WorldWideScience

Sample records for cell lineage commitment

  1. Intestinal lineage commitment of embryonic stem cells.

    Science.gov (United States)

    Cao, Li; Gibson, Jason D; Miyamoto, Shingo; Sail, Vibhavari; Verma, Rajeev; Rosenberg, Daniel W; Nelson, Craig E; Giardina, Charles

    2011-01-01

    Generating lineage-committed intestinal stem cells from embryonic stem cells (ESCs) could provide a tractable experimental system for understanding intestinal differentiation pathways and may ultimately provide cells for regenerating damaged intestinal tissue. We tested a two-step differentiation procedure in which ESCs were first cultured with activin A to favor formation of definitive endoderm, and then treated with fibroblast-conditioned medium with or without Wnt3A. The definitive endoderm expressed a number of genes associated with gut-tube development through mouse embryonic day 8.5 (Sox17, Foxa2, and Gata4 expressed and Id2 silent). The intestinal stem cell marker Lgr5 gene was also activated in the endodermal cells, whereas the Msi1, Ephb2, and Dcamkl1 intestinal stem cell markers were not. Exposure of the endoderm to fibroblast-conditioned medium with Wnt3A resulted in the activation of Id2, the remaining intestinal stem cell markers and the later gut markers Cdx2, Fabp2, and Muc2. Interestingly, genes associated with distal gut-associated mesoderm (Foxf2, Hlx, and Hoxd8) were also simulated by Wnt3A. The two-step differentiation protocol generated gut bodies with crypt-like structures that included regions of Lgr5-expressing proliferating cells and regions of cell differentiation. These gut bodies also had a smooth muscle component and some underwent peristaltic movement. The ability of the definitive endoderm to differentiate into intestinal epithelium was supported by the vivo engraftment of these cells into mouse colonic mucosa. These findings demonstrate that definitive endoderm derived from ESCs can carry out intestinal cell differentiation pathways and may provide cells to restore damaged intestinal tissue. Copyright © 2010 International Society of Differentiation. Published by Elsevier B.V. All rights reserved.

  2. Epigenetic dynamics of stem cells and cell lineage commitment: digging Waddington's canal.

    Science.gov (United States)

    Hemberger, Myriam; Dean, Wendy; Reik, Wolf

    2009-08-01

    Cells of the early mammalian embryo, including pluripotent embryonic stem (ES) cells and primordial germ cells (PGCs), are epigenetically dynamic and heterogeneous. During early development, this heterogeneity of epigenetic states is associated with stochastic expression of lineage-determining transcription factors that establish an intimate crosstalk with epigenetic modifiers. Lineage-specific epigenetic modification of crucial transcription factor loci (for example, methylation of the Elf5 promoter) leads to the restriction of transcriptional circuits and the fixation of lineage fate. The intersection of major epigenetic reprogramming and programming events in the early embryo creates plasticity followed by commitment to the principal cell lineages of the early conceptus.

  3. Dynamics of lineage commitment revealed by single-cell transcriptomics of differentiating embryonic stem cells

    NARCIS (Netherlands)

    Semrau, Stefan; Goldmann, Johanna E; Soumillon, Magali; Mikkelsen, Tarjei S; Jaenisch, Rudolf; van Oudenaarden, Alexander

    2017-01-01

    Gene expression heterogeneity in the pluripotent state of mouse embryonic stem cells (mESCs) has been increasingly well-characterized. In contrast, exit from pluripotency and lineage commitment have not been studied systematically at the single-cell level. Here we measure the gene expression

  4. B Lymphocyte Lineage Specification, Commitment and Epigenetic Control of Transcription by Early B Cell Factor 1

    OpenAIRE

    Hagman, James; Ramírez, Julita; Lukin, Kara

    2012-01-01

    Early B cell factor 1 (EBF1) is a transcription factor that is critical for both B lymphopoiesis and B cell function. EBF1 is a requisite component of the B lymphocyte transcriptional network and is essential for B lineage specification. Recent studies revealed roles for EBF1 in B cell commitment. EBF1 binds its target genes via a DNA-binding domain including a unique ‘zinc knuckle’, which mediates a novel mode of DNA recognition. Chromatin immunoprecipitation of EBF1 in pro-B cells defined h...

  5. SHIP1-expressing mesenchymal stem cells regulate hematopoietic stem cell homeostasis and lineage commitment during aging.

    Science.gov (United States)

    Iyer, Sonia; Brooks, Robert; Gumbleton, Matthew; Kerr, William G

    2015-05-01

    Hematopoietic stem cell (HSC) self-renewal and lineage choice are subject to intrinsic control. However, this intrinsic regulation is also impacted by external cues provided by niche cells. There are multiple cellular components that participate in HSC support with the mesenchymal stem cell (MSC) playing a pivotal role. We had previously identified a role for SH2 domain-containing inositol 5'-phosphatase-1 (SHIP1) in HSC niche function through analysis of mice with germline or induced SHIP1 deficiency. In this study, we show that the HSC compartment expands significantly when aged in a niche that contains SHIP1-deficient MSC; however, this expanded HSC compartment exhibits a strong bias toward myeloid differentiation. In addition, we show that SHIP1 prevents chronic G-CSF production by the aging MSC compartment. These findings demonstrate that intracellular signaling by SHIP1 in MSC is critical for the control of HSC output and lineage commitment during aging. These studies increase our understanding of how myeloid bias occurs in aging and thus could have implications for the development of myeloproliferative disease in aging.

  6. Distinct Epigenomic Landscapes of Pluripotent and Lineage-committed Human Cells

    Science.gov (United States)

    Hawkins, R. David; Hon, Gary C.; Lee, Leonard K.; Ngo, QueMinh; Lister, Ryan; Pelizzola, Mattia; Edsall, Lee E.; Kuan, Samantha; Luu, Ying; Klugman, Sarit; Antosiewicz-Bourget, Jessica; Ye, Zhen; Espinoza, Celso; Agarwahl, Saurabh; Shen, Li; Ruotti, Victor; Wang, Wei; Stewart, Ron; Thomson, James A.; Ecker, Joseph R.; Ren, Bing

    2010-01-01

    SUMMARY Human embryonic stem cells (hESCs) share an identical genome with lineage-committed cells, yet possess the remarkable properties of self-renewal and pluripotency. The diverse cellular properties in different cells have been attributed to their distinct epigenomes, but how much epigenomes differ remains unclear. Here, we report that epigenomic landscapes in hESC and lineage committed cells are drastically different. By comparing the chromatin modification profiles and DNA methylomes in hESCs and primary fibroblasts, we find that nearly one-third of the genome differs in chromatin structure. Most changes arise from dramatic redistributions of repressive H3K9me3 and H3K27me3 marks, which form blocks that significantly expand in fibroblasts. A large number of potential regulatory sequences also exhibit a high degree of dynamics in chromatin modifications and DNA methylation. Additionally, we observe novel, context-dependent relationships between DNA methylation and chromatin modifications. Our results provide new insights into epigenetic mechanisms underlying properties of pluripotency and cell-fate commitment. PMID:20452322

  7. B lymphocyte lineage specification, commitment and epigenetic control of transcription by early B cell factor 1.

    Science.gov (United States)

    Hagman, James; Ramírez, Julita; Lukin, Kara

    2012-01-01

    Early B cell factor 1 (EBF1) is a transcription factor that is critical for both B lymphopoiesis and B cell function. EBF1 is a requisite component of the B lymphocyte transcriptional network and is essential for B lineage specification. Recent studies revealed roles for EBF1 in B cell commitment. EBF1 binds its target genes via a DNA-binding domain including a unique 'zinc knuckle', which mediates a novel mode of DNA recognition. Chromatin immunoprecipitation of EBF1 in pro-B cells defined hundreds of new, as well as previously identified, target genes. Notably, expression of the pre-B cell receptor (pre-BCR), BCR and PI3K/Akt/mTOR signaling pathways is controlled by EBF1. In this review, we highlight these current developments and explore how EBF1 functions as a tissue-specific regulator of chromatin structure at B cell-specific genes.

  8. Mechanical modulation of nascent stem cell lineage commitment in tissue engineering scaffolds.

    Science.gov (United States)

    Song, Min Jae; Dean, David; Knothe Tate, Melissa L

    2013-07-01

    Taking inspiration from tissue morphogenesis in utero, this study tests the concept of using tissue engineering scaffolds as delivery devices to modulate emergent structure-function relationships at early stages of tissue genesis. We report on the use of a combined computational fluid dynamics (CFD) modeling, advanced manufacturing methods, and experimental fluid mechanics (micro-piv and strain mapping) for the prospective design of tissue engineering scaffold geometries that deliver spatially resolved mechanical cues to stem cells seeded within. When subjected to a constant magnitude global flow regime, the local scaffold geometry dictates the magnitudes of mechanical stresses and strains experienced by a given cell, and in a spatially resolved fashion, similar to patterning during morphogenesis. In addition, early markers of mesenchymal stem cell lineage commitment relate significantly to the local mechanical environment of the cell. Finally, by plotting the range of stress-strain states for all data corresponding to nascent cell lineage commitment (95% CI), we begin to "map the mechanome", defining stress-strain states most conducive to targeted cell fates. In sum, we provide a library of reference mechanical cues that can be delivered to cells seeded on tissue engineering scaffolds to guide target tissue phenotypes in a temporally and spatially resolved manner. Knowledge of these effects allows for prospective scaffold design optimization using virtual models prior to prototyping and clinical implementation. Finally, this approach enables the development of next generation scaffolds cum delivery devices for genesis of complex tissues with heterogenous properties, e.g., organs, joints or interface tissues such as growth plates. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Infarcted myocardium-like stiffness contributes to endothelial progenitor lineage commitment of bone marrow mononuclear cells.

    Science.gov (United States)

    Zhang, Shuning; Sun, Aijun; Ma, Hong; Yao, Kang; Zhou, Ning; Shen, Li; Zhang, Chunyu; Zou, Yunzeng; Ge, Junbo

    2011-10-01

    Optimal timing of cell therapy for myocardial infarction (MI) appears during 5 to 14 days after the infarction. However, the potential mechanism requires further investigation. This work aimed to verify the hypothesis that myocardial stiffness within a propitious time frame might provide a most beneficial physical condition for cell lineage specification in favour of cardiac repair. Serum vascular endothelial growth factor (VEGF) levels and myocardial stiffness of MI mice were consecutively detected. Isolated bone marrow mononuclear cells (BMMNCs) were injected into infarction zone at distinct time-points and cardiac function were measured 2 months after infarction. Polyacrylamide gel substrates with varied stiffness were used to mechanically mimic the infarcted myocardium. BMMNCs were plated on the flexible culture substrates under different concentrations of VEGF. Endothelial progenitor lineage commitment of BMMNCs was verified by immunofluorescent technique and flow cytometry. Our results demonstrated that the optimal timing in terms of improvement of cardiac function occurred during 7 to 14 days after MI, which was consistent with maximized capillary density at this time domains, but not with peak VEGF concentration. Percentage of double-positive cells for DiI-labelled acetylated low-density lipoprotein uptake and fluorescein isothiocyanate (FITC)-UEA-1 (ulex europaeus agglutinin I lectin) binding had no significant differences among the tissue-like stiffness in high concentration VEGF. With the decrease of VEGF concentration, the benefit of 42 kPa stiffness, corresponding to infarcted myocardium at days 7 to 14, gradually occurred and peaked when it was removed from culture medium. Likewise, combined expressions of VEGFR2(+) , CD133(+) and CD45(-) remained the highest level on 42 kPa substrate in conditions of lower concentration VEGF. In conclusion, the optimal efficacy of BMMNCs therapy at 7 to 14 days after MI might result from non-VEGF dependent

  10. Epigenetic Reprogramming of Lineage-Committed Human Mammary Epithelial Cells Requires DNMT3A and Loss of DOT1L

    Directory of Open Access Journals (Sweden)

    Jerrica L. Breindel

    2017-09-01

    Full Text Available Organogenesis and tissue development occur through sequential stepwise processes leading to increased lineage restriction and loss of pluripotency. An exception to this appears in the adult human breast, where rare variant epithelial cells exhibit pluripotency and multilineage differentiation potential when removed from the signals of their native microenvironment. This phenomenon provides a unique opportunity to study mechanisms that lead to cellular reprogramming and lineage plasticity in real time. Here, we show that primary human mammary epithelial cells (HMECs lose expression of differentiated mammary epithelial markers in a manner dependent on paracrine factors and epigenetic regulation. Furthermore, we demonstrate that HMEC reprogramming is dependent on gene silencing by the DNA methyltransferase DNMT3A and loss of histone transcriptional marks following downregulation of the methyltransferase DOT1L. These results demonstrate that lineage commitment in adult tissues is context dependent and highlight the plasticity of somatic cells when removed from their native tissue microenvironment.

  11. Transcriptome analysis of mammary epithelial subpopulations identifies novel determinants of lineage commitment and cell fate

    Directory of Open Access Journals (Sweden)

    Zvelebil Marketa

    2008-12-01

    Full Text Available Abstract Background Understanding the molecular control of cell lineages and fate determination in complex tissues is key to not only understanding the developmental biology and cellular homeostasis of such tissues but also for our understanding and interpretation of the molecular pathology of diseases such as cancer. The prerequisite for such an understanding is detailed knowledge of the cell types that make up such tissues, including their comprehensive molecular characterisation. In the mammary epithelium, the bulk of the tissue is composed of three cell lineages, namely the basal/myoepithelial, luminal epithelial estrogen receptor positive and luminal epithelial estrogen receptor negative cells. However, a detailed molecular characterisation of the transcriptomic differences between these three populations has not been carried out. Results A whole transcriptome analysis of basal/myoepithelial cells, luminal estrogen receptor negative cells and luminal estrogen receptor positive cells isolated from the virgin mouse mammary epithelium identified 861, 326 and 488 genes as highly differentially expressed in the three cell types, respectively. Network analysis of the transcriptomic data identified a subpopulation of luminal estrogen receptor negative cells with a novel potential role as non-professional immune cells. Analysis of the data for potential paracrine interacting factors showed that the basal/myoepithelial cells, remarkably, expressed over twice as many ligands and cell surface receptors as the other two populations combined. A number of transcriptional regulators were also identified that were differentially expressed between the cell lineages. One of these, Sox6, was specifically expressed in luminal estrogen receptor negative cells and functional assays confirmed that it maintained mammary epithelial cells in a differentiated luminal cell lineage. Conclusion The mouse mammary epithelium is composed of three main cell types with

  12. Transcriptome analysis of mammary epithelial subpopulations identifies novel determinants of lineage commitment and cell fate.

    Science.gov (United States)

    Kendrick, Howard; Regan, Joseph L; Magnay, Fiona-Ann; Grigoriadis, Anita; Mitsopoulos, Costas; Zvelebil, Marketa; Smalley, Matthew J

    2008-12-08

    Understanding the molecular control of cell lineages and fate determination in complex tissues is key to not only understanding the developmental biology and cellular homeostasis of such tissues but also for our understanding and interpretation of the molecular pathology of diseases such as cancer. The prerequisite for such an understanding is detailed knowledge of the cell types that make up such tissues, including their comprehensive molecular characterisation. In the mammary epithelium, the bulk of the tissue is composed of three cell lineages, namely the basal/myoepithelial, luminal epithelial estrogen receptor positive and luminal epithelial estrogen receptor negative cells. However, a detailed molecular characterisation of the transcriptomic differences between these three populations has not been carried out. A whole transcriptome analysis of basal/myoepithelial cells, luminal estrogen receptor negative cells and luminal estrogen receptor positive cells isolated from the virgin mouse mammary epithelium identified 861, 326 and 488 genes as highly differentially expressed in the three cell types, respectively. Network analysis of the transcriptomic data identified a subpopulation of luminal estrogen receptor negative cells with a novel potential role as non-professional immune cells. Analysis of the data for potential paracrine interacting factors showed that the basal/myoepithelial cells, remarkably, expressed over twice as many ligands and cell surface receptors as the other two populations combined. A number of transcriptional regulators were also identified that were differentially expressed between the cell lineages. One of these, Sox6, was specifically expressed in luminal estrogen receptor negative cells and functional assays confirmed that it maintained mammary epithelial cells in a differentiated luminal cell lineage. The mouse mammary epithelium is composed of three main cell types with distinct gene expression patterns. These suggest the existence

  13. Pathologic Stimulus Determines Lineage Commitment of Cardiac C-kit+ Cells.

    Science.gov (United States)

    Chen, Zhongming; Zhu, Wuqiang; Bender, Ingrid; Gong, Wuming; Kwak, Il-Youp; Yellamilli, Amritha; Hodges, Thomas J; Nemoto, Natsumi; Zhang, Jianyi; Garry, Daniel J; van Berlo, Jop H

    2017-12-12

    Although cardiac c-kit + cells are being tested in clinical trials, the circumstances that determine lineage differentiation of c-kit + cells in vivo are unknown. Recent findings suggest that endogenous cardiac c-kit + cells rarely contribute cardiomyocytes to the adult heart. We assessed whether various pathological stimuli differentially affect the eventual cell fates of c-kit + cells. We used single-cell sequencing and genetic lineage tracing of c-kit + cells to determine whether various pathological stimuli would result in different fates of c-kit + cells. Single-cell sequencing of cardiac CD45 - c-kit + cells showed innate heterogeneity, indicative of the existence of vascular and mesenchymal c-kit + cells in normal hearts. Cardiac pressure overload resulted in a modest increase in c-kit-derived cardiomyocytes, with significant increases in the numbers of endothelial cells and fibroblasts. Doxorubicin-induced acute cardiotoxicity did not increase c-kit-derived endothelial cell fates but instead induced cardiomyocyte differentiation. Mechanistically, doxorubicin-induced DNA damage in c-kit + cells resulted in expression of p53. Inhibition of p53 blocked cardiomyocyte differentiation in response to doxorubicin, whereas stabilization of p53 was sufficient to increase c-kit-derived cardiomyocyte differentiation. These results demonstrate that different pathological stimuli induce different cell fates of c-kit + cells in vivo. Although the overall rate of cardiomyocyte formation from c-kit + cells is still below clinically relevant levels, we show that p53 is central to the ability of c-kit + cells to adopt cardiomyocyte fates, which could lead to the development of strategies to preferentially generate cardiomyocytes from c-kit + cells. © 2017 American Heart Association, Inc.

  14. Mitotic Gene Bookmarking: An Epigenetic Mechanism for Coordination of Lineage Commitment, Cell Identity and Cell Growth.

    Science.gov (United States)

    Zaidi, Sayyed K; Lian, Jane B; van Wijnen, Andre; Stein, Janet L; Stein, Gary S

    2017-01-01

    Epigenetic control of gene expression contributes to dynamic responsiveness of cellular processes that include cell cycle, cell growth and differentiation. Mitotic gene bookmarking, retention of sequence-specific transcription factors at target gene loci, including the RUNX regulatory proteins, provide a novel dimension to epigenetic regulation that sustains cellular identity in progeny cells following cell division. Runx transcription factor retention during mitosis coordinates physiological control of cell growth and differentiation in a broad spectrum of biological conditions, and is associated with compromised gene expression in pathologies that include cancer.

  15. Fourier transform infrared microspectroscopy identifies early lineage commitment in differentiating human embryonic stem cells.

    Science.gov (United States)

    Heraud, Philip; Ng, Elizabeth S; Caine, Sally; Yu, Qing C; Hirst, Claire; Mayberry, Robyn; Bruce, Amanda; Wood, Bayden R; McNaughton, Don; Stanley, Edouard G; Elefanty, Andrew G

    2010-03-01

    Human ESCs (hESCs) are a valuable tool for the study of early human development and represent a source of normal differentiated cells for pharmaceutical and biotechnology applications and ultimately for cell replacement therapies. For all applications, it will be necessary to develop assays to validate the efficacy of hESC differentiation. We explored the capacity for FTIR spectroscopy, a technique that rapidly characterises cellular macromolecular composition, to discriminate mesendoderm or ectoderm committed cells from undifferentiated hESCs. Distinct infrared spectroscopic "signatures" readily distinguished hESCs from these early differentiated progeny, with bioinformatic models able to correctly classify over 97% of spectra. These data identify a role for FTIR spectroscopy as a new modality to complement conventional analyses of hESCs and their derivatives. FTIR spectroscopy has the potential to provide low-cost, automatable measurements for the quality control of stem and differentiated cells to be used in industry and regenerative medicine. Crown Copyright 2009. Published by Elsevier B.V. All rights reserved.

  16. Even Cancers Want Commitment: Lineage Identity and Medulloblastoma Formation

    Science.gov (United States)

    Eberhart, Charles G.

    2015-01-01

    In this issue of Cancer Cell, Yang et al. (2008) and Schüller et al. (2008) show that Hedgehog activation in either multipotent neural stem cells or developmentally restricted progenitors causes only medulloblastomas to form. These data suggest that some stem cell-derived tumors must commit to a specific lineage in order to grow. PMID:18691544

  17. CD8 Lineage Commitment in the Absence of CD8

    OpenAIRE

    Goldrath, Ananda W.; Hogquist, Kristin A.; Bevan, Michael J.

    1997-01-01

    The absence of cytotoxic T lymphocyte activity and the failure of MHC class I–restricted T cell receptor (TCR) transgenic thymocytes to mature in CD8α-deficient mice suggest that CD8 may be essential for CD8 lineage commitment. We report that variants of the antigenic peptide that delete TCR transgenic thymocytes from CD8 wild-type but not CD8α-deficient mice can restore positive selection of CD8 lineage cells in the absence of CD8. The positively selected cells down-regulate CD4, up-regulate...

  18. Integrating extrinsic and intrinsic cues into a minimal model of lineage commitment for hematopoietic progenitors.

    Directory of Open Access Journals (Sweden)

    Santhosh Palani

    2009-09-01

    Full Text Available Autoregulation of transcription factors and cross-antagonism between lineage-specific transcription factors are a recurrent theme in cell differentiation. An equally prevalent event that is frequently overlooked in lineage commitment models is the upregulation of lineage-specific receptors, often through lineage-specific transcription factors. Here, we use a minimal model that combines cell-extrinsic and cell-intrinsic elements of regulation in order to understand how both instructive and stochastic events can inform cell commitment decisions in hematopoiesis. Our results suggest that cytokine-mediated positive receptor feedback can induce a "switch-like" response to external stimuli during multilineage differentiation by providing robustness to both bipotent and committed states while protecting progenitors from noise-induced differentiation or decommitment. Our model provides support to both the instructive and stochastic theories of commitment: cell fates are ultimately driven by lineage-specific transcription factors, but cytokine signaling can strongly bias lineage commitment by regulating these inherently noisy cell-fate decisions with complex, pertinent behaviors such as ligand-mediated ultrasensitivity and robust multistability. The simulations further suggest that the kinetics of differentiation to a mature cell state can depend on the starting progenitor state as well as on the route of commitment that is chosen. Lastly, our model shows good agreement with lineage-specific receptor expression kinetics from microarray experiments and provides a computational framework that can integrate both classical and alternative commitment paths in hematopoiesis that have been observed experimentally.

  19. Oscillatory fluid flow induces the osteogenic lineage commitment of mesenchymal stem cells: The effect of shear stress magnitude, frequency, and duration.

    Science.gov (United States)

    Stavenschi, Elena; Labour, Marie-Noelle; Hoey, David A

    2017-04-11

    A potent regulator of bone anabolism is physical loading. However, it is currently unclear whether physical stimuli such as fluid shear within the marrow cavity is sufficient to directly drive the osteogenic lineage commitment of resident mesenchymal stem cells (MSC). Therefore, the objective of the study is to employ a systematic analysis of oscillatory fluid flow (OFF) parameters predicted to occur in vivo on early MSC osteogenic responses and late stage lineage commitment. MSCs were exposed to OFF of 1Pa, 2Pa and 5Pa magnitudes at frequencies of 0.5Hz, 1Hz and 2Hz for 1h, 2h and 4h of stimulation. Our findings demonstrate that OFF elicits a positive osteogenic response in MSCs in a shear stress magnitude, frequency, and duration dependent manner that is gene specific. Based on the mRNA expression of osteogenic markers Cox2, Runx2 and Opn after short-term fluid flow stimulation, we identified that a regime of 2Pa shear magnitude and 2Hz frequency induces the most robust and reliable upregulation in osteogenic gene expression. Furthermore, long-term mechanical stimulation utilising this regime, elicits a significant increase in collagen and mineral deposition when compared to static control demonstrating that mechanical stimuli predicted within the marrow is sufficient to directly drive osteogenesis. Copyright © 2017. Published by Elsevier Ltd.

  20. Epigenetic Signatures at the RUNX2-P1 and Sp7 Gene Promoters Control Osteogenic Lineage Commitment of Umbilical Cord-Derived Mesenchymal Stem Cells.

    Science.gov (United States)

    Sepulveda, Hugo; Aguilar, Rodrigo; Prieto, Catalina P; Bustos, Francisco; Aedo, Sócrates; Lattus, José; van Zundert, Brigitte; Palma, Veronica; Montecino, Martin

    2017-09-01

    Wharton's Jelly mesenchymal stem cells (WJ-MSCs) are an attractive potential source of multipotent stem cells for bone tissue replacement therapies. However, the molecular mechanisms involved in their osteogenic conversion are poorly understood. Particularly, epigenetic control operating at the promoter regions of the two master regulators of the osteogenic program, RUNX2/P57 and SP7 has not yet been described in WJ-MSCs. Via quantitative PCR profiling and chromatin immunoprecipitation (ChIP) studies, here we analyze the ability of WJ-MSCs to engage osteoblast lineage. In undifferentiated WJ-MSCs, RUNX2/P57 P1, and SP7 promoters are found deprived of significant levels of the histone post-translational marks that are normally associated with transcriptionally active genes (H3ac, H3K27ac, and H3K4me3). Moreover, the RUNX2 P1 promoter lacks two relevant histone repressive marks (H3K9me3 and H3K27me3). Importantly, RUNX2 P1 promoter is found highly enriched in the H3K4me1 mark, which has been shown recently to mediate gene repression of key regulatory genes. Upon induction of WJ-MSCs osteogenic differentiation, we found that RUNX2/P57, but not SP7 gene expression is strongly activated, in a process that is accompanied by enrichment of activating histone marks (H3K4me3, H3ac, and H3K27ac) at the P1 promoter region. Histone mark analysis showed that SP7 gene promoter is robustly enriched in epigenetic repressive marks that may explain its poor transcriptional response to osteoblast differentiating media. Together, these results point to critical regulatory steps during epigenetic control of WJ-MSCs osteogenic lineage commitment that are relevant for future applications in regenerative medicine. J. Cell. Physiol. 232: 2519-2527, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  1. Commitment of Satellite Cells Expressing the Calcium Channel α2δ1 Subunit to the Muscle Lineage

    Science.gov (United States)

    Tamayo, Tammy; Grajales, Liliana; García, Jesús

    2012-01-01

    Satellite cells can maintain or repair muscle because they possess stem cell properties, making them a valuable option for cell therapy. However, cell transplants into skeletal muscle of patients with muscular dystrophy are limited by donor cell attachment, migration, and survival in the host tissue. Cells used for therapy are selected based on specific markers present in the plasma membrane. Although many markers have been identified, there is a need to find a marker that is expressed at different states in satellite cells, activated, quiescent, or differentiated cell. Furthermore, the marker has to be present in human tissue. Recently we reported that the plasma membrane α2δ1 protein is involved in cell attachment and migration in myoblasts. The α2δ1 subunit forms a part of the L-type voltage-dependent calcium channel in adult skeletal muscle. We found that the α2δ1 subunit is expressed in the majority of newly isolated satellite cells and that it appears earlier than the α1 subunits and at higher levels than the β or γ subunits. We also found that those cells that expressed α2δ1 would differentiate into muscle cells. This evidence indicates that the α2δ1 may be used as a marker of satellite cells that will differentiate into muscle. PMID:23251796

  2. Commitment of Satellite Cells Expressing the Calcium Channel α2δ1 Subunit to the Muscle Lineage

    Directory of Open Access Journals (Sweden)

    Tammy Tamayo

    2012-01-01

    Full Text Available Satellite cells can maintain or repair muscle because they possess stem cell properties, making them a valuable option for cell therapy. However, cell transplants into skeletal muscle of patients with muscular dystrophy are limited by donor cell attachment, migration, and survival in the host tissue. Cells used for therapy are selected based on specific markers present in the plasma membrane. Although many markers have been identified, there is a need to find a marker that is expressed at different states in satellite cells, activated, quiescent, or differentiated cell. Furthermore, the marker has to be present in human tissue. Recently we reported that the plasma membrane α2δ1 protein is involved in cell attachment and migration in myoblasts. The α2δ1 subunit forms a part of the L-type voltage-dependent calcium channel in adult skeletal muscle. We found that the α2δ1 subunit is expressed in the majority of newly isolated satellite cells and that it appears earlier than the α1 subunits and at higher levels than the β or γ subunits. We also found that those cells that expressed α2δ1 would differentiate into muscle cells. This evidence indicates that the α2δ1 may be used as a marker of satellite cells that will differentiate into muscle.

  3. Mineralogenic characteristics of osteogenic lineage-committed human dental pulp stem cells following their exposure to a discoloration-free calcium aluminosilicate cement.

    Science.gov (United States)

    Niu, Li-Na; Pei, Dan-Dan; Morris, Matthew; Jiao, Kai; Huang, Xue-Qing; Primus, Carolyn M; Susin, Lisiane F; Bergeron, Brian E; Pashley, David H; Tay, Franklin R

    2016-10-01

    An experimental discoloration-free calcium aluminosilicate cement has been developed with the intention of maximizing the beneficial attributes of tricalcium silicate cements and calcium aluminate cements. The present study examined the effects of this experimental cement (Quick-Set2) on the mineralogenic characteristics of osteogenic lineage-committed human dental pulp stem cells (hDPSCs), by comparing the cellular responses with a commercially available tricalcium silicate cement (white mineral trioxide aggregate (ProRoot(®) MTA); WMTA). The osteogenic potential of hDPSCs exposed to the cements was examined using qRT-PCR for osteogenic gene expressions, Western blot for osteogenic-related protein expressions, alkaline phosphatase enzyme activity, Alizarin red S staining, Fourier transform infrared spectroscopy and transmission electron microscopy of extracellular calcium deposits. Results of the six assays indicated that osteogenic differentiation of hDPSCs was significantly enhanced after exposure to the tricalcium silicate cement or the experimental calcium aluminosilicate cement, with the former demonstrating better mineralogenic stimulation capacity. The better osteogenic stimulating effect of the tricalcium silicate cement on hDPSCs may be due to its relatively higher silicate content, or higher OH(-) and Ca(2+) release. Further investigations with the use of in vivo animal models are required to validate the potential augmenting osteogenic effects of the experimental discoloration-free calcium aluminosilicate cement. Published by Elsevier Ltd.

  4. Immunoliposome-mediated delivery of neomycin phosphotransferase for the lineage-specific selection of differentiated/committed stem cell progenies: potential advantages over transfection with marker genes, fluorescence-activated and magnetic affinity cell-sorting.

    Science.gov (United States)

    Heng, Boon Chin; Cao, Tong

    2005-01-01

    A major challenge in the therapeutic application of stem cells in regenerative medicine is the lineage-specific selection of their committed/differentiated progenies for transplantation. This is necessary to avoid engraftment of undesired lineages at the transplantation site, i.e. fibroblastic scar tissue, as well as to enhance the efficacy of transplantation therapy. Commonly used techniques for lineage-specific selection of committed/differentiated stem cell progenies include marker gene transfection, fluorescence-activated (FACS) and magnetic-affinity (MACS) cell-sorting. Nevertheless, these have their disadvantages for therapeutic applications. Marker gene transfection invariably leads to permanent genetic modification of stem cells, which in turn limits their use in human clinical therapy due to overwhelming ethical and safety concerns. FACS requires expensive instrumentation and highly-skilled personnel, and is unsuited for handling bulk quantities of cells that would almost certainly be required for transplantation therapy. MACS is a cheaper alternative, but the level of purity attained is also reduced. A possible novel approach that has yet to be investigated is immunoliposome-mediated delivery of neomycin phosphotranferase (NPT) for lineage-specific selection of stem cell progenies. This would avoid permanent genetic modification to the cell, unlike recombinant NPT expression linked to activation of specific promoter sequences. Moreover, it could potentially provide a much more practical and cost-effective alternative for handling bulk quantities of cells that would be required for transplantation therapy, as compared to FACS or MACS. As such, this alternative approach needs to be rigorously investigated, in view of its potentially useful applications in stem cell therapeutics.

  5. Ribosome Levels Selectively Regulate Translation and Lineage Commitment in Human Hematopoiesis.

    Science.gov (United States)

    Khajuria, Rajiv K; Munschauer, Mathias; Ulirsch, Jacob C; Fiorini, Claudia; Ludwig, Leif S; McFarland, Sean K; Abdulhay, Nour J; Specht, Harrison; Keshishian, Hasmik; Mani, D R; Jovanovic, Marko; Ellis, Steven R; Fulco, Charles P; Engreitz, Jesse M; Schütz, Sabina; Lian, John; Gripp, Karen W; Weinberg, Olga K; Pinkus, Geraldine S; Gehrke, Lee; Regev, Aviv; Lander, Eric S; Gazda, Hanna T; Lee, Winston Y; Panse, Vikram G; Carr, Steven A; Sankaran, Vijay G

    2018-03-22

    Blood cell formation is classically thought to occur through a hierarchical differentiation process, although recent studies have shown that lineage commitment may occur earlier in hematopoietic stem and progenitor cells (HSPCs). The relevance to human blood diseases and the underlying regulation of these refined models remain poorly understood. By studying a genetic blood disorder, Diamond-Blackfan anemia (DBA), where the majority of mutations affect ribosomal proteins and the erythroid lineage is selectively perturbed, we are able to gain mechanistic insight into how lineage commitment is programmed normally and disrupted in disease. We show that in DBA, the pool of available ribosomes is limited, while ribosome composition remains constant. Surprisingly, this global reduction in ribosome levels more profoundly alters translation of a select subset of transcripts. We show how the reduced translation of select transcripts in HSPCs can impair erythroid lineage commitment, illuminating a regulatory role for ribosome levels in cellular differentiation. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Irrespective of CD34 expression, lineage-committed cell fraction reconstitutes and re-establishes transformed Philadelphia chromosome-positive leukemia in NOD/SCID/IL-2Rgammac-/- mice.

    Science.gov (United States)

    Tanizaki, Ryohei; Nomura, Yuka; Miyata, Yasuhiko; Minami, Yosuke; Abe, Akihiro; Hanamura, Akitoshi; Sawa, Masashi; Murata, Makoto; Kiyoi, Hitoshi; Matsushita, Tadashi; Naoe, Tomoki

    2010-03-01

    Stem cells of acute myeloid leukemia (AML) have been identified as immunodeficient mouse-repopulating cells with a Lin(-)CD34(+)38(-) phenotype similar to normal hematopoietic stem cells. To identify the leukemia-propagating stem cell fraction of Philadelphia chromosome-positive (Ph(+)) leukemia, we serially transplanted human leukemia cells from patients with chronic myeloid leukemia blast crisis (n = 3) or Ph(+) acute lymphoblastic leukemia (n = 3) into NOD/SCID/IL-2Rgammac(-/-) mice. Engrafted cells were almost identical to the original leukemia cells as to phenotypes, IGH rearrangements, and karyotypes. CD34(+)CD38(-)CD19(+), CD34(+)38(+)CD19(+), and CD34(-)CD38(+)CD19(+) fractions could self-renew and transfer the leukemia, whereas the CD34(-)CD38(+)CD19(+) fraction did not stably propagate in NOD/SCID mice. These findings suggest that leukemia-repopulating cells in transformed Ph(+) leukemia are included in a lineage-committed but multilayered fraction, and that CD34(+) leukemia cells potentially emerge from CD34(-) populations.

  7. Cell lineage and fate determination

    National Research Council Canada - National Science Library

    Moody, Sally A

    1999-01-01

    ... Washington University. Cell Lineage and Fate DeterminationEdited by SALLYA. MOODY Department of Anatomy and Cell Biology Institute for Biomedical Sciences The George Washington University Washington, D.C. 20037 San Diego London Boston ACADEMIC PRESS New York Sydney Tokyo Toronto Copyright PageCover photograph: Wild-type embryonic central nervous system ...

  8. Polycomb enables primitive endoderm lineage priming in embryonic stem cells

    DEFF Research Database (Denmark)

    Illingworth, Robert S; Hölzenspies, Jurriaan J; Roske, Fabian V

    2016-01-01

    Mouse embryonic stem cells (ESCs), like the blastocyst from which they are derived, contain precursors of the epiblast (Epi) and primitive endoderm (PrEn) lineages. While transient in vivo, these precursor populations readily interconvert in vitro. We show that altered transcription is the driver...... polycomb with dynamic changes in transcription and stalled lineage commitment, allowing cells to explore alternative choices prior to a definitive decision....

  9. Regulation of Murine Natural Killer Cell Commitment

    Directory of Open Access Journals (Sweden)

    Nicholas D Huntington

    2013-01-01

    Full Text Available NK cells can derive from the same precursors as B and T cells, however to achieve lineage specificity, several transcription factors need to be activated or annulled. While a few important transcription factors have identified for NK genesis the mechanisms of how this is achieved is far from resolved. Adding to the complexity of this, NK cells are found and potentially develop in diverse locations in vivo and it remains to be addressed if a common NK cell precursor seeds diverse niches and how transcription factors may differentially regulate NK cell commitment in distinct microenvironments. Here we will summarise some recent findings in NK cell commitment and discuss how a NK cell transcriptional network might be organised, while addressing some misconceptions and anomalies along the way.

  10. Phosphorylations of Serines 21/9 in Glycogen Synthase Kinase 3α/β Are Not Required for Cell Lineage Commitment or WNT Signaling in the Normal Mouse Intestine.

    Directory of Open Access Journals (Sweden)

    Fiona Hey

    Full Text Available The WNT signalling pathway controls many developmental processes and plays a key role in maintenance of intestine renewal and homeostasis. Glycogen Synthase Kinase 3 (GSK3 is an important component of the WNT pathway and is involved in regulating β-catenin stability and expression of WNT target genes. The mechanisms underpinning GSK3 regulation in this context are not completely understood, with some evidence suggesting this occurs through inhibitory N-terminal serine phosphorylation in a similar way to GSK3 inactivation in insulin signaling. To investigate this in a physiologically relevant context, we have analysed the intestinal phenotype of GSK3 knockin mice in which N-terminal serines 21/9 of GSK3α/β have been mutated to non-phosphorylatable alanine residues. We show that these knockin mutations have very little effect on overall intestinal integrity, cell lineage commitment, β-catenin localization or WNT target gene expression although a small increase in apoptosis at villi tips is observed. Our results provide in vivo evidence that GSK3 is regulated through mechanisms independent of N-terminal serine phosphorylation in order for β-catenin to be stabilised.

  11. Epigenetic asymmetry in the mammalian zygote and early embryo: relationship to lineage commitment?

    Science.gov (United States)

    Reik, Wolf; Santos, Fatima; Mitsuya, Kohzoh; Morgan, Hugh; Dean, Wendy

    2003-01-01

    Epigenetic asymmetry between parental genomes and embryonic lineages exists at the earliest stages of mammalian development. The maternal genome in the zygote is highly methylated in both its DNA and its histones and most imprinted genes have maternal germline methylation imprints. The paternal genome is rapidly remodelled with protamine removal, addition of acetylated histones, and rapid demethylation of DNA before replication. A minority of imprinted genes have paternal germline methylation imprints. Methylation and chromatin reprogramming continues during cleavage divisions, but at the blastocyst stage lineage commitment to inner cell mass (ICM) or trophectoderm (TE) fate is accompanied by a dramatic increase in DNA and histone methylation, predominantly in the ICM. This may set up major epigenetic differences between embryonic and extraembryonic tissues, including in X-chromosome inactivation and perhaps imprinting. Maintaining epigenetic asymmetry appears important for development as asymmetry is lost in cloned embryos, most of which have developmental defects, and in particular an imbalance between extraembryonic and embryonic tissue development. PMID:14511488

  12. Transcriptional Heterogeneity and Lineage Commitment in Myeloid Progenitors

    DEFF Research Database (Denmark)

    Paul, Franziska; Arkin, Ya'ara; Giladi, Amir

    2015-01-01

    Within the bone marrow, stem cells differentiate and give rise to diverse blood cell types and functions. Currently, hematopoietic progenitors are defined using surface markers combined with functional assays that are not directly linked with in vivo differentiation potential or gene regulatory m...

  13. The Hippo Transducer TAZ Interacts with the SWI/SNF Complex to Regulate Breast Epithelial Lineage Commitment

    Directory of Open Access Journals (Sweden)

    Adam Skibinski

    2014-03-01

    Full Text Available Lineage-committed cells of many tissues exhibit substantial plasticity in contexts such as wound healing and tumorigenesis, but the regulation of this process is not well understood. We identified the Hippo transducer WWTR1/TAZ in a screen of transcription factors that are able to prompt lineage switching of mammary epithelial cells. Forced expression of TAZ in luminal cells induces them to adopt basal characteristics, and depletion of TAZ in basal and/or myoepithelial cells leads to luminal differentiation. In human and mouse tissues, TAZ is active only in basal cells and is critical for basal cell maintenance during homeostasis. Accordingly, loss of TAZ affects mammary gland development, leading to an imbalance of luminal and basal populations as well as branching defects. Mechanistically, TAZ interacts with components of the SWI/SNF complex to modulate lineage-specific gene expression. Collectively, these findings uncover a new role for Hippo signaling in the determination of lineage identity through recruitment of chromatin-remodeling complexes.

  14. The WNT signaling antagonist Dickkopf-1 directs lineage commitment and promotes survival of the preimplantation embryo

    Science.gov (United States)

    Denicol, Anna C.; Block, Jeremy; Kelley, Dale E.; Pohler, Ky G.; Dobbs, Kyle B.; Mortensen, Christopher J.; Ortega, M. Sofia; Hansen, Peter J.

    2014-01-01

    Successful embryonic development is dependent on factors secreted by the reproductive tract. Dickkopf-1 (DKK1), an antagonist of the wingless-related mouse mammary tumor virus (WNT) signaling pathway, is one endometrial secretory protein potentially involved in maternal-embryo communication. The purpose of this study was to investigate the roles of DKK1 in embryo cell fate decisions and competence to establish pregnancy. Using in vitro-produced bovine embryos, we demonstrate that exposure of embryos to DKK1 during the period of morula to blastocyst transition (between d 5 and 8 of development) promotes the first 2 cell fate decisions leading to increased differentiation of cells toward the trophectoderm and hypoblast lineages compared with that for control embryos treated with vehicle. Moreover, treatment of embryos with DKK1 or colony-stimulating factor 2 (CSF2; an endometrial cytokine known to improve embryo development and pregnancy establishment) between d 5 and 7 of development improves embryo survival after transfer to recipients. Pregnancy success at d 32 of gestation was 27% for cows receiving control embryos treated with vehicle, 41% for cows receiving embryos treated with DKK1, and 39% for cows receiving embryos treated with CSF2. These novel findings represent the first evidence of a role for maternally derived WNT regulators during this period and could lead to improvements in assisted reproductive technologies.—Denicol, A. C., Block, J., Kelley, D. E., Pohler, K. G., Dobbs, K. B., Mortensen, C. J., Ortega, M. S., Hansen, P. J. The WNT signaling antagonist Dickkopf-1 directs lineage commitment and promotes survival of the preimplantation embryo. PMID:24858280

  15. Single cell lineage analysis of mouse embryonic stem cells at the exit from pluripotency

    Directory of Open Access Journals (Sweden)

    Jamie Trott

    2013-08-01

    Understanding how interactions between extracellular signalling pathways and transcription factor networks influence cellular decision making will be crucial for understanding mammalian embryogenesis and for generating specialised cell types in vitro. To this end, pluripotent mouse Embryonic Stem (mES cells have proven to be a useful model system. However, understanding how transcription factors and signalling pathways affect decisions made by individual cells is confounded by the fact that measurements are generally made on groups of cells, whilst individual mES cells differentiate at different rates and towards different lineages, even in conditions that favour a particular lineage. Here we have used single-cell measurements of transcription factor expression and Wnt/β-catenin signalling activity to investigate their effects on lineage commitment decisions made by individual cells. We find that pluripotent mES cells exhibit differing degrees of heterogeneity in their expression of important regulators from pluripotency, depending on the signalling environment to which they are exposed. As mES cells differentiate, downregulation of Nanog and Oct4 primes cells for neural commitment, whilst loss of Sox2 expression primes cells for primitive streak commitment. Furthermore, we find that Wnt signalling acts through Nanog to direct cells towards a primitive streak fate, but that transcriptionally active β-catenin is associated with both neural and primitive streak commitment. These observations confirm and extend previous suggestions that pluripotency genes influence lineage commitment and demonstrate how their dynamic expression affects the direction of lineage commitment, whilst illustrating two ways in which the Wnt signalling pathway acts on this network during cell fate assignment.

  16. The development of cell lineages: a sequential model.

    Science.gov (United States)

    Brown, G; Bunce, C M; Lord, J M; McConnell, F M

    1988-12-01

    The concept of cell lineage and the empirical characterization of specific lineages provide valuable insight into the problems of developmental biology. Of central interest is the decision-making process that results in the diversification of cell lines. Studies of the haemopoietic system, in which stem cells can be committed to one of at least six pathways of differentiation, have suggested that the restriction of differentiation potentials is a progressive and stochastic process. We have recently proposed an alternative model which hypothesizes that lineage potentials during haemopoiesis are expressed individually and in a predetermined sequence as progenitor cells mature. The model first arises from experimental studies which show that both normal myeloid progenitor cells and a human promyeloid cell line, which are able to differentiate towards either neutrophils or monocytes, express these potentials sequentially in culture. The close linear relationship between other haemopoietic progenitor cells is inferred from collective data from studies of bipotent progenitor cells and of haemopoietic proliferative disorders. If the development of haemopoietic cell lineages shows a tendency to follow a particular program, such a mechanism is likely to operate throughout development. In this paper we consider the evidence in favour of programmed events within progenitor cells implementing diversification, and the implications of predetermined and restricted pathways of embryonic development.

  17. Cell lineage tree models of neurogenesis.

    Science.gov (United States)

    Slater, Jennifer L; Landman, Kerry A; Hughes, Barry D; Shen, Qin; Temple, Sally

    2009-01-21

    The production of neurons to form the mammalian cortex, known as embryonic cortical neurogenesis, is a complex developmental process. Insight into the process of cell division during neurogenesis is provided by murine cortical cell lineage trees, recorded through experimental observation. Recurring patterns within cell lineage trees may be indicative of predetermined cell behaviour. The application of mathematical modelling to this process requires careful consideration and identification of the key features to be incorporated into the model. A biologically plausible stochastic model of evolution of cell lineage trees is developed, based on the most important known features of neurogenesis. Tractable means of measuring lineage tree shape are discussed. Symmetry is identified as a significant feature of shape and is measured using Colless's Index of Imbalance. Distributions of tree size and imbalance for large tree sizes are computed and results compared to experimental data. Several refinements to the model are investigated, when the cell division probabilities are weighted according to cell generation. Two models involving generation-dependent cell division probabilities produce imbalance distributions which are the most consistent with the available experimental results. The results indicate that a stochastic cell division mechanism is a plausible basis of mammalian neurogenesis.

  18. Nano-hydroxyapatite modulates osteoblast lineage commitment by stimulation of DNA methylation and regulation of gene expression

    Science.gov (United States)

    Ha, Shin-Woo; Jang, Hae Lin; Nam, Ki Tae; Beck, George R.

    2015-01-01

    Hydroxyapatite (HA) is the primary structural component of the skeleton and dentition. Under biological conditions, HA does not occur spontaneously and therefore must be actively synthesized by mineralizing cells such as osteoblasts. The mechanism(s) by which HA is actively synthesized by cells and deposited to create a mineralized matrix are not fully understood and the consequences of mineralization on cell function are even less well understood. HA can be chemically synthesized (HAp) and is therefore currently being investigated as a promising therapeutic biomaterial for use as a functional scaffold and implant coating for skeletal repair and dental applications. Here we investigated the biological effects of nano-HAp (10×100 nm) on the lineage commitment and differentiation of bone forming osteoblasts. Exposure of early stage differentiating osteoblasts resulted in dramatic and sustained changes in gene expression, both increased and decreased, whereas later stage osteoblasts were much less responsive. Analysis of the promoter region one of the most responsive genes, alkaline phosphatase, identified the stimulation of DNA methylation following cell exposure to nano-HAp. Collectively, the results reveal the novel epigenetic regulation of cell function by nano-HAp which has significant implication on lineage determination as well as identifying a novel potential therapeutic use of nanomaterials. PMID:26141836

  19. Cytomegalovirus immune evasion of myeloid lineage cells.

    Science.gov (United States)

    Brinkmann, Melanie M; Dağ, Franziska; Hengel, Hartmut; Messerle, Martin; Kalinke, Ulrich; Čičin-Šain, Luka

    2015-06-01

    Cytomegalovirus (CMV) evades the immune system in many different ways, allowing the virus to grow and its progeny to spread in the face of an adverse environment. Mounting evidence about the antiviral role of myeloid immune cells has prompted the research of CMV immune evasion mechanisms targeting these cells. Several cells of the myeloid lineage, such as monocytes, dendritic cells and macrophages, play a role in viral control, but are also permissive for CMV and are naturally infected by it. Therefore, CMV evasion of myeloid cells involves mechanisms that qualitatively differ from the evasion of non-CMV-permissive immune cells of the lymphoid lineage. The evasion of myeloid cells includes effects in cis, where the virus modulates the immune signaling pathways within the infected myeloid cell, and those in trans, where the virus affects somatic cells targeted by cytokines released from myeloid cells. This review presents an overview of CMV strategies to modulate and evade the antiviral activity of myeloid cells in cis and in trans.

  20. Evolution of two prototypic T cell lineages.

    Science.gov (United States)

    Das, Sabyasachi; Li, Jianxu; Hirano, Masayuki; Sutoh, Yoichi; Herrin, Brantley R; Cooper, Max D

    2015-07-01

    Jawless vertebrates, which occupy a unique position in chordate phylogeny, employ leucine-rich repeat (LRR)-based variable lymphocyte receptors (VLR) for antigen recognition. During the assembly of the VLR genes (VLRA, VLRB and VLRC), donor LRR-encoding sequences are copied in a step-wise manner into the incomplete germ-line genes. The assembled VLR genes are differentially expressed by discrete lymphocyte lineages: VLRA- and VLRC-producing cells are T-cell like, whereas VLRB-producing cells are B-cell like. VLRA(+) and VLRC(+) lymphocytes resemble the two principal T-cell lineages of jawed vertebrates that express the αβ or γδ T-cell receptors (TCR). Reminiscent of the interspersed nature of the TCRα/TCRδ locus in jawed vertebrates, the close proximity of the VLRA and VLRC loci facilitates sharing of donor LRR sequences during VLRA and VLRC assembly. Here we discuss the insight these findings provide into vertebrate T- and B-cell evolution, and the alternative types of anticipatory receptors they use for adaptive immunity. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Trophoblast lineage cells derived from human induced pluripotent stem cells

    International Nuclear Information System (INIS)

    Chen, Ying; Wang, Kai; Chandramouli, Gadisetti V.R.; Knott, Jason G.; Leach, Richard

    2013-01-01

    Highlights: •Epithelial-like phenotype of trophoblast lineage cells derived from human iPS cells. •Trophoblast lineage cells derived from human iPS cells exhibit trophoblast function. •Trophoblasts from iPS cells provides a proof-of-concept in regenerative medicine. -- Abstract: Background: During implantation, the blastocyst trophectoderm attaches to the endometrial epithelium and continues to differentiate into all trophoblast subtypes, which are the major components of a placenta. Aberrant trophoblast proliferation and differentiation are associated with placental diseases. However, due to ethical and practical issues, there is almost no available cell or tissue source to study the molecular mechanism of human trophoblast differentiation, which further becomes a barrier to the study of the pathogenesis of trophoblast-associated diseases of pregnancy. In this study, our goal was to generate a proof-of-concept model for deriving trophoblast lineage cells from induced pluripotency stem (iPS) cells from human fibroblasts. In future studies the generation of trophoblast lineage cells from iPS cells established from patient’s placenta will be extremely useful for studying the pathogenesis of individual trophoblast-associated diseases and for drug testing. Methods and results: Combining iPS cell technology with BMP4 induction, we derived trophoblast lineage cells from human iPS cells. The gene expression profile of these trophoblast lineage cells was distinct from fibroblasts and iPS cells. These cells expressed markers of human trophoblasts. Furthermore, when these cells were differentiated they exhibited invasive capacity and placental hormone secretive capacity, suggesting extravillous trophoblasts and syncytiotrophoblasts. Conclusion: Trophoblast lineage cells can be successfully derived from human iPS cells, which provide a proof-of-concept tool to recapitulate pathogenesis of patient placental trophoblasts in vitro

  2. Trophoblast lineage cells derived from human induced pluripotent stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ying, E-mail: ying.chen@hc.msu.edu [Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, 333 Bostwick NE, Grand Rapids, MI 49503 (United States); Wang, Kai; Chandramouli, Gadisetti V.R. [Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, 333 Bostwick NE, Grand Rapids, MI 49503 (United States); Knott, Jason G. [Developmental Epigenetics Laboratory, Department of Animal Science, Michigan State University (United States); Leach, Richard, E-mail: Richard.leach@hc.msu.edu [Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, 333 Bostwick NE, Grand Rapids, MI 49503 (United States); Department of Obstetrics, Gynecology and Women’s Health, Spectrum Health Medical Group (United States)

    2013-07-12

    Highlights: •Epithelial-like phenotype of trophoblast lineage cells derived from human iPS cells. •Trophoblast lineage cells derived from human iPS cells exhibit trophoblast function. •Trophoblasts from iPS cells provides a proof-of-concept in regenerative medicine. -- Abstract: Background: During implantation, the blastocyst trophectoderm attaches to the endometrial epithelium and continues to differentiate into all trophoblast subtypes, which are the major components of a placenta. Aberrant trophoblast proliferation and differentiation are associated with placental diseases. However, due to ethical and practical issues, there is almost no available cell or tissue source to study the molecular mechanism of human trophoblast differentiation, which further becomes a barrier to the study of the pathogenesis of trophoblast-associated diseases of pregnancy. In this study, our goal was to generate a proof-of-concept model for deriving trophoblast lineage cells from induced pluripotency stem (iPS) cells from human fibroblasts. In future studies the generation of trophoblast lineage cells from iPS cells established from patient’s placenta will be extremely useful for studying the pathogenesis of individual trophoblast-associated diseases and for drug testing. Methods and results: Combining iPS cell technology with BMP4 induction, we derived trophoblast lineage cells from human iPS cells. The gene expression profile of these trophoblast lineage cells was distinct from fibroblasts and iPS cells. These cells expressed markers of human trophoblasts. Furthermore, when these cells were differentiated they exhibited invasive capacity and placental hormone secretive capacity, suggesting extravillous trophoblasts and syncytiotrophoblasts. Conclusion: Trophoblast lineage cells can be successfully derived from human iPS cells, which provide a proof-of-concept tool to recapitulate pathogenesis of patient placental trophoblasts in vitro.

  3. Primordial germ cells: the first cell lineage or the last cells standing?

    Science.gov (United States)

    Johnson, Andrew D; Alberio, Ramiro

    2015-08-15

    Embryos of many animal models express germ line determinants that suppress transcription and mediate early germ line commitment, which occurs before the somatic cell lineages are established. However, not all animals segregate their germ line in this manner. The 'last cell standing' model describes primordial germ cell (PGC) development in axolotls, in which PGCs are maintained by an extracellular signalling niche, and germ line commitment occurs after gastrulation. Here, we propose that this 'stochastic' mode of PGC specification is conserved in vertebrates, including non-rodent mammals. We postulate that early germ line segregation liberates genetic regulatory networks for somatic development to evolve, and that it therefore emerged repeatedly in the animal kingdom in response to natural selection. © 2015. Published by The Company of Biologists Ltd.

  4. Cell fusion-independent differentiation of neural stem cells to the endothelial lineage.

    Science.gov (United States)

    Wurmser, Andrew E; Nakashima, Kinichi; Summers, Robert G; Toni, Nicolas; D'Amour, Kevin A; Lie, Dieter C; Gage, Fred H

    2004-07-15

    Somatic stem cells have been claimed to possess an unexpectedly broad differentiation potential (referred to here as plasticity) that could be induced by exposing stem cells to the extracellular developmental signals of other lineages in mixed-cell cultures. Recently, this and other experimental evidence supporting the existence of stem-cell plasticity have been refuted because stem cells have been shown to adopt the functional features of other lineages by means of cell-fusion-mediated acquisition of lineage-specific determinants (chromosomal DNA) rather than by signal-mediated differentiation. In this study we co-cultured mouse neural stem cells (NSCs), which are committed to become neurons and glial cells, with human endothelial cells, which form the lining of blood vessels. We show that in the presence of endothelial cells six per cent of the NSC population converted to cells that did not express neuronal or glial markers, but instead showed the stable expression of multiple endothelial markers and the capacity to form capillary networks. This was surprising because NSCs and endothelial cells are believed to develop from the ectoderm and mesoderm, respectively. Experiments in which endothelial cells were killed by fixation before co-culture with live NSCs (to prevent cell fusion) and karyotyping analyses, revealed that NSCs had differentiated into endothelial-like cells independently of cell fusion. We conclude that stem-cell plasticity is a true characteristic of NSCs and that the conversion of NSCs to unanticipated cell types can be accomplished without cell fusion.

  5. The TCR ligand-inducible expression of CD73 marks γδ lineage commitment and a metastable intermediate in effector specification

    DEFF Research Database (Denmark)

    Coffey, Francis; Lee, Sang-Yun; Buus, Terkild B

    2014-01-01

    cells, suggesting this is a common occurrence during development. Moreover, CD73 induction appears to mark a metastable intermediate stage before acquisition of effector function, suggesting that γδ lineage and effector fate are specified sequentially. These findings have important implications......Numerous studies indicate that γδ T cell receptor (γδTCR) expression alone does not reliably mark commitment of early thymic progenitors to the γδ fate. This raises the possibility that the γδTCR is unable to intrinsically specify fate and instead requires additional environmental factors......, including TCR-ligand engagement. We use single cell progenitor assays to reveal that ligand acts instructionally to direct adoption of the γδ fate. Moreover, we identify CD73 as a TCR ligand-induced cell surface protein that distinguishes γδTCR-expressing CD4(-)CD8(-) progenitors that have committed...

  6. Lineage tracing of cells involved in atherosclerosis.

    Science.gov (United States)

    Albarrán-Juárez, Julián; Kaur, Harmandeep; Grimm, Myriam; Offermanns, Stefan; Wettschureck, Nina

    2016-08-01

    Despite the clinical importance of atherosclerosis, the origin of cells within atherosclerotic plaques is not fully understood. Due to the lack of a definitive lineage-tracing strategy, previous studies have provided controversial results about the origin of cells expressing smooth muscle and macrophage markers in atherosclerosis. We here aim to identify the origin of vascular smooth muscle (SM) cells and macrophages within atherosclerosis lesions. We combined a genetic fate mapping approach with single cell expression analysis in a murine model of atherosclerosis. We found that 16% of CD68-positive plaque macrophage-like cells were derived from mature SM cells and not from myeloid sources, whereas 31% of αSMA-positive smooth muscle-like cells in plaques were not SM-derived. Further analysis at the single cell level showed that SM-derived CD68(+) cells expressed higher levels of inflammatory markers such as cyclooxygenase 2 (Ptgs2, p = 0.02), and vascular cell adhesion molecule (Vcam1, p = 0.05), as well as increased mRNA levels of genes related to matrix synthesis such as Col1a2 (p = 0.01) and Fn1 (p = 0.04), than non SM-derived CD68(+) cells. These results demonstrate that smooth muscle cells within atherosclerotic lesions can switch to a macrophage-like phenotype characterized by higher expression of inflammatory and synthetic markers genes that may further contribute to plaque progression. Copyright © 2016 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  7. Transcription factor EBF1 is essential for the maintenance of B cell identity and prevention of alternative fates in committed cells.

    Science.gov (United States)

    Nechanitzky, Robert; Akbas, Duygu; Scherer, Stefanie; Györy, Ildiko; Hoyler, Thomas; Ramamoorthy, Senthilkumar; Diefenbach, Andreas; Grosschedl, Rudolf

    2013-08-01

    The transcription factors EBF1 and Pax5 have been linked to activation of the B cell lineage program and irreversible loss of alternative lineage potential (commitment), respectively. Here we conditionally deleted Ebf1 in committed pro-B cells after transfer into alymphoid mice. We found that those cells converted into innate lymphoid cells (ILCs) and T cells with variable-diversity-joining (VDJ) rearrangements of loci encoding both B cell and T cell antigen receptors. As intermediates in lineage conversion, Ebf1-deficient CD19(+) cells expressing Pax5 and transcriptional regulators of the ILC and T cell fates were detectable. In particular, genes encoding the transcription factors Id2 and TCF-1 were bound and repressed by EBF1. Thus, both EBF1 and Pax5 are required for B lineage commitment by repressing distinct and common determinants of alternative cell fates.

  8. Pax6 downregulation mediates abnormal lineage commitment of the ocular surface epithelium in aqueous-deficient dry eye disease.

    Directory of Open Access Journals (Sweden)

    Ying Ting Chen

    Full Text Available Keratinizing squamous metaplasia (SQM of the ocular surface is a blinding consequence of systemic autoimmune disease and there is no cure. Ocular SQM is traditionally viewed as an adaptive tissue response during chronic keratoconjunctivitis sicca (KCS that provokes pathological keratinization of the corneal epithelium and fibrosis of the corneal stroma. Recently, we established the autoimmune regulator-knockout (Aire KO mouse as a model of autoimmune KCS and identified an essential role for autoreactive CD4+ T cells in SQM pathogenesis. In subsequent studies, we noted the down-regulation of paired box gene 6 (Pax6 in both human patients with chronic KCS associated with Sjögren's syndrome and Aire KO mice. Pax6 encodes a pleiotropic transcription factor guiding eye morphogenesis during development. While the postnatal function of Pax6 is largely unknown, we hypothesized that its role in maintaining ocular surface homeostasis was disrupted in the inflamed eye and that loss of Pax6 played a functional role in the initiation and progression of SQM. Adoptive transfer of autoreactive T cells from Aire KO mice to immunodeficient recipients confirmed CD4+ T cells as the principal downstream effectors promoting Pax6 downregulation in Aire KO mice. CD4+ T cells required local signaling via Interleukin-1 receptor (IL-1R1 to provoke Pax6 loss, which prompted a switch from corneal-specific cytokeratin, CK12, to epidermal-specific CK10. The functional role of Pax6 loss in SQM pathogenesis was indicated by the reversal of SQM and restoration of ocular surface homeostasis following forced expression of Pax6 in corneal epithelial cells using adenovirus. Thus, tissue-restricted restoration of Pax6 prevented aberrant epidermal-lineage commitment suggesting adjuvant Pax6 gene therapy may represent a novel therapeutic approach to prevent SQM in patients with chronic inflammatory diseases of the ocular surface.

  9. Lineage Switching in Acute Leukemias: A Consequence of Stem Cell Plasticity?

    Directory of Open Access Journals (Sweden)

    Elisa Dorantes-Acosta

    2012-01-01

    Full Text Available Acute leukemias are the most common cancer in childhood and characterized by the uncontrolled production of hematopoietic precursor cells of the lymphoid or myeloid series within the bone marrow. Even when a relatively high efficiency of therapeutic agents has increased the overall survival rates in the last years, factors such as cell lineage switching and the rise of mixed lineages at relapses often change the prognosis of the illness. During lineage switching, conversions from lymphoblastic leukemia to myeloid leukemia, or vice versa, are recorded. The central mechanisms involved in these phenomena remain undefined, but recent studies suggest that lineage commitment of plastic hematopoietic progenitors may be multidirectional and reversible upon specific signals provided by both intrinsic and environmental cues. In this paper, we focus on the current knowledge about cell heterogeneity and the lineage switch resulting from leukemic cells plasticity. A number of hypothetical mechanisms that may inspire changes in cell fate decisions are highlighted. Understanding the plasticity of leukemia initiating cells might be fundamental to unravel the pathogenesis of lineage switch in acute leukemias and will illuminate the importance of a flexible hematopoietic development.

  10. Lineage Switching in Acute Leukemias: A Consequence of Stem Cell Plasticity?

    Science.gov (United States)

    Dorantes-Acosta, Elisa; Pelayo, Rosana

    2012-01-01

    Acute leukemias are the most common cancer in childhood and characterized by the uncontrolled production of hematopoietic precursor cells of the lymphoid or myeloid series within the bone marrow. Even when a relatively high efficiency of therapeutic agents has increased the overall survival rates in the last years, factors such as cell lineage switching and the rise of mixed lineages at relapses often change the prognosis of the illness. During lineage switching, conversions from lymphoblastic leukemia to myeloid leukemia, or vice versa, are recorded. The central mechanisms involved in these phenomena remain undefined, but recent studies suggest that lineage commitment of plastic hematopoietic progenitors may be multidirectional and reversible upon specific signals provided by both intrinsic and environmental cues. In this paper, we focus on the current knowledge about cell heterogeneity and the lineage switch resulting from leukemic cells plasticity. A number of hypothetical mechanisms that may inspire changes in cell fate decisions are highlighted. Understanding the plasticity of leukemia initiating cells might be fundamental to unravel the pathogenesis of lineage switch in acute leukemias and will illuminate the importance of a flexible hematopoietic development. PMID:22852088

  11. Stem Cell Lineage Infidelity Drives Wound Repair and Cancer.

    Science.gov (United States)

    Ge, Yejing; Gomez, Nicholas C; Adam, Rene C; Nikolova, Maria; Yang, Hanseul; Verma, Akanksha; Lu, Catherine Pei-Ju; Polak, Lisa; Yuan, Shaopeng; Elemento, Olivier; Fuchs, Elaine

    2017-05-04

    Tissue stem cells contribute to tissue regeneration and wound repair through cellular programs that can be hijacked by cancer cells. Here, we investigate such a phenomenon in skin, where during homeostasis, stem cells of the epidermis and hair follicle fuel their respective tissues. We find that breakdown of stem cell lineage confinement-granting privileges associated with both fates-is not only hallmark but also functional in cancer development. We show that lineage plasticity is critical in wound repair, where it operates transiently to redirect fates. Investigating mechanism, we discover that irrespective of cellular origin, lineage infidelity occurs in wounding when stress-responsive enhancers become activated and override homeostatic enhancers that govern lineage specificity. In cancer, stress-responsive transcription factor levels rise, causing lineage commanders to reach excess. When lineage and stress factors collaborate, they activate oncogenic enhancers that distinguish cancers from wounds. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Lineage-Biased Stem Cells Maintain Estrogen-Receptor-Positive and -Negative Mouse Mammary Luminal Lineages

    Directory of Open Access Journals (Sweden)

    Chunhui Wang

    2017-03-01

    Full Text Available Delineating the mammary differentiation hierarchy is important for the study of mammary gland development and tumorigenesis. Mammary luminal cells are considered a major origin of human breast cancers. However, how estrogen-receptor-positive (ER+ and ER− luminal cells are developed and maintained remains poorly understood. The prevailing model suggests that a common stem/progenitor cell generates both cell types. Through genetic lineage tracing in mice, we find that SOX9-expressing cells specifically contribute to the development and maintenance of ER− luminal cells and, to a lesser degree, basal cells. In parallel, PROM1-expressing cells give rise only to ER+ luminal cells. Both SOX9+ and PROM1+ cells specifically sustain their respective lineages even after pregnancy-caused tissue remodeling or serial transplantation, demonstrating characteristic properties of long-term repopulating stem cells. Thus, our data reveal that mouse mammary ER+ and ER− luminal cells are two independent lineages that are maintained by distinct stem cells, providing a revised mammary epithelial cell hierarchy.

  13. Transcriptional repression of Gata3 is essential for early B cell commitment.

    Science.gov (United States)

    Banerjee, Anupam; Northrup, Daniel; Boukarabila, Hanane; Jacobsen, Sten Erik W; Allman, David

    2013-05-23

    The mechanisms underlying the silencing of alternative fate potentials in very early B cell precursors remain unclear. Using gain- and loss-of-function approaches together with a synthetic Zinc-finger polypeptide (6ZFP) engineered to prevent transcription factor binding to a defined cis element, we show that the transcription factor EBF1 promotes B cell lineage commitment by directly repressing expression of the T-cell-lineage-requisite Gata3 gene. Ebf1-deficient lymphoid progenitors exhibited increased T cell lineage potential and elevated Gata3 transcript expression, whereas enforced EBF1 expression inhibited T cell differentiation and caused rapid loss of Gata3 mRNA. Notably, 6ZFP-mediated perturbation of EBF1 binding to a Gata3 regulatory region restored Gata3 expression, abrogated EBF1-driven suppression of T cell differentiation, and prevented B cell differentiation via a GATA3-dependent mechanism. Furthermore, EBF1 binding to Gata3 regulatory sites induced repressive histone modifications across this region. These data identify a transcriptional circuit critical for B cell lineage commitment. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Triple Staining Including FOXA2 Identifies Stem Cell Lineages Undergoing Hepatic and Biliary Differentiation in Cirrhotic Human Liver.

    Science.gov (United States)

    Rogler, Charles E; Bebawee, Remon; Matarlo, Joe; Locker, Joseph; Pattamanuch, Nicole; Gupta, Sanjeev; Rogler, Leslie E

    2017-01-01

    Recent investigations have reported many markers associated with human liver stem/progenitor cells, "oval cells," and identified "niches" in diseased livers where stem cells occur. However, there has remained a need to identify entire lineages of stem cells as they differentiate into bile ducts or hepatocytes. We have used combined immunohistochemical staining for a marker of hepatic commitment and specification (FOXA2 [Forkhead box A2]), hepatocyte maturation (Albumin and HepPar1), and features of bile ducts (CK19 [cytokeratin 19]) to identify lineages of stem cells differentiating toward the hepatocytic or bile ductular compartments of end-stage cirrhotic human liver. We identified large clusters of disorganized, FOXA2 expressing, oval cells in localized liver regions surrounded by fibrotic matrix, designated as "micro-niches." Specific FOXA2-positive cells within the micro-niches organize into primitive duct structures that support both hepatocytic and bile ductular differentiation enabling identification of entire lineages of cells forming the two types of structures. We also detected expression of hsa-miR-122 in primitive ductular reactions expected for hepatocytic differentiation and hsa-miR-23b cluster expression that drives liver cell fate decisions in cells undergoing lineage commitment. Our data establish the foundation for a mechanistic hypothesis on how stem cell lineages progress in specialized micro-niches in cirrhotic end-stage liver disease.

  15. Cell lineage branching as a strategy for proliferative control.

    Science.gov (United States)

    Buzi, Gentian; Lander, Arthur D; Khammash, Mustafa

    2015-02-19

    How tissue and organ sizes are specified is one of the great unsolved mysteries in biology. Experiments and mathematical modeling implicate feedback control of cell lineage progression, but a broad understanding of what lineage feedback accomplishes is lacking. By exploring the possible effects of various biologically relevant disturbances on the dynamic and steady state behaviors of stem cell lineages, we find that the simplest and most frequently studied form of lineage feedback - which we term renewal control - suffers from several serious drawbacks. These reflect fundamental performance limits dictated by universal conservation-type laws, and are independent of parameter choice. Here we show that introducing lineage branches can circumvent all such limitations, permitting effective attenuation of a wide range of perturbations. The type of feedback that achieves such performance - which we term fate control - involves promotion of lineage branching at the expense of both renewal and (primary) differentiation. We discuss the evidence that feedback of just this type occurs in vivo, and plays a role in tissue growth control. Regulated lineage branching is an effective strategy for dealing with disturbances in stem cell systems. The existence of this strategy provides a dynamics-based justification for feedback control of cell fate in vivo.

  16. Cell lineages and fate maps in tunicates: conservation and modification.

    Science.gov (United States)

    Nishida, Hiroki; Stach, Thomas

    2014-10-01

    Comparison of features of the cell lineages and fate maps of early embryos between related species is useful in inferring developmental mechanisms and amenable to evolutionary considerations. We present cleavage patterns, cell lineage trees, and fate maps of ascidian and appendicularian embryos side by side to facilitate comparison. This revealed a number of significant differences in cleavage patterns and cell lineage trees, whereas the fate maps were found to be conserved. This fate map similarity can be extended to vertebrates, thus representing the fate map characteristics of chordates. Cleavage patterns and cell lineages may have been modified during evolution without any drastic changes in fate maps. Selective pressures that constrain developmental mechanisms at early embryonic stages might not be so strong as long as embryos are still able to generate a chordate-type fate map. Aquatic chordates share similar fate maps and morphogenetic movements during gastrulation and neurulation, eventually developing into tadpole-shaped larvae. As swimming by tail beats, and not by cilia, is advantageous, selective pressure may maintain the basic elements of the tadpole shape. We also discuss the evolutionary origin of the vertebrate neural crest and the embryonic origin of the appendicularian heart to illustrate the usefulness of cell lineage data. From an evolutionary standpoint, cell lineages behave like other characteristics such as morphology or protein sequences. Both novel and primitive features are present in extant organisms, and it is of interest to identify the relative degree of evolutionary conservation as well as the level at which homology is inferred.

  17. Delayed Enrichment of Mesenchymal Cells Promotes Cardiac Lineage and Calcium Transient Development

    Science.gov (United States)

    Grajales, Liliana; García, Jesús; Banach, Kathrin; Geenen, David L.

