveswara; Pal, Manojit

    2014-03-01

    A series of 3-(hetero)aryl substituted 3-[(prop-2-ynyloxy)(thiophen-2-yl)methyl]pyridine derivatives were designed as potential anticancer agents. These compounds were conveniently prepared by using Pd/C-Cu mediated Sonogashira type coupling as a key step. Many of these compounds were found to be promising when tested for their in vitro anti-proliferative properties against six cancer cell lines. All these compounds were found to be selective towards the growth inhibition of cancer cells with IC50 values in the range of 0.9-1.7 μM (against MDA-MB 231 and MCF7 cells), comparable to the known anticancer drug doxorubicin. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Synthesis and antiproliferative activity of a cyclic analog of dolastatin 10.

    Science.gov (United States)

    Poncet, J; Hortala, L; Busquet, M; Guéritte-Voegelein, F; Thoret, S; Pierré, A; Atassi, G; Jouin, P

    1998-10-20

    A cyclic analog of the natural antiproliferative compound dolastatin 10 was synthesized by introducing an ester link between the N- and C-terminal residues which were modified accordingly. The final macrolactonization was performed by using isopropenyl chloroformate and DMAP as reagents. This analog exhibits submicromolar antiproliferative activity against the L1210 and HT29 cell lines and inhibits in vitro tubulin polymerization (IC50, 39 microM).

  9. Screening antimutagenic and antiproliferative properties of extracts isolated from Jackfruit pulp (Artocarpus heterophyllus Lam).

    Science.gov (United States)

    Ruiz-Montañez, G; Burgos-Hernández, A; Calderón-Santoyo, M; López-Saiz, C M; Velázquez-Contreras, C A; Navarro-Ocaña, A; Ragazzo-Sánchez, J A

    2015-05-15

    The present focused on the study of the antimutagenic and antiproliferative potential of pulp Jackfruit (Artocarpus heterophyllus Lam) extract, using Salmonella typhimurium tester strains TA98 and TA100 with metabolic activation (S9) and a cancer cell line M12.C3.F6 (murine B-cell lymphoma), respectively. Jackfruit pulp extract was sequentially fractionated by chromatography (RP-HPLC) and each fraction was tested for antimutagenic and antiproliferative activities. The organic extracts obtained from Jackfruit pulp reduced the number of revertants caused by aflatoxin B1 (AFB1) and proliferation of cells M12.C3.F6; a dose-response relationship was showed. Sequential RP-HPLC fractionation of the active extracts produced both antimutagenic and/or antiproliferative fractions. These results suggested that the Jackfruit contained compounds with chemoprotective properties to reduce the mutagenicity of AFB1, also proliferation of a cancer cell line. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. The IL-6 receptor super-antagonist Sant7 enhances antiproliferative and apoptotic effects induced by dexamethasone and zoledronic acid on multiple myeloma cells.

    Science.gov (United States)

    Tassone, Pierfrancesco; Galea, Eulalia; Forciniti, Samantha; Tagliaferri, Pierosandro; Venuta, Salvatore

    2002-10-01

    Interleukin-6 (IL-6) is the major growth and survival factor for multiple myeloma (MM), and has been shown to protect MM cells from apoptosis induced by a variety of agents. IL-6 receptor antagonists, which prevent the assembly of functional IL-6 receptor complexes, inhibit cell proliferation and induce apoptosis in MM cells. We have investigated whether the IL-6 receptor super-antagonist Sant7 might enhance the antiproliferative and apoptotic effects induced by the combination of dexamethasone (Dex) and zoledronic acid (Zln) on human MM cell lines and primary cells from MM patients. Here we show that each of these compounds individually induced detectable antiproliferative effects on MM cells. Sant7 significantly enhanced growth inhibition and apoptosis induced by Dex and Zln on both MM cell lines and primary MM cells. These results indicate that overcoming IL-6 mediated cell resistance by Sant7 potentiates the effect of glucocorticoides and bisphosphonates on MM cell growth and survival, providing a rationale for therapies including IL-6 antagonists in MM.

  11. Short communication: Antiproliferative effect of wild Lactobacillus strains isolated from fermented foods on HT-29 cells.

    Science.gov (United States)

    Tuo, Y F; Zhang, L W; Yi, H X; Zhang, Y C; Zhang, W Q; Han, X; Du, M; Jiao, Y H; Wang, S M

    2010-06-01

    In vitro studies, animal models, epidemiology, and human intervention studies provide evidence that some lactic acid bacteria can reduce the risk of certain cancers. In this study, heat-killed bacterial cells, genomic DNA, and cell wall of 7 wild Lactobacillus strains isolated from traditional fermented foods in western China were tested in vitro for cytotoxicity on colonic cancer cell line HT-29 by using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The heat-killed bacterial cells, genomic DNA, and cell wall of the 7 strains exhibited direct antiproliferative activities against HT-29 cells. Among the strains, the cellular components of Lactobacillus coryniformis ssp. torquens T3L exerted marked antiproliferative activities against HT-29 cells. The maximum inhibition rates of HT-29 cells by the heat-killed bacterial cells (1x10(7) cfu/mL), cell wall (20 microg of protein/mL) and genomic DNA (100 microg/mL) of L. coryniformis ssp. torquens T3L were 30, 44.9, and 35.9%, respectively. The results indicate that the heat-killed bacterial cells, cell wall, and genomic DNA of the 7 wild Lactobacillus strains could inhibit the growth of HT-29 cells. 2010 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  12. Combination therapy with vemurafenib (PLX4032/RG7204 and metformin in melanoma cell lines with distinct driver mutations

    Directory of Open Access Journals (Sweden)

    Recio Juan A

    2011-05-01

    Full Text Available Abstract Background A molecular linkage between the MAPK and the LKB1-AMPK energy sensor pathways suggests that combined MAPK oncogene inhibition and metabolic modulation of AMPK would be more effective than either manipulation alone in melanoma cell lines. Materials and methods The combination of the BRAF inhibitor vemurafenib (formerly PLX4032 and metformin were tested against a panel of human melanoma cell lines with defined BRAF and NRAS mutations for effects on viability, cell cycle and apoptosis. Signaling molecules in the MAPK, PI3K-AKT and LKB1-AMPK pathways were studied by Western blot. Results Single agent metformin inhibited proliferation in 12 out of 19 cell lines irrespective of the BRAF mutation status, but in one NRASQ61K mutant cell line it powerfully stimulated cell growth. Synergistic anti-proliferative effects of the combination of metformin with vemurafenib were observed in 6 out of 11 BRAFV600E mutants, including highly synergistic effects in two BRAFV600E mutant melanoma cell lines. Antagonistic effects were noted in some cell lines, in particular in BRAFV600E mutant cell lines resistant to single agent vemurafenib. Seven out of 8 BRAF wild type cell lines showed marginally synergistic anti-proliferative effects with the combination, and one cell line had highly antagonistic effects with the combination. The differential effects were not dependent on the sensitivity to each drug alone, effects on cell cycle or signaling pathways. Conclusions The combination of vemurafenib and metformin tended to have stronger anti-proliferative effects on BRAFV600E mutant cell lines. However, determinants of vemurafenib and metformin synergism or antagonism need to be understood with greater detail before any potential clinical utility of this combination.

  13. Interferon-Tau has Antiproliferative effects, Represses the Expression of E6 and E7 Oncogenes, Induces Apoptosis in Cell Lines Transformed with HPV16 and Inhibits Tumor Growth In Vivo

    Science.gov (United States)

    Padilla-Quirarte, Herbey Oswaldo; Trejo-Moreno, Cesar; Fierros-Zarate, Geny; Castañeda, Jhoseline Carnalla; Palma-Irizarry, Marie; Hernández-Márquez, Eva; Burguete-Garcia, Ana Isabel; Peralta-Zaragoza, Oscar; Madrid-Marina, Vicente; Torres-Poveda, Kirvis; Bermúdez-Morales, Victor Hugo

    2016-01-01

    Interferon tau (IFN-τ) is a promising alternative antiviral and immunotherapeutic agent in a wide variety of diseases including infectious, neurodegenerative, autoimmune and cancer due to its low toxicity in comparison with other type I interferon´s. The objective of our study was established the effect of the bovine IFN-τ on human (SiHa) and murine (BMK-16/myc) cells transformed with HPV 16 and evaluates the antitumor effect in a murine tumor model HPV 16 positive. We determine that bovine IFN-τ has antiproliferative effects, pro-apoptotic activity and induces repression of viral E6 and E7 oncogenes (time- and dose-dependent) on human and murine cells transformed with HPV 16 similar to the effects of IFN-β. However, IFN-τ induces greater antiproliferative effect, apoptosis and repression of both oncogenes in BMK-16/myc cells compared to SiHa cells. The differences were explained by the presence and abundance of the type I interferon receptor (IFNAR) in each cell line. On the other hand, we treated groups of tumor-bearing mice (HPV16 positive) with IFN-τ and showed the inhibition tumor growth effect in vivo. Our finding indicates that bovine IFN-τ may be a good candidate for immunotherapy against cervical cancer. PMID:27994659

  14. Benzoxazinoids from Scoparia dulcis (sweet broomweed) with antiproliferative activity against the DU-145 human prostate cancer cell line.

    Science.gov (United States)

    Wu, Wan-Hsun; Chen, Tzu-Yu; Lu, Rui-Wen; Chen, Shui-Tein; Chang, Chia-Chuan

    2012-11-01

    Sweet broomweed (Scoparia dulcis) is an edible perennial medicinal herb widely distributed in tropical and subtropical regions of Asia, Africa, and the Americas. Four compounds, (2R)-7-methoxy-2H-1,4-benzoxazin-3(4H)-one 2-O-β-galactopyranoside [(2R)-HMBOA-2-O-Gal], 3,6-dimethoxy-benzoxazolin-2(3H)-one (3,6-M2BOA), 3-hydroxy-6-methoxy-2-benzoxazolinone (3-OH-MBOA), and scutellarein 7-O-β-glucuronamide, along with eight known compounds, including two 7-methoxy-1,4-benzoxazin-3(2H)-one 3-O-hexopyranosides [(2R)-HMBOA-2-O-Glc and (2R)-HDMBOA-2-O-Glc], 6-methoxy-benzoxazolin-2(3H)-one (MBOA), acteoside, sodium scutellarin, p-coumaric acid, and two monosaccharides (fructose and glucose), were isolated from the aqueous extract of S. dulcis. Antiproliferative activities of the six benzoxazinoid compounds against the DU-145 human prostate cancer cell line were assayed, and one of these displayed an IC₅₀ of 65.8 μg/mL. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Relationship between structure and antiproliferative activity of polymethoxyflavones towards HL60 cells.

    Science.gov (United States)

    Kawaii, Satoru; Ikuina, Tomoyasu; Hikima, Takeshi; Tokiwano, Tetsuo; Yoshizawa, Yuko

    2012-12-01

    As part of our continuing investigation of polymethoxyflavone (PMF) derivatives as potential anticancer substances, a series of PMF derivatives was synthesized. The synthesized compounds were evaluated for cytotoxicity against the promyelocytic leukemic HL60 cell line, and structure-activity relationship correlations were investigated along with previously isolated PMFs from the peel of king orange (Citrus nobilis). 7,3'-Dimethoxyflavone demonstrated the most potent activity among the synthetic PMFs. Consideration of correlation between the methoxylation pattern and antiproliferative activity revealed the importance of the 3'-methoxyl group and the higher degree of methoxylation on the A-ring moiety of PMFs.

  16. Recycling antimalarial leads for cancer: Antiproliferative properties of N-cinnamoyl chloroquine analogues

    OpenAIRE

    Bianca C Perez; Iva Fernandes; Nuno Mateus; Catia Teixeira; Paula Gomes

    2013-01-01

    Cinnamic acids and quinolines are known as useful scaffolds in the discovery of antitumor agents. Therefore, N-cinnamoylated analogues of chloroquine, recently reported as potent dual-action antimalarials, were evaluated against three different cancer cell lines: MKN-28, Caco-2, and MCF-7. All compounds display anti-proliferative activity in the micromolar range against the three cell lines tested, and most of them were more active than their parent drug, chloroquine, against all cell lines t...

  17. Ibuprofen delivered by poly(lactic-co-glycolic acid) (PLGA) nanoparticles to human gastric cancer cells exerts antiproliferative activity at very low concentrations

    Science.gov (United States)

    Bonelli, Patrizia; Tuccillo, Franca M; Federico, Antonella; Napolitano, Maria; Borrelli, Antonella; Melisi, Daniela; Rimoli, Maria G; Palaia, Raffaele; Arra, Claudio; Carinci, Francesco

    2012-01-01

    Purpose Epidemiological, clinical, and laboratory studies have suggested that ibuprofen, a commonly used nonsteroidal anti-inflammatory drug, inhibits the promotion and proliferation of certain tumors. Recently, we demonstrated the antiproliferative effects of ibuprofen on the human gastric cancer cell line MKN-45. However, high doses of ibuprofen were required to elicit these antiproliferative effects in vitro. The present research compared the antiproliferative effects of ibuprofen delivered freely and released by poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) in MKN-45 cells. Methods MKN-45 human gastric adenocarcinoma cells were treated with ibuprofen-loaded PLGA NPs. The proliferation of MKN-45 cells was then assessed by cell counting. The uptake of NPs was imaged by fluorescence microscopy and flow cytometry. The release of ibuprofen from ibuprofen-loaded PLGA NPs in the cells was evaluated by gas chromatography–mass spectrometry. Results Dramatic inhibition of cellular proliferation was observed in cells treated with ibuprofen-loaded PLGA NPs versus those treated with free ibuprofen at the same concentration. The localization of NPs was cytoplasmic. The initiation of ibuprofen release was rapid, commencing within 2 hours, and then increased slowly over time, reaching a maximum concentration at 24 hours. The inhibition of proliferation was confirmed to be due to the intracellular release of ibuprofen from the NPs. Using PLGA NPs as carriers, ibuprofen exerted an antiproliferative activity at concentrations > 100 times less than free ibuprofen, suggesting greater efficiency and less cellular toxicity. In addition, when carried by PLGA NPs, ibuprofen more quickly induced the expression of transcripts involved in proliferation and invasiveness processes. Conclusion Ibuprofen exerted an antiproliferative effect on MKN-45 cells at low concentrations. This effect was achieved using PLGA NPs as carriers of low doses of ibuprofen. PMID:23180963

  18. Antiproliferative effect of growth hormone-releasing hormone (GHRH antagonist on ovarian cancer cells through the EGFR-Akt pathway

    Directory of Open Access Journals (Sweden)

    Varga Jozsef

    2010-05-01

    Full Text Available Abstract Background Antagonists of growth hormone-releasing hormone (GHRH are being developed for the treatment of various human cancers. Methods MTT assay was used to test the proliferation of SKOV3 and CaOV3. The splice variant expression of GHRH receptors was examined by RT-PCR. The expression of protein in signal pathway was examined by Western blotting. siRNA was used to block the effect of EGFR. Results In this study, we investigated the effects of a new GHRH antagonist JMR-132, in ovarian cancer cell lines SKOV3 and CaOV3 expressing splice variant (SV1 of GHRH receptors. MTT assay showed that JMR-132 had strong antiproliferative effects on SKOV3 and CaOV3 cells in both a time-dependent and dose-dependent fashion. JMR-132 also induced the activation and increased cleaved caspase3 in a time- and dose-dependent manner in both cell lines. In addition, JMR-132 treatments decreased significantly the epidermal growth factor receptor (EGFR level and the phosphorylation of Akt (p-Akt, suggesting that JMR-132 inhibits the EGFR-Akt pathway in ovarian cancer cells. More importantly, treatment of SKOV3 and CaOV3 cells with 100 nM JMR-132 attenuated proliferation and the antiapoptotic effect induced by EGF in both cell lines. After the knockdown of the expression of EGFR by siRNA, the antiproliferative effect of JMR-132 was abolished in SKOV3 and CaOV3 cells. Conclusions The present study demonstrates that the inhibitory effect of the GHRH antagonist JMR-132 on proliferation is due, in part, to an interference with the EGFR-Akt pathway in ovarian cancer cells.

  19. Antiproliferative effects of small fruit juices on several cancer cell lines.

    Science.gov (United States)

    Yoshizawa, Y; Kawaii, S; Urashima, M; Fukase, T; Sato, T; Tanaka, R; Murofushi, N; Nishimura, H

    2000-01-01

    Juices prepared from small fruits, mainly growing in the northern part of Japan, were studied in an attempt to explore the feasibility of an assay that screens cytotoxic properties. Screening of 43 small fruit juices indicated that Actinidia polygama Maxim., Rosa rugosa Thunb., Vaccinium smallii A. Gray and Sorbus sambucifolia Roem, strongly inhibited the proliferation of all cancer cell lines examined and yet these juices were substantially less cytotoxic toward normal human cell lines.

  20. Antiproliferative Effects of Bacillus coagulans Unique IS2 in Colon Cancer Cells.

    Science.gov (United States)

    Madempudi, Ratna Sudha; Kalle, Arunasree M

    2017-10-01

    In the present study, the in vitro anticancer (antiproliferative) effects of Bacillus coagulans Unique IS2 were evaluated on human colon cancer (COLO 205), cervical cancer (HeLa), and chronic myeloid leukemia (K562) cell lines with a human embryonic kidney cell line (HEK 293T) as noncancerous control cells. The Cytotoxicity assay (MTT) clearly demonstrated a 22%, 31.7%, and 19.5% decrease in cell proliferation of COLO 205, HeLa, and K562 cells, respectively, when compared to the noncancerous HEK 293T cells. Normal phase-contrast microscopic images clearly suggested that the mechanism of cell death is by apoptosis. To further confirm the induction of apoptosis by Unique IS2, the sub-G0-G1 peak of the cell cycle was quantified using a flow cytometer and the data indicated 40% of the apoptotic cells in Unique IS2-treated COLO cells when compared with their untreated control cells. The Western blot analysis showed an increase in pro-apoptotic protein BAX, decrease in antiapoptotic protein, Bcl2, decrease in mitochondrial membrane potential, increase in cytochrome c release, increase in Caspase 3 activity, and cleavage of poly(ADP-ribose) polymerase. The present study suggests that the heat-killed culture supernatant of B. coagulans can be more effective in inducing apoptosis of colon cancer cells and that can be considered for adjuvant therapy in the treatment of colon carcinoma.

  1. Metformin synergistically enhances antiproliferative effects of cisplatin and etoposide in NCI-H460 human lung cancer cells

    Directory of Open Access Journals (Sweden)

    Sarah Fernandes Teixeira

    2013-12-01

    Full Text Available OBJECTIVE: To test the effectiveness of combining conventional antineoplastic drugs (cisplatin and etoposide with metformin in the treatment of non-small cell lung cancer in the NCI-H460 cell line, in order to develop new therapeutic options with high efficacy and low toxicity.METHODS: We used the 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay and calculated the combination index for the drugs studied.RESULTS: We found that the use of metformin as monotherapy reduced the metabolic viability of the cell line studied. Combining metformin with cisplatin or etoposide produced a synergistic effect and was more effective than was the use of cisplatin or etoposide as monotherapy.CONCLUSIONS: Metformin, due to its independent effects on liver kinase B1, had antiproliferative effects on the NCI-H460 cell line. When metformin was combined with cisplatin or etoposide, the cell death rate was even higher.

  2. Uncommon Trimethoxylated Flavonol Obtained from Rubus rosaefolius Leaves and Its Antiproliferative Activity

    Directory of Open Access Journals (Sweden)

    Marcel Petreanu

    2015-01-01

    Full Text Available This study shows the evaluation the antiproliferative effect of the extract, fractions, and uncommon compounds isolated from R. rosaefolius leaves. The compounds were identified by conventional spectroscopic methods such as NMR-H1 and C13 and identified as 5,7-dihydroxy-6,8,4′-trimethoxyflavonol (1, 5-hydroxy-3,6,7,8,4′-pentamethoxyflavone (2, and tormentic acid (3. Both hexane and dichloromethane fractions showed selectivity for multidrug-resistant ovary cancer cell line (NCI-ADR/RES with total growth inhibition values of 11.1 and 12.6 μg/ml, respectively. Compound 1 also showed selective activity against the same cell line (18.8 μg/ml; however, it was especially effective against glioma cells (2.8 μg/ml, suggesting that this compound may be involved with the in vitro antiproliferative action.

  3. Partially Purified Extracts of Sea Anemone Anemonia viridis Affect the Growth and Viability of Selected Tumour Cell Lines

    Directory of Open Access Journals (Sweden)

    Matteo Bulati

    2016-01-01

    Full Text Available In the last few years, marine species have been investigated for the presence of natural products with anticancer activity. Using reversed phase chromatography, low molecular weight proteins were fractionated from the sea anemone Anemonia viridis. Four different fractions were evaluated for their cytotoxic activity by means of erythrocyte haemolysis test, MTS, and LDH assays. Finally, the antiproliferative activities of three of these fractions were studied on PC3, PLC/PRF/5, and A375 human cancer cell lines. Our analysis revealed that the four fractions showed different protein contents and diverse patterns of activity towards human PBMC and cancer cell lines. Interestingly, fractions III and IV exerted cytotoxic effects on human cells. Conversely, fractions I and II displayed very low toxic effects associated with antiproliferative activities on cancer cell lines.

  4. Partially Purified Extracts of Sea Anemone Anemonia viridis Affect the Growth and Viability of Selected Tumour Cell Lines.

    Science.gov (United States)

    Bulati, Matteo; Longo, Alessandra; Masullo, Tiziana; Vlah, Sara; Bennici, Carmelo; Bonura, Angela; Salamone, Monica; Tagliavia, Marcello; Nicosia, Aldo; Mazzola, Salvatore; Colombo, Paolo; Cuttitta, Angela

    2016-01-01

    In the last few years, marine species have been investigated for the presence of natural products with anticancer activity. Using reversed phase chromatography, low molecular weight proteins were fractionated from the sea anemone Anemonia viridis . Four different fractions were evaluated for their cytotoxic activity by means of erythrocyte haemolysis test, MTS, and LDH assays. Finally, the antiproliferative activities of three of these fractions were studied on PC3, PLC/PRF/5, and A375 human cancer cell lines. Our analysis revealed that the four fractions showed different protein contents and diverse patterns of activity towards human PBMC and cancer cell lines. Interestingly, fractions III and IV exerted cytotoxic effects on human cells. Conversely, fractions I and II displayed very low toxic effects associated with antiproliferative activities on cancer cell lines.

  5. Antiproliferative activity of tea catechins associated with casein micelles, using HT29 colon cancer cells.

    Science.gov (United States)

    Haratifar, S; Meckling, K A; Corredig, M

    2014-02-01

    Numerous studies have shown that green tea polyphenols display anticancer activities in many organ sites by using different experimental models in rodents and in cultured cell lines in vitro. The present study tested the ability of casein micelles to deliver biologically active concentrations of polyphenols to HT-29 colon cancer cells. Epigallocatechin gallate (EGCG), the major catechin found in green tea, was used as the model molecule, as it has been shown to have antiproliferative activity on colon cancer cells. In the present work, we hypothesized that due to the binding of caseins with EGCG, casein micelles may be an ideal platform for the delivery of this bioactive molecule and that the binding would not affect the bioaccessibility of EGCG. The cytotoxicity and proliferation behavior of HT-29 colon cancer cells when exposed to free EGCG was compared with that of nanoencapsulated EGCG in casein micelles of skim milk. Epigallocatechin gallate-casein complexes were able to decrease the proliferation of HT-29 cancer cells, demonstrating that bioavailability may not be reduced by the nanoencapsulation. As casein micelles may act as protective carriers for EGCG in foods, it was concluded that nanoencapsulation of tea catechins in casein micelles may not diminish their antiproliferative activity on colon cancer cells compared with free tea catechins. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  6. Protective effects of kaempferol against reactive oxygen species-induced hemolysis and its antiproliferative activity on human cancer cells.

    Science.gov (United States)

    Liao, Wenzhen; Chen, Luying; Ma, Xiang; Jiao, Rui; Li, Xiaofeng; Wang, Yong

    2016-05-23

    The protective effects of kaempferol against reactive oxygen species (ROS)-induced hemolysis and its antiproliferative activity on human cancer cells were evaluated in this study. Kaempferol exhibited strong cellular antioxidant ability (CAA) with a CAA value of 59.80 ± 0.379 μM of quercetin (QE)/100 μM (EC50 = 7.74 ± 0.049 μM). Pretreatment with kaempferol significantly attenuated the ROS-induced hemolysis of human erythrocyte (87.4% hemolysis suppressed at 100 μg/mL) and reduced the accumulation of toxic lipid peroxidation product malondialdehyde (MDA). The anti-hemolytic activity of kaempferol was mainly through scavenging excessive ROS and preserving the intrinsic antioxidant enzymes (superoxide dismutase, SOD; catalase, CAT; and glutathione peroxidase, GPx) activities in normal levels. Additionally, kaempferol showed significant antiproliferative activity on a panel of human cancer cell lines including human breast carcinoma (MCF-7) cells, human stomach carcinoma (SGC-7901) cells, human cervical carcinoma (Hela) cells and human lung carcinoma (A549) cells. Kaemperol induced apoptosis of MCF-7 cells accompanied with nuclear condensation and mitochondria dysfunction. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  7. In vitro synergistic antitumor efficacy of sequentially combined chemotherapy/icotinib in non‑small cell lung cancer cell lines.

    Science.gov (United States)

    Wang, Min-Cong; Liang, Xuan; Liu, Zhi-Yan; Cui, Jie; Liu, Ying; Jing, Li; Jiang, Li-Li; Ma, Jie-Qun; Han, Li-Li; Guo, Qian-Qian; Yang, Cheng-Cheng; Wang, Jing; Wu, Tao; Nan, Ke-Jun; Yao, Yu

    2015-01-01

    The concurrent administration of chemotherapy and epidermal growth factor receptor‑tyrosine kinase inhibitors (EGFR‑TKIs) has previously produced a negative interaction and failed to confer a survival benefit to non‑small cell lung cancer (NSCLC) patients compared with first‑line cytotoxic chemotherapy. The present study aimed to investigate the optimal schedule of the combined treatment of cisplatin/paclitaxel and icotinib in NSCLC cell lines and clarify the underlying mechanisms. HCC827, H1975, H1299 and A549 human NSCLC cell lines with wild‑type and mutant EGFR genes were used as in vitro models to define the differential effects of various schedules of cisplatin/paclitaxel with icotinib treatments on cell growth, proliferation, cell cycle distribution, apoptosis, and EGFR signaling pathway. Sequence‑dependent antiproliferative effects differed among the four NSCLC cell lines, and were not associated with EGFR mutation, constitutive expression levels of EGFR or downstream signaling molecules. The antiproliferative effect of cisplatin plus paclitaxel followed by icotinib was superior to that of cisplatin or paclitaxel followed by icotinib in the HCC827, H1975, H1299 and A549 cell lines, and induced more cell apoptosis and G0/G1 phase arrest. Cisplatin and paclitaxel significantly increased the expression of EGFR phosphorylation in the HCC827 cell line. However, only paclitaxel increased the expression of EGFR phosphorylation in the H1975 cell line. Cisplatin/paclitaxel followed by icotinib influenced the expression of p‑EGFR and p‑AKT, although the expression of p‑ERK1/2 remained unchanged. The results suggest that the optimal schedule of the combined treatment of cisplatin/paclitaxel and icotinib differed among the NSCLC cell lines. The results also provide molecular evidence to support clinical treatment strategies for NSCLC patients.

  8. Anti-proliferative effect of Moringa oleifera Lam (Moringaceae) leaf ...

    African Journals Online (AJOL)

    Purpose: To investigate the in vitro anti-proliferative effect and mechanism of action of Moringa oleifera Lam. leaf extract on human colon carcinoma HCT116 cell line. Methods: M. oleifera leaves were extracted with methanol. It was fractionated by Sephadex LH-20 column chromatography. Several fractions were identified ...

  9. In vitro cytotoxicity of Indonesian stingless bee products against human cancer cell lines

    Directory of Open Access Journals (Sweden)

    Paula M. Kustiawan

    2014-07-01

    Conclusions: Propolis from T. incisa and Trigona fusco-balteata contain an in vitro cytotoxic activity against human cancer cell lines. Further study is required, including the isolation and characterization of the active antiproliferative agent(s.

  10. Proapoptotic and Antiproliferative Effects of Thymus caramanicus on Human Breast Cancer Cell Line (MCF-7 and Its Interaction with Anticancer Drug Vincristine

    Directory of Open Access Journals (Sweden)

    Saeed Esmaeili-Mahani

    2014-01-01

    Full Text Available Thymus caramanicus Jalas is one of the species of thymus that grows in the wild in different regions of Iran. Traditionally, leaves of this plant are used in the treatment of diabetes, arthritis, and cancerous situation. Therefore, the present study was designed to investigate the selective cytotoxic and antiproliferative properties of Thymus caramanicus extract (TCE. MCF-7 human breast cancer cells were used in this study. Cytotoxicity of the extract was determined using MTT and neutral red assays. Biochemical markers of apoptosis (caspase 3, Bax, and Bcl-2 and cell proliferation (cyclin D1 were evaluated by immunoblotting. Vincristine was used as anticancer control drug in extract combination therapy. The data showed that incubation of cells with TCE (200 and 250 μg/mL significantly increased cell damage, activated caspase 3 and Bax/Bcl2 ratio. In addition, cyclin D1 was significantly decreased in TCE-treated cells. Furthermore, concomitant treatment of cells with extract and anticancer drug produced a significant cytotoxic effect as compared to extract or drugs alone. In conclusion, thymus extract has a potential proapoptotic/antiproliferative property against human breast cancer cells and its combination with chemotherapeutic agent vincristine may induce cell death effectively and be a potent modality to treat this type of cancer.

  11. NO-Releasing Enmein-Type Diterpenoid Derivatives with Selective Antiproliferative Activity and Effects on Apoptosis-Related Proteins

    Directory of Open Access Journals (Sweden)

    Dahong Li

    2016-09-01

    Full Text Available A series of nine enmein-type ent-kaurane diterpenoid and furoxan-based nitric oxide (NO donor hybrids (10a–i were designed and synthesized from commercially available oridonin (1. These hybrids were evaluated for their antiproliferative activity against Bel-7402, K562, MGC-803, and CaEs-17 human cancer cell lines and L-02 normal liver cells. The antiproliferative activity against tumor cells was stronger than the lead compound 1 and parent molecule 9 in most cases. Especially, compound 10f showed the strongest activity against human hepatocarcinoma Bel-7402 cell line with an IC50 of 0.81 μM and could also release 33.7 μmol/L NO at the time point of 60 min. Compounds 10a–i also showed cytotoxic selectivity between tumor and normal liver cells with IC50 ranging from 22.1 to 33.9 μM. Furthermore, the apoptotic properties on Bel-7402 cells revealed that 10f could induce S phase cell cycle arrest and apoptosis at low micromolar concentrations. The effects of 10f on apoptosis-related proteins were also investigated. The potent antiproliferative activities and mechanistic studies warrant further preclinical investigations.

  12. Enhancement of antiproliferative activity of interferons by RNA interference-mediated silencing of SOCS gene expression in tumor cells.

    Science.gov (United States)

    Takahashi, Yuki; Kaneda, Haruka; Takasuka, Nana; Hattori, Kayoko; Nishikawa, Makiya; Watanabe, Yoshihiko; Takakura, Yoshinobu

    2008-08-01

    The suppressor of cytokine signaling (SOCS) proteins, negative regulators of interferon (IFN)-induced signaling pathways, is involved in IFN resistance of tumor cells. To improve the growth inhibitory effect of IFN-beta and IFN-gamma on a murine melanoma cell line, B16-BL6, and a murine colon carcinoma cell line, Colon26 cells, SOCS-1 and SOCS-3 gene expression in tumor cells was downregulated by transfection of plasmid DNA expressing short hairpin RNA targeting one of these genes (pshSOCS-1 and pshSOCS-3, respectively). Transfection of pshSOCS-1 significantly increased the antiproliferative effect of IFN-gamma on B16-BL6 cells. However, any other combinations of plasmids and IFN had little effect on the growth of B16-BL6 cells. In addition, transfection of pshSOCS-1 and pshSOCS-3 produced little improvement in the effect of IFN on Colon26 cells. To understand the mechanism underlining these findings, the level of SOCS gene expression was measured by real time polymerase chain reaction. Addition of IFN-gamma greatly increased the SOCS-1 mRNA expression in B16-BL6 cells. Taking into account the synergistic effect of pshSOCS-1 and IFN-gamma on the growth of B16-BL6 cells, these findings suggest that IFN-gamma-induced high SOCS-1 gene expression in B16-BL6 cells significantly interferes with the antiproliferative effect of IFN-gamma. These results indicate that silencing SOCS gene expression can be an effective strategy to enhance the antitumor effect of IFN under conditions in which the SOCS gene expression is upregulated by IFN.

  13. Antiproliferative Effects of Selected Chemotherapeutics in Human Ovarian Cancer Cell Line A2780

    Directory of Open Access Journals (Sweden)

    Kateřina Caltová

    2012-01-01

    Full Text Available The aim of our study was to determine the effect of selected cytostatics on a human ovarian cancer cell line A2780 as a model system for ovarian cancer treatment. This cell line is considered cisplatin-sensitive. Panel of tested cytostatics included cisplatin, paclitaxel, carboplatin, gemcitabine, topotecan and etoposide. These cytostatics have a different mechanism of action. To evaluate cytotoxic potential of the tested compounds, the methods measuring various toxicological endpoints were employed including morphological studies, MTT assay, dynamic monitoring of cell proliferation with xCELLigence, cell cycle analysis, caspase 3 activity and expression of proteins involved in cell cycle regulation and cell death. The A270 cell line showed different sensitivity towards the selected cytostatics, the highest cytotoxic effect was associated with paclitaxel and topotecan.

  14. Synthesis, antiproliferative and antibacterial activity of new amides of salinomycin.

    Science.gov (United States)

    Antoszczak, Michał; Maj, Ewa; Stefańska, Joanna; Wietrzyk, Joanna; Janczak, Jan; Brzezinski, Bogumil; Huczyński, Adam

    2014-04-01

    A series of 11 novel amides of salinomycin were synthesized for the first time. All the obtained compounds were found to show potent antiproliferative activity against human cancer cell lines including the drug-resistant cancer cells. Four new salinomycin derivatives revealed good antibacterial activity against clinical isolates of methicillin-resistant Staphylococcus epidermidis (MRSE). Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Effects of highly ripened cheeses on HL-60 human leukemia cells: antiproliferative activity and induction of apoptotic DNA damage.

    Science.gov (United States)

    Yasuda, S; Ohkura, N; Suzuki, K; Yamasaki, M; Nishiyama, K; Kobayashi, H; Hoshi, Y; Kadooka, Y; Igoshi, K

    2010-04-01

    To establish cheese as a dairy product with health benefits, we examined the multifunctional role of cheeses. In this report, we clarify whether different types of commercial cheeses may possess antiproliferative activity using HL-60 human promyelocytic leukemia cell lines as a cancer model. Among 12 cheese extracts tested, 6 (Montagnard, Pont-l'Eveque, Brie, Camembert, Danablue, and Blue) revealed strong growth inhibition activity and induction of DNA fragmentation in HL-60 cells. Based on the quantification of nitrogen contents in different cheese samples, a positive correlation between the ripeness of various cheeses and their antiproliferative activity tested in HL-60 cells was displayed. Four varieties of Blue cheese ripened for 0, 1, 2, or 3 mo demonstrated that the Blue cheese ripened for a long term was capable of causing the strong suppression of the cell growth and the induction of apoptotic DNA damage as well as nucleic morphological change in HL-60 cells. Collectively, these results obtained suggest a potential role of highly ripened cheeses in the prevention of leukemic cell proliferation. Copyright (c) 2010 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  16. Antiproliferative, Antimicrobial and Apoptosis Inducing Effects of Compounds Isolated from Inula viscosa

    Directory of Open Access Journals (Sweden)

    Wamidh H. Talib

    2012-03-01

    Full Text Available The antiproliferative and antimicrobial effects of thirteen compounds isolated from Inula viscosa (L. were tested in this study. The antiproliferative activity was tested against three cell lines using the MTT assay. The microdilution method was used to study the antimicrobial activity against two Gram positive bacteria, two Gram negative bacteria and one fungus. The apoptotic activity was determined using a TUNEL colorimetric assay. Scanning electron microscopy was used to study the morphological changes in treated cancer cells and bacteria. Antiproliferative activity was observed in four flavonoids (nepetin, 3,3′-di-O-methylquercetin, hispidulin, and 3-O-methylquercetin. 3,3′-di-O-Methylquercetin and 3-O-methylquercetin showed selective antiproliferative activity against MCF-7 cells, with IC50 values of 10.11 and 11.23 µg/mL, respectively. Both compounds exert their antiproliferative effect by inducing apoptosis as indicted by the presence of DNA fragmentation, nuclear condensation, and formation of apoptotic bodies in treated cancer cells. The antimicrobial effect of Inula viscosa were also noticed in 3,3′-di-O-methylquercetin and 3-O-methyquercetin that inhibited Bacillus cereus at MIC of 62.5 and 125 µg/mL, respectively. Salmonella typhimurium was inhibited by both compounds at MIC of 125 µg/mL. 3,3′-di-O-Methylquercetin induced damage in bacterial cell walls and cytoplasmic membranes. Methylated quercetins isolated from Inula viscosa have improved anticancer and antimicrobial properties compared with other flavonoids and are promising as potential anticancer and antimicrobial agents.

  17. Evaluation of antiproliferative activity of pyrazolothiazolopyrimidine derivatives

    Directory of Open Access Journals (Sweden)

    N. S. Finiuk

    2018-04-01

    Full Text Available The research aim was to test cytotoxic effects in vitro of seven novel pyrazolothiazolopyrimidine derivatives in targeting several lines of tumor and pseudo-normal mammalian cells. We demonstrated that cytotoxic effects of these derivatives depended on the tissue origin of targeted cells. Leukemia cells were found to be the most sensitive to the action of compounds 2 and 7. Compound 2 demonstrated approximately two times higher toxicity towards the multidrug-resistant sub-line of HL-60/ADR cells compared to the Doxorubicin effect. Antiproliferative action of compounds 2 and 7 dropped in the order: leukemia > melanoma > hepatocarcinoma > glioblastoma > colon carcinoma > breast and ovarian carcinoma cells. These compounds were less toxic than Doxorubicin towards the non-tumor cells. The novel pyrazolothiazolopyrimidine, compound 2, demonstrated high toxicity towards human leukemia and, of special importance, towards multidrug-resistant leukemia cells, and low toxicity towards pseudo-normal cells.

  18. Effect of sirolimus on urinary bladder cancer T24 cell line

    Directory of Open Access Journals (Sweden)

    Oliveira Paula A

    2009-01-01

    Full Text Available Abstract Background Sirolimus is recently reported to have antitumour effects on a large variety of cancers. The present study was performed to investigate sirolimus's ability to inhibit growth in T24 bladder cancer cells. Methods T24 bladder cancer cells were treated with various concentrations of sirolimus. MTT assay was used to evaluate the proliferation inhibitory effect on T24 cell line. The viability of T24 cell line was determined by Trypan blue exclusion analysis. Results Sirolimus inhibits the growth of bladder carcinoma cells and decreases their viability. Significant correlations were found between cell proliferation and sirolimus concentration (r = 0.830; p Conclusion Sirolimus has an anti-proliferation effect on the T24 bladder carcinoma cell line. The information from our results is useful for a better understanding sirolimus's anti-proliferative activity in the T24 bladder cancer cell line.

  19. The Antiproliferative Effect of Chakasaponins I and II, Floratheasaponin A, and Epigallocatechin 3-O-Gallate Isolated from Camellia sinensis on Human Digestive Tract Carcinoma Cell Lines

    Directory of Open Access Journals (Sweden)

    Niichiro Kitagawa

    2016-11-01

    Full Text Available Acylated oleanane-type triterpene saponins, namely chakasaponins I (1 and II (2, floratheasaponin A (3, and their analogs, together with catechins—including (–-epigallocatechin 3-O-gallate (4, flavonoids, and caffeine—have been isolated as characteristic functional constituents from the extracts of “tea flower”, the flower buds of Camellia sinensis (Theaceae, which have common components with that of the leaf part. These isolates exhibited antiproliferative activities against human digestive tract carcinoma HSC-2, HSC-4, MKN-45, and Caco-2 cells. The antiproliferative activities of the saponins (1–3, IC50 = 4.4–14.1, 6.2–18.2, 4.5–17.3, and 19.3–40.6 µM, respectively were more potent than those of catechins, flavonoids, and caffeine. To characterize the mechanisms of action of principal saponin constituents 1–3, a flow cytometric analysis using annexin-V/7-aminoactinomycin D (7-AAD double staining in HSC-2 cells was performed. The percentage of apoptotic cells increased in a concentration-dependent manner. DNA fragmentation and caspase-3/7 activation were also detected after 48 h. These results suggested that antiproliferative activities of 1–3 induce apoptotic cell death via activation of caspase-3/7.

  20. Enhanced and Selective Antiproliferative Activity of Methotrexate-Functionalized-Nanocapsules to Human Breast Cancer Cells (MCF-7

    Directory of Open Access Journals (Sweden)

    Catiúscia P. de Oliveira

    2018-01-01

    Full Text Available Methotrexate is a folic acid antagonist and its incorporation into nanoformulations is a promising strategy to increase the drug antiproliferative effect on human breast cancer cells by overexpressing folate receptors. To evaluate the efficiency and selectivity of nanoformulations containing methotrexate and its diethyl ester derivative, using two mechanisms of drug incorporation (encapsulation and surface functionalization in the in vitro cellular uptake and antiproliferative activity in non-tumoral immortalized human keratinocytes (HaCaT and in human breast carcinoma cells (MCF-7. Methotrexate and its diethyl ester derivative were incorporated into multiwall lipid-core nanocapsules with hydrodynamic diameters lower than 160 nm and higher drug incorporation efficiency. The nanoformulations were applied to semiconfluent HaCaT or MCF-7 cells. After 24 h, the nanocapsules were internalized into HaCaT and MCF-7 cells; however, no significant difference was observed between the nanoformulations in HaCaT (low expression of folate receptors, while they showed significantly higher cellular uptakes than the blank-nanoformulation in MCF-7, which was the highest uptakes observed for the drug functionalized-nanocapsules. No antiproliferative activity was observed in HaCaT culture, whereas drug-containing nanoformulations showed antiproliferative activity against MCF-7 cells. The effect was higher for drug-surface functionalized nanocapsules. In conclusion, methotrexate-functionalized-nanocapsules showed enhanced and selective antiproliferative activity to human breast cancer cells (MCF-7 being promising products for further in vivo pre-clinical evaluations.

  1. Essential Oil from Myrica rubra Leaves Potentiated Antiproliferative and Prooxidative Effect of Doxorubicin and its Accumulation in Intestinal Cancer Cells.

    Science.gov (United States)

    Ambrož, Martin; Hanušová, Veronika; Skarka, Adam; Boušová, Iva; Králová, Věra; Langhasová, Lenka; Skálová, Lenka

    2016-01-01

    Essential oil from the leaves of Myrica rubra, a subtropical Asian fruit tree traditionally used in folk medicines, has a significant antiproliferative effect in several intestinal cancer cell lines. Doxorubicin belongs to the most important cytostatics used in cancer therapy. The present study was designed to evaluate the effects of defined essential oil from M. rubra leaves on efficacy, prooxidative effect, and accumulation of doxorubicin in cancer cell lines and in non-cancerous cells. For this purpose, intestinal adenocarcinoma CaCo2 cells were used. Human fibroblasts (periodontal ligament) and a primary culture of rat hepatocytes served as models of non-cancerous cells. The results showed that the sole essential oil from M. rubra has a strong prooxidative effect in cancer cells while it acts as a mild antioxidant in hepatocytes. Combined with doxorubicin, the essential oil enhanced the antiproliferative and prooxidative effects of doxorubicin in cancer cells. At higher concentrations, synergism of doxorubicin and essential oil from M. rubra was proved. In non-cancerous cells, the essential oil did not affect the toxicity of doxorubicin and the doxorubicin-mediated reactive oxygen species formation. The essential oil increased the intracellular concentration of doxorubicin and enhanced selectively the doxorubicin accumulation in nuclei of cancer cells. Taken together, essential oil from M. rubra leaves could be able to improve the doxorubicin efficacy in cancer cells due to an increased reactive oxygen species production, and the doxorubicin accumulation in nuclei of cancer cells. Georg Thieme Verlag KG Stuttgart · New York.

  2. Chemopreventive and Antiproliferative Effect of Andrographis Paniculata Extract

    Directory of Open Access Journals (Sweden)

    Agrawal RC

    2017-06-01

    Full Text Available An Andrographis paniculata leaf and stem extract was studied in Hela cells lines by In Vitro methods and anti promoting effect by skin tumour model. The dose dependent cytotoxicity was observed in HeLa cell lines by stem and leaves extracts of Andrographis paniculata extract. The prevention of bone marrow micronucleus formation by Andrographis paniculata leaves and stem extract was also observed. The reductions in tumour numbers were observed. The glutathione level was increased in the liver of animals which received the treatment of Andrographis extract along with DMBA + Croton Oil. The revealing information about the anticancer, antiproliferative and antimutagenic effect of an Andrographis paniculata extract was observed.

  3. Recycling antimalarial leads for cancer: Antiproliferative properties of N-cinnamoyl chloroquine analogues.

    Science.gov (United States)

    Pérez, Bianca C; Fernandes, Iva; Mateus, Nuno; Teixeira, Cátia; Gomes, Paula

    2013-12-15

    Cinnamic acids and quinolines are known as useful scaffolds in the discovery of antitumor agents. Therefore, N-cinnamoylated analogues of chloroquine, recently reported as potent dual-action antimalarials, were evaluated against three different cancer cell lines: MKN-28, Caco-2, and MCF-7. All compounds display anti-proliferative activity in the micromolar range against the three cell lines tested, and most of them were more active than their parent drug, chloroquine, against all cell lines tested. Hence, N-cinnamoyl-chloroquine analogues are a good start towards development of affordable antitumor leads. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Antiproliferative effect of Antrodia camphorata polysaccharides encapsulated in chitosan-silica nanoparticles strongly depends on the metabolic activity type of the cell line

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Zwe-Ling, E-mail: kongzl@mail.ntou.edu.tw; Chang, Jenq-Sheng; Chang, Ke Liang B. [National Taiwan Ocean University, Department of Food Science (China)

    2013-09-15

    Chitosan molecules interact with silica and encapsulate the Antrodia camphorata extract (ACE) polysaccharides to form composite nanoparticles. The nanoparticle suspensions of ACE polysaccharides encapsulated in silica-chitosan and silica nanoparticles approach an average particle size of 210 and 294 nm in solution, respectively. The encapsulation efficiencies of ACE polysaccharides are 66 and 63.5 %, respectively. Scanning electron micrographs confirm the formation of near-spherical nanoparticles. ACE polysaccharides solution had better antioxidative capability than ACE polysaccharides encapsulated in silica or silica-chitosan nanoparticles suspensions. The antioxidant capacity of nanoparticles increases with increasing dissolution time. The antitumor effects of ACE polysaccharides, ACE polysaccharides encapsulated in silica, or silica-chitosan nanoparticles increased with increasing concentration of nanoparticles. This is the first report demonstrating the potential of ACE polysaccharides encapsulated in chitosan-silica nanoparticles for cancer chemoprevention. Furthermore, this study suggests that antiproliferative effect of nanoparticle-encapsulated bioactive could significantly depend on the metabolic activity type of the cell line.

  5. Antiproliferative effect of Antrodia camphorata polysaccharides encapsulated in chitosan-silica nanoparticles strongly depends on the metabolic activity type of the cell line

    Science.gov (United States)

    Kong, Zwe-Ling; Chang, Jenq-Sheng; Chang, Ke Liang B.

    2013-09-01

    Chitosan molecules interact with silica and encapsulate the Antrodia camphorata extract (ACE) polysaccharides to form composite nanoparticles. The nanoparticle suspensions of ACE polysaccharides encapsulated in silica-chitosan and silica nanoparticles approach an average particle size of 210 and 294 nm in solution, respectively. The encapsulation efficiencies of ACE polysaccharides are 66 and 63.5 %, respectively. Scanning electron micrographs confirm the formation of near-spherical nanoparticles. ACE polysaccharides solution had better antioxidative capability than ACE polysaccharides encapsulated in silica or silica-chitosan nanoparticles suspensions. The antioxidant capacity of nanoparticles increases with increasing dissolution time. The antitumor effects of ACE polysaccharides, ACE polysaccharides encapsulated in silica, or silica-chitosan nanoparticles increased with increasing concentration of nanoparticles. This is the first report demonstrating the potential of ACE polysaccharides encapsulated in chitosan-silica nanoparticles for cancer chemoprevention. Furthermore, this study suggests that antiproliferative effect of nanoparticle-encapsulated bioactive could significantly depend on the metabolic activity type of the cell line.

  6. Antiproliferative effect of Antrodia camphorata polysaccharides encapsulated in chitosan–silica nanoparticles strongly depends on the metabolic activity type of the cell line

    International Nuclear Information System (INIS)

    Kong, Zwe-Ling; Chang, Jenq-Sheng; Chang, Ke Liang B.

    2013-01-01

    Chitosan molecules interact with silica and encapsulate the Antrodia camphorata extract (ACE) polysaccharides to form composite nanoparticles. The nanoparticle suspensions of ACE polysaccharides encapsulated in silica–chitosan and silica nanoparticles approach an average particle size of 210 and 294 nm in solution, respectively. The encapsulation efficiencies of ACE polysaccharides are 66 and 63.5 %, respectively. Scanning electron micrographs confirm the formation of near-spherical nanoparticles. ACE polysaccharides solution had better antioxidative capability than ACE polysaccharides encapsulated in silica or silica–chitosan nanoparticles suspensions. The antioxidant capacity of nanoparticles increases with increasing dissolution time. The antitumor effects of ACE polysaccharides, ACE polysaccharides encapsulated in silica, or silica–chitosan nanoparticles increased with increasing concentration of nanoparticles. This is the first report demonstrating the potential of ACE polysaccharides encapsulated in chitosan–silica nanoparticles for cancer chemoprevention. Furthermore, this study suggests that antiproliferative effect of nanoparticle-encapsulated bioactive could significantly depend on the metabolic activity type of the cell line

  7. Carbohydrate linked organotin(IV) complexes as human topoisomerase Iα inhibitor and their antiproliferative effects against the human carcinoma cell line.

    Science.gov (United States)

    Khan, Rais Ahmad; Yadav, Shipra; Hussain, Zahid; Arjmand, Farukh; Tabassum, Sartaj

    2014-02-14

    Dimethyltin(IV) complexes with ethanolamine (1) and biologically significant N-glycosides (2 and 3) were designed and synthesized. The structural elucidation of complexes 1-3 was done using elemental and spectroscopic methods; in addition, complex 1 was studied by single crystal X-ray diffraction studies. The in vitro DNA binding profile of complexes 2 and 3 was carried out by employing different biophysical methods to ascertain the feasibility of glycosylated complexes. Further, the cleaving ability of 2 and 3 was investigated by the agarose gel electrophoretic mobility assay with supercoiled pBR322 DNA, and demonstrated significantly good nuclease activity. Furthermore, both the complexes exhibited significant inhibitory effects on the catalytic activity of human Topo I at lower concentration than standard drugs. Computer-aided molecular docking techniques were used to ascertain the mode and mechanism of action towards the molecular target DNA and Topo I. The cytotoxicity of 2 and 3 against human hepatoma cancer cells (Huh7) was evaluated, which revealed significant regression in cancerous cells as compared with the standard drug. The antiproliferative activities of 2 and 3 were tested against human hepatoma cancer cells (Huh7), and results showed significantly good activity. Additionally, to validate the remarkable antiproliferative activity of complexes 2 and 3, specific regulatory gene expression (MMP-2 and TGF-β) was obtained by real time PCR.

  8. Evaluation of the Volatile Oil Composition and Antiproliferative Activity of Laurus nobilis L. (Lauraceae on Breast Cancer Cell Line Models

    Directory of Open Access Journals (Sweden)

    Rana Abu-Dahab

    2014-03-01

    Full Text Available Volatile oil composition and antiproliferative activity of Laurus nobilis L. (Lauraceae fruits and leaves grown in Jordan were investigated. GC-MS analysis of the essential oil of the fruits resulted in the identification of 45 components representing 99.7 % of the total oil content, while the leaf essential oil yielded 37 compounds representing 93.7% of the total oil content. Oxygenated monoterpene 1,8-cineole was the main component in the fruit and leaf oils. Using sulphorhodamine B assay; the crude ethanol fraction, among other solvent extracts, showed strong antiproliferative activity for both leaves and fruits, nevertheless, the fruits were more potent against both breast cancer cell models (MCF7 and T47D. At IC 50 values ; the mechanism of apoptosis was nevertheless different: where L. nobilis fruit proapoptotic efficacy was not regulated by either p53 or p21, L. nobilis leaf extract components enhanced the p53 levels substantially. In both extracts, apoptosis was not caspase-8 or Fas Ligand and sFas (Fas/APO-1 dependent. Our studies highlight L. nobilis as a potential natural agent for breast cancer therapy. Compared with non induced basal cells, both L. nobilis fruits and leaves induced a significant enrichment in the cytoplasmic mono- and oligonucleosomes after assumed induction of programmed MCF7 cell death.

  9. Antioxidant and Antiproliferative Activities of Heated Sterilized Pepsin Hydrolysate Derived from Half-Fin Anchovy (Setipinna taty

    Directory of Open Access Journals (Sweden)

    Dongfeng Wang

    2011-06-01

    Full Text Available In this paper we studied the antioxidant and antiproliferative activities of the heated pepsin hydrolysate from a marine fish half-fin anchovy (HAHp-H. Furthermore, we compared the chemical profiles including the amino acid composition, the browning intensity, the IR and UV-visible spectra, and the molecular weight distribution between the half-fin anchovy pepsin hydrolysate (HAHp and HAHp-H. Results showed that heat sterilization on HAHp improved the 1,1-diphenyl-2-picryl-hydrazil (DPPH radical-scavenging activity and reducing power. In addition, the antiproliferative activities were all increased for HAHp-H on DU-145 human prostate cancer cell line, 1299 human lung cancer cell line and 109 human esophagus cancer cell line. The contents of free amino acid and reducing sugar of HAHp-H were decreased (P < 0.05. However, hydrophobic amino acid residues and the browning intensity of HAHp-H were increased. FT-IR spectroscopy indicated that amide I and amide III bands of HAHp-H were slightly modified, whereas band intensity of amide II was reduced dramatically. Thermal sterilization resulted in the increased fractions of HAHp-H with molecular weight of 3000–5000 Da and below 500 Da. The enhanced antioxidant and antiproliferative activities of HAHp-H might be attributed to the Maillard reaction.

  10. Antiproliferative Activity and Chemical Constituents of Hypericum dyeri. Rehder

    International Nuclear Information System (INIS)

    Ali, M.; Arfan, M.; Zaman, K.

    2013-01-01

    The antiproliferative activity of hexane (F1), ethyl acetate (F2), butanol (F3) and water (F4) extracts of Hypericum dyeri were tested in vitro for their anti- proliferative (anticancer) activity on the cell lines: HT-29 human colon adenocarcinoma, NCI-H460 human non-small cell lung carcinoma, MCF-7 human breast cancer, OVCAR-3 human ovarian adenocarcinoma and RXF-393 human renal cell carcinoma with etoposide as positive control. Among the various extracts the F1 showed relatively potent anti-proliferative activity (IC50, 17.20 +- 4.80 micro g/mL) on NCI-H460 human non-small cell lung carcinoma cell growth. Six compounds were also isolated for the first time from this source. These phytochemicals were identified as 1-Octatriacontanol (1), Hexacosyl tetracosanoate (2), Geddic acid (3), Octacosanoic acid (4), Ceric acid (5) and Sitosterol (6) on the basis of spectroscopic studies such as 1H NMR ,13C NMR, 2D NMR and Mass spectroscopy as well as established with help of reported literature. (author)

  11. A Simple and Sensitive High-Content Assay for the Characterization of Antiproliferative Therapeutic Antibodies.

    Science.gov (United States)

    Stengl, Andreas; Hörl, David; Leonhardt, Heinrich; Helma, Jonas

    2017-03-01

    Monoclonal antibodies (mAbs) have become a central class of therapeutic agents in particular as antiproliferative compounds. Their often complex modes of action require sensitive assays during early, functional characterization. Current cell-based proliferation assays often detect metabolites that are indicative of metabolic activity but do not directly account for cell proliferation. Measuring DNA replication by incorporation of base analogues such as 5-bromo-2'-deoxyuridine (BrdU) fills this analytical gap but was previously restricted to bulk effect characterization in enzyme-linked immunosorbent assay formats. Here, we describe a cell-based assay format for the characterization of antiproliferative mAbs regarding potency and mode of action in a single experiment. The assay makes use of single cell-based high-content-analysis (HCA) for the reliable quantification of replicating cells and DNA content via 5-ethynyl-2'-deoxyuridine (EdU) and 4',6-diamidino-2-phenylindole (DAPI), respectively, as sensitive measures of antiproliferative mAb activity. We used trastuzumab, an antiproliferative therapeutic antibody interfering with HER2 cell surface receptor-mediated growth signal transduction, and HER2-overexpressing cell lines BT474 and SKBR3 to demonstrate up to 10-fold signal-to-background (S/B) ratios for treated versus untreated cells and a shift in cell cycle profiles indicating antibody-induced cell cycle arrest. The assay is simple, cost-effective, and sensitive, providing a cell-based format for preclinical characterization of therapeutic mAbs.

  12. Cytoglobosins H and I, New Antiproliferative Cytochalasans from Deep-Sea-Derived Fungus Chaetomium globosum

    Directory of Open Access Journals (Sweden)

    Zhihan Zhang

    2016-12-01

    Full Text Available Cytoglobosins H (1 and I (2, together with seven known cytochalasan alkaloids (3–9, were isolated from the deep-sea-derived fungus Chaetomium globosum. The structures of new compounds 1 and 2 were elucidated by extensive 1D and 2D NMR and mass spectroscopic data. All the compounds were evaluated for their antiproliferative activities against MDA-MB-231 human breast cancer cells, LNCaP human prostate cancer cells, and B16F10 mouse melanoma cells. Compound 6 showed significant antiproliferative activity against LNCaP and B16F10 cell lines with IC50 values of 0.62 and 2.78 μM, respectively. Further testing confirmed that compound 6 inhibited the growth of LNCaP cells by inducing apoptosis.

  13. Libidibia ferrea presents antiproliferative, apoptotic and antioxidant effects in a colorectal cancer cell line.

    Science.gov (United States)

    Guerra, Andreza Conceição Véras de Aguiar; Soares, Luiz Alberto Lira; Ferreira, Magda Rhayanny Assunção; Araújo, Aurigena Antunes de; Rocha, Hugo Alexandre de Oliveira; Medeiros, Juliana Silva de; Cavalcante, Rômulo Dos Santos; Júnior, Raimundo Fernandes de Araújo

    2017-08-01

    Colorectal cancer is noted for being one of the most frequent of tumors, with expressive morbidity and mortality rates. In new drug discovery, plants stand out as a source capable of yielding safe and high-efficiency products. Well known in Brazilian popular medicine, Libidibia ferrea (Mart. Ex Tul.) L.P. Queiroz var. ferrea (better known as "ironwood" or "jucá"), has been used to treat a wide spectrum of conditions and to prevent cancer. Using methodologies that involved flow cytometry, spectrophotometry and RT-qPCR assays, crude extracts of the fruits of L. ferrea (20T, 40T, 60T and 80T) were evaluated at 24h and/or 48h for: their ability to inhibit cell proliferation; induce apoptosis through Bcl-2, caspase-3 and Apaf-1; their antioxidant activity and effects on important targets related to cell proliferation (EGFR and AKT) in the HT-29 human colorectal cancer lineage. The results revealed high antiproliferative potential as compared to the controls, induction of apoptosis through the intrinsic pathway, and probable tumor inhibition activity under the mediation of important targets in tumorigenesis. In addition, L. ferrea revealed antioxidant, lipid peroxidation and chemoprotective effects in healthy cells. Thus, L. ferrea derivatives have important anticancer effects, and may be considered promising candidate for colorectal cancer therapy. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  14. Synthesis and Antiproliferative Activity of Some Novel Triazole Derivatives from Dehydroabietic Acid

    Directory of Open Access Journals (Sweden)

    Mariano Walter Pertino

    2014-02-01

    Full Text Available Dehydroabietic acid (DHA is a naturally occurring diterpene with different and relevant biological activities. Previous studies have shown that some DHA derivatives display antiproliferative activity. However, the reported compounds did not include triazole derivatives. Starting from DHA (8,11,13-abietatrien-18-oic acid, and its alcohol dehydroabietinol (8,11,13-abietatrien-18-ol, four alkyl esters were prepared. The alkyl terpenes were treated with different aromatic azides to synthesize hybrid compounds using click chemistry. Some 16 new DHA hybrids were thus synthesized and their structures were confirmed by spectroscopic and spectrometric means. The antiproliferative activity of the new compounds was assessed towards human cell lines, namely normal lung fibroblasts (MRC-5, gastric epithelial adenocarcinoma (AGS, lung cancer (SK-MES-1 and bladder carcinoma (J82 cells. Better antiproliferative effect was found for compound 5, with an IC50 of 6.1 μM and selectivity on SK-MES-1 cells. Under the same experimental conditions, the IC50 of etoposide, was 1.83 µM.

  15. Antimicrobial and antiproliferative activities of stingless bee Melipona scutellaris geopropolis.

    Science.gov (United States)

    da Cunha, Marcos Guilherme; Franchin, Marcelo; de Carvalho Galvão, Lívia Câmara; de Ruiz, Ana Lúcia Tasca Góis; de Carvalho, João Ernesto; Ikegaki, Masarahu; de Alencar, Severino Matias; Koo, Hyun; Rosalen, Pedro Luiz

    2013-01-28

    Geopropolis is a type of propolis containing resin, wax, and soil, collected by threatened stingless bee species native to tropical countries and used in folk medicine. However, studies concerning the biological activity and chemical composition of geopropolis are scarce. In this study, we evaluated the antimicrobial and antiproliferative activity of the ethanolic extract of geopropolis (EEGP) collected by Melipona scutellaris and its bioactive fraction against important clinical microorganisms as well as their in vitro cytotoxicity and chemical profile. The antimicrobial activity of EEGP and fractions was examined by determining their minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) against six bacteria strains as well as their ability to inhibit Streptococcus mutans biofilm adherence. Total growth inhibition (TGI) was chosen to assay the antiproliferative activity of EEGP and its bioactive fraction against normal and cancer cell lines. The chemical composition of M. scutellaris geopropolis was identified by reversed-phase high-performance liquid chromatography and gas chromatography-mass spectrometry. EEGP significantly inhibited the growth of Staphylococcus aureus strains and S. mutans at low concentrations, and its hexane fraction (HF) presented the highest antibacterial activity. Also, both EEGP and HF inhibited S. mutans biofilm adherence (p < 0.05) and showed selectivity against human cancer cell lines, although only HF demonstrated selectivity at low concentrations. The chemical analyses performed suggest the absence of flavonoids and the presence of benzophenones as geopropolis major compounds. The empirical use of this unique type of geopropolis by folk medicine practitioners was confirmed in the present study, since it showed antimicrobial and antiproliferative potential against the cancer cell lines studied. It is possible that the major compounds found in this type of geopropolis are responsible for its properties.

  16. Antiproliferative and apoptotic effects of butyrolactone lignans from Arctium lappa on leukemic cells.

    Science.gov (United States)

    Matsumoto, T; Hosono-Nishiyama, K; Yamada, H

    2006-02-01

    In the course of screening for pharmacologically active substances from extracts of crude drugs used traditionally in Sino-Japanese herbal medicines, it was found that the 70 % ethanol extract from the fruits of Arctium lappa L. (Compositae) showed potent antiproliferative activity against B cell hybridoma cell, MH60. By bioassay-guided purification, a new lignan, (+)-7,8-didehydroarctigenin, together with the known lignans (-)-arctigenin and (-)-matairesinol were isolated as the active ingredients from an aqueous ethanolic extract of the fruits of A. lappa. Of these active compounds, (-)-arctigenin showed the most potent antiproliferative activity against MH60 cells (IC (50) : 1.0 microM), and the activity was suggested to be due to apoptosis.

  17. Synthesis and antiproliferative activity of novel limonene derivatives with a substituted thiourea moiety

    International Nuclear Information System (INIS)

    Figueiredo, Isis M.; Santos, Luciane V. dos; Costa, Willian F. da; Silva, Cleuza C. da; Sarragiotto, Maria H.; Carvalho, Joao E. de; Sacoman, Juliana L.; Kohn, Luciana K.

    2006-01-01

    A series of R-(+)-limonene derivatives bearing a substituted thiourea moiety (3-13) and five S-methyl analogs (14-18) were synthesized and evaluated for their in vitro antiproliferative activity against human cancer cell lines. Compounds bearing aromatic substituents (3-6) exhibit cytostatic activity in the full panel of cell lines tested, with GI 50 values in the range of 2.5 to 24 μmol L -1 . Compounds 3, 10, 12 and 16 were the most active with GI 5 )0 values in the range of 0.41 to 3.0 μmol L -1 , against different cell lines. (author)

  18. The Synthesis and Antiproliferative Activities of New Arylidene-Hydrazinyl-Thiazole Derivatives

    Directory of Open Access Journals (Sweden)

    Adriana Grozav

    2014-12-01

    Full Text Available New and known arylidene-hydrazinyl-thiazole derivatives have been synthesized by a convenient Hantzsch condensation. All compounds were evaluated for their in vitro cytotoxicity on two carcinoma cell lines, MDA-MB231 and HeLa. Significant antiproliferative activity for 2-(2-benzyliden-hydrazinyl-4-methylthiazole on both MDA-MB-231 (IC50: 3.92 µg/mL and HeLa (IC50: 11.4 µg/mL cell lines, and for 2-[2-(4-methoxybenzylidene hydrazinyl]-4-phenylthiazole on HeLa (IC50: 11.1 µg/mL cell line is reported. Electrophoresis experiments showed no plasmid DNA (pTZ57R cleavage in the presence of the investigated thiazoles.

  19. Fruit extract from a Sechium edule hybrid induce apoptosis in leukaemic cell lines but not in normal cells.

    Science.gov (United States)

    Aguiñiga-Sánchez, Itzen; Soto-Hernández, Marcos; Cadena-Iñiguez, Jorge; Ruíz-Posadas, Lucero del Mar; Cadena-Zamudio, Jorge David; González-Ugarte, Ana Karen; Steider, Benny Weiss; Santiago-Osorio, Edelmiro

    2015-01-01

    The antiproliferative potential of a crude extract from the chayote hybrid H-837-07-GISeM® and its potential for apoptosis induction were assessed in leukaemic cell lines and normal mouse bone marrow mononuclear cells (BM-MNCs). The extract strongly inhibited the proliferation of the P388, J774, and WEHI-3 cell lines (with an IC50 below 1.3 μg·mL(-1)), reduced cell viability, and induced apoptotic body production, phosphatidylserine translocation, and DNA fragmentation. However, the extract had no effect on BM-MNCs. We postulate that these properties make the extract a good candidate for an anti-tumour agent for clinical use.

  20. Synergistic Effect of Carboplatin and Piroxicam on Two Bladder Cancer Cell Lines.

    Science.gov (United States)

    Silva, Jéssica; Arantes-Rodrigues, Regina; Pinto-Leite, Rosário; Faustino-Rocha, Ana I; Fidalgo-Gonçalves, Lio; Santos, Lúcio; Oliveira, Paula A

    2017-04-01

    This study aimed to evaluate the in vitro efficacy of carboplatin and piroxicam, both in isolation and combined, against T24 and 5637 human urinary bladder cancer cell lines. Cell viability, drug interaction, cell morphology, cell proliferation, apoptosis and autophagy were analyzed after 72 h of drug exposure. Statistical analysis was performed and values of ppiroxicam produced a more potent antiproliferative effect when compared to single drugs. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  1. Ibuprofen delivered by poly(lactic-co-glycolic acid (PLGA nanoparticles to human gastric cancer cells exerts antiproliferative activity at very low concentrations

    Directory of Open Access Journals (Sweden)

    Bonelli P

    2012-11-01

    Full Text Available Patrizia Bonelli,1 Franca M Tuccillo,1 Antonella Federico,5 Maria Napolitano,2 Antonella Borrelli,1 Daniela Melisi,6 Maria G Rimoli,6 Raffaele Palaia,3 Claudio Arra,4 Francesco Carinci71Laboratory of Molecular Biology and Viral Oncogenesis; 2Department of Clinical Immunology; 3Department of Gastrointestinal-Hepatobiliary-Pancreatic Cancer Oncology Surgery; 4Animal Facility, National Cancer Institute G Pascale, Naples, Italy; 5Microtech Laboratory, Naples, Italy; 6Pharmaceutical and Toxicological Chemistry Department, School of Pharmacy, University "Federico II", Naples, Italy; 7Department of Maxillofacial Surgery, University of Ferrara, Ferrara, ItalyPurpose: Epidemiological, clinical, and laboratory studies have suggested that ibuprofen, a commonly used nonsteroidal anti-inflammatory drug, inhibits the promotion and proliferation of certain tumors. Recently, we demonstrated the antiproliferative effects of ibuprofen on the human gastric cancer cell line MKN-45. However, high doses of ibuprofen were required to elicit these antiproliferative effects in vitro. The present research compared the antiproliferative effects of ibuprofen delivered freely and released by poly(lactic-co-glycolic acid (PLGA nanoparticles (NPs in MKN-45 cells.Methods: MKN-45 human gastric adenocarcinoma cells were treated with ibuprofen-loaded PLGA NPs. The proliferation of MKN-45 cells was then assessed by cell counting. The uptake of NPs was imaged by fluorescence microscopy and flow cytometry. The release of ibuprofen from ibuprofen-loaded PLGA NPs in the cells was evaluated by gas chromatography–mass spectrometry.Results: Dramatic inhibition of cellular proliferation was observed in cells treated with ibuprofen-loaded PLGA NPs versus those treated with free ibuprofen at the same concentration. The localization of NPs was cytoplasmic. The initiation of ibuprofen release was rapid, commencing within 2 hours, and then increased slowly over time, reaching a maximum

  2. Melatonin antiproliferative effects require active mitochondrial function in embryonal carcinoma cells

    Science.gov (United States)

    Loureiro, Rute; Magalhães-Novais, Silvia; Mesquita, Katia A.; Baldeiras, Ines; Sousa, Isabel S.; Tavares, Ludgero C.; Barbosa, Ines A.; Oliveira, Paulo J.; Vega-Naredo, Ignacio

    2015-01-01

    Although melatonin oncostatic and cytotoxic effects have been described in different types of cancer cells, the specific mechanisms leading to its antitumoral effects and their metabolic context specificity are still not completely understood. Here, we evaluated the effects of melatonin in P19 embryonal carcinoma stem cells (CSCs) and in their differentiated counterparts, cultured in either high glucose medium or in a galactose (glucose-free) medium which leads to glycolytic suppression and increased mitochondrial metabolism. We found that highly glycolytic P19 CSCs were less susceptible to melatonin antitumoral effects while cell populations relying on oxidative metabolism for ATP production were more affected. The observed antiproliferative action of melatonin was associated with an arrest at S-phase, decreased oxygen consumption, down-regulation of BCL-2 expression and an increase in oxidative stress culminating with caspase-3-independent cell death. Interestingly, the combined treatment of melatonin and dichloroacetate had a synergistic effect in cells grown in the galactose medium and resulted in an inhibitory effect in the highly resistant P19 CSCs. Melatonin appears to exert its antiproliferative activity in P19 carcinoma cells through a mitochondrially-mediated action which in turn allows the amplification of the effects of dichloroacetate, even in cells with a more glycolytic phenotype. PMID:26025920

  3. Anti-proliferative and mutagenic activities of aqueous and methanol extracts of leaves from Pereskia bleo (Kunth) DC (Cactaceae).

    Science.gov (United States)

    Er, Hui Meng; Cheng, En-Hsiang; Radhakrishnan, Ammu Kutty

    2007-09-25

    The anti-proliferative effects of the aqueous and methanol extracts of leaves of Pereskia bleo (Kunth) DC (Cactaceae) against a mouse mammary cancer cell line (4T1) and a normal mouse fibroblast cell line (NIH/3T3) were evaluated under an optimal (in culture medium containing 10% foetal bovine serum (FBS)) and a sub-optimal (in culture medium containing 0.5% FBS) conditions. Under the optimal condition, the aqueous extract showed a significant (pCactaceae) do not have appreciable anti-proliferative effect on the 4T1 and NIH/3T3 cells as the EC(50) values obtained are greater than 50 microg/mL when tested under optimal culture condition. Moreover, the aqueous extract may form mutagenic compound(s) upon the metabolisation by liver enzymes.

  4. Verapamil stereoisomers induce antiproliferative effects in vascular smooth muscle cells via autophagy

    Energy Technology Data Exchange (ETDEWEB)

    Salabei, Joshua K. [Diabetes and Obesity Center, University of Louisville, Louisville, KY 40202 (United States); Department of Biochemistry and Molecular Biology, University of Louisville, Louisville, KY 40202 (United States); Balakumaran, Arun [Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555‐0438 (United States); Frey, Justin C. [Department of Biology, University of Wisconsin-Eau Claire, Eau Claire, WI 54702 (United States); Boor, Paul J. [Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555‐0438 (United States); Treinen-Moslen, Mary [Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX 77555‐0609 (United States); Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555‐0438 (United States); Conklin, Daniel J., E-mail: dj.conklin@louisville.edu [Diabetes and Obesity Center, University of Louisville, Louisville, KY 40202 (United States); Division of Cardiovascular Medicine, University of Louisville, Louisville, KY 40202 (United States); Department of Biology, University of Wisconsin-Eau Claire, Eau Claire, WI 54702 (United States); Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555‐0438 (United States)

    2012-08-01

    Calcium channel blockers (CCBs) are important in the management of hypertension and limit restenosis. Although CCB efficacy could derive from decreased blood pressure, other mechanisms independent of CCB activity also can contribute to antiproliferative action. To understand mechanisms of CCB-mediated antiproliferation, we studied two structurally dissimilar CCBs, diltiazem and verapamil, in cultured rat vascular smooth muscle cells (VSMC). To elucidate CCB-independent effects, pure stereoisomers of verapamil (R-verapamil, inactive VR; S-verapamil, active, VS) were used. The effects of CCB exposure on cell viability (MTT reduction), cell proliferation ({sup 3}H-thymidine incorporation), VSMC morphology by light and transmission electron microscopy (TEM) and autophagy (LC3I/II, ATG5) were measured. In general, verapamil, VR or VS treatment alone (80 μM) appreciably enhanced MTT absorbance although higher concentrations (VR or VS) slightly decreased MTT absorbance. Diltiazem (140 μM) markedly decreased MTT absorbance (40%) at 120 h. VR or VS treatment inhibited {sup 3}H-thymidine incorporation (24 h) and induced cytological alterations (i.e., karyokinesis, enhanced perinuclear MTT deposition, accumulated perinuclear “vacuoles”). TEM revealed perinuclear “vacuoles” to be aggregates of highly laminated and electron-dense vesicles resembling autophagosomes and lysosomes, respectively. Increased autophagosome activity was confirmed by a concentration-dependent increase in LC3-II formation by Western blotting and by increased perinuclear LC3-GFP{sup +} puncta in verapamil-treated VSMC. Verapamil stereoisomers appeared to decrease perinuclear mitochondrial density. These observations indicate that antiproliferative effects of verapamil stereoisomers are produced by enhanced mitochondrial damage and upregulated autophagy in VSMC. These effects are independent of CCB activity indicating a distinct mechanism of action that could be targeted for more efficacious anti

  5. Synthesis, Half-Wave Potentials and Antiproliferative Activity of 1-Aryl-substituted Aminoisoquinolinequinones

    Directory of Open Access Journals (Sweden)

    Juana Andrea Ibacache

    2014-01-01

    Full Text Available The synthesis of a variety of 1-aryl-7-phenylaminoisoquinolinequinones from 1,4-benzoquinone and arylaldehydes via the respective 1-arylisoquinolinequinones is reported. The cyclic voltammograms of the new compounds exhibit two one-electron reduction waves to the corresponding radical-anion and dianion and two quasi-reversible oxidation peaks. The half-wave potential values (EI½ of the members of the series have proven sensitive to the electron-donor effect of the aryl group (phenyl, 2-thienyl, 2-furyl at the 1-position as well as to the phenylamino groups (anilino, p-anisidino at the 7-position. The antiproliferative activity of the new compounds was evaluated in vitro using the MTT colorimetric method against one normal cell line (MRC-5 lung fibroblasts and two human cancer cell lines: AGS human gastric adenocarcinoma and HL-60 human promyelocytic leukemia cells in 72-h drug exposure assays. Among the series, compounds 5a, 5b, 5g, 5h, 6a and 6d exhibited interesting antiproliferative activities against human gastric adenocarcinoma. The 1-arylisoquinolinequinone 6a was found to be the most promising active compound against the tested cancer cell lines in terms of IC50 values (1.19; 1.24 µM and selectivity index (IS: 3.08; 2.96, respect to the anti-cancer agent etoposide used as reference (IS: 0.57; 0.14.

  6. Multidrug resistance-selective antiproliferative activity of Piper amide alkaloids and synthetic analogues.

    Science.gov (United States)

    Wang, Yue-Hu; Goto, Masuo; Wang, Li-Ting; Hsieh, Kan-Yen; Morris-Natschke, Susan L; Tang, Gui-Hua; Long, Chun-Lin; Lee, Kuo-Hsiung

    2014-10-15

    Twenty-five amide alkaloids (1-25) from Piper boehmeriifolium and 10 synthetic amide alkaloid derivatives (39-48) were evaluated for antiproliferative activity against eight human tumor cell lines, including chemosensitive and multidrug-resistant (MDR) cell lines. The results suggested tumor type-selectivity. 1-[7-(3,4,5-Trimethoxyphenyl)heptanoyl]piperidine (46) exhibited the best inhibitory activity (IC50=4.94 μM) against the P-glycoprotein (P-gp)-overexpressing KBvin MDR sub-line, while it and all other tested compounds, except 9, were inactive (IC50 >40 μM) against MDA-MB-231 and SK-BR-3. Structure-activity relationships (SARs) indicated that (i) 3,4,5-trimethoxy phenyl substitution is critical for selectivity against KBvin, (ii) the 4-methoxy group in this pattern is crucial for antiproliferative activity, (iii) double bonds in the side chain are not needed for activity, and (iv), in arylalkenylacyl amide alkaloids, replacement of an isobutylamino group with pyrrolidin-1-yl or piperidin-1-yl significantly improved activity. Further study on Piper amides is warranted, particularly whether side chain length affects the ability to overcome the MDR cancer phenotype. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Rosmarinus officinalis essential oil: antiproliferative, antioxidant and antibacterial activities

    Directory of Open Access Journals (Sweden)

    Abdullah Ijaz Hussain

    2010-12-01

    Full Text Available The aim of this work was to investigate and compare the antiproliferative, antioxidant and antibacterial activities of Rosmarinus officinalis essential oil, native to Pakistan. The essential oil content from the leaves of R. officinalis was 0.93 g 100g-1. The GC and GC-MS analysis revealed that the major components determined in R. officinalis essential oil were 1,8-cineol (38.5%, camphor (17.1%, α-pinene (12.3%, limonene (6.23%, camphene (6.00% and linalool (5.70%. The antiproliferative activity was tested against two cancer (MCF-7 and LNCaP and one fibroblast cell line (NIH-3T3 using the MTT assay, while, the antioxidant activity was evaluated by the reduction of 2, 2-diphenyl-1-picryl hydrazyl (DPPH and measuring percent inhibition of peroxidation in linoleic acid system. The disc diffusion and modified resazurin microtitre-plate assays were used to evaluate the inhibition zones (IZ and minimum inhibitory concentration (MIC of R. officinalis essential oil, respectively. It is concluded from the results that Rosmarinus officinalis essential oil exhibited antiproliferative, antioxidant and antibacterial activities.

  8. High Performance Liquid Chromatography-mass Spectrometry Analysis of High Antioxidant Australian Fruits with Antiproliferative Activity Against Cancer Cells.

    Science.gov (United States)

    Sirdaarta, Joseph; Maen, Anton; Rayan, Paran; Matthews, Ben; Cock, Ian Edwin

    2016-05-01

    High antioxidant capacities have been linked to the treatment and prevention of several cancers. Recent reports have identified several native Australian fruits with high antioxidant capacities. Despite this, several of these species are yet to be tested for anticancer activity. Solvent extracts prepared from high antioxidant native Australian fruits were analyzed for antioxidant capacity by the di (phenyl)-(2,4,6-trinitrophenyl) iminoazanium free radical scavenging assay. Antiproliferative activities against CaCo2 and HeLa cancer cells were determined by a multicellular tumor spheroid-based cell proliferation assay. Toxicity was determined by Artemia franciscana bioassay. Methanolic extracts of all plant species displayed high antioxidant contents (equivalent to approximately 7-16 mg of vitamin C per gram of fruit extracted). Most aqueous extracts also contained relatively high antioxidant capacities. In contrast, the ethyl acetate, chloroform, and hexane extracts of most species (except lemon aspen and bush tomato) had lower antioxidant contents (below 1.5 mg of vitamin C equivalents per gram of plant material extracted). The antioxidant contents correlated with the ability of the extracts to inhibit proliferation of CaCo2 and HeLa cancer cell lines. The high antioxidant methanolic extracts of all species were potent inhibitors of cell proliferation. The methanolic lemon aspen extract was particularly effective, with IC50 values of 480 and 769 μg/mL against HeLa and CaCo2 cells, respectively. In contrast, the lower antioxidant ethyl acetate and hexane extracts (except the lemon aspen ethyl acetate extract) generally did not inhibit cancer cell proliferation or inhibited to only a minor degree. Indeed, most of the ethyl acetate and hexane extracts induced potent cell proliferation. The native tamarind ethyl acetate extract displayed low-moderate toxicity in the A. franciscana bioassay (LC50 values below 1000 μg/mL). All other extracts were nontoxic. A total of

  9. High Performance Liquid Chromatography-mass Spectrometry Analysis of High Antioxidant Australian Fruits with Antiproliferative Activity Against Cancer Cells

    Science.gov (United States)

    Sirdaarta, Joseph; Maen, Anton; Rayan, Paran; Matthews, Ben; Cock, Ian Edwin

    2016-01-01

    Background: High antioxidant capacities have been linked to the treatment and prevention of several cancers. Recent reports have identified several native Australian fruits with high antioxidant capacities. Despite this, several of these species are yet to be tested for anticancer activity. Materials and Methods: Solvent extracts prepared from high antioxidant native Australian fruits were analyzed for antioxidant capacity by the di (phenyl)-(2,4,6-trinitrophenyl) iminoazanium free radical scavenging assay. Antiproliferative activities against CaCo2 and HeLa cancer cells were determined by a multicellular tumor spheroid-based cell proliferation assay. Toxicity was determined by Artemia franciscana bioassay. Results: Methanolic extracts of all plant species displayed high antioxidant contents (equivalent to approximately 7–16 mg of vitamin C per gram of fruit extracted). Most aqueous extracts also contained relatively high antioxidant capacities. In contrast, the ethyl acetate, chloroform, and hexane extracts of most species (except lemon aspen and bush tomato) had lower antioxidant contents (below 1.5 mg of vitamin C equivalents per gram of plant material extracted). The antioxidant contents correlated with the ability of the extracts to inhibit proliferation of CaCo2 and HeLa cancer cell lines. The high antioxidant methanolic extracts of all species were potent inhibitors of cell proliferation. The methanolic lemon aspen extract was particularly effective, with IC50 values of 480 and 769 μg/mL against HeLa and CaCo2 cells, respectively. In contrast, the lower antioxidant ethyl acetate and hexane extracts (except the lemon aspen ethyl acetate extract) generally did not inhibit cancer cell proliferation or inhibited to only a minor degree. Indeed, most of the ethyl acetate and hexane extracts induced potent cell proliferation. The native tamarind ethyl acetate extract displayed low-moderate toxicity in the A. franciscana bioassay (LC50 values below 1000

  10. Antiproliferative and Antiangiogenic Effects of Punica granatum Juice (PGJ) in Multiple Myeloma (MM).

    Science.gov (United States)

    Tibullo, Daniele; Caporarello, Nunzia; Giallongo, Cesarina; Anfuso, Carmelina Daniela; Genovese, Claudia; Arlotta, Carmen; Puglisi, Fabrizio; Parrinello, Nunziatina L; Bramanti, Vincenzo; Romano, Alessandra; Lupo, Gabriella; Toscano, Valeria; Avola, Roberto; Brundo, Maria Violetta; Di Raimondo, Francesco; Raccuia, Salvatore Antonio

    2016-10-01

    Multiple myeloma (MM) is a clonal B-cell malignancy characterized by an accumulation of clonal plasma cells (PC) in the bone marrow (BM) leading to bone destruction and BM failure. Despite recent advances in pharmacological therapy, MM remains a largely incurable pathology. Therefore, novel effective and less toxic agents are urgently necessary. In the last few years, pomegranate has been studied for its potential therapeutic properties including treatment and prevention of cancer. Pomegranate juice (PGJ) contains a number of potential active compounds including organic acids, vitamins, sugars, and phenolic components that are all responsible of the pro-apoptotic effects observed in tumor cell line. The aim of present investigation is to assess the antiproliferative and antiangiogenic potential of the PGJ in human multiple myeloma cell lines. Our data demonstrate the anti-proliferative potential of PGJ in MM cells; its ability to induce G0/G1 cell cycle block and its anti-angiogenic effects. Interestingly, sequential combination of bortezomib/PGJ improved the cytotoxic effect of the proteosome inhibitor. We investigated the effect of PGJ on angiogenesis and cell migration/invasion. Interestingly, we observed an inhibitory effect on the tube formation, microvessel outgrowth aorting ring and decreased cell migration and invasion as showed by wound-healing and transwell assays, respectively. Analysis of angiogenic genes expression in endothelial cells confirmed the anti-angiogenic properties of pomegranate. Therefore, PGJ administration could represent a good tool in order to identify novel therapeutic strategies for MM treatment, exploiting its anti-proliferative and anti-angiogenic effects. Finally, the present research supports the evidence that PGJ could play a key role of a future therapeutic approach for treatment of MM in order to optimize the pharmacological effect of bortezomib, especially as adjuvant after treatment.

  11. Antiproliferative and Antiangiogenic Effects of Punica granatum Juice (PGJ in Multiple Myeloma (MM

    Directory of Open Access Journals (Sweden)

    Daniele Tibullo

    2016-10-01

    Full Text Available Multiple myeloma (MM is a clonal B-cell malignancy characterized by an accumulation of clonal plasma cells (PC in the bone marrow (BM leading to bone destruction and BM failure. Despite recent advances in pharmacological therapy, MM remains a largely incurable pathology. Therefore, novel effective and less toxic agents are urgently necessary. In the last few years, pomegranate has been studied for its potential therapeutic properties including treatment and prevention of cancer. Pomegranate juice (PGJ contains a number of potential active compounds including organic acids, vitamins, sugars, and phenolic components that are all responsible of the pro-apoptotic effects observed in tumor cell line. The aim of present investigation is to assess the antiproliferative and antiangiogenic potential of the PGJ in human multiple myeloma cell lines. Our data demonstrate the anti-proliferative potential of PGJ in MM cells; its ability to induce G0/G1 cell cycle block and its anti-angiogenic effects. Interestingly, sequential combination of bortezomib/PGJ improved the cytotoxic effect of the proteosome inhibitor. We investigated the effect of PGJ on angiogenesis and cell migration/invasion. Interestingly, we observed an inhibitory effect on the tube formation, microvessel outgrowth aorting ring and decreased cell migration and invasion as showed by wound-healing and transwell assays, respectively. Analysis of angiogenic genes expression in endothelial cells confirmed the anti-angiogenic properties of pomegranate. Therefore, PGJ administration could represent a good tool in order to identify novel therapeutic strategies for MM treatment, exploiting its anti-proliferative and anti-angiogenic effects. Finally, the present research supports the evidence that PGJ could play a key role of a future therapeutic approach for treatment of MM in order to optimize the pharmacological effect of bortezomib, especially as adjuvant after treatment.

  12. Induction of Apoptotic Effects of Antiproliferative Protein from the Seeds of Borreria hispida on Lung Cancer (A549 and Cervical Cancer (HeLa Cell Lines

    Directory of Open Access Journals (Sweden)

    S. Rupachandra

    2014-01-01

    Full Text Available A 35 KDa protein referred to as F3 was purified from the seeds of Borreria hispida by precipitation with 80% ammonium sulphate and gel filtration on Sephadex G-100 column. RP-HPLC analysis of protein fraction (F3 on an analytical C-18 column produced a single peak, detected at 220 nm. F3 showed an apparent molecular weight of 35 KDa by SDS PAGE and MALDI-TOF-MS analyses. Peptide mass fingerprinting analysis of F3 showed the closest homology with the sequence of 1-aminocyclopropane-1-carboxylate deaminase of Pyrococcus horikoshii. The protein (F3 exhibited significant cytotoxic activity against lung (A549 and cervical (HeLa cancer cells in a dose-dependent manner at concentrations ranging from 10 µg to 1000 µg/mL, as revealed by the MTT assay. Cell cycle analysis revealed the increased growth of sub-G0 population in both cell lines exposed to a concentration of 1000 µg/mL of protein fraction F3 as examined from flow cytometry. This is the first report of a protein from the seeds of Borreria hispida with antiproliferative and apoptotic activity in lung (A549 and cervical (HeLa cancer cells.

  13. Antiproliferative and antimicrobial activity of traditional Kombucha and Satureja montana L. Kombucha.

    Science.gov (United States)

    Cetojevic-Simin, D D; Bogdanovic, G M; Cvetkovic, D D; Velicanski, A S

    2008-01-01

    To carry out a preliminary investigation of the biological activity of Kombucha beverages from Camellia sinensis L. (black tea) and Satureja montana L. (winter savory tea), that have consuming acidity. Cell growth effect was measured by sulforhodamine B colorimetric assay on HeLa (cervix epithelioid carcinoma), HT-29 (colon adenocarcinoma), and MCF-7 (breast adenocarcinoma). Antimicrobial activity to bacteria, yeasts and moulds was determined by agar-well diffusion method. Consuming Kombuchas had the most expressive antimicrobial activity against all investigated bacteria, except Sarcina lutea, while unfermented tea samples had no activity. Traditional Kombucha showed higher activity against Staphylococcus aureus and Escherichia coli than acetic acid, while both neutralized Kombuchas had bacteriostatic activity on Salmonella enteritidis. Examined Kombuchas did not stimulate cell proliferation of the investigated cell lines. Antiproliferative activity of winter savory tea Kombucha was comparable to that of traditional Kombucha made from black tea. Furthermore, in HeLa cell line Satureja montana L. Kombucha induced cell growth inhibition by 20% (IC20) at lower concentration compared to the activity of water extract of Satureja montana L. obtained in our previous research. Presence of more active antiproliferative component(s) in Satureja montana L. Kombucha compared to Satureja montana L. water extract and antimicrobial component(s) other than acetic acid in both Kombuchas is suggested.

  14. Eco-friendly synthesis, in vitro anti-proliferative evaluation, and 3D-QSAR analysis of a novel series of monocationic 2-aryl/heteroaryl-substituted 6-(2-imidazolinyl)benzothiazole mesylates.

    Science.gov (United States)

    Racané, Livio; Ptiček, Lucija; Sedić, Mirela; Grbčić, Petra; Kraljević Pavelić, Sandra; Bertoša, Branimir; Sović, Irena; Karminski-Zamola, Grace

    2018-04-17

    Herein, we describe the synthesis of twenty-one novel water-soluble monocationic 2-aryl/heteroaryl-substituted 6-(2-imidazolinyl)benzothiazole mesylates 3a-3u and present the results of their anti-proliferative assays. Efficient syntheses were achieved by three complementary simple two-step synthetic protocols based on the condensation reaction of aryl/heteroaryl carbaldehydes or carboxylic acid. We developed an eco-friendly synthetic protocol using glycerol as green solvent, particularly appropriate for the condensation of thermally and acid-sensitive heterocycles such as furan, benzofuran, pyrrole, and indole. Screening of anti-proliferative activity was performed on four human tumour cell lines in vitro including pancreatic cancer (CFPAC-1), metastatic colon cancer (SW620), hepatocellular carcinoma (HepG2), and cervical cancer (HeLa), as well as in normal human fibroblast cell lines. All tested compounds showed strong to moderate anti-proliferative activity on tested cell lines depending on the structure containing aryl/heteroaryl moiety coupled to 6-(2-imidazolinyl)benzothiazole moiety. The most potent cytostatic effects on all tested cell lines with [Formula: see text] values ranging from 0.1 to 3.70 [Formula: see text] were observed for benzothiazoles substituted with naphthalene-2-yl 3c, benzofuran-2-yl 3e, indole-3-yl 3j, indole-2-yl 3k, quinoline-2-yl 3s, and quinoline-3-yl 3t and derivatives substituted with phenyl 3a, naphthalene-1-yl 3b, benzothiazole-2-yl 3g, benzothiazole-6-yl 3h, N-methylindole-3-yl 3l, benzimidazole-2-yl 3n, benzimidazole-5(6)-yl 3o, and quinolone-4-yl 3u with [Formula: see text] values ranging from 1.1 to 29.1 [Formula: see text]. Based on obtained anti-proliferative activities, 3D-QSAR models for five cell lines were derived. Molecular volume, molecular surface, the sum of hydrophobic surface areas, molecular mass, and possibility of making dispersion forces were identified by QSAR analyses as molecular properties that are

  15. Potent anti-proliferative effects against oral and cervical cancers of Thai medicinal plants selected from the Thai/Lanna medicinal plant recipe database "MANOSROI III".

    Science.gov (United States)

    Manosroi, Aranya; Akazawa, Hiroyuki; Pattamapun, Kassara; Kitdamrongtham, Worapong; Akihisa, Toshihiro; Manosroi, Worapaka; Manosroi, Jiradej

    2015-07-01

    Thai/Lanna medicinal plant recipes have been used for the treatment of several diseases including oral and cervical cancers. To investigate anti-proliferative activity on human cervical (HeLa) and oral (KB) cancer cell lines of medicinal plants selected from Thai/Lanna medicinal plant recipe database "MANOSROI III". Twenty-three methanolic plant crude extracts were tested for phytochemicals and anti-proliferative activity on HeLa and KB cell lines for 24 h by the sulforhodamine B (SRB) assay at the doses of 1 × 10(1)-1 × 10(-6 )mg/ml. The nine extracts with the concentrations giving 50% growth inhibition (GI50) lower than 100 µg/ml were further semi-purified by liquid/liquid partition in order to evaluate and enhance the anti-proliferative potency. All extracts contained steroids/triterpenoids, but not xanthones. The methanolic extracts of Gloriosa superba L. (Colchinaceae) root and Albizia chinensis (Osbeck) Merr. (Leguminosae-Mimosoideae) wood gave the highest anti-proliferative activity on HeLa and KB cell lines with the GI50 values of 0.91 (6.0- and 0.31-fold of cisplatin and doxorubicin) and 0.16 µg/ml (28.78- and 82.29-fold of cisplatin and doxorubicin), respectively. Hexane and methanol-water fractions of G. superba exhibited the highest anti-proliferative activity on HeLa and KB cell lines with the GI50 values of 0.15 (37- and 1.9-fold of cisplatin and doxorubicin) and 0.058 µg/ml (77.45- and 221.46-fold of cisplatin and doxorubicin), respectively. This study has demonstrated the potential of plants selected from MANOSROI III database especially G. superba and A. chinensis for further development as anti-oral and cervical cancer agents.

  16. Antimicrobial and antiproliferative activities of stingless bee Melipona scutellaris geopropolis

    Directory of Open Access Journals (Sweden)

    da Cunha Marcos Guilherme

    2013-01-01

    Full Text Available Abstract Background Geopropolis is a type of propolis containing resin, wax, and soil, collected by threatened stingless bee species native to tropical countries and used in folk medicine. However, studies concerning the biological activity and chemical composition of geopropolis are scarce. In this study, we evaluated the antimicrobial and antiproliferative activity of the ethanolic extract of geopropolis (EEGP collected by Melipona scutellaris and its bioactive fraction against important clinical microorganisms as well as their in vitro cytotoxicity and chemical profile. Methods The antimicrobial activity of EEGP and fractions was examined by determining their minimum inhibitory concentration (MIC and minimum bactericidal concentration (MBC against six bacteria strains as well as their ability to inhibit Streptococcus mutans biofilm adherence. Total growth inhibition (TGI was chosen to assay the antiproliferative activity of EEGP and its bioactive fraction against normal and cancer cell lines. The chemical composition of M. scutellaris geopropolis was identified by reversed-phase high-performance liquid chromatography and gas chromatography–mass spectrometry. Results EEGP significantly inhibited the growth of Staphylococcus aureus strains and S. mutans at low concentrations, and its hexane fraction (HF presented the highest antibacterial activity. Also, both EEGP and HF inhibited S. mutans biofilm adherence (p Conclusions The empirical use of this unique type of geopropolis by folk medicine practitioners was confirmed in the present study, since it showed antimicrobial and antiproliferative potential against the cancer cell lines studied. It is possible that the major compounds found in this type of geopropolis are responsible for its properties.

  17. Cytotoxicity and Antiproliferative Activity Assay of Clove Mistletoe (Dendrophthoe pentandra (L. Miq. Leaves Extracts

    Directory of Open Access Journals (Sweden)

    Vida Elsyana

    2016-01-01

    Full Text Available Clove mistletoe (Dendrophthoe pentandra (L. Miq. is a semiparasitic plant that belongs to Loranthaceae family. Clove mistletoe was traditionally used for cancer treatment in Indonesia. In the present study, we examined cytotoxicity of clove mistletoe leaves extracts against brine shrimps and conducted their antiproliferative activity on K562 (human chronic myelogenous leukemia and MCM-B2 (canine benign mixed mammary cancer cell lines in vitro. The tested samples were water extract, ethanol extract, ethanol fraction, ethyl acetate fraction, and n-hexane fraction. Cytotoxicity was screened using Brine Shrimp Lethality Test (BSLT. Antiproliferative activity was conducted using Trypan Blue Dye Method and cells were counted using haemocytometer. The results showed that n-hexane fraction exhibited significant cytotoxicity with LC50 value of 55.31 μg/mL. The n-hexane fraction was then considered for further examination. The n-hexane fraction of clove mistletoe could inhibit growth of K562 and MCM-B2 cancer cell lines in vitro. The inhibition activity of clove mistletoe n-hexane fraction at concentration of 125 μg/mL on K562 cancer cell lines was 38.69%, while on MCM-B2 it was 41.5%. Therefore, it was suggested that clove mistletoe had potential natural anticancer activity.

  18. Bioactivity-guided isolation of flavonoids from Cynanchum acutum L. subsp. sibiricum (willd.) Rech. f. and investigation of their antiproliferative activity.

    Science.gov (United States)

    Yildiz, Ilyas; Sen, Ozkan; Erenler, Ramazan; Demirtas, Ibrahim; Behcet, Lutfi

    2017-11-01

    Cynanchum acutum L. subsp. sibiricum (Willd.) Rech. f. was extracted with hexane, acetone, methanol and water individually. A sample was heated in water then extracted with ethyl acetate. Among the extracts, the ethyl acetate extract exhibited the most antiproliferative activity, so isolation of bioactive compounds was carried out from this extract. A new compound, kaempferol-3-O-β-xylopyranosyl-(1-2)-β-rhamnopyranoside (1) along with five known compounds, quercetin-3-O-β-xyloside (2), kaempferol-3-O-β-glucoside (3), quercetin-3-O-β-glucoside (4), kaempferol-3-O-β-rhamnopyranoside (5), and kaempferol-3-O-β-d-neohesperidoside (6) were isolated from ethyl acetate extract. The structures were elucidated by spectroscopic techniques, basically 1D NMR, 2D NMR and LC-TOF/MS. Antiproliferative effects of isolated compounds were determined by xCELLigence using the HeLa (human uterus carcinoma) cell lines. Compound 2 and compound 5 revealed the good antiproliferative activity against HeLa cell lines.

  19. Synthesis and antiproliferative activity of 6-phenylaminopurines.

    Science.gov (United States)

    Canela, María-Dolores; Liekens, Sandra; Camarasa, María-José; Priego, Eva María; Pérez-Pérez, María-Jesús

    2014-11-24

    A series of novel 6-phenylaminopurines have been efficiently synthesized in 3 steps exploring different groups at positions 2, 8 and 9 of the purine ring and at the exocyclic nitrogen atom at position 6. Among the newly described purines, five compounds showed antiproliferative activity with IC50 values below 10 μM, the tetrahydroquinoline derivative at position 6 of phenylaminopurine being the most active of the series in the six cell lines tested. Moreover, the compounds induced G2/M phase arrest in human cervical carcinoma HeLa cells as reported for tubulin depolymerizing agents. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  20. Antimicrobial and antiproliferative prospective of kosinostatin – a secondary metabolite isolated from Streptomyces sp.

    Directory of Open Access Journals (Sweden)

    Vinayagam Rambabu

    2015-12-01

    Full Text Available Cancer is a communal health hazard worldwide. The present investigation attempts to evaluate antimicrobial and anticancer potential of kosinostatin on mammary carcinoma cell line (MCF-7. The anticancer and antiproliferative activities of kosinostatin were analyzed on MCF cell line by MTT assay and cytotoxicity assays like lactate dehydrogenase (LDH and glutathione (GSH. The secondary metabolite kosinostatin exhibited its apoptotic nature by expressing p53 protein. Collectively, the results acquired from this study promise that kosinostatin shows the potent anticancer activity.

  1. Antiproliferative activity of pristimerin isolated from Maytenus ilicifolia (Celastraceae) in human HL-60 cells.

    Science.gov (United States)

    Costa, Patricia Marçal da; Ferreira, Paulo Michel Pinheiro; Bolzani, Vanderlan da Silva; Furlan, Maysa; de Freitas Formenton Macedo Dos Santos, Vânia Aparecida; Corsino, Joaquim; de Moraes, Manoel Odorico; Costa-Lotufo, Letícia Veras; Montenegro, Raquel Carvalho; Pessoa, Cláudia

    2008-06-01

    Pristimerin has been shown to be cytotoxic to several cancer cell lines. In the present work, the cytotoxicity of pristimerin was evaluated in human tumor cell lines and in human peripheral blood mononuclear cells (PBMC). This work also examined the effects of pristimerin (0.4; 0.8 and 1.7 microM) in HL-60 cells, after 6, 12 and 24h of exposure. Pristimerin reduced the number of viable cells and increased number of non-viable cells in a concentration-dependent manner by tripan blue test showing morphological changes consistent with apoptosis. Nevertheless, pristimerin was not selective to cancer cells, since it inhibited PBMC proliferation with an IC50 of 0.88 microM. DNA synthesis inhibition assessed by 5-bromo-2'-deoxyuridine (BrdU) incorporation in HL-60 cells was 70% and 83% for the concentrations of 0.4 and 0.8 microM, respectively. Pristimerin (10 and 20 microM) was not able to inhibit topoisomerase I. In AO/EB (acridine orange/ethidium bromide) staining, all tested concentrations reduced the number of HL-60 viable cells, with the occurrence of necrosis and apoptosis in a concentration-dependent manner, results in agreement with trypan blue exclusion findings. The analysis of membrane integrity and internucleosomal DNA fragmentation by flow cytometry in the presence of pristimerin indicated that treated cells underwent apoptosis. The present data point to the importance of pristimerin as representative of an emerging class of potential anticancer chemicals, exhibiting an antiproliferative effect by inhibiting DNA synthesis and triggering apoptosis.

  2. Antiproliferative activity and phenotypic modification induced by selected Peruvian medicinal plants on human hepatocellular carcinoma Hep3B cells.

    Science.gov (United States)

    Carraz, Maëlle; Lavergne, Cédric; Jullian, Valérie; Wright, Michel; Gairin, Jean Edouard; Gonzales de la Cruz, Mercedes; Bourdy, Geneviève

    2015-05-26

    The high incidence of human hepatocellular carcinoma (HCC) in Peru and the wide use of medicinal plants in this country led us to study the activity against HCC cells in vitro of somes species used locally against liver and digestive disorders. Ethnopharmacological survey: Medicinal plant species with a strong convergence of use for liver and digestive diseases were collected fresh in the wild or on markets, in two places of Peru: Chiclayo (Lambayeque department, Chiclayo province) and Huaraz (Ancash department, Huaraz province). Altogether 51 species were collected and 61 ethanol extracts were prepared to be tested. Biological assessment: All extracts were first assessed against the HCC cell line Hep3B according a 3-step multi-parametric phenotypic assay. It included 1) the evaluation of phenotypic changes on cells by light microscopy, 2) the measurement of the antiproliferative activity and 3) the analysis of the cytoskeleton and mitosis by immunofluorescence. Best extracts were further assessed against other HCC cell lines HepG2, PLC/PRF/5 and SNU-182 and their toxicity measured in vitro on primary human hepatocytes. Ethnopharmacological survey: Some of the species collected had a high reputation spreading over the surveyed locations for treating liver problems, i.e. Baccharis genistelloides, Bejaria aestuans, Centaurium pulchellum, Desmodium molliculum, Dipsacus fullonum, Equisetum bogotense, Gentianella spp., Krameria lapacea, Otholobium spp., Schkuhria pinnata, Taraxacum officinale. Hep3B evaluation: Fourteen extracts from 13 species (Achyrocline alata, Ambrosia arborescens, Baccharis latifolia, Hypericum laricifolium, Krameria lappacea, Niphidium crassifolium, Ophryosporus chilca, Orthrosanthus chimboracensis, Otholobium pubescens, Passiflora ligularis, Perezia coerulescens, Perezia multiflora and Schkuhria pinnata) showed a significant antiproliferative activity against Hep3B cells (IC50≤ 50µg/mL). This was associated with a lack of toxicity on primary

  3. In vitro Evaluation of Antimitotic, Antiproliferative, DNA fragmentation and Anticancer activity of Chloroform and Ethanol extracts of Revia hypocrateriformis

    Directory of Open Access Journals (Sweden)

    Saboo Shweta S

    2012-05-01

    Full Text Available Objective: The plant Rivea hypocrateriformis (RH has numerous therapeutic utility in folk medicine having antidiabetic, antidepressant, analgesic as well as pregnancy irruption and anticancer properties. This led us to carry out the evaluation of plant for antimitotic, antiproliferative and cytotoxicity studies. Materials and Method: The dried aerial parts of RH were successively extracted with petroleum ether, chloroform, ethanol and water. All extracts are subjected to in vitro Antimitotic and Antiproliferative assay by Allium cepa root inhibition and yeast model. The successive chloroform, SCH and ethanol extract, SEE was subjected to in vitro anticancer activity by SRB assay MCF-7, HOP-62, MOLT-4, HCT-15 and PRO cell lines. Results: The SCH and SEE shows significant antimitotic and antiproliferative activity. The mitotic index was found to be 12.14 and 14.24 mg/mL respectively, which was near to standard, Methothrexate 11.39. The IC50 value of antiproliferative assay was found to be 47.88 to 27.12 mg/mL for SCH and SEE respectively. Conclusions: Based on these results, it is concluded that RH may be the good candidate for the treatment of cancer as SCH and SEE are cytotoxic against various cell line in SRB assay.

  4. In vitro anti-proliferative and anti-inflammatory activity of leaf and fruit extracts from Vaccinium bracteatum Thunb

    OpenAIRE

    Landa, P. (Přemysl); Skálová, L.; Boušová, I.; Kutil, Z. (Zsófia); Langhansová, L. (Lenka); Lou, J.D.; Vaněk, T. (Tomáš)

    2014-01-01

    The aim of this study was to evaluate in vitro anti-proliferative (tested on MCF-7, MDA-MB-231, and MCF-10A cell lines) and anti-inflammatory (evaluated as inhibition of prostaglandin E2 synthesis catalyzed by cyclooxygenase-2) effect of various extracts from Vaccinium bracteatum leaves and fruits. The highest anti-proliferative effect possessed leaf dichloromethane extract with IC50 values ranging from 93 to 198 mug/mL. In the case of cyclooxygenase-2 inhibition, n-hexane, dichloromethane, a...

  5. Metabolism modifications and apoptosis induction after Cellfood™ administration to leukemia cell lines.

    Science.gov (United States)

    Catalani, Simona; Carbonaro, Valentina; Palma, Francesco; Arshakyan, Marselina; Galati, Rossella; Nuvoli, Barbara; Battistelli, Serafina; Canestrari, Franco; Benedetti, Serena

    2013-09-09

    Cellfood™ (CF) is a nutritional supplement containing deuterium sulphate, minerals, amino acids, and enzymes, with well documented antioxidant properties. Its organic and inorganic components are extracted from the red algae Lithothamnion calcareum, whose mineral extract has shown growth-inhibitory effect both on in vitro and in vivo models. The purpose of this study was to evaluate the antiproliferative effects of CF on leukemic cells. In fact, according to its capacity to modulate O2 availability and to improve mitochondrial respiratory metabolism, we wondered if CF could affect cancer cell metabolism making cells susceptible to apoptosis. Three leukemic cell lines, Jurkat, U937, and K562, were treated with CF 5 μl/ml up to 72 hours. Cell viability, apoptosis (i.e. caspase-3 activity and DNA fragmentation), hypoxia inducible factor 1 alpha (HIF-1α) concentration, glucose transporter 1 (GLUT-1) expression, lactate dehydrogenase (LDH) activity and lactate release in the culture medium were detected and compared with untreated cells. CF significantly inhibited leukemic cell viability by promoting cell apoptosis, as revealed by caspase-3 activation and DNA laddering. In particular, CF treated cells showed lower HIF-1α levels and lower GLUT-1 expression as compared to untreated cells. At the same time, CF was able to reduce LDH activity and, consequently, the amount of lactate released in the extracellular environment. We supplied evidence for an antiproliferative effect of CF on leukemia cell lines by inducing cell death through an apoptotic mechanism and by altering cancer cell metabolism through HIF-1α and GLUT-1 regulation. Thanks to its antioxidative and proapoptotic properties, CF might be a good candidate for cancer prevention.

  6. Maslinic acid inhibits proliferation of renal cell carcinoma cell lines and suppresses angiogenesis of endothelial cells

    Directory of Open Access Journals (Sweden)

    Parth Thakor

    2017-03-01

    Full Text Available Despite the introduction of many novel therapeutics in clinical practice, metastatic renal cell carcinoma (RCC remains a treatment-re-sistant cancer. As red and processed meat are considered risk factors for RCC, and a vegetable-rich diet is thought to reduce this risk, research into plant-based therapeutics may provide valuable complementary or alternative therapeutics for the management of RCC. Herein, we present the antiproliferative and antiangiogenic effects of maslinic acid, which occurs naturally in edible plants, particularly in olive fruits, and also in a variety of medicinal plants. Human RCC cell lines (ACHN, Caki-1, and SN12K1, endothelial cells (human umbilical vein endothelial cell line [HUVEC], and primary cultures of kidney proximal tubular epithelial cells (PTEC were treated with maslinic acid. Maslinic acid was relatively less toxic to PTEC when compared with RCC under similar experimental conditions. In RCC cell lines, maslinic acid induced a significant reduction in proliferation, proliferating cell nuclear antigen, and colony formation. In HUVEC, maslinic acid induced a significant reduction in capillary tube formation in vitro and vascular endothelial growth factor. This study provides a rationale for incorporating a maslinic acid–rich diet either to reduce the risk of developing kidney cancer or as an adjunct to existing antiangiogenic therapy to improve efficacy.

  7. Melipona mondury produces a geopropolis with antioxidant, antibacterial and antiproliferative activities.

    Science.gov (United States)

    Santos, Tássia L A Dos; Queiroz, Raphael F; Sawaya, Alexandra C H F; Lopez, Begoña Gimenez-Cassina; Soares, Milena B P; Bezerra, Daniel P; Rodrigues, Ana Carolina B C; Paula, Vanderlúcia F DE; Waldschmidt, Ana Maria

    2017-01-01

    Geopropolis is a special type of propolis produced by stingless bees. Several pharmacological properties have been described for different types of geopropolis, but there have been no previous studies of the geopropolis from Melipona mondury. In this study, we investigated the antioxidant, antibacterial, and antiproliferative activities of M. mondury geopropolis, and determined its chemical profile. The antioxidant activity was determined using in vitro ABTS·+, ·DPPH, and β-carotene/linoleic acid co-oxidation methods. The antibacterial activity was determined using a microdilution method with Pseudomonas aeruginosa, Staphylococcus aureus, and methicillin-resistant S. aureus. The antiproliferative effect was determined in tumor cell lines using the Alamar Blue assay. The chemical profile was obtained using UHPLC-MS and UHPLC-MS/MS. The butanolic fraction had the highest concentration of phenolic compounds and more potent antioxidant properties in all assays. This fraction also had bacteriostatic and bactericidal effects against all bacterial strains at low concentrations, especially S. aureus. The hexane fraction had the highest antiproliferative potential, with IC50 values ranging from 24.2 to 46.6 µg/mL in HL-60 (human promyelocytic leukemia cell) and K562 (human chronic myelocytic leukemia cell), respectively. Preliminary chemical analysis indicates the presence of terpenes and gallic acid in the geopropolis. Our results indicate the therapeutic potential of geopropolis from M. mondury against inflammatory, oxidative, infectious, and neoplastic diseases.

  8. Melipona mondury produces a geopropolis with antioxidant, antibacterial and antiproliferative activities

    Directory of Open Access Journals (Sweden)

    TÁSSIA L.A. DOS SANTOS

    Full Text Available ABSTRACT Geopropolis is a special type of propolis produced by stingless bees. Several pharmacological properties have been described for different types of geopropolis, but there have been no previous studies of the geopropolis from Melipona mondury. In this study, we investigated the antioxidant, antibacterial, and antiproliferative activities of M. mondury geopropolis, and determined its chemical profile. The antioxidant activity was determined using in vitro ABTS·+, ·DPPH, and β-carotene/linoleic acid co-oxidation methods. The antibacterial activity was determined using a microdilution method with Pseudomonas aeruginosa, Staphylococcus aureus, and methicillin-resistant S. aureus. The antiproliferative effect was determined in tumor cell lines using the Alamar Blue assay. The chemical profile was obtained using UHPLC-MS and UHPLC-MS/MS. The butanolic fraction had the highest concentration of phenolic compounds and more potent antioxidant properties in all assays. This fraction also had bacteriostatic and bactericidal effects against all bacterial strains at low concentrations, especially S. aureus. The hexane fraction had the highest antiproliferative potential, with IC50 values ranging from 24.2 to 46.6 µg/mL in HL-60 (human promyelocytic leukemia cell and K562 (human chronic myelocytic leukemia cell, respectively. Preliminary chemical analysis indicates the presence of terpenes and gallic acid in the geopropolis. Our results indicate the therapeutic potential of geopropolis from M. mondury against inflammatory, oxidative, infectious, and neoplastic diseases.

  9. GTP depletion synergizes the anti-proliferative activity of chemotherapeutic agents in a cell type-dependent manner

    International Nuclear Information System (INIS)

    Lin, Tao; Meng, Lingjun; Tsai, Robert Y.L.

    2011-01-01

    Highlights: → Strong synergy between mycophenolic acid (MPA) and 5-FU in MDA-MB-231 cells. → Cell type-dependent synergy between MPA and anti-proliferative agents. → The synergy of MPA on 5-FU is recapitulated by RNA polymerase-I inhibition. → The synergy of MPA on 5-FU requires the expression of nucleostemin. -- Abstract: Mycophenolic acid (MPA) depletes intracellular GTP by blocking de novo guanine nucleotide synthesis. GTP is used ubiquitously for DNA/RNA synthesis and as a signaling molecule. Here, we made a surprising discovery that the anti-proliferative activity of MPA acts synergistically with specific chemotherapeutic agents in a cell type-dependent manner. In MDA-MB-231 cells, MPA shows an extremely potent synergy with 5-FU but not with doxorubicin or etoposide. The synergy between 5-FU and MPA works most effectively against the highly tumorigenic mammary tumor cells compared to the less tumorigenic ones, and does not work in the non-breast cancer cell types that we tested, with the exception of PC3 cells. On the contrary, MPA shows the highest synergy with paclitaxel but not with 5-FU in SCC-25 cells, derived from oral squamous cell carcinomas. Mechanistically, the synergistic effect of MPA on 5-FU in MDA-MB-231 cells can be recapitulated by inhibiting the RNA polymerase-I activity and requires the expression of nucleostemin. This work reveals that the synergy between MPA and anti-proliferative agents is determined by cell type-dependent factors.

  10. Antiproliferative activity and interactions with cell-cycle related proteins of the organotin compound triethyltin(IV)lupinylsulfide hydrochloride.

    Science.gov (United States)

    Barbieri, F; Sparatore, F; Cagnoli, M; Bruzzo, C; Novelli, F; Alama, A

    2001-03-14

    Organotin compounds, particularly tri-organotin, have demonstrated cytotoxic properties against a number of tumor cell lines. On this basis, triethyltin(IV)lupinylsulfide hydrochloride (IST-FS 29), a quinolizidine derivative, was synthesized and developed as a potential antitumor agent. This tin-derived compound exhibited potent antiproliferative effects on three different human cancer cell lines: teratocarcinoma of the ovary (PA-1), colon carcinoma (HCT-8) and glioblastoma (A-172). Cytotoxic activity was assessed by MTT and cell count assays during time course experiments with cell recovery after compound withdrawal. Significant cell growth inhibition (up to 95% in HCT-8 after 72 h of exposure), which also persisted after drug-free medium change, was reported in all the cell lines by both assays. In addition, the cytocidal effects exerted by IST-FS 29 appeared more consistent with necrosis or delayed cell death, rather than apoptosis, as shown by morphologic observations under light microscope, DNA fragmentation analysis and flow cytometry. In the attempt to elucidate whether this compound might affect genes playing a role in G1/S phase transition, the expressions of p53, p21(WAF1), cyclin D1 and Rb, mainly involved in response to DNA-damaging stress, were analyzed by Western blot. Heterogeneous patterns of expression during exposure to IST-FS 29 were evidenced in the different cell lines suggesting that these cell-cycle-related genes are not likely the primary targets of this compound. Thus, the present data seem more indicative of a direct effect of IST-FS-29 on macromolecular synthesis and cellular homeostasis, as previously hypothesized for other organotin complexes.

  11. Chemical Constituents from Cimicifuga dahurica and Their Anti-Proliferative Effects on MCF-7 Breast Cancer Cells.

    Science.gov (United States)

    Huyen, Chu Thi Thanh; Luyen, Bui Thi Thuy; Khan, Ghulam Jilany; Oanh, Ha Van; Hung, Ta Manh; Li, Hui-Jun; Li, Ping

    2018-05-04

    This study was designed to search for novel anti-cancer compounds from natural plants. The 70% ethanolic extract from the rizhomes of Cimicifuga dahurica (Turcz.) Maxim. (Ranunculaceae) was found to possess significant in vitro anti-proliferative effects on MCF-7 breast cancer cells. A phytochemical investigation using assay-guided fractionation of the ethanolic extract of C. dahurica resulted in the isolation of one new phenolic amide glycoside 3 , two new lignan glycosides 4 and 7 , one new 9,19-cycloartane triterpenoid glycoside 6 , and thirteen known constituents 1 , 2 , 5 , and 8 ⁻ 17 . The structures of 3 , 4 , 6 , and 7 were established using contemporary NMR methods and from their HRESIMS data. The anti-proliferative effects of isolated compounds were evaluated using the BrdU-proliferation kit. Five among the 17 isolated compounds showed significant anti-proliferative effects ( p ≤ 0.05), wherein compound 7 showed the most significant anti-proliferative and cell cycle arresting effect ( p ≤ 0.05) which followed a dose dependent manner. Western blot protein expression analysis showed a down expression of c-Myc and cyclin D1 which further elucidated the anti-proliferation mechanism of compound 7 while apoptotic effects were found in association with Bcl-2 family protein expression variations. Conclusively this study reports the isolation and identification of 17 compounds from C. dahurica , including four novel molecules, in addition to the fact that compound 7 possesses significant anti-proliferative and apoptotic effects in vitro that may require further exploration.

  12. In vitro biological screening of the anticholinesterase and antiproliferative activities of medicinal plants belonging to Annonaceae

    International Nuclear Information System (INIS)

    Formagio, A.S.N.; Vieira, M.C.; Volobuff, C.R.F.; Silva, M.S.; Matos, A.I.; Cardoso, C.A.L.; Foglio, M.A.; Carvalho, J.E.

    2015-01-01

    The aim of this research was to investigate the antiproliferative and anticholinesterase activities of 11 extracts from 5 Annonaceae species in vitro. Antiproliferative activity was assessed using 10 human cancer cell lines. Thin-layer chromatography and a microplate assay were used to screen the extracts for acetylcholinesterase (AchE) inhibitors using Ellman's reagent. The chemical compositions of the active extracts were investigated using high performance liquid chromatography. Eleven extracts obtained from five Annonaceae plant species were active and were particularly effective against the UA251, NCI-470 lung, HT-29, NCI/ADR, and K-562 cell lines with growth inhibition (GI 50 ) values of 0.04-0.06, 0.02-0.50, 0.01-0.12, 0.10-0.27, and 0.02-0.04 µg/mL, respectively. In addition, the Annona crassiflora and A. coriacea seed extracts were the most active among the tested extracts and the most effective against the tumor cell lines, with GI 50 values below 8.90 µg/mL. The A. cacans extract displayed the lowest activity. Based on the microplate assay, the percent AchE inhibition of the extracts ranged from 12 to 52%, and the A. coriacea seed extract resulted in the greatest inhibition (52%). Caffeic acid, sinapic acid, and rutin were present at higher concentrations in the A. crassiflora seed samples. The A. coriacea seeds contained ferulic and sinapic acid. Overall, the results indicated that A. crassiflora and A. coriacea extracts have antiproliferative and anticholinesterase properties, which opens up new possibilities for alternative pharmacotherapy drugs

  13. In vitro biological screening of the anticholinesterase and antiproliferative activities of medicinal plants belonging to Annonaceae

    Energy Technology Data Exchange (ETDEWEB)

    Formagio, A.S.N.; Vieira, M.C. [Faculdade de Ciências Agrárias, Universidade Federal da Grande Dourados, Dourados, MS (Brazil); Volobuff, C.R.F.; Silva, M.S. [Faculdade de Ciências Biológicas e Ambientais, Universidade Federal da Grande Dourados, Dourados, MS (Brazil); Matos, A.I. [Faculdade de Ciências, Universidade de Lisboa, Lisboa (Portugal); Cardoso, C.A.L. [Curso de Química, Universidade Estadual do Mato Grosso do Sul, Dourados, MS (Brazil); Foglio, M.A.; Carvalho, J.E. [Centro Pluridisciplinar de Pesquisas Químicas, Biológicas e Agrícolas, Universidade Estadual de Campinas, Campinas, SP (Brazil)

    2015-02-13

    The aim of this research was to investigate the antiproliferative and anticholinesterase activities of 11 extracts from 5 Annonaceae species in vitro. Antiproliferative activity was assessed using 10 human cancer cell lines. Thin-layer chromatography and a microplate assay were used to screen the extracts for acetylcholinesterase (AchE) inhibitors using Ellman's reagent. The chemical compositions of the active extracts were investigated using high performance liquid chromatography. Eleven extracts obtained from five Annonaceae plant species were active and were particularly effective against the UA251, NCI-470 lung, HT-29, NCI/ADR, and K-562 cell lines with growth inhibition (GI{sub 50}) values of 0.04-0.06, 0.02-0.50, 0.01-0.12, 0.10-0.27, and 0.02-0.04 µg/mL, respectively. In addition, the Annona crassiflora and A. coriacea seed extracts were the most active among the tested extracts and the most effective against the tumor cell lines, with GI{sub 50} values below 8.90 µg/mL. The A. cacans extract displayed the lowest activity. Based on the microplate assay, the percent AchE inhibition of the extracts ranged from 12 to 52%, and the A. coriacea seed extract resulted in the greatest inhibition (52%). Caffeic acid, sinapic acid, and rutin were present at higher concentrations in the A. crassiflora seed samples. The A. coriacea seeds contained ferulic and sinapic acid. Overall, the results indicated that A. crassiflora and A. coriacea extracts have antiproliferative and anticholinesterase properties, which opens up new possibilities for alternative pharmacotherapy drugs.

  14. Isoprenoid-phospholipid conjugates as potential therapeutic agents: Synthesis, characterization and antiproliferative studies.

    Directory of Open Access Journals (Sweden)

    Anna Gliszczyńska

    Full Text Available The aim of this research was to extend application field of isoprenoid compounds by their introduction into phospholipid structure as the transport vehicle. The series of novel isoprenoid phospholipids were synthesized in high yields (24-97%, their structures were fully characterized and its anticancer activity was investigated in vitro towards several cell lines of different origin. Most of synthesized compounds showed a significantly higher antiproliferative effect on tested cell lines than free terpene acids. The most active phosphatidylcholine analogue, containing 2,3-dihydro-3-vinylfarnesoic acids instead of fatty acids in both sn-1 and sn-2 position, inhibits the proliferation of colon cancer cells at 13.6 μM.

  15. Novel derivatives of 6-mercaptopurine: synthesis, characterization and antiproliferative activities of S-allylthio-mercaptopurines.

    Science.gov (United States)

    Miron, T; Arditti, F; Konstantinovski, L; Rabinkov, A; Mirelman, D; Berrebi, A; Wilchek, M

    2009-02-01

    Biologically active S-allylthio derivatives of 6-mercaptopurine (6-MP) and 6-mercaptopurine riboside (6-MPR) were synthesized. The products, S-allylthio-6-mercaptopurine (SA-6MP) and S-allylthio-6-mercaptopurine riboside (SA-6MPR) were characterized. The antiproliferative activity of the new prodrugs was tested on human leukemia and monolayer cell lines, and compared to that of their parent reactants. The new prodrugs acted by a concentration-dependent mechanism. They inhibited cell proliferation and induced-apoptosis more efficiently than the parent molecules. Leukemia cell lines were more sensitive to the new prodrugs than monolayer cell lines. Higher hydrophobicity of the derivatives improves their penetration into cells, where upon reaction with glutathione, S-allylthioglutathione (GSSA) is formed, and 6-MP or 6-MPR is released for further processing.

  16. Comparative Study of Green Sub- and Supercritical Processes to Obtain Carnosic Acid and Carnosol-Enriched Rosemary Extracts with in Vitro Anti-Proliferative Activity on Colon Cancer Cells

    Directory of Open Access Journals (Sweden)

    Andrea del Pilar Sánchez-Camargo

    2016-12-01

    Full Text Available In the present work, four green processes have been compared to evaluate their potential to obtain rosemary extracts with in vitro anti-proliferative activity against two colon cancer cell lines (HT-29 and HCT116. The processes, carried out under optimal conditions, were: (1 pressurized liquid extraction (PLE, using an hydroalcoholic mixture as solvent at lab-scale; (2 Single-step supercritical fluid extraction (SFE at pilot scale; (3 Intensified two-step sequential SFE at pilot scale; (4 Integrated PLE plus supercritical antisolvent fractionation (SAF at pilot scale. Although higher extraction yields were achieved by using PLE (38.46% dry weight, this extract provided the lowest anti-proliferative activity with no observed cytotoxic effects at the assayed concentrations. On the other hand, extracts obtained using the PLE + SAF process provided the most active rosemary extracts against both colon cancer cell lines, with LC50 ranging from 11.2 to 12.4 µg/mL and from 21.8 to 31.9 µg/mL for HCT116 and HT-29, respectively. In general, active rosemary extracts were characterized by containing carnosic acid (CA and carnosol (CS at concentrations above 263.7 and 33.9 mg/g extract, respectively. Some distinct compounds have been identified in the SAF extracts (rosmaridiphenol and safficinolide, suggesting their possible role as additional contributors to the observed strong anti-proliferative activity of CA and CS in SAF extracts.

  17. Carbon source and myc expression influence the antiproliferative actions of metformin.

    Science.gov (United States)

    Javeshghani, Shiva; Zakikhani, Mahvash; Austin, Shane; Bazile, Miguel; Blouin, Marie-José; Topisirovic, Ivan; St-Pierre, Julie; Pollak, Michael N

    2012-12-01

    Epidemiologic and experimental data have led to increased interest in possible roles of biguanides in cancer prevention and/or treatment. Prior studies suggest that the primary action of metformin is inhibition of oxidative phosphorylation, resulting in reduced mitochondrial ATP production and activation of AMPK. In vitro, this may lead to AMPK-dependent growth inhibition if AMPK and its effector pathways are intact or to an energetic crisis if these are defective. We now show that the effect of exposure of several transformed cell lines to metformin varies with carbon source: in the presence of glutamine and absence of glucose, a 75% decrease in cellular ATP and an 80% decrease in cell number is typical; in contrast, when glucose is present, metformin exposure leads to increased glycolysis, with only a modest reduction in ATP level and cell number. Overexpression of myc was associated with sensitization to the antiproliferative effects of metformin, consistent with myc involvement in "glutamine addiction". Our results reveal previously unrecognized factors that influence metformin sensitivity and suggest that metformin-induced increase in glycolysis attenuates the antiproliferative effects of the compound.

  18. Daphne striata Tratt. and D. mezereum L.: a study of anti-proliferative activity towards human cancer cells and antioxidant properties.

    Science.gov (United States)

    Tundis, Rosa; Loizzo, Monica R; Bonesi, Marco; Peruzzi, Lorenzo; Efferth, Thomas

    2018-02-12

    In this study, we investigated for the first time the anti-proliferative and antioxidant properties of D. mezereum and D. striata. The aerial parts were extracted by maceration with n-hexane, dichloromethane, and methanol. MPLC, GC, and GC-MS were used for the phytochemical study. The anti-proliferative activity was tested against MCF-7, A549, LNCaP, ACHN, and C32 cancer human cells. The antioxidant activity was measured by employing β-carotene bleaching, ABTS, DPPH, and FRAP tests. The Relative Antioxidant Capacity Index (RACI) was applied from the perspective of statistics. D. mezereum dichloromethane extract showed a remarkable anti-proliferative with an IC 50 of 6.08 μg/mL against LNCaP cells. Experimental data indicate that Daphne species have interesting anti-proliferative and antioxidant properties that deserve more investigations to develop novel antineoplastic drugs.

  19. Antioxidant and apoptotic effects of an aqueous extract of Urtica dioica on the MCF-7 human breast cancer cell line.

    Science.gov (United States)

    Fattahi, Sadegh; Ardekani, Ali Motevalizadeh; Zabihi, Ebrahim; Abedian, Zeinab; Mostafazadeh, Amrollah; Pourbagher, Roghayeh; Akhavan-Niaki, Haleh

    2013-01-01

    Breast cancer is the most prevalent cancer and one of the leading causes of death among women in the world. Plants and herbs may play an important role in complementary or alternative treatment. The aim of this study was to evaluate the antioxidant and anti-proliferative potential of Urtica dioica. The anti oxidant activity of an aqueous extract of Urtica dioica leaf was measured by MTT assay and the FRAP method while its anti-proliferative activity on the human breast cancer cell line (MCF-7) and fibroblasts isolated from foreskin tissue was evaluated using MTT assay. Mechanisms leading to apoptosis were also investigated at the molecular level by measuring the amount of anti and pro-apoptotic proteins and at the cellular level by studying DNA fragmentation and annexin V staining by flow cytometry. The aqueous extract of Urtica dioica showed antioxidant effects with a correlation coefficient of r(2)=0.997. Dose-dependent and anti-proliferative effects of the extract were observed only on MCF-7 cells after 72 hrs with an IC50 value of 2 mg/ml. This anti proliferative activity was associated with an increase of apoptosis as demonstrated by DNA fragmentation, the appearance of apoptotic cells in flow cytometry analysis and an increase of the amount of calpain 1, calpastatin, caspase 3, caspase 9, Bax and Bcl-2, all proteins involved in the apoptotic pathway. This is the first time such in vitro antiproliferative effect of aqueous extract of Urtica dioica leaf has been described for a breast cancer cell line. Our findings warrant further research on Urtica dioica as a potential chemotherapeutic agent for breast cancer.

  20. Chemical Constituents from Cimicifuga dahurica and Their Anti-Proliferative Effects on MCF-7 Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Chu Thi Thanh Huyen

    2018-05-01

    Full Text Available This study was designed to search for novel anti-cancer compounds from natural plants. The 70% ethanolic extract from the rizhomes of Cimicifuga dahurica (Turcz. Maxim. (Ranunculaceae was found to possess significant in vitro anti-proliferative effects on MCF-7 breast cancer cells. A phytochemical investigation using assay-guided fractionation of the ethanolic extract of C. dahurica resulted in the isolation of one new phenolic amide glycoside 3, two new lignan glycosides 4 and 7, one new 9,19-cycloartane triterpenoid glycoside 6, and thirteen known constituents 1, 2, 5, and 8–17. The structures of 3, 4, 6, and 7 were established using contemporary NMR methods and from their HRESIMS data. The anti-proliferative effects of isolated compounds were evaluated using the BrdU-proliferation kit. Five among the 17 isolated compounds showed significant anti-proliferative effects (p ≤ 0.05, wherein compound 7 showed the most significant anti-proliferative and cell cycle arresting effect (p ≤ 0.05 which followed a dose dependent manner. Western blot protein expression analysis showed a down expression of c-Myc and cyclin D1 which further elucidated the anti-proliferation mechanism of compound 7 while apoptotic effects were found in association with Bcl-2 family protein expression variations. Conclusively this study reports the isolation and identification of 17 compounds from C. dahurica, including four novel molecules, in addition to the fact that compound 7 possesses significant anti-proliferative and apoptotic effects in vitro that may require further exploration.

  1. 3,3'-Diindolylmethane, a cruciferous vegetable derived synthetic anti-proliferative compound in thyroid disease

    International Nuclear Information System (INIS)

    Tadi, Kiranmayi; Chang Yushan; Ashok, Badithe T.; Chen, Yuangen; Moscatello, Augustine; Schaefer, Steven D.; Schantz, Stimsom P.; Policastro, Anthony J.; Geliebter, Jan; Tiwari, Raj K.

    2005-01-01

    Considerable epidemiological evidence exists to link thyroid disease with differing patterns of dietary consumption, in particular, cruciferous vegetables. We have been studying the anti-thyroid cancer (TCa) activity of indole-3-carbinol (I3C) found in cruciferous vegetables and its acid catalyzed dimer, 3,3'-diindolylmethane (DIM). There are no studies as yet to elucidate the effect of these compounds on the altered proliferative patterns in goiter or thyroid neoplasia. In this study, we tested the anti-proliferative effects of I3C and DIM on four different thyroid cancer cell lines representative of papillary (B-CPAP and 8505-C) and follicular carcinoma of the thyroid (CGTH-W-1 and ML-1), and primary human goiter cells. Cell survival and IC 50 values for I3C and DIM were calculated by the XTT assay and cell cycle distribution analysis was done by flow cytometry. DIM was found to be a better anti-proliferative agent than I3C in both papillary and follicular TCa resulting in a greater cytotoxic effect at a concentration over three fold lower than predicted by the molar ratio of DIM and I3C. The anti-proliferative activity of DIM in follicular TCa was mediated by a G1 arrest followed by induction of apoptosis. DIM also inhibited the growth of primary goiter cells by 70% compared to untreated controls. Contrary to traditional belief that cruciferous vegetables are 'goitrogenic,' DIM has anti-proliferative effects in glandular thyroid proliferative disease. Our preclinical studies provide a strong rationale for the clinical exploration of DIM as an adjuvant to surgery in thyroid proliferative disease

  2. Cytotoxic activity of kenaf (Hibiscus cannabinus L.) seed extract and oil against human cancer cell lines

    Science.gov (United States)

    Wong, Yu Hua; Tan, Wai Yan; Tan, Chin Ping; Long, Kamariah; Nyam, Kar Lin

    2014-01-01

    Objective To examine the cytotoxic properties of both the kenaf (Hibiscus cannabinus L.) seed extract and kenaf seed oil on human cervical cancer, human breast cancer, human colon cancer and human lung cancer cell lines. Methods The in vitro cytotoxic activity of the kenaf (Hibiscus cannabinus L.) seed extract and kenaf seed oil on human cancer cell lines was evaluated by using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and sulforhodamine B assays. Cell morphological changes were observed by using an inverted light microscope. Results The kenaf seed extract (KSE) exhibited a lower IC50 than kenaf seed oil (KSO) in all of the cancer cell lines. Morphological alterations in the cell lines after KSE and KSO treatment were observed. KSE and KSO possessed effective cytotoxic activities against all the cell lines been selected. Conclusions KSE and KSO could be potential sources of natural anti-cancer agents. Further investigations on using kenaf seeds for anti-proliferative properties are warranted. PMID:25183141

  3. Antiproliferative and Antioxidant Properties of Anthocyanin Rich Extracts from Blueberry and Blackcurrant Juice

    Directory of Open Access Journals (Sweden)

    Zoriţa Diaconeasa

    2015-01-01

    Full Text Available The present study was aimed at evaluating the antiproliferative potential of anthocyanin-rich fractions (ARFs obtained from two commercially available juices (blueberry and blackcurrant juices on three tumor cell lines; B16F10 (murine melanoma, A2780 (ovarian cancer and HeLa (cervical cancer. Individual anthocyanin determination, identification and quantification were done using HPLC-MS. Antioxidant activity of the juices was determined through different mechanism methods such as DPPH and ORAC. For biological testing, the juices were purified through C18 cartridges in order to obtain fractions rich in anthocyanins. The major anthocyanins identified were glycosylated cyanidin derivatives. The antiproliferative activity of the fractions was tested using the MTT assay. The antiproliferative potential of ARF was found to be associated with those bioactive molecules, anthocyanins due to their antioxidant potential. The results obtained indicated that both blueberry and blackcurrants are rich sources of antioxidants including anthocyanins and therefore these fruits are highly recommended for daily consumption to prevent numerous degenerative diseases.

  4. Radiation of different human melanoma cell lines increased expression of RHOB. Level of this tumor suppressor gene in different cell lines

    International Nuclear Information System (INIS)

    Notcovich, C.; Molinari, B.; Duran, H.; Delgado González, D.; Sánchez Crespo, R.

    2013-01-01

    Previous results of our group show that a correlation exists between intrinsic radiosensitivity of human melanoma cells and cell death by apoptosis. RhoB is a small GTPase that regulates cytoskeletal organization. Besides, is related to the process of apoptosis in cells exposed to DNA damage as radiation. Also, RhoB levels decrease in a wide variety of tumors with the tumor stage, being considered a tumor suppressor gene due to its antiproliferative and proapoptotic effect. The aim of this study was to analyze the expression of RhoB in different human melanoma cell lines in relation to melanocytes, and evaluate the effect of gamma radiation on the expression of RhoB. We used the A375, SB2 and Meljcell lines, and the derived from melanocytes Pig1. It was found for all three tumor lines RhoB expression levels significantly lower than those of Pig1 (p <0.05), as assessed by semiquantitative RT-PCR . When tumor cells were irradiated to a dose of 2Gyinduction was observed at 3 hours RhoB irradiation. RhoB expression increased in all lines relative to non-irradiated control, showing a greater induction ( p< 0.05) for the more radiosensitive line SB2, consistent with apoptosis in response to radiation. The results allow for the first time in melanoma demonstrate that RhoB, as well as in other tumor types, has a lower expression in tumor cells than their normal counterparts. Moreover, induction in the expression of RhoB in irradiated cells may be associated with the process of radiation-induced apoptosis. The modulation of RhoB could be a new tool to sensitize radioresistant melanoma. (author)

  5. Relationship Between Structure and Antiproliferative Activity of Novel 5-amino-4-cyanopyrazole-1-formaldehydehydrazono Derivatives on HL-60RG Human Leukemia Cells.

    Science.gov (United States)

    Nagahara, Yukitoshi; Nagahara, Katsuhiko

    2017-11-01

    Pyrazole derivatives have been reported to have potent antimicrobial and anticancer activity. We recently synthesized and determined the effects of analogs, benzamidoxime derivatives, on mammalian cells and discovered that benzamidoximes had an antiproliferative effect. Here we synthesized and determined the anticancer effects of hydrazonopyrazole derivatives on a mammalian cancer cell line. We synthesized 12 hydrazonopyrazole derivatives with several constant alkyl chain length or branched chains at the side chain to investigate their anticancer cell activity, using the human myelogenous leukemia cell line HL-60RG. Among all hydrazonopyrazole derivatives we synthesized, the hydrazonopyrazole derivative with a branched chain at the side chain rather than a constant alkyl chain significantly inhibited cell viability. The strongest hydrazonopyrazole derivative, 5-amino-4-cyanopyrazole-1-formaldehydehydrazono-3'-pentanal, tended to damage cells dose-dependently. This cell growth attenuation was a result of apoptosis, activating caspase-3 and fragmented DNA. Hydrazonopyrazole derivatives induced apoptosis of HL-60RG leukemia cells. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  6. Antiproliferative and Antioxidant Activities of Wild Boletales Mushrooms from France.

    Science.gov (United States)

    Morel, Sylvie; Arnould, Stéphanie; Vitou, Manon; Boudard, Frédéric; Guzman, Caroline; Poucheret, Patrick; Fons, Françoise; Rapior, Sylvie

    2018-01-01

    We selected edible and inedible mushrooms growing in the Mediterranean area of France to screen their biological activity: Caloboletus calopus, Rubroboletus lupinus, R. pulchrotinctus, R. satanas, Gyroporus castaneus, Suillus luteus, and Omphalotus olearius. Mushrooms were sequentially extracted using cyclohexane, chloroform, ethanol, and water. The antiproliferative activity against the HCT116 colon adenocarcinoma cell line and the antioxidant properties (DPPH radical scavenging assay, Folin-Ciocalteu assay, and oxygen radical absorbance capacity) of the Boletales extracts were evaluated and compared. Among the 28 mushroom extracts evaluated, 11 presented antiproliferative activity against HCT116 cells. These activities were not linked to antioxidant capacity. Among the antioxidant extracts, most were aqueous extracts in the oxygen radical absorbance capacity assay, whereas the highest values on the Folin-Ciocalteu and DPPH assays were noted for chloroform, ethanol, or aqueous extracts, depending on the mushroom species. Further studies are necessary to identify bioactive compounds and to valorize the mushrooms-for edible species, directly as health foods, or, for inedible mushrooms, as ingredients in the pharmaceutical and food industries.

  7. Rosa canina Extracts Have Antiproliferative and Antioxidant Effects on Caco-2 Human Colon Cancer.

    Directory of Open Access Journals (Sweden)

    Sandra Jiménez

    Full Text Available The in vitro antiproliferative and antioxidant effects of different fractions of Rosa canina hips on human colon cancer cell lines (Caco-2 was studied. The compounds tested were total extract (fraction 1, vitamin C (fraction 2, neutral polyphenols (fraction 3 and acidic polyphenols (fraction 4. All the extracts showed high cytotoxicity after 72 h, both low and high concentrations. The flow cytometric analysis revealed that all the fractions produce disturbances in the cell cycle resulting in a concomitant cell death by an apoptotic pathway. Changes in the redox status of Caco-2 cells in response to Rosa canina hips were determined. Cells were exposed to hydrogen peroxide in presence of plant fractions and the production of Reactive Oxygen Species (ROS was significantly decreased. Therefore, our data demonstrate that rosehip extracts are a powerful antioxidant that produces an antiproliferative effect in Caco-2 cells. Therefore, these results predict a promising future for Rosa canina as a therapeutic agent. Thus, this natural plant could be an effective component of functional foods addressed towards colorectal carcinoma.

  8. Antiproliferative activity of novel imidazopyridine derivatives on castration-resistant human prostate cancer cells.

    Science.gov (United States)

    Muniyan, Sakthivel; Chou, Yu-Wei; Ingersoll, Matthew A; Devine, Alexus; Morris, Marisha; Odero-Marah, Valerie A; Khan, Shafiq A; Chaney, William G; Bu, Xiu R; Lin, Ming-Fong

    2014-10-10

    Metastatic prostate cancer (mPCa) relapses after a short period of androgen deprivation therapy and becomes the castration-resistant prostate cancer (CR PCa); to which the treatment is limited. Hence, it is imperative to identify novel therapeutic agents towards this patient population. In the present study, antiproliferative activities of novel imidazopyridines were compared. Among three derivatives, PHE, AMD and AMN, examined, AMD showed the highest inhibitory activity on LNCaP C-81 cell proliferation, following dose- and time-dependent manner. Additionally, AMD exhibited significant antiproliferative effect against a panel of PCa cells, but not normal prostate epithelial cells. Further, when compared to AMD, its derivative DME showed higher inhibitory activities on PCa cell proliferation, clonogenic potential and in vitro tumorigenicity. The inhibitory activity was apparently in part due to the induction of apoptosis. Mechanistic studies indicate that AMD and DME treatments inhibited both AR and PI3K/Akt signaling. The results suggest that better understanding of inhibitory mechanisms of AMD and DME could help design novel therapeutic agents for improving the treatment of CR PCa. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  9. Antiproliferative and antimicrobial efficacy of the compounds isolated from the roots of Oenothera biennis L.

    Science.gov (United States)

    Singh, Shilpi; Dubey, Vijaya; Singh, Dhananjay Kumar; Fatima, Kaneez; Ahmad, Ateeque; Luqman, Suaib

    2017-09-01

    Oenothera biennis L., commonly known as evening primrose, harbours the flavonoids, steroids, tannins, fatty acids and terpenoids responsible for a diverse range of biological activity, such as antitumour, anti-arthritic and anti-inflammatory effects. In addition to the previous reports from aerial parts of this plant, studies related to antiproliferative or antimicrobial activity from the roots are warranted. To investigate antiproliferative and antimicrobial activity of compounds/mixture (1-8) isolated and characterized from the roots of O. biennis L. A possible mechanism of antiproliferative activity was also studied by targeting ornithine decarboxylase (ODC) and cathepsin D (CATD). Antiproliferative efficacy of the compounds/mixture was examined in selected cancer cell lines along with their probable mechanism of action. The antimicrobial activity was also studied against selected microbes (bacteria and fungi). Antiproliferative potential was evaluated by MTT assay against selected cell lines. The mechanism of action was studied spectrophotometrically by targeting ODC and CATD using both an in-vitro and an in-silico approach. The antimicrobial efficiency was analysed using the disc diffusion and broth dilution methods. Oenotheralanosterol B (3) and the mixture of oenotheralanosterol A and oenotheralanosterol B (4) exhibited antiproliferative activity against breast, hepatic, prostate and leukaemia cancer cell lines as well as in mouse macrophages (IC 50 8.35-49.69 μg/ml). Oenotheralanosterol B (3) and the mixture of oenotheralanosterol A and oenotheralanosterol B (4) displayed a strong molecular interaction with succinate dehydrogenase (binding energy -6.23 and -6.84 kcal/mol and Ki 27.03 and 9.6 μm, respectively). Oenotheralanosterol A (1), oenotheralanosterol B (3) and mixture of oenotheralanosterol A and oenotheralanosterol B (4) potently inhibited the ODC activity with IC 50 ranging from 4.65 ± 0.35 to 19.06 ± 4.16 μg/ml and also showed a

  10. In vitro antioxidant and antiproliferative activities of methanolic plant part extracts of Theobroma cacao.

    Science.gov (United States)

    Baharum, Zainal; Akim, Abdah Md; Taufiq-Yap, Yun Hin; Hamid, Roslida Abdul; Kasran, Rosmin

    2014-11-10

    The aims of this study were to determine the antioxidant and antiproliferative activity of the following Theobroma cacao plant part methanolic extracts: leaf, bark, husk, fermented and unfermented shell, pith, root, and cherelle. Antioxidant activity was determined using 2,2-diphenyl-2-picrylhydrazyl (DPPH), thiobarbituric acid-reactive substances (TBARS), and Folin-Ciocalteu assays; the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium (MTT) assay was used to determine antiproliferative activity. The root extract had the highest antioxidant activity; its median effective dose (EC50) was 358.3±7.0 µg/mL and total phenolic content was 22.0±1.1 g GAE/100 g extract as compared to the other methanolic plant part extracts. Only the cherelle extract demonstrated 10.4%±1.1% inhibition activity in the lipid peroxidation assay. The MTT assay revealed that the leaf extract had the highest antiproliferative activity against MCF-7 cells [median inhibitory concentration (IC50)=41.4±3.3 µg/mL]. Given the overall high IC50 for the normal liver cell line WRL-68, this study indicates that T. cacao methanolic extracts have a cytotoxic effect in cancer cells, but not in normal cells. Planned future investigations will involve the purification, identification, determination of the mechanisms of action, and molecular assay of T. cacao plant extracts.

  11. In Vitro Antioxidant and Antiproliferative Activities of Methanolic Plant Part Extracts of Theobroma cacao

    Directory of Open Access Journals (Sweden)

    Zainal Baharum

    2014-11-01

    Full Text Available The aims of this study were to determine the antioxidant and antiproliferative activity of the following Theobroma cacao plant part methanolic extracts: leaf, bark, husk, fermented and unfermented shell, pith, root, and cherelle. Antioxidant activity was determined using 2,2-diphenyl-2-picrylhydrazyl (DPPH, thiobarbituric acid-reactive substances (TBARS, and Folin-Ciocalteu assays; the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium (MTT assay was used to determine antiproliferative activity. The root extract had the highest antioxidant activity; its median effective dose (EC50 was 358.3 ± 7.0 µg/mL and total phenolic content was 22.0 ± 1.1 g GAE/100 g extract as compared to the other methanolic plant part extracts. Only the cherelle extract demonstrated 10.4% ± 1.1% inhibition activity in the lipid peroxidation assay. The MTT assay revealed that the leaf extract had the highest antiproliferative activity against MCF-7 cells [median inhibitory concentration (IC50 = 41.4 ± 3.3 µg/mL]. Given the overall high IC50 for the normal liver cell line WRL-68, this study indicates that T. cacao methanolic extracts have a cytotoxic effect in cancer cells, but not in normal cells. Planned future investigations will involve the purification, identification, determination of the mechanisms of action, and molecular assay of T. cacao plant extracts.

  12. Phytochemical properties and anti-proliferative activity of Olea europaea L. leaf extracts against pancreatic cancer cells.

    Science.gov (United States)

    Goldsmith, Chloe D; Vuong, Quan V; Sadeqzadeh, Elham; Stathopoulos, Costas E; Roach, Paul D; Scarlett, Christopher J

    2015-07-17

    Olea europaea L. leaves are an agricultural waste product with a high concentration of phenolic compounds; especially oleuropein. Oleuropein has been shown to exhibit anti-proliferative activity against a number of cancer types. However, they have not been tested against pancreatic cancer, the fifth leading cause of cancer related death in Western countries. Therefore, water, 50% ethanol and 50% methanol extracts of Corregiola and Frantoio variety Olea europaea L. leaves were investigated for their total phenolic compounds, total flavonoids and oleuropein content, antioxidant capacity and anti-proliferative activity against MiaPaCa-2 pancreatic cancer cells. The extracts only had slight differences in their phytochemical properties, and at 100 and 200 μg/mL, all decreased the viability of the pancreatic cancer cells relative to controls. At 50 μg/mL, the water extract from the Corregiola leaves exhibited the highest anti-proliferative activity with the effect possibly due to early eluting HPLC peaks. For this reason, olive leaf extracts warrant further investigation into their potential anti-pancreatic cancer benefits.

  13. Antiproliferative activity of aqueous leaf extract of Annona muricata L. on the prostate, BPH-1 cells, and some target genes.

    Science.gov (United States)

    Asare, George Awuku; Afriyie, Dan; Ngala, Robert A; Abutiate, Harry; Doku, Derek; Mahmood, Seidu A; Rahman, Habibur

    2015-01-01

    Annona muricata L. has been reported to possess antitumor and antiproliferative properties. Not much work has been done on its effect on BPH-1 cell lines, and no in vivo studies targeting the prostate organ exist. The study determined the effect of A muricata on human BPH-1 cells and prostate organ. The MTT assay was performed on BPH-1 cells using the aqueous leaf extract of A muricata. Cells (1 × 10(5) per well) were challenged with 0.5, 1.0, and 1.5 mg/mL extract for 24, 48, and 72 hours. Cell proliferation and morphology were examined microscopically. BPH-1 cells (1 × 10(4) per well) were seeded into 6-well plates and incubated for 48 hours with 0.5, 1.0, and 1.5 mg/mL A muricata extract. Reverse transcriptase polymerase chain reaction was performed using mRNA extracted from the cells. Possible target genes, Bax and Bcl-2, were examined. Twenty F344 male rats (≈200 g) were gavaged 30 mg/mL (10 rats) and 300 mg/mL (10 rats) and fed ad libitum alongside 10 control rats. Rats were sacrificed after 60 days. The prostate, seminal vesicles, and testes were harvested for histological examination. Annona muricata demonstrated antiproliferative effects with an IC50 of 1.36 mg/mL. Best results were obtained after 48 hours, with near cell extinction at 72 hours. Bax gene was upregulated, while Bcl-2 was downregulated. Normal histological architecture was observed for all testes. Seminal vesicle was significantly reduced in test groups (P BPH-1 cells and reduces prostate size, possibly through apoptosis. © The Author(s) 2014.

  14. DNA Mismatch Binding and Antiproliferative Activity of Rhodium Metalloinsertors

    Science.gov (United States)

    Ernst, Russell J.; Song, Hang; Barton, Jacqueline K.

    2009-01-01

    Deficiencies in mismatch repair (MMR) are associated with carcinogenesis. Rhodium metalloinsertors bind to DNA base mismatches with high specificity and inhibit cellular proliferation preferentially in MMR-deficient cells versus MMR-proficient cells. A family of chrysenequinone diimine complexes of rhodium with varying ancillary ligands that serve as DNA metalloinsertors has been synthesized, and both DNA mismatch binding affinities and antiproliferative activities against the human colorectal carcinoma cell lines HCT116N and HCT116O, an isogenic model system for MMR deficiency, have been determined. DNA photocleavage experiments reveal that all complexes bind to the mismatch sites with high specificities; DNA binding affinities to oligonucleotides containing single base CA and CC mismatches, obtained through photocleavage titration or competition, vary from 104 to 108 M−1 for the series of complexes. Significantly, binding affinities are found to be inversely related to ancillary ligand size and directly related to differential inhibition of the HCT116 cell lines. The observed trend in binding affinity is consistent with the metalloinsertion mode where the complex binds from the minor groove with ejection of mismatched base pairs. The correlation between binding affinity and targeting of the MMR-deficient cell line suggests that rhodium metalloinsertors exert their selective biological effects on MMR-deficient cells through mismatch binding in vivo. PMID:19175313

  15. Antiproliferative and Apoptosis Induction Potential of the Methanolic Leaf Extract of Holarrhena floribunda (G. Don

    Directory of Open Access Journals (Sweden)

    J. A. Badmus

    2015-01-01

    Full Text Available Natural plant products with potent growth inhibition and apoptosis induction properties are extensively being investigated for their cancer chemopreventive potential. Holarrhena floribunda (HF is used in a wide range of traditional medicine practices. The present study investigated the antiproliferative and apoptosis induction potential of methanolic leaf extracts of HF against breast (MCF-7, colorectal (HT-29, and cervical (HeLa cancer cells relative to normal KMST-6 fibroblasts. The MTT assay in conjunction with the trypan blue dye exclusion and clonogenic assays were used to determine the effects of the extracts on the cells. Caspase activities were assayed with Caspase-Glo 3/7 and Caspase-9 kits. Apoptosis induction was monitored by flow cytometry using the APOPercentage and Annexin V-FITC kits. Reactive oxygen species (ROS was measured using the fluorogenic molecular probe 5-(and-6-chloromethyl-2′,7′-dichlorofluorescein diacetate acetyl ester and cell cycle arrest was detected with propidium iodide. Dose-response analyses of the extract showed greater sensitivity in cancer cell lines than in fibroblast controls. Induction of apoptosis, ROS, and cell cycle arrest were time- and dose-dependent for the cancer cell lines studied. These findings provide a basis for further studies on the isolation, characterization, and mechanistic evaluation of the bioactive compounds responsible for the antiproliferative activity of the plant extract.

  16. Synthesis, characterization, and assessment of cytotoxic, antiproliferative, and antiangiogenic effects of a novel procainamide hydrochloride-poly(maleic anhydride-co-styrene) conjugate.

    Science.gov (United States)

    Karakus, Gulderen; Akin Polat, Zubeyde; Sahin Yaglıoglu, Ayse; Karahan, Mesut; Yenidunya, Ali Fazil

    2013-01-01

    Poly(maleic anhydride-co-styrene) (MAST) was synthesized by a free-radical polymerization reaction. A bioactive molecule, procainamide hydrochloride (PH), was then conjugated to MAST. The conjugation product was named as MAST/PH. Structural characterization of MAST and MAST/PH was carried out by Fourier Transform Infrared and Nuclear Magnetic Resonance spectroscopy. Their molecular weights were determined by size-exclusion chromatography. A mechanism was then suggested for the conjugation reaction. The results of the cytotoxicity assay, employing a mouse fibroblast cell line (L929), indicated that MAST/PH had no cytotoxicity at concentrations [Formula: see text] 62 μg mL(-1) (p > 0.05). Antiproliferative activities of MAST/PH and PH were determined by the BrdU cell proliferation ELISA assay, using C6 and HeLa cell lines. In the experiment, two anticancer chemotherapy drugs, cisplatin and 5-fluorouracil, were included as positive control. Antiproliferative activity results demonstrated that MAST/PH yielded the highest suppression profile (approximately 42%) at 20 μg/ml, while free PH exerted the same activity at 100 μg/ml. Interestingly, both MAST/PH and PH suppressed the proliferation of only one of the cell lines, C6 cells. Both cisplatin and 5-fluorouracil yielded approximately 60% antiproliferative activity on C6 cells at 20 and 100 μg/ml concentrations. Antiangiogenic capacity of both MAST and MAST/PH was also investigated by using the chicken chorioallantoic membrane assay. Results obtained indicated that while MAST/PH could be included into the category of good antiangiogenic substances, the activity score of MAST was within the weak category.

  17. Synthesis and Antiproliferative Activity of Minor Hops Prenylflavonoids and New Insights on Prenyl Group Cyclization

    Directory of Open Access Journals (Sweden)

    Jarosław Popłoński

    2018-03-01

    Full Text Available Synthesis of minor prenylflavonoids found in hops and their non-natural derivatives were performed. The antiproliferative activity of the obtained compounds against some human cancer cell lines was investigated. Using xanthohumol isolated from spent hops as a lead compound, a series of minor hop prenylflavonoids and synthetic derivatives were obtained by isomerization, cyclisation, oxidative-cyclisation, oxidation, reduction and demethylation reactions. Three human cancer cell lines—breast (MCF-7, prostate (PC-3 and colon (HT-29—were used in antiproliferative assays, with cisplatin as a control compound. Five minor hop prenyl flavonoids and nine non-natural derivatives of xanthohumol have been synthetized. Syntheses of xanthohumol K, its dihydro- and tetrahydro-derivatives and 1″,2″,α,β-tetrahydroxanthohumol C were described for the first time. All of the minor hops prenyl flavonoids exhibited strong to moderate antiproliferative activity in vitro. The minor hops flavonoids xanthohumol C and 1″,2″-dihydroxanthohumol K and non-natural 2,3-dehydroisoxanthohumol exhibited the activity comparable to cisplatin. Results described in the article suggest that flavonoids containing chromane- and chromene-like moieties, especially chalcones, are potent antiproliferative agents. The developed new efficient, regioselective cyclisation reaction of the xanthohumol prenyl group to 1″,2″-dihydroxantohumol K may be used in the synthesis of other compounds with the chromane moiety.

  18. Synthesis and Biological Evaluation of Apigenin Derivatives as Antibacterial and Antiproliferative Agents

    Directory of Open Access Journals (Sweden)

    Jinyi Wang

    2013-09-01

    Full Text Available Two series of apigenin [5,7-dihydroxy-2-(4-hydroxyphenyl-4H-chromen-4-one] derivatives, 3a–3j and 4a–4j, were synthesized. The apigenin and alkyl amines moieties of these compounds were separated by C2 or C3 spacers, respectively. The chemical structures of the apigenin derivatives were confirmed using 1H-NMR, 13C-NMR, and electrospray ionization mass spectroscopy. The in vitro antibacterial and antiproliferative activities of all synthesized compounds were determined. Among the tested compounds, 4a–4j displayed significant antibacterial activity against the tested strains (Staphylococcus aureus, Bacillus subtilis, Escherichia coli, and Pseudomonas aeruginosa. Additionally, 4i showed the best inhibitory activity with minimum inhibitory concentrations of 1.95, 3.91, 3.91, and 3.91 μg/mL against S. aureus, B. subtilis, E. coli, and P. aeruginosa, respectively. The antiproliferative activity of the apigenin derivatives was evaluated by an MTT [3-(4,5-dimethylthiazol-2-yl-2,5-diphenyl tetrazolium bromide] assay. We determined that 4a–4j displayed better growth inhibition activity against four human cancer cell lines, namely, human lung (A549, human cervical (HeLa, human hepatocellular liver (HepG2, and human breast (MCF-7 cancer cells, than the parent apigenin. Compound 4j was found to be the most active antiproliferative compound against the selected cancer cells. Structure-activity relationships were also discussed based on the obtained experimental data.

  19. Biologic activity of the novel small molecule STAT3 inhibitor LLL12 against canine osteosarcoma cell lines

    Directory of Open Access Journals (Sweden)

    Couto Jason I

    2012-12-01

    Full Text Available Abstract Background STAT3 [1] has been shown to be dysregulated in nearly every major cancer, including osteosarcoma (OS. Constitutive activation of STAT3, via aberrant phosphorylation, leads to proliferation, cell survival and resistance to apoptosis. The present study sought to characterize the biologic activity of a novel allosteric STAT3 inhibitor, LLL12, in canine OS cell lines. Results We evaluated the effects of LLL12 treatment on 4 canine OS cell lines and found that LLL12 inhibited proliferation, induced apoptosis, reduced STAT3 phosphorylation, and decreased the expression of several transcriptional targets of STAT3 in these cells. Lastly, LLL12 exhibited synergistic anti-proliferative activity with the chemotherapeutic doxorubicin in the OS lines. Conclusion LLL12 exhibits biologic activity against canine OS cell lines through inhibition of STAT3 related cellular functions supporting its potential use as a novel therapy for OS.

  20. New insights into the molecular mechanism of Boletus edulis ribonucleic acid fraction (BE3) concerning antiproliferative activity on human colon cancer cells.

    Science.gov (United States)

    Lemieszek, Marta Kinga; Ribeiro, Miguel; Marques, Guilhermina; Nunes, Fernando Milheiro; Pożarowski, Piotr; Rzeski, Wojciech

    2017-05-24

    One of the relatively new and promising strategies of cancer treatment is chemoprevention, which involves the use of natural or synthetic compounds to block, inhibit or reverse carcinogenesis. A valuable and still untapped source of chemopreventive compounds seems to be edible mushrooms belonging to higher Basidiomycetes. Boletus edulis biopolymers extracted with hot water and purified by anion-exchange chromatography showed antiproliferative activity in colon cancer cells, but only fraction BE3, mostly composed of ribonucleic acids, was able to inhibit DNA synthesis in HT-29 cells. The present work aims to elucidate the molecular mechanism of this Boletus edulis ribonucleic acid fraction and in this sense flow cytometry and western blotting were applied to cell cycle analysis in HT-29 cells. We found that the antiproliferative ability of fraction BE3 observed in HT-29 cells was associated with the modulation of expression of cell cycle regulatory proteins (Cyclin D1, Cyclin A, p21 and p27) leading to cell accumulation in the S phase of the cell cycle. Furthermore, the BE3 fraction showed effective silencing of the signal transduction in an MAPK/Erk pathway in HT-29 and LS180 colon cancer cell lines. Thus, the previously and currently obtained results indicate that the BE3 fraction from Boletus edulis has great potential and needs to be further exploited through animal and clinical studies in order to develop a new efficient and safe therapeutic strategy for people who have been threatened by or suffered from colon cancer.

  1. Kinetics Extraction Modelling and Antiproliferative Activity of Clinacanthus nutans Water Extract

    Directory of Open Access Journals (Sweden)

    Farah Nadiah Mohd Fazil

    2016-01-01

    Full Text Available Clinacanthus nutans is widely grown in tropical Asia and locally known “belalai gajah” or Sabah snake grass. It has been used as a natural product to treat skin rashes, snake bites, lesion caused by herpes, diabetes, fever, and cancer. Therefore, the objectives of this research are to determine the maximum yield and time of exhaustive flavonoids extraction using Peleg’s model and to evaluate potential of antiproliferative activity on human lung cancer cell (A549. The extraction process was carried out on fresh and dried leaves at 28 to 30°C with liquid-to-solid ratio of 10 mL/g for 72 hrs. The extracts were collected intermittently analysed using mathematical Peleg’s model and RP-HPLC. The highest amount of flavonoids was used to evaluate the inhibitory concentration (IC50 via 2D cell culture of A549. Based on the results obtained, the predicted maximum extract density was observed at 29.20 ± 14.54 hrs of extraction (texhaustive. However, the exhaustive time of extraction to acquire maximum flavonoids content exhibited approximately 10 hrs earlier. Therefore, 18 hrs of extraction time was chosen to acquire high content of flavonoids. The best antiproliferative effect (IC50 on A549 cell line was observed at 138.82 ± 0.60 µg/mL. In conclusion, the flavonoids content in Clinacanthus nutans water extract possesses potential antiproliferative properties against A549, suggesting an alternative approach for cancer treatment.