    2010-01-01

    Bone marrow-derived mesenchymal stem cells (BM-MSC) can be induced to differentiate into myogenic cells. Despite their potential, previous studies have not been successful in producing a high percentage of cardiac-like cells with a muscle phenotype. We hypothesized that cardiac lineage development in BM-MSC is related to cell passage, culture milieu, and enrichment for specific cell subtypes before and during differentiation. Our study demonstrated that Lin- BM-MSC at an intermediate passage (IP; P8-P12) expressed cardiac troponin T (cTnT) after 21 days in culture. Cardiac TnT expression was similar whether IP cells were differentiated in media containing 5-azacytidine + 2% FBS (AZA; 14%) or 2% FBS alone (LS; 12%) and both were significantly higher than AZA + 5% FBS. This expression was potentiated by first enriching for CD117/Sca-1 cells followed by differentiation (AZA, 39% and LS, 28%). A second sequential enrichment for the dihydropyridine receptor subunit α2δ1 (DHPR-α2) resulted in cardiac TnT expressed in 54% of cultured cells compared to 28% of cells after CD117/Sca-1+ enrichment. Cells enriched for CD117/Sca-1 and subjected to differentiation displayed spontaneous intracellular Ca2+ transients with an increase in transient frequency and a 60% decrease in the transient duration amplitude between Days 14 and 29. In conclusion, IP CD117/Sca-1+ murine BM-MSC display robust cardiac muscle lineage development that can be induced independent of AZA but is diminished under higher serum concentrations. Furthermore, temporal changes in calcium kinetics commensurate with increased cTnT expression suggest progressive maturation of a cardiac muscle lineage. Enrichment with CD117/Sca-1 to establish lineage commitment followed by DHPR-α2 in lineage developing cells may enhance the therapeutic potential of these cells for transplantation. PMID:20060001

  18. Pioneer factors govern super-enhancer dynamics in stem cell plasticity and lineage choice

    Science.gov (United States)

    Adam, Rene C.; Yang, Hanseul; Rockowitz, Shira; Larsen, Samantha B.; Nikolova, Maria; Oristian, Daniel S.; Polak, Lisa; Kadaja, Meelis; Asare, Amma; Zheng, Deyou; Fuchs, Elaine

    2015-01-01

    Adult stem cells (SCs) reside in niches which balance self-renewal with lineage selection and progression during tissue homeostasis. Following injury, culture or transplantation, SCs outside their niche often display fate flexibility1-4. Here we show that super-enhancers5 underlie the identity, lineage commitment and plasticity of adult SCs in vivo. Using hair follicle (HF) as model, we map the global chromatin domains of HFSCs and their committed progenitors in their native microenvironments. We show that super-enhancers and their dense clusters (‘epicenters’) of transcription factor (TF) binding sites change upon lineage progression. New fate is acquired by decommissioning old and establishing new super-enhancers and/or epicenters, an auto-regulatory process that abates one master regulator subset while enhancing another. We further show that when outside their niche, either in vitro or in wound-repair, HFSCs dynamically remodel super-enhancers in response to changes in their microenvironment. Intriguingly, some key super-enhancers shift epicenters, enabling them to remain active and maintain a transitional state in an ever-changing transcriptional landscape. Finally, we identify SOX9 as a crucial chromatin rheostat of HFSC super-enhancers, and provide functional evidence that super-enhancers are dynamic, dense TF-binding platforms which are acutely sensitive to pioneer master regulators whose levels define not only spatial and temporal features of lineage-status, but also stemness, plasticity in transitional states and differentiation. PMID:25799994

  19. Cell fate determination in the Caenorhabditis elegans epidermal lineages

    NARCIS (Netherlands)

    Soete, G.A.J.

    2007-01-01

    The starting point for this work was to use the hypodermal seam of C. elegans as a model system to study cell fate determination. Even though the seam is a relatively simple developmental system, the mechanisms that control cell fate determination in the seam lineages are connected in a highly

  20. Cell lineage tracing reveals a biliary origin of intrahepatic cholangiocarcinoma

    Science.gov (United States)

    Guest, Rachel V; Boulter, Luke; Kendall, Timothy J; Minnis-Lyons, Sarah E; Walker, Robert; Wigmore, Stephen J; Sansom, Owen J; Forbes, Stuart J

    2014-01-01

    Intrahepatic cholangiocarcinoma (ICC) is a treatment refractory malignancy with a high mortality and an increasing incidence worldwide. Recent studies have observed that activation of Notch and AKT signalling within mature hepatocytes is able to induce the formation of tumours displaying biliary lineage markers, thereby raising the suggestion that it is hepatocytes, rather than cholangiocytes or hepatic progenitor cells that represent the cell of origin of this tumour. Here we utilise a cholangiocyte-lineage tracing system to target p53 loss to biliary epithelia and observe the appearance of labelled biliary lineage tumours in response to chronic injury. Consequent to this, up-regulation of native functional Notch signalling is observed to occur spontaneously within cholangiocytes and hepatocytes in this model as well as in human ICC. These data prove that in the context of chronic inflammation and p53 loss, frequent occurrences in human disease, biliary epithelia are a target of transformation and an origin of ICC. PMID:24310400

  1. Hydroxymethylation at Gene Regulatory Regions Directs Stem/Early Progenitor Cell Commitment during Erythropoiesis

    Directory of Open Access Journals (Sweden)

    Jozef Madzo

    2014-01-01

    Full Text Available Hematopoietic stem cell differentiation involves the silencing of self-renewal genes and induction of a specific transcriptional program. Identification of multiple covalent cytosine modifications raises the question of how these derivatized bases influence stem cell commitment. Using a replicative primary human hematopoietic stem/progenitor cell differentiation system, we demonstrate dynamic changes of 5-hydroxymethylcytosine (5-hmC during stem cell commitment and differentiation to the erythroid lineage. Genomic loci that maintain or gain 5-hmC density throughout erythroid differentiation contain binding sites for erythroid transcription factors and several factors not previously recognized as erythroid-specific factors. The functional importance of 5-hmC was demonstrated by impaired erythroid differentiation, with augmentation of myeloid potential, and disrupted 5-hmC patterning in leukemia patient-derived CD34+ stem/early progenitor cells with TET methylcytosine dioxygenase 2 (TET2 mutations. Thus, chemical conjugation and affinity purification of 5-hmC-enriched sequences followed by sequencing serve as resources for deciphering functional implications for gene expression during stem cell commitment and differentiation along a particular lineage.

  2. Developmental origin and lineage plasticity of endogenous cardiac stem cells

    Science.gov (United States)

    Santini, Maria Paola; Forte, Elvira; Harvey, Richard P.; Kovacic, Jason C.

    2016-01-01

    Over the past two decades, several populations of cardiac stem cells have been described in the adult mammalian heart. For the most part, however, their lineage origins and in vivo functions remain largely unexplored. This Review summarizes what is known about different populations of embryonic and adult cardiac stem cells, including KIT+, PDGFRα+, ISL1+ and SCA1+ cells, side population cells, cardiospheres and epicardial cells. We discuss their developmental origins and defining characteristics, and consider their possible contribution to heart organogenesis and regeneration. We also summarize the origin and plasticity of cardiac fibroblasts and circulating endothelial progenitor cells, and consider what role these cells have in contributing to cardiac repair. PMID:27095490

  3. Architectural protein subclasses shape 3-D organization of genomes during lineage commitment

    Science.gov (United States)

    Phillips-Cremins, Jennifer E.; Sauria, Michael E. G.; Sanyal, Amartya; Gerasimova, Tatiana I.; Lajoie, Bryan R.; Bell, Joshua S. K.; Ong, Chin-Tong; Hookway, Tracy A.; Guo, Changying; Sun, Yuhua; Bland, Michael J.; Wagstaff, William; Dalton, Stephen; McDevitt, Todd C.; Sen, Ranjan; Dekker, Job; Taylor, James; Corces, Victor G.

    2013-01-01

    Summary Understanding the topological configurations of chromatin may reveal valuable insights into how the genome and epigenome act in concert to control cell fate during development. Here we generate high-resolution architecture maps across seven genomic loci in embryonic stem cells and neural progenitor cells. We observe a hierarchy of 3-D interactions that undergo marked reorganization at the sub-Mb scale during differentiation. Distinct combinations of CTCF, Mediator, and cohesin show widespread enrichment in looping interactions at different length scales. CTCF/cohesin anchor long-range constitutive interactions that form the topological basis for invariant sub-domains. Conversely, Mediator/cohesin together with pioneer factors bridge shortrange enhancer-promoter interactions within and between larger sub-domains. Knockdown of Smc1 or Med12 in ES cells results in disruption of spatial architecture and down-regulation of genes found in cohesin-mediated interactions. We conclude that cell type-specific chromatin organization occurs at the sub-Mb scale and that architectural proteins shape the genome in hierarchical length scales. PMID:23706625

  4. Recent advances in lineage differentiation from stem cells: hurdles and opportunities?

    Science.gov (United States)

    Terryn, Joke; Tricot, Tine; Gajjar, Madhavsai; Verfaillie, Catherine

    2018-01-01

    Pluripotent stem cells have the property of long-term self-renewal and the potential to give rise to descendants of the three germ layers and hence all mature cells in the human body. Therefore, they hold the promise of offering insight not only into human development but also for human disease modeling and regenerative medicine. However, the generation of mature differentiated cells that closely resemble their in vivo counterparts remains challenging. Recent advances in single-cell transcriptomics and computational modeling of gene regulatory networks are revealing a better understanding of lineage commitment and are driving modern genome editing approaches. Additional modification of the chemical microenvironment, as well as the use of bioengineering tools to recreate the cellular, extracellular matrix, and physical characteristics of the niche wherein progenitors and mature cells reside, is now being used to further improve the maturation and functionality of stem cell progeny.

  5. Lineage-Restricted Mammary Stem Cells Sustain the Development, Homeostasis, and Regeneration of the Estrogen Receptor Positive Lineage.

    Science.gov (United States)

    Van Keymeulen, Alexandra; Fioramonti, Marco; Centonze, Alessia; Bouvencourt, Gaëlle; Achouri, Younes; Blanpain, Cédric

    2017-08-15

    The mammary gland (MG) is composed of different cell lineages, including the basal and the luminal cells (LCs) that are maintained by distinct stem cell (SC) populations. LCs can be subdivided into estrogen receptor (ER) + and ER - cells. LCs act as the cancer cell of origin in different types of mammary tumors. It remains unclear whether the heterogeneity found in luminal-derived mammary tumors arises from a pre-existing heterogeneity within LCs. To investigate LC heterogeneity, we used lineage tracing to assess whether the ER + lineage is maintained by multipotent SCs or by lineage-restricted SCs. To this end, we generated doxycycline-inducible ER-rtTA mice that allowed us to perform genetic lineage tracing of ER + LCs and study their fate and long-term maintenance. Our results show that ER + cells are maintained by lineage-restricted SCs that exclusively contribute to the expansion of the ER + lineage during puberty and their maintenance during adult life. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  6. Compound haploinsufficiencies of Ebf1 and Runx1 genes impede B cell lineage progression.

    Science.gov (United States)

    Lukin, Kara; Fields, Scott; Lopez, Desiree; Cherrier, Marie; Ternyak, Kristina; Ramírez, Julita; Feeney, Ann J; Hagman, James

    2010-04-27

    Early B cell factor (EBF)1 is essential for B lineage specification. Previously, we demonstrated the synergistic activation of Cd79a (mb-1) genes by EBF1 and its functional partner, RUNX1. Here, we identified consequences of Ebf1 haploinsufficiency together with haploinsufficiency of Runx1 genes in mice. Although numbers of "committed" pro-B cells were maintained in Ebf1(+/-)Runx1(+/-) (ER(het)) mice, activation of B cell-specific gene transcription was depressed in these cells. Expression of genes encoding Aiolos, kappa0 sterile transcripts, CD2 and CD25 were reduced and delayed in ER(het) pro-B cells, whereas surface expression of BP-1 was increased on late pro-B cells in ER(het) mice. Late pre-B and immature and mature B cells were decreased in the bone marrow of Ebf1(+/-) (E(het)) mice and were nearly absent in ER(het) mice. Although we did not observe significant effects of haploinsuficiencies on IgH or Igkappa rearrangements, a relative lack of Iglambda rearrangements was detected in E(het) and ER(het) pre-B cells. Together, these observations suggest that B cell lineage progression is impaired at multiple stages in the bone marrow of E(het) and ER(het) mice. Furthermore, enforced expression of EBF1 and RUNX1 in terminally differentiated plasmacytoma cells activated multiple early B cell-specific genes synergistically. Collectively, these studies illuminate the effects of reduced Ebf1 dosage and the compounding effects of reduced Runx1 dosage. Our data confirm and extend the importance of EBF1 in regulating target genes and Ig gene rearrangements necessary for B cell lineage specification, developmental progression, and homeostasis.

  7. Ascl1 (Mash1) lineage cells contribute to discrete cell populations in CNS architecture

    OpenAIRE

    Kim, Euiseok J.; Battiste, James; Nakagawa, Yasushi; Johnson, Jane E.

    2008-01-01

    Ascl1 (previously Mash1) is a bHLH transcription factor essential for neuronal differentiation and specification in the nervous system. Although it has been studied for its role in several neural lineages, the full complement of lineages arising from Ascl1 progenitor cells remains unknown. Using an inducible Cre-flox genetic fate mapping strategy, Ascl1 lineages were determined throughout the brain. Ascl1 is present in proliferating progenitor cells but these cells are actively differentiatin...

  8. In silico lineage tracing through single cell transcriptomics identifies a neural stem cell population in planarians.

    Science.gov (United States)

    Molinaro, Alyssa M; Pearson, Bret J

    2016-04-27

    The planarian Schmidtea mediterranea is a master regenerator with a large adult stem cell compartment. The lack of transgenic labeling techniques in this animal has hindered the study of lineage progression and has made understanding the mechanisms of tissue regeneration a challenge. However, recent advances in single-cell transcriptomics and analysis methods allow for the discovery of novel cell lineages as differentiation progresses from stem cell to terminally differentiated cell. Here we apply pseudotime analysis and single-cell transcriptomics to identify adult stem cells belonging to specific cellular lineages and identify novel candidate genes for future in vivo lineage studies. We purify 168 single stem and progeny cells from the planarian head, which were subjected to single-cell RNA sequencing (scRNAseq). Pseudotime analysis with Waterfall and gene set enrichment analysis predicts a molecularly distinct neoblast sub-population with neural character (νNeoblasts) as well as a novel alternative lineage. Using the predicted νNeoblast markers, we demonstrate that a novel proliferative stem cell population exists adjacent to the brain. scRNAseq coupled with in silico lineage analysis offers a new approach for studying lineage progression in planarians. The lineages identified here are extracted from a highly heterogeneous dataset with minimal prior knowledge of planarian lineages, demonstrating that lineage purification by transgenic labeling is not a prerequisite for this approach. The identification of the νNeoblast lineage demonstrates the usefulness of the planarian system for computationally predicting cellular lineages in an adult context coupled with in vivo verification.

  9. Adult stem cell lineage tracing and deep tissue imaging

    Science.gov (United States)

    Fink, Juergen; Andersson-Rolf, Amanda; Koo, Bon-Kyoung

    2015-01-01

    Lineage tracing is a widely used method for understanding cellular dynamics in multicellular organisms during processes such as development, adult tissue maintenance, injury repair and tumorigenesis. Advances in tracing or tracking methods, from light microscopy-based live cell tracking to fluorescent label-tracing with two-photon microscopy, together with emerging tissue clearing strategies and intravital imaging approaches have enabled scientists to decipher adult stem and progenitor cell properties in various tissues and in a wide variety of biological processes. Although technical advances have enabled time-controlled genetic labeling and simultaneous live imaging, a number of obstacles still need to be overcome. In this review, we aim to provide an in-depth description of the traditional use of lineage tracing as well as current strategies and upcoming new methods of labeling and imaging. [BMB Reports 2015; 48(12): 655-667] PMID:26634741

  10. Cytokine-Regulated GADD45G Induces Differentiation and Lineage Selection in Hematopoietic Stem Cells

    Directory of Open Access Journals (Sweden)

    Frederic B. Thalheimer

    2014-07-01

    Full Text Available The balance of self-renewal and differentiation in long-term repopulating hematopoietic stem cells (LT-HSC must be strictly controlled to maintain blood homeostasis and to prevent leukemogenesis. Hematopoietic cytokines can induce differentiation in LT-HSCs; however, the molecular mechanism orchestrating this delicate balance requires further elucidation. We identified the tumor suppressor GADD45G as an instructor of LT-HSC differentiation under the control of differentiation-promoting cytokine receptor signaling. GADD45G immediately induces and accelerates differentiation in LT-HSCs and overrides the self-renewal program by specifically activating MAP3K4-mediated MAPK p38. Conversely, the absence of GADD45G enhances the self-renewal potential of LT-HSCs. Videomicroscopy-based tracking of single LT-HSCs revealed that, once GADD45G is expressed, the development of LT-HSCs into lineage-committed progeny occurred within 36 hr and uncovered a selective lineage choice with a severe reduction in megakaryocytic-erythroid cells. Here, we report an unrecognized role of GADD45G as a central molecular linker of extrinsic cytokine differentiation and lineage choice control in hematopoiesis.

  11. Cell-Surface Proteomics Identifies Lineage-Specific Markers of Embryo-Derived Stem Cells

    OpenAIRE

    Rugg-Gunn, Peter J.; Cox, Brian J.; Lanner, Fredrik; Sharma, Parveen; Ignatchenko, Vladimir; McDonald, Angela C.H.; Garner, Jodi; Gramolini, Anthony O.; Rossant, Janet; Kislinger, Thomas

    2012-01-01

    Summary The advent of reprogramming and its impact on stem cell biology has renewed interest in lineage restriction in mammalian embryos, the source of embryonic (ES), epiblast (EpiSC), trophoblast (TS), and extraembryonic endoderm (XEN) stem cell lineages. Isolation of specific cell types during stem cell differentiation and reprogramming, and also directly from embryos, is a major technical challenge because few cell-surface proteins are known that can distinguish each cell type. We provide...

  12. Stochastic differentiation into an osteoclast lineage from cloned macrophage-like cells

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, Shin-Ichi, E-mail: shayashi@med.tottori-u.ac.jp [Division of Immunology, Department of Molecular and Cellular Biology, School of Life Science, Faculty of Medicine, Tottori University, 86 Nishi-Cho, Yonago, Tottori 683-8503 (Japan); Murata, Akihiko; Okuyama, Kazuki; Shimoda, Yuhki; Hikosaka, Mari [Division of Immunology, Department of Molecular and Cellular Biology, School of Life Science, Faculty of Medicine, Tottori University, 86 Nishi-Cho, Yonago, Tottori 683-8503 (Japan); Yasuda, Hisataka [Planning and Development, Bioindustry Division, Oriental Yeast Co., Ltd, Itabashi-Ku, Tokyo 174-8505 (Japan); Yoshino, Miya [Division of Immunology, Department of Molecular and Cellular Biology, School of Life Science, Faculty of Medicine, Tottori University, 86 Nishi-Cho, Yonago, Tottori 683-8503 (Japan)

    2012-11-16

    Highlights: Black-Right-Pointing-Pointer The frequency of C7 differentiation into osteoclast was low and constant. Black-Right-Pointing-Pointer Only extended C7 cell cultures exponentially increased osteoclast+ cultures. Black-Right-Pointing-Pointer C7 cell differentiation into committed osteoclast precursors is on 'autopilot'. Black-Right-Pointing-Pointer The system may maintain the stem cell self-renewal and differentiation. -- Abstract: Differentiation into osteoclasts is induced by a macrophage colony-stimulating factor and receptor activator of nuclear-factor {kappa}B ligand. The macrophage-like cell line, C7 has the potential to differentiate into osteoclasts when it is cultured with both factors for 6 days. Although C7 is an established cell line, the frequency of differentiation into this lineage was less than 10%, and the ratio was maintained at a constant level, even after repeated cloning. In this study, to increase the differentiation of C7 cells to osteoclasts, C7 derivative treatments with several activators and/or inhibitors were performed for 3 days prior to setting osteoclast induction analysis; however, a reagent to significantly up-regulate the frequency of differentiation was not found. Only extended cultures for osteoclastogenesis exponentially increased the frequency of osteoclast precursors. It is likely that C7 cell differentiation into committed osteoclast precursors is on 'autopilot' rather than requiring specific signals to drive this process.

  13. Stochastic differentiation into an osteoclast lineage from cloned macrophage-like cells

    International Nuclear Information System (INIS)

    Hayashi, Shin-Ichi; Murata, Akihiko; Okuyama, Kazuki; Shimoda, Yuhki; Hikosaka, Mari; Yasuda, Hisataka; Yoshino, Miya

    2012-01-01

    Highlights: ► The frequency of C7 differentiation into osteoclast was low and constant. ► Only extended C7 cell cultures exponentially increased osteoclast+ cultures. ► C7 cell differentiation into committed osteoclast precursors is on ‘autopilot’. ► The system may maintain the stem cell self-renewal and differentiation. -- Abstract: Differentiation into osteoclasts is induced by a macrophage colony-stimulating factor and receptor activator of nuclear-factor κB ligand. The macrophage-like cell line, C7 has the potential to differentiate into osteoclasts when it is cultured with both factors for 6 days. Although C7 is an established cell line, the frequency of differentiation into this lineage was less than 10%, and the ratio was maintained at a constant level, even after repeated cloning. In this study, to increase the differentiation of C7 cells to osteoclasts, C7 derivative treatments with several activators and/or inhibitors were performed for 3 days prior to setting osteoclast induction analysis; however, a reagent to significantly up-regulate the frequency of differentiation was not found. Only extended cultures for osteoclastogenesis exponentially increased the frequency of osteoclast precursors. It is likely that C7 cell differentiation into committed osteoclast precursors is on ‘autopilot’ rather than requiring specific signals to drive this process.

  14. A mex3 homolog is required for differentiation during planarian stem cell lineage development.

    Science.gov (United States)

    Zhu, Shu Jun; Hallows, Stephanie E; Currie, Ko W; Xu, ChangJiang; Pearson, Bret J

    2015-06-26

    Neoblasts are adult stem cells (ASCs) in planarians that sustain cell replacement during homeostasis and regeneration of any missing tissue. While numerous studies have examined genes underlying neoblast pluripotency, molecular pathways driving postmitotic fates remain poorly defined. In this study, we used transcriptional profiling of irradiation-sensitive and irradiation-insensitive cell populations and RNA interference (RNAi) functional screening to uncover markers and regulators of postmitotic progeny. We identified 32 new markers distinguishing two main epithelial progenitor populations and a planarian homolog to the MEX3 RNA-binding protein (Smed-mex3-1) as a key regulator of lineage progression. mex3-1 was required for generating differentiated cells of multiple lineages, while restricting the size of the stem cell compartment. We also demonstrated the utility of using mex3-1(RNAi) animals to identify additional progenitor markers. These results identified mex3-1 as a cell fate regulator, broadly required for differentiation, and suggest that mex3-1 helps to mediate the balance between ASC self-renewal and commitment.

  15. p38 mitogen activated protein kinase controls two successive-steps during the early mesodermal commitment of embryonic stem cells.

    Science.gov (United States)

    Barruet, Emilie; Hadadeh, Ola; Peiretti, Franck; Renault, Valérie M; Hadjal, Yasmine; Bernot, Denis; Tournaire, Roselyne; Negre, Didier; Juhan-Vague, Irène; Alessi, Marie-Christine; Binétruy, Bernard

    2011-07-01

    Embryonic stem (ES) cells differentiate in vitro into all cell lineages. We previously found that the p38 mitogen activated kinase (p38MAPK) pathway controls the commitment of ES cells toward either cardiomyogenesis (p38 on) or neurogenesis (p38 off ). In this study, we show that p38α knock-out ES cells do not differentiate into cardiac, endothelial, smooth muscle, and skeletal muscle lineages. Reexpression of p38MAPK in these cells partially rescues their mesodermal differentiation defects and corrects the high level of spontaneous neurogenesis of knock-out cells. Wild-type ES cells were treated with a p38MAPK-specific inhibitor during the differentiation process. These experiments allowed us to identify 2 early independent successive p38MAPK functions in the formation of mesodermal lineages. Further, the first one correlates with the regulation of the expression of Brachyury, an essential mesodermal-specific transcription factor, by p38MAPK. In conclusion, by genetic and biochemical approaches, we demonstrate that p38MAPK activity is essential for the commitment of ES cell into cardiac, endothelial, smooth muscle, and skeletal muscle mesodermal lineages.

  16. Transcriptome analysis reveals determinant stages controlling human embryonic stem cell commitment to neuronal cells.

    Science.gov (United States)

    Li, Yuanyuan; Wang, Ran; Qiao, Nan; Peng, Guangdun; Zhang, Ke; Tang, Ke; Han, Jing-Dong J; Jing, Naihe

    2017-12-01

    Proper neural commitment is essential for ensuring the appropriate development of the human brain and for preventing neurodevelopmental diseases such as autism spectrum disorders, schizophrenia, and intellectual disorders. However, the molecular mechanisms underlying the neural commitment in humans remain elusive. Here, we report the establishment of a neural differentiation system based on human embryonic stem cells (hESCs) and on comprehensive RNA sequencing analysis of transcriptome dynamics during early hESC differentiation. Using weighted gene co-expression network analysis, we reveal that the hESC neurodevelopmental trajectory has five stages: pluripotency (day 0); differentiation initiation (days 2, 4, and 6); neural commitment (days 8-10); neural progenitor cell proliferation (days 12, 14, and 16); and neuronal differentiation (days 18, 20, and 22). These stages were characterized by unique module genes, which may recapitulate the early human cortical development. Moreover, a comparison of our RNA-sequencing data with several other transcriptome profiling datasets from mice and humans indicated that Module 3 associated with the day 8-10 stage is a critical window of fate switch from the pluripotency to the neural lineage. Interestingly, at this stage, no key extrinsic signals were activated. In contrast, using CRISPR/Cas9-mediated gene knockouts, we also found that intrinsic hub transcription factors, including the schizophrenia-associated SIX3 gene and septo-optic dysplasia-related HESX1 gene, are required to program hESC neural determination. Our results improve the understanding of the mechanism of neural commitment in the human brain and may help elucidate the etiology of human mental disorders and advance therapies for managing these conditions. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Transcriptome analysis of embryonic mammary cells reveals insights into mammary lineage establishment.

    Science.gov (United States)

    Wansbury, Olivia; Mackay, Alan; Kogata, Naoko; Mitsopoulos, Costas; Kendrick, Howard; Davidson, Kathryn; Ruhrberg, Christiana; Reis-Filho, Jorge S; Smalley, Matthew J; Zvelebil, Marketa; Howard, Beatrice A

    2011-08-11

    The mammary primordium forms during embryogenesis as a result of inductive interactions between its constitutive tissues, the mesenchyme and epithelium, and represents the earliest evidence of commitment to the mammary lineage. Previous studies of embryonic mouse mammary epithelium indicated that, by mid-gestation, these cells are determined to a mammary cell fate and that a stem cell population has been delimited. Mammary mesenchyme can induce mammary development from simple epithelium even across species and classes, and can partially restore features of differentiated tissue to mouse mammary tumours in co-culture experiments. Despite these exciting properties, the molecular identity of embryonic mammary cells remains to be fully characterised. Here, we define the transcriptome of the mammary primordium and the two distinct cellular compartments that comprise it, the mammary primordial bud epithelium and mammary mesenchyme. Pathway and network analysis was performed and comparisons of embryonic mammary gene expression profiles to those of both postnatal mouse and human mammary epithelial cell sub-populations and stroma were made. Several of the genes we have detected in our embryonic mammary cell signatures were previously shown to regulate mammary cell fate and development, but we also identified a large number of novel candidates. Additionally, we determined genes that were expressed by both embryonic and postnatal mammary cells, which represent candidate regulators of mammary cell fate, differentiation and progenitor cell function that could signal from mammary lineage inception during embryogenesis through postnatal development. Comparison of embryonic mammary cell signatures with those of human breast cells identified potential regulators of mammary progenitor cell functions conserved across species. These results provide new insights into genetic regulatory mechanisms of mammary development, particularly identification of novel potential regulators of

  18. Beyond stem cells: Commitment of progenitor cells to meiosis

    Directory of Open Access Journals (Sweden)

    Michael D. Griswold

    2018-03-01

    Full Text Available The first step in established spermatogenesis is the production of progenitor cells by the stem cell population. The progenitor cells (undifferentiated A spermatogonia expand in number via the formation of syncytial chains by mitosis. The mechanism by which these progenitor cells commit to meiosis and spermatogenesis is tightly controlled and results in complex morphological organization all of which is designed to efficiently achieve large numbers of spermatozoa. The major extrinsic factor that triggers the commitment to meiosis and establishes the structural complexity is retinoic acid (RA. Retinoic acid is produced from retinol via two oxidation steps in low abundance near its site of action. The action of RA on undifferentiated A spermatogonia results in the timed progression of these progenitor cells into the cycle of the seminiferous epithelium. We have utilized a drug WIN 18,446 that inhibits the second oxidation step in RA biosynthesis to block the progression of undifferentiated A spermatogonia in the mouse testis. As a result of this block the undifferentiated progenitor cells accumulate but do not differentiate into A1 spermatogonia. When the block is released and a bolus of RA is simultaneously administered the accumulated spermatogonia progress through the differentiation pathway in complete synchrony and maintain that synchrony with regard to stages of the cycle of the seminiferous epithelium for several months. This procedure allowed us to accumulate sufficient material to measure retinoic acid levels across the cycle and will allow us to isolate and analyze large number of progenitor cells proceeding synchronously down the pathway to meiosis. We have been able to show that the cycle of the seminiferous epithelium is established and maintained by pulses of RA that appear at stages VIII and IX of the cycle. Keywords: Progenitor cells, Retinoic acid, Synchronous spermatogenesis

  19. Temporal transcriptional profiling of somatic and germ cells reveals biased lineage priming of sexual fate in the fetal mouse gonad.

    Directory of Open Access Journals (Sweden)

    Samantha A Jameson

    Full Text Available The divergence of distinct cell populations from multipotent progenitors is poorly understood, particularly in vivo. The gonad is an ideal place to study this process, because it originates as a bipotential primordium where multiple distinct lineages acquire sex-specific fates as the organ differentiates as a testis or an ovary. To gain a more detailed understanding of the process of gonadal differentiation at the level of the individual cell populations, we conducted microarrays on sorted cells from XX and XY mouse gonads at three time points spanning the period when the gonadal cells transition from sexually undifferentiated progenitors to their respective sex-specific fates. We analyzed supporting cells, interstitial/stromal cells, germ cells, and endothelial cells. This work identified genes specifically depleted and enriched in each lineage as it underwent sex-specific differentiation. We determined that the sexually undifferentiated germ cell and supporting cell progenitors showed lineage priming. We found that germ cell progenitors were primed with a bias toward the male fate. In contrast, supporting cells were primed with a female bias, indicative of the robust repression program involved in the commitment to XY supporting cell fate. This study provides a molecular explanation reconciling the female default and balanced models of sex determination and represents a rich resource for the field. More importantly, it yields new insights into the mechanisms by which different cell types in a single organ adopt their respective fates.

  20. Foetal stem cell derivation & characterization for osteogenic lineage

    Directory of Open Access Journals (Sweden)

    A Mangala Gowri

    2013-01-01

    Full Text Available Background & objectives: Mesencymal stem cells (MSCs derived from foetal tissues present a multipotent progenitor cell source for application in tissue engineering and regenerative medicine. The present study was carried out to derive foetal mesenchymal stem cells from ovine source and analyze their differentiation to osteogenic linage to serve as an animal model to predict human applications. Methods: Isolation and culture of sheep foetal bone marrow cells were done and uniform clonally derived MSC population was collected. The cells were characterized using cytochemical, immunophenotyping, biochemical and molecular analyses. The cells with defined characteristics were differentiated into osteogenic lineages and analysis for differentiated cell types was done. The cells were analyzed for cell surface marker expression and the gene expression in undifferentiated and differentiated osteoblast was checked by reverse transcriptase PCR (RT PCR analysis and confirmed by sequencing using genetic analyzer. Results: Ovine foetal samples were processed to obtain mononuclear (MNC cells which on culture showed spindle morphology, a characteristic oval body with the flattened ends. MSC population CD45 - /CD14 - was cultured by limiting dilution to arrive at uniform spindle morphology cells and colony forming units. The cells were shown to be positive for surface markers such as CD44, CD54, integrinβ1, and intracellular collagen type I/III and fibronectin. The osteogenically induced MSCs were analyzed for alkaline phosphatase (ALP activity and mineral deposition. The undifferentiated MSCs expressed RAB3B, candidate marker for stemness in MSCs. The osteogenically induced and uninduced MSCs expressed collagen type I and MMP13 gene in osteogenic induced cells. Interpretation & conclusions: The protocol for isolation of ovine foetal bone marrow derived MSCs was simple to perform, and the cultural method of obtaining pure spindle morphology cells was established

  1. B lymphocyte lineage cells and the respiratory system

    Science.gov (United States)

    Kato, Atsushi; Hulse, Kathryn E.; Tan, Bruce K.; Schleimer, Robert P.

    2013-01-01

    Adaptive humoral immune responses in the airways are mediated by B cells and plasma cells that express highly evolved and specific receptors and produce immunoglobulins of most isotypes. In some cases, such as autoimmune diseases or inflammatory diseases caused by excessive exposure to foreign antigens, these same immune cells can cause disease by virtue of overly vigorous responses. This review discusses the generation, differentiation, signaling, activation and recruitment pathways of B cells and plasma cells, with special emphasis on unique characteristics of subsets of these cells functioning within the respiratory system. The primary sensitization events that generate B cells responsible for effector responses throughout the airways usually occur in the upper airways, in tonsils and adenoid structures that make up Waldeyer’s Ring. Upon secondary exposure to antigen in the airways, antigen-processing dendritic cells migrate into secondary lymphoid organs such as lymph nodes that drain the upper and lower airways and further B cell expansion takes place at those sites. Antigen exposure in the upper or lower airways can also drive expansion of B lineage cells in the airway mucosal tissue and lead to the formation of inducible lymphoid follicles or aggregates that can mediate local immunity or disease. PMID:23540615

  2. Immunoglobulin Expression in Non-Lymphoid Lineage and Neoplastic Cells

    Science.gov (United States)

    Chen, Zhengshan; Qiu, Xiaoyan; Gu, Jiang

    2009-01-01

    It has traditionally been believed that the production of immunoglobulin (Ig) molecules is restricted to B lineage cells. However, immunoglobulin genes and proteins have been recently found in a variety of types of cancer cells, as well as some proliferating epithelial cells and neurons. The immunoglobulin molecules expressed by these cells consist predominantly of IgG, IgM, and IgA, and the light chains expressed are mainly kappa chains. Recombination activating genes 1 and 2, which are required for V(D)J recombination, are also expressed in these cells. Knowledge about the function of these non-lymphoid cell-derived immunoglobulins is limited. Preliminary data suggests that Ig secreted by epithelial cancer cells has some unidentified capacity to promote the growth and survival of tumor cells. As immunoglobulins are known to have a wide spectrum of important functions, the discovery of non-lymphoid cells and cancers that produce immunoglobulin calls for in-depth investigation of the functional and pathological significance of this previously unrecognized phenomenon. PMID:19246641

  3. Cloning from stem cells: different lineages, different species, same story.

    Science.gov (United States)

    Oback, Björn

    2009-01-01

    Following nuclear transfer (NT), the most stringent measure of extensive donor cell reprogramming is development into viable offspring. This is referred to as cloning efficiency and quantified as the proportion of cloned embryos transferred into surrogate mothers that survive into adulthood. Cloning efficiency depends on the ability of the enucleated recipient cell to carry out the reprogramming reactions ('reprogramming ability') and the ability of the nuclear donor cell to be reprogrammed ('reprogrammability'). It has been postulated that reprogrammability of the somatic donor cell epigenome is inversely proportional to its differentiation status. In order to test this hypothesis, reprogrammability was compared between undifferentiated stem cells and their differentiated isogenic progeny. In the mouse, cells of divergent differentiation status from the neuronal, haematopoietic and skin epithelial lineage were tested. In cattle and deer, skeletal muscle and antler cells, respectively, were used as donors. No conclusive correlation between differentiation status and cloning efficiency was found, indicating that somatic donor cell type may not be the limiting factor for cloning success. This may reflect technical limitations of the NT-induced reprogramming assay. Alternatively, differentiation status and reprogrammability may be unrelated, making all cells equally difficult to reprogramme once they have left the ground state of pluripotency.

  4. Immunoglobulin expression in non-lymphoid lineage and neoplastic cells.

    Science.gov (United States)

    Chen, Zhengshan; Qiu, Xiaoyan; Gu, Jiang

    2009-04-01

    It has traditionally been believed that the production of immunoglobulin (Ig) molecules is restricted to B lineage cells. However, immunoglobulin genes and proteins have been recently found in a variety of types of cancer cells, as well as some proliferating epithelial cells and neurons. The immunoglobulin molecules expressed by these cells consist predominantly of IgG, IgM, and IgA, and the light chains expressed are mainly kappa chains. Recombination activating genes 1 and 2, which are required for V(D)J recombination, are also expressed in these cells. Knowledge about the function of these non-lymphoid cell-derived immunoglobulins is limited. Preliminary data suggests that Ig secreted by epithelial cancer cells has some unidentified capacity to promote the growth and survival of tumor cells. As immunoglobulins are known to have a wide spectrum of important functions, the discovery of non-lymphoid cells and cancers that produce immunoglobulin calls for in-depth investigation of the functional and pathological significance of this previously unrecognized phenomenon.

  5. Differentiation in Stem Cell Lineages and in Life: Explorations in the Male Germ Line Stem Cell Lineage.

    Science.gov (United States)

    Fuller, Margaret T

    2016-01-01

    I have been privileged to work on cellular differentiation during a great surge of discovery that has revealed the molecular mechanisms and genetic regulatory circuitry that control embryonic development and adult tissue maintenance and repair. Studying the regulation of proliferation and differentiation in the male germ line stem cell lineage has allowed us investigate how the developmental program imposes layers of additional controls on fundamental cellular processes like cell cycle progression and gene expression to give rise to the huge variety of specialized cell types in our bodies. We are beginning to understand how local signals from somatic support cells specify self-renewal versus differentiation in the stem cell niche at the apical tip of the testis. We are discovering the molecular events that block cell proliferation and initiate terminal differentiation at the switch from mitosis to meiosis-a signature event of the germ cell program. Our work is beginning to reveal how the developmental program that sets up the dramatic new cell type-specific transcription program that prepares germ cells for meiotic division and spermatid differentiation is turned on when cells become spermatocytes. I have had the privilege of working with incredible students, postdocs, and colleagues who have discovered, brainstormed, challenged, and refined our science and our ideas of how developmental pathways and cellular mechanisms work together to drive differentiation. © 2016 Elsevier Inc. All rights reserved.

  6. Optical Imaging for Stem Cell Differentiation to Neuronal Lineage

    International Nuclear Information System (INIS)

    Hwang, Do Won; Lee, Dong Soo

    2012-01-01

    In regenerative medicine, the prospect of stem cell therapy hold great promise for the recovery of injured tissues and effective treatment of intractable diseases. Tracking stem cell fate provides critical information to understand and evaluate the success of stem cell therapy. The recent emergence of in vivo noninvasive molecular imaging has enabled assessment of the behavior of grafted stem cells in living subjects. In this review, we provide an overview of current optical imaging strategies based on cell or tissue specific reporter gene expression and of in vivo methods to monitor stem cell differentiation into neuronal lineages. These methods use optical reporters either regulated by neuron-specific promoters or containing neuron-specific microRNA binding sites. Both systems revealed dramatic changes in optical reporter imaging signals in cells differentiating a yeast GAL4 amplification system or an engineering-enhanced luciferase reported gene. Furthermore, we propose an advanced imaging system to monitor neuronal differentiation during neurogenesis that uses in vivo multiplexed imaging techniques capable of detecting several targets simultaneously

  7. Optical Imaging for Stem Cell Differentiation to Neuronal Lineage

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Do Won; Lee, Dong Soo [Seoul National Univ., Seoul (Korea, Republic of)

    2012-03-15

    In regenerative medicine, the prospect of stem cell therapy hold great promise for the recovery of injured tissues and effective treatment of intractable diseases. Tracking stem cell fate provides critical information to understand and evaluate the success of stem cell therapy. The recent emergence of in vivo noninvasive molecular imaging has enabled assessment of the behavior of grafted stem cells in living subjects. In this review, we provide an overview of current optical imaging strategies based on cell or tissue specific reporter gene expression and of in vivo methods to monitor stem cell differentiation into neuronal lineages. These methods use optical reporters either regulated by neuron-specific promoters or containing neuron-specific microRNA binding sites. Both systems revealed dramatic changes in optical reporter imaging signals in cells differentiating a yeast GAL4 amplification system or an engineering-enhanced luciferase reported gene. Furthermore, we propose an advanced imaging system to monitor neuronal differentiation during neurogenesis that uses in vivo multiplexed imaging techniques capable of detecting several targets simultaneously.

  8. Cell lineage and cell death: Caenorhabditis elegans and cancer research.

    Science.gov (United States)

    Potts, Malia B; Cameron, Scott

    2011-01-01

    Cancer is a complex disease in which cells have circumvented normal restraints on tissue growth and have acquired complex abnormalities in their genomes, posing a considerable challenge to identifying the pathways and mechanisms that drive fundamental aspects of the malignant phenotype. Genetic analyses of the normal development of the nematode Caenorhabditis elegans have revealed evolutionarily conserved mechanisms through which individual cells establish their fates, and how they make and execute the decision to survive or undergo programmed cell death. The pathways identified through these studies have mammalian counterparts that are co-opted by malignant cells. Effective cancer drugs now target some of these pathways, and more are likely to be discovered.

  9. Generation of hematopoietic lineage cells from embryonic like cells

    Directory of Open Access Journals (Sweden)

    Gholam Reza Khamisipour

    2014-10-01

    Full Text Available Background: Epigenetic reprogramming of somatic cells into embryonic stem cells has attracted much attention, because of the potential for stem cell transplantation and compatibility with recipient. However, the therapeutic application of either nuclear transfer or nuclear fusion of somatic cell has been hindered by technical complications as well as ethical objections. Recently, a new method is reported whereby ectopic expression of embryonic specific transcription factors was shown to induce fibroblasts to become embryonic like SCs (induced pluripotent stem cells. A major limitation of this method is the use of potentially harmful genome integrating viruses such as reto- or lentivirus. The main aim of this investigation was generation of human hematopoietic stem cells from induced fibroblasts by safe adenovectors carrying embryonically active genes. Material and Methods: Isolated fibroblasts from foreskin were expanded and recombinant adenoviruses carrying human Sox2, Oct4, Klf4, cMyc genes were added to culture. After formation of embryonic like colonies and cell expansion, they were transferred to embryonic media without bFGF, and embryoid bodies were cultured on stromal and non-stromal differentiation media for 14 days. Results: Expression of CD34 gene and antigenic markers, CD34, CD38 & CD133 in stromal culture showed significant difference with non-differentiation and non-stromal media. Conclusion: These findings show high hematopoietic differentiation rate of Adeno-iPS cells in stromal culture and no need to use growth factors. While, there was no difference between non-differentiation and non-stromal media.

  10. Lack of the p42 form of C/EBPα leads to spontaneous immortalization and lineage infidelity of committed myeloid progenitors

    DEFF Research Database (Denmark)

    Schuster, Mikkel B; Frank, Anne-Katrine; Bagger, Frederik O

    2013-01-01

    the leukemia. The identity of the LIC is highly diverse and ranges from populations resembling hematopoietic stem cells or multipotent progenitors (MPPs) to more committed myeloid progenitors, and the question still remains whether this is a direct consequence of which cells are targets of the final...

  11. Reconstructing Cell Lineages from Single-Cell Gene Expression Data: A Pilot Study

    Science.gov (United States)

    2016-08-30

    Reconstructing cell lineages from single -cell gene expression data: a pilot study The goal of this pilot study is to develop novel mathematical...methods, by leveraging tools developed in the bifurcation theory, to infer the underlying cell-state dynamics from single -cell gene expression data. Our...from single -cell gene expression data. The views, opinions and/or findings contained in this report are those of the author(s) and should not contrued

  12. Ascl1 (Mash1) lineage cells contribute to discrete cell populations in CNS architecture.

    Science.gov (United States)

    Kim, Euiseok J; Battiste, James; Nakagawa, Yasushi; Johnson, Jane E

    2008-08-01

    Ascl1 (previously Mash1) is a bHLH transcription factor essential for neuronal differentiation and specification in the nervous system. Although it has been studied for its role in several neural lineages, the full complement of lineages arising from Ascl1 progenitor cells remains unknown. Using an inducible Cre-flox genetic fate-mapping strategy, Ascl1 lineages were determined throughout the brain. Ascl1 is present in proliferating progenitor cells but these cells are actively differentiating as evidenced by rapid migration out of germinal zones. Ascl1 lineage cells contribute to distinct cell types in each major brain division: the forebrain including the cerebral cortex, olfactory bulb, hippocampus, striatum, hypothalamus, and thalamic nuclei, the midbrain including superior and inferior colliculi, and the hindbrain including Purkinje and deep cerebellar nuclei cells and cells in the trigeminal sensory system. Ascl1 progenitor cells at early stages in each CNS region preferentially become neurons, and at late stages they become oligodendrocytes. In conclusion, Ascl1-expressing progenitor cells in the brain give rise to multiple, but not all, neuronal subtypes and oligodendrocytes depending on the temporal and spatial context, consistent with a broad role in neural differentiation with some subtype specification.

  13. Lineage-related cytotoxicity and clonogenic profile of 1,4-benzoquinone-exposed hematopoietic stem and progenitor cells

    Energy Technology Data Exchange (ETDEWEB)

    Chow, Paik Wah [Biomedical Science Programme, School of Diagnostic & Applied Health Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Abdul Muda Aziz, 50300 Kuala Lumpur, Wilayah Persekutuan (Malaysia); Toxicology Laboratory, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur (Malaysia); Abdul Hamid, Zariyantey, E-mail: zyantey@ukm.edu.my [Biomedical Science Programme, School of Diagnostic & Applied Health Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Abdul Muda Aziz, 50300 Kuala Lumpur, Wilayah Persekutuan (Malaysia); Toxicology Laboratory, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur (Malaysia); Chan, Kok Meng [Environmental Health and Industrial Safety Programme, School of Diagnostic & Applied Health Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Abdul Muda Aziz, 50300 Kuala Lumpur, Wilayah Persekutuan (Malaysia); Toxicology Laboratory, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur (Malaysia); Inayat-Hussain, Salmaan Hussain [Environmental Health and Industrial Safety Programme, School of Diagnostic & Applied Health Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Abdul Muda Aziz, 50300 Kuala Lumpur, Wilayah Persekutuan (Malaysia); Rajab, Nor Fadilah [Biomedical Science Programme, School of Diagnostic & Applied Health Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Abdul Muda Aziz, 50300 Kuala Lumpur, Wilayah Persekutuan (Malaysia); Toxicology Laboratory, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur (Malaysia)

    2015-04-01

    Hematopoietic stem cells (HSCs) and hematopoietic progenitor cells (HPCs) are sensitive targets for benzene-induced hematotoxicity and leukemogenesis. The impact of benzene exposure on the complex microenvironment of HSCs and HPCs remains elusive. This study aims to investigate the mechanism linking benzene exposure to targeting HSCs and HPCs using phenotypic and clonogenic analyses. Mouse bone marrow (BM) cells were exposed ex vivo to the benzene metabolite, 1,4-benzoquinone (1,4-BQ), for 24 h. Expression of cellular surface antigens for HSC (Sca-1), myeloid (Gr-1, CD11b), and lymphoid (CD45, CD3e) populations were confirmed by flow cytometry. The clonogenicity of cells was studied using the colony-forming unit (CFU) assay for multilineage (CFU-GM and CFU-GEMM) and single-lineage (CFU-E, BFU-E, CFU-G, and CFU-M) progenitors. 1,4-BQ demonstrated concentration-dependent cytotoxicity in mouse BM cells. The percentage of apoptotic cells increased (p < 0.05) following 1,4-BQ exposure. Exposure to 1,4-BQ showed no significant effect on CD3e{sup +} cells but reduced the total counts of Sca-1{sup +}, CD11b{sup +}, Gr-1{sup +}, and CD45{sup +} cells at 7 and 12 μM (p < 0.05). Furthermore, the CFU assay showed reduced (p < 0.05) clonogenicity in 1,4-BQ-treated cells. 1,4-BQ induced CFU-dependent cytotoxicity by significantly inhibiting colony growth for CFU-E, BFU-E, CFU-G, and CFU-M starting at a low concentration of exposure (5 μM); whereas for the CFU-GM and CFU-GEMM, the inhibition of colony growth was remarkable only at 7 and 12 μM of 1,4-BQ, respectively. Taken together, 1,4-BQ caused lineage-related cytotoxicity in mouse HPCs, demonstrating greater toxicity in single-lineage progenitors than in those of multi-lineage. - Highlights: • We examine 1,4-BQ toxicity targeting mouse hematopoietic cell lineages. • 1,4-BQ induces concentration-dependent cytotoxicity in bone marrow (BM) cells. • 1,4-BQ shows lineage-related toxicity on hematopoietic stem and

  14. Lineage-related cytotoxicity and clonogenic profile of 1,4-benzoquinone-exposed hematopoietic stem and progenitor cells

    International Nuclear Information System (INIS)

    Chow, Paik Wah; Abdul Hamid, Zariyantey; Chan, Kok Meng; Inayat-Hussain, Salmaan Hussain; Rajab, Nor Fadilah

    2015-01-01

    Hematopoietic stem cells (HSCs) and hematopoietic progenitor cells (HPCs) are sensitive targets for benzene-induced hematotoxicity and leukemogenesis. The impact of benzene exposure on the complex microenvironment of HSCs and HPCs remains elusive. This study aims to investigate the mechanism linking benzene exposure to targeting HSCs and HPCs using phenotypic and clonogenic analyses. Mouse bone marrow (BM) cells were exposed ex vivo to the benzene metabolite, 1,4-benzoquinone (1,4-BQ), for 24 h. Expression of cellular surface antigens for HSC (Sca-1), myeloid (Gr-1, CD11b), and lymphoid (CD45, CD3e) populations were confirmed by flow cytometry. The clonogenicity of cells was studied using the colony-forming unit (CFU) assay for multilineage (CFU-GM and CFU-GEMM) and single-lineage (CFU-E, BFU-E, CFU-G, and CFU-M) progenitors. 1,4-BQ demonstrated concentration-dependent cytotoxicity in mouse BM cells. The percentage of apoptotic cells increased (p < 0.05) following 1,4-BQ exposure. Exposure to 1,4-BQ showed no significant effect on CD3e + cells but reduced the total counts of Sca-1 + , CD11b + , Gr-1 + , and CD45 + cells at 7 and 12 μM (p < 0.05). Furthermore, the CFU assay showed reduced (p < 0.05) clonogenicity in 1,4-BQ-treated cells. 1,4-BQ induced CFU-dependent cytotoxicity by significantly inhibiting colony growth for CFU-E, BFU-E, CFU-G, and CFU-M starting at a low concentration of exposure (5 μM); whereas for the CFU-GM and CFU-GEMM, the inhibition of colony growth was remarkable only at 7 and 12 μM of 1,4-BQ, respectively. Taken together, 1,4-BQ caused lineage-related cytotoxicity in mouse HPCs, demonstrating greater toxicity in single-lineage progenitors than in those of multi-lineage. - Highlights: • We examine 1,4-BQ toxicity targeting mouse hematopoietic cell lineages. • 1,4-BQ induces concentration-dependent cytotoxicity in bone marrow (BM) cells. • 1,4-BQ shows lineage-related toxicity on hematopoietic stem and progenitors. • 1,4-BQ

  15. Dendritic Cell Lineage Potential in Human Early Hematopoietic Progenitors

    Directory of Open Access Journals (Sweden)

    Julie Helft

    2017-07-01

    Full Text Available Conventional dendritic cells (cDCs are thought to descend from a DC precursor downstream of the common myeloid progenitor (CMP. However, a mouse lymphoid-primed multipotent progenitor has been shown to generate cDCs following a DC-specific developmental pathway independent of monocyte and granulocyte poiesis. Similarly, here we show that, in humans, a large fraction of multipotent lymphoid early progenitors (MLPs gives rise to cDCs, in particular the subset known as cDC1, identified by co-expression of DNGR-1 (CLEC9A and CD141 (BDCA-3. Single-cell analysis indicates that over one-third of MLPs have the potential to efficiently generate cDCs. cDC1s generated from CMPs or MLPs do not exhibit differences in transcriptome or phenotype. These results demonstrate an early imprinting of the cDC lineage in human hematopoiesis and highlight the plasticity of developmental pathways giving rise to human DCs.

  16. A single miRNA complements transcription factor deficiency through the TGF pathway at time of B-cell lineage determination.

    Science.gov (United States)

    Kotaki, Ryutaro; Kotani, Ai

    2017-01-01

    Cell fate and lineage are primarily regulated at the transcriptional level. However, the transcriptional level alone does not appear to control all aspects of cellular functioning, suggesting the presence of other, as-yet-unknown, mechanisms. miR-126 induced B-cell differentiation in MLL-AF4 acute lymphoblastic leukemia (ALL) without upregulation of TCF3/E2A, EBF1, and PAX5. Early B-cell factor 1 (EBF1) which are critical transcription factor involved in B lymphopoiesis. To challenge the conventional wisdom that cell fate is solely governed by transcription factors, we investigated whether microRNAs (miRNAs) could induce complete B-cell lineage commitment in cells lacking EBF1. miR-126 upregulated B220 in EBF1-deficient hematopoietic progenitor cells (HPCs). Moreover, miRNA-195 (miR-195) induced CD19 expression in EBF1-deficient HPCs, suggesting that these cells were committed to the B-cell lineage. The functional target genes of miR-195 involved in this process belonged to the TGF beta family, a potent inhibitor of B-cell differentiation. These results suggest that some miRNAs could function as alternatives to transcription factors.

  17. High Yield of Adult Oligodendrocyte Lineage Cells Obtained from Meningeal Biopsy

    Directory of Open Access Journals (Sweden)

    Sissi Dolci

    2017-10-01

    Full Text Available Oligodendrocyte loss can lead to cognitive and motor deficits. Current remyelinating therapeutic strategies imply either modulation of endogenous oligodendrocyte precursors or transplantation of in vitro expanded oligodendrocytes. Cell therapy, however, still lacks identification of an adequate source of oligodendrocyte present in adulthood and able to efficiently produce transplantable cells. Recently, a neural stem cell-like population has been identified in meninges. We developed a protocol to obtain high yield of oligodendrocyte lineage cells from one single biopsy of adult rat meningeal tissue. From 1 cm2 of adult rat spinal cord meninges, we efficiently expanded a homogenous culture of 10 millions of meningeal-derived oligodendrocyte lineage cells in a short period of time (approximately 4 weeks. Meningeal-derived oligodendrocyte lineage cells show typical mature oligodendrocyte morphology and express specific oligodendrocyte markers, such as galactosylceramidase and myelin basic protein. Moreover, when transplanted in a chemically demyelinated spinal cord model, meningeal-derived oligodendrocyte lineage cells display in vivo-remyelinating potential. This oligodendrocyte lineage cell population derives from an accessible and adult source, being therefore a promising candidate for autologous cell therapy of demyelinating diseases. In addition, the described method to differentiate meningeal-derived neural stem cells into oligodendrocyte lineage cells may represent a valid in vitro model to dissect oligodendrocyte differentiation and to screen for drugs capable to promote oligodendrocyte regeneration.

  18. Polo-Like Kinase 2 is Dynamically Regulated to Coordinate Proliferation and Early Lineage Specification Downstream of Yes-Associated Protein 1 in Cardiac Progenitor Cells.

    Science.gov (United States)

    Mochizuki, Michika; Lorenz, Vera; Ivanek, Robert; Della Verde, Giacomo; Gaudiello, Emanuele; Marsano, Anna; Pfister, Otmar; Kuster, Gabriela M

    2017-10-24

    Recent studies suggest that adult cardiac progenitor cells (CPCs) can produce new cardiac cells. Such cell formation requires an intricate coordination of progenitor cell proliferation and commitment, but the molecular cues responsible for this regulation in CPCs are ill defined. Extracellular matrix components are important instructors of cell fate. Using laminin and fibronectin, we induced two slightly distinct CPC phenotypes differing in proliferation rate and commitment status and analyzed the early transcriptomic response to CPC adhesion (<2 hours). Ninety-four genes were differentially regulated on laminin versus fibronectin, consisting of mostly downregulated genes that were enriched for Yes-associated protein (YAP) conserved signature and TEA domain family member 1 (TEAD1)-related genes. This early gene regulation was preceded by the rapid cytosolic sequestration and degradation of YAP on laminin. Among the most strongly regulated genes was polo-like kinase 2 ( Plk2 ). Plk2 expression depended on YAP stability and was enhanced in CPCs transfected with a nuclear-targeted mutant YAP. Phenotypically, the early downregulation of Plk2 on laminin was succeeded by lower cell proliferation, enhanced lineage gene expression (24 hours), and facilitated differentiation (3 weeks) compared with fibronectin. Finally, overexpression of Plk2 enhanced CPC proliferation and knockdown of Plk2 induced the expression of lineage genes. Plk2 acts as coordinator of cell proliferation and early lineage commitment in CPCs. The rapid downregulation of Plk2 on YAP inactivation marks a switch towards enhanced commitment and facilitated differentiation. These findings link early gene regulation to cell fate and provide novel insights into how CPC proliferation and differentiation are orchestrated. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  19. Origins of adult pigmentation: diversity in pigment stem cell lineages and implications for pattern evolution.

    Science.gov (United States)

    Parichy, David M; Spiewak, Jessica E

    2015-01-01

    Teleosts comprise about half of all vertebrate species and exhibit an extraordinary diversity of adult pigment patterns that function in shoaling, camouflage, and mate choice and have played important roles in speciation. Here, we review studies that have identified several distinct neural crest lineages, with distinct genetic requirements, that give rise to adult pigment cells in fishes. These lineages include post-embryonic, peripheral nerve-associated stem cells that generate black melanophores and iridescent iridophores, cells derived directly from embryonic neural crest cells that generate yellow-orange xanthophores, and bipotent stem cells that generate both melanophores and xanthophores. This complexity in adult chromatophore lineages has implications for our understanding of adult traits, melanoma, and the evolutionary diversification of pigment cell lineages and patterns. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Differentiation of Equine Mesenchymal Stromal Cells into Cells of Neural Lineage: Potential for Clinical Applications

    Directory of Open Access Journals (Sweden)

    Claudia Cruz Villagrán

    2014-01-01

    Full Text Available Mesenchymal stromal cells (MSCs are able to differentiate into extramesodermal lineages, including neurons. Positive outcomes were obtained after transplantation of neurally induced MSCs in laboratory animals after nerve injury, but this is unknown in horses. Our objectives were to test the ability of equine MSCs to differentiate into cells of neural lineage in vitro, to assess differences in morphology and lineage-specific protein expression, and to investigate if horse age and cell passage number affected the ability to achieve differentiation. Bone marrow-derived MSCs were obtained from young and adult horses. Following demonstration of stemness, MSCs were neurally induced and microscopically assessed at different time points. Results showed that commercially available nitrogen-coated tissue culture plates supported proliferation and differentiation. Morphological changes were immediate and all the cells displayed a neural crest-like cell phenotype. Expression of neural progenitor proteins, was assessed via western blot or immunofluorescence. In our study, MSCs generated from young and middle-aged horses did not show differences in their ability to undergo differentiation. The effect of cell passage number, however, is inconsistent and further experiments are needed. Ongoing work is aimed at transdifferentiating these cells into Schwann cells for transplantation into a peripheral nerve injury model in horses.

  1. Evolutionary implication of B-1 lineage cells from innate to adaptive immunity.

    Science.gov (United States)

    Zhu, Lv-yun; Shao, Tong; Nie, Li; Zhu, Ling-yun; Xiang, Li-xin; Shao, Jian-zhong

    2016-01-01

    The paradigm that B cells mainly play a central role in adaptive immunity may have to be reevaluated because B-1 lineage cells have been found to exhibit innate-like functions, such as phagocytic and bactericidal activities. Therefore, the evolutionary connection of B-1 lineage cells between innate and adaptive immunities have received much attention. In this review, we summarized various innate-like characteristics of B-1 lineage cells, such as natural antibody production, antigen-presenting function in primary adaptive immunity, and T cell-independent immune responses. These characteristics seem highly conserved between fish B cells and mammalian B-1 cells during vertebrate evolution. We proposed an evolutionary outline of B cells by comparing biological features, including morphology, phenotype, ontogeny, and functional activity between B-1 lineage cells and macrophages or B-2 cells. The B-1 lineage may be a transitional cell type between phagocytic cells (e.g., macrophages) and B-2 cells that functionally connects innate and adaptive immunities. Our discussion would contribute to the understanding on the origination of B cells specialized in adaptive immunity from innate immunity. The results might provide further insight into the evolution of the immune system as a whole. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. gammadelta and alphabeta T cell lineage choice: resolution by a stronger sense of being.

    Science.gov (United States)

    Wong, Gladys W; Zúñiga-Pflücker, Juan Carlos

    2010-08-01

    A common bipotent thymocyte precursor gives rise to both lineages of T cells, alphabeta and gammadelta. However, the cell intrinsic and extrinsic factors that influence alphabeta- versus gammadelta-lineage bifurcation remain controversial. gammadelta T cells play a unique and vital role in host defense, from maintaining integrity at epithelial and mucosal barriers to their newly defined role as an important innate source of interleukin-17. Although a T cell receptor (TCR)-independent fate choice may take place, emerging data supports a model in which the differential signaling capacity of alphabeta and gammadeltaTCRs play an instructional role in specifying lineage fate, with strength of signal measured by the amount of ERK/MAPK pathway activation. Here we discuss how the interplay between intrinsic TCR signals and cell extrinsic signals provided by Notch and TCR ligands help to assign and support a final lineage fate decision. 2010 Elsevier Ltd. All rights reserved.

  3. Extreme neutrophil granulocytosis in a patient with anaplastic large cell lymphoma of T-cell lineage

    DEFF Research Database (Denmark)

    Engsig, Frederik Neess; Møller, Michael Boe; Hasselbalch, Hans K

    2007-01-01

    We describe a 47-year-old male admitted with fever and extreme neutrophil granulocytosis (up to 80 x 10(9)/L). All microbiology tests and test for autoimmune disease were negative. CT scan showed pulmonary infiltrates bilaterally, mediastinal lymphadenopathy and splenomegaly. Conventional...... led to a diagnosis of anaplastic large cell lymphoma (ALCL) of T-cell lineage. Involvement of peripheral blood with leukemoid reaction is a rare manifestation of ALCL. This case emphasizes the importance of immunophenotyping in unexplained extreme granulocytosis....

  4. Long-term live cell imaging and automated 4D analysis of drosophila neuroblast lineages.

    Directory of Open Access Journals (Sweden)

    Catarina C F Homem

    Full Text Available The developing Drosophila brain is a well-studied model system for neurogenesis and stem cell biology. In the Drosophila central brain, around 200 neural stem cells called neuroblasts undergo repeated rounds of asymmetric cell division. These divisions typically generate a larger self-renewing neuroblast and a smaller ganglion mother cell that undergoes one terminal division to create two differentiating neurons. Although single mitotic divisions of neuroblasts can easily be imaged in real time, the lack of long term imaging procedures has limited the use of neuroblast live imaging for lineage analysis. Here we describe a method that allows live imaging of cultured Drosophila neuroblasts over multiple cell cycles for up to 24 hours. We describe a 4D image analysis protocol that can be used to extract cell cycle times and growth rates from the resulting movies in an automated manner. We use it to perform lineage analysis in type II neuroblasts where clonal analysis has indicated the presence of a transit-amplifying population that potentiates the number of neurons. Indeed, our experiments verify type II lineages and provide quantitative parameters for all cell types in those lineages. As defects in type II neuroblast lineages can result in brain tumor formation, our lineage analysis method will allow more detailed and quantitative analysis of tumorigenesis and asymmetric cell division in the Drosophila brain.

  5. Tissue-resident natural killer (NK) cells are cell lineages distinct from thymic and conventional splenic NK cells

    Science.gov (United States)

    Sojka, Dorothy K; Plougastel-Douglas, Beatrice; Yang, Liping; Pak-Wittel, Melissa A; Artyomov, Maxim N; Ivanova, Yulia; Zhong, Chao; Chase, Julie M; Rothman, Paul B; Yu, Jenny; Riley, Joan K; Zhu, Jinfang; Tian, Zhigang; Yokoyama, Wayne M

    2014-01-01

    Natural killer (NK) cells belong to the innate immune system; they can control virus infections and developing tumors by cytotoxicity and producing inflammatory cytokines. Most studies of mouse NK cells, however, have focused on conventional NK (cNK) cells in the spleen. Recently, we described two populations of liver NK cells, tissue-resident NK (trNK) cells and those resembling splenic cNK cells. However, their lineage relationship was unclear; trNK cells could be developing cNK cells, related to thymic NK cells, or a lineage distinct from both cNK and thymic NK cells. Herein we used detailed transcriptomic, flow cytometric, and functional analysis and transcription factor-deficient mice to determine that liver trNK cells form a distinct lineage from cNK and thymic NK cells. Taken together with analysis of trNK cells in other tissues, there are at least four distinct lineages of NK cells: cNK, thymic, liver (and skin) trNK, and uterine trNK cells. DOI: http://dx.doi.org/10.7554/eLife.01659.001 PMID:24714492

  6. Lineage correlations of single cell division time as a probe of cell-cycle dynamics.

    Science.gov (United States)

    Sandler, Oded; Mizrahi, Sivan Pearl; Weiss, Noga; Agam, Oded; Simon, Itamar; Balaban, Nathalie Q

    2015-03-26

    Stochastic processes in cells are associated with fluctuations in mRNA, protein production and degradation, noisy partition of cellular components at division, and other cell processes. Variability within a clonal population of cells originates from such stochastic processes, which may be amplified or reduced by deterministic factors. Cell-to-cell variability, such as that seen in the heterogeneous response of bacteria to antibiotics, or of cancer cells to treatment, is understood as the inevitable consequence of stochasticity. Variability in cell-cycle duration was observed long ago; however, its sources are still unknown. A central question is whether the variance of the observed distribution originates from stochastic processes, or whether it arises mostly from a deterministic process that only appears to be random. A surprising feature of cell-cycle-duration inheritance is that it seems to be lost within one generation but to be still present in the next generation, generating poor correlation between mother and daughter cells but high correlation between cousin cells. This observation suggests the existence of underlying deterministic factors that determine the main part of cell-to-cell variability. We developed an experimental system that precisely measures the cell-cycle duration of thousands of mammalian cells along several generations and a mathematical framework that allows discrimination between stochastic and deterministic processes in lineages of cells. We show that the inter- and intra-generation correlations reveal complex inheritance of the cell-cycle duration. Finally, we build a deterministic nonlinear toy model for cell-cycle inheritance that reproduces the main features of our data. Our approach constitutes a general method to identify deterministic variability in lineages of cells or organisms, which may help to predict and, eventually, reduce cell-to-cell heterogeneity in various systems, such as cancer cells under treatment.

  7. Adipogenic human adenovirus Ad-36 induces commitment, differentiation, and lipid accumulation in human adipose-derived stem cells

    DEFF Research Database (Denmark)

    Pasarica, Magdalena; Mashtalir, Nazar; McAllister, Emily J

    2008-01-01

    Human adenovirus Ad-36 is causatively and correlatively linked with animal and human obesity, respectively. Ad-36 enhances differentiation of rodent preadipocytes, but its effect on adipogenesis in humans is unknown. To indirectly assess the role of Ad-36-induced adipogenesis in human obesity......, the effect of the virus on commitment, differentiation, and lipid accumulation was investigated in vitro in primary human adipose-derived stem/stromal cells (hASC). Ad-36 infected hASC in a time- and dose-dependent manner. Even in the presence of osteogenic media, Ad-36-infected hASC showed significantly...... greater lipid accumulation, suggestive of their commitment to the adipocyte lineage. Even in the absence of adipogenic inducers, Ad-36 significantly increased hASC differentiation, as indicated by a time-dependent expression of genes within the adipogenic cascade-CCAAT/Enhancer binding protein...

  8. Inductive differentiation of two neural lineages reconstituted in a microculture system from Xenopus early gastrula cells.

    Science.gov (United States)

    Mitani, S; Okamoto, H

    1991-05-01

    Neural induction of ectoderm cells has been reconstituted and examined in a microculture system derived from dissociated early gastrula cells of Xenopus laevis. We have used monoclonal antibodies as specific markers to monitor cellular differentiation from three distinct ectoderm lineages in culture (N1 for CNS neurons from neural tube, Me1 for melanophores from neural crest and E3 for skin epidermal cells from epidermal lineages). CNS neurons and melanophores differentiate when deep layer cells of the ventral ectoderm (VE, prospective epidermis region; 150 cells/culture) and an appropriate region of the marginal zone (MZ, prospective mesoderm region; 5-150 cells/culture) are co-cultured, but not in cultures of either cell type on their own; VE cells cultured alone yield epidermal cells as we have previously reported. The extent of inductive neural differentiation in the co-culture system strongly depends on the origin and number of MZ cells initially added to culture wells. The potency to induce CNS neurons is highest for dorsal MZ cells and sharply decreases as more ventrally located cells are used. The same dorsoventral distribution of potency is seen in the ability of MZ cells to inhibit epidermal differentiation. In contrast, the ability of MZ cells to induce melanophores shows the reverse polarity, ventral to dorsal. These data indicate that separate developmental mechanisms are used for the induction of neural tube and neural crest lineages. Co-differentiation of CNS neurons or melanophores with epidermal cells can be obtained in a single well of co-cultures of VE cells (150) and a wide range of numbers of MZ cells (5 to 100). Further, reproducible differentiation of both neural lineages requires intimate association between cells from the two gastrula regions; virtually no differentiation is obtained when cells from the VE and MZ are separated in a culture well. These results indicate that the inducing signals from MZ cells for both neural tube and neural

  9. Developmental origins and lineage descendants of endogenous adult cardiac progenitor cells

    Directory of Open Access Journals (Sweden)

    James J.H. Chong

    2014-11-01

    Full Text Available Mammalian hearts carry a number of primitive stem cell-like populations, although the magnitude of their contribution to tissue homeostasis and repair remains controversial. Recent CRE recombinase-based lineage tracing experiments suggest only a minor contribution to the formation of new cardiomyocytes from such cells, albeit one that might be augmented therapeutically. As the field explores clinical translation of cardiac stem cells, it will be important to understand the biology of these cells in great detail. In this review we document the various reported stem and progenitor cell populations in mammalian hearts and discuss the current state of knowledge on their origins and lineage capabilities.

  10. Ebf1-mediated down-regulation of Id2 and Id3 is essential for specification of the B cell lineage.

    Science.gov (United States)

    Thal, Melissa A; Carvalho, Thiago L; He, Ti; Kim, Hyung-Gyoon; Gao, Hua; Hagman, James; Klug, Christopher A

    2009-01-13

    Gene knockout experiments in mice have suggested a hierarchical model of early B cell commitment wherein E2A proteins (E47 and E12) activate early B cell factor (Ebf1), which in turn activates expression of the B cell commitment factor, Pax5. In IL-7 receptor alpha (IL-7Ralpha) knockout mice, B cell development is blocked before B-lineage commitment at the prepro-B cell stage in adult animals. In IL-7Ralpha(-/-) prepro-B cells, E47 is expressed and yet is insufficient to transcriptionally activate the putative downstream target gene, Ebf1. In this study, we show that further increases of E47 expression in IL-7Ralpha(-/-) prepro-B cells fails to activate Ebf1, but rather leads to a dramatic induction of the E2A inhibitory factors, Id2 and Id3. In contrast, enforced expression of Ebf1 in IL-7Ralpha(-/-) bone marrow potently down-regulates Id2 and Id3 mRNA expression and restores B cell differentiation in vivo. Down-regulation of both Id2 and Id3 during B cell specification is essential in that overexpression of either Id2 or Id3 in wild-type bone marrow blocks B cell specification at the prepro-B cell stage. Collectively, these studies suggest a model where Ebf1 induction specifies the B cell fate by dramatically increasing activity of E47 at the posttranslational level.

  11. Mutational History of a Human Cell Lineage from Somatic to Induced Pluripotent Stem Cells.

    Directory of Open Access Journals (Sweden)

    Foad J Rouhani

    2016-04-01

    Full Text Available The accuracy of replicating the genetic code is fundamental. DNA repair mechanisms protect the fidelity of the genome ensuring a low error rate between generations. This sustains the similarity of individuals whilst providing a repertoire of variants for evolution. The mutation rate in the human genome has recently been measured to be 50-70 de novo single nucleotide variants (SNVs between generations. During development mutations accumulate in somatic cells so that an organism is a mosaic. However, variation within a tissue and between tissues has not been analysed. By reprogramming somatic cells into induced pluripotent stem cells (iPSCs, their genomes and the associated mutational history are captured. By sequencing the genomes of polyclonal and monoclonal somatic cells and derived iPSCs we have determined the mutation rates and show how the patterns change from a somatic lineage in vivo through to iPSCs. Somatic cells have a mutation rate of 14 SNVs per cell per generation while iPSCs exhibited a ten-fold lower rate. Analyses of mutational signatures suggested that deamination of methylated cytosine may be the major mutagenic source in vivo, whilst oxidative DNA damage becomes dominant in vitro. Our results provide insights for better understanding of mutational processes and lineage relationships between human somatic cells. Furthermore it provides a foundation for interpretation of elevated mutation rates and patterns in cancer.

  12. Extensive Nuclear Reprogramming Underlies Lineage Conversion into Functional Trophoblast Stem-like Cells

    NARCIS (Netherlands)

    Benchetrit, Hana; Herman, Shay; van Wietmarschen, Niek; Wu, Tao; Makedonski, Kirill; Maoz, Noam; Tov, Nataly Yom; Stave, Danielle; Lasry, Rachel; Zayat, Valery; Xiao, Andrew; Lansdorp, Peter M.; Sebban, Shulamit; Buganim, Yosef

    2015-01-01

    Induced pluripotent stem cells (iPSCs) undergo extensive nuclear reprogramming and are generally indistinguishable from embryonic stem cells (ESCs) in their functional capacity and transcriptome and DNA methylation profiles. However, direct conversion of cells from one lineage to another often

  13. Auraptene induces oligodendrocyte lineage precursor cells in a cuprizone-induced animal model of demyelination.

    Science.gov (United States)

    Nakajima, Mitsunari; Shimizu, Risei; Furuta, Kohei; Sugino, Mami; Watanabe, Takashi; Aoki, Rui; Okuyama, Satoshi; Furukawa, Yoshiko

    2016-05-15

    We investigated the effects of auraptene on mouse oligodendroglial cell lineage in an animal model of demyelination induced by cuprizone. Auraptene, a citrus coumarin, was intraperitoneally administered to mice fed the demyelinating agent cuprizone. Immunohistochemical analysis of the corpus callosum and/or Western blotting analysis of brain extracts revealed that cuprizone reduced immunoreactivity for myelin-basic protein, a marker of myelin, whereas it increased immunoreactivity to platelet derived-growth factor receptor-α, a marker of oligodendrocyte precursor cells. Administration of auraptene enhanced the immunoreactivity to oligodendrocyte transcription factor 2, a marker of oligodendrocyte precursor cells and oligodendrocyte lineage precursor cells, but had no effect on immunoreactivity to myelin-basic protein or platelet-derived growth factor receptor-α. These findings suggest that auraptene promotes the production of oligodendrocyte lineage precursor cells in an animal model of demyelination and may be useful for individuals with demyelinating diseases. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Epigenomic Analysis of Multi-lineage Differentiation of Human Embryonic Stem Cells

    Science.gov (United States)

    Xie, Wei; Schultz, Matthew D.; Lister, Ryan; Hou, Zhonggang; Rajagopal, Nisha; Ray, Pradipta; Whitaker, John W.; Tian, Shulan; Hawkins, R. David; Leung, Danny; Yang, Hongbo; Wang, Tao; Lee, Ah Young; Swanson, Scott A.; Zhang, Jiuchun; Zhu, Yun; Kim, Audrey; Nery, Joseph R.; Urich, Mark A.; Kuan, Samantha; Yen, Chia-an; Klugman, Sarit; Yu, Pengzhi; Suknuntha, Kran; Propson, Nicholas E.; Chen, Huaming; Edsall, Lee E.; Wagner, Ulrich; Li, Yan; Ye, Zhen; Kulkarni, Ashwinikumar; Xuan, Zhenyu; Chung, Wen-Yu; Chi, Neil C.; Antosiewicz-Bourget, Jessica E.; Slukvin, Igor; Stewart, Ron; Zhang, Michael Q.; Wang, Wei; Thomson, James A.; Ecker, Joseph R.; Ren, Bing

    2013-01-01

    SUMMARY Epigenetic mechanisms have been proposed to play crucial roles in mammalian development, but their precise functions are only partially understood. To investigate epigenetic regulation of embryonic development, we differentiated human embryonic stem cells into mesendoderm, neural progenitor cells, trophoblast-like cells, and mesenchymal stem cells, and systematically characterized DNA methylation, chromatin modifications, and the transcriptome in each lineage. We found that promoters that are active in early developmental stages tend to be CG rich and mainly engage H3K27me3 upon silencing in non-expressing lineages. By contrast, promoters for genes expressed preferentially at later stages are often CG poor and primarily employ DNA methylation upon repression. Interestingly, the early developmental regulatory genes are often located in large genomic domains that are generally devoid of DNA methylation in most lineages, which we termed DNA methylation valleys (DMVs). Our results suggest that distinct epigenetic mechanisms regulate early and late stages of ES cell differentiation. PMID:23664764

  15. Ezh2 represses the basal cell lineage during lung endoderm development.

    Science.gov (United States)

    Snitow, Melinda E; Li, Shanru; Morley, Michael P; Rathi, Komal; Lu, Min Min; Kadzik, Rachel S; Stewart, Kathleen M; Morrisey, Edward E

    2015-01-01

    The development of the lung epithelium is regulated in a stepwise fashion to generate numerous differentiated and stem cell lineages in the adult lung. How these different lineages are generated in a spatially and temporally restricted fashion remains poorly understood, although epigenetic regulation probably plays an important role. We show that the Polycomb repressive complex 2 component Ezh2 is highly expressed in early lung development but is gradually downregulated by late gestation. Deletion of Ezh2 in early lung endoderm progenitors leads to the ectopic and premature appearance of Trp63+ basal cells that extend the entire length of the airway. Loss of Ezh2 also leads to reduced secretory cell differentiation. In their place, morphologically similar cells develop that express a subset of basal cell genes, including keratin 5, but no longer express high levels of either Trp63 or of standard secretory cell markers. This suggests that Ezh2 regulates the phenotypic switch between basal cells and secretory cells. Together, these findings show that Ezh2 restricts the basal cell lineage during normal lung endoderm development to allow the proper patterning of epithelial lineages during lung formation. © 2015. Published by The Company of Biologists Ltd.