  2. Synthesis, Antiproliferative, and Multidrug Resistance Reversal Activities of Heterocyclic α,β-Unsaturated Carbonyl Compounds.

    Science.gov (United States)

    Sun, Ju-Feng; Hou, Gui-Ge; Zhao, Feng; Cong, Wei; Li, Hong-Juan; Liu, Wen-Shuai; Wang, Chunhua

    2016-10-01

    A series of heterocyclic α,β-unsaturated carbonyl compounds (1a-1d, 2a-2d, 3a-3d, 4a-3d, and 5a-5d) with 1,5-diaryl-3-oxo-1,4-pentadienyl pharmacophore were synthesized for the development of anticancer and multidrug resistance reverting agents. The antiproliferative activities were tested against nine human cancer cell lines. Approximately 73% of the IC50 values were below 5 μm, while 35% of these figures were submicromolar, and compounds 3a-3d with 4-trifluoro methyl in the arylidene benzene rings were the most potent, since their IC50 values are between 0.06 and 3.09 μm against all cancer cell lines employed. Meanwhile, their multidrug resistance reversal properties and cellular uptake were further examined. The data displayed that all of these compounds could reverse multidrug resistance, particularly, compounds 3a and 4a demonstrated both potent multidrug resistance reverting properties and strong antiproliferative activities, which can be taken as leading molecules for further research of dual effect agents in tumor chemotherapy. © 2016 John Wiley & Sons A/S.

  3. Iron(III-salophene: an organometallic compound with selective cytotoxic and anti-proliferative properties in platinum-resistant ovarian cancer cells.

    Directory of Open Access Journals (Sweden)

    Thilo S Lange

    2008-05-01

    Full Text Available In this pioneer study to the biological activity of organometallic compound Iron(III-salophene (Fe-SP the specific effects of Fe-SP on viability, morphology, proliferation, and cell-cycle progression on platinum-resistant ovarian cancer cell lines were investigated.Fe-SP displayed selective cytotoxicity against SKOV-3 and OVCAR-3 (ovarian epithelial adenocarcinoma cell lines at concentrations between 100 nM and 1 microM, while the viability of HeLa cells (epithelial cervix adenocarcinoma or primary lung or skin fibroblasts was not affected. SKOV-3 cells in contrast to fibroblasts after treatment with Fe-SP revealed apparent hallmarks of apoptosis including densely stained nuclear granular bodies within fragmented nuclei, highly condensed chromatin and chromatin fragmentation. Fe-SP treatment led to the activation of markers of the extrinsic (Caspase-8 and intrinsic (Caspase-9 pathway of apoptosis as well as of executioner Caspase-3 while PARP-1 was deactivated. Fe-SP exerted effects as an anti-proliferative agent with an IC(50 value of 300 nM and caused delayed progression of cells through S-phase phase of the cell cycle resulting in a complete S-phase arrest. When intra-peritoneally applied to rats Fe-SP did not show any systemic toxicity at concentrations that in preliminary trials were determined to be chemotherapeutic relevant doses in a rat ovarian cancer cell model.The present report suggests that Fe-SP is a potent growth-suppressing agent in vitro for cell lines derived from ovarian cancer and a potential therapeutic drug to treat such tumors in vivo.

  4. Antileukemic Effect of Tualang Honey on Acute and Chronic Leukemia Cell Lines

    Directory of Open Access Journals (Sweden)

    Nik Muhd Khuzaimi Nik Man

    2015-01-01

    Full Text Available Complementary medicine using natural product as antitumor is on the rise. Much research has been performed on Tualang Honey and it was shown to have therapeutic potential in wound healing, and antimicrobial activity and be antiproliferative against several cancer models such as human osteosarcoma (HOS, human breast (MCF-7 and MDA-MB-231, and cervical (HeLa cancer cell lines. To date, there was limited study on antileukemic properties of Tualang (Koompassia excelsa Honey. The aim of this study was to evaluate the antileukemic effect of Tualang Honey on acute and chronic leukemia cell lines. Leukemia cell lines (K562 and MV4-11 and human mononuclear cell isolated from peripheral blood were grown in RPM1 1640 culture medium. The cells were incubated with increasing concentrations of Tualang Honey. After incubation, the evaluation of viability and apoptosis was performed. The morphological changes of leukemia cells were the presence of cytoplasmic blebs followed by apoptotic bodies and round shape of cells. IC50 against K562 and MV4-11 was determined. Tualang Honey gave 53.9% and 50.6% apoptosis activity on K562 and MV4-11, respectively, while on human mononuclear cell it was 37.4%. Tualang Honey has the apoptosis-inducing ability for acute and chronic myeloid leukemia (K562 and MV4-11 cell lines.

  5. Antioxidant and antiproliferative activity of Granny Smith apple pomace

    Directory of Open Access Journals (Sweden)

    Savatović Slađana M.

    2008-01-01

    Full Text Available Granny Smith apple pomace was subjected to evaluation as valuable source of antioxidant and anticancer phytochemicals on the basis of its content in phenolic compounds, antioxidant and antiproliferative activity. The total cotent of phenolics, flavonoids and flavan-3-ols in apple pomace determined spectrophotometrically, was 7.02 mg/g, 0.51 mg/g and 8.80 mg/g. Major phenolics (phenolic acids, flavan-3-ols, flavonoids and dihydrochalcons in apple pomace were identified and quantified by HPLC. The antioxidant activity of apple pomace on stable 1,1-diphenyl-2-picrylhydrazyl (DPPH and reactive hydroxyl radicals, was investigated by electron spin resonance (ESR spectroscopy. The IC50 DPPH and IC50 OH values of Granny Smith apple pomace were 9.51 mg/ml and 29.17 mg/ml, respectively. The antiproliferative activities of apple pomace on cervix epitheloid carcinoma (HeLa, colon adenocarcinoma (HT-29 and breast adenocarcinoma (MCF7 cell lines were determined according to the MTT (3-(4,5-dimethylthiazol-2-yl- 2,5-diphenyltetrazolium bromide colorimetric assay. The IC50 HeLa , IC50 HT-29 and IC50 MCF7 values of Granny Smith apple pomace were 26.40 mg/ml, 22.47 mg/ml and 21.26 mg/ml, respectively. The significant correlations between antioxidant activities and antiproliferative activities were established (p<0.05.

  6. Antiproliferative activity of king cobra (Ophiophagus hannah) venom L-amino acid oxidase.

    Science.gov (United States)

    Li Lee, Mui; Chung, Ivy; Yee Fung, Shin; Kanthimathi, M S; Hong Tan, Nget

    2014-04-01

    King cobra (Ophiophagus hannah) venom L-amino acid oxidase (LAAO), a heat-stable enzyme, is an extremely potent antiproliferative agent against cancer cells when compared with LAAO isolated from other snake venoms. King cobra venom LAAO was shown to exhibit very strong antiproliferative activities against MCF-7 (human breast adenocarcinoma) and A549 (human lung adenocarcinoma) cells, with an IC50 value of 0.04±0.00 and 0.05±0.00 μg/mL, respectively, after 72-hr treatment. In comparison, its cytotoxicity was about 3-4 times lower when tested against human non-tumourigenic breast (184B5) and lung (NL 20) cells, suggesting selective antitumour activity. Furthermore, its potency in MCF-7 and A549 cell lines was greater than the effects of doxorubicin, a clinically established cancer chemotherapeutic agent, which showed an IC50 value of 0.18±0.03 and 0.63±0.21 μg/mL, respectively, against the two cell lines. The selective cytotoxic action of the LAAO was confirmed by phycoerythrin (PE) annexin V/7-amino-actinomycin (AAD) apoptotic assay, in which a significant increase in apoptotic cells was observed in LAAO-treated tumour cells than in their non-tumourigenic counterparts. The ability of LAAO to induce apoptosis in tumour cells was further demonstrated using caspase-3/7 and DNA fragmentation assays. We also determined that this enzyme may target oxidative stress in its killing of tumour cells, as its cytotoxicity was significantly reduced in the presence of catalase (a H2O2 scavenger). In view of its heat stability and selective and potent cytotoxic action on cancer cells, king cobra venom LAAO can be potentially developed for treating solid tumours. © 2013 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).

  7. Antiproliferative Activity of Flavonoids from Croton sphaerogynus Baill. (Euphorbiaceae

    Directory of Open Access Journals (Sweden)

    Kátia Pereira dos Santos

    2015-01-01

    Full Text Available Croton sphaerogynus is a shrub from the Atlantic Rain Forest in southeastern Brazil. A lyophilized crude EtOH extract from leaves of C. sphaerogynus, obtained by maceration at room temperature (seven days, was suspended in methanol and partitioned with hexane. The purified MeOH phase was fractionated over Sephadex LH-20 yielding five fractions (F1–F5 containing flavonoids, as characterized by HPLC-DAD and HPLC-MS analyses. The antiproliferative activity of the crude EtOH extract, MeOH and hexane phases, and fractions F1–F5 was evaluated on in vitro cell lines NCI-H460 (nonsmall cell lung, MCF-7 (breast cancer, and U251 (glioma. The MeOH phase showed activity (mean log GI50 0.54 higher than the hexane phase and EtOH extract (mean log GI50 1.13 and 1.19, resp.. F1 exhibited activity against NCI-H460 (nonsmall cell lung (GI50 1.2 μg/mL, which could be accounted for the presence of flavonoids and/or diterpenes. F4 showed moderate activity (mean log GI50 1.05, while F5 showed weak activity (mean log GI50 1.36. It is suggested that the antiproliferative activity of the crude EtOH extract and MeOH phase is accounted for a synergistic combination of flavonoids and diterpenes.

  8. Korean Ginseng Berry Fermented by Mycotoxin Non-producing Aspergillus niger and Aspergillus oryzae: Ginsenoside Analyses and Anti-proliferative Activities.

    Science.gov (United States)

    Li, Zhipeng; Ahn, Hyung Jin; Kim, Nam Yeon; Lee, Yu Na; Ji, Geun Eog

    2016-01-01

    To transform ginsenosides, Korean ginseng berry (KGB) was fermented by mycotoxin non-producing Aspergillus niger and Aspergillus oryzae. Changes of ginsenoside profile and anti-proliferative activities were observed. Results showed that A. niger tended to efficiently transform protopanaxadiol (PPD) type ginsenosides such as Rb1, Rb2, Rd to compound K while A. oryzae tended to efficiently transform protopanaxatriol (PPT) type ginsenoside Re to Rh1 via Rg1. Butanol extracts of fermented KGB showed high cytotoxicity on human adenocarcinoma HT-29 cell line and hepatocellular carcinoma HepG2 cell line while that of unfermented KGB showed little. The minimum effective concentration of niger-fermented KGB was less than 2.5 µg/mL while that of oryzae-fermented KGB was about 5 µg/mL. As A. niger is more inclined to transform PPD type ginsenosides, niger-fermented KGB showed stronger anti-proliferative activity than oryzae-fermented KGB.

  9. Crataegus azarolus Leaves Induce Antiproliferative Activity, Cell Cycle Arrest, and Apoptosis in Human HT-29 and HCT-116 Colorectal Cancer Cells.

    Science.gov (United States)

    Mustapha, Nadia; Pinon, Aline; Limami, Youness; Simon, Alain; Ghedira, Kamel; Hennebelle, Thierry; Chekir-Ghedira, Leila

    2016-05-01

    Limited success has been achieved in extending the survival of patients with metastatic colorectal cancer (CRC). There is a strong need for novel agents in the treatment and prevention of CRC. Therefore, in the present study we evaluated the antiproliferative and pro-apoptotic potential of Crataegus azarolus ethyl acetate extract in HCT-116 and HT-29 human colorectal cancer cell lines. Moreover, we attempted to investigate the signaling pathways that should be involved in its cytotoxic effect. The Crataegus azarolus ethyl acetate extract-induced growth inhibitory effect was associated with DNA fragmentation, sub-G1 peak, loss of mitochondrial potential, and poly (ADP-ribose) polymerase (PARP) cleavage. In addition, ethyl acetate extract of Crataegus azarolus induced the cleavage of caspase-8. It has no effect on steady-state levels of total Bcl-2 protein. Whereas Bax levels decreased significantly in a dose-dependent manner in both tested cell lines. Taken together, these findings confirm the involvement of the extrinsic pathway of apoptosis. The apoptotic cell death induced by ethyl acetate extract of Crataegus azarolus was accompanied by an enhancement of the p21 expression but not through p53 activation in human colorectal cancer cells. The above-mentioned data provide insight into the molecular mechanisms of Crataegus azarolus ethyl acetate extract-induced apoptosis in CRC. Therefore, this compound should be a potential anticancer agent for the treatment of CRC. © 2015 Wiley Periodicals, Inc.

  10. Chemical composition, antioxidant, anti-inflammatory and anti-proliferative activities of essential oils of plants from Burkina Faso.

    Directory of Open Access Journals (Sweden)

    Bagora Bayala

    Full Text Available This research highlights the chemical composition, antioxidant, anti-inflammatory and anti-proliferative activities of essential oils from leaves of Ocimum basilicum, Ocimum americanum, Hyptis spicigera, Lippia multiflora, Ageratum conyzoides, Eucalyptus camaldulensis and Zingiber officinale. Essential oils were analyzed by gas chromatography-mass spectrometry and gas chromatography-flame ionization detector. Major constituents were α-terpineol (59.78% and β-caryophyllene (10.54% for Ocimum basilicum; 1, 8-cineol (31.22%, camphor (12.730%, α-pinene (6.87% and trans α-bergamotene (5.32% for Ocimum americanum; β-caryophyllene (21%, α-pinene (20.11%, sabinene (10.26%, β-pinene (9.22% and α-phellandrene (7.03% for Hyptis spicigera; p-cymene (25.27%, β-caryophyllene (12.70%, thymol (11.88, γ-terpinene (9.17% and thymyle acetate (7.64% for Lippia multiflora; precocene (82.10%for Ageratum conyzoides; eucalyptol (59.55%, α-pinene (9.17% and limonene (8.76% for Eucalyptus camaldulensis; arcurcumene (16.67%, camphene (12.70%, zingiberene (8.40%, β-bisabolene (7.83% and β-sesquiphellandrène (5.34% for Zingiber officinale. Antioxidant activities were examined using 1,1-diphenyl-2-picryl-hydrazyl (DPPH and 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid (ABTS methods. O. basilicum and L. multiflora exhibited the highest antioxidant activity in DPPH and ABTS tests, respectively. Anti-inflammatory properties were evaluated by measuring the inhibition of lipoxygenase activity and essential oil of Z. officinale was the most active. Anti-proliferative effect was assayed by the measurement of MTT on LNCaP and PC-3 prostate cancer cell lines, and SF-763 and SF-767 glioblastoma cell lines. Essential oils from A. conyzoides and L. multiflora were the most active on LNCaP and PC-3 cell lines, respectively. The SF-767 glioblastoma cell line was the most sensitive to O. basilicum and L. multiflora EOs while essential oil of A. conyzoides showed the

  11. N-ω-chloroacetyl-L-ornithine has in-vitro activity against cancer cell lines and in-vivo activity against ascitic and solid tumors.

    Science.gov (United States)

    Vargas-Ramírez, Alba L; Medina-Enríquez, Miriam M; Cordero-Rodríguez, Neira I; Ruiz-Cuello, Tatiana; Aguilar-Faisal, Leopoldo; Trujillo-Ferrara, José G; Alcántara-Farfán, Verónica; Rodríguez-Páez, Lorena

    2016-07-01

    N-ω-chloroacetyl-L-ornithine (NCAO) is an ornithine decarboxylase (ODC) inhibitor that is known to exert cytotoxic and antiproliferative effects on three neoplastic human cancer cell lines (HeLa, MCF-7, and HepG2). Here, we show that NCAO has antiproliferative activity in 13 cancer cell lines, of diverse tissue origin from human and mice, and in a mouse cancer model in vivo. All cell lines were sensitive to NCAO after 72 h of treatment (the EC50 ranged from 1 to 50.6 µmol/l). The Ca Ski cell line was the most sensitive (EC50=1.18±0.07 µmol/l) and MDA-MB-231 was the least sensitive (EC50=50.6±0.3 µmol/l). This ODC inhibitor showed selectivity for cancer cells, exerting almost no cytotoxic effect on the normal Vero cell line (EC50>1000 µmol/l). NCAO induced apoptosis and inhibited tumor cell migration in vitro. Furthermore, in vivo, this compound (at 50 and 100 mg/kg, daily intraperitoneal injection for 7 days) exerted potent antitumor activity against both solid and ascitic tumors in a mouse model using the myeloma (Ag8) cell line. At these same two doses, the toxicological evaluation showed that NCAO has no obvious systemic toxicity. The current results suggest that the antitumor activity is exerted by apoptosis related not only to a local but also a systemic cytotoxic effect exerted by NCAO on tumor cells. The applications for NCAO as an antitumor agent may be extensive; however, further studies are needed to ascertain the antitumor activity on other types of tumor in vivo and to determine the precise molecular mechanism of its activity.

  12. Two novel prenylated kaempferol derivatives from fresh bud's fur of Platanus acerifolia and their anti-proliferative activities.

    Science.gov (United States)

    Zuo, Bo; Liao, Zhi-Xin; Xu, Chen; Liu, Chao

    2016-01-06

    Two novel prenylated kaempferol derivatives (1, 2), together with seven known metabolites were isolated from ethanol extract of fresh Platanus acerifolia bud's fur by multistep chromatographic processing. Structure of compounds 1 and 2 was confirmed by 1D, 2D NMR spectra and HR-ESI-MS. In addition, compound 1 was further analysed by X-ray crystallography. Anti-proliferative activities in vitro against human breast carcinoma (MCF-7) and human hepatocellular carcinoma (Hep-G2) cell lines for compound 1, 2 and 8 were evaluated. Compound 1 exhibited cytotoxic activity towards MCF-7 and Hep-G2 cell lines with the IC 50 values 38.2 and 39.5 μM, respectively. Moreover, compound 2 showed weak cytotoxic activities against the two cell lines.

  13. Imatinib mesylate exerts anti-proliferative effects on osteosarcoma cells and inhibits the tumour growth in immunocompetent murine models.

    Directory of Open Access Journals (Sweden)

    Bérengère Gobin

    Full Text Available Osteosarcoma is the most common primary malignant bone tumour characterized by osteoid production and/or osteolytic lesions of bone. A lack of response to chemotherapeutic treatments shows the importance of exploring new therapeutic methods. Imatinib mesylate (Gleevec, Novartis Pharma, a tyrosine kinase inhibitor, was originally developed for the treatment of chronic myeloid leukemia. Several studies revealed that imatinib mesylate inhibits osteoclast differentiation through the M-CSFR pathway and activates osteoblast differentiation through PDGFR pathway, two key cells involved in the vicious cycle controlling the tumour development. The present study investigated the in vitro effects of imatinib mesylate on the proliferation, apoptosis, cell cycle, and migration ability of five osteosarcoma cell lines (human: MG-63, HOS; rat: OSRGA; mice: MOS-J, POS-1. Imatinib mesylate was also assessed as a curative and preventive treatment in two syngenic osteosarcoma models: MOS-J (mixed osteoblastic/osteolytic osteosarcoma and POS-1 (undifferentiated osteosarcoma. Imatinib mesylate exhibited a dose-dependent anti-proliferative effect in all cell lines studied. The drug induced a G0/G1 cell cycle arrest in most cell lines, except for POS-1 and HOS cells that were blocked in the S phase. In addition, imatinib mesylate induced cell death and strongly inhibited osteosarcoma cell migration. In the MOS-J osteosarcoma model, oral administration of imatinib mesylate significantly inhibited the tumour development in both preventive and curative approaches. A phospho-receptor tyrosine kinase array kit revealed that PDGFRα, among 7 other receptors (PDFGFRβ, Axl, RYK, EGFR, EphA2 and 10, IGF1R, appears as one of the main molecular targets for imatinib mesylate. In the light of the present study and the literature, it would be particularly interesting to revisit therapeutic evaluation of imatinib mesylate in osteosarcoma according to the tyrosine-kinase receptor

  14. Differences in antiproliferative effect of STAT3 inhibition in HCC cells with versus without HBV expression

    International Nuclear Information System (INIS)

    Hong, Yun; Zhou, Lin; Xie, Haiyang; Wang, Weilin; Zheng, Shusen

    2015-01-01

    Chronic infection with hepatitis B virus (HBV) plays an important role in the etiology of hepatocellular carcinoma (HCC). Signal transducer and activator of transcription 3 (STAT3) inactivation could inhibit the tumor growth of HCC. In this study, differential antiproliferative effect of STAT3 inhibition was observed with HBV-related HCC cells being more resistant than non-HBV-related HCC cells. Resistance of HBV-related HCC cells to STAT3 inhibition was positively correlated to the expression of HBV. Enhanced ERK activation after STAT3 blockade was detected in HBV-related HCC cells but not in non-HBV-related HCC cells. Combined ERK and STAT3 inhibition eliminates the discrepancy between the two types of HCC cells. Moderate reduced HBV expression was found after STAT3 inhibition. These findings disclose a discrepancy in cellular response to STAT3 inhibition between non-HBV-related and HBV-related HCC cells and underscore the complexity of antiproliferative effect of STAT3 inactivation in HBV-related HCC cells. - Highlights: • HBV endows HCC cells with resistance to STAT3 inactivation on proliferation. • Abnormal ERK activation after STAT3 inhibition in HBV-related HCC cells. • Combined ERK and STAT3 inhibition eliminates the discrepancy. • STAT3 inhibition moderately reduces HBV expression

  15. Differences in antiproliferative effect of STAT3 inhibition in HCC cells with versus without HBV expression

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Yun; Zhou, Lin; Xie, Haiyang; Wang, Weilin [Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Qingchun Road 79, Hangzhou, Zhejiang 310003 (China); Key Laboratory of Combined Multi-organ Transplantation of Ministry of Public Health, Qingchun Road 79, Hangzhou, Zhejiang 310003 (China); Zheng, Shusen, E-mail: shusenzheng@zju.edu.cn [Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Qingchun Road 79, Hangzhou, Zhejiang 310003 (China); Key Laboratory of Combined Multi-organ Transplantation of Ministry of Public Health, Qingchun Road 79, Hangzhou, Zhejiang 310003 (China)

    2015-06-05

    Chronic infection with hepatitis B virus (HBV) plays an important role in the etiology of hepatocellular carcinoma (HCC). Signal transducer and activator of transcription 3 (STAT3) inactivation could inhibit the tumor growth of HCC. In this study, differential antiproliferative effect of STAT3 inhibition was observed with HBV-related HCC cells being more resistant than non-HBV-related HCC cells. Resistance of HBV-related HCC cells to STAT3 inhibition was positively correlated to the expression of HBV. Enhanced ERK activation after STAT3 blockade was detected in HBV-related HCC cells but not in non-HBV-related HCC cells. Combined ERK and STAT3 inhibition eliminates the discrepancy between the two types of HCC cells. Moderate reduced HBV expression was found after STAT3 inhibition. These findings disclose a discrepancy in cellular response to STAT3 inhibition between non-HBV-related and HBV-related HCC cells and underscore the complexity of antiproliferative effect of STAT3 inactivation in HBV-related HCC cells. - Highlights: • HBV endows HCC cells with resistance to STAT3 inactivation on proliferation. • Abnormal ERK activation after STAT3 inhibition in HBV-related HCC cells. • Combined ERK and STAT3 inhibition eliminates the discrepancy. • STAT3 inhibition moderately reduces HBV expression.

  16. Labdane diterpenoids from Curcuma amada rhizomes collected in Myanmar and their antiproliferative activities.

    Science.gov (United States)

    Win, Nwet Nwet; Ito, Takuya; Ngwe, Hla; Win, Yi Yi; Prema; Okamoto, Yasuko; Tanaka, Masami; Asakawa, Yoshinori; Abe, Ikuro; Morita, Hiroyuki

    2017-10-01

    Four new labdane diterpenoids, 12β-hydroxy-15-norlabda-8(17),13(14)-dien-16-oic acid (1), (E)-15-ethoxy-15-methoxylabda-8(17),12-dien-16-al (2), (E)-15α-ethoxy-14α-hydroxylabda-8(17),12-dien-16-olide (3), and 15-ethoxy-12β-hydroxylabda-8(17),13(14)-dien-16,15-olide (4) were isolated from the methanol extract of Curcuma amada rhizomes collected in Myanmar, together with 13 known analogs. Their structures were elucidated by extensive spectroscopic techniques. All of the isolates were evaluated for their antiproliferative activities against a small panel of five different human cancer cell lines (A549, human lung cancer; HeLa, human cervical cancer; MCF7, human breast cancer; PANC-1 and PSN-1, human pancreatic cancer). Among the isolates, compounds 2-4, 7, 8, 12, and 17 showed mild antiproliferative activities with IC 50 values ranging from 19.7 to 96.1μM. (E)-14-Hydroxy-15-norlabda-8(17),12-dien-16-al (11) exhibited strong antiproliferative activities selectively against HeLa, PANC-1, and PSN-1 cells, with IC 50 values of 5.88, 1.00, and 3.98μM, respectively. These potencies were comparable to those of the positive control, 5-fluorouracil. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Comparing Apoptosis and Necrosis Effects of Arctium Lappa Root Extract and Doxorubicin on MCF7 and MDA-MB-231 Cell Lines

    Science.gov (United States)

    Ghafari, Fereshteh; Rajabi, Mohammad Reza; Mazoochi, Tahereh; Taghizadeh, Mohsen; Nikzad, Hossein; Atlasi, Mohammad Ali; Taherian, Aliakbar

    2017-03-01

    Objective: Breast cancer is a heterogeneous disease and very common malignancy in women worldwide. The efficacy of chemotherapy as an important part of breast cancer treatment is limited due to its side effects. While pharmaceutical companies are looking for better chemicals, research on traditional medicines that generally have fewer side effects is quite interesting. In this study, apoptosis and necrosis effect of Arctium lappa and doxorubicin was compared in MCF7, and MDA-MB-231 cell lines. Materials and Methods: MCF7 and MDA-MB-231 cells were cultured in RPMI 1640 containing 10% FBS and 100 U/ml penicillin/streptomycin. MTT assay and an annexin V/propidium iodide (AV/PI) kit were used respectively to compare the survival rate and apoptotic effects of different concentrations of doxorubicin and Arctium lappa root extract on MDA-MB-231 and MCF7 cells. Results: Arctium lappa root extract was able to reduce cell viability of the two cell lines in a dose and time dependent manner similar to doxorubicin. Flow cytometry results showed that similar to doxorubicin, Arctium Lappa root extract had a dose and time dependent apoptosis effect on both cell lines. 10μg/mL of Arctium lappa root extract and 5 μM of doxorubicin showed the highest anti-proliferative and apoptosis effect in MCF7 and MDA231 cells. Conclusion: The MCF7 (ER/PR-) and MDA-MB-231 (ER/PR+) cell lines represent two major breast cancer subtypes. The similar anti-proliferative and apoptotic effects of Arctium lappa root extract and doxorubicin (which is a conventional chemotherapy drug) on two different breast cancer cell lines strongly suggests its anticancer effects and further studies. Creative Commons Attribution License

  18. Induction of apoptosis and antiproliferative activity of naringenin in human epidermoid carcinoma cell through ROS generation and cell cycle arrest.

    Directory of Open Access Journals (Sweden)

    Md Sultan Ahamad

    Full Text Available A natural predominant flavanone naringenin, especially abundant in citrus fruits, has a wide range of pharmacological activities. The search for antiproliferative agents that reduce skin carcinoma is a task of great importance. The objective of this study was to analyze the anti-proliferative and apoptotic mechanism of naringenin using MTT assay, DNA fragmentation, nuclear condensation, change in mitochondrial membrane potential, cell cycle kinetics and caspase-3 as biomarkers and to investigate the ability to induce reactive oxygen species (ROS initiating apoptotic cascade in human epidermoid carcinoma A431 cells. Results showed that naringenin exposure significantly reduced the cell viability of A431 cells (p<0.01 with a concomitant increase in nuclear condensation and DNA fragmentation in a dose dependent manner. The intracellular ROS generation assay showed statistically significant (p<0.001 dose-related increment in ROS production for naringenin. It also caused naringenin-mediated epidermoid carcinoma apoptosis by inducing mitochondrial depolarization. Cell cycle study showed that naringenin induced cell cycle arrest in G0/G1 phase of cell cycle and caspase-3 analysis revealed a dose dependent increment in caspase-3 activity which led to cell apoptosis. This study confirms the efficacy of naringenin that lead to cell death in epidermoid carcinoma cells via inducing ROS generation, mitochondrial depolarization, nuclear condensation, DNA fragmentation, cell cycle arrest in G0/G1 phase and caspase-3 activation.

  19. Bio-guided fractionation of methanol extract of Ziziphus mauritiana Lam. (bark and effect of the most active fraction on cancer cell lines

    Directory of Open Access Journals (Sweden)

    Richard Simo Tagne

    2015-04-01

    Full Text Available Objective: To investigate the anticancer and antioxidant potential of methanol bark extract of Ziziphus mauritiana (Z. mauritiana, which is used by traditional healers to cure some cases of cancer in Cameroon. Methods: The methanol crude extract of Z. mauritiana has the antiproliferative activity on four cancer cell lines and its antioxidant activity. The extract was partitioned in five different solvents, and each fraction was tested. The effect of the most antiproliferative fraction on cell cycle was determined. Bio-guided fractionation was performed on the fraction with the highest antiproliferative and the highest antioxidant activities. Results: Z. mauritiana methanol extract was active on all tested cells, and showed promising antioxidant activity. All fractions except hexane fraction were active with the dichloromethane fraction being the most active and showed S and G2-M phase arrest (P<0.01 on cell cycle progression of NCI-H460 and MCF-7, respectively. Bio-guided fractionation of the dichloromethane fraction led to lupeol and betulinic acid. The greatest antioxidant activity was recorded with ethyl acetate fraction and its fractionation led to catechin and epigallocatechin. Conclusions: Overall, this study showed that Z. mauritiana barks has benefits as a chemoprevention agent cancer.

  20. Antimicrobial and Anti-Proliferative Effects of Skin Mucus Derived from Dasyatis pastinaca (Linnaeus, 1758

    Directory of Open Access Journals (Sweden)

    Virginia Fuochi

    2017-11-01

    Full Text Available Resistance to chemotherapy occurs in various diseases (i.e., cancer and infection, and for this reason, both are very difficult to treat. Therefore, novel antimicrobial and chemotherapic drugs are needed for effective antibiotic therapy. The aim of the present study was to assess the antimicrobial and anti-proliferative effects of skin mucus derived from Dasyatis pastinaca (Linnaeus, 1758. Our results showed that skin mucus exhibited a significant and specific antibacterial activity against Gram-negative bacteria but not against Gram-positive bacteria. Furthermore, we also observed a significant antifungal activity against some strains of Candida spp. Concerning anti-proliferative activity, we showed that fish mucus was specifically toxic for acute leukemia cells (HL60 with an inhibition of proliferation in a dose dependent manner (about 52% at 1000 μg/mL of fish skin mucous, FSM. Moreover, we did not observe effects in healthy cells, in neuroblastoma cells (SH-SY5Y, and multiple myeloma cell lines (MM1, U266. Finally, it exhibited strong expression and activity of chitinase which may be responsible, at least in part, for the aforementioned results.

  1. CD34+ cells cultured in stem cell factor and interleukin-2 generate CD56+ cells with antiproliferative effects on tumor cell lines

    Directory of Open Access Journals (Sweden)

    Hensel Nancy

    2005-04-01

    Full Text Available Abstract In vitro stimulation of CD34+ cells with IL-2 induces NK cell differentiation. In order to define the stages of NK cell development, which influence their generation from CD34 cells, we cultured G-CSF mobilized peripheral blood CD34+ cells in the presence of stem cell factor and IL-2. After three weeks culture we found a diversity of CD56+ subsets which possessed granzyme A, but lacked the cytotoxic apparatus required for classical NK-like cytotoxicity. However, these CD56+ cells had the unusual property of inhibiting proliferation of K562 and P815 cell lines in a cell-contact dependent fashion.

  2. Phosphoproteome and Transcriptome of RA-Responsive and RA-Resistant Breast Cancer Cell Lines.

    Directory of Open Access Journals (Sweden)

    Marilyn Carrier

    Full Text Available Retinoic acid (RA, the main active vitamin A metabolite, controls multiple biological processes such as cell proliferation and differentiation through genomic programs and kinase cascades activation. Due to these properties, RA has proven anti-cancer capacity. Several breast cancer cells respond to the antiproliferative effects of RA, while others are RA-resistant. However, the overall signaling and transcriptional pathways that are altered in such cells have not been elucidated. Here, in a large-scale analysis of the phosphoproteins and in a genome-wide analysis of the RA-regulated genes, we compared two human breast cancer cell lines, a RA-responsive one, the MCF7 cell line, and a RA-resistant one, the BT474 cell line, which depicts several alterations of the "kinome". Using high-resolution nano-LC-LTQ-Orbitrap mass spectrometry associated to phosphopeptide enrichment, we found that several proteins involved in signaling and in transcription, are differentially phosphorylated before and after RA addition. The paradigm of these proteins is the RA receptor α (RARα, which was phosphorylated in MCF7 cells but not in BT474 cells after RA addition. The panel of the RA-regulated genes was also different. Overall our results indicate that RA resistance might correlate with the deregulation of the phosphoproteome with consequences on gene expression.

  3. Zebularine exerts its antiproliferative activity through S phase delay and cell death in human malignant mesothelioma cells.

    Science.gov (United States)

    Takemura, Yukitoshi; Satoh, Motohiko; Hatanaka, Kenichi; Kubota, Shunichiro

    2018-04-24

    Malignant mesothelioma is an asbestos-related aggressive tumor and current therapy remains ineffective. Zebularine as a DNA methyltransferase (DNMT) inhibitor has an anti-tumor effect in several human cancer cells. The aim of the present study was to investigate whether zebularine could induce antiproliferative effect in human malignant mesothelioma cells. Zebularine induced cell growth inhibition in a dose-dependent manner. In addition, zebularine dose-dependently decreased expression of DNMT1 in all malignant mesothelioma cells tested. Cell cycle analysis indicated that zebularine induced S phase delay. Zebularine also induced cell death in malignant mesothelioma cells. In contrast, zebularine did not induce cell growth inhibition and cell death in human normal fibroblast cells. These results suggest that zebularine has a potential for the treatment of malignant mesothelioma by inhibiting cell growth and inducing cell death.

  4. Anti-proliferative activity of the quassinoid NBT-272 in childhood medulloblastoma cells

    Directory of Open Access Journals (Sweden)

    Helson Lawrence

    2007-01-01

    Full Text Available Abstract Background With current treatment strategies, nearly half of all medulloblastoma (MB patients die from progressive tumors. Accordingly, the identification of novel therapeutic strategies remains a major goal. Deregulation of c-MYC is evident in numerous human cancers. In MB, over-expression of c-MYC has been shown to correlate with anaplasia and unfavorable prognosis. In neuroblastoma – an embryonal tumor with biological similarities to MB – the quassinoid NBT-272 has been demonstrated to inhibit cellular proliferation and to down-regulate c-MYC protein expression. Methods To study MB cell responses to NBT-272 and their dependence on the level of c-MYC expression, DAOY (wild-type, empty vector transfected or c-MYC transfected, D341 (c-MYC amplification and D425 (c-MYC amplification human MB cells were used. The cells were treated with different concentrations of NBT-272 and the impact on cell proliferation, apoptosis and c-MYC expression was analyzed. Results NBT-272 treatment resulted in a dose-dependent inhibition of cellular proliferation (IC50 in the range of 1.7 – 9.6 ng/ml and in a dose-dependent increase in apoptotic cell death in all human MB cell lines tested. Treatment with NBT-272 resulted in up to 90% down-regulation of c-MYC protein, as demonstrated by Western blot analysis, and in a significant inhibition of c-MYC binding activity. Anti-proliferative effects were slightly more prominent in D341 and D425 human MB cells with c-MYC amplification and slightly more pronounced in c-MYC over-expressing DAOY cells compared to DAOY wild-type cells. Moreover, treatment of synchronized cells by NBT-272 induced a marked cell arrest at the G1/S boundary. Conclusion In human MB cells, NBT-272 treatment inhibits cellular proliferation at nanomolar concentrations, blocks cell cycle progression, induces apoptosis, and down-regulates the expression of the oncogene c-MYC. Thus, NBT-272 may represent a novel drug candidate to inhibit

  5. Efecto de extractos de la esponja calcarea Leucetta aff. floridana sobre el ciclo de líneas celulares leucemoides Effect of extracts from the calcareous sponge Leucetta aff. floridana on the cell cycle of leukemoid cell lines

    Directory of Open Access Journals (Sweden)

    Diana Margarita Márquez Fernández

    2012-12-01

    .Introduction: Leucetta aff. floridana sponge produces compounds with differential antiproliferative activity on lung and breast cancer. Nevertheless, this activity in other tumour cell lines has not yet been tested and it remains unknown whether its antiproliferative potential is correlated with the cell progression through cell cycle or not. Objective: To evaluate the antiproliferative and anticlonogenic potential and the effect of methanolic and hexanic extracts of sponge L. aff. floridana from the Colombian Caribbean region on the cell cycle of Jurkat and K562 leukemoid cell lines. Methods: The viability and antiproliferative effect were determined using trypan blue assay at 0, 24, 48, 72 and 96 hours. Clongenicity and effect on cell cycle were assayed at 10 and 100 µg/mL Data obtained were analyzed using multifactorial ANOVA and Tukey's test. Results: The hexanic extract presented antiproliferative activity in both Jurkat and K652 cell lines; Jurkat being more sensitive than K652. These results were confirmed by clongenicity assays. The hexanic extract also showed its effect on the dose-dependent accumulation of Sub-G1 cells, although it was different in the two cell lines. The duration of the treatment with the hexanic extract was not significant for K562 cell line, but it was for Jurkat cells. Additionally, the percentage of cell accumulation in Sub-G1 was higher in K562 than in Jurkat cells. The methanolic extract showed antiproliferative effect similar to that of the hexanic extract, but more potent at the lowest concentration (10 µg/mL in K652 cell line clonegenicity. The effect on cell cycle was also similar to that of the hexanic extract, but in this case the duration of treatment was not significant in the cell accumulation in Sub-G1. Conclusions: Altogether these results show the differential potential of the extracts on the cell cycle of the evaluated leukemoid cell lines.

  6. Antitumor effects of cannabidiol, a nonpsychoactive cannabinoid, on human glioma cell lines.

    Science.gov (United States)

    Massi, Paola; Vaccani, Angelo; Ceruti, Stefania; Colombo, Arianna; Abbracchio, Maria P; Parolaro, Daniela

    2004-03-01

    Recently, cannabinoids (CBs) have been shown to possess antitumor properties. Because the psychoactivity of cannabinoid compounds limits their medicinal usage, we undertook the present study to evaluate the in vitro antiproliferative ability of cannabidiol (CBD), a nonpsychoactive cannabinoid compound, on U87 and U373 human glioma cell lines. The addition of CBD to the culture medium led to a dramatic drop of mitochondrial oxidative metabolism [3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H tetrazolium bromide test] and viability in glioma cells, in a concentration-dependent manner that was already evident 24 h after CBD exposure, with an apparent IC(50) of 25 microM. The antiproliferative effect of CBD was partially prevented by the CB2 receptor antagonist N-[(1S)-endo-1,3,3-trimethylbicyclo[2,2,1]heptan-2-yl]-5-(4-chloro-3-methylphenyl)-1-(4-methylbenzyl)-pyrazole-3-carboxamide (SR144528; SR2) and alpha-tocopherol. By contrast, the CB1 cannabinoid receptor antagonist N-(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboximide hydrochloride (SR141716; SR1), capsazepine (vanilloid receptor antagonist), the inhibitors of ceramide generation, or pertussis toxin did not counteract CBD effects. We also show, for the first time, that the antiproliferative effect of CBD was correlated to induction of apoptosis, as determined by cytofluorimetric analysis and single-strand DNA staining, which was not reverted by cannabinoid antagonists. Finally, CBD, administered s.c. to nude mice at the dose of 0.5 mg/mouse, significantly inhibited the growth of subcutaneously implanted U87 human glioma cells. In conclusion, the nonpsychoactive CBD was able to produce a significant antitumor activity both in vitro and in vivo, thus suggesting a possible application of CBD as an antineoplastic agent.

  7. Influence of vitamin D on cisplatin sensitivity in testicular germ cell cancer-derived cell lines and in a NTera2 xenograft model

    DEFF Research Database (Denmark)

    Jørgensen, Anne; Blomberg Jensen, Martin; Nielsen, John Erik

    2013-01-01

    The active form of vitamin D, 1,25-dihydroxyvitamin D(3) (1,25(OH)(2)D(3)) has anti-proliferative, pro-apoptotic, and pro-differentiating effects in somatic cancer cells in vitro and in vivo. 1,25(OH)(2)D(3) also augments the anti-tumor effects of several chemotherapeutic agents, including...... cisplatin, which may have clinical relevance. Given the pro-differentiation effect of vitamin D recently demonstrated in testicular germ cell tumors (TGCTs), we hypothesized that 1,25(OH)(2)D(3) could be a beneficial adjunctive to existing chemotherapy regime used to treat these tumors. In this study, cell...... survival effects of 1,25(OH)(2)D(3), another pro-differentiation compound, retinoic acid and cisplatin were investigated in TGCT-derived cell lines in vitro. 1,25(OH)(2)D(3) augmented the effect of cisplatin in an embryonal carcinoma-derived cell line (NTera2), possibly through downregulation...

  8. Cytotoxic, Antiproliferative and Pro-Apoptotic Effects of 5-Hydroxyl-6,7,3′,4′,5′-Pentamethoxyflavone Isolated from Lantana ukambensis

    Directory of Open Access Journals (Sweden)

    Wamtinga Richard Sawadogo

    2015-12-01

    Full Text Available Lantana ukambensis (Vatke Verdc. is an African food and medicinal plant. Its red fruits are eaten and highly appreciated by the rural population. This plant was extensively used in African folk medicinal traditions to treat chronic wounds but also as anti-leishmanial or cytotoxic remedies, especially in Burkina Faso, Tanzania, Kenya, or Ethiopia. This study investigates the in vitro bioactivity of polymethoxyflavones extracted from a L. ukambensis as anti-proliferative and pro-apoptotic agents. We isolated two known polymethoxyflavones, 5,6,7,3′,4′,5′-hexamethoxyflavone (1 and 5-hydroxy-6,7,3′,4′,5′-pentamethoxyflavone (2 from the whole plant of L. ukambensis. Their chemical structures were determined by spectroscopic analysis and comparison with published data. These molecules were tested for the anti-proliferative, cytotoxic and pro-apoptotic effects on human cancer cells. Among them, 5-hydroxy-6,7,3′,4′,5′-pentamethoxyflavone (2 was selectively cytotoxic against monocytic lymphoma (U937, acute T cell leukemia (Jurkat, and chronic myelogenous leukemia (K562 cell lines, but not against peripheral blood mononuclear cells (PBMCs from healthy donors, at all tested concentrations. Moreover, this compound exhibited significant anti-proliferative and pro-apoptotic effects against U937 acute myelogenous leukemia cells. This study highlights the anti-proliferative and pro-apoptotic effects of 5-hydroxy-6,7,3′,4′,5′-pentamethoxyflavone (2 and provides a scientific basis of traditional use of L. ukambensis.

  9. Synthesis and Biological Evaluation of Novel Phosphatidylcholine Analogues Containing Monoterpene Acids as Potent Antiproliferative Agents.

    Directory of Open Access Journals (Sweden)

    Anna Gliszczyńska

    Full Text Available The synthesis of novel phosphatidylcholines with geranic and citronellic acids in sn-1 and sn-2 positions is described. The structured phospholipids were obtained in high yields (59-87% and evaluated in vitro for their cytotoxic activity against several cancer cell lines of different origin: MV4-11, A-549, MCF-7, LOVO, LOVO/DX, HepG2 and also towards non-cancer cell line BALB/3T3 (normal mice fibroblasts. The phosphatidylcholines modified with monoterpene acid showed a significantly higher antiproliferative activity than free monoterpene acids. The highest activity was observed for the terpene-phospholipids containing the isoprenoid acids in sn-1 position of phosphatidylcholine and palmitic acid in sn-2.

  10. Sulphamoylated 2-methoxyestradiol analogues induce apoptosis in adenocarcinoma cell lines.

    Directory of Open Access Journals (Sweden)

    Michelle Visagie

    Full Text Available 2-Methoxyestradiol (2ME2 is a naturally occurring estradiol metabolite which possesses antiproliferative, antiangiogenic and antitumor properties. However, due to its limited biological accessibility, synthetic analogues have been synthesized and tested in attempt to develop drugs with improved oral bioavailability and efficacy. The aim of this study was to evaluate the antiproliferative effects of three novel in silico-designed sulphamoylated 2ME2 analogues on the HeLa cervical adenocarcinoma cell line and estrogen receptor-negative breast adenocarcinoma MDA-MB-231 cells. A dose-dependent study (0.1-25 μM was conducted with an exposure time of 24 hours. Results obtained from crystal violet staining indicated that 0.5 μM of all 3 compounds reduced the number of cells to 50%. Lactate dehydrogenase assay was used to assess cytotoxicity, while the mitotracker mitochondrial assay and caspase-6 and -8 activity assays were used to investigate the possible occurrence of apoptosis. Tubulin polymerization assays were conducted to evaluate the influence of these sulphamoylated 2ME2 analogues on tubulin dynamics. Double immunofluorescence microscopy using labeled antibodies specific to tyrosinate and detyrosinated tubulin was conducted to assess the effect of the 2ME2 analogues on tubulin dynamics. An insignificant increase in the level of lactate dehydrogenase release was observed in the compounds-treated cells. These sulphamoylated compounds caused a reduction in mitochondrial membrane potential, cytochrome c release and caspase 3 activation indicating apoptosis induction by means of the intrinsic pathway in HeLa and MDA-MB-231 cells. Microtubule depolymerization was observed after exposure to these three sulphamoylated analogues.

  11. The role of autophagy inhibition in the enhanced cytotoxicity of temozolomide on melanoma cell lines

    Directory of Open Access Journals (Sweden)

    O. O. Ryabaya

    2017-01-01

    Full Text Available Background. Despite advantages in treatment of metastatic melanoma it remains resistant to current therapy. Recent evidence indicates that tumor cells could overcome death through autophagy, a process that degrades cellular proteins and organelles to maintain cellular biosynthesis during nutrient deprivation or lack of energy. Objective: to investigate the involvement of autophagy inhibitors chloroquine (CQ and LY-294.002 (LY in temozolomide (TMZ cytotoxicity in human melanoma cell lines.Materials and methods. The study was performed on patient-derived melanoma cell lines Mel Z, Mel IL and Mel MTP. The antiproliferative activity of combined TMZ and autophagy inhibitors treatment was determined by MTT assay and colony-forming assay. Cell cycle analysis, apoptosis activation and expression analysis of key autophagy markers under combined treatment was evaluated.Results. CQ and LY enhanced the cytotoxicity of TMZ and reduced colony formation in 3 melanoma cell lines, moreover both inhibitors increased cell population in G0 / G1 phase of cell cycle in Mel Z, Mel IL cell lines, but not in Mel MTP. CQ and LY synergistically activated apoptosis in all cell lines. The matrix RNA expression analysis of key autophagy genes showed autophagy involvement in enhanced cytotoxicity.Conclusions. Thus, autophagy inhibition on different stages of this process could overcome resistance to TMZ and be applicable as potent target in metastatic melanoma treatment.

  12. Efficient synthesis of RITA and its analogues: derivation of analogues with improved antiproliferative activity via modulation of p53/miR-34a pathway.

    Science.gov (United States)

    Lin, Jinshun; Jin, Xiuli; Bu, Yiwen; Cao, Deliang; Zhang, Nannan; Li, Shangfu; Sun, Qinsheng; Tan, Chunyan; Gao, Chunmei; Jiang, Yuyang

    2012-12-28

    A novel approach to synthesize RITA by practical palladium-catalyzed C-C bond-forming Suzuki reactions at room temperature was developed, which was used for deriving a series of substituted tricyclic α-heteroaryl (furan/thiophene) analogues of RITA under mild conditions. These novel analogues showed notable antiproliferative activity against cancer cell lines with wild-type p53 (i.e., HCT116, A549, MCF-7 and K562), but much less activity in HCT116/p53(-/-) cells. In particular, compound 1f demonstrated promising antiproliferative activity compared to RITA, with IC(50) = 28 nM in MCF-7 vs. 54 nM for RITA, and cancer cell selectivity. Compound 1f markedly activated p53 in HCT116 cells at 100 nM, triggering apoptosis. Importantly, we found that both RITA and compound 1f induced G(0)/G(1) cell cycle arrest by up-regulating miR-34a, which in turn down-regulated the expression of cell cycle-related proteins CDK4 and E2F1. In summary, this study reports an effective synthetic approach for RITA and its analogues, and elucidates a novel antiproliferative mechanism of these compounds.

  13. In Vitro Antioxidant and Antiproliferative Activities of Novel Orange Peel Extract and It's Fractions on Leukemia HL-60 Cells.

    Science.gov (United States)

    Diab, Kawthar A E; Shafik, Reham Ezzat; Yasuda, Shin

    2015-01-01

    In the present work, novel orange peel was extracted with 100%EtOH (ethanol) and fractionated into four fractions namely F1, F2, F3, F4 which were eluted from paper chromatographs using 100%EtOH, 80%EtOH, 50%EtOH and pure water respectively. The crude extract and its four fractions were evaluated for their total polyphenol content (TPC), total flavonoid content (TFC) and radical scavenging activity using DPPH (1,1-diphenyl-2-picrylhydrazyl) assay. Their cytotoxic activity using WST assay and DNA damage by agarose gel electrophoresis were also evaluated in a human leukemia HL-60 cell line. The findings revealed that F4 had the highest TPC followed by crude extract, F2, F3 and F1. However, the crude extract had the highest TFC followed by F4, F3, F2, and F1. Depending on the values of EC50 and trolox equivalent antioxidant capacity, F4 possessed the strongest antioxidant activity while F1 and F2 displayed weak antioxidant activity. Further, incubation HL-60 cells with extract/fractions for 24h caused an inhibition of cell viability in a concentration- dependent manner. F3 and F4 exhibited a high antiproliferative activity with a narrow range of IC50 values (45.9 - 48.9 μg/ml). Crude extract exhibited the weakest antiproliferative activity with an IC50 value of 314.89 μg/ml. Analysis of DNA fragmentation displayed DNA degradation in the form of a smear-type pattern upon agarose gel after incubation of HL-60 cells with F3 and F4 for 6 h. Overall, F3 and F4 appear to be good sources of phytochemicals with antioxidant and potential anticancer activities.

  14. Antiproliferative effects of an analog of curcumin in Hep-2 cells: a comparative study with curcumin.

    Science.gov (United States)

    Kumaravel, Mohankumar; Sankar, Pajaniradje; Latha, Periyasamy; Benson, Chellakan S; Rukkumani, Rajagopalan

    2013-02-01

    Curcumin, the major active principle of Curcuma longa, is one of the promising, plant-derived, chemopreventive agents being studied for its anticarcinogenic and antioxidant properties. Hence, in our study, we aimed at testing the antiproliferative efficacy of an o-hydroxyl substituted analog of curcumin, bis demethoxy curcumin analog (BDMC-A), and comparing its efficacy with that of curcumin. BDMC-A was synthesised with a yield of 78% and 98% purity. Hep-2 cells and the MTT cell viability assay were used to examine cell proliferation. LDH assay and cell counts were performed to assess the cytotoxicity and anti-proliferative effects of the compound, respectively. Flow cytometry followed by Western blot were performed to investigate the cell cycle distribution. BDMC-A inhibited cell proliferation at a much lower concentration (IC50 20 microM) than curcumin (IC50 50 microM). Similar effects were observed in the LDH release and cell count assays. Flow cytometric studies using propidium iodide showed accumulation of cells in the G0/G1 phase and the arrest was further confirmed by immunoblotting of protein cyclin D1. BDMC-A was more potent in inhibiting the cells at a lower dose when compared with curcumin. Our results showed that the analog of curcumin is likely to possess more efficacy compared with curcumin in inhibiting cancer.

  15. Anti-Proliferative Activity of Meroditerpenoids Isolated from the Brown Alga Stypopodium flabelliforme against Several Cancer Cell Lines

    Directory of Open Access Journals (Sweden)

    Patricia Valentao

    2011-05-01

    Full Text Available The sea constitutes one of the most promising sources of novel compounds with potential application in human therapeutics. In particular, algae have proved to be an interesting source of new bioactive compounds. In this work, six meroditerpenoids (epitaondiol, epitaondiol diacetate, epitaondiol monoacetate, stypotriol triacetate, 14-ketostypodiol diacetate and stypodiol isolated from the brown alga Stypopodium flabelliforme were tested for their cell proliferation inhibitory activity in five cell lines. Cell lines tested included human colon adenocarcinoma (Caco-2, human neuroblastoma (SH-SY5Y, rat basophilic leukemia (RBL-2H3, murine macrophages (RAW.267 and Chinese hamster fibroblasts (V79. Antimicrobial activity of the compounds was also evaluated against Staphylococcus aureus, Salmonella typhimurium, Proteus mirabilis, Bacillus cereus, Enterococcus faecalis and Micrococcus luteus. Overall, the compounds showed good activity against all cell lines, with SH-SY5Y and RAW.267 being the most susceptible. Antimicrobial capacity was observed for epitaondiol monoacetate, stypotriol triacetate and stypodiol, with the first being the most active. The results suggest that these molecules deserve further studies in order to evaluate their potential as therapeutic agents.

  16. Antiproliferative mechanism of the methanolic extract of Enterolobium cyclocarpum (Jacq.) Griseb. (Fabaceae).

    Science.gov (United States)

    Sowemimo, Abimbola; Venables, Luanne; Odedeji, Modeola; Koekemoer, Trevor; van de Venter, Maryna; Hongbing, Liu

    2015-01-15

    Enterolobium cyclocarpum (Jacq.) Griseb. is a tropical tree that has folkloric implications against many ailments and diseases including cancer. To explore the ethnopharmacological claims against cancer, the cytotoxicity of the methanolic extract of the leaves, was investigated using the brine shrimp lethality assay, MTT assay using cervical (HeLa) and breast (MCF7) cancer cell lines, cell cycle analysis and Annexin V-FITC/PI assay. In the brine shrimp lethality assay, the extract showed cytotoxic activity with LC50 value of 31.63 µg/mL. Significant growth inhibition was observed in both cell lines with IC50 values of 2.07 ± 1.30 µg/mL and 11.84 ± 1.18 µg/mL for HeLa and MCF7, respectively. Cell cycle analysis indicated that HeLa cells were arrested in the G2/M phase while MCF7 cells arrested in the G1/G0 phase. The Annexin V-FITC/PI assay revealed phosphatidylserine translocation in both cell lines and thus apoptosis induction upon treatment with the extract. The study demonstrated the potential antiproliferative activity of Enterolobium cyclocarpum thereby supporting the traditional claim and provides basis for further mechanistic studies and isolation of active constituents. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  17. Phenolic compounds, antioxidant potential and antiproliferative potential of 10 common edible flowers from China assessed using a simulated in vitro digestion-dialysis process combined with cellular assays.

    Science.gov (United States)

    Huang, Weisu; Mao, Shuqin; Zhang, Liuquan; Lu, Baiyi; Zheng, Lufei; Zhou, Fei; Zhao, Yajing; Li, Maiquan

    2017-11-01

    Phenolic compounds could be sensitive to digestive conditions, thus a simulated in vitro digestion-dialysis process and cellular assays was used to determine phenolic compounds and antioxidant and antiproliferative potentials of 10 common edible flowers from China and their functional components. Gallic acid, ferulic acid, and rutin were widely present in these flowers, which demonstrated various antioxidant capacities (DPPH, ABTS, FRAP and CAA values) and antiproliferative potentials measured by the MTT method. Rosa rugosa, Paeonia suffruticosa and Osmanthus fragrans exhibited the best antioxidant and antiproliferative potentials against HepG2, A549 and SGC-7901 cell lines, except that Osmanthus fragrans was not the best against SGC-7901 cells. The in vitro digestion-dialysis process decreased the antioxidant potential by 33.95-90.72% and the antiproliferative potential by 13.22-87.15%. Following the in vitro digestion-dialysis process, phenolics were probably responsible for antioxidant (R 2 = 0.794-0.924, P digestion and dialysis along with the reduction of phenolics. Nevertheless, they still had considerable antioxidant and antiproliferative potential, which merited further investigation in in vivo studies. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  18. Curcumin Conjugated with PLGA Potentiates Sustainability, Anti-Proliferative Activity and Apoptosis in Human Colon Carcinoma Cells

    Science.gov (United States)

    Waghela, Bhargav N.; Sharma, Anupama; Dhumale, Suhashini; Pandey, Shashibahl M.; Pathak, Chandramani

    2015-01-01

    Curcumin, an ingredient of turmeric, exhibits a variety of biological activities such as anti-inflammatory, anti-atherosclerotic, anti-proliferative, anti-oxidant, anti-cancer and anti-metastatic. It is a highly pleiotropic molecule that inhibits cell proliferation and induces apoptosis in cancer cells. Despite its imperative biological activities, chemical instability, photo-instability and poor bioavailability limits its utilization as an effective therapeutic agent. Therefore, enhancing the bioavailability of curcumin may improve its therapeutic index for clinical setting. In the present study, we have conjugated curcumin with a biodegradable polymer Poly (D, L-lactic-co-glycolic acid) and evaluated its apoptotic potential in human colon carcinoma cells (HCT 116). The results show that curcumin-PLGA conjugate efficiently inhibits cell proliferation and cell survival in human colon carcinoma cells as compared to native curcumin. Additionally, curcumin conjugated with PLGA shows improved cellular uptake and exhibits controlled release at physiological pH as compared to native curcumin. The curcumin-PLGA conjugate efficiently activates the cascade of caspases and promotes intrinsic apoptotic signaling. Thus, the results suggest that conjugation potentiates the sustainability, anti-proliferative and apoptotic activity of curcumin. This approach could be a promising strategy to improve the therapeutic index of cancer therapy. PMID:25692854

  19. Anti-proliferative effect of metformin on a feline injection site sarcoma cell line independent of Mtor inhibition.

    Science.gov (United States)

    Pierro, J; Saba, C; McLean, K; Williams, R; Karpuzoglu, E; Prater, R; Hoover, K; Gogal, R

    2017-10-01

    Metformin is an oral hypoglycemic drug that has been shown to inhibit cancer cell proliferation via up-regulation of AMPK (AMP-activated protein kinase), and possibly inhibition of mTOR (mammalian target of rapamycin). The purpose of this study was to evaluate the effects of metformin on a feline injection site sarcoma cell line. Cells from a feline injection site sarcoma cell line were treated with metformin at varied concentrations. A dose-dependent decrease in cell viability following metformin treatment was observed, with an IC50 of 8.0mM. Using flow cytometry, the mechanism of cell death was determined to be apoptosis or necrosis. To evaluate the role of mTOR inhibition in metformin-induced cell death, Western blot was performed. No inhibition of mTOR or phosphorylated mTOR was found. Although metformin treatment leads to apoptotic or necrotic cell death in feline injection site sarcoma cells, the mechanism does not appear to be mediated by mTOR inhibition. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. The nontoxic natural compound Curcumin exerts anti-proliferative, anti-migratory, and anti-invasive properties against malignant gliomas

    International Nuclear Information System (INIS)

    Senft, Christian; Polacin, Margareth; Priester, Maike; Seifert, Volker; Kögel, Donat; Weissenberger, Jakob

    2010-01-01

    New drugs are constantly sought after to improve the survival of patients with malignant gliomas. The ideal substance would selectively target tumor cells without eliciting toxic side effects. Here, we report on the anti-proliferative, anti-migratory, and anti-invasive properties of the natural, nontoxic compound Curcumin observed in five human glioblastoma (GBM) cell lines in vitro. We used monolayer wound healing assays, modified Boyden chamber trans-well assays, and cell growth assays to quantify cell migration, invasion, and proliferation in the absence or presence of Curcumin at various concentrations. Levels of the transcription factor phospho-STAT3, a potential target of Curcumin, were determined by sandwich-ELISA. Subsequent effects on transcription of genes regulating the cell cycle were analyzed by quantitative real-time PCR. Effects on apoptosis were determined by caspase assays. Curcumin potently inhibited GBM cell proliferation as well as migration and invasion in all cell lines contingent on dose. Simultaneously, levels of the biologically active phospho-STAT3 were decreased and correlated with reduced transcription of the cell cycle regulating gene c-Myc and proliferation marking Ki-67, pointing to a potential mechanism by which Curcumin slows tumor growth. Curcumin is part of the diet of millions of people every day and is without known toxic side effects. Our data show that Curcumin bears anti-proliferative, anti-migratory, and anti-invasive properties against GBM cells in vitro. These results warrant further in vivo analyses and indicate a potential role of Curcumin in the treatment of malignant gliomas

  1. A Vitex agnus-castus extract inhibits cell growth and induces apoptosis in prostate epithelial cell lines.

    Science.gov (United States)

    Weisskopf, M; Schaffner, W; Jundt, G; Sulser, T; Wyler, S; Tullberg-Reinert, H

    2005-10-01

    Extracts of Vitex agnus-castus fruits (VACF) are described to have beneficial effects on disorders related to hyperprolactinemia (cycle disorders, premenstrual syndrome). A VACF extract has recently been shown to exhibit antitumor activities in different human cancer cell lines. In the present study, we explored the antiproliferative effects of a VACF extract with a particular focus on apoptosis-inducing and potential cytotoxic effects. Three different human prostate epithelial cell lines (BPH-1, LNCaP, PC-3) representing different disease stages and androgen responsiveness were chosen. The action of VACF on cell viability was assessed using the WST-8-tetrazolium assay. Cell proliferation in cells receiving VACF alone or in combination with a pan-caspase inhibitor (Z-VAD-fmk) was quantified using a Crystal Violet assay. Flow cytometric cell cycle analysis and measurement of DNA fragmentation using an ELISA method were used for studying the induction of apoptosis. Lactate dehydrogenase (LDH) activity was determined as a marker of cytotoxicity. The extract inhibited proliferation of all three cell lines in a concentration-dependent manner with IC (50) values below 10 microg/mL after treatment for 48 h. Cell cycle analysis and DNA fragmentation assays suggest that part of the cells were undergoing apoptosis. The VACF-induced decrease in cell number was partially inhibited by Z-VAD-fmk, indicating a caspase-dependent apoptotic cell death. However, the concentration-dependent LDH activity of VACF treated cells indicated cytotoxic effects as well. These data suggest that VACF contains components that inhibit proliferation and induce apoptosis in human prostate epithelial cell lines. The extract may be useful for the prevention and/or treatment not only of benign prostatic hyperplasia but also of human prostate cancer.

  2. In vitro anti-proliferative and anti-inflammatory activity of leaf and fruit extracts from Vaccinium bracteatum Thunb.

    Science.gov (United States)

    Landa, Premysl; Skalova, Lenka; Bousova, Iva; Kutil, Zsofia; Langhansova, Lenka; Lou, Ji-Dong; Vanek, Tomas

    2014-01-01

    The aim of this study was to evaluate in vitro anti-proliferative (tested on MCF-7, MDA-MB-231, and MCF-10A cell lines) and anti-inflammatory (evaluated as inhibition of prostaglandin E2 synthesis catalyzed by cyclooxygenase-2) effect of various extracts from Vaccinium bracteatum leaves and fruits. The highest anti-proliferative effect possessed leaf dichloromethane extract with IC50 values ranging from 93 to 198 μg/mL. In the case of cyclooxygenase-2 inhibition, n-hexane, dichloromethane, and ethanol fruit extracts showed the best activity with IC50 values = 2.0, 5.4, and 12.7 μg/mL, respectively. These results indicate that V. bracteatum leaves and fruits could be useful source of anti-cancer and anti-inflammatory compounds.

  3. Sequentially administrated of pemetrexed with icotinib/erlotinib in lung adenocarcinoma cell lines in vitro.

    Science.gov (United States)

    Feng, Xiuli; Zhang, Yan; Li, Tao; Li, Yu

    2017-12-26

    Combination of chemotherapy and epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) had been proved to be a potent anti-drug for the treatment of tumors. However, survival time was not extended for the patients with lung adenocarcinoma (AdC) compared with first-line chemotherapy. In the present study, we attempt to assess the optimal schedule of the combined administration of pemetrexed and icotinib/erlotinib in AdC cell lines. Human lung AdC cell lines with wild-type (A549), EGFR T790M (H1975) and activating EGFR mutation (HCC827) were applied in vitro to assess the differential efficacy of various sequential regimens on cell viability, cell apoptosis and cell cycle distribution. The results suggested that the antiproliferative effect of the sequence of pemetrexed followed by icotinib/erlotinib was more effective than that of icotinib/erlotinib followed by pemetrexed. Additionally, a reduction of G1 phase and increased S phase in sequence of pemetrexed followed by icotinib/erlotinib was also observed, promoting cell apoptosis. Thus, the sequential administration of pemetrexed followed by icotinib/erlotinib exerted a synergistic effect on HCC827 and H1975 cell lines compared with the reverse sequence. The sequential treatment of pemetrexed followed by icotinib/erlotinib has been demonstrated promising results. This treatment strategy warrants further confirmation in patients with advanced lung AdC.

  4. Synthesis and antiproliferative activity of some A- and B modified D-homo lactone androstane derivatives

    Directory of Open Access Journals (Sweden)

    Savić Marina P.

    2013-01-01

    Full Text Available An efficient synthesis of several A- and B-modified D-homo lactone androstane derivatives from 3β-hydroxy-17-oxa-D-homoandrost-5-en-16-one (1 is reported. 17-Oxa-Dhomoandrost- 4-ene-3,16-dione (2, obtained by the Oppenauer oxidation of compound 1, was converted via the unstable intermediate 3,16-dioxo-4,17-dioxa-D-homoandrostane- 5α-carboxaldehyde (3 to 17-oxa-D-homo-3,5-seco-4-norandrostan-5-one-3-carboxylic acid (4, which was also obtained directly from compound 2. Compound 1 was acetylated to give 17-oxa-D-homoandrost-5-en-16-on-3β-yl acetate (5 which was then oxidized with chromium(VI-oxide in 50% acetic acid or with meta-chlorperbenzoic acid and chromium(VI-oxide to yield compounds 6-8 and 5α-hydroxy-17-oxa-D-homoandrostane- 6,16-dion-3β-yl acetate (9, respectively. The oximination of compound 9 gave a mixture of 6(E-hydroximino-5α-hydroxy-17-oxa-D-homoandrostan-16-on-3β-yl acetate (10 and 6(Z-hydroximino-5α-hydroxy-17-oxa-D-homoandrostan-16-on-3β-yl acetate (11, the hydrolysis of which gave 6(E-hydroximino-3β,5α-dihydroxy-17-oxa-D-homoandrostan- 16-one (12 and 6(Z-hydroximino-3β,5α-dihydroxy-17-oxa-D-homoandrostan-16-one (13. 6-Nitrile-17-oxa-5,6-seco-D-homoandrostane-5,16-dion-3β-yl acetate (14 was obtained under the Beckmann fragmentation of compounds 10 and 11. Only pure and stable compounds (1, 2, 4, 5, 9 and 14 were tested in vitro on six malignant cell lines (MCF-7, MDA-MB-231, PC-3, HeLa, HT-29, K562 and one non-tumor MRC-5 cell line. Significant antiproliferative activity against MDA-MB-231 cells showed compounds 1, 5 and 9, while compound 2 exhibited a strong antiproliferative activity. Only compound 14 showed weak antiproliferative activity against MCF-7 cells. All tested compounds were not toxic on MRC-5 cells, whereas Doxorubicin was highly toxic on these cells. [Projekat Ministarstva nauke Republike Srbije, br. 172021

  5. Biological and Molecular Effects of Small Molecule Kinase Inhibitors on Low-Passage Human Colorectal Cancer Cell Lines

    Directory of Open Access Journals (Sweden)

    Falko Lange

    2014-01-01

    Full Text Available Low-passage cancer cell lines are versatile tools to study tumor cell biology. Here, we have employed four such cell lines, established from primary tumors of colorectal cancer (CRC patients, to evaluate effects of the small molecule kinase inhibitors (SMI vemurafenib, trametinib, perifosine, and regorafenib in an in vitro setting. The mutant BRAF (V600E/V600K inhibitor vemurafenib, but also the MEK1/2 inhibitor trametinib efficiently inhibited DNA synthesis, signaling through ERK1/2 and expression of genes downstream of ERK1/2 in BRAF mutant cells only. In case of the AKT inhibitor perifosine, three cell lines showed a high or intermediate responsiveness to the drug while one cell line was resistant. The multikinase inhibitor regorafenib inhibited proliferation of all CRC lines with similar efficiency and independent of the presence or absence of KRAS, BRAF, PIK3CA, and TP53 mutations. Regorafenib action was associated with broad-range inhibitory effects at the level of gene expression but not with a general inhibition of AKT or MEK/ERK signaling. In vemurafenib-sensitive cells, the antiproliferative effect of vemurafenib was enhanced by the other SMI. Together, our results provide insights into the determinants of SMI efficiencies in CRC cells and encourage the further use of low-passage CRC cell lines as preclinical models.

  6. Synthesis and In Vitro Antiproliferative Activity of Novel Phenyl Ring-Substituted 5-Alkyl-12(H-quino[3,4-b][1,4]benzothiazine Derivatives

    Directory of Open Access Journals (Sweden)

    Andrzej Zięba

    2016-11-01

    Full Text Available A novel series of tetracyclic quinobenzothiazine derivatives was synthetized. Compounds containing a substituent (hydroxyl, methyl, phenyl, piperidyl, or piperazinyl in positions 9 and 11 were obtained by cyclization of suitable 4-aminoquinolinium-3-thiolates. Quinobenzothiazine 10-O-substituted derivatives were obtained by alkylating the hydroxyl group in position 10 of the parent (quinobenzothiazine system. Antiproliferative activity of the synthesized compounds was studied using cultured neoplastic cells (MDA-MB-231, SNB-19, and C-32 cell lines. Four selected compounds were investigated in more detail for cytotoxicity and antiproliferative effect. Transcriptional activity of genes regulating cell cycle (TP53, apoptosis (BAX, BCL-2, as well as proliferation (H3 were assessed. Finally, the ability of the selected compounds to bind DNA was checked in the presence of ethidium bromide.

  7. A synthetic cryptochrome inhibitor induces anti-proliferative effects and increases chemosensitivity in human breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Chun, Sung Kook [Department of Brain & Cognitive Sciences, Daegu-Gyeongbuk Institute of Science & Technology, Daegu, 711-873 (Korea, Republic of); Department of Biological Sciences, Seoul National University, Seoul, 151-747 (Korea, Republic of); Department of Brain & Cognitive Sciences, Seoul National University, Seoul, 151-747 (Korea, Republic of); Chung, Sooyoung [Department of Biological Sciences, Seoul National University, Seoul, 151-747 (Korea, Republic of); Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, 136-705 (Korea, Republic of); Kim, Hee-Dae [Department of Biological Sciences, Seoul National University, Seoul, 151-747 (Korea, Republic of); Lee, Ju Hyung [Department of Systems Biology, Yonsei University College of Life Science and Biotechnology, Seoul 120-749 (Korea, Republic of); Jang, Jaebong [College of Pharmacy, Seoul National University, Seoul, 151-742 (Korea, Republic of); Kim, Jeongah; Kim, Doyeon [Department of Brain & Cognitive Sciences, Daegu-Gyeongbuk Institute of Science & Technology, Daegu, 711-873 (Korea, Republic of); Department of Biological Sciences, Seoul National University, Seoul, 151-747 (Korea, Republic of); Department of Brain & Cognitive Sciences, Seoul National University, Seoul, 151-747 (Korea, Republic of); Son, Gi Hoon [Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, 136-705 (Korea, Republic of); Oh, Young J. [Department of Systems Biology, Yonsei University College of Life Science and Biotechnology, Seoul 120-749 (Korea, Republic of); Suh, Young-Ger [College of Pharmacy, Seoul National University, Seoul, 151-742 (Korea, Republic of); Lee, Cheol Soon [Gachon Clinical Trials Center, Gachon University, Incheon, 417-842 (Korea, Republic of); and others

    2015-11-13

    Disruption of circadian rhythm is a major cause of breast cancer in humans. Cryptochrome (CRY), a circadian transcription factor, is a risk factor for initiation of breast cancer, and it is differentially expressed between normal and breast cancer tissues. Here, we evaluated the anti-proliferative and pro-apoptotic activity of KS15, a recently discovered small-molecule inhibitor of CRY, in human breast cancer cells. First, we investigated whether KS15 treatment could promote E-box-mediated transcription by inhibiting the activity of CRY in MCF-7 human breast cancer cells. Protein and mRNA levels of regulators of cell cycle and apoptosis, as well as core clock genes, were differentially modulated in response to KS15. Next, we investigated whether KS15 could inhibit proliferation and increase sensitivity to anti-tumor drugs in MCF-7 cells. We found that KS15 decreased the speed of cell growth and increased the chemosensitivity of MCF-7 cells to doxorubicin and tamoxifen, but had no effect on MCF-10A cells. These findings suggested that pharmacological inhibition of CRY by KS15 exerts an anti-proliferative effect and increases sensitivity to anti-tumor drugs in a specific type of breast cancer. - Highlights: • Cryptochrome inhibitor (KS15) has anti-tumor activity to human breast cancer cells. • KS15 induces differential changes in cell cycle regulators and pro-apoptotic genes. • KS15 inhibits MCF-7 cell growth and enhances susceptibility to anti-tumor drugs.

  8. A synthetic cryptochrome inhibitor induces anti-proliferative effects and increases chemosensitivity in human breast cancer cells

    International Nuclear Information System (INIS)

    Chun, Sung Kook; Chung, Sooyoung; Kim, Hee-Dae; Lee, Ju Hyung; Jang, Jaebong; Kim, Jeongah; Kim, Doyeon; Son, Gi Hoon; Oh, Young J.; Suh, Young-Ger; Lee, Cheol Soon

    2015-01-01

    Disruption of circadian rhythm is a major cause of breast cancer in humans. Cryptochrome (CRY), a circadian transcription factor, is a risk factor for initiation of breast cancer, and it is differentially expressed between normal and breast cancer tissues. Here, we evaluated the anti-proliferative and pro-apoptotic activity of KS15, a recently discovered small-molecule inhibitor of CRY, in human breast cancer cells. First, we investigated whether KS15 treatment could promote E-box-mediated transcription by inhibiting the activity of CRY in MCF-7 human breast cancer cells. Protein and mRNA levels of regulators of cell cycle and apoptosis, as well as core clock genes, were differentially modulated in response to KS15. Next, we investigated whether KS15 could inhibit proliferation and increase sensitivity to anti-tumor drugs in MCF-7 cells. We found that KS15 decreased the speed of cell growth and increased the chemosensitivity of MCF-7 cells to doxorubicin and tamoxifen, but had no effect on MCF-10A cells. These findings suggested that pharmacological inhibition of CRY by KS15 exerts an anti-proliferative effect and increases sensitivity to anti-tumor drugs in a specific type of breast cancer. - Highlights: • Cryptochrome inhibitor (KS15) has anti-tumor activity to human breast cancer cells. • KS15 induces differential changes in cell cycle regulators and pro-apoptotic genes. • KS15 inhibits MCF-7 cell growth and enhances susceptibility to anti-tumor drugs.

  9. Polysaccharide peptide isolated from grass-cultured Ganoderma lucidum induces anti-proliferative and pro-apoptotic effects in the human U251 glioma cell line.

    Science.gov (United States)

    Wang, Chunhua; Lin, Dongmei; Chen, Quan; Lin, Shuqian; Shi, Songsheng; Chen, Chunmei

    2018-04-01

    The Ganoderma lucidum ( G. lucidum ) mushroom is one of the most extensively studied functional foods, known for its numerous health benefits, including the inhibition of tumor cell growth. The present study assessed the anti-proliferative and pro-apoptotic activity of a novel G. lucidum polysaccharide peptide (GL-PP) in human glioma U251 cells, which was purified from grass-cultured G. lucidum . GL-PP is a glycopeptide with an average molecular weight of 42,635 Da and a polysaccharide-to-peptide ratio of 88.70:11.30. The polysaccharides were composed of l-arabinose, d-mannose and d-glucose at a molar ratio of 1.329:0.372:2.953 and a total of 17 amino acids were detected. The results of the current study demonstrated that GL-PP significantly inhibited U251 cellular proliferation. The proportion of G 0 /G 1 phase cells and sub-G 1 phase cells significantly increased as the concentration of GL-PP increased, as did the activity of caspase-3. These results indicate that GL-PP directly inhibited human glioma U251 proliferation by inducing cell cycle arrest and promoting apoptosis.

  10. Anti-mitotic potential of 7-diethylamino-3(2′-benzoxazolyl)-coumarin in 5-fluorouracil-resistant human gastric cancer cell line SNU620/5-FU

    International Nuclear Information System (INIS)

    Kim, Nam Hyun; Kim, Su-Nam; Oh, Joa Sub; Lee, Seokjoon; Kim, Yong Kee

    2012-01-01

    Highlights: ► DBC exerts antiproliferative potential against 5FU-resistant human gastric cancer cells. ► This effect is mediated by destabilization of microtubules and subsequent mitotic arrest. ► DBC enhances apoptosis via caspase activation and downregulation of antiapoptotic genes. -- Abstract: In this study, we investigate an anti-mitotic potential of the novel synthetic coumarin-based compound, 7-diethylamino-3(2′-benzoxazolyl)-coumarin, in 5-fluorouracil-resistant human gastric cancer cell line SNU-620-5FU and its parental cell SNU-620. It exerts the anti-proliferative effects with similar potencies against both cancer cells, which is mediated by destabilization of microtubules and subsequent mitotic arrest. Furthermore, this compound enhances caspase-dependent apoptotic cell death via decreased expression of anti-apoptotic genes. Taken together, our data strongly support anti-mitotic potential of 7-diethylamino-3(2′-benzoxazolyl)-coumarin against drug-resistant cancer cells which will prompt us to further develop as a novel microtubule inhibitor for drug-resistant cancer chemotherapy.

  11. Triterpenoid Saponins from Anemone rivularis var. Flore-Minore and Their Anti-Proliferative Activity on HSC-T6 Cells.

    Science.gov (United States)

    Wang, Xiao-Yang; Gao, Hui; Xie, Xiao-Jie; Jurhiin, Jirimubatu; Zhang, Mu-Zi-He; Zhou, Yan-Ping; Liu, Rui; Ning, Meng; Han, Jin; Tang, Hai-Feng

    2018-02-23

    Five previously undescribed triterpenoid saponins ( 1 - 5 ), along with eight known ones ( 6 - 13 ), were isolated from the whole plants of Anemone rivularis var. flore-minore . Their structures were clarified by extensive spectroscopic data and chemical evidence. For the first time, the lupane-type saponins ( 3 and 12 ) were reported from the Anemone genus. The anti-proliferative activity of all isolated saponins was evaluated on hepatic stellate cells (HSC-T6). Saponins 12 and 13 , which possess more monosaccharides than the others, displayed potent anti-proliferative activity, with IC 50 values of 18.21 and 15.56 μM, respectively.

  12. Antiproliferative and Antibacterial Activities of Cirsium scabrum from Tunisia

    Directory of Open Access Journals (Sweden)

    Ramla Sahli

    2017-01-01

    Full Text Available Several Cirsium species are known for their uses in traditional medicine and consequently are studied for their phytochemical content and their biological activities. In the framework of a previous study conducted on eight extremophile plants from Tunisia, we highlighted that the crude methanolic extract of C. scabrum, a not investigated thistle, showed moderate but quite selective cytotoxic activity against the cancerous cell line J774 compared to the noncancerous cell line WI38 (IC50 = 11.53 μg/ml on J774, IC50 = 29.89 µg/ml on WI38, and selectivity index = 2.6. In the current study, the partitions of the leaves of C. scabrum were analyzed for their antiproliferative activity on the same cell lines. From the most active petroleum ether partition, we isolated four triterpenoids including lupeol, taraxasterol acetate, and a (1 : 1 mixture of 25-hydroperoxycycloart-23-en-3β-ol and 24-hydroperoxycycloart-25-en-3β-ol. These two cycloartane-type triterpenoids are mostly responsible for this cytotoxic activity. On the other hand, the antimicrobial potential of this plant was also evaluated against 36 microorganisms. The moderate antibacterial activity against 6 Staphylococcus aureus and 2 Dermabacter hominis strains is mainly attributed to the butanol partition whose major compounds are glycosides of flavones.

  13. Antiproliferative and Antibacterial Activities of Cirsium scabrum from Tunisia.

    Science.gov (United States)

    Sahli, Ramla; Rivière, Céline; Dufloer, Cédric; Beaufay, Claire; Neut, Christel; Bero, Joanne; Hennebelle, Thierry; Roumy, Vincent; Ksouri, Riadh; Quetin-Leclercq, Joelle; Sahpaz, Sevser

    2017-01-01

    Several Cirsium species are known for their uses in traditional medicine and consequently are studied for their phytochemical content and their biological activities. In the framework of a previous study conducted on eight extremophile plants from Tunisia, we highlighted that the crude methanolic extract of C. scabrum , a not investigated thistle, showed moderate but quite selective cytotoxic activity against the cancerous cell line J774 compared to the noncancerous cell line WI38 (IC 50 = 11.53  μ g/ml on J774, IC 50 = 29.89  µ g/ml on WI38, and selectivity index = 2.6). In the current study, the partitions of the leaves of C. scabrum were analyzed for their antiproliferative activity on the same cell lines. From the most active petroleum ether partition, we isolated four triterpenoids including lupeol, taraxasterol acetate, and a (1 : 1) mixture of 25-hydroperoxycycloart-23-en-3 β -ol and 24-hydroperoxycycloart-25-en-3 β -ol. These two cycloartane-type triterpenoids are mostly responsible for this cytotoxic activity. On the other hand, the antimicrobial potential of this plant was also evaluated against 36 microorganisms. The moderate antibacterial activity against 6 Staphylococcus aureus and 2 Dermabacter hominis strains is mainly attributed to the butanol partition whose major compounds are glycosides of flavones.

  14. Effect of Genistein and 17-β Estradiol on the Viability and Apoptosis of Human Hepatocellular Carcinoma HepG2 cell line

    Directory of Open Access Journals (Sweden)

    Masumeh Sanaei

    2017-01-01

    Full Text Available Background: One of the most lethal cancers is hepatocellular carcinoma (HCC. Genistein (GE is a choice compound for treatment of certain types of cancer. Phytoestrogens are plant derivatives that bear a structural similarity to 17-β estradiol (E2 and act in a similar manner. They are a group of lipophillic plant compounds with tumorigenic and antitumorigenic effects. E2 has stimulatory and inhibitory effects on cancer cell lines. This study was designed to investigate the antiproliferative and apoptotic effects of GE and E2 on the HCC HepG2 cell line. Materials and Methods: HepG2 cells were cultured and treated with various concentrations of GE and E2 and then 3-[4, 5-dimethyl-2-thiazolyl]-2, 5-diphenyl-2H-tetrazolium bromideand flow cytometry assay were performed to determine cell viability and apoptosis. Results: GE and E2 induced apoptosis and inhibited cell growth significantly. Reduction of cell viability by 50% required 20 μM E2 for E2-treatment groups and 20 μMGE for GE-treatment groups. The percentage of the GE-treated apoptotic cells was reduced by about 35%, 42%, and 47% (P < 0.001 and that of E2-treated groups 34%, 39%, and 42% (P < 0.001 after 24, 48, and 72 h, respectively. Conclusions: Our experimental work clearly demonstrated that GE and E2 exhibited significant antiproliferative and apoptotic effects on human HCC HepG2 cells.

  15. Design, Synthesis and Evaluation of Antiproliferative Activity of New Benzimidazolehydrazones

    Directory of Open Access Journals (Sweden)

    Valentina Onnis

    2016-04-01

    Full Text Available The synthesis and antiproliferative activity of new benzimidazole derivatives bearing an hydrazone mojety at the 2-position is described. The new N′-(4-arylidene-1H-benzo[d]imidazole-2-carbohydrazides were evaluated for their cytostatic activity toward the murine leukemia (L1210, human T-cell leukemia (CEM, human cervix carcinoma (HeLa and human pancreas carcinoma cells (Mia Paca-2. A preliminary structure-activity relationship could be defined. Some of the compounds possess encouraging and consistent antiproliferative activity, having IC50 values in the low micromolar range.

  16. Antioxidant, Antimicrobial and Antiproliferative Activities of Five Lichen Species

    Directory of Open Access Journals (Sweden)

    Snežana Marković

    2011-08-01

    Full Text Available The antioxidative, antimicrobial and antiproliferative potentials of the methanol extracts of the lichen species Parmelia sulcata, Flavoparmelia caperata, Evernia prunastri, Hypogymnia physodes and Cladonia foliacea were evaluated. The total phenolic content of the tested extracts varied from 78.12 to 141.59 mg of gallic acid equivalent (GA/g of extract and the total flavonoid content from 20.14 to 44.43 mg of rutin equivalent (Ru/g of extract. The antioxidant capacities of the lichen extracts were determined by 2,2-diphenyl-1-picrylhydrazyl (DPPH radicals scavenging. Hypogymnia physodes with the highest phenolic content showed the strongest DPPH radical scavenging effect. Further, the antimicrobial potential of the lichen extracts was determined by a microdilution method on 29 microorganisms, including 15 strains of bacteria, 10 species of filamentous fungi and 4 yeast species. A high antimicrobial activity of all the tested extracts was observed with more potent inhibitory effects on the growth of Gram (+ bacteria. The highest antimicrobial activity among lichens was demonstrated by Hypogymnia physodes and Cladonia foliacea. Finally, the antiproliferative activity of the lichen extracts was explored on the colon cancer adenocarcinoma cell line HCT-116 by MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide viability assay and acridine orange/ethidium bromide staining. The methanol extracts of Hypogymnia physodes and Cladonia foliacea showed a better cytotoxic activity than the other extracts. All lichen species showed the ability to induce apoptosis of HCT-116 cells.

  17. Antioxidant, Antimicrobial and Antiproliferative Activities of Five Lichen Species

    Science.gov (United States)

    Mitrović, Tatjana; Stamenković, Slaviša; Cvetković, Vladimir; Tošić, Svetlana; Stanković, Milan; Radojević, Ivana; Stefanović, Olgica; Čomić, Ljiljana; Đačić, Dragana; Ćurčić, Milena; Marković, Snežana

    2011-01-01

    The antioxidative, antimicrobial and antiproliferative potentials of the methanol extracts of the lichen species Parmelia sulcata, Flavoparmelia caperata, Evernia prunastri, Hypogymnia physodes and Cladonia foliacea were evaluated. The total phenolic content of the tested extracts varied from 78.12 to 141.59 mg of gallic acid equivalent (GA)/g of extract and the total flavonoid content from 20.14 to 44.43 mg of rutin equivalent (Ru)/g of extract. The antioxidant capacities of the lichen extracts were determined by 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals scavenging. Hypogymnia physodes with the highest phenolic content showed the strongest DPPH radical scavenging effect. Further, the antimicrobial potential of the lichen extracts was determined by a microdilution method on 29 microorganisms, including 15 strains of bacteria, 10 species of filamentous fungi and 4 yeast species. A high antimicrobial activity of all the tested extracts was observed with more potent inhibitory effects on the growth of Gram (+) bacteria. The highest antimicrobial activity among lichens was demonstrated by Hypogymnia physodes and Cladonia foliacea. Finally, the antiproliferative activity of the lichen extracts was explored on the colon cancer adenocarcinoma cell line HCT-116 by MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) viability assay and acridine orange/ethidium bromide staining. The methanol extracts of Hypogymnia physodes and Cladonia foliacea showed a better cytotoxic activity than the other extracts. All lichen species showed the ability to induce apoptosis of HCT-116 cells. PMID:21954369

  18. Antioxidant, Cytotoxic, and Antiproliferative Activities and Total Polyphenol Contents of the Extracts of Geissospermum reticulatum Bark

    Directory of Open Access Journals (Sweden)

    Joanna J. Sajkowska-Kozielewicz

    2016-01-01

    Full Text Available Geissospermum species are medically important plants due to their health-promoting effects. The objective of this study was to determine the antioxidant ability and antiproliferative and cytotoxic effects of infusions, tinctures, and ethanolic extracts of Geissospermum reticulatum barks in relation to the contents of total phenolics and flavonoids. Seven samples of barks were collected in various regions of Peruvian Amazonia. We found that the amount of total phenolics in the studied products varied from 212.40 ± 0.69 to 1253.92 ± 11.20 mg GAE/kg. In our study there is a correlation (R2=0.7947 between the results of antioxidants assays: FRAP and ORAC for tinctures, infusions, and ethanolic extracts of G. reticulatum barks. We have also observed antiproliferative activities of the ethanolic extracts on normal T-cells. These extracts have caused death on malignant cell lines (THP-1 and HL-60 and this data correlates well with their antioxidant capacity measured by ORAC method. Interestingly, the highest concentration of the ethanolic extract was not toxic in the zebrafish embryo developmental assay. Our results indicate that G. reticulatum is rich in antioxidants and have cytotoxic and antiproliferative properties. The data suggests potential immunosuppressive role of the extracts. This is the first study presenting the results of chemical and biological analysis of multiple preparations from G. reticulatum.

  19. Antiproliferative and Antioxidant Activities of Two Extracts of the Plant Species Euphorbia dendroides L.

    Directory of Open Access Journals (Sweden)

    Agena Ghout

    2018-04-01

    Full Text Available Background: These days, the desire for naturally occurring antioxidants has significantly increased, especially for use in foodstuffs, cosmetics, and pharmaceutical products, to replace synthetic antioxidants that are regularly constrained due to their carcinogenicity. Methods: The study in hand aimed to appraise the antioxidant effect of two Euphorbia dendroides extracts using reducing power, anti-peroxidation, and DPPH (1,1 Diphenyl 2 Pycril Hydrazil scavenging essays, in addition to the anticancer activity against two tumor cell lines, namely C6 (rat brain tumorcells, and Hela (human uterus carcinomacell lines. Results: The results indicated that the ethyl acetate extract exhibited antiradical activity of 29.49%, higher than that of n-butanol extract (18.06% at 100 µg/mL but much lower than that of gallic acid (78.21%.The ethyl acetate extract exhibits better reducing capacity and lipid peroxidation inhibitory activity compared to n-butanol extract but less than all tested standards. Moreover, the ethyl acetate extract was found to have an antiproliferative activity of more than 5-FU (5-fluoro-Uracil against C6 cells at 250 µg/mL with IC50 and IC75 of 113.97, 119.49 µg/mL, respectively, and good cytotoxic activity against the Hela cell lines at the same concentration. The HPLC-TOF-MS (high performance liquid chromatography-Time-of-flight-Mass Spectrometry analyses exposed the presence of various compounds, among which Gallic and Chlorogenic acids functioned as major compounds. Conclusions: The two extracts exhibited moderate anticancer abilities and behaved somewhat as average antioxidant agents. Based on the total phenolics and flavonoids contents, as well as HPLC results, it could be concluded that antiproliferative and antioxidant activities depend upon the content of different phenolics and flavonoids.

  20. Comparative Antioxidant, Antiproliferative and Apoptotic Effects of ...

    African Journals Online (AJOL)

    Purpose: To determine and compare the antioxidant, antiproliferative and apoptotic effects of leaf infusions of Ilex laurina ... Both plant infusions inhibited viability and cell growth of SW480 and SW620 cells. .... 100 g of dry extract, from a gallic acid calibration curve [9]. ..... antioxidant capacity and in vitro inhibition of colon.

  1. The reverse transcription inhibitor abacavir shows anticancer activity in prostate cancer cell lines.

    Directory of Open Access Journals (Sweden)

    Francesca Carlini

    Full Text Available BACKGROUND: Transposable Elements (TEs comprise nearly 45% of the entire genome and are part of sophisticated regulatory network systems that control developmental processes in normal and pathological conditions. The retroviral/retrotransposon gene machinery consists mainly of Long Interspersed Nuclear Elements (LINEs-1 and Human Endogenous Retroviruses (HERVs that code for their own endogenous reverse transcriptase (RT. Interestingly, RT is typically expressed at high levels in cancer cells. Recent studies report that RT inhibition by non-nucleoside reverse transcriptase inhibitors (NNRTIs induces growth arrest and cell differentiation in vitro and antagonizes growth of human tumors in animal model. In the present study we analyze the anticancer activity of Abacavir (ABC, a nucleoside reverse transcription inhibitor (NRTI, on PC3 and LNCaP prostate cancer cell lines. PRINCIPAL FINDINGS: ABC significantly reduces cell growth, migration and invasion processes, considerably slows S phase progression, induces senescence and cell death in prostate cancer cells. Consistent with these observations, microarray analysis on PC3 cells shows that ABC induces specific and dose-dependent changes in gene expression, involving multiple cellular pathways. Notably, by quantitative Real-Time PCR we found that LINE-1 ORF1 and ORF2 mRNA levels were significantly up-regulated by ABC treatment. CONCLUSIONS: Our results demonstrate the potential of ABC as anticancer agent able to induce antiproliferative activity and trigger senescence in prostate cancer cells. Noteworthy, we show that ABC elicits up-regulation of LINE-1 expression, suggesting the involvement of these elements in the observed cellular modifications.

  2. Gallic Acid Content and an Antioxidant Mechanism Are Responsible for the Antiproliferative Activity of ‘Ataulfo’ Mango Peel on LS180 Cells

    Directory of Open Access Journals (Sweden)

    Gustavo. R. Velderrain-Rodríguez

    2018-03-01

    Full Text Available Mango “Ataulfo” peel is a rich source of polyphenols (PP, with antioxidant and anti-cancer properties; however, it is unknown whether such antiproliferative activity is related to PP’s antioxidant activity. The content (HPLC-DAD, antioxidant (DPPH, FRAP, ORAC, and antiproliferative activities (MTT of free (FP and chemically-released PP from mango ‘Ataulfo’ peel after alkaline (AKP and acid (AP hydrolysis, were evaluated. AKP fraction was higher (µg/g DW in gallic acid (GA; 23,816 ± 284 than AP (5610 ± 8 of FR (not detected fractions. AKP fraction and GA showed the highest antioxidant activity (DPPH/FRAP/ORAC and GA’s antioxidant activity follows a single electron transfer (SET mechanism. AKP and GA also showed the best antiproliferative activity against human colon adenocarcinoma cells (LS180; IC50 (µg/mL 138.2 ± 2.5 and 45.7 ± 5.2 and mouse connective cells (L929; 93.5 ± 7.7 and 65.3 ± 1.2; Cheminformatics confirmed the hydrophilic nature (LogP, 0.6 and a good absorption capacity (75% for GA. Data suggests that GA’s antiproliferative activity appears to be related to its antioxidant mechanism, although other mechanisms after its absorption could also be involved.

  3. Evaluation of in vitro anti-proliferative and immunomodulatory activities of compounds isolated from Curcuma longa

    Science.gov (United States)

    Yue, Grace G. L.; Chan, Ben C. L.; Hon, Po-Ming; Lee, Mavis Y. H.; Fung, Kwok-Pui; Leung, Ping-Chung; Lau, Clara B. S.

    2010-01-01

    The rhizome of Curcuma longa (CL) has been commonly used in Asia as a potential candidate for the treatment of different diseases, including inflammatory disorders and cancers. The present study evaluated the anti-proliferative activities of the isolated compounds (3 curcuminoids and 2 turmerones) from CL, using human cancer cell lines HepG2, MCF-7 and MDA-MB-231. The immunomodulatory activities of turmerones (α and aromatic) isolated from CL were also examined using human peripheral blood mononuclear cells (PBMC). Our results showed that the curcuminoids (curcumin, demethoxycurcumin and bisdemethoxycurcumin) and α-turmerone significantly inhibited proliferation of cancer cells in dose-dependent manner. The IC50 values of these compounds in cancer cells ranged from 11.0–41.8 μg/ml. Alpha-turmerone induced MDA-MB-231 cells to undergo apoptosis, which was confirmed by annexin-V & propidium iodide staining, and DNA fragmentation assay. The caspase cascade was activated as shown by a significant decrease of procaspases-3, -8 and -9 in α-turmerone treated cells. Both α-turmerone and aromatic-turmerone showed stimulatory effects on PBMC proliferation and cytokine production. The anti-proliferative effect of α-turmerone and immunomodulatory activities of ar-turmerone were shown for the first time. The findings revealed the potential use of CL crude extract (containing curcuminoids and volatile oil including turmerones) as chemopreventive agent. PMID:20438793

  4. Antimicrobial and Antiproliferative Activity of Bauhinia forficata Link and Cnidoscolus quercifolius Extracts commonly Used in Folk Medicine.

    Science.gov (United States)

    Alves, Erika P; de F Lima, Rennaly; de Almeida, Carolina M; Freires, Irlan A; Rosalen, Pedro L; Ruiz, Ana Ltg; Granville-Garcia, Ana F; Godoy, Gustavo P; Pereira, Jozinete V; de Brito Costa, Edja Mm

    2017-08-01

    Bauhinia forficata and Cnidoscolus quercifolius plants are commonly used in folk medicine. However, few studies have investigated their therapeutic potential. Herein, we evaluated the antimicrobial activity of B. forficata and C. quercifolius extracts against microorganisms of clinical relevance and their antiproliferative potential against tumor cells. The following tests were performed: Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC)/minimum fungicidal concentration (MFC), inhibition of biofilm adhesion, and effects on cell morphology. Antiproliferative tests were carried out with human keratinocytes and six tumor lines. Bauhinia forficata showed antimicrobial activity only against C. albicans with MIC of 15.62 ug/mL and MFC higher than 2000 ug/mL. It also inhibited biofilm adhesion and caused alterations in cell morphology. Cnidoscolus quercifolius showed no significant activity (MIC > 2.0 mg/mL) against the strains. Bauhinia forficata and C. quercifolius extracts showed cytostatic activity against the tumor cells. Bauhinia forficata has promising anti-Cand/da activity and should be further investigated for its therapeutic potential. The use of medicinal plants in the treatment of infectious processes has an important function nowadays, due to the limitations of the use of synthetic antibiotics available, related specifically to the microbial resistance emergence.

  5. Study of in vitro antimicrobial and antiproliferative activities of selected Saharan plants.

    Science.gov (United States)

    Palici, Ionut F; Liktor-Busa, Erika; Zupkó, István; Touzard, Blaise; Chaieb, Mohamed; Urbán, Edit; Hohmann, Judit

    2015-12-01

    The aim of the present study was the evaluation of the antimicrobial and antiproliferative activities of selected Saharan species, which are applied in the traditional medicine but not studied thoroughly from chemical and pharmacological point of view. The studied plants, namely Anthyllis henoniana, Centropodia forskalii, Cornulaca monacantha, Ephedra alata var. alenda, Euphorbia guyoniana, Helianthemum confertum, Henophyton deserti, Moltkiopsis ciliata and Spartidium saharae were collected from remote areas of North Africa, especially from the Tunisian region of Sahara. After drying and applying the appropriate extraction methods, the plant extracts were tested in antimicrobial screening assay, performed on 19 Gram-positive and -negative strains of microbes. The inhibition zones produced by plant extracts were determined by disc-diffusion method. Remarkable antibacterial activities were exhibited by extracts of Ephedra alata var. alenda and Helianthemum confertum against B. subtilis, M. catarrhalis and methicillin-resistant and non-resistant S. aureus. Minimum inhibitory concentrations of these two species were also determined. Antiproliferative effects of the extracts were evaluated against 4 human adherent cell lines (HeLa, A431, A2780 and MCF7). Notable cell growth inhibition was found for extract of Helianthemum confertum and Euphorbia guyoniana. Our results provided data for selection of some plant species for further detailed pharmacological and phytochemical examinations.

  6. Identification of anti-proliferative kinase inhibitors as potential therapeutic agents to treat canine osteosarcoma.

    Science.gov (United States)

    Mauchle, Ulrike; Selvarajah, Gayathri T; Mol, Jan A; Kirpensteijn, Jolle; Verheije, Monique H

    2015-08-01

    Osteosarcoma is the most common primary bone tumour in dogs but various forms of therapy have not significantly improved clinical outcomes. As dysregulation of kinase activity is often present in tumours, kinases represent attractive molecular targets for cancer therapy. The purpose of this study was to identify novel compounds targeting kinases with the potential to induce cell death in a panel of canine osteosarcoma cell lines. The ability of 80 well-characterized kinase inhibitor compounds to inhibit the proliferation of four canine osteosarcoma cell lines was investigated in vitro. For those compounds with activity, the mechanism of action and capability to potentiate the activity of doxorubicin was further evaluated. The screening showed 22 different kinase inhibitors that induced significant anti-proliferative effects across the four canine osteosarcoma cell lines investigated. Four of these compounds (RO 31-8220, 5-iodotubercidin, BAY 11-7082 and an erbstatin analog) showed significant cell growth inhibitory effects across all cell lines in association with variable induction of apoptosis. RO 31-8220 and 5-iodotubercidin showed the highest ability to potentiate the effects of doxorubicin on cell viability. In conclusion, the present study identified several potent kinase inhibitors targeting the PKC, CK1, PKA, ErbB2, mTOR and NF-κB pathways, which may warrant further investigations for the treatment of osteosarcoma in dogs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Antiproliferative Activity of Egg Yolk Peptides in Human Colon Cancer Cells.

    Science.gov (United States)

    Yousr, Marwa N; Aloqbi, Akram A; Omar, Ulfat M; Howell, Nazlin K

    2017-01-01

    Egg yolk peptides were successfully prepared from egg yolk protein by-products after lecithin extraction. Defatted egg yolk protein was hydrolyzed with pepsin and pancreatin and purified by gel filtration to produce egg yolk gel filtration fraction (EYGF-33) with antiproliferative activity. The highlight of this study was that the peptide EYGF-33 (1.0 mg/ml) significantly inhibits cell viability of colon cancer cells (Caco-2) with no inhibitory effects on the viability of human colon epithelial normal cells (HCEC) after 48 h. Reduced cell viability can be explained by cell cycle arrest in the S-phase in which DNA replication normally takes place. EYGF-33 significantly enhanced the production of superoxide anions in the mitochondria of Caco-2 cells; this could activate a mitochondrial apoptotic pathway leading to typical Poly Adenosine diphosphate-ribose polymerase (PARP) cleavage as observed in the Western blot result. The induction of apoptotic cell death by EYGF-33 was supported by the externalization of phosphatidylserine (PS). However, further elucidation of the mechanism of EYGF-33-mediated apoptosis would provide further support for its use as a potential therapeutic and chemopreventive agent.

  8. Synthesis of isocryptolepine analogues and their structure-activity relationship studies as antiplasmodial and antiproliferative agents.

    Science.gov (United States)

    Aroonkit, Pasuk; Thongsornkleeb, Charnsak; Tummatorn, Jumreang; Krajangsri, Suppachai; Mungthin, Mathirut; Ruchirawat, Somsak

    2015-04-13

    Novel isocryptolepine analogues have been conveniently synthesized and evaluated for antimalarial and antiproliferative activities. We have found 3-fluoro-8-bromo-isocryptolepine (1n) to have the highest activities against chloroquine-resistant K1, chloroquine-sensitive 3D7, and chloroquine- and mefloquine-resistant SKF58 and SRIV35 strains. Several fluorine-substituted analogues (1b, 1n, and 1q) also showed excellent selectivities while maintaining good to excellent activities against all four Plasmodium falciparum strains. Additionally, antiproliferative properties of isocryptolepine derivatives against HepG2, HuCCA-1, MOLT-3 and A549 cancer cell lines are reported for the first time in this study. 2-Chloroisocryptolepine (1c) and benzo-fused-2-chloroisocryptolepine (1i) showed significant bioactivities whereas several novel fluorinated compounds and 2-chloro-8-bromoisocryptolepine (1f) displayed excellent selectivities. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  9. Antiproliferative effect of silver nanoparticles synthesized using amla on Hep2 cell line

    Institute of Scientific and Technical Information of China (English)

    Fathima Stanley Rosarin; Vadivel Arulmozhi; Samuthira Nagarajan; Sankaran Mirunalini

    2013-01-01

    Objective: To synthesize silver nanoparticles by amla extract, screen the cytotoxic, oxidative stress and apoptotic effect of silver nanoparticles (AgNPs) on Hep2 cell line (laryngeal carcinoma cells) in vitro, and to compare the effect of Phyllanthus emblica (P. emblica) (amla) with AgNPs synthesized by amla and 5-FU. Methods: AgNPs was synthesized by P. emblica (aqueous extract) and nanoparticles were characterized UV-Vis spec, the presence of biomoloecules of amla capped in AgNPs was found by FT-IR analysis, shape and size were examined by SEM and DLS. Cytotoxicity of experimental drugs was tested to find IC50 value. ROS generation in cells have been measured by DCFH-DA staining, AO-EtBr, Rhodamine-123 staining and DNA fragmentation were performed to assess apoptotic cell death, mitochondrial membrane potential and apoptotic DNA damage, respectively. Oxidative stress was analyzed by measuring lipid peroxides and antioxidants level to understand the cancer cell death by pro-oxidant mechanism.Results:PE-AgNPs was synthesized and confirmed through kinetic behavior of NPs. The shape of PE-AgNPs was spherical and cubic since it was agglomerated, and the nanoparticle surface was complicated. Average particle size distribution of PE-AgNPs was found to be 188 nm. Potent biomolecules of P. emblica such as polyphenols were capped with AgNPs and reduced its toxicity. In cytotoxicity assay the concentration in which the maximum number of cell death was 60 μg/mL and 50 μg/mL for P. emblica (alone) and AgNPs, respectively and IC50 values were fixed as 30 μg/mL and 20 μg/mL. ROS generation, apoptotic morphological changes, mitochondrial depolarization, DNA damage and oxidative stress was observed as more in AgNPs treated cells than in P. emblica (30 μg/mL) (alone) treated cells and 5-FU treated cells gave similar result.Conclusions:The results suggest that the AgNPs are capped with biomolecules of amla enhanced cytotoxicity in laryngeal cancer cells through oxidative

  10. Strong cytotoxic effect of the bradykinin antagonist BKM-570 in ovarian cancer cells--analysis of the molecular mechanisms of its antiproliferative action.

    Science.gov (United States)

    Jutras, Stephanie; Bachvarova, Magdalena; Keita, Mamadou; Bascands, Jean-Loup; Mes-Masson, Anne-Marie; Stewart, John M; Gera, Lajos; Bachvarov, Dimcho

    2010-12-01

    The standard chemotherapy for epithelial ovarian cancer (EOC) patients is currently a combination of taxane and platinum. However, most EOC patients still suffer relapses, and there is an immediate need for the development of novel and more effective therapeutic modalities against this deadly disease. Recently, the nonpeptide bradykinin (BK) antagonist 2,3,4,5,6-pentafluorocinnamoyl-(o-2,6-dichlorobenzyl)-l-tyrosine-N-(4-amino-2,2,6,6-tetramethyl-piperidyl) amide (BKM-570) was shown to cause impressive growth inhibition of lung and prostate tumors, displaying superior in vivo inhibitory effects than convential chemotherapeutic drugs. Here, we investigated BKM-570 cytotoxic effects in two EOC cell lines, derived from different EOC histopathologies: a clear cell carcinoma (TOV-21), and an endometrioid carcinoma (TOV-112). We showed that BKM-570 effectively inhibited the growth of ovarian cancer cells, as its cytotoxic effects were comparable to those of cisplatin, and were independent of the functional status of BK receptors. Moreover, BKM-570 synergized with cisplatin in inhibiting EOC cell growth. To better understand the molecular mechanisms of the antiproliferative action of this BK antagonist in EOC cells, we performed gene expression profiling in TOV-21 and TOV-112 cells following treatment with 10 μM BKM-570 for 24 h. BKM-570 displayed similar cytotoxic effects in the two cell lines analyzed, as genes with previously shown involvement in apoptosis/antiapoptosis and cell adhesion were proportionally upregulated and downregulated in both cell lines, whereas genes involved in basic cellular mechanisms, including cell growth and maintenance, metabolism, cell cycle control, inflammatory and immune response, signal transduction, protein biosynthesis, transcription regulation, and transport, were predominantly downregulated upon treatment. Our data are indicative of the therapeutic potential of BKM-570 and related compounds in EOC management. © 2010 The Authors

  11. The "Janus face" of the thrombin binding aptamer: Investigating the anticoagulant and antiproliferative properties through straightforward chemical modifications.

    Science.gov (United States)

    Esposito, Veronica; Russo, Annapina; Amato, Teresa; Vellecco, Valentina; Bucci, Mariarosaria; Mayol, Luciano; Russo, Giulia; Virgilio, Antonella; Galeone, Aldo

    2018-02-01

    The thrombin binding aptamer (TBA) is endowed with both anticoagulant and antiproliferative activities. Its chemico-physical and/or biological properties can be tuned by the site-specific replacement of selected residues. Four oligodeoxynucleotides (ODNs) based on the TBA sequence (5'-GGTTGGTGTGGTTGG-3') and containing 2'-deoxyuridine (U) or 5-bromo-2'-deoxyuridine (B) residues at positions 4 or 13 have been investigated by NMR and CD techniques. Furthermore, their anticoagulant (PT assay) and antiproliferative properties (MTT assay) have been tested and compared with two further ODNs containing 5-hydroxymethyl-2'-deoxyuridine (H) residues in the same positions, previously investigated. The CD and NMR data suggest that all the investigated ODNs are able to form G-quadruplexes strictly resembling that of TBA. The introduction of B residues in positions 4 or 13 increases the melting temperature of the modified aptamers by 7 °C. The replacement of thymidines with U in the same positions results in an enhanced anticoagulant activity compared to TBA, also at low ODN concentration. Although all ODNs show antiproliferative properties, only TBA derivatives containing H in the positions 4 and 13 lose the anticoagulant activity and remarkably preserve the antiproliferative one. All ODNs have shown antiproliferative activities against two cancer cell lines but only those with U and B are endowed with anticoagulant activities similar or improved compared to TBA. The appropriate site-specific replacement of the residues in the TT loops of TBA with commercially available thymine analogues is a useful strategy either to improve the anticoagulant activity or to preserve the antiproliferative properties by quenching the anticoagulant ones. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Antiproliferative and Molecular Mechanism of Eugenol-Induced Apoptosis in Cancer Cells

    Directory of Open Access Journals (Sweden)

    Eko Supriyanto

    2012-05-01

    Full Text Available Phenolic phytochemicals are a broad class of nutraceuticals found in plants which have been extensively researched by scientists for their health-promoting potential. One such a compound which has been comprehensively used is eugenol (4-allyl-2-methoxyphenol, which is the active component of Syzigium aromaticum (cloves. Aromatic plants like nutmeg, basil, cinnamon and bay leaves also contain eugenol. Eugenol has a wide range of applications like perfumeries, flavorings, essential oils and in medicine as a local antiseptic and anesthetic. Increasing volumes of literature showed eugenol possesses antioxidant, antimutagenic, antigenotoxic, anti-inflammatory and anticancer properties. Molecular mechanism of eugenol-induced apoptosis in melanoma, skin tumors, osteosarcoma, leukemia, gastric and mast cells has been well documented. This review article will highlight the antiproliferative activity and molecular mechanism of the eugenol induced apoptosis against the cancer cells and animal models.

  13. Potent antiproliferative cembrenoids accumulate in tobacco upon infection with Rhodococcus fascians and trigger unusual microtubule dynamics in human glioblastoma cells.

    Directory of Open Access Journals (Sweden)

    Aminata P Nacoulma

    Full Text Available AIMS: Though plant metabolic changes are known to occur during interactions with bacteria, these were rarely challenged for pharmacologically active compounds suitable for further drug development. Here, the occurrence of specific chemicals with antiproliferative activity against human cancer cell lines was evidenced in hyperplasia (leafy galls induced when plants interact with particular phytopathogens, such as the Actinomycete Rhodococcus fascians. METHODS: We examined leafy galls fraction F3.1.1 on cell proliferation, cell division and cytoskeletal disorganization of human cancer cell lines using time-lapse videomicroscopy imaging, combined with flow cytometry and immunofluorescence analysis. We determined the F3.1.1-fraction composition by gas chromatography coupled to mass spectrometry. RESULTS: The leafy galls induced on tobacco by R. fascians yielded fraction F3.1.1 which inhibited proliferation of glioblastoma U373 cells with an IC50 of 4.5 µg/mL, F.3.1.1 was shown to increase cell division duration, cause nuclear morphological deformations and cell enlargement, and, at higher concentrations, karyokinesis defects leading to polyploidization and apoptosis. F3.1.1 consisted of a mixture of isomers belonging to the cembrenoids. The cellular defects induced by F3.1.1 were caused by a peculiar cytoskeletal disorganization, with the occurrence of fragmented tubulin and strongly organized microtubule aggregates within the same cell. Colchicine, paclitaxel, and cembrene also affected U373 cell proliferation and karyokinesis, but the induced microtubule rearrangement was very different from that provoked by F3.1.1. Altogether our data indicate that the cembrenoid isomers in F3.1.1 have a unique mode of action and are able to simultaneously modulate microtubule polymerization and stability.

  14. Anti-proliferative effect of biogenic gold nanoparticles against breast cancer cell lines (MDA-MB-231 & MCF-7)

    International Nuclear Information System (INIS)

    Uma Suganya, K.S.; Govindaraju, K.; Ganesh Kumar, V.; Prabhu, D.; Arulvasu, C.; Stalin Dhas, T.; Karthick, V.; Changmai, Niranjan

    2016-01-01

    Highlights: • Biosynthesis of stable and well dispersed predominantly spherical gold nanoparticles of size around ∼12.5 nm. • Anticancer assessment of gold nanoparticles on MDA-MB-231 and MCF-7 cell lines. • AuNPs were found non toxic to normal HMEC cells. • Flow cytometry results revealed significant arrest in cell proliferation in early G0/G1 to S phase. - Abstract: Breast cancer is a major complication in women and numerous approaches are being developed to overcome this problem. In conventional treatments such as chemotherapy and radiotherapy the post side effects cause an unsuitable effect in treatment of cancer. Hence, it is essential to develop a novel strategy for the treatment of this disease. In the present investigation, a possible route for green synthesis of gold nanoparticles (AuNPs) using leaf extract of Mimosa pudica and its anticancer efficacy in the treatment of breast cancer cell lines is studied. The synthesized nanoparticles were found to be effective in killing cancer cells (MDA-MB-231 & MCF-7) which were studied using various anticancer assays (MTT assay, cell morphology determination, cell cycle analysis, comet assay, Annexin V-FITC/PI staining and DAPI staining). Cell morphological analysis showed the changes occurred in cancer cells during the treatment with AuNPs. Cell cycle analysis revealed apoptosis in G_0/G_1 to S phase. Similarly in Comet assay, there was an increase in tail length in treated cells in comparison with the control. Annexin V-FITC/PI staining assay showed prompt fluorescence in treated cells indicating the translocation of phosphatidylserine from the inner membrane. PI and DAPI staining showed the DNA damage in treated cells.

  15. Anti-proliferative effect of biogenic gold nanoparticles against breast cancer cell lines (MDA-MB-231 & MCF-7)

    Energy Technology Data Exchange (ETDEWEB)

    Uma Suganya, K.S. [Centre for Ocean Research, Sathyabama University, Chennai 600119 (India); Govindaraju, K., E-mail: govindtu@gmail.com [Centre for Ocean Research, Sathyabama University, Chennai 600119 (India); Ganesh Kumar, V. [Centre for Ocean Research, Sathyabama University, Chennai 600119 (India); Prabhu, D.; Arulvasu, C. [Department of Zoology, University of Madras, Guindy campus, Chennai 600 025 (India); Stalin Dhas, T.; Karthick, V.; Changmai, Niranjan [Centre for Ocean Research, Sathyabama University, Chennai 600119 (India)

    2016-05-15

    Highlights: • Biosynthesis of stable and well dispersed predominantly spherical gold nanoparticles of size around ∼12.5 nm. • Anticancer assessment of gold nanoparticles on MDA-MB-231 and MCF-7 cell lines. • AuNPs were found non toxic to normal HMEC cells. • Flow cytometry results revealed significant arrest in cell proliferation in early G0/G1 to S phase. - Abstract: Breast cancer is a major complication in women and numerous approaches are being developed to overcome this problem. In conventional treatments such as chemotherapy and radiotherapy the post side effects cause an unsuitable effect in treatment of cancer. Hence, it is essential to develop a novel strategy for the treatment of this disease. In the present investigation, a possible route for green synthesis of gold nanoparticles (AuNPs) using leaf extract of Mimosa pudica and its anticancer efficacy in the treatment of breast cancer cell lines is studied. The synthesized nanoparticles were found to be effective in killing cancer cells (MDA-MB-231 & MCF-7) which were studied using various anticancer assays (MTT assay, cell morphology determination, cell cycle analysis, comet assay, Annexin V-FITC/PI staining and DAPI staining). Cell morphological analysis showed the changes occurred in cancer cells during the treatment with AuNPs. Cell cycle analysis revealed apoptosis in G{sub 0}/G{sub 1} to S phase. Similarly in Comet assay, there was an increase in tail length in treated cells in comparison with the control. Annexin V-FITC/PI staining assay showed prompt fluorescence in treated cells indicating the translocation of phosphatidylserine from the inner membrane. PI and DAPI staining showed the DNA damage in treated cells.

  16. Effect of selenium on malignant tumor cells of brain.

    Science.gov (United States)

    Zhu, Z; Kimura, M; Itokawa, Y; Nakatsu, S; Oda, Y; Kikuchi, H

    1995-07-01

    Some reports have demonstrated that selenium can inhibit tumorigenesis in some tissues of animal. However, little is known about the inhibitory effect on malignant tumor cells of brain. The purpose of our study was to determine the biological effect of selenium on growth of rat glioma and human glioblastoma cell lines. Cell lines C6 and A172 were obtained from Japanese Cancer Research Resources Bank, Tokyo, Japan (JCRB). Cells were cultured in Dulbecco's Modified Eagle's Medium (DMEM) supplemented with 10% fetal calf serum at 37 degrees C in a humidified atmosphere of air and 5% CO2. Antiproliferative effects of selenium were evaluated using growth rate assay quantifying cell number by MTT assay. An antiproliferative effect of selenium was found in two cell lines, which was more effective on human A172 glioblastoma and less effective on rat C6 glioma.

  17. Characteristics of nobiletin-mediated alteration of gene expression in cultured cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Nemoto, Kiyomitsu, E-mail: nemoto@u-shizuoka-ken.ac.jp [Department of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526 (Japan); Ikeda, Ayaka; Yoshida, Chiaki; Kimura, Junko; Mori, Junki [Department of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526 (Japan); Fujiwara, Hironori [Department of Anti-Dementia Functional Food Development, Research Center of Supercritical Fluid Technology, Graduate School of Engineering, Tohoku University, 6-6-7 Aoba, Aramaki, Aoba-ku, Sendai 980-8579 (Japan); Yokosuka, Akihito; Mimaki, Yoshihiro [Department of Medicinal Pharmacognosy, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji 192-0392 (Japan); Ohizumi, Yasushi [Department of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526 (Japan); Department of Anti-Dementia Functional Food Development, Research Center of Supercritical Fluid Technology, Graduate School of Engineering, Tohoku University, 6-6-7 Aoba, Aramaki, Aoba-ku, Sendai 980-8579 (Japan); Laboratory of Kampo Medicines, Yokohama College of Pharmacy, 601 Matano-cho, Totsuka-ku, Yokohama 245-0066 (Japan); Degawa, Masakuni [Department of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526 (Japan)

    2013-02-15

    Highlights: ► Nobiletin-mediated alterations of gene expression were examined with DNA microarrays. ► Three organ-derived cell lines were treated with 100 μM nobiletin for 24 h. ► In all cell lines, 3 endoplasmic reticulum stress-responsive genes were up-regulated. ► Some cell cycle-regulating and oxidative stress-promoting genes were down-regulated. ► These alterations may contribute to nobiletin-mediated biological effects. -- Abstract: Nobiletin, a polymethoxylated flavonoid that is highly contained in the peels of citrus fruits, exerts a wide variety of beneficial effects, including anti-proliferative effects in cancer cells, repressive effects in hyperlipidemia and hyperglycemia, and ameliorative effects in dementia at in vitro and in vivo levels. In the present study, to further understand the mechanisms of these actions of nobiletin, the nobiletin-mediated alterations of gene expression in three organ-derived cell lines – 3Y1 rat fibroblasts, HuH-7 human hepatocarcinoma cells, and SK-N-SH human neuroblastoma cells – were first examined with DNA microarrays. In all three cell lines, treatments with nobiletin (100 μM) for 24 h resulted in more than 200% increases in the expression levels of five genes, including the endoplasmic reticulum stress-responsive genes Ddit3, Trib3, and Asns, and in less than 50% decreases in the expression levels of seven genes, including the cell cycle-regulating genes Ccna2, Ccne2, and E2f8 and the oxidative stress-promoting gene Txnip. It was also confirmed that in each nobiletin-treated cell line, the levels of the DDIT3 (DNA-damage-inducible transcript 3, also known as CHOP and GADD153) and ASNS (asparagine synthetase) proteins were increased, while the level of the TXNIP (thioredoxin-interacting protein, also known as VDUP1 and TBP-2) protein was decreased. All these findings suggest that nobiletin exerts a wide variety of biological effects, at least partly, through induction of endoplasmic reticulum stress and

  18. Antiproliferative Activity of Phenylpropanoids Isolated from Lagotis brevituba Maxim.

    Science.gov (United States)

    Xiang, Yuan; Jing, Zhao; Haixia, Wang; Ruitao, Yu; Huaixiu, Wen; Zenggen, Liu; Lijuan, Mei; Yiping, Wang; Yanduo, Tao

    2017-10-01

    The aim of the present study was to evaluate the antiproliferative effect of phenylpropanoids isolated from the n-BuOH-soluble fraction of an ethanolic extract of Lagotis brevituba Maxim. The phenylpropanoids were identified as echinacoside, lagotioside, glucopyranosyl(1-6)martynoside, plantamoside, and verbascoside. Three of the compounds, lagotioside, glucopyranosyl(1-6)martynoside, and plantamoside, were isolated from L. brevituba for the first time. The antiproliferative activity of the isolates was evaluated in human gastric carcinoma (MGC-803), human colorectal carcinoma (HCT116), human hepatocellar carcinoma (HepG2), and human lung cancer (HCT116) cells using an 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Plantamoside showed promising activity against MGC-803 cells, with a half maximal inhibitory concentration value of 37.09 μM. The mechanism of the pro-apoptosis effect of plantamoside was then evaluated in MGC-803 cells. Changes in cell morphology, including disorganization of the architecture of actin microfilaments and formation of apoptotic bodies, together with cell cycle arrest in G2/M phases, were observed after treatment of plantamoside. The antiproliferative and pro-apoptotic effects were associated with a decrease in the ratio of Bcl-2/Bax and reduced mitochondrial membrane potential, which was accompanied by the release of reactive oxygen species and Ca 2+ into the cytoplasm. Taken together, the results indicated that plantamoside promotes apoptosis via a mitochondria-dependent mechanism. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  19. Anti-proliferative activity of recombinant melittin expressed in ...

    African Journals Online (AJOL)

    Recombinant melittin was then successfully expressed in Escherichia coli. The activity of affinity-purified recombinant melittin was determined in human leukemic U937 cells. Results show that the recombinant melittin had the same anti-proliferative activity in human leukemic U937 cells in vitro as natural one. This shows the ...

  20. Comparative Antioxidant, Antiproliferative and Apoptotic Effects of ...

    African Journals Online (AJOL)

    Purpose: To determine and compare the antioxidant, antiproliferative and apoptotic effects of leaf infusions of Ilex laurina and Ilex paraguariensis in colon cancer cells. Methods: Antioxidant activity was determined by ORAC (Oxygen Radical Absorbance Capacity) and FRAP (Ferric Reducing Antioxidant Power). Cytotoxic ...

  1. In vitro evaluation of antiproliferative and cytotoxic properties of pterostilbene against human colon cancer cells.

    Science.gov (United States)

    Wawszczyk, Joanna; Kapral, Małgorzata; Hollek, Andrzej; Węglarz, Ludmiła

    2014-01-01

    Colon cancer has been remaining the second leading cause of cancer mortality in Poland in the last years. Epidemiological, preclinical and clinical studies reveal that dietary phytochemicals may exert chemopreventive and therapeutic effect against colorectal cancer. There is a growing interest in identifying new biologically active agents from dietary sources in this respect. Pterostilbene (trans-3,5-dimethoxy-4-hydroxystilbene) is a naturally occurring stilbene, that has been found to have antioxidative, anti-inflammatory and antipro- liferative properties. Compared to other stilbenes, pterostilbene has greater bioavailability, and so, a greater potential for clinical applications. Recent studies showed that pterostilbene exhibits the hallmark characteristics of an anticancer agent. The aim of this study was to analyze antiproliferative and cytotoxic effects of pterostilbene on human colon cancer Caco-2 cells. They were cultured using standard techniques and exposed to increasing doses of pterostilbene (5-100 μM) for 48 and 72 h. Cell proliferation was determined by sulforhodamine B assay. The growth of treated cells was expressed as a percentage of that of untreated control cells. Pterostilbene decreased proliferation rate of Caco-2 cells in a dose- and time-dependent manner. Its concentrations = 25 μM did not affect cell growth after 48 h treatment period. Significant growth inhibition was observed in cultures incubated with higher concentrations of pterostilbene (40-100 μM). Pterostilbene at all concentrations used (5-100 μM) caused significant inhibition of cell proliferation when the experimental time period was elongated to 72 h. The maximum growth reduction was observed at 100 mM pterostilbene. The cytotoxicity of pterostilbene was evaluated in 48 h cultures based on lactate dehydrogenase (LDH) leakage into the culture medium and showed dose-related pattern. The findings of this study showed significant dose-dependent antiproliferative and cytotoxic

  2. In vitro anti-proliferative activity of clove extract on human gastric carcinoma

    Directory of Open Access Journals (Sweden)

    A. Karimi

    2017-10-01

    Full Text Available Background and objectives: Cancer cell resistance to common chemotherapy agents is on rise. Plants are considered valuable sources of herbal drugs for cancer therapy. The present study was conducted to investigate the in vitro antioxidant, anti-proliferative, and apoptosis-inducing properties of clove (Syzygium aromaticum L. extract in human gastric carcinoma (AGS. Methods: Crude ethanol extract of S. aromaticum dried buds was prepared and  in vitro anti-proliferative effects of the extract on AGS and normal Human dermal fibroblasts (HDF cell lines were studied by MTT assay. To examine apoptosis induction, AGS cells were incubated with IC50 concentrations of the extract, stained with propidium iodide (PI and annexin V-fluorescein isothiocyanate (FITC, and analyzed by flow cytometry. Antioxidant activity and total phenolics and flavonoids contents were evaluated by 2,2-diphenyl-1-picrylhydrazyl (DPPH assay, Folin-Ciocalteu method, and aluminum chloride colorimetric method, respectively. Results: The IC50 of DPPH and total phenolics and flavonoids contents of the extract were 10.05±1.93 μg/mL, 225.6±40 mg GAE/g, and 29.30±2.35 mgRUT/g, respectively. The IC50 of the extract against HDFs was 649 µg/mL, higher than AGS cells, which was 118.7 g/mL at 48 h after treatment. Flow cytometric analysis showed that the extract induced cell apoptosis. Conclusions: Crude ethanol S. aromaticum extract had high total phenolics content, and suppressed the proliferation of human gastric cancer cells, likely due to apoptosis induction. Further studies should be conducted to determine the mechanisms of its anticancer effects.

  3. In vitro antiproliferative effect of fractions from the caribbean marine sponge Myrmekioderma gyroderma

    Directory of Open Access Journals (Sweden)

    Diana Márquez Fernández

    Full Text Available Introduction: studies performed to Myrmekioderma genus sponges show phospholipid fatty acids, volatile compounds, sterols, bioactive cyclic diterpenes, sesquiterpenes, lineal diterpenes and glycolipid ethers. Objetive: to evaluate the antiproliferative effect of seven fractions (F1-F7 obtained by flash column chromatography from the most bioactive extract of the sponge Myrmekioderma gyroderma, and to analyze the chemical composition of the most active fraction. Methods: samples of dried sponge were extracted with two different solvents: CH2Cl2 (2 x 50 mL, and CH3OH (2 x 50 mL. Each fraction was evaluated on tumor cell derived cell lines; and the cell growth, and viability were determined by a colorimeter assay using sulforhodamine B. Fatty acids structure of the most active fraction was possible by GC-MS analysis of the methyl ester, and pyrrolidine derivatives. Results: the fraction with higher activity on the assessed tumor cell lines is F4 due to it totally inhibited MDA-MB-231, and HT29 cell line growth to 5, and 25 µg/mL concentration (IC50< 1 µg/mL. Fatty acids identified in bioactive F4 fraction of the M. gyroderma sponge can be classified on the following groups: lineal chain saturated, branched-saturated, unsaturated, and a 3-hydroxy acid. Conclusions: 43 fatty acids among saturated, branched-saturated, and unsaturated were identified out of the F4 fraction with activity on the cell lines derived of breast cancer MDA-MB-231, colon carcinoma HT29, and lung carcinoma cells A-549. These results show the growth inhibitory effect shown by the fractions, on the tumor cell lines, depends on the dose.

  4. CCN5 modulates the antiproliferative effect of heparin and regulates cell motility in vascular smooth muscle cells

    Directory of Open Access Journals (Sweden)

    Castellot John J

    2003-11-01

    Full Text Available Abstract Background Vascular smooth muscle cell (VSMC hyperplasia plays an important role in both chronic and acute vascular pathologies including atherosclerosis and restenosis. Considerable work has focused on the mechanisms regulating VSMC proliferation and motility. Earlier work in our lab revealed a novel growth arrest-specific (gas gene induced in VSMC exposed to the antiproliferative agent heparin. This gene is a member of the CCN family and has been given the name CCN5. The objective of the present study is to elucidate the function of CCN5 protein and to explore its mechanism of action in VSMC. Results Using RNA interference (RNAi, we first demonstrate that CCN5 is required for the antiproliferative effect of heparin in VSMC. We also use this gene knockdown approach to show that CCN5 is an important negative regulator of motility. To explore the mechanism of action of CCN5 on VSMC motility, we use RNAi to demonstrate that knock down of CCN5 up regulates expression of matrix metalloproteinase-2 (MMP-2, an important stimulator of motility in VSMC. In addition, forced expression of CCN5 via adenovirus results in reduced MMP-2 activity, this also corroborates the gene knock down results. Finally, we show that loss of CCN5 expression in VSMC causes changes in VSMC morphology and cytoskeletal organization, including a reduction in the amount and macromolecular assembly of smooth muscle cell α-actin. Conclusions This work provides important new insights into the regulation of smooth muscle cell proliferation and motility by CCN5 and may aid the development of therapies for vascular diseases.

  5. Cytotoxic Activity of Selected Iranian Traditional Medicinal Plants on Colon, Colorectal and Breast Cancer Cell Lines

    Directory of Open Access Journals (Sweden)

    Leila Mohammad Taghizadeh Kashani

    2014-11-01

    Full Text Available Background: Many natural products from plants have been recognized to exert anticancer activity. In this study, ethanolic extracts of selected medicinal herbs from Iranian flora including Alyssum homolocarpum Fisch. (from seeds, Urtica dioica L. (from aerial parts, Cichorium intybus L. (from roots and Solanum nigrum L. (from fruits, were evaluated for their cytotoxic effect on different cell lines.Methods: Cytotoxic effect of these extracts was studied on three different cancer cell lines; colon carcinoma (HT-29, colorectal adenocarcinoma (Caco-2 and breast ductal carcinoma (T47D. In addition, Swiss mouse embryo fibroblasts (NIH 3T3 were used as normal nonmalignant cells. MTT assay (3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide was utilized for calculating the cytotoxicity of extracts on cell lines.Results: Results showed the potent cytotoxic activity of U. dioica ethanolic extract against T47D cell line with IC50 value of 46.14±4.55 µg/ml. Other extracts showed poor activity with IC50>100 µg/ml.Conclusions: Cytotoxic activity recorded in the present study revealed high potential antiproliferative activity of U. dioica ethanolic extract against T47D cell line. The real IC50 values of this extract may be considerably lower than the IC50 measured in our study if its pharmacological active compounds become pure. The results emphasize the importance of studies on U. dioica ethanolic extract to characterize potential components as cytotoxic natural medicines.

  6. Apoptotic and anti-proliferative effects of all-trans retinoic acid

    International Nuclear Information System (INIS)

    Zamora, Monica; Ortega, Juan Alberto; Alana, Lide; Vinas, Octavi; Mampel, Teresa

    2006-01-01

    We examined the apoptotic and anti-proliferative effects of all-trans retinoic acid (atRA) in HeLa cells. Our results demonstrated that HeLa cells were more sensitive to the anti-proliferative effects of atRA than to its apoptotic effects. Furthermore, we demonstrated that caspase inhibition attenuates cell death but does not alter the atRA-dependent reduction in cell proliferation, which suggests that atRA-induced apoptosis is independent of the arrest in cell proliferation. To check whether ANT proteins mediated these atRA effects, we transiently transfected cells with expression vectors encoding for individual ANT (adenine nucleotide translocase 1-3). Our results revealed that ANT1 and ANT3 over-expressing HeLa cells increased their atRA sensitivity. Thus, our results not only demonstrate the different functional activities of ANT isoforms, but also contribute to a better understanding of the properties of atRA as an anti-tumoral agent used in cancer therapy

  7. Antiproliferative activity of amino substituted benzo[b]thieno[2,3-b]pyrido[1,2-a]benzimidazoles explored by 2D and 3D cell culture system.

    Science.gov (United States)

    Perin, Nataša; Bobanović, Kristina; Zlatar, Ivo; Jelić, Dubravko; Kelava, Vanja; Koštrun, Sanja; Marković, Vesna Gabelica; Brajša, Karmen; Hranjec, Marijana

    2017-01-05

    Benzimidazo[1,2-a]quinolines and benzo[b]thieno[2,3-b]pyrido[1,2-a]benzimidazoles with amino chains on the different positions have been evaluated by 2D and 3D assays on the human breast cancer cells. Pentacyclic derivatives were synthesized by microwave assisted amination to study the influence of the thiophene substructure on antitumor activity in comparison to tetracyclic analogues. The results obtained from 2D assay reveals that the antitumor activity is strongly dependent on the nature and position of amino chains. Tetracyclic derivatives displayed selective activity on SK-BR-3 with the 2-amino substituted derivatives as the most active ones while pentacyclic derivatives 6-16 and 21-25 showed more pronounced activity on T-47D. The evaluation of antitumor activity in the 3D assay pointed out that some of the tetracyclic and pentacyclic amino substituted derivatives showed selective activity on the MDA-MB-231 cell line. Influence of physico-chemical properties of the compounds on antiproliferative activity have been investigated by multivariate statistical methods. As a measure of lipophilicity, experimental Chrom LogD values have been determined and number of structural parameters have been calculated for investigated compounds. Main factors contributing to the antiproliferative effect for both 2D and 3D cell cultures are found to be basicity, lipophilicity, molecular weight and number of H-bond donors. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  8. Fenofibrate down-regulates the expressions of androgen receptor (AR) and AR target genes and induces oxidative stress in the prostate cancer cell line LNCaP

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Hu; Zhu, Chen; Qin, Chao [State Key Laboratory of Reproductive Medicine, Department of Urology, First Affiliated Hospital of Nanjing Medical University, Nanjing (China); Tao, Tao [Department of Neurosurgery, First Affiliated Hospital of Nanjing Medical University, Nanjing (China); Li, Jie; Cheng, Gong; Li, Pu; Cao, Qiang; Meng, Xiaoxin; Ju, Xiaobing; Shao, Pengfei; Hua, Lixin [State Key Laboratory of Reproductive Medicine, Department of Urology, First Affiliated Hospital of Nanjing Medical University, Nanjing (China); Gu, Min, E-mail: medzhao1980@163.com [State Key Laboratory of Reproductive Medicine, Department of Urology, First Affiliated Hospital of Nanjing Medical University, Nanjing (China); Yin, Changjun, E-mail: drcjyin@gmail.com [State Key Laboratory of Reproductive Medicine, Department of Urology, First Affiliated Hospital of Nanjing Medical University, Nanjing (China)

    2013-03-08

    Highlights: ► Fenofibrate induces cell cycle arrest in G1 phase and apoptosis in LNCaP cells. ► Fenofibrate reduces the expressions of androgen receptor in LNCaP cells. ► Fenofibrate induces oxidative stress in the prostate cancer cell line LNCaP. -- Abstract: Fenofibrate, a peroxisome proliferator-androgen receptor-alpha agonist, is widely used in treating different forms of hyperlipidemia and hypercholesterolemia. Recent reports have indicated that fenofibrate exerts anti-proliferative and pro-apoptotic properties. This study aims to investigate the effects of fenofibrate on the prostate cancer (PCa) cell line LNCaP. The effects of fenofibrate on LNCaP cells were evaluated by flow cytometry, reverse transcription-polymerase chain reaction, enzyme-linked immunosorbent assays, Western blot analysis, and dual-luciferase reporter assay. Fenofibrate induces cell cycle arrest in G1 phase and apoptosis in LNCaP cells, reduces the expressions of androgen receptor (AR) and AR target genes (prostate-specific antigen and TMPRSS2), and inhibits Akt phosphorylation. Fenofibrate can induce the accumulation of intracellular reactive oxygen species and malondialdehyde, and decrease the activities of total anti-oxidant and superoxide dismutase in LNCaP cells. Fenofibrate exerts an anti-proliferative property by inhibiting the expression of AR and induces apoptosis by causing oxidative stress. Therefore, our data suggest fenofibrate may have beneficial effects in fenofibrate users by preventing prostate cancer growth through inhibition of androgen activation and expression.

  9. Synthesis and In Vitro Antiproliferative Activity of Novel Androst-5-ene Triazolyl and Tetrazolyl Derivatives

    Directory of Open Access Journals (Sweden)

    János Wölfling

    2011-06-01

    Full Text Available A straightforward and reliable method for the regioselective synthesis of steroidal 1,4-disubstituted triazoles and 1,5-disubstituted tetrazoles via copper(I-catalyzed cycloadditions is reported. Heterocycle moieties were efficiently introduced onto the starting azide compound 3β-acetoxy-16β-azidomethylandrost-5-en-17β-ol through use of the “click” chemistry approach. The antiproliferative activities of the newly-synthesized triazoles were determined in vitro on three human gynecological cell lines (HeLa, MCF7 and A2780 using the microculture tetrazolium assay.

  10. Antioxidant, anti-inflammatory and antiproliferative activities of Kalanchoe gracilis (L.) DC stem.

    Science.gov (United States)

    Lai, Zhen-Rung; Ho, Yu-Ling; Huang, Shun-Chieh; Huang, Tai-Hung; Lai, Shang-Chih; Tsai, Jen-Chieh; Wang, Ching-Ying; Huang, Guan-Jhong; Chang, Yuan-Shiun

    2011-01-01

    Oxidative stress and inflammation are related to several chronic diseases including cancer and atherosclerosis. Kalanchoe gracilis (L.) DC is a special folk medicinal plant in Taiwan. The aim of this study was to evaluate the antioxidant, anti-inflammatory and antiproliferative activities of the methanolic extract and fractions of the stem of K. gracilis. TEAC, total phenolic compound content, total flavonoid content, DPPH radical scavenging activity, reducing power, inhibition of NO production in LPS-induced RAW264.7 cells, and inhibition of cancer cell proliferation were analyzed. Among all fractions, the chloroform fraction showed the highest TEAC and DPPH radical scavenging activities. The chloroform fraction also had the highest content of polyphenols and flavonoids. Chloroform fractions also decreased LPS-induced NO production and expressions of iNOS and COX-2 in RAW264.7 cells. The antiproliferative activities of the methanolic extract and fractions were studied in vitro using HepG2 cells, and the results were consistent with their antioxidant capacities. Chloroform fractions had the highest antiproliferative activity with an IC(50) of 136.85 ± 2.32 μg/ml. Eupafolin also had good pharmacological activity in the antioxidant, anti-inflammation and antiproliferative. Eupafolin might be an important bioactive compound in the stem of K. gracilis. The above experimental data indicated that the stem of K. gracilis is a potent antioxidant medicinal plant, and such efficacy may be mainly attributed to its polyphenolic compounds.

  11. Synergistic anti-proliferative effects of gambogic acid with docetaxel in gastrointestinal cancer cell lines

    Directory of Open Access Journals (Sweden)

    Zou Zhengyun

    2012-04-01

    Full Text Available Summary Background Gambogic acid has a marked anti-tumor effect for gastric and colorectal cancers in vitro and in vivo. However, recent investigations on gambogic acid have focused mainly on mono-drug therapy, and its potential role in cancer therapy has not been comprehensively illustrated. This study aimed to assess the interaction between gambogic acid and docetaxel on human gastrointestinal cancer cells and to investigate the mechanism of gambogic acid plus docetaxel treatment-induced apoptotic cell death. Methods MTT assay was used to determine IC50 values in BGC-823, MKN-28, LOVO and SW-116 cells after gambogic acid and docetaxel administration. Median effect analysis was applied for determination of synergism and antagonism. Synergistic interaction between gambogic acid and docetaxel was evaluated using the combination index (CI method. Furthermore, cellular apoptosis was analyzed by Annexin-V and propidium iodide (PI double staining. Additionally, mRNA expression of drug-associated genes, i.e., β-tublin III and tau, and the apoptosis-related gene survivin, were measured by quantitative reverse transcription polymerase chain reaction (qRT-PCR. Results Gambogic acid provided a synergistic effect on the cytotoxicity induced by docetaxel in all four cell lines. The combined application of gambogic acid and docetaxel enhanced apoptosis in gastrointestinal cancer cells. Moreover, gambogic acid markedly decreased the mRNA expression of docetaxel-related genes, including β-tubulin III, tau and survivin, in BGC-823 cells. Conclusions Gambogic acid plus docetaxel produced a synergistic anti-tumor effect in gastrointestinal cancer cells, suggesting that the drug combination may offer a novel treatment option for patients with gastric and colorectal cancers.

  12. Metformin inhibition of neuroblastoma cell proliferation is differently modulated by cell differentiation induced by retinoic acid or overexpression of NDM29 non-coding RNA

    OpenAIRE

    Costa, Delfina; Gigoni, Arianna; Würth, Roberto; Cancedda, Ranieri; Florio, Tullio; Pagano, Aldo

    2014-01-01

    Background Metformin is a widely used oral hypoglycemizing agent recently proposed as potential anti-cancer drug. In this study we report the antiproliferative effect of metformin treatment in a high risk neuroblastoma cell model, focusing on possible effects associated to different levels of differentiation and/or tumor initiating potential. Methods Antiproliferative and cytotoxic effects of metformin were tested in human SKNBE2 and SH-SY5Y neuroblastoma cell lines and in SKNBE2 cells in whi...

  13. Synthesis and in Vitro Antiproliferative Evaluation of Some B-norcholesteryl Benzimidazole and Benzothiazole Derivatives

    Directory of Open Access Journals (Sweden)

    Jianguo Cui

    2015-04-01

    Full Text Available Taking orostanal (a compound from a Japanese marine sponge, Stelletta hiwasaensis as a lead compound, some novel B-norcholesteryl benzimidazole and benzothiazole derivatives were synthesized. The antiproliferative activity of the compounds against human cervical carcinoma (HeLa, human lung carcinoma (A549, human liver carcinoma cells (HEPG2 and normal kidney epithelial cells (HEK293T was assayed. The results revealed that the benzimidazole group was a better substituent than benzothiazole group for increasing the antiproliferative activity of compounds. 2-(3β′-Acetoxy-5β′-hydroxy-6′-B-norcholesterylbenzimidazole (9b with the structure of 6-benzimidazole displays the best antiproliferative activity to the cancer cells in all compounds, but is almost inactive to normal kidney epithelial cells (HEK293T. The assay of compound 9b to cancer cell apoptosis by flow cytometry showed that the compound was able to effectively induce cancer cell apoptosis. The research provided a theoretical reference for the exploration of new anti-cancer agents and may be useful for the design of novel chemotherapeutic drugs.

  14. Phytochemical analysis, antiproliferative and antioxidant activities of Chrozophora tinctoria: a natural dye plant.

    Science.gov (United States)

    Oke-Altuntas, Feyza; Ipekcioglu, Selma; Sahin Yaglioglu, Ayse; Behcet, Lutfi; Demirtas, Ibrahim

    2017-12-01

    Chrozophora tinctoria (L.) A. Juss. (Euphorbiaceae) is known as 'dyer's-croton' and used to obtain dye substances. Recently, natural antioxidants and colorants have been of interest because of their safety and therapeutic effects. This study investigates the antiproliferative and antioxidant activities of the various extracts and fractions from C. tinctoria and analyzes their phytochemical contents. The aerial parts of C. tinctoria were extracted with water, ethyl acetate, n-butanol, and methanol/chloroform. Phenolic compounds and other constituents of the extracts were analyzed by HPLC/TOF-MS. The ethyl acetate extract (EA) was fractionated by flash chromatography. The extracts, fractions, and major phenolic compounds were investigated for their antiproliferative activities on human cervical adenocarcinoma (HeLa) cell line at the concentrations of 5-100 μg/mL by using BrdU ELISA assay during 24 h of incubation. DPPH radical scavenging activities (5-150 μg/mL) and total phenolic contents of the samples were also evaluated. 4-Hydroxybenzoic acid (268.20 mg/kg), apigenin-7-glucoside (133.34 mg/kg), and gallic acid (68.92 mg/kg) were the major components of EA. CT/E-F6 (IC 50  = 64.59 ± 0.01 μg/mL) exhibited the highest antiproliferative activity. CT/E-F2 (IC 50 = 14.0 ± 0.0 μg/mL) and some fractions displayed higher radical scavenging activity compared to synthetic antioxidant BHT (IC 50  =   23.1 ± 0.0 μg/mL). Among the main phenolics, gallic acid exhibited the highest antiproliferative and radical scavenging abilities (IC 50  <   5 μg/mL). In this study, we have determined the biologically active fractions and their high effects may be attributed to the presence of gallic acid.

  15. Evaluation of the antiproliferative activity of the leaves from Arctium lappa by a bioassay-guided fractionation.

    Science.gov (United States)

    Machado, Fabio Bahls; Yamamoto, Rafael Eidi; Zanoli, Karine; Nocchi, Samara Requena; Novello, Cláudio Roberto; Schuquel, Ivânia Teresinha Albrecht; Sakuragui, Cássia Mônica; Luftmann, Heinrich; Ueda-Nakamura, Tânia; Nakamura, Celso Vataru; de Mello, João Carlos Palazzo

    2012-02-14

    Arctium lappa L. (Asteraceae) is used in folk medicine around the World, and shows several kinds of biological activity, particularly in vitro antitumor activity in different cell lines. This study evaluated the antiproliferative activity of the crude extract, semipurified fractions, and isolated compounds from the leaves of A. lappa, through bioassay-guided testing in Caco-2 cells. The crude extract was obtained with a 50% hydroethanolic extract and then partitioned with hexane, ethyl acetate, and n-butanol. The ethyl-acetate fraction (EAF) showed antiproliferative activity. This fraction was subjected to sequential column chromatography over silica gel to afford onopordopicrin (1), mixtures of 1 with dehydromelitensin-8-(4'-hydroxymethacrylate) (2), a mixture of 2 with dehydromelitensin (3), mixture of 1 with melitensin (4), dehydrovomifoliol (5), and loliolide (6). The compounds were identified by spectroscopic methods (NMR, MS) and comparison with literature data. This is the first description of compounds 2-5 from this species. The compounds tested in Caco-2 cells showed the following CC(50) (µg/mL) values: 1: 19.7 ± 3.4, 1 with 2: 24.6 ± 1.5, 2 with 3: 27 ± 11.7, 1 with 4: 42 ± 13.1, 6 30 ± 6.2; compound 5 showed no activity.

  16. Evaluation of the Antiproliferative Activity of the Leaves from Arctium lappa by a Bioassay-Guided Fractionation

    Directory of Open Access Journals (Sweden)

    Celso Vataru Nakamura

    2012-02-01

    Full Text Available Arctium lappa L. (Asteraceae is used in folk medicine around the World, and shows several kinds of biological activity, particularly in vitro antitumor activity in different cell lines. This study evaluated the antiproliferative activity of the crude extract, semipurified fractions, and isolated compounds from the leaves of A. lappa, through bioassay-guided testing in Caco-2 cells. The crude extract was obtained with a 50% hydroethanolic extract and then partitioned with hexane, ethyl acetate, and n-butanol. The ethyl-acetate fraction (EAF showed antiproliferative activity. This fraction was subjected to sequential column chromatography over silica gel to afford onopordopicrin (1, mixtures of 1 with dehydromelitensin-8-(4'-hydroxymethacrylate (2, a mixture of 2 with dehydromelitensin (3, mixture of 1 with melitensin (4, dehydrovomifoliol (5, and loliolide (6. The compounds were identified by spectroscopic methods (NMR, MS and comparison with literature data. This is the first description of compounds 2–5 from this species. The compounds tested in Caco-2 cells showed the following CC50 (µg/mL values: 1: 19.7 ± 3.4, 1 with 2: 24.6 ± 1.5, 2 with 3: 27 ± 11.7, 1 with 4: 42 ± 13.1, 6 30 ± 6.2; compound 5 showed no activity.

  17. Antiproliferative and proapoptotic effects of topotecan in combination with thymoquinone on acute myelogenous leukemia.

    Science.gov (United States)

    Khalife, Rana; El-Hayek, Stephany; Stephany, El-Hayek; Tarras, Omayr; Hodroj, Mohammad Hassan; Rizk, Sandra

    2014-09-01

    Topotecan has shown promising antineoplastic activity in solid tumors and acute leukemia. Because of the primary dose-limiting toxicity of topotecan, it is necessary to identify other agents that can work synergistically with topotecan, potentially increasing its efficacy while limiting its toxicity. Many studies showed synergism in combination of topotecan with gemcitabine and bortezomib. Other studies report the increase in growth inhibition of gemcitabine or oxaliplatin when cells were preexposed to naturally occurring drugs such as thymoquinone. The aim of this project was to study the mode of action of topotecan along with thymoquinone, on survival and apoptosis pathways in acute myelogenous leukemia (AML) cell lines, and to investigate the potential synergistic effect of thymoquinone on topotecan. U937 cells were incubated with different topotecan and thymoquinone concentrations for 24 and 48 hours, separately and in combination. Cell proliferation was determined using WST-1 (Roche) reagent. The effect of the compounds on protein expression of Bax, Bcl2, p53, caspase-9, -8, and -3 was determined using Western blot analysis. Cell cycle analysis was performed in addition to annexin/propidium iodide staining. Thymoquinone and topotecan exhibited antiproliferative effects on U937 cells when applied separately. In combination, the reduction in proliferation was extremely significant with a major increase in the expression levels of Bax/Bcl2, p53, and caspase-3 and -9. Preexposure with thymoquinone resulted in an increase in cell growth inhibition compared with topotecan treatment. Thymoquinone, when combined with topotecan in noncytotoxic doses, produced synergistic antiproliferative and proapoptotic effects in AML cells. Preexposure to thymoquinone seems to be more effective than simultaneous application with topotecan. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Antiproliferative effect of UTP on human arterial and venous smooth muscle cells.

    Science.gov (United States)

    White, P J; Kumari, R; Porter, K E; London, N J; Ng, L L; Boarder, M R

    2000-12-01

    We have investigated the hypothesis that responses associated with proliferation are regulated by extracellular nucleotides such as ATP and UTP in cultured human vascular smooth muscle cells (VSMC) derived from internal mammary artery (IMA) and saphenous vein (SV). Platelet-derived growth factor (PDGF), ATP, and UTP each generated an increase in cytosolic free Ca(2+) concentration ([Ca(2+)](i)) in both IMA- and SV-derived cells in the absence of detectable inositol 1,4,5-trisphosphate production. ATP alone had no effect on [(3)H]thymidine incorporation into DNA, but with a submaximal concentration of PDGF it raised [(3)H]thymidine incorporation in SV- but not IMA-derived cells. UTP alone also was without effect on [(3)H]thymidine incorporation or cell number. However, in both SV- and IMA-derived cells, UTP reduced the PDGF-stimulated [(3)H]thymidine response and PDGF-stimulated cell proliferation. This cannot be explained by an inhibitory effect on the p42/p44 mitogen-activated protein kinase (MAPK) cascade, since this response to PDGF was not attenuated by UTP. We conclude that, in human VSMC of both arterial and venous origin, UTP acts as an anti-proliferative regulator.

  19. Cytotoxicity of arctigenin and matairesinol against the T-cell lymphoma cell line CCRF-CEM.

    Science.gov (United States)

    Su, Shan; Cheng, Xinlai; Wink, Michael

    2015-09-01

    Arctigenin and matairesinol possess a diversity of bioactivities. Here we investigated the cytotoxicity of arctigenin and matairesinol against a T-cell lymphoma cell line CCRF-CEM and the underlying mechanisms that have not been explored before. The cytotoxic activity was investigated using MTT assay. The cell cycle arrest and reactive oxygen species (ROS) accumulation were determined by flow cytometric analysis. The apoptosis induction was assessed using Annexin V/Propidium Iodide assay. The gene quantification analysis was measured through real-time polymerase chain reaction. Arctigenin and matairesinol exhibited significant antiproliferative activity against CCRF-CEM cells after 72 h treatment with IC50 values of 1.21 ± 0.15 μm and 4.27 ± 0.41 μm, respectively. In addition, both lignans arrest CCRF-CEM cells in the S phase. Furthermore, they could induce apoptosis in CCRF-CEM cells in a concentration- and time-dependent manner. Interestingly, the lignans differentially regulated the expression of several key genes involved in apoptosis pathways, including Bax, Bad and caspase-9. Moreover, both lignans could increase ROS levels in CCRF-CEM cells. Our study provides an insight into the potential of arctigenin and matairesinol as good candidates for the development of novel agents against T-cell lymphoma. © 2015 Royal Pharmaceutical Society.

  20. Antagonism of serotonin receptor 1B decreases viability and promotes apoptosis in the COS canine osteosarcoma cell line.

    Science.gov (United States)

    Viall, A K; Goodall, C P; Stang, B; Marley, K; Chappell, P E; Bracha, S

    2016-06-01

    Serotonin receptor 1B (5HTR1B) traditionally exhibits anti-proliferative activity in osteoblasts. We examined the expression and function of 5HTR1B in the COS canine osteosarcoma cell line and normal canine osteoblasts. Equal levels of 5HTR1B gene and protein expression were found between normal and malignant osteoblasts. Treatment with serotonin enhanced viability of osteosarcoma cells but not normal osteoblasts. Challenge with the 5HTR1B agonist anpirtoline caused no change in cell viability. Rather incubation with the specific receptor antagonist SB224289 caused reduction in osteoblast viability, with this effect more substantial in osteosarcoma cells. Investigation of this inhibitory activity showed 5HTR1B antagonism induces apoptosis in malignant cells. Evaluation of phosphorylated levels of CREB and ERK, transcriptional regulators associated with serotonin receptor signalling in osteoblasts, revealed aberrant 5HTR1B signalling in COS. Our results confirm the presence of 5HTR1B in a canine osteosarcoma cell line and highlight this receptor as a possible novel therapeutic target. © 2014 John Wiley & Sons Ltd.

  1. Modification of the estrogenic properties of diphenols by the incorporation of ferrocene. Generation of antiproliferative effects in vitro.

    Science.gov (United States)

    Vessières, Anne; Top, Siden; Pigeon, Pascal; Hillard, Elizabeth; Boubeker, Leila; Spera, Daniela; Jaouen, Gérard

    2005-06-16

    We report here the synthesis and the strong and unexpected antiproliferative effect of the organometallic diphenolic compound 1,1-bis(4'-hydroxyphenyl)-2-ferrocenyl-but-1-ene (4) on both hormone-dependent (MCF7) and -independent (MDA-MB231) breast cancer cells (IC(50) = 0.7 and 0.6 microM). Surprisingly, 6 [1,2-bis(4'-hydroxyphenyl)-2-ferrocenyl-but-1-ene], the regioisomer of 4, shows only a modest effect on these cell lines. This pertinent organometallic modification seems to trigger an intracellular oxidation of the structurally favorable compound 4, leading to the generation of a potent cytotoxic compound.

  2. Tapirira guianensis Aubl. Extracts Inhibit Proliferation and Migration of Oral Cancer Cells Lines

    Directory of Open Access Journals (Sweden)

    Renato José Silva-Oliveira

    2016-11-01

    Full Text Available Cancer of the head and neck is a group of upper aerodigestive tract neoplasms in which aggressive treatments may cause harmful side effects to the patient. In the last decade, investigations on natural compounds have been particularly successful in the field of anticancer drug research. Our aim is to evaluate the antitumor effect of Tapirira guianensis Aubl. extracts on a panel of head and neck squamous cell carcinoma (HNSCC cell lines. Analysis of secondary metabolites classes in fractions of T. guianensis was performed using Nuclear Magnetic Resonance (NMR. Mutagenicity effect was evaluated by Ames mutagenicity assay. The cytotoxic effect, and migration and invasion inhibition were measured. Additionally, the expression level of apoptosis-related molecules (PARP, Caspases 3, and Fas and MMP-2 was detected using Western blot. Heterogeneous cytotoxicity response was observed for all fractions, which showed migration inhibition, reduced matrix degradation, and decreased cell invasion ability. Expression levels of MMP-2 decreased in all fractions, and particularly in the hexane fraction. Furthermore, overexpression of FAS and caspase-3, and increase of cleaved PARP indicates possible apoptosis extrinsic pathway activation. Antiproliferative activity of T. guianensis extract in HNSCC cells lines suggests the possibility of developing an anticancer agent or an additive with synergic activities associated with conventional anticancer therapy.

  3. β-Caryophyllene, a Compound Isolated from the Biblical Balm of Gilead (Commiphora gileadensis, Is a Selective Apoptosis Inducer for Tumor Cell Lines

    Directory of Open Access Journals (Sweden)

    Eitan Amiel

    2012-01-01

    Full Text Available The biblical balm of Gilead (Commiphora gileadensis was investigated in this study for anticancerous activity against tumor cell lines. The results obtained from ethanol-based extracts and from essential oils indicated that β-caryophyllene (trans-(1R,9S-8-methylene-4,11,11-trimethylbicyclo[7.2.0]undec-4-ene is a key component in essential oils extracted from the balm of Gilead. β-Caryophyllene can be found in spice blends, citrus flavors, soaps, detergents, creams, and lotions, as well as in a variety of food and beverage products, and it is known for its anti-inflammatory, local anaesthetic, and antifungal properties. It is also a potent cytotoxic compound over a wide range of cell lines. In the current paper, we found that Commiphora gileadensis stem extracts and essential oil have an antiproliferative proapoptotic effect against tumor cells and not against normal cells. β-caryophyllene caused a potent induction of apoptosis accompanied by DNA ladder and caspase-3 catalytic activity in tumor cell lines. In summary, we showed that C. gileadensis stems contain an apoptosis inducer that acts, in a selective manner, against tumor cell lines and not against normal cells.

  4. Anti-proliferative, Cytotoxic and NF-ĸB Inhibitory Properties of Spiro(Lactone-Cyclohexanone) Compounds in Human Leukemia.

    Science.gov (United States)

    Bouhenna, Mustapha M; Orlikova, Barbora; Talhi, Oualid; Schram, Ben; Pinto, Diana C G A; Taibi, Nadia; Bachari, Khaldoun; Diederich, Marc; Silva, Artur M S; Mameri, Nabil

    2017-09-01

    NF-ĸB affects most aspects of cellular physiology. Deregulation of NF-ĸB signaling is associated with inflammatory diseases and cancer. In this study, we evaluated the cytotoxic and NF-ĸB inhibition potential of new spiro(lactone-cyclohexanone) compounds in two different human leukemia cell lines (U937 and K562). The anti-proliferative effects of the spiro(lactone-cyclohexanone) compounds on human K562 and U937 cell lines was evaluated by trypan blue staining, as well as their involvement in NF-kB regulation were analyzed by luciferase reporter gene assay, Caspase-3/7 activities were evaluated to analyze apoptosis induction. Both spiro(coumarin-cyclohexanone) 4 and spiro(6- methyllactone-cyclohexanone) 9 down-regulated cancer cell viability and proliferation. Compound 4 inhibited TNF-α-induced NF-ĸB activation in a dose-dependent manner and induced caspase-dependent apoptosis in both leukemia cell lines. Results show that compound 4 and compound 9 have potential as anti-cancer agents. In addition, compound 4 exerted NF-kB inhibition activity in leukemia cancer cells. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  5. The antiproliferative and apoptotic effects of apigenin on glioblastoma cells.

    Science.gov (United States)

    Stump, Trevor A; Santee, Brittany N; Williams, Lauren P; Kunze, Rachel A; Heinze, Chelsae E; Huseman, Eric D; Gryka, Rebecca J; Simpson, Denise S; Amos, Samson

    2017-07-01

    Glioblastoma (GBM) is highly proliferative, infiltrative, malignant and the most deadly form of brain tumour. The epidermal growth factor receptor (EGFR) is overexpressed, amplified and mutated in GBM and has been shown to play key and important roles in the proliferation, growth and survival of this tumour. The goal of our study was to investigate the antiproliferative, apoptotic and molecular effects of apigenin in GBM. Proliferation and viability tests were carried out using the trypan blue exclusion, MTT and lactate dehydrogenase (LDH) assays. Flow cytometry was used to examine the effects of apigenin on the cell cycle check-points. In addition, we determined the effects of apigenin on EGFR-mediated signalling pathways by Western blot analyses. Our results showed that apigenin reduced cell viability and proliferation in a dose- and time-dependent manner while increasing cytotoxicity in GBM cells. Treatment with apigenin-induced is poly ADP-ribose polymerase (PARP) cleavage and caused cell cycle arrest at the G2M checkpoint. Furthermore, our data revealed that apigenin inhibited EGFR-mediated phosphorylation of mitogen-activated protein kinase (MAPK), AKT and mammalian target of rapamycin (mTOR) signalling pathways and attenuated the expression of Bcl-xL. Our results demonstrated that apigenin has potent inhibitory effects on pathways involved in GBM proliferation and survival and could potentially be used as a therapeutic agent for GBM. © 2017 Royal Pharmaceutical Society.

  6. Biochemical characterization and antioxidant and antiproliferative activities of different Ganoderma collections.

    Science.gov (United States)

    Saltarelli, Roberta; Ceccaroli, Paola; Buffalini, Michele; Vallorani, Luciana; Casadei, Lucia; Zambonelli, Alessandra; Iotti, Mirco; Badalyan, Susanna; Stocchi, Vilberto

    2015-01-01

    The aim of this study was to conduct a molecular and biochemical characterization and to compare the antioxidant and antiproliferative activities of four Ganoderma isolates belonging to Ganoderma lucidum (Gl-4, Gl-5) and Ganoderma resinaceum (F-1, F-2) species. The molecular identification was performed by ITS and IGS sequence analyses and the biochemical characterization by enzymatic and proteomic approaches. The antioxidant activity of the ethanolic extracts was compared by three different methods and their flavonoid contents were also analyzed by high-performance liquid chromatography. The antiproliferative effect on U937 cells was determined by MTT assay. The studied mycelia differ both in the enzymatic activities and protein content. The highest content in total phenol and the highest antioxidant activity for DPPH free radical scavenging and chelating activity on Fe(2+) were observed with the Gl-4 isolate of G. lucidum. The presence of quercetin, rutin, myricetin, and morin as major flavonoids with effective antioxidant activity was detected. The ethanolic extracts from mycelia of G. lucidum isolates possess a substantial antiproliferative activity against U937 cells in contrast to G. resinaceum in which the antiproliferative effects were insignificant. This study provides a comparison between G. lucidum and G. resinaceum mycelial strains, and shows that G. resinaceum could be utilized to obtain several bioactive compounds. © 2015 S. Karger AG, Basel.

  7. Pulsed electric field processing preserves the antiproliferative activity of the milk fat globule membrane on colon carcinoma cells.