  16. Epigenetic control of Ccr7 expression in distinct lineages of lung dendritic cells.

    Science.gov (United States)

    Moran, Timothy P; Nakano, Hideki; Kondilis-Mangum, Hrisavgi D; Wade, Paul A; Cook, Donald N

    2014-11-15

    Adaptive immune responses to inhaled allergens are induced following CCR7-dependent migration of precursor of dendritic cell (pre-DC)-derived conventional DCs (cDCs) from the lung to regional lymph nodes. However, monocyte-derived (moDCs) in the lung express very low levels of Ccr7 and consequently do not migrate efficiently to LN. To investigate the molecular mechanisms that underlie this dichotomy, we studied epigenetic modifications at the Ccr7 locus of murine cDCs and moDCs. When expanded from bone marrow precursors, moDCs were enriched at the Ccr7 locus for trimethylation of histone 3 lysine 27 (H3K27me3), a modification associated with transcriptional repression. Similarly, moDCs prepared from the lung also displayed increased levels of H3K27me3 at the Ccr7 promoter compared with migratory cDCs from that organ. Analysis of DC progenitors revealed that epigenetic modification of Ccr7 does not occur early during DC lineage commitment because monocytes and pre-DCs both had low levels of Ccr7-associated H3K27me3. Rather, Ccr7 is gradually silenced during the differentiation of monocytes to moDCs. Thus, epigenetic modifications of the Ccr7 locus control the migration and therefore the function of DCs in vivo. These findings suggest that manipulating epigenetic mechanisms might be a novel approach to control DC migration and thereby improve DC-based vaccines and treat inflammatory diseases of the lung. Copyright © 2014 by The American Association of Immunologists, Inc.

  17. Differentiation of murine embryonic stem and induced pluripotent stem cells to renal lineage in vitro

    International Nuclear Information System (INIS)

    Morizane, Ryuji; Monkawa, Toshiaki; Itoh, Hiroshi

    2009-01-01

    Embryonic stem (ES) cells which have the unlimited proliferative capacity and extensive differentiation potency can be an attractive source for kidney regeneration therapies. Recent breakthroughs in the generation of induced pluripotent stem (iPS) cells have provided with another potential source for the artificially-generated kidney. The purpose of this study is to know how to differentiate mouse ES and iPS cells into renal lineage. We used iPS cells from mouse fibroblasts by transfection of four transcription factors, namely Oct4, Sox2, c-Myc and Klf4. Real-time PCR showed that renal lineage markers were expressed in both ES and iPS cells after the induction of differentiation. It also showed that a tubular specific marker, KSP progressively increased to day 18, although the differentiation of iPS cells was slower than ES cells. The results indicated that renal lineage cells can be differentiated from both murine ES and iPS cells. Several inducing factors were tested whether they influenced on cell differentiation. In ES cells, both of GDNF and BMP7 enhanced the differentiation to metanephric mesenchyme, and Activin enhanced the differentiation of ES cells to tubular cells. Activin also enhanced the differentiation of iPS cells to tubular cells, although the enhancement was lower than in ES cells. ES and iPS cells have a potential to differentiate to renal lineage cells, and they will be an attractive resource of kidney regeneration therapy. This differentiation is enhanced by Activin in both ES and iPS cells.

  18. Differentiation of murine embryonic stem and induced pluripotent stem cells to renal lineage in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Morizane, Ryuji [Department of Internal Medicine, Keio University School of Medicine, Tokyo (Japan); Monkawa, Toshiaki, E-mail: monkawa@sc.itc.keio.ac.jp [Department of Internal Medicine, Keio University School of Medicine, Tokyo (Japan); Itoh, Hiroshi [Department of Internal Medicine, Keio University School of Medicine, Tokyo (Japan)

    2009-12-25

    Embryonic stem (ES) cells which have the unlimited proliferative capacity and extensive differentiation potency can be an attractive source for kidney regeneration therapies. Recent breakthroughs in the generation of induced pluripotent stem (iPS) cells have provided with another potential source for the artificially-generated kidney. The purpose of this study is to know how to differentiate mouse ES and iPS cells into renal lineage. We used iPS cells from mouse fibroblasts by transfection of four transcription factors, namely Oct4, Sox2, c-Myc and Klf4. Real-time PCR showed that renal lineage markers were expressed in both ES and iPS cells after the induction of differentiation. It also showed that a tubular specific marker, KSP progressively increased to day 18, although the differentiation of iPS cells was slower than ES cells. The results indicated that renal lineage cells can be differentiated from both murine ES and iPS cells. Several inducing factors were tested whether they influenced on cell differentiation. In ES cells, both of GDNF and BMP7 enhanced the differentiation to metanephric mesenchyme, and Activin enhanced the differentiation of ES cells to tubular cells. Activin also enhanced the differentiation of iPS cells to tubular cells, although the enhancement was lower than in ES cells. ES and iPS cells have a potential to differentiate to renal lineage cells, and they will be an attractive resource of kidney regeneration therapy. This differentiation is enhanced by Activin in both ES and iPS cells.

  19. Single-cell protein secretomic signatures as potential correlates to tumor cell lineage evolution and cell-cell interaction

    Directory of Open Access Journals (Sweden)

    Minsuk eKwak

    2013-02-01

    Full Text Available Secreted proteins including cytokines, chemokines and growth factors represent important functional regulators mediating a range of cellular behavior and cell-cell paracrine/autocrine signaling, e.g. in the immunological system, tumor microenvironment or stem cell niche. Detection of these proteins is of great value not only in basic cell biology but also for diagnosis and therapeutic monitoring of human diseases such as cancer. However, due to co-production of multiple effector proteins from a single cell, referred to as polyfunctionality, it is biologically informative to measure a panel of secreted proteins, or secretomic signature, at the level of single cells. Recent evidence further indicates that a genetically-identical cell population can give rise to diverse phenotypic differences. It is known that cytokines, for example, in the immune system define the effector functions and lineage differentiation of immune cells. In this Perspective Article, we hypothesize that protein secretion profile may represent a universal measure to identify the definitive correlate in the larger context of cellular functions to dissect cellular heterogeneity and evolutionary lineage relationship in human cancer.

  20. Size distribution of retrovirally marked lineages matches prediction from population measurements of cell cycle behavior

    Science.gov (United States)

    Cai, Li; Hayes, Nancy L.; Takahashi, Takao; Caviness, Verne S Jr; Nowakowski, Richard S.

    2002-01-01

    Mechanisms that regulate neuron production in the developing mouse neocortex were examined by using a retroviral lineage marking method to determine the sizes of the lineages remaining in the proliferating population of the ventricular zone during the period of neuron production. The distribution of clade sizes obtained experimentally in four different injection-survival paradigms (E11-E13, E11-E14, E11-E15, and E12-E15) from a total of over 500 labeled lineages was compared with that obtained from three models in which the average behavior of the proliferating population [i.e., the proportion of cells remaining in the proliferative population (P) vs. that exiting the proliferative population (Q)] was quantitatively related to lineage size distribution. In model 1, different proportions of asymmetric, symmetric terminal, and symmetric nonterminal cell divisions coexisted during the entire developmental period. In model 2, the developmental period was divided into two epochs: During the first, asymmetric and symmetric nonterminal cell divisions occurred, but, during the second, asymmetric and symmetric terminal cell divisions occurred. In model 3, the shifts in P and Q are accounted for by changes in the proportions of the two types of symmetric cell divisions without the inclusion of any asymmetric cell divisions. The results obtained from the retroviral experiments were well accounted for by model 1 but not by model 2 or 3. These findings demonstrate that: 1) asymmetric and both types of symmetric cell divisions coexist during the entire period of neurogenesis in the mouse, 2) neuron production is regulated in the proliferative population by the independent decisions of the two daughter cells to reenter S phase, and 3) neurons are produced by both asymmetric and symmetric terminal cell divisions. In addition, the findings mean that cell death and/or tangential movements of cells in the proliferative population occur at only a low rate and that there are no

  1. STELLA facilitates differentiation of germ cell and endodermal lineages of human embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Patompon Wongtrakoongate

    Full Text Available Stella is a developmentally regulated gene highly expressed in mouse embryonic stem (ES cells and in primordial germ cells (PGCs. In human, the gene encoding the STELLA homologue lies on chromosome 12p, which is frequently amplified in long-term cultured human ES cells. However, the role played by STELLA in human ES cells has not been reported. In the present study, we show that during retinoic acid (RA-induced differentiation of human ES cells, expression of STELLA follows that of VASA, a marker of germline differentiation. By contrast, human embryonal carcinoma cells express STELLA at a higher level compared with both karyotypically normal and abnormal human ES cell lines. We found that over-expression of STELLA does not interfere with maintenance of the stem cell state of human ES cells, but following retinoic acid induction it leads to up-regulation of germline- and endodermal-associated genes, whereas neural markers PAX6 and NEUROD1 are down-regulated. Further, STELLA over-expression facilitates the differentiation of human ES cells into BE12-positive cells, in which the expression of germline- and endodermal-associated genes is enriched, and suppresses differentiation of the neural lineage. Taken together, this finding suggests a role for STELLA in facilitating germline and endodermal differentiation of human ES cells.

  2. STELLA facilitates differentiation of germ cell and endodermal lineages of human embryonic stem cells.

    Science.gov (United States)

    Wongtrakoongate, Patompon; Jones, Mark; Gokhale, Paul J; Andrews, Peter W

    2013-01-01

    Stella is a developmentally regulated gene highly expressed in mouse embryonic stem (ES) cells and in primordial germ cells (PGCs). In human, the gene encoding the STELLA homologue lies on chromosome 12p, which is frequently amplified in long-term cultured human ES cells. However, the role played by STELLA in human ES cells has not been reported. In the present study, we show that during retinoic acid (RA)-induced differentiation of human ES cells, expression of STELLA follows that of VASA, a marker of germline differentiation. By contrast, human embryonal carcinoma cells express STELLA at a higher level compared with both karyotypically normal and abnormal human ES cell lines. We found that over-expression of STELLA does not interfere with maintenance of the stem cell state of human ES cells, but following retinoic acid induction it leads to up-regulation of germline- and endodermal-associated genes, whereas neural markers PAX6 and NEUROD1 are down-regulated. Further, STELLA over-expression facilitates the differentiation of human ES cells into BE12-positive cells, in which the expression of germline- and endodermal-associated genes is enriched, and suppresses differentiation of the neural lineage. Taken together, this finding suggests a role for STELLA in facilitating germline and endodermal differentiation of human ES cells.

  3. Conversion of Goat Fibroblasts into Lineage-Specific Cells Using a Direct Reprogramming Strategy.

    Science.gov (United States)

    Guo, Yanjie; Yu, Tong; Lei, Lei; Duan, Anqin; Ma, Xiaoling; Wang, Huayan

    2017-05-01

    Direct reprogramming is an efficient strategy to convert one cell type to another. In this study, due to the failure of maintaining the undifferentiated state of goat embryotic stem- and induced pluripotent stem-like cells in vitro, we explored an alternative way to directly convert goat fibroblasts to lineage-specific cells. The 'Yamanaka factors' was ectopically expressed in fibroblasts for a short term to situate cells in a metastable state. By culturing with lineage-specific media for 1-2 weeks, the cardiomyocyte-like cells and neurocyte-like cells were generated and confirmed by the quantitative RT-PCR and immunocytochemical staining. The metastable-state cells could also be converted into oocyte-like cells (OLCs) after culturing in media with retinoic acid (RA) and bovine follicular fluid (bFF) for 2-3 weeks. The generated OLCs were surrounded by cumulus granulosa cell-like cells and formed a structure resembling goat cumulus-oocyte complex from ovaries. This primary follicular structure could be developed further in oocyte mature medium and expressed germ cell-specific markers. In addition, we found that the induction efficiency was higher and OLC cell size was bigger in bFF than in RA treatment. Altogether, the direct reprogramming of goat fibroblasts into lineage-specific cells can facilitate stem cell research in domestic animals. © 2016 Japanese Society of Animal Science.

  4. Bioconductor workflow for single-cell RNA sequencing: Normalization, dimensionality reduction, clustering, and lineage inference.

    Science.gov (United States)

    Perraudeau, Fanny; Risso, Davide; Street, Kelly; Purdom, Elizabeth; Dudoit, Sandrine

    2017-01-01

    Novel single-cell transcriptome sequencing assays allow researchers to measure gene expression levels at the resolution of single cells and offer the unprecendented opportunity to investigate at the molecular level fundamental biological questions, such as stem cell differentiation or the discovery and characterization of rare cell types. However, such assays raise challenging statistical and computational questions and require the development of novel methodology and software. Using stem cell differentiation in the mouse olfactory epithelium as a case study, this integrated workflow provides a step-by-step tutorial to the methodology and associated software for the following four main tasks: (1) dimensionality reduction accounting for zero inflation and over dispersion and adjusting for gene and cell-level covariates; (2) cell clustering using resampling-based sequential ensemble clustering; (3) inference of cell lineages and pseudotimes; and (4) differential expression analysis along lineages.

  5. The transcription factor Runx3 guards cytotoxic CD8+effector T cells against deviation towards follicular helper T cell lineage.

    Science.gov (United States)

    Shan, Qiang; Zeng, Zhouhao; Xing, Shaojun; Li, Fengyin; Hartwig, Stacey M; Gullicksrud, Jodi A; Kurup, Samarchith P; Van Braeckel-Budimir, Natalija; Su, Yao; Martin, Matthew D; Varga, Steven M; Taniuchi, Ichiro; Harty, John T; Peng, Weiqun; Badovinac, Vladimir P; Xue, Hai-Hui

    2017-08-01

    Activated CD8 + T cells differentiate into cytotoxic effector (T EFF ) cells that eliminate target cells. How T EFF cell identity is established and maintained is not fully understood. We found that Runx3 deficiency limited clonal expansion and impaired upregulation of cytotoxic molecules in T EFF cells. Runx3-deficient CD8 + T EFF cells aberrantly upregulated genes characteristic of follicular helper T (T FH ) cell lineage, including Bcl6, Tcf7 and Cxcr5. Mechanistically, the Runx3-CBFβ transcription factor complex deployed H3K27me3 to Bcl6 and Tcf7 genes to suppress the T FH program. Ablating Tcf7 in Runx3-deficient CD8 + T EFF cells prevented the upregulation of T FH genes and ameliorated their defective induction of cytotoxic genes. As such, Runx3-mediated Tcf7 repression coordinately enforced acquisition of cytotoxic functions and protected the cytotoxic lineage integrity by preventing T FH -lineage deviation.

  6. Nanopatterned acellular valve conduits drive the commitment of blood-derived multipotent cells

    Directory of Open Access Journals (Sweden)

    Di Liddo R

    2016-10-01

    Full Text Available Rosa Di Liddo,1,2 Paola Aguiari,3 Silvia Barbon,1,2 Thomas Bertalot,1 Amit Mandoli,1 Alessia Tasso,1 Sandra Schrenk,1 Laura Iop,3 Alessandro Gandaglia,3 Pier Paolo Parnigotto,2 Maria Teresa Conconi,1,2 Gino Gerosa31Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 2Foundation for Biology and Regenerative Medicine, Tissue Engineering and Signaling ONLUS, 3Department of Cardiac, Thoracic and Vascular Sciences, University of Padova, Padova, Italy Abstract: Considerable progress has been made in recent years toward elucidating the correlation among nanoscale topography, mechanical properties, and biological behavior of cardiac valve substitutes. Porcine TriCol scaffolds are promising valve tissue engineering matrices with demonstrated self-repopulation potentiality. In order to define an in vitro model for investigating the influence of extracellular matrix signaling on the growth pattern of colonizing blood-derived cells, we cultured circulating multipotent cells (CMC on acellular aortic (AVL and pulmonary (PVL valve conduits prepared with TriCol method and under no-flow condition. Isolated by our group from Vietnamese pigs before heart valve prosthetic implantation, porcine CMC revealed high proliferative abilities, three-lineage differentiative potential, and distinct hematopoietic/endothelial and mesenchymal properties. Their interaction with valve extracellular matrix nanostructures boosted differential messenger RNA expression pattern and morphologic features on AVL compared to PVL, while promoting on both matrices the commitment to valvular and endothelial cell-like phenotypes. Based on their origin from peripheral blood, porcine CMC are hypothesized in vivo to exert a pivotal role to homeostatically replenish valve cells and contribute to hetero- or allograft colonization. Furthermore, due to their high responsivity to extracellular matrix nanostructure signaling, porcine CMC could be useful for a preliminary

  7. Cell lineage distribution atlas of the human stomach reveals heterogeneous gland populations in the gastric antrum.

    Science.gov (United States)

    Choi, Eunyoung; Roland, Joseph T; Barlow, Brittney J; O'Neal, Ryan; Rich, Amy E; Nam, Ki Taek; Shi, Chanjuan; Goldenring, James R

    2014-11-01

    The glands of the stomach body and antral mucosa contain a complex compendium of cell lineages. In lower mammals, the distribution of oxyntic glands and antral glands define the anatomical regions within the stomach. We examined in detail the distribution of the full range of cell lineages within the human stomach. We determined the distribution of gastric gland cell lineages with specific immunocytochemical markers in entire stomach specimens from three non-obese organ donors. The anatomical body and antrum of the human stomach were defined by the presence of ghrelin and gastrin cells, respectively. Concentrations of somatostatin cells were observed in the proximal stomach. Parietal cells were seen in all glands of the body of the stomach as well as in over 50% of antral glands. MIST1 expressing chief cells were predominantly observed in the body although individual glands of the antrum also showed MIST1 expressing chief cells. While classically described antral glands were observed with gastrin cells and deep antral mucous cells without any parietal cells, we also observed a substantial population of mixed type glands containing both parietal cells and G cells throughout the antrum. Enteroendocrine cells show distinct patterns of localisation in the human stomach. The existence of antral glands with mixed cell lineages indicates that human antral glands may be functionally chimeric with glands assembled from multiple distinct stem cell populations. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  8. The male germline of angiosperms: Repertoire of an inconspicuous but important cell lineage

    Directory of Open Access Journals (Sweden)

    Scott D Russell

    2015-03-01

    Full Text Available The male germ line of flowering plants constitutes a specialized lineage of diminutive cells initiated by an asymmetric division of the initial microspore cell that sequesters the generative cell from the pollen vegetative cell. The generative cell subsequently divides to form the two male gametes (non-motile sperm cells that fuse with the two female gametophyte target cells (egg and central cells to form the zygote and endosperm. Although these male gametes can be as little as 1/800th of the volume of their female counterpart, they encode a highly distinctive and rich transcriptome, translate proteins, and display a novel suite of gamete-distinctive control elements that create a unique chromatin environment in the male lineage. Sperm-expressed transcripts also include a high proportion of transposable element-related sequences that may be targets of non-coding RNA including miRNA and silencing elements from peripheral cells. The number of sperm-encoded transcripts is somewhat fewer than the number present in the egg cell, but are remarkably distinct compared to other cell types according to principal component and other analyses. The molecular role of the male germ lineage cells is just beginning to be understood and appears more complex than originally anticipated.

  9. Regulatory effects on the population dynamics and wave propagation in a cell lineage model.

    Science.gov (United States)

    Wang, Mao-Xiang; Ma, Yu-Qiang; Lai, Pik-Yin

    2016-03-21

    We consider the interplay of cell proliferation, cell differentiation (and de-differentiation), cell movement, and the effect of feedback regulations on the population and propagation dynamics of different cell types in a cell lineage model. Cells are assumed to secrete and respond to negative feedback molecules which act as a control on the cell lineage. The cell densities are described by coupled reaction-diffusion partial differential equations, and the propagating wave front solutions in one dimension are investigated analytically and by numerical solutions. In particular, wavefront propagation speeds are obtained analytically and verified by numerical solutions of the equations. The emphasis is on the effects of the feedback regulations on different stages in the cell lineage. It is found that when the progenitor cell is negatively regulated, the populations of the cell lineage are strongly down-regulated with the steady growth rate of the progenitor cell being driven to zero beyond a critical regulatory strength. An analytic expression for the critical regulation strength in terms of the model parameters is derived and verified by numerical solutions. On the other hand, if the inhibition is acting on the differentiated cells, the change in the population dynamics and wave propagation speed is small. In addition, it is found that only the propagating speed of the progenitor cells is affected by the regulation when the diffusion of the differentiated cells is large. In the presence of de-differentiation, the effect on down-regulating the progenitor population is weakened and there is no effect on the propagation speed due to regulation, suggesting that the effect of regulatory control is diminished by de-differentiation pathways. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Alternative Routes to Induced Pluripotent Stem Cells Revealed by Reprogramming of the Neural Lineage.

    Science.gov (United States)

    Jackson, Steven A; Olufs, Zachariah P G; Tran, Khoa A; Zaidan, Nur Zafirah; Sridharan, Rupa

    2016-03-08

    During the reprogramming of mouse embryonic fibroblasts (MEFs) to induced pluripotent stem cells, the activation of pluripotency genes such as NANOG occurs after the mesenchymal to epithelial transition. Here we report that both adult stem cells (neural stem cells) and differentiated cells (astrocytes) of the neural lineage can activate NANOG in the absence of cadherin expression during reprogramming. Gene expression analysis revealed that only the NANOG+E-cadherin+ populations expressed stabilization markers, had upregulated several cell cycle genes; and were transgene independent. Inhibition of DOT1L activity enhanced both the numbers of NANOG+ and NANOG+E-cadherin+ colonies in neural stem cells. Expressing SOX2 in MEFs prior to reprogramming did not alter the ratio of NANOG colonies that express E-cadherin. Taken together these results provide a unique pathway for reprogramming taken by cells of the neural lineage. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Tet-Mediated DNA Demethylation Is Required for SWI/SNF-Dependent Chromatin Remodeling and Histone-Modifying Activities That Trigger Expression of the Sp7 Osteoblast Master Gene during Mesenchymal Lineage Commitment.

    Science.gov (United States)

    Sepulveda, Hugo; Villagra, Alejandro; Montecino, Martin

    2017-10-15

    Here we assess histone modification, chromatin remodeling, and DNA methylation processes that coordinately control the expression of the bone master transcription factor Sp7 (osterix) during mesenchymal lineage commitment in mammalian cells. We find that Sp7 gene silencing is mediated by DNA methyltransferase1/3 (DNMT1/3)-, histone deacetylase 1/2/4 (HDAC1/2/4)-, Setdb1/Suv39h1-, and Ezh1/2-containing complexes. In contrast, Sp7 gene activation involves changes in histone modifications, accompanied by decreased nucleosome enrichment and DNA demethylation mediated by SWI/SNF- and Tet1/Tet2-containing complexes, respectively. Inhibition of DNA methylation triggers changes in the histone modification profile and chromatin-remodeling events leading to Sp7 gene expression. Tet1/Tet2 silencing prevents Sp7 expression during osteoblast differentiation as it impairs DNA demethylation and alters the recruitment of histone methylase (COMPASS)-, histone demethylase (Jmjd2a/Jmjd3)-, and SWI/SNF-containing complexes to the Sp7 promoter. The dissection of these interconnected epigenetic mechanisms that govern Sp7 gene activation reveals a hierarchical process where regulatory components mediating DNA demethylation play a leading role. Copyright © 2017 American Society for Microbiology.

  12. Transcriptional repressor Tbx3 is required for the hormone-sensing cell lineage in mammary epithelium.

    Directory of Open Access Journals (Sweden)

    Kamini Kunasegaran

    Full Text Available The transcriptional repressor Tbx3 is involved in lineage specification in several tissues during embryonic development. Germ-line mutations in the Tbx3 gene give rise to Ulnar-Mammary Syndrome (comprising reduced breast development and Tbx3 is required for mammary epithelial cell identity in the embryo. Notably Tbx3 has been implicated in breast cancer, which develops in adult mammary epithelium, but the role of Tbx3 in distinct cell types of the adult mammary gland has not yet been characterized. Using a fluorescent reporter knock-in mouse, we show that in adult virgin mice Tbx3 is highly expressed in luminal cells that express hormone receptors, and not in luminal cells of the alveolar lineage (cells primed for milk production. Flow cytometry identified Tbx3 expression already in progenitor cells of the hormone-sensing lineage and co-immunofluorescence confirmed a strict correlation between estrogen receptor (ER and Tbx3 expression in situ. Using in vivo reconstitution assays we demonstrate that Tbx3 is functionally relevant for this lineage because knockdown of Tbx3 in primary mammary epithelial cells prevented the formation of ER+ cells, but not luminal ER- or basal cells. Interestingly, genes that are repressed by Tbx3 in other cell types, such as E-cadherin, are not repressed in hormone-sensing cells, highlighting that transcriptional targets of Tbx3 are cell type specific. In summary, we provide the first analysis of Tbx3 expression in the adult mammary gland at a single cell level and show that Tbx3 is important for the generation of hormone-sensing cells.

  13. Epiblast cells that express MyoD recruit pluripotent cells to the skeletal muscle lineage

    Science.gov (United States)

    Gerhart, Jacquelyn; Neely, Christine; Stewart, Benjamin; Perlman, Jordanna; Beckmann, David; Wallon, Margaretha; Knudsen, Karen; George-Weinstein, Mindy

    2004-01-01

    Embryonic stem cells are derived from the epiblast. A subpopulation of epiblast cells expresses MyoD mRNA and the G8 antigen in vivo. G8 positive (G8pos) and G8 negative (G8neg) populations were isolated by magnetic cell sorting. Nearly all G8pos cells switched from E- to N-cadherin and differentiated into skeletal muscle in culture. G8neg cells were impaired in their ability to switch cadherins and few formed skeletal muscle. Medium conditioned by G8pos cells stimulated skeletal myogenesis and N-cadherin synthesis in G8neg cultures. The effect of conditioned medium from G8pos cultures was inhibited by bone morphogenetic protein (BMP) 4. Treatment of G8neg cells with a soluble form of the BMP receptor-IA or Noggin promoted N-cadherin synthesis and skeletal myogenesis. These results demonstrate that MyoD-positive epiblast cells recruit pluripotent cells to the skeletal muscle lineage. The mechanism of recruitment involves blocking the BMP signaling pathway. PMID:14981095

  14. Limiting dilution analysis of the stem cells for T cell lineage

    International Nuclear Information System (INIS)

    Katsura, Y.; Kina, T.; Amagai, T.; Tsubata, T.; Hirayoshi, K.; Takaoki, Y.; Sado, T.; Nishikawa, S.I.

    1986-01-01

    Stem cell activities of bone marrow, spleen, thymus, and fetal liver cells for T cell lineage were studied comparatively by transferring the cells from these organs through i.v. or intrathymus (i.t.) route into right leg- and tail-shielded (L-T-shielded) and 900 R-irradiated recipient mice, which were able to survive without supplying hemopoietic stem cells. Cells from B10.Thy-1.1 (H-2b, Thy-1.1) mice were serially diluted and were transferred into L-T-shielded and irradiated C57BL/6 (H-2b, Thy-1.2) mice, and 21 days later the thymus cells of recipient mice were assayed for Thy-1.1+ cells by flow cytofluorometry. The percentage of recipient mice possessing donor-type T cells was plotted against the number of cells transferred, and the stem cell activity in each cell source was expressed as the 50% positive value, the number of donor cells required for generating donor-type T cells in the thymuses of 50% of recipient mice. In i.v. transfer experiments, the activity of bone marrow cells was similar to that of fetal liver cells, and about 100 times and nearly 1000 times higher than those of spleen cells and thymus cells, respectively. In i.t. transfer experiments, the number of cells required for generating donor-type T cells was much lower than that in i.v. transfer experiments, although the ratio in 50% positive values between i.v. and i.t. transfers differed among cell sources. In i.t. transfers, the 50% positive value of bone marrow cells was five times, 400 times, and 500 times higher than that of fetal liver cells, spleen cells, and thymus cells, respectively. Our previous finding that stem cells are enriched in the spleens of mice which were whole body-irradiated and marrow-reconstituted 7 days earlier was confirmed also by the present limiting dilution assay carried out in i.v. as well as i.t. transfers

  15. CD8+lineage dendritic cells determine adaptive immune responses to inflammasome activation upon sterile skin injury.

    Science.gov (United States)

    Chakraborty, Rituparna; Chandra, Janin; Cui, Shuai; Tolley, Lynn; Cooper, Matthew A; Kendall, Mark; Frazer, Ian H

    2018-01-01

    The molecular links between sterile inflammation and induction of adaptive immunity have not been fully identified. Here, we examine how damage-associated molecular patterns (DAMPs), as opposed to pathogen-associated molecules (PAMPs), regulate the immune response to non-self-antigens presented at the site of a physical injury. Heat applied briefly to the skin invokes sterile inflammation, characterized by local cell death and caspase-1 activation without demonstrably disrupting skin integrity. Co-delivery of ovalbumin (OVA) with heat injury induces OVA-specific CD8 + T-cell responses, and this is dependent on caspase-1 activation and MyD88 signalling. Using Id2flox/flox-CD11cCre+ mice, we demonstrate that CD8 + lineage DCs are required to induce OVA-specific CD8 + T-cell responses following heat injury. Consistent with this observation, intradermal administration of CD8 + lineage DCs but not CD11b + lineage DCs restores priming of CD8 + T-cell responses in Casp-1 -/- mice. Thus, we conclude that a sterile injury induces CD8 + T-cell immune responses to local antigen through caspase-1 activation and requires CD8 + lineage DCs, a finding of significance for immunotherapy and for the pathogenesis of autoimmunity. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. IFN regulatory factor 8 represses GM-CSF expression in T cells to affect myeloid cell lineage differentiation.

    Science.gov (United States)

    Paschall, Amy V; Zhang, Ruihua; Qi, Chen-Feng; Bardhan, Kankana; Peng, Liang; Lu, Geming; Yang, Jianjun; Merad, Miriam; McGaha, Tracy; Zhou, Gang; Mellor, Andrew; Abrams, Scott I; Morse, Herbert C; Ozato, Keiko; Xiong, Huabao; Liu, Kebin

    2015-03-01

    During hematopoiesis, hematopoietic stem cells constantly differentiate into granulocytes and macrophages via a distinct differentiation program that is tightly controlled by myeloid lineage-specific transcription factors. Mice with a null mutation of IFN regulatory factor 8 (IRF8) accumulate CD11b(+)Gr1(+) myeloid cells that phenotypically and functionally resemble tumor-induced myeloid-derived suppressor cells (MDSCs), indicating an essential role of IRF8 in myeloid cell lineage differentiation. However, IRF8 is expressed in various types of immune cells, and whether IRF8 functions intrinsically or extrinsically in regulation of myeloid cell lineage differentiation is not fully understood. In this study, we report an intriguing finding that, although IRF8-deficient mice exhibit deregulated myeloid cell differentiation and resultant accumulation of CD11b(+)Gr1(+) MDSCs, surprisingly, mice with IRF8 deficiency only in myeloid cells exhibit no abnormal myeloid cell lineage differentiation. Instead, mice with IRF8 deficiency only in T cells exhibited deregulated myeloid cell differentiation and MDSC accumulation. We further demonstrated that IRF8-deficient T cells exhibit elevated GM-CSF expression and secretion. Treatment of mice with GM-CSF increased MDSC accumulation, and adoptive transfer of IRF8-deficient T cells, but not GM-CSF-deficient T cells, increased MDSC accumulation in the recipient chimeric mice. Moreover, overexpression of IRF8 decreased GM-CSF expression in T cells. Our data determine that, in addition to its intrinsic function as an apoptosis regulator in myeloid cells, IRF8 also acts extrinsically to repress GM-CSF expression in T cells to control myeloid cell lineage differentiation, revealing a novel mechanism that the adaptive immune component of the immune system regulates the innate immune cell myelopoiesis in vivo. Copyright © 2015 by The American Association of Immunologists, Inc.

  17. Chromatin dynamics in Pollen Mother Cells underpin a common scenario at the somatic-to-reproductive fate transition of both the male and female lineages in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Wenjing eShe

    2015-04-01

    Full Text Available Unlike animals, where the germline is established early during embryogenesis, plants set aside their reproductive lineage late in development in dedicated floral organs. The specification of pollen mother cells (PMCs committed to meiosis takes place in the sporogenous tissue in anther locules and marks the somatic-to-reproductive cell fate transition towards the male reproductive lineage. Here we show that Arabidopsis PMCs differentiation is accompanied by large-scale changes in chromatin organization. This is characterized by significant increase in nuclear volume, chromatin decondensation, reduction in heterochromatin, eviction of linker histones and the H2AZ histone variant. These structural alterations are accompanied by dramatic, quantitative changes in histone modifications levels compared to that of surrounding somatic cells that do not share a sporogenic fate. All these changes are highly reminiscent of those we have formerly described in female megaspore mother cells (MMCs. This indicates that chromatin reprogramming is a common underlying scenario in the somatic-to-reproductive cell fate transition in both male and female lineages.

  18. The autonomous cell fate specification of basal cell lineage: the initial round of cell fate specification occurs at the two-celled proembryo stage.

    Science.gov (United States)

    Qu, Liang-Huan; Zhou, Xuemei; Li, Xinbo; Li, Shi-Sheng; Zhao, Jing; Zhao, Peng; Liu, Yuan; Sun, Meng-Xiang

    2017-09-01

    In angiosperms, the first zygotic division usually gives rise to two daughter cells with distinct morphologies and developmental fates, which is critical for embryo pattern formation; however, it is still unclear when and how these distinct cell fates are specified, and whether the cell specification is related to cytoplasmic localization or polarity. Here, we demonstrated that when isolated from both maternal tissues and the apical cell, a single basal cell could only develop into a typical suspensor, but never into an embryo in vitro. Morphological, cytological and gene expression analyses confirmed that the resulting suspensor in vitro is highly similar to its undisturbed in vivo counterpart. We also demonstrated that the isolated apical cell could develop into a small globular embryo, both in vivo and in vitro, after artificial dysfunction of the basal cell; however, these growing apical cell lineages could never generate a new suspensor. These findings suggest that the initial round of cell fate specification occurs at the two-celled proembryo stage, and that the basal cell lineage is autonomously specified towards the suspensor, implying a polar distribution of cytoplasmic contents in the zygote. The cell fate transition of the basal cell lineage to the embryo in vivo is actually a conditional cell specification process, depending on the developmental signals from both the apical cell lineage and maternal tissues connected to the basal cell lineage. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  19. Epithelial-Mesenchymal Micro-niches Govern Stem Cell Lineage Choices.

    Science.gov (United States)

    Yang, Hanseul; Adam, Rene C; Ge, Yejing; Hua, Zhong L; Fuchs, Elaine

    2017-04-20

    Adult tissue stem cells (SCs) reside in niches, which, through intercellular contacts and signaling, influence SC behavior. Once activated, SCs typically give rise to short-lived transit-amplifying cells (TACs), which then progress to differentiate into their lineages. Here, using single-cell RNA-seq, we unearth unexpected heterogeneity among SCs and TACs of hair follicles. We trace the roots of this heterogeneity to micro-niches along epithelial-mesenchymal interfaces, where progenitors display molecular signatures reflective of spatially distinct local signals and intercellular interactions. Using lineage tracing, temporal single-cell analyses, and chromatin landscaping, we show that SC plasticity becomes restricted in a sequentially and spatially choreographed program, culminating in seven spatially arranged unilineage progenitors within TACs of mature follicles. By compartmentalizing SCs into micro-niches, tissues gain precise control over morphogenesis and regeneration: some progenitors specify lineages immediately, whereas others retain potency, preserving self-renewing features established early while progressively restricting lineages as they experience dynamic changes in microenvironment. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Myeloid and lymphoid contribution to non-haematopoietic lineages through irradiation-induced heterotypic cell fusion

    DEFF Research Database (Denmark)

    Nygren, J.M.; Liuba, K.; Breitbach, M.

    2008-01-01

    is induced by organ-specific injuries or whole-body irradiation, which has been used in previous studies to condition recipients of bone marrow transplants. Our findings demonstrate that blood cells of the lymphoid and myeloid lineages contribute to various non-haematopoietic tissues by forming rare fusion...

  1. Genome-Nuclear Lamina Interactions Regulate Cardiac Stem Cell Lineage Restriction.

    Science.gov (United States)

    Poleshko, Andrey; Shah, Parisha P; Gupta, Mudit; Babu, Apoorva; Morley, Michael P; Manderfield, Lauren J; Ifkovits, Jamie L; Calderon, Damelys; Aghajanian, Haig; Sierra-Pagán, Javier E; Sun, Zheng; Wang, Qiaohong; Li, Li; Dubois, Nicole C; Morrisey, Edward E; Lazar, Mitchell A; Smith, Cheryl L; Epstein, Jonathan A; Jain, Rajan

    2017-10-19

    Progenitor cells differentiate into specialized cell types through coordinated expression of lineage-specific genes and modification of complex chromatin configurations. We demonstrate that a histone deacetylase (Hdac3) organizes heterochromatin at the nuclear lamina during cardiac progenitor lineage restriction. Specification of cardiomyocytes is associated with reorganization of peripheral heterochromatin, and independent of deacetylase activity, Hdac3 tethers peripheral heterochromatin containing lineage-relevant genes to the nuclear lamina. Deletion of Hdac3 in cardiac progenitor cells releases genomic regions from the nuclear periphery, leading to precocious cardiac gene expression and differentiation into cardiomyocytes; in contrast, restricting Hdac3 to the nuclear periphery rescues myogenesis in progenitors otherwise lacking Hdac3. Our results suggest that availability of genomic regions for activation by lineage-specific factors is regulated in part through dynamic chromatin-nuclear lamina interactions and that competence of a progenitor cell to respond to differentiation signals may depend upon coordinated movement of responding gene loci away from the nuclear periphery. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Involvement of multiple cell lineages in atherogenesis | Ogeng'o ...

    African Journals Online (AJOL)

    Atherogenesis is a multicellular event. Early reports concentrated on the role of endotheliocytes, monocyte - macrophages and smooth muscle cells. Recognition of the immuno-inflammatory nature of the process, however, expanded the scope of cellular involvement and more recent reviews emphasize the role of immune ...

  3. Role of GATA Transcription Factors in the T Cell Lineage

    NARCIS (Netherlands)

    J.P. van Hamburg (Jan Piet)

    2008-01-01

    textabstractT lymphocytes play a central role in the mammalian immune response against potentially hazardous pathogens, such as parasites, bacteria, viruses and fungi. These cells have the remarkable capacity to specifically recognize foreign substances, termed antigens, to which they respond by

  4. A novel lineage transcription factor based analysis reveals differences in T helper cell subpopulation development in infected and intrauterine growth restricted (IUGR) piglets.

    Science.gov (United States)

    Ebner, F; Rausch, S; Scharek-Tedin, L; Pieper, R; Burwinkel, M; Zentek, J; Hartmann, S

    2014-10-01

    Research in mouse and human clearly identified subsets of T helper (Th) cells based on nuclear expression of specific lineage transcription factors. In swine, however, transcription factor based detection of functional subpopulations of porcine Th cells by flow cytometry is so far limited to regulatory T cells via Foxp3. T-bet and GATA-3 are the transcription factors that regulate commitment to Th1 or Th2 cells, respectively. In this study we prove GATA-3 and T-bet expression in porcine CD4(+) cells polarized in vitro. Importantly, GATA-3 and T-bet expressing cells were detectable in pigs infected with pathogens associated with Th2 and Th1 immune responses. Increased frequencies of GATA-3 positive CD4(+) cells are found in vivo in pigs experimentally infected with the nematode Trichuris suis, whereas porcine reproductive and respiratory syndrome virus (PRRSV) infection elicited T-bet positive CD4(+) T cells. Analysing the immune status of pre-weaning piglets with intrauterine growth restriction (IUGR) we found an increased expression of Foxp3, T-bet and GATA-3 in CD4(+) and CD4(+)CD8(+) double-positive T cells in systemic and intestinal compartments of IUGR piglets. Hence, we established the detection of porcine Th1 and Th2 cells via T-bet and GATA-3 and show that the porcine lineage transcription factors are differentially regulated very early in life depending on the developmental status. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Lineage restriction maintains a stable organizer cell population at the zebrafish midbrain-hindbrain boundary.

    Science.gov (United States)

    Langenberg, Tobias; Brand, Michael

    2005-07-01

    The vertebrate hindbrain is subdivided into segments, termed neuromeres, that are units of gene expression, cell differentiation and behavior. A key property of such segments is that cells show a restricted ability to mix across segment borders -- termed lineage restriction. In order to address segmentation in the midbrain-hindbrain boundary (mhb) region, we have analyzed single cell behavior in the living embryo by acquiring time-lapse movies of the developing mhb region in a transgenic zebrafish line. We traced the movement of hundreds of nuclei, and by matching their position with the expression of a midbrain marker, we demonstrate that midbrain and hindbrain cells arise from two distinct cell populations. Single cell labeling and analysis of the distribution of their progeny shows that lineage restriction is probably established during late gastrulation stages. Our findings suggest that segmentation as an organizing principle in early brain development can be extended to the mhb region. We argue that lineage restriction serves to constrain the position of the mhb organizer cell population.

  6. Hacking cell differentiation: transcriptional rerouting in reprogramming, lineage infidelity and metaplasia

    Science.gov (United States)

    Regalo, Gonçalo; Leutz, Achim

    2013-01-01

    Initiating neoplastic cell transformation events are of paramount importance for the comprehension of regeneration and vanguard oncogenic processes but are difficult to characterize and frequently clinically overlooked. In epithelia, pre-neoplastic transformation stages are often distinguished by the appearance of phenotypic features of another differentiated tissue, termed metaplasia. In haemato/lymphopoietic malignancies, cell lineage ambiguity is increasingly recorded. Both, metaplasia and biphenotypic leukaemia/lymphoma represent examples of dysregulated cell differentiation that reflect a history of trans-differentiation and/or epigenetic reprogramming. Here we compare the similarity between molecular events of experimental cell trans-differentiation as an emerging therapeutic concept, with lineage confusion, as in metaplasia and dysplasia forecasting tumour development. PMID:23828660

  7. Hacking cell differentiation: transcriptional rerouting in reprogramming, lineage infidelity and metaplasia.

    Science.gov (United States)

    Regalo, Gonçalo; Leutz, Achim

    2013-08-01

    Initiating neoplastic cell transformation events are of paramount importance for the comprehension of regeneration and vanguard oncogenic processes but are difficult to characterize and frequently clinically overlooked. In epithelia, pre-neoplastic transformation stages are often distinguished by the appearance of phenotypic features of another differentiated tissue, termed metaplasia. In haemato/lymphopoietic malignancies, cell lineage ambiguity is increasingly recorded. Both, metaplasia and biphenotypic leukaemia/lymphoma represent examples of dysregulated cell differentiation that reflect a history of trans-differentiation and/or epigenetic reprogramming. Here we compare the similarity between molecular events of experimental cell trans-differentiation as an emerging therapeutic concept, with lineage confusion, as in metaplasia and dysplasia forecasting tumour development. © 2013 The Authors. Published by John Wiley and Sons, Ltd on behalf of EMBO.

  8. Cell-Fate Specification in Arabidopsis Roots Requires Coordinative Action of Lineage Instruction and Positional Reprogramming.

    Science.gov (United States)

    Yu, Qiaozhi; Li, Pengxue; Liang, Nengsong; Wang, Hong; Xu, Meizhi; Wu, Shuang

    2017-10-01

    Tissue organization and pattern formation within a multicellular organism rely on coordinated cell division and cell-fate determination. In animals, cell fates are mainly determined by a cell lineage-dependent mechanism, whereas in plants, positional information is thought to be the primary determinant of cell fates. However, our understanding of cell-fate regulation in plants mostly relies on the histological and anatomical studies on Arabidopsis ( Arabidopsis thaliana ) roots, which contain a single layer of each cell type in nonvascular tissues. Here, we investigate the dynamic cell-fate acquisition in modified Arabidopsis roots with additional cell layers that are artificially generated by the misexpression of SHORT-ROOT ( SHR ). We found that cell-fate determination in Arabidopsis roots is a dimorphic cascade with lineage inheritance dominant in the early stage of pattern formation. The inherited cell identity can subsequently be removed or modified by positional information. The instruction of cell-fate conversion is not a fast readout during root development. The final identity of a cell type is determined by the synergistic contribution from multiple layers of regulation, including symplastic communication across tissues. Our findings underline the collaborative inputs during cell-fate instruction. © 2017 American Society of Plant Biologists. All Rights Reserved.

  9. Stepwise renal lineage differentiation of mouse embryonic stem cells tracing in vivo development

    Energy Technology Data Exchange (ETDEWEB)

    Nishikawa, Masaki, E-mail: masakiwestriver@gmail.com [Medical and Research Services, Greater Los Angeles Veterans Affairs Healthcare System at Sepulveda, North Hills, CA (United States); University of California at Los Angeles, David Geffen School of Medicine, Los Angeles, CA 91343 (United States); Yanagawa, Naomi [Medical and Research Services, Greater Los Angeles Veterans Affairs Healthcare System at Sepulveda, North Hills, CA (United States); University of California at Los Angeles, David Geffen School of Medicine, Los Angeles, CA 91343 (United States); Kojima, Nobuhiko [Institute of Industrial Science (IIS), University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505 (Japan); Yuri, Shunsuke; Hauser, Peter V.; Jo, Oak D.; Yanagawa, Norimoto [Medical and Research Services, Greater Los Angeles Veterans Affairs Healthcare System at Sepulveda, North Hills, CA (United States); University of California at Los Angeles, David Geffen School of Medicine, Los Angeles, CA 91343 (United States)

    2012-01-13

    Highlights: Black-Right-Pointing-Pointer We induced renal lineages from mESCs by following the in vivo developmental cues. Black-Right-Pointing-Pointer We induced nephrogenic intermediate mesoderm by stepwise addition of factors. Black-Right-Pointing-Pointer We induced two types of renal progenitor cells by reciprocal conditioned media. Black-Right-Pointing-Pointer We propose the potential role of CD24 for the enrichment of renal lineage cells. -- Abstract: The in vitro derivation of renal lineage progenitor cells is essential for renal cell therapy and regeneration. Despite extensive studies in the past, a protocol for renal lineage induction from embryonic stem cells remains unestablished. In this study, we aimed to induce renal lineages from mouse embryonic stem cells (mESC) by following in vivo developmental stages, i.e., the induction of mesoderm (Stage I), intermediate mesoderm (Stage II) and renal lineages (Stage III). For stage I induction, in accordance with known signaling pathways involved in mesoderm development in vivo, i.e., Nodal, bone morphogenic proteins (BMPs) and Wnt, we found that the sequential addition of three factors, i.e., Activin-A (A), a surrogate for Nodal signaling, during days 0-2, A plus BMP-4 (4) during days 2-4, and A4 plus lithium (L), a surrogate for Wnt signaling, during days 4-6, was most effective to induce the mesodermal marker, Brachyury. For stage II induction, the addition of retinoic acid (R) in the continuous presence of A4L during days 6-8 was most effective to induce nephrogenic intermediate mesodermal markers, such as Pax2 and Lim1. Under this condition, more than 30% of cells were stained positive for Pax2, and there was a concomitant decrease in the expression of non-mesodermal markers. For stage III induction, in resemblance to the reciprocal induction between ureteric bud (UB) and metanephric mesenchyme (MM) during kidney development, we found that the exposure to conditioned media derived from UB and MM cells was

  10. Seeding of single hemopoietic stem cells and self renewal of committed stem cells

    International Nuclear Information System (INIS)

    Brecher, G.

    1986-01-01

    Single cells and two to five proliferating cells were transfused into mice whose own stem cells had been killed by irradiation. When a small inoculum of 50,000 AB marrow cells was given only 4 of 20 recipients survived, but all 4 had only PGK A enzyme in their peripheral blood cells. The results indicate that the survivors received a single pluripotential stem cell capable of proliferating. Survivors showed no deterioration in their blood picture after many months. It was concluded that there is no clonal succession in the marrow cells. Further studies with transfusions of 100,000 and 10,000,000 marrow cells after lethal irradiation suggest that there is production of committed stem cells with significant self-renewal

  11. Fast, accurate reconstruction of cell lineages from large-scale fluorescence microscopy data.

    Science.gov (United States)

    Amat, Fernando; Lemon, William; Mossing, Daniel P; McDole, Katie; Wan, Yinan; Branson, Kristin; Myers, Eugene W; Keller, Philipp J

    2014-09-01

    The comprehensive reconstruction of cell lineages in complex multicellular organisms is a central goal of developmental biology. We present an open-source computational framework for the segmentation and tracking of cell nuclei with high accuracy and speed. We demonstrate its (i) generality by reconstructing cell lineages in four-dimensional, terabyte-sized image data sets of fruit fly, zebrafish and mouse embryos acquired with three types of fluorescence microscopes, (ii) scalability by analyzing advanced stages of development with up to 20,000 cells per time point at 26,000 cells min(-1) on a single computer workstation and (iii) ease of use by adjusting only two parameters across all data sets and providing visualization and editing tools for efficient data curation. Our approach achieves on average 97.0% linkage accuracy across all species and imaging modalities. Using our system, we performed the first cell lineage reconstruction of early Drosophila melanogaster nervous system development, revealing neuroblast dynamics throughout an entire embryo.

  12. Msx2 alters the timing of retinal ganglion cells fate commitment and differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Shao-Yun, E-mail: jiangshaoyun@yahoo.com [School of Dentistry, Tianjin Medical University, 12 Qi Xiang Tai Street, Tianjin 300070 (China); Wang, Jian-Tao, E-mail: wangjiantao65@hotmail.com [Eye Center, Tianjin Medical University, 64 Tongan Road, Tianjin 300070 (China); Dohney Eye Institute, Keck School of Medicine, University of Southern California, 1355 San Pablo Street, DOH 314, Los Angeles, CA 90033 (United States)

    2010-05-14

    Timing of cell fate commitment determines distinct retinal cell types, which is believed to be controlled by a tightly coordinated regulatory program of proliferation, cell cycle exit and differentiation. Although homeobox protein Msx2 could induce apoptosis of optic vesicle, it is unclear whether Msx2 regulates differentiation and cell fate commitment of retinal progenitor cells (RPCs) to retinal ganglion cells (RGCs). In this study, we show that overexpression of Msx2 transiently suppressed the expression of Cyclin D1 and blocked cell proliferation. Meanwhile, overexpression of Msx2 delayed the expression of RGC-specific differentiation markers (Math5 and Brn3b), which showed that Msx2 could affect the timing of RGCs fate commitment and differentiation by delaying the timing of cell cycle exit of retinal progenitors. These results indicate Msx2 possesses dual regulatory functions in controlling cell cycle progression of retinal RPCs and timing of RGCs differentiation.

  13. Retinoic Acid Is Essential for Th1 Cell Lineage Stability and Prevents Transition to a Th17 Cell Program

    Science.gov (United States)

    Brown, Chrysothemis C.; Esterhazy, Daria; Sarde, Aurelien; London, Mariya; Pullabhatla, Venu; Osma-Garcia, Ines; al-Bader, Raya; Ortiz, Carla; Elgueta, Raul; Arno, Matthew; de Rinaldis, Emanuele; Mucida, Daniel; Lord, Graham M.; Noelle, Randolph J.

    2015-01-01

    Summary CD4+ T cells differentiate into phenotypically distinct T helper cells upon antigenic stimulation. Regulation of plasticity between these CD4+ T-cell lineages is critical for immune homeostasis and prevention of autoimmune disease. However, the factors that regulate lineage stability are largely unknown. Here we investigate a role for retinoic acid (RA) in the regulation of lineage stability using T helper 1 (Th1) cells, traditionally considered the most phenotypically stable Th subset. We found that RA, through its receptor RARα, sustains stable expression of Th1 lineage specifying genes, as well as repressing genes that instruct Th17-cell fate. RA signaling is essential for limiting Th1-cell conversion into Th17 effectors and for preventing pathogenic Th17 responses in vivo. Our study identifies RA-RARα as a key component of the regulatory network governing maintenance and plasticity of Th1-cell fate and defines an additional pathway for the development of Th17 cells. PMID:25769610

  14. Hematopoietic and mesenchymal stem cells: polymeric nanoparticle uptake and lineage differentiation

    Directory of Open Access Journals (Sweden)

    Ivonne Brüstle

    2015-02-01

    Full Text Available The combination of stem cell therapy and nanoparticles promises to enhance the effect of cellular therapies by using nanocarriers as drug delivery devices to guide the further differentiation or homing of stem cells. The impact of nanoparticles on primary cell types remains much more elusive as most groups study the nanoparticle–cell interaction in malignant cell lines. Here, we report on the influence of polymeric nanoparticles on human hematopoietic stem cells (hHSCs and mesenchymal stem cells (hMSCs. In this study we systematically investigated the influence of polymeric nanoparticles on the cell functionality and differentiation capacity of hHSCs and hMSCs to obtain a deeper knowledge of the interaction of stem cells and nanoparticles. As model systems of nanoparticles, two sets of either bioinert (polystyrene without carboxylic groups on the surface or biodegradable (PLLA without magnetite particles were analyzed. Flow cytometry and microscopy analysis showed high uptake rates and no toxicity for all four tested particles in hMSCs and hHSCs. During the differentiation process, the payload of particles per cell decreased. The PLLA–Fe particle showed a significant increase in the IL-8 release in hMSCs but not in hHSCs. We assume that this is due to an increase of free intracellular iron ions but obviously also depends on the cell type. For hHSCs and hMSCs, lineage differentiation into erythrocytes, granulocytes, and megakaryocytes or adipocytes, osteocytes and chondrocytes, was not influenced by the particles when analyzed with lineage specific cluster of differentiation markers. On the other hand qPCR analysis showed significant changes in the expression of some (but not all investigated lineage markers for both primary cell types.

  15. Integrin αv in the mechanical response of osteoblast lineage cells

    Energy Technology Data Exchange (ETDEWEB)

    Kaneko, Keiko [Department of Bone and Joint Disease, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511 (Japan); Ito, Masako [Medical Work-Life-Balance Center, Nagasaki University Hospital, Nagasaki 852-8501 (Japan); Naoe, Yoshinori [Department of Mechanism of Aging, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511 (Japan); Lacy-Hulbert, Adam [Department of Pediatrics, Massachusetts General Hospital, Boston, MA 02114 (United States); Ikeda, Kyoji, E-mail: kikeda@ncgg.go.jp [Department of Bone and Joint Disease, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511 (Japan)

    2014-05-02

    Highlights: • Deletion of integrin αv in osteoblast lineage results in an impaired SOST response to loading in vivo. • c-Src–p130Cas–JNK–YAP/TAZ is activated via integrin αv on osteoblasts in response to FSS. • Deletion of integrin αv in osteoblasts results in impaired responses to mechanical stimulation. • Integrin αv is a key component of the mechanosensing machinery in bone. - Abstract: Although osteoblast lineage cells, especially osteocytes, are thought to be a primary mechanosensory cell in bone, the identity of the mechano-receptor and downstream mechano-signaling pathways remain largely unknown. Here we show using osteoblastic cell model of mechanical stimulation with fluid shear stress that in the absence of integrin αv, phosphorylation of the Src substrate p130Cas and JNK was impaired, culminating in an inhibition of nuclear translocation of YAP/TAZ and subsequent transcriptional activation of target genes. Targeted deletion of the integrin αv in osteoblast lineage cells results in an attenuated response to mechanical loading in terms of Sost gene expression, indicative of a role for integrin αv in mechanoreception in vivo. Thus, integrin αv may be integral to a mechanosensing machinery in osteoblastic cells and involved in activation of a Src–JNK–YAP/TAZ pathway in response to mechanical stimulation.

  16. Integrin αv in the mechanical response of osteoblast lineage cells

    International Nuclear Information System (INIS)

    Kaneko, Keiko; Ito, Masako; Naoe, Yoshinori; Lacy-Hulbert, Adam; Ikeda, Kyoji

    2014-01-01

    Highlights: • Deletion of integrin αv in osteoblast lineage results in an impaired SOST response to loading in vivo. • c-Src–p130Cas–JNK–YAP/TAZ is activated via integrin αv on osteoblasts in response to FSS. • Deletion of integrin αv in osteoblasts results in impaired responses to mechanical stimulation. • Integrin αv is a key component of the mechanosensing machinery in bone. - Abstract: Although osteoblast lineage cells, especially osteocytes, are thought to be a primary mechanosensory cell in bone, the identity of the mechano-receptor and downstream mechano-signaling pathways remain largely unknown. Here we show using osteoblastic cell model of mechanical stimulation with fluid shear stress that in the absence of integrin αv, phosphorylation of the Src substrate p130Cas and JNK was impaired, culminating in an inhibition of nuclear translocation of YAP/TAZ and subsequent transcriptional activation of target genes. Targeted deletion of the integrin αv in osteoblast lineage cells results in an attenuated response to mechanical loading in terms of Sost gene expression, indicative of a role for integrin αv in mechanoreception in vivo. Thus, integrin αv may be integral to a mechanosensing machinery in osteoblastic cells and involved in activation of a Src–JNK–YAP/TAZ pathway in response to mechanical stimulation

  17. Cell lineage analysis demonstrates an endodermal origin of the distal urethra and perineum.

    Science.gov (United States)

    Seifert, Ashley W; Harfe, Brian D; Cohn, Martin J

    2008-06-01

    Congenital malformations of anorectal and genitourinary (collectively, anogenital) organs occur at a high frequency in humans, however the lineage of cells that gives rise to anogenital organs remains poorly understood. The penile urethra has been reported to develop from two cell populations, with the proximal urethra developing from endoderm and the distal urethra forming from an apical ectodermal invagination, however this has never been tested by direct analysis of cell lineage. During gut development, endodermal cells express Sonic hedgehog (Shh), which is required for normal patterning of digestive and genitourinary organs. We have taken advantage of the properties of Shh expression to genetically label and follow the fate of posterior gut endoderm during anogenital development. We report that the entire urethra, including the distal (glandar) region, is derived from endoderm. Cloacal endoderm also gives rise to the epithelial linings of the bladder, rectum and anterior region of the anus. Surprisingly, the lineage map also revealed an endodermal origin of the perineum, which is the first demonstration that endoderm differentiates into skin. In addition, we fate mapped genital tubercle ectoderm and show that it makes no detectable contribution to the urethra. In males, formation of the urethral tube involves septation of the urethral plate by continued growth of the urorectal septum. Analysis of cell lineage following disruption of androgen signaling revealed that the urethral plate of flutamide-treated males does not undergo this septation event. Instead, urethral plate cells persist to the ventral margin of the tubercle, mimicking the pattern seen in females. Based on these spatial and temporal fate maps, we present a new model for anogenital development and suggest that disruptions at specific developmental time points can account for the association between anorectal and genitourinary defects.

  18. Changes in glycosaminoglycan structure on differentiation of human embryonic stem cells towards mesoderm and endoderm lineages.

    Science.gov (United States)

    Gasimli, Leyla; Hickey, Anne Marie; Yang, Bo; Li, Guoyun; dela Rosa, Mitche; Nairn, Alison V; Kulik, Michael J; Dordick, Jonathan S; Moremen, Kelley W; Dalton, Stephen; Linhardt, Robert J

    2014-06-01

    Proteoglycans are found on the cell surface and in the extracellular matrix, and serve as prime sites for interaction with signaling molecules. Proteoglycans help regulate pathways that control stem cell fate, and therefore represent an excellent tool to manipulate these pathways. Despite their importance, there is a dearth of data linking glycosaminoglycan structure within proteoglycans with stem cell differentiation. Human embryonic stem cell line WA09 (H9) was differentiated into early mesoderm and endoderm lineages, and the glycosaminoglycanomic changes accompanying these transitions were studied using transcript analysis, immunoblotting, immunofluorescence and disaccharide analysis. Pluripotent H9 cell lumican had no glycosaminoglycan chains whereas in splanchnic mesoderm lumican was glycosaminoglycanated. H9 cells have primarily non-sulfated heparan sulfate chains. On differentiation towards splanchnic mesoderm and hepatic lineages N-sulfo group content increases. Differences in transcript expression of NDST1, HS6ST2 and HS6ST3, three heparan sulfate biosynthetic enzymes, within splanchnic mesoderm cells compared to H9 cells correlate to changes in glycosaminoglycan structure. Differentiation of embryonic stem cells markedly changes the proteoglycanome. The glycosaminoglycan biosynthetic pathway is complex and highly regulated, and therefore, understanding the details of this pathway should enable better control with the aim of directing stem cell differentiation. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Endogenous GABA controls oligodendrocyte lineage cell number, myelination, and CNS internode length.

    Science.gov (United States)

    Hamilton, Nicola B; Clarke, Laura E; Arancibia-Carcamo, I Lorena; Kougioumtzidou, Eleni; Matthey, Moritz; Káradóttir, Ragnhildur; Whiteley, Louise; Bergersen, Linda H; Richardson, William D; Attwell, David

    2017-02-01

    Adjusting the thickness and internodal length of the myelin sheath is a mechanism for tuning the conduction velocity of axons to match computational needs. Interactions between oligodendrocyte precursor cells (OPCs) and developing axons regulate the formation of myelin around axons. We now show, using organotypic cerebral cortex slices from mice expressing eGFP in Sox10-positive oligodendrocytes, that endogenously released GABA, acting on GABA A receptors, greatly reduces the number of oligodendrocyte lineage cells. The decrease in oligodendrocyte number correlates with a reduction in the amount of myelination but also an increase in internode length, a parameter previously thought to be set by the axon diameter or to be a property intrinsic to oligodendrocytes. Importantly, while TTX block of neuronal activity had no effect on oligodendrocyte lineage cell number when applied alone, it was able to completely abolish the effect of blocking GABA A receptors, suggesting that control of myelination by endogenous GABA may require a permissive factor to be released from axons. In contrast, block of AMPA/KA receptors had no effect on oligodendrocyte lineage cell number or myelination. These results imply that, during development, GABA can act as a local environmental cue to control myelination and thus influence the conduction velocity of action potentials within the CNS. GLIA 2017;65:309-321. © 2016 The Authors Glia Published by Wiley Periodicals, Inc.

  20. Epigallocatechin Gallate Inhibits Mouse Mesenchymal Stem Cell Differentiation to Adipogenic Lineage

    Directory of Open Access Journals (Sweden)

    Chani B

    2016-05-01

    Full Text Available Epigallocatechin gallate (EGCG is a major component of green tea polyphenols having a potent anti-oxidant potential. Besides inhibiting the growth of many cancer cell types and inducing proliferation and differentiation in keratinocytes, it has been shown to promote reduction of body fat. The fact that mesenchymal stem cells (MSCs have ability to self-renew and differentiate into the cells of mesodermal lineages, such as fat and bone, it is, thus, possible that EGCG may directly be involved in affecting fat metabolism through its effect on mesenchymal stem cells. Hence, with this aim, the present study was designed to determine the effect of EGCG on mouse mesenchymal stem cells, C3H10T1/2 cells differentiation into adipocytes. To understand this process, the cells were incubated with varying concentrations of EGCG (1 µM, 5 µM, 10 µM, 50 µM in the presence and /or absence of adipogenic medium for 9 days. The results demonstrated that, EGCG inhibited the cells proliferation, migration and also prevented their differentiation to adipogenic lineage. These effects were analyzed through the inhibition of wound healing activity, reduction in Oil red O stained cells, together with decrease in the expression of Adipisin gene following EGCG treatment. These observations thus demonstrated anti-adipogenic effect of EGCG with a possibility of its role in the therapeutic intervention of obesity.

  1. Notch signalling inhibits CD4 expression during initiation and differentiation of human T cell lineage.

    Directory of Open Access Journals (Sweden)

    Stephen M Carlin

    Full Text Available The Delta/Notch signal transduction pathway is central to T cell differentiation from haemopoietic stem cells (HSCs. Although T cell development is well characterized using expression of cell surface markers, the detailed mechanisms driving differentiation have not been established. This issue becomes central with observations that adult HSCs exhibit poor differentiation towards the T cell lineage relative to neonatal or embryonic precursors. This study investigates the contribution of Notch signalling and stromal support cells to differentiation of adult and Cord Blood (CB human HSCs, using the Notch signalling OP9Delta co-culture system. Co-cultured cells were assayed at weekly intervals during development for phenotype markers using flow cytometry. Cells were also assayed for mRNA expression at critical developmental stages. Expression of the central thymocyte marker CD4 was initiated independently of Notch signalling, while cells grown with Notch signalling had reduced expression of CD4 mRNA and protein. Interruption of Notch signalling in partially differentiated cells increased CD4 mRNA and protein expression, and promoted differentiation to CD4(+ CD8(+ T cells. We identified a set of genes related to T cell development that were initiated by Notch signalling, and also a set of genes subsequently altered by Notch signal interruption. These results demonstrate that while Notch signalling is essential for establishment of the T cell lineage, at later stages of differentiation, its removal late in differentiation promotes more efficient DP cell generation. Notch signalling adds to signals provided by stromal cells to allow HSCs to differentiate to T cells via initiation of transcription factors such as HES1, GATA3 and TCF7. We also identify gene expression profile differences that may account for low generation of T cells from adult HSCs.

  2. Lineage-Determining Transcription Factor TCF-1 Initiates the Epigenetic Identity of T Cells.

    Science.gov (United States)

    Johnson, John L; Georgakilas, Georgios; Petrovic, Jelena; Kurachi, Makoto; Cai, Stanley; Harly, Christelle; Pear, Warren S; Bhandoola, Avinash; Wherry, E John; Vahedi, Golnaz

    2018-02-20

    T cell development is orchestrated by transcription factors that regulate the expression of genes initially buried within inaccessible chromatin, but the transcription factors that establish the regulatory landscape of the T cell lineage remain unknown. Profiling chromatin accessibility at eight stages of T cell development revealed the selective enrichment of TCF-1 at genomic regions that became accessible at the earliest stages of development. TCF-1 was further required for the accessibility of these regulatory elements and at the single-cell level, it dictated a coordinate opening of chromatin in T cells. TCF-1 expression in fibroblasts generated de novo chromatin accessibility even at chromatin regions with repressive marks, inducing the expression of T cell-restricted genes. These results indicate that a mechanism by which TCF-1 controls T cell fate is through its widespread ability to target silent chromatin and establish the epigenetic identity of T cells. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Intestinal Commitment and Maturation of Human Pluripotent Stem Cells Is Independent of Exogenous FGF4 and R-spondin1.

    Directory of Open Access Journals (Sweden)

    Kaisa Tamminen

    Full Text Available Wnt/beta-catenin signaling plays a central role in guiding the differentiation of the posterior parts of the primitive gut tube into intestinal structures in vivo and some studies suggest that FGF4 is another crucial factor for intestinal development. The aim of this study was to define the effects of Wnt and FGF4 on intestinal commitment in vitro by establishing conditions for differentiation of human pluripotent stem cells (hPSC into posterior endoderm (hindgut and further to self-renewing intestinal-like organoids. The most prominent induction of the well-established intestinal marker gene CDX2 was achieved when hPSC-derived definitive endoderm cells were treated with Wnt agonist molecule CHIR99021 during differentiation to hindgut. FGF4 was found to be dispensable during intestinal commitment, but it had an early role in repressing development towards the hepatic lineage. When hindgut stage cells were further cultured in 3D, they formed self-renewing organoid structures containing all major intestinal cell types even without exogenous R-spondin1 (RSPO1, a crucial factor for the culture of epithelial organoids derived from adult intestine. This may be explained by the presence of a mesenchymal compartment in the hPSC-derived organoids. Addition of WNT3A increased the expression of the Paneth cell marker Lysozyme in hPSC-derived organoid cultures, whereas FGF4 inhibited both the formation and maturation of intestinal-like organoids. Similar hindgut and organoid cultures were established from human induced pluripotent stem cells, implying that this approach can be used to create patient-specific intestinal tissue models for disease modeling in vitro.

  4. Telomerase Protects Werner Syndrome Lineage-Specific Stem Cells from Premature Aging

    Directory of Open Access Journals (Sweden)

    Hoi-Hung Cheung

    2014-04-01

    Full Text Available Werner syndrome (WS patients exhibit premature aging predominantly in mesenchyme-derived tissues, but not in neural lineages, a consequence of telomere dysfunction and accelerated senescence. The cause of this lineage-specific aging remains unknown. Here, we document that reprogramming of WS fibroblasts to pluripotency elongated telomere length and prevented telomere dysfunction. To obtain mechanistic insight into the origin of tissue-specific aging, we differentiated iPSCs to mesenchymal stem cells (MSCs and neural stem/progenitor cells (NPCs. We observed recurrence of premature senescence associated with accelerated telomere attrition and defective synthesis of the lagging strand telomeres in MSCs, but not in NPCs. We postulate this “aging” discrepancy is regulated by telomerase. Expression of hTERT or p53 knockdown ameliorated the accelerated aging phenotypein MSC, whereas inhibition of telomerase sensitized NPCs to DNA damage. Our findings unveil a role for telomerase in the protection of accelerated aging in a specific lineage of stem cells.

  5. Efficient Commitment to Functional CD34+ Progenitor Cells from Human Bone Marrow Mesenchymal Stem-Cell-Derived Induced Pluripotent Stem Cells

    Science.gov (United States)

    Xu, Yulin; Liu, Lizhen; Zhang, Lifei; Fu, Shan; Hu, Yongxian; Wang, Yingjia; Fu, Huarui; Wu, Kangni; Xiao, Haowen; Liu, Senquan; Yu, Xiaohong; Zheng, Weiyan; Feng, Bo; Huang, He

    2012-01-01

    The efficient commitment of a specialized cell type from induced pluripotent stem cells (iPSCs) without contamination from unknown substances is crucial to their use in clinical applications. Here, we propose that CD34+ progenitor cells, which retain hematopoietic and endothelial cell potential, could be efficiently obtained from iPSCs derived from human bone marrow mesenchymal stem cells (hBMMSC-iPSCs) with defined factors. By treatment with a cocktail containing mesodermal, hematopoietic, and endothelial inducers (BMP4, SCF, and VEGF, respectively) for 5 days, hBMMSC-iPSCs expressed the mesodermal transcription factors Brachyury and GATA-2 at higher levels than untreated groups (P<0.05). After culturing with another hematopoietic and endothelial inducer cocktail, including SCF, Flt3L, VEGF and IL-3, for an additional 7–9 days, CD34+ progenitor cells, which were undetectable in the initial iPSC cultures, reached nearly 20% of the total culture. This was greater than the relative number of progenitor cells produced from human-skin-fibroblast-derived iPSCs (hFib-iPSCs) or from the spontaneous differentiation groups (P<0.05), as assessed by flow cytometry analysis. These induced cells expressed hematopoietic transcription factors TAL-1 and SCL. They developed into various hematopoietic colonies when exposed to semisolid media with hematopoietic cytokines such as EPO and G-CSF. Hematopoietic cell lineages were identified by phenotype analysis with Wright-Giemsa staining. The endothelial potential of the cells was also verified by the confirmation of the formation of vascular tube-like structures and the expression of endothelial-specific markers CD31 and VE-CADHERIN. Efficient induction of CD34+ progenitor cells, which retain hematopoietic and endothelial cell potential with defined factors, provides an opportunity to obtain patient-specific cells for iPSC therapy and a useful model for the study of the mechanisms of hematopoiesis and drug screening. PMID:22496789

  6. Cell cycle commitment in budding yeast emerges from the cooperation of multiple bistable switches

    Science.gov (United States)

    Zhang, Tongli; Schmierer, Bernhard; Novák, Béla

    2011-01-01

    The start-transition (START) in the G1 phase marks the point in the cell cycle at which a yeast cell initiates a new round of cell division. Once made, this decision is irreversible and the cell is committed to progressing through the entire cell cycle, irrespective of arrest signals such as pheromone. How commitment emerges from the underlying molecular interaction network is poorly understood. Here, we perform a dynamical systems analysis of an established cell cycle model, which has never been analysed from a commitment perspective. We show that the irreversibility of the START transition and subsequent commitment can be consistently explained in terms of the interplay of multiple bistable molecular switches. By applying an existing mathematical model to a novel problem and by expanding the model in a self-consistent manner, we achieve several goals: we bring together a large number of experimental findings into a coherent theoretical framework; we increase the scope and the applicability of the original model; we give a systems level explanation of how the START transition and the cell cycle commitment arise from the dynamical features of the underlying molecular interaction network; and we make clear, experimentally testable predictions. PMID:22645649

  7. Self-organization is a dynamic and lineage-intrinsic property of mammary epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Chanson, L. [Ecole Polytechnique Federale de Lausanne (Switzerland). Inst. of Bioengineering; Brownfield, D. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Life Sciences Div.; Univ. of California, Berkeley, CA (United States). Dept. of Bioengineering; Garbe, J. C. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Life Sciences Div.; Kuhn, I. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Life Sciences Div.; Stampfer, M. R. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Life Sciences Div.; Bissell, M. J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Life Sciences Div.; LaBarge, M. A. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Life Sciences Div.