    Science.gov (United States)

    Xu, S; Walkling-Ribeiro, M; Griffiths, M W; Corredig, M

    2015-05-01

    The present work evaluated the effect of processing on the antiproliferative activities of milk fat globule membrane (MFGM) extracts. The antiproliferative activity on human adenocarcinoma HT-29 cells of untreated MFGM extracts were compared with those extracted from pasteurized cream, thermally treated cream, or cream subjected to pulsed electrical field (PEF) processing. The PEF with a 37 kV/cm field strength applied for 1,705μs at 50 and 65°C was applied to untreated cream collected from a local dairy. Heating at 50 or 65°C for 3min (the passage time in the PEF chamber) was also tested to evaluate the heating effect during PEF treatments. The MFGM extracted from pasteurized cream did not show an antiproliferative activity. On the other hand, isolates from PEF-treated cream showed activity similar to that of untreated samples. It was also shown that PEF induced interactions between β-lactoglobulin and MFGM proteins at 65°C, whereas the phospholipid composition remained unaltered. This work demonstrates the potential of PEF not only a means to produce a microbiologically safe product, but also as a process preserving the biofunctionality of the MFGM. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  8. The multikinase inhibitor Sorafenib displays significant antiproliferative effects and induces apoptosis via caspase 3, 7 and PARP in B- and T-lymphoblastic cells

    International Nuclear Information System (INIS)

    Schult, Catrin; Boldt, Sonja; Wolkenhauer, Olaf; Neri, Luca Maria; Freund, Mathias; Junghanss, Christian; Dahlhaus, Meike; Ruck, Sabine; Sawitzky, Mandy; Amoroso, Francesca; Lange, Sandra; Etro, Daniela; Glass, Aenne; Fuellen, Georg

    2010-01-01

    Targeted therapy approaches have been successfully introduced into the treatment of several cancers. The multikinase inhibitor Sorafenib has antitumor activity in solid tumors and its effects on acute lymphoblastic leukemia (ALL) cells are still unclear. ALL cell lines (SEM, RS4;11 and Jurkat) were treated with Sorafenib alone or in combination with cytarabine, doxorubicin or RAD001. Cell count, apoptosis and necrosis rates, cell cycle distribution, protein phosphorylation and metabolic activity were determined. Sorafenib inhibited the proliferation of ALL cells by cell cycle arrest accompanied by down-regulation of CyclinD3 and CDK4. Furthermore, Sorafenib initiated apoptosis by cleavage of caspases 3, 7 and PARP. Apoptosis and necrosis rates increased significantly with most pronounced effects after 96 h. Antiproliferative effects of Sorafenib were associated with a decreased phosphorylation of Akt (Ser473 and Thr308), FoxO3A (Thr32) and 4EBP-1 (Ser65 and Thr70) as early as 0.5 h after treatment. Synergistic effects were seen when Sorafenib was combined with other cytotoxic drugs or a mTOR inhibitor emphasizing the Sorafenib effect. Sorafenib displays significant antileukemic activity in vitro by inducing cell cycle arrest and apoptosis. Furthermore, it influences PI3K/Akt/mTOR signaling in ALL cells

  9. Evaluation of Pistacia lentiscus seed oil and phenolic compounds for in vitro antiproliferative effects against BHK21 cells.

    Science.gov (United States)

    Mezni, Faten; Shili, Sarra; Ben Ali, Nejia; Larbi Khouja, Mohamed; Khaldi, Abdelhamid; Maaroufi, Abderrazak

    2016-01-01

    Within the global context of increasing cancer diseases, natural products are important in devising new drugs and providing unique ideas in cancer therapy. In Tunisian folk medicine, Pistacia lentiscus L. (Anacardiaceae) fixed oil is used for cancer treatment. This investigation studied, for the first time, the antiproliferative effect of Pistacia lentiscus fixed oil and its phenolic extract on BHK21 cancer cells. Oil was extracted from fruits harvested in northwest Tunisia and the phenolic fraction was obtained by mixing with methanol. The anti-proliferative activity of the two tested substances on BHK 21 cells were investigated in vitro using trypan blue assays. Cells were treated with different concentrations of P. lentiscus oil (0.009, 0.018, 0.036, and 0.09 g/mL) and the phenolic extract (0.007, 0.014, 0.03, and 0.07 g/mL) for 24, 48, and 72 h. The inhibitory effect of Pistacia lentiscus fixed oil increases with the increase in dose. The IC50 value was estimated at 0.029 g/mL. The percentage of cell viability was 42.46 ± 3.4% at a dose of 0.09 g/mL and was significantly lower than that of the untreated control (96.24 ± 2.5%, pPistacia lentiscus fixed oil in treating cancer, as it is used in traditional medicine.

  10. Characterisation and Manipulation of Docetaxel Resistant Prostate Cancer Cell Lines

    LENUS (Irish Health Repository)

    O'Neill, Amanda J

    2011-10-07

    Abstract Background There is no effective treatment strategy for advanced castration-resistant prostate cancer. Although Docetaxel (Taxotere®) represents the most active chemotherapeutic agent it only gives a modest survival advantage with most patients eventually progressing because of inherent or acquired drug resistance. The aims of this study were to further investigate the mechanisms of resistance to Docetaxel. Three Docetaxel resistant sub-lines were generated and confirmed to be resistant to the apoptotic and anti-proliferative effects of increasing concentrations of Docetaxel. Results The resistant DU-145 R and 22RV1 R had expression of P-glycoprotein and its inhibition with Elacridar partially and totally reversed the resistant phenotype in the two cell lines respectively, which was not seen in the PC-3 resistant sublines. Resistance was also not mediated in the PC-3 cells by cellular senescence or autophagy but multiple changes in pro- and anti-apoptotic genes and proteins were demonstrated. Even though there were lower basal levels of NF-κB activity in the PC-3 D12 cells compared to the Parental PC-3, docetaxel induced higher NF-κB activity and IκB phosphorylation at 3 and 6 hours with only minor changes in the DU-145 cells. Inhibition of NF-κB with the BAY 11-7082 inhibitor reversed the resistance to Docetaxel. Conclusion This study confirms that multiple mechanisms contribute to Docetaxel resistance and the central transcription factor NF-κB plays an immensely important role in determining docetaxel-resistance which may represent an appropriate therapeutic target.

  11. Furano diterpenes from Pterodon pubescens Benth with selective in vitro anticancer activity for prostate cell line

    International Nuclear Information System (INIS)

    Spindola, Humberto M.; Carvalho, Joao E. de; Ruiz, Ana Lucia T.G.; Rodrigues, Rodney A. F.; Denny, Carina; Sousa, Ilza M. de Oliveira; Foglio, Mary Ann; Tamashiro, Jorge Y.

    2009-01-01

    Activity guided fractionation of Pterodon pubescens Benth. methylene chloride-soluble fraction afforded novel 6α-acetoxi 7β-hydroxy-vouacapan 1 and four known diterpene furans 2, 3, 4, 5. The compounds were evaluated for in vitro cytotoxic activities against human normal cells and tumour cell lines UACC-62 (melanoma), MCF-7 (breast), NCI-H460 (lung, non-small cells), OVCAR-03 (ovarian), PC-3 (prostate), HT-29 (colon), 786-0 (renal), K562 (leukemia) and NCI-ADR/RES (ovarian expressing phenotype multiple drugs resistance). Results were expressed by three concentration dependent parameters GI 50 (concentration that produces 50% growth inhibition), TGI (concentration that produces total growth inhibition or cytostatic effect) and LC 50 (concentration that produces .50% growth, a cytotoxicity parameter). Also, in vitro cytotoxicity was evaluated against 3T3 cell line (mouse embryonic fibroblasts). Antiproliferative properties of compounds 1, 4 and 5 are herein reported for the first time. These compounds showed selectivity in a concentration-dependent way against human PC-3. Compound 1 demonstrated selectivity 26 fold more potent than the positive control, doxorubicin, for PC-3 (prostrate) cell line based on GI 50 values, causing cytostatic effect (TGI value) at a concentration fifteen times less than positive control. Moreover comparison of 50% lethal concentration (LC 50 value) with positive control (doxorubicin) suggested that compound 1 was less toxic. (author)

  12. Characterization and Antiproliferative Activity of Nobiletin-Loaded Chitosan Nanoparticles

    Directory of Open Access Journals (Sweden)

    Ana G. Luque-Alcaraz

    2012-01-01

    Full Text Available Nobiletin is a polymethoxyflavonoid with a remarkable antiproliferative effect. In order to overcome its low aqueous solubility and chemical instability, the use of nanoparticles as carriers has been proposed. This study explores the possibility of binding nobiletin to chitosan nanoparticles, as well as to evaluate their antiproliferative activity. The association and loading efficiencies are 69.1% and 7.0%, respectively. The formation of an imine bond between chitosan amine groups and the carbonyl group of nobiletin, via Schiff-base, is proposed. Nobiletin-loaded chitosan nanoparticles exhibit considerable inhibition (IC50=8 μg/mL of cancerous cells, revealing their great potential for applications in cancer chemotherapy.

  13. Antiproliferative Constituents of Geopropolis from the Bee Melipona scutellaris.

    Science.gov (United States)

    da Cunha, Marcos Guilherme; Rosalen, Pedro Luiz; Franchin, Marcelo; de Alencar, Severino Matias; Ikegaki, Masaharu; Ransom, Tanya; Beutler, John Albert

    2016-02-01

    Fractionation of geopropolis from Melipona scutellaris, guided by antiproliferative activity against two colon cancer cell lines (COLO205 and KM12), led to the isolation of two new cinnamic acid esters, mammea-type coumarins 5,7-dihydroxy-6-(3-methyl-2-butenyl)-8-(4-cinnamoyl-3-methyl-1-oxobutyl)-4-propyl-coumarin (1) and 5,7-dihydroxy-6-(4-cinnamoyl-3-methyl-1-oxobutyl)-4-phenylcoumarin (2), along with five known coumarins, mammeigin (3), hydroxymammeigin (4), mammeisin (5), cinnamoyloxy-mammeisin (6), and mammein (7), and the prenylated benzophenone ent-nemorosone (8). Among the isolated compounds, 5 and 7 showed the highest cell growth inhibition against COLO205 (GI50 9.7 and 10.7 µM, respectively) and KM12 (GI50 12.0 and 10.9 µM, respectively). The presence of these compounds suggests that plants of Clusiaceae family, especially the genera Kielmeyera and Clusia, are likely to be major sources of geopropolis produced by M. scutellaris. Georg Thieme Verlag KG Stuttgart · New York.

  14. The effects of piroxicam and deracoxib on canine mammary tumour cell line.

    Science.gov (United States)

    Ustün Alkan, Fulya; Ustüner, Oya; Bakırel, Tülay; Cınar, Suzan; Erten, Gaye; Deniz, Günnur

    2012-01-01

    Cyclooxygenase (COX) inhibitors, already widely used for the treatment of pain and inflammation, are considered as promising compounds for the prevention and treatment of neoplasia. The aim of our study was to determine the direct antiproliferative effects of nonsteroidal anti-inflammatory drugs (NSAIDs), piroxicam and deracoxib, at a variety of concentrations as both single and combined treatments on canine mammary carcinoma cell line CMT-U27 and to understand the mechanisms of cell death. MTT assay was performed to determine cell viability, and flow cytometric analyses were performed to evaluate apoptosis and cell cycle alterations. Significant decrease in cell viability was observed at high concentrations of piroxicam and deracoxib in both single and combined treatments after 72 h incubation. Combined treatment produced a significantly greater inhibition than that caused by either agent alone. Also apoptotic cell number was increased by both drugs at the cytotoxic concentrations. However, concomitant treatment of cells with piroxicam and deracoxib resulted in significant induction of apoptosis at lower concentrations and accumulation of cells in the G₀/G₁ phase. Significant cytotoxic effects exhibited by the combination of piroxicam and deracoxib against canine mammary carcinoma cells in vitro suggest an attractive approach for the treatment of canine mammary carcinoma.

  15. The Effects of Piroxicam and Deracoxib on Canine Mammary Tumour Cell Line

    Directory of Open Access Journals (Sweden)

    Fulya Üstün Alkan

    2012-01-01

    Full Text Available Cyclooxygenase (COX inhibitors, already widely used for the treatment of pain and inflammation, are considered as promising compounds for the prevention and treatment of neoplasia. The aim of our study was to determine the direct antiproliferative effects of nonsteroidal anti-inflammatory drugs (NSAIDs, piroxicam and deracoxib, at a variety of concentrations as both single and combined treatments on canine mammary carcinoma cell line CMT-U27 and to understand the mechanisms of cell death. MTT assay was performed to determine cell viability, and flow cytometric analyses were performed to evaluate apoptosis and cell cycle alterations. Significant decrease in cell viability was observed at high concentrations of piroxicam and deracoxib in both single and combined treatments after 72 h incubation. Combined treatment produced a significantly greater inhibition than that caused by either agent alone. Also apoptotic cell number was increased by both drugs at the cytotoxic concentrations. However, concomitant treatment of cells with piroxicam and deracoxib resulted in significant induction of apoptosis at lower concentrations and accumulation of cells in the G0/G1 phase. Significant cytotoxic effects exhibited by the combination of piroxicam and deracoxib against canine mammary carcinoma cells in vitro suggest an attractive approach for the treatment of canine mammary carcinoma.

  16. In vitro anti-proliferative effect of interferon alpha in solid tumors: A potential predicative test

    International Nuclear Information System (INIS)

    Fuchsberger, N.; Kubes, M.; Kontsek, P.; Borecky, L.; Hornak, M.; Silvanova; Godal, A.; Svec, J.

    1993-01-01

    An in vitro test for the anti-proliferative effect of human leukocyte interferon (IFN-alpha) was performed in primary cultures of tumor cells obtained from 32 patients with either malignant melanoma (13), renal carcinoma (4) or bladder carcinoma (15). Our results demonstrated activity of IFN in all three groups of solid tumors. However, appreciable differences in sensitivity to anti-proliferative effect of IFN between individual tumors of the same type were found. The potential of this anti-proliferative test for prediction of treatment response in IFN-therapy is discussed. (author)

  17. The chemopreventive action of bromelain, from pineapple stem (Ananas comosus L.), on colon carcinogenesis is related to antiproliferative and proapoptotic effects.

    Science.gov (United States)

    Romano, Barbara; Fasolino, Ines; Pagano, Ester; Capasso, Raffaele; Pace, Simona; De Rosa, Giuseppe; Milic, Natasa; Orlando, Pierangelo; Izzo, Angelo A; Borrelli, Francesca

    2014-03-01

    Colorectal cancer is an important health problem across the world. Here, we investigated the possible antiproliferative/proapoptotic effects of bromelain (from the pineapple stem Ananas comosus L., family Bromeliaceae) in a human colorectal carcinoma cell line and its potential chemopreventive effect in a murine model of colon cancer. Proliferation and apoptosis were evaluated in human colon adenocarcinoma (Caco-2) cells by the (3) H-thymidine incorporation assay and caspase 3/7 activity measurement, respectively. Extracellular signal-related kinase (ERK) and Akt expression were evaluated by Western blot analysis, reactive oxygen species production by a fluorimetric method. In vivo, bromelain was evaluated using the azoxymethane murine model of colon carcinogenesis. Bromelain reduced cell proliferation and promoted apoptosis in Caco-2 cells. The effect of bromelain was associated to downregulation of pERK1/2/total, ERK, and pAkt/Akt expression as well as to reduction of reactive oxygen species production. In vivo, bromelain reduced the development of aberrant crypt foci, polyps, and tumors induced by azoxymethane. Bromelain exerts antiproliferative and proapoptotic effects in colorectal carcinoma cells and chemopreventive actions in colon carcinogenesis in vivo. Bromelain-containing foods and/or bromelain itself may represent good candidates for colorectal cancer chemoprevention. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. A Rare Class of New Dimeric Naphtoquiones from Diospyros lotus have Multidrug Reversal and Antiproliferative Effects

    Directory of Open Access Journals (Sweden)

    Dr. Abdur eRauf

    2015-12-01

    Full Text Available Three new dimeric naphthoquinones, 5,4′-dihydroxy-1′-methoxy-6,6′-dimethyl-7,3′-binaphthyl-1,4,5′,8′-tetraone (1, 5′,8′-dihydroxy-5-methoxy-6,6′-dimethyl-7,3′-binaphthyl-1,4,1′,4′-tetraone (2 and 8,5′,8′-trihydroxy-6,6′-dimethyl-7,3′-binaphthyl-1,4,1′,4′-tetraone (3, were isolated from the roots of Diospyros lotus. Their structures were elucidated by spectroscopic techniques, including 1D and 2D NMR, such as HSQC, HMBS, NOESY and J resolved. Compounds 1-3 were evaluated for their effects on the reversion of multidrug resistance (MDR mediated by P-glycoprotein through use of the rhodamine-123 exclusion screening test on human ABCB1 gene transfected L5178Y mouse T-cell lymphoma. Compounds 1-3 were also assessed for their antiproliferative and cytotoxic effects on L5178 and L5178Y mouse T-cell lymphoma lines. Both 1 and 2 exhibited promising antiproliferative and MDR-reversing effects in a dose dependent manner. The effects of the tested compounds on the activity of doxorubicin were observed to vary from slight antagonism to antagonism.

  19. Polyphenols From Cutch Tree (Acacia catechu Willd.: Normalize In Vitro Oxidative Stress and Exerts Antiproliferative Activity

    Directory of Open Access Journals (Sweden)

    Rakesh Kumar

    2017-10-01

    Full Text Available ABSTRACT Oxidative stress, being the main cause of most of the human diseases, has always been the highlight of research worldwide. This stress can be overcome by administration of natural polyphenols. The Acacia catechu Willd. has many refrences available in Ayurveda as important disease curative plant. Its leaves are investigated for ameliorating oxidative stress in present work. Leaves of A. catechu were extracted with 80% methanol to get methanol extract (AME. It was assessed for antioxidant activity using DPPH, ABTS, CUPRAC, ferric ion reducing, superoxide scavenging and peroxyl radical scavenging assays. DNA protective activity was also investigated using plasmid nicking assay. Further, antiproliferative activity was determined using MTT assay in various human cancer cell lines. The quantification of polyphenols was done by UHPLC analysis. Results confirmed that polyphenols of A. catechu were successful in normalizing oxidative stress. AME was found to be most effective in scavenging ABTS radicals while least effective in scavenging ferric ions. UHPLC analysis showed abundance of ellagic acid, rutin and quercetin in AME. Further, AME showed maximum antiproliferative activity against Hep G2 cancer cells. It is concluded that the polyphenols from A. catechu effectively remediates oxidative stress and hence can be used in curing numerous dreadful diseases.

  20. Synthesis of Scutellarein Derivatives with a Long Aliphatic Chain and Their Biological Evaluation against Human Cancer Cells

    Directory of Open Access Journals (Sweden)

    Guanghui Ni

    2018-02-01

    Full Text Available Scutellarin is the major active flavonoid extracted from the traditional Chinese herbal medicine Erigeron breviscapus (Vant. Hand-Mazz., which is widely used in China. Recently, accumulating evidence has highlighted the potential role of scutellarin and its main metabolite scutellarein in the treatment of cancer. To explore novel anticancer agents with high efficiency, a series of new scutellarein derivatives with a long aliphatic chain were synthesized, and the antiproliferative activities against Jurkat, HCT-116 and MDA-MB-231 cancer cell lines were assessed. Among them, compound 6a exhibited the strongest antiproliferative effects on Jurkat (IC50 = 1.80 μM, HCT-116 (IC50 = 11.50 μM and MDA-MB-231 (IC50 = 53.91 μM. In particular, 6a even showed stronger antiproliferative effects than the positive control NaAsO2 on Jurkat and HCT-116 cell lines. The results showed that a proper long aliphatic chain enhanced the antiproliferative activity of scutellarein.

  1. Synthesis of Scutellarein Derivatives with a Long Aliphatic Chain and Their Biological Evaluation against Human Cancer Cells.

    Science.gov (United States)

    Ni, Guanghui; Tang, Yanling; Li, Minxin; He, Yuefeng; Rao, Gaoxiong

    2018-02-01

    Scutellarin is the major active flavonoid extracted from the traditional Chinese herbal medicine Erigeron breviscapus (Vant.) Hand-Mazz., which is widely used in China. Recently, accumulating evidence has highlighted the potential role of scutellarin and its main metabolite scutellarein in the treatment of cancer. To explore novel anticancer agents with high efficiency, a series of new scutellarein derivatives with a long aliphatic chain were synthesized, and the antiproliferative activities against Jurkat, HCT-116 and MDA-MB-231 cancer cell lines were assessed. Among them, compound 6a exhibited the strongest antiproliferative effects on Jurkat (IC 50 = 1.80 μM), HCT-116 (IC 50 = 11.50 μM) and MDA-MB-231 (IC 50 = 53.91 μM). In particular, 6a even showed stronger antiproliferative effects than the positive control NaAsO₂ on Jurkat and HCT-116 cell lines. The results showed that a proper long aliphatic chain enhanced the antiproliferative activity of scutellarein.

  2. A green multicomponent synthesis of tocopherol analogues with antiproliferative activities.

    Science.gov (United States)

    Ingold, Mariana; Dapueto, Rosina; Victoria, Sabina; Galliusi, Germán; Batthyàny, Carlos; Bollati-Fogolín, Mariela; Tejedor, David; García-Tellado, Fernando; Padrón, José M; Porcal, Williams; López, Gloria V

    2018-01-01

    A one-pot efficient, practical and eco-friendly synthesis of tocopherol analogues has been developed using water or solvent free conditions via Passerini and Ugi multicomponent reactions. These reactions can be optimized using microwave irradiation or ultrasound as the energy source. Accordingly, a small library of 30 compounds was prepared for biological tests. The evaluation of the antiproliferative activity in the human solid tumor cell lines A549 (lung), HBL-100 (breast), HeLa (cervix), SW1573 (lung), T-47D (breast), and WiDr (colon) provided lead compounds with GI 50 values between 1 and 5 μM. A structure-activity relationship is also discussed. One of the studied compounds comes up as a future candidate for the development of potent tocopherol-mimetic therapeutic agents for cancer. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  3. Anti-proliferative effect of biogenic gold nanoparticles against breast cancer cell lines (MDA-MB-231 & MCF-7)

    Science.gov (United States)

    K. S., Uma Suganya; Govindaraju, K.; Ganesh Kumar, V.; Prabhu, D.; Arulvasu, C.; Stalin Dhas, T.; Karthick, V.; Changmai, Niranjan

    2016-05-01

    Breast cancer is a major complication in women and numerous approaches are being developed to overcome this problem. In conventional treatments such as chemotherapy and radiotherapy the post side effects cause an unsuitable effect in treatment of cancer. Hence, it is essential to develop a novel strategy for the treatment of this disease. In the present investigation, a possible route for green synthesis of gold nanoparticles (AuNPs) using leaf extract of Mimosa pudica and its anticancer efficacy in the treatment of breast cancer cell lines is studied. The synthesized nanoparticles were found to be effective in killing cancer cells (MDA-MB-231 & MCF-7) which were studied using various anticancer assays (MTT assay, cell morphology determination, cell cycle analysis, comet assay, Annexin V-FITC/PI staining and DAPI staining). Cell morphological analysis showed the changes occurred in cancer cells during the treatment with AuNPs. Cell cycle analysis revealed apoptosis in G0/G1 to S phase. Similarly in Comet assay, there was an increase in tail length in treated cells in comparison with the control. Annexin V-FITC/PI staining assay showed prompt fluorescence in treated cells indicating the translocation of phosphatidylserine from the inner membrane. PI and DAPI staining showed the DNA damage in treated cells.

  4. Chemical constituents isolated from the bark of Guatteria blepharophylla (Annonaceae) and their antiproliferative and antimicrobial activities

    International Nuclear Information System (INIS)

    Costa, Emmanoel V.; Marques, Francisco de Assis; Maia, Beatriz H.L.N.S.; Pinheiro, Maria Lucia B.; Braga, Raquel M.; Delarmelina, Camila; Duarte, Marta Cristina T.; Ruiz, Ana Lucia T.G.; Carvalho, Joao Ernesto de

    2011-01-01

    Phytochemical study of the bark of Guatteria blepharophylla (Mart.) Mart. afforded twelve compounds, namely two sesquiterpenes, caryophyllene oxide (1) and spathulenol (3), one xanthone, lichexanthone (2), a mixture of steroids, b-sitosterol (4), and stigmasterol (5), and seven isoquinoline alkaloids, O-methylmoschatoline (6), lysicamine (7), nornuciferine (8), liriodenine (9), isocoreximine (10), subsessiline (11), and isomoschatoline (12). Their structures were established on the basis of spectroscopic methods. Compounds 1-6, 11 and 12 were reported for the first time in this species. The 13 C NMR (nuclear magnetic resonance) data for the compounds 11 and 12 are described for the first time in the literature. The antiproliferative activity against human tumour cell lines and antimicrobial activities were investigated for the major compounds. Compound 9 showed significant activity against cell lines of breast (MCF-7, Michigan Cancer Foundation-7), superior to the positive control doxorubicin. Compound 12 presented antifungal activity similar to the positive control nystatin against Candida albicans. (author)

  5. Chemical constituents isolated from the bark of Guatteria blepharophylla (Annonaceae) and their antiproliferative and antimicrobial activities

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Emmanoel V.; Marques, Francisco de Assis; Maia, Beatriz H.L.N.S., E-mail: noronha@ufpr.b [Universidade Federal do Parana (DQ/UFPR), Curitiba, PR (Brazil). Dept. de Quimica; Pinheiro, Maria Lucia B. [Universidade Federal do Amazonas (DQ/UFAM), Manaus, AM (Brazil). Dept. de Quimica; Braga, Raquel M. [Universidade Estadual de Campinas (IQ/UNICAMP), SP (Brazil). Inst. de Quimica; Delarmelina, Camila; Duarte, Marta Cristina T.; Ruiz, Ana Lucia T.G.; Carvalho, Joao Ernesto de [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Div. de Microbiologia e Div. Farmacologia e Toxicologia

    2011-07-01

    Phytochemical study of the bark of Guatteria blepharophylla (Mart.) Mart. afforded twelve compounds, namely two sesquiterpenes, caryophyllene oxide (1) and spathulenol (3), one xanthone, lichexanthone (2), a mixture of steroids, b-sitosterol (4), and stigmasterol (5), and seven isoquinoline alkaloids, O-methylmoschatoline (6), lysicamine (7), nornuciferine (8), liriodenine (9), isocoreximine (10), subsessiline (11), and isomoschatoline (12). Their structures were established on the basis of spectroscopic methods. Compounds 1-6, 11 and 12 were reported for the first time in this species. The {sup 13}C NMR (nuclear magnetic resonance) data for the compounds 11 and 12 are described for the first time in the literature. The antiproliferative activity against human tumour cell lines and antimicrobial activities were investigated for the major compounds. Compound 9 showed significant activity against cell lines of breast (MCF-7, Michigan Cancer Foundation-7), superior to the positive control doxorubicin. Compound 12 presented antifungal activity similar to the positive control nystatin against Candida albicans. (author)

  6. Pro-apoptotic activity of new analog of anthracyclines--WP 631 in advanced ovarian cancer cell line.

    Science.gov (United States)

    Gajek, Arkadiusz; Denel, Marta; Bukowska, Barbara; Rogalska, Aneta; Marczak, Agnieszka

    2014-03-01

    In this work we investigated the mode of cell death induced by WP 631, a novel anthracycline antibiotic, in the ovarian cancer cell line (OV-90) derived from the malignant ascites of a patient diagnosed with advanced disease. The effects were compared with those of doxorubicin (DOX), a first generation anthracycline. The ability of WP 631 to induce apoptosis and necrosis was examined by double staining with Annexin V and propidium iodide, measurements of the level of intracellular calcium ions and cytochrome c, PARP cleavage. We also investigated the possible involvement of the caspases activation, DNA degradation (comet assay) and intracellular reactive oxygen species (ROS) production in the development of the apoptotic events and their significance for drug efficiency. The results obtained clearly demonstrate that antiproliferative capacity of WP 631 in tested cell line was a few times greater than that of DOX. Furthermore, ovarian cancer cells treated with WP 631 showed a higher mean level of basal DNA damage in comparison to DOX. In conclusion, WP 631 is able to induce caspase - dependent apoptosis in human ovarian cancer cells. Obtained results suggested that WP 631 may be a candidate for further evaluation as chemotherapeutic agents for human cancers. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Antioxidant and antiproliferative activities in different maturation stages of broccoli (Brassica oleracea Italica) biofortified with selenium.

    Science.gov (United States)

    Bachiega, Patricia; Salgado, Jocelem Mastrodi; de Carvalho, João Ernesto; Ruiz, Ana Lúcia T G; Schwarz, Kélin; Tezotto, Tiago; Morzelle, Maressa Caldeira

    2016-01-01

    In this work, three different broccoli maturity stages subjected to biofortification with selenium were evaluated for antioxidant and antiproliferative activities. Antioxidant trials have shown that the maturation stages biofortified with selenium had significantly higher amounts of phenolic compounds and antioxidant activity, especially seedlings. Although non-polar extracts of all samples show antiproliferative activity, the extract of broccoli seedlings biofortified with selenium stood out, presenting cytocidal activity for a glioma line (U251, GI50 28.5 mg L(-1)). Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Anti-proliferative effects of T cells expressing a ligand-based chimeric antigen receptor against CD116 on CD34+ cells of juvenile myelomonocytic leukemia

    Directory of Open Access Journals (Sweden)

    Yozo Nakazawa

    2016-03-01

    Full Text Available Abstract Background Juvenile myelomonocytic leukemia (JMML is a fatal, myelodysplastic/myeloproliferative neoplasm of early childhood. Patients with JMML have mutually exclusive genetic abnormalities in granulocyte-macrophage colony-stimulating factor (GM-CSF receptor (GMR, CD116 signaling pathway. Allogeneic hematopoietic stem cell transplantation is currently the only curative treatment option for JMML; however, disease recurrence is a major cause of treatment failure. We investigated adoptive immunotherapy using GMR-targeted chimeric antigen receptor (CAR for JMML. Methods We constructed a novel CAR capable of binding to GMR via its ligand, GM-CSF, and generated piggyBac transposon-based GMR CAR-modified T cells from three healthy donors and two patients with JMML. We further evaluated the anti-proliferative potential of GMR CAR T cells on leukemic CD34+ cells from six patients with JMML (two NRAS mutations, three PTPN11 mutations, and one monosomy 7, and normal CD34+ cells. Results GMR CAR T cells from healthy donors suppressed the cytokine-dependent growth of MO7e cells, but not the growth of K562 and Daudi cells. Co-culture of healthy GMR CAR T cells with CD34+ cells of five patients with JMML at effector to target ratios of 1:1 and 1:4 for 2 days significantly decreased total colony growth, regardless of genetic abnormality. Furthermore, GMR CAR T cells from a non-transplanted patient and a transplanted patient inhibited the proliferation of respective JMML CD34+ cells at onset to a degree comparable to healthy GMR CAR T cells. Seven-day co-culture of GMR CAR T cells resulted in a marked suppression of JMML CD34+ cell proliferation, particularly CD34+CD38− cell proliferation stimulated with stem cell factor and thrombopoietin on AGM-S3 cells. Meanwhile, GMR CAR T cells exerted no effects on normal CD34+ cell colony growth. Conclusions Ligand-based GMR CAR T cells may have anti-proliferative effects on stem and progenitor cells in JMML.

  9. N-ω-chloroacetyl-l-ornithine, a new competitive inhibitor of ornithine decarboxylase, induces selective growth inhibition and cytotoxicity on human cancer cells versus normal cells.

    Science.gov (United States)

    Medina-Enríquez, Miriam Marlene; Alcántara-Farfán, Verónica; Aguilar-Faisal, Leopoldo; Trujillo-Ferrara, José Guadalupe; Rodríguez-Páez, Lorena; Vargas-Ramírez, Alba Laura

    2015-06-01

    Many cancer cells have high expression of ornithine decarboxylase (ODC) and there is a concerted effort to seek new inhibitors of this enzyme. The aim of the study was to initially characterize the inhibition properties, then to evaluate the cytotoxicity/antiproliferative cell based activity of N-ω-chloroacetyl-l-ornithine (NCAO) on three human cancer cell lines. Results showed NCAO to be a reversible competitive ODC inhibitor (Ki = 59 µM) with cytotoxic and antiproliferative effects, which were concentration- and time-dependent. The EC50,72h of NCAO was 15.8, 17.5 and 10.1 µM for HeLa, MCF-7 and HepG2 cells, respectively. NCAO at 500 µM completely inhibited growth of all cancer cells at 48 h treatment, with almost no effect on normal cells. Putrescine reversed NCAO effects on MCF-7 and HeLa cells, indicating that this antiproliferative activity is due to ODC inhibition.

  10. Ruthenium(III) Complexes of Heterocyclic Tridentate (ONN) Schiff Base: Synthesis, Characterization and its Biological Properties as an Antiradical and Antiproliferative Agent

    Science.gov (United States)

    Ejidike, Ikechukwu P.; Ajibade, Peter A.

    2016-01-01

    The current work reports the synthesis, spectroscopic studies, antiradical and antiproliferative properties of four ruthenium(III) complexes of heterocyclic tridentate Schiff base bearing a simple 2′,4′-dihydroxyacetophenone functionality and ethylenediamine as the bridging ligand with RCHO moiety. The reaction of the tridentate ligands with RuCl3·3H2O lead to the formation of neutral complexes of the type [Ru(L)Cl2(H2O)] (where L = tridentate NNO ligands). The compounds were characterized by elemental analysis, UV-vis, conductivity measurements, FTIR spectroscopy and confirmed the proposed octahedral geometry around the Ru ion. The Ru(III) compounds showed antiradical potentials against 2,2-Diphenyl-1-Picrylhydrazyl (DPPH) and 2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radicals, with DPPH scavenging capability in the order: [(PAEBOD)RuCl2] > [(BZEBOD)RuCl2] > [(MOABOD)RuCl2] > [Vit. C] > [rutin] > [(METBOD)RuCl2], and ABTS radical in the order: [(PAEBOD)RuCl2] < [(MOABOD)RuCl2] < [(BZEBOD)RuCl2] < [(METBOD)RuCl2]. Furthermore, in vitro anti-proliferative activity was investigated against three human cancer cell lines: renal cancer cell (TK-10), melanoma cancer cell (UACC-62) and breast cancer cell (MCF-7) by SRB assay. PMID:26742030

  11. Ruthenium(III Complexes of Heterocyclic Tridentate (ONN Schiff Base: Synthesis, Characterization and its Biological Properties as an Antiradical and Antiproliferative Agent

    Directory of Open Access Journals (Sweden)

    Ikechukwu P. Ejidike

    2016-01-01

    Full Text Available The current work reports the synthesis, spectroscopic studies, antiradical and antiproliferative properties of four ruthenium(III complexes of heterocyclic tridentate Schiff base bearing a simple 2′,4′-dihydroxyacetophenone functionality and ethylenediamine as the bridging ligand with RCHO moiety. The reaction of the tridentate ligands with RuCl3·3H2O lead to the formation of neutral complexes of the type [Ru(LCl2(H2O] (where L = tridentate NNO ligands. The compounds were characterized by elemental analysis, UV-vis, conductivity measurements, FTIR spectroscopy and confirmed the proposed octahedral geometry around the Ru ion. The Ru(III compounds showed antiradical potentials against 2,2-Diphenyl-1-Picrylhydrazyl (DPPH and 2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid (ABTS radicals, with DPPH scavenging capability in the order: [(PAEBODRuCl2] > [(BZEBODRuCl2] > [(MOABODRuCl2] > [Vit. C] > [rutin] > [(METBODRuCl2], and ABTS radical in the order: [(PAEBODRuCl2] < [(MOABODRuCl2] < [(BZEBODRuCl2] < [(METBODRuCl2]. Furthermore, in vitro anti-proliferative activity was investigated against three human cancer cell lines: renal cancer cell (TK-10, melanoma cancer cell (UACC-62 and breast cancer cell (MCF-7 by SRB assay.

  12. Comparison of gamma radiation - induced effects in two human prostate cancer cells

    International Nuclear Information System (INIS)

    Vucic, V.; Adzic, M.; Ruzdijic, S.; Radojcic, M.B. . E-mail address of corresponding author: vesnav@vin.bg.ac.yu; Vucic, V.)

    2005-01-01

    In this study, the effects of gamma radiation on two hormone refractory human prostate cancer cell lines, DU 145 and PC-3, were followed. It was shown that gamma radiation induced significant inhibition of cell proliferation and viability in dose dependent manner. Antiproliferative effects of radiation were similar in both cell lines, and more pronounced than cytotoxic effects. In addition to that, PC-3 cell line was more resistant to radiation -induced cytotoxicity. (author)

  13. Antioxidant and Antiproliferative Potential of Fruiting Bodies of the Wild-Growing King Bolete Mushroom, Boletus edulis (Agaricomycetes), from Western Serbia.

    Science.gov (United States)

    Novakovic, Aleksandra; Karaman, Maja; Kaisarevic, Sonja; Radusin, Tanja; Llic, Nebojsa

    2017-01-01

    The aim of this work was to study the bioactivity of crude aqueous and ethanolic extracts of Boletus edulis prepared from caps and stipes of wild-growing basidiocarps collected from the Prijepolje region (western Serbia). The bioactivity screening included antioxidant (2,2-diphenyl-l-picrylhydrazyl [DPPH], nitric oxide, super-oxide anion*, and hydroxyl radicals and ferric-reducing antioxidant power) and antiproliferative MTT assays (human breast MCF-7 cancer cell line). In addition, all extracts were primarily characterized by ultraviolet/visible spectrophotometry to determine total phenolic and flavonoid contents. The highest anti-DPPH and anti-hydroxyl radical activity were observed in aqueous B. edulis extract from the caps (half maximal inhibitory concentration [IC50] = 50.97 μg/ mL and 2.05 μg/mL, respectively), whereas the highest anti-nitric oxide radical activity was observed in aqueous B. edulis extract from the stipes (IC50 = 10.74 μg/mL). The ethanolic extract obtained from the mushroom stipe showed higher anti-superoxide anion radical activity (IC50 = 9.84 μg/mL) and ferric-reducing antioxidant power (22.14 mg ascorbic acid equivalents/g dry weight) compared with aqueous extracts. Total phenolic content for all extracts was similar but total flavonoid content was significantly higher in the aqueous B. edulis extract from the caps (4.5 mg quercetin equivalents/g dry weight). All crude extracts showed activity against the MCF-7 cell line, with the ethanolic extract of B. edulis prepared from stipes (IC50 = 56 μg/mL) being the most potent. This is, to our knowledge, the first report of the antiproliferative effects of crude aqueous and ethanolic extracts prepared from caps and stipes of wild-growing basidiocarps of B. edulis on the human breast MCF-7 cancer cell line.

  14. Apoptosis Induction by Polygonum minus is related to antioxidant capacity, alterations in expression of apoptotic-related genes, and S-phase cell cycle arrest in HepG2 cell line.

    Science.gov (United States)

    Mohd Ghazali, Mohd Alfazari; Al-Naqeb, Ghanya; Krishnan Selvarajan, Kesavanarayanan; Hazizul Hasan, Mizaton; Adam, Aishah

    2014-01-01

    Polygonum minus (Polygonaceae) is a medicinal herb distributed throughout eastern Asia. The present study investigated antiproliferative effect of P. minus and its possible mechanisms. Four extracts (petroleum ether, methanol, ethyl acetate, and water) were prepared by cold maceration. Extracts were subjected to phytochemical screening, antioxidant, and antiproliferative assays; the most bioactive was fractionated using vacuum liquid chromatography into seven fractions (F1-F7). Antioxidant activity was measured via total phenolic content (TPC), 2,2-diphenyl-1-picrylhydrazyl (DPPH), and ferric reducing antioxidant power (FRAP) assays. Antiproliferative activity was evaluated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Most active fraction was tested for apoptosis induction and cell cycle arrest in HepG2 cells using flow cytometry and confocal microscopy. Apoptotic-related gene expression was studied by RT-PCR. Ethyl acetate extract was bioactive in initial assays. Its fraction, F7, exhibited highest antioxidant capacity (TPC; 113.16 ± 6.2 mg GAE/g extract, DPPH; EC50: 30.5 ± 3.2 μg/mL, FRAP; 1169 ± 20.3 μmol Fe (II)/mg extract) and selective antiproliferative effect (IC50: 25.75 ± 1.5 μg/mL). F7 induced apoptosis in concentration- and time-dependent manner and caused cell cycle arrest at S-phase. Upregulation of proapoptotic genes (Bax, p53, and caspase-3) and downregulation of antiapoptotic gene, Bcl-2, were observed. In conclusion, F7 was antiproliferative to HepG2 cells by inducing apoptosis, cell cycle arrest, and via antioxidative effects.

  15. Hsp90 inhibitor 17-AAG reduces ErbB2 levels and inhibits proliferation of the trastuzumab resistant breast tumor cell line JIMT-1.

    Science.gov (United States)

    Zsebik, Barbara; Citri, Ami; Isola, Jorma; Yarden, Yosef; Szöllosi, János; Vereb, György

    2006-04-15

    ErbB2, a member of the EGF receptor family of tyrosine kinases is overexpressed on many tumor cells of epithelial origin and is the molecular target of trastuzumab (Herceptin), the first humanized antibody used in the therapy of solid tumors. Trastuzumab, which is thought to act, at least in part, by downregulating ErbB2 expression is only effective in approximately 30-40% of ErbB2 positive breast tumors. Geldanamycin and its derivative 17-AAG are potential antitumor agents capable of downregulating client proteins of Hsp90, including ErbB2. To investigate the ability of 17-AAG to downregulate ErbB2 in trastuzumab resistant breast cancer cells and the possibility of 17-AAG and trastuzumab potentiating each other's effect, the recently established trastuzumab resistant breast cancer cell line, JIMT-1 was compared to the known trastuzumab sensitive SKBR-3 line. Baseline and stimulus-evoked dimerization and activation levels of ErbB2, and the effects of trastuzumab and 17-AAG alone and in combination on cell proliferation and apoptosis, as well as on ErbB2 expression and phosphorylation have been measured. Baseline activation and amenability to activation and downregulation by trastuzumab was much lower in the resistant line. However, 17-AAG enhanced ErbB2 homodimerization after 5-10 min of treatment in both cell lines, and decreased proliferation with an IC50 of 70 nM for SKBR-3 and 10nM for JIMT-1. Thus, 17-AAG may be a useful drug in trastuzumab resistant ErbB2 overexpressing tumors. The antiproliferative effect of 17-AAG was positively correlated with phosphorylation and downregulation of ErbB2 and was dominated by apoptosis, although, especially at higher doses, necrosis was also present. Interestingly, IC50 values for ErbB2 downregulation and phosphorylation, in the 30-40 nM range, were not significantly different for the two cell lines. This observation and the negative correlation between resting ErbB2 levels and the antiproliferative effect of 17-AAG may

  16. PKA/AMPK signaling in relation to adiponectin's antiproliferative effect on multiple myeloma cells.

    Science.gov (United States)

    Medina, E A; Oberheu, K; Polusani, S R; Ortega, V; Velagaleti, G V N; Oyajobi, B O

    2014-10-01

    Obesity increases the risk of developing multiple myeloma (MM). Adiponectin is a cytokine produced by adipocytes, but paradoxically decreased in obesity, that has been implicated in MM progression. Herein, we evaluated how prolonged exposure to adiponectin affected the survival of MM cells as well as putative signaling mechanisms. Adiponectin activates protein kinase A (PKA), which leads to decreased AKT activity and increased AMP-activated protein kinase (AMPK) activation. AMPK, in turn, induces cell cycle arrest and apoptosis. Adiponectin-induced apoptosis may be mediated, at least in part, by the PKA/AMPK-dependent decline in the expression of the enzyme acetyl-CoA-carboxylase (ACC), which is essential to lipogenesis. Supplementation with palmitic acid, the preliminary end product of fatty acid synthesis, rescues MM cells from adiponectin-induced apoptosis. Furthermore, 5-(tetradecyloxy)-2-furancarboxylic acid (TOFA), an ACC inhibitor, exhibited potent antiproliferative effects on MM cells that could also be inhibited by fatty acid supplementation. Thus, adiponectin's ability to reduce survival of MM cells appears to be mediated through its ability to suppress lipogenesis. Our findings suggest that PKA/AMPK pathway activators, or inhibitors of ACC, may be useful adjuvants to treat MM. Moreover, the antimyeloma effect of adiponectin supports the concept that hypoadiponectinemia, as occurs in obesity, promotes MM tumor progression.

  17. Difference in membrane repair capacity between cancer cell lines and a normal cell line

    DEFF Research Database (Denmark)

    Frandsen, Stine Krog; McNeil, Anna K.; Novak, Ivana

    2016-01-01

    repair was investigated by disrupting the plasma membrane using laser followed by monitoring fluorescent dye entry over time in seven cancer cell lines, an immortalized cell line, and a normal primary cell line. The kinetics of repair in living cells can be directly recorded using this technique...... cancer cell lines (p immortalized cell line (p

  18. Investigation of fruit peel extracts as sources for compounds with antioxidant and antiproliferative activities against human cell lines.

    Science.gov (United States)

    Khonkarn, Ruttiros; Okonogi, Siriporn; Ampasavate, Chadarat; Anuchapreeda, Songyot

    2010-01-01

    The aim of this study was to evaluate antioxidant activity and cytotoxicity against human cell lines of fruit peel extracts from rambutan, mangosteen and coconut. The highest antioxidant activity was found from rambutan peel crude extract where the highest radical scavenging capacity via ABTS assay was from its ethyl acetate fraction with a TEAC value of 23.0mM/mg and the highest ferric ion reduction activity via FRAP assay was from its methanol fraction with an EC value of 20.2mM/mg. Importantly, using both assays, these fractions had a higher antioxidant activity than butylated hydroxyl toluene and vitamin E. It was shown that the ethyl acetate fraction of rambutan peel had the highest polyphenolic content with a gallic acid equivalent of 2.3mg/mL. The results indicate that the polyphenolic compounds are responsible for the observed antioxidant activity of the extracts. Interestingly, the hexane fraction of coconut peel showed a potent cytotoxic effect on KB cell line by MTT assay (IC(50)=7.7 microg/mL), and no detectable cytotoxicity toward normal cells. We concluded that the ethyl acetate fraction of rambutan peel is a promising resource for potential novel antioxidant agents whereas the hexane fraction of coconut peel may contain novel anticancer compounds. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  19. Composition, antimicrobial, antioxidant, and antiproliferative activity of Origanum dictamnus (dittany) essential oil.

    Science.gov (United States)

    Mitropoulou, Gregoria; Fitsiou, Eleni; Stavropoulou, Elisavet; Papavassilopoulou, Eleni; Vamvakias, Manolis; Pappa, Aglaia; Oreopoulou, Antigoni; Kourkoutas, Yiannis

    2015-01-01

    Nowadays, there has been an increased interest in essential oils from various plant origins as potential antimicrobial, antioxidant, and antiproliferative agents. This trend can be mainly attributed to the rising number and severity of food poisoning outbreaks worldwide along with the recent negative consumer perception against artificial food additives and the demand for novel functional foods with possible health benefits. Origanum dictamnus (dittany) is an aromatic, tender perennial plant that only grows wild on the mountainsides and gorges of the island of Crete in Greece. The aim of the present study was to investigate the antimicrobial, antioxidant, and antiproliferative properties of O. dictamnus essential oil and its main components and assess its commercial potential in the food industry. O. dictamnus essential oil was initially analyzed by gas chromatography-mass spectrometry (GC-MS) to determine semi-quantitative chemical composition of the essential oils. Subsequently, the antimicrobial properties were assayed and the minimum inhibitory and non-inhibitory concentration values were determined. The antioxidant activity and cytotoxic action against the hepatoma adenocarcinoma cell line HepG2 of the essential oil and its main components were further evaluated by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay and by the sulforhodamine B (SRB) assay, respectively. The main constituents of O. dictamnus essential oil identified by GC-MS analysis were carvacrol (52.2%), γ-terpinene (8.4%), p-cymene (6.1%), linalool (1.4%), and caryophyllene (1.3%). O. dictamnus essential oil and its main components were effective against Staphylococcus aureus, Staphylococcus epidermidis, Escherichia coli, Listeria monocytogenes, Salmonella Enteritidis, Salmonella typhimurium, Saccharomyces cerevisiae, and Aspergillus niger. In addition, the estimated IC50 value for the DPPH radical scavenging activity for O. dictamnus essential oil was 0.045±0.0042% (v/v) and was mainly

  20. Radiosensitization of head and neck cancer cells by the phytochemical agent sulforaphane

    International Nuclear Information System (INIS)

    Kotowski, Ulana; Heiduschka, Gregor; Brunner, Markus; Fahim, Tammer; Thurnher, Dietmar; Czembirek, Cornelia; Eder-Czembirek, Christina; Schmidt, Rainer

    2011-01-01

    Sulforaphane is a naturally occurring compound found in broccoli and other cruciferous vegetables. Recently it gained attention because of its antiproliferative properties in many cancer cell lines. The aim of this study was to investigate whether sulforaphane could act as a radiosensitizer in head and neck squamous cell carcinoma cell lines. Four head and neck squamous cell carcinoma cell lines (i.e., (HNSCC) SCC9, SCC25, CAL27, and FADU) were treated with sulforaphane and subsequently irradiated. Then proliferation and clonogenic assays were performed. Apoptosis was detected by flow cytometry. Possible regulation of Akt and Mcl-1 was investigated by western blotting. Sulforaphane and radiation in combination leads to stronger inhibition of cell proliferation and of clonogenic survival than each treatment method alone. Western blot analysis of Akt and Mcl-1 showed no changed expression. Sulforaphane is a promising agent in the treatment of head and neck cancer due to its antiproliferative and radio-sensitizing properties. A combination of sulforaphane and radiation decreases clonogenic survival. Apoptosis is not regulated through Akt or the Mcl-1 protein. (orig.)

  1. Radiosensitization of head and neck cancer cells by the phytochemical agent sulforaphane

    Energy Technology Data Exchange (ETDEWEB)

    Kotowski, Ulana; Heiduschka, Gregor; Brunner, Markus; Fahim, Tammer; Thurnher, Dietmar [Medical University of Vienna (Austria). Dept. of Otorhinolaryngology, Head and Neck Surgery; Czembirek, Cornelia; Eder-Czembirek, Christina [Medical University of Vienna (Austria). Dept. of Cranio-, Maxillofacial and Oral Surgery; Schmidt, Rainer [Medical University of Vienna (Austria). Dept. of Radiotherapy and -biology

    2011-09-15

    Sulforaphane is a naturally occurring compound found in broccoli and other cruciferous vegetables. Recently it gained attention because of its antiproliferative properties in many cancer cell lines. The aim of this study was to investigate whether sulforaphane could act as a radiosensitizer in head and neck squamous cell carcinoma cell lines. Four head and neck squamous cell carcinoma cell lines (i.e., (HNSCC) SCC9, SCC25, CAL27, and FADU) were treated with sulforaphane and subsequently irradiated. Then proliferation and clonogenic assays were performed. Apoptosis was detected by flow cytometry. Possible regulation of Akt and Mcl-1 was investigated by western blotting. Sulforaphane and radiation in combination leads to stronger inhibition of cell proliferation and of clonogenic survival than each treatment method alone. Western blot analysis of Akt and Mcl-1 showed no changed expression. Sulforaphane is a promising agent in the treatment of head and neck cancer due to its antiproliferative and radio-sensitizing properties. A combination of sulforaphane and radiation decreases clonogenic survival. Apoptosis is not regulated through Akt or the Mcl-1 protein. (orig.)

  2. Novel hydroxyamides and amides containing D-glucopyranose or D-fructose units: Biological assays in MCF-7 and MDST8 cell lines.

    Science.gov (United States)

    Carreiro, Elisabete P; Costa, Ana R; Cordeiro, Maria M; Martins, Rute; Pires, Tiago O; Saraiva, Mafalda; Antunes, Célia M; Burke, Anthony J

    2016-02-01

    A novel library of 15 compounds, hydroxyamides and amides containing a β-D-glucopyranose (D-Gluc) or a β-D-fructose (D-Fruc) units was designed and synthesized for antiproliferative assays in breast (MCF-7) and colon (MDST8) cancer cell lines. Twelve of them were hydroxyamides and were successfully synthesized from β-D-glucuronic acid (D-GluA). Six of these hydroxyamides which were acetylated hydroxy-β-D-glucopyranuronamide 2a-2f (1st Family) and the other six were their respective isomers, that is, hydroxy-β-D-fructuronamide 3a-3f (2nd Family), obtained by acid-base catalyzed isomerization. These compounds have the general structure, D-Gluc-C=ONH-CHR-(CH2)n-OH and D-Fruc-C=ONH-CHR-(CH2)n-OH, where R=an aromatic, alkyl or a hydrogen substituent, with n=0 or 1. Eight of these contained a chiral aminoalcohol group. Three compounds were amides containing a D-glucopyranose unit (3rd Family). SAR studies were conducted with these compounds. Antiproliferative studies showed that compound 4a, the bromo-amide containing the β-D-glucopyranose ring, potently inhibits the proliferation of the MDST8 cells. Five compounds (2e, 2f, 3d, 3e, and 3f) were shown to potently selectively inhibit the proliferation of the MCF-7 cells. Compound 4b was the only one showing inhibition in both cell lines. In general, the more active compounds were the amides and hydroxyamides containing the β-D-fructose moiety, and containing an alkyl group or hydrogen. Half-inhibitory concentrations (IC50) of between 0.01 and 10 μM, were observed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. MicroRNA Expression Profiling by Bead Array Technology in Human Tumor Cell Lines Treated with Interferon-Alpha-2a

    Directory of Open Access Journals (Sweden)

    Siegrist Fredy

    2009-01-01

    Full Text Available Abstract MicroRNAs are positive and negative regulators of eukaryotic gene expression that modulate transcript abundance by specific binding to sequence motifs located prevalently in the 3' untranslated regions of target messenger RNAs (mRNA. Interferon-alpha-2a (IFNα induces a large set of protein coding genes mediating antiproliferative and antiviral responses. Here we use a global microarray-based microRNA detection platform to identify genes that are induced by IFNα in hepatoma- or melanoma-derived human tumor cell lines. Despite the enormous differences in expression levels between these models, we were able to identify microRNAs that are upregulated by IFNα in both lines suggesting the possibility that interferon-regulated microRNAs are involved in the transcriptional repression of mRNA relevant to cytokine responses.

  4. Evaluation of the anti-proliferative and cytostatic effect of Citrus sinensis (orange) fruit juice.

    Science.gov (United States)

    Chinedu, Enegide; Arome, David; Ameh, Solomon F; Ameh, Gift E

    2014-09-01

    This work has been designed to evaluate the anti-proliferative and cytostatic effects of Citrus sinensis (orange) fruit juice on rapidly proliferating cells. The study was carried out on the seeds of Sorghum bicolor for 72 h. The mean radicle length (mm) of the seeds was taken at 48 and 72 h. The result showed that when compared with the control, methotrexate, the standard drug showed a significant (P < 0.001) anti-proliferative effect throughout the experiment. The inhibition of the radicle growth was more after 72 h (87.42%). At a dose of 5% (v/v), the juice showed a slightly significant (P < 0.05) effect affect after 72 h; however, there was no significant effect at 48 h. The juice at doses of 10% and 20% (v/v) showed a highly significant (P < 0.001) anti-proliferative effect throughout the experiment; however, the percentage inhibitions were higher at 72 h. At 72 h, the percentage inhibition for juice at 10% (v/v) was 72.37% and at 20% (v/v) was 91.96%. The concentrations of 40% and 60% (v/v) showed cytostatic effects as no appreciable growth of the radicles of the seeds was observed throughout the experiment. The percentage inhibition for 40% (v/v) was 100% and 99.72% for 48 and 72 h, respectively, while that for the juice concentration of 60% (v/v) was 100% throughout the study. The experiment has shown that C. sinensis fruit juice has a potential for causing both anti-proliferative and cytostatic effects on fast proliferating cells and hence cancerous cells.

  5. Schinus terebinthifolius: phenolic constituents and in vitro antioxidant, antiproliferative and in vivo anti-inflammatory activities

    Directory of Open Access Journals (Sweden)

    Marciane M. da Silva

    Full Text Available ABSTRACT Schinus terebinthifolius Raddi, Anacardiaceae, native to Brazil, is referred to as "pimento-rosa" and is used to treat inflammatory disease in folk medicine. Studies have reported important pharmacological properties, but these effects have still not been fully exploited. This study reports that the crude extract and isolated compounds of S. terebinthifolius (leaves have in vitro antioxidant, antiproliferative, and in vivo anti-inflammatory activities. The samples were evaluated for antioxidant activity using 2, 2-diphenyl-1-picrylhydrazyl, β-carotene/linoleic acid and 2,2′-azino-bis-(3-ethylbenzothiazoline-6-sulphonic acid reagents. The anti-inflammatory effects were assayed against a carrageenan-induced paw oedema model in mice to test doses of 10, 100 and 300 mg/kg at different time points in addition to myeloperoxidase activity analysis. The antiproliferative activity was evaluated using ten human tumour cell lines. Two derivatives of gallic acid and four flavonoids were isolated and exhibited considerable antioxidant activity. The extract and its compounds showed selectivity towards ovarian cancer cells, with growth inhibitory activity values ranging from 1.9 to 6.5 µg/ml. Sample extracts and methyl gallate significantly inhibited carrageenan-induced oedema in the mice paw oedema experimental model. The calculated topological polar surface area for methyl gallate (86.98 Å2 showed good intestinal absorption. The effects reported herein are be related to the presence of flavonoids and the galloyl phenolic derivative content.

  6. Antiproliferative effects of cinobufacini on human hepatocellular carcinoma HepG2 cells detected by atomic force microscopy

    Science.gov (United States)

    Wu, Qing; Lin, Wei-Dong; Liao, Guan-Qun; Zhang, Li-Guo; Wen, Shun-Qian; Lin, Jia-Ying

    2015-01-01

    AIM: To investigate the antiproliferative activity of cinobufacini on human hepatocellular carcinoma HepG2 cells and the possible mechanism of its action. METHODS: HepG2 cells were treated with different concentrations of cinobufacini. Cell viability was measured by methylthiazolyl tetrazolium (MTT) assay. Cell cycle distribution was analyzed by flow cytometry (FCM). Cytoskeletal and nuclear alterations were observed by fluorescein isothiocyanate-phalloidin and DAPI staining under a laser scanning confocal microscope. Changes in morphology and ultrastructure of cells were detected by atomic force microscopy (AFM) at the nanoscale level. RESULTS: MTT assay indicated that cinobufacini significantly inhibited the viability of HepG2 cells in a dose-dependent manner. With the concentration of cinobufacini increasing from 0 to 0.10 mg/mL, the cell viability decreased from 74.9% ± 2.7% to 49.41% ± 2.2% and 39.24% ± 2.1% (P deep pores in the cell membrane, with larger particles and a rougher cell surface. CONCLUSION: Cinobufacini inhibits the viability of HepG2 cells via cytoskeletal destruction and cell membrane toxicity. PMID:25624718

  7. Synthesis and Pharmacological Screening of Several Aroyl and Heteroaroyl Selenylacetic Acid Derivatives as Cytotoxic and Antiproliferative Agents

    Directory of Open Access Journals (Sweden)

    Carmen Sanmartín

    2009-09-01

    Full Text Available The synthesis and cytotoxic activity of a series of twenty six aroyl and heteroaroyl selenylacetic acid derivatives of general formula Ar-CO-Se-CH2-COOH or Heterar-CO-Se-CH2-COOH are reported. The synthesis was carried out by reaction of acyl chlorides with sodium hydrogen selenide, prepared in situ, and this led to the formation of sodium aroylselenides that subsequently reacted with α-bromoacetic acid to produce the corresponding selenylacetic acid derivatives. All of the compounds were tested against a prostate cancer cell line (PC-3 and some of the more active compounds were assessed against a panel of four human cancer cell lines (CCRF-CEM, HTB-54, HT-29, MCF-7 and one mammary gland-derived non-malignant cell line (184B5. Some of the compounds exhibited remarkable cytotoxic and antiproliferative activities against MCF-7 and PC-3 that were higher than those of the reference compounds doxorubicin and etoposide, respectively. For example, in MCF-7 when Ar = phenyl, 3,5-dimethoxyphenyl or benzyl the TGI values were 3.69, 4.18 and 6.19 μM. On the other hand, in PC-3 these compounds showed values of 6.8, 4.0 and 2.9 μM. Furthermore, benzoylselenylacetic acid did not provoke apoptosis nor did it perturb the cell cycle in MCF-7.

  8. Effects of interferon on cultured cells persistently infected with viruses

    Energy Technology Data Exchange (ETDEWEB)

    Crespi, M

    1986-01-01

    The role of interferon (IFN) in viral persistence at the cellular level was investigated. Two types of persistent infections were chosen. The first type was cell lines which contained hepatitis B virus (HBV) DNA (PLC/PRF/5 and Hep 3B cells) uninfected control hepatoma cells, (Mahlavu, HA22T and Hep G2 cells) or simian virus 40 (SV40) DNA (C2, C6, C11 cells) and control uninfected (CV-1 cells). In the second type of infection Vero cells persistently infected with SSPE or Sendai virus were used. The aim of this work was to determine what effect IFN had in these infections in terms of its antiviral and antiproliferative effects; which of the two major IFN-induced pathways, E enzyme or protein kinase were induced; whether there were any differences in sensitivity to IFN between the DNA and RNA virus persistent infections. The anti-viral effect of IFN was examined by its ability to inhibit Sindbis virus replication using a radioimmunoassay system. The antiproliferative effect of IFN was determined by cell counting and /sup 3/H-thymidine incorporation. The activation of the ribonuclease F, determined by the inhibition of /sup 3/H-leucine incorporation after introduction of 2-5 actin into the cells, was variable, being activated in all cell lines with the exception of the PLC/PRF/5, Hep 3B and Hep G2 cells. Major differences between the two DNA persistent infections and the two RNA persistent infections were found. No correlation was found between the presence of HBV or SV40 persistent infections and the sensitivity of the cell lines to IFN. Both the SSPE and Sendai virus persistent infections were resistant to the antiviral and antiproliferative effect of IFN.

  9. In vivo assessment of the antiproliferative properties of interferon-alpha during immunotherapy: Ki-67 (MIB-1) in patients with metastatic renal cell carcinoma

    DEFF Research Database (Denmark)

    Donskov, F; Marcussen, N; Hokland, M

    2004-01-01

    The aim of the present study was to investigate the in vivo antiproliferative effect of interferon alpha (IFN-alpha) in patients with metastatic renal cell carcinoma (mRCC). Core needle biopsies of metastatic and/or the primary kidney cancer were obtained before interleukin-2 (IL-2)- and IFN...

  10. Synthesis, crystal structure and spectroscopy of bioactive Cd(II) polymeric complex of the non-steroidal anti-inflammatory drug diclofenac sodium: Antiproliferative and biological activity

    Science.gov (United States)

    Tabrizi, Leila; Chiniforoshan, Hossein; McArdle, Patrick

    2015-02-01

    The interaction of Cd(II) with the non-steroidal anti-inflammatory drug diclofenac sodium (Dic) leads to the formation of the complex [Cd2(L)41.5(MeOH)2(H2O)]n(L = Dic), 1, which has been isolated and structurally characterized by X-ray crystallography. Diclofenac sodium and its metal complex 1 have also been evaluated for antiproliferative activity in vitro against the cells of three human cancer cell lines, MCF-7 (breast cancer cell line), T24 (bladder cancer cell line), A-549 (non-small cell lung carcinoma), and a mouse fibroblast L-929 cell line. The results of cytotoxic activity in vitro expressed as IC50 values indicated the diclofenac sodium and cadmium chloride are non active or less active than the metal complex of diclofenac (1). Complex 1 was also found to be a more potent cytotoxic agent against T-24 and MCF-7 cancer cell lines than the prevalent benchmark metallodrug, cisplatin, under the same experimental conditions. The superoxide dismutase activity was measured by Fridovich test which showed that complex 1 shows a low value in comparison with Cu complexes. The binding properties of this complex to biomolecules, bovine or human serum albumin, are presented and evaluated. Antibacterial and growth inhibitory activity is also higher than that of the parent ligand compound.

  11. Biocatalytically Oligomerized Epicatechin with Potent and Specific Anti-proliferative Activity for Human Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Ramaswamy Nagarajan

    2008-11-01

    Full Text Available Catechins, naturally occurring flavonoids derived from wine and green tea, are known to exhibit multiple health benefits. Epigallocatechin gallate (EGCG is one of the most widely investigated catechins, but its efficacy in cancer therapy is still inconsistent and limited. The poor stability of EGCG has contributed to the disparity in the reported anti-cancer activity and other beneficial properties. Here we report an innovative enzymatic strategy for the oligomerization of catechins (specifically epicatechin that yields stable, water-soluble oligomerized epicatechins with enhanced and highly specific anti-proliferative activity for human breast cancer cells. This one-pot oxidative oligomerization is carried out in ambient conditions using Horseradish Peroxidase (HRP as a catalyst yielding water-soluble oligo(epicatechins. The oligomerized epicatechins obtained exhibit excellent growth inhibitory effects against human breast cancer cells with greater specificity towards growth-inhibiting cancer cells as opposed to normal cells, achieving a high therapeutic differential. Our studies indicate that water-soluble oligomeric epicatechins surpass EGCG in stability, selectivity and efficacy at lower doses.

  12. DOT1L inhibitor EPZ-5676 displays synergistic antiproliferative activity in combination with standard of care drugs and hypomethylating agents in MLL-rearranged leukemia cells.

    Science.gov (United States)

    Klaus, Christine R; Iwanowicz, Dorothy; Johnston, Danielle; Campbell, Carly A; Smith, Jesse J; Moyer, Mikel P; Copeland, Robert A; Olhava, Edward J; Scott, Margaret Porter; Pollock, Roy M; Daigle, Scott R; Raimondi, Alejandra

    2014-09-01

    EPZ-5676 [(2R,3R,4S,5R)-2-(6-amino-9H-purin-9-yl)-5-((((1r,3S)-3-(2-(5-(tert-butyl)-1H-benzo[d]imidazol-2-yl)ethyl)cyclobutyl)(isopropyl)amino)methyl)tetrahydrofuran-3,4-diol], a small-molecule inhibitor of the protein methyltransferase DOT1L, is currently under clinical investigation for acute leukemias bearing MLL-rearrangements (MLL-r). In this study, we evaluated EPZ-5676 in combination with standard of care (SOC) agents for acute leukemias as well as other chromatin-modifying drugs in cellular assays with three human acute leukemia cell lines: MOLM-13 (MLL-AF9), MV4-11 (MLL-AF4), and SKM-1 (non-MLL-r). Studies were performed to evaluate the antiproliferative effects of EPZ-5676 combinations in a cotreatment model in which the second agent was added simultaneously with EPZ-5676 at the beginning of the assay, or in a pretreatment model in which cells were incubated for several days in the presence of EPZ-5676 prior to the addition of the second agent. EPZ-5676 was found to act synergistically with the acute myeloid leukemia (AML) SOC agents cytarabine or daunorubicin in MOLM-13 and MV4-11 MLL-r cell lines. EPZ-5676 is selective for MLL-r cell lines as demonstrated by its lack of effect either alone or in combination in the nonrearranged SKM-1 cell line. In MLL-r cells, the combination benefit was observed even when EPZ-5676 was washed out prior to the addition of the chemotherapeutic agents, suggesting that EPZ-5676 sets up a durable, altered chromatin state that enhances the chemotherapeutic effects. Our evaluation of EPZ-5676 in conjunction with other chromatin-modifying drugs also revealed a consistent combination benefit, including synergy with DNA hypomethylating agents. These results indicate that EPZ-5676 is highly efficacious as a single agent and synergistically acts with other chemotherapeutics, including AML SOC drugs and DNA hypomethylating agents in MLL-r cells. Copyright © 2014 by The American Society for Pharmacology and Experimental Therapeutics.

  13. PDE5 Inhibitors-Loaded Nanovesicles: Physico-Chemical Properties and In Vitro Antiproliferative Activity

    Directory of Open Access Journals (Sweden)

    Roberta F. De Rose

    2016-05-01

    Full Text Available Novel therapeutic approaches are required for the less differentiated thyroid cancers which are non-responsive to the current treatment. In this study we tested an innovative formulation of nanoliposomes containing sildenafil citrate or tadalafil, phosphodiesterase-5 inhibitors, on two human thyroid cancer cell lines (TPC-1 and BCPAP. Nanoliposomes were prepared by the thin layer evaporation and extrusion methods, solubilizing the hydrophilic compound sildenafil citrate in the aqueous phase during the hydration step and dissolving the lipophilic tadalafil in the organic phase. Nanoliposomes, made up of 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine monohydrate (DPPC, cholesterol, and N-(carbonyl-methoxypolyethylene glycol-2000-1,2-distearoyl-sn-glycero-3-phosphoethanolamine (DSPE-mPEG2000 (6:3:1 molar ratio, were characterized by a mean diameter of ~100 nm, a very low polydispersity index (~0.1 and a negative surface charge. The drugs did not influence the physico-chemical properties of the systems and were efficiently retained in the colloidal structure. By using cell count and MTT assay, we found a significant reduction of the viability in both cell lines following 24 h treatment with both nanoliposomal-encapsulated drugs, notably greater than the effect of the free drugs. Our findings demonstrate that nanoliposomes increase the antiproliferative activity of phosphodiesterase-5 inhibitors, providing a useful novel formulation for the treatment of thyroid carcinoma.

  14. Antioxidant and antiproliferative potential of biosurfactants isolated from Lactobacillus casei and their anti-biofilm effect in oral Staphylococcus aureus strains.

    Science.gov (United States)

    Merghni, Abderrahmen; Dallel, Ines; Noumi, Emira; Kadmi, Yassine; Hentati, Hajer; Tobji, Samir; Ben Amor, Adel; Mastouri, Maha

    2017-03-01

    Biosurfactants also called bioemulsifiers are amphipathic compounds produced by many microorganisms that allow them to exhibit a wide range of biological activities. The aim of this study was to determine the antioxidant and antiproliferative potential of biosurfactants isolated from Lactobacillus casei and to assess their anti-adhesive and anti-biofilm abilities against oral opportunistic Staphylococcus aureus strains. The antioxidant activity of biosurfactant was evaluated using the in vitro scavenging ability on 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical. The antiproliferative activity was determined on epithelial cell line (HEp-2) by the Methylthiazole tetrazolium (MTT) reduction assay. The anti-adhesive and antibiofilm activity against S. aureus strains were achieved using crystal violet staining. Our results revealed that the DPPH scavenging activity of biosurfactants at 5.0 mg/mL concentration is between 74.6 and 77.3%. Furthermore, biosurfactants showed antiproliferative potency against studied epithelial cells as judged by IC50 and its value ranged from 109.1 ± 0.84 mg/mL to 129.7 ± 0.52 mg/mL. The results of the growth inhibition indicate that biosurfactant BS-LBl was more effective against oral S. aureus strains 9P and 29P with an IC50 of 1.92 ± 0.26 mg/mL and 2.16 ± 0.12 mg/mL respectively. Moreover, both biosurfactants displayed important antibiofilm activity with eradication percentages ranging from 80.22 ± 1.33% to 86.21 ± 2.94% for the BS-LBl, and from 53.38 ± 1.77% to 64.42 ± 2.09% for the BS-LZ9. Our findings demonstrate that biosurfactants from L. casei strains exhibited considerable antioxidant and antiproliferative potencies and were able to inhibit oral S. aureus strains with important antibiofilm efficacy. They could have a promising role in the prevention of oral diseases. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Radiosensitivity of mesothelioma cell lines

    International Nuclear Information System (INIS)

    Haekkinen, A.M.; Laasonen, A.; Linnainmaa, K.; Mattson, K.; Pyrhoenen, S.

    1996-01-01

    The present study was carried out in order to examine the radiosensitivity of malignant pleural mesothelioma cell lines. Cell kinetics, radiation-induced delay of the cell cycle and DNA ploidy of the cell lines were also determined. For comparison an HeLa and a human foetal fibroblast cell line were simultaneously explored. Six previously cytogenetically and histologically characterized mesothelioma tumor cell lines were applied. A rapid tiazolyl blue microtiter (MTT) assay was used to analyze radiosensitivity and cell kinetics and DNA ploidy of the cultured cells were determined by flow cytometry. The survival fraction after a dose of 2 Gy (SF2), parameters α and β of the linear quadratic model (LQ-model) and mean inactivation dose (D MID ) were also estimated. The DNA index of four cell lines equaled 1.0 and two cell lines equaled 1.5 and 1.6. Different mesothelioma cell lines showed a great variation in radiosensitivity. Mean survival fraction after a radiation dose of 2 Gy (SF2) was 0.60 and ranged from 0.36 to 0.81 and mean α value was 0.26 (range 0.48-0.083). The SF2 of the most sensitive diploid mesothelioma cell line was 0.36: Less than that of the foetal fibroblast cell line (0.49). The survival fractions (0.81 and 0.74) of the two most resistant cell lines, which also were aneuploid, were equal to that of the HeLa cell line (0.78). The α/β ratios of the most sensitive cell lines were almost an order of magnitude greater than those of the two most resistant cell lines. Radiation-induced delay of the most resistant aneuploid cell line was similar to that of HeLa cells but in the most sensitive (diploid cells) there was practically no entry into the G1 phase following the 2 Gy radiation dose during 36 h. (orig.)

  16. Radiosensitivity of mesothelioma cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Haekkinen, A.M. [Dept. of Oncology, Univ. Central Hospital, Helsinki (Finland); Laasonen, A. [Dept. of Pathology, Central Hospital of Etelae-Pohjanmaa, Seinaejoki (Finland); Linnainmaa, K. [Dept. of Industrial Hygiene and Toxicology, Inst. of Occupational Health, Helsinki (Finland); Mattson, K. [Dept. Pulmonary Medicine, Univ. Central Hospital, Helsinki (Finland); Pyrhoenen, S. [Dept. of Oncology, Univ. Central Hospital, Helsinki (Finland)

    1996-10-01

    The present study was carried out in order to examine the radiosensitivity of malignant pleural mesothelioma cell lines. Cell kinetics, radiation-induced delay of the cell cycle and DNA ploidy of the cell lines were also determined. For comparison an HeLa and a human foetal fibroblast cell line were simultaneously explored. Six previously cytogenetically and histologically characterized mesothelioma tumor cell lines were applied. A rapid tiazolyl blue microtiter (MTT) assay was used to analyze radiosensitivity and cell kinetics and DNA ploidy of the cultured cells were determined by flow cytometry. The survival fraction after a dose of 2 Gy (SF2), parameters {alpha} and {beta} of the linear quadratic model (LQ-model) and mean inactivation dose (D{sub MID}) were also estimated. The DNA index of four cell lines equaled 1.0 and two cell lines equaled 1.5 and 1.6. Different mesothelioma cell lines showed a great variation in radiosensitivity. Mean survival fraction after a radiation dose of 2 Gy (SF2) was 0.60 and ranged from 0.36 to 0.81 and mean {alpha} value was 0.26 (range 0.48-0.083). The SF2 of the most sensitive diploid mesothelioma cell line was 0.36: Less than that of the foetal fibroblast cell line (0.49). The survival fractions (0.81 and 0.74) of the two most resistant cell lines, which also were aneuploid, were equal to that of the HeLa cell line (0.78). The {alpha}/{beta} ratios of the most sensitive cell lines were almost an order of magnitude greater than those of the two most resistant cell lines. Radiation-induced delay of the most resistant aneuploid cell line was similar to that of HeLa cells but in the most sensitive (diploid cells) there was practically no entry into the G1 phase following the 2 Gy radiation dose during 36 h. (orig.).

  17. Composition, antibacterial, antioxidant and antiproliferative activities of essential oils from three Origanum species growing wild in Lebanon and Greece.

    Science.gov (United States)

    Marrelli, Mariangela; Conforti, Filomena; Formisano, Carmen; Rigano, Daniela; Arnold, Nelly Apostolides; Menichini, Francesco; Senatore, Felice

    2016-01-01

    The essential oils from Origanum dictamnus, Origanum libanoticum and Origanum microphyllum were analysed by GC-MS, finding carvacrol, p-cymene, linalool, γ-terpinene and terpinen-4-ol as major components. The antioxidant activity by the DPPH and FRAP tests and the antiproliferative activity against two human cancer cell lines, LoVo and HepG2, were investigated, showing that the essential oil of O. dictamnus was statistically the most inhibitory on both the cell lines, while all the oils exerted a weak antioxidant activity. Furthermore, the samples were tested against 10 Gram-negative and Gram-positive bacteria; all the oils were active on Gram-positive bacteria but O. dictamnus essential oil was the most effective (MIC = 25-50 μg/mL), showing also a good activity against the Gram-negative Escherichia coli (MIC = 50 μg/mL). Data suggest that these essential oils and particularly O. dictamnus oil could be used as valuable new flavours with functional properties for food or nutraceutical products.

  18. Allium compounds, dipropyl and dimethyl thiosulfinates as antiproliferative and differentiating agents of human acute myeloid leukemia cell lines

    Directory of Open Access Journals (Sweden)

    Faten Merhi

    2008-08-01

    Full Text Available Faten Merhi1, Jacques Auger2, Francine Rendu1, Brigitte Bauvois11UMR 7131 UPMC Paris Universitas/CNRS, Groupe Hospitalier Broussais-HEGP, Paris, France; 2University F. Rabelais, IRBI, UPRESA CNRS 6035, Tours, FranceAbstract: Epidemiologic studies support the premise that Allium vegetables may lower the risk of cancers. The beneficial effects appear related to the organosulfur products generated upon processing of Allium. Leukemia cells from patients with acute myeloid leukemia (AML display high proliferative capacity and have a reduced capacity of undergoing apoptosis and maturation. Whether the sulfur-containing molecules thiosulfinates (TS, diallyl TS (All2TS, dipropyl TS (Pr2TS and dimethyl TS (Me2TS, are able to exert chemopreventative activity against AML is presently unknown. The present study was an evaluation of proliferation, cytotoxicity, differentiation and secretion of AML cell lines (U937, NB4, HL-60, MonoMac-6 in response to treatment with these TS and their related sulfides (diallylsulfide, diallyl disulfide, dipropyl disulfide, dimethyl disulfide. As assessed by flow cytometry, ELISA, gelatin zymogaphy and RT-PCR, we showed that Pr2TS and Me2TS, but not All2TS and sulfides, 1 inhibited cell proliferation in dose- and time-dependent manner and this process was neither due to cytotoxicity nor apoptosis, 2 induced macrophage maturation, and 3 inhibited the levels of secreted MMP-9 (protein and activity and TNF-α protein, without altering mRNA levels. By establishing for the first time that Pr2TS and Me2TS affect proliferation, differentiation and secretion of leukemic cell lines, this study provides the opportunity to explore the potential efficiency of these molecules in AML.Keywords: acute myeloid leukemia, thiosulfinate, proliferation, differentiation, matrix metalloproteinase-9

  19. Long Term Exposure to Polyphenols of Artichoke (Cynara scolymus L.) Exerts Induction of Senescence Driven Growth Arrest in the MDA-MB231 Human Breast Cancer Cell Line.

    Science.gov (United States)

    Mileo, Anna Maria; Di Venere, Donato; Abbruzzese, Claudia; Miccadei, Stefania

    2015-01-01

    Polyphenolic extracts from the edible part of artichoke (Cynara scolymus L.) have been shown to be potential chemopreventive and anticancer dietary compounds. High doses of polyphenolic extracts (AEs) induce apoptosis and decrease the invasive potential of the human breast cancer cell line, MDA-MB231. However, the molecular mechanism underlying AEs antiproliferative effects is not completely understood. We demonstrate that chronic and low doses of AEs treatment at sublethal concentrations suppress human breast cancer cell growth via a caspases-independent mechanism. Furthermore, AEs exposure induces a significant increase of senescence-associated β-galactosidase (SA-β-gal) staining and upregulation of tumour suppressor genes, p16(INK4a) and p21(Cip1/Waf1) in MDA-MB231 cells. AEs treatment leads to epigenetic alterations in cancer cells, modulating DNA hypomethylation and lysine acetylation levels in total proteins. Cell growth arrest correlates with increased reactive oxygen species (ROS) production in AEs treated breast cancer cells. Inhibition of ROS generation by N-acetylcysteine (NAC) attenuates the antiproliferative effect. These findings demonstrate that chronic AEs treatment inhibits breast cancer cell growth via the induction of premature senescence through epigenetic and ROS-mediated mechanisms. Our results suggest that artichoke polyphenols could be a promising dietary tool either in cancer chemoprevention or/and in cancer treatment as a nonconventional, adjuvant therapy.

  20. Ctotoxic and apoptogenic effects of Perovskia abrotanoides flower extract on MCF-7 and HeLa cell lines

    Directory of Open Access Journals (Sweden)

    Mohamad Ali Geryani

    2016-06-01

    Full Text Available Objective: Perovskia abrotanoides Karel, belongs to the family Lamiaceae and grows wild alongside the mountainous roads inarid and cold climate of Northern Iran. The anti-tumor activity of P. abrotanoides root extract has been shown previously. This study was designed to examine in vitro anti-proliferative and pro-apoptotic effects of flower extract of P. abrotanoides on MCF-7 and Hela cell lines. Materials and Methods: Cells were cultured in DMEM medium with 10% fetal bovine serum, 100 units/ml penicillin and 100 µg/ml streptomycin and incubated with different concentrations of plant extracts. Cell viability was quantified by MTT assay. Apoptotic cells were determined using propidium iodide (PI staining of DNA fragmentation by flow cytometry (sub-G1 peak. Results: P. abrotanoides extract inhibited the growth of malignant cells in a time and dose-dependent manner and 1000 µg/ml of extract following 48h of incubation was the most cytotoxic dose against Hela cell in comparison with other doses; however, in MCF-7 cells,1000 and 500 µg/ml PA induced toxicity at all time points but with different features.. Analysis of flowcytometry histogram of treated cells compared with control cells indicated that the cytotoxic effect is partly due toapoptosis induction. Conclusion: Hydro-alcoholic extract of P. abrotanoides flowers inhibits the growth of MCF-7 and HeLa cell lines, partly via inducing apoptosis. Their inhibitory effect was increased in a time and dose-dependent manner, especially in MCF7 cells. However, further studies are needed to reveal the mechanisms of P. abrotanoides extract-induced cell death.

  1. Berberine Induces Apoptotic Cell Death via Activation of Caspase-3 and -8 in HL-60 Human Leukemia Cells: Nuclear Localization and Structure-Activity Relationships.

    Science.gov (United States)

    Okubo, Shinya; Uto, Takuhiro; Goto, Aya; Tanaka, Hiroyuki; Nishioku, Tsuyoshi; Yamada, Katsushi; Shoyama, Yukihiro

    2017-01-01

    Berberine (BBR), an isoquinoline alkaloid, is a well-known bioactive compound contained in medicinal plants used in traditional and folk medicines. In this study, we investigated the subcellular localization and the apoptotic mechanisms of BBR were elucidated. First, we confirmed the incorporation of BBR into the cell visually. BBR showed antiproliferative activity and promptly localized to the nucleus from 5[Formula: see text]min to 15[Formula: see text]min after BBR treatment in HL-60 human promyelocytic leukemia cells. Next, we examined the antiproliferative activity of BBR (1) and its biosynthetically related compounds (2-7) in HL-60 cells. BBR exerted strongest antiproliferative activity among 1-7 and the results of structures and activity relation suggested that a methylenedioxyl group in ring A, an [Formula: see text]-alkyl group at C-9 position, and the frame of isoquinoline may be necessary for antiproliferative activity. Moreover, BBR showed the most potent antiproliferative activity in HL-60 cells among human cancer and normal cell lines tested. Next, we examined the effect of BBR on molecular events known as apoptosis induction. In HL-60 cells, BBR induced chromatin condensation and DNA fragmentation, and triggered the activation of PARP, caspase-3 and caspase-8 without the activation of caspase-9. BBR-induced DNA fragmentation was abolished by pretreatment with inhibitors against caspase-3 and caspase-8, but not against caspase-9. ERK and p38 were promptly phosphorylated after 15 min of BBR treatment, and this was correlated with time of localization to the nucleus of BBR. These results demonstrated that BBR translocated into nucleus immediately after treatments and induced apoptotic cell death by activation of caspase-3 and caspase-8.

  2. Antiproliferative Compounds of Cyphostemma greveana from a Madagascar Dry Forest[1

    Science.gov (United States)

    Cao, Shugeng; Hou, Yanpeng; Brodie, Peggy; Miller, James S.; Randrianaivo, Richard; Rakotobe, Etienne; Rasamison, Vincent E.

    2011-01-01

    Bioassay-guided fractionation of the EtOH extracts obtained from a plant identified as Cyphostemma greveana Desc. (Vitaceae) led to the identification of one macrolide, lasiodiplodin (1), three sesquiterpenoids, 12-hydroxy-15-oxo-selina-4,1l-diene (2), 1β,6α-dihydroxyeudesm-4(15)-ene (3), and (7R*)-opposit-4(15)-ene-1β,7-diol (5), and the new diterpenoid, 16,18-dihydroxykolavenic acid lactone (4). All the isolates were tested against the A2780 human ovarian cancer cell line, and compound 4 and a fraction containing 5 as the major constituent showed antiproliferative activities with IC50 values of 0.44 μM (0.14 μg/mL) and 0.045 μg/mL, respectively. A semisynthesis of compound 5 was carried out, but the pure synthetic compound was inactive, indicating that the activity of the fraction containing it must be due to a very minor and as yet unidentified substance. PMID:21480509

  3. Composition, antimicrobial, antioxidant, and antiproliferative activity of Origanum dictamnus (dittany essential oil

    Directory of Open Access Journals (Sweden)

    Gregoria Mitropoulou

    2015-05-01

    Full Text Available Background: Nowadays, there has been an increased interest in essential oils from various plant origins as potential antimicrobial, antioxidant, and antiproliferative agents. This trend can be mainly attributed to the rising number and severity of food poisoning outbreaks worldwide along with the recent negative consumer perception against artificial food additives and the demand for novel functional foods with possible health benefits. Origanum dictamnus (dittany is an aromatic, tender perennial plant that only grows wild on the mountainsides and gorges of the island of Crete in Greece. Objective: The aim of the present study was to investigate the antimicrobial, antioxidant, and antiproliferative properties of O. dictamnus essential oil and its main components and assess its commercial potential in the food industry. Design: O. dictamnus essential oil was initially analyzed by gas chromatography–mass spectrometry (GC–MS to determine semi-quantitative chemical composition of the essential oils. Subsequently, the antimicrobial properties were assayed and the minimum inhibitory and non-inhibitory concentration values were determined. The antioxidant activity and cytotoxic action against the hepatoma adenocarcinoma cell line HepG2 of the essential oil and its main components were further evaluated by the 2,2-diphenyl-1-picrylhydrazyl (DPPH assay and by the sulforhodamine B (SRB assay, respectively. Results: The main constituents of O. dictamnus essential oil identified by GC–MS analysis were carvacrol (52.2%, γ-terpinene (8.4%, p-cymene (6.1%, linalool (1.4%, and caryophyllene (1.3%. O. dictamnus essential oil and its main components were effective against Staphylococcus aureus, Staphylococcus epidermidis, Escherichia coli, Listeria monocytogenes, Salmonella Enteritidis, Salmonella typhimurium, Saccharomyces cerevisiae, and Aspergillus niger. In addition, the estimated IC50 value for the DPPH radical scavenging activity for O. dictamnus

  4. Antitumor effects of celecoxib in COX-2 expressing and non-expressing canine melanoma cell lines.

    Science.gov (United States)

    Seo, Kyoung-Won; Coh, Ye-Rin; Rebhun, Robert B; Ahn, Jin-Ok; Han, Sei-Myung; Lee, Hee-Woo; Youn, Hwa-Young

    2014-06-01

    Cyclooxygenase-2 (COX-2) is a potential target for chemoprevention and cancer therapy. Celecoxib, a selective COX-2 inhibitor, inhibits cell growth of various types of human cancer including malignant melanoma. In dogs, oral malignant melanoma represents the most common oral tumor and is often a fatal disease. Therefore, there is a desperate need to develop additional therapeutic strategies. The purpose of this study was to investigate the anticancer effects of celecoxib on canine malignant melanoma cell lines that express varying levels of COX-2. Celecoxib induced a significant anti-proliferative effect in both LMeC and CMeC-1 cells. In the CMeC cells, treatment of 50 μM celecoxib caused an increase in cells in the G0/G1 and a decreased proportion of cells in G-2 phase. In the LMeC cells, 50 μM of celecoxib led to an increase in the percentage of cells in the sub-G1 phase and a significant activation of caspase-3 when compared to CMeC-1 cells. In conclusion, these results demonstrate that celecoxib exhibits antitumor effects on canine melanoma LMeC and CMeC-1 cells by induction of G1-S cell cycle arrest and apoptosis. Our data suggest that celecoxib might be effective as a chemotherapeutic agent against canine malignant melanoma. Copyright © 2014. Published by Elsevier Ltd.

  5. Putative contribution of CD56 positive cells in cetuximab treatment efficacy in first-line metastatic colorectal cancer patients

    International Nuclear Information System (INIS)

    Maréchal, Raphaël; De Schutter, Jef; Nagy, Nathalie; Demetter, Pieter; Lemmers, Arnaud; Devière, Jacques; Salmon, Isabelle; Tejpar, Sabine; Van Laethem, Jean-Luc

    2010-01-01

    Activity of cetuximab, a chimeric monoclonal antibody targeting the epidermal growth factor receptor, is largely attributed to its direct antiproliferative and proapoptotic effects. Antibody-dependent cell-mediated cytotoxicity (ADCC) could be another possible mechanism of cetuximab antitumor effects and its specific contribution on the clinical activity of cetuximab is unknown. We assessed immune cells infiltrate (CD56, CD68, CD3, CD4, CD8, Foxp3) in the primary tumor of metastatic colorectal cancer (mCRC) patients treated with a first-line cetuximab-based chemotherapy in the framework of prospective trials (treatment group) and in a matched group of mCRC patients who received the same chemotherapy regimen without cetuximab (control group). The relationship between intra-tumoral immune effector cells, the K-ras status and the efficacy of the treatment were investigated. We also evaluated in vitro, the ADCC activity in healthy donors and chemonaive mCRC patients and the specific contribution of CD56 + cells. ADCC activity against DLD1 CRC cell line is maintained in cancer patients and significantly declined after CD56 + cells depletion. In multivariate analysis, K-ras wild-type (HR: 4.7 (95% CI 1.8-12.3), p = 0.001) and tumor infiltrating CD56 + cells (HR: 2.6, (95%CI:1.14-6.0), p = 0.019) were independent favourable prognostic factors for PFS and response only in the cetuximab treatment group. By contrast CD56 + cells failed to predict PFS and response in the control group. CD56 + cells, mainly NK cells, may be the major effector of ADCC related-cetuximab activity. Assessment of CD56 + cells infiltrate in primary colorectal adenocarcinoma may provide additional information to K-ras status in predicting response and PFS in mCRC patients treated with first-line cetuximab-based chemotherapy

  6. 8-O-Azeloyl-14-benzoylaconine: a new alkaloid from the roots of Aconitum karacolicum Rapcs and its antiproliferative activities.

    Science.gov (United States)

    Chodoeva, Ainura; Bosc, Jean-Jacques; Guillon, Jean; Decendit, Alain; Petraud, Michel; Absalon, Christelle; Vitry, Christiane; Jarry, Christian; Robert, Jacques

    2005-12-01

    A new alkaloid of Aconitum karacolicum Rapcs, from the Ranunculaceae family, collected in Kirghizstan, was isolated from the roots of this plant, using a purification scheme based upon its in vitro antiproliferative properties against three human tumour cell lines in culture. Structural identification was performed using high resolution MS-MS mass spectrometry and (1)H, (13)C, 2D NOESY NMR spectroscopy analysis. This compound consists of a 14-benzoylaconine moiety substituted on C-8 by an azeloyl chain. It presents in vitro cytotoxicity with an IC(50) of about 10-20 microM, which warrants further investigation on its possible interest in cancer chemotherapy.

  7. Lauroside B, a megastigmane glycoside from Laurus nobilis (bay laurel) leaves, induces apoptosis in human melanoma cell lines by inhibiting NF-κB activation.

    Science.gov (United States)

    Panza, Elisabetta; Tersigni, Mariaroberta; Iorizzi, Maria; Zollo, Franco; De Marino, Simona; Festa, Carmen; Napolitano, Maria; Castello, Giuseppe; Ialenti, Armando; Ianaro, Angela

    2011-02-25

    Malignant melanoma is a highly aggressive tumor that frequently resists chemotherapy, so the search for new agents for its treatment is of great importance. In the present study, the antiproliferative propensity against human melanoma cell lines of lauroside B (1), a megastigmane glycoside isolated from Laurus nobilis (bay laurel) leaves, was investigated. This compound suppressed the proliferation of three human melanoma cell lines, namely, A375, WM115, and SK-Mel-28. The 1-induced inhibition of human melanoma cell proliferation was due to the induction of apoptosis, as demonstrated by FACS analysis with annexin V/PI staining and confirmed by activation of caspase-3 and by the cleavage of poly(ADP-ribose) polymerase (PARP). Growing evidence implicates NF-κB as an important contributor to metastasis and increased chemoresistance of melanoma. Thus, it was hypothesized that 1-induced apoptosis could be associated with suppression of NF-κB activation. The results showed that exposure of human melanoma cells to 1 inhibited IκB-α degradation and constitutive NF-κB DNA-binding activity as well as the expression, regulated by NF-κB, of two antiapoptotic genes, XIAP and c-FLIP. Induction of apoptosis by 1 in human aggressive melanoma cell lines has a potential high biological value.

  8. Antiproliferative activity of recombinant human interferon-λ2 ...

    African Journals Online (AJOL)

    Antiproliferative activity of recombinant human interferon-λ2 expressed in stably ... The representing 26 kDa protein band of IFN-λ2 was detected by SDS-PAGE and ... The antiproliferative activity of hIFN-λ2 was determined by MTT assay.

  9. Scoulerine affects microtubule structure, inhibits proliferation, arrests cell cycle and thus culminates in the apoptotic death of cancer cells.

    Science.gov (United States)

    Habartova, Klara; Havelek, Radim; Seifrtova, Martina; Kralovec, Karel; Cahlikova, Lucie; Chlebek, Jakub; Cermakova, Eva; Mazankova, Nadezda; Marikova, Jana; Kunes, Jiri; Novakova, Lucie; Rezacova, Martina

    2018-03-19

    Scoulerine is an isoquinoline alkaloid, which indicated promising suppression of cancer cells growth. However, the mode of action (MOA) remained unclear. Cytotoxic and antiproliferative properties were determined in this study. Scoulerine reduces the mitochondrial dehydrogenases activity of the evaluated leukemic cells with IC 50 values ranging from 2.7 to 6.5 µM. The xCELLigence system revealed that scoulerine exerted potent antiproliferative activity in lung, ovarian and breast carcinoma cell lines. Jurkat and MOLT-4 leukemic cells treated with scoulerine were decreased in proliferation and viability. Scoulerine acted to inhibit proliferation through inducing G2 or M-phase cell cycle arrest, which correlates well with the observed breakdown of the microtubule network, increased Chk1 Ser345, Chk2 Thr68 and mitotic H3 Ser10 phosphorylation. Scoulerine was able to activate apoptosis, as determined by p53 upregulation, increase caspase activity, Annexin V and TUNEL labeling. Results highlight the potent antiproliferative and proapoptotic function of scoulerine in cancer cells caused by its ability to interfere with the microtubule elements of the cytoskeleton, checkpoint kinase signaling and p53 proteins. This is the first study of the mechanism of scoulerine at cellular and molecular level. Scoulerine is a potent antimitotic compound and that it merits further investigation as an anticancer drug.

  10. Cell lines authentication and mycoplasma detection as minimun quality control of cell lines in biobanking.

    Science.gov (United States)

    Corral-Vázquez, C; Aguilar-Quesada, R; Catalina, P; Lucena-Aguilar, G; Ligero, G; Miranda, B; Carrillo-Ávila, J A

    2017-06-01

    Establishment of continuous cell lines from human normal and tumor tissues is an extended and useful methodology for molecular characterization of cancer pathophysiology and drug development in research laboratories. The exchange of these cell lines between different labs is a common practice that can compromise assays reliability due to contamination with microorganism such as mycoplasma or cells from different flasks that compromise experiment reproducibility and reliability. Great proportions of cell lines are contaminated with mycoplasma and/or are replaced by cells derived for a different origin during processing or distribution process. The scientific community has underestimated this problem and thousand of research experiment has been done with cell lines that are incorrectly identified and wrong scientific conclusions have been published. Regular contamination and authentication tests are necessary in order to avoid negative consequences of widespread misidentified and contaminated cell lines. Cell banks generate, store and distribute cell lines for research, being mandatory a consistent and continuous quality program. Methods implementation for guaranteeing both, the absence of mycoplasma and authentication in the supplied cell lines, has been performed in the Andalusian Health System Biobank. Specifically, precise results were obtained using real time PCR detection for mycoplasma and 10 STRs identification by capillary electrophoresis for cell line authentication. Advantages and disadvantages of these protocols are discussed.

  11. Structure related effects of flavonoid aglycones on cell cycle progression of HepG2 cells: Metabolic activation of fisetin and quercetin by catechol-O-methyltransferase (COMT).

    Science.gov (United States)

    Poór, Miklós; Zrínyi, Zita; Kőszegi, Tamás

    2016-10-01

    Dietary flavonoids are abundant in the Plant Kingdom and they are extensively studied because of their manifold pharmacological activities. Recent studies highlighted that cell cycle arrest plays a key role in their antiproliferative effect in different tumor cells. However, structure-activity relationship of flavonoids is poorly characterized. In our study the influence of 18 flavonoid aglycones (as well as two metabolites) on cell cycle distribution was investigated. Since flavonoids are extensively metabolized by liver cells, HepG2 tumor cell line was applied, considering the potential metabolic activation/inactivation of flavonoids. Our major observations are the followings: (1) Among the tested compounds diosmetin, fisetin, apigenin, lutelin, and quercetin provoked spectacular extent of G2/M phase cell cycle arrest. (2) Inhibition of catechol-O-methyltransferase enzyme by entacapone decreased the antiproliferative effects of fisetin and quercetin. (3) Geraldol and isorhamnetin (3'-O-methylated metabolites of fisetin and quercetin, respectively) demonstrated significantly higher antiproliferative effect on HepG2 cells compared to the parent compounds. Based on these results, O-methylated flavonoid metabolites or their chemically modified derivatives may be suitable candidates of tumor therapy in the future. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  12. [The CK2 inhibitor quninalizarin enhances the anti-proliferative effect of icotinib on EGFR-TKIs-resistant cell lines and its underlying mechanisms].

    Science.gov (United States)

    Zhou, Y; Zhang, S; Li, K; Li, Q W; Zhou, F Z; Li, Z Y; Ma, H; Dong, X R; Liu, L; Wu, G; Meng, R

    2016-02-01

    To explore whether quninalizarin, an specific inhibitor of protein kinase CK2, could sensitize icotinib in EGFR-TKIs (epithelial growth factor receptor-tyrosine kinase inhibitor)-resistant cell lines and uncover the underlying mechanisms. MTT assay was performed to evaluate the inhibitory effect of quninalizarin, icotinib or the combination of both on cell proliferation in several lung adenocarcinoma cell lines. Western blot assay was used to assess if combined inhibition of EGFR and protein kinase CK2 by icotinib and quninalizarin, exerts effect on the expression and phosphorylation of major proteins of EGFR signaling pathways. The IC50 of HCC827, H1650, H1975 and A549 cells for icotinib were (8.07±2.00)μmol/L, (66.01±6.64)μmol/L, (265.60±9.47)μmol/L and (87.88±6.8)μmol/L, respectively, indicating that HCC827 cells are sensitive to icotinib, and the H1650, H1975 and A549 cells are relatively resistant to icotinib. When treated with both quninalizarin and icotinib in the concentration of 50 μmol/L, the viability of H1650, H1975 and A549 cells was (40.64±3.73)%, (65.74±3.27)% and (44.96±0.48)%, respectively, significantly lower than that of H1650, H1975 and A549 cells treated with 50 μmol/L icotinib alone (55.05±1.22)%, (71.98±1.60)% and (61.74±6.18)%, respectively (Picotinib, the viability of H1650, H1975 and A549 ells were (23.35±0.81)%, (55.70±1.03)%, (33.42±1.33)%, respectively, significantly lower than the viability of H1650, H1975 and A549 cells treated with 100 μmol/L icotinib alone (40.57±2.65)%, (62.40±2.05)% and (44.97±8.20)%, respectively, (Picotinib alone, the viability of cells treated with icotinib and quinalizarin were significantly suppressed, and the differences were statistically significant (Picotinib together in the H1650 cells while the expression of Akt and ERK changed little. Quinalizarin, as a specific CK2 inhibitor, may overcome icotinib resistance by inhibiting proliferation mediated by Akt and ERK in human lung

  13. Centchroman inhibits proliferation of head and neck cancer cells through the modulation of PI3K/mTOR Pathway

    International Nuclear Information System (INIS)

    Srivastava, Vikas Kumar; Gara, Rishi Kumar; Bhatt, M.L.B.; Sahu, D.P.; Mishra, Durga Prasad

    2011-01-01

    Research highlights: → Centchroman (CC) inhibits cellular proliferation in HNSCC cells through the dual inhibition of PI3/mTOR pathway. → CC treatment also inhibits STAT3 activation and alters expression of proteins involved in cell cycle regulation and DNA repair response in HNSCC cells. → CC exhibits anti-proliferative activity in a variety of non-HNSCC cancer cell lines and is devoid of cytotoxicity to normal cell types of diverse origins. -- Abstract: Centchroman (CC; 67/20; INN: Ormeloxifene) is a non-steroidal antiestrogen extensively used as a female contraceptive in India. In the present study, we report the anti-proliferative effect of CC in head and neck squamous cell carcinoma (HNSCC) cells. CC inhibited cell proliferation in a dose dependent manner at 24 h of treatment. Further studies showed that CC treatment induced apoptosis, inhibited Akt/mTOR and signal transducers and activators of transcription protein 3 (STAT3) signaling, altered proteins associated with cell cycle regulation and DNA damage and inhibited colony forming efficiency of HNSCC cells. In addition, CC displayed anti-proliferative activity against a variety of non-HNSCC cell lines of diverse origin. The ability of CC to serve as a dual-inhibitor of Akt/mTOR and STAT3 signaling warrants further studies into its role as a therapeutic strategy against HNSCC.

  14. Antiproliferation and induction of cell death of Phaffia rhodozyma (Xanthophyllomyces dendrorhous) extract fermented by brewer malt waste on breast cancer cells.

    Science.gov (United States)

    Teo, Ivy Tuang Ngo; Chui, Chung Hin; Tang, Johnny Cheuk On; Lau, Fung Yi; Cheng, Gregory Yin Ming; Wong, Raymond Siu Ming; Kok, Stanton Hon Lung; Cheng, Chor Hing; Chan, Albert Sun Chi; Ho, Kwok Ping

    2005-11-01

    Astaxanthin has been shown to have antiproliferative activity on breast cancer and skin cancer cells. However, the high cost of production, isolation and purification of purified astaxanthin from natural sources or chemically synthetic methods limit its usage on cancer therapy. We show that astaxanthin could be produced by fermentating the Phaffia rhodozyma (Xanthophyllomyces dendrorhous) yeast cells with brewer malt waste using a 20 L B. Braun fermentor. The percentage composition of astaxanthin from the P. rhodozyma was >70% of total pigment as estimated by the high performance liquid chromatographic analysis. Furthermore, the antiproliferative activity of this P. rhodozyma cell extract (PRE) was demonstrated on breast cancer cell lines including the MCF-7 (estrogen receptor positive) and MDA-MB231 (estrogen receptor negative) by using the [3-(4,5-dimethylthiazol-2-yl)-5-(3-arboxymethoxyphenyl)-2- (4-sulfophenyl)-2H-tetrazolium] (MTS) assay. No apoptotic cell death, but growth inhibitory effect was induced after 48 h of PRE incubation as suggested by morphological investigation. Anchorage-dependent clonogenicity assay showed that PRE could reduce the colony formation potential of both breast cancer cell lines. Cell death was observed from both breast cancer cell lines after incubation with PRE for 6 days. Taken together, our results showed that by using an economic method of brewer malt waste fermentation, we obtained P. rhodozyma with a high yield of astaxanthin and the corresponding PRE could have short-term growth inhibition and long-term cell death activity on breast cancer cells.

  15. Inhibitiory properties of cytoplasmic extract of Lactobacilli isolated from common carp intestine on human chronic myelocytic leukemia K562 cell line: an in vitro study

    Directory of Open Access Journals (Sweden)

    Kabiri F

    2011-03-01

    Full Text Available "n Normal 0 false false false EN-US X-NONE AR-SA MicrosoftInternetExplorer4 st1":*{behavior:url(#ieooui } /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:Arial; mso-bidi-theme-font:minor-bidi;} Background: Lactobacillus species are genetically diverse groups of Lactic Acid Bacteria (LAB that have been introduced as probiotics, because of some characteristics such as their anti-tumor properties, helping the intestinal flora balance, production of antibiotics, stimulation of host immune response, etc. The aim of this study was to investigate the effects of cytoplasmic extraction and cell wall of Lactobacillus species isolated from the intestine of common carp on human chronic myelocytic leukemia or K562 cancer cell lines."n"nMethods: The intestinal contents of 115 common carp captured from the natural resources of West Azerbaijan province in Iran were examined for LAB. After isolation, the identification of Lactobacilli was done according to traditional and molecular bacteriological tests. Subsequently, a suspension of each bacterium was prepared and the protein content of the cytoplasm was extracted. Cell wall disintegration was done by cell lysis buffer and sonication. The effects of cytoplasmic extraction and cell wall on K562 cell line proliferation were investigated by MTT assays."n"nResults: The cytoplasmic extraction of the isolated Lactobacilli had significant (p<0.05 anti-proliferative

  16. Novel Zinc(II Complexes [Zn(atc-Et2] and [Zn(atc-Ph2]: In Vitro and in Vivo Antiproliferative Studies

    Directory of Open Access Journals (Sweden)

    Erica de O. Lopes

    2016-05-01

    Full Text Available Cisplatin and its derivatives are the main metallodrugs used in cancer therapy. However, low selectivity, toxicity and drug resistance are associated with their use. The zinc(II (ZnII thiosemicarbazone complexes [Zn(atc-Et2] (1 and [Zn(atc-Ph2] (2 (atc-R: monovalent anion of 2-acetylpyridine N4-R-thiosemicarbazone were synthesized and fully characterized in the solid state and in solution via elemental analysis, Fourier transform infrared (FTIR, ultraviolet-visible (UV-Vis and proton nuclear magnetic resonance (1H NMR spectroscopy, conductometry and single-crystal X-ray diffraction. The cytotoxicity of these complexes was evaluated in the HepG2, HeLa, MDA-MB-231, K-562, DU 145 and MRC-5 cancer cell lines. The strongest antiproliferative results were observed in MDA-MB-231 and HepG2 cells, in which these complexes displayed significant selective toxicity (3.1 and 3.6, respectively compared with their effects on normal MRC-5 cells. In vivo studies were performed using an alternative model (Artemia salina L. to assure the safety of these complexes, and the results were confirmed using a conventional model (BALB/c mice. Finally, tests of oral bioavailability showed maximum plasma concentrations of 3029.50 µg/L and 1191.95 µg/L for complexes 1 and 2, respectively. According to all obtained results, both compounds could be considered as prospective antiproliferative agents that warrant further research.

  17. Helleborus purpurascens—Amino Acid and Peptide Analysis Linked to the Chemical and Antiproliferative Properties of the Extracted Compounds

    Directory of Open Access Journals (Sweden)

    Adina-Elena Segneanu

    2015-12-01

    Full Text Available There is a strong drive worldwide to discover and exploit the therapeutic potential of a large variety of plants. In this work, an alcoholic extract of Helleborus purpurascens (family Ranunculaceae was investigated for the identification of amino acids and peptides with putative antiproliferative effects. In our work, a separation strategy was developed using solvents of different polarity in order to obtain active compounds. Biochemical components were characterized through spectroscopic (mass spectroscopy and chromatographic techniques (RP-HPLC and GC-MS. The biological activity of the obtained fractions was investigated in terms of their antiproliferative effects on HeLa cells. Through this study, we report an efficient separation of bioactive compounds (amino acids and peptides from a plant extract dependent on solvent polarity, affording fractions with unaffected antiproliferative activities. Moreover, the two biologically tested fractions exerted a major antiproliferative effect, thereby suggesting potential anticancer therapeutic activity.

  18. Helleborus purpurascens-Amino Acid and Peptide Analysis Linked to the Chemical and Antiproliferative Properties of the Extracted Compounds.

    Science.gov (United States)

    Segneanu, Adina-Elena; Grozescu, Ioan; Cziple, Florentina; Berki, Daniel; Damian, Daniel; Niculite, Cristina Mariana; Florea, Alexandru; Leabu, Mircea

    2015-12-11

    There is a strong drive worldwide to discover and exploit the therapeutic potential of a large variety of plants. In this work, an alcoholic extract of Helleborus purpurascens (family Ranunculaceae) was investigated for the identification of amino acids and peptides with putative antiproliferative effects. In our work, a separation strategy was developed using solvents of different polarity in order to obtain active compounds. Biochemical components were characterized through spectroscopic (mass spectroscopy) and chromatographic techniques (RP-HPLC and GC-MS). The biological activity of the obtained fractions was investigated in terms of their antiproliferative effects on HeLa cells. Through this study, we report an efficient separation of bioactive compounds (amino acids and peptides) from a plant extract dependent on solvent polarity, affording fractions with unaffected antiproliferative activities. Moreover, the two biologically tested fractions exerted a major antiproliferative effect, thereby suggesting potential anticancer therapeutic activity.

  19. Antiproliferative and Apoptotic Effect of Dendrosomal Curcumin Nanoformulation in P53 Mutant and Wide-Type Cancer Cell Lines.

    Science.gov (United States)

    Montazeri, Maryam; Pilehvar-Soltanahmadi, Younes; Mohaghegh, Mina; Panahi, Alireza; Khodi, Samaneh; Zarghami, Nosratollah; Sadeghizadeh, Majid

    2017-01-01

    The aim of this paper is to investigate the effect of dendrosomal curcumin (DNC) on the expression of p53 in both p53 mutant cell lines SKBR3/SW480 and p53 wild-type MCF7/HCT116 in both RNA and protein levels. Curcumin, derived from Curcumin longa, is recently considered in cancer related researches for its cell growth inhibition properties. p53 is a common tumor-suppressor gene involved in cancers and its mutation not only inhibits tumor suppressor activity but also promotes oncogenic activity. Here, p53 mutant/Wild-type cells were employed to study the toxicity of DNC using MTT assay, Flow cytometry and Annexin-V, Real-time PCR and Western blot were used to analyze p53, BAX, Bcl-2, p21 and Noxa changes after treatment. During the time, DNC increased the SubG1 cells and decreased G1, S and G2/M cells, early apoptosis also indicated the inhibition of cell growth in early phase. Real-Time PCR assay showed an increased mRNA of BAX, Noxa and p21 during the time with decreased Bcl-2. The expression of p53 mutant decreased in SKBR3/SW480, and the expression of p53 wild-type increased in MCF7/HCT116. Consequently, p53 plays an important role in mediating the survival by DNC, which can prevent tumor cell growth by modulating the expression of genes involved in apoptosis and proliferation. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  20. Radiation sensitivity of Merkel cell carcinoma cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Leonard, J.H.; Ramsay, J.R.; Birrell, G.W. [Queensland Institute of Medical Research (Australia)] [and others

    1995-07-30

    Merkel cell carcinoma (MCC), being a small cell carcinoma, would be expected to be sensitive to radiation. Clinical analysis of patients at our center, especially those with macroscopic disease, would suggest the response is quite variable. We have recently established a number of MCC cell lines from patients prior to radiotherapy, and for the first time are in a position to determine their sensitivity under controlled conditions. Some of the MCC lines grew as suspension cultures and could not be single cell cloned; therefore, it was not possible to use clonogenic survival for all cell lines. A tetrazolium based (MTT) assay was used for these lines, to estimate cell growth after {gamma} irradiation. Control experiments were conducted on lymphoblastoid cell lines (LCL) and the adherent MCC line, MCC13, to demonstrate that the two assays were comparable under the conditions used. We have examined cell lines from MCC, small cell lung cancer (SCLC), malignant melanomas, Epstein Barr virus (EBV) transformed lymphocytes (LCL), and skin fibroblasts for their sensitivity to {gamma} irradiation using both clonogenic cell survival and MTT assays. The results show that the tumor cell lines have a range of sensitivities, with melanoma being more resistant (surviving fraction at 2 Gy (SF2) 0.57 and 0.56) than the small cell carcinoma lines, MCC (SF2 range 0.21-0.45, mean SF2 0.30, n = 8) and SCLC (SF2 0.31). Fibroblasts were the most sensitive (SF2 0.13-0.20, mean 0.16, n = 5). The MTT assay, when compared to clonogenic assay for the MCC13 adherent line and the LCL, gave comparable results under the conditions used. Both assays gave a range of SF2 values for the MCC cell lines, suggesting that these cancers would give a heterogeneous response in vivo. The results with the two derivative clones of MCC14 (SF2 for MCC14/1 0.38, MCC14/2 0.45) would further suggest that some of them may develop resistance during clonogenic evolution. 25 refs., 3 figs., 1 tab.

  1. Radiation sensitivity of Merkell cell carcinoma cell lines

    International Nuclear Information System (INIS)

    Leonard, J. Helen; Ramsay, Jonathan R.; Kearsley, John H.; Birrell, Geoff W.

    1995-01-01

    Purpose: Merkel cell carcinoma (MCC), being a small cell carcinoma, would be expected to be sensitive to radiation. Clinical analysis of patients at our center, especially those with macroscopic disease, would suggest the response is quite variable. We have recently established a number of MCC cell lines from patients prior to radiotherapy, and for the first time are in a position to determine their sensitivity under controlled conditions. Methods and Materials: Some of the MCC lines grew as suspension cultures and could not be single cell cloned; therefore, it was not possible to use clonogenic survival for all cell lines. A tetrazolium based (MTT) assay was used for these lines, to estimate cell growth after γ irradiation. Control experiments were conducted on lymphoblastoid cell lines (LCL) and the adherent MCC line, MCC13, to demonstrate that the two assays were comparable under the conditions used. Results: We have examined cell lines from MCC, small cell lung cancer (SCLC), malignant melanomas, Epstein Barr virus (EBV) transformed lymphocytes (LCL), and skin fibroblasts for their sensitivity to γ irradiation using both clonogenic cell survival and MTT assays. The results show that the tumor cell lines have a range of sensitivities, with melanoma being more resistant (surviving fraction at 2 Gy (SF2) 0.57 and 0.56) than the small cell carcinoma lines, MCC (SF2 range 0.21-0.45, mean SF2 0.30, n = 8) and SCLC (SF2 0.31). Fibroblasts were the most sensitive (SF2 0.13-0.20, mean 0.16, n = 5). The MTT assay, when compared to clonogenic assay for the MCC13 adherent line and the LCL, gave comparable results under the conditions used. Conclusion: Both assays gave a range of SF2 values for the MCC cell lines, suggesting that these cancers would give a heterogeneous response in vivo. The results with the two derivative clones of MCC14 (SF2 for MCC14/1 0.38, MCC14/2 0.45) would further suggest that some of them may develop resistance during clonogenic evolution

  2. Antiproliferative compounds of Cyphostemma greveana from a Madagascar dry forest.

    Science.gov (United States)

    Cao, Shugeng; Hou, Yanpeng; Brodie, Peggy; Miller, James S; Randrianaivo, Richard; Rakotobe, Etienne; Rasamison, Vincent E; Kingston, David G I

    2011-04-01

    Bioassay-guided fractionation of the EtOH extracts obtained from a plant identified as Cyphostemma greveana Desc. (Vitaceae) led to the identification of one macrolide, lasiodiplodin (1), three sesquiterpenoids, 12-hydroxy-15-oxoselina-4,11-diene (2), 1β,6α-dihydroxyeudesm-4(15)-ene (3), and (7R*)-opposit-4(15)-ene-1β,7-diol (5), and a new diterpenoid, 16,18-dihydroxykolavenic acid lactone (4). All the isolates were tested against the A2780 human ovarian cancer cell line, and compound 4 and a fraction containing 5 as the major constituent showed antiproliferative activities with IC(50) values of 0.44 μM (0.14 μg/ml) and 0.045 μg/ml, respectively. A partial synthesis of compound 5 was carried out, but the pure synthetic compound was inactive, indicating that the activity of the fraction containing it must be due to a very minor and as yet unidentified substance. Copyright © 2011 Verlag Helvetica Chimica Acta AG, Zürich.

  3. Semisynthesis, Characterization and Evaluation of New Adenosine Derivatives as Antiproliferative Agents

    Directory of Open Access Journals (Sweden)

    Francisco Valdés Zurita

    2018-05-01

    Full Text Available We describe the semisynthesis and biological effects of adenosine derivatives, which were anticipated to function as agonists for the A3 receptor. Molecular docking was used to select candidate compounds. Fifteen nucleoside derivatives were obtained through nucleophilic substitutions of the N6-position of the nucleoside precursor 6-chloropurine riboside by amines of different origin. All compounds were purified by column chromatography and further characterized by spectroscopic and spectrometric techniques, showing moderate yield. These molecules were then evaluated for their antiproliferative activity in human gastric cancer cells expressing the A3 receptor. We found that the compounds obtained have antiproliferative activity and that new structural modifications can enhance their biological activity. The ADME (Absorption, Distribution, Metabolism and Excretion properties of the most active compounds were also evaluated theoretically.

  4. GENE EXPRESSION CHANGES AND ANTI-PROLIFERATIVE EFFECT OF NONI (Morinda citrifolia FRUIT EXTRACT ANALYSED BY REAL TIME-PCR

    Directory of Open Access Journals (Sweden)

    hermansyah hermansyah

    2017-05-01

    Full Text Available To elucidate the anti-proliferative effect of noni (Morinda citrifolia fruit extract for a Saccharomyces cerevisiae model organism, analysis of gene expression changes related to cell cycle associated with inhibition effect of noni fruit extract was carried out. Anti-proliferative of noni fruit extract was analyzed using gene expression changes of Saccharomyces cerevisiae (strains FY833 and BY4741.  Transcriptional analysis of genes that play a role in cell cycle was conducted by growing cells on YPDAde broth medium containing 1% (w/v noni fruit extract, and then subjected using quantitative real-time polymerase chain reaction (RT-PCR.  Transcriptional level of genes CDC6 (Cell Division Cycle-6, CDC20 (Cell Division Cycle-20, FAR1 (Factor ARrest-1, FUS3 (FUSsion-3, SIC1 (Substrate/Subunit Inhibitor of Cyclin-dependent protein kinase-1, WHI5 (WHIskey-5, YOX1 (Yeast homeobOX-1 and YHP1 (Yeast Homeo-Protein-1 increased, oppositely genes expression of DBF4 (DumbBell Forming, MCM1 (Mini Chromosome Maintenance-1 and TAH11 (Topo-A Hypersensitive-11 decreased, while the expression level of genes CDC7 (Cell Division Cycle-7, MBP1 (MIul-box Binding Protein-1 and SWI6 (SWItching deficient-6 relatively unchanged. These results indicated that gene expression changes might associate with anti-proliferative effect from noni fruit extract. These gene expressions changes lead to the growth inhibition of S.cerevisiae cell because of cell cycle defect.

  5. Free radical scavenging activities measured by electron spin resonance spectroscopy and B16 cell antiproliferative behaviors of seven plants.

    Science.gov (United States)

    Calliste, C A; Trouillas, P; Allais, D P; Simon, A; Duroux, J L

    2001-07-01

    In an effort to discover new antioxidant natural compounds, seven plants that grow in France (most of them in the Limousin countryside) were screened. Among these plants, was the extensively studied Vitis vinifera as reference. For each plant, sequential percolation was realized with five solvents of increasing polarities (hexane, chloroform, ethyl acetate, methanol, and water). Free radical scavenging activities were examined in different systems using electron spin resonance (ESR) spectroscopy. These assays were based on the stable free radical 1,1-diphenyl-2-picrylhydrazyl (DPPH), the hydroxyl radicals generated by a Fenton reaction, and the superoxide radicals generated by the X/XO system. Antiproliferative behavior was studied on B16 melanoma cells. ESR results showed that three plants (Castanea sativa, Filipendula ulmaria, and Betula pendula) possessed, for the most polar fractions (presence of phenolic compounds), high antioxidant activities in comparison with the Vitis vinifera reference. Gentiana lutea was the only one that presented a hydroxyl scavenging activity for the ethyl acetate and chloroform fractions. The antiproliferative test results showed that the same three plants are the most effective, but for the apolar fractions (chloroform and hexane).

  6. Cell Line Data Base: structure and recent improvements towards molecular authentication of human cell lines.

    Science.gov (United States)

    Romano, Paolo; Manniello, Assunta; Aresu, Ottavia; Armento, Massimiliano; Cesaro, Michela; Parodi, Barbara

    2009-01-01

    The Cell Line Data Base (CLDB) is a well-known reference information source on human and animal cell lines including information on more than 6000 cell lines. Main biological features are coded according to controlled vocabularies derived from international lists and taxonomies. HyperCLDB (http://bioinformatics.istge.it/hypercldb/) is a hypertext version of CLDB that improves data accessibility by also allowing information retrieval through web spiders. Access to HyperCLDB is provided through indexes of biological characteristics and navigation in the hypertext is granted by many internal links. HyperCLDB also includes links to external resources. Recently, an interest was raised for a reference nomenclature for cell lines and CLDB was seen as an authoritative system. Furthermore, to overcome the cell line misidentification problem, molecular authentication methods, such as fingerprinting, single-locus short tandem repeat (STR) profile and single nucleotide polymorphisms validation, were proposed. Since this data is distributed, a reference portal on authentication of human cell lines is needed. We present here the architecture and contents of CLDB, its recent enhancements and perspectives. We also present a new related database, the Cell Line Integrated Molecular Authentication (CLIMA) database (http://bioinformatics.istge.it/clima/), that allows to link authentication data to actual cell lines.

  7. Valorization of Lipids from Gracilaria sp. through Lipidomics and Decoding of Antiproliferative and Anti-Inflammatory Activity

    Directory of Open Access Journals (Sweden)

    Elisabete da Costa

    2017-03-01

    Full Text Available The lipidome of the red seaweed Gracilaria sp., cultivated on land-based integrated multitrophic aquaculture (IMTA system, was assessed for the first time using hydrophilic interaction liquid chromatography-mass spectrometry and tandem mass spectrometry (HILIC–MS and MS/MS. One hundred and forty-seven molecular species were identified in the lipidome of the Gracilaria genus and distributed between the glycolipids classes monogalactosyl diacylglyceride (MGDG, digalactosyl diacylglyceride (DGDG, sulfoquinovosyl monoacylglyceride (SQMG, sulfoquinovosyl diacylglyceride (SQDG, the phospholipids phosphatidylcholine (PC, lyso-PC, phosphatidylglycerol (PG, lyso-PG, phosphatidylinositol (PI, phosphatidylethanolamine (PE, phosphatic acid (PA, inositolphosphoceramide (IPC, and betaine lipids monoacylglyceryl- and diacylglyceryl-N,N,N-trimethyl homoserine (MGTS and DGTS. Antiproliferative and anti-inflammatory effects promoted by lipid extract of Gracilaria sp. were evaluated by monitoring cell viability in human cancer lines and by using murine macrophages, respectively. The lipid extract decreased cell viability of human T-47D breast cancer cells and of 5637 human bladder cancer cells (estimated half-maximal inhibitory concentration (IC50 of 12.2 μg/mL and 12.9 μg/mL, respectively and inhibited the production of nitric oxide (NO evoked by the Toll-like receptor 4 agonist lipopolysaccharide (LPS on the macrophage cell line RAW 264.7 (35% inhibition at a concentration of 100 μg/mL. These findings contribute to increase the ranking in the value-chain of Gracilaria sp. biomass cultivated under controlled conditions on IMTA systems.

  8. Synthesis and Biological Activity of Diastereomeric and Geometric Analogs of Calcipotriol, PRI-2202 and PRI-2205, Against Human HL-60 Leukemia and MCF-7 Breast Cancer Cells.

    Science.gov (United States)

    Milczarek, Magdalena; Chodyński, Michał; Filip-Psurska, Beata; Martowicz, Agnieszka; Krupa, Małgorzata; Krajewski, Krzysztof; Kutner, Andrzej; Wietrzyk, Joanna

    2013-10-31

    Diastereomeric and geometric analogs of calcipotriol, PRI-2202 and PRI-2205, were synthesized as advanced intermediates from vitamin D C-22 benzothiazoyl sulfones and side-chain aldehydes using our convergent strategy. Calcitriol, calcipotriol (PRI-2201) and tacalcitol (PRI-2191) were used as the reference compounds. Among a series of tested analogs the diastereomeric analog PRI-2202 showed the strongest antiproliferative activity on the human breast cancer cell line MCF-7, whereas the geometric analog PRI-2205 was the weakest. Both analogs were less potent in antiproliferative activity against HL-60 cells compared to the reference compounds. The ability to potentiate antiproliferative effect of cisplatin or doxorubicin against HL-60 cells or that of tamoxifen against the MCF-7 cell line was observed at higher doses of PRI-2202 or PRI-2205 than those of the reference compounds. The proapoptotic activity of tamoxifen, expressed as the diminished mitochondrial membrane potential, as well as the increased phosphatidylserine expression, was partially attenuated by calcitriol, PRI-2191, PRI-2201 and PRI-2205. The treatment of the MCF-7 cells with tamoxifen alone resulted in an increase in VDR expression. Moreover, a further increase in VDR expression was observed when the analogs PRI-2201 or PRI-2205, but not PRI-2191, were used in combination with tamoxifen. This observation could partially explain the potentiation of the antiproliferative effect of tamoxifen by vitamin D analogs.

  9. New geranylated flavanones from the fruits of Paulownia catalpifolia Gong Tong with their anti-proliferative activity on lung cancer cells A549.

    Science.gov (United States)

    Gao, Tian-yang; Jin, Xing; Tang, Wen-zhao; Wang, Xiao-jing; Zhao, Yun-xue

    2015-09-01

    Three new geranylated flavanones, named as paucatalinone A (1), B (2), and isopaucatalinone B (3), were isolated from the fruits of Paulownia catalpifolia Gong Tong (Scrophulariaceae). Their structures were well determined by means of IR, MS, 1D and 2D NMR, and CD techniques. Paucatalinone A (1) is the first sample as a dimeric geranylated flavanone derivative isolated from natural products. Paucatalinone A (1) displayed good antiproliferative effects on human lung cancer cells A549 and resulted in a clear increase of the percentage of cells in G1 phase and a decrease in the percentage of cells in S and G2/M phases in comparison with control cells. Copyright © 2015. Published by Elsevier Ltd.

  10. Antiproliferative constituents in plants 9. Aerial parts of Lippia dulcis and Lippia canescens.

    Science.gov (United States)

    Abe, Fumiko; Nagao, Tsuneatsu; Okabe, Hikaru

    2002-07-01

    The antiproliferative constituents in the MeOH extracts of the aerial parts of Lippia dulcis Trev. and Lippia canescens Kunth (Verbenaceae) were investigated. Activity-guided chemical investigation of the MeOH extracts resulted in the isolation of the three bisabolane-type sesquiterpenes [(+)-hernandulcin (1), (-)-epihernandulcin (2), and (+)-anymol (3)] and four phenylethanoid glycosides [acteoside (4), isoacteoside (5), martynoside (6), and a new diacetylmartynoside (7)] from the former, and four phenylethanoid glycosides [acteoside (4), isoacteoside (5), arenarioside (8), and leucosceptoside A (9)] and three flavones [desmethoxycentaureidin (10), eupafolin (11), and 6-hydroxyluteolin (12)] from the latter. Antiproliferative activity of the isolated compounds against murine melanoma (B16F10), human gastric adenocarcinoma (MK-1), and human uterine carcinoma (HeLa) cells was estimated. (+)-Anymol (3), acteoside (4), isoacteoside (5), arenarioside (8), eupafolin (11), and 6-hydroxyluteolin (12) had GI50 values of 10-16 microM against B16F10 cell. Desmethoxycentaureidin (10) and eupafolin (11) showed high inhibitory activity against HeLa cell growth (GI50 9 microM, and 6 microM, respectively).

  11. Antiproliferative and apoptotic effects of a specific anti-insulin-like growth factor I receptor single chain antibody on breast cancer cells.

    Science.gov (United States)

    Motallebnezhad, Morteza; Younesi, Vahid; Aghebati-Maleki, Leili; Nickho, Hamid; Safarzadeh, Elham; Ahmadi, Majid; Movassaghpour, Ali Akbar; Hosseini, Ahmad; Yousefi, Mehdi

    2016-11-01

    Insulin-like growth factor I receptor (IGF-IR) is expressed on breast cancer cells and involves in metastasis, survival, and proliferation. Currently, application of IGF-IR-targeting monoclonal antibodies (mAbs), alone or in combination with other drugs, is a promising strategy for breast cancer therapy. Single-chain fragment variable (scFv) antibodies have been introduced as appropriate tools for tumor-targeting purposes because of their advantages over whole antibodies. In the present study, we employed a naïve phage library and isolated scFvs against a specific epitope from extracellular domain of IGF-IR by panning process. The selected scFvs were further characterized using polyclonal and monoclonal phage ELISA, soluble monoclonal ELISA, and colony PCR and sequencing. Antiproliferative and apoptotic effects of selected scFv antibodies on breast cancer cell lines were also evaluated by MTT and Annexin V/PI assays. The results of ELISA indicated specific reactions of the isolated scFvs against the IGF-IR peptide, and analyses of PCR product and sequencing confirmed the presence of full length V H and Vκ inserts. Treatment of MCF7 and SKBR3 cells with anti-IGF-IR scFv led to a significant growth inhibition. The results also showed that scFv treatment significantly augmented trastuzumab growth inhibitory effects on SKBR3 cells. The percentage of the apoptotic MCF7 and SKBR3 cells after 24-h treatment with scFv was 39 and 30.70 %, respectively. Twenty-four-hour treatment with scFv in combination with trastuzumab resulted in 44.75 % apoptosis of SKBR3 cells. Taken together, our results demonstrate that the targeting of IGF-IR by scFv can be an effective strategy in the treatment of breast cancer and provide further evidence for effectiveness of dual targeting of HER2 and IGF-IR in breast cancer therapy.

  12. Cysteine-based 3-substituted 1,5-benzoxathiepin derivatives: Two new classes of anti-proliferative agents

    Directory of Open Access Journals (Sweden)

    Nawal Mahfoudh

    2018-03-01

    Full Text Available Two distinct series of the 3-amino-1,5-benzoxathiepin scaffold, derived from L-cysteine, were synthesized and evaluated for their anti-proliferative activity in the breast cancer MDA-MB-231 and MCF-7 cells, and in the ovarian carcinoma SKOV-3 cell line. (3R-Amino-3,4-dihydro-2H-1,5-benzoxathiepin [(R-10] was diversified into two forms: (a by incorporating different amino acids at its position 3, through an amide bond; and (b by construction of the purine ring to give 6-chloro-9-[2-(3,4-dihydro-2H-1,5-benzoxathiepin-(3R-yl]-9H-purine [(R-28]. Nevertheless, when the introduction of iodine was tried at position 2 of the purine ring of (R-28, 2-{[2-(6-chloro-2-iodo-9H-purin-9-ylprop-2-en-1-yl]thio}phenol (34 was obtained. Compound 34 shows activity against cancer cells. Interestingly, 34 inhibits mammosphere formation at the micromolar range, demonstrating activity against cancer stem cells. Although further studies of its targets and mechanism of action are needed, these findings support the therapeutic potential of this compound in cancer.

  13. Antiproliferative and apoptotic effect of Morus nigra extract on human prostate cancer cells

    Directory of Open Access Journals (Sweden)

    Ibrahim Turan

    2017-02-01

    Full Text Available Background: Morus nigra L. belongs to the family Moraceae and is frequently used in traditional medicine. Numerous studies have investigated the antiproliferative effects of various extracts of different Morus species, but studies involving the in vitro cytotoxic effect of M. nigra extract are very limited. The purpose of this study was to evaluate the phenolic composition and antioxidant activity of dimethyl sulfoxide extract of M. nigra (DEM and to investigate, for the first time, the probable cytotoxic effect in human prostate adenocarcinoma (PC-3 cells together with the mechanism involved. Methods: Total polyphenolic contents (TPC, ferric reducing antioxidant power (FRAP and phenolic compounds of DEM were evaluated using spectrophotometric procedures and HPLC. The cytotoxic effect of DEM on PC-3 cells was revealed using the MTT assay. Mechanisms involved in the cytotoxic effect of DEM on PC-3 cells were then investigated in terms of apoptosis, mitochondrial membrane potential and cell cycle using flow cytometry, while caspase activity was investigated using luminometric analysis. Results: TPC and FRAP values were 20.7 ± 0.3 mg gallic acid equivalents and 48.8 ± 1.6 mg trolox equivalents per g sample, respectively. Ascorbic acid and chlorogenic acid were the major phenolic compounds detected at HPLC analysis. DEM arrested the cell cycle of PC-3 cells at the G1 phase, induced apoptosis via increased caspase activity and reduced mitochondrial membrane potential. Conclusions: Our results indicate that M. nigra may be a novel candidate for the development of new natural product based therapeutic agents against prostate cancer.

  14. The Antiproliferative Effect of Cyclodipeptides from Pseudomonas aeruginosa PAO1 on HeLa Cells Involves Inhibition of Phosphorylation of Akt and S6k Kinases.

    Science.gov (United States)

    Hernández-Padilla, Laura; Vázquez-Rivera, Dolores; Sánchez-Briones, Luis A; Díaz-Pérez, Alma L; Moreno-Rodríguez, José; Moreno-Eutimio, Mario A; Meza-Carmen, Victor; Cruz, Homero Reyes-De la; Campos-García, Jesús

    2017-06-20

    Pseudomonas aeruginosa PAO1, a potential pathogen of plants and animals, produces the cyclodipeptides cyclo(l-Pro-l-Tyr), cyclo(l-Pro-l-Phe), and cyclo(l-Pro-l-Val) (PAO1-CDPs), whose effects have been implicated in inhibition of human tumor cell line proliferation. Our purpose was to investigate in depth in the mechanisms of HeLa cell proliferation inhibition by the PAO1-CDPs. The results indicate that PAO1-CDPs, both purified individually and in mixtures, inhibited HeLa cell proliferation by arresting the cell cycle at the G0-G1 transition. The crude PAO1-CDPs mixture promoted cell death in HeLa cells in a dose-dependent manner, showing efficacy similar to that of isolated PAO1-CDPs (LD 50 of 60-250 µM) and inducing apoptosis with EC 50 between 0.6 and 3.0 µM. Moreover, PAO1-CDPs showed a higher proapoptotic activity (~10³-10⁵ fold) than their synthetic analogs did. Subsequently, the PAO1-CDPs affected mitochondrial membrane potential and induced apoptosis by caspase-9-dependent pathway. The mechanism of inhibition of cells proliferation in HeLa cells involves inhibition of phosphorylation of both Akt-S473 and S6k-T389 protein kinases, showing a cyclic behavior of their expression and phosphorylation in a time and concentration-dependent fashion. Taken together our findings indicate that PI3K-Akt-mTOR-S6k signaling pathway blockage is involved in the antiproliferative effect of the PAO1-CDPs.

  15. Phytochemical Constituents, Antioxidant and Antiproliferative Properties of a Liverwort, Lepidozia borneensis Stephani from Mount Kinabalu, Sabah, Malaysia

    Directory of Open Access Journals (Sweden)

    Mohd Fadzelly Abu Bakar

    2015-01-01

    Full Text Available The study aimed to investigate the phytochemical contents, antioxidant and antiproliferative activity of 80% methanol extract of Lepidozia borneensis. The total phenolic and total flavonoid contents were analysed using Folin-Ciocalteu and aluminium chloride colorimetric methods. Antioxidant properties were evaluated by using FRAP, ABTS, and DPPH assays while the effects of L. borneensis on the proliferation of MCF-7 cell line were evaluated by using MTT assay. The results showed that the total phenolic and flavonoid contents were 12.42 ± 0.47 mg GAE/g and 9.36 ± 1.29 mg CE/g, respectively. The GC-MS analysis revealed the presence of at least 35 compounds. The extract was found to induce cytotoxicity against MCF-7 cell line with IC50 value of 47.33 ± 7.37 µg/mL. Cell cycle analysis showed that the extract induced significant arrest at G0/G1 at 24 hours of treatment. After 72 hours of treatment, the proportion of cells in G0/G1 and G2-M phases had decreased significantly as compared to their control. Apoptosis occurred during the first 24 hours and significantly increased to 30.8% after 72 hours of treatment. No activation of caspase 3 was observed. These findings suggest that L. borneensis extract has the potential as natural antioxidant and anticancer agents.

  16. ANTIPROLIFERATIVE EFFECT ON BREAST CANCER (MCF7) OF MORINGA OLEIFERA SEED EXTRACTS.

    Science.gov (United States)

    Adebayo, Ismail Abiola; Arsad, Hasni; Samian, Mohd Razip

    2017-01-01

    Moringa oleifera belongs to plant family, Moringaceae and popularly called "wonderful tree", for it is used traditionally to cure many diseases including cancer in Africa and Asia, however, there is limited knowledge on cytotoxic activity of Moringa oleifera seeds on MCF7 breast cancer cell. The present study evaluated antiproliferative effect on MCF7 of the seed. Seeds of Moringa oleifera were grinded to powder and its phytochemicals were extracted using water and 80% ethanol solvents, part of the ethanolic extract were sequentially partitioned to fractions with four solvents (hexane, dichloromethane, chloroform, and n-butanol). Antiproliferative effects on MCF7 of the samples were determined. Finally, potent samples that significantly inhibited MCF7 growth were tested on MCF 10A. Crude water extract, hexane and dichloromethane fractions of the seeds inhibited the proliferation of MCF7 with the following IC 50 values 280 μg/ml, 130 μg/ml and 26 μg/ml respectively, however, of the 3 samples, only hexane fraction had minimal cytotoxic effect on MCF 10A (IC 50 > 400μg/ml). Moringa oleifera seed has antiproliferative effect on MCF7.

  17. Antiproliferative and cytotoxic effects of purple pitanga (Eugenia uniflora L.) extract on activated hepatic stellate cells.

    Science.gov (United States)

    Denardin, Cristiane C; Parisi, Mariana M; Martins, Leo A M; Terra, Silvia R; Borojevic, Radovan; Vizzotto, Márcia; Perry, Marcos L S; Emanuelli, Tatiana; Guma, Fátima T C R

    2014-01-01

    The presence of phenolic compounds in fruit- and vegetable-rich diets has attracted researchers' attention due to their health-promoting effects. The objective of this study was to evaluate the effects of purple pitanga (Eugenia uniflora L.) extract on cell proliferation, viability, mitochondrial membrane potential, cell death and cell cycle in murine activated hepatic stellate cells (GRX). Cell viability by 3-(4,5-dimethylthiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay was significantly decreased on cells treated with 50 and 100 µg ml(-1) of purple pitanga extract for 48 and 72 h, and the percentage of dead cell stained with 7-amino-actinomycin D was significantly higher in treated cells. The reduction of cell proliferation was dose dependent, and we also observed alterations on cell cycle progression. At all times studied, GRX cells treated with 50 and 100 µg ml(-1) of purple pitanga showed a significant reduction in cellular mitochondrial content as well as a decrease in mitochondrial membrane potential. Furthermore, our results indicated that purple pitanga extract induces early and late apoptosis/necrosis and necrotic death in GRX cells. This is the first report describing the antiproliferative, cytotoxic and apoptotic activity for E. uniflora fruits in hepatic stellate cells. The present study provides a foundation for the prevention and treatment of liver fibrosis, and more studies will be carried to elucidate this effect. Copyright © 2013 John Wiley & Sons, Ltd.

  18. Anti-proliferative and differentiation-inducing activities of the green tea catechin epigallocatechin-3-gallate (EGCG) on the human eosinophilic leukemia EoL-1 cell line.

    Science.gov (United States)

    Lung, H L; Ip, W K; Wong, C K; Mak, N K; Chen, Z Y; Leung, K N

    2002-12-06

    A novel approach for the treatment of leukemia is the differentiation therapy in which immature leukemia cells are induced to attain a mature phenotype when exposed to differentiation inducers, either alone or in combinations with other chemotherapeutic or chemopreventive drugs. Over the past decade, numerous studies indicated that green tea catechins (GTC) could suppress the growth and induce apoptosis on a number of human cancer cell lines. However, the differentiation-inducing activity of GTC on human tumors remains poorly understood. In the present study, the effect of the major GTC epigallocatechin-3-gallate (EGCG) on the proliferation and differentiation of a human eosinophilc leukemic cell line, EoL-1, was examined. Our results showed that EGCG suppressed the proliferation of the EoL-1 cells in a dose-dependent manner, with an estimated IC(50) value of 31.5 microM. On the other hand, EGCG at a concentration of 40 microM could trigger the EoL-1 cells to undergo morphological differentiation into mature eosinophil-like cells. Using RT-PCR and flow cytometry, it was found that EGCG upregulated the gene and protein expression of two eosinophil-specific granule proteins, the major basic protein (MBP) and eosinophil peroxidase (EPO), in EoL-1 cells. Taken together, our findings suggest that EGCG can exhibit anti-leukemic activity on a human eosinophilic cell line EoL-1 by suppressing the proliferation and by inducing the differentiation of the leukemia cells.

  19. Effects of valproic acid and pioglitazone on cell cycle progression and proliferation of T-cell acute lymphoblastic leukemia Jurkat cells

    Directory of Open Access Journals (Sweden)

    Marie Saghaeian Jazi

    2016-07-01

    Full Text Available Objective(s: T-cell acute lymphoblastic leukemia (T-ALL is an aggressive hematologic malignant tumor. Administration of chemical compounds influencing apoptosis and T cell development has been discussed as promising novel therapeutic strategies. Valproic acid (VPA as a recently emerged anti-neoplastic histone deacetylase (HDAC inhibitor and pioglitazone (PGZ as a high-affinity peroxisome proliferator-activated receptor-gamma (PPARγ agonist have been shown to induce apoptosis and cell cycle arrest in different studies. Here, we aimed to investigate the underlying molecular mechanisms involved in anti-proliferative effects of these compounds on human Jurkat cells. Materials and Methods: Treated cells were evaluated for cell cycle progression and apoptosis using flowcytometry and MTT viability assay. Real-time RT-PCR was carried out to measure the alterations in key genes associated with cell death and cell cycle arrest. Results: Our findings illustrated that both VPA and PGZ can inhibit Jurkat E6.1 cells in vitro after   24 hr; however, PGZ 400 μM presents the most anti-proliferative effect. Interestingly, treated cells have been arrested in G2/M with deregulated cell division cycle 25A (Cdc25A phosphatase and cyclin-dependent kinase inhibitor 1B (CDKN1B or p27 expression. Expression of cyclin D1 gene was inhibited when DNA synthesis entry was declined. Cell cycle deregulation in PGZ and VPA-exposed cells generated an increase in the proportion of aneuploid cell population, which has not reported before. Conclusion: These findings define that anti-proliferative effects of PGZ and VPA on Jurkat cell line are mediated by cell cycle deregulation. Thus, we suggest PGZ and VPA may relieve potential therapeutic application against apoptosis-resistant malignancies.

  20. CLO : The cell line ontology

    NARCIS (Netherlands)

    Sarntivijai, Sirarat; Lin, Yu; Xiang, Zuoshuang; Meehan, Terrence F.; Diehl, Alexander D.; Vempati, Uma D.; Schuerer, Stephan C.; Pang, Chao; Malone, James; Parkinson, Helen; Liu, Yue; Takatsuki, Terue; Saijo, Kaoru; Masuya, Hiroshi; Nakamura, Yukio; Brush, Matthew H.; Haendel, Melissa A.; Zheng, Jie; Stoeckert, Christian J.; Peters, Bjoern; Mungall, Christopher J.; Carey, Thomas E.; States, David J.; Athey, Brian D.; He, Yongqun

    2014-01-01

    Background: Cell lines have been widely used in biomedical research. The community-based Cell Line Ontology (CLO) is a member of the OBO Foundry library that covers the domain of cell lines. Since its publication two years ago, significant updates have been made, including new groups joining the CLO

  1. Azithromycin Synergistically Enhances Anti-Proliferative Activity of Vincristine in Cervical and Gastric Cancer Cells

    International Nuclear Information System (INIS)

    Zhou, Xuezhang; Zhang, Yuyan; Li, Yong; Hao, Xiujing; Liu, Xiaoming; Wang, Yujiong

    2012-01-01

    In this study, the anti-proliferative and anticancer activity of azithromycin (AZM) was examined. In the presence of AZM, cell growth was inhibited more effectively in Hela and SGC-7901 cancer cells, relative to transformed BHK-21 cells. The respective 50% inhibition of cell growth (IC 50 ) values for Hela, SGC-7901 and BHK-21 were 15.66, 26.05 and 91.00 µg/mL at 72 h post incubation, indicative of a selective cytotoxicity against cancer cells. Cell apoptosis analysis using Hoechst nuclear staining and annexin V-FITC binding assay further demonstrated that AZM was capable of inducing apoptosis in both cancer cells and transformed cells. The apoptosis induced by AZM was partly through a caspase-dependent mechanism with an up-regulation of apoptotic protein cleavage PARP and caspase-3 products, as well as a down-regulation of anti-apoptotic proteins, Mcl-1, bcl-2 and bcl-X1. More importantly, a combination of AZM and a low dose of the common anti-cancer chemotherapeutic agent vincristine (VCR), produced a selectively synergistic effect on apoptosis of Hela and SGC-7901 cells, but not BHK-21 cells. In the presence of 12.50 μg/mL of VCR, the respective IC 50 values of Hela, SGC-7901 and BHK-21 cells to AZM were reduced to 9.47 µg/mL, 8.43 µg/mL and 40.15 µg/mL at 72 h after the incubation, suggesting that the cytotoxicity of AZM had a selective anti-cancer effect on cancer over transformed cells in vitro. These results imply that AZM may be a potential anticancer agent for use in chemotherapy regimens, and it may minimize side effects via reduction of dosage and enhancing the effectiveness common chemotherapeutic drugs

  2. The Antiproliferative Activity of Sclerotia of Lignosus rhinocerus (Tiger Milk Mushroom

    Directory of Open Access Journals (Sweden)

    M. L. Lee

    2012-01-01

    Full Text Available Lignosus rhinocerus, the tiger milk mushroom, is one of the most important medicinal mushrooms used by the indigenous people of Southeast Asia and China. It has been used to treat breast cancer. A cold water extract (LR-CW prepared from the sclerotia of L. rhinocerus cultivar was found to exhibit antiproliferative activity against human breast carcinoma (MCF-7 and human lung carcinoma (A549, with IC50 of 96.7 μg/mL and 466.7 μg/mL, respectively. In comparison, LR-CW did not show significant cytotoxicity against the two corresponding human normal cells, 184B5 (human breast cell and NL 20 (human lung cell. DNA fragmentation studies suggested that the cytotoxic action of LR-CW against cancer cells is mediated by apoptosis. Sephadex G-50 gel filtration fractionation of LR-CW yielded a high-molecular-weight and a low-molecular-weight fraction. The high-molecular-weight fraction contains mainly carbohydrate (68.7% and small amount of protein (3.6%, whereas the low-molecular-weight fraction contains 31% carbohydrate and was devoid of protein. Only the high-molecular-weight fraction exhibited antiproliferative activity against cancer cells, with IC50 of 70.0 μg/mL and 76.7 μg/mL, respectively. Thus, the cytotoxic action of the LR-CW is due to the high-molecular-weight fraction, either the proteins or protein-carbohydrate complex.

  3. Authentication of M14 melanoma cell line proves misidentification of MDA‐MB‐435 breast cancer cell line

    Science.gov (United States)

    Korch, Christopher; Hall, Erin M.; Dirks, Wilhelm G.; Ewing, Margaret; Faries, Mark; Varella‐Garcia, Marileila; Robinson, Steven; Storts, Douglas; Turner, Jacqueline A.; Wang, Ying; Burnett, Edward C.; Healy, Lyn; Kniss, Douglas; Neve, Richard M.; Nims, Raymond W.; Reid, Yvonne A.; Robinson, William A.

    2017-01-01

    A variety of analytical approaches have indicated that melanoma cell line UCLA‐SO‐M14 (M14) and breast carcinoma cell line MDA‐MB‐435 originate from a common donor. This indicates that at some point in the past, one of these cell lines became misidentified, meaning that it ceased to correspond to the reported donor and instead became falsely identified (through cross‐contamination or other means) as a cell line from a different donor. Initial studies concluded that MDA‐MB‐435 was the misidentified cell line and M14 was the authentic cell line, although contradictory evidence has been published, resulting in further confusion. To address this question, we obtained early samples of the melanoma cell line (M14), a lymphoblastoid cell line from the same donor (ML14), and donor serum preserved at the originator's institution. M14 samples were cryopreserved in December 1975, before MDA‐MB‐435 cells were established in culture. Through a series of molecular characterizations, including short tandem repeat (STR) profiling and cytogenetic analysis, we demonstrated that later samples of M14 and MDA‐MB‐435 correspond to samples of M14 frozen in 1975, to the lymphoblastoid cell line ML14, and to the melanoma donor's STR profile, sex and blood type. This work demonstrates conclusively that M14 is the authentic cell line and MDA‐MB‐435 is misidentified. With clear provenance information and authentication testing of early samples, it is possible to resolve debates regarding the origins of problematic cell lines that are widely used in cancer research. PMID:28940260

  4. Sesquiterpenes from Neurolaena lobata and their antiproliferative and anti-inflammatory activities.

    Science.gov (United States)

    Lajter, Ildikó; Vasas, Andrea; Béni, Zoltán; Forgo, Peter; Binder, Markus; Bochkov, Valery; Zupkó, István; Krupitza, Georg; Frisch, Richard; Kopp, Brigitte; Hohmann, Judit

    2014-03-28

    Five new sesquiterpenes, neurolobatin A (1), neurolobatin B (2), 5β-hydroxy-8β-isovaleroyloxy-9α-hydroxycalyculatolide (3), 3-epi-desacetylisovaleroylheliangine (4), and 3β-acetoxy-8β-isovaleroyloxyreynosin (5), were isolated from the aerial parts of Neurolaena lobata. The structures were established by means of a combined spectroscopic data analysis, including ESIMS, APCI-MS, and 1D- and 2D-NMR techniques. Neurolobatin A (1) and B (2) are unusual isomeric seco-germacranolide sesquiterpenes with a bicyclic acetal moiety, compounds 3 and 4 are unsaturated epoxy-germacranolide esters, and compound 5 is the first eudesmanolide isolated from the genus Neurolaena. The isolated compounds (1-5) were shown to have noteworthy antiproliferative activities against human tumor cell lines (A2780, A431, HeLa, and MCF7). The anti-inflammatory effects of 1-5, evaluated in vitro using LPS- and TNF-α-induced IL-8 expression inhibitory assays, revealed that all these compounds strongly down-regulated the LPS-induced production of IL-8 protein, with neurolobatin B (2) and 3-epi-desacetylisovaleroylheliangine (4) being the most effective.

  5. Synthesis and Experimental Validation of New PDI Inhibitors with Antiproliferative Activity

    Directory of Open Access Journals (Sweden)

    Mariateresa Badolato

    2017-01-01

    Full Text Available Protein disulfide isomerase (PDI is a member of the thioredoxin superfamily of redox enzymes. PDI is a multifunctional protein that catalyzes disulfide bond formation, cleavage, and rearrangement in unfolded or misfolded proteins and functions as a chaperone in the endoplasmic reticulum. Besides acting as a protein folding catalyst, several evidences have suggested that PDI can bind small molecules containing, for example, a phenolic structure, which includes the estrogenic one. Increasing studies indicate that PDI is involved in both physiology and pathophysiology of cells and tissues and is involved in the survival and proliferation of different cancers. Propionic acid carbamoyl methyl amides (PACMAs showed anticancer activity in human ovarian cancer, both in vitro and in vivo, by inhibiting PDI. The inhibition of PDI’s activity may have a therapeutic role, in various diseases, including cancer. In the present study, we designed and synthesized a diversified small library of compounds with the aim of identifying a new class of PDI inhibitors. Most of synthesized compounds showed a good inhibitory potency against PDI and particularly 4-methyl substituted 2,6-di-tert-butylphenol derivatives (8–10 presented an antiproliferative activity in a wide panel of human cancer cell lines, including ovarian ones.

  6. "Antimicrobial and antiproliferative activity of essential oil, aqueous and ethanolic extracts of Ocimum micranthum Willd leaves".

    Science.gov (United States)

    Caamal-Herrera, Isabel O; Carrillo-Cocom, Leydi M; Escalante-Réndiz, Diana Y; Aráiz-Hernández, Diana; Azamar-Barrios, José A

    2018-02-08

    Ocimum micranthum Willd is a plant used in traditional medicine practiced in the region of the Yucatan peninsula. In particular, it is used for the treatment of cutaneous infections and wound healing, however there are currently no existing scientific studies that support these applications. The aim of the present study was to evaluate the antimicrobial and the in vitro proliferative activity (on healthy mammalian cell lines) of the essential oil and extracts (aqueous and ethanolic) of this plant. The minimal inhibitory concentration (MIC) of essential oil and aqueous and ethanolic extracts of Ocimum micranthum leaves against Staphylococcus aureus, Bacillus subtilis, Pseudomonas aeruginosa and Candida albicans was determined using the microdilution technique. The in vitro proliferative activity of human fibroblast (hFB) and Chinese hamster ovary (CHO-K1) cells treated with these extracts was evaluated using the MTT test. The hFB cell line was also evaluated using Trypan Blue assay. Candida albicans was more susceptible to the ethanolic extract and the aqueous extract (MIC value of 5 μL/mL and 80 μL/mL respectively). In the case of Staphylococcus aureus, Bacillus subtilis, and Pseudomonas aeruginosa, the MIC of the aqueous and ethanolic extract was 125 μL/mL. The aqueous extract showed a significant (p essential oil and extracts of Ocimum micranthum leaves are sufficient to cause an antiproliferative effect on the hFB cell line but do not produce an antimicrobial effect against the microorganisms evaluated. More studies are necessary to improve understanding of the mechanism of action of the compounds implicated in the bioactivities shown by the crude extracts.

  7. Reactivating p53 and Inducing Tumor Apoptosis (RITA) Enhances the Response of RITA-Sensitive Colorectal Cancer Cells to Chemotherapeutic Agents 5-Fluorouracil and Oxaliplatin.

    Science.gov (United States)

    Wiegering, Armin; Matthes, Niels; Mühling, Bettina; Koospal, Monika; Quenzer, Anne; Peter, Stephanie; Germer, Christoph-Thomas; Linnebacher, Michael; Otto, Christoph

    2017-04-01

    Colorectal carcinoma (CRC) is the most common cancer of the gastrointestinal tract with frequently dysregulated intracellular signaling pathways, including p53 signaling. The mainstay of chemotherapy treatment of CRC is 5-fluorouracil (5FU) and oxaliplatin. The two anticancer drugs mediate their therapeutic effect via DNA damage-triggered signaling. The small molecule reactivating p53 and inducing tumor apoptosis (RITA) is described as an activator of wild-type and reactivator of mutant p53 function, resulting in elevated levels of p53 protein, cell growth arrest, and cell death. Additionally, it has been shown that RITA can induce DNA damage signaling. It is expected that the therapeutic benefits of 5FU and oxaliplatin can be increased by enhancing DNA damage signaling pathways. Therefore, we highlighted the antiproliferative response of RITA alone and in combination with 5FU or oxaliplatin in human CRC cells. A panel of long-term established CRC cell lines (n=9) including p53 wild-type, p53 mutant, and p53 null and primary patient-derived, low-passage cell lines (n=5) with different p53 protein status were used for this study. A substantial number of CRC cells with pronounced sensitivity to RITA (IC 50 RITA appeared independent of p53 status and was associated with an increase in antiproliferative response to 5FU and oxaliplatin, a transcriptional increase of p53 targets p21 and NOXA, and a decrease in MYC mRNA. The effect of RITA as an inducer of DNA damage was shown by a strong elevation of phosphorylated histone variant H2A.X, which was restricted to RITA-sensitive cells. Our data underline the primary effect of RITA, inducing DNA damage, and demonstrate the differential antiproliferative effect of RITA to CRC cells independent of p53 protein status. We found a substantial number of RITA-sensitive CRC cells within both panels of established CRC cell lines and primary patient-derived CRC cell lines (6/14) that provide a rationale for combining RITA with 5FU or

  8. Antiproliferative and apoptotic effects of selective phenolic acids on T47D human breast cancer cells: potential mechanisms of action

    International Nuclear Information System (INIS)

    Kampa, Marilena; Boskou, Dimitrios; Gravanis, Achille; Castanas, Elias; Alexaki, Vassilia-Ismini; Notas, George; Nifli, Artemissia-Phoebe; Nistikaki, Anastassia; Hatzoglou, Anastassia; Bakogeorgou, Efstathia; Kouimtzoglou, Elena; Blekas, George

    2004-01-01

    The oncoprotective role of food-derived polyphenol antioxidants has been described but the implicated mechanisms are not yet clear. In addition to polyphenols, phenolic acids, found at high concentrations in a number of plants, possess antioxidant action. The main phenolic acids found in foods are derivatives of 4-hydroxybenzoic acid and 4-hydroxycinnamic acid. This work concentrates on the antiproliferative action of caffeic acid, syringic acid, sinapic acid, protocatechuic acid, ferulic acid and 3,4-dihydroxy-phenylacetic acid (PAA) on T47D human breast cancer cells, testing their antioxidant activity and a number of possible mechanisms involved (interaction with membrane and intracellular receptors, nitric oxide production). The tested compounds showed a time-dependent and dose-dependent inhibitory effect on cell growth with the following potency: caffeic acid > ferulic acid = protocatechuic acid = PAA > sinapic acid = syringic acid. Caffeic acid and PAA were chosen for further analysis. The antioxidative activity of these phenolic acids in T47D cells does not coincide with their inhibitory effect on tumoral proliferation. No interaction was found with steroid and adrenergic receptors. PAA induced an inhibition of nitric oxide synthase, while caffeic acid competes for binding and results in an inhibition of aryl hydrocarbon receptor-induced CYP1A1 enzyme. Both agents induce apoptosis via the Fas/FasL system. Phenolic acids exert a direct antiproliferative action, evident at low concentrations, comparable with those found in biological fluids after ingestion of foods rich in phenolic acids. Furthermore, the direct interaction with the aryl hydrocarbon receptor, the nitric oxide synthase inhibition and their pro-apoptotic effect provide some insights into their biological mode of action

  9. The antiproliferative aspects of mortalin (review).

    Science.gov (United States)

    Wadhwa, R; Mitsui, Y; Ide, T; Kaul, S

    1995-07-01

    Cellular mortal and immortal phenotypes as defined by the limited and the infinite capacity of cells to divide are the characteristics of normal and cancerous cells in culture. Numerous strategies that have been employed to understand the mechanism(s) of normal as well as tumor cell growth have revealed that these are genetically controlled, however, the genes and the synchronized regulations remain largely undefined so far. The present report reviews the identification of mortalin, a novel member of murine hsp70 family of proteins, as a gene involved in pathways that determine divisional phenotype of cells in vitro. In the present study, the anti-proliferative activity of mortalin is demonstrated also in human skin fibroblasts (TIG-73PD) by microinjection of anti-mortalin antibody. Furthermore, studies on the mortalin immunofluorescence patterns in SV40-immortalized pre-crisis and post-crisis human cells have revealed that the change in the intracellular distribution of mortalin is linked to the change in the divisional phenotype of cells. Thus, the studies to resolve the molecular basis of association of the cytosolically distributed form of mortalin with cellular mortal phenotype would be important in understanding of the mechanism(s) that determine replicative potential of cells in culture.

  10. Antiproliferative activities of lesser galangal (Alpinia officinarum Hance Jam1), turmeric (Curcuma longa L.), and ginger (Zingiber officinale Rosc.) against acute monocytic leukemia.

    Science.gov (United States)

    Omoregie, Samson N; Omoruyi, Felix O; Wright, Vincent F; Jones, Lemore; Zimba, Paul V

    2013-07-01

    Acute monocytic leukemia (AML M5 or AMoL) is one of the several types of leukemia that are still awaiting cures. The use of chemotherapy for cancer management can be harmful to normal cells in the vicinity of the target leukemia cells. This study assessed the potency of the extracts from lesser galangal, turmeric, and ginger against AML M5 to use the suitable fractions in neutraceuticals. Aqueous and organic solvent extracts from the leaves and rhizomes of lesser galangal and turmeric, and from the rhizomes only of ginger were examined for their antiproliferative activities against THP-1 AMoL cells in vitro. Lesser galangal leaf extracts in organic solvents of methanol, chloroform, and dichloromethane maintained distinctive antiproliferative activities over a 48-h period. The turmeric leaf and rhizome extracts and ginger rhizome extracts in methanol also showed distinctive anticancer activities. The lesser galangal leaf methanol extract was subsequently separated into 13, and then 18 fractions using reversed-phase high-performance liquid chromatography. Fractions 9 and 16, respectively, showed the greatest antiproliferative activities. These results indicate that the use of plant extracts might be a safer approach to finding a lasting cure for AMoL. Further investigations will be required to establish the discriminatory tolerance of normal cells to these extracts, and to identify the compounds in these extracts that possess the antiproliferative activities.

  11. Reactivating p53 and Inducing Tumor Apoptosis (RITA Enhances the Response of RITA-Sensitive Colorectal Cancer Cells to Chemotherapeutic Agents 5-Fluorouracil and Oxaliplatin

    Directory of Open Access Journals (Sweden)

    Armin Wiegering

    2017-04-01

    Full Text Available Colorectal carcinoma (CRC is the most common cancer of the gastrointestinal tract with frequently dysregulated intracellular signaling pathways, including p53 signaling. The mainstay of chemotherapy treatment of CRC is 5-fluorouracil (5FU and oxaliplatin. The two anticancer drugs mediate their therapeutic effect via DNA damage-triggered signaling. The small molecule reactivating p53 and inducing tumor apoptosis (RITA is described as an activator of wild-type and reactivator of mutant p53 function, resulting in elevated levels of p53 protein, cell growth arrest, and cell death. Additionally, it has been shown that RITA can induce DNA damage signaling. It is expected that the therapeutic benefits of 5FU and oxaliplatin can be increased by enhancing DNA damage signaling pathways. Therefore, we highlighted the antiproliferative response of RITA alone and in combination with 5FU or oxaliplatin in human CRC cells. A panel of long-term established CRC cell lines (n = 9 including p53 wild-type, p53 mutant, and p53 null and primary patient-derived, low-passage cell lines (n = 5 with different p53 protein status were used for this study. A substantial number of CRC cells with pronounced sensitivity to RITA (IC50< 3.0 μmol/l were identified within established (4/9 and primary patient-derived (2/5 CRC cell lines harboring wild-type or mutant p53 protein. Sensitivity to RITA appeared independent of p53 status and was associated with an increase in antiproliferative response to 5FU and oxaliplatin, a transcriptional increase of p53 targets p21 and NOXA, and a decrease in MYC mRNA. The effect of RITA as an inducer of DNA damage was shown by a strong elevation of phosphorylated histone variant H2A.X, which was restricted to RITA-sensitive cells. Our data underline the primary effect of RITA, inducing DNA damage, and demonstrate the differential antiproliferative effect of RITA to CRC cells independent of p53 protein status. We found a substantial number

  12. Anti-inflammatory, antiproliferative, and cytoprotective activity of NO chimera nitrates of use in cancer chemoprevention.

    Science.gov (United States)

    Hagos, Ghenet K; Abdul-Hay, Samer O; Sohn, Johann; Edirisinghe, Praneeth D; Chandrasena, R Esala P; Wang, Zhiqiang; Li, Qian; Thatcher, Gregory R J

    2008-11-01

    Nonsteroidal anti-inflammatory drugs (NSAIDs) have shown promise in colorectal cancer (CRC), but they are compromised by gastrotoxicity. NO-NSAIDs are hybrid nitrates conjugated to an NSAID designed to exploit the gastroprotective properties of NO bioactivity. The NO chimera ethyl 2-((2,3-bis(nitrooxy)propyl)disulfanyl)benzoate (GT-094), a novel nitrate containing an NSAID and disulfide pharmacophores, is effective in vivo in rat models of CRC and is a lead compound for design of agents of use in CRC. Preferred chemopreventive agents possess 1) antiproliferative and 2) anti-inflammatory actions and 3) the ability to induce cytoprotective phase 2 enzymes. To determine the contribution of each pharmacophore to the biological activity of GT-094, these three biological activities were studied in vitro in compounds that deconstructed the structural elements of the lead GT-094. The anti-inflammatory and antiproliferative actions of GT-094 in vivo were recapitulated in vitro, and GT-094 was seen to induce phase 2 enzymes via the antioxidant responsive element. In the variety of colon, macrophage-like, and liver cell lines studied, the evidence from structure-activity relationships was that the disulfide structural element of GT-094 is the dominant contributor in vitro to the anti-inflammatory activity, antiproliferation, and enzyme induction. The results provide a direction for lead compound refinement. The evidence for a contribution from the NO mimetic activity of nitrates in vitro was equivocal, and combinations of nitrates with acetylsalicylic acid were inactive.