    2011-02-07

    Loss of organization is a principle feature of cancers; therefore it is important to understand how normal adult multilineage tissues, such as bilayered secretory epithelia, establish and maintain their architectures. The self-organization process that drives heterogeneous mixtures of cells to form organized tissues is well studied in embryology and with mammalian cell lines that were abnormal or engineered. Here we used a micropatterning approach that confined cells to a cylindrical geometry combined with an algorithm to quantify changes of cellular distribution over time to measure the ability of different cell types to self-organize relative to each other. Using normal human mammary epithelial cells enriched into pools of the two principal lineages, luminal and myoepithelial cells, we demonstrated that bilayered organization in mammary epithelium was driven mainly by lineage-specific differential E-cadherin expression, but that P-cadherin contributed specifically to organization of the myoepithelial layer. Disruption of the actomyosin network or of adherens junction proteins resulted in either prevention of bilayer formation or loss of preformed bilayers, consistent with continual sampling of the local microenvironment by cadherins. Together these data show that self-organization is an innate and reversible property of communities of normal adult human mammary epithelial cells.

  8. Mouse model of chromosome mosaicism reveals lineage-specific depletion of aneuploid cells and normal developmental potential.

    Science.gov (United States)

    Bolton, Helen; Graham, Sarah J L; Van der Aa, Niels; Kumar, Parveen; Theunis, Koen; Fernandez Gallardo, Elia; Voet, Thierry; Zernicka-Goetz, Magdalena

    2016-03-29

    Most human pre-implantation embryos are mosaics of euploid and aneuploid cells. To determine the fate of aneuploid cells and the developmental potential of mosaic embryos, here we generate a mouse model of chromosome mosaicism. By treating embryos with a spindle assembly checkpoint inhibitor during the four- to eight-cell division, we efficiently generate aneuploid cells, resulting in embryo death during peri-implantation development. Live-embryo imaging and single-cell tracking in chimeric embryos, containing aneuploid and euploid cells, reveal that the fate of aneuploid cells depends on lineage: aneuploid cells in the fetal lineage are eliminated by apoptosis, whereas those in the placental lineage show severe proliferative defects. Overall, the proportion of aneuploid cells is progressively depleted from the blastocyst stage onwards. Finally, we show that mosaic embryos have full developmental potential, provided they contain sufficient euploid cells, a finding of significance for the assessment of embryo vitality in the clinic.

  9. Mouse model of chromosome mosaicism reveals lineage-specific depletion of aneuploid cells and normal developmental potential

    Science.gov (United States)

    Bolton, Helen; Graham, Sarah J. L.; Van der Aa, Niels; Kumar, Parveen; Theunis, Koen; Fernandez Gallardo, Elia; Voet, Thierry; Zernicka-Goetz, Magdalena

    2016-01-01

    Most human pre-implantation embryos are mosaics of euploid and aneuploid cells. To determine the fate of aneuploid cells and the developmental potential of mosaic embryos, here we generate a mouse model of chromosome mosaicism. By treating embryos with a spindle assembly checkpoint inhibitor during the four- to eight-cell division, we efficiently generate aneuploid cells, resulting in embryo death during peri-implantation development. Live-embryo imaging and single-cell tracking in chimeric embryos, containing aneuploid and euploid cells, reveal that the fate of aneuploid cells depends on lineage: aneuploid cells in the fetal lineage are eliminated by apoptosis, whereas those in the placental lineage show severe proliferative defects. Overall, the proportion of aneuploid cells is progressively depleted from the blastocyst stage onwards. Finally, we show that mosaic embryos have full developmental potential, provided they contain sufficient euploid cells, a finding of significance for the assessment of embryo vitality in the clinic. PMID:27021558

  10. Single-Cell Transcriptomic Analysis Defines Heterogeneity and Transcriptional Dynamics in the Adult Neural Stem Cell Lineage

    Directory of Open Access Journals (Sweden)

    Ben W. Dulken

    2017-01-01

    Full Text Available Neural stem cells (NSCs in the adult mammalian brain serve as a reservoir for the generation of new neurons, oligodendrocytes, and astrocytes. Here, we use single-cell RNA sequencing to characterize adult NSC populations and examine the molecular identities and heterogeneity of in vivo NSC populations. We find that cells in the NSC lineage exist on a continuum through the processes of activation and differentiation. Interestingly, rare intermediate states with distinct molecular profiles can be identified and experimentally validated, and our analysis identifies putative surface markers and key intracellular regulators for these subpopulations of NSCs. Finally, using the power of single-cell profiling, we conduct a meta-analysis to compare in vivo NSCs and in vitro cultures, distinct fluorescence-activated cell sorting strategies, and different neurogenic niches. These data provide a resource for the field and contribute to an integrative understanding of the adult NSC lineage.

  11. Efficient endoderm induction from human pluripotent stem cells by logically directing signals controlling lineage bifurcations.

    Science.gov (United States)

    Loh, Kyle M; Ang, Lay Teng; Zhang, Jingyao; Kumar, Vibhor; Ang, Jasmin; Auyeong, Jun Qiang; Lee, Kian Leong; Choo, Siew Hua; Lim, Christina Y Y; Nichane, Massimo; Tan, Junru; Noghabi, Monireh Soroush; Azzola, Lisa; Ng, Elizabeth S; Durruthy-Durruthy, Jens; Sebastiano, Vittorio; Poellinger, Lorenz; Elefanty, Andrew G; Stanley, Edouard G; Chen, Qingfeng; Prabhakar, Shyam; Weissman, Irving L; Lim, Bing

    2014-02-06

    Human pluripotent stem cell (hPSC) differentiation typically yields heterogeneous populations. Knowledge of signals controlling embryonic lineage bifurcations could efficiently yield desired cell types through exclusion of alternate fates. Therefore, we revisited signals driving induction and anterior-posterior patterning of definitive endoderm to generate a coherent roadmap for endoderm differentiation. With striking temporal dynamics, BMP and Wnt initially specified anterior primitive streak (progenitor to endoderm), yet, 24 hr later, suppressed endoderm and induced mesoderm. At lineage bifurcations, cross-repressive signals separated mutually exclusive fates; TGF-β and BMP/MAPK respectively induced pancreas versus liver from endoderm by suppressing the alternate lineage. We systematically blockaded alternate fates throughout multiple consecutive bifurcations, thereby efficiently differentiating multiple hPSC lines exclusively into endoderm and its derivatives. Comprehensive transcriptional and chromatin mapping of highly pure endodermal populations revealed that endodermal enhancers existed in a surprising diversity of "pre-enhancer" states before activation, reflecting the establishment of a permissive chromatin landscape as a prelude to differentiation. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Does cell lineage in the developing cerebral cortex contribute to its columnar organization?

    Directory of Open Access Journals (Sweden)

    Marcos R Costa

    2010-06-01

    Full Text Available Since the pioneer work of Lorente de Nó, Ramón y Cajal, Brodmann, Mountcastle, Hubel and Wiesel and others, the cerebral cortex has been seen as a jigsaw of anatomic and functional modules involved in the processing of different sets of information. In fact, a columnar distribution of neurons displaying similar functional properties throughout the cerebral cortex has been observed by many researchers. Although it has been suggested that much of the anatomical substrate for such organization would be already specified at early developmental stages, before activity-dependent mechanisms could take place, it is still unclear whether gene expression in the ventricular zone could play a role in the development of discrete functional units, such as minicolumns or columns. Cell lineage experiments using replication-incompetent retroviral vectors have shown that the progeny of a single neuroepithelial/radial glial cell in the dorsal telencephalon is organized into discrete radial clusters of sibling excitatory neurons, which have a higher propensity for developing chemical synapses with each other rather than with neighbouring non-siblings. Here, we will discuss the possibility that the cell lineage of single neuroepithelial/radial glia cells could contribute for the columnar organization of the neocortex by generating radial columns of sibling, interconnected neurons. Borrowing some concepts from the studies on cell-cell recognition and transcription factor networks, we will also touch upon the potential molecular mechanisms involved in the establishment of sibling-neuron circuits.

  13. Extensive Nuclear Reprogramming Underlies Lineage Conversion into Functional Trophoblast Stem-like Cells.

    Science.gov (United States)

    Benchetrit, Hana; Herman, Shay; van Wietmarschen, Niek; Wu, Tao; Makedonski, Kirill; Maoz, Noam; Yom Tov, Nataly; Stave, Danielle; Lasry, Rachel; Zayat, Valery; Xiao, Andrew; Lansdorp, Peter M; Sebban, Shulamit; Buganim, Yosef

    2015-11-05

    Induced pluripotent stem cells (iPSCs) undergo extensive nuclear reprogramming and are generally indistinguishable from embryonic stem cells (ESCs) in their functional capacity and transcriptome and DNA methylation profiles. However, direct conversion of cells from one lineage to another often yields incompletely reprogrammed, functionally compromised cells, raising the question of whether pluripotency is required to achieve a high degree of nuclear reprogramming. Here, we show that transient expression of Gata3, Eomes, and Tfap2c in mouse fibroblasts induces stable, transgene-independent trophoblast stem-like cells (iTSCs). iTSCs possess transcriptional profiles highly similar to blastocyst-derived TSCs, with comparable methylation and H3K27ac patterns and genome-wide H2A.X deposition. iTSCs generate trophoectodermal lineages upon differentiation, form hemorrhagic lesions, and contribute to developing placentas in chimera assays, indicating a high degree of nuclear reprogramming, with no evidence of passage through a transient pluripotent state. Together, these data demonstrate that extensive nuclear reprogramming can be achieved independently of pluripotency. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Does Cell Lineage in the Developing Cerebral Cortex Contribute to its Columnar Organization?

    Science.gov (United States)

    Costa, Marcos R.; Hedin-Pereira, Cecilia

    2010-01-01

    Since the pioneer work of Lorente de Nó, Ramón y Cajal, Brodmann, Mountcastle, Hubel and Wiesel and others, the cerebral cortex has been seen as a jigsaw of anatomic and functional modules involved in the processing of different sets of information. In fact, a columnar distribution of neurons displaying similar functional properties throughout the cerebral cortex has been observed by many researchers. Although it has been suggested that much of the anatomical substrate for such organization would be already specified at early developmental stages, before activity-dependent mechanisms could take place, it is still unclear whether gene expression in the ventricular zone (VZ) could play a role in the development of discrete functional units, such as minicolumns or columns. Cell lineage experiments using replication-incompetent retroviral vectors have shown that the progeny of a single neuroepithelial/radial glial cell in the dorsal telencephalon is organized into discrete radial clusters of sibling excitatory neurons, which have a higher propensity for developing chemical synapses with each other rather than with neighboring non-siblings. Here, we will discuss the possibility that the cell lineage of single neuroepithelial/radial glia cells could contribute for the columnar organization of the neocortex by generating radial columns of sibling, interconnected neurons. Borrowing some concepts from the studies on cell–cell recognition and transcription factor networks, we will also touch upon the potential molecular mechanisms involved in the establishment of sibling-neuron circuits. PMID:20676384

  15. Expression of 5'-nucleotidase (CD73) related to other differentiation antigens in leukemias of B-cell lineage

    NARCIS (Netherlands)

    Pieters, R.; Thompson, L. F.; Broekema, G. J.; Huismans, D. R.; Peters, G. J.; Pals, S. T.; Horst, E.; Hählen, K.; Veerman, A. J.

    1991-01-01

    Ecto-5'nucleotidase (5'NT; CD73) expression was studied with a monoclonal antibody (7G2) and a radiochemical assay and compared with the expression of other antigens in B-cell-lineage leukemias on cells from 100 leukemic patients and two cell lines. A B-cell origin was confirmed by the expression of

  16. Reduced reactivation from dormancy but maintained lineage choice of human mesenchymal stem cells with donor age.

    Directory of Open Access Journals (Sweden)

    Verena Dexheimer

    Full Text Available UNLABELLED: Mesenchymal stem cells (MSC are promising for cell-based regeneration therapies but up to date it is still controversial whether their function is maintained throughout ageing. Aim of this study was to address whether frequency, activation in vitro, replicative function, and in vitro lineage choice of MSC is maintained throughout ageing to answer the question whether MSC-based regeneration strategies should be restricted to younger individuals. MSC from bone marrow aspirates of 28 donors (5-80 years were characterized regarding colony-forming unit-fibroblast (CFU-F numbers, single cell cloning efficiency (SSCE, osteogenic, adipogenic and chondrogenic differentiation capacity in vitro. Alkaline phosphatase (ALP activity, mineralization, Oil Red O content, proteoglycan- and collagen type II deposition were quantified. While CFU-F frequency was maintained, SSCE and early proliferation rate decreased significantly with advanced donor age. MSC with higher proliferation rate before start of induction showed stronger osteogenic, adipogenic and chondrogenic differentiation. MSC with high osteogenic capacity underwent better chondrogenesis and showed a trend to better adipogenesis. Lineage choice was, however, unaltered with age. CONCLUSION: Ageing influenced activation from dormancy and replicative function of MSC in a way that it may be more demanding to mobilize MSC to fast cell growth at advanced age. Since fast proliferation came along with high multilineage capacity, the proliferation status of expanded MSC rather than donor age may provide an argument to restrict MSC-based therapies to certain individuals.

  17. Peri-prosthetic tissue cells show osteogenic capacity to differentiate into the osteoblastic lineage.

    Science.gov (United States)

    Schoeman, Monique A E; Oostlander, Angela E; Rooij, Karien Ede; Valstar, Edward R; Nelissen, Rob G H H

    2017-08-01

    During the process of aseptic loosening of prostheses, particulate wear debris induces a continuous inflammatory-like response resulting in the formation of a layer of fibrous peri-prosthetic tissue at the bone-prosthesis interface. The current treatment for loosening is revision surgery which is associated with a high-morbidity rate, especially in old patients. Therefore, less invasive alternatives are necessary. One approach could be to re-establish osseointegration of the prosthesis by inducing osteoblast differentiation in the peri-prosthetic tissue. Therefore, the aim of this study was to investigate the capacity of peri-prosthetic tissue cells to differentiate into the osteoblast lineage. Cells isolated from peri-prosthetic tissue samples (n = 22)-obtained during revision surgeries-were cultured under normal and several osteogenic culture conditions. Osteogenic differentiation was assessed by measurement of Alkaline Phosphatse (ALP), mineralization of the matrix and expression of several osteogenic genes. Cells cultured in osteogenic medium showed a significant increase in ALP staining (p = 0.024), mineralization of the matrix (p prosthetic tissue cells, cultured under osteogenic conditions, can produce alkaline phosphatase and mineralized matrix, and therefore show characteristics of differentiation into the osteoblastic lineage. © 2016 The Authors. Journal of Orthopaedic Research published by Wiley Periodicals, Inc. on behalf of Orthopaedic Research Society. J Orthop Res 35:1732-1742, 2017. © 2016 The Authors. Journal of Orthopaedic Research published by Wiley Periodicals, Inc. on behalf of Orthopaedic Research Society.

  18. Changes in glycosphingolipid composition during differentiation of human embryonic stem cells to ectodermal or endodermal lineages.

    Science.gov (United States)

    Liang, Yuh-Jin; Yang, Bei-Chia; Chen, Jin-Mei; Lin, Yu-Hsing; Huang, Chia-Lin; Cheng, Yuan-Yuan; Hsu, Chi-Yen; Khoo, Kay-Hooi; Shen, Chia-Ning; Yu, John

    2011-12-01

    Glycosphingolipids (GSLs) are ubiquitous components of cell membranes that can act as mediators of cell adhesion and signal transduction and can possibly be used as cell type-specific markers. Our previous study indicated that there was a striking switch in the core structures of GSLs during differentiation of human embryonic stem cells (hESCs) into embryoid body (EB), suggesting a close association of GSLs with cell differentiation. In this study, to further clarify if alterations in GSL patterns are correlated with lineage-specific differentiation of hESCs, we analyzed changes in GSLs as hESCs were differentiated into neural progenitors or endodermal cells by matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) and tandem mass spectrometry (MS/MS) analyses. During hESC differentiation into neural progenitor cells, we found that the core structures of GSLs switched from globo- and lacto- to mostly ganglio-series dominated by GD3. On the other hand, when hESCs were differentiated into endodermal cells, patterns of GSLs totally differed from those observed in EB outgrowth and neural progenitors. The most prominent GSL identified by the MALDI-MS and MS/MS analysis was Gb(4) Ceramide, with no appreciable amount of stage-specific embryonic antigens 3 or 4, or GD3, in endodermal cells. These changes in GSL profiling were accompanied by alterations in the biosynthetic pathways of expressions of key glycosyltransferases. Our findings suggest that changes in GSLs are closely associated with lineage specificity and differentiation of hESCs. Copyright © 2011 AlphaMed Press.

  19. Blue Light Delays Commitment to Cell Division in Chlamydomonas Reinhardtii

    Czech Academy of Sciences Publication Activity Database

    Oldenhof, H.; Zachleder, Vilém; van den Ende, H.

    2004-01-01

    Roč. 6, - (2004), s. 689-695 ISSN 1435-8603 Institutional research plan: CEZ:AV0Z5020903 Keywords : Blue light * Cell cycle * Cell volume Subject RIV: EE - Microbiology, Virology Impact factor: 1.582, year: 2004

  20. iNKT cells require TSC1 for terminal maturation and effector lineage fate decisions

    OpenAIRE

    Wu, Jinhong; Yang, Jialong; Yang, Kai; Wang, Hongxia; Gorentla, Balachandra; Shin, Jinwook; Qiu, Yurong; Que, Loretta G.; Foster, W. Michael; Xia, Zhenwei; Chi, Hongbo; Zhong, Xiao-Ping

    2014-01-01

    Terminal maturation of invariant NKT (iNKT) cells from stage 2 (CD44+NK1.1–) to stage 3 (CD44+NK1.1+) is accompanied by a functional acquisition of a predominant IFN-γ–producing (iNKT-1) phenotype; however, some cells develop into IL-17–producing iNKT (iNKT-17) cells. iNKT-17 cells are rare and restricted to a CD44+NK1.1– lineage. It is unclear how iNKT terminal maturation is regulated and what factors mediate the predominance of iNKT-1 compared with iNKT-17. The tumor suppressor tuberous scl...

  1. Bmi1 overexpression in the cerebellar granule cell lineage of mice affects cell proliferation and survival without initiating medulloblastoma formation

    Directory of Open Access Journals (Sweden)

    Hourinaz Behesti

    2013-01-01

    BMI1 is a potent inducer of neural stem cell self-renewal and neural progenitor cell proliferation during development and in adult tissue homeostasis. It is overexpressed in numerous human cancers – including medulloblastomas, in which its functional role is unclear. We generated transgenic mouse lines with targeted overexpression of Bmi1 in the cerebellar granule cell lineage, a cell type that has been shown to act as a cell of origin for medulloblastomas. Overexpression of Bmi1 in granule cell progenitors (GCPs led to a decrease in cerebellar size due to decreased GCP proliferation and repression of the expression of cyclin genes, whereas Bmi1 overexpression in postmitotic granule cells improved cell survival in response to stress by altering the expression of genes in the mitochondrial cell death pathway and of Myc and Lef-1. Although no medulloblastomas developed in ageing cohorts of transgenic mice, crosses with Trp53−/− mice resulted in a low incidence of medulloblastoma formation. Furthermore, analysis of a large collection of primary human medulloblastomas revealed that tumours with a BMI1high TP53low molecular profile are significantly enriched in Group 4 human medulloblastomas. Our data suggest that different levels and timing of Bmi1 overexpression yield distinct cellular outcomes within the same cellular lineage. Importantly, Bmi1 overexpression at the GCP stage does not induce tumour formation, suggesting that BMI1 overexpression in GCP-derived human medulloblastomas probably occurs during later stages of oncogenesis and might serve to enhance tumour cell survival.

  2. Bmi1 regulates stem cells and proliferation and differentiation of committed cells in mammary epithelium.

    Science.gov (United States)

    Pietersen, Alexandra M; Evers, Bastiaan; Prasad, Asheeta A; Tanger, Ellen; Cornelissen-Steijger, Paulien; Jonkers, Jos; van Lohuizen, Maarten

    2008-07-22

    PolycombGroup (PcG) proteins are epigenetic silencers involved in maintaining cellular identity, and their deregulation can result in cancer [1]. Mice without the PcG gene Bmi1 are runted and suffer from progressive loss of hematopoietic and neural stem cells [2-4]. Here, we assess the effects of Bmi1 on stem cells and differentiation of an epithelial tissue in vivo. We chose the mammary gland because it allows limiting dilution transplantations [5, 6] and because Bmi1 is overexpressed in breast cancer [7, 8]. Our analyses show that Bmi1 is expressed in all cells of the mouse mammary gland and is especially high in luminal cells. Loss of Bmi1 results in a severe mammary-epithelium growth defect, which can be rescued by codeletion of the Ink4a/Arf locus or pregnancy. Even though mammary stem cells are present in the absence of Bmi1, their activity is reduced, and this is only partially due to Ink4a/Arf expression. Interestingly, loss of Bmi1 causes premature lobuloalveolar differentiation, whereas overexpression of Bmi1 inhibits lobuloalveolar differentiation induced by pregnancy hormones. Because Bmi1 affects not only mammary stem cells but also more committed cells, our data warrant a more detailed analysis of the different roles of Bmi1 in breast-cancer etiology.

  3. Lineage relationship of prostate cancer cell types based on gene expression

    Directory of Open Access Journals (Sweden)

    Ware Carol B

    2011-05-01

    Full Text Available Abstract Background Prostate tumor heterogeneity is a major factor in disease management. Heterogeneity could be due to multiple cancer cell types with distinct gene expression. Of clinical importance is the so-called cancer stem cell type. Cell type-specific transcriptomes are used to examine lineage relationship among cancer cell types and their expression similarity to normal cell types including stem/progenitor cells. Methods Transcriptomes were determined by Affymetrix DNA array analysis for the following cell types. Putative prostate progenitor cell populations were characterized and isolated by expression of the membrane transporter ABCG2. Stem cells were represented by embryonic stem and embryonal carcinoma cells. The cancer cell types were Gleason pattern 3 (glandular histomorphology and pattern 4 (aglandular sorted from primary tumors, cultured prostate cancer cell lines originally established from metastatic lesions, xenografts LuCaP 35 (adenocarcinoma phenotype and LuCaP 49 (neuroendocrine/small cell carcinoma grown in mice. No detectable gene expression differences were detected among serial passages of the LuCaP xenografts. Results Based on transcriptomes, the different cancer cell types could be clustered into a luminal-like grouping and a non-luminal-like (also not basal-like grouping. The non-luminal-like types showed expression more similar to that of stem/progenitor cells than the luminal-like types. However, none showed expression of stem cell genes known to maintain stemness. Conclusions Non-luminal-like types are all representatives of aggressive disease, and this could be attributed to the similarity in overall gene expression to stem and progenitor cell types.

  4. Traumatic brain injury reveals novel cell lineage relationships within the subventricular zone

    Directory of Open Access Journals (Sweden)

    Gretchen M. Thomsen

    2014-07-01

    Full Text Available The acute response of the rodent subventricular zone (SVZ to traumatic brain injury (TBI involves a physical expansion through increased cell proliferation. However, the cellular underpinnings of these changes are not well understood. Our analyses have revealed that there are two distinct transit-amplifying cell populations that respond in opposite ways to injury. Mash1+ transit-amplifying cells are the primary SVZ cell type that is stimulated to divide following TBI. In contrast, the EGFR+ population, which has been considered to be a functionally equivalent progenitor population to Mash1+ cells in the uninjured brain, becomes significantly less proliferative after injury. Although normally quiescent GFAP+ stem cells are stimulated to divide in SVZ ablation models, we found that the GFAP+ stem cells do not divide more after TBI. We found, instead, that TBI results in increased numbers of GFAP+/EGFR+ stem cells via non-proliferative means—potentially through the dedifferentiation of progenitor cells. EGFR+ progenitors from injured brains only were competent to revert to a stem cell state following brief exposure to growth factors. Thus, our results demonstrate previously unknown changes in lineage relationships that differ from conventional models and likely reflect an adaptive response of the SVZ to maintain endogenous brain repair after TBI.

  5. Body composition changes and inhibition of fat development in vivo implicates androgen in regulation of stem cell lineage allocation

    Science.gov (United States)

    Semirale, Anthony A.; Zhang, Xiaowei; Wiren, Kristine M.

    2011-01-01

    Androgens regulate body composition in youth and declining testosterone that occurs with aging is associated with muscle wasting, increased fat mass and osteopenia. Transgenic mice with targeted androgen receptor (AR) overexpression in mesenchymal stem cells (MSC) were generated to explore the role of androgen signaling in the regulation of body composition. Transgenic males, but not females, were shorter and have reduced body weight and visceral fat accumulation. Dual energy x-ray absorptiometry (DXA) revealed significant reductions in fat mass with a reciprocal increase in lean mass, yet no difference in food consumption or locomotor activity was observed. Adipose tissue weight was normal in brown fat but reduced in both gonadal and perirenal depots, and reduced hyperplasia was observed with smaller adipocyte size in visceral and subcutaneous white adipose tissue. Although serum leptin, adiponectin, triglyceride, and insulin levels were no different between the genotypes, intraperitoneal glucose tolerance testing showed improved glucose clearance in transgenic males. High levels of the AR transgene are detected in MSCs but not in mature fat tissue. Reduced fibroblast colony forming units indicate fewer progenitor cells resident in the marrow in vivo. Precocious expression of GLUT4, PPARγ and C/EBPα was observed in proliferating precursor cultures from transgenic mice compared to controls. In more mature cultures, there was little difference between the genotypes. We propose a mechanism where enhanced androgen sensitivity can alter lineage commitment in vivo to reduce progenitor number and fat development, while increasing the expression of key factors to promote smaller adipocytes with improved glucose clearance. PMID:21381083

  6. A role for mixed lineage kinases in granule cell apoptosis induced by cytoskeletal disruption

    DEFF Research Database (Denmark)

    Müller, Georg Johannes; Geist, Marie Aavang; Veng, Lone Merete

    2006-01-01

    Microtubule disruption by colchicine induces apoptosis in selected neuronal populations. However, little is known about the upstream death signalling events mediating the neurotoxicity. We investigated first whether colchicine-induced granule cell apoptosis activates the c-Jun N-terminal kinase...... (JNK) pathway. Cultured murine cerebellar granule cells were exposed to 1 microm colchicine for 24 h. Activation of the JNK pathway was detected by western blotting as well as immunocytochemistry using antibodies against phospho-c-Jun (p-c-Jun). Next, adult male rats were injected...... intracerebroventricularly with colchicine (10 microg), and JNK pathway activation in dentate granule cells (DGCs) was detected by antibodies against p-c-Jun. The second part of the study tested the involvement of mixed lineage kinases (MLK) as upstream activators of the JNK pathway in colchicine toxicity, using CEP-1347...

  7. Clonal reversal of ageing-associated stem cell lineage bias via a pluripotent intermediate

    DEFF Research Database (Denmark)

    Wahlestedt, Martin; Erlandsson, Eva; Kristiansen, Trine

    2017-01-01

    Ageing associates with significant alterations in somatic/adult stem cells and therapies to counteract these might have profound benefits for health. In the blood, haematopoietic stem cell (HSC) ageing is linked to several functional shortcomings. However, besides the recent realization...... with the generation of induced pluripotent stem (iPS) cells. This allows us to specifically focus on aged HSCs presenting with a pronounced lineage skewing, a hallmark of HSC ageing. Functional and molecular evaluations reveal haematopoiesis from these iPS clones to be indistinguishable from that associating...... that individual HSCs might be preset differentially already from young age, HSCs might also age asynchronously. Evaluating the prospects for HSC rejuvenation therefore ultimately requires approaching those HSCs that are functionally affected by age. Here we combine genetic barcoding of aged murine HSCs...

  8. Highly efficient generation of definitive endoderm lineage from human induced pluripotent stem cells.

    Science.gov (United States)

    Sekine, K; Takebe, T; Suzuki, Y; Kamiya, A; Nakauchi, H; Taniguchi, H

    2012-05-01

    Although hepatocytes can be an option for liver transplantation, the shortage of donor organs continues to worsen. Since the development of induced pluripotent stem (iPS) cell technology, it is eagerly anticipated to produce functional elements from pluripotent stem cells. These functional cells differentiated from iPS cells could be used for transplantation, drug screening, and in vitro toxicology. Human iPS cells are maintained on Mitomycin C-treated mouse embryonic fibroblast layers in DMEM-Ham F12-based medium supplemented with Knockout Serum Replacement, nonessential amino acids, 2-mercaptoethanol, and Glutamax. Differentiation of human iPS cells into a definitive endodermal lineage was induced with PRMI 1640 medium supplemented with B27 and 100 ng/mL human activin A. Two B27 supplements were examined with and without insulin. Furthermore, the PI3 kinase inhibitor LY294002 was used to examine the effect of inhibiting insulin signaling. We established efficient induction of definitive endodermal differentiation from iPS cells. Quantitative analysis revealed efficient (93.03 ± 2.74%) differentiation of human iPS cells into definitive endoderm cells using B27 minus insulin. This protocol may contribute as a fundamental technique to promote human iPS studies to develop cellular sources for transplantation. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Epicardial Lineages

    Directory of Open Access Journals (Sweden)

    Andreas Kispert

    2013-06-01

    Full Text Available The epicardium is the mono-layered epithelium that covers the outer surface of the myocardium from early in cardiac development. Long thought to act merely passively to protect the myocardium from frictional forces in the pericardial cavity during the enduring contraction and expansion cycles of the heart, it is now considered to be a crucial source of cells and signals that direct myocardial growth and formation of the coronary vasculature during development and regeneration. Lineage tracing efforts in the chick, the mouse and the zebrafish unambiguously identified fibroblasts in interstitial and perivascular locations as well as coronary smooth muscle cells as the two major lineages that derive from epithelial-mesenchymal transition and subsequent differentiation from individual epicardial cells. However, controversies exist about an additional endothelial and myocardial fate of epicardial progenitor cells. Here, we review epicardial fate mapping efforts in three vertebrate model systems, describe their conceptual differences and discuss their methodological limitations to reach a consensus of the potential of (pro-epicardial cells in vitro and in vivo.

  10. DNA Methyltransferases Modulate Hepatogenic Lineage Plasticity of Mesenchymal Stromal Cells

    Directory of Open Access Journals (Sweden)

    Chien-Wei Lee

    2017-07-01

    Full Text Available The irreversibility of developmental processes in mammalian cells has been challenged by rising evidence that de-differentiation of hepatocytes occurs in adult liver. However, whether reversibility exists in mesenchymal stromal cell (MSC-derived hepatocytes (dHeps remains elusive. In this study, we find that hepatogenic differentiation (HD of MSCs is a reversible process and is modulated by DNA methyltransferases (DNMTs. DNMTs are regulated by transforming growth factor β1 (TGFβ1, which in turn controls hepatogenic differentiation and de-differentiation. In addition, a stepwise reduction in TGFβ1 concentrations in culture media increases DNMT1 and decreases DNMT3 in primary hepatocytes (Heps and confers Heps with multi-differentiation potentials similarly to MSCs. Hepatic lineage reversibility of MSCs and lineage conversion of Heps are regulated by DNMTs in response to TGFβ1. This previously unrecognized TGFβ1-DNMTs-MSC-HD axis may further increase the understanding the normal and pathological processes in the liver, as well as functions of MSCs after transplantation to treat liver diseases.

  11. A planarian p53 homolog regulates proliferation and self-renewal in adult stem cell lineages.

    Science.gov (United States)

    Pearson, Bret J; Sánchez Alvarado, Alejandro

    2010-01-01

    The functions of adult stem cells and tumor suppressor genes are known to intersect. However, when and how tumor suppressors function in the lineages produced by adult stem cells is unknown. With a large population of stem cells that can be manipulated and studied in vivo, the freshwater planarian is an ideal system with which to investigate these questions. Here, we focus on the tumor suppressor p53, homologs of which have no known role in stem cell biology in any invertebrate examined thus far. Planaria have a single p53 family member, Smed-p53, which is predominantly expressed in newly made stem cell progeny. When Smed-p53 is targeted by RNAi, the stem cell population increases at the expense of progeny, resulting in hyper-proliferation. However, ultimately the stem cell population fails to self-renew. Our results suggest that prior to the vertebrates, an ancestral p53-like molecule already had functions in stem cell proliferation control and self-renewal.

  12. FOX and ETS family transcription factors regulate the pigment cell lineage in planarians.

    Science.gov (United States)

    He, Xinwen; Lindsay-Mosher, Nicole; Li, Yan; Molinaro, Alyssa M; Pellettieri, Jason; Pearson, Bret J

    2017-12-15

    Many pigment cells acquire unique structural properties and gene expression profiles during animal development. The underlying differentiation pathways have been well characterized in cells formed during embryogenesis, such as the neural crest-derived melanocyte. However, much less is known about the developmental origins of pigment cells produced in adult organisms during tissue homeostasis and repair. Here we report a lineage analysis of ommochrome- and porphyrin-producing cells in the brown, freshwater planarian Schmidtea mediterranea Using an RNA-sequencing approach, we identified two classes of markers expressed in sequential fashion when new pigment cells are generated during regeneration or in response to pigment cell ablation. We also report roles for FOXF-1 and ETS-1 transcription factors, as well as for an FGFR-like molecule, in the specification and maintenance of this cell type. Together, our results provide insights into mechanisms of adult pigment cell development in the strikingly colorful Platyhelminthes phylum. © 2017. Published by The Company of Biologists Ltd.

  13. Intra-lineage Fate Decisions Involve Activation of Notch Receptors Basal to the Midbody in Drosophila Sensory Organ Precursor Cells.

    Science.gov (United States)

    Trylinski, Mateusz; Mazouni, Khalil; Schweisguth, François

    2017-08-07

    Notch receptors regulate cell fate decisions during embryogenesis and throughout adult life. In many cell lineages, binary fate decisions are mediated by directional Notch signaling between the two sister cells produced by cell division. How Notch signaling is restricted to sister cells after division to regulate intra-lineage decision is poorly understood. More generally, where ligand-dependent activation of Notch occurs at the cell surface is not known, as methods to detect receptor activation in vivo are lacking. In Drosophila pupae, Notch signals during cytokinesis to regulate the intra-lineage pIIa/pIIb decision in the sensory organ lineage. Here, we identify two pools of Notch along the pIIa-pIIb interface, apical and basal to the midbody. Analysis of the dynamics of Notch, Delta, and Neuralized distribution in living pupae suggests that ligand endocytosis and receptor activation occur basal to the midbody. Using selective photo-bleaching of GFP-tagged Notch and photo-tracking of photo-convertible Notch, we show that nuclear Notch is indeed produced by receptors located basal to the midbody. Thus, only a specific subset of receptors, located basal to the midbody, contributes to signaling in pIIa. This is the first in vivo characterization of the pool of Notch contributing to signaling. We propose a simple mechanism of cell fate decision based on intra-lineage signaling: ligands and receptors localize during cytokinesis to the new cell-cell interface, thereby ensuring signaling between sister cells, hence intra-lineage fate decision. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. The cell cycle of Chlamydomonas reinhardtii: the role of the commitment point

    Czech Academy of Sciences Publication Activity Database

    Oldenhof, H.; Zachleder, Vilém; van den Ende, H.

    2007-01-01

    Roč. 52, č. 1 (2007), s. 53-60 ISSN 0015-5632 Institutional research plan: CEZ:AV0Z50200510 Keywords : chlamydomonas reinhardtii * cell cycle * commitment point Subject RIV: EE - Microbiology, Virology Impact factor: 0.989, year: 2007

  15. Stem Cell Differentiation Toward the Myogenic Lineage for Muscle Tissue Regeneration: A Focus on Muscular Dystrophy.

    Science.gov (United States)

    Ostrovidov, Serge; Shi, Xuetao; Sadeghian, Ramin Banan; Salehi, Sahar; Fujie, Toshinori; Bae, Hojae; Ramalingam, Murugan; Khademhosseini, Ali

    2015-12-01

    Skeletal muscle tissue engineering is one of the important ways for regenerating functionally defective muscles. Among the myopathies, the Duchenne muscular dystrophy (DMD) is a progressive disease due to mutations of the dystrophin gene leading to progressive myofiber degeneration with severe symptoms. Although current therapies in muscular dystrophy are still very challenging, important progress has been made in materials science and in cellular technologies with the use of stem cells. It is therefore useful to review these advances and the results obtained in a clinical point of view. This article focuses on the differentiation of stem cells into myoblasts, and their application in muscular dystrophy. After an overview of the different stem cells that can be induced to differentiate into the myogenic lineage, we introduce scaffolding materials used for muscular tissue engineering. We then described some widely used methods to differentiate different types of stem cell into myoblasts. We highlight recent insights obtained in therapies for muscular dystrophy. Finally, we conclude with a discussion on stem cell technology. We discussed in parallel the benefits brought by the evolution of the materials and by the expansion of cell sources which can differentiate into myoblasts. We also discussed on future challenges for clinical applications and how to accelerate the translation from the research to the clinic in the frame of DMD.

  16. Multiploid CD61+ Cells Are the Pre-Dominant Cell Lineage Infected during Acute Dengue Virus Infection in Bone Marrow

    Science.gov (United States)

    Clark, Kristina B.; Noisakran, Sansanee; Onlamoon, Nattawat; Hsiao, Hui-Mien; Roback, John; Villinger, Francois; Ansari, Aftab A.; Perng, Guey Chuen

    2012-01-01

    Depression of the peripheral blood platelet count during acute infection is a hallmark of dengue. This thrombocytopenia has been attributed, in part, to an insufficient level of platelet production by megakaryocytes that reside in the bone marrow (BM). Interestingly, it was observed that dengue patients experience BM suppression at the onset of fever. However, few studies focus on the interaction between dengue virus (DENV) and megakaryocytes and how this interaction can lead to a reduction in platelets. In the studies reported herein, BM cells from normal healthy rhesus monkeys (RM) and humans were utilized to identify the cell lineage(s) that were capable of supporting virus infection and replication. A number of techniques were employed in efforts to address this issue. These included the use of viral RNA quantification, nonstructural protein and infectivity assays, phenotypic studies utilizing immunohistochemical staining, anti-differentiation DEAB treatment, and electron microscopy. Cumulative results from these studies revealed that cells in the BM were indeed highly permissive for DENV infection, with human BM having higher levels of viral production compared to RM. DENV-like particles were predominantly observed in multi-nucleated cells that expressed CD61+. These data suggest that megakaryocytes are likely the predominant cell type infected by DENV in BM, which provides one explanation for the thrombocytopenia and the dysfunctional platelets characteristic of dengue virus infection. PMID:23300812

  17. Chicken globin gene transcription is cell lineage specific during the time of the switch

    International Nuclear Information System (INIS)

    Lois, R.; Martinson, H.G.

    1989-01-01

    Posttranscriptional silencing of embryonic globin gene expression occurs during hemoglobin switching in chickens. Here the authors use Percoll density gradients to fractionate the red blood cells of 5-9 day embryos in order to determine the cellular source and the timing of this posttranscriptional process. By means of nuclear run-on transcription in vitro they show that it is within mature primitive cells that production of embryonic globin mRNA is terminated posttranscriptionally. In contrast, young definitive cells produce little (or no) embryonic globin mRNA because of regulation at the transcriptional level. Thus the lineage specificity of embryonic and adult globin gene expression is determined transcriptionally, and the posttranscriptional process described by Landes et al. is a property of the senescing primitive cells, not a mechanism operative in the hemoglobin switch. This conclusion is supported by [ 3 H]leucine incorporation experiments on Percoll-fractionated cells which reveal no posttranscriptional silencing of the embryonic genes during the early stages of the switch. In the course of these studies they have noticed a strong transcriptional pause near the second exon of the globin genes which is induced by 5,6-dichloro-1-β-D-ribofuranosylbenzimidazole (DRB) and which resembles a natural pause near that position

  18. Embryonic origins of hull cells in the flatworm Macrostomum lignano through cell lineage analysis: developmental and phylogenetic implications.

    Science.gov (United States)

    Willems, Maxime; Egger, Bernhard; Wolff, Carsten; Mouton, Stijn; Houthoofd, Wouter; Fonderie, Pamela; Couvreur, Marjolein; Artois, Tom; Borgonie, Gaëtan

    2009-08-01

    The development of macrostomid flatworms is of interest for evolutionary developmental biology research because these taxa combine characteristics of the canonical spiral cleavage pattern with significant deviations from this pattern. One such deviation is the formation of hull cells, which surround the remaining embryonic primordium during early development. Using live observations with a 4D microscope system, histology, and 3D reconstructions, we analyzed the ontogeny of these hull cells in the macrostomid model organism Macrostomum lignano. Our cell lineage analysis allowed us to find the precursors of the hull cells in this species. We discuss the relation between macrostomid development and the development of other spiralians and the question of whether hull cells are homologous within rhabditophoran flatworms.

  19. Mixed lineage kinase 3 is required for matrix metalloproteinase expression and invasion in ovarian cancer cells

    International Nuclear Information System (INIS)

    Zhan, Yu; Abi Saab, Widian F.; Modi, Nidhi; Stewart, Amanda M.; Liu, Jinsong; Chadee, Deborah N.

    2012-01-01

    Mixed lineage kinase 3 (MLK3) is a mitogen-activated protein kinase kinase kinase (MAP3K) that activates MAPK signaling pathways and regulates cellular responses such as proliferation, migration and apoptosis. Here we report high levels of total and phospho-MLK3 in ovarian cancer cell lines in comparison to immortalized nontumorigenic ovarian epithelial cell lines. Using small interfering RNA (siRNA)-mediated gene silencing, we determined that MLK3 is required for the invasion of SKOV3 and HEY1B ovarian cancer cells. Furthermore, mlk3 silencing substantially reduced matrix metalloproteinase (MMP)-1, -2, -9 and -12 gene expression and MMP-2 and -9 activities in SKOV3 and HEY1B ovarian cancer cells. MMP-1, -2, -9 and-12 expression, and MLK3-induced activation of MMP-2 and MMP-9 requires both extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) activities. In addition, inhibition of activator protein-1 (AP-1) reduced MMP-1, MMP-9 and MMP-12 gene expression. Collectively, these findings establish MLK3 as an important regulator of MMP expression and invasion in ovarian cancer cells. -- Highlights: ► Ovarian cancer cell lines have high levels of total and phosphorylated MLK3. ► MLK3 is required for MMP expression and activity in ovarian cancer cells. ► MLK3 is required for invasion of SKOV3 and HEY1B ovarian cancer cells. ► MLK3-dependent regulation of MMP-2 and MMP-9 activities requires ERK and JNK.

  20. Activation of arylhydrocarbon receptor (AhR) in T lineage cells inhibits cellular growth

    Energy Technology Data Exchange (ETDEWEB)

    Nohara, K.; Tomohiro, I.; Chiharu, T. [National Institute for Environmental Studies, Tsukuba (Japan)

    2004-09-15

    Dioxins, including the most toxic congener, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), exert their toxic effects by binding and activating the arylhydrocarbon receptor (AhR), a liganddependent transcription factor. Upon binding dioxins, the AhR in the cytoplasm is activated and translocated to the nucleus, where it heterodimerizes with another transcription factor, ARNT. The AhR/ARNT heterodimer modulates expressions of various genes by binding xenobiotic responsive elements (XREs) in their enhancer regions or modifies cellular functions through protein-protein interactions. The AhR activation by TCDD exposure induces various immunotoxic reactions including thymus involution and suppression of T cell-dependent antibody production. We have investigated the roles of AhR activation in T lineage cells and their underlying mechanisms by generating transgenic (Tg) mice expressing a constitutively active AhR (CA-AhR) mutant specifically in T cells and by transiently expressing the CA-AhR mutant in Jurkat T cells.

  1. Lipocalin-2 inhibits osteoclast formation by suppressing the proliferation and differentiation of osteoclast lineage cells

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun-Ju, E-mail: biohjk@knu.ac.kr [Department of Molecular Medicine, Cell and Matrix Research Institute, Clinical Trial Center, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu 700-422 (Korea, Republic of); Yoon, Hye-Jin [Department of Molecular Medicine, Cell and Matrix Research Institute, Clinical Trial Center, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu 700-422 (Korea, Republic of); Yoon, Kyung-Ae [Department of Orthopedic Surgery, Skeletal Diseases Genome Research Center, School of Medicine, Kyungpook National University, Daegu 700-422 (Korea, Republic of); Gwon, Mi-Ri; Jin Seong, Sook [Department of Molecular Medicine, Cell and Matrix Research Institute, Clinical Trial Center, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu 700-422 (Korea, Republic of); Suk, Kyoungho [Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu 700-422 (Korea, Republic of); Kim, Shin-Yoon [Department of Orthopedic Surgery, Skeletal Diseases Genome Research Center, School of Medicine, Kyungpook National University, Daegu 700-422 (Korea, Republic of); Yoon, Young-Ran, E-mail: yry@knu.ac.kr [Department of Molecular Medicine, Cell and Matrix Research Institute, Clinical Trial Center, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu 700-422 (Korea, Republic of)

    2015-06-10

    Lipocalin-2 (LCN2) is a member of the lipocalin superfamily and plays a critical role in the regulation of various physiological processes, such as inflammation and obesity. In this study, we report that LCN2 negatively modulates the proliferation and differentiation of osteoclast precursors, resulting in impaired osteoclast formation. The overexpression of LCN2 in bone marrow-derived macrophages or the addition of recombinant LCN2 protein inhibits the formation of multinuclear osteoclasts. LCN2 suppresses macrophage colony-stimulating factor (M-CSF)-induced proliferation of osteoclast precursor cells without affecting their apoptotic cell death. Interestingly, LCN2 decreases the expression of the M-CSF receptor, c-Fms, and subsequently blocks its downstream signaling cascades. In addition, LCN2 inhibits RANKL-induced osteoclast differentiation and attenuates the expression of c-Fos and nuclear factor of activated T cells c1 (NFATc1), which are important modulators in osteoclastogenesis. Mechanistically, LCN2 inhibits NF-κB signaling pathways, as demonstrated by the suppression of IκBα phosphorylation, nuclear translocation of p65, and NF-κB transcriptional activity. Thus, LCN2 is an anti-osteoclastogenic molecule that exerts its effects by retarding the proliferation and differentiation of osteoclast lineage cells. - Highlights: • LCN2 expression is regulated during osteoclast development. • LCN2 suppresses M-CSF-mediated osteoclast precursor proliferation. • LCN2 inhibits RANKL-induced osteoclast differentiation.

  2. Ecto-mesenchymal stem cells from dental pulp are committed to differentiate into active melanocytes

    Directory of Open Access Journals (Sweden)

    F Paino

    2010-10-01

    Full Text Available Dental pulp stem cells (DPSCs are multipotent stem cells derived from neural crest and mesenchyme and have the capacity to differentiate into multiple cell lineages. It has already been demonstrated that DPSCs differentiate into melanocyte-like cells but only when cultivated in a specific melanocyte differentiating medium. In this study we have shown, for the first time, that DPSCs are capable of spontaneously differentiating into mature melanocytes, which display molecular and ultrastructural features of full development, including the expression of melanocyte specific markers and the presence of melanosomes up to the terminal stage of maturation. We have also compared the differentiating features of DPSCs grown in different culture conditions, following the timing of differentiation at molecular and cytochemical levels and found that in all culture conditions full development of these cells was obtained, although at different times. The spontaneous differentiating potential of these cells strongly suggests their possible applications in regenerative medicine.

  3. Cyanobacterial symbionts diverged in the late Cretaceous towards lineage-specific nitrogen fixation factories in single-celled phytoplankton.

    Science.gov (United States)

    Cornejo-Castillo, Francisco M; Cabello, Ana M; Salazar, Guillem; Sánchez-Baracaldo, Patricia; Lima-Mendez, Gipsi; Hingamp, Pascal; Alberti, Adriana; Sunagawa, Shinichi; Bork, Peer; de Vargas, Colomban; Raes, Jeroen; Bowler, Chris; Wincker, Patrick; Zehr, Jonathan P; Gasol, Josep M; Massana, Ramon; Acinas, Silvia G

    2016-03-22

    The unicellular cyanobacterium UCYN-A, one of the major contributors to nitrogen fixation in the open ocean, lives in symbiosis with single-celled phytoplankton. UCYN-A includes several closely related lineages whose partner fidelity, genome-wide expression and time of evolutionary divergence remain to be resolved. Here we detect and distinguish UCYN-A1 and UCYN-A2 lineages in symbiosis with two distinct prymnesiophyte partners in the South Atlantic Ocean. Both symbiotic systems are lineage specific and differ in the number of UCYN-A cells involved. Our analyses infer a streamlined genome expression towards nitrogen fixation in both UCYN-A lineages. Comparative genomics reveal a strong purifying selection in UCYN-A1 and UCYN-A2 with a diversification process ∼91 Myr ago, in the late Cretaceous, after the low-nutrient regime period occurred during the Jurassic. These findings suggest that UCYN-A diversified in a co-evolutionary process, wherein their prymnesiophyte partners acted as a barrier driving an allopatric speciation of extant UCYN-A lineages.

  4. Adipocyte Metabolic Pathways Regulated by Diet Control the Female Germline Stem Cell Lineage inDrosophila melanogaster.

    Science.gov (United States)

    Matsuoka, Shinya; Armstrong, Alissa R; Sampson, Leesa L; Laws, Kaitlin M; Drummond-Barbosa, Daniela

    2017-06-01

    Nutrients affect adult stem cells through complex mechanisms involving multiple organs. Adipocytes are highly sensitive to diet and have key metabolic roles, and obesity increases the risk for many cancers. How diet-regulated adipocyte metabolic pathways influence normal stem cell lineages, however, remains unclear. Drosophila melanogaster has highly conserved adipocyte metabolism and a well-characterized female germline stem cell (GSC) lineage response to diet. Here, we conducted an isobaric tags for relative and absolute quantification (iTRAQ) proteomic analysis to identify diet-regulated adipocyte metabolic pathways that control the female GSC lineage. On a rich (relative to poor) diet, adipocyte Hexokinase-C and metabolic enzymes involved in pyruvate/acetyl-CoA production are upregulated, promoting a shift of glucose metabolism toward macromolecule biosynthesis. Adipocyte-specific knockdown shows that these enzymes support early GSC progeny survival. Further, enzymes catalyzing fatty acid oxidation and phosphatidylethanolamine synthesis in adipocytes promote GSC maintenance, whereas lipid and iron transport from adipocytes controls vitellogenesis and GSC number, respectively. These results show a functional relationship between specific metabolic pathways in adipocytes and distinct processes in the GSC lineage, suggesting the adipocyte metabolism-stem cell link as an important area of investigation in other stem cell systems. Copyright © 2017 by the Genetics Society of America.

  5. Development of B-lineage predominant lentiviral vectors for use in genetic therapies for B cell disorders.

    Science.gov (United States)

    Sather, Blythe D; Ryu, Byoung Y; Stirling, Brigid V; Garibov, Mikhail; Kerns, Hannah M; Humblet-Baron, Stéphanie; Astrakhan, Alexander; Rawlings, David J

    2011-03-01

    Sustained, targeted, high-level transgene expression in primary B lymphocytes may be useful for gene therapy in B cell disorders. We developed several candidate B-lineage predominant self-inactivating lentiviral vectors (LV) containing alternative enhancer/promoter elements including: the immunoglobulin β (Igβ) (B29) promoter combined with the immunoglobulin µ enhancer (EµB29); and the endogenous BTK promoter with or without Eµ (EµBtkp or Btkp). LV-driven enhanced green fluorescent protein (eGFP) reporter expression was evaluated in cell lines and primary cells derived from human or murine hematopoietic stem cells (HSC). In murine primary cells, EµB29 and EµBtkp LV-mediated high-level expression in immature and mature B cells compared with all other lineages. Expression increased with B cell maturation and was maintained in peripheral subsets. Expression in T and myeloid cells was much lower in percentage and intensity. Similarly, both EµB29 and EµBtkp LV exhibited high-level activity in human primary B cells. In contrast to EµB29, Btkp and EµBtkp LV also exhibited modest activity in myeloid cells, consistent with the expression profile of endogenous Bruton's tyrosine kinase (Btk). Notably, EµB29 and EµBtkp activity was superior in all expression models to an alternative, B-lineage targeted vector containing the EµS.CD19 enhancer/promoter. In summary, EµB29 and EµBtkp LV comprise efficient delivery platforms for gene expression in B-lineage cells.

  6. Exome Sequencing of Bilateral Testicular Germ Cell Tumors Suggests Independent Development Lineages

    Directory of Open Access Journals (Sweden)

    Sigmund Brabrand

    2015-02-01

    Full Text Available Intratubular germ cell neoplasia, the precursor of testicular germ cell tumors (TGCTs, is hypothesized to arise during embryogenesis from developmentally arrested primordial germ cells (PGCs or gonocytes. In early embryonal life, the PGCs migrate from the yolk sac to the dorsal body wall where the cell population separates before colonizing the genital ridges. However, whether the malignant transformation takes place before or after this separation is controversial. We have explored the somatic exome-wide mutational spectra of bilateral TGCT to provide novel insight into the in utero critical time frame of malignant transformation and TGCT pathogenesis. Exome sequencing was performed in five patients with bilateral TGCT (eight tumors, of these three patients in whom both tumors were available (six tumors and two patients each with only one available tumor (two tumors. Selected loci were explored by Sanger sequencing in 71 patients with bilateral TGCT. From the exome-wide mutational spectra, no identical mutations in any of the three bilateral tumor pairs were identified. Exome sequencing of all eight tumors revealed 87 somatic non-synonymous mutations (median 10 per tumor; range 5-21, some in already known cancer genes such as CIITA, NEB, platelet-derived growth factor receptor α (PDGFRA, and WHSC1. SUPT6H was found recurrently mutated in two tumors. We suggest independent development lineages of bilateral TGCT. Thus, malignant transformation into intratubular germ cell neoplasia is likely to occur after the migration of PGCs. We reveal possible drivers of TGCT pathogenesis, such as mutated PDGFRA, potentially with therapeutic implications for TGCT patients.

  7. Three-dimensional immunohistochemical characterization of lineage commitment by localization of T and FOXA2 in porcine peri-implantation embryos.

    Science.gov (United States)

    Wolf, Xenia Asbaek; Serup, Palle; Hyttel, Poul

    2011-04-01

    Gene expression during gastrulation in porcine embryos has been sparsely studied, but there are indications that species-specific patterns exist. Here, we investigated the three-dimensional (3D) expression of the T-box transcription factor Brachyury (T) and the forkhead box transcription factor FOXA2 by immunocytochemistry in porcine peri-gastrulation embryos. The first T(+) cells were detected in posterior epiblast of ovoid blastocysts. Later T(+) FOXA2(-) cells were found in the posterior primitive streak (PS) and nascent mesoderm, T(+) FOXA2(+) cells in the anterior PS, probably identifying the organizer region, and T(-) FOXA2(+) cells anterior to this region. In embryos with a neural groove, T and FOXA2 were co-expressed in the node and notochord, FOXA2 was expressed in the floor plate and posteriorly T was expressed in the streak. In all developmental stages, FOXA2 was expressed in the entire hypoblast/definitive endoderm. We conclude that the expression pattern of T and FOXA2 is largely conserved between pig and mouse. Copyright © 2011 Wiley-Liss, Inc.

  8. The changing view of eukaryogenesis - fossils, cells, lineages and how they all come together.

    Science.gov (United States)

    Dacks, Joel B; Field, Mark C; Buick, Roger; Eme, Laura; Gribaldo, Simonetta; Roger, Andrew J; Brochier-Armanet, Céline; Devos, Damien P

    2016-10-15

    Eukaryogenesis - the emergence of eukaryotic cells - represents a pivotal evolutionary event. With a fundamentally more complex cellular plan compared to prokaryotes, eukaryotes are major contributors to most aspects of life on Earth. For decades, we have understood that eukaryotic origins lie within both the Archaea domain and α-Proteobacteria. However, it is much less clear when, and from which precise ancestors, eukaryotes originated, or the order of emergence of distinctive eukaryotic cellular features. Many competing models for eukaryogenesis have been proposed, but until recently, the absence of discriminatory data meant that a consensus was elusive. Recent advances in paleogeology, phylogenetics, cell biology and microbial diversity, particularly the discovery of the 'Candidatus Lokiarcheaota' phylum, are now providing new insights into these aspects of eukaryogenesis. The new data have allowed the time frame during which eukaryogenesis occurred to be finessed, a more precise identification of the contributing lineages and the biological features of the contributors to be clarified. Considerable advances have now been used to pinpoint the prokaryotic origins of key eukaryotic cellular processes, such as intracellular compartmentalisation, with major implications for models of eukaryogenesis. © 2016. Published by The Company of Biologists Ltd.

  9. A block in lineage differentiation of immortal human mammary stem / progenitor cells by ectopically-expressed oncogenes

    Directory of Open Access Journals (Sweden)

    Xiangshan Zhao

    2011-01-01

    Full Text Available Introduction: Emerging evidence suggests a direct role of cancer stem cells (CSCs in the development of breast cancer. In vitro cellular models that recapitulate properties of CSCs are therefore highly desirable. We have previously shown that normal human mammary epithelial cells (hMECs immortalized with human telomerase reverse transcriptase (hTERT possess properties of mammary stem / progenitor cells. Materials and Methods: In the present study, we used this cell system to test the idea that other known hMEC-immortalizing oncogenes (RhoA, HPVE6, HPVE7, p53 mutant, and treatment with g-radiation, share with hTERT, the ability to maintain mammary stem / progenitor cells. Results: The results presented here demonstrate that similar to hMECs immortalized with hTERT, all hMEC cell lines immortalized using various oncogenic strategies express stem / progenitor cell markers. Furthermore, analyses using 2D and 3D culture assays demonstrate that all the immortal cell lines retain their ability to self-renew and to differentiate along the luminal lineage. Remarkably, the stem / progenitor cell lines generated using various oncogenic strategies exhibit a block in differentiation along the myoepithelial lineage, a trait that is retained on hTERT-immortalized stem / progenitors. The inability to differentiate along the myoepithelial lineage could be induced by ectopic mutant p53 expression in hTERT-immortalized hMEC. Conclusions: Our studies demonstrate that stem / progenitor cell characteristics of hMECs are maintained upon immortalization by using various cancer-relevant oncogenic strategies. Oncogene-immortalized hMECs show a block in their ability to differentiate along the myoepithelial lineage. Abrogation of the myoepithelial differentiation potential by a number of distinct oncogenic insults suggests a potential explanation for the predominance of luminal and rarity of myoepithelial breast cancers.

  10. Aging-like Phenotype and Defective Lineage Specification in SIRT1-Deleted Hematopoietic Stem and Progenitor Cells

    Directory of Open Access Journals (Sweden)

    Pauline Rimmelé

    2014-07-01

    Full Text Available Aging hematopoietic stem cells (HSCs exhibit defective lineage specification that is thought to be central to increased incidence of myeloid malignancies and compromised immune competence in the elderly. Mechanisms underlying these age-related defects remain largely unknown. We show that the deacetylase Sirtuin (SIRT1 is required for homeostatic HSC maintenance. Differentiation of young SIRT1-deleted HSCs is skewed toward myeloid lineage associated with a significant decline in the lymphoid compartment, anemia, and altered expression of associated genes. Combined with HSC accumulation of damaged DNA and expression patterns of age-linked molecules, these have striking overlaps with aged HSCs. We further show that SIRT1 controls HSC homeostasis via the longevity transcription factor FOXO3. These findings suggest that SIRT1 is essential for HSC homeostasis and lineage specification. They also indicate that SIRT1 might contribute to delaying HSC aging.

  11. Instruction of hematopoietic lineage choice by cytokine signaling

    Energy Technology Data Exchange (ETDEWEB)

    Endele, Max; Etzrodt, Martin; Schroeder, Timm, E-mail: timm.schroeder@bsse.ethz.ch

    2014-12-10

    Hematopoiesis is the cumulative consequence of finely tuned signaling pathways activated through extrinsic factors, such as local niche signals and systemic hematopoietic cytokines. Whether extrinsic factors actively instruct the lineage choice of hematopoietic stem and progenitor cells or are only selectively allowing survival and proliferation of already intrinsically lineage-committed cells has been debated over decades. Recent results demonstrated that cytokines can instruct lineage choice. However, the precise function of individual cytokine-triggered signaling molecules in inducing cellular events like proliferation, lineage choice, and differentiation remains largely elusive. Signal transduction pathways activated by different cytokine receptors are highly overlapping, but support the production of distinct hematopoietic lineages. Cellular context, signaling dynamics, and the crosstalk of different signaling pathways determine the cellular response of a given extrinsic signal. New tools to manipulate and continuously quantify signaling events at the single cell level are therefore required to thoroughly interrogate how dynamic signaling networks yield a specific cellular response. - Highlights: • Recent studies provided definite proof for lineage-instructive action of cytokines. • Signaling pathways involved in hematopoietic lineage instruction remain elusive. • New tools are emerging to quantitatively study dynamic signaling networks over time.

  12. MicroRNA profiling can classify acute leukemias of ambiguous lineage as either acute myeloid leukemia or acute lymphoid leukemia.

    Science.gov (United States)

    de Leeuw, David C; van den Ancker, Willemijn; Denkers, Fedor; de Menezes, Renée X; Westers, Theresia M; Ossenkoppele, Gert J; van de Loosdrecht, Arjan A; Smit, Linda

    2013-04-15

    Classification of acute leukemia is based on the commitment of leukemic cells to the myeloid or the lymphoid lineage. However, a small percentage of acute leukemia cases lack straightforward immunophenotypical lineage commitment. These leukemias of ambiguous lineage represent a heterogeneous category of acute leukemia that cannot be classified as either acute myeloid leukemia (AML) or acute lymphoid leukemia (ALL). The lack of clear classification of acute leukemias of ambiguous lineage as either AML or ALL is a hurdle in treatment choice for these patients. Here, we compared the microRNA (miRNA) expression profiles of 17 cases with acute leukemia of ambiguous lineage and 16 cases of AML, B-cell acute lymphoid leukemia (B-ALL), and T-cell acute lymphoid leukemia (T-ALL). We show that leukemias of ambiguous lineage do not segregate as a separate entity but exhibit miRNA expression profiles similar to AML, B-ALL, or T-ALL. We show that by using only 5 of the most lineage-discriminative miRNAs, we are able to define acute leukemia of ambiguous lineage as either AML or ALL. Our results indicate the presence of a myeloid or lymphoid lineage-specific genotype, as reflected by miRNA expression, in these acute leukemias despite their ambiguous immunophenotype. miRNA-based classification of acute leukemia of ambiguous lineage might be of additional value in therapeutic decision making.

  13. Spatial focalization of pheromone/MAPK signaling triggers commitment to cell–cell fusion

    Science.gov (United States)

    Merlini, Laura

    2016-01-01

    Cell fusion is universal in eukaryotes for fertilization and development, but what signals this process is unknown. Here, we show in Schizosaccharomyces pombe that fusion does not require a dedicated signal but is triggered by spatial focalization of the same pheromone–GPCR (G-protein-coupled receptor)–MAPK signaling cascade that drives earlier mating events. Autocrine cells expressing the receptor for their own pheromone trigger fusion attempts independently of cell–cell contact by concentrating pheromone release at the fusion focus, a dynamic actin aster underlying the secretion of cell wall hydrolases. Pheromone receptor and MAPK cascade are similarly enriched at the fusion focus, concomitant with fusion commitment in wild-type mating pairs. This focalization promotes cell fusion by immobilizing the fusion focus, thus driving local cell wall dissolution. We propose that fusion commitment is imposed by a local increase in MAPK concentration at the fusion focus, driven by a positive feedback between fusion focus formation and focalization of pheromone release and perception. PMID:27798845

  14. The BCL6 RD2 Domain Governs Commitment of Activated B Cells to Form Germinal Centers

    Directory of Open Access Journals (Sweden)

    Chuanxin Huang

    2014-09-01

    Full Text Available To understand how the Bcl6 transcriptional repressor functions in the immune system, we disrupted its RD2 repression domain in mice. Bcl6RD2MUT mice exhibit a complete loss of germinal center (GC formation but retain normal extrafollicular responses. Bcl6RD2MUT antigen-engaged B cells migrate to the interfollicular zone and interact with cognate T helper cells. However, these cells fail to complete early GC-commitment differentiation and coalesce as nascent GC aggregates. Bcl6 directly binds and represses trafficking receptors S1pr1 and Gpr183 by recruiting Hdac2 through the RD2 domain. Deregulation of these genes impairs B cell migration and may contribute to GC failure in Bcl6RD2MUT mice. The development of functional GC-TFH cells was partially impaired in Bcl6RD2MUT mice. In contrast to Bcl6−/− mice, Bcl6RD2MUT animals experience no inflammatory disease or macrophage deregulation. These results reveal an essential role for RD2 repression in early GC commitment and striking biochemical specificity in Bcl6 control of humoral and innate immune-cell phenotypes.

  15. Migration-driven aggregate behaviors of human mesenchymal stem cells on a dendrimer-immobilized surface direct differentiation toward a cardiomyogenic fate commitment.

    Science.gov (United States)

    Ogawa, Yuuki; Kim, Mee-Hae; Kino-Oka, Masahiro

    2016-11-01

    Dynamic behaviors of cell aggregates on a dendrimer surface were investigated to drive the directed differentiation of human mesenchymal stem cells (hMSCs) toward a cardiomyogenic lineage. Cell aggregates on the polyamidoamine dendrimer surface with fifth-generation (G5) of dendron structure showed dynamic changes in morphology associated with repetitive stretching and contracting during migration. Spatial-temporal observations revealed cellular movement in single aggregates by their morphological change through stretching and contracting on the G5 surface, suggesting that the dynamic behavior of aggregate causes mixing of cells. However, aggregates without cell-substrate adhesions on the low-binding culture surface sustained their spherical morphology without cellular movement within a single aggregate. Furthermore, β-catenin was observed at nuclei in aggregates on the G5 surface, and expression of the cardiomyocyte marker cardiac Troponin T (cTnT) was detected. However, β-catenin localized to the nuclei only in the outer region of the aggregate on the low-binding culture surface, and cTnT expression was restricted at the exterior surface of the aggregates. These observations indicate that cell mixing within aggregates on the G5 surface induced the directed differentiation of hMSCs toward a cardiomyogenic lineage by nuclear translocation of β-catenin through dissociation of cell-cell adhesions. These results suggest that migration-driven aggregate behaviors on the dendrimer surface caused repeated morphological changes of aggregate through stretching and contracting, leading to the directed differentiation of hMSCs toward a cardiomyogenic fate commitment. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  16. Single-cell transcriptomic reconstruction reveals cell cycle and multi-lineage differentiation defects in Bcl11a-deficient hematopoietic stem cells.

    Science.gov (United States)

    Tsang, Jason C H; Yu, Yong; Burke, Shannon; Buettner, Florian; Wang, Cui; Kolodziejczyk, Aleksandra A; Teichmann, Sarah A; Lu, Liming; Liu, Pentao

    2015-09-21

    Hematopoietic stem cells (HSCs) are a rare cell type with the ability of long-term self-renewal and multipotency to reconstitute all blood lineages. HSCs are typically purified from the bone marrow using cell surface markers. Recent studies have identified significant cellular heterogeneities in the HSC compartment with subsets of HSCs displaying lineage bias. We previously discovered that the transcription factor Bcl11a has critical functions in the lymphoid development of the HSC compartment. In this report, we employ single-cell transcriptomic analysis to dissect the molecular heterogeneities in HSCs. We profile the transcriptomes of 180 highly purified HSCs (Bcl11a (+/+) and Bcl11a (-/-)). Detailed analysis of the RNA-seq data identifies cell cycle activity as the major source of transcriptomic variation in the HSC compartment, which allows reconstruction of HSC cell cycle progression in silico. Single-cell RNA-seq profiling of Bcl11a (-/-) HSCs reveals abnormal proliferative phenotypes. Analysis of lineage gene expression suggests that the Bcl11a (-/-) HSCs are constituted of two distinct myeloerythroid-restricted subpopulations. Remarkably, similar myeloid-restricted cells could also be detected in the wild-type HSC compartment, suggesting selective elimination of lymphoid-competent HSCs after Bcl11a deletion. These defects are experimentally validated in serial transplantation experiments where Bcl11a (-/-) HSCs are myeloerythroid-restricted and defective in self-renewal. Our study demonstrates the power of single-cell transcriptomics in dissecting cellular process and lineage heterogeneities in stem cell compartments, and further reveals the molecular and cellular defects in the Bcl11a-deficient HSC compartment.

  17. High level PHGDH expression in breast is predominantly associated with keratin 5-positive cell lineage independently of malignancy

    DEFF Research Database (Denmark)

    Gromova, Irina; Gromov, Pavel; Honma, Naoko

    2015-01-01

    , and that the ratio of expression between these variants was associated with malignancy. Overexpression of Phgdh in CK5-positive cell lineages, and differential protein isoform expression, was additionally found in other tissues and cancer types, suggesting that overexpression of Phgdh is generally associated with CK......We have previously reported the 2D PAGE-based proteomic profiling of a prospective cohort of 78 triple negative breast cancer (TNBC) patients, and the establishment of a cumulative TNBC protein database. Analysis of this database identified a number of proteins as being specifically overexpressed...... epithelial cells is primarily associated with cell lineage, as we found that Phgdh expression was predominant in CK5-positive cells, normal as well as malignant, thus identifying an association of this protein with the basal phenotype. Quantitative IHC analysis of Phgdh expression in normal breast tissue...

  18. Targeting of Mesenchymal Stromal Cells by Cre-Recombinase Transgenes Commonly Used to Target Osteoblast Lineage Cells.

    Science.gov (United States)

    Zhang, Jingzhu; Link, Daniel C

    2016-11-01

    The targeting specificity of tissue-specific Cre-recombinase transgenes is a key to interpreting phenotypes associated with their use. The Ocn-Cre and Dmp1-Cre transgenes are widely used to target osteoblasts and osteocytes, respectively. Here, we used high-resolution microscopy of bone sections and flow cytometry to carefully define the targeting specificity of these transgenes. These transgenes were crossed with Cxcl12 gfp mice to identify Cxcl12-abundant reticular (CAR) cells, which are a perivascular mesenchymal stromal population implicated in hematopoietic stem/progenitor cell maintenance. We show that in addition to osteoblasts, Ocn-Cre targets a majority of CAR cells and arteriolar pericytes. Surprisingly, Dmp1-Cre also targets a subset of CAR cells, in which expression of osteoblast-lineage genes is enriched. Finally, we introduce a new tissue-specific Cre-recombinase, Tagln-Cre, which efficiently targets osteoblasts, a majority of CAR cells, and both venous sinusoidal and arteriolar pericytes. These data show that Ocn-Cre and Dmp1-Cre target broader stromal cell populations than previously appreciated and may aid in the design of future studies. Moreover, these data highlight the heterogeneity of mesenchymal stromal cells in the bone marrow and provide tools to interrogate this heterogeneity. © 2016 American Society for Bone and Mineral Research. © 2016 American Society for Bone and Mineral Research.

  19. Muscle-derived stem cells isolated as non-adherent population give rise to cardiac, skeletal muscle and neural lineages

    International Nuclear Information System (INIS)

    Arsic, Nikola; Mamaeva, Daria; Lamb, Ned J.; Fernandez, Anne

    2008-01-01

    Stem cells with the ability to differentiate in specialized cell types can be extracted from a wide array of adult tissues including skeletal muscle. Here we have analyzed a population of cells isolated from skeletal muscle on the basis of their poor adherence on uncoated or collagen-coated dishes that show multi-lineage differentiation in vitro. When analysed under proliferative conditions, these cells express stem cell surface markers Sca-1 (65%) and Bcrp-1 (80%) but also MyoD (15%), Neuronal β III-tubulin (25%), GFAP (30%) or Nkx2.5 (1%). Although capable of growing as non-attached spheres for months, when given an appropriate matrix, these cells adhere giving rise to skeletal muscle, neuronal and cardiac muscle cell lineages. A similar cell population could not be isolated from either bone marrow or cardiac tissue suggesting their specificity to skeletal muscle. When injected into damaged muscle, these non-adherent muscle-derived cells are retrieved expressing Pax7, in a sublaminar position characterizing satellite cells and participate in forming new myofibers. These data show that a non-adherent stem cell population can be specifically isolated and expanded from skeletal muscle and upon attachment to a matrix spontaneously differentiate into muscle, cardiac and neuronal lineages in vitro. Although competing with resident satellite cells, these cells are shown to significantly contribute to repair of injured muscle in vivo supporting that a similar muscle-derived non-adherent cell population from human muscle may be useful in treatment of neuromuscular disorders

  20. Lineage Reprogramming of Astroglial Cells from Different Origins into Distinct Neuronal Subtypes

    Directory of Open Access Journals (Sweden)

    Malek Chouchane

    2017-07-01

    Full Text Available Astroglial cells isolated from the rodent postnatal cerebral cortex are particularly susceptible to lineage reprogramming into neurons. However, it remains unknown whether other astroglial populations retain the same potential. Likewise, little is known about the fate of induced neurons (iNs in vivo. In this study we addressed these questions using two different astroglial populations isolated from the postnatal brain reprogrammed either with Neurogenin-2 (Neurog2 or Achaete scute homolog-1 (Ascl1. We show that cerebellum (CerebAstro and cerebral cortex astroglia (CtxAstro generates iNs with distinctive neurochemical and morphological properties. Both astroglial populations contribute iNs to the olfactory bulb following transplantation in the postnatal and adult mouse subventricular zone. However, only CtxAstro transfected with Neurog2 differentiate into pyramidal-like iNs after transplantation in the postnatal cerebral cortex. Altogether, our data indicate that the origin of the astroglial population and transcription factors used for reprogramming, as well as the region of integration, affect the fate of iNs.