  13. Green synthesis palladium nanoparticles mediated by white tea (Camellia sinensis extract with antioxidant, antibacterial, and antiproliferative activities toward the human leukemia (MOLT-4 cell line

    Directory of Open Access Journals (Sweden)

    Azizi S

    2017-12-01

    Full Text Available Susan Azizi,1 Mahnaz Mahdavi Shahri,2 Heshu Sulaiman Rahman,3–5 Raha Abdul Rahim,6 Abdullah Rasedee,5 Rosfarizan Mohamad1,7 1Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia; 2Department of Chemistry, Shiraz Branch, Islamic Azad University, Shiraz, Iran; 3College of Veterinary Medicine, University of Sulaimani, Sulaimani Nwe, 4College of Health Science, Komar University of Science and Technology (KUST, Chaq-Chaq Qularaise, Sulaimani City, Iraq; 5Faculty of Veterinary Medicine, 6Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, 7Laboratory of Biopolymer and Derivatives, Institute of Tropical Forestry and Forest Products, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia Abstract: Among nanoparticles used for medical applications, palladium nanoparticles (PdNPs are among the least investigated. This study was undertaken to develop PdNPs by green synthesis using white tea (W.tea; Camellia sinensis extract to produce the Pd@W.tea NPs. The Pd@W.tea NPs were characterized by UV–vis spectroscopy and X-ray diffractometry, and evaluated with transmission electron microscopy (TEM and scanning electron microscopy (SEM. The Pd@W.tea NPs were spherical (size 6–18 nm and contained phenols and flavonoids acquired from the W.tea extract. Pd@W.tea NPs has good 1-diphenyl-2-picrylhydrazyl (DPPH, OH, and NO-scavenging properties as well as antibacterial effects toward Staphylococcus epidermidis and Escherichia coli. MTT assay showed that Pd@W.tea NPs (IC50 =0.006 µM were more antiproliferative toward the human leukemia (MOLT-4 cells than the W.tea extract (IC50 =0.894 µM, doxorubicin (IC50 =2.133 µM, or cisplatin (IC50 =0.013 µM, whereas they were relatively innocuous for normal human fibroblast (HDF-a cells. The anticancer cell effects of Pd@W.tea NPs are mediated through the induction of apoptosis

  14. Synthesis, crystal structure, vibrational profiling, DFT studies and molecular docking of N-(4-chloro-2-{[2-(1H-indol-2-ylcarbonyl) hydrazinyl](oxo)acetyl}phenyl)acetamide.DMSO: A new antiproliferative agent

    Science.gov (United States)

    Al-Wabli, Reem I.; Salman, Asmaa; Shyni, V.; Ghabbour, Hazem A.; Joe, I. Hubert; Almutairi, Maha S.; Maklad, Yousreya A.; Attia, Mohamed I.

    2018-03-01

    Cancer is one of the most serious health problems worldwide and it is considered the second major cause of mankind deaths. We report the synthesis and spectroscopic characterization of N-(4-chloro-2-{[2-(1H-indol-2-ylcarbonyl)hydrazinyl](oxo)acetyl}phenyl)acetamide (CICHOPA, 5) as a new antiproliferative glyoxylamide derivative. Molecular structure of CICHOPA (5) was unequivocally confirmed via X-ray analysis and it was crystallized in the monoclinic, P21/c, a = 14.3956 (4) Å, b = 8.9307 (3) Å, c = 34.9507 (10) Å, β = 94.439 (1)°, V = 4479.9 (2) Å3, Z = 8. The in vitro anticancer potential of the title molecule 5 was examined toward four types of human cancer cell lines. Vibrational profile of the CICHOPA molecule was investigated with the aid of density functional theory approach. Natural bond orbital, and natural population analyses as well as HOMO and LUMO molecular orbitals studies were carried out in order to explore the possible intermolecular delocalization or hyperconjugation in the title compound. The binding mode of compound 5 to its target protein was predicted through a molecular docking investigation. The in vitro antiproliferative activity of the title compound 5 was examined against four human cancer cell lines and showed growth inhibitory activity at concentrations of 25 and 50 μM.

  15. Synthesis and Biological Activity of Diastereomeric and Geometric Analogs of Calcipotriol, PRI-2202 and PRI-2205, Against Human HL-60 Leukemia and MCF-7 Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Andrzej Kutner

    2013-10-01

    Full Text Available Diastereomeric and geometric analogs of calcipotriol, PRI-2202 and PRI-2205, were synthesized as advanced intermediates from vitamin D C-22 benzothiazoyl sulfones and side-chain aldehydes using our convergent strategy. Calcitriol, calcipotriol (PRI-2201 and tacalcitol (PRI-2191 were used as the reference compounds. Among a series of tested analogs the diastereomeric analog PRI-2202 showed the strongest antiproliferative activity on the human breast cancer cell line MCF-7, whereas the geometric analog PRI-2205 was the weakest. Both analogs were less potent in antiproliferative activity against HL-60 cells compared to the reference compounds. The ability to potentiate antiproliferative effect of cisplatin or doxorubicin against HL-60 cells or that of tamoxifen against the MCF-7 cell line was observed at higher doses of PRI-2202 or PRI-2205 than those of the reference compounds. The proapoptotic activity of tamoxifen, expressed as the diminished mitochondrial membrane potential, as well as the increased phosphatidylserine expression, was partially attenuated by calcitriol, PRI-2191, PRI-2201 and PRI-2205. The treatment of the MCF-7 cells with tamoxifen alone resulted in an increase in VDR expression. Moreover, a further increase in VDR expression was observed when the analogs PRI-2201 or PRI-2205, but not PRI-2191, were used in combination with tamoxifen. This observation could partially explain the potentiation of the antiproliferative effect of tamoxifen by vitamin D analogs.

  16. Characterization and Antiproliferative Effect of Novel Acid Polysaccharides from the Spent Substrate of Shiitake Culinary-Medicinal Mushroom Lentinus edodes (Agaricomycetes) Cultivation.

    Science.gov (United States)

    Zhang, Yong; Liu, Wei; Xu, Chunping; Huang, Wei; He, Peixin

    2017-01-01

    In this study, a high yield of crude polysaccharide (16.73 ± 0.756%) was extracted from the spent mushroom substrate of Lentinus edodes using a hot alkali extraction method. Two groups of polysaccharides (designated as LSMS-1 and LSMS-2) were obtained from the crude extract by size exclusion chromatography (SEC), and their molecular characteristics were examined by a multiangle laser-light scattering (MALLS) and refractive index detector system. The weight-average molar masses of LSMS-1 and LSMS-2 were determined to be 6.842 × 106 and 2.154 × 106 g/mol, respectively. The SEC/MALLS analysis revealed that the molecular shapes of LSMS-1 and LSMS-2 were sphere-like forms in aqueous solution. Carbohydrate composition analysis using chromatography--mass spectrometry revealed that they were both acid heteropolysaccharides. LSMS-1 comprised mainly glucose and galacturonic acid, whereas LSMS-2 mainly consisted of xylose and glucuronic acid. Fourier transform infrared spectral analysis of the purified fractions revealed typical characteristic polysaccharide groups. In addition, MTT assays with refined polysaccharide doses of 25, 50, 100, 200, and 400 µg/mL suggested that both of the polysaccharide fractions exhibited antiproliferative activity against 6 tested human tumor cell lines in a concentration-dependent manner, and LSMS-2 had better anticancer capacity in vitro than LSMS-1. The inhibition ratio of LSMS-2 against A549 human lung cancer cells, the SGC7901 gastric cancer cell line, MCF-7 breast cancer cells, the U937 histiocytic lymphoma cell line, and the MG-63 human osteosarcoma cell line reached 43.55%, 29.97%, 19.63%, 18.24%, and 17.93%, respectively, at a concentration of 400 µg/mL.

  17. One-pot synthesis and antiproliferative activity of novel double-modified derivatives of the polyether ionophore monensin A.

    Science.gov (United States)

    Klejborowska, Greta; Maj, Ewa; Wietrzyk, Joanna; Stefańska, Joanna; Huczyński, Adam

    2018-05-02

    Monensin A (MON) is a polyether ionophore antibiotic, which shows a wide spectrum of biological activity. New MON derivatives such as double-modified ester-carbonates and double-modified amide-carbonates were obtained by a new and efficient one-pot synthesis with triphosgene as the activating reagent and the respective alcohol or amine. All new derivatives were tested for their antiproliferative activity against two drug-sensitive (MES-SA, LoVo) and two drug-resistant (MES-SA/DX5, LoVo/DX) cancer cell lines, and were also studied for their antimicrobial activity against different Staphylococcus aureus and Staphylococcus epidermidis bacterial strains. For the first time, the activity of MON and its derivatives against MES-SA and MES-SA/DX5 were evaluated. © 2018 John Wiley & Sons A/S.

  18. Relationship between structure and antiproliferative activity of 1-azaflavanones.

    Science.gov (United States)

    Kawaii, Satoru; Endo, Kotaro; Tokiwano, Tetsuo; Yoshizawa, Yuko

    2012-07-01

    The synthesis of 19 derivatives of 2-phenyl-3,4-dihydroquinolin-4(1H)-one, as aza analogs of flavanones, was carried out and these compounds were further screened for their antiproliferative activity toward HL60 promyelocytic leukemia cells. In comparison with flavanone the replacement of C-ring ether oxygen atom with a nitrogen atom potentiated activity by more than 100-fold. It was suggested that the aromaticity of the B-ring contributes greatly to the activity of 1-azaflavanones.

  19. A supermolecular curcumin for enhanced antiproliferative and proapoptotic activities: molecular characteristics, computer modeling and in vivo pharmacokinetics

    International Nuclear Information System (INIS)

    Tan Qunyou; Wu Jianyong; Li Yi; Zhang Jingqing; Mei Hu; Zhao Chunjing

    2013-01-01

    The supermolecular curcumin (SMCCM) exhibiting remarkably improved solubility and release characteristics was fabricated to increase the oral bioavailability in rat as well as the antiproliferative and proapoptotic activities of curcumin (CCM) against human lung adenocarcinoma cell A549. SMCCM was characterized by differential scanning calorimetry, Fourier transform infrared spectroscopy, morphology and structure, aqueous solubility, and release behavior in vitro. Computer modeling of the supermolecular structure was performed. The pharmacokinetics, antiproliferative and proapoptotic activities of SMCCM were evaluated. The mechanisms by which SMCCM inhibited proliferation and induced apoptosis were identified. The formation of SMCCM was testified and the supermolecular structure was studied by a computer modeling technique. Compared to free CCM, SMCCM with much higher aqueous solubility exhibited obviously enhanced release and more favorable pharmacokinetic profiles, and, furthermore, SMCCM showed higher anticancer efficacy, enhanced induction of G2/M-phase arrest and apoptosis in A549 cells, which might be involved with the increases in reactive oxygen species production and intracellular Ca 2+ accumulation, and a decrease in mitochondrial membrane potential. SMCCM remarkably enhanced not only the oral bioavailability but also the antiproliferative and proapoptotic activities of CCM along with improved solubility and release characteristics of CCM. (paper)

  20. A supermolecular curcumin for enhanced antiproliferative and proapoptotic activities: molecular characteristics, computer modeling and in vivo pharmacokinetics

    Science.gov (United States)

    Tan, Qunyou; Wu, Jianyong; Li, Yi; Mei, Hu; Zhao, Chunjing; Zhang, Jingqing

    2013-01-01

    The supermolecular curcumin (SMCCM) exhibiting remarkably improved solubility and release characteristics was fabricated to increase the oral bioavailability in rat as well as the antiproliferative and proapoptotic activities of curcumin (CCM) against human lung adenocarcinoma cell A549. SMCCM was characterized by differential scanning calorimetry, Fourier transform infrared spectroscopy, morphology and structure, aqueous solubility, and release behavior in vitro. Computer modeling of the supermolecular structure was performed. The pharmacokinetics, antiproliferative and proapoptotic activities of SMCCM were evaluated. The mechanisms by which SMCCM inhibited proliferation and induced apoptosis were identified. The formation of SMCCM was testified and the supermolecular structure was studied by a computer modeling technique. Compared to free CCM, SMCCM with much higher aqueous solubility exhibited obviously enhanced release and more favorable pharmacokinetic profiles, and, furthermore, SMCCM showed higher anticancer efficacy, enhanced induction of G2/M-phase arrest and apoptosis in A549 cells, which might be involved with the increases in reactive oxygen species production and intracellular Ca2+ accumulation, and a decrease in mitochondrial membrane potential. SMCCM remarkably enhanced not only the oral bioavailability but also the antiproliferative and proapoptotic activities of CCM along with improved solubility and release characteristics of CCM.

  1. Antiproliferative Effects of Cynara cardunculus L. var. altilis (DC Lipophilic Extracts

    Directory of Open Access Journals (Sweden)

    Patrícia A. B. Ramos

    2016-12-01

    Full Text Available Besides being traditionally used to relieve hepatobiliary disorders, Cynara cardunculus L. has evidenced anticancer potential on triple-negative breast cancer (TNBC. This study highlights the antiproliferative effects of lipophilic extracts from C. cardunculus L. var. altilis (DC leaves and florets, and of their major compounds, namely cynaropicrin and taraxasteryl acetate, against MDA-MB-231 cells. Our results demonstrated that MDA-MB-231 cells were much less resistant to leaves extract (IC50 10.39 µg/mL than to florets extract (IC50 315.22 µg/mL, during 48 h. Moreover, leaves extract and cynaropicrin (IC50 6.19 µg/mL suppressed MDA-MB-231 cells colonies formation, via an anchorage-independent growth assay. Leaves extract and cynaropicrin were also assessed regarding their regulation on caspase-3 activity, by using a spectrophotometric assay, and expression levels of G2/mitosis checkpoint and Akt signaling pathway proteins, by Western blotting. Leaves extract increased caspase-3 activity, while cynaropicrin did not affect it. Additionally, they caused p21Waf1/Cip1 upregulation, as well as cyclin B1 and phospho(Tyr15-CDK1 accumulation, which may be related to G2 cell cycle arrest. They also downregulated phospho(Ser473-Akt, without changing total Akt1 level. Cynaropicrin probably contributed to leaves extract antiproliferative action. These promising insights suggest that cultivated cardoon leaves lipophilic extract and cynaropicrin may be considered toward a natural-based therapeutic approach on TNBC.

  2. Phytochemical Constituents, ChEs and Urease Inhibitions, Antiproliferative and Antioxidant Properties of Elaeagnus umbellata Thunb.

    Science.gov (United States)

    Ozen, Tevfik; Yenigun, Semiha; Altun, Muhammed; Demirtas, Ibrahim

    2017-01-01

    Due to the common ethnopharmacological used or scientifically examined biochemical properties, Elaeagnaceae family, Elaeagnus umbellate (Thunb.) (EU, Guz yemisi) was worth investigating. In this investigation, we revealed antioxidant, antiproliferative and enzyme inhibition activities of the water, methanol, ethanol, acetone, ethyl acetate and hexane extracts of EU as well as the contents of their phenolic, flavonoid, anthocyanin, ascorbic acid, lycopene and β- carotene. The antioxidant activity was screened by total antioxidant (phosphomolybdenum), inhibition of linoleic acid peroxidation, reducing power, 2-deoxyribose degradation assay, H2O2 scavenging and metal chelating activities of the samples were tested in vitro. Additionally, the scavenging activities of the extracts were determined against 1,1-diphenyl-2-picrylhydrazyl (DPPH˙), 2,2-azino-bis(3-ethylbenzothiazloine-6-sulfonicacid (ABTS˙+), superoxide anion and peroxide radicals. The samples were determined for their inhibitory activities against urease, acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). In vitro, antiproliferative activities of six different extracts were tested using the xCELLigence system against HeLa and HT29 cell lines. The antioxidant activities of the extracts were found higher than standard antioxidants. The water extracts of fruit and leaf showed the best antioxidant activity. In inhibition assays of urease, AChE and BuChE, all extracts exhibited remarkable inhibition potential. Ethyl acetate extracts, especially, showed better inhibition capacity. It was found that the antioxidant activities of the extracts presented consistently with their chemical contents. The antiproliferative activities of leaf extracts were more effective than the fruit extracts. The chromatographic methods were applied to the different solvents to analyses phenolic secondery metabolites. It was found that fumaric acid, 4- hydroxybenzoic acid, rutin and quercetin-3-

  3. U-61,431F, a stable prostacyclin analogue, inhibits the proliferation of bovine vascular smooth muscle cells with little antiproliferative effect on endothelial cells

    International Nuclear Information System (INIS)

    Shirotani, M.; Yui, Y.; Hattori, R.; Kawai, C.

    1991-01-01

    The effects of U-61,431F, ciprostene, a stable prostacyclin analogue, were examined on the proliferation of cultured quiescent bovine aortic endothelial cells (EC) and smooth muscle cells (SMC). After stimulation with 5% fetal calf serum, U-61,431F suppressed both the DNA synthesis and proliferation of SMC dose-dependently at the concentration of 3-100 microM, but had no effect on either of them in EC at a concentration of up to 30 microM. The inhibitory effect on DNA synthesis was greater in SMC than in EC at 3-50 microM. When SMC were stimulated with platelet-derived growth factor (PDGF) for 2 hrs followed by a 22-hr incubation with insulin, U-61,431F (1-50 microM) administered at the time of PDGF stimulation did not inhibit DNA synthesis. SMC initiated and terminated DNA synthesis at about 15-18 h and 24 h after stimulation with serum, respectively. Inhibition of DNA synthesis in serum-stimulated SMC as a function of the addition time of U-61,431F reduced at 3-12 h after the stimulation. U-61,431F raised the cyclic AMP (cAMP) content in SMC. Moreover, a phosphodiesterase inhibitor, 3-isobutyl-1-methylxanthine, and a more specific cAMP phosphodiesterase inhibitor, Ro 20-1724, augmented the inhibition of DNA synthesis in SMC concomitant with further elevation of cAMP level. These results suggest that U-61,431F inhibits DNA synthesis of SMC acting in the progression stage rather than in the competence stage, with little antiproliferative effect on EC. cAMP may play an important role in its antiproliferative action in SMC

  4. Small tyrosine kinase inhibitors interrupt EGFR signaling by interacting with erbB3 and erbB4 in glioblastoma cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Carrasco-Garcia, Estefania; Saceda, Miguel [Instituto de Biologia Molecular y Celular, Universidad Miguel Hernandez, 03202 Elche (Alicante) (Spain); Unidad de Investigacion, Hospital General Universitario de Elche, 03203 Elche (Alicante) (Spain); Grasso, Silvina; Rocamora-Reverte, Lourdes; Conde, Mariano; Gomez-Martinez, Angeles [Instituto de Biologia Molecular y Celular, Universidad Miguel Hernandez, 03202 Elche (Alicante) (Spain); Garcia-Morales, Pilar [Instituto de Biologia Molecular y Celular, Universidad Miguel Hernandez, 03202 Elche (Alicante) (Spain); Unidad de Investigacion, Hospital General Universitario de Elche, 03203 Elche (Alicante) (Spain); Ferragut, Jose A. [Instituto de Biologia Molecular y Celular, Universidad Miguel Hernandez, 03202 Elche (Alicante) (Spain); Martinez-Lacaci, Isabel, E-mail: imlacaci@umh.es [Instituto de Biologia Molecular y Celular, Universidad Miguel Hernandez, 03202 Elche (Alicante) (Spain); Unidad AECC de Investigacion Traslacional en Cancer, Hospital Universitario Virgen de la Arrixaca, 30120 Murcia (Spain)

    2011-06-10

    Signaling through the epidermal growth factor receptor (EGFR) is relevant in glioblastoma. We have determined the effects of the EGFR inhibitor AG1478 in glioblastoma cell lines and found that U87 and LN-229 cells were very sensitive to this drug, since their proliferation diminished and underwent a marked G{sub 1} arrest. T98 cells were a little more refractory to growth inhibition and A172 cells did not undergo a G{sub 1} arrest. This G{sub 1} arrest was associated with up-regulation of p27{sup kip1}, whose protein turnover was stabilized. EGFR autophosphorylation was blocked with AG1478 to the same extent in all the cell lines. Other small-molecule EGFR tyrosine kinase inhibitors employed in the clinic, such as gefitinib, erlotinib and lapatinib, were able to abrogate proliferation of glioblastoma cell lines, which underwent a G{sub 1} arrest. However, the EGFR monoclonal antibody, cetuximab had no effect on cell proliferation and consistently, had no effect on cell cycle either. Similarly, cetuximab did not inhibit proliferation of U87 {Delta}EGFR cells or primary glioblastoma cell cultures, whereas small-molecule EGFR inhibitors did. Activity of downstream signaling molecules of EGFR such as Akt and especially ERK1/2 was interrupted with EGFR tyrosine kinase inhibitors, whereas cetuximab treatment could not sustain this blockade over time. Small-molecule EGFR inhibitors were able to prevent phosphorylation of erbB3 and erbB4, whereas cetuximab only hindered EGFR phosphorylation, suggesting that EGFR tyrosine kinase inhibitors may mediate their anti-proliferative effects through other erbB family members. We can conclude that small-molecule EGFR inhibitors may be a therapeutic approach for the treatment of glioblastoma patients.

  5. A peroxisome proliferator-activated receptor ligand MCC-555 imparts anti-proliferative response in pancreatic cancer cells by PPARgamma-independent up-regulation of KLF4

    Energy Technology Data Exchange (ETDEWEB)

    Min, Kyung-Won [Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996 (United States); Zhang, Xiaobo [Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996 (United States); College of Animal Science and Technology, Northwest A and F University, Yangling, Shaanxi, 712100 (China); Imchen, Temjenmongla [Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996 (United States); Baek, Seung Joon, E-mail: sbaek2@utk.edu [Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996 (United States)

    2012-09-01

    MCC-555 is a novel PPARα/γ dual ligand of the thiazolidinedione class and was recently developed as an anti-diabetic drug with unique properties. MCC-555 also has anti-proliferative activity through growth inhibition and apoptosis induction in several cancer cell types. Our group has shown that MCC-555 targets several proteins in colorectal tumorigenesis including nonsteroidal anti-inflammatory drug (NSAID)-activated gene (NAG-1) which plays an important role in chemoprevention responsible for chemopreventive compounds. NAG-1 is a member of the TGF-β superfamily and is involved in tumor progression and development; however, NAG-1's roles in pancreatic cancer have not been studied. In this report, we found that MCC-555 alters not only NAG-1 expression, but also p21 and cyclin D1 expression. NAG-1 and p21 expression was not blocked by PPARγ-specific antagonist GW9662, suggesting that MCC-555-induced NAG-1 and p21 expression is independent of PPARγ activation. However, decreasing cyclin D1 by MCC-555 seems to be affected by PPARγ activation. Further, we found that the GC box located in the NAG-1 promoter play an important role in NAG-1 transactivation by MCC-555. Subsequently, we screened several transcription factors that may bind to the GC box region in the NAG-1 promoter and found that KLF4 potentially binds to this region. Expression of KLF4 precedes NAG-1 and p21 expression in the presence of MCC-555, whereas blocking KLF4 expression using specific KLF4 siRNA showed that both NAG-1 and p21 expression by MCC-555 was blocked. In conclusion, MCC-555's actions on anti-proliferation involve both PPARγ-dependent and -independent pathways, thereby enhancing anti-tumorigenesis in pancreatic cancer cells. -- Highlights: ► PPARα/γ ligand MCC-555 exhibits anti-proliferative activity in pancreatic cancer cells. ► MCC-555 affects KLF4 expression following by NAG-1 and p21 expression in a PPARγ independent manner. ► MCC-555 also affects cyclin D1 down

  6. A peroxisome proliferator-activated receptor ligand MCC-555 imparts anti-proliferative response in pancreatic cancer cells by PPARgamma-independent up-regulation of KLF4

    International Nuclear Information System (INIS)

    Min, Kyung-Won; Zhang, Xiaobo; Imchen, Temjenmongla; Baek, Seung Joon

    2012-01-01

    MCC-555 is a novel PPARα/γ dual ligand of the thiazolidinedione class and was recently developed as an anti-diabetic drug with unique properties. MCC-555 also has anti-proliferative activity through growth inhibition and apoptosis induction in several cancer cell types. Our group has shown that MCC-555 targets several proteins in colorectal tumorigenesis including nonsteroidal anti-inflammatory drug (NSAID)-activated gene (NAG-1) which plays an important role in chemoprevention responsible for chemopreventive compounds. NAG-1 is a member of the TGF-β superfamily and is involved in tumor progression and development; however, NAG-1's roles in pancreatic cancer have not been studied. In this report, we found that MCC-555 alters not only NAG-1 expression, but also p21 and cyclin D1 expression. NAG-1 and p21 expression was not blocked by PPARγ-specific antagonist GW9662, suggesting that MCC-555-induced NAG-1 and p21 expression is independent of PPARγ activation. However, decreasing cyclin D1 by MCC-555 seems to be affected by PPARγ activation. Further, we found that the GC box located in the NAG-1 promoter play an important role in NAG-1 transactivation by MCC-555. Subsequently, we screened several transcription factors that may bind to the GC box region in the NAG-1 promoter and found that KLF4 potentially binds to this region. Expression of KLF4 precedes NAG-1 and p21 expression in the presence of MCC-555, whereas blocking KLF4 expression using specific KLF4 siRNA showed that both NAG-1 and p21 expression by MCC-555 was blocked. In conclusion, MCC-555's actions on anti-proliferation involve both PPARγ-dependent and -independent pathways, thereby enhancing anti-tumorigenesis in pancreatic cancer cells. -- Highlights: ► PPARα/γ ligand MCC-555 exhibits anti-proliferative activity in pancreatic cancer cells. ► MCC-555 affects KLF4 expression following by NAG-1 and p21 expression in a PPARγ independent manner. ► MCC-555 also affects cyclin D1 down

  7. Natural products from Cuscuta reflexa Roxb. with antiproliferation activities in HCT116 colorectal cell lines.

    Science.gov (United States)

    Riaz, Muhammad; Bilal, Aishah; Ali, Muhammad Shaiq; Fatima, Itrat; Faisal, Amir; Sherkheli, Muhammad Azhar; Asghar, Adnan

    2017-03-01

    Parasitic Cuscuta reflexa Roxb. possesses many medicinal properties and is a rich source of a variety of biologically relevant natural products. Natural products are the prime source of leads, drugs, and drug templates, and many of the anticancer and antiviral drugs are either based on natural product or derived from them. Cancer is a devastating disease and one of the leading causes of death worldwide despite improvements in patient survival during the past 50 years; new and improved treatments for cancer are therefore actively sought. Colorectal cancer is the fourth most prevalent cancer worldwide and is responsible for nearly 9% of all cancer deaths. Our search for anticancer natural products from C. reflexa has yielded four natural products: Scoparone (1), p-coumaric acid (2), stigmasta-3,5-diene (3) and 1-O-p-hydroxycinnamoylglucose (4) and among them 1-O-p-hydroxycinnamoyldlucose (4) showed promising antiproliferative activities in HCT116 colorectal cell lines, whereas compounds 1-3 showed moderate activities.

  8. Antimelanogenic, Antioxidant and Antiproliferative Effects of Antrodia camphorata Fruiting Bodies on B16-F0 Melanoma Cells.

    Directory of Open Access Journals (Sweden)

    Jyh-Jye Wang

    Full Text Available Antrodia camphorata is a fungus that is endemic to Taiwan, and its fruiting body has been used as a folk medicine for the prevention or treatment of diverse diseases. The present study is aimed at investigating the antimelanogenesis and antioxidation effect of the ethanolic extract of Antrodia camphorata fruiting body (EE-AC, as well as its antiproliferation effects in B16-F0 melanoma cells. Regarding antimelanogenic effects, EE-AC had effective cupric ions reducing capacity and expressed more potent inhibitory effect than kojic acid on mushroom tyrosinase activity. Moreover, EE-AC significantly inhibited cellular tyrosinase activity and the melanin content in B16-F0 cells at 12.5 μg/mL concentration without cell toxicities. Regarding antioxidant effects, EE-AC exhibited potent DPPH radical- and SOD-like-scavenging activities. Regarding antiproliferative effects, EE-AC exhibited a selective cytotoxic effect and markedly inhibited the migration ability of B16-F0 cells. EE-AC increased the population of B16-F0 cells at sub-G1 phase of the cell cycle. EE-AC also caused the increase of early apoptotic cells and chromatin condensation, which indicated the apoptotic effects in B16-F0 cells. We demonstrated that EE-AC possessed antimelanogenic, antioxidant and anti-skin cancer actions. The results would contribute to the development and application of cosmetics, healthy food and pharmaceuticals.

  9. Evaluation of antiangiogenic and antiproliferative potential of the organic extract of green algae chlorella pyrenoidosa

    Science.gov (United States)

    Kyadari, Mahender; Fatma, Tasneem; Azad, Rajvardhan; Velpandian, Thirumurthy

    2013-01-01

    Objective: algae isolates obtained from fresh and marine resources could be one of the richest sources of novel bioactive secondary metabolites expected to have pharmaceutical significance for new drug development. This study was conducted to evaluate the antiangiogenic and antiproliferative activity of Chlorella pyrenoidosa in experimental models of angiogenesis and by MTT assay. Materials and Methods: lyophilized extract of C. pyrenoidosa was extracted using dichloromethane/methanol (2:1), concentrated and vacuum evaporated to obtain the dried extract. The crude extract was evaluated in the vascular endothelial growth factor (VEGF)-induced angiogenesis in in ovo chick chorioallantoic membrane assay (CAM) at various concentrations (n = 8) using thalidomide and normal saline as positive and untreated control groups, respectively. The crude extract was also subjected to the antiangiogenic activity in the silver nitrate/potassium nitrate cautery model of corneal neovascularization (CN) in rats where topical bevacizumab was used as a positive control. The vasculature was photographed and blood vessel density was quantified using Aphelion imaging software. The extract was also evaluated for its anti proliferative activity by microculture tetrazolium test (MTT) assay using HeLa cancer cell line (ATCC). Results: VEGF increased the blood vessel density by 220% as compared to normal and thalidomide treatment decreased it to 67.2% in in ovo assay. In the in-vivo CN model, the mean neovascular density in the control group, the C. pyrenoidosa extract and bevacizumab group were found to be 100%, 59.02%, and 32.20%, respectively. The Chlorella pyrenoidosa extract negatively affected the viability of HeLa cells. An IC50 value of the extract was 570 μg/ml, respectively. Conclusion: a significant antiangiogenic activity was observed against VEGF-induced neovascularization and antiproliferative activity by MTT assay. In this study, it could be attributed that the activity may be

  10. Heteropentanuclear Oxalato-Bridged nd–4f (n=4, 5) Metal Complexes with NO Ligand: Synthesis, Crystal Structures, Aqueous Stability and Antiproliferative Activity

    KAUST Repository

    Kuhn, Paul-Steffen

    2015-08-10

    A series of heteropentanuclear oxalate-bridged Ru(NO)-Ln (4d–4f) metal complexes of the general formula (nBu4N)5[Ln{RuCl3(μ-ox)(NO)}4], where Ln=Y (2), Gd (3), Tb (4), Dy (5) and ox=oxalate anion, were obtained by treatment of (nBu4N)2[RuCl3(ox)(NO)] (1) with the respective lanthanide salt in 4:1 molar ratio. The compounds were characterized by elemental analysis, IR spectroscopy, electrospray ionization (ESI) mass spectrometry, while 1, 2, and 5 were in addition analyzed by X-ray crystallography, 1 by Ru K-edge XAS and 1 and 2 by 13C NMR spectroscopy. X-ray diffraction showed that in 2 and 5 four complex anions [RuCl3(ox)(NO)]2− are coordinated to YIII and DyIII, respectively, with formation of [Ln{RuCl3(μ-ox)(NO)}4]5− (Ln=Y, Dy). While YIII is eight-coordinate in 2, DyIII is nine-coordinate in 5, with an additional coordination of an EtOH molecule. The negative charge is counterbalanced by five nBu4N+ ions present in the crystal structure. The stability of complexes 2 and 5 in aqueous medium was monitored by UV/Vis spectroscopy. The antiproliferative activity of ruthenium-lanthanide complexes 2–5 were assayed in two human cancer cell lines (HeLa and A549) and in a noncancerous cell line (MRC-5) and compared with those obtained for the previously reported Os(NO)-Ln (5d–4f) analogues (nBu4N)5[Ln{OsCl3(ox)(NO)}4] (Ln=Y (6), Gd (7), Tb (8), Dy (9)). Complexes 2–5 were found to be slightly more active than 1 in inhibiting the proliferation of HeLa and A549 cells, and significantly more cytotoxic than 5d–4f metal complexes 6–9 in terms of IC50 values. The highest antiproliferative activity with IC50 values of 20.0 and 22.4 μM was found for 4 in HeLa and A549 cell lines, respectively. These cytotoxicity results are in accord with the presented ICP-MS data, indicating five- to eightfold greater accumulation of ruthenium versus osmium in human A549 cancer cells.

  11. Heteropentanuclear Oxalato-Bridged nd–4f (n=4, 5) Metal Complexes with NO Ligand: Synthesis, Crystal Structures, Aqueous Stability and Antiproliferative Activity

    KAUST Repository

    Kuhn, Paul-Steffen; Cremer, Laura; Gavriluta, Anatolie; Jovanović, Katarina K.; Filipović, Lana; Hummer, Alfred A.; Bü chel, Gabriel E.; Dojčinović, Biljana P.; Meier, Samuel M.; Rompel, Annette; Radulović, Siniša; Tommasino, Jean Bernard; Luneau, Dominique; Arion, Vladimir B.

    2015-01-01

    A series of heteropentanuclear oxalate-bridged Ru(NO)-Ln (4d–4f) metal complexes of the general formula (nBu4N)5[Ln{RuCl3(μ-ox)(NO)}4], where Ln=Y (2), Gd (3), Tb (4), Dy (5) and ox=oxalate anion, were obtained by treatment of (nBu4N)2[RuCl3(ox)(NO)] (1) with the respective lanthanide salt in 4:1 molar ratio. The compounds were characterized by elemental analysis, IR spectroscopy, electrospray ionization (ESI) mass spectrometry, while 1, 2, and 5 were in addition analyzed by X-ray crystallography, 1 by Ru K-edge XAS and 1 and 2 by 13C NMR spectroscopy. X-ray diffraction showed that in 2 and 5 four complex anions [RuCl3(ox)(NO)]2− are coordinated to YIII and DyIII, respectively, with formation of [Ln{RuCl3(μ-ox)(NO)}4]5− (Ln=Y, Dy). While YIII is eight-coordinate in 2, DyIII is nine-coordinate in 5, with an additional coordination of an EtOH molecule. The negative charge is counterbalanced by five nBu4N+ ions present in the crystal structure. The stability of complexes 2 and 5 in aqueous medium was monitored by UV/Vis spectroscopy. The antiproliferative activity of ruthenium-lanthanide complexes 2–5 were assayed in two human cancer cell lines (HeLa and A549) and in a noncancerous cell line (MRC-5) and compared with those obtained for the previously reported Os(NO)-Ln (5d–4f) analogues (nBu4N)5[Ln{OsCl3(ox)(NO)}4] (Ln=Y (6), Gd (7), Tb (8), Dy (9)). Complexes 2–5 were found to be slightly more active than 1 in inhibiting the proliferation of HeLa and A549 cells, and significantly more cytotoxic than 5d–4f metal complexes 6–9 in terms of IC50 values. The highest antiproliferative activity with IC50 values of 20.0 and 22.4 μM was found for 4 in HeLa and A549 cell lines, respectively. These cytotoxicity results are in accord with the presented ICP-MS data, indicating five- to eightfold greater accumulation of ruthenium versus osmium in human A549 cancer cells.

  12. Design and synthesis of thienopyrimidine urea derivatives with potential cytotoxic and pro-apoptotic activity against breast cancer cell line MCF-7.

    Science.gov (United States)

    Abdelhaleem, Eman F; Abdelhameid, Mohammed K; Kassab, Asmaa E; Kandeel, Manal M

    2018-01-01

    A series of novel tetrahydrobenzothieno[2,3-d]pyrimidine urea derivatives was synthesized according to fragment-based design strategy. They were evaluated for their anticancer activity against MCF-7 cell line. Three compounds 9c, 9d and 11b showed 1.5-1.03 folds more potent anticancer activity than doxorubicin. In this study, a promising multi-sited enzyme small molecule inhibitor 9c, which showed the most potent anti-proliferative activity, was identified. The anti-proliferative activity of this compound appears to correlate well with its ability to inhibit topoisomerase II (IC 50  = 9.29 μM). Moreover, compound 9c showed excellent VEGFR-2 inhibitory activity, at the sub-micromolar level with IC 50 value 0.2 μM, which is 2.1 folds more potent than sorafenib. Moreover, activation of damage response pathway of the DNA leads to cell cycle arrest at G2/M phase, accumulation of cells in pre-G1 phase and annexin-V and propidium iodide staining, indicating that cell death proceeds through an apoptotic mechanism. Compound 9c showed potent pro-apoptotic effect through induction of the intrinsic mitochondrial pathway of apoptosis. This mechanistic pathway was confirmed by a significant increase in the expression of the tumor suppressor gene p53, elevation in Bax/BCL-2 ratio and a significant increase in the level of active caspase-3. Quantitative structure-activity relationship (QSAR) studies delivered equations of five 3D descriptors with R 2  = 0.814. This QSAR model provides an effective technique for understanding the observed antitumor properties and thus could be adopted for developing effective lead structures. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  13. Apoptotic induction activity of Dactyloctenium aegyptium (L. P.B. and Eleusine indica (L. Gaerth. extracts on human lung and cervical cancer cell lines

    Directory of Open Access Journals (Sweden)

    Pintusorn Hansakul

    2009-08-01

    Full Text Available Dactyloctenium aegyptium (L. P.B. (Yaa paak khwaai and Eleusine indica (L. Gaerth. (Yaa teen-ka have long been used in traditional Thai medicine because of their diuretic, anti-inflamatory, and antipyretic effects. The present study examined the antiproliferative and cytotoxic effects of the hexane and butanolic extracts of these two grass species. All the grass extracts exhibited selective growth inhibition effect on human lung cancer (A549 and cervical cancer (HeLa cells relative to normal human lung MRC-5 fibroblasts with IC50 values in a range of 202 to 845 mg/ml. Apparently, HeLa cellswere more sensitive to the extracts than A549 cells. Moreover, all the extracts induced lethality in both cancer cell lines atconcentrations close to 1,000 mg/ml, indicating their selective cytotoxicity effects. ELISA assay showed that only the hexaneextract of D. aegyptium (L. P.B. and E. indica (L. Gaerth. significantly increased the apoptotic level in extract-treatedA549 cells. However, DNA ladder assay detected classic DNA ladder patterns, a characteristic feature of apoptosis, in both cancer cell lines treated with all the extracts in a dose- and time-dependent manner. Taken together, these results indicatethat the cytotoxic activity of the grass extracts against lung and cervical cancer cells is mediated through the induction ofapoptosis.

  14. Improved Antitumoral Activity of Extracts Derived from Cultured ...

    African Journals Online (AJOL)

    Antiproliferative activity was assayed in four cancer cell lines (Hep-2, HeLa, SiHa, and KB) while cytotoxic activity was evaluated on a normal cell line (MDCK). Results: The 10-day cultivation organic extract exhibited increased antiproliferative activity compared with the control on human carcinoma nasopharynx (KB) and ...

  15. Bioactive properties of commercialised pomegranate (Punica granatum) juice: antioxidant, antiproliferative and enzyme inhibiting activities.

    Science.gov (United States)

    Les, Francisco; Prieto, Jose M; Arbonés-Mainar, Jose Miguel; Valero, Marta Sofía; López, Víctor

    2015-06-01

    Pomegranate juice and related products have long been used either in traditional medicine or as nutritional supplements claiming beneficial effects. Although there are several studies on this food plant, only a few studies have been performed with pomegranate juice or marketed products. The aim of this work is to evaluate the antioxidant effects of pomegranate juice on cellular models using hydrogen peroxide as an oxidizing agent or DPPH and superoxide radicals in cell free systems. The antiproliferative effects of the juice were measured on HeLa and PC-3 cells by the MTT assay and pharmacologically relevant enzymes (cyclooxygenases, xanthine oxidase, acetylcholinesterase and monoamine oxidase A) were selected for enzymatic inhibition assays. Pomegranate juice showed significant protective effects against hydrogen peroxide induced toxicity in the Artemia salina and HepG2 models; these effects may be attributed to radical scavenging properties of pomegranate as the juice was able to reduce DPPH and superoxide radicals. Moderate antiproliferative activities in HeLa and PC-3 cancer cells were observed. However, pomegranate juice was also able to inhibit COX-2 and MAO-A enzymes. This study reveals some mechanisms by which pomegranate juice may have interesting and beneficial effects in human health.

  16. Apoptosis induction in MV4-11 and K562 human leukemic cells by Pereskia sacharosa (Cactaceae) leaf crude extract.

    Science.gov (United States)

    Asmaa, Mat Jusoh Siti; Al-Jamal, Hamid Ali Nagi; Ang, Cheng Yong; Asan, Jamaruddin Mat; Seeni, Azman; Johan, Muhammad Farid

    2014-01-01

    Pereskia sacharosa is a genus of cacti widely used in folk medicine for cancer-related treatment. Anti-proliferative effects have been studied in recent years against colon, breast, cervical and lung cancer cell lines, with promising results. We here extended study of anti-proliferative effects to a blood malignancy, leukemia. Two leukemic cell lines, MV4-11 (acute myeloid leukemia) and K562 (chronic myeloid leukemia), were studied. IC50 concentrations were determined and apoptosis and cell cycle regulation were studied by flow cytometric analysis. The expression of apoptosis and cell-cycle related regulatory proteins was assessed by Western blotting. P sacharosa inhibited growth of MV4-11 and K562 cells in a dose-dependent manner. The mode of cell death was via induction of intrinsic apoptotic pathways and cell cycle arrest. There was profound up-regulation of cytochrome c, caspases, p21 and p53 expression and repression of Akt and Bcl-2 expression in treated cells. These results suggest that P sacharosa induces leukemic cell death via apoptosis induction and changes in cell cycle checkpoint, thus deserves further study for anti-leukemic potential.

  17. Growth-inhibitory effects of the chemopreventive agent indole-3-carbinol are increased in combination with the polyamine putrescine in the SW480 colon tumour cell line

    Directory of Open Access Journals (Sweden)

    Gescher Andreas

    2003-01-01

    Full Text Available Abstract Background Many tumours undergo disregulation of polyamine homeostasis and upregulation of ornithine decarboxylase (ODC activity, which can promote carcinogenesis. In animal models of colon carcinogenesis, inhibition of ODC activity by difluoromethylornithine (DFMO has been shown to reduce the number and size of colon adenomas and carcinomas. Indole-3-carbinol (I3C has shown promising chemopreventive activity against a range of human tumour cell types, but little is known about the effect of this agent on colon cell lines. Here, we investigated whether inhibition of ODC by I3C could contribute to a chemopreventive effect in colon cell lines. Methods Cell cycle progression and induction of apoptosis were assessed by flow cytometry. Ornithine decarboxylase activity was determined by liberation of CO2 from 14C-labelled substrate, and polyamine levels were measured by HPLC. Results I3C inhibited proliferation of the human colon tumour cell lines HT29 and SW480, and of the normal tissue-derived HCEC line, and at higher concentrations induced apoptosis in SW480 cells. The agent also caused a decrease in ODC activity in a dose-dependent manner. While administration of exogenous putrescine reversed the growth-inhibitory effect of DFMO, it did not reverse the growth-inhibition following an I3C treatment, and in the case of the SW480 cell line, the effect was actually enhanced. In this cell line, combination treatment caused a slight increase in the proportion of cells in the G2/M phase of the cell cycle, and increased the proportion of cells undergoing necrosis, but did not predispose cells to apoptosis. Indole-3-carbinol also caused an increase in intracellular spermine levels, which was not modulated by putrescine co-administration. Conclusion While indole-3-carbinol decreased ornithine decarboxylase activity in the colon cell lines, it appears unlikely that this constitutes a major mechanism by which the agent exerts its antiproliferative

  18. Tuft (caveolated) cells in two human colon carcinoma cell lines.

    OpenAIRE

    Barkla, D. H.; Whitehead, R. H.; Foster, H.; Tutton, P. J.

    1988-01-01

    The presence of an unusual cell type in two human colon carcinoma cell lines is reported. The cells show the same morphology as "tuft" (caveolated) cells present in normal gastrointestinal epithelium. Tuft cells were seen in cell line LIM 1863 growing in vitro and in human colon carcinoma cell line LIM 2210 growing as subcutaneous solid tumour xenografts in nude mice. Characteristic morphologic features of tuft cells included a wide base, narrow apex and a tuft of long microvilli projecting f...

  19. Discovery and structure-activity relationship of novel 4-hydroxy-thiazolidine-2-thione derivatives as tumor cell specific pyruvate kinase M2 activators.

    Science.gov (United States)

    Li, Ridong; Ning, Xianling; Zhou, Shuo; Lin, Zhiqiang; Wu, Xingyu; Chen, Hong; Bai, Xinyu; Wang, Xin; Ge, Zemei; Li, Runtao; Yin, Yuxin

    2018-01-01

    Pyruvate kinase M2 isoform (PKM2) is a crucial protein responsible for aerobic glycolysis of cancer cells. Activation of PKM2 may alter aberrant metabolism in cancer cells. In this study, we discovered a 4-hydroxy-thiazolidine-2-thione compound 2 as a novel PKM2 activator from a random screening of an in-house compound library. Then a series of novel 4-hydroxy-thiazolidine-2-thione derivatives were designed and synthesized for screening as potent PKM2 activators. Among these, some compounds showed higher PKM2 activation activity than lead compound 2 and also exhibited significant anti-proliferative activities on human cancer cell lines at nanomolar concentration. The compound 5w was identified as the most potent antitumor agent, which showed excellent anti-proliferative effects with IC 50 values from 0.46 μM to 0.81 μM against H1299, HCT116, Hela and PC3 cell lines. 5w also showed less cytotoxicity in non-tumor cell line HELF compared with cancer cells. In addition, Preliminary pharmacological studies revealed that 5w arrests the cell cycle at the G2/M phase in HCT116 cell line. The best PKM2 activation by compound 5t was rationalized through docking studies. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  20. Enhanced anti-proliferative efficacy of epothilone B loaded with Escherichia coli Nissle 1917 bacterial ghosts on the HeLa cells by mitochondrial pathway of apoptosis.

    Science.gov (United States)

    Zhu, Wenxing; Hao, Lujiang; Liu, Xinli; Orlando, Borrás-Hidalgo; Zhang, Yuyu

    2018-03-20

    Epothilones constitute a new class of microtubule-stabilizing anti-cancer agents with promising preclinical and clinical activity. However, its systemic application still causes some toxic side effects. To reduce these undesired effects, advanced drug delivery systems based on cell targeting carriers are needed currently. In this study, the high quality bacterial ghosts of the probiotic Escherichia coli Nissle 1917 (EcN) were prepared in a large scale and retained fully intact surface structures for specific attachment to mammalian cells. The EcN ghosts could be efficiently loaded with the low hydrophilic drug Epothilone B (Epo B) and the maximal load efficiency was approximately 2.5% (w/w). Cytotoxicity assays revealed that Epo B-ghosts exhibited enhanced anti-proliferative properties on the HeLa cells. The Epo B associated with EcN ghosts was more cytotoxic at least 10 times than the free Epo B at the same concentrations. Apoptosis assays showed that both Epo B-ghosts and free Epo B induced time course-dependent apoptosis and necrosis in HeLa cells, respectively. While the former induced more apoptosis and necrosis than the latter. Furthermore, the cytochrome C release and the activation of caspase-3 were more remarkable after treatment with the Epo B-ghosts compared to the free Epo B, which implied that Epo B-ghosts might more effectively induce the apoptosis mediated by mitochondrial pathway in HeLa cells. Therefore, the higher anti-proliferative effects of the Epo B-ghosts on the HeLa cells were mediated by mitochondrial pathway of apoptosis. The EcN ghosts may provide a useful drug delivery carrier for drug candidates in cancer therapy.

  1. Cellular effect of styrene substituted biscoumarin caused cellular apoptosis and cell cycle arrest in human breast cancer cells.

    Science.gov (United States)

    Perumalsamy, Haribalan; Sankarapandian, Karuppasamy; Kandaswamy, Narendran; Balusamy, Sri Renukadevi; Periyathambi, Dhaiveegan; Raveendiran, Nanthini

    2017-11-01

    Coumarins occurs naturally across plant kingdoms exhibits significant pharmacological properties and pharmacokinetic activity. The conventional, therapeutic agents are often associated with poor stability, absorption and increased side effects. Therefore, identification of a drug that has little or no-side effect on humans is consequential. Here, we investigated the antiproliferative activity of styrene substituted biscoumarin against various human breast cancer cell lines, such as MCF-7, (ER-) MDA-MB-231 and (AR+) MDA-MB-453. Styrene substituted biscoumarin induced cell death by apoptosis in MDA-MB-231 cell line was analyzed. Antiproliferative activity of Styrene substituted biscoumarin was performed by using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. Styrene substituted biscoumarin induced apoptosis was assessed by Hoechst staining, Annexin V-fluorescein isothiocyanate/propidium iodide (Annexin V-FITC/PI) staining and flow cytometric analysis. Migratory and proliferating characteristic of breast cancer cell line MDA-MB-231 was also analyzed by wound healing and colony formation assay. Furthermore, mRNA expression of BAX and BCL-2 were quantified using qRT-PCR and protein expression level analyzed by Western blot. The inhibition concentration (IC 50 ) of styrene substituted biscoumarin was assayed against three breast cancer cell lines. The inhibition concentration (IC 50 ) value of styrene substituted biscoumarin toward MDA-MB-231, MDA-MB-453 and MCF-7 cell lines was 5.63, 7.30 and 10.84μg/ml respectively. Styrene substituted biscoumarin induced apoptosis was detected by Hoechst staining, DAPI/PI analysis and flow-cytometric analysis. The migration and proliferative efficiency of MDA-MB-231 cells were completely arrested upon styrene substituted biscoumarin treatment. Also, mRNA gene expression and protein expression of pro-apoptotic (BAX) and anti-apoptotic (BCL-2) genes were analyzed by qRT-PCR and western blot analysis upon

  2. Analysis of Flavonoids in Rhamnus davurica and Its Antiproliferative Activities

    Directory of Open Access Journals (Sweden)

    Guilin Chen

    2016-09-01

    Full Text Available Rhamnus davurica Pall. (R. davurica has been used as a traditional medicinal herb for many years in China and abroad. It has been well documented as a rich source of flavonoids with diversified structures, which in turn results in far-ranging biological activities, such as anti-inflammation, anticancer, antibacterial and antioxidant activities. In order to further correlate their anticancer potentials with the phytochemical components, the fingerprint profile of R. davurica herb from Dongbei was firstly investigated using HPLC-ESI-MS/MS. Thirty two peaks were detected and identified, 14 of which were found in R. davurica for the first time in this work. Furthermore, a total of 23 peaks were resolved as flavonoids, which are the major components found in R. davurica. Meanwhile, the antiproliferative activities against human cancer cells of HT-29 and SGC-7901 in vitro exhibited distinct inhibitory effects with IC50 values at 24.96 ± 0.74 and 89.53 ± 4.11 μg/mL, respectively. Finally, the general toxicity against L-O2 cells displayed a much higher IC50 at 229.19 ± 8.52 μg/mL, which suggested very low or no toxicity on hepatic cell viability. The current study revealed for the first time the correlations between the flavonoids of R. davurica with their antiproliferative activities, which indicated that the fingerprint profile of flavonoids and their anticancer activities could provide valuable information on the quality control for herbal medicines and their derived natural remedies from this valuable medicinal plant.

  3. New chalcanonol glycoside from the seeds of saw palmetto: antiproliferative and antioxidant effects.

    Science.gov (United States)

    Abdel Bar, Fatma M

    2015-01-01

    A new chalcanonol glycoside dimer, bis-O-[(I-4') → (II-6')]-α-hydroxyphloretin-2'-O-β-glucoside (1), in addition to six known compounds, namely (-)-epicatechin (2) and (-)-epiafzelechin (3), 4-hydroxybenzoic acid (4), protocatechuic acid (5), methylgallate (6), β-sitosterol (7) and β-sitosterol-3-O-glucoside (8), was isolated from the seeds of saw palmetto. The structures of the isolated compounds were established from the analysis of their MS and 1D and 2D NMR spectroscopic data. The antiproliferative activities of the isolated compounds towards PC3, the human prostate cancer cells were investigated. Amongst the isolated compounds, the new compound and the sterolic derivatives showed antiproliferative effects. Screening of the antioxidant effects of the isolated compounds by 2,2'-azino-bis-(3-ethylbenzthiazoline-6-sulfonic acid radical assay revealed that the isolated phenolics were active free radical scavengers.

  4. γ-Oryzanol reduces caveolin-1 and PCGEM1 expression, markers of aggressiveness in prostate cancer cell lines.

    Science.gov (United States)

    Hirsch, Gabriela E; Parisi, Mariana M; Martins, Leo A M; Andrade, Claudia M B; Barbé-Tuana, Florencia M; Guma, Fátima T C R

    2015-06-01

    Prostate cancer is a leading cause of death among men due to the limited number of treatment strategies available for advanced disease. γ-oryzanol is a component of rice bran, rich in phytosterols, known for its antioxidant, anti-carcinogenic and endocrinological effects. It is known that γ-oryzanol may affect prostate cancer cells through the down regulation of the antioxidant genes and that phytosterols have anti-proliferative and apoptotic effects. There are evidences showing that some of the components of γ-oryzanol can modulate genes involved in the development and progression of prostate cancer, as caveolin-1 (Cav-1) and prostate specific androgen-regulated gene (PCGEM1). To determine the effects of γ-oryzanol on prostate cancer cell survival we evaluated the cell viability and biomass by MTT and sulforhodamine B assays, respectively. Cell death, cell cycle and pERK1/2 activity were assessed by flow cytometry. The changes in gene expression involved in the survival and progression of prostate cancer cav-1 and PCGEM1 genes were evaluated by quantitative real time reverse transcriptase polymerase chain reaction (RT-PCR) and cav-1 protein by immunofluorescence followed by confocal microscopy analysis. We found that γ-oryzanol decreases cell viability and culture biomass by apoptosis and/or necrosis death in androgen unresponsive (PC3 and DU145) and responsive (LNCaP) cell lines, and signals through pERK1/2 in LNCaP and DU145 cells. γ-oryzanol also appears to block cell cycle progression at the G2/M in PC3 and LNCaP cells and at G0/G1 in DU145 cells. These effects were accompanied by a down regulation in the expression of the cav-1 in both androgen unresponsive cell lines and PCGEM1 gene in DU145 and LNCaP cells. In summary, we used biochemical and genetics approaches to demonstrate that γ-oryzanol show a promising adjuvant role in the treatment of prostate cancer. © 2015 Wiley Periodicals, Inc.

  5. Growth-inhibitory effects of the red alga Gelidium amansii on cultured cells.

    Science.gov (United States)

    Chen, Yue-Hwa; Tu, Ching-Jung; Wu, Hsiao-Ting

    2004-02-01

    The objective of this study was to investigate the effects of Gelidium amansii, an edible red agar cultivated off the northeast coast of Taiwan, on the growth of two lines of cancer cells, murine hepatoma (Hepa-1) and human leukemia (HL-60) cells, as well as a normal cell line, murine embryo fibroblast cells (NIH-3T3). The potential role of G. amansii on the induction of apoptosis was also examined. The results indicated that all extracts from G. amansii, including phosphate-buffered saline (PBS) and methanol extracts from dried algae as well as the dimethyl sulfoxide (DMSO) extract from freeze-dried G. amansii agar, inhibited the growth of Hepa-1 and NIH-3T3 cells, but not the growth of HL-60 cells. Annexin V-positive cells were observed in methanol and DMSO extract-treated, but not PBS extract-treated Hepa-1 and NIH-3T3 cells, suggesting that the lipid-soluble extracts of G. amansii induced apoptosis. In summary, extracts of G. amansii from various preparations exhibited antiproliferative effects on Hepa-1 and NIH-3T3 cells, and apoptosis may play a role in the methanol and DMSO extract-induced inhibitory effects. However, the antiproliferative effects of PBS extracts was not through apoptosis. Moreover, the growth-inhibitory effects of G. amansii were not specific to cancer cells.

  6. Synthesis, Antiproliferative and Antifungal Activities of 1,2,3-Triazole-Substituted Carnosic Acid and Carnosol Derivatives

    Directory of Open Access Journals (Sweden)

    Mariano Walter Pertino

    2015-05-01

    Full Text Available Abietane diterpenes exhibit an array of interesting biological activities, which have generated significant interest among the pharmacological community. Starting from the abietane diterpenes carnosic acid and carnosol, twenty four new triazole derivatives were synthesized using click chemistry. The compounds differ in the length of the linker and the substituent on the triazole moiety. The compounds were assessed as antiproliferative and antifungal agents. The antiproliferative activity was determined on normal lung fibroblasts (MRC-5, gastric epithelial adenocarcinoma (AGS, lung cancer (SK-MES-1 and bladder carcinoma (J82 cells while the antifungal activity was assessed against Candida albicans ATCC 10231 and Cryptococcus neoformans ATCC 32264. The carnosic acid γ-lactone derivatives 1–3 were the most active antiproliferative compounds of the series, with IC50 values in the range of 43.4–46.9 μM and 39.2–48.9 μM for MRC-5 and AGS cells, respectively. Regarding antifungal activity, C. neoformans was the most sensitive fungus, with nine compounds inhibiting more than 50% of its fungal growth at concentrations ≤250 µg∙mL−1. Compound 22, possessing a p-Br-benzyl substituent on the triazole ring, showed the best activity (91% growth inhibition at 250 µg∙mL−1 In turn, six compounds inhibited 50% C. albicans growth at concentrations lower than 250 µg∙mL−1.

  7. Cytotoxic, genotoxic and apoptotic effects of naringenin-oxime relative to naringenin on normal and cancer cell lines

    Directory of Open Access Journals (Sweden)

    Abdurrahim Kocyigit

    2016-10-01

    Conclusions: This study showed that both NG-Ox and NG possess cytotoxic, genotoxic and apoptotic activities through the production of ROS on cells, NG-Ox being the more effective one. Therefore, derived compound of NG might be used as antiproliferative agents for the treatment of cancer.

  8. Characterization of a Merkel Cell Polyomavirus-Positive Merkel Cell Carcinoma Cell Line CVG-1.

    Science.gov (United States)

    Velásquez, Celestino; Amako, Yutaka; Harold, Alexis; Toptan, Tuna; Chang, Yuan; Shuda, Masahiro

    2018-01-01

    Merkel cell polyomavirus (MCV) plays a causal role in ∼80% of Merkel cell carcinomas (MCC). MCV is clonally integrated into the MCC tumor genome, which results in persistent expression of large T (LT) and small T (sT) antigen oncoproteins encoded by the early locus. In MCV-positive MCC tumors, LT is truncated by premature stop codons or deletions that lead to loss of the C-terminal origin binding (OBD) and helicase domains important for replication. The N-terminal Rb binding domain remains intact. MCV-positive cell lines derived from MCC explants have been valuable tools to study the molecular mechanism of MCV-induced Merkel cell carcinogenesis. Although all cell lines have integrated MCV and express truncated LT antigens, the molecular sizes of the LT proteins differ between cell lines. The copy number of integrated viral genome also varies across cell lines, leading to significantly different levels of viral protein expression. Nevertheless, these cell lines share phenotypic similarities in cell morphology, growth characteristics, and neuroendocrine marker expression. Several low-passage MCV-positive MCC cell lines have been established since the identification of MCV. We describe a new MCV-positive MCV cell line, CVG-1, with features distinct from previously reported cell lines. CVG-1 tumor cells grow in more discohesive clusters in loose round cell suspension, and individual cells show dramatic size heterogeneity. It is the first cell line to encode an MCV sT polymorphism resulting in a unique leucine (L) to proline (P) substitution mutation at amino acid 144. CVG-1 possesses a LT truncation pattern near identical to that of MKL-1 cells differing by the last two C-terminal amino acids and also shows an LT protein expression level similar to MKL-1. Viral T antigen knockdown reveals that, like other MCV-positive MCC cell lines, CVG-1 requires T antigen expression for cell proliferation.

  9. Antiproliferative effects of fresh and thermal processed green and red cultivars of curly kale (Brassica oleracea L. convar. acephala var. sabellica).

    Science.gov (United States)

    Olsen, Helle; Grimmer, Stine; Aaby, Kjersti; Saha, Shikha; Borge, Grethe Iren A

    2012-08-01

    Brassica vegetables contain a diverse range of phytochemicals with biological properties such as antioxidant and anticancer activity. However, knowledge about how biological activities are affected by processing is lacking. A green cultivar and a red cultivar of curly kale were evaluated for water/methanol-soluble phytochemicals before and after processing involving blanching, freeze storage, and boil-in-bag heat treatment. In both kale cultivars, processing resulted in a significant decrease of total phenolics, antioxidant capacity, and content and distribution of flavonols, anthocyanins, hydroxycinnamic acids, glucosinolates, and vitamin C. Interestingly, the red curly kale cultivar had a higher capacity to withstand thermal loss of phytochemicals. The extracts of both green and red curly kale inhibited the cell proliferation of three human colon cancer cell lines (Caco-2, HT-29, and HCT 116). However, extracts from fresh plant material had a significantly stronger antiproliferative effect than extracts from processed plant material.

  10. Cdx2 Polymorphism Affects the Activities of Vitamin D Receptor in Human Breast Cancer Cell Lines and Human Breast Carcinomas

    Science.gov (United States)

    Di Benedetto, Anna; Korita, Etleva; Goeman, Frauke; Sacconi, Andrea; Biagioni, Francesca; Blandino, Giovanni; Strano, Sabrina; Muti, Paola; Mottolese, Marcella; Falvo, Elisabetta

    2015-01-01

    Vitamin D plays a role in cancer development and acts through the vitamin D receptor (VDR). It regulates the action of hormone responsive genes and is involved in cell cycle regulation, differentiation and apoptosis. VDR is a critical component of the vitamin D pathway and different common single nucleotide polymorphisms have been identified. Cdx2 VDR polymorphism can play an important role in breast cancer, modulating the activity of VDR. The objective of this study is to assess the relationship between the Cdx2 VDR polymorphism and the activities of VDR in human breast cancer cell lines and carcinomas breast patients. Cdx2 VDR polymorphism and antiproliferative effects of vitamin D treatment were investigated in a panel of estrogen receptor-positive (MCF7 and T-47D) and estrogen receptor-negative (MDA-MB-231, SUM 159PT, SK-BR-3, BT549, MDA-MB-468, HCC1143, BT20 and HCC1954) human breast cancer cell lines. Furthermore, the potential relationship among Cdx2 VDR polymorphism and a number of biomarkers used in clinical management of breast cancer was assessed in an ad hoc set of breast cancer cases. Vitamin D treatment efficacy was found to be strongly dependent on the Cdx2 VDR status in ER-negative breast cancer cell lines tested. In our series of breast cancer cases, the results indicated that patients with variant homozygote AA were associated with bio-pathological characteristics typical of more aggressive tumours, such as ER negative, HER2 positive and G3. Our results may suggest a potential effect of Cdx2 VDR polymorphism on the efficacy of vitamin D treatment in aggressive breast cancer cells (estrogen receptor negative). These results suggest that Cdx2 polymorphism may be a potential biomarker for vitamin D treatment in breast cancer, independently of the VDR receptor expression. PMID:25849303

  11. Cdx2 polymorphism affects the activities of vitamin D receptor in human breast cancer cell lines and human breast carcinomas.

    Directory of Open Access Journals (Sweden)

    Claudio Pulito

    Full Text Available Vitamin D plays a role in cancer development and acts through the vitamin D receptor (VDR. It regulates the action of hormone responsive genes and is involved in cell cycle regulation, differentiation and apoptosis. VDR is a critical component of the vitamin D pathway and different common single nucleotide polymorphisms have been identified. Cdx2 VDR polymorphism can play an important role in breast cancer, modulating the activity of VDR. The objective of this study is to assess the relationship between the Cdx2 VDR polymorphism and the activities of VDR in human breast cancer cell lines and carcinomas breast patients. Cdx2 VDR polymorphism and antiproliferative effects of vitamin D treatment were investigated in a panel of estrogen receptor-positive (MCF7 and T-47D and estrogen receptor-negative (MDA-MB-231, SUM 159PT, SK-BR-3, BT549, MDA-MB-468, HCC1143, BT20 and HCC1954 human breast cancer cell lines. Furthermore, the potential relationship among Cdx2 VDR polymorphism and a number of biomarkers used in clinical management of breast cancer was assessed in an ad hoc set of breast cancer cases. Vitamin D treatment efficacy was found to be strongly dependent on the Cdx2 VDR status in ER-negative breast cancer cell lines tested. In our series of breast cancer cases, the results indicated that patients with variant homozygote AA were associated with bio-pathological characteristics typical of more aggressive tumours, such as ER negative, HER2 positive and G3. Our results may suggest a potential effect of Cdx2 VDR polymorphism on the efficacy of vitamin D treatment in aggressive breast cancer cells (estrogen receptor negative. These results suggest that Cdx2 polymorphism may be a potential biomarker for vitamin D treatment in breast cancer, independently of the VDR receptor expression.

  12. The Cellosaurus, a Cell-Line Knowledge Resource

    Science.gov (United States)

    Bairoch, Amos

    2018-01-01

    The Cellosaurus is a knowledge resource on cell lines. It aims to describe all cell lines used in biomedical research. Its scope encompasses both vertebrates and invertebrates. Currently, information for >100,000 cell lines is provided. For each cell line, it provides a wealth of information, cross-references, and literature citations. The Cellosaurus is available on the ExPASy server (https://web.expasy.org/cellosaurus/) and can be downloaded in a variety of formats. Among its many uses, the Cellosaurus is a key resource to help researchers identify potentially contaminated/misidentified cell lines, thus contributing to improving the quality of research in the life sciences. PMID:29805321

  13. Polyaminoquinoline iron chelators for vectorization of antiproliferative agents: design, synthesis, and validation.

    Science.gov (United States)

    Corcé, Vincent; Morin, Emmanuelle; Guihéneuf, Solène; Renault, Eric; Renaud, Stéphanie; Cannie, Isabelle; Tripier, Raphaël; Lima, Luís M P; Julienne, Karine; Gouin, Sébastien G; Loréal, Olivier; Deniaud, David; Gaboriau, François

    2012-09-19

    Iron chelation in tumoral cells has been reported as potentially useful during antitumoral treatment. Our aim was to develop new polyaminoquinoline iron chelators targeting tumoral cells. For this purpose, we designed, synthesized, and evaluated the biological activity of a new generation of iron chelators, which we named Quilamines, based on an 8-hydroxyquinoline (8-HQ) scaffold linked to linear polyamine vectors. These were designed to target tumor cells expressing an overactive polyamine transport system (PTS). A set of Quilamines bearing variable polyamine chains was designed and assessed for their ability to interact with iron. Quilamines were also screened for their cytostatic/cytotoxic effects and their selective uptake by the PTS in the CHO cell line. Our results show that both the 8-HQ moiety and the polyamine part participate in the iron coordination. HQ1-44, the most promising Quilamine identified, presents a homospermidine moiety and was shown to be highly taken up by the PTS and to display an efficient antiproliferative activity that occurred in the micromolar range. In addition, cytotoxicity was only observed at concentrations higher than 100 μM. We also demonstrated the high complexation capacity of HQ1-44 with iron while much weaker complexes were formed with other cations, indicative of a high selectivity. We applied the density functional theory to study the binding energy and the electronic structure of prototypical iron(III)-Quilamine complexes. On the basis of these calculations, Quilamine HQ1-44 is a strong tridentate ligand for iron(III) especially in the form of a 1:2 complex.

  14. Halofuginone has anti-proliferative effects in acute promyelocytic leukemia by modulating the transforming growth factor beta signaling pathway.

    Directory of Open Access Journals (Sweden)

    Lorena L de Figueiredo-Pontes

    Full Text Available Promyelocytic leukemia-retinoic acid receptor alpha (PML-RARα expression in acute promyelocytic leukemia (APL impairs transforming growth factor beta (TGFβ signaling, leading to cell growth advantage. Halofuginone (HF, a low-molecular-weight alkaloid that modulates TGFβ signaling, was used to treat APL cell lines and non-obese diabetic/severe combined immunodeficiency (NOD/SCID mice subjected to transplantation with leukemic cells from human chorionic gonadotrophin-PML-RARα transgenic mice (TG. Cell cycle analysis using incorporated bromodeoxyuridine and 7-amino-actinomycin D showed that, in NB4 and NB4-R2 APL cell lines, HF inhibited cellular proliferation (P<0.001 and induced apoptosis (P = 0.002 after a 24-hour incubation. Addition of TGFβ revealed that NB4 cells were resistant to its growth-suppressive effects and that HF induced these effects in the presence or absence of the cytokine. Cell growth inhibition was associated with up-regulation of TGFβ target genes involved in cell cycle regulation (TGFB, TGFBRI, SMAD3, p15, and p21 and down-regulation of MYC. Additionally, TGFβ protein levels were decreased in leukemic TG animals and HF in vivo could restore TGFβ values to normal. To test the in vivo anti-leukemic activity of HF, we transplanted NOD/SCID mice with TG leukemic cells and treated them with HF for 21 days. HF induced partial hematological remission in the peripheral blood, bone marrow, and spleen. Together, these results suggest that HF has anti-proliferative and anti-leukemic effects by reversing the TGFβ blockade in APL. Since loss of the TGFβ response in leukemic cells may be an important second oncogenic hit, modulation of TGFβ signaling may be of therapeutic interest.

  15. Heliotropium bacciferum Forssk. (Boraginaceae) extracts: chemical constituents, antioxidant activity and cytotoxic effect in human cancer cell lines.

    Science.gov (United States)

    Aïssaoui, Hanane; Mencherini, Teresa; Esposito, Tiziana; De Tommasi, Nunziatina; Gazzerro, Patrizia; Benayache, Samir; Benayache, Fadila; Mekkiou, Ratiba

    2018-02-12

    Heliotropium bacciferum (Boraginaceae) is a perennial herb, growing in the Bechar region of Algeria, where it is traditionally used for skin diseases and tonsillitis. Herein, we report the isolation and characterization of sixteen secondary metabolites from the aerial part extracts. They include a sterol (1), megastigman type nor-isoprenoids (2, 3, 4, 6, 8, 10), C-11 terpene lactones (5 and 9), and a monoterpene (7) from the chloroform extract (HB-C); monoterpene glucoside (14), and phenolic compounds (11-13, 15, 16) from the methanol one (HB-M). Their structures were elucidated by spectroscopic methods including 1D and 2D NMR experiments, and ESIMS analysis. HB-M showed a significant and concentration dependent scavenging activity in vitro against the radicals DPPH and ABTS, related to the phenol derivatives (11-13, and 15-16), and HB-C inhibited the growth of colon cancer cell lines, mainly for the presence of the antiproliferative C-11 terpene lactones (5 and 9).

  16. Five new diarylheptanoids from the rhizomes of Curcuma kwangsiensis and their antiproliferative activity.

    Science.gov (United States)

    Chen, Shao-Dan; Gao, Jin-Tao; Liu, Jing-Gong; Liu, Bo; Zhao, Rui-Zhi; Lu, Chuan-Jian

    2015-04-01

    Five new diarylheptanoids (1-5), along with nine known ones (6-14), were isolated from the rhizomes of Curcuma kwangsiensis. Their structures were established on the basis of spectroscopic analyses. Compounds 1-3 were cyclic diarylheptanoids rarely discovered from C. kwangsiensis. Of all the isolated compounds, compound 4 showed moderate antiproliferative activity on HH and HaCaT cells. Copyright © 2015. Published by Elsevier B.V.

  17. Iodine catalyzed one-pot synthesis of chloro-substituted linear and angular indoloquinolines and in vitro antiproliferative activity study of different indoloquinolines

    Digital Repository Service at National Institute of Oceanography (India)

    Parvatkar, P.T.; Ajay, A.K.; Bhat, M.K.; Parameswaran, P.S.; Tilve, S.G.

    ) and some indolo[2,3-b]quinolines (3a–d) against human hepatocellular carcinoma HepG2 and human breast carcinoma MCF-7 cells. Anti-proliferative assay against human hepatocellular carcinoma HepG2 and human breast carcinoma MCF-7 cells indicated methyl...

  18. In vitro antioxidant and antiproliferative activities of selenium-containing phycocyanin from selenium-enriched Spirulina platensis.

    Science.gov (United States)

    Chen, Tianfeng; Wong, Yum-Shing

    2008-06-25

    Both selenium and phycocyanin have been reported to show potent cancer chemopreventive activities. In this study, we investigated the in vitro antioxidant and antiproliferative activities of selenium-containing phycocyanin (Se-PC) purified from selenium-enriched Spirulina platensis. The antioxidant activity of Se-PC was evaluated by using four different free radical scavenging assays, namely, the 2,2'-azinobis-3-ethylbenzothiazolin-6-sulfonic acid (ABTS) assay, 1,1-diphenyl-2-picryhydrazyl (DPPH) assay, superoxide anion scavenging assay, and erythrocyte hemolysis assay. The results indicated that Se-PC exhibited stronger antioxidant activity than phycocyanin by scavenging ABTS, DPPH, superoxide anion, and 2,2'-azobis-(2-amidinopropane)dihydrochloride free radicals. Se-PC also showed dose-dependent protective effects on erythrocytes against H 2O 2-induced oxidative DNA damage as evaluated by the Comet assay. Moreover, Se-PC was identified as a potent antiproliferative agent against human melanoma A375 cells and human breast adenocarcinoma MCF-7 cells. Induction of apoptosis in both A375 and MCF-7 cells by Se-PC was evidenced by accumulation of sub-G1 cell populations, DNA fragmentation, and nuclear condensation. Further investigation on intracellular mechanisms indicated that depletion of mitochondrial membrane potential (DeltaPsi m) was involved in Se-PC-induced cell apoptosis. Our findings suggest that Se-PC is a promising organic Se species with potential applications in cancer chemoprevention.

  19. Antiproliferative, Antibacterial and Antifungal Activity of the Lichen Xanthoria parietina and Its Secondary Metabolite Parietin

    Directory of Open Access Journals (Sweden)

    Adriana Basile

    2015-04-01

    Full Text Available Lichens are valuable natural resources used for centuries throughout the world as medicine, food, fodder, perfume, spices and dyes, as well as for other miscellaneous purposes. This study investigates the antiproliferative, antibacterial and antifungal activity of the acetone extract of the lichen Xanthoria parietina (Linnaeus Theodor Fries and its major secondary metabolite, parietin. The extract and parietin were tested for antimicrobial activity against nine American Type Culture Collection standard and clinically isolated bacterial strains, and three fungal strains. Both showed strong antibacterial activity against all bacterial strains and matched clinical isolates, particularly against Staphylococcus aureus from standard and clinical sources. Among the fungi tested, Rhizoctonia solani was the most sensitive. The antiproliferative effects of the extract and parietin were also investigated in human breast cancer cells. The extract inhibited proliferation and induced apoptosis, both effects being accompanied by modulation of expression of cell cycle regulating genes such as p16, p27, cyclin D1 and cyclin A. It also mediated apoptosis by activating extrinsic and intrinsic cell death pathways, modulating Tumor Necrosis Factor-related apoptosis-inducing ligand (TRAIL and B-cell lymphoma 2 (Bcl-2, and inducing Bcl-2-associated agonist of cell death (BAD phosphorylation. Our results indicate that Xanthoria parietina is a major potential source of antimicrobial and anticancer substances.

  20. Antiproliferative and cell apoptosis-inducing activities of compounds from Buddleja davidii in Mgc-803 cells

    Directory of Open Access Journals (Sweden)

    Wu Jian

    2012-08-01

    Full Text Available Abstract Background Buddleja davidii is widely distributed in the southwestern region of China. We have undertaken a systematic analysis of B. davidii as a Chinese traditional medicine with anticancer activity by isolating natural products for their activity against the human gastric cancer cell line Mgc-803 and the human breast cancer cell line Bcap-37. Results Ten compounds were extracted and isolated from B. davidii, among which colchicine was identified in B. davidii for the first time. The inhibitory activities of these compounds were investigated in Mgc-803, Bcap-37 cells in vitro by MTT [3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide] assay, and the results showed that luteolin and colchicine had potent inhibitory activities against the growth of Mgc-803 cells. Subsequent fluorescence staining and flow cytometry analysis indicated that these two compounds could induce apoptosis in Mgc-803 cells. The results also showed that the percentages of early apoptotic cells (Annexin V+/PI-, where PI is propidium iodide and late apoptotic cells (Annexin V+/PI+ increased in a dose- and time-dependent manner. After 36 h of incubation with luteolin at 20 μM, the percentages of cells were approximately 15.4% in early apoptosis and 43.7% in late apoptosis; after 36 h of incubation with colchicine at 20 μM, the corresponding values were 7.7% and 35.2%, respectively. Conclusions Colchicine and luteolin from B. davidii have potential applications as adjuvant therapies for treating human carcinoma cells. These compounds could also induce apoptosis in tumor cells.

  1. Antiproliferative and cell apoptosis-inducing activities of compounds from Buddleja davidii in Mgc-803 cells.

    Science.gov (United States)

    Wu, Jian; Yi, Wenshi; Jin, Linhong; Hu, Deyu; Song, Baoan

    2012-08-31

    Buddleja davidii is widely distributed in the southwestern region of China. We have undertaken a systematic analysis of B. davidii as a Chinese traditional medicine with anticancer activity by isolating natural products for their activity against the human gastric cancer cell line Mgc-803 and the human breast cancer cell line Bcap-37. Ten compounds were extracted and isolated from B. davidii, among which colchicine was identified in B. davidii for the first time. The inhibitory activities of these compounds were investigated in Mgc-803, Bcap-37 cells in vitro by MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay, and the results showed that luteolin and colchicine had potent inhibitory activities against the growth of Mgc-803 cells. Subsequent fluorescence staining and flow cytometry analysis indicated that these two compounds could induce apoptosis in Mgc-803 cells. The results also showed that the percentages of early apoptotic cells (Annexin V+/PI-, where PI is propidium iodide) and late apoptotic cells (Annexin V+/PI+) increased in a dose- and time-dependent manner. After 36 h of incubation with luteolin at 20 μM, the percentages of cells were approximately 15.4% in early apoptosis and 43.7% in late apoptosis; after 36 h of incubation with colchicine at 20 μM, the corresponding values were 7.7% and 35.2%, respectively. Colchicine and luteolin from B. davidii have potential applications as adjuvant therapies for treating human carcinoma cells. These compounds could also induce apoptosis in tumor cells.

  2. Synthetic Strigolactone Analogues Reveal Anti-Cancer Activities on Hepatocellular Carcinoma Cells

    KAUST Repository

    Hasan, Mohammed Nihal

    2018-02-09

    Hepatocellular carcinoma (HCC) remains one of the leading causes of death worldwide. The complex etiology is attributed to many factors like heredity, cirrhosis, hepatitis infections or the dysregulation of the different molecular pathways. Nevertheless, the current treatment regimens have either severe side effects or tumors gradually acquire resistance upon prolonged use. Thus, developing a new selective treatment for HCC is the need of the hour. Many anticancer agents derived from plants have been evaluated for their cytotoxicity towards many human cancer cell lines. Strigolactones (SLs)-a newly discovered class of phytohormones, play a crucial role in the development of plant-root and shoot. Recently, many synthetic analogues of SLs have demonstrated pro-apoptotic effects on different cancer cell lines like prostate, breast, colon and lung. In this study, we tested synthetic SLs analogues on HCC cell line-HepG2 and evaluated their capability to induce cell proliferation inhibition and apoptosis. Primary WST-1 assays, followed by annexin-V/7AAD staining, demonstrated the anti-proliferative effects. The SLs analogues TIT3 and TIT7 were found to significantly reduce HepG2 cell viability in a dose- and time-dependent manner and induce apoptosis. Interestingly, though TIT3 and TIT7 strongly affected cancer cell proliferation, both compounds showed moderate anti-proliferative effect on normal cells. Further, migration of cancer cells was suppressed upon treatment with TIT3 and TIT7 in a wound healing assay. In summary, these findings suggest that two SLs analogues TIT3 and TIT7 exert selective inhibitory effects on cancer cells most likely through targeting microtubules. SLs analogues could be used in future as potential anti-cancer candidates in chemotherapy.

  3. Synthetic Strigolactone Analogues Reveal Anti-Cancer Activities on Hepatocellular Carcinoma Cells

    KAUST Repository

    Hasan, Mohammed Nihal; Choudhry, Hani; Razvi, Syed Shoeb; Moselhy, Said Salama; Kumosani, Taha Abduallah; Zamzami, Mazin A.; Omran, Ziad; Halwani, Majed A.; Al-Babili, Salim; Abualnaja, Khalid Omer; Al-Malki, Abdulrahman Labeed; Alhosin, Mahmoud; Asami, Tadao

    2018-01-01

    Hepatocellular carcinoma (HCC) remains one of the leading causes of death worldwide. The complex etiology is attributed to many factors like heredity, cirrhosis, hepatitis infections or the dysregulation of the different molecular pathways. Nevertheless, the current treatment regimens have either severe side effects or tumors gradually acquire resistance upon prolonged use. Thus, developing a new selective treatment for HCC is the need of the hour. Many anticancer agents derived from plants have been evaluated for their cytotoxicity towards many human cancer cell lines. Strigolactones (SLs)-a newly discovered class of phytohormones, play a crucial role in the development of plant-root and shoot. Recently, many synthetic analogues of SLs have demonstrated pro-apoptotic effects on different cancer cell lines like prostate, breast, colon and lung. In this study, we tested synthetic SLs analogues on HCC cell line-HepG2 and evaluated their capability to induce cell proliferation inhibition and apoptosis. Primary WST-1 assays, followed by annexin-V/7AAD staining, demonstrated the anti-proliferative effects. The SLs analogues TIT3 and TIT7 were found to significantly reduce HepG2 cell viability in a dose- and time-dependent manner and induce apoptosis. Interestingly, though TIT3 and TIT7 strongly affected cancer cell proliferation, both compounds showed moderate anti-proliferative effect on normal cells. Further, migration of cancer cells was suppressed upon treatment with TIT3 and TIT7 in a wound healing assay. In summary, these findings suggest that two SLs analogues TIT3 and TIT7 exert selective inhibitory effects on cancer cells most likely through targeting microtubules. SLs analogues could be used in future as potential anti-cancer candidates in chemotherapy.

  4. Targeting EGFR/HER2 pathways enhances the antiproliferative effect of gemcitabine in biliary tract and gallbladder carcinomas

    International Nuclear Information System (INIS)

    Pignochino, Ymera; Bardelli, Alberto; Aglietta, Massimo; Leone, Francesco; Sarotto, Ivana; Peraldo-Neia, Caterina; Penachioni, Junia Y; Cavalloni, Giuliana; Migliardi, Giorgia; Casorzo, Laura; Chiorino, Giovanna; Risio, Mauro

    2010-01-01

    Advanced biliary tract carcinomas (BTCs) have poor prognosis and limited therapeutic options. Therefore, it is crucial to combine standard therapies with molecular targeting. In this study EGFR, HER2, and their molecular transducers were analysed in terms of mutations, amplifications and over-expression in a BTC case series. Furthermore, we tested the efficacy of drugs targeting these molecules, as single agents or in combination with gemcitabine, the standard therapeutic agent against BTC. Immunohistochemistry, FISH and mutational analysis were performed on 49 BTC samples of intrahepatic (ICCs), extrahepatic (ECCs), and gallbladder (GBCs) origin. The effect on cell proliferation of different EGFR/HER2 pathway inhibitors as single agents or in combination with gemcitabine was investigated on BTC cell lines. Western blot analyses were performed to investigate molecular mechanisms of targeted drugs. EGFR is expressed in 100% of ICCs, 52.6% of ECCs, and in 38.5% of GBCs. P-MAPK and p-Akt are highly expressed in ICCs (>58% of samples), and to a lower extent in ECCs and GBCs (<46%), indicating EGFR pathway activation. HER2 is overexpressed in 10% of GBCs (with genomic amplification), and 26.3% of ECCs (half of which has genomic amplification). EGFR or its signal transducers are mutated in 26.5% of cases: 4 samples bear mutations of PI3K (8.2%), 3 cases (6.1%) in K-RAS, 4 (8.2%) in B-RAF, and 2 cases (4.1%) in PTEN, but no loss of PTEN expression is detected. EGI-1 cell line is highly sensitive to gemcitabine, TFK1 and TGBC1-TKB cell lines are responsive and HuH28 cell line is resistant. In EGI-1 cells, combination with gefitinib further increases the antiproliferative effect of gemcitabine. In TFK1 and TGBC1-TKB cells, the efficacy of gemcitabine is increased with addiction of sorafenib and everolimus. In TGBC1-TKB cells, lapatinib also has a synergic effect with gemcitabine. HuH28 becomes responsive if treated in combination with erlotinib. Moreover, HuH28 cells are

  5. Canine osteosarcoma cell lines contain stem-like cancer cells: biological and pharmacological characterization.

    Science.gov (United States)

    Gatti, Monica; Wurth, Roberto; Vito, Guendalina; Pattarozzi, Alessandra; Campanella, Chiara; Thellung, Stefano; Maniscalco, Lorella; De Maria, Raffaella; Villa, Valentina; Corsaro, Alessandro; Nizzari, Mario; Bajetto, Adriana; Ratto, Alessandra; Ferrari, Angelo; Barbieri, Federica; Florio, Tullio

    2016-05-01

    Cancer stem cells (CSCs) represent a small subpopulation of cells responsible for tumor formation and progression, drug resistance, tumor recurrence and metastasization. CSCs have been identified in many human tumors including osteosarcoma (OSA). CSC distinctive properties are the expression of stem cell markers, sustained growth, self-renewal and tumorigenicity. Here we report the isolation of stem-like cells from two canine OSA cultures, characterized by self-renewal, evaluated by sphere formation ability, differential marker expression, and in vitro proliferation when cultured in a medium containing EGF and bFGF. Current therapies for OSA increased survival time, but prognosis remains poor, due to the development of drug resistance and metastases. Chemotherapy shrinks the tumor mass but CSCs remain unaffected, leading to tumor recurrence. Metformin, a drug for type 2 diabetes, has been shown to possess antitumor properties affecting CSC survival in different human and animal cancers. Here we show that metformin has a significant antiproliferative effect on canine OSA stem-like cells, validating this in vitro model for further pre-clinical drug evaluations. In conclusion, our results demonstrate the feasibility of obtaining CSC-enriched cultures from primary canine OSA cells as a promising model for biological and pharmacological studies of canine and human OSAs.

  6. Identification of a New G-Quadruplex Motif in the KRAS Promoter and Design of Pyrene-Modified G4-Decoys with Antiproliferative Activity in Pancreatic Cancer Cells

    DEFF Research Database (Denmark)

    Cogoi, Susanna; Paramasivam, Manikandan; Filitchev, Vyacheslav Viatcheslav

    2009-01-01

    A new quadruplex motif located in the promoter of the human KRAS gene, within a nuclease hypersensitive element (NHE), has been characterized. Oligonucleotides mimicking this quadruplex are found to compete with a DNA-protein complex between NHE and a nuclear extract from pancreatic cancer cells........ When modified with (R)-1-O-[4-1-(1-pyrenylethynyl) phenylmethyl]glycerol insertions (TINA), the quadruplex oligonucleotides showed a dramatic increase of the Tm (ΔTm from 22 to 32 °C) and a strong antiproliferative effects in Panc-1 cells....

  7. Monitoring cell line identity in collections of human induced pluripotent stem cells

    Directory of Open Access Journals (Sweden)

    Raquel Sarafian

    2018-04-01

    Full Text Available The ability to reprogram somatic cells into induced pluripotent stem cells (hiPSCs has led to the generation of large collections of cell lines from thousands of individuals with specific phenotypes, many of which will be shared among different research groups as invaluable tools for biomedical research. As hiPSC-based research involves extensive culture of many cell lines, the issue periodic cell line identification is particularly important to ensure that cell line identity remains accurate. Here we analyzed the different commercially available genotyping methods considering ease of in-house genotyping, cost and informativeness, and applied one of them in our workflow for hiPSC generation. We show that the chosen STR method was able to establish a unique DNA profile for each of the 35 individuals/hiPSC lines at the examined sites, as well as identify two discrepancies resulting from inadvertently exchanged samples. Our results highlight the importance of hiPSC line genotyping by an in-house method that allows periodic cell line identification and demonstrate that STR is a useful approach to supplement less frequent karyotyping and epigenetic evaluations. Keywords: Induced pluripotent stem cells, Genotyping, Cell line identification, Short tandem repeats, Quality control

  8. Small Molecular TRAIL Inducer ONC201 Induces Death in Lung Cancer Cells: A Preclinical Study

    OpenAIRE

    Feng, Yuan; Zhou, Jihong; Li, Zhanhua; Jiang, Ying; Zhou, Ying

    2016-01-01

    Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) selectively targets cancer cells. The present preclinical study investigated the anti-cancer efficiency of ONC201, a first-in-class small molecule TRAIL inducer, in lung cancer cells. We showed that ONC201 was cytotoxic and anti-proliferative in both established (A549 and H460 lines) and primary human lung cancer cells. It was yet non-cytotoxic to normal lung epithelial cells. Further, ONC201 induced exogenous apoptosis act...

  9. IGF-1R tyrosine kinase inhibitors and Vitamin K1 enhance the antitumor effects of Regorafenib in HCC cell lines.

    Science.gov (United States)

    Refolo, Maria Grazia; D'Alessandro, Rosalba; Lippolis, Catia; Carella, Nicola; Cavallini, Aldo; Messa, Caterina; Carr, Brian Irving

    2017-11-28

    The recent RESORCE trial showed that treatment with Regorafenib after Sorafenib failure provided a significant improvement in overall survival in HCC patients. Preclinical and clinical trial data showed that Regorafenib is a more potent drug than Sorafenib. In this study we aimed at improving Regorafenib actions and at reducing its toxicity, by targeting parallel pathways or by combination with Vitamins K (VKs). We investigated the effects of Regorafenib administrated at low concentrations and in combination with either VK1 and/or with GSK1838705A or OSI-906, two IGF1-R inhibitors, on HCC cell growth and motility. Our results showed that both IGF1-R inhibitors potentiated the antiproliferative and pro-apoptotic effects of Regorafenib and/or VK1 in HCC cell lines. Moreover we provide evidence that the combined treatment with IG1-R antagonists and Regorafenib (and/or VK1) also caused a significant reduction and depolymerization of actin resulting in synergistic inhibition exerted on cell migration. Thus, simultaneous blocking of MAPK and PI3K/Akt cascades with IGF1-R inhibitors plus Regorafenib could represent a more potent approach for HCC treatment.

  10. Establishment of cell lines with rat spermatogonial stem cell characteristics

    NARCIS (Netherlands)

    van Pelt, Ans M. M.; Roepers-Gajadien, Hermien L.; Gademan, Iris S.; Creemers, Laura B.; de Rooij, Dirk G.; van Dissel-Emiliani, Federica M. F.

    2002-01-01

    Spermatogonial cell lines were established by transfecting a mixed population of purified rat A(s) (stem cells), A(pr) and A(al) spermatogonia with SV40 large T antigen. Two cell lines were characterized and found to express Hsp90alpha and oct-4, specific markers for germ cells and A spermatogonia,

  11. Ficus carica latex prevents invasion through induction of let-7d expression in GBM cell lines.

    Science.gov (United States)

    Tezcan, Gulcin; Tunca, Berrin; Bekar, Ahmet; Yalcin, Murat; Sahin, Saliha; Budak, Ferah; Cecener, Gulsah; Egeli, Unal; Demir, Cevdet; Guvenc, Gokcen; Yilmaz, Gozde; Erkan, Leman Gizem; Malyer, Hulusi; Taskapilioglu, Mevlut Ozgur; Evrensel, Turkkan; Bilir, Ayhan

    2015-03-01

    Glioblastoma multiforme (GBM) is one of the deadliest human malignancies. A cure for GBM remains elusive, and the overall survival time is less than 1 year. Thus, the development of more efficient therapeutic approaches for the treatment of these patients is required. Induction of tumor cell death by certain phytochemicals derived from medicinal herbs and dietary plants has become a new frontier for cancer therapy research. Although the cancer suppressive effect of Ficus carica (fig) latex (FCL) has been determined in a few cancer types, the effect of this latex on GBM tumors has not been investigated. Therefore, in the current study, the anti-proliferative activity of FCL and the effect of the FCL-temozolomide (TMZ) combination were tested in the T98G, U-138 MG, and U-87 MG GBM cell lines using the WST-1 assay. The mechanism of cell death was analyzed using Annexin-V/FITC and TUNEL assays, and the effect of FCL on invasion was tested using the chick chorioallantoic membrane assay. To determine the effect of FCL on GBM progression, the expression levels of 40 GBM associated miRNAs were analyzed in T98G cells using RT-qPCR. According to the obtained data, FCL causes cell death in GBM cells with different responses to TMZ, and this effect is synergistically increased in combination with TMZ. In addition, the current study is the first to demonstrate the effect of FCL on modulation of let-7d expression, which may be an important underlying mechanism of the anti-invasive effect of this extract.

  12. Cytotoxic effects of Mangifera indica L. kernel extract on human breast cancer (MCF-7 and MDA-MB-231 cell lines) and bioactive constituents in the crude extract.

    Science.gov (United States)

    Abdullah, Al-Shwyeh Hussah; Mohammed, Abdulkarim Sabo; Abdullah, Rasedee; Mirghani, Mohamed Elwathig Saeed; Al-Qubaisi, Mothanna

    2014-06-25

    Waterlily Mango (Mangifera indica L.) is thought to be antioxidant-rich, conferred by its functional phytochemicals. The potential anticancer effects of the ethanolic kernel extract on breast cancer cells (MDA-MB-231 and MCF-7) using MTT, anti-proliferation, neutral red (NR) uptake and lactate dehydrogenase (LDH) release assays were evaluated. Cytological studies on the breast cancer cells were also conducted, and phytochemical analyses of the extract were carried out to determine the likely bioactive compounds responsible for such effects. Results showed the extract induced cytotoxicity in MDA-MB-231 cells and MCF-7 cells with IC50 values of 30 and 15 μg/mL, respectively. The extract showed significant toxicity towards both cell lines, with low toxicity to normal breast cells (MCF-10A). The cytotoxic effects on the cells were further confirmed by the NR uptake, antiproliferative and LDH release assays. Bioactive analyses revealed that many bioactives were present in the extract although butylated hydroxytoluene, a potent antioxidant, was the most abundant with 44.65%. M. indica extract appears to be more cytoxic to both estrogen positive and negative breast cancer cell lines than to normal breast cells. Synergistic effects of its antioxidant bioactives could have contributed to the cytotoxic effects of the extract. The extract of M. indica, therefore, has potential anticancer activity against breast cancer cells. This potential is worth studying further, and could have implications on future studies and eventually management of human breast cancers.

  13. Novel Antitumor Platinum(II) Conjugates Containing the Nonsteroidal Anti-inflammatory Agent Diclofenac: Synthesis and Dual Mechanisms of Antiproliferative Effects.

    Science.gov (United States)

    Intini, Francesco Paolo; Zajac, Juraj; Novohradsky, Vojtech; Saltarella, Teresa; Pacifico, Concetta; Brabec, Viktor; Natile, Giovanni; Kasparkova, Jana

    2017-02-06

    One concept how to improve anticancer effects of conventional metallodrugs consists in conjugation of these compounds with other biologically (antitumor) active agents, acting by a different mechanism. Here, we present synthesis, biological effects, and mechanisms of action of new Pt(II) derivatives containing one or two nonsteroidal anti-inflammatory diclofenac (DCF) ligands also known for their antitumor effects. The antiproliferative properties of these metallic conjugates show that these compounds are potent and cancer cell selective cytotoxic agents exhibiting activity in cisplatin resistant and the COX-2 positive tumor cell lines. One of these compounds, compound 3, in which DCF molecules are coordinated to Pt(II) through their carboxylic group, is more potent than parental conventional Pt(II) drug cisplatin, free DCF and the congeners of 3 in which DCF ligands are conjugated to Pt(II) via a diamine. The potency of 3 is due to several factors including enhanced internalization that correlates with enhanced DNA binding and cytotoxicity. Mechanistic studies show that 3 combines multiple effects. After its accumulation in cells, it releases Pt(II) drug capable of binding/damaging DNA and DCF ligands, which affect distribution of cells in individual phases of the cell cycle, inhibit glycolysis and lactate transport, collapse mitochondrial membrane potential, and suppress the cellular properties characteristic of metastatic progression.

  14. Comparison of steroid receptors from the androgen responsive DDT1 cell line and the nonresponsive HVP cell line.

    Science.gov (United States)

    Norris, J S; Kohler, P O

    1978-01-01

    Two hamster cell lines have been isolated from androgen target tissue. The DDT1 cells derived from ductus deferens tissue exhibit a growth response to androgens, while the HVP cells derived from ventral prostate are androgen unresponsive. Both cell lines contain androgen receptors, that are similar when compared by kinetic methods, sedimentation velocity, chromatographic procedures or nuclear translocation ability. The forms of the high salt extracted nuclear receptors are indistinguishable chromatographically. Therefore, we postulate that the lesion preventing androgen induced growth in the HVP cell line is subseqent to nuclear translocation of the steroid receptor complex.

  15. Studies of the antitumor mechanism of action of dermaseptin B2, a multifunctional cationic antimicrobial peptide, reveal a partial implication of cell surface glycosaminoglycans.

    Directory of Open Access Journals (Sweden)

    Célia Dos Santos

    Full Text Available Dermaseptin-B2 (DRS-B2 is a multifunctional cationic antimicrobial peptide (CAP isolated from frog skin secretion. We previously reported that DRS-B2 possesses anticancer and antiangiogenic activities in vitro and in vivo. In the present study, we evaluated the antiproliferative activity of DRS-B2 on numerous tumor cell lines, its cell internalization and studies of its molecular partners as well as their influences on its structure. Confocal microscopy using ([Alexa594]-(Cys0-DRS-B2 shows that in sensitive human tumor cells (PC3, DRS-B2 seems to accumulate rapidly at the cytoplasmic membranes and enters the cytoplasm and the nucleus, while in less sensitive tumor cells (U87MG, DRS-B2 is found packed in vesicles at the cell membrane. Furthermore FACS analysis shows that PC3 cells viability decreases after DRS-B2 treatment while U87 MG seems to be unaffected. However, "pull down" experiments performed with total protein pools from PC3 or U87MG cells and the comparison between the antiproliferative effect of DRS-B2 and its synthetic analog containing all D-amino acids suggest the absence of a stereo-selective protein receptor. Pretreatment of PC3 cells with sodium chlorate, decreases the antiproliferative activity of DRS-B2. This activity is partially restored after addition of exogenous chondroitin sulfate C (CS-C. Moreover, we demonstrate that at nanomolar concentrations CS-C potentiates the antiproliferative effect of DRS-B2. These results highlight the partial implication of glycosaminoglycans in the mechanism of antiproliferative action of DRS-B2. Structural analysis of DRS-B2 by circular dichroism in the presence of increasing concentration of CS-C shows that DRS-B2 adopts an α-helical structure. Finally, structure-activity-relationship studies suggest a key role of the W residue in position 3 of the DRS-B2 sequence for its antiproliferative activity.

  16. Pathway-specific differences between tumor cell lines and normal and tumor tissue cells

    Directory of Open Access Journals (Sweden)

    Tozeren Aydin

    2006-11-01

    Full Text Available Abstract Background Cell lines are used in experimental investigation of cancer but their capacity to represent tumor cells has yet to be quantified. The aim of the study was to identify significant alterations in pathway usage in cell lines in comparison with normal and tumor tissue. Methods This study utilized a pathway-specific enrichment analysis of publicly accessible microarray data and quantified the gene expression differences between cell lines, tumor, and normal tissue cells for six different tissue types. KEGG pathways that are significantly different between cell lines and tumors, cell lines and normal tissues and tumor and normal tissue were identified through enrichment tests on gene lists obtained using Significance Analysis of Microarrays (SAM. Results Cellular pathways that were significantly upregulated in cell lines compared to tumor cells and normal cells of the same tissue type included ATP synthesis, cell communication, cell cycle, oxidative phosphorylation, purine, pyrimidine and pyruvate metabolism, and proteasome. Results on metabolic pathways suggested an increase in the velocity nucleotide metabolism and RNA production. Pathways that were downregulated in cell lines compared to tumor and normal tissue included cell communication, cell adhesion molecules (CAMs, and ECM-receptor interaction. Only a fraction of the significantly altered genes in tumor-to-normal comparison had similar expressions in cancer cell lines and tumor cells. These genes were tissue-specific and were distributed sparsely among multiple pathways. Conclusion Significantly altered genes in tumors compared to normal tissue were largely tissue specific. Among these genes downregulation was a major trend. In contrast, cell lines contained large sets of significantly upregulated genes that were common to multiple tissue types. Pathway upregulation in cell lines was most pronounced over metabolic pathways including cell nucleotide metabolism and oxidative

  17. Characterization of stem-like cells in a new astroblastoma cell line

    Energy Technology Data Exchange (ETDEWEB)

    Coban, Esra Aydemir; Kasikci, Ezgi [Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, Istanbul (Turkey); Karatas, Omer Faruk [Molecular Biology and Genetics Department, Erzurum Technical University, Erzurum (Turkey); Suakar, Oznur; Kuskucu, Aysegul [Department of Medical Genetics, Yeditepe University Medical School and Yeditepe University Hospital, Istanbul (Turkey); Altunbek, Mine [Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, Istanbul (Turkey); Türe, Uğur [Department of Neurosurgery, Yeditepe University School of Medicine, Istanbul (Turkey); Sahin, Fikrettin [Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, Istanbul (Turkey); Bayrak, Omer Faruk, E-mail: ofbayrak@yeditepe.edu.tr [Department of Medical Genetics, Yeditepe University Medical School and Yeditepe University Hospital, Istanbul (Turkey)

    2017-03-15

    Cell lines established from tumors are the most commonly used models in cancer research, and their use in recent years has enabled a greater understanding of the biology of cancer and the means to develop effective treatment strategies. Astroblastomas are uncommon neuroepithelial tumors of glial origin, predominantly affecting young people, mainly teenagers and children, predominantly females. To date, only a single study has reported that astroblastomas contain a large number of neural stem-like cells, which had only a partial proliferation capacity and differentiation. Our objective was to establish an astroblastoma cell line to investigate the presence of astroblastic cells and cancer stem-like cells. The migratory and invasion abilities of the cells were quantified with invasion and migration assays and compared to a glioblastoma cell line. The presence of stem cells was detected with surface-marker analysis by using flow cytometry, and measuring the differentiation ability with a differentiation assay and the self-renewal capacity with a sphere-forming assay. These characteristics may determine whether this novel cell line is a model for astroblastomas that may have stem-cell characteristics. With this novel cell line, scientists can investigate the molecular pathways underlying astroblastomas and develop new therapeutic strategies for patients with these tumors. - Highlights: • An establishment of a novel astroblastoma cell line was proposed. • The presence of astroblastic cells and cancer stem-like cells was investigated. • The molecular pathways underlying astroblastomas may be investigated. • New therapeutic strategies for patients with astroblastoma may be developed.

  18. Vitamin K3 induces antiproliferative effect in cervical epithelial cells transformed by HPV 16 (SiHa cells) through the increase in reactive oxygen species production.

    Science.gov (United States)

    de Carvalho Scharf Santana, Natália; Lima, Natália Alves; Desoti, Vânia Cristina; Bidóia, Danielle Lazarin; de Souza Bonfim Mendonça, Patrícia; Ratti, Bianca Altrão; Nakamura, Tânia Ueda; Nakamura, Celso Vataru; Consolaro, Marcia Edilaine Lopes; Ximenes, Valdecir Farias; de Oliveira Silva, Sueli

    2016-10-01

    Cervical cancer is characterized as an important public health problem. According to latest estimates, cancer of the cervix is the fourth most common cancer among women. Due to its high prevalence, the search for new and efficient drugs to treat this infection is continuous. The progression of HPV-associated cervical cancer involves the expression of two viral proteins, E6 and E7, which are rapidly degraded by the ubiquitin-proteasome system through the increase in reactive oxygen species generation. Vitamins are essential to human substances, participate in the regulation of metabolism, and facilitate the process of energy transfer. Some early studies have indicated that vitamin K3 exerts antitumor activity by inducing cell death by apoptosis through an increase in the generation of reactive oxygen species. Thus, we evaluated the antiproliferative effect and a likely mechanism of action of vitamin K3 against cervical epithelial cells transformed by HPV 16 (SiHa cells) assessing the production of total ROS, the mitochondrial membrane potential, the cell morphology, the cell volume, and the cell membrane integrity. Our results show that vitamin K3 induces an increase in ROS production in SiHa cells, triggering biochemical and morphological events, such as depolarization of mitochondrial membrane potential and decreasing cell volume. Our data showed that vitamin K3 generates an oxidative imbalance in SiHa cells, leading to mechanisms that induce cell death by apoptosis.

  19. Thermodynamic, Anticoagulant, and Antiproliferative Properties of Thrombin Binding Aptamer Containing Novel UNA Derivative

    Directory of Open Access Journals (Sweden)

    Weronika Kotkowiak

    2018-03-01

    Full Text Available Thrombin is a serine protease that plays a crucial role in hemostasis, fibrinolysis, cell proliferation, and migration. Thrombin binding aptamer (TBA is able to inhibit the activity of thrombin molecule via binding to its exosite I. This 15-nt DNA oligonucleotide forms an intramolecular, antiparallel G-quadruplex structure with a chair-like conformation. In this paper, we report on our investigations on the influence of certain modified nucleotide residues on thermodynamic stability, folding topology, and biological properties of TBA variants. In particular, the effect of single incorporation of a novel 4-thiouracil derivative of unlocked nucleic acid (UNA, as well as single incorporation of 4-thiouridine and all four canonical UNAs, was evaluated. The studies presented herein have shown that 4-thiouridine in RNA and UNA series, as well as all four canonical UNAs, can efficiently modulate G-quadruplex thermodynamic and biological stability, and that the effect is strongly position dependent. Interestingly, TBA variants containing the modified nucleotide residues are characterized by unchanged folding topology. Thrombin time assay revealed that incorporation of certain UNA residues may improve G-quadruplex anticoagulant properties. Noteworthy, some TBA variants, characterized by decreased ability to inhibit thrombin activity, possess significant antiproliferative properties reducing the viability of the HeLa cell line even by 95% at 10 μM concentration.

  20. Thujone-Rich Fraction of Thuja occidentalis Demonstrates Major Anti-Cancer Potentials: Evidences from In Vitro Studies on A375 Cells

    Directory of Open Access Journals (Sweden)

    Raktim Biswas

    2011-01-01

    Full Text Available Crude ethanolic extract of Thuja occidentalis (Fam: Cupressaceae is used as homeopathic mother tincture (TOΦ to treat various ailments, particularly moles and tumors, and also used in various other systems of traditional medicine. Anti-proliferative and apoptosis-inducing properties of TOΦ and the thujone-rich fraction (TRF separated from it have been evaluated for their possible anti-cancer potentials in the malignant melanoma cell line A375. On initial trial by S-diphenyltetrazolium bromide assay, both TOΦ and TRF showed maximum cytotoxic effect on A375 cell line while the other three principal fractions separated by chromatography had negligible or no such effect, because of which only TRF was further characterized and subjected to certain other assays for determining its precise anti-proliferative and apoptotic potentials. TRF was reported to have a molecular formula of C10H16O with a molecular weight of 152. Exposure of TRF of Thuja occidentalis to A375 cells in vitro showed more cytotoxic, anti-proliferative and apoptotic effects as compared with TOΦ, but had minimal growth inhibitory responses when exposed to normal cells (peripheral blood mononuclear cell. Furthermore, both TOΦ and TRF also caused a significant decrease in cell viability, induced inter-nucleosomal DNA fragmentation, mitochondrial transmembrane potential collapse, increase in ROS generation, and release of cytochrome c and caspase-3 activation, all of which are closely related to the induction of apoptosis in A375 cells. Thus, TRF showed and matched all the anti-cancer responses of TOΦ and could be the main bio-active fraction. The use of TOΦ in traditional medicines against tumors has, therefore, a scientific basis.

  1. A novel hemagglutinin with antiproliferative activity against tumor cells from the hallucinogenic mushroom Boletus speciosus.

    Science.gov (United States)

    Sun, Jian; Ng, Tzi-Bun; Wang, Hexiang; Zhang, Guoqing

    2014-01-01

    Little was known about bioactive compounds from the hallucinogenic mushroom Boletus speciosus. In the present study, a hemagglutinin (BSH, B. speciosus hemagglutinin) was isolated from its fruiting bodies and enzymatic properties were also tested. The chromatographic procedure utilized comprised anion exchange chromatography on Q-Sepharose, cation exchange chromatography on CM-Cellulose, cation exchange chromatography on SP-Sepharose, and gel filtration by FPLC on Superdex 75. The hemagglutinin was a homodimer which was estimated to be approximately 31 kDa in size. The activity of BSH was stable up to 60°C, while there was a precipitous drop in activity when the temperature was elevated to 70°C. BSH retained 25% hemagglutinating activity when exposed to 100 mM NaOH and 25 mM HCl. The activity was potently inhibited by 1.25 mM Hg(2+) and slightly inhibited by Fe(2+), Ca(2+), and Pb(2+). None of the sugars tested showed inhibition towards BSH. Its hemagglutinating activity towards human erythrocytes type A, type B, and type AB was higher than type O. The hemagglutinin showed antiproliferative activity towards hepatoma Hep G2 cells and mouse lymphocytic leukemia cells (L1210) in vitro, with IC50 of 4.7 μ M and 7.0 μ M, respectively. It also exhibited HIV-1 reverse transcriptase inhibitory activity with an IC50 of 7.1 μ M.

  2. Low-temperature plasma-induced antiproliferative effects on multi-cellular tumor spheroids

    International Nuclear Information System (INIS)

    Plewa, Joseph-Marie; Yousfi, Mohammed; Eichwald, Olivier; Merbahi, Nofel; Frongia, Céline; Ducommun, Bernard; Lobjois, Valérie

    2014-01-01

    Biomedical applications of low-temperature plasmas are of growing interest, especially in the field of plasma-induced anti-tumor effects. The present work is aimed at investigating the regionalized antiproliferative effects of low-temperature plasmas on a multicellular tumor spheroid (MCTS), a model that mimics the 3D organization and regionalization of a microtumor region. We report that a low-temperature plasma jet, using helium flow in open air, inhibits HCT116 colon carcinoma MCTS growth in a dose-dependent manner. This growth inhibition is associated with the loss of Ki67, and the regionalized accumulation of DNA damage detected by histone H2AX phosphorylation. This regionalized genotoxic effect leads to massive cell death and loss of the MCTS proliferative region. The use of reactive oxygen species (ROS), scavenger N-acetyl cysteine (NAC) and plasma-conditioned media demonstrate that the ROS generated in the media after exposure to low-temperature plasma play a major role in these observed effects. These findings strengthen the interest in the use of MCTS for the evaluation of antiproliferative strategies, and open new perspectives for studies dedicated to demonstrate the potential of low-temperature plasma in cancer therapy

  3. Low-temperature plasma-induced antiproliferative effects on multi-cellular tumor spheroids

    Science.gov (United States)

    Plewa, Joseph-Marie; Yousfi, Mohammed; Frongia, Céline; Eichwald, Olivier; Ducommun, Bernard; Merbahi, Nofel; Lobjois, Valérie

    2014-04-01

    Biomedical applications of low-temperature plasmas are of growing interest, especially in the field of plasma-induced anti-tumor effects. The present work is aimed at investigating the regionalized antiproliferative effects of low-temperature plasmas on a multicellular tumor spheroid (MCTS), a model that mimics the 3D organization and regionalization of a microtumor region. We report that a low-temperature plasma jet, using helium flow in open air, inhibits HCT116 colon carcinoma MCTS growth in a dose-dependent manner. This growth inhibition is associated with the loss of Ki67, and the regionalized accumulation of DNA damage detected by histone H2AX phosphorylation. This regionalized genotoxic effect leads to massive cell death and loss of the MCTS proliferative region. The use of reactive oxygen species (ROS), scavenger N-acetyl cysteine (NAC) and plasma-conditioned media demonstrate that the ROS generated in the media after exposure to low-temperature plasma play a major role in these observed effects. These findings strengthen the interest in the use of MCTS for the evaluation of antiproliferative strategies, and open new perspectives for studies dedicated to demonstrate the potential of low-temperature plasma in cancer therapy.

  4. Disordering of human telomeric G-quadruplex with novel antiproliferative anthrathiophenedione.

    Directory of Open Access Journals (Sweden)

    Dmitry Kaluzhny

    Full Text Available Linear heteroareneanthracenediones have been shown to interfere with DNA functions, thereby causing death of human tumor cells and their drug resistant counterparts. Here we report the interaction of our novel antiproliferative agent 4,11-bis[(2-{[acetimido]amino}ethylamino]anthra[2,3-b]thiophene-5,10-dione with telomeric DNA structures studied by isothermal titration calorimetry, circular dichroism and UV absorption spectroscopy. New compound demonstrated a high affinity (K(ass∼10⁶ M⁻¹ for human telomeric antiparallel quadruplex d(TTAGGG₄ and duplex d(TTAGGG₄∶d(CCCTAA₄. Importantly, a ∼100-fold higher affinity was determined for the ligand binding to an unordered oligonucleotide d(TTAGGG TTAGAG TTAGGG TTAGGG unable to form quadruplex structures. Moreover, in the presence of Na+ the compound caused dramatic conformational perturbation of the telomeric G-quadruplex, namely, almost complete disordering of G-quartets. Disorganization of a portion of G-quartets in the presence of K+ was also detected. Molecular dynamics simulations were performed to illustrate how the binding of one molecule of the ligand might disrupt the G-quartet adjacent to the diagonal loop of telomeric G-quadruplex. Our results provide evidence for a non-trivial mode of alteration of G-quadruplex structure by tentative antiproliferative drugs.

  5. Astemizole synergizes calcitriol antiproliferative activity by inhibiting CYP24A1 and upregulating VDR: a novel approach for breast cancer therapy.

    Directory of Open Access Journals (Sweden)

    Janice García-Quiroz

    Full Text Available Calcitriol antiproliferative effects include inhibition of the oncogenic ether-à-go-go-1 potassium channel (Eag1 expression, which is necessary for cell cycle progression and tumorigenesis. Astemizole, a new promising antineoplastic drug, targets Eag1 by blocking ion currents. Herein, we characterized the interaction between calcitriol and astemizole as well as their conjoint antiproliferative action in SUM-229PE, T-47D and primary tumor-derived breast cancer cells.Molecular markers were studied by immunocytochemistry, Western blot and real time PCR. Inhibitory concentrations were determined by dose-response curves and metabolic activity assays. At clinically achievable drug concentrations, synergistic antiproliferative interaction was observed between calcitriol and astemizole, as calculated by combination index analysis (CI <1. Astemizole significantly enhanced calcitriol's growth-inhibitory effects (3-11 folds, P<0.01. Mean IC(20 values were 1.82 ± 2.41 nM and 1.62 ± 0.75 µM; for calcitriol (in estrogen receptor negative cells and astemizole, respectively. Real time PCR showed that both drugs alone downregulated, while simultaneous treatment further reduced Ki-67 and Eag1 gene expression (P<0.05. Astemizole inhibited basal and calcitriol-induced CYP24A1 and CYP3A4 mRNA expression (cytochromes involved in calcitriol and astemizole degradation in breast and hepatoma cancer cells, respectively, while upregulated vitamin D receptor (VDR expression.Astemizole synergized calcitriol antiproliferative effects by downregulating CYP24A1, upregulating VDR and targeting Eag1. This study provides insight into the molecular mechanisms involved in astemizole-calcitriol combined antineoplastic effect, offering scientific support to test both compounds in combination in further preclinical and clinical studies of neoplasms expressing VDR and Eag1. VDR-negative tumors might also be sensitized to calcitriol antineoplastic effects by the use of astemizole

  6. Low Doses of Curcuma longa Modulates Cell Migration and Cell-Cell Adhesion.

    Science.gov (United States)

    de Campos, Paloma Santos; Matte, Bibiana Franzen; Diel, Leonardo Francisco; Jesus, Luciano Henrique; Bernardi, Lisiane; Alves, Alessandro Menna; Rados, Pantelis Varvaki; Lamers, Marcelo Lazzaron

    2017-09-01

    Cell invasion and metastasis are involved in clinical failures in cancer treatment, and both events require the acquisition of a migratory behavior by tumor cells. Curcumin is a promising natural product with anti-proliferative activity, but its effects on cell migration are still unclear. We evaluated the effects of curcumin on the proliferation, apoptosis, migration, and cell-cell adhesion of keratinocyte, oral squamous cell carcinoma (OSCC), and fibroblast cell lines, as well as in a xenograft model of OSCC. Curcumin (2 μM) decreased cell proliferation in cell lines with mesenchymal characteristics, while cell death was detected only at 50 μM. We observed that highly migratory cells showed a decrease on migration speed and directionality when treated with 2 or 5 μM of curcumin (50% and 40%, respectively, p curcumin dose dependently decreased cell-cell adhesion, especially on tumor-derived spheroids. Also, in a xenograft model with patient-derived OSCC cells, the administration of curcumin decreased tumor growth and aggressiveness when compared with untreated tumors, indicating the potential antitumor effect in oral cancer. These results suggest that lower doses of curcumin can influence several steps involved in tumorigenesis, including migration properties, suggesting a possible use in cancer therapy. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  7. Cell fusion induced by ionizing radiation in various cell lines

    International Nuclear Information System (INIS)

    Khair, M.B.

    1994-07-01

    Cell fusion induced by ionizing radiation has been studied in rat's hepatocytes in vivo and in different cell lines in vitro. These cell lines were: Hela cells, V-79 fibroblasts, human and rat lymphocytes. For irradiation, 0.85 MeV fission neutrons and 14 MeV fast neutrons were used. Cell analyses were performed by fluorescent dyes using immunofluorescent microscope and flow cytometre. Our results in vivo showed that, regardless the dose-rate, a dose of 1 Gy approximately was enough to induce a significant level of cell fusion depending on neutron energy and the age of rats. The level of cell fusion was also significant in Hela cells at a dose of 0.5 Gy. Similar effect, but to a lesser extent, was observed in V-79 cells. Whereas, in lymphocytes insignificant cell fusion was noticed. The varying levels of cell-fusion in different cell lines could be attributed to the type of cells and mutual contact between cells. Furthermore irradiation did not show any influence on cell division ability in both hepatocytes and Hela cells and that fused cells were also able to divide forming a new generation of cells. (author). 36 refs., 8 figs., 10 tabs

  8. Bark extract mediated green synthesis of silver nanoparticles: Evaluation of antimicrobial activity and antiproliferative response against osteosarcoma

    Energy Technology Data Exchange (ETDEWEB)

    Nayak, Debasis; Ashe, Sarbani; Rauta, Pradipta Ranjan; Kumari, Manisha; Nayak, Bismita, E-mail: nayakb@nitrkl.ac.in

    2016-01-01

    In the current investigation we report the biosynthesis potentials of bark extracts of Ficus benghalensis and Azadirachta indica for production of silver nanoparticle without use of any external reducing or capping agent. The appearance of dark brown color indicated the complete nanoparticle synthesis which was further validated by absorbance peak by UV–vis spectroscopy. The morphology of the synthesized particles was characterized by Field emission- scanning electron microscopy (Fe-SEM) and atomic force microscopy (AFM). The X-ray diffraction (XRD) patterns clearly illustrated the crystalline phase of the synthesized nanoparticles. ATR-Fourier Transform Infrared (ATR-FTIR) spectroscopy was performed to identify the role of various functional groups in the nanoparticle synthesis. The synthesized nanoparticles showed promising antimicrobial activity against Gram negative (Escherichia coli, Pseudomonas aeruginosa and Vibrio cholerae) and Gram positive (Bacillus subtilis) bacteria. The synthesized nano Ag also showed antiproliferative activity against MG-63 osteosarcoma cell line in a dose dependent manner. Thus, these synthesized Ag nanoparticles can be used as a broad spectrum therapeutic agent against osteosarcoma and microorganisms. - Highlights: • Rapid, cost effective, benign synthesis of AgNPs using novel bark extracts • Color change and absorbance peak observed at 426 and 420 nm due to SPR phenomenon • Crystalline and spherical nanoparticles having average size of ~ 40 and ~ 50 nm each • Highly enhanced antimicrobial activity against human nosocomial strains • Demonstrated dose dependent toxicity towards osteosarcoma MG-63 cell lines.

  9. Bark extract mediated green synthesis of silver nanoparticles: Evaluation of antimicrobial activity and antiproliferative response against osteosarcoma

    International Nuclear Information System (INIS)

    Nayak, Debasis; Ashe, Sarbani; Rauta, Pradipta Ranjan; Kumari, Manisha; Nayak, Bismita

    2016-01-01

    In the current investigation we report the biosynthesis potentials of bark extracts of Ficus benghalensis and Azadirachta indica for production of silver nanoparticle without use of any external reducing or capping agent. The appearance of dark brown color indicated the complete nanoparticle synthesis which was further validated by absorbance peak by UV–vis spectroscopy. The morphology of the synthesized particles was characterized by Field emission- scanning electron microscopy (Fe-SEM) and atomic force microscopy (AFM). The X-ray diffraction (XRD) patterns clearly illustrated the crystalline phase of the synthesized nanoparticles. ATR-Fourier Transform Infrared (ATR-FTIR) spectroscopy was performed to identify the role of various functional groups in the nanoparticle synthesis. The synthesized nanoparticles showed promising antimicrobial activity against Gram negative (Escherichia coli, Pseudomonas aeruginosa and Vibrio cholerae) and Gram positive (Bacillus subtilis) bacteria. The synthesized nano Ag also showed antiproliferative activity against MG-63 osteosarcoma cell line in a dose dependent manner. Thus, these synthesized Ag nanoparticles can be used as a broad spectrum therapeutic agent against osteosarcoma and microorganisms. - Highlights: • Rapid, cost effective, benign synthesis of AgNPs using novel bark extracts • Color change and absorbance peak observed at 426 and 420 nm due to SPR phenomenon • Crystalline and spherical nanoparticles having average size of ~ 40 and ~ 50 nm each • Highly enhanced antimicrobial activity against human nosocomial strains • Demonstrated dose dependent toxicity towards osteosarcoma MG-63 cell lines

  10. Biological Evaluation of Dipyrromethanes in Cancer Cell Lines: Antiproliferative and Pro-apoptotic Properties

    Czech Academy of Sciences Publication Activity Database

    Jorda, Radek; Lopes, S. M.M.; Řezníčková, Eva; Kryštof, Vladimír; Pinho e Melo, T. M.V.D.

    2017-01-01

    Roč. 12, č. 9 (2017), s. 701-711 ISSN 1860-7179 R&D Projects: GA MŠk(CZ) LO1204 Institutional support: RVO:61389030 Keywords : anticancer agents * apoptosis * cell cycle * cytotoxicity * dipyrromethanes Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Oncology Impact factor: 3.225, year: 2016

  11. Synergistic anticancer effects of cisplatin and histone deacetylase inhibitors (SAHA and TSA) on cholangiocarcinoma cell lines.

    Science.gov (United States)

    Asgar, Md Ali; Senawong, Gulsiri; Sripa, Banchob; Senawong, Thanaset

    2016-01-01

    Clinical application of cisplatin against cholangiocarcinoma is often associated with resistance and toxicity posing urgent demand for combination therapy. In this study, we evaluated the combined anticancer effect of cisplatin and histone deacetylase inhibitors (HDACIs), suberoylanilide hydroxamic acid (SAHA) and trichostatin A (TSA), on the cholangiocarcinoma KKU-100 and KKU-M214 cell lines. Antiproliferative activity was evaluated using MTT assay. Apoptosis induction and cell cycle arrest were analyzed by flow cytometry. Cell cycle and apoptosis regulating proteins were evaluated by western blot analysis. MTT assay showed that cisplatin, SAHA and TSA dose-dependently reduced the viability of KKU-100 and KKU-M214 cells. The combination of cisplatin and HDACIs exerted significantly more cytotoxicity than the single drugs. Combination indices below 1.0 reflect synergism between cisplatin and HDACIs, leading to positive dose reductions of cisplatin and HDACIs. Cisplatin and HDACIs alone induced G0/G1 phase arrest in KKU-100 cells, but the drug combinations increased sub-G1 percent more than either drug. However, cisplatin and HDACIs alone or in combination increased only the sub-G1 percent in KKU-M214 cells. Annexin V-FITC staining revealed that cisplatin and HDACIs combinations induced more apoptotic cell death of both KKU-100 and KKU-M214 cells than the single drug. In KKU-100 cells, growth inhibition was accompanied by upregulation of p53 and p21 and downregulation of CDK4 and Bcl-2 due to exposure to cisplatin, SAHA and TSA alone or in combination. Moreover, combination of agents exerted higher impacts on protein expression. Single agents or combination did not affect p53 expression, however, combination of cisplatin and HDACIs increased the expression of p21 in KKU-M214 cells. Taken together, cisplatin and HDACIs combination may improve the therapeutic outcome in cholangiocarcinoma patients.

  12. Determination of the Antiproliferative Activity of New Theobromine Derivatives and Evaluation of Their In Vitro Hepatotoxic Effects.

    Science.gov (United States)

    Georgieva, Maya; Kondeva-Burdina, Magdalena; Mitkov, Javor; Tzankova, Virginia; Momekov, Georgi; Zlatkov, Alexander

    2016-01-01

    A new series of N-substituted 1-benzyltheobromine-8-thioacetamides were designed and synthesized. Their anti-proliferative activity against human chronic myelocytic leukemia cell K562, human T-cell leukemia cell SKW-3 and human acute myeloid leukemia HL-60 was evaluated. For the tested compounds a concentrationdependent cytotoxic activity was observed, with 7g outlined as the most active compound within the series. The targed compounds were obtained in yields of 56 to 85% and their structures were elucidated by FTIR, (1)H NMR, (13)C NMR and microanalyses. The compounds purity was proven by elemental analysis and spectral data. In general, the compounds showed low hepatotoxicity on sub-cellular and cellular level. On isolated rat microsomes only 7d showed toxic effect while theobromine, 1-benzyl-theobromine-thioacetic acid (BTTA) and the other new theobromine derivatives were devoid of toxicity. In isolated rat hepatocytes, when compared to theobromine and BTTA, 7f showed lower cytotoxic effects, and 7d exerted higher cytotoxicity. The results indicate 7g as a promising structure for the design of future compounds with low hepatotoxicity and good antiproliferative activity.

  13. Cranberry and Grape Seed Extracts Inhibit the Proliferative Phenotype of Oral Squamous Cell Carcinomas

    Directory of Open Access Journals (Sweden)

    Kourt Chatelain

    2011-01-01

    Full Text Available Proanthocyanidins, compounds highly concentrated in dietary fruits, such as cranberries and grapes, demonstrate significant cancer prevention potential against many types of cancer. The objective of this study was to evaluate cranberry and grape seed extracts to quantitate and compare their anti-proliferative effects on the most common type of oral cancer, oral squamous cell carcinoma. Using two well-characterized oral squamous cell carcinoma cell lines, CAL27 and SCC25, assays were performed to evaluate the effects of cranberry and grape seed extract on phenotypic behaviors of these oral cancers. The proliferation of both oral cancer cell lines was significantly inhibited by the administration of cranberry and grape seed extracts, in a dose-dependent manner. In addition, key regulators of apoptosis, caspase-2 and caspase-8, were concomitantly up-regulated by these treatments. However, cranberry and grape seed extracts elicited differential effects on cell adhesion, cell morphology, and cell cycle regulatory pathways. This study represents one of the first comparative investigations of cranberry and grape seed extracts and their anti-proliferative effects on oral cancers. Previous findings using purified proanthocyanidin from grape seed extract demonstrated more prominent growth inhibition, as well as apoptosis-inducing, properties on CAL27 cells. These observations provide evidence that cranberry and grape seed extracts not only inhibit oral cancer proliferation but also that the mechanism of this inhibition may function by triggering key apoptotic regulators in these cell lines. This information will be of benefit to researchers interested in elucidating which dietary components are central to mechanisms involved in the mediation of oral carcinogenesis and progression.

  14. Induction of arginosuccinate synthetase (ASS) expression affects the antiproliferative activity of arginine deiminase (ADI) in melanoma cells.

    Science.gov (United States)

    Manca, Antonella; Sini, Maria Cristina; Izzo, Francesco; Ascierto, Paolo A; Tatangelo, Fabiana; Botti, Gerardo; Gentilcore, Giusy; Capone, Marilena; Mozzillo, Nicola; Rozzo, Carla; Cossu, Antonio; Tanda, Francesco; Palmieri, Giuseppe

    2011-06-01

    Arginine deiminase (ADI), an arginine-degrading enzyme, has been used in the treatment of tumours sensitive to arginine deprivation, such as malignant melanoma (MM) and hepatocellular carcinoma (HCC). Endogenous production of arginine is mainly dependent on activity of ornithine transcarbamylase (OTC) and argininosuccinate synthetase (ASS) enzymes. We evaluated the effect of ADI treatment on OTC and ASS expression in a series of melanoma cell lines. Twenty-five primary melanoma cell lines and normal fibroblasts as controls underwent cell proliferation assays and Western blot analyses in the presence or absence of ADI. Tissue sections from primary MMs (N = 20) and HCCs (N = 20) were investigated by immunohistochemistry for ASS expression. Overall, 21/25 (84%) MM cell lines presented a cell growth inhibition by ADI treatment; none of them presented constitutive detectable levels of the ASS protein. However, 7/21 (33%) ADI-sensitive melanoma cell lines presented markedly increased expression levels of the ASS protein following ADI treatment, with a significantly higher IC50 median value. Growth was not inhibited and the IC50 was not reached among the remaining 4/25 (16%) MM cell lines; all of them showed constitutive ASS expression. The OTC protein was found expressed in all melanoma cell lines before and after the ADI treatment. Lack of ASS immunostaining was observed in all analyzed in vivo specimens. Our findings suggest that response to ADI treatment in melanoma is significantly correlated with the ability of cells to express ASS either constitutively at basal level (inducing drug resistance) or after the treatment (reducing sensitivity to ADI).

  15. Feeder-cell-independent culture of the pig-embryonic-stem-cell-derived exocrine pancreatic cell line, PICM-31

    Science.gov (United States)

    The adaptation to feeder-independent growth of a pig embryonic stem cell-derived pancreatic cell line is described. The parental PICM-31 cell line, previously characterized as an exocrine pancreas cell line, was colony-cloned two times in succession resulting in the subclonal cell line, PICM-31A1. P...

  16. Fatty acid composition and anticancer activity in colon carcinoma cell lines of Prunus dulcis seed oil.

    Science.gov (United States)

    Mericli, Filiz; Becer, Eda; Kabadayı, Hilal; Hanoglu, Azmi; Yigit Hanoglu, Duygu; Ozkum Yavuz, Dudu; Ozek, Temel; Vatansever, Seda

    2017-12-01

    Almond oil is used in traditional and complementary therapies for its numerous health benefits due to high unsaturated fatty acids content. This study investigated the composition and in vitro anticancer activity of almond oil from Northern Cyprus and compared with almond oil from Turkey. Almond oil from Northern Cyprus was obtained by supercritical CO 2 extraction and analyzed by GC-MS. Almond oil of Turkey was provided from Turkish pharmacies. Different concentrations of almond oils were incubated for 24 and 48 h with Colo-320 and Colo-741 cells. Cell growth and cytotoxicity were measured by MTT assays. Anticancer and antiprolifetarive activities of almond oils were investigated by immunocytochemistry using antibodies directed against to BMP-2, β-catenin, Ki-67, LGR-5 and Jagged 1. Oleic acid (77.8%; 75.3%), linoleic acid (13.5%; 15.8%), palmitic acid (7.4%; 6.3%), were determined as the major compounds of almond oil from Northern Cyprus and Turkey, respectively. In the MTT assay, both almond oils were found to be active against Colo-320 and Colo-741 cells with 1:1 dilution for both 24 h and 48 h. As a result of immunohistochemical staining, while both almond oils exhibited significant antiproliferative and anticancer activity, these activities were more similar in Colo-320 cells which were treated with Northern Cyprus almond oil. Almond oil from Northern Cyprus and Turkey may have anticancer and antiproliferative effects on colon cancer cells through molecular signalling pathways and, thus, they could be potential novel therapeutic agents.

  17. Isoliquiritigenin exhibits anti-proliferative properties in the pituitary independent of estrogen receptor function

    International Nuclear Information System (INIS)

    Weis, Karen E.; Raetzman, Lori T.

    2016-01-01

    The plant flavonoid isoliquiritigenin (ISL) is a botanical estrogen widely taken as an herbal supplement to ease the symptoms of menopause. ISL has been also shown to have anti-tumor properties in a number of cancer cell backgrounds. However, the effects of ISL on normal cells are less well known and virtually unstudied in the context of the pituitary gland. We have established a pituitary explant culture model to screen chemical agents for gene expression changes within the pituitary gland during a period of active proliferation and differentiation. Using this whole-organ culture system we found ISL to be weakly estrogenic based on its ability to induce Cckar mRNA expression, an estrogen receptor (ER) mediated gene. Using a range of ISL from 200 nM to 200 μM, we discovered that ISL promoted cell proliferation at a low concentration, yet potently inhibited proliferation at the highest concentration. ICI 182,780 failed to antagonize ISL's repression of pituitary cell proliferation, indicating the effect is independent of ER signaling. Coincident with a decrease in proliferating cells, we observed down-regulation of transcript for cyclin D2 and E2 and a strong induction of mRNA and protein for the cyclin dependent kinase inhibitor Cdkn1a (p21). Importantly, high dose ISL did not alter the balance of progenitor vs. differentiated cell types within the pituitary explants and they seemed otherwise healthy; however, TUNEL staining revealed an increase in apoptotic cell death in ISL treated cultures. Our results merit further examination of ISL as an anti-tumor agent in the pituitary gland. - Highlights: • Isoliquiritigenin possesses weak estrogenic activity based on induction of Cckar. • ISL can be anti-proliferative in pituitary explants without altering cell lineages. • Anti-proliferative behavior of ISL is not estrogen receptor mediated. • ISL induces p21 expression leading to cell cycle arrest and apoptosis.

  18. Isoliquiritigenin exhibits anti-proliferative properties in the pituitary independent of estrogen receptor function

    Energy Technology Data Exchange (ETDEWEB)

    Weis, Karen E.; Raetzman, Lori T., E-mail: raetzman@life.illinois.edu

    2016-12-15

    The plant flavonoid isoliquiritigenin (ISL) is a botanical estrogen widely taken as an herbal supplement to ease the symptoms of menopause. ISL has been also shown to have anti-tumor properties in a number of cancer cell backgrounds. However, the effects of ISL on normal cells are less well known and virtually unstudied in the context of the pituitary gland. We have established a pituitary explant culture model to screen chemical agents for gene expression changes within the pituitary gland during a period of active proliferation and differentiation. Using this whole-organ culture system we found ISL to be weakly estrogenic based on its ability to induce Cckar mRNA expression, an estrogen receptor (ER) mediated gene. Using a range of ISL from 200 nM to 200 μM, we discovered that ISL promoted cell proliferation at a low concentration, yet potently inhibited proliferation at the highest concentration. ICI 182,780 failed to antagonize ISL's repression of pituitary cell proliferation, indicating the effect is independent of ER signaling. Coincident with a decrease in proliferating cells, we observed down-regulation of transcript for cyclin D2 and E2 and a strong induction of mRNA and protein for the cyclin dependent kinase inhibitor Cdkn1a (p21). Importantly, high dose ISL did not alter the balance of progenitor vs. differentiated cell types within the pituitary explants and they seemed otherwise healthy; however, TUNEL staining revealed an increase in apoptotic cell death in ISL treated cultures. Our results merit further examination of ISL as an anti-tumor agent in the pituitary gland. - Highlights: • Isoliquiritigenin possesses weak estrogenic activity based on induction of Cckar. • ISL can be anti-proliferative in pituitary explants without altering cell lineages. • Anti-proliferative behavior of ISL is not estrogen receptor mediated. • ISL induces p21 expression leading to cell cycle arrest and apoptosis.

  19. Application of DNA fingerprints for cell-line individualization.

    Science.gov (United States)

    Gilbert, D A; Reid, Y A; Gail, M H; Pee, D; White, C; Hay, R J; O'Brien, S J

    1990-09-01

    DNA fingerprints of 46 human cell lines were derived using minisatellite probes for hypervariable genetic loci. The incidence of 121 HaeIII DNA fragments among 33 cell lines derived from unrelated individuals was used to estimate allelic and genotypic frequencies for each fragment and for composite individual DNA fingerprints. We present a quantitative estimate of the extent of genetic difference between individuals, an estimate based on the percentage of restriction fragments at which they differ. The average percent difference (APD) among pairwise combinations from the population of 33 unrelated cell lines was 76.9%, compared with the APD in band sharing among cell lines derived from the same individual (less than or equal to 1.2%). Included in this survey were nine additional cell lines previously implicated as HeLa cell derivatives, and these lines were clearly confirmed as such by DNA fingerprints (APD less than or equal to 0.6%). On the basis of fragment frequencies in the tested cell line population, a simple genetic model was developed to estimate the frequencies of each DNA fingerprint in the population. The median incidence was 2.9 X 10(-17), and the range was 2.4 X 10(-21) to 6.6 X 10(-15). This value approximates the probability that a second cell line selected at random from unrelated individuals will match a given DNA fingerprint. Related calculations address the chance that any two DNA fingerprints would be identical among a large group of cell lines. This estimate is still very slight; for example, the chance of two or more common DNA fingerprints among 1 million distinct individuals is less than .001. The procedure provides a straightforward, easily interpreted, and statistically robust method for identification and individualization of human cells.

  20. Plumbagin exerts an immunosuppressive effect on human T-cell acute lymphoblastic leukemia MOLT-4 cells

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Kyoung Jun; Lee, Yura [Department of Biomedical Laboratory Science, Daejeon 34824 (Korea, Republic of); Kim, Soon Ae [Department of Pharmacology, School of Medicine, Daejeon 34824 (Korea, Republic of); Kim, Jiyeon, E-mail: yeon@eulji.ac.kr [Department of Biomedical Laboratory Science, Daejeon 34824 (Korea, Republic of)

    2016-04-22

    Of the hematological disorders typified by poor prognoses and survival rates, T-cell acute lymphoblastic leukemia (T-ALL) is one of the most commonly diagnosed. Despite the development of new therapeutic agents, the treatment options for this cancer remain limited. In this manuscript, we investigated the anti-proliferative effects of plumbagin, mediated by the activation of mitogen-activated protein kinase (MAPK) pathways, and inhibition of NF-κB signaling; the human T-ALL MOLT-4 cell line was used as our experimental system. Plumbagin is a natural, plant derived compound, which exerts an anti-proliferative activity against many types of human cancer. Our experiments confirm that plumbagin induces a caspase-dependent apoptosis of MOLT-4 cells, with no significant cytotoxicity seen for normal peripheral blood mononuclear cells (PBMCs). Plumbagin also inhibited LPS-induced phosphorylation of p65, and the transcription of NF-κB target genes. Our results now show that plumbagin is a potent inhibitor of the NF-κB signaling pathway, and suppressor of T-ALL cell proliferation. - Highlights: • Plumbagin induces caspase-dependent apoptosis in T-ALL MOLT-4 cells. • Plumbagin activates phosphorylation of stress-activated protein kinase (SAPK) JNK and p38. • Plumbagin inhibits LPS-mediated NF-κB signaling cascade. • Plumbagin inhibits LPS-mediated transcriptional activity of pro-inflammatory cytokines.

  1. Study of the betulin enriched birch bark extracts effects on human carcinoma cells and ear inflammation

    Directory of Open Access Journals (Sweden)

    Dehelean Cristina A

    2012-11-01

    Full Text Available Abstract Background Pentacyclic triterpenes, mainly betulin and betulinic acid, are valuable anticancer agents found in the bark of birch tree. This study evaluates birch bark extracts for the active principles composition. Results New improved extraction methods were applied on the bark of Betula pendula in order to reach the maximum content in active principles. Extracts were analyzed by HPLC-MS, Raman, SERS and 13C NMR spectroscopy which revealed a very high yield of betulin (over 90%. Growth inhibiting effects were measured in vitro on four malignant human cell lines: A431 (skin epidermoid carcinoma, A2780 (ovarian carcinoma, HeLa (cervix adenocarcinoma and MCF7 (breast adenocarcinoma, by means of MTT assay. All of the prepared bark extracts exerted a pronounced antiproliferative effect against human cancer cell lines. In vivo studies involved the anti-inflammatory effect of birch extracts on TPA-induced model of inflammation in mice. Conclusions The research revealed the efficacy of the extraction procedures as well as the antiproliferative and anti-inflammatory effects of birch extracts.

  2. Antiproliferative effect of a novel nitro-oxy derivative of celecoxib in human colon cancer cells: role of COX-2 and nitric oxide.

    Science.gov (United States)

    Bocca, Claudia; Bozzo, Francesca; Bassignana, Andrea; Miglietta, Antonella

    2010-07-01

    It has been shown previously that a novel nitrooxy derivative of celecoxib exerts antiproliferative and pro-apoptotic effects in human colon cancer cells. The aim of this study was to elucidate whether these biological properties depend on COX-2 inhibition and/or NO release. Therefore, the derivative was decomposed into the parent compound celecoxib and the NO donor benzyl nitrate and the biological role of each was tested in COX-2-positive (HT-29) and -negative (SW-480) colon cancer cells. The main findings were that the nitro-oxy derivative behaved like celecoxib in HT-29 cells in terms of COX-2 and ERK/MAPK inhibition, as well as induction of apoptosis, while the benzyl nitrate had no such effects. Interestingly, the beta-catenin system was activated by the nitro-oxy derivative as well as by benzyl nitrate alone more potently than by the parent compound celecoxib, suggesting a possible regulatory role for NO. In SW480 cells, these activities were substantially less pronounced, suggesting the presence of COX-2-dependent mechanisms in the modulation of these parameters.

  3. Natural killer cells for immunotherapy – Advantages of cell lines over blood NK cells

    Directory of Open Access Journals (Sweden)

    Hans eKlingemann

    2016-03-01

    Full Text Available Natural killer cells are potent cytotoxic effector cells for cancer therapy and potentially for severe viral infections. However, there are technical challenges to obtain sufficient numbers of functionally active NK cells form a patient’s blood since they represent only 10% of the lymphocytes. Especially, cancer patients are known to have dysfunctional NK cells. The alternative is to obtain cells from a healthy donor, which requires depletion of the allogeneic T-cells. Establishing cell lines from donor blood NK cells have not been successful, in contrast to blood NK cells obtained from patients with a clonal NK cell lymphoma. Those cells can be expanded in culture in the presence of IL-2. However, except for the NK-92 cell line none of the other six known cell lines has consistent and reproducibly high anti-tumor cytotoxicity, nor can they be easily genetically manipulated to recognize specific tumor antigens or to augment monoclonal antibody activity through ADCC. NK-92 is also the only cell line product that has been widely given to patients with advanced cancer with demonstrated efficiency and minimal side effects.

  4. Susceptibility testing of fish cell lines for virus isolation

    DEFF Research Database (Denmark)

    Ariel, Ellen; Skall, Helle Frank; Olesen, Niels Jørgen

    2009-01-01

    and laboratories, but also between lineages of the same cell line. To minimise the occurrence of false negatives in a cell culture based surveillance system, we have investigated methods, to select cell lineages that are relatively superior in their susceptibility to a panel of virus isolates. The procedures...... cell lineages, we increased the number of isolates of each virus, propagated stocks in a given cell line and tested all lineages of that line in use in the laboratory. Testing of relative cell line susceptibility between laboratories is carried out annually via the Inter-laboratory Proficiency Test...... sensitivity for surveillance purposes within a cell line and between laboratories.In terms of economic and practical considerations as well as attempting to approach a realistic test system, we suggest the optimal procedure for susceptibility testing of fish cell lines for virus isolation to be a combination...

  5. Atypical McMurry Cross-Coupling Reactions Leading to a New Series of Potent Antiproliferative Compounds Bearing the Key [Ferrocenyl-Ene-Phenol] Motif

    Directory of Open Access Journals (Sweden)

    Pascal Pigeon

    2014-07-01

    Full Text Available In the course of the preparation of a series of ferrocenyl derivatives of diethylstilbestrol (DES, in which one of the 4-hydroxyphenyl moieties was replaced by a ferrocenyl group, the McMurry reaction of chloropropionylferrocene with a number of mono-aryl ketones unexpectedly yielded the hydroxylated ferrocenyl DES derivatives, 5a–c, in poor yields (10%–16%. These compounds showed high activity on the hormone-independent breast cancer cell line MDA-MB-231 with IC50 values ranging from 0.14 to 0.36 µM. Surprisingly, non-hydroxylated ferrocenyl DES, 4, showed only an IC50 value of 1.14 µM, illustrating the importance of the hydroxyethyl function in this promising new series. For comparison, McMurry reactions of the shorter chain analogue chloroacetylferrocene were carried out to see the difference in behaviour with mono-aryl ketones versus a diaryl ketone. The effect of changing the length of the alkyl chain adjacent to the phenolic substituent of the hydroxylated ferrocenyl DES was studied, a mechanistic rationale to account for the unexpected products is proposed, and the antiproliferative activities of all of these compounds on MDA-MB-231 cells lines were measured and compared. X-ray crystal structures of cross-coupled products and of pinacol-pinacolone rearrangements are reported.

  6. Evaluation of different extraction methods from pomegranate whole fruit or peels and the antioxidant and antiproliferative activity of the polyphenolic fraction.

    Science.gov (United States)

    Masci, Alessandra; Coccia, Andrea; Lendaro, Eugenio; Mosca, Luciana; Paolicelli, Patrizia; Cesa, Stefania

    2016-07-01

    Pomegranate is a functional food of great interest, due to its multiple beneficial effects on human health. This fruit is rich in anthocyanins and ellagitannins, which exert a protective role towards degenerative diseases. The aim of the present work was to optimize the extraction procedure, from different parts of the fruit, to obtain extracts enriched in selected polyphenols while retaining biological activity. Whole fruits or peels of pomegranate cultivars, with different geographic origin, were subjected to several extraction methods. The obtained extracts were analyzed for polyphenolic content, evaluated for antioxidant capacity and tested for antiproliferative activity on human bladder cancer T24 cells. Two different extraction procedures, employing ethyl acetate as a solvent, were useful in obtaining extracts enriched in ellagic acid and/or punicalagins. Antioxidative and antiproliferative assays demonstrated that the antioxidant capability is directly related to the phenolic content, whereas the antiproliferative activity is to be mainly attributed to ellagic acid. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. The neem limonoids azadirachtin and nimbolide inhibit cell proliferation and induce apoptosis in an animal model of oral oncogenesis.

    Science.gov (United States)

    Harish Kumar, G; Vidya Priyadarsini, R; Vinothini, G; Vidjaya Letchoumy, P; Nagini, S

    2010-08-01

    Limonoids from the neem tree (Azadirachta indica) have attracted considerable research attention for their cytotoxicity against human cancer cell lines. However, the antiproliferative and apoptosis inducing effects of neem limonoids have not been tested in animal tumour models. The present study was therefore designed to evaluate the relative chemopreventive potential of the neem limonoids azadirachtin and nimbolide in the hamster buccal pouch (HBP) carcinogenesis model by analyzing the expression of proliferating cell nuclear antigen (PCNA), p21(waf1), cyclin D1, glutathione S-transferase pi (GST-P), NF-kappaB, inhibitor of kappaB (IkappaB), p53, Fas, Bcl-2, Bax, Bid, Apaf-1, cytochrome C, survivin, caspases-3, -6, -8 and -9, and poly(ADP-ribose) polymerase (PARP) by RT-PCR, immunohistochemical, and Western blot analyses. The results provide compelling evidence that azadirachtin and nimbolide mediate their antiproliferative effects by downregulating proteins involved in cell cycle progression and transduce apoptosis by both the intrinsic and extrinsic pathways. On a comparative basis, nimbolide was found to be a more potent antiproliferative and apoptosis inducing agent and offers promise as a candidate agent in multitargeted prevention and treatment of cancer.

  8. Phytochemical screening and antiproliferative effects of methanol ...

    African Journals Online (AJOL)

    Preliminary Phytochemical screening. Thin layer chromatographic profile (TLC) of methanol crude extract and antiproliferative studies were carried out in this research. Phytochemical screening revealed the presence of carbohydrate, glycoside, anthraquinone, steroid, triterpenes, saponin, tannins, flavonoids and alkaloid.

  9. 3-Bromopyruvate induces necrotic cell death in sensitive melanoma cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Qin, J.-Z.; Xin, H. [Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University of Chicago Medical Center (United States); Nickoloff, B.J., E-mail: bnickol@lumc.edu [Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University of Chicago Medical Center (United States)

    2010-05-28

    Clinicians successfully utilize high uptake of radiolabeled glucose via PET scanning to localize metastases in melanoma patients. To take advantage of this altered metabolome, 3-bromopyruvate (BrPA) was used to overcome the notorious resistance of melanoma to cell death. Using four melanoma cell lines, BrPA triggered caspase independent necrosis in two lines, whilst the other two lines were resistant to killing. Mechanistically, sensitive cells differed from resistant cells by; constitutively lower levels of glutathione, reduction of glutathione by BrPA only in sensitive cells; increased superoxide anion reactive oxygen species, loss of outer mitochondrial membrane permeability, and rapid ATP depletion. Sensitive cell killing was blocked by N-acetylcysteine or glutathione. When glutathione levels were reduced in resistant cell lines, they became sensitive to killing by BrPA. Taken together, these results identify a metabolic-based Achilles' heel in melanoma cells to be exploited by use of BrPA. Future pre-clinical and clinical trials are warranted to translate these results into improved patient care for individuals suffering from metastatic melanoma.

  10. 3-Bromopyruvate induces necrotic cell death in sensitive melanoma cell lines.

    Science.gov (United States)

    Qin, J-Z; Xin, H; Nickoloff, B J

    2010-05-28

    Clinicians successfully utilize high uptake of radiolabeled glucose via PET scanning to localize metastases in melanoma patients. To take advantage of this altered metabolome, 3-bromopyruvate (BrPA) was used to overcome the notorious resistance of melanoma to cell death. Using four melanoma cell lines, BrPA triggered caspase independent necrosis in two lines, whilst the other two lines were resistant to killing. Mechanistically, sensitive cells differed from resistant cells by; constitutively lower levels of glutathione, reduction of glutathione by BrPA only in sensitive cells; increased superoxide anion reactive oxygen species, loss of outer mitochondrial membrane permeability, and rapid ATP depletion. Sensitive cell killing was blocked by N-acetylcysteine or glutathione. When glutathione levels were reduced in resistant cell lines, they became sensitive to killing by BrPA. Taken together, these results identify a metabolic-based Achilles' heel in melanoma cells to be exploited by use of BrPA. Future pre-clinical and clinical trials are warranted to translate these results into improved patient care for individuals suffering from metastatic melanoma. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  11. 3-Bromopyruvate induces necrotic cell death in sensitive melanoma cell lines

    International Nuclear Information System (INIS)

    Qin, J.-Z.; Xin, H.; Nickoloff, B.J.

    2010-01-01

    Clinicians successfully utilize high uptake of radiolabeled glucose via PET scanning to localize metastases in melanoma patients. To take advantage of this altered metabolome, 3-bromopyruvate (BrPA) was used to overcome the notorious resistance of melanoma to cell death. Using four melanoma cell lines, BrPA triggered caspase independent necrosis in two lines, whilst the other two lines were resistant to killing. Mechanistically, sensitive cells differed from resistant cells by; constitutively lower levels of glutathione, reduction of glutathione by BrPA only in sensitive cells; increased superoxide anion reactive oxygen species, loss of outer mitochondrial membrane permeability, and rapid ATP depletion. Sensitive cell killing was blocked by N-acetylcysteine or glutathione. When glutathione levels were reduced in resistant cell lines, they became sensitive to killing by BrPA. Taken together, these results identify a metabolic-based Achilles' heel in melanoma cells to be exploited by use of BrPA. Future pre-clinical and clinical trials are warranted to translate these results into improved patient care for individuals suffering from metastatic melanoma.

  12. Tuft (caveolated) cells in two human colon carcinoma cell lines.

    Science.gov (United States)

    Barkla, D H; Whitehead, R H; Foster, H; Tutton, P J

    1988-09-01

    The presence of an unusual cell type in two human colon carcinoma cell lines is reported. The cells show the same morphology as "tuft" (caveolated) cells present in normal gastrointestinal epithelium. Tuft cells were seen in cell line LIM 1863 growing in vitro and in human colon carcinoma cell line LIM 2210 growing as subcutaneous solid tumour xenografts in nude mice. Characteristic morphologic features of tuft cells included a wide base, narrow apex and a tuft of long microvilli projecting from the apical surface. The microvilli are attached by a core of long microfilaments passing deep into the apical cytoplasm. Between the microvilli are parallel arrays of vesicles (caveoli) containing flocculent material. Two different but not mutually exclusive explanations for the presence of tuft cells are proposed. The first explanation is that tuft cells came from the resected tumour and have survived by mitotic division during subsequent passages. The second explanation suggests that tuft cells are the progeny of undifferentiated tumour cells. Descriptions of tuft cells in colon carcinomas are uncommon and possible reasons for this are presented. The morphology of tuft cells is consistent with that of a highly differentiated cell specialised for absorption, and these new models provide an opportunity to further investigate the structure and function of tuft cells.

  13. Colon cancer chemoprevention by a novel NO chimera that shows anti-inflammatory and antiproliferative activity in vitro and in vivo.

    Science.gov (United States)

    Hagos, Ghenet K; Carroll, Robert E; Kouznetsova, Tatiana; Li, Qian; Toader, Violeta; Fernandez, Patricia A; Swanson, Steven M; Thatcher, Gregory R J

    2007-08-01

    Chemopreventive agents in colorectal cancer possess either antiproliferative or anti-inflammatory actions. Nonsteroidal anti-inflammatory drugs (NSAID) and cyclooxygenase-2 inhibitors have shown promise, but are compromised by side effects. Nitric oxide donor NSAIDs are organic nitrates conjugated via a labile linker to an NSAID, originally designed for use in pain relief, that have shown efficacy in colorectal cancer chemoprevention. The NO chimera, GT-094, is a novel nitrate containing an NSAID and disulfide pharmacophores, a lead compound for the design of agents specifically for colorectal cancer. GT-094 is the first nitrate reported to reduce aberrant crypt foci (by 45%) when administered after carcinogen in the standard azoxymethane rat model of colorectal cancer. Analysis of proximal and distal colon tissue from 8- and 28-week rat/azoxymethane studies showed that GT-094 treatment reduced colon crypt proliferation by 30% to 69%, reduced inducible NO synthase (iNOS) levels by 33% to 67%, reduced poly(ADP-ribose)polymerase-1 expression and cleavage 2- to 4-fold, and elevated levels of p27 in the distal colon 3-fold. Studies in cancer cell cultures recapitulated actions of GT-094: antiproliferative activity and transient G(2)-M phase cell cycle block were measured in Caco-2 cells; apoptotic activity was examined but not observed; anti-inflammatory activity was seen in the inhibition of up-regulation of iNOS and endogenous NO production in lipopolysaccharide (LPS)-induced RAW 264.7 cells. In summary, antiproliferative, anti-inflammatory, and cytoprotective activity observed in vivo and in vitro support GT-094 as a lead compound for the design of NO chimeras for colorectal cancer chemoprevention.

  14. Simultaneous RNA quantification of human and retroviral genomes reveals intact interferon signaling in HTLV-1-infected CD4+ T cell lines

    Directory of Open Access Journals (Sweden)

    Moens Britta

    2012-08-01

    Full Text Available Abstract Background IFN-α contributes extensively to host immune response upon viral infection through antiviral, pro-apoptotic, antiproliferative and immunomodulatory activities. Although extensively documented in various types of human cancers and viral infections, controversy exists in the exact mechanism of action of IFN-α in human immunodeficiency virus type 1 (HIV-1 and human T-lymphotropic virus type 1 (HTLV-1 retroviral infections. Results IFN-α displayed strong anti-HIV-1 effects in HIV-1/HTLV-1 co-infected MT-4 cells in vitro, demonstrated by the dose-dependent inhibition of the HIV-1-induced cytopathic effect (IC50 = 83.5 IU/ml, p 50 = 1.2 IU/ml, p  Conclusions Taken together, our results indicate that both the absence of in vitro antiproliferative and pro-apoptotic activity as well as the modest post-transcriptional antiviral activity of IFN-α against HTLV-1, were not due to a cell-intrinsic defect in IFN-α signalisation, but rather represents a retrovirus-specific phenomenon, considering the strong HIV-1 inhibition in co-infected cells.

  15. Antiproliferative activity and apoptotic effects of Filipendula ulmaria pollen against C26 mice colon tumour cells

    Directory of Open Access Journals (Sweden)

    Mărgăoan Rodica

    2016-06-01

    Full Text Available Honeybee collected pollen exhibits high nutritional and pharmaceutical benefits for the human diet and medicine. Pollen’s antioxidant, anti-ageing, anti-inflammatory, anti-atherosclerosis, and cardioprotective activity, depending on the floral origin, are well known. Recent studies proposed that pollen may also be an excellent cancer-fighting candidate, as pollen harbours high amounts of phenolic substances. In our study, Filipendula ulmaria pollen (bee collected was methanol-water extracted and used to verify its in vitro pharmacological activities on C26 mice cancer tumour cells. Three different concentrations of the extract were tested in antitumour assays. Monitoring was done after 6, 12, 24, and 48 hours. Promising results were obtained for antiproliferative and apoptotic activity of the pollen extracts, with high efficiency for the highest concentration (1 mg/mL. For both activities, time and concentration-dependent effects were observed. Pollen extracts or bee collected pollen has a high potential as an antitumour agent for use in human medicine, because they are both rich in bioactive compounds.

  16. A comparison of the effects of tributyltin chloride and triphenyltin chloride on cell proliferation, proapoptotic p53, Bax, and antiapoptotic Bcl-2 protein levels in human breast cancer MCF-7 cell line.

    Science.gov (United States)

    Fickova, Maria; Macho, Ladislav; Brtko, Julius

    2015-06-01

    In recent years it was disclosed, that numerous organotin(IV) derivatives have remarkable cytotoxicity against several types of cancer cells. The property to inhibit cell growth makes these compounds promising for antitumor therapy, as the clinical effectiveness of cisplatin is limited by drug resistance and significant side effects. Tributyltin and triphenyltin are known as endocrine disruptors. Moreover, the compounds exert their toxicity in mammals predominantly through nuclear receptor signaling. Here we present the effects of tributyltin chloride (TBT-Cl) and triphenyltin chloride (TPT-Cl) on cell proliferation, expression of proapoptotic p53, Bax, and antiapoptotic Bcl-2 proteins in human breast cancer MCF-7 cell line. Dose and time dependent (24, 48 and 72 h) cell expositions have demonstrated TBT-Cl as more effective in inhibiting MCF-7 cell proliferation than TPT-Cl. Short time treatment with TBT-Cl displayed marked stimulation of p53 protein expression when compared to TPT-Cl. Both organotin compounds displayed similar mild enhancement of Bax protein expression. The 24h exposition of TPT-Cl induced substantial diminution of Bcl-2 protein expression in comparison with both, untreated cells and TBT-Cl treated cells. Our observations indicate that TBT-Cl and TPT-Cl have different antiproliferative potency and distinct impact on expression of apoptosis marker proteins. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Induction of apoptosis and cell proliferation inhibition by paclitaxel in ...

    African Journals Online (AJOL)

    In this study, anti-proliferative and apoptotic effects of paclitaxel, which is itself an antichemotherapeutic agent, to FM3A cell line originated from Mouse mammary carcinoma at 7 different doses were examined. Seven different doses of paclitaxel (P1 = 3 nM, P2 = 7.5 nM, P3 = 15 nM, P4 = 30 nM, P5 = 60 nM, P6 = 120 nM, ...

  18. Tamoxifen in combination with temozolomide induce a synergistic inhibition of PKC-pan in GBM cell lines.

    Science.gov (United States)

    Balça-Silva, Joana; Matias, Diana; do Carmo, Anália; Girão, Henrique; Moura-Neto, Vivaldo; Sarmento-Ribeiro, Ana Bela; Lopes, Maria Celeste

    2015-04-01

    Glioblastoma (GBM) is a highly proliferative, angiogenic grade IV astrocytoma that develops resistance to the alkylating agents used in chemotherapy, such as temozolomide (TMZ), which is considered the gold standard. The mean survival time for GBM patients is approximately 12 months, increasing to 14.6 months after TMZ treatment. The resistance of GBM to chemotherapy seems to be associated to genetic alterations and to the constitutive activation of several signaling pathways. Therefore, the combination of different drugs with different mechanisms of action may contribute to circumvent the chemoresistance of glioma cells. Here we describe the potential synergistic behavior of the therapeutic combination of tamoxifen (TMX), a known inhibitor of PKC, and TMZ in GBM. We used two GBM cell lines incubated in absence and presence of TMX and/or TMZ and measured cell viability, proliferation, apoptosis, cell cycle, migration ability, cytoskeletal organization and the phosphorylated amount of the p-PKC-pan. The combination of low doses of TMX with increasing doses of TMZ shows an increased antiproliferative and apoptotic effect compared to the effect with TMX alone. The combination of TMX and TMZ seems to potentiate the effect of each other. These alterations seem to be associated to a decrease in the phosphorylation status of PKC. We emphasize that TMX is an inhibitor of the p-PKC-pan and that these combination is more effective in the reduction of proliferation and in the increase of apoptosis than each drug alone, which presents a new therapeutic strategy in GBM treatment. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. A Novel Hemagglutinin with Antiproliferative Activity against Tumor Cells from the Hallucinogenic Mushroom Boletus speciosus

    Directory of Open Access Journals (Sweden)

    Jian Sun

    2014-01-01

    Full Text Available Little was known about bioactive compounds from the hallucinogenic mushroom Boletus speciosus. In the present study, a hemagglutinin (BSH, B. speciosus hemagglutinin was isolated from its fruiting bodies and enzymatic properties were also tested. The chromatographic procedure utilized comprised anion exchange chromatography on Q-Sepharose, cation exchange chromatography on CM-Cellulose, cation exchange chromatography on SP-Sepharose, and gel filtration by FPLC on Superdex 75. The hemagglutinin was a homodimer which was estimated to be approximately 31 kDa in size. The activity of BSH was stable up to 60°C, while there was a precipitous drop in activity when the temperature was elevated to 70°C. BSH retained 25% hemagglutinating activity when exposed to 100 mM NaOH and 25 mM HCl. The activity was potently inhibited by 1.25 mM Hg2+ and slightly inhibited by Fe2+, Ca2+, and Pb2+. None of the sugars tested showed inhibition towards BSH. Its hemagglutinating activity towards human erythrocytes type A, type B, and type AB was higher than type O. The hemagglutinin showed antiproliferative activity towards hepatoma Hep G2 cells and mouse lymphocytic leukemia cells (L1210 in vitro, with IC50 of 4.7 μM and 7.0 μM, respectively. It also exhibited HIV-1 reverse transcriptase inhibitory activity with an IC50 of 7.1 μM.

  20. Cytotoxicity of the Ascidian Cystodytes dellechiajei Against Tumor Cells and Study of the Involvement of Associated Microbiota in the Production of Cytotoxic Compounds

    Directory of Open Access Journals (Sweden)

    Josefa Antón

    2007-07-01

    Full Text Available Many cytotoxic compounds of therapeutic interest have been isolated from marine invertebrates, and some of them have been reported to be of microbial origin. Pyridoacridine alkaloids are the main compounds extracted from the ascidian Cystodytes dellechiajei. Here we describe the in vitro antiproliferative activity against different tumor cell lines of the ascidian extracts and provide some insights on the role of the microbial community associated with the tunicate in the production of these compounds. C. dellechiajei extracts showed remarkably high antiproliferative activity (IC50 ≤5 μg/mL in human lung carcinoma A-549, colon adenocarcinoma H-116, pancreatic adenocarcinoma PSN-1 and breast carcinoma SKBR3 cell lines. Moreover, we found that the maximum activity was located in the tunic tissue of the colony, which harbours a microbial community. In order to ascertain the involvement of this community in the synthesis of the bioactive compounds different approachs that included culture and culture independent methods were carried out. We undertook a screening for antiproliferative activities of the bacterial isolates from the ascidian, as well as a comprative analysis of the cytotoxic activities and the microbial communities from two color morphs of the ascidian, green and blue. In addition, the changes of the antiproliferative activities and the composition of the microbial communities were studied from ascidians kept in aquaria and treated with antibiotics for one month. Our data obtained from the different experiments did not point out to bacteria as the source of the cytotoxic compounds, suggesting thus an ascidian origin.