  1. Androgens inhibit adipogenesis during human adipose stem cell commitment to preadipocyte formation.

    Science.gov (United States)

    Chazenbalk, Gregorio; Singh, Prapti; Irge, Dana; Shah, Amy; Abbott, David H; Dumesic, Daniel A

    2013-09-01

    Androgens play a pivotal role in the regulation of body fat distribution. Adipogenesis is a process whereby multipotent adipose stem cells (ASCs) initially become preadipocytes (ASC commitment to preadipocytes) before differentiating into adipocytes. Androgens inhibit human (h) subcutaneous (SC) abdominal preadipocyte differentiation in both sexes, but their effects on hASC commitment to preadipocyte formation is unknown. We therefore examined whether androgen exposure to human (h) ASCs, isolated from SC abdominal adipose of nonobese women, impairs their commitment to preadipocyte formation and/or subsequent differentiation into adipocytes. For this, isolated hASCs from SC abdominal lipoaspirate were cultured in adipogenesis-inducing medium for 0.5-14days in the presence of testosterone (T, 0-100nM) or dihydrotestosterone (DHT, 0-50nM). Adipogenesis was determined by immunofluorescence microscopy and by quantification of adipogenically relevant transcriptional factors, PPARγ, C/EBPα and C/EBPβ. We found that a 3-day exposure of hASCs to T (50nM) or DHT (5nM) in adipogenesis-inducing medium impaired lipid acquisition and decreased PPARγ, C/EBPα and C/EBPβ gene expression. The inhibitory effects of T and DHT at this early-stage of adipocyte differentiation, were partially and completely reversed by flutamide (F, 100nM), respectively. The effect of androgens on hASC commitment to a preadipocyte phenotype was examined via activation of Bone Morphogenic Protein 4 (BMP4) signaling. T (50nM) and DHT (5nM) significantly inhibited the stimulatory effect of BMP4-induced ASC commitment to the preadipocyte phenotype, as regards PPARγ and C/EBPα gene expression. Our findings indicate that androgens, in part through androgen receptor action, impair BMP4-induced commitment of SC hASCs to preadipocytes and also reduce early-stage adipocyte differentiation, perhaps limiting adipocyte numbers and fat storage in SC abdominal adipose. Copyright © 2013 Elsevier Inc. All rights

  2. Murine Mesenchymal Stem Cell Commitment to Differentiation Is Regulated by Mitochondrial Dynamics.

    Science.gov (United States)

    Forni, Maria Fernanda; Peloggia, Julia; Trudeau, Kyle; Shirihai, Orian; Kowaltowski, Alicia J

    2016-03-01

    Mouse skin mesenchymal stem cells (msMSCs) are dermis CD105(+) CD90(+) CD73(+) CD29(+) CD34(-) mesodermal precursors which, after in vitro induction, undergo chondro, adipo, and osteogenesis. Extensive metabolic reconfiguration has been found to occur during differentiation, and the bioenergetic status of a cell is known to be dependent on the quality and abundance of the mitochondrial population, which may be regulated by fusion and fission. However, little is known regarding the impact of mitochondrial dynamics on the differentiation process. We addressed this knowledge gap by isolating MSCs from Swiss female mice, inducing these cells to differentiate into osteo, chondro, and adipocytes and measuring changes in mass, morphology, dynamics, and bioenergetics. Mitochondrial biogenesis was increased in adipogenesis, as evaluated through confocal microscopy, citrate synthase activity, and mtDNA content. The early steps of adipo and osteogenesis involved mitochondrial elongation, as well as increased expression of mitochondrial fusion proteins Mfn1 and 2. Chondrogenesis involved a fragmented mitochondrial phenotype, increased expression of fission proteins Drp1, Fis1, and 2, and enhanced mitophagy. These events were accompanied by profound bioenergetic alterations during the commitment period. Moreover, knockdown of Mfn2 in adipo and osteogenesis and the overexpression of a dominant negative form of Drp1 during chondrogenesis resulted in a loss of differentiation ability. Overall, we find that mitochondrial morphology and its regulating processes of fission/fusion are modulated early on during commitment, leading to alterations in the bioenergetic profile that are important for differentiation. We thus propose a central role for mitochondrial dynamics in the maintenance/commitment of mesenchymal stem cells. © 2015 AlphaMed Press.

  3. Langerhans cell sarcoma with lineage infidelity/plasticity: a diagnostic challenge and insight into the pathobiology of the disease.

    Science.gov (United States)

    Karai, Laszlo J; Sanik, Eugene; Ricotti, Carlos A; Susa, Joseph; Sinkre, Prasanna; Aleodor, Andea A

    2015-11-01

    Langerhans cell sarcoma is a very rare and aggressive tumor of Langerhans cell lineage, for which aberrant expression of T-cell-related antigens has not yet been reported in a primary skin tumor. The authors describe the first known case of a primary cutaneous Langerhans cell sarcoma with lineage infidelity and use comparative genomic hybridization to investigate the genetic composition of the tumor and detect DNA copy number alterations throughout its entire genome. The case involves a 62-year-old woman who presented with an irregular nodule on the forehead surrounded by smaller lesions in its vicinity. The clinical impression was melanoma with satellitosis. The biopsy specimen showed an epidermotropic tumor with moderate-to-marked cellular pleomorphism and significantly increased mitotic rate but no necrosis. The immunoprofile of the lesion was remarkable, as next to common Langerhans cell markers: Langerin, CD1a, S100, and CD4; it also exhibited an aberrant T-cell phenotype with the expression of CD2, CD3, and CD43. In addition, fascin and CD30 were also expressed, further exaggerating potential diagnostic pitfalls. Langerhans cell lineage was confirmed by the demonstration of characteristic Birbeck granules on electron microscopy. Whole genome analysis for copy number changes and loss of heterozygosity showed a complex karyotype with variable hyperdiploidy and numerous allelic imbalances. Significant findings included a homozygous deletion at 9p21 involving the CDKN2A and loss of heterozygosity at 17p involving TP53 gene, coupled with a TP53 missense mutation. Despite reexcision and multiagent systemic chemotherapy, the patient died of metastasis 2 years after diagnosis. This case is an outstanding example of lineage infidelity in a hematologic malignancy and the utilization of comparative genomic hybridization in characterizing its genetic abnormalities.

  4. Lineage-specific interface proteins match up the cell cycle and differentiation in embryo stem cells

    DEFF Research Database (Denmark)

    Re, Angela; Workman, Christopher; Waldron, Levi

    2014-01-01

    The shortage of molecular information on cell cycle changes along embryonic stem cell (ESC) differentiation prompts an in silico approach, which may provide a novel way to identify candidate genes or mechanisms acting in coordinating the two programs. We analyzed germ layer specific gene expression...... changes during the cell cycle and ESC differentiation by combining four human cell cycle transcriptome profiles with thirteen in vitro human ESC differentiation studies. To detect cross-talk mechanisms we then integrated the transcriptome data that displayed differential regulation with protein...... interaction data. A new class of non-transcriptionally regulated genes was identified, encoding proteins which interact systematically with proteins corresponding to genes regulated during the cell cycle or cell differentiation, and which therefore can be seen as interface proteins coordinating the two...

  5. Trophic factors from adipose tissue-derived multi-lineage progenitor cells promote cytodifferentiation of periodontal ligament cells

    Energy Technology Data Exchange (ETDEWEB)

    Sawada, Keigo [Department of Periodontology, Osaka University Graduate School of Dentistry, Osaka (Japan); Takedachi, Masahide, E-mail: takedati@dent.osaka-u.ac.jp [Department of Periodontology, Osaka University Graduate School of Dentistry, Osaka (Japan); Yamamoto, Satomi; Morimoto, Chiaki; Ozasa, Masao; Iwayama, Tomoaki [Department of Periodontology, Osaka University Graduate School of Dentistry, Osaka (Japan); Lee, Chun Man [Medical Center for Translational Research, Osaka University Hospital, Osaka (Japan); Okura, Hanayuki; Matsuyama, Akifumi [Research on Disease Bioresources, Platform of Therapeutics for Rare Disease, National Institute of Biomedical Innovation, Osaka (Japan); Kitamura, Masahiro; Murakami, Shinya [Department of Periodontology, Osaka University Graduate School of Dentistry, Osaka (Japan)

    2015-08-14

    Stem and progenitor cells are currently being investigated for their applicability in cell-based therapy for periodontal tissue regeneration. We recently demonstrated that the transplantation of adipose tissue-derived multi-lineage progenitor cells (ADMPCs) enhances periodontal tissue regeneration in beagle dogs. However, the molecular mechanisms by which transplanted ADMPCs induce periodontal tissue regeneration remain to be elucidated. In this study, trophic factors released by ADMPCs were examined for their paracrine effects on human periodontal ligament cell (HPDL) function. ADMPC conditioned medium (ADMPC-CM) up-regulated osteoblastic gene expression, alkaline phosphatase activity and calcified nodule formation in HPDLs, but did not significantly affect their proliferative response. ADMPCs secreted a number of growth factors, including insulin-like growth factor binding protein 6 (IGFBP6), hepatocyte growth factor and vascular endothelial growth factor. Among these, IGFBP6 was most highly expressed. Interestingly, the positive effects of ADMPC-CM on HPDL differentiation were significantly suppressed by transfecting ADMPCs with IGFBP6 siRNA. Our results suggest that ADMPCs transplanted into a defect in periodontal tissue release trophic factors that can stimulate the differentiation of HPDLs to mineralized tissue-forming cells, such as osteoblasts and cementoblasts. IGFBP6 may play crucial roles in ADMPC-induced periodontal regeneration. - Highlights: • ADMPC-derived humoral factors stimulate cytodifferentiation of HPDLs. • ADMPCs secret growth factors including IGFBP6, VEGF and HGF. • IGFBP6 is involved in the promotion effect of ADMPC-CM on HPDL cytodifferentiation.

  6. Trophic factors from adipose tissue-derived multi-lineage progenitor cells promote cytodifferentiation of periodontal ligament cells

    International Nuclear Information System (INIS)

    Sawada, Keigo; Takedachi, Masahide; Yamamoto, Satomi; Morimoto, Chiaki; Ozasa, Masao; Iwayama, Tomoaki; Lee, Chun Man; Okura, Hanayuki; Matsuyama, Akifumi; Kitamura, Masahiro; Murakami, Shinya

    2015-01-01

    Stem and progenitor cells are currently being investigated for their applicability in cell-based therapy for periodontal tissue regeneration. We recently demonstrated that the transplantation of adipose tissue-derived multi-lineage progenitor cells (ADMPCs) enhances periodontal tissue regeneration in beagle dogs. However, the molecular mechanisms by which transplanted ADMPCs induce periodontal tissue regeneration remain to be elucidated. In this study, trophic factors released by ADMPCs were examined for their paracrine effects on human periodontal ligament cell (HPDL) function. ADMPC conditioned medium (ADMPC-CM) up-regulated osteoblastic gene expression, alkaline phosphatase activity and calcified nodule formation in HPDLs, but did not significantly affect their proliferative response. ADMPCs secreted a number of growth factors, including insulin-like growth factor binding protein 6 (IGFBP6), hepatocyte growth factor and vascular endothelial growth factor. Among these, IGFBP6 was most highly expressed. Interestingly, the positive effects of ADMPC-CM on HPDL differentiation were significantly suppressed by transfecting ADMPCs with IGFBP6 siRNA. Our results suggest that ADMPCs transplanted into a defect in periodontal tissue release trophic factors that can stimulate the differentiation of HPDLs to mineralized tissue-forming cells, such as osteoblasts and cementoblasts. IGFBP6 may play crucial roles in ADMPC-induced periodontal regeneration. - Highlights: • ADMPC-derived humoral factors stimulate cytodifferentiation of HPDLs. • ADMPCs secret growth factors including IGFBP6, VEGF and HGF. • IGFBP6 is involved in the promotion effect of ADMPC-CM on HPDL cytodifferentiation

  7. A reaction–diffusion mechanism influences cell lineage progression as a basis for formation, regeneration, and stability of intestinal crypts

    Directory of Open Access Journals (Sweden)

    Zhang Lei

    2012-07-01

    Full Text Available Abstract Background Colon crypts, a single sheet of epithelia cells, consist of a periodic pattern of stem cells, transit-amplifying cells, and terminally differentiated cells that constantly renew and turnover. Experimental evidence suggests that Wnt signaling promotes and regulates stem cell division, differentiation, and possible cell migrations while intestinal BMP signaling inhibits stem cell self-renewal and repression in crypt formation. As more molecular details on Wnt and BMP in crypts are being discovered, little is still known about how complex interactions among Wnt, BMP, and different types of cells, and surrounding environments may lead to de novo formation of multiple crypts or how such interactions affect regeneration and stability of crypts. Results We present a mathematical model that contains Wnt and BMP, a cell lineage, and their feedback regulations to study formation, regeneration, and stability of multiple crypts. The computational explorations and linear stability analysis of the model suggest a reaction–diffusion mechanism, which exhibits a short-range activation of Wnt plus a long-range inhibition with modulation of BMP signals in a growing tissue of cell lineage, can account for spontaneous formation of multiple crypts with the spatial and temporal pattern observed in experiments. Through this mechanism, the model can recapitulate some distinctive and important experimental findings such as crypt regeneration and crypt multiplication. BMP is important in maintaining stability of crypts and loss of BMP usually leads to crypt multiplication with a fingering pattern. Conclusions The study provides a mechanism for de novo formation of multiple intestinal crypts and demonstrates a synergetic role of Wnt and BMP in regeneration and stability of intestinal crypts. The proposed model presents a robust framework for studying spatial and temporal dynamics of cell lineages in growing tissues driven by multiple signaling

  8. The Transcription Factor 7-Like 2-Peroxisome Proliferator-Activated Receptor Gamma Coactivator-1 Alpha Axis Connects Mitochondrial Biogenesis and Metabolic Shift with Stem Cell Commitment to Hepatic Differentiation.

    Science.gov (United States)

    Wanet, Anaïs; Caruso, Marino; Domelevo Entfellner, Jean-Baka; Najar, Mehdi; Fattaccioli, Antoine; Demazy, Catherine; Evraerts, Jonathan; El-Kehdy, Hoda; Pourcher, Guillaume; Sokal, Etienne; Arnould, Thierry; Tiffin, Nicki; Najimi, Mustapha; Renard, Patricia

    2017-10-01

    Increasing evidence supports that modifications in the mitochondrial content, oxidative phosphorylation (OXPHOS) activity, and cell metabolism influence the fate of stem cells. However, the regulators involved in the crosstalk between mitochondria and stem cell fate remains poorly characterized. Here, we identified a transcriptional regulatory axis, composed of transcription factor 7-like 2 (TCF7L2) (a downstream effector of the Wnt/β-catenin pathway, repressed during differentiation) and peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α) (the master regulator of mitochondrial biogenesis, induced during differentiation), coupling the loss of pluripotency and early commitment to differentiation, to the initiation of mitochondrial biogenesis and metabolic shift toward OXPHOS. PGC-1α induction during differentiation is required for both mitochondrial biogenesis and commitment to the hepatocytic lineage, and TCF7L2 repression is sufficient to increase PGC-1α expression, mitochondrial biogenesis and OXPHOS activity. We further demonstrate that OXPHOS activity is required for the differentiation toward the hepatocytic lineage, thus providing evidence that bi-directional interactions control stem cell differentiation and mitochondrial abundance and activity. Stem Cells 2017;35:2184-2197. © 2017 AlphaMed Press.

  9. The epigenetic control of stemness in CD8+T cell fate commitment.

    Science.gov (United States)

    Pace, Luigia; Goudot, Christel; Zueva, Elina; Gueguen, Paul; Burgdorf, Nina; Waterfall, Joshua J; Quivy, Jean-Pierre; Almouzni, Geneviève; Amigorena, Sebastian

    2018-01-12

    After priming, naïve CD8 + T lymphocytes establish specific heritable transcription programs that define progression to long-lasting memory cells or to short-lived effector cells. Although lineage specification is critical for protection, it remains unclear how chromatin dynamics contributes to the control of gene expression programs. We explored the role of gene silencing by the histone methyltransferase Suv39h1. In murine CD8 + T cells activated after Listeria monocytogenes infection, Suv39h1-dependent trimethylation of histone H3 lysine 9 controls the expression of a set of stem cell-related memory genes. Single-cell RNA sequencing revealed a defect in silencing of stem/memory genes selectively in Suv39h1 -defective T cell effectors. As a result, Suv39h1 -defective CD8 + T cells show sustained survival and increased long-term memory reprogramming capacity. Thus, Suv39h1 plays a critical role in marking chromatin to silence stem/memory genes during CD8 + T effector terminal differentiation. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  10. Cord blood-derived macrophage-lineage cells rapidly stimulate osteoblastic maturation in mesenchymal stem cells in a glycoprotein-130 dependent manner.

    Directory of Open Access Journals (Sweden)

    Tania J Fernandes

    Full Text Available In bone, depletion of osteoclasts reduces bone formation in vivo, as does osteal macrophage depletion. How osteoclasts and macrophages promote the action of bone forming osteoblasts is, however, unclear. Since recruitment and differentiation of multi-potential stromal cells/mesenchymal stem cells (MSC generates new active osteoblasts, we investigated whether human osteoclasts and macrophages (generated from cord blood-derived hematopoietic progenitors induce osteoblastic maturation in adipose tissue-derived MSC. When treated with an osteogenic stimulus (ascorbate, dexamethasone and β-glycerophosphate these MSC form matrix-mineralising, alkaline phosphatase-expressing osteoblastic cells. Cord blood-derived progenitors were treated with macrophage colony stimulating factor (M-CSF to form immature proliferating macrophages, or with M-CSF plus receptor activator of NFκB ligand (RANKL to form osteoclasts; culture medium was conditioned for 3 days by these cells to study their production of osteoblastic factors. Both osteoclast- and macrophage-conditioned medium (CM greatly enhanced MSC osteoblastic differentiation in both the presence and absence of osteogenic medium, evident by increased alkaline phosphatase levels within 4 days and increased mineralisation within 14 days. These CM effects were completely ablated by antibodies blocking gp130 or oncostatin M (OSM, and OSM was detectable in both CM. Recombinant OSM very potently stimulated osteoblastic maturation of these MSC and enhanced bone morphogenetic protein-2 (BMP-2 actions on MSC. To determine the influence of macrophage activation on this OSM-dependent activity, CM was collected from macrophage populations treated with M-CSF plus IL-4 (to induce alternative activation or with GM-CSF, IFNγ and LPS to cause classical activation. CM from IL-4 treated macrophages stimulated osteoblastic maturation in MSC, while CM from classically-activated macrophages did not. Thus, macrophage-lineage cells

  11. Cell lineage specific distribution of H3K27 trimethylation accumulation in an in vitro model for human implantation.

    Directory of Open Access Journals (Sweden)

    Gijs Teklenburg

    Full Text Available Female mammals inactivate one of their two X-chromosomes to compensate for the difference in gene-dosage with males that have just one X-chromosome. X-chromosome inactivation is initiated by the expression of the non-coding RNA Xist, which coats the X-chromosome in cis and triggers gene silencing. In early mouse development the paternal X-chromosome is initially inactivated in all cells of cleavage stage embryos (imprinted X-inactivation followed by reactivation of the inactivated paternal X-chromosome exclusively in the epiblast precursors of blastocysts, resulting temporarily in the presence of two active X-chromosomes in this specific lineage. Shortly thereafter, epiblast cells randomly inactivate either the maternal or the paternal X-chromosome. XCI is accompanied by the accumulation of histone 3 lysine 27 trimethylation (H3K27me3 marks on the condensed X-chromosome. It is still poorly understood how XCI is regulated during early human development. Here we have investigated lineage development and the distribution of H3K27me3 foci in human embryos derived from an in-vitro model for human implantation. In this system, embryos are co-cultured on decidualized endometrial stromal cells up to day 8, which allows the culture period to be extended for an additional two days. We demonstrate that after the co-culture period, the inner cell masses have relatively high cell numbers and that the GATA4-positive hypoblast lineage and OCT4-positive epiblast cell lineage in these embryos have segregated. H3K27me3 foci were observed in ∼25% of the trophectoderm cells and in ∼7.5% of the hypoblast cells, but not in epiblast cells. In contrast with day 8 embryos derived from the co-cultures, foci of H3K27me3 were not observed in embryos at day 5 of development derived from regular IVF-cultures. These findings indicate that the dynamics of H3K27me3 accumulation on the X-chromosome in human development is regulated in a lineage specific fashion.

  12. Plasticity of mesenchymal stem cells under microgravity: from cytoskeletal reorganization to commitment shift

    Science.gov (United States)

    Buravkova, Ludmila

    Mesenchymal stem cells (MSCs) can be used to examine osteogenesis of uncommitted cells maintaining the bone differentiation potential such as osteogenic gene expression, osteogenic markers, matrix maturation and mineralization. MSCs are therefore a good model for studying osteogenesis in the space environment. Recent investigations have demonstrated that MSCs change in response to microgravity and, consequently, can be involved in the development of osteopenia detected in space travelers. This is a factor that can limit human space missions due to potential risks of osteoporosis and its aftereffects during and after flight. Simulated microgravity inhibited MSC differentiation towards osteoblasts and accelerated adipocyte development due to cytoskeleton modifications, including its structure and regulation associated with signal transduction cascades. We identified transient changes in the actin cytoskeleton of non-committed human bone marrow MSCs in short-term RPM experiments. In addition, we detected transient changes in the expression of genes encoding actin cytoskeleton proteins and associated elements (ACTA1, ACTG, RHOA, CFL1, VCL). When discussing the microgravity effects on MSC osteogenic differentiation, it should be mentioned the inhibition of Runx2 and ALPL and stimulation of PPARg2 in the MSCs induced for osteogenesis. It is probable that the reciprocal regulation of the two transcription factors is a molecular mechanism underlying progenitor cell response to microgravity. It is very likely that these genes are involved in the universal circuits within which mechanical (or gravity ) signals are sensed by MSCs. Recently, the list of osteogenic markers was extended to include several new proteins as microgravity targets (proteoglycans, osteomodulin, osteoglycin). It can be believed that exposure to microgravity produces similar effects on mature bone cells (osteoblasts) and non-committed osteogenic cells (MSCs). This finds a support in the fact that

  13. Lineage tracing of neuromesodermal progenitors reveals novel Wnt-dependent roles in trunk progenitor cell maintenance and differentiation.

    Science.gov (United States)

    Garriock, Robert J; Chalamalasetty, Ravindra B; Kennedy, Mark W; Canizales, Lauren C; Lewandoski, Mark; Yamaguchi, Terry P

    2015-05-01

    In the development of the vertebrate body plan, Wnt3a is thought to promote the formation of paraxial mesodermal progenitors (PMPs) of the trunk region while suppressing neural specification. Recent lineage-tracing experiments have demonstrated that these trunk neural progenitors and PMPs derive from a common multipotent progenitor called the neuromesodermal progenitor (NMP). NMPs are known to reside in the anterior primitive streak (PS) region; however, the extent to which NMPs populate the PS and contribute to the vertebrate body plan, and the precise role that Wnt3a plays in regulating NMP self-renewal and differentiation are unclear. To address this, we used cell-specific markers (Sox2 and T) and tamoxifen-induced Cre recombinase-based lineage tracing to locate putative NMPs in vivo. We provide functional evidence for NMP location primarily in the epithelial PS, and to a lesser degree in the ingressed PS. Lineage-tracing studies in Wnt3a/β-catenin signaling pathway mutants provide genetic evidence that trunk progenitors normally fated to enter the mesodermal germ layer can be redirected towards the neural lineage. These data, combined with previous PS lineage-tracing studies, support a model that epithelial anterior PS cells are Sox2(+)T(+) multipotent NMPs and form the bulk of neural progenitors and PMPs of the posterior trunk region. Finally, we find that Wnt3a/β-catenin signaling directs trunk progenitors towards PMP fates; however, our data also suggest that Wnt3a positively supports a progenitor state for both mesodermal and neural progenitors. © 2015. Published by The Company of Biologists Ltd.

  14. Human primordial germ cell commitment in vitro associates with a unique PRDM14 expression profile.

    Science.gov (United States)

    Sugawa, Fumihiro; Araúzo-Bravo, Marcos J; Yoon, Juyong; Kim, Kee-Pyo; Aramaki, Shinya; Wu, Guangming; Stehling, Martin; Psathaki, Olympia E; Hübner, Karin; Schöler, Hans R

    2015-04-15

    Primordial germ cells (PGCs) develop only into sperm and oocytes in vivo. The molecular mechanisms underlying human PGC specification are poorly understood due to inaccessibility of cell materials and lack of in vitro models for tracking the earliest stages of germ cell development. Here, we describe a defined and stepwise differentiation system for inducing pre-migratory PGC-like cells (PGCLCs) from human pluripotent stem cells (PSCs). In response to cytokines, PSCs differentiate first into a heterogeneous mesoderm-like cell population and then into PGCLCs, which exhibit minimal PRDM14 expression. PGC specification in humans is similar to the murine process, with the sequential activation of mesodermal and PGC genes, and the suppression of neural induction and of de novo DNA methylation, suggesting that human PGC formation is induced via epigenesis, the process of germ cell specification via inductive signals from surrounding somatic cells. This study demonstrates that PGC commitment in humans shares key features with that of the mouse, but also highlights key differences, including transcriptional regulation during the early stage of human PGC development (3-6 weeks). A more comprehensive understanding of human germ cell development may lead to methodology for successfully generating PSC-derived gametes for reproductive medicine. © 2015 The Authors. Published under the terms of the CC BY NC ND 4.0 license.

  15. Cell lineage and cell cycling analyses of the 4d micromere using live imaging in the marine annelidPlatynereis dumerilii.

    Science.gov (United States)

    Özpolat, B Duygu; Handberg-Thorsager, Mette; Vervoort, Michel; Balavoine, Guillaume

    2017-12-12

    Cell lineage, cell cycle, and cell fate are tightly associated in developmental processes, but in vivo studies at single-cell resolution showing the intricacies of these associations are rare due to technical limitations. In this study on the marine annelid Platynereis dumerilii, we investigated the lineage of the 4d micromere, using high-resolution long-term live imaging complemented with a live-cell cycle reporter. 4d is the origin of mesodermal lineages and the germline in many spiralians. We traced lineages at single-cell resolution within 4d and demonstrate that embryonic segmental mesoderm forms via teloblastic divisions, as in clitellate annelids. We also identified the precise cellular origins of the larval mesodermal posterior growth zone. We found that differentially-fated progeny of 4d (germline, segmental mesoderm, growth zone) display significantly different cell cycling. This work has evolutionary implications, sets up the foundation for functional studies in annelid stem cells, and presents newly established techniques for live imaging marine embryos.

  16. Adipogenic placenta-derived mesenchymal stem cells are not lineage restricted by withdrawing extrinsic factors: developing a novel visual angle in stem cell biology.

    Science.gov (United States)

    Hu, C; Cao, H; Pan, X; Li, J; He, J; Pan, Q; Xin, J; Yu, X; Li, J; Wang, Y; Zhu, D; Li, L

    2016-03-17

    Current evidence implies that differentiated bone marrow mesenchymal stem cells (BMMSCs) can act as progenitor cells and transdifferentiate across lineage boundaries. However, whether this unrestricted lineage has specificities depending on the stem cell type is unknown. Placental-derived mesenchymal stem cells (PDMSCs), an easily accessible and less invasive source, are extremely useful materials in current stem cell therapies. No studies have comprehensively analyzed the transition in morphology, surface antigens, metabolism and multilineage potency of differentiated PDMSCs after their dedifferentiation. In this study, we showed that after withdrawing extrinsic factors, adipogenic PDMSCs reverted to a primitive cell population and retained stem cell characteristics. The mitochondrial network during differentiation and dedifferentiation may serve as a marker of absent or acquired pluripotency in various stem cell models. The new population proliferated faster than unmanipulated PDMSCs and could be differentiated into adipocytes, osteocytes and hepatocytes. The cell adhesion molecules (CAMs) signaling pathway and extracellular matrix (ECM) components modulate cell behavior and enable the cells to proliferate or differentiate during the differentiation, dedifferentiation and redifferentiation processes in our study. These observations indicate that the dedifferentiated PDMSCs are distinguishable from the original PDMSCs and may serve as a novel source in stem cell biology and cell-based therapeutic strategies. Furthermore, whether PDMSCs differentiated into other lineages can be dedifferentiated to a primitive cell population needs to be investigated.

  17. The sp7 gene is required for maturation of osteoblast-lineage cells in medaka (Oryzias latipes) vertebral column development.

    Science.gov (United States)

    Azetsu, Yuki; Inohaya, Keiji; Takano, Yoshiro; Kinoshita, Masato; Tasaki, Mai; Kudo, Akira

    2017-11-15

    Sp7 is a zinc finger transcription factor that is essential for osteoblast differentiation in mammals. To verify the characteristic features of osteoblast-lineage cells in teleosts, we established medaka sp7 mutants using a transcription activator-like effector nuclease (TALEN) genome editing system. These mutants showed severe defects in the formation of skeletal structures. In particular, the neural and the hemal arches were not formed, although the chordal centra were formed. Analysis of the transgenic medaka revealed that sp7 mutant had normal distribution of type X collagen a1 a (col10a1a)-positive osteoblast-like cells around the centrum and at the proximal region of the vertebral arch. The sp7 mutant phenotype could be rescued by exogenous sp7 expression in col10a1a-positive cells, as well as in sp7-positive osteoblast cells. Furthermore, runx2-positive osteoblast progenitors were observed on the vertebral arches, but not on the centrum, during vertebral column development. In addition, these osteoblast progenitors differentiated into the col10a1a-positive cells. In sp7 mutant, the runx2-positive cells were normally distributed at the region of unformed vertebral arch but failed to differentiate into col10a1a-positive cells. These results indicate that osteoblast-lineage cells undergo two distinct differentiation processes during development of the vertebral arch and the centrum. Nevertheless, our results verified that sp7 gene expression in osteoblast-lineage cells is required for differentiation into mature osteoblasts to form the vertebral column and other skeletal structures. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Genome-wide ChIP-seq and RNA-seq analyses of Pou3f1 during mouse pluripotent stem cell neural fate commitment.

    Science.gov (United States)

    Song, Lu; Sun, Na; Peng, Guangdun; Chen, Jun; Han, Jing-Dong Jackie; Jing, Naihe

    2015-09-01

    Appropriate neural initiation of the pluripotent stem cells in the early embryos is critical for the development of the central nervous system. This process is regulated by the coordination of extrinsic signals and intrinsic programs. However, how the coordination is achieved to ensure proper neural fate commitment is largely unknown. Here, taking advantage of genome-wide ChIP-sequencing (ChIP-seq) and RNA-sequencing (RNA-seq) analyses, we demonstrate that the transcriptional factor Pou3f1 is an upstream activator of neural-promoting genes, and it is able to repress neural-inhibitory signals as well. Further studies revealed that Pou3f1 could directly bind neural lineage genes like Sox2 and downstream targets of neural inhibition signaling such as BMP and Wnt. Our results thus identify Pou3f1 as a critical dual-regulator of the intrinsic transcription factors and the extrinsic cellular signals during neural fate commitment. Data were deposited in Gene Expression Omnibus (GEO) datasets under reference number GSE69865.

  19. Fibroblasts isolated from human middle turbinate mucosa cause neural progenitor cells to differentiate into glial lineage cells.

    Directory of Open Access Journals (Sweden)

    Xingjia Wu

    Full Text Available Transplantation of olfactory ensheathing cells (OECs is a potential therapy for repair of spinal cord injury (SCI. Autologous transplantation of OECs has been reported in clinical trials. However, it is still controversial whether purified OECs or olfactory mucosa containing OECs, fibroblasts and other cells should be used for transplantation. OECs and fibroblasts were isolated from olfactory mucosa of the middle turbinate from seven patients. The percentage of OECs with p75(NTR+ and GFAP(+ ranged from 9.2% to 73.2%. Fibroblasts were purified and co-cultured with normal human neural progenitors (NHNPs. Based on immunocytochemical labeling, NHNPs were induced into glial lineage cells when they were co-cultured with the mucosal fibroblasts. These results demonstrate that OECs can be isolated from the mucosa of the middle turbinate bone as well as from the dorsal nasal septum and superior turbinates, which are the typical sites for harvesting OECs. Transplantation of olfactory mucosa containing fibroblasts into the central nervous system (CNS needs to be further investigated before translation to clinical application.

  20. Neural induction from ES cells portrays default commitment but instructive maturation.

    Directory of Open Access Journals (Sweden)

    Nibedita Lenka

    Full Text Available The neural induction has remained a debatable issue pertaining to whether it is a mere default process or it involves precise instructive cues. We have chosen the embryonic stem (ES cell model to address this issue. In a devised monoculture strategy, the cell-cell interaction availed through optimum cell plating density could define the niche for the attainment of efficient in vitro neurogenesis from the ES cells. The medium plating density was found ideal in generating optimum number of progenitors and also yielded about 80% mature neurons in a serum free culture set up barring any exogenous inducers. We could also demarcate and quantify the neural stem cells/progenitors among the heterogeneous cell population of differentiating ES cells using nestin intron II driven EGFP expression as a tool. The one week post-plating was determined to be the critical time window for optimum neural progenitor generation from ES cells that helped us further in purifying these cells and in demonstrating their proliferation and multipotent differentiation potential. Seeding cells at varying densities, we could decipher an interesting paradoxical scenario that interlinked both commitment and maturation with the initial plating density having a vital influence on neuronal maturation but not specification and the secretory factors were apparently playing a key role during this process. Thus it was comprehended that, the neural specification was a default process independent of exogenous factors and cellular interaction. Conversely, a defined number of cells at the specification stage itself seemed critical to provide an auto-/paracrine means of signaling threshold for the maturation process to materialize.

  1. BRILIA: Integrated Tool for High-Throughput Annotation and Lineage Tree Assembly of B-Cell Repertoires

    Science.gov (United States)

    Lee, Donald W.; Khavrutskii, Ilja V.; Wallqvist, Anders; Bavari, Sina; Cooper, Christopher L.; Chaudhury, Sidhartha

    2017-01-01

    The somatic diversity of antigen-recognizing B-cell receptors (BCRs) arises from Variable (V), Diversity (D), and Joining (J) (VDJ) recombination and somatic hypermutation (SHM) during B-cell development and affinity maturation. The VDJ junction of the BCR heavy chain forms the highly variable complementarity determining region 3 (CDR3), which plays a critical role in antigen specificity and binding affinity. Tracking the selection and mutation of the CDR3 can be useful in characterizing humoral responses to infection and vaccination. Although tens to hundreds of thousands of unique BCR genes within an expressed B-cell repertoire can now be resolved with high-throughput sequencing, tracking SHMs is still challenging because existing annotation methods are often limited by poor annotation coverage, inconsistent SHM identification across the VDJ junction, or lack of B-cell lineage data. Here, we present B-cell repertoire inductive lineage and immunosequence annotator (BRILIA), an algorithm that leverages repertoire-wide sequencing data to globally improve the VDJ annotation coverage, lineage tree assembly, and SHM identification. On benchmark tests against simulated human and mouse BCR repertoires, BRILIA correctly annotated germline and clonally expanded sequences with 94 and 70% accuracy, respectively, and it has a 90% SHM-positive prediction rate in the CDR3 of heavily mutated sequences; these are substantial improvements over existing methods. We used BRILIA to process BCR sequences obtained from splenic germinal center B cells extracted from C57BL/6 mice. BRILIA returned robust B-cell lineage trees and yielded SHM patterns that are consistent across the VDJ junction and agree with known biological mechanisms of SHM. By contrast, existing BCR annotation tools, which do not account for repertoire-wide clonal relationships, systematically underestimated both the size of clonally related B-cell clusters and yielded inconsistent SHM frequencies. We demonstrate

  2. Reactive astrocytes as neural stem or progenitor cells: In vivo lineage, In vitro potential, and Genome-wide expression analysis.

    Science.gov (United States)

    Götz, Magdalena; Sirko, Swetlana; Beckers, Johannes; Irmler, Martin

    2015-08-01

    Here, we review the stem cell hallmarks of endogenous neural stem cells (NSCs) during development and in some niches of the adult mammalian brain to then compare these with reactive astrocytes acquiring stem cell hallmarks after traumatic and ischemic brain injury. Notably, even endogenous NSCs including the earliest NSCs, the neuroepithelial cells, generate in most cases only a single type of progeny and self-renew only for a rather short time in vivo. In vitro, however, especially cells cultured under neurosphere conditions reveal a larger potential and long-term self-renewal under the influence of growth factors. This is rather well comparable to reactive astrocytes in the traumatic or ischemic brain some of which acquire neurosphere-forming capacity including multipotency and long-term self-renewal in vitro, while they remain within their astrocyte lineage in vivo. Both reactive astrocytes and endogenous NSCs exhibit stem cell hallmarks largely in vitro, but their lineage differs in vivo. Both populations generate largely a single cell type in vivo, but endogenous NSCs generate neurons and reactive astrocytes remain in the astrocyte lineage. However, at some early postnatal stages or in some brain regions reactive astrocytes can be released from this fate restriction, demonstrating that they can also enact neurogenesis. Thus, reactive astrocytes and NSCs share many characteristic hallmarks, but also exhibit key differences. This conclusion is further substantiated by genome-wide expression analysis comparing NSCs at different stages with astrocytes from the intact and injured brain parenchyma. © 2015 The Authors. Glia Published by Wiley Periodicals, Inc.

  3. Reactive astrocytes as neural stem or progenitor cells: In vivo lineage, In vitro potential, and Genome‐wide expression analysis

    Science.gov (United States)

    Sirko, Swetlana; Beckers, Johannes; Irmler, Martin

    2015-01-01

    Here, we review the stem cell hallmarks of endogenous neural stem cells (NSCs) during development and in some niches of the adult mammalian brain to then compare these with reactive astrocytes acquiring stem cell hallmarks after traumatic and ischemic brain injury. Notably, even endogenous NSCs including the earliest NSCs, the neuroepithelial cells, generate in most cases only a single type of progeny and self‐renew only for a rather short time in vivo. In vitro, however, especially cells cultured under neurosphere conditions reveal a larger potential and long‐term self‐renewal under the influence of growth factors. This is rather well comparable to reactive astrocytes in the traumatic or ischemic brain some of which acquire neurosphere‐forming capacity including multipotency and long‐term self‐renewal in vitro, while they remain within their astrocyte lineage in vivo. Both reactive astrocytes and endogenous NSCs exhibit stem cell hallmarks largely in vitro, but their lineage differs in vivo. Both populations generate largely a single cell type in vivo, but endogenous NSCs generate neurons and reactive astrocytes remain in the astrocyte lineage. However, at some early postnatal stages or in some brain regions reactive astrocytes can be released from this fate restriction, demonstrating that they can also enact neurogenesis. Thus, reactive astrocytes and NSCs share many characteristic hallmarks, but also exhibit key differences. This conclusion is further substantiated by genome‐wide expression analysis comparing NSCs at different stages with astrocytes from the intact and injured brain parenchyma. GLIA 2015;63:1452–1468 PMID:25965557

  4. After Nerve Injury, Lineage Tracing Shows That Myelin and Remak Schwann Cells Elongate Extensively and Branch to Form Repair Schwann Cells, Which Shorten Radically on Remyelination.

    Science.gov (United States)

    Gomez-Sanchez, Jose A; Pilch, Kjara S; van der Lans, Milou; Fazal, Shaline V; Benito, Cristina; Wagstaff, Laura J; Mirsky, Rhona; Jessen, Kristjan R

    2017-09-13

    There is consensus that, distal to peripheral nerve injury, myelin and Remak cells reorganize to form cellular columns, Bungner's bands, which are indispensable for regeneration. However, knowledge of the structure of these regeneration tracks has not advanced for decades and the structure of the cells that form them, denervated or repair Schwann cells, remains obscure. Furthermore, the origin of these cells from myelin and Remak cells and their ability to give rise to myelin cells after regeneration has not been demonstrated directly, although these conversions are believed to be central to nerve repair. Using genetic lineage-tracing and scanning-block face electron microscopy, we show that injury of sciatic nerves from mice of either sex triggers extensive and unexpected Schwann cell elongation and branching to form long, parallel processes. Repair cells are 2- to 3-fold longer than myelin and Remak cells and 7- to 10-fold longer than immature Schwann cells. Remarkably, when repair cells transit back to myelinating cells, they shorten ∼7-fold to generate the typically short internodes of regenerated nerves. The present experiments define novel morphological transitions in injured nerves and show that repair Schwann cells have a cell-type-specific structure that differentiates them from other cells in the Schwann cell lineage. They also provide the first direct evidence using genetic lineage tracing for two basic assumptions in Schwann cell biology: that myelin and Remak cells generate the elongated cells that build Bungner bands in injured nerves and that such cells can transform to myelin cells after regeneration. SIGNIFICANCE STATEMENT After injury to peripheral nerves, the myelin and Remak Schwann cells distal to the injury site reorganize and modify their properties to form cells that support the survival of injured neurons, promote axon growth, remove myelin-associated growth inhibitors, and guide regenerating axons to their targets. We show that the

  5. Pleiotrophin commits human bone marrow mesenchymal stromal cells towards hypertrophy during chondrogenesis.

    Science.gov (United States)

    Bouderlique, Thibault; Henault, Emilie; Lebouvier, Angelique; Frescaline, Guilhem; Bierling, Phillipe; Rouard, Helene; Courty, José; Albanese, Patricia; Chevallier, Nathalie

    2014-01-01

    Pleiotrophin (PTN) is a growth factor present in the extracellular matrix of the growth plate during bone development and in the callus during bone healing. Bone healing is a complicated process that recapitulates endochondral bone development and involves many cell types. Among those cells, mesenchymal stromal cells (MSC) are able to differentiate toward chondrogenic and osteoblastic lineages. We aimed to determine PTN effects on differentiation properties of human bone marrow stromal cells (hBMSC) under chondrogenic induction using histological analysis and quantitative reverse transcription polymerase chain reaction. PTN dramatically potentiated chondrogenic differentiation as indicated by a strong increase of collagen 2 protein, and cartilage-related gene expression. Moreover, PTN increased transcription of hypertrophic chondrocyte markers such as MMP13, collagen 10 and alkaline phosphatase and enhanced calcification and the content of collagen 10 protein. These effects are dependent on PTN receptors signaling and PI3 K pathway activation. These data suggest a new role of PTN in bone regeneration as an inducer of hypertrophy during chondrogenic differentiation of hBMSC.

  6. Pleiotrophin commits human bone marrow mesenchymal stromal cells towards hypertrophy during chondrogenesis.

    Directory of Open Access Journals (Sweden)

    Thibault Bouderlique

    Full Text Available Pleiotrophin (PTN is a growth factor present in the extracellular matrix of the growth plate during bone development and in the callus during bone healing. Bone healing is a complicated process that recapitulates endochondral bone development and involves many cell types. Among those cells, mesenchymal stromal cells (MSC are able to differentiate toward chondrogenic and osteoblastic lineages. We aimed to determine PTN effects on differentiation properties of human bone marrow stromal cells (hBMSC under chondrogenic induction using histological analysis and quantitative reverse transcription polymerase chain reaction. PTN dramatically potentiated chondrogenic differentiation as indicated by a strong increase of collagen 2 protein, and cartilage-related gene expression. Moreover, PTN increased transcription of hypertrophic chondrocyte markers such as MMP13, collagen 10 and alkaline phosphatase and enhanced calcification and the content of collagen 10 protein. These effects are dependent on PTN receptors signaling and PI3 K pathway activation. These data suggest a new role of PTN in bone regeneration as an inducer of hypertrophy during chondrogenic differentiation of hBMSC.

  7. Interferon-alpha triggers B cell effector 1 (Be1 commitment.

    Directory of Open Access Journals (Sweden)

    Marie-Ghislaine de Goër de Herve

    Full Text Available B-cells can contribute to the pathogenesis of autoimmune diseases not only through auto-antibody secretion but also via cytokine production. Therapeutic depletion of B-cells influences the functions and maintenance of various T-cell subsets. The mechanisms governing the functional heterogeneity of B-cell subsets as cytokine-producing cells are poorly understood. B-cells can differentiate into two functionally polarized effectors, one (B-effector-1-cells producing a Th-1-like cytokine pattern and the other (Be2 producing a Th-2-like pattern. IL-12 and IFN-γ play a key role in Be1 polarization, but the initial trigger of Be1 commitment is unclear. Type-I-interferons are produced early in the immune response and prime several processes involved in innate and adaptive responses. Here, we report that IFN-α triggers a signaling cascade in resting human naive B-cells, involving STAT4 and T-bet, two key IFN-γ gene imprinting factors. IFN-α primed naive B-cells for IFN-γ production and increased IFN-γ gene responsiveness to IL-12. IFN-γ continues this polarization by re-inducing T-bet and up-regulating IL-12Rβ2 expression. IFN-α and IFN-γ therefore pave the way for the action of IL-12. These results point to a coordinated action of IFN-α, IFN-γ and IL-12 in Be1 polarization of naive B-cells, and may provide new insights into the mechanisms by which type-I-interferons favor autoimmunity.

  8. Testicular cell-conditioned medium supports embryonic stem cell differentiation toward germ lineage and to spermatocyte- and oocyte-like cells.

    Science.gov (United States)

    Shah, Syed M; Saini, Neha; Singh, Manoj K; Manik, Radheysham; Singla, Suresh K; Palta, Prabhat; Chauhan, Manmohan S

    2016-08-01

    Testicular cells are believed to secrete various growth factors that activate signaling pathways finally leading to gametogenesis. In vitro gametogenesis is an obscure but paramountly important task primarily because of paucity of the precursor cells and first trimester gonadal tissues. To overcome these limitations for development of in vitro gametes, the present study was designed to induce differentiation of buffalo embryonic stem (ES) cells into germ lineage cells on stimulation by testicular cell-conditioned medium (TCM), on the basis of the assumption that ES cells have the intrinsic property to differentiate into any cell type and TCM would provide the necessary growth factors for differentiation toward germ cell lineage. For this purpose, buffalo ES cells were differentiated as embryoid bodies (EB) in floating cultures and as monolayer adherent cultures in different doses (10%, 20%, and 40%) of TCM for different culture intervals (4, 8, and 14 days), to identify the optimum dose-and-time period. We observed that 40% TCM dose induces highest expression of primordial germ cell-specific (DAZL, VASA, and PLZF), meiotic (SYCP3, MLH1, TNP1/2, and PRM2), spermatocyte-specific (BOULE and TEKT1), and oocyte-specific genes (GDF9 and ZP2/3) for a culture period of 14 days under both floating and adherent differentiation. Immunocytochemical analysis of EBs and adherent cultures revealed presence of primordial germ cell markers (c-KIT, DAZL, and VASA), meiotic markers (SYCP3, MLH1 and PROTAMINE1), spermatocyte markers (ACROSIN and HAPRIN), and oocyte markers (GDF9 and ZP4), indicating progression into post-meiotic gametogenesis. The detection of germ cell-specific proteins in Day 14 EBs like VASA, GDF9, and ZP4 by Western blotting further confirmed germ lineage differentiation. The significantly lower (P embryonic development and progressed through two-cell, four-cell, eight-cell, morula, and blastocyst-like structures, indicative of their developmental competence

  9. Lineage Tracing and Cell Ablation Identify a Post-Aire-Expressing Thymic Epithelial Cell Population

    Directory of Open Access Journals (Sweden)

    Todd C. Metzger

    2013-10-01

    Full Text Available Thymic epithelial cells in the medulla (mTECs play a critical role in enforcing central tolerance through expression and presentation of tissue-specific antigens (TSAs and deletion of autoreactive thymocytes. TSA expression requires autoimmune regulator (Aire, a transcriptional activator present in a subset of mTECs characterized by high CD80 and major histocompatibility complex II expression and a lack of potential for differentiation or proliferation. Here, using an Aire-DTR transgenic line, we show that short-term ablation specifically targets Aire+ mTECs, which quickly undergo RANK-dependent recovery. Repeated ablation also affects Aire− mTECs, and using an inducible Aire-Cre fate-mapping system, we find that this results from the loss of a subset of mTECs that showed prior expression of Aire, maintains intermediate TSA expression, and preferentially migrates toward the center of the medulla. These results clearly identify a distinct stage of mTEC development and underscore the diversity of mTECs that play a key role in maintaining tolerance.

  10. Getting to S: CDK functions and targets on the path to cell-cycle commitment [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Robert P. Fisher

    2016-09-01

    Full Text Available How and when eukaryotic cells make the irrevocable commitment to divide remain central questions in the cell-cycle field. Parallel studies in yeast and mammalian cells seemed to suggest analogous control mechanisms operating during the G1 phase—at Start or the restriction (R point, respectively—to integrate nutritional and developmental signals and decide between distinct cell fates: cell-cycle arrest or exit versus irreversible commitment to a round of division. Recent work has revealed molecular mechanisms underlying this decision-making process in both yeast and mammalian cells but also cast doubt on the nature and timing of cell-cycle commitment in multicellular organisms. These studies suggest an expanded temporal window of mitogen sensing under certain growth conditions, illuminate unexpected obstacles and exit ramps on the path to full cell-cycle commitment, and raise new questions regarding the functions of cyclin-dependent kinases (CDKs that drive G1 progression and S-phase entry.

  11. Induction of Cardiac Myogenic Lineage Development Differs between Mesenchymal and Satellite Cells and is Accelerated by Bone Morphogenetic Protein-4

    Science.gov (United States)

    Grajales, Liliana; García, Jesús; Geenen, David L.

    2012-01-01

    Our aim was to further elucidate the cardiac lineage development of bone marrow-derived mesenchymal stem cells (MSC) and to identify cells which had the potential for cardiac myogenic differentiation when compared to skeletal muscle satellite (Sk-sat) myogenesis. Unlike Sk-sat, MSC expressed the early cardiac markers Nkx2.5 and GATA4. Their expression was significantly increased by culturing MSC with Bone Morphogenetic Protein 4 (BMP4). Enhanced cardiac myogenic lineage differentiation and loss of stem cell characteristics induced by BMP4 were further confirmed by flow cytometry of cells stained for Nkx2.5 and Sca-1 expression. MSC also expressed skeletal genes (MyoG, ssTnI, Sk-Act) early in culture but their expression was suppressed when BMP4 was added from day 0–6 (p < 0.05). BMP4 treated MSC also exhibited a 6-fold increase in cTnI expression by day 12 in culture. The average MSC action potential time duration at 90% (APD90) was 32.3 ± 4 ms, with some cells exhibiting action potentials closer to Sk-sat APD90 of 13.7 ± 0.9 ms. After treatment with BMP4, MSC significantly increased their APD90 to 54.4 ± 7.6 ms, shifting from the shorter skeletal-like signature, towards a longer action potential duration more characteristic of a cardiomyocyte signature. Our results show that MSC and Sk-sat exhibit similarities in myogenic lineage development early in culture but that BMP4 clearly enhances cardiac myogenic development, suppresses skeletal myogenesis, and leads to loss of “stemness” in MSC. These findings provide novel information regarding the use of BMP4 to accelerate cardiac myogenic development in harvested MSC and further support the use of MSC in cardiac regenerative therapy. PMID:22709559

  12. Effects of Ionizing Radiation on Human Adipose Derived Mesenchymal Stem Cells and their Differentiation towards the Osteoblastic Lineage

    Science.gov (United States)

    Konda, Bikash; Baumstark-Khan, Christa; Hellweg, Christine; Reitz, Guenther; Lau, Patrick

    Radiation exposure and musculoskeletal disuse are among the major challenges during space missions. Astronauts face the problem to lose bone calcium due to uncoupling of bone formation and resorption. Bone forming osteoblasts can be derived from the undifferentiated mesenchymal stem cell compartment (MSC). In this study, the ability of human adipose tissue derived stem cells (ATSC) to differentiate into the osteoblastic lineage was examined after radiation exposure in presence of medium supplementation with osteogenic additives (ß-glycerophosphate, ascorbic acid and dexamethasone). The SAOS-2 cell line (human osteosarcoma cell line) was used as control for osteoblastic differentiation. Changes in cellular morphology, cell cycle progression, as well as cellular radiation sensitivity were characterized after ionizing radiation exposure with X-rays and heavy ions (Ti). Rapidly proliferating SAOS-2 cells are less radiation-sensitive than slowly proliferating ATSC cells after X-ray (CFA: dose effect curves show D0 values of 1 Gy and 0.75 Gy for SAOS-2 and ATSC, respectively) exposure. Heavy ion (Ti) exposure resulted in a greater extent of cells accumulating in the G2/M phase of the cell cycle in a dose-dependent manner when compared to X-ray exposure. Differentiation of cells towards the osteoblastic lineage was quantified by hydroxyapatite (HA) deposition using Lonza OsteoImageTM mineralization assay. The deposition of HA after X- and Ti-irradiation for highly proliferating SAOS-2 cells showed a dose-dependent time delay while slowly proliferating ATSC showed no effect from radiation exposure. More detailed investigation is required to reveal the radiation dependent mechanism of bone loss in astronauts.

  13. Mesoderm Lineage 3D Tissue Constructs Are Produced at Large-Scale in a 3D Stem Cell Bioprocess.

    Science.gov (United States)

    Cha, Jae Min; Mantalaris, Athanasios; Jung, Sunyoung; Ji, Yurim; Bang, Oh Young; Bae, Hojae

    2017-09-01

    Various studies have presented different approaches to direct pluripotent stem cell differentiation such as applying defined sets of exogenous biochemical signals and genetic/epigenetic modifications. Although differentiation to target lineages can be successfully regulated, such conventional methods are often complicated, laborious, and not cost-effective to be employed to the large-scale production of 3D stem cell-based tissue constructs. A 3D-culture platform that could realize the large-scale production of mesoderm lineage tissue constructs from embryonic stem cells (ESCs) is developed. ESCs are cultured using our previously established 3D-bioprocess platform which is amenable to mass-production of 3D ESC-based tissue constructs. Hepatocarcinoma cell line conditioned medium is introduced to the large-scale 3D culture to provide a specific biomolecular microenvironment to mimic in vivo mesoderm formation process. After 5 days of spontaneous differentiation period, the resulting 3D tissue constructs are composed of multipotent mesodermal progenitor cells verified by gene and molecular expression profiles. Subsequently the optimal time points to trigger terminal differentiation towards cardiomyogenesis or osteogenesis from the mesodermal tissue constructs is found. A simple and affordable 3D ESC-bioprocess that can reach the scalable production of mesoderm origin tissues with significantly improved correspondent tissue properties is demonstrated. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Enhancement of committed hematopoietic stem cell colony formation by nandrolone decanoate after sublethal whole body irradiation

    International Nuclear Information System (INIS)

    Gallicchio, V.S.; Chen, M.G.; Watts, T.D.

    1984-01-01

    The ability of an anabolic steroid, nandrolone decanoate, to increase committed topoietic stem cell (CFU-gm, CFU-e, and BFU-e) colony formation after sublethal irradiation was evaluated. Immediately after receiving whole body irradiation and on the next two days, each mouse was injected intraperitoneally with nandrolone decanoate (1.25 mg) in propylene glycol. Irradiated control mice received only propylene glycol. Compared to controls, drug-treated mice showed marked peripheral blood leukocytosis and more stable packed red cell volume. Drug-treated mice also demonstrated increased erythropoiesis, as CFU-e/BFU-e concentrations from both marrow (9% to 581%) and spleen (15% to 797%) were elevated. Granulopoiesis was increased similarly, as CFU-gm concentrations from marrow (38% to 685%) and spleen (9% to 373%) were elevated. These results demonstrate that nandrolone decanoate enhances hematopoietic stem cell recovery after sublethal whole body irradiation. This suggests that following hematopoietic suppression, nandrolone decanoate may stimulate the recovery of hematopoiesis at the stem cell level and in peripheral blood

  15. Enhancement of committed hematopoietic stem cell colony formation by nandrolone decanoate after sublethal whole body irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Gallicchio, V.S.; Chen, M.G.; Watts, T.D.

    1984-11-01

    The ability of an anabolic steroid, nandrolone decanoate, to increase committed topoietic stem cell (CFU-gm, CFU-e, and BFU-e) colony formation after sublethal irradiation was evaluated. Immediately after receiving whole body irradiation and on the next two days, each mouse was injected intraperitoneally with nandrolone decanoate (1.25 mg) in propylene glycol. Irradiated control mice received only propylene glycol. Compared to controls, drug-treated mice showed marked peripheral blood leukocytosis and more stable packed red cell volume. Drug-treated mice also demonstrated increased erythropoiesis, as CFU-e/BFU-e concentrations from both marrow (9% to 581%) and spleen (15% to 797%) were elevated. Granulopoiesis was increased similarly, as CFU-gm concentrations from marrow (38% to 685%) and spleen (9% to 373%) were elevated. These results demonstrate that nandrolone decanoate enhances hematopoietic stem cell recovery after sublethal whole body irradiation. This suggests that following hematopoietic suppression, nandrolone decanoate may stimulate the recovery of hematopoiesis at the stem cell level and in peripheral blood.

  16. Intracellular Retention of ABL Kinase Inhibitors Determines Commitment to Apoptosis in CML Cells

    Science.gov (United States)

    Dziadosz, Marek; Schnöder, Tina; Heidel, Florian; Schemionek, Mirle; Melo, Junia V.; Kindler, Thomas; Müller-Tidow, Carsten; Koschmieder, Steffen; Fischer, Thomas

    2012-01-01

    Clinical development of imatinib in CML established continuous target inhibition as a paradigm for successful tyrosine kinase inhibitor (TKI) therapy. However, recent reports suggested that transient potent target inhibition of BCR-ABL by high-dose TKI (HD-TKI) pulse-exposure is sufficient to irreversibly commit cells to apoptosis. Here, we report a novel mechanism of prolonged intracellular TKI activity upon HD-TKI pulse-exposure (imatinib, dasatinib) in BCR-ABL-positive cells. Comprehensive mechanistic exploration revealed dramatic intracellular accumulation of TKIs which closely correlated with induction of apoptosis. Cells were rescued from apoptosis upon HD-TKI pulse either by repetitive drug wash-out or by overexpression of ABC-family drug transporters. Inhibition of ABCB1 restored sensitivity to HD-TKI pulse-exposure. Thus, our data provide evidence that intracellular drug retention crucially determines biological activity of imatinib and dasatinib. These studies may refine our current thinking on critical requirements of TKI dose and duration of target inhibition for biological activity of TKIs. PMID:22815843

  17. Spatio-temporal re-organization of replication foci accompanies replication domain consolidation during human pluripotent stem cell lineage specification

    Science.gov (United States)

    Wilson, Korey A.; Elefanty, Andrew G.; Stanley, Edouard G.; Gilbert, David M.

    2016-01-01

    ABSTRACT Lineage specification of both mouse and human pluripotent stem cells (PSCs) is accompanied by spatial consolidation of chromosome domains and temporal consolidation of their replication timing. Replication timing and chromatin organization are both established during G1 phase at the timing decision point (TDP). Here, we have developed live cell imaging tools to track spatio-temporal replication domain consolidation during differentiation. First, we demonstrate that the fluorescence ubiquitination cell cycle indicator (Fucci) system is incapable of demarcating G1/S or G2/M cell cycle transitions. Instead, we employ a combination of fluorescent PCNA to monitor S phase progression, cytokinesis to demarcate mitosis, and fluorescent nucleotides to label early and late replication foci and track their 3D organization into sub-nuclear chromatin compartments throughout all cell cycle transitions. We find that, as human PSCs differentiate, the length of S phase devoted to replication of spatially clustered replication foci increases, coincident with global compartmentalization of domains into temporally clustered blocks of chromatin. Importantly, re-localization and anchorage of domains was completed prior to the onset of S phase, even in the context of an abbreviated PSC G1 phase. This approach can also be employed to investigate cell fate transitions in single PSCs, which could be seen to differentiate preferentially from G1 phase. Together, our results establish real-time, live-cell imaging methods for tracking cell cycle transitions during human PSC differentiation that can be applied to study chromosome domain consolidation and other aspects of lineage specification. PMID:27433885

  18. Loss of C/EBP alpha cell cycle control increases myeloid progenitor proliferation and transforms the neutrophil granulocyte lineage

    DEFF Research Database (Denmark)

    Porse, Bo T; Bryder, David; Theilgaard-Mönch, Kim

    2005-01-01

    dissociate the ability of C/EBP alpha to block cell cycle progression through E2F inhibition from its function as a transcriptional activator impair the in vivo development of the neutrophil granulocyte and adipose lineages. We now show that such mutations increase the capacity of bone marrow (BM) myeloid...... progenitors to proliferate, and predispose mice to a granulocytic myeloproliferative disorder and transformation of the myeloid compartment of the BM. Both of these phenotypes were transplantable into lethally irradiated recipients. BM transformation was characterized by a block in granulocyte differentiation...

  19. Glioblastoma Stem Cells Respond to Differentiation Cues but Fail to Undergo Commitment and Terminal Cell-Cycle Arrest

    Directory of Open Access Journals (Sweden)

    Helena Carén

    2015-11-01

    Full Text Available Glioblastoma (GBM is an aggressive brain tumor whose growth is driven by stem cell-like cells. BMP signaling triggers cell-cycle exit and differentiation of GBM stem cells (GSCs and, therefore, might have therapeutic value. However, the epigenetic mechanisms that accompany differentiation remain poorly defined. It is also unclear whether cell-cycle arrest is terminal. Here we find only a subset of GSC cultures exhibit astrocyte differentiation in response to BMP. Although overtly differentiated non-cycling astrocytes are generated, they remain vulnerable to cell-cycle re-entry and fail to appropriately reconfigure DNA methylation patterns. Chromatin accessibility mapping identified loci that failed to alter in response to BMP and these were enriched in SOX transcription factor-binding motifs. SOX transcription factors, therefore, may limit differentiation commitment. A similar propensity for cell-cycle re-entry and de-differentiation was observed in GSC-derived oligodendrocyte-like cells. These findings highlight significant obstacles to BMP-induced differentiation as therapy for GBM.

  20. SDF-1 and CXCR4 play an important role in adult SVZ lineage cell proliferation and differentiation.

    Science.gov (United States)

    Zhu, Chang; Yao, Wen-Long; Tan, Wei; Zhang, Chuan-Han

    2017-02-15

    Evidence has shown that stromal cell-derived factor (SDF-1/CXCL12) plays an important role in maintaining adult neural progenitor cells (NPCs). SDF-1 is also known to enhance recovery by recruiting NPCs to damaged regions and recent studies have revealed that SDF-1α exhibits pleiotropism, thereby differentially affecting NPC subpopulations. In this study, we investigated the role of SDF-1 in in vitro NPC self-renewal, proliferation and differentiation, following treatment with different concentrations of SDF-1 or a CXCR4 antagonist, AMD3100. We observed that AMD3100 inhibited the formation of primary neurospheres. However, SDF-1 and AMD3100 exhibited no effect on proliferation upon inclusion of growth factors in the media. Following growth factor withdrawal, AMD3100 and SDF-1 treatment resulted in differential effects on NPC proliferation. SDF-1, at a concentration of 500ng/ml, resulted in an increase in the relative proportion of oligodendrocytes following growth factor withdrawal-induced differentiation. Using CXCR4 knockout mice, we observed that SDF-1 affected NPC proliferation in the sub-ventricular zone (SVZ). We also investigated the occurrence of differential CXCR4 expression at different stages during lineage progression. These results clearly indicate that signaling interactions between SDF-1 and CXCR4 play an important role in adult SVZ lineage cell proliferation and differentiation. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. A workflow to process 3D+time microscopy images of developing organisms and reconstruct their cell lineage

    Science.gov (United States)

    Faure, Emmanuel; Savy, Thierry; Rizzi, Barbara; Melani, Camilo; Stašová, Olga; Fabrèges, Dimitri; Špir, Róbert; Hammons, Mark; Čúnderlík, Róbert; Recher, Gaëlle; Lombardot, Benoît; Duloquin, Louise; Colin, Ingrid; Kollár, Jozef; Desnoulez, Sophie; Affaticati, Pierre; Maury, Benoît; Boyreau, Adeline; Nief, Jean-Yves; Calvat, Pascal; Vernier, Philippe; Frain, Monique; Lutfalla, Georges; Kergosien, Yannick; Suret, Pierre; Remešíková, Mariana; Doursat, René; Sarti, Alessandro; Mikula, Karol; Peyriéras, Nadine; Bourgine, Paul

    2016-01-01

    The quantitative and systematic analysis of embryonic cell dynamics from in vivo 3D+time image data sets is a major challenge at the forefront of developmental biology. Despite recent breakthroughs in the microscopy imaging of living systems, producing an accurate cell lineage tree for any developing organism remains a difficult task. We present here the BioEmergences workflow integrating all reconstruction steps from image acquisition and processing to the interactive visualization of reconstructed data. Original mathematical methods and algorithms underlie image filtering, nucleus centre detection, nucleus and membrane segmentation, and cell tracking. They are demonstrated on zebrafish, ascidian and sea urchin embryos with stained nuclei and membranes. Subsequent validation and annotations are carried out using Mov-IT, a custom-made graphical interface. Compared with eight other software tools, our workflow achieved the best lineage score. Delivered in standalone or web service mode, BioEmergences and Mov-IT offer a unique set of tools for in silico experimental embryology. PMID:26912388

  2. Diagnosis of a T-lineage acute lymphoblastic leukemia through digitalized cell analysis of the pleural effusion

    Directory of Open Access Journals (Sweden)

    Peruzzi B

    2013-11-01

    Full Text Available Benedetta Peruzzi,1 Ilaria Cutini,2 Anna Maria Grazia Gelli,1 Tommaso Rondelli,1 Marinella Statello,1 Sara Bencini,2 Francesco Mannelli,2 Roberto Caporale,1 Alberto Bosi,2 Alessandra Fanelli1 1General Laboratory Unit (Microscopy and Clinical Cytometry Unit, 2Hematology Unit, Azienda Ospedaliero–Universitaria Careggi, Firenze, Italy Introduction: Pleural effusion as the first clinical manifestation of acute lymphoblastic leukemia (ALL is a relatively rare event. An early and accurate diagnosis of this clinical picture is very important for adequate patient management. Case presentation: We report the atypical onset of T-lineage ALL in a 31-year-old man. The patient was admitted to the emergency room due to lung failure; at that moment, the patient's initial blood count was normal; the chest X-ray radiography showed a massive pleural effusion and a thoracentesis was carried out. Routine investigations performed on the pleural fluid using a new technology system and digitalized cell analysis demonstrated infiltration by immature cells. Therefore, bone marrow aspirate and flow cytometry analyses were performed, leading to the diagnosis of T-lineage ALL. A cord blood transplantation procedure was performed at the first hematological remission following chemotherapy regimens. The patient died of septic shock. Conclusion: The case we reported underlines the usefulness of using automated instruments to identify abnormal lymphoid cells in body fluids. Keywords: pleural effusion, digital morphology, leukemia

  3. Protein malnutrition induces bone marrow mesenchymal stem cells commitment to adipogenic differentiation leading to hematopoietic failure.

    Science.gov (United States)

    Cunha, Mayara Caldas Ramos; Lima, Fabiana da Silva; Vinolo, Marco Aurélio Ramirez; Hastreiter, Araceli; Curi, Rui; Borelli, Primavera; Fock, Ricardo Ambrósio

    2013-01-01

    Protein malnutrition (PM) results in pathological changes that are associated with peripheral leukopenia, bone marrow (BM) hypoplasia and alterations in the BM microenvironment leading to hematopoietic failure; however, the mechanisms involved are poorly understood. In this context, the BM mesenchymal stem cells (MSCs) are cells intimately related to the formation of the BM microenvironment, and their differentiation into adipocytes is important because adipocytes are cells that have the capability to negatively modulate hematopoiesis. Two-month-old male Balb/c mice were subjected to protein-energy malnutrition with a low-protein diet containing 2% protein, whereas control animals were fed a diet containing 12% protein. The hematopoietic parameters and the expression of CD45 and CD117 positive cells in the BM were evaluated. MSCs were isolated from BM, and their capability to produce SCF, IL-3, G-CSF and GM-CSF were analyzed. The expression of PPAR-γ and C/EBP-α as well as the expression of PPAR-γ and SREBP mRNAs were evaluated in MSCs together with their capability to differentiate into adipocytes in vitro. The malnourished animals had anemia and leukopenia as well as spleen and bone marrow hypoplasia and a reduction in the expression of CD45 and CD117 positive cells from BM. The MSCs of the malnourished mice presented an increased capability to produce SCF and reduced production of G-CSF and GM-CSF. The MSCs from the malnourished animals showed increased expression of PPAR-γ protein and PPAR-γ mRNA associated with an increased capability to differentiate into adipocytes. The alterations found in the malnourished animals allowed us to conclude that malnutrition committed MSC differentiation leading to adipocyte decision and compromised their capacity for cytokine production, contributing to an impaired hematopoietic microenvironment and inducing the bone marrow failure commonly observed in protein malnutrition states.

  4. The Wnt receptor, Lrp5, is expressed by mouse mammary stem cells and is required to maintain the basal lineage.

    Directory of Open Access Journals (Sweden)

    Nisha M Badders

    2009-08-01

    Full Text Available Ectopic Wnt signaling induces increased stem/progenitor cell activity in the mouse mammary gland, followed by tumor development. The Wnt signaling receptors, Lrp5/6, are uniquely required for canonical Wnt activity. Previous data has shown that the absence of Lrp5 confers resistance to Wnt1-induced tumor development.Here, we show that all basal mammary cells express Lrp5, and co-express Lrp6 in a similar fashion. Though Wnt dependent transcription of key target genes is relatively unchanged in mammary epithelial cell cultures, the absence of Lrp5 specifically depletes adult regenerative stem cell activity (to less than 1%. Stem cell activity can be enriched by >200 fold (over 80% of activity, based on high Lrp5 expression alone. Though Lrp5 null glands have apparent normal function, the basal lineage is relatively reduced (from 42% basal/total epithelial cells to 22% and Lrp5-/- mammary epithelial cells show enhanced expression of senescence-associated markers in vitro, as measured by expression of p16(Ink4a and TA-p63.This is the first single biomarker that has been demonstrated to be functionally involved in stem cell maintenance. Together, these results demonstrate that Wnt signaling through Lrp5 is an important component of normal mammary stem cell function.

  5. The roles of FGF and MAP kinase signaling in the segregation of the epiblast and hypoblast cell lineages in bovine and human embryos

    NARCIS (Netherlands)

    Kuijk, E.W.; van Tol, L.T.; te Velde, H.; Wubbolts, R.; Welling, M.; Geijsen, N.; Roelen, B.A.

    2012-01-01

    At the blastocyst stage of mammalian pre-implantation development, three distinct cell lineages have formed: trophectoderm, hypoblast (primitive endoderm) and epiblast. The inability to derive embryonic stem (ES) cell lines in a variety of species suggests divergence between species in the cell

  6. T-cell clones from Th1, Th17 or Th1/17 lineages and their signature cytokines have different capacity to activate endothelial cells or synoviocytes.

    Science.gov (United States)

    Lavocat, Fabien; Maggi, Laura; Annunziato, Francesco; Miossec, Pierre

    2016-12-01

    To compare the direct effect of cytokines on synoviocytes and endothelial cells to the effects of supernatants from Th1, Th17 and Th1/17 clones and the direct cell-cell interactions with the same clones. Th17 and Th1/17 clones were obtained from the CD161+CCR6+ fraction and Th1 clones from the CD161-CCR6- fraction of human CD4+ T-cells. Endothelial cells or synoviocytes were cultured in the presence of either isolated pro-inflammatory cytokines (IL-17 and/or TNF-α) or supernatants from the T-cell clones or co-cultured with T-cell clones themselves. IL-6 and IL-8 expression and production were analyzed. IL-17 and TNF-α induced IL-6 and IL-8 expression, although IL-17 alone had a limited effect on endothelial cells compared to synoviocytes. Supernatants from activated T-helper clones also induced IL-6 and IL-8 expression but with discrepancies between endothelial cells and synoviocytes. Endothelial cells were mostly activated by Th1 clone supernatants whereas synoviocytes were activated by all T-cell subtypes. Finally, cell-cell contact experiments showed a great heterogeneity among cell clones, even from the same lineage. IL-6 expression was mostly induced by contact with Th1 clones both in endothelial and mesenchymal cells whereas IL-8 expression was induced by all T-cell clones whatever their phenotype. We showed that endothelial cells were much more sensitive to Th1 activation whereas synoviocytes were activated by all T-helper lineages. This work highlights the heterogeneity of interactions between T-cells and stromal cells through soluble factors or direct cell contact. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. All-trans retinoic acid promotes neural lineage entry by pluripotent embryonic stem cells via multiple pathways

    Directory of Open Access Journals (Sweden)

    Fang Bo

    2009-07-01

    Full Text Available Abstract Background All-trans retinoic acid (RA is one of the most important morphogens with pleiotropic actions. Its embryonic distribution correlates with neural differentiation in the developing central nervous system. To explore the precise effects of RA on neural differentiation of mouse embryonic stem cells (ESCs, we detected expression of RA nuclear receptors and RA-metabolizing enzymes in mouse ESCs and investigated the roles of RA in adherent monolayer culture. Results Upon addition of RA, cell differentiation was directed rapidly and exclusively into the neural lineage. Conversely, pharmacological interference with RA signaling suppressed this neural differentiation. Inhibition of fibroblast growth factor (FGF signaling did not suppress significantly neural differentiation in RA-treated cultures. Pharmacological interference with extracellular signal-regulated kinase (ERK pathway or activation of Wnt pathway effectively blocked the RA-promoted neural specification. ERK phosphorylation was enhanced in RA-treated cultures at the early stage of differentiation. Conclusion RA can promote neural lineage entry by ESCs in adherent monolayer culture systems. This effect depends on RA signaling and its crosstalk with the ERK and Wnt pathways.

  8. Exploiting Heparan Sulfate Proteoglycans in Human Neurogenesis—Controlling Lineage Specification and Fate

    Directory of Open Access Journals (Sweden)

    Chieh Yu

    2017-10-01

    Full Text Available Unspecialized, self-renewing stem cells have extraordinary application to regenerative medicine due to their multilineage differentiation potential. Stem cell therapies through replenishing damaged or lost cells in the injured area is an attractive treatment of brain trauma and neurodegenerative neurological disorders. Several stem cell types have neurogenic potential including neural stem cells (NSCs, embryonic stem cells (ESCs, induced pluripotent stem cells (iPSCs, and mesenchymal stem cells (MSCs. Currently, effective use of these cells is limited by our lack of understanding and ability to direct lineage commitment and differentiation of neural lineages. Heparan sulfate proteoglycans (HSPGs are ubiquitous proteins within the stem cell microenvironment or niche and are found localized on the cell surface and in the extracellular matrix (ECM, where they interact with numerous signaling molecules. The glycosaminoglycan (GAG chains carried by HSPGs are heterogeneous carbohydrates comprised of repeating disaccharides with specific sulfation patterns that govern ligand interactions to numerous factors including the fibroblast growth factors (FGFs and wingless-type MMTV integration site family (Wnts. As such, HSPGs are plausible targets for guiding and controlling neural stem cell lineage fate. In this review, we provide an overview of HSPG family members syndecans and glypicans, and perlecan and their role in neurogenesis. We summarize the structural changes and subsequent functional implications of heparan sulfate as cells undergo neural lineage differentiation as well as outline the role of HSPG core protein expression throughout mammalian neural development and their function as cell receptors and co-receptors. Finally, we highlight suitable biomimetic approaches for exploiting the role of HSPGs in mammalian neurogenesis to control and tailor cell differentiation into specific lineages. An improved ability to control stem cell specific neural

  9. Activated macrophages create lineage-specific microenvironments for pancreatic acinar- and β-cell regeneration in mice.

    Science.gov (United States)

    Criscimanna, Angela; Coudriet, Gina M; Gittes, George K; Piganelli, Jon D; Esni, Farzad

    2014-11-01

    Although the cells that contribute to pancreatic regeneration have been widely studied, little is known about the mediators of this process. During tissue regeneration, infiltrating macrophages debride the site of injury and coordinate the repair response. We investigated the role of macrophages in pancreatic regeneration in mice. We used a saporin-conjugated antibody against CD11b to reduce the number of macrophages in mice following diphtheria toxin receptor-mediated cell ablation of pancreatic cells, and evaluated the effects on pancreatic regeneration. We analyzed expression patterns of infiltrating macrophages after cell-specific injury or from the pancreas of nonobese diabetic mice. We developed an in vitro culture system to study the ability of macrophages to induce cell-specific regeneration. Depletion of macrophages impaired pancreatic regeneration. Macrophage polarization, as assessed by expression of tumor necrosis factor-α, interleukin 6, interleukin 10, and CD206, depended on the type of injury. The signals provided by polarized macrophages promoted lineage-specific generation of acinar or endocrine cells. Macrophage from nonobese diabetic mice failed to provide signals necessary for β-cell generation. Macrophages produce cell type-specific signals required for pancreatic regeneration in mice. Additional study of these processes and signals might lead to new approaches for treating type 1 diabetes or pancreatitis. Copyright © 2014 AGA Institute. Published by Elsevier Inc. All rights reserved.

  10. Generation of glucose-sensitive insulin-secreting beta-like cells from human embryonic stem cells by incorporating a synthetic lineage-control network.

    Science.gov (United States)

    Saxena, Pratik; Bojar, Daniel; Zulewski, Henryk; Fussenegger, Martin

    2017-10-10

    We previously reported novel technology to differentiate induced pluripotent stem cells (IPSCs) into glucose-sensitive insulin-secreting beta-like cells by engineering a synthetic lineage-control network regulated by the licensed food additive vanillic acid. This genetic network was able to program intricate expression dynamics of the key transcription factors Ngn3 (neurogenin 3, OFF-ON-OFF), Pdx1 (pancreatic and duodenal homeobox 1, ON-OFF-ON) and MafA (V-maf musculoaponeurotic fibrosarcoma oncogene homologue A, OFF-ON) to guide the differentiation of IPSC-derived pancreatic progenitor cells to beta-like cells. In the present study, we show for the first time that this network can also program the expression dynamics of Ngn3, Pdx1 and MafA in human embryonic stem cell (hESC)-derived pancreatic progenitor cells and drive differentiation of these cells into glucose-sensitive insulin-secreting beta-like cells. Therefore, synthetic lineage-control networks appear to be a robust methodology for differentiating pluripotent stem cells into somatic cell types for basic research and regenerative medicine. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Differentiation of retinal ganglion cells and photoreceptor precursors from mouse induced pluripotent stem cells carrying an Atoh7/Math5 lineage reporter.

    Directory of Open Access Journals (Sweden)

    Bin-Bin Xie

    Full Text Available The neural retina is a critical component of the visual system, which provides the majority of sensory input in humans. Various retinal degenerative diseases can result in the permanent loss of retinal neurons, especially the light-sensing photoreceptors and the centrally projecting retinal ganglion cells (RGCs. The replenishment of lost RGCs and the repair of optic nerve damage are particularly challenging, as both RGC specification and their subsequent axonal growth and projection involve complex and precise regulation. To explore the developmental potential of pluripotent stem cell-derived neural progenitors, we have established mouse iPS cells that allow cell lineage tracing of progenitors that have expressed Atoh7/Math5, a bHLH transcription factor required for RGC production. These Atoh7 lineage reporter iPS cells encode Cre to replace one copy of the endogenous Atoh7 gene and a Cre-dependent YFP reporter in the ROSA locus. In addition, they express pluripotent markers and are capable of generating teratomas in vivo. Under anterior neural induction and neurogenic conditions in vitro, the Atoh7-Cre/ROSA-YFP iPS cells differentiate into neurons that co-express various RGC markers and YFP, indicating that these neurons are derived from Atoh7-expressing progenitors. Consistent with previous in vivo cell lineage studies, the Atoh7-Cre/ROSA-YFP iPS cells also give rise to a subset of Crx-positive photoreceptor precursors. Furthermore, inhibition of Notch signaling in the iPSC cultures results in a significant increase of YFP-positive RGCs and photoreceptor precursors. Together, these results show that Atoh7-Cre/ROSA-YFP iPS cells can be used to monitor the development and survival of RGCs and photoreceptors from pluripotent stem cells.

  12. [Distribution of abnormal cell clone with deletion of chromosome 20q in marrow cell lineages and apoptosis cells in myelodysplastic syndrome].

    Science.gov (United States)

    Qin, Ling; Wang, Chun; Qin, You-Wen; Xie, Kuang-Cheng; Yan, Shi-Ke; Gao, Yan-Rong; Wang, Xiao-Rui; Zhao, Chu-Xian

    2008-06-01

    This study was aimed to investigate the distribution of abnormal clone in marrow cell lineages and apoptosis cells in myelodysplastic syndrome (MDS) with deletion of chromosome 20q. Monoclonal antibodies recognizing myeloid precursors (CD15), erythroid precursors (GPA), T cells (CD3(+)CD56(-)CD16(-)), B cells (CD19), NK cells (CD3(-)CD56(+)CD16(+)) were used to sort bone marrow cells in a MDS patient with del (20q) by fluorescence activated cell sorting (FACS). Annexin V-FITC and PI were used to sort bone marrow Annexin V(+)PI(-) and Annexin V(-)PI(-) cells by FACS. The sorted positive cells were detected by interphase dual-color fluorescence in situ hybridization (D-FISH) using a LSI D20S108 probe (Spectrum Orange) and a Telvysion TM 20p probe (Spectrum Green). FACS and FISH analysis were also performed on the samples from 4 cases with normal karyotype. The results showed that the proportions of MDS clone in the myeloid and erythroid precursors were 70.50% and 93.33% respectively, in the RAEB-1 patient with del (20q) and were obviously higher than that in control group (5.39% and 6.17%). The proportions of abnormal clone in T, B and NK cells were 3.23%, 4.32% and 5.77% respectively and were less than that in control group (5.76%, 4.85%, 6.36%). The percentage of apoptotic cells in the bone marrow nucleated cells was 16.09%. The proportions of MDS clone in Annexin V(+)PI(-) and Annexin V(-)PI(-) cells were 32.48% and 70.11%, respectively. It is concluded that most myeloid and erythroid precursors are originated from the abnormal clone in MDS with del (20q). A little part of apoptotic cells are derived from the abnormal clone.

  13. A Pitx2-MicroRNA Pathway Modulates Cell Proliferation in Myoblasts and Skeletal-Muscle Satellite Cells and Promotes Their Commitment to a Myogenic Cell Fate

    Science.gov (United States)

    Lozano-Velasco, Estefanía; Vallejo, Daniel; Esteban, Francisco J.; Doherty, Chris; Hernández-Torres, Francisco; Franco, Diego

    2015-01-01

    The acquisition of a proliferating-cell status from a quiescent state as well as the shift between proliferation and differentiation are key developmental steps in skeletal-muscle stem cells (satellite cells) to provide proper muscle regeneration. However, how satellite cell proliferation is regulated is not fully understood. Here, we report that the c-isoform of the transcription factor Pitx2 increases cell proliferation in myoblasts by downregulating microRNA 15b (miR-15b), miR-23b, miR-106b, and miR-503. This Pitx2c-microRNA (miRNA) pathway also regulates cell proliferation in early-activated satellite cells, enhancing Myf5+ satellite cells and thereby promoting their commitment to a myogenic cell fate. This study reveals unknown functions of several miRNAs in myoblast and satellite cell behavior and thus may have future applications in regenerative medicine. PMID:26055324

  14. Dual small-molecule targeting of SMAD signaling stimulates human induced pluripotent stem cells toward neural lineages.

    Directory of Open Access Journals (Sweden)

    Methichit Wattanapanitch

    Full Text Available Incurable neurological disorders such as Parkinson's disease (PD, Huntington's disease (HD, and Alzheimer's disease (AD are very common and can be life-threatening because of their progressive disease symptoms with limited treatment options. To provide an alternative renewable cell source for cell-based transplantation and as study models for neurological diseases, we generated induced pluripotent stem cells (iPSCs from human dermal fibroblasts (HDFs and then differentiated them into neural progenitor cells (NPCs and mature neurons by dual SMAD signaling inhibitors. Reprogramming efficiency was improved by supplementing the histone deacethylase inhibitor, valproic acid (VPA, and inhibitor of p160-Rho associated coiled-coil kinase (ROCK, Y-27632, after retroviral transduction. We obtained a number of iPS colonies that shared similar characteristics with human embryonic stem cells in terms of their morphology, cell surface antigens, pluripotency-associated gene and protein expressions as well as their in vitro and in vivo differentiation potentials. After treatment with Noggin and SB431542, inhibitors of the SMAD signaling pathway, HDF-iPSCs demonstrated rapid and efficient differentiation into neural lineages. Six days after neural induction, neuroepithelial cells (NEPCs were observed in the adherent monolayer culture, which had the ability to differentiate further into NPCs and neurons, as characterized by their morphology and the expression of neuron-specific transcripts and proteins. We propose that our study may be applied to generate neurological disease patient-specific iPSCs allowing better understanding of disease pathogenesis and drug sensitivity assays.

  15. In vivo evaluation of human dental pulp stem cells differentiated towards multiple lineages.

    NARCIS (Netherlands)

    Zhang, W.; Walboomers, X.F.; Kuppevelt, A.H.M.S.M. van; Daamen, W.F.; Damme, P.A. van; Bian, Z.; Jansen, J.A.

    2008-01-01

    An increasing number of investigations supports that adult stem cells have the potential to differentiate into matured cell types beyond their origin, a property defined as plasticity. Previously, the plasticity of stem cells derived from dental pulp (DPSC) has been confirmed by culturing cells in

  16. Integrative Genomic Analyses Identify BRF2 as a Novel Lineage-Specific Oncogene in Lung Squamous Cell Carcinoma

    Science.gov (United States)

    Lockwood, William W.; Chari, Raj; Coe, Bradley P.; Thu, Kelsie L.; Garnis, Cathie; Malloff, Chad A.; Campbell, Jennifer; Williams, Ariane C.; Hwang, Dorothy; Zhu, Chang-Qi; Buys, Timon P. H.; Yee, John; English, John C.; MacAulay, Calum; Tsao, Ming-Sound; Gazdar, Adi F.; Minna, John D.; Lam, Stephen; Lam, Wan L.

    2010-01-01

    Background Traditionally, non-small cell lung cancer is treated as a single disease entity in terms of systemic therapy. Emerging evidence suggests the major subtypes—adenocarcinoma (AC) and squamous cell carcinoma (SqCC)—respond differently to therapy. Identification of the molecular differences between these tumor types will have a significant impact in designing novel therapies that can improve the treatment outcome. Methods and Findings We used an integrative genomics approach, combing high-resolution comparative genomic hybridization and gene expression microarray profiles, to compare AC and SqCC tumors in order to uncover alterations at the DNA level, with corresponding gene transcription changes, which are selected for during development of lung cancer subtypes. Through the analysis of multiple independent cohorts of clinical tumor samples (>330), normal lung tissues and bronchial epithelial cells obtained by bronchial brushing in smokers without lung cancer, we identified the overexpression of BRF2, a gene on Chromosome 8p12, which is specific for development of SqCC of lung. Genetic activation of BRF2, which encodes a RNA polymerase III (Pol III) transcription initiation factor, was found to be associated with increased expression of small nuclear RNAs (snRNAs) that are involved in processes essential for cell growth, such as RNA splicing. Ectopic expression of BRF2 in human bronchial epithelial cells induced a transformed phenotype and demonstrates downstream oncogenic effects, whereas RNA interference (RNAi)-mediated knockdown suppressed growth and colony formation of SqCC cells overexpressing BRF2, but not AC cells. Frequent activation of BRF2 in >35% preinvasive bronchial carcinoma in situ, as well as in dysplastic lesions, provides evidence that BRF2 expression is an early event in cancer development of this cell lineage. Conclusions This is the first study, to our knowledge, to show that the focal amplification of a gene in Chromosome 8p12, plays

  17. In vivo and in vitro expression of myeloid antigens on B-lineage acute lymphoblastic leukemia cells.

    Science.gov (United States)

    Hara, J; Kawa-Ha, K; Yumura-Yagi, K; Kurahashi, H; Tawa, A; Ishihara, S; Inoue, M; Murayama, N; Okada, S

    1991-01-01

    The expression of myeloid antigens has been extensively examined using two-color analysis in 43 children with B-lineage acute lymphoblastic leukemia (ALL). On pre-culture cells, CD33 expression was frequently observed in CD19+, CD10- B-precursor ALL, and CD14 was expressed only on the cells from B-precursor ALL expressing CD19, CD10 and CD20, and B-ALL. After 2 or 3 days of culture without TPA, CD13 emerged on the cells from 21 of 29 patients irrespective of the presence or the absence of fetal calf serum in the culture. Of four patients with CD10+ B-precursor ALL, which showed no expression of CD13 after culture, two had T-cell associated antigens. Whereas the addition of TPA to the culture enhanced the expression of CD13 on the cells from acute non-lymphocytic leukemia (ANLL), TPA reduced the expression of this antigen on B-precursor cells. These findings suggest that the regulatory mechanism of CD13 expression may be different between B-precursor ALL and ANLL. Co-culture with cycloheximide mostly abrogated the induction of CD13, suggesting that CD13 expression was mainly dependent on de novo protein synthesis.

  18. Pulsed magnetic therapy increases osteogenic differentiation of mesenchymal stem cells only if they are pre-committed.

    Science.gov (United States)

    Ferroni, Letizia; Tocco, Ilaria; De Pieri, Andrea; Menarin, Martina; Fermi, Enrico; Piattelli, Adriano; Gardin, Chiara; Zavan, Barbara

    2016-05-01

    Pulsed electromagnetic field (PEMF) therapy has been documented to be an effective, non-invasive, safe treatment method for a variety of clinical conditions, especially in settings of recalcitrant healing. The underlying mechanisms on the different biological components of tissue regeneration are still to be elucidated. The aim of the present study was to characterize the effects of extremely low frequency (ELF)-PEMFs on commitment of mesenchymal stem cell (MSCs) culture system, through the determination of gene expression pattern and cellular morphology. Human MSCs derived from adipose tissue (ADSCs) were cultured in presence of adipogenic, osteogenic, neural, or glial differentiative medium and basal medium, then exposed to ELF-PEMFs daily stimulation for 21days. Control cultures were performed without ELF-PEMFs stimulation for all cell populations. Effects on commitment were evaluated after 21days of cultures. The results suggested ELF-PEMFs does not influence ADSCs commitment and does not promote adipogenic, osteogenic, neural or glial differentiation. However, ELF-PEMFs treatment on ADSCs cultured in osteogenic differentiative medium markedly increased osteogenesis. We concluded that PEMFs affect the osteogenic differentiation of ADSCs only if they are pre-commitment and that this therapy can be an appropriate candidate for treatment of conditions requiring an acceleration of repairing process. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. PDX1- and NGN3-mediated in vitro reprogramming of human bone marrow-derived mesenchymal stromal cells into pancreatic endocrine lineages

    DEFF Research Database (Denmark)

    Limbert, Catarina; Päth, Günter; Ebert, Regina

    2011-01-01

    Reprogramming of multipotent adult bone marrow (BM)-derived mesenchymal stromal/stem cells (MSC) (BM-MSC) represents one of several strategies for cell-based therapy of diabetes. However, reprogramming primary BM-MSC into pancreatic endocrine lineages has not yet been consistently demonstrated....

  20. SuperSegger: robust image segmentation, analysis and lineage tracking of bacterial cells.

    Science.gov (United States)

    Stylianidou, Stella; Brennan, Connor; Nissen, Silas B; Kuwada, Nathan J; Wiggins, Paul A

    2016-11-01

    Many quantitative cell biology questions require fast yet reliable automated image segmentation to identify and link cells from frame-to-frame, and characterize the cell morphology and fluorescence. We present SuperSegger, an automated MATLAB-based image processing package well-suited to quantitative analysis of high-throughput live-cell fluorescence microscopy of bacterial cells. SuperSegger incorporates machine-learning algorithms to optimize cellular boundaries and automated error resolution to reliably link cells from frame-to-frame. Unlike existing packages, it can reliably segment microcolonies with many cells, facilitating the analysis of cell-cycle dynamics in bacteria as well as cell-contact mediated phenomena. This package has a range of built-in capabilities for characterizing bacterial cells, including the identification of cell division events, mother, daughter and neighbouring cells, and computing statistics on cellular fluorescence, the location and intensity of fluorescent foci. SuperSegger provides a variety of postprocessing data visualization tools for single cell and population level analysis, such as histograms, kymographs, frame mosaics, movies and consensus images. Finally, we demonstrate the power of the package by analyzing lag phase growth with single cell resolution. © 2016 John Wiley & Sons Ltd.

  1. Bioconductor workflow for single-cell RNA sequencing: Normalization, dimensionality reduction, clustering, and lineage inference [version 1; referees: 1 approved, 2 approved with reservations

    Directory of Open Access Journals (Sweden)

    Fanny Perraudeau

    2017-07-01

    Full Text Available Novel single-cell transcriptome sequencing assays allow researchers to measure gene expression levels at the resolution of single cells and offer the unprecendented opportunity to investigate at the molecular level fundamental biological questions, such as stem cell differentiation or the discovery and characterization of rare cell types. However, such assays raise challenging statistical and computational questions and require the development of novel methodology and software. Using stem cell differentiation in the mouse olfactory epithelium as a case study, this integrated workflow provides a step-by-step tutorial to the methodology and associated software for the following four main tasks: (1 dimensionality reduction accounting for zero inflation and over dispersion and adjusting for gene and cell-level covariates; (2 cell clustering using resampling-based sequential ensemble clustering; (3 inference of cell lineages and pseudotimes; and (4 differential expression analysis along lineages.

  2. Combined heterozygous loss of Ebf1 and Pax5 allows for T-lineage conversion of B cell progenitors.

    Science.gov (United States)

    Ungerbäck, Jonas; Åhsberg, Josefine; Strid, Tobias; Somasundaram, Rajesh; Sigvardsson, Mikael

    2015-06-29

    To investigate how transcription factor levels impact B-lymphocyte development, we generated mice carrying transheterozygous mutations in the Pax5 and Ebf1 genes. Whereas combined reduction of Pax5 and Ebf1 had minimal impact on the development of the earliest CD19(+) progenitors, these cells displayed an increased T cell potential in vivo and in vitro. The alteration in lineage fate depended on a Notch1-mediated conversion process, whereas no signs of de-differentiation could be detected. The differences in functional response to Notch signaling in Wt and Pax5(+/-)Ebf1(+/-) pro-B cells were reflected in the transcriptional response. Both genotypes responded by the generation of intracellular Notch1 and activation of a set of target genes, but only the Pax5(+/-)Ebf1(+/-) pro-B cells down-regulated genes central for the preservation of stable B cell identity. This report stresses the importance of the levels of transcription factor expression during lymphocyte development, and suggests that Pax5 and Ebf1 collaborate to modulate the transcriptional response to Notch signaling. This provides an insight on how transcription factors like Ebf1 and Pax5 preserve cellular identity during differentiation. © 2015 Ungerbäck et al.

  3. The Aurora A-HP1γ pathway regulates gene expression and mitosis in cells from the sperm lineage.

    Science.gov (United States)

    Leonard, Phoebe H; Grzenda, Adrienne; Mathison, Angela; Morbeck, Dean E; Fredrickson, Jolene R; de Assuncao, Thiago M; Christensen, Trace; Salisbury, Jeffrey; Calvo, Ezequiel; Iovanna, Juan; Coddington, Charles C; Urrutia, Raul; Lomberk, Gwen

    2015-05-29

    HP1γ, a well-known regulator of gene expression, has been recently identified to be a target of Aurora A, a mitotic kinase which is important for both gametogenesis and embryogenesis. The purpose of this study was to define whether the Aurora A-HP1γ pathway supports cell division of gametes and/or early embryos, using western blot, immunofluorescence, immunohistochemistry, electron microscopy, shRNA-based knockdown, site-directed mutagenesis, and Affymetrix-based genome-wide expression profiles. We find that the form of HP1γ phosphorylated by Aurora A, P-Ser83 HP1γ, is a passenger protein, which localizes to the spermatozoa centriole and axoneme. In addition, disruption in this pathway causes centrosomal abnormalities and aberrations in cell division. Expression profiling of male germ cell lines demonstrates that HP1γ phosphorylation is critical for the regulation of mitosis-associated gene expression networks. In female gametes, we observe that P-Ser83-HP1γ is not present in meiotic centrosomes of M2 oocytes, but after syngamy, it becomes detectable during cleavage divisions, coinciding with early embryonic genome activation. These results support the idea that phosphorylation of HP1γ by Aurora A plays a role in the regulation of gene expression and mitotic cell division in cells from the sperm lineage and in early embryos. Combined, this data is relevant to better understanding the function of HP1γ in reproductive biology.

  4. EGF–FGF2 stimulates the proliferation and improves the neuronal commitment of mouse epidermal neural crest stem cells (EPI-NCSCs)

    International Nuclear Information System (INIS)

    Bressan, Raul Bardini; Melo, Fernanda Rosene; Almeida, Patricia Alves; Bittencourt, Denise Avani; Visoni, Silvia; Jeremias, Talita Silva; Costa, Ana Paula; Leal, Rodrigo Bainy; Trentin, Andrea Gonçalves

    2014-01-01

    Epidermal neural crest stem cells (EPI-NCSCs), which reside in the bulge of hair follicles, are attractive candidates for several applications in cell therapy, drug screening and tissue engineering. As suggested remnants of the embryonic neural crest (NC) in an adult location, EPI-NCSCs are able to generate a wide variety of cell types and are readily accessible by a minimally invasive procedure. Since the combination of epidermal growth factor (EGF) and fibroblast growth factor type 2 (FGF 2 ) is mitogenic and promotes the neuronal commitment of various stem cell populations, we examined its effects in the proliferation and neuronal potential of mouse EPI-NCSCs. By using a recognized culture protocol of bulge whiskers follicles, we were able to isolate a population of EPI-NCSCs, characterized by the migratory potential, cell morphology and expression of phenotypic markers of NC cells. EPI-NCSCs expressed neuronal, glial and smooth muscle markers and exhibited the NC-like fibroblastic morphology. The treatment with the combination EGF and FGF 2 , however, increased their proliferation rate and promoted the acquisition of a neuronal-like morphology accompanied by reorganization of neural cytoskeletal proteins βIII-tubulin and nestin, as well as upregulation of the pan neuronal marker βIII-tubulin and down regulation of the undifferentiated NC, glial and smooth muscle cell markers. Moreover, the treatment enhanced the response of EPI-NCSCs to neurogenic stimulation, as evidenced by induction of GAP43, and increased expression of Mash-1 in neuron-like cell, both neuronal-specific proteins. Together, the results suggest that the combination of EGF–FGF2 stimulates the proliferation and improves the neuronal potential of EPI-NCSCs similarly to embryonic NC cells, ES cells and neural progenitor/stem cells of the central nervous system and highlights the advantage of using EGF–FGF 2 in neuronal differentiation protocols. - Highlights: • EPI-NCSCs express

  5. EGF–FGF{sub 2} stimulates the proliferation and improves the neuronal commitment of mouse epidermal neural crest stem cells (EPI-NCSCs)

    Energy Technology Data Exchange (ETDEWEB)

    Bressan, Raul Bardini; Melo, Fernanda Rosene; Almeida, Patricia Alves; Bittencourt, Denise Avani; Visoni, Silvia; Jeremias, Talita Silva [Departamento de Biologia Celular, Embriologia e Genética, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário – Trindade, 88040-900 Florianópolis SC (Brazil); Costa, Ana Paula; Leal, Rodrigo Bainy [Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário – Trindade, 88040-900 Florianópolis SC (Brazil); Trentin, Andrea Gonçalves, E-mail: andrea.trentin@ufsc.br [Departamento de Biologia Celular, Embriologia e Genética, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário – Trindade, 88040-900 Florianópolis SC (Brazil)

    2014-09-10

    Epidermal neural crest stem cells (EPI-NCSCs), which reside in the bulge of hair follicles, are attractive candidates for several applications in cell therapy, drug screening and tissue engineering. As suggested remnants of the embryonic neural crest (NC) in an adult location, EPI-NCSCs are able to generate a wide variety of cell types and are readily accessible by a minimally invasive procedure. Since the combination of epidermal growth factor (EGF) and fibroblast growth factor type 2 (FGF{sub 2}) is mitogenic and promotes the neuronal commitment of various stem cell populations, we examined its effects in the proliferation and neuronal potential of mouse EPI-NCSCs. By using a recognized culture protocol of bulge whiskers follicles, we were able to isolate a population of EPI-NCSCs, characterized by the migratory potential, cell morphology and expression of phenotypic markers of NC cells. EPI-NCSCs expressed neuronal, glial and smooth muscle markers and exhibited the NC-like fibroblastic morphology. The treatment with the combination EGF and FGF{sub 2}, however, increased their proliferation rate and promoted the acquisition of a neuronal-like morphology accompanied by reorganization of neural cytoskeletal proteins βIII-tubulin and nestin, as well as upregulation of the pan neuronal marker βIII-tubulin and down regulation of the undifferentiated NC, glial and smooth muscle cell markers. Moreover, the treatment enhanced the response of EPI-NCSCs to neurogenic stimulation, as evidenced by induction of GAP43, and increased expression of Mash-1 in neuron-like cell, both neuronal-specific proteins. Together, the results suggest that the combination of EGF–FGF2 stimulates the proliferation and improves the neuronal potential of EPI-NCSCs similarly to embryonic NC cells, ES cells and neural progenitor/stem cells of the central nervous system and highlights the advantage of using EGF–FGF{sub 2} in neuronal differentiation protocols. - Highlights: • EPI

  6. Myotube formation is affected by adipogenic lineage cells in a cell-to-cell contact-independent manner

    International Nuclear Information System (INIS)

    Takegahara, Yuki; Yamanouchi, Keitaro; Nakamura, Katsuyuki; Nakano, Shin-ichi; Nishihara, Masugi

    2014-01-01

    Intramuscular adipose tissue (IMAT) formation is observed in some pathological conditions such as Duchenne muscular dystrophy (DMD) and sarcopenia. Several studies have suggested that IMAT formation is not only negatively correlated with skeletal muscle mass but also causes decreased muscle contraction in sarcopenia. In the present study, we examined w hether adipocytes affect myogenesis. For this purpose, skeletal muscle progenitor cells were transfected with siRNA of PPARγ (siPPARγ) in an attempt to inhibit adipogenesis. Myosin heavy chain (MHC)-positive myotube formation was promoted in cells transfected with siPPARγ compared to that of cells transfected with control siRNA. To determine whether direct cell-to-cell contact between adipocytes and myoblasts is a prerequisite for adipocytes to affect myogenesis, skeletal muscle progenitor cells were cocultured with pre- or mature adipocytes in a Transwell coculture system. MHC-positive myotube formation was inhibited when skeletal muscle progenitor cells were cocultured with mature adipocytes, but was promoted when they were cocultured with preadipocytes. Similar effects were observed when pre- or mature adipocyte-conditioned medium was used. These results indicate that preadipocytes play an important role in maintaining skeletal muscle mass by promoting myogenesis; once differentiated, the resulting mature adipocytes negatively affect myogenesis, leading to the muscle deterioration observed in skeletal muscle pathologies. - Highlights: • We examined the effects of pre- and mature adipocytes on myogenesis in vitro. • Preadipocytes and mature adipocytes affect myoblast fusion. • Preadipocytes play an important role in maintaining skeletal muscle mass. • Mature adipocytes lead to muscle deterioration observed in skeletal muscle pathologies

  7. Myotube formation is affected by adipogenic lineage cells in a cell-to-cell contact-independent manner

    Energy Technology Data Exchange (ETDEWEB)

    Takegahara, Yuki; Yamanouchi, Keitaro, E-mail: akeita@mail.ecc.u-tokyo.ac.jp; Nakamura, Katsuyuki; Nakano, Shin-ichi; Nishihara, Masugi

    2014-05-15

    Intramuscular adipose tissue (IMAT) formation is observed in some pathological conditions such as Duchenne muscular dystrophy (DMD) and sarcopenia. Several studies have suggested that IMAT formation is not only negatively correlated with skeletal muscle mass but also causes decreased muscle contraction in sarcopenia. In the present study, we examined w hether adipocytes affect myogenesis. For this purpose, skeletal muscle progenitor cells were transfected with siRNA of PPARγ (siPPARγ) in an attempt to inhibit adipogenesis. Myosin heavy chain (MHC)-positive myotube formation was promoted in cells transfected with siPPARγ compared to that of cells transfected with control siRNA. To determine whether direct cell-to-cell contact between adipocytes and myoblasts is a prerequisite for adipocytes to affect myogenesis, skeletal muscle progenitor cells were cocultured with pre- or mature adipocytes in a Transwell coculture system. MHC-positive myotube formation was inhibited when skeletal muscle progenitor cells were cocultured with mature adipocytes, but was promoted when they were cocultured with preadipocytes. Similar effects were observed when pre- or mature adipocyte-conditioned medium was used. These results indicate that preadipocytes play an important role in maintaining skeletal muscle mass by promoting myogenesis; once differentiated, the resulting mature adipocytes negatively affect myogenesis, leading to the muscle deterioration observed in skeletal muscle pathologies. - Highlights: • We examined the effects of pre- and mature adipocytes on myogenesis in vitro. • Preadipocytes and mature adipocytes affect myoblast fusion. • Preadipocytes play an important role in maintaining skeletal muscle mass. • Mature adipocytes lead to muscle deterioration observed in skeletal muscle pathologies.

  8. Self-glycolipids modulate dendritic cells changing the cytokine profiles of committed autoreactive T cells.

    Directory of Open Access Journals (Sweden)

    Karsten Buschard

    Full Text Available The impact of glycolipids of non-mammalian origin on autoimmune inflammation has become widely recognized. Here we report that the naturally occurring mammalian glycolipids, sulfatide and β-GalCer, affect the differentiation and the quality of antigen presentation by monocyte-derived dendritic cells (DCs. In response to sulfatide and β-GalCer, monocytes develop into immature DCs with higher expression of HLA-DR and CD86 but lower expression of CD80, CD40 and CD1a and lower production of IL-12 compared to non-modulated DCs. Self-glycolipid-modulated DCs responded to lipopolysaccharide (LPS by changing phenotype but preserved low IL-12 production. Sulfatide, in particular, reduced the capacity of DCs to stimulate autoreactive Glutamic Acid Decarboxylase (GAD65 - specific T cell response and promoted IL-10 production by the GAD65-specific clone. Since sulfatide and β-GalCer induced toll-like receptor (TLR-mediated signaling, we hypothesize that self-glycolipids deliver a (tolerogenic polarizing signal to differentiating DCs, facilitating the maintenance of self-tolerance under proinflammatory conditions.

  9. Highly Synchronized Expression of Lineage-Specific Genes during In Vitro Hepatic Differentiation of Human Pluripotent Stem Cell Lines

    Directory of Open Access Journals (Sweden)

    Nidal Ghosheh

    2016-01-01

    Full Text Available Human pluripotent stem cells- (hPSCs- derived hepatocytes have the potential to replace many hepatic models in drug discovery and provide a cell source for regenerative medicine applications. However, the generation of fully functional hPSC-derived hepatocytes is still a challenge. Towards gaining better understanding of the differentiation and maturation process, we employed a standardized protocol to differentiate six hPSC lines into hepatocytes and investigated the synchronicity of the hPSC lines by applying RT-qPCR to assess the expression of lineage-specific genes (OCT4, NANOG, T, SOX17, CXCR4, CER1, HHEX, TBX3, PROX1, HNF6, AFP, HNF4a, KRT18, ALB, AAT, and CYP3A4 which serve as markers for different stages during liver development. The data was evaluated using correlation and clustering analysis, demonstrating that the expression of these markers is highly synchronized and correlated well across all cell lines. The analysis also revealed a distribution of the markers in groups reflecting the developmental stages of hepatocytes. Functional analysis of the differentiated cells further confirmed their hepatic phenotype. Taken together, these results demonstrate, on the molecular level, the highly synchronized differentiation pattern across multiple hPSC lines. Moreover, this study provides additional understanding for future efforts to improve the functionality of hPSC-derived hepatocytes and thereby increase the value of related models.

  10. Highly Synchronized Expression of Lineage-Specific Genes during In Vitro Hepatic Differentiation of Human Pluripotent Stem Cell Lines

    Science.gov (United States)

    Ghosheh, Nidal; Olsson, Björn; Edsbagge, Josefina; Küppers-Munther, Barbara; Van Giezen, Mariska; Asplund, Annika; Andersson, Tommy B.; Björquist, Petter; Carén, Helena; Simonsson, Stina; Sartipy, Peter; Synnergren, Jane

    2016-01-01

    Human pluripotent stem cells- (hPSCs-) derived hepatocytes have the potential to replace many hepatic models in drug discovery and provide a cell source for regenerative medicine applications. However, the generation of fully functional hPSC-derived hepatocytes is still a challenge. Towards gaining better understanding of the differentiation and maturation process, we employed a standardized protocol to differentiate six hPSC lines into hepatocytes and investigated the synchronicity of the hPSC lines by applying RT-qPCR to assess the expression of lineage-specific genes (OCT4, NANOG, T, SOX17, CXCR4, CER1, HHEX, TBX3, PROX1, HNF6, AFP, HNF4a, KRT18, ALB, AAT, and CYP3A4) which serve as markers for different stages during liver development. The data was evaluated using correlation and clustering analysis, demonstrating that the expression of these markers is highly synchronized and correlated well across all cell lines. The analysis also revealed a distribution of the markers in groups reflecting the developmental stages of hepatocytes. Functional analysis of the differentiated cells further confirmed their hepatic phenotype. Taken together, these results demonstrate, on the molecular level, the highly synchronized differentiation pattern across multiple hPSC lines. Moreover, this study provides additional understanding for future efforts to improve the functionality of hPSC-derived hepatocytes and thereby increase the value of related models. PMID:26949401

  11. Blood-borne stem cells differentiate into vascular and cardiac lineages during normal development

    Czech Academy of Sciences Publication Activity Database

    Zhang, N.; Mustin, D.; Reardon, M. W.; Dealmeida, A.; Mozdziak, P.; Mrug, M.; Eisenberg, L. M.; Sedmera, David

    2006-01-01

    Roč. 15, 1 (2006), s. 17-28 ISSN 1547-3287 Grant - others:March of Dimes 5-FY02-269; NIH RR16434 Institutional research plan: CEZ:AV0Z50450515 Keywords : stem cells * embryonic development * circulation Subject RIV: EA - Cell Biology Impact factor: 3.076, year: 2006

  12. Bioenergetic Changes during Differentiation of Human Embryonic Stem Cells along the Hepatic Lineage

    DEFF Research Database (Denmark)

    Hopkinson, Branden M; Madsen, Claus Desler; Kalisz, Mark

    2017-01-01

    Mitochondrial dysfunction has been demonstrated to result in premature aging due to its effects on stem cells. Nevertheless, a full understanding of the role of mitochondrial bioenergetics through differentiation is still lacking. Here we show the bioenergetics profile of human stem cells...

  13. Lineage tracing of resident tendon progenitor cells during growth and natural healing.

    Directory of Open Access Journals (Sweden)

    Nathaniel A Dyment

    Full Text Available Unlike during embryogenesis, the identity of tissue resident progenitor cells that contribute to postnatal tendon growth and natural healing is poorly characterized. Therefore, we utilized 1 an inducible Cre driven by alpha smooth muscle actin (SMACreERT2, that identifies mesenchymal progenitors, 2 a constitutively active Cre driven by growth and differentiation factor 5 (GDF5Cre, a critical regulator of joint condensation, in combination with 3 an Ai9 Cre reporter to permanently label SMA9 and GDF5-9 populations and their progeny. In growing mice, SMA9+ cells were found in peritendinous structures and scleraxis-positive (ScxGFP+ cells within the tendon midsubstance and myotendinous junction. The progenitors within the tendon midsubstance were transiently labeled as they displayed a 4-fold expansion from day 2 to day 21 but reduced to baseline levels by day 70. SMA9+ cells were not found within tendon entheses or ligaments in the knee, suggesting a different origin. In contrast to the SMA9 population, GDF5-9+ cells extended from the bone through the enthesis and into a portion of the tendon midsubstance. GDF5-9+ cells were also found throughout the length of the ligaments, indicating a significant variation in the progenitors that contribute to tendons and ligaments. Following tendon injury, SMA9+ paratenon cells were the main contributors to the healing response. SMA9+ cells extended over the defect space at 1 week and differentiated into ScxGFP+ cells at 2 weeks, which coincided with increased collagen signal in the paratenon bridge. Thus, SMA9-labeled cells represent a unique progenitor source that contributes to the tendon midsubstance, paratenon, and myotendinous junction during growth and natural healing, while GDF5 progenitors contribute to tendon enthesis and ligament development. Understanding the mechanisms that regulate the expansion and differentiation of these progenitors may prove crucial to improving future repair strategies.

  14. Deleterious effects on MDAMB-231 breast adenocarcinoma cell lineage submitted to Ho-166 radioactive seeds at very low activity

    Energy Technology Data Exchange (ETDEWEB)

    Falcao, Patricia L.; Campos, Tarcisio P.R., E-mail: campos@nuclear.ufmg.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Engenharia Nuclear; Sarmento, Eduardo V. [Centro de Desenvolvimento de Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Cuperschmid, Ethel M. [Universidade Federal de Minas Gerais (CEMEMOR/UFMG), Belo Horizonte, BR (Brazil). Fac. de Medicina. Centro de Memoria da Medicina

    2011-07-01

    Herein, the deleterious effect of ionizing radiation provided by Ho-166 radioactive seeds at low activity were addressed, based on experimental in vitro assays at the MDA MB231 cell lineage, a breast adenocarcinoma, compared to PBMC - peripheral blood cells. The methodology involves of the MDBMB-231 and PBMC expansion in culture in suitable environment in 30mm well plates and T-25 flasks. Seeds were synthesized with Ho-165 incorporated and characterized previously. Activation was processed at IPR1 reactor at the peripheral table, at 8h exposition. Three groups of seeds were tested: 0,34 mCi, 0,12 mCi activity, and control group. Such seeds were placed on culture and held to a period of 05 half-lives of the radionuclide. The biological responses at these exposure were documented by inverse microscopic photographic in time. Also, MTT essay were performed. A fast response in producing deleterious effects at cancer cell was observed even if for the low activity seeds. Also, a biological response dependent to a radial distance of the seed was observed. At conclusion, viability clonogenic control of MDAMB231 is identified at the exposition to Ho-166 ceramic seeds, even if at low activity of 0,1 to 0,3mCi. (author)

  15. Stem-cell dynamics and lineage topology from in vivo fate mapping in the hematopoietic system.

    Science.gov (United States)

    Höfer, Thomas; Barile, Melania; Flossdorf, Michael

    2016-06-01

    In recent years, sophisticated fate-mapping tools have been developed to study the behavior of stem cells in the intact organism. These experimental approaches are beginning to yield a quantitative picture of how cell numbers are regulated during steady state and in response to challenges. Focusing on hematopoiesis and immune responses, we discuss how novel mathematical approaches driven by these fate-mapping data have provided insights into the dynamics and topology of cellular differentiation pathways in vivo. The combination of experiment and theory has allowed to quantify the degree of self-renewal in stem and progenitor cells, shown how native hematopoiesis differs fundamentally from post-transplantation hematopoiesis, and uncovered that the diversification of T lymphocytes during immune responses resembles tissue renewal driven by stem cells. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Bone Marrow-Derived Mesenchymal Cell Differentiation toward Myogenic Lineages: Facts and Perspectives

    Directory of Open Access Journals (Sweden)

    Daniela Galli

    2014-01-01

    Full Text Available Bone marrow-derived mesenchymal stem cells (BM-MSCs are valuable platforms for new therapies based on regenerative medicine. BM-MSCs era is coming of age since the potential of these cells is increasingly demonstrated. In fact, these cells give origin to osteoblasts, chondroblasts, and adipocyte precursors in vitro, and they can also differentiate versus other mesodermal cell types like skeletal muscle precursors and cardiomyocytes. In our short review, we focus on the more recent manipulations of BM-MSCs toward skeletal and heart muscle differentiation, a growing field of obvious relevance considering the toll of muscle disease (i.e., muscular dystrophies, the heavier toll of heart disease in developed countries, and the still not completely understood mechanisms of muscle differentiation and repair.

  17. Transcription factor KLF7 regulates differentiation of neuroectodermal and mesodermal cell lineages

    International Nuclear Information System (INIS)

    Caiazzo, Massimiliano; Colucci-D'Amato, Luca; Esposito, Maria T.; Parisi, Silvia; Stifani, Stefano; Ramirez, Francesco; Porzio, Umberto di

    2010-01-01

    Previous gene targeting studies in mice have implicated the nuclear protein Krueppel-like factor 7 (KLF7) in nervous system development while cell culture assays have documented its involvement in cell cycle regulation. By employing short hairpin RNA (shRNA)-mediated gene silencing, here we demonstrate that murine Klf7 gene expression is required for in vitro differentiation of neuroectodermal and mesodermal cells. Specifically, we show a correlation of Klf7 silencing with down-regulation of the neuronal marker microtubule-associated protein 2 (Map2) and the nerve growth factor (NGF) tyrosine kinase receptor A (TrkA) using the PC12 neuronal cell line. Similarly, KLF7 inactivation in Klf7-null mice decreases the expression of the neurogenic marker brain lipid-binding protein/fatty acid-binding protein 7 (BLBP/FABP7) in neural stem cells (NSCs). We also report that Klf7 silencing is detrimental to neuronal and cardiomyocytic differentiation of embryonic stem cells (ESCs), in addition to altering the adipogenic and osteogenic potential of mouse embryonic fibroblasts (MEFs). Finally, our results suggest that genes that are key for self-renewal of undifferentiated ESCs repress Klf7 expression in ESCs. Together with previous findings, these results provide evidence that KLF7 has a broad spectrum of regulatory functions, which reflect the discrete cellular and molecular contexts in which this transcription factor operates.

  18. Activated charcoal composite biomaterial promotes human embryonic stem cell differentiation toward neuronal lineage.

    Science.gov (United States)

    Chen, Eric Y T; Wang, Yung-Chen; Mintz, Alexander; Richards, Alan; Chen, Chi-Shuo; Lu, David; Nguyen, Thien; Chin, Wei-Chun

    2012-08-01

    Transplantation of biomaterial scaffolds encasing human embryonic stem cells (hESCs) has been proposed as a clinical therapy for various neurological lesions and disorders. In light of recent developments, artificially synthesized carbon-based biomaterials such as carbon nanotubes and graphene have demonstrated feasibility in supporting stem cell attachment and differentiation. However, the applicability is significantly hampered by evidence of nanotoxic effects on multiple cell types. Thus, an emergent drive for an innovative carbonaceous biomaterial calls for a safer platform with comparable advantageous characteristics. Here, we showed for the first time, a natural coal-based activated charcoal (AC) composite biosubstrate can support and promote neuronal differentiation in hESCs. The bio-friendly AC composite biomatrices resulted in more matured neuron-like cells. Both of axonal length and density were at least twice as long and abundant, respectively, when compared with control groups. A functional assay demonstrated that the derived neuron-like cells responded to depolarization-dependent synaptic recycling and may contain active synapses. In addition, the AC composite substrate can serve to concentrate growth factors and cell adhesion proteins, further encouraging attachment and hESC differentiation. Moreover, the AC composite biomaterial can potentially be economically manufactured as implantable three-dimensional bioscaffolds, facilitating the regeneration of damaged neural and other tissues. Copyright © 2012 Wiley Periodicals, Inc.

  19. A population of human brain cells expressing phenotypic markers of more than one lineage can be induced in vitro to differentiate into mesenchymal cells

    International Nuclear Information System (INIS)

    Rieske, Piotr; Augelli, Brian J.; Stawski, Robert; Gaughan, John; Azizi, S. Ausim; Krynska, Barbara

    2009-01-01

    Proliferating astrocytic cells from germinal, as well as mature areas of brain parenchyma, have the characteristics of neural stem/progenitor cells and are capable of generating both neurons and glia. We previously reported that primary fetal human brain cells, designated as Normal Human Astrocytes (NHA), expressed, in addition to GFAP, Vimentin and Nestin, low levels of βIII-Tubulin, an early neuronal marker, and differentiated into neurons and astrocytes in vitro. Here, we showed that primary NHA cells co-express low levels of mesenchymal markers Fibronectin and Collagen-1 in culture. These cells transitioned into mesenchymal-like cells when cultured in adherent conditions in serum containing media. The mesenchymal-like derivatives of these cells were characterized based on their morphological changes, high expression of Vimentin and extracellular matrix (ECM) proteins, Collagen-1 and Fibronectin, and decline of neural markers. When incubated in osteogenic and adipogenic induction media, the mesenchymal-like cells differentiated into osteoblasts and adipocytes. Furthermore, NHA cells express markers of neural crest cells, SOX-10 and p75. These data support the idea of ectoderm-derived mesenchymal lineages. These findings suggest that a population of primitive fetal brain cells with neural/neural crest/mesenchymal phenotype, resembles the remarkable phenotypic plasticity of neural crest cells, and differentiates into adipocytes and osteocytes under the influence of environmental factors

  20. New Functional Signatures for Understanding Melanoma Biology from Tumor Cell Lineage-Specific Analysis

    Directory of Open Access Journals (Sweden)

    Florian Rambow

    2015-10-01

    Full Text Available Molecular signatures specific to particular tumor types are required to design treatments for resistant tumors. However, it remains unclear whether tumors and corresponding cell lines used for drug development share such signatures. We developed similarity core analysis (SCA, a universal and unsupervised computational framework for extracting core molecular features common to tumors and cell lines. We applied SCA to mRNA/miRNA expression data from various sources, comparing melanoma cell lines and metastases. The signature obtained was associated with phenotypic characteristics in vitro, and the core genes CAPN3 and TRIM63 were implicated in melanoma cell migration/invasion. About 90% of the melanoma signature genes belong to an intrinsic network of transcription factors governing neural development (TFAP2A, DLX2, ALX1, MITF, PAX3, SOX10, LEF1, and GAS7 and miRNAs (211-5p, 221-3p, and 10a-5p. The SCA signature effectively discriminated between two subpopulations of melanoma patients differing in overall survival, and classified MEKi/BRAFi-resistant and -sensitive melanoma cell lines.

  1. Defined three-dimensional culture conditions mediate efficient induction of definitive endoderm lineage from human umbilical cord Wharton’s jelly mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Ashraf Al Madhoun

    2016-11-01

    Full Text Available Abstract Background Wharton’s jelly-derived mesenchymal stem cells (WJ-MSCs are gaining increasing interest as an alternative source of stem cells for regenerative medicine applications. Definitive endoderm (DE specification is a prerequisite for the development of vital organs such as liver and pancreas. Hence, efficient induction of the DE lineage from stem cells is crucial for subsequent generation of clinically relevant cell types. Here we present a defined 3D differentiation protocol of WJ-MSCs into DE cells. Methods WJ-MSCs were cultured in suspension to generate spheroids, about 1500 cells each, for 7 days. The serum-free differentiation media contained specific growth factors, cytokines, and small molecules that specifically regulate signaling pathways including sonic hedgehog, bone morphogenetic protein, Activin/Wnt, and Notch. Results We obtained more than 85 % DE cells as shown with FACS analysis using antibodies directed against the DE marker CXCR4. In addition, biochemical and molecular analysis of bona-fide DE markers revealed a time-course induction of Sox17, CXCR4, and FoxA2. Focused PCR-based array also indicated a specific induction into the DE lineage. Conclusions In this study, we report an efficient serum-free protocol to differentiate WJ-MSCs into DE cells utilizing 3D spheroid formation. Our approach might aid in the development of new protocols to obtain DE-derivative lineages including liver-like and pancreatic insulin-producing cells.

  2. Human embryonic and fetal mesenchymal stem cells differentiate toward three different cardiac lineages in contrast to their adult counterparts.

    Science.gov (United States)

    Ramkisoensing, Arti A; Pijnappels, Daniël A; Askar, Saïd F A; Passier, Robert; Swildens, Jim; Goumans, Marie José; Schutte, Cindy I; de Vries, Antoine A F; Scherjon, Sicco; Mummery, Christine L; Schalij, Martin J; Atsma, Douwe E

    2011-01-01

    Mesenchymal stem cells (MSCs) show unexplained differences in differentiation potential. In this study, differentiation of human (h) MSCs derived from embryonic, fetal and adult sources toward cardiomyocytes, endothelial and smooth muscle cells was investigated. Labeled hMSCs derived from embryonic stem cells (hESC-MSCs), fetal umbilical cord, bone marrow, amniotic membrane and adult bone marrow and adipose tissue were co-cultured with neonatal rat cardiomyocytes (nrCMCs) or cardiac fibroblasts (nrCFBs) for 10 days, and also cultured under angiogenic conditions. Cardiomyogenesis was assessed by human-specific immunocytological analysis, whole-cell current-clamp recordings, human-specific qRT-PCR and optical mapping. After co-culture with nrCMCs, significantly more hESC-MSCs than fetal hMSCs stained positive for α-actinin, whereas adult hMSCs stained negative. Furthermore, functional cardiomyogenic differentiation, based on action potential recordings, was shown to occur, but not in adult hMSCs. Of all sources, hESC-MSCs expressed most cardiac-specific genes. hESC-MSCs and fetal hMSCs contained significantly higher basal levels of connexin43 than adult hMSCs and co-culture with nrCMCs increased expression. After co-culture with nrCFBs, hESC-MSCs and fetal hMSCs did not express α-actinin and connexin43 expression was decreased. Conduction velocity (CV) in co-cultures of nrCMCs and hESC-MSCs was significantly higher than in co-cultures with fetal or adult hMSCs. In angiogenesis bioassays, only hESC-MSCs and fetal hMSCs were able to form capillary-like structures, which stained for smooth muscle and endothelial cell markers.Human embryonic and fetal MSCs differentiate toward three different cardiac lineages, in contrast to adult MSCs. Cardiomyogenesis is determined by stimuli from the cellular microenvironment, where connexin43 may play an important role.

  3. Cytolethal distending toxin: a conserved bacterial genotoxin that blocks cell cycle progression, leading to apoptosis of a broad range of mammalian cell lineages.

    Science.gov (United States)

    Jinadasa, Rasika N; Bloom, Stephen E; Weiss, Robert S; Duhamel, Gerald E

    2011-07-01

    Cytolethal distending toxin (CDT) is a heterotrimeric AB-type genotoxin produced by several clinically important Gram-negative mucocutaneous bacterial pathogens. Irrespective of the bacterial species of origin, CDT causes characteristic and irreversible cell cycle arrest and apoptosis in a broad range of cultured mammalian cell lineages. The active subunit CdtB has structural homology with the phosphodiesterase family of enzymes including mammalian DNase I, and alone is necessary and sufficient to account for cellular toxicity. Indeed, mammalian cells treated with CDT initiate a DNA damage response similar to that elicited by ionizing radiation-induced DNA double strand breaks resulting in cell cycle arrest and apoptosis. The mechanism of CDT-induced apoptosis remains incompletely understood, but appears to involve both p53-dependent and -independent pathways. While epithelial, endothelial and fibroblast cell lines respond to CDT by undergoing arrest of cell cycle progression resulting in nuclear and cytoplasmic distension that precedes apoptotic cell death, cells of haematopoietic origin display rapid apoptosis following a brief period of cell cycle arrest. In this review, the ecology of pathogens producing CDT, the molecular biology of bacterial CDT and the molecular mechanisms of CDT-induced cytotoxicity are critically appraised. Understanding the contribution of a broadly conserved bacterial genotoxin that blocks progression of the mammalian cell cycle, ultimately causing cell death, should assist with elucidating disease mechanisms for these important pathogens.

  4. Identification and characterization of Xenopus tropicalis common progenitors of Sertoli and peritubular myoid cell lineages

    Czech Academy of Sciences Publication Activity Database

    Tlapáková, T.; Nguyen, T.M.X.; Vegrichtova, M.; Šídová, Monika; Strnadova, K.; Bláhová, M.; Krylov, V.

    2016-01-01

    Roč. 5, č. 9 (2016), s. 1275-1282 ISSN 2046-6390 R&D Projects: GA AV ČR LK21305; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:86652036 Keywords : Testicular somatic cells * Xenopus tropicalis * Migration potential Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.095, year: 2016

  5. Deriving human ENS lineages for cell therapy and drug discovery in Hirschsprung disease.

    Science.gov (United States)

    Fattahi, Faranak; Steinbeck, Julius A; Kriks, Sonja; Tchieu, Jason; Zimmer, Bastian; Kishinevsky, Sarah; Zeltner, Nadja; Mica, Yvonne; El-Nachef, Wael; Zhao, Huiyong; de Stanchina, Elisa; Gershon, Michael D; Grikscheit, Tracy C; Chen, Shuibing; Studer, Lorenz

    2016-03-03

    The enteric nervous system (ENS) is the largest component of the autonomic nervous system, with neuron numbers surpassing those present in the spinal cord. The ENS has been called the 'second brain' given its autonomy, remarkable neurotransmitter diversity and complex cytoarchitecture. Defects in ENS development are responsible for many human disorders including Hirschsprung disease (HSCR). HSCR is caused by the developmental failure of ENS progenitors to migrate into the gastrointestinal tract, particularly the distal colon. Human ENS development remains poorly understood owing to the lack of an easily accessible model system. Here we demonstrate the efficient derivation and isolation of ENS progenitors from human pluripotent stem (PS) cells, and their further differentiation into functional enteric neurons. ENS precursors derived in vitro are capable of targeted migration in the developing chick embryo and extensive colonization of the adult mouse colon. The in vivo engraftment and migration of human PS-cell-derived ENS precursors rescue disease-related mortality in HSCR mice (Ednrb(s-l/s-l)), although the mechanism of action remains unclear. Finally, EDNRB-null mutant ENS precursors enable modelling of HSCR-related migration defects, and the identification of pepstatin A as a candidate therapeutic target. Our study establishes the first, to our knowledge, human PS-cell-based platform for the study of human ENS development, and presents cell- and drug-based strategies for the treatment of HSCR.

  6. Angiogenic CXC chemokine expression during differentiation of human mesenchymal stem cells towards the osteoblastic lineage.

    Science.gov (United States)

    Bischoff, D S; Zhu, J H; Makhijani, N S; Kumar, A; Yamaguchi, D T

    2008-02-15

    The potential role of ELR(+) CXC chemokines in early events in bone repair was studied using human mesenchymal stem cells (hMSCs). Inflammation, which occurs in the initial phase of tissue healing in general, is critical to bone repair. Release of cytokines from infiltrating immune cells and injured bone can lead to recruitment of MSCs to the region of repair. CXC chemokines bearing the Glu-Leu-Arg (ELR) motif are also released by inflammatory cells and serve as angiogenic factors stimulating chemotaxis and proliferation of endothelial cells. hMSCs, induced to differentiate with osteogenic medium (OGM) containing ascorbate, beta-glycerophosphate (beta-GP), and dexamethasone (DEX), showed an increase in mRNA and protein secretion of the ELR(+) CXC chemokines CXCL8 and CXCL1. CXCL8 mRNA half-life studies reveal an increase in mRNA stability upon OGM stimulation. Increased expression and secretion is a result of DEX in OGM and is dose-dependent. Inhibition of the glucocorticoid receptor with mifepristone only partially inhibits DEX-stimulated CXCL8 expression indicating both glucocorticoid receptor dependent and independent pathways. Treatment with signal transduction inhibitors demonstrate that this expression is due to activation of the ERK and p38 mitogen-activated protein kinase (MAPK) pathways and is mediated through the G(alphai)-coupled receptors. Angiogenesis assays demonstrate that OGM-stimulated conditioned media containing secreted CXCL8 and CXCL1 can induce angiogenesis of human microvascular endothelial cells in an in vitro Matrigel assay. Copyright 2007 Wiley-Liss, Inc.

  7. Regulation of Early Adipose Commitment by Zfp521

    Science.gov (United States)

    Kang, Sona; Gupta, Rana K.; Kajimura, Shingo; Griffin, Michael J.; Min, Jie; Baron, Roland; Rosen, Evan D.

    2012-01-01

    While there has been significant progress in determining the transcriptional cascade involved in terminal adipocyte differentiation, less is known about early events leading to lineage commitment and cell fate choice. It has been recently discovered that zinc finger protein 423 (Zfp423) is an early actor in adipose determination. Here, we show that a close paralog of Zfp423, Zfp521, acts as a key regulator of adipose commitment and differentiation in vitro and in vivo. Zfp521 exerts its actions by binding to early B cell factor 1 (Ebf1), a transcription factor required for the generation of adipocyte progenitors, and inhibiting the expression of Zfp423. Overexpression of Zfp521 in cells greatly inhibits adipogenic potential, whereas RNAi-mediated knock-down or genetic ablation of Zfp521 enhances differentiation. In addition, Zfp521−/− embryos exhibit increased mass of interscapular brown adipose tissue and subcutaneous white adipocytes, a cell autonomous effect. Finally, Ebf1 participates in a negative feedback loop to repress Zfp521 as differentiation proceeds. Because Zfp521 is known to promote bone development, our results suggest that it acts as a critical switch in the commitment decision between the adipogenic and osteogenic lineages. PMID:23209378

  8. Regulation of early adipose commitment by Zfp521.

    Directory of Open Access Journals (Sweden)

    Sona Kang

    Full Text Available While there has been significant progress in determining the transcriptional cascade involved in terminal adipocyte differentiation, less is known about early events leading to lineage commitment and cell fate choice. It has been recently discovered that zinc finger protein 423 (Zfp423 is an early actor in adipose determination. Here, we show that a close paralog of Zfp423, Zfp521, acts as a key regulator of adipose commitment and differentiation in vitro and in vivo. Zfp521 exerts its actions by binding to early B cell factor 1 (Ebf1, a transcription factor required for the generation of adipocyte progenitors, and inhibiting the expression of Zfp423. Overexpression of Zfp521 in cells greatly inhibits adipogenic potential, whereas RNAi-mediated knock-down or genetic ablation of Zfp521 enhances differentiation. In addition, Zfp521⁻/⁻ embryos exhibit increased mass of interscapular brown adipose tissue and subcutaneous white adipocytes, a cell autonomous effect. Finally, Ebf1 participates in a negative feedback loop to repress Zfp521 as differentiation proceeds. Because Zfp521 is known to promote bone development, our results suggest that it acts as a critical switch in the commitment decision between the adipogenic and osteogenic lineages.

  9. Replication of West Nile virus, Rabensburg lineage in mammalian cells is restricted by temperature

    Directory of Open Access Journals (Sweden)

    Aliota Matthew T

    2012-12-01

    Full Text Available Abstract Background The genus Flavivirus currently consists of approximately 80 single-strand positive-sense RNA viruses. These replicate in a range of hosts including myriad vertebrate, insect, and tick species. As a consequence of this broad host range, the majority of flaviviruses can be propagated in most vertebrate and insect cell cultures. This ability to infect arthropods and vertebrates usually is essential for maintenance of these viruses in nature. But recently, there has been the discovery of a number of flaviviruses that infect mosquitoes but not vertebrates. It remains largely unknown why certain flaviviruses infect vertebrates and mosquitoes while others infect mosquitoes or vertebrates exclusively. Methods Here, we initiated in vitro host range studies of Rabensburg virus (RABV, an intermediate between the mosquito-specific and horizontally transmitted flaviviruses, to provide information on the factor(s that underlie the varying host range of flaviviruses. RABV is an intermediate between the mosquito-specific and horizontally transmitted flaviviruses because it does not infect mammalian or avian cell cultures, house sparrows, or chickens, but it does share genetic characteristics with the Japanese Encephalitis serogroup of flaviviruses. Results In vitro growth kinetic assays revealed the complete abrogation of RABV growth on Vero and E6 cells incubated at temperatures 35°C and higher, but surprisingly RABV infected, replicated efficiently, and displayed overt cytopathic effects (CPE on Vero and E6 cell cultures incubated below 35°C. In contrast, RABV was fully viable, replicated efficiently, and displayed overt CPE on C6/36 cells incubated at 28°C or 37°C, thus implicating temperature as an important factor limiting the host range of RABV. Conclusions These data are critical for further study to more fully identify the determinants that mediate the evolution of biological transmission among flaviviruses. It also will be

  10. Directed differentiation of induced pluripotent stem cells into chondrogenic lineages for articular cartilage treatment

    Directory of Open Access Journals (Sweden)

    Michał Lach

    2014-09-01

    Full Text Available In recent years, increases in the number of articular cartilage injuries caused by environmental factors or pathological conditions have led to a notable rise in the incidence of premature osteoarthritis. Osteoarthritis, considered a disease of civilization, is the leading cause of disability. At present, standard methods for treating damaged articular cartilage, including autologous chondrocyte implantation or microfracture, are short-term solutions with important side effects. Emerging treatments include the use of induced pluripotent stem cells, a technique that could provide a new tool for treatment of joint damage. However, research in this area is still early, and no optimal protocol for transforming induced pluripotent stem cells into chondrocytes has yet been established. Developments in our understanding of cartilage developmental biology, together with the use of modern technologies in the field of tissue engineering, provide an opportunity to create a complete functional model of articular cartilage.

  11. Regulation of C/EBPβ and resulting functions in cells of the monocytic lineage.

    Science.gov (United States)

    Huber, René; Pietsch, Daniel; Panterodt, Thomas; Brand, Korbinian

    2012-06-01

    Monocyte/macrophages play an important role in orchestrating the immune response. The present review refers to C/EBPβ, which is a key transcription factor regulating monocytic gene expression. Following a general introduction to C/EBPβ, this article focuses on activators and regulators of the C/EBPβ system in monocytic cells, including differentiating agents, cytokines, and bacterial products as well as associated signaling pathways. Furthermore, C/EBPβ target genes in monocytic cells are summarized and resulting functions are described, including regulation of proliferation and differentiation as well as orchestration of processes of mainly the innate immune response. In addition, a variety of disease stages are described in which a dysregulation of the C/EBPβ system may be involved. A detailed knowledge of the C/EBPβ system in monocytic cells may help to further understand the difference between inflammatory and malignant proliferation as well as additional regulatory facets of innate immunity. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Genetic characterization of human T-cell lymphotropic virus type 1 in Mozambique: transcontinental lineages drive the HTLV-1 endemic.

    Directory of Open Access Journals (Sweden)

    Ana Carolina P Vicente

    2011-04-01

    Full Text Available Human T-Cell Lymphotropic Virus Type 1 (HTLV-1 is the etiological agent of adult T-cell leukemia (ATL and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP. It has been estimated that 10-20 million people are infected worldwide, but no successful treatment is available. Recently, the epidemiology of this virus was addressed in blood donors from Maputo, showing rates from 0.9 to 1.2%. However, the origin and impact of HTLV endemic in this population is unknown.To assess the HTLV-1 molecular epidemiology in Mozambique and to investigate their relationship with HTLV-1 lineages circulating worldwide.Blood donors and HIV patients were screened for HTLV antibodies by using enzyme immunoassay, followed by Western Blot. PCR and sequencing of HTLV-1 LTR region were applied and genetic HTLV-1 subtypes were assigned by the neighbor-joining method. The mean genetic distance of Mozambican HTLV-1 lineages among the genetic clusters were determined. Human mitochondrial (mt DNA analysis was performed and individuals classified in mtDNA haplogroups.LTR HTLV-1 analysis demonstrated that all isolates belong to the Transcontinental subgroup of the Cosmopolitan subtype. Mozambican HTLV-1 sequences had a high inter-strain genetic distance, reflecting in three major clusters. One cluster is associated with the South Africa sequences, one is related with Middle East and India strains and the third is a specific Mozambican cluster. Interestingly, 83.3% of HIV/HTLV-1 co-infection was observed in the Mozambican cluster. The human mtDNA haplotypes revealed that all belong to the African macrohaplogroup L with frequencies representatives of the country.The Mozambican HTLV-1 genetic diversity detected in this study reveals that although the strains belong to the most prevalent and worldwide distributed Transcontinental subgroup of the Cosmopolitan subtype, there is a high HTLV diversity that could be correlated with at least 3 different HTLV-1 introductions

  13. Analysis of the Hand1 cell lineage reveals novel contributions to cardiovascular, neural crest, extra-embryonic, and lateral mesoderm derivatives.

    Science.gov (United States)

    Barnes, Ralston M; Firulli, Beth A; Conway, Simon J; Vincentz, Joshua W; Firulli, Anthony B

    2010-11-01

    The basic Helix-Loop-Helix (bHLH) transcription factors Hand1 and Hand2 play critical roles in the development of multiple organ systems during embryogenesis. The dynamic expression patterns of these two factors within developing tissues obfuscate their respective unique and redundant organogenic functions. To define cell lineages potentially dependent upon Hand gene expression, we generated a mutant allele in which the coding region of Hand1 is replaced by Cre recombinase. Subsequent Cre-mediated activation of β-galactosidase or eYFP reporter alleles enabled lineage trace analyses that clearly define the fate of Hand1-expressing cells. Hand1-driven Cre marks specific lineages within the extra embryonic tissues, placenta, sympathetic nervous system, limbs, jaw, and several cell types within the cardiovascular system. Comparisons between Hand1 expression and Hand1-lineage greatly refine our understanding of its dynamic spatial-temporal expression domains and raise the possibility of novel Hand1 functions in structures not thought to be Hand1-dependent. © 2010 Wiley-Liss, Inc.

  14. Neural crest-derived cells with stem cell features can be traced back to multiple lineages in the adult skin

    NARCIS (Netherlands)

    C.E. Wong (Christine); S. Paratore (Sabrina); M.T. Dours-Zimmermann (María); T. Rochat (Thierry); T. Pietri (Thomas); U. Suter (Ueli); D. Zimmermann (Dieter); S. Dufour (Sylvie); J.P. Thiery (Joachim); D.N. Meijer (Dies); C. Beermann (Christopher); Y. Barrandon (Yann); L. Sommer (Lukas)

    2006-01-01

    textabstractGiven their accessibility, multipotent skin-derived cells might be useful for future cell replacement therapies. We describe the isolation of multipotent stem cell-like cells from the adult trunk skin of mice and humans that express the neural crest stem cell markers p75 and Sox10 and

  15. Factors Released from Endothelial Cells Exposed to Flow Impact Adhesion, Proliferation, and Fate Choice in the Adult Neural Stem Cell Lineage.

    Science.gov (United States)

    Dumont, Courtney M; Piselli, Jennifer M; Kazi, Nadeem; Bowman, Evan; Li, Guoyun; Linhardt, Robert J; Temple, Sally; Dai, Guohao; Thompson, Deanna M

    2017-08-15

    The microvasculature within the neural stem cell (NSC) niche promotes self-renewal and regulates lineage progression. Previous work identified endothelial-produced soluble factors as key regulators of neural progenitor cell (NPC) fate and proliferation; however, endothelial cells (ECs) are sensitive to local hemodynamics, and the effect of this key physiological process has not been defined. In this study, we evaluated adult mouse NPC response to soluble factors isolated from static or dynamic (flow) EC cultures. Endothelial factors generated under dynamic conditions significantly increased neuronal differentiation, while those released under static conditions stimulated oligodendrocyte differentiation. Flow increases EC release of neurogenic factors and of heparin sulfate glycosaminoglycans that increase their bioactivity, likely underlying the enhanced neuronal differentiation. Additionally, endothelial factors, especially from static conditions, promoted adherent growth. Together, our data suggest that blood flow may impact proliferation, adhesion, and the neuron-glial fate choice of adult NPCs, with implications for diseases and aging that reduce flow.

  16. DERIVING HUMAN ENS LINEAGES FOR CELL THERAPY AND DRUG DISCOVERY IN HIRSCHSPRUNG'S DISEASE

    Science.gov (United States)

    Fattahi, Faranak; Steinbeck, Julius A; Kriks, Sonja; Tchieu, Jason; Zimmer, Bastian; Kishinevsky, Sarah; Zeltner, Nadja; Mica, Yvonne; El-Nachef, Wael; Zhao, Huiyong; de Stanchina, Elisa; Gershon, Michael D.; Grikscheit, Tracy C.; Chen, Shuibing; Studer, Lorenz

    2015-01-01

    The enteric nervous system (ENS) is the largest component of the autonomic nervous system with neuron numbers surpassing those present in the spinal cord1. The ENS has been called the “second brain”1 given its autonomy, remarkable neurotransmitter diversity and complex cytoarchitecture. Defects in ENS development are responsible for many human disorders including Hirschsprung's disease (HSCR). HSCR is a caused by the developmental failure of ENS progenitors to migrate into the GI tract in particular the distal colon2. Human ENS development remains poorly understood due to the lack of an easily accessible model system. Here we demonstrate the efficient derivation and isolation of ENS progenitors from human pluripotent stem cells (hPSCs) and their further differentiation into functional enteric neurons. In vitro derived ENS precursors are capable of targeted migration in the developing chick embryo and extensive colonization of the adult mouse colon. In vivo engraftment and migration of hPSC-derived ENS precursors rescues disease-related mortality in HSCR mice (EDNRBs-l/s-l), though mechanism of action remains unclear. Finally, EDNRB null mutant ENS precursors enable modeling of HSCR-related migration defects and the identification of Pepstatin A as candidate therapeutics. Our study establishes the first hPSC-based platform for the study of human ENS development and presents cell and drug-based strategies for the treatment of HSCR. PMID:26863197

  17. Use of KikGR a photoconvertible green-to-red fluorescent protein for cell labeling and lineage analysis in ES cells and mouse embryos

    Directory of Open Access Journals (Sweden)

    Hadjantonakis Anna-Katerina

    2009-09-01

    Full Text Available Abstract Background The use of genetically-encoded fluorescent proteins has revolutionized the fields of cell and developmental biology and in doing so redefined our understanding of the dynamic morphogenetic processes that shape the embryo. With the advent of more accessible and sophisticated imaging technologies as well as an abundance of fluorescent proteins with different spectral characteristics, the dynamic processes taking place in situ in living cells and tissues can now be probed. Photomodulatable fluorescent proteins are one of the emerging classes of genetically-encoded fluorescent proteins. Results We have compared PA-GFP, PS-CFP2, Kaede and KikGR four readily available and commonly used photomodulatable fluorescent proteins for use in ES cells and mice. Our results suggest that the green-to-red photoconvertible fluorescent protein, Kikume Green-Red (KikGR, is most suitable for cell labeling and lineage studies in ES cells and mice because it is developmentally neutral, bright and undergoes rapid and complete photoconversion. We have generated transgenic ES cell lines and strains of mice exhibiting robust widespread expression of KikGR. By efficient photoconversion of KikGR we labeled subpopulations of ES cells in culture, and groups of cells within ex utero cultured mouse embryos. Red fluorescent photoconverted cells and their progeny could be followed for extended periods of time. Conclusion Transgenic ES cells and mice exhibiting widespread readily detectable expression of KikGR are indistinguishable from their wild type counterparts and are amenable to efficient photoconversion. They represent novel tools for non-invasive selective labeling specific cell populations and live imaging cell dynamics and cell fate. Genetically-encoded photomodulatable proteins such as KikGR represent emergent attractive alternatives to commonly used vital dyes, tissue grafts and genetic methods for investigating dynamic behaviors of individual cells

  18. High throughput transcriptome profiling of lithium stimulated human mesenchymal stem cells reveals priming towards osteoblastic lineage.

    Directory of Open Access Journals (Sweden)

    Neeraj Kumar Satija

    Full Text Available Human mesenchymal stem cells (hMSCs present in the bone marrow are the precursors of osteoblasts, chondrocytes and adipocytes, and hold tremendous potential for osteoregenerative therapy. However, achieving directed differentiation into osteoblasts has been a major concern. The use of lithium for enhancing osteogenic differentiation has been documented in animal models but its effect in humans is not clear. We, therefore, performed high throughput transcriptome analysis of lithium-treated hMSCs to identify altered gene expression and its relevance to osteogenic differentiation. Our results show suppression of proliferation and enhancement of alkaline phosphatase (ALP activity upon lithium treatment of hMSCs under non-osteogenic conditions. Microarray profiling of lithium-stimulated hMSC revealed decreased expression of adipogenic genes (CEBPA, CMKLR1, HSD11B1 and genes involved in lipid biosynthesis. Interestingly, osteoclastogenic factors and immune responsive genes (IL7, IL8, CXCL1, CXCL12, CCL20 were also downregulated. Negative transcriptional regulators of the osteogenic program (TWIST1 and PBX1 were suppressed while genes involved in mineralization like CLEC3B and ATF4 were induced. Gene ontology analysis revealed enrichment of upregulated genes related to mesenchymal cell differentiation and signal transduction. Lithium priming led to enhanced collagen 1 synthesis and osteogenic induction of lithium pretreated MSCs resulted in enhanced expression of Runx2, ALP and bone sialoprotein. However, siRNA-mediated knockdown of RRAD, CLEC3B and ATF4 attenuated lithium-induced osteogenic priming, identifying a role for RRAD, a member of small GTP binding protein family, in osteoblast differentiation. In conclusion, our data highlight the transcriptome reprogramming potential of lithium resulting in higher propensity of lithium "primed" MSCs for osteoblastic differentiation.

  19. High throughput transcriptome profiling of lithium stimulated human mesenchymal stem cells reveals priming towards osteoblastic lineage.

    Science.gov (United States)

    Satija, Neeraj Kumar; Sharma, Deepa; Afrin, Farhat; Tripathi, Rajendra P; Gangenahalli, Gurudutta

    2013-01-01

    Human mesenchymal stem cells (hMSCs) present in the bone marrow are the precursors of osteoblasts, chondrocytes and adipocytes, and hold tremendous potential for osteoregenerative therapy. However, achieving directed differentiation into osteoblasts has been a major concern. The use of lithium for enhancing osteogenic differentiation has been documented in animal models but its effect in humans is not clear. We, therefore, performed high throughput transcriptome analysis of lithium-treated hMSCs to identify altered gene expression and its relevance to osteogenic differentiation. Our results show suppression of proliferation and enhancement of alkaline phosphatase (ALP) activity upon lithium treatment of hMSCs under non-osteogenic conditions. Microarray profiling of lithium-stimulated hMSC revealed decreased expression of adipogenic genes (CEBPA, CMKLR1, HSD11B1) and genes involved in lipid biosynthesis. Interestingly, osteoclastogenic factors and immune responsive genes (IL7, IL8, CXCL1, CXCL12, CCL20) were also downregulated. Negative transcriptional regulators of the osteogenic program (TWIST1 and PBX1) were suppressed while genes involved in mineralization like CLEC3B and ATF4 were induced. Gene ontology analysis revealed enrichment of upregulated genes related to mesenchymal cell differentiation and signal transduction. Lithium priming led to enhanced collagen 1 synthesis and osteogenic induction of lithium pretreated MSCs resulted in enhanced expression of Runx2, ALP and bone sialoprotein. However, siRNA-mediated knockdown of RRAD, CLEC3B and ATF4 attenuated lithium-induced osteogenic priming, identifying a role for RRAD, a member of small GTP binding protein family, in osteoblast differentiation. In conclusion, our data highlight the transcriptome reprogramming potential of lithium resulting in higher propensity of lithium "primed" MSCs for osteoblastic differentiation.

  20. Housekeeping gene stability influences the quantification of osteogenic markers during stem cell differentiation to the osteogenic lineage.

    Science.gov (United States)

    Quiroz, Felipe Garcia; Posada, Olga M; Gallego-Perez, Daniel; Higuita-Castro, Natalia; Sarassa, Carlos; Hansford, Derek J; Agudelo-Florez, Piedad; López, Luis E

    2010-04-01

    Real-time reverse transcription PCR (RT-qPCR) relies on a housekeeping or normalizer gene whose expression remains constant throughout the experiment. RT-qPCR is commonly used for characterization of human bone marrow mesenchymal stem cells (hBMSCs). However, to the best of our knowledge, there are no studies validating the expression stability of the genes used as normalizers during hBMSCs differentiation. This work aimed to study the stability of the housekeeping genes beta-actin, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and ribosomal protein L13A (RPL13A) during the osteogenic differentiation of hBMSCs. Their stability was evaluated via RT-qPCR in 14 and 20 day differentiation assays to the osteogenic lineage. Different normalization strategies were evaluated to quantify the osteogenic markers collagen type I, bone sialoprotein and osteonectin. Cell differentiation was confirmed via alizarin red staining. The results demonstrated up-regulation of beta-actin with maximum fold changes (MFC) of 4.38. GAPDH and RPL13A were not regulated by osteogenic media after 14 days and presented average fold changes lower than 2 in 20 day cultures. RPL13A (MFC < 2) had a greater stability when normalizing as a function of culture time compared with GAPDH (MFC cells characterization via RT-qPCR.

  1. Live-cell time-lapse imaging and single-cell tracking of in vitro cultured neural stem cells - Tools for analyzing dynamics of cell cycle, migration, and lineage selection.

    Science.gov (United States)

    Piltti, Katja M; Cummings, Brian J; Carta, Krystal; Manughian-Peter, Ayla; Worne, Colleen L; Singh, Kulbir; Ong, Danier; Maksymyuk, Yuriy; Khine, Michelle; Anderson, Aileen J

    2018-01-15

    Neural stem cell (NSC) cultures have been considered technically challenging for time-lapse analysis due to high motility, photosensitivity, and growth at confluent densities. We have tested feasibility of long-term live-cell time-lapse analysis for NSC migration and differentiation studies. Here, we describe a method to study the dynamics of cell cycle, migration, and lineage selection in cultured multipotent mouse or human NSCs using single-cell tracking during a long-term, 7-14 day live-cell time-lapse analysis. We used in-house made PDMS inserts with five microwells on a glass coverslip petri-dish to constrain NSC into the area of acquisition during long-term live-cell imaging. In parallel, we have defined image acquisition settings for single-cell tracking of cell cycle dynamics using Fucci-reporter mouse NSC for 7 days as well as lineage selection and migration using human NSC for 14 days. Overall, we show that adjustments of live-cell analysis settings can extend the time period of single-cell tracking in mouse or human NSC from 24-72 h up to 7-14 days and potentially longer. However, we emphasize that experimental use of repeated fluorescence imaging will require careful consideration of controls during acquisition and analysis. Copyright © 2017. Published by Elsevier Inc.

  2. Defining the Minimal Factors Required for Erythropoiesis through Direct Lineage Conversion

    Directory of Open Access Journals (Sweden)

    Sandra Capellera-Garcia

    2016-06-01

    Full Text Available Erythroid cell commitment and differentiation proceed through activation of a lineage-restricted transcriptional network orchestrated by a group of well characterized genes. However, the minimal set of factors necessary for instructing red blood cell (RBC development remains undefined. We employed a screen for transcription factors allowing direct lineage reprograming from fibroblasts to induced erythroid progenitors/precursors (iEPs. We show that Gata1, Tal1, Lmo2, and c-Myc (GTLM can rapidly convert murine and human fibroblasts directly to iEPs. The transcriptional signature of murine iEPs resembled mainly that of primitive erythroid progenitors in the yolk sac, whereas addition of Klf1 or Myb to the GTLM cocktail resulted in iEPs with a more adult-type globin expression pattern. Our results demonstrate that direct lineage conversion is a suitable platform for defining and studying the core factors inducing the different waves of erythroid development.

  3. A Gene Regulatory Network Cooperatively Controlled by Pdx1 and Sox9 Governs Lineage Allocation of Foregut Progenitor Cells

    DEFF Research Database (Denmark)

    Shih, Hung Ping; Seymour, Philip A; Patel, Nisha A

    2015-01-01

    9 as cooperative inducers of a gene regulatory network that distinguishes the pancreatic from the intestinal lineage. Genetic studies demonstrate dual and cooperative functions for Pdx1 and Sox9 in pancreatic lineage induction and repression of the intestinal lineage choice. Pdx1 and Sox9 bind...... to regulatory sequences near pancreatic and intestinal differentiation genes and jointly regulate their expression, revealing direct cooperative roles for Pdx1 and Sox9 in gene activation and repression. Our study identifies Pdx1 and Sox9 as important regulators of a transcription factor network that initiates...... pancreatic fate and sheds light on the gene regulatory circuitry that governs the development of distinct organs from multi-lineage-competent foregut progenitors....

  4. More efficient repair of DNA double-strand breaks in skeletal muscle stem cells compared to their committed progeny

    Directory of Open Access Journals (Sweden)

    Leyla Vahidi Ferdousi

    2014-11-01

    Full Text Available The loss of genome integrity in adult stem cells results in accelerated tissue aging and is possibly cancerogenic. Adult stem cells in different tissues appear to react robustly to DNA damage. We report that adult skeletal stem (satellite cells do not primarily respond to radiation-induced DNA double-strand breaks (DSBs via differentiation and exhibit less apoptosis compared to other myogenic cells. Satellite cells repair these DNA lesions more efficiently than their committed progeny. Importantly, non-proliferating satellite cells and post-mitotic nuclei in the fiber exhibit dramatically distinct repair efficiencies. Altogether, reduction of the repair capacity appears to be more a function of differentiation than of the proliferation status of the muscle cell. Notably, satellite cells retain a high efficiency of DSB repair also when isolated from the natural niche. Finally, we show that repair of DSB substrates is not only very efficient but, surprisingly, also very accurate in satellite cells and that accurate repair depends on the key non-homologous end-joining factor DNA-PKcs.

  5. Differentiation of Human Umbilical Cord Matrix Mesenchymal Stem Cells into Neural-Like Progenitor Cells and Maturation into an Oligodendroglial-Like Lineage

    Science.gov (United States)

    Leite, Cristiana; Silva, N. Tatiana; Mendes, Sandrine; Ribeiro, Andreia; de Faria, Joana Paes; Lourenço, Tânia; dos Santos, Francisco; Andrade, Pedro Z.; Cardoso, Carla M. P.; Vieira, Margarida; Paiva, Artur; da Silva, Cláudia L.; Cabral, Joaquim M. S.; Relvas, João B.; Grãos, Mário

    2014-01-01

    Mesenchymal stem cells (MSCs) are viewed as safe, readily available and promising adult stem cells, which are currently used in several clinical trials. Additionally, their soluble-factor secretion and multi-lineage differentiation capacities place MSCs in the forefront of stem cell types with expected near-future clinical applications. In the present work MSCs were isolated from the umbilical cord matrix (Wharton's jelly) of human umbilical cord samples. The cells were thoroughly characterized and confirmed as bona-fide MSCs, presenting in vitro low generation time, high proliferative and colony-forming unit-fibroblast (CFU-F) capacity, typical MSC immunophenotype and osteogenic, chondrogenic and adipogenic differentiation capacity. The cells were additionally subjected to an oligodendroglial-oriented step-wise differentiation protocol in order to test their neural- and oligodendroglial-like differentiation capacity. The results confirmed the neural-like plasticity of MSCs, and suggested that the cells presented an oligodendroglial-like phenotype throughout the differentiation protocol, in several aspects sharing characteristics common to those of bona-fide oligodendrocyte precursor cells and differentiated oligodendrocytes. PMID:25357129

  6. Multiple lineages of human breast cancer stem/progenitor cells identified by profiling with stem cell markers.

    Directory of Open Access Journals (Sweden)

    Wendy W Hwang-Verslues

    2009-12-01

    Full Text Available Heterogeneity of cancer stem/progenitor cells that give rise to different forms of cancer has been well demonstrated for leukemia. However, this fundamental concept has yet to be established for solid tumors including breast cancer. In this communication, we analyzed solid tumor cancer stem cell markers in human breast cancer cell lines and primary specimens using flow cytometry. The stem/progenitor cell properties of different marker expressing-cell populations were further assessed by in vitro soft agar colony formation assay and the ability to form tumors in NOD/SCID mice. We found that the expression of stem cell markers varied greatly among breast cancer cell lines. In MDA-MB-231 cells, PROCR and ESA, instead of the widely used breast cancer stem cell markers CD44(+/CD24(-/low and ALDH, could be used to highly enrich cancer stem/progenitor cell populations which exhibited the ability to self renew and divide asymmetrically. Furthermore, the PROCR(+/ESA(+ cells expressed epithelial-mesenchymal transition markers. PROCR could also be used to enrich cells with colony forming ability from MB-361 cells. Moreover, consistent with the marker profiling using cell lines, the expression of stem cell markers differed greatly among primary tumors. There was an association between metastasis status and a high prevalence of certain markers including CD44(+/CD24(-/low, ESA(+, CD133(+, CXCR4(+ and PROCR(+ in primary tumor cells. Taken together, these results suggest that similar to leukemia, several stem/progenitor cell-like subpopulations can exist in breast cancer.

  7. A simple, xeno-free method for oligodendrocyte generation from human neural stem cells derived from umbilical cord: engagement of gelatinases in cell commitment and differentiation.

    Science.gov (United States)

    Sypecka, Joanna; Ziemka-Nalecz, Małgorzata; Dragun-Szymczak, Patrycja; Zalewska, Teresa

    2017-05-01

    Oligodendrocyte progenitors (OPCs) are ranked among the most likely candidates for cell-based strategies aimed at treating neurodegenerative diseases accompanied by dys/demyelination of the central nervous system (CNS). In this regard, different sources of stem cells are being tested to elaborate xeno-free protocols for efficient generation of OPCs for clinical applications. In the present study, neural stem cells of human umbilical cord blood (HUCB-NSCs) have been used to derive OPCs and subsequently to differentiate them into mature, GalC-expressing oligodendrocytes. Applied components of the extracellular matrix (ECM) and the analogues of physiological substances known to increase glial commitment of neural stem cells have been shown to significantly increase the yield of the resulting OPC fraction. The efficiency of ECM components in promoting oligodendrocyte commitment and differentiation prompted us to investigate the potential role of gelatinases in those processes. Subsequently, endogenous and ECM metalloproteinases (MMPs) activity has been compared with that detected in primary cultures of rat oligodendrocytes in vitro, as well as in rat brains in vivo. The data indicate that gelatinases are engaged in gliogenesis both in vitro and in vivo, although differently, which presumably results from distinct extracellular conditions. In conclusion, the study presents an efficient xeno-free method of deriving oligodendrocyte from HUCB-NSCs and analyses the engagement of MMP-2/MMP-9 in the processes of cell commitment and maturation. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  8. Oligopeptide antigens of the angiotensin lineage compete for presentation by paraformaldehyde-treated accessory cells to T cells

    DEFF Research Database (Denmark)

    Buus, S; Werdelin, O

    1986-01-01

    series are highly susceptible to proteolytic destruction in cultures containing prefixed accessory cells. The proteases responsible for the destruction of these peptides are apparently located in the plasma membrane of accessory cells. These enzymes represent a methodologic problem in studies...

  9. Green tea epigallocatechin-3-gallate modulates differentiation of naive CD4+ T cells into specific lineage effector cells

    Science.gov (United States)

    CD4+ T helper (Th) subsets Th1, Th9, and Th17 cells are implicated in inducing autoimmunity whereas regulatory T cells (Treg) have a protective effect. We previously showed that epigallocatechin-3-gallate (EGCG) attenuated experimental autoimmune encephalomyelitis (EAE) and altered CD4+ T cell subpo...

  10. Multilayered dense collagen-silk fibroin hybrid: a platform for mesenchymal stem cell differentiation towards chondrogenic and osteogenic lineages.

    Science.gov (United States)

    Ghezzi, Chiara E; Marelli, Benedetto; Donelli, Ilaria; Alessandrino, Antonio; Freddi, Giuliano; Nazhat, Showan N

    2017-07-01

    Type I collagen is a major structural and functional protein in connective tissues. However, collagen gels exhibit unstable geometrical properties, arising from extensive cell-mediated contraction. In an effort to stabilize collagen-based hydrogels, plastic compression was used to hybridize dense collagen (DC) with electrospun silk fibroin (SF) mats, generating multilayered DC-SF-DC constructs. Seeded mesenchymal stem cell (MSC)-mediated DC-SF-DC contraction, as well as growth and differentiation under chondrogenic and osteogenic supplements, were compared to those seeded in DC and on SF alone. The incorporation of SF within DC prevented extensive cell-mediated collagen gel contraction. The effect of the multilayered hybrid on MSC remodelling capacity was also evident at the transcription level, where the expression of matrix metalloproteinases and their inhibitor (MMP1, MMP2, MMP3, MMP13 and Timp1) by MSCs within DC-SF-DC were comparable to those on SF and significantly downregulated in comparison to DC, except for Timp1. Chondrogenic supplements stimulated extracellular matrix production within the construct, stabilizing its multilayered structure and promoting MSC chondrogenic differentiation, as indicated by the upregulation of the genes Col2a1 and Agg and the production of collagen type II. In osteogenic medium there was an upregulation in ALP and OP along with the presence of an apatitic phase, indicating MSC osteoblastic differentiation and matrix mineralization. In sum, these results have implications on the modulation of three-dimensional collagen-based gel structural stability and on the stimulation and maintenance of the MSC committed phenotype inherent to the in vitro formation of chondral tissue and bone, as well as on potential multilayered complex tissues. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  11. Single-cell sequencing analysis characterizes common and cell-lineage-specific mutations in a muscle-invasive bladder cancer

    DEFF Research Database (Denmark)

    Li, Yingrui; Xu, Xun; Song, Luting

    2012-01-01

    sequencing of 66 individual tumor cells from a muscle-invasive bladder transitional cell carcinoma (TCC). Analyses of the somatic mutant allele frequency spectrum and clonal structure revealed that the tumor cells were derived from a single ancestral cell, but that subsequent evolution occurred, leading...... to two distinct tumor cell subpopulations. By analyzing recurrently mutant genes in an additional cohort of 99 TCC tumors, we identified genes that might play roles in the maintenance of the ancestral clone and in the muscle-invasive capability of subclones of this bladder cancer, respectively...

  12. Caspase-dependent inhibition of store-operated Ca{sup 2+} entry into apoptosis-committed Jurkat cells

    Energy Technology Data Exchange (ETDEWEB)

    Onopiuk, Marta; Wierzbicka, Katarzyna; Brutkowski, Wojciech; Szczepanowska, Joanna [Department of Biochemistry, The Nencki Institute of Experimental Biology, Warsaw (Poland); Zablocki, Krzysztof, E-mail: k.zablocki@nencki.gov.pl [Department of Biochemistry, The Nencki Institute of Experimental Biology, Warsaw (Poland)

    2010-08-20

    Activation of T-cells triggers store-operated Ca{sup 2+} entry, which begins a signaling cascade leading to induction of appropriate gene expression and eventually lymphocyte proliferation and differentiation. The simultaneous enhancement of Fas ligand gene expression in activated cells allows the immune response to be limited by committing the activated cells to apoptosis. In apoptotic cells the store-operated calcium entry is significantly inhibited. It has been documented that moderate activation of Fas receptor may cause reversible inhibition of store-operated channels by ceramide released from hydrolyzed sphingomyelin. Here we show that activation of Fas receptor in T-cells results in caspase-dependent decrease of cellular STIM1 and Orai1 protein content. This effect may be responsible for the substantial inhibition of Ca{sup 2+} entry into Jurkat cells undergoing apoptosis. In turn, this inhibition might prevent overloading of cells with calcium and protect them against necrosis. -- Research highlights: {yields} Fas activation reduces STIM1 and Orai1 protein content in caspase dependent manner. {yields} Fas activation partially reduces mitochondrial potential in caspase dependent manner. {yields} Fas stimulation inhibits of store-operated Ca{sup 2+} entry in caspase dependent manner. {yields} Inhibition of Ca{sup 2+} entry in apoptotic cells may protect them from secondary necrosis.

  13. Effect of 17-allylamino-17-demethoxygeldanamycin (17-AAG) on Akt protein expression is more effective in head and neck cancer cell lineages that retain PTEN protein expression.

    Science.gov (United States)

    Pontes, Flávia Sirotheau C; Pontes, Hélder A R; de Souza, Lucas L; de Jesus, Adriana S; Joaquim, Andrea M C; Miyahara, Ligia A N; Fonseca, Felipe P; Pinto Junior, Décio S

    2018-03-01

    The aim of this study was to evaluate the expression of Akt, PTEN, Mdm2 and p53 proteins in three different head and neck squamous cell carcinoma (HNSCC) cell lines (HN6, HN19 and HN30), all of them treated with epidermal growth factor (EGF) and 17-allylamino-17-demethoxygeldanamycin (17-AAG), an inhibitor of Hsp90 protein. Immunofluorescence and western blot were performed in order to analyze the location and quantification, respectively, of proteins under the action 17-AAG and EGF. Treatment with EGF resulted in increased levels of Akt, PTEN and p53 in all cell lineages. The expression of Mdm2 was constant in HN30 and HN6 lineages, while in HN19 showed slightly decreased expression. Under the action 17-AAG, in HN6 and HN19, the expression of PTEN and p53 proteins was suppressed, while Akt and Mdm2 expression was reduced. Finally, in the HN30 cell lineage were absolute absence of expression of Akt, Mdm2 and p53 and decreased expression of PTEN. These data allow us to speculate on the particular utility of 17-AAG for HNSCC treatment through the inhibition of Akt protein expression, especially in the cases that retain the expression of PTEN protein. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Nestin-positive mesenchymal stem cells favour the astroglial lineage in neural progenitors and stem cells by releasing active BMP4

    Directory of Open Access Journals (Sweden)

    Leprince Pierre

    2004-09-01

    Full Text Available Abstract Background Spontaneous repair is limited after CNS injury or degeneration because neurogenesis and axonal regrowth rarely occur in the adult brain. As a result, cell transplantation has raised much interest as potential treatment for patients with CNS lesions. Several types of cells have been considered as candidates for such cell transplantation and replacement therapies. Foetal brain tissue has already been shown to have significant effects in patients with Parkinson's disease. Clinical use of the foetal brain tissue is, however, limited by ethical and technical problems as it requires high numbers of grafted foetal cells and immunosuppression. Alternatively, several reports suggested that mesenchymal stem cells, isolated from adult bone marrow, are multipotent cells and could be used in autograft approach for replacement therapies. Results In this study, we addressed the question of the possible influence of mesenchymal stem cells on neural stem cell fate. We have previously reported that adult rat mesenchymal stem cells are able to express nestin in defined culture conditions (in the absence of serum and after 25 cell population doublings and we report here that nestin-positive (but not nestin-negative mesenchymal stem cells are able to favour the astroglial lineage in neural progenitors and stem cells cultivated from embryonic striatum. The increase of the number of GFAP-positive cells is associated with a significant decrease of the number of Tuj1- and O4-positive cells. Using quantitative RT-PCR, we demonstrate that mesenchymal stem cells express LIF, CNTF, BMP2 and BMP4 mRNAs, four cytokines known to play a role in astroglial fate decision. In this model, BMP4 is responsible for the astroglial stimulation and oligodendroglial inhibition, as 1 this cytokine is present in a biologically-active form only in nestin-positive mesenchymal stem cells conditioned medium and 2 anti-BMP4 antibodies inhibit the nestin-positive mesenchymal

  15. Oligopeptide antigens of the angiotensin lineage compete for presentation by paraformaldehyde-treated accessory cells to T cells

    DEFF Research Database (Denmark)

    Buus, S; Werdelin, O

    1986-01-01

    The heptapeptide antigen angiotensin III can be presented to guinea pig T cells by paraformaldehyde-treated antigen-presenting cells, which are incapable of processing antigens and presumably cannot even ingest them. We demonstrate here that the decapeptide angiotensin I can outcompete angiotensin...... III for presentation by paraformaldehyde-treated antigen-presenting cells. It seems likely that the competition is for a site on the surface of the presenting cell. This extends earlier findings of competition for presentation between antigens. We also demonstrate that the antigens of the angiotensin...

  16. Matrix elasticity directs stem cell differentiation in 3D too

    Science.gov (United States)

    Zajac, Allison; Rehfeldt, Florian; Discher, Dennis

    2009-03-01

    Microenvironments appear important in stem cell lineage specification but can be difficult to adequately characterize or control with soft tissues. Naive mesenchymal stem cells (MSCs) are shown here to specify lineage andcommit to phenotypes with extreme sensitivity to tissue level elasticity. Soft matrices that mimic brain are neurogenic, stiffer matrices that mimic muscle are myogenic, and comparatively rigid matrices that mimic collagenous bone prove osteogenic. During the initial week in culture, reprogramming of these lineages is possible with addition of soluble induction factors, but after several weeks in culture, the cells commit to the lineage specified by matrix elasticity, consistent with the elasticity-insensitive commitment of differentiated cell types. Inhibition of nonmuscle myosin II blocks all elasticitydirected lineage specification--without strongly perturbing many other aspects of cell function and shape. The results have significant implications for understanding physical effects of the in vivo microenvironment and also for therapeutic uses of stem cells.

  17. Lineage tracing in the adult mouse corneal epithelium supports the limbal epithelial stem cell hypothesis with intermittent periods of stem cell quiescence

    Directory of Open Access Journals (Sweden)

    Natalie J. Dorà

    2015-11-01

    Full Text Available The limbal epithelial stem cell (LESC hypothesis proposes that LESCs in the corneal limbus maintain the corneal epithelium both during normal homeostasis and wound repair. The alternative corneal epithelial stem cell (CESC hypothesis proposes that LESCs are only involved in wound repair and CESCs in the corneal epithelium itself maintain the corneal epithelium during normal homeostasis. We used tamoxifen-inducible, CreER-loxP lineage tracing to distinguish between these hypotheses. Clones of labelled cells were induced in adult CAGG-CreER;R26R-LacZ reporter mice and their distributions analysed after different chase periods. Short-lived clones, derived from labelled transient amplifying cells, were shed during the chase period and long-lived clones, derived from stem cells, expanded. At 6 weeks, labelled clones appeared at the periphery, extended centripetally as radial stripes and a few reached the centre by 14 weeks. Stripe numbers depended on the age of tamoxifen treatment. Stripes varied in length, some were discontinuous, few reached the centre and almost half had one end at the limbus. Similar stripes extended across the cornea in CAGG-CreER;R26R-mT/mG reporter mice. The distributions of labelled clones are inconsistent with the CESC hypothesis and support the LESC hypothesis if LESCs cycle between phases of activity and quiescence, each lasting several weeks.

  18. Life-long in vivo cell-lineage tracing shows that no oogenesis originates from putative germline stem cells in adult mice.

    Science.gov (United States)

    Zhang, Hua; Liu, Lian; Li, Xin; Busayavalasa, Kiran; Shen, Yan; Hovatta, Outi; Gustafsson, Jan-Åke; Liu, Kui

    2014-12-16

    Whether or not oocyte regeneration occurs in adult life has been the subject of much debate. In this study, we have traced germ-cell lineages over the life spans of three genetically modified mouse models and provide direct evidence that oogenesis does not originate from any germline stem cells (GSCs) in adult mice. By selective ablation of all existing oocytes in a Gdf9-Cre;iDTR mouse model, we have demonstrated that no new germ cells were ever regenerated under pathological conditions. By in vivo tracing of oocytes and follicles in the Sohlh1-CreER(T2);R26R and Foxl2-CreER(T2);mT/mG mouse models, respectively, we have shown that the initial pool of oocytes is the only source of germ cells throughout the life span of the mice and that no adult oogenesis ever occurs under physiological conditions. Our findings clearly show that there are no GSCs that contribute to adult oogenesis in mice and that the initial pool of oocytes formed in early life is the only source of germ cells throughout the entire reproductive life span.

  19. [Associative commitments].

    Science.gov (United States)

    Paulet, Marie-Claire

    2017-12-01

    Volunteering to serve the general interest, that is the profession of faith behind associative commitments. Notably, actions by associations undertaken in favour of organ donation today must, in their content and forms, reconcile tradition and modernity. But they keep their driving principles and values intact. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  20. Postnatal Sonic hedgehog (Shh) responsive cells give rise to oligodendrocyte lineage cells during myelination and in adulthood contribute to remyelination.

    Science.gov (United States)

    Sanchez, Maria A; Armstrong, Regina C

    2018-01-01

    Sonic hedgehog (Shh) regulates a wave of oligodendrocyte production for extensive myelination during postnatal development. During this postnatal period of oligodendrogenesis, we fate-labeled cells exhibiting active Shh signaling to examine their contribution to the regenerative response during remyelination. Bitransgenic mouse lines were generated for induced genetic fate-labeling of cells actively transcribing Shh or Gli1. Gli1 transcription is an effective readout for canonical Shh signaling. Shh CreERT2 mice and Gli1 CreERT2 mice were crossed to either R26 tdTomato mice to label cells with red fluorescence, or, R26 IAP mice to label membranes with alkaline phosphatase. When tamoxifen (TMX) was given on postnatal days 6-9 (P6-9), Shh ligand synthesis was prevalent in neurons of Shh CreERT2 ; R26 tdTomato mice and Shh CreERT2 ;R26 IAP mice. In Gli1 CreERT2 crosses, TMX from P6-9 detected Gli1 transcription in cells that populated the corpus callosum (CC) during postnatal myelination. Delaying TMX to P14-17, after the peak of oligodendrogenesis, significantly reduced labeling of Shh synthesizing neurons and Gli1 expressing cells in the CC. Importantly, Gli1 CreERT2 ;R26 tdTomato mice given TMX from P6-9 showed Gli1 fate-labeled cells in the adult (P56) CC, including cycling progenitor cells identified by EdU incorporation and NG2 immunolabeling. Furthermore, after cuprizone demyelination of the adult CC, Gli1 fate-labeled cells incorporated EdU and were immunolabeled by NG2 early during remyelination while forming myelin-like membranes after longer periods for remyelination to progress. These studies reveal a postnatal cell population with transient Shh signaling that contributes to oligodendrogenesis during CC myelination, and gives rise to cells that continue to proliferate in adulthood and contribute to CC remyelination. Published by Elsevier Inc.

  1. Cell lineage of timed cohorts of Tbx6-expressing cells in wild-type and Tbx6 mutant embryos.

    Science.gov (United States)

    Concepcion, Daniel; Washkowitz, Andrew J; DeSantis, Akiko; Ogea, Phillip; Yang, Jason I; Douglas, Nataki C; Papaioannou, Virginia E

    2017-07-15

    Tbx6 is a T-box transcription factor with multiple roles in embryonic development as evidenced by dramatic effects on mesoderm cell fate determination, left/right axis determination, and somite segmentation in mutant mice. The expression of Tbx6 is restricted to the primitive streak and presomitic mesoderm, but some of the phenotypic features of mutants are not easily explained by this expression pattern. We have used genetically-inducible fate mapping to trace the fate of Tbx6 -expressing cells in wild-type and mutant embryos to explain some of the puzzling features of the mutant phenotype. We created an inducible Tbx6-creERT2 transgenic mouse in which cre expression closely recapitulates endogenous Tbx6 expression both temporally and spatially. Using a lacZ-based Cre reporter and timed tamoxifen injections, we followed temporally overlapping cohorts of cells that had expressed Tbx6 and found contributions to virtually all mesodermally-derived embryonic structures as well as the extraembryonic allantois. Contribution to the endothelium of major blood vessels may account for the embryonic death of homozygous mutant embryos. In mutant embryos, Tbx6-creERT2-traced cells contributed to the abnormally segmented anterior somites and formed the characteristic ectopic neural tubes. Retention of cells in the mutant tail bud indicates a deficiency in migratory behavior of the mutant cells and the presence of Tbx6-creERT2-traced cells in the notochord, a node derivative provides a possible explanation for the heterotaxia seen in mutant embryos. © 2017. Published by The Company of Biologists Ltd.

  2. Cell lineage of timed cohorts of Tbx6-expressing cells in wild-type and Tbx6 mutant embryos

    Directory of Open Access Journals (Sweden)

    Daniel Concepcion

    2017-07-01

    Full Text Available Tbx6 is a T-box transcription factor with multiple roles in embryonic development as evidenced by dramatic effects on mesoderm cell fate determination, left/right axis determination, and somite segmentation in mutant mice. The expression of Tbx6 is restricted to the primitive streak and presomitic mesoderm, but some of the phenotypic features of mutants are not easily explained by this expression pattern. We have used genetically-inducible fate mapping to trace the fate of Tbx6-expressing cells in wild-type and mutant embryos to explain some of the puzzling features of the mutant phenotype. We created an inducible Tbx6-creERT2 transgenic mouse in which cre expression closely recapitulates endogenous Tbx6 expression both temporally and spatially. Using a lacZ-based Cre reporter and timed tamoxifen injections, we followed temporally overlapping cohorts of cells that had expressed Tbx6 and found contributions to virtually all mesodermally-derived embryonic structures as well as the extraembryonic allantois. Contribution to the endothelium of major blood vessels may account for the embryonic death of homozygous mutant embryos. In mutant embryos, Tbx6-creERT2-traced cells contributed to the abnormally segmented anterior somites and formed the characteristic ectopic neural tubes. Retention of cells in the mutant tail bud indicates a deficiency in migratory behavior of the mutant cells and the presence of Tbx6-creERT2-traced cells in the notochord, a node derivative provides a possible explanation for the heterotaxia seen in mutant embryos.

  3. Functional clustering and lineage markers: insights into cellular differentiation and gene function from large-scale microarray studies of purified primary cell populations.

    Science.gov (United States)

    Hume, David A; Summers, Kim M; Raza, Sobia; Baillie, J Kenneth; Freeman, Thomas C

    2010-06-01

    Very large microarray datasets showing gene expression across multiple tissues and cell populations provide a window on the transcriptional networks that underpin the differences in functional activity between biological systems. Clusters of co-expressed genes provide lineage markers, candidate regulators of cell function and, by applying the principle of guilt by association, candidate functions for genes of currently unknown function. We have analysed a dataset comprising pure cell populations from hemopoietic and non-hemopoietic cell types (http://biogps.gnf.org). Using a novel network visualisation and clustering approach, we demonstrate that it is possible to identify very tight expression signatures associated specifically with embryonic stem cells, mesenchymal cells and hematopoietic lineages. Selected examples validate the prediction that gene function can be inferred by co-expression. One expression cluster was enriched in phagocytes, which, alongside endosome-lysosome constituents, contains genes that may make up a 'pathway' for phagocyte differentiation. Promoters of these genes are enriched for binding sites for the ETS/PU.1 and MITF families. Another cluster was associated with the production of a specific extracellular matrix, with high levels of gene expression shared by cells of mesenchymal origin (fibroblasts, adipocytes, osteoblasts and myoblasts). We discuss the limitations placed upon such data by the presence of alternative promoters with distinct tissue specificity within many protein-coding genes. Copyright 2010 Elsevier Inc. All rights reserved.

  4. Yeast Cells Exposed to Exogenous Palmitoleic Acid Either Adapt to Stress and Survive or Commit to Regulated Liponecrosis and Die

    Directory of Open Access Journals (Sweden)

    Karamat Mohammad

    2018-01-01

    Full Text Available A disturbed homeostasis of cellular lipids and the resulting lipotoxicity are considered to be key contributors to many human pathologies, including obesity, metabolic syndrome, type 2 diabetes, cardiovascular diseases, and cancer. The yeast Saccharomyces cerevisiae has been successfully used for uncovering molecular mechanisms through which impaired lipid metabolism causes lipotoxicity and elicits different forms of regulated cell death. Here, we discuss mechanisms of the “liponecrotic” mode of regulated cell death in S. cerevisiae. This mode of regulated cell death can be initiated in response to a brief treatment of yeast with exogenous palmitoleic acid. Such treatment prompts the incorporation of exogenously added palmitoleic acid into phospholipids and neutral lipids. This orchestrates a global remodeling of lipid metabolism and transfer in the endoplasmic reticulum, mitochondria, lipid droplets, and the plasma membrane. Certain features of such remodeling play essential roles either in committing yeast to liponecrosis or in executing this mode of regulated cell death. We also outline four processes through which yeast cells actively resist liponecrosis by adapting to the cellular stress imposed by palmitoleic acid and maintaining viability. These prosurvival cellular processes are confined in the endoplasmic reticulum, lipid droplets, peroxisomes, autophagosomes, vacuoles, and the cytosol.

  5. Embryonic origins of hull cells in the flatworm Macrostomum lignano through cell lineage analysis : developmental and phylogenetic implications

    NARCIS (Netherlands)

    Willems, Maxime; Egger, Bernhard; Wolff, Carsten; Mouton, Stijn; Houthoofd, Wouter; Fonderie, Pamela; Couvreur, Marjolein; Artois, Tom; Borgonie, Gaetan

    The development of macrostomid flatworms is of interest for evolutionary developmental biology research because these taxa combine characteristics of the canonical spiral cleavage pattern with significant deviations from this pattern. One such deviation is the formation of hull cells, which surround

  6. Freezing tolerance of sea urchin embryonic cells: Differentiation commitment and cytoskeletal disturbances in culture.

    Science.gov (United States)

    Odintsova, Nelly A; Ageenko, Natalya V; Kipryushina, Yulia O; Maiorova, Mariia A; Boroda, Andrey V

    2015-08-01

    This study focuses on the freezing tolerance of sea urchin embryonic cells. To significantly reduce the loss of physiological activity of these cells that occurs after cryopreservation and to study the effects of ultra-low temperatures on sea urchin embryonic cells, we tested the ability of the cells to differentiate into spiculogenic or pigment directions in culture, including an evaluation of the expression of some genes involved in pigment differentiation. A morphological analysis of cytoskeletal disturbances after freezing in a combination of penetrating (dimethyl sulfoxide and ethylene glycol) and non-penetrating (trehalose and polyvinylpyrrolidone) cryoprotectants revealed that the distribution pattern of filamentous actin and tubulin was similar to that in the control cultures. In contrast, very rare spreading cells and a small number of cells with filamentous actin and tubulin were detected after freezing in the presence of only non-penetrating cryoprotectants. The largest number of pigment cells was found in cultures frozen with trehalose or trehalose and dimethyl sulfoxide. The ability to induce the spicule formation was lost in the cells frozen only with non-penetrating cryoprotectants, while it was maximal in cultures frozen in a cryoprotective mixture containing both non-penetrating and penetrating cryoprotectants (particularly, when ethylene glycol was present). Using different markers for cell state assessment, an effective cryopreservation protocol for sea urchin cells was developed: three-step freezing with a low cooling rate (1-2°C/min) and a combination of non-penetrating and penetrating cryoprotectants made it possible to obtain a high level of cell viability (up to 65-80%). Copyright © 2015 Elsevier Inc. All rights reserved.

  7. A Comparative Analysis of the In Vitro Effects of Pulsed Electromagnetic Field Treatment on Osteogenic Differentiation of Two Different Mesenchymal Cell Lineages

    Science.gov (United States)

    Ceccarelli, Gabriele; Bloise, Nora; Mantelli, Melissa; Gastaldi, Giulia; Fassina, Lorenzo; De Angelis, Maria Gabriella Cusella; Ferrari, Davide; Imbriani, Marcello

    2013-01-01

    Abstract Human mesenchymal stem cells (MSCs) are a promising candidate cell type for regenerative medicine and tissue engineering applications. Exposure of MSCs to physical stimuli favors early and rapid activation of the tissue repair process. In this study we investigated the in vitro effects of pulsed electromagnetic field (PEMF) treatment on the proliferation and osteogenic differentiation of bone marrow MSCs (BM-MSCs) and adipose-tissue MSCs (ASCs), to assess if both types of MSCs could be indifferently used in combination with PEMF exposure for bone tissue healing. We compared the cell viability, cell matrix distribution, and calcified matrix production in unstimulated and PEMF-stimulated (magnetic field: 2 mT, amplitude: 5 mV) mesenchymal cell lineages. After PEMF exposure, in comparison with ASCs, BM-MSCs showed an increase in cell proliferation (pPEMF promotion of bone extracellular matrix deposition is more efficient in osteoblasts differentiated from BM-MSCs. PMID:23914335

  8. A dual role for SOX10 in the maintenance of the postnatal melanocyte lineage and the differentiation of melanocyte stem cell progenitors.

    Directory of Open Access Journals (Sweden)

    Melissa L Harris

    Full Text Available During embryogenesis, the transcription factor, Sox10, drives the survival and differentiation of the melanocyte lineage. However, the role that Sox10 plays in postnatal melanocytes is not established. We show in vivo that melanocyte stem cells (McSCs and more differentiated melanocytes express SOX10 but that McSCs remain undifferentiated. Sox10 knockout (Sox10(fl; Tg(Tyr::CreER results in loss of both McSCs and differentiated melanocytes, while overexpression of Sox10 (Tg(DctSox10 causes premature differentiation and loss of McSCs, leading to hair graying. This suggests that levels of SOX10 are key to normal McSC function and Sox10 must be downregulated for McSC establishment and maintenance. We examined whether the mechanism of Tg(DctSox10 hair graying is through increased expression of Mitf, a target of SOX10, by asking if haploinsufficiency for Mitf (Mitf(vga9 can rescue hair graying in Tg(DctSox10 animals. Surprisingly, Mitf(vga9 does not mitigate but exacerbates Tg(DctSox10 hair graying suggesting that MITF participates in the negative regulation of Sox10 in McSCs. These observations demonstrate that while SOX10 is necessary to maintain the postnatal melanocyte lineage it is simultaneously prevented from driving differentiation in the McSCs. This data illustrates how tissue-specific stem cells can arise from lineage-specified precursors through the regulation of the very transcription factors important in defining that lineage.

  9. A dual role for SOX10 in the maintenance of the postnatal melanocyte lineage and the differentiation of melanocyte stem cell progenitors.

    Science.gov (United States)

    Harris, Melissa L; Buac, Kristina; Shakhova, Olga; Hakami, Ramin M; Wegner, Michael; Sommer, Lukas; Pavan, William J

    2013-01-01

    During embryogenesis, the transcription factor, Sox10, drives the survival and differentiation of the melanocyte lineage. However, the role that Sox10 plays in postnatal melanocytes is not established. We show in vivo that melanocyte stem cells (McSCs) and more differentiated melanocytes express SOX10 but that McSCs remain undifferentiated. Sox10 knockout (Sox10(fl); Tg(Tyr::CreER)) results in loss of both McSCs and differentiated melanocytes, while overexpression of Sox10 (Tg(DctSox10)) causes premature differentiation and loss of McSCs, leading to hair graying. This suggests that levels of SOX10 are key to normal McSC function and Sox10 must be downregulated for McSC establishment and maintenance. We examined whether the mechanism of Tg(DctSox10) hair graying is through increased expression of Mitf, a target of SOX10, by asking if haploinsufficiency for Mitf (Mitf(vga9) ) can rescue hair graying in Tg(DctSox10) animals. Surprisingly, Mitf(vga9) does not mitigate but exacerbates Tg(DctSox10) hair graying suggesting that MITF participates in the negative regulation of Sox10 in McSCs. These observations demonstrate that while SOX10 is necessary to maintain the postnatal melanocyte lineage it is simultaneously prevented from driving differentiation in the McSCs. This data illustrates how tissue-specific stem cells can arise from lineage-specified precursors through the regulation of the very transcription factors important in defining that lineage.

  10. Ascorbic acid alters cell fate commitment of human neural progenitors in a WNT/β-catenin/ROS signaling dependent manner.

    Science.gov (United States)

    Rharass, Tareck; Lantow, Margareta; Gbankoto, Adam; Weiss, Dieter G; Panáková, Daniela; Lucas, Stéphanie

    2017-10-16

    Improving the neuronal yield from in vitro cultivated neural progenitor cells (NPCs) is an essential challenge in transplantation therapy in neurological disorders. In this regard, Ascorbic acid (AA) is widely used to expand neurogenesis from NPCs in cultures although the mechanisms of its action remain unclear. Neurogenesis from NPCs is regulated by the redox-sensitive WNT/β-catenin signaling pathway. We therefore aimed to investigate how AA interacts with this pathway and potentiates neurogenesis. Effects of 200 μM AA were compared with the pro-neurogenic reagent and WNT/β-catenin signaling agonist lithium chloride (LiCl), and molecules with antioxidant activities i.e. N-acetyl-L-cysteine (NAC) and ruthenium red (RuR), in differentiating neural progenitor ReNcell VM cells. Cells were supplemented with reagents for two periods of treatment: a full period encompassing the whole differentiation process versus an early short period that is restricted to the cell fate commitment stage. Intracellular redox balance and reactive oxygen species (ROS) metabolism were examined by flow cytometry using redox and ROS sensors. Confocal microscopy was performed to assess cell viability, neuronal yield, and levels of two proteins: Nucleoredoxin (NXN) and the WNT/β-catenin signaling component Dishevelled 2 (DVL2). TUBB3 and MYC gene responses were evaluated by quantitative real-time PCR. DVL2-NXN complex dissociation was measured by fluorescence resonance energy transfer (FRET). In contrast to NAC which predictably exhibited an antioxidant effect, AA treatment enhanced ROS metabolism with no cytotoxic induction. Both drugs altered ROS levels only at the early stage of the differentiation as no changes were held beyond the neuronal fate commitment stage. FRET studies showed that AA treatment accelerated the redox-dependent release of the initial pool of DVL2 from its sequestration by NXN, while RuR treatment hampered the dissociation of the two proteins. Accordingly, AA

  11. Commitment to glycolysis sustains survival of NO-producing inflammatory dendritic cells

    NARCIS (Netherlands)

    Everts, Bart; Amiel, Eyal; van der Windt, Gerritje J. W.; Freitas, Tori C.; Chott, Robert; Yarasheski, Kevin E.; Pearce, Erika L.; Pearce, Edward J.

    2012-01-01

    TLR agonists initiate a rapid activation program in dendritic cells (DCs) that requires support from metabolic and bioenergetic resources. We found previously that TLR signaling promotes aerobic glycolysis and a decline in oxidative phosphorylation (OXHPOS) and that glucose restriction prevents

  12. Murine Mesenchymal Stem Cell Commitment to Differentiation is Regulated by Mitochondrial Dynamics

    OpenAIRE

    Forni, Maria Fernanda; Peloggia, Julia; Trudeau, Kyle; Shirihai, Orian; Kowaltowski, Alicia J.

    2015-01-01

    Mouse skin mesenchymal stem cells (msMSCs) are dermis CD105+CD90+CD73+CD29+CD34? mesodermal precursors which, after in vitro induction, undergo chondro, adipo and osteogenesis. Extensive metabolic reconfiguration has been found to occur during differentiation, and the bioenergetic status of a cell is known to be dependent on the quality and abundance of the mitochondrial population, which may be regulated by fusion and fission. However, little is known regarding the impact of mitochondrial dy...

  13. Ancestral trees for modeling stem cell lineages genetically rather than functionally: understanding mutation accumulation and distinguishing the restrictive cancer stem cell propagation theory and the unrestricted cell propagation theory of human tumorigenesis.

    Science.gov (United States)

    Shibata, Darryl K; Kern, Scott E

    2008-01-01

    Cancer stem cells either could be rare or common in tumors, constituting the major distinction between the two fundamentally opposed theoretical models of tumor progression: A newer and restrictive stem cell propagation model, in which the stem cells are a small and special minority of the tumor cells, and a standard older model, an unrestricted cell proliferation theory, in which many or most tumor cells are capable of indefinite generations of cell division. Stem cells of tumors are difficult to quantitate using functional assays, and the validity of the most common assays is seriously questioned. Nonetheless, stem cells are an essential component of any tumorigenesis model. Alternative approaches to studying tumor stem cells should be explored. Cell populations can be conceived of as having a genealogy, a relationship of cells to their ancestral lineage, from the zygote to the adult cells or neoplasms. Models using ancestral trees thus offer an anatomic and genetic means to "observe" stem cells independent of artificial conditions. Ancestral trees broaden our attention backward along a lineage, to the zygote stage, and thereby add insight into how the mutations of tumors accumulate. It is possible that a large fraction of mutations in a tumor originate from normal, endogenous, replication errors (nearly all being passenger mutations) occurring prior to the emergence of the first transformed cell. Trees can be constructed from experimental measurements - molecular clocks - of real human tissues and tumors. Detailed analysis of single-cell methylation patterns, heritable yet slightly plastic, now can provide this information in the necessary depth. Trees based on observations of molecular clocks may help us to distinguish between competing theories regarding the proliferative properties among cells of actual human tumors, to observe subtle and difficult phenomena such as the extinction of stem lineages, and to address the origins and rates of mutations in various

  14. Germ-layer commitment and axis formation in sea anemone embryonic cell aggregates.

    Science.gov (United States)

    Kirillova, Anastasia; Genikhovich, Grigory; Pukhlyakova, Ekaterina; Demilly, Adrien; Kraus, Yulia; Technau, Ulrich

    2018-02-20

    Robust morphogenetic events are pivotal for animal embryogenesis. However, comparison of the modes of development of different members of a phylum suggests that the spectrum of developmental trajectories accessible for a species might be far broader than can be concluded from the observation of normal development. Here, by using a combination of microsurgery and transgenic reporter gene expression, we show that, facing a new developmental context, the aggregates of dissociated embryonic cells of the sea anemone Nematostella vectensis take an alternative developmental trajectory. The self-organizing aggregates rely on Wnt signals produced by the cells of the original blastopore lip organizer to form body axes but employ morphogenetic events typical for normal development of distantly related cnidarians to re-establish the germ layers. The reaggregated cells show enormous plasticity including the capacity of the ectodermal cells to convert into endoderm. Our results suggest that new developmental trajectories may evolve relatively easily when highly plastic embryonic cells face new constraints. Copyright © 2018 the Author(s). Published by PNAS.

  15. A deterministic method for estimating free energy genetic network landscapes with applications to cell commitment and reprogramming paths.

    Science.gov (United States)

    Olariu, Victor; Manesso, Erica; Peterson, Carsten

    2017-06-01

    Depicting developmental processes as movements in free energy genetic landscapes is an illustrative tool. However, exploring such landscapes to obtain quantitative or even qualitative predictions is hampered by the lack of free energy functions corresponding to the biochemical Michaelis-Menten or Hill rate equations for the dynamics. Being armed with energy landscapes defined by a network and its interactions would open up the possibility of swiftly identifying cell states and computing optimal paths, including those of cell reprogramming, thereby avoiding exhaustive trial-and-error simulations with rate equations for different parameter sets. It turns out that sigmoidal rate equations do have approximate free energy associations. With this replacement of rate equations, we develop a deterministic method for estimating the free energy surfaces of systems of interacting genes at different noise levels or temperatures. Once such free energy landscape estimates have been established, we adapt a shortest path algorithm to determine optimal routes in the landscapes. We explore the method on three circuits for haematopoiesis and embryonic stem cell development for commitment and reprogramming scenarios and illustrate how the method can be used to determine sequential steps for onsets of external factors, essential for efficient reprogramming.

  16. The effect of anti-TNF treatment on osteoblastogenesis in ankylosing spondylitis: the number of circulating osteoblast-lineage cells in peripheral blood decreased after infliximab therapy in patients with ankylosing spondylitis.

    Science.gov (United States)

    Kwon, Seong-Ryul; Jung, Kyong-Hee; Lim, Mie-Jin; Son, Min-Jung; Choi, Byung Hyune; Park, Shin-Goo; Park, Won

    2017-01-01

    The full effect of anti-TNF therapy on new bone formation is still in debate in spondylitis fields. We sought to obtain circulating osteoblast-lineage cells in peripheral blood from ankylosing spondylitis (AS) patients and healthy control subjects, and to evaluate the effect of before and after anti TNF-α therapy on osteoblastogenesis in patients with AS. Sixteen male patients with AS slated for infliximab therapy and 19 controls were recruited. We cultured osteoblast-lineage cells from peripheral blood and measured the optical density of their Alizarin red S staining. We also measured serum P1NP (procollagen type 1 N-terminal propeptide) as an early osteoblast differentiation marker, osteocalcin as a late osteoblast differentiation marker, and inflammatory markers. There were significantly more circulating osteoblast-lineage cells in patients than in controls. The number of circulating osteoblast-lineage cells and optical density of Alizarin red S staining decreased 14 weeks after infliximab therapy (p=0.028); serum level of P1NP decreased, but that of osteocalcin increased (p=0.002 and 0.007, respectively). Our data reveals that first, the circulating osteoblast-lineage cells are recoverable and increased in AS patients, and also that they decrease after infliximab therapy; second, infliximab therapy resolves early inflammation, but allows mature osteoblast differentiation in late inflammation. The culture of osteoblast-lineage cells in peripheral blood may be a candidate for a new modality with which to study spondylitis and other autoimmune diseases.

  17. Points of Commitment to Reproductive Events as a Tool for Analysis of the Cell Cycle

    Czech Academy of Sciences Publication Activity Database

    Vítová, Milada; Zachleder, Vilém

    2005-01-01

    Roč. 50, č. 2 (2005), s. 141-149 ISSN 0015-5632 R&D Projects: GA ČR GA204/02/1438; GA AV ČR KJB5020305 Institutional research plan: CEZ:AV0Z50200510 Keywords : cell cycle * synchronous culture Subject RIV: EE - Microbiology, Virology Impact factor: 0.918, year: 2005

  18. Magnetically-Responsive Hydrogels for Modulation of Chondrogenic Commitment of Human Adipose-Derived Stem Cells

    Directory of Open Access Journals (Sweden)

    Elena G. Popa

    2016-01-01

    Full Text Available Magnetic nanoparticles (MNPs are attractive tools to overcome limitations of current regenerative medicine strategies, demonstrating potential to integrate therapeutic and diagnostic functionalities in highly controlled systems. In traditional tissue engineering (TE approaches, the MNPs association with stem cells in a three-dimensional (3D template offers the possibility to achieve a mechano-magnetic responsive system, enabling remote control actuation. Herein, we propose to study the role of MNPs integrated in κ-carrageenan (κC hydrogels in the cellular response of human adipose-derived stem cells (hASCs aiming at cartilage TE applications. The results indicated that the concentration of MNPs in the κC hydrogels influences cellular behavior, tuning a positive effect on cell viability, cell content and metabolic activity of hASCs, with the most promising outcomes found in 5% MNP-κC matrices. Although hASCs laden in MNPs-free- and MNPs-κC hydrogels showed similar metabolic and proliferation levels, MNPs κC hydrogels under magnetic actuation evidenced an instructive effect on hASCs, at a gene expression level, towards chondrogenic phenotype even in basic medium cultures. Therefore, the MNPs-based systems developed in this study may contribute to advanced strategies towards cartilage-like engineered substitutes.

  19. Myocardial commitment from human pluripotent stem cells: Rapid production of human heart grafts.

    Science.gov (United States)

    Garreta, Elena; de Oñate, Lorena; Fernández-Santos, M Eugenia; Oria, Roger; Tarantino, Carolina; Climent, Andreu M; Marco, Andrés; Samitier, Mireia; Martínez, Elena; Valls-Margarit, Maria; Matesanz, Rafael; Taylor, Doris A; Fernández-Avilés, Francisco; Izpisua Belmonte, Juan Carlos; Montserrat, Nuria

    2016-08-01

    Genome editing on human pluripotent stem cells (hPSCs) together with the development of protocols for organ decellularization opens the door to the generation of autologous bioartificial hearts. Here we sought to generate for the first time a fluorescent reporter human embryonic stem cell (hESC) line by means of Transcription activator-like effector nucleases (TALENs) to efficiently produce cardiomyocyte-like cells (CLCs) from hPSCs and repopulate decellularized human heart ventricles for heart engineering. In our hands, targeting myosin heavy chain locus (MYH6) with mCherry fluorescent reporter by TALEN technology in hESCs did not alter major pluripotent-related features, and allowed for the definition of a robust protocol for CLCs production also from human induced pluripotent stem cells (hiPSCs) in 14 days. hPSCs-derived CLCs (hPSCs-CLCs) were next used to recellularize acellular cardiac scaffolds. Electrophysiological responses encountered when hPSCs-CLCs were cultured on ventricular decellularized extracellular matrix (vdECM) correlated with significant increases in the levels of expression of different ion channels determinant for calcium homeostasis and heart contractile function. Overall, the approach described here allows for the rapid generation of human cardiac grafts from hPSCs, in a total of 24 days, providing a suitable platform for cardiac engineering and disease modeling in the human setting. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  20. A role for ethanol-induced oxidative stress in controlling lineage commitment of mesenchymal stromal cells through inhibition of wnt/beta-catenin signaling

    Science.gov (United States)

    The mechanisms by which chronic ethanol intake induces bone loss remain unclear. In females, the skeletal response to ethanol varies depending on physiologic status (viz. cycling, pregnancy, lactation). Ethanol-induced oxidative stress appears to be a key event leading to skeletal toxicity. In the c...

  1. A crucial role for ethanol-induced oxidative stress in controlling lineage commitment of mesenchymal stromal cells through inhibition of wnt/beta-catenin signaling

    Science.gov (United States)

    Female skeletal responses to ethanol may vary depending on the physiologic status (viz. cycling, pregnancy, lactation). Nonetheless, ethanol-induced oxidative stress appears to be the key event leading to skeletal toxicity. In the current study, we chronically infused EtOH-containing liquid diets ...

  2. A case of cellular alchemy: lineage reprogramming and its potential in regenerative medicine.

    Science.gov (United States)

    Asuelime, Grace E; Shi, Yanhong

    2012-08-01

    The field of regenerative medicine is rapidly gaining momentum as an increasing number of reports emerge concerning the induced conversions observed in cellular fate reprogramming. While in recent years, much attention has been focused on the conversion of fate-committed somatic cells to an embryonic-like or pluripotent state, there are still many limitations associated with the applications of induced pluripotent stem cell reprogramming, including relatively low reprogramming efficiency, the times required for the reprogramming event to take place, the epigenetic instability, and the tumorigenicity associated with the pluripotent state. On the other hand, lineage reprogramming involves the conversion from one mature cell type to another without undergoing conversion to an unstable intermediate. It provides an alternative approach in regenerative medicine that has a relatively lower risk of tumorigenesis and increased efficiency within specific cellular contexts. While lineage reprogramming provides exciting potential, there is still much to be assessed before this technology is ready to be applied in a clinical setting.

  3. Altered phenotype of β-cells and other pancreatic cell lineages in patients with diffuse congenital hyperinsulinism in infancy caused by mutations in the ATP-sensitive K-channel

    NARCIS (Netherlands)

    Salisbury, Rachel J.; Han, Bing; Jennings, Rachel E.; Berry, Andrew A.; Stevens, Adam; Mohamed, Zainab; Sugden, Sarah A.; De Krijger, Ronald|info:eu-repo/dai/nl/123933595; Cross, Sarah E.; Johnson, Paul P V; Newbould, Melanie; Cosgrove, Karen E.; Hanley, Karen Piper; Banerjee, Indraneel; Dunne, Mark J.; Hanley, Neil A.

    2015-01-01

    Diffuse congenital hyperinsulinism in infancy (CHI-D) arises from mutations inactivating the KATP channel; however, the phenotype is difficult to explain from electrophysiology alone. Here we studied wider abnormalities in the b-cell and other pancreatic lineages. Islets were disorganized in CHI-D

  4. Positive Selection in CD8+ T-Cell Epitopes of Influenza Virus Nucleoprotein Revealed by a Comparative Analysis of Human and Swine Viral Lineages.

    Science.gov (United States)

    Machkovech, Heather M; Bedford, Trevor; Suchard, Marc A; Bloom, Jesse D

    2015-11-01

    Numerous experimental studies have demonstrated that CD8(+) T cells contribute to immunity against influenza by limiting viral replication. It is therefore surprising that rigorous statistical tests have failed to find evidence of positive selection in the epitopes targeted by CD8(+) T cells. Here we use a novel computational approach to test for selection in CD8(+) T-cell epitopes. We define all epitopes in the nucleoprotein (NP) and matrix protein (M1) with experimentally identified human CD8(+) T-cell responses and then compare the evolution of these epitopes in parallel lineages of human and swine influenza viruses that have been diverging since roughly 1918. We find a significant enrichment of substitutions that alter human CD8(+) T-cell epitopes in NP of human versus swine influenza virus, consistent with the idea that these epitopes are under positive selection. Furthermore, we show that epitope-altering substitutions in human influenza virus NP are enriched on the trunk versus the branches of the phylogenetic tree, indicating that viruses that acquire these mutations have a selective advantage. However, even in human influenza virus NP, sites in T-cell epitopes evolve more slowly than do nonepitope sites, presumably because these epitopes are under stronger inherent functional constraint. Overall, our work demonstrates that there is clear selection from CD8(+) T cells in human influenza virus NP and illustrates how comparative analyses of viral lineages from different hosts can identify positive selection that is otherwise obscured by strong functional constraint. There is a strong interest in correlates of anti-influenza immunity that are protective against diverse virus strains. CD8(+) T cells provide such broad immunity, since they target conserved viral proteins. An important question is whether T-cell immunity is sufficiently strong to drive influenza virus evolution. Although many studies have shown that T cells limit viral replication in animal

  5. Effect of enamel matrix derivative and of proline-rich synthetic peptides on the differentiation of human mesenchymal stem cells toward the osteogenic lineage.

    Science.gov (United States)

    Ramis, Joana Maria; Rubert, Marina; Vondrasek, Jiri; Gayà, Antoni; Lyngstadaas, Staale Petter; Monjo, Marta

    2012-06-01

    With the aim of discovering new molecules for induction of bone formation and biomineralization, combination of bioinformatics and simulation methods were used to design the structure of artificial peptides based on proline-rich domains of enamel matrix proteins. In this study, the effect of such peptides on the differentiation toward the osteogenic lineage of human umbilical cord mesenchymal stem cells (hUCMSCs) was evaluated with or without osteogenic supplements (hydrocortisone, β-glycerol phosphate, and ascorbic acid) and compared to the effect of the commercially available enamel matrix derivative (EMD). It was hypothesized that the differentiation toward the osteogenic lineage of hUCMSCs would be promoted by the treatment with the synthetic peptides when combined with differentiation media, or it could even be directed exclusively by the synthetic peptides. Osteoinductivity was assessed by cell proliferation, bone morphogenetic protein-2 secretion, and gene expression of osteogenic markers after 1, 3, and 14 days of treatment. All peptides were safe with the dosages used, showing lower cell toxicity. P2, P4, and P6 reduced cell proliferation with growing media by 10%-15%. Higher expression of early osteoblast markers was found after 3 days of treatment with EMD in combination with osteogenic supplements, while after 14 days of treatment, cells treated by the different synthetic peptides in combination with osteogenic supplements showed higher osteocalcin mRNA levels. We can conclude that osteogenic differentiation of hUCMSCs is promoted by short-term EMD treatment in combination with osteogenic supplements and by long-term treatment by the synthetic peptides in combination with osteogenic supplements, showing similar results for all the peptide variants analyzed in this study.

  6. Early stages in human and mouse T-cell development

    NARCIS (Netherlands)

    Spits, H.

    1994-01-01

    One important question in lymphopoiesis is where stem cells commit to T-, B- and natural killer (NK)-cell lineages. Recent findings in human and mouse systems suggest that the thymus is seeded by a yet uncommitted progenitor cell. The earliest murine thymic progenitor cells have the capacity to

  7. The neuro-glial properties of adipose-derived adult stromal (ADAS) cells are not regulated by Notch 1 and are not derived from neural crest lineage.

    Science.gov (United States)

    Wrage, Philip C; Tran, Thi; To, Khai; Keefer, Edward W; Ruhn, Kelly A; Hong, John; Hattangadi, Supriya; Treviño, Isaac; Tansey, Malú G

    2008-01-16

    We investigated whether adipose-derived adult stromal (ADAS) are of neural crest origin and the extent to which Notch 1 regulates their growth and differentiation. Mouse ADAS cells cultured in media formulated for neural stem cells (NSC) displayed limited capacity for self-renewal, clonogenicity, and neurosphere formation compared to NSC from the subventricular zone in the hippocampus. Although ADAS cells expressed Nestin, GFAP, NSE and Tuj1 in vitro, exposure to NSC differentiation supplements did not induce mature neuronal marker expression. In contrast, in mesenchymal stem cell (MSC) media, ADAS cells retained their ability to proliferate and differentiate beyond 20 passages and expressed high levels of Nestin. In neuritizing cocktails, ADAS cells extended processes, downregulated Nestin expression, and displayed depolarization-induced Ca(2+) transients but no spontaneous or evoked neural network activity on Multi-Electrode Arrays. Deletion of Notch 1 in ADAS cell cultures grown in NSC proliferation medium did not significantly alter their proliferative potential in vitro or the differentiation-induced downregulation of Nestin. Co-culture of ADAS cells with fibroblasts that stably expressed the Notch ligand Jagged 1 or overexpression of the Notch intracellular domain (NICD) did not alter ADAS cell growth, morphology, or cellular marker expression. ADAS cells did not display robust expression of neural crest transcription factors or genes (Sox, CRABP2, and TH); and lineage tracing analyses using Wnt1-Cre;Rosa26R-lacZ or -EYFP reporter mice confirmed that fewer than 2% of the ADAS cell population derived from a Wnt1-positive population during development. In summary, although media formulations optimized for MSCs or NSCs enable expansion of mouse ADAS cells in vitro, we find no evidence that these cells are of neural crest origin, that they can undergo robust terminal differentiation into functionally mature neurons, and that Notch 1 is likely to be a key

  8. High-content image informatics of the structural nuclear protein NuMA parses trajectories for stem/progenitor cell lineages and oncogenic transformation

    Energy Technology Data Exchange (ETDEWEB)

    Vega, Sebastián L. [Department of Chemical and Biochemical Engineering, Rutgers University, Piscataway, NJ (United States); Liu, Er; Arvind, Varun [Department of Biomedical Engineering, Rutgers University, Piscataway, NJ (United States); Bushman, Jared [Department of Chemistry and Chemical Biology, New Jersey Center for Biomaterials, Piscataway, NJ (United States); School of Pharmacy, University of Wyoming, Laramie, WY (United States); Sung, Hak-Joon [Department of Chemistry and Chemical Biology, New Jersey Center for Biomaterials, Piscataway, NJ (United States); Department of Biomedical Engineering, Vanderbilt University, Nashville, TN (United States); Becker, Matthew L. [Department of Polymer Science and Engineering, University of Akron, Akron, OH (United States); Lelièvre, Sophie [Department of Basic Medical Sciences, Purdue University, West Lafayette, IN (United States); Kohn, Joachim [Department of Chemistry and Chemical Biology, New Jersey Center for Biomaterials, Piscataway, NJ (United States); Vidi, Pierre-Alexandre, E-mail: pvidi@wakehealth.edu [Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC (United States); Moghe, Prabhas V., E-mail: moghe@rutgers.edu [Department of Chemical and Biochemical Engineering, Rutgers University, Piscataway, NJ (United States); Department of Biomedical Engineering, Rutgers University, Piscataway, NJ (United States)

    2017-02-01

    Stem and progenitor cells that exhibit significant regenerative potential and critical roles in cancer initiation and progression remain difficult to characterize. Cell fates are determined by reciprocal signaling between the cell microenvironment and the nucleus; hence parameters derived from nuclear remodeling are ideal candidates for stem/progenitor cell characterization. Here we applied high-content, single cell analysis of nuclear shape and organization to examine stem and progenitor cells destined to distinct differentiation endpoints, yet undistinguishable by conventional methods. Nuclear descriptors defined through image informatics classified mesenchymal stem cells poised to either adipogenic or osteogenic differentiation, and oligodendrocyte precursors isolated from different regions of the brain and destined to distinct astrocyte subtypes. Nuclear descriptors also revealed early changes in stem cells after chemical oncogenesis, allowing the identification of a class of cancer-mitigating biomaterials. To capture the metrology of nuclear changes, we developed a simple and quantitative “imaging-derived” parsing index, which reflects the dynamic evolution of the high-dimensional space of nuclear organizational features. A comparative analysis of parsing outcomes via either nuclear shape or textural metrics of the nuclear structural protein NuMA indicates the nuclear shape alone is a weak phenotypic predictor. In contrast, variations in the NuMA organization parsed emergent cell phenotypes and discerned emergent stages of stem cell transformation, supporting a prognosticating role for this protein in the outcomes of nuclear functions. - Highlights: • High-content analysis of nuclear shape and organization classify stem and progenitor cells poised for distinct lineages. • Early oncogenic changes in mesenchymal stem cells (MSCs) are also detected with nuclear descriptors. • A new class of cancer-mitigating biomaterials was identified based on image

  9. An NF-κB Transcription-Factor-Dependent Lineage-Specific Transcriptional Program Promotes Regulatory T Cell Identity and Function.

    Science.gov (United States)

    Oh, Hyunju; Grinberg-Bleyer, Yenkel; Liao, Will; Maloney, Dillon; Wang, Pingzhang; Wu, Zikai; Wang, Jiguang; Bhatt, Dev M; Heise, Nicole; Schmid, Roland M; Hayden, Matthew S; Klein, Ulf; Rabadan, Raul; Ghosh, Sankar

    2017-09-19

    Both conventional T (Tconv) cells and regulatory T (Treg) cells are activated through ligation of the T cell receptor (TCR) complex, leading to the induction of the transcription factor NF-κB. In Tconv cells, NF-κB regulates expression of genes essential for T cell activation, proliferation, and function. However the role of NF-κB in Treg function remains unclear. We conditionally deleted canonical NF-κB members p65 and c-Rel in developing and mature Treg cells and found they have unique but partially redundant roles. c-Rel was critical for thymic Treg development while p65 was essential for mature Treg identity and maintenance of immune tolerance. Transcriptome and NF-κB p65 binding analyses demonstrated a lineage specific, NF-κB-dependent transcriptional program, enabled by enhanced chromatin accessibility. These dual roles of canonical NF-κB in Tconv and Treg cells highlight the functional plasticity of the NF-κB signaling pathway and underscores the need for more selective strategies to therapeutically target NF-κB. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Adult Stem Cell-Derived Kidney Organoids to Model Tissue Physiology and Disease

    NARCIS (Netherlands)

    Schutgens, Frans

    2017-01-01

    “Organoid” is defined as a 3D structure grown from stem cells and consisting of organ-specific cell types that self-organizes through cell sorting and spatially restricted lineage commitment. Organoids can be derived from either adult stem cells (ASCs) or pluripotent stem cells (PSCs). The

  11. Variable Extent of Lineage-Specificity and Developmental Stage-Specificity of Cohesin and CCCTC-Binding Factor Binding Within the Immunoglobulin and T Cell Receptor Loci

    Directory of Open Access Journals (Sweden)

    Salvatore Loguercio

    2018-03-01

    Full Text Available CCCTC-binding factor (CTCF is largely responsible for the 3D architecture of the genome, in concert with the action of cohesin, through the creation of long-range chromatin loops. Cohesin is hypothesized to be the main driver of these long-range chromatin interactions by the process of loop extrusion. Here, we performed ChIP-seq for CTCF and cohesin in two stages each of T and B cell differentiation and examined the binding pattern in all six antigen receptor (AgR loci in these lymphocyte progenitors and in mature T and B cells, ES cells, and fibroblasts. The four large AgR loci have many bound CTCF sites, most of which are only occupied in lymphocytes, while only the CTCF sites at the end of each locus near the enhancers or J genes tend to be bound in non-lymphoid cells also. However, despite the generalized lymphocyte restriction of CTCF binding in AgR loci, the Igκ locus is the only locus that also shows significant lineage-specificity (T vs. B cells and developmental stage-specificity (pre-B vs. pro-B in CTCF binding. We show that cohesin binding shows greater lineage- and stage-specificity than CTCF at most AgR loci, providing more specificity to the loops. We also show that the culture of pro-B cells in IL7, a common practice to expand the number of cells before ChIP-seq, results in a CTCF-binding pattern resembling pre-B cells, as well as other epigenetic and transcriptional characteristics of pre-B cells. Analysis of the orientation of the CTCF sites show that all sites within the large V portions of the Igh and TCRβ loci have the same orientation. This suggests either a lack of requirement for convergent CTCF sites creating loops, or indicates an absence of any loops between CTCF sites within the V region portion of those loci but only loops to the convergent sites at the D-J-enhancer end of each locus. The V region portions of the Igκ and TCRα/δ loci, by contrast, have CTCF sites in both orientations, providing many options for

  12. Embryonic Stem Cell-Derived Cardiomyocyte Heterogeneity and the Isolation of Immature and Committed Cells for Cardiac Remodeling and Regeneration

    Directory of Open Access Journals (Sweden)

    Kenneth R. Boheler

    2011-01-01

    Full Text Available Pluripotent stem cells represent one promising source for cell replacement therapy in heart, but differentiating embryonic stem cell-derived cardiomyocytes (ESC-CMs are highly heterogeneous and show a variety of maturation states. In this study, we employed an ESC clonal line that contains a cardiac-restricted ncx1 promoter-driven puromycin resistance cassette together with a mass culture system to isolate ESC-CMs that display traits characteristic of very immature CMs. The cells display properties of proliferation, CM-restricted markers, reduced mitochondrial mass, and hypoxia-resistance. Following transplantation into rodent hearts, bioluminescence imaging revealed that immature cells, but not more mature CMs, survived for at least one month following injection. These data and comparisons with more mature cells lead us to conclude that immature hypoxia resistant ESC-CMs can be isolated in mass in vitro and, following injection into heart, form grafts that may mediate long-term recovery of global and regional myocardial contractile function following infarction.

  13. Determination of osteogenic or adipogenic lineages in muscle-derived stem cells (MDSCs) by a collagen-binding peptide (CBP) derived from bone sialoprotein (BSP)

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yoon Jung [Dental Regenerative Biotechnology Major, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 110-749 (Korea, Republic of); Lee, Jue Yeon [Research Institute, Nano Intelligent Biomedical Engineering Corporation (NIBEC), Seoul (Korea, Republic of); Lee, Seung Jin [Department of Industrial Pharmacy, College of Pharmacy, Ewha Womans University, Seoul (Korea, Republic of); Chung, Chong-Pyoung, E-mail: ccpperio@snu.ac.kr [Research Institute, Nano Intelligent Biomedical Engineering Corporation (NIBEC), Seoul (Korea, Republic of); Department of Periodontology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul (Korea, Republic of); Park, Yoon Jeong, E-mail: parkyj@snu.ac.kr [Dental Regenerative Biotechnology Major, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 110-749 (Korea, Republic of); Research Institute, Nano Intelligent Biomedical Engineering Corporation (NIBEC), Seoul (Korea, Republic of)

    2012-03-09

    Highlights: Black-Right-Pointing-Pointer CBP sequence is identified from BSP and has collagen binding activity. Black-Right-Pointing-Pointer CBP directly activates the MAPK signaling, especially ERK1/2. Black-Right-Pointing-Pointer CBP increase osteoblastic differentiation by the activation of Runx2. Black-Right-Pointing-Pointer CBP decrease adipogenic differentiation by the inhibition of PPAR{gamma}. -- Abstract: Bone sialoprotein (BSP) is a mineralized, tissue-specific, non-collagenous protein that is normally expressed only in mineralized tissues such as bone, dentin, cementum, and calcified cartilage, and at sites of new mineral formation. The binding of BSP to collagen is thought to be important for initiating bone mineralization and bone cell adhesion to the mineralized matrix. Several recent studies have isolated stem cells from muscle tissue, but their functional properties are still unclear. In this study, we examined the effects of a synthetic collagen-binding peptide (CBP) on the differentiation efficiency of muscle-derived stem cells (MDSCs). The CBP sequence (NGVFKYRPRYYLYKHAYFYPHLKRFPVQ) corresponds to residues 35-62 of bone sialoprotein (BSP), which are located within the collagen-binding domain in BSP. Interestingly, this synthetic CBP inhibited adipogenic differentiation but increased osteogenic differentiation in MDSCs. The CBP also induced expression of osteoblastic marker proteins, including alkaline phosphatase (ALP), type I collagen, Runt-related transcription factor 2 (Runx2), and osteocalcin; prevented adipogenic differentiation in MDSCs; and down-regulated adipose-specific mRNAs, such as adipocyte protein 2 (aP2) and peroxisome proliferator-activated receptor {gamma}. The CBP increased Extracellular signal-regulated kinases (ERK) 1/2 protein phosphorylation, which is important in lineage determination. These observations suggest that this CBP determines the osteogenic or adipogenic lineage in MDSCs by activating ERK1/2. Taken together, a

  14. Restricted Cell Surface Expression of Receptor Tyrosine Kinase ROR1 in Pediatric B-Lineage Acute Lymphoblastic Leukemia Suggests Targetability with Therapeutic Monoclonal Antibodies

    Science.gov (United States)

    Dave, Hema; Anver, Miriam R.; Butcher, Donna O.; Brown, Patrick; Khan, Javed; Wayne, Alan S.; Baskar, Sivasubramanian; Rader, Christoph

    2012-01-01

    Background Despite high cure rates for pediatric B-lineage acute lymphoblastic leukemia (B-ALL), short-term and long-term toxicities and chemoresistance are shortcomings of standard chemotherapy. Immunotherapy and chemoimmunotherapy based on monoclonal antibodies (mAbs) that target cell surface antigens with restricted expression in pediatric B-ALL may offer the potential to reduce toxicities and prevent or overcome chemoresistance. The receptor tyrosine kinase ROR1 has emerged as a candidate for mAb targeting in select B-cell malignancies. Methodology and Principal Findings Using flow cytometry, Western blotting, immunohistochemistry, and confocal immunofluorescence microscopy, we analyzed the cell surface expression of ROR1 across major pediatric ALL subtypes represented by 14 cell lines and 56 primary blasts at diagnosis or relapse as well as in normal adult and pediatric tissues. Cell surface ROR1 expression was found in 45% of pediatric ALL patients, all of which were B-ALL, and was not limited to any particular genotype. All cell lines and primary blasts with E2A-PBX1 translocation and a portion of patients with other high risk genotypes, such as MLL rearrangement, expressed cell surface ROR1. Importantly, cell surface ROR1 expression was found in many of the pediatric B-ALL patients with multiply relapsed and refractory disease and normal karyotype or low risk cytogenetics, such as hyperdiploidy. Notably, cell surface ROR1 was virtually absent in normal adult and pediatric tissues. Conclusions and Significance Collectively, this study suggests that ROR1 merits preclinical and clinical investigations as a novel target for mAb-based therapies in pediatric B-ALL. We propose cell surface expression of ROR1 detected by flow cytometry as primary inclusion criterion for pediatric B-ALL patients in future clinical trials of ROR1-targeted therapies. PMID:23285131

  15. Restricted cell surface expression of receptor tyrosine kinase ROR1 in pediatric B-lineage acute lymphoblastic leukemia suggests targetability with therapeutic monoclonal antibodies.

    Directory of Open Access Journals (Sweden)

    Hema Dave

    Full Text Available Despite high cure rates for pediatric B-lineage acute lymphoblastic leukemia (B-ALL, short-term and long-term toxicities and chemoresistance are shortcomings of standard chemotherapy. Immunotherapy and chemoimmunotherapy based on monoclonal antibodies (mAbs that target cell surface antigens with restricted expression in pediatric B-ALL may offer the potential to reduce toxicities and prevent or overcome chemoresistance. The receptor tyrosine kinase ROR1 has emerged as a candidate for mAb targeting in select B-cell malignancies.Using flow cytometry, Western blotting, immunohistochemistry, and confocal immunofluorescence microscopy, we analyzed the cell surface expression of ROR1 across major pediatric ALL subtypes represented by 14 cell lines and 56 primary blasts at diagnosis or relapse as well as in normal adult and pediatric tissues. Cell surface ROR1 expression was found in 45% of pediatric ALL patients, all of which were B-ALL, and was not limited to any particular genotype. All cell lines and primary blasts with E2A-PBX1 translocation and a portion of patients with other high risk genotypes, such as MLL rearrangement, expressed cell surface ROR1. Importantly, cell surface ROR1 expression was found in many of the pediatric B-ALL patients with multiply relapsed and refractory disease and normal karyotype or low risk cytogenetics, such as hyperdiploidy. Notably, cell surface ROR1 was virtually absent in normal adult and pediatric tissues.Collectively, this study suggests that ROR1 merits preclinical and clinical investigations as a novel target for mAb-based therapies in pediatric B-ALL. We propose cell surface expression of ROR1 detected by flow cytometry as primary inclusion criterion for pediatric B-ALL patients in future clinical trials of ROR1-targeted therapies.

  16. Shear Stress Induces Differentiation of Endothelial Lineage Cells to Protect Neonatal Brain from Hypoxic-Ischemic Injury through NRP1 and VEGFR2 Signaling

    Directory of Open Access Journals (Sweden)

    Chia-Wei Huang

    2015-01-01

    Full Text Available Neonatal hypoxic-ischemic (HI brain injuries disrupt the integrity of neurovascular structure and lead to lifelong neurological deficit. The devastating damage can be ameliorated by preserving the endothelial network, but the source for therapeutic cells is limited. We aim to evaluate the beneficial effect of mechanical shear stress in the differentiation of endothelial lineage cells (ELCs from adipose-derived stem cells (ASCs and the possible intracellular signals to protect HI injury using cell-based therapy in the neonatal rats. The ASCs expressed early endothelial markers after biochemical stimulation of endothelial growth medium. The ELCs with full endothelial characteristics were accomplished after a subsequential shear stress application for 24 hours. When comparing the therapeutic potential of ASCs and ELCs, the ELCs treatment significantly reduced the infarction area and preserved neurovascular architecture in HI injured brain. The transplanted ELCs can migrate and engraft into the brain tissue, especially in vessels, where they promoted the angiogenesis. The activation of Akt by neuropilin 1 (NRP1 and vascular endothelial growth factor receptor 2 (VEGFR2 was important for ELC migration and following in vivo therapeutic outcomes. Therefore, the current study demonstrated importance of mechanical factor in stem cell differentiation and showed promising protection of brain from HI injury using ELCs treatment.

  17. Pannexin channels mediate the acquisition of myogenic commitment in C2C12 reserve cells promoted by P2 receptor activation

    Science.gov (United States)

    Riquelme, Manuel A.; Cea, Luis A.; Vega, José L.; Puebla, Carlos; Vargas, Aníbal A.; Shoji, Kenji F.; Subiabre, Mario; Sáez, Juan C.

    2015-01-01

    The acquisition of myoblast commitment to the myogenic linage requires rises in intracellular free Ca2+ concentration ([Ca2+]i). Putative cell membrane pathways involved in these [Ca2+]i increments are P2 receptors (P2Rs) as well as connexin (Cx) and/or pannexin (Panx) hemichannels and channels (Cx HChs and Panx Chs), respectively, which are known to permeate Ca2+. Reserve cells (RCs) are uncommitted myoblasts obtained from differentiated C2C12 cell cultures, which acquire commitment upon replating. Regarding these cells, we found that extracellular ATP increases the [Ca2+]i via P2Rs. Moreover, ATP increases the plasma membrane permeability to small molecules and a non-selective membrane current, both of which were inhibited by Cx HCh/Panx1Ch blockers. However, RCs exposed to divalent cation-free saline solution, which is known to activate Cx HChs (but not Panx Chs), did not enhance membrane permeability, thus ruling out the possible involvement of Cx HChs. Moreover, ATP-induced membrane permeability was inhibited with blockers of P2Rs that activate Panx Chs. In addition, exogenous ATP induced the expression of myogenic commitment and increased MyoD levels, which was prevented by the inhibition of P2Rs or knockdown of Panx1 Chs. Similarly, increases in MyoD levels induced by ATP released by RCs were inhibited by Panx Ch/Cx HCh blockers. Myogenic commitment acquisition thus requires a feed-forward mechanism mediated by extracellular ATP, P2Rs, and Panx Chs. PMID:26000275

  18. Collagen-Coated Polytetrafluoroethane Membrane Inserts Enhances Chondrogenic Differentiation of Human Cord Blood Multi-Lineage Progenitor Cells

    DEFF Research Database (Denmark)

    Munir, Samir; Søballe, Kjeld; Ulrich-Vinther, Michael

    Background: Articular chondrocytes and bone marrow-derived multipotent mesenchymal stromal cells (MSCs) are the favoured cells for cartilage tissue engineering. Umbilical cord blood has proven an alternative source of MSCs and moreover they may be more potent chondroprogenitor cells than bonemarrow...... MSCs. Purpose / Aim of Study: Multilineage progenitor cells (MLPCs) are clonal cord blood-derived MSCs and may therefore provide a cell source with more reproducible outcomes compared to heterogeneous primary MSC cultures. Materials and Methods: We evaluated the chondrogenic potency of MLPCs...... is an obvious next step since direct seeding of MLPCs on CPP did not yield satisfactory biphasic constructs....

  19. The early human germ cell lineage does not express SOX2 during in vivo development or upon in vitro culture

    DEFF Research Database (Denmark)

    Perrett, Rebecca M; Turnpenny, Lee; Eckert, Judith J

    2008-01-01

    NANOG, POU5F1, and SOX2 are required by the inner cell mass of the blastocyst and act cooperatively to maintain pluripotency in both mouse and human embryonic stem cells. Inadequacy of any one of them causes loss of the undifferentiated state. Mouse primordial germ cells (PGCs), from which...... of redundancy within the group B family of human SOX genes. Although lacking SOX2, proliferative human germ cells can still be identified in situ during early development and are capable of culture in vitro. Surprisingly, with the exception of FGF4, many stem cell-restricted SOX2 target genes remained detected...

  20. The Regulatory T Cell Lineage Factor Foxp3 Regulates Gene Expression through Several Distinct Mechanisms Mostly Independent of Direct DNA Binding.

    Directory of Open Access Journals (Sweden)

    Xin Xie

    2015-06-01

    Full Text Available The lineage factor Foxp3 is essential for the development and maintenance of regulatory T cells, but little is known about the mechanisms involved. Here, we demonstrate that an N-terminal proline-rich interaction region is crucial for Foxp3's function. Subdomains within this key region link Foxp3 to several independent mechanisms of transcriptional regulation. Our study suggests that Foxp3, even in the absence of its DNA-binding forkhead domain, acts as a bridge between DNA-binding interaction partners and proteins with effector function permitting it to regulate a large number of genes. We show that, in one such mechanism, Foxp3 recruits class I histone deacetylases to the promoters of target genes, counteracting activation-induced histone acetylation and thereby suppressing their expression.

  1. Human NKp44+IL-22+ cells and LTi-like cells constitute a stable RORC+ lineage distinct from conventional natural killer cells

    NARCIS (Netherlands)

    Crellin, Natasha K.; Trifari, Sara; Kaplan, Charles D.; Cupedo, Tom; Spits, Hergen

    2010-01-01

    Lymphoid tissue inducer (LTi) cells are required for lymph node formation during fetal development, and recent evidence implies a role in mucosal immunity in the adult. LTi cells share some phenotypic features of conventional natural killer (NK; cNK) cells; however, little is known to date about the

  2. EBF1 is essential for B-lineage priming and establishment of a transcription factor network in common lymphoid progenitors.

    Science.gov (United States)

    Zandi, Sasan; Mansson, Robert; Tsapogas, Panagiotis; Zetterblad, Jenny; Bryder, David; Sigvardsson, Mikael

    2008-09-01

    Development of B-lymphoid cells in the bone marrow is a process under strict control of a hierarchy of transcription factors. To understand the development of a B-lymphoid-restricted functional network of transcription factors, we have investigated the cell autonomous role of the transcription factor EBF1 in early B cell development. This revealed that even though transplanted EBF1-deficient fetal liver cells were able to generate common lymphoid progenitors (CLPs) as well as B220(+)CD43(+)AA4.1(+) candidate precursor B cells, none of these populations showed signs of B lineage priming. The isolated CLPs were able to generate T lymphocytes in vitro supporting the idea that the phenotype of EBF1-deficient mice is restricted to the development of the B lineage. Furthermore, EBF deficient CLPs displayed a reduction in Ig H chain recombination as compared with their wild-type counterpart and essentially lacked transcription of B-lineage-associated genes. Among the genes displaying reduced expression in the EBF1 deficient CLPs were the transcription factors Pax5, Pou2af1 (OcaB), and FoxO1 that all appear to be direct genetic targets for EBF1 because their promoters contained functional binding sites for this factor. This leads us to suggest that EBF1 regulates a transcription factor network crucial for B lineage commitment.

  3. Neuroprotective and Antiapoptotic Activity of Lineage-Negative Bone Marrow Cells after Intravitreal Injection in a Mouse Model of Acute Retinal Injury

    Science.gov (United States)

    Machalińska, Anna; Pius-Sadowska, Ewa; Kawa, Miłosz P.; Paczkowska, Edyta; Rudnicki, Michał; Lejkowska, Renata; Baumert, Bartłomiej; Wiszniewska, Barbara; Machaliński, Bogusław

    2015-01-01

    We investigated effects of bone marrow-derived, lineage-negative cell (Lin−BMC) transplantation in acute retinal injury. Lin−BMCs were intravitreally injected into murine eyes at 24 h after NaIO3-induced injury. Morphology, function, and expression of apoptosis-related genes, including brain-derived neurotrophic factor (BDNF) and its receptor, were assessed in retinas at 7 days, 28 days, and 3 months after transplantation. Moreover, global gene expression at day 7 was analyzed by RNA arrays. We observed that Lin−BMCs integrated into outer retinal layers improving morphological retinal structure and induced molecular changes such as downregulation of proapoptotic caspase-3 gene, a decrease in BAX/BCL-2 gene ratio, and significant elevation of BDNF expression. Furthermore, transplanted Lin−BMCs differentiated locally into cells with a macrophage-like phenotype. Finally, Lin−BMCs treatment was associated with generation of two distinct transcriptomic patterns. The first relates to downregulated genes associated with regulation of neuron cell death and apoptosis, response to oxidative stress/hypoxia and external stimuli, and negative regulation of cell proliferation. The second relates to upregulated genes associated with neurological system processes and sensory perception. Collectively, our data demonstrate that transplanted Lin−BMCs exert neuroprotective function against acute retinal injury and this effect may be associated with their antiapoptotic properties and ability to express neurotrophic factors. PMID:25810725

  4. A Multi-Lineage Screen Reveals mTORC1 Inhibition Enhances Human Pluripotent Stem Cell Mesendoderm and Blood Progenitor Production

    Directory of Open Access Journals (Sweden)

    Emanuel Joseph Paul Nazareth

    2016-05-01

    Full Text Available Human pluripotent stem cells (hPSCs exist in heterogeneous micro-environments with multiple subpopulations, convoluting fate-regulation analysis. We patterned hPSCs into engineered micro-environments and screened responses to 400 small-molecule kinase inhibitors, measuring yield and purity outputs of undifferentiated, neuroectoderm, mesendoderm, and extra-embryonic populations. Enrichment analysis revealed mammalian target of rapamycin (mTOR inhibition as a strong inducer of mesendoderm. Dose responses of mTOR inhibitors such as rapamycin synergized with Bone Morphogenetic protein 4 (BMP4 and activin A to enhance the yield and purity of BRACHYURY-expressing cells. Mechanistically, small interfering RNA knockdown of RAPTOR, a component of mTOR complex 1, phenocopied the mesendoderm-enhancing effects of rapamycin. Functional analysis during mesoderm and endoderm differentiation revealed that mTOR inhibition increased the output of hemogenic endothelial cells 3-fold, with a concomitant enhancement of blood colony-forming cells. These data demonstrate the power of our multi-lineage screening approach and identify mTOR signaling as a node in hPSC differentiation to mesendoderm and its derivatives.

  5. Neuroprotective and Antiapoptotic Activity of Lineage-Negative Bone Marrow Cells after Intravitreal Injection in a Mouse Model of Acute Retinal Injury

    Directory of Open Access Journals (Sweden)

    Anna Machalińska

    2015-01-01

    Full Text Available We investigated effects of bone marrow-derived, lineage-negative cell (Lin−BMC transplantation in acute retinal injury. Lin−BMCs were intravitreally injected into murine eyes at 24 h after NaIO3-induced injury. Morphology, function, and expression of apoptosis-related genes, including brain-derived neurotrophic factor (BDNF and its receptor, were assessed in retinas at 7 days, 28 days, and 3 months after transplantation. Moreover, global gene expression at day 7 was analyzed by RNA arrays. We observed that Lin−BMCs integrated into outer retinal layers improving morphological retinal structure and induced molecular changes such as downregulation of proapoptotic caspase-3 gene, a decrease in BAX/BCL-2 gene ratio, and significant elevation of BDNF expression. Furthermore, transplanted Lin−BMCs differentiated locally into cells with a macrophage-like phenotype. Finally, Lin−BMCs treatment was associated with generation of two distinct transcriptomic patterns. The first relates to downregulated genes associated with regulation of neuron cell death and apoptosis, response to oxidative stress/hypoxia and external stimuli, and negative regulation of cell proliferation. The second relates to upregulated genes associated with neurological system processes and sensory perception. Collectively, our data demonstrate that transplanted Lin−BMCs exert neuroprotective function against acute retinal injury and this effect may be associated with their antiapoptotic properties and ability to express neurotrophic factors.

  6. Dicer Regulates the Balance of Short-Lived Effector and Long-Lived Memory CD8 T Cell Lineages

    Science.gov (United States)

    Baumann, Florian M.; Yuzefpolskiy, Yevgeniy; Sarkar, Surojit; Kalia, Vandana

    2016-01-01

    MicroRNAs constitute a major post-transcriptional mechanism for controlling protein expression, and are emerging as key regulators during T cell development and function. Recent reports of augmented CD8 T cell activation and effector differentiation, and aberrant migratory properties upon ablation of Dicer/miRNAs in naïve cells have established a regulatory role of miRNAs during priming. Whether miRNAs continue to exert similar functions or are dispensable during later stages of CD8 T cell expansion and memory differentiation remains unclear. Here, we report a critical role of Dicer/miRNAs in regulating the balance of long-lived memory and short-lived terminal effector fates during the post-priming stages when CD8 T cells undergo clonal expansion to generate a large cytotoxic T lymphocyte (CTL) pool and subsequently differentiate into a quiescent memory state. Conditional ablation of Dicer/miRNAs in early effector CD8 T cells following optimal activation and expression of granzyme B, using unique dicerfl/fl gzmb-cre mice, led to a strikingly diminished peak effector size relative to wild-type antigen-specific cells in the same infectious milieu. Diminished expansion of Dicer-ablated CD8 T cells was associated with lack of sustained antigen-driven proliferation and reduced accumulation of short-lived effector cells. Additionally, Dicer-ablated CD8 T cells exhibited more pronounced contraction after pathogen clearance and comprised a significantly smaller proportion of the memory pool, despite significantly higher proportions of CD127Hi memory precursors at the effector peak. Combined with previous reports of dynamic changes in miRNA expression as CD8 T cells differentiate from naïve to effector and memory states, these findings support distinct stage-specific roles of miRNA-dependent gene regulation during CD8 T cell differentiation. PMID:27627450

  7. Bioluminescence-based visualization of CD4 T cell dynamics using a T lineage-specific luciferase transgenic model1

    Directory of Open Access Journals (Sweden)

    Zinn Kurt R

    2009-08-01

    Full Text Available Abstract Background Rapid clonal expansion of T cells occurs in response to antigenic challenges. The kinetics of the T cell response has previously been described using tissue-based studies performed at defined time points. Luciferase bioluminescence has recently been utilized for non-invasive analysis of in vivo biologic processes in real-time. Results We have created a novel transgenic mouse model (T-Lux using a human CD2 mini-gene to direct luciferase expression specifically to the T cell compartment. T-Lux T cells demonstrated normal homing patterns within the intact mouse and following adoptive transfer. Bioluminescent signal correlated with T cell numbers in the whole body images as well as within specific organ regions of interest. Following transfer into lymphopenic (RAG2-/- recipients, homeostatic proliferation of T-Lux T cells was visualized using bioluminescent imaging. Real-time bioluminescent analysis of CD4+ T cell antigen-specific responses enabled real-time comparison of the kinetics and magnitude of clonal expansion and contraction in the inductive lymph node and tissue site of antigen injection. T cell expansion was dose-dependent despite the presence of supraphysiologic numbers of OVA-specific OT-II transgenic TCR T-Lux T cells. CD4+ T cells subsequently underwent a rapid (3–4 day contraction phase in the draining lymph node, with a delayed contraction in the antigen delivery site, with bioluminescent signal diminished below initial levels, representing TCR clonal frequency control. Conclusion The T-Lux mouse provides a novel, efficient model for tracking in vivo aspects of the CD4+ T cell response to antigen, providing an attractive approach for studies directed at immunotherapy or vaccine design.

  8. Early stages in the development of human T, natural killer and thymic dendritic cells

    NARCIS (Netherlands)

    Spits, H.; Blom, B.; Jaleco, A. C.; Weijer, K.; Verschuren, M. C.; van Dongen, J. J.; Heemskerk, M. H.; Res, P. C.

    1998-01-01

    T-cell development is initiated when CD34+ pluripotent stem cells or their immediate progeny leave the bone marrow to migrate to the thymus. Upon arrival in the thymus the stem cell progeny is not yet committed to the T-cell lineage as it has the capability to develop into T, natural killer (NK) and

  9. Phylogenetic lineages in Entomophthoromycota

    NARCIS (Netherlands)

    Gryganskyi, A.P.; Humber, R.A.; Smith, M.E.; Hodge, K.; Huang, B.; Voigt, K.; Vilgalys, R.

    2013-01-01

    Entomophthoromycota is one of six major phylogenetic lineages among the former phylum Zygomycota. These early terrestrial fungi share evolutionarily ancestral characters such as coenocytic mycelium and gametangiogamy as a sexual process resulting in zygospore formation. Previous molecular studies

  10. Induction of Functional Hair-Cell-Like Cells from Mouse Cochlear Multipotent Cells

    Directory of Open Access Journals (Sweden)

    Quanwen Liu

    2016-01-01

    Full Text Available In this paper, we developed a two-step-induction method of generating functional hair cells from inner ear multipotent cells. Multipotent cells from the inner ear were established and induced initially into progenitor cells committed to the inner ear cell lineage on the poly-L-lysine substratum. Subsequently, the committed progenitor cells were cultured on the mitotically inactivated chicken utricle stromal cells and induced into hair-cell-like cells containing characteristic stereocilia bundles. The hair-cell-like cells exhibited rapid permeation of FM1-43FX. The whole-cell patch-clamp technique was used to measure the membrane currents of cells differentiated for 7 days on chicken utricle stromal cells and analyze the biophysical properties of the hair-cell-like cells by recording membrane properties of cells. The results suggested that the hair-cell-like cells derived from inner ear multipotent cells were functional following differentiation in an enabling environment.

  11. Single-cell 5hmC sequencing reveals chromosome-wide cell-to-cell variability and enables lineage reconstruction

    NARCIS (Netherlands)

    Mooijman, Dylan; Dey, Siddharth S.; Boisset, Jean Charles; Crosetto, Nicola; Van Oudenaarden, Alexander

    2016-01-01

    The epigenetic DNA modification 5-hydroxymethylcytosine (5hmC) has crucial roles in development and gene regulation. Quantifying the abundance of this epigenetic mark at the single-cell level could enable us to understand its roles. We present a single-cell, genome-wide and strand-specific 5hmC

  12. Lv4 Is a Capsid-Specific Antiviral Activity in Human Blood Cells That Restricts Viruses of the SIVMAC/SIVSM/HIV-2 Lineage Prior to Integration.

    Science.gov (United States)

    Pizzato, Massimo; McCauley, Sean Matthew; Neagu, Martha R; Pertel, Thomas; Firrito, Claudia; Ziglio, Serena; Dauphin, Ann; Zufferey, Madeleine; Berthoux, Lionel; Luban, Jeremy

    2015-07-01

    HIV-2 and SIVMAC are AIDS-causing, zoonotic lentiviruses that jumped to humans and rhesus macaques, respectively, from SIVSM-bearing sooty mangabey monkeys. Cross-species transmission events such as these sometimes necessitate virus adaptation to species-specific, host restriction factors such as TRIM5. Here, a new human restriction activity is described that blocks viruses of the SIVSM/SIVMAC/HIV-2 lineage. Human T, B, and myeloid cell lines, peripheral blood mononuclear cells and dendritic cells were 4 to >100-fold less transducible by VSV G-pseudotyped SIVMAC, HIV-2, or SIVSM than by HIV-1. In contrast, transduction of six epithelial cell lines was equivalent to that by HIV-1. Substitution of HIV-1 CA with the SIVMAC or HIV-2 CA was sufficient to reduce HIV-1 transduction to the level of the respective vectors. Among such CA chimeras there was a general trend such that CAs from epidemic HIV-2 Group A and B isolates were the most infectious on human T cells, CA from a 1° sooty mangabey isolate was the least infectious, and non-epidemic HIV-2 Group D, E, F, and G CAs were in the middle. The CA-specific decrease in infectivity was observed with either HIV-1, HIV-2, ecotropic MLV, or ALV Env pseudotypes, indicating that it was independent of the virus entry pathway. As2O3, a drug that suppresses TRIM5-mediated restriction, increased human blood cell transduction by SIVMAC but not by HIV-1. Nonetheless, elimination of TRIM5 restriction activity did not rescue SIVMAC transduction. Also, in contrast to TRIM5-mediated restriction, the SIVMAC CA-specific block occurred after completion of reverse transcription and the formation of 2-LTR circles, but before establishment of the provirus. Transduction efficiency in heterokaryons generated by fusing epithelial cells with T cells resembled that in the T cells, indicative of a dominant-acting SIVMAC restriction activity in the latter. These results suggest that the nucleus of human blood cells possesses a restriction factor

  13. Improved outcome with hematopoietic stem cell transplantation in a poor prognostic subgroup of infants with mixed-lineage-leukemia (MLL)-rearranged acute lymphoblastic leukemia: results from the Interfant-99 Study

    DEFF Research Database (Denmark)

    Mann, Georg; Attarbaschi, Andishe; Schrappe, Martin

    2010-01-01

    To define a role for hematopoietic stem cell transplantation (HSCT) in infants with acute lymphoblastic leukemia and rearrangements of the mixed-lineage-leukemia gene (MLL(+)), we compared the outcome of MLL(+) patients from trial Interfant-99 who either received chemotherapy only or HSCT. Of 376...

  14. Phenotypic and functional analysis of T-cell precursors in the human fetal liver and thymus: CD7 expression in the early stages of T- and myeloid-cell development

    NARCIS (Netherlands)

    Bárcena, A.; Muench, M. O.; Galy, A. H.; Cupp, J.; Roncarolo, M. G.; Phillips, J. H.; Spits, H.

    1993-01-01

    It has been proposed that the CD7 molecule is the first antigen expressed on the membrane of cells committed to the T-cell lineage during human fetal T-cell ontogeny. To further identify the pre-T cell subpopulation that migrates to the thymus early in ontogeny, we analyzed the phenotypic and

  15. Applications of myeloid-specific promoters in transgenic mice support in vivo imaging and functional genomics but do not support the concept of distinct macrophage and dendritic cell lineages or roles in immunity.

    Science.gov (United States)

    Hume, David A

    2011-04-01

    Myeloid lineage cells contribute to innate and acquired immunity, homeostasis, wound repair, and inflammation. There is considerable interest in manipulation of their function in transgenic mice using myeloid-specific promoters. This review considers the applications and specificity of some of the most widely studied transgenes, driven by promoter elements of the lysM, csf1r, CD11c, CD68, macrophage SRA, and CD11b genes, as well as several others. Transgenes have been used in mice to generate myeloid lineage-specific cell ablation, expression of genes of interest, including fluorescent reporters, or deletion via recombination. In general, the specificity of such transgenes has been overinterpreted, and none of them provide well-documented, reliable, differential expression in any specific myeloid cell subset, macrophages, granulocytes, or myeloid DCs. Nevertheless, they have proved valuable in cell isolation, functional genomics, and live imaging of myeloid cell behavior in many different pathologies.

  16. IL-7R expression and IL-7 signaling confer a distinct phenotype on developing human B-lineage cells

    NARCIS (Netherlands)

    Nodland, Sonja E.; Berkowska, Magdalena A.; Bajer, Anna A.; Shah, Nisha; de Ridder, Dick; van Dongen, Jacques J. M.; LeBien, Tucker W.; van Zelm, Menno C.

    2011-01-01

    IL-7 is an important cytokine for lymphocyte differentiation. Similar to what occurs in vivo, human CD19(+) cells developing in human/murine xenogeneic cultures show differential expression of the IL-7 receptor alpha (IL-7R alpha) chain (CD127). We now describe the relationship between CD127

  17. Developmental stage-specific contribution of LGR5(+) cells to basal and luminal epithelial lineages in the postnatal mammary gland

    NARCIS (Netherlands)

    de Visser, K.E.; Ciampricotti, M.; Michalak, E.M.; Tan, D.W.; Speksnijder, E.N.; Hau, C.S.; Clevers, H.; Barker, N.; Jonkers, J.

    2012-01-01

    The leucine-rich repeat-containing heterotrimeric guanine nucleotide-binding protein-coupled receptor 5 (LGR5) has been identified as a marker of cycling stem cells in several epithelial tissues, including small intestine, colon, stomach and hair follicle. To investigate whether LGR5 also marks

  18. A major lineage of enteroendocrine cells coexpress CCK, secretin, GIP, GLP-1, PYY, and neurotensin but not somatostatin

    DEFF Research Database (Denmark)

    Egerod, Kristoffer Lihme; Engelstoft, Maja Storm; Grunddal, Kaare Villum

    2012-01-01

    peptide precursors in addition to CCK. The coexpression pattern was further confirmed through a cell ablation study based on expression of the human diphtheria toxin receptor under the control of the proglucagon promoter, in which activation of the receptor resulted in a marked reduction not only in GLP-1...

  19. Changes in keratin 8/18 expression in human granulosa cell lineage are associated to cell death/survival events: potential implications for the maintenance of the ovarian reserve.

    Science.gov (United States)

    Gaytan, F; Morales, C; Roa, J; Tena-Sempere, M

    2018-04-01

    Is keratin 8/18 (K8/K18) expression linked to cell death/survival events in the human granulosa cell lineage? A close association exists between changes in K8/K18 expression and cell death/survival events along the human granulosa cell lineage lifespan. In addition to their structural and mechanical functions, K8/K18 play essential roles regulating cell death, survival and differentiation in several non-gonadal epithelial tissues. Transfection of the granulosa-like tumor KGN cells with siRNA to interfere KRT8 and KRT18 expression increases FAS-mediated apoptosis, while an inverse association between K8/K18 expression and cell death has been found in the bovine antral follicles and corpus luteum. Yet, only fragmentary and inconclusive information exists regarding K8/K18 expression in the human ovary. Expression of K8/K18 was assessed by immunohistochemistry at different stages of the granulosa cell lineage, from flattened granulosa cells in primordial follicles to fully luteinized granulosa-lutein cells in the corpus luteum (including corpus luteum of pregnancy). Immunohistochemical detection of K8/K18 was conducted in 40 archival ovarian samples from women aged 17-39 years. K8/K18 expression was analyzed at the different stages of follicle development and corpus luteum lifespan. The proportions of primordial follicles showing all K8/K18-positive, all K8/K18 negative, or a mixture of K8/K18 negative and positive granulosa cells were quantified in 18 ovaries, divided into three age groups: ≤ 25 years (N = 6), 26-30 (N = 6) and 31-36 (N = 6) years. A total number of 1793 primordial, 750 transitional and 140 primary follicles were scored. A close association was found between changes in K8/K18 expression and cell death/cell survival events in the human granulosa cell lineage. Large secondary and early antral follicles (most of them undergoing atresia) and regressing corpora lutea displayed low/absent K8/K18 expression. Conversely, early growing and some large antral

  20. The receptor Slamf1 on the surface of myeloid lineage cells controls susceptibility to infection by Trypanosoma cruzi.

    Directory of Open Access Journals (Sweden)

    Jossela Calderón

    Full Text Available Trypanosoma cruzi, the protozoan parasite responsible for Chagas' disease, causes severe myocarditis often resulting in death. Here, we report that Slamf1-/- mice, which lack the hematopoietic cell surface receptor Slamf1, are completely protected from an acute lethal parasite challenge. Cardiac damage was reduced in Slamf1-/- mice compared to wild type mice, infected with the same doses of parasites, as a result of a decrease of the number of parasites in the heart even the parasitemia was only marginally less. Both in vivo and in vitro experiments reveal that Slamf1-defIcient myeloid cells are impaired in their ability to replicate the parasite and show altered production of cytokines. Importantly, IFN-γ production in the heart of Slamf1 deficient mice was much lower than in the heart of wt mice even though the number of infiltrating dendritic cells, macrophages, CD4 and CD8 T lymphocytes were comparable. Administration of an anti-Slamf1 monoclonal antibody also reduced the number of parasites and IFN-γ in the heart. These observations not only explain the reduced susceptibility to in vivo infection by the parasite, but they also suggest human Slamf1 as a potential target for therapeutic target against T. cruzi infection.

  1. The expression of the T-box selector gene midline in the leg imaginal disc is controlled by both transcriptional regulation and cell lineage.

    Science.gov (United States)

    Svendsen, Pia C; Ryu, Jae-Ryeon; Brook, William J

    2015-11-18

    The Drosophila Tbx20 homologs midline and H15 act as selector genes for ventral fate in Drosophila legs. midline and H15 expression defines the ventral domain of the leg and the two genes are necessary and sufficient for the development of ventral fate. Ventral-specific expression of midline and H15 is activated by Wingless (Wg) and repressed by Decapentaplegic (Dpp). Here we identify VLE, a 5 kb enhancer that drives ventral specific expression in the leg disc that is very similar to midline expression. Subdivision of VLE identifies two regions that mediate both activation and repression and third region that only mediates repression. Loss- and gain-of-function genetic mosaic analysis shows that the activating and repressing regions respond to Wg and Dpp signaling respectively. All three repression regions depend on the activity of Mothers-against-decapentaplegic, a Drosophila r-Smad that mediates Dpp signaling, and respond to ectopic expression of the Dpp target genes optomoter-blind and Dorsocross 3. However, only one repression region is responsive to loss of schnurri, a co-repressor required for direct repression by Dpp-signaling. Thus, Dpp signaling restricts midline expression through both direct repression and through the activation of downstream repressors. We also find that midline and H15 expression are both subject to cross-repression and feedback inhibition. Finally, a lineage analysis indicates that ventral midline-expressing cells and dorsal omb-expressing cells do not mix during development. Together this data indicates that the ventral-specific expression of midline results from both transcriptional regulation and from a lack of cell-mixing between dorsal and ventral cells. © 2015. Published by The Company of Biologists Ltd.

  2. The expression of the T-box selector gene midline in the leg imaginal disc is controlled by both transcriptional regulation and cell lineage

    Directory of Open Access Journals (Sweden)

    Pia C. Svendsen

    2015-12-01

    Full Text Available The Drosophila Tbx20 homologs midline and H15 act as selector genes for ventral fate in Drosophila legs. midline and H15 expression defines the ventral domain of the leg and the two genes are necessary and sufficient for the development of ventral fate. Ventral-specific expression of midline and H15 is activated by Wingless (Wg and repressed by Decapentaplegic (Dpp. Here we identify VLE, a 5 kb enhancer that drives ventral specific expression in the leg disc that is very similar to midline expression. Subdivision of VLE identifies two regions that mediate both activation and repression and third region that only mediates repression. Loss- and gain-of-function genetic mosaic analysis shows that the activating and repressing regions respond to Wg and Dpp signaling respectively. All three repression regions depend on the activity of Mothers-against-decapentaplegic, a Drosophila r-Smad that mediates Dpp signaling, and respond to ectopic expression of the Dpp target genes optomoter-blind and Dorsocross 3. However, only one repression region is responsive to loss of schnurri, a co-repressor required for direct repression by Dpp-signaling. Thus, Dpp signaling restricts midline expression through both direct repression and through the activation of downstream repressors. We also find that midline and H15 expression are both subject to cross-repression and feedback inhibition. Finally, a lineage analysis indicates that ventral midline-expressing cells and dorsal omb-expressing cells do not mix during development. Together this data indicates that the ventral-specific expression of midline results from both transcriptional regulation and from a lack of cell-mixing between dorsal and ventral cells.

  3. Deciphering the Innate Lymphoid Cell Transcriptional Program

    Directory of Open Access Journals (Sweden)

    Cyril Seillet

    2016-10-01

    Full Text Available Innate lymphoid cells (ILCs are enriched at mucosal surfaces, where they provide immune surveillance. All ILC subsets develop from a common progenitor that gives rise to pre-committed progenitors for each of the ILC lineages. Currently, the temporal control of gene expression that guides the emergence of these progenitors is poorly understood. We used global transcriptional mapping to analyze gene expression in different ILC progenitors. We identified PD-1 to be specifically expressed in PLZF+ ILCp and revealed that the timing and order of expression of the transcription factors NFIL3, ID2, and TCF-1 was critical. Importantly, induction of ILC lineage commitment required only transient expression of NFIL3 prior to ID2 and TCF-1 expression. These findings highlight the importance of the temporal program that permits commitment of progenitors to the ILC lineage, and they expand our understanding of the core transcriptional program by identifying potential regulators of ILC development.

  4. Legumain Regulates Differentiation Fate of Human Bone Marrow Stromal Cells and Is Altered in Postmenopausal Osteoporosis

    DEFF Research Database (Denmark)

    Jafari, Abbas; Qanie, Diyako; Levin Andersen, Thomas

    2017-01-01

    Secreted factors are a key component of stem cell niche and their dysregulation compromises stem cell function. Legumain is a secreted cysteine protease involved in diverse biological processes. Here, we demonstrate that legumain regulates lineage commitment of human bone marrow stromal cells...

  5. TGF-β1 Improves Biomechanical Strength by Extracellular Matrix Accumulation Without Increasing the Number of Tenogenic Lineage Cells in a Rat Rotator Cuff Repair Model.

    Science.gov (United States)

    Arimura, Hitoshi; Shukunami, Chisa; Tokunaga, Takuya; Karasugi, Tatsuki; Okamoto, Nobukazu; Taniwaki, Takuya; Sakamoto, Hidetoshi; Mizuta, Hiroshi; Hiraki, Yuji

    2017-08-01

    , whereas the expression of MMP-9 and MMP-13 significantly decreased at 2 and 4 weeks postoperatively. TGF-β1 enhances formation of tough fibrous tissues at the healing site by inhibiting MMP-9 and MMP-13 expression to increase collagen accumulation but without the growth of tenogenic lineage cells. These findings suggest that TGF-β1 could be used for enhancing biomechanical strength after RC surgical repair.

  6. Conditional induction of Math1 specifies embryonic stem cells to cerebellar granule neuron lineage and promotes differentiation into mature granule neurons.

    Science.gov (United States)

    Srivastava, Rupali; Kumar, Manoj; Peineau, Stéphane; Csaba, Zsolt; Mani, Shyamala; Gressens, Pierre; El Ghouzzi, Vincent

    2013-04-01

    Directing differentiation of embryonic stem cells (ESCs) to specific neuronal subtype is critical for modeling disease pathology in vitro. An attractive means of action would be to combine regulatory differentiation factors and extrinsic inductive signals added to the culture medium. In this study, we have generated mature cerebellar granule neurons by combining a temporally controlled transient expression of Math1, a master gene in granule neuron differentiation, with inductive extrinsic factors involved in cerebellar development. Using a Tetracyclin-On transactivation system, we overexpressed Math1 at various stages of ESCs differentiation and found that the yield of progenitors was considerably increased when Math1 was induced during embryonic body stage. Math1 triggered expression of Mbh1 and Mbh2, two target genes directly involved in granule neuron precursor formation and strong expression of early cerebellar territory markers En1 and NeuroD1. Three weeks after induction, we observed a decrease in the number of glial cells and an increase in that of neurons albeit still immature. Combining Math1 induction with extrinsic factors specifically increased the number of neurons that expressed Pde1c, Zic1, and GABAα6R characteristic of mature granule neurons, formed "T-shaped" axons typical of granule neurons, and generated synaptic contacts and action potentials in vitro. Finally, in vivo implantation of Math1-induced progenitors into young adult mice resulted in cell migration and settling of newly generated neurons in the cerebellum. These results show that conditional induction of Math1 drives ESCs toward the cerebellar fate and indicate that acting on both intrinsic and extrinsic factors is a powerful means to modulate ESCs differentiation and maturation into a specific neuronal lineage. Copyright © 2012 AlphaMed Press.

  7. The Bone Marrow-Derived Stromal Cells

    DEFF Research Database (Denmark)

    Tencerova, Michaela; Kassem, Moustapha

    2016-01-01

    diseases. BM stromal cells (also known as skeletal or mesenchymal stem cells) [bone marrow stromal stem cell (BMSC)] are multipotent stem cells located within BM stroma and give rise to osteoblasts and adipocytes. However, cellular and molecular mechanisms of BMSC lineage commitment to adipocytic lineage...... and regulation of BM adipocyte formation are not fully understood. In this review, we will discuss recent findings pertaining to identification and characterization of adipocyte progenitor cells in BM and the regulation of differentiation into mature adipocytes. We have also emphasized the clinical relevance...

  8. The Necessity of OCT-4 and CDX2 for Early Development and Gene Expression Involved in Differentiation of Inner Cell Mass and Trophectoderm Lineages in Bovine Embryos.

    Science.gov (United States)

    Sakurai, Nobuyuki; Takahashi, Kazuki; Emura, Natsuko; Fujii, Takashi; Hirayama, Hiroki; Kageyama, Soichi; Hashizume, Tsutomu; Sawai, Ken

    2016-10-01

    The functions of POU class 5 transcription factor 1 (Oct-4) and caudal-type homeobox 2 (Cdx2) in the differentiation of the murine inner cell mass (ICM) and trophectoderm (TE) have been described in detail. However, little is known about the roles of OCT-4 and CDX2 in preimplantation bovine embryos. To elucidate their functions during early development in bovine embryos, we performed OCT-4 and CDX2 downregulation using RNA interference. We injected OCT-4- or CDX2-specific short interfering RNAs (siRNAs) into bovine zygotes. The rate of blastocyst development of OCT-4-downregulated embryos was lower compared with uninjected or control siRNA-injected embryos. Gene expression analysis revealed decreased CDX2 and fibroblast growth factor 4 expression in OCT-4-downregulated embryos. CDX2-downregulated embryos developed to the blastocyst stage; however, in most cases, blastocoel formation was delayed. Gene expression analysis revealed decreased GATA3 expression and elevated NANOG expression in CDX2-downregulated embryos. In conclusion, OCT-4 and CDX2 are essential for early development and gene expression involved in differentiation of ICM and TE lineages in bovine embryos.

  9. Reconstructing a B-cell clonal lineage. I. Statistical inference of unobserved ancestors [v1; ref status: indexed, http://f1000r.es/z6

    Directory of Open Access Journals (Sweden)

    Thomas B Kepler

    2013-04-01

    Full Text Available One of the key phenomena in the adaptive immune response to infection and immunization is affinity maturation, during which antibody genes are mutated and selected, typically resulting in a substantial increase in binding affinity to the eliciting antigen. Advances in technology on several fronts have made it possible to clone large numbers of heavy-chain light-chain pairs from individual B cells and thereby identify whole sets of clonally related antibodies. These collections could provide the information necessary to reconstruct their own history - the sequence of changes introduced into the lineage during the development of the clone - and to study affinity maturation in detail. But the success of such a program depends entirely on accurately inferring the founding ancestor and the other unobserved intermediates. Given a set of clonally related immunoglobulin V-region genes, the method described here allows one to compute the posterior distribution over their possible ancestors, thereby giving a thorough accounting of the uncertainty inherent in the reconstruction. I demonstrate the application of this method on heavy-chain and light-chain clones, assess the reliability of the inference, and discuss the sources of uncertainty.

  10. Postmarket Requirements and Commitments

    Data.gov (United States)

    U.S. Department of Health & Human Services — Provides information to the public on postmarket requirements and commitments. The phrase postmarket requirements and commitments refers to studies and clinical...

  11. Platelet-Poor and Platelet-Rich Plasma Stimulate Bone Lineage Differentiation in Periodontal Ligament Stem Cells.

    Science.gov (United States)

    Martínez, Constanza E; González, Sergio A; Palma, Verónica; Smith, Patricio C

    2016-02-01

    Plasma-derived fractions have been used as an autologous source of growth factors; however, limited knowledge concerning their biologic effects has hampered their clinical application. In this study, the authors analyze the content and specific effect of both platelet-rich plasma (PRP) and platelet-poor plasma (PPP) on osteoblastic differentiation using primary cultures of human periodontal ligament stem cells (HPLSCs). The authors evaluated the growth factor content of PRP and PPP using a proteome profiler array and enzyme-linked immunosorbent assay. HPLSCs were characterized by flow cytometry and differentiation assays. The effect of PRP and PPP on HPLSC bone differentiation was analyzed by quantifying calcium deposition after 14 and 21 days of treatment. Albeit at different concentrations, the two fractions had similar profiles of growth factors, the most representative being platelet-derived growth factor (PDGF) isoforms (PDGF-AA, -BB, and -AB), insulin-like growth factor binding protein (IGFBP)-2, and IGFBP-6. Both formulations exerted a comparable stimulus on osteoblastic differentiation even at low doses (2.5%), increasing calcium deposits in HPLSCs. PRP and PPP showed a similar protein profile and exerted comparable effects on bone differentiation. Further studies are needed to characterize and compare the effects of PPP and PRP on bone healing in vivo.

  12. Human Neuron-Committed Teratocarcinoma NT2 Cell Line Has Abnormal ND10 Structures and Is Poorly Infected by Herpes Simplex Virus Type 1

    Science.gov (United States)

    Hsu, Wei-Li; Everett, Roger D.

    2001-01-01

    Herpes simplex virus type 1 (HSV-1) immediate-early regulatory protein ICP0 stimulates the initiation of lytic infection and reactivation from quiescence in human fibroblast cells. These functions correlate with its ability to localize to and disrupt centromeres and specific subnuclear structures known as ND10, PML nuclear bodies, or promyelocytic oncogenic domains. Since the natural site of herpesvirus latency is in neurons, we investigated the status of ND10 and centromeres in uninfected and infected human cells with neuronal characteristics. We found that NT2 cells, a neuronally committed human teratocarcinoma cell line, have abnormal ND10 characterized by low expression of the major ND10 component PML and no detectable expression of another major ND10 antigen, Sp100. In addition, PML is less extensively modified by the ubiquitin-like protein SUMO-1 in NT2 cells compared to fibroblasts. After treatment with retinoic acid, NT2 cells differentiate into neuron-like hNT cells which express very high levels of both PML and Sp100. Infection of both NT2 and hNT cells by HSV-1 was poor compared to human fibroblasts, and after low-multiplicity infection yields of virus were reduced by 2 to 3 orders of magnitude. ICP0-deficient mutants were also disabled in the neuron-related cell lines, and cells quiescently infected with an ICP0-null virus could be established. These results correlated with less-efficient disruption of ND10 and centromeres induced by ICP0 in NT2 and hNT cells. Furthermore, the ability of ICP0 to activate gene expression in transfection assays in NT2 cells was poor compared to Vero cells. These results suggest that a contributory factor in the reduced HSV-1 replication in the neuron-related cells is inefficient ICP0 function; it is possible that this is pertinent to the establishment of latent infection in neurons in vivo. PMID:11264371

  13. Computational modelling of meiotic entry and commitment

    OpenAIRE

    Bhola, Tanvi; Kapuy, Orsolya; Vinod, P. K.

    2018-01-01

    In response to developmental and environmental conditions, cells exit the mitotic cell cycle and enter the meiosis program to generate haploid gametes from diploid germ cells. Once cells decide to enter the meiosis program they become irreversibly committed to the completion of meiosis irrespective of the presence of cue signals. How meiotic entry and commitment occur due to the dynamics of the regulatory network is not well understood. Therefore, we constructed a mathematical model of the re...

  14. Constitutively Active Parathyroid Hormone Receptor Signaling in Cells in Osteoblastic Lineage Suppresses Mechanical Unloading-induced Bone Resorption*

    Science.gov (United States)

    Ono, Noriaki; Nakashima, Kazuhisa; Schipani, Ernestina; Hayata, Tadayoshi; Ezura, Yoichi; Soma, Kunimichi; Kronenberg, Henry M.; Noda, Masaki

    2013-01-01

    Multiple signaling pathways participate in the regulation of bone remodeling, and pathological negative balance in the regulation results in osteoporosis. However, interactions of signaling pathways that act comprehensively in concert to maintain bone mass are not fully understood. We investigated roles of parathyroid hormone receptor (PTH/PTHrP receptor) signaling in osteoblasts in unloading-induced bone loss using transgenic mice. Hind limb unloading by tail suspension reduced bone mass in wild-type mice. In contrast, signaling by constitutively active PTH/PTHrP receptor (caPPR), whose expression was regulated by the osteoblast-specific Col1a1 promoter (Col1a1-caPPR), suppressed unloading-induced reduction in bone mass in these transgenic mice. In Col1a1-caPPR transgenic (Tg) mice, hind limb unloading suppressed bone formation parameters in vivo and mineralized nodule formation in vitro similarly to those observed in wild-type mice. In addition, serum osteocalcin levels and mRNA expression levels of type I collagen, Runx2 and Osterix in bone were suppressed by unloading in both wild-type mice and Tg mice. However, in contrast to unloading-induced enhancement of bone resorption parameters in wild-type mice, Col1a1-caPPR signaling suppressed, rather than enhanced, osteoclast number and osteoclast surface as well as urinary deoxypyridinoline excretion upon unloading. Col1a1-caPPR signaling also suppressed mRNA expression levels of RANK and c-fms in bone upon unloading. Although the M-CSF and monocyte chemoattractant protein 1 (MCP-1) mRNA levels were enhanced in control Tg mice, these levels were suppressed in unloaded Tg mice. These results indicated that constitutive activation of PTH/PTHrP receptor signaling in osteoblastic cells suppresses unloading-induced bone loss specifically through the regulation of osteoclastic activity. PMID:17500070

  15. Fibroblast growth factor signaling in oligodendrocyte-lineage cells facilitates recovery of chronically demyelinated lesions but is redundant in acute lesions.

    Science.gov (United States)

    Furusho, Miki; Roulois, Aude J; Franklin, Robin J M; Bansal, Rashmi

    2015-10-01

    Remyelination is a potent regenerative process in demyelinating diseases, such as multiple sclerosis, the effective therapeutic promotion of which will fill an unmet clinical need. The development of proregenerative therapies requires the identification of key regulatory targets that are likely to be involved in the integration of multiple signaling mechanisms. Fibroblast growth factor (FGF) signaling system, which comprises multiple ligands and receptors, potentially provides one such target. Since the FGF/FGF receptor (FGFR) interactions are complex and regulate multiple diverse functions of oligodendrocyte lineage cells, it is difficult to predict their overall therapeutic potential in the regeneration of oligodendrocytes and myelin. Therefore, to assess the integrated effects of FGFR signaling on this process, we simultaneously inactivated both FGFR1 and FGFR2 in oligodendrocytes and their precursors using two Cre-driver mouse lines. Acute and chronic cuprizone-induced or lysolecithin-induced demyelination was established in Fgfr1/Fgfr2 double knockout mice (dKO). We found that in the acute cuprizone model, there was normal differentiation of oligodendrocytes and recovery of myelin in the corpus callosum of both control and dKO mice. Similarly, in the spinal cord, lysolecithin-induced demyelinated lesions regenerated similarly in the dKO and control mice. In contrast, in the chronic cuprizone model, fewer differentiated oligodendrocytes and less efficient myelin recovery were observed in the dKO compared to control mice. These data suggest that while cell-autonomous FGF signaling is redundant during recovery of acute demyelinated lesions, it facilitates regenerative processes in chronic demyelination. Thus, FGF-based therapies have potential value in stimulating oligodendrocyte and myelin regeneration in late-stage disease. © 2015 Wiley Periodicals, Inc.

  16. Spatio-temporal Model of Endogenous ROS and Raft-Dependent WNT/Beta-Catenin Signaling Driving Cell Fate Commitment in Human Neural Progenitor Cells

    Science.gov (United States)

    Haack, Fiete; Lemcke, Heiko; Ewald, Roland; Rharass, Tareck; Uhrmacher, Adelinde M.

    2015-01-01

    Canonical WNT/β-catenin signaling is a central pathway in embryonic development, but it is also connected to a number of cancers and developmental disorders. Here we apply a combined in-vitro and in-silico approach to investigate the spatio-temporal regulation of WNT/β-catenin signaling during the early neural differentiation process of human neural progenitors cells (hNPCs), which form a new prospect for replacement therapies in the context of neurodegenerative diseases. Experimental measurements indicate a second signal mechanism, in addition to canonical WNT signaling, being involved in the regulation of nuclear β-catenin levels during the cell fate commitment phase of neural differentiation. We find that the biphasic activation of β-catenin signaling observed experimentally can only be explained through a model that combines Reactive Oxygen Species (ROS) and raft dependent WNT/β-catenin signaling. Accordingly after initiation of differentiation endogenous ROS activates DVL in a redox-dependent manner leading to a transient activation of down-stream β-catenin signaling, followed by continuous auto/paracrine WNT signaling, which crucially depends on lipid rafts. Our simulation studies further illustrate the elaborate spatio-temporal regulation of DVL, which, depending on its concentration and localization, may either act as direct inducer of the transient ROS/β-catenin signal or as amplifier during continuous auto-/parcrine WNT/β-catenin signaling. In addition we provide the first stochastic computational model of WNT/β-catenin signaling that combines membrane-related and intracellular processes, including lipid rafts/receptor dynamics as well as WNT- and ROS-dependent β-catenin activation. The model’s predictive ability is demonstrated under a wide range of varying conditions for in-vitro and in-silico reference data sets. Our in-silico approach is realized in a multi-level rule-based language, that facilitates the extension and modification of the

  17. Torin1-mediated TOR kinase inhibition reduces Wee1 levels and advances mitotic commitment in fission yeast and HeLa cells.

    Science.gov (United States)

    Atkin, Jane; Halova, Lenka; Ferguson, Jennifer; Hitchin, James R; Lichawska-Cieslar, Agata; Jordan, Allan M; Pines, Jonathon; Wellbrock, Claudia; Petersen, Janni

    2014-03-15

    The target of rapamycin (TOR) kinase regulates cell growth and division. Rapamycin only inhibits a subset of TOR activities. Here we show that in contrast to the mild impact of rapamycin on cell division, blocking the catalytic site of TOR with the Torin1 inhibitor completely arrests growth without cell death in Schizosaccharomyces pombe. A mutation of the Tor2 glycine residue (G2040D) that lies adjacent to the key Torin-interacting tryptophan provides Torin1 resistance, confirming the specificity of Torin1 for TOR. Using this mutation, we show that Torin1 advanced mitotic onset before inducing growth arrest. In contrast to TOR inhibition with rapamycin, regulation by either Wee1 or Cdc25 was sufficient for this Torin1-induced advanced mitosis. Torin1 promoted a Polo and Cdr2 kinase-controlled drop in Wee1 levels. Experiments in human cell lines recapitulated these yeast observations: mammalian TOR (mTOR) was inhibited by Torin1, Wee1 levels declined and mitotic commitment was advanced in HeLa cells. Thus, the regulation of the mitotic inhibitor Wee1 by TOR signalling is a conserved mechanism that helps to couple cell cycle and growth controls.

  18. A Pitx transcription factor controls the establishment and maintenance of the serotonergic lineage in planarians.

    Science.gov (United States)

    März, Martin; Seebeck, Florian; Bartscherer, Kerstin

    2013-11-01

    In contrast to adult vertebrates, which have limited capacities for neurogenesis, adult planarians undergo constitutive cellular turnover during homeostasis and are even able to regenerate a whole brain after decapitation. This enormous plasticity derives from pluripotent stem cells residing in the planarian body in large numbers. It is still obscure how these stem cells are programmed for differentiation into specific cell lineages and how lineage identity is maintained. Here we identify a Pitx transcription factor of crucial importance for planarian regeneration. In addition to patterning defects that are co-dependent on the LIM homeobox transcription factor gene islet1, which is expressed with pitx at anterior and posterior regeneration poles, RNAi against pitx results in islet1-independent specific loss of serotonergic (SN) neurons during regeneration. Besides its expression in terminally differentiated SN neurons we found pitx in stem cell progeny committed to the SN fate. Also, intact pitx RNAi animals gradually lose SN markers, a phenotype that depends neither on increased apoptosis nor on stem cell-based turnover or transdifferentiation into other neurons. We propose that pitx is a terminal selector gene for SN neurons in planarians that controls not only their maturation but also their identity by regulating the expression of the Serotonin production and transport machinery. Finally, we made use of this function of pitx and compared the transcriptomes of regenerating planarians with and without functional SN neurons, identifying at least three new neuronal targets of Pitx.

  19. Globotriaosylceramide-expressing Burkitt's lymphoma cells are committed to early apoptotic status by rhamnose-binding lectin from catfish eggs.

    Science.gov (United States)

    Kawano, Tasuku; Sugawara, Shigeki; Hosono, Masahiro; Tatsuta, Takeo; Ogawa, Yukiko; Fujimura, Tsutomu; Taka, Hikari; Murayama, Kimie; Nitta, Kazuo

    2009-03-01

    Silurus asotus (catfish) egg lectin (SAL) has a strong affinity to Gal alpha-linked carbohydrate chains of not only glycoproteins but also glycosphingolipids such as globotriaosylceramide (Gb3). SAL uniformly bound to surfaces of Gb3-expressing (Gb3+) Burkitt's lymphoma cells, while Gb3 molecules were interspersed on the surfaces of Gb3+ cells. After a short period of treating Raji and Daudi cells with SAL, each cell size was 10 and 25% smaller than that of untreated cells, respectively. Treatment of Gb3+ cells with SAL caused an increase in binding of annexin V, however, neither caspase activation nor DNA fragmentation was observed after treatment with SAL for 22 h. Since SAL did not induce cell death in Gb3+ cells, SAL may function as an inducer of early apoptotic signal. We have revealed that SAL did not bind to D-threo-1-phenyl-2-decanoylamino-3-morphorino-1-propanol (D-PDMP)-treated Raji cells, and no cell shrinkage was observed in Gb3-deficient Raji cells treated with SAL, indicating that Gb3 localized in the glycosphingolipid-enriched microdomain (GEM) was involved in SAL-induced cell shrinkage through activation of voltage-gated potassium channel Kv1.3, and that the glycoprotein ligands on Gb3-deficient Raji cells treated with SAL were not included in this phenomenon. These results suggest that SAL leads the cells to early apoptotic status via binding to Gb3 existing in GEM, and that this binding is a prerequisite condition to induce early stage of apoptosis.

  20. Conversion of primordial germ cells to pluripotent stem cells: methods for cell tracking and culture conditions.

    Science.gov (United States)

    Nagamatsu, Go; Suda, Toshio

    2013-01-01

    Primordial germ cells (PGCs) are unipotent cells committed to germ lineage: PGCs can only differentiate into gametes in vivo. However, upon fertilization, germ cells acquire the capacity to differentiate into all cell types in the body, including germ cells. Therefore, germ cells are thought to have the potential for pluripotency. PGCs can convert to pluripotent stem cells in vitro when cultured under specific conditions that include bFGF, LIF, and the membrane-bound form of SCF (mSCF). Here, the culture conditions which efficiently convert PGCs to pluripotent embryonic germ (EG) cells are described, as well as methods used for identifying pluripotent candidate cells during culture.

  1. NATO: Revisiting American Commitment

    Science.gov (United States)

    2013-03-01

    NATO: Revisiting American Commitment by Captain Thomas F Hurley II United States Navy United...STRATEGY RESEARCH PROJECT .33 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE NATO: Revisiting American Commitment 5a. CONTRACT NUMBER...the 21st century. The strategic benefit to the United States may no longer be worth the commitment to the alliance. The U.S. should reevaluate its

  2. Derivation of mesenchymal stromal cells from pluripotent stem cells through a neural crest lineage using small molecule compounds with defined media.

    Directory of Open Access Journals (Sweden)

    Makoto Fukuta

    Full Text Available Neural crest cells (NCCs are an embryonic migratory cell population with the ability to differentiate into a wide variety of cell types that contribute to the craniofacial skeleton, cornea, peripheral nervous system, and skin pigmentation. This ability suggests the promising role of NCCs as a source for cell-based therapy. Although several methods have been used to induce human NCCs (hNCCs from human pluripotent stem cells (hPSCs, such as embryonic stem cells (ESCs and induced pluripotent stem cells (iPSCs, further modifications are required to improve the robustness, efficacy, and simplicity of these methods. Chemically defined medium (CDM was used as the basal medium in the induction and maintenance steps. By optimizing the culture conditions, the combination of the GSK3β inhibitor and TGFβ inhibitor with a minimum growth factor (insulin very efficiently induced hNCCs (70-80% from hPSCs. The induced hNCCs expressed cranial NCC-related genes and stably proliferated in CDM supplemented with EGF and FGF2 up to at least 10 passages without changes being observed in the major gene expression profiles. Differentiation properties were confirmed for peripheral neurons, glia, melanocytes, and corneal endothelial cells. In addition, cells with differentiation characteristics similar to multipotent mesenchymal stromal cells (MSCs were induced from hNCCs using CDM specific for human MSCs. Our simple and robust induction protocol using small molecule compounds with defined media enabled the generation of hNCCs as an intermediate material producing terminally differentiated cells for cell-based innovative medicine.

  3. Transcription factor miz-1 is required to regulate interleukin-7 receptor signaling at early commitment stages of B cell differentiation.

    Science.gov (United States)

    Kosan, Christian; Saba, Ingrid; Godmann, Maren; Herold, Stefanie; Herkert, Barbara; Eilers, Martin; Möröy, Tarik

    2010-12-14

    B cell development requires the coordinated action of transcription factors and cytokines, in particular interleukin-7 (IL-7). We report that mice lacking the POZ (Poxvirus and zinc finger) domain of the transcription factor Miz-1 (Zbtb17(ΔPOZ/ΔPOZ)) almost entirely lacked follicular B cells, as shown by the fact that their progenitors failed to activate the Jak-Stat5 pathway and to upregulate the antiapoptotic gene Bcl2 upon IL-7 stimulation. We show that Miz-1 exerted a dual role in the interleukin-7 receptor (IL-7R) pathway by directly repressing the Janus kinase (Jak) inhibitor suppressor of cytokine signaling 1 (Socs1) and by activating Bcl2 expression. Zbtb17(ΔPOZ/ΔPOZ) (Miz-1-deficient) B cell progenitors had low expression of early B cell genes as transcription factor 3 (Tcf3) and early B cell factor 1 (Ebf1) and showed a propensity for apoptosis. Only the combined re-expression of Bcl2 and Ebf1 could reconstitute the ability of Miz-1-deficient precursors to develop into CD19(+) B cells.

  4. The same self-peptide selects conventional and regulatory CD4+ T cells with identical antigen receptors

    OpenAIRE

    Wojciech, Lukasz; Ignatowicz, Alicja; Seweryn, Michal; Rempala, Grzegorz; Pabla, Simarjot Singh; McIndoe, Richard A.; Kisielow, Pawel; Ignatowicz, Leszek

    2014-01-01

    The role of the T cell receptor (TCR) in commitment of thymocytes to regulatory CD4+Foxp3+ and conventional CD4?Foxp3? T cell lineages remains controversial. According to the prevailing view, commitment to the former lineage, in contrast to the latter, requires that high affinity TCRs bind rare class II MHC/peptide complexes presented in ?thymic niches?, which could explain differences between their TCR repertoires. Here we challenge this view and show that the binding of identical TCRs to th...

  5. Calibrating collective commitments

    NARCIS (Netherlands)

    Dunin-Keplicz, B; Verbrugge, R; Marik,; Muller, J; Pechoucek, M

    2003-01-01

    In this paper we aim to formally model the strongest motivational attitude occurring in teamwork, collective commitment. First, building on our previous work, a logical framework is sketched in which social commitments and collective intentions are formalized. Then, different versions of collective

  6. Implementing environmental commitments

    Energy Technology Data Exchange (ETDEWEB)

    Victor, D.G.; Skolnikoff, E.B. [IIASA, Laxenburg (Austria)

    1997-08-01

    The article summarises the aims and results of a three-year project conducted at the International Institute for Applied Systems Analysis called `Implementation and effectiveness of international environmental commitments` (IEC) which analysed how many environmental commitments are implemented or how intentions are put into practice. Fourteen case studies were conducted on the following issues: conservation and preservation of fauna and flora; stratospheric ozone depletion; Baltic sea pollution; trade in hazardous chemicals and pesticides; acid rain in Europe; North Sea pollution; whaling; and marine dumping of nuclear waste. The research confirmed previous findings that compliance with legally binding commitments is high. However, IEC results suggest that high compliance reflects mainly that governments make special effort to adopt only those commitments with which they can comply. The influence of those commitments is often low. In contrast, compliance with nonbinding commitments has been low, but such commitments can often have a large influence on behavior. The findings differs sharply from conventional wisdom, which maintains that the most effective international commitments are legally binding. The research suggests more attention is needed to building systems for gathering and reviewing data on implementation and for handling implementation problems. Among IEC`s contributions to policy has been to apply this finding to the design of possible non-compliance procedures within the United Nations Framework Convention on Climate Change.

  7. Ferritin Heavy Subunit Silencing Blocks the Erythroid Commitment of K562 Cells via miR-150 up-Regulation and GATA-1 Repression.

    Science.gov (United States)

    Zolea, Fabiana; Battaglia, Anna Martina; Chiarella, Emanuela; Malanga, Donatella; De Marco, Carmela; Bond, Heather Mandy; Morrone, Giovanni; Costanzo, Francesco; Biamonte, Flavia

    2017-10-17

    Erythroid differentiation is a complex and multistep process during which an adequate supply of iron for hemoglobinization is required. The role of ferritin heavy subunit, in this process, has been mainly attributed to its capacity to maintain iron in a non-toxic form. We propose a new role for ferritin heavy subunit (FHC) in controlling the erythroid commitment of K562 erythro-myeloid cells. FHC knockdown induces a change in the balance of GATA transcription factors and significantly reduces the expression of a repertoire of erythroid-specific genes, including α- and γ-globins, as well as CD71 and CD235a surface markers, in the absence of differentiation stimuli. These molecular changes are also reflected at the morphological level. Moreover, the ability of FHC-silenced K562 cells to respond to the erythroid-specific inducer hemin is almost completely abolished. Interestingly, we found that this new role for FHC is largely mediated via regulation of miR-150, one of the main microRNA implicated in the cell-fate choice of common erythroid/megakaryocytic progenitors. These findings shed further insight into the biological properties of FHCand delineate a role in erythroid differentiation where this protein does not act as a mere iron metabolism-related factor but also as a critical regulator of the expression of genes of central relevance for erythropoiesis.

  8. Epigenetic landscaping during hESC differentiation to neural cells.

    Science.gov (United States)

    Golebiewska, Anna; Atkinson, Stuart P; Lako, Majlinda; Armstrong, Lyle

    2009-06-01

    The molecular mechanisms underlying pluripotency and lineage specification from embryonic stem cells (ESCs) are still largely unclear. To address the role of chromatin structure in maintenance of pluripotency in human ESCs (hESCs) and establishment of lineage commitment, we analyzed a panel of histone modifications at promoter sequences of genes involved in maintenance of pluripotency, self-renewal, and in early stages of differentiation. To understand the changes occurring at lineage-specific gene regulatory sequences, we have established an efficient purification system that permits the examination of two distinct populations of lineage committed cells; fluorescence activated cell sorted CD133(+) CD45(-)CD34(-) neural stem cells and beta-III-tubulin(+) putative neurons. Here we report the importance of other permissive marks supporting trimethylation of Lysine 4 H3 at the active stem cell promoters as well as poised bivalent and nonbivalent lineage-specific gene promoters in hESCs. Methylation of lysine 9 H3 was found to play a role in repression of pluripotency-associated and lineage-specific genes on differentiation. Moreover, presence of newly formed bivalent domains was observed at the neural progenitor stage. However, they differ significantly from the bivalent domains observed in hESCs, with a possible role of dimethylation of lysine 9 H3 in repressing the poised genes.

  9. Managing by commitments.

    Science.gov (United States)

    Sull, Donald N

    2003-06-01

    What makes a great manager great? Despite differences in their personal attributes, successful managers all excel in the making, honoring, and remaking of commitments. Managerial commitments take many forms, from capital investments to personnel decisions to public statements, but each exerts both immediate and enduring influence on a company. A leader's commitments shape a business's identity, define its strengths and weaknesses, establish its opportunities and limitations, and set its direction. Executives can all too easily forget that commitments are extraordinarily powerful. Caught up in the present, managers often take actions that, while beneficial in the near term, impose lasting constraints on their operations and organizations. When market or competitive conditions change, they can find themselves unable to respond effectively. Managers who understand the nature and power of their commitments can wield them more effectively throughout a company's life cycle. Entrepreneurs can avoid taking actions that imprint a new venture with a dysfunctional character. Managers in established enterprises can buttress past commitments that retain their currency and learn to recognize when commitments have become roadblocks to needed changes. The manager can then replace those roadblocks with new, rejuvenating commitments. That doesn't mean you should try to anticipate all the long-run consequences of every commitment--and it certainly doesn't mean you should shy away from making commitments. But it does mean that before making important decisions about, say, operating processes or partnerships, you should always ask yourself: Is this a process or relationship that we can live with in the future? Am I locking us into a course that we'll come to regret?

  10. Walking along the Fibroblast Growth Factor 10 Route: A Key Pathway to Understand the Control and Regulation of Epithelial and Mesenchymal Cell-Lineage Formation during Lung Development and Repair after Injury

    Directory of Open Access Journals (Sweden)

    Elie El Agha

    2014-01-01

    Full Text Available Basic research on embryonic lung development offers unique opportunities to make important discoveries that will impact human health. Developmental biologists interested in the molecular control of branching morphogenesis have intensively studied the developing lung, with its complex and seemingly stereotyped ramified structure. However, it is also an organ that is linked to a vast array of clinical problems in humans such as bronchopulmonary dysplasia in premature babies and emphysema, chronic obstructive pulmonary disease, fibrosis, and cancer in adults. Epithelial stem/progenitor cells reside in niches where they interact with specific extracellular matrices as well as with mesenchymal cells; the latter are still poorly characterized. Interactions of epithelial stem/progenitor cells with their microenvironments are usually instructive, controlling quiescence versus activation, proliferation, differentiation, and migration. During the past 18 years, Fgf10 has emerged not only as a marker for the distal lung mesenchyme during early lung development, but also as a key player in branching morphogenesis and a critical component of the niche for epithelial stem cells. In this paper, we will present the current knowledge regarding the lineage tree in the lung, with special emphasis on cell-lineage decisions in the lung mesenchyme and the role of Fgf10 in this context.

  11. Factors involved in the T helper type 1 and type 2 cell commitment and osteoclast regulation in inflammatory apical diseases.

    Science.gov (United States)

    Fukada, S Y; Silva, T A; Garlet, G P; Rosa, A L; da Silva, J S; Cunha, F Q

    2009-02-01

    Periapical chronic lesion formation involves activation of the immune response and alveolar bone resorption around the tooth apex. However, the overall roles of T helper type 1 (Th1), Th2, and T-regulatory cell (Treg) responses and osteoclast regulatory factors in periapical cysts and granulomas have not been fully determined. This study aimed to investigate whether different forms of apical periodontitis, namely cysts and granulomas, show different balances of Th1, Th2 regulators, Treg markers, and factors involved in osteoclast chemotaxis and activation. Gene expression of these factors was assessed using quantitative real-time polymerase chain reaction, in samples obtained from healthy gingiva (n = 8), periapical granulomas (n = 20), and cysts (n = 10). Periapical cysts exhibited a greater expression of GATA-3, while a greater expression of T-bet, Foxp3, and interleukin-10 (IL-10) was seen in granulomas. The expression of interferon-gamma, IL-4, and transforming growth factor-beta was similar in both lesions. Regarding osteoclastic factors, while the expression of SDF-1alpha/CXCL12 and CCR1 was higher in cysts, the expression of RANKL was significantly higher in granulomas. Both lesions exhibited similar expression of CXCR4, CKbeta8/CCL23, and osteoprotegerin, which were significantly higher than in control. Our results showed a predominance of osteoclast activity in granulomas that was correlated with the Th1 response. The concomitant expression of Treg cell markers suggests a possible suppression of the Th1 response in granulomas. On the other hand, in cysts the Th2 activity is augmented. The mechanisms of periradicular lesion development are still not fully understood but the imbalance of immune and osteoclastic cell activity in cysts and granulomas seems to be critically regulated by Treg cells.

  12. Antibody producing B lineage cells invade the central nervous system predominantly at the time of and triggered by acute Epstein-Barr virus infection: A hypothesis on the origin of intrathecal immunoglobulin synthesis in multiple sclerosis.

    Science.gov (United States)

    Otto, Carolin; Hofmann, Jörg; Ruprecht, Klemens

    2016-06-01

    Patients with multiple sclerosis (MS), a chronic inflammatory disease of the central nervous system (CNS), typically have an intrathecal synthesis of immunoglobulin (Ig)G. Intrathecal IgG is produced by B lineage cells that entered the CNS, but why and when these cells invade the CNS of patients with MS is unknown. The intrathecal IgG response in patients with MS is polyspecific and part of it is directed against different common viruses (e.g. measles virus, rubella virus, varicella zoster virus). Strong and consistent evidence suggests an association of MS and Epstein-Barr virus (EBV) infection and EBV seroprevalence in patients with MS is practically 100%. However, intriguingly, despite of the universal EBV seroprevalence, the frequency of intrathecally produced IgG to EBV in patients with MS is much lower than that of intrathecally produced IgG to other common viruses. The acute phase of primary EBV infection is characterized by a strong polyclonal B cell activation. As typical for humoral immune responses against viruses, EBV specific IgG is produced only with a temporal delay after acute EBV infection. Aiming to put the above facts into a logical structure, we here propose the hypothesis that in individuals going on to develop MS antibody producing B lineage cells invade the CNS predominantly at the time of and triggered by acute primary EBV infection. Because at the time of acute EBV infection EBV IgG producing B lineage cells have not yet occurred, the hypothesis could explain the universal EBV seroprevalence and the low frequency of intrathecally produced IgG to EBV in patients with MS. Evidence supporting the hypothesis could be provided by large prospective follow-up studies of individuals with symptomatic primary EBV infection (infectious mononucleosis). Furthermore, the clarification of the molecular mechanism underlying an EBV induced invasion of B lineage cells into the CNS of individuals going on to develop MS could corroborate it, too. If true, our

  13. Practical Relativistic Bit Commitment.

    Science.gov (United States)

    Lunghi, T; Kaniewski, J; Bussières, F; Houlmann, R; Tomamichel, M; Wehner, S; Zbinden, H

    2015-07-17

    Bit commitment is a fundamental cryptographic primitive in which Alice wishes to commit a secret bit to Bob. Perfectly secure bit commitment between two mistrustful parties is impossible through an asynchronous exchange of quantum information. Perfect security is, however, possible when Alice and Bob each split into several agents exchanging classical information at times and locations suitably chosen to satisfy specific relativistic constraints. In this Letter we first revisit a previously proposed scheme [C. Crépeau et al., Lect. Notes Comput. Sci. 7073, 407 (2011)] that realizes bit commitment using only classical communication. We prove that the protocol is secure against quantum adversaries for a duration limited by the light-speed communication time between the locations of the agents. We then propose a novel multiround scheme based on finite-field arithmetic that extends the commitment time beyond this limit, and we prove its security against classical attacks. Finally, we present an implementation of these protocols using dedicated hardware and we demonstrate a 2 ms-long bit commitment over a distance of 131 km. By positioning the agents on antipodal points on the surface of Earth, the commitment time could possibly be extended to 212 ms.

  14. Bidding to Commit

    Directory of Open Access Journals (Sweden)

    Pat Barclay

    2017-02-01

    Full Text Available Economists and biologists have both theorized that individuals can benefit from committing to courses of action because it forces others to concede a greater share of any surpluses, but little experimental work has tested the actual benefits of such a strategy and people’s willingness to so “tie their hands.” Participants played a Battle-of-the-Sexes (Experiment 1 or Hawk–Dove game (Experiment 2, where one member of each pair could not change his or her action once played (committed, whereas the other could change actions in response (uncommitted. Committed players were more likely to achieve their preferred outcomes. When bidding to select roles, most participants preferred to be committed rather than uncommitted, though they bid slightly less than the committed role was actually worth. These results provide empirical support for people’s willingness to use commitment to their advantage and show that commitment devices (e.g., “irrational” emotions can bring long-term benefits.

  15. Identification of lineage-specifying cytokines that signal all CD8+-cytotoxic-lineage-fate 'decisions' in the thymus.

    Science.gov (United States)

    Etzensperger, Ruth; Kadakia, Tejas; Tai, Xuguang; Alag, Amala; Guinter, Terry I; Egawa, Takeshi; Erman, Batu; Singer, Alfred

    2017-11-01

    T cell antigen receptor (TCR) signaling in the thymus initiates positive selection, but the CD8 + -lineage fate is thought to be induced by cytokines after TCR signaling has ceased, although this remains controversial and unproven. We have identified four cytokines (IL-6, IFN-γ, TSLP and TGF-β) that did not signal via the common γ-chain (γ c ) receptor but that, like IL-7 and IL-15, induced expression of the lineage-specifying transcription factor Runx3d and signaled the generation of CD8 + T cells. Elimination of in vivo signaling by all six of these 'lineage-specifying cytokines' during positive selection eliminated Runx3d expression and completely abolished the generation of CD8 + single-positive thymocytes. Thus, this study proves that signaling during positive selection by lineage-specifying cytokines is responsible for all CD8 + -lineage-fate 'decisions' in the thymus.

  16. Macrophage-Lineage Cells Negatively Regulate the Hematopoietic Stem Cell Pool in Response to Interferon Gamma at Steady State and During Infection.

    Science.gov (United States)

    McCabe, Amanda; Zhang, Yubin; Thai, Vinh; Jones, Maura; Jordan, Michael B; MacNamara, Katherine C

    2015-07-01

    Bone marrow (BM) resident macrophages (Mϕs) regulate hematopoietic stem cell (HSC) mobilization; however, their impact on HSC function has not been investigated. We demonstrate that depletion of BM resident Mϕs increases HSC proliferation as well as the pool of quiescent HSCs. At the same time, during bacterial infection where BM resident Mϕs are selectively increased we observe a decrease in HSC numbers. Moreover, strategies that deplete or reduce Mϕs during infection prevent HSC loss and rescue HSC function. We previously found that the transient loss of HSCs during infection is interferon-gamma (IFNγ)-dependent. We now demonstrate that IFNγ signaling specifically in Mϕs is critical for both the diminished HSC pool and maintenance of BM resident Mϕs during infection. In addition to the IFNγ-dependent loss of BM HSC and progenitor cells (HSPCs) during infection, IFNγ reduced circulating HSPC numbers. Importantly, under infection conditions AMD3100 or G-CSF-induced stem cell mobilization was impaired. Taken together, our data show that IFNγ acts on Mϕs, which are a negative regulator of the HSC pool, to drive the loss in BM and peripheral HSCs during infection. Our findings demonstrate that modulating BM resident Mϕ numbers can impact HSC function in vivo, which may be therapeutically useful for hematologic conditions and refinement of HSC transplantation protocols. © 2015 AlphaMed Press.

  17. The T-ALL related gene BCL11B regulates the initial stages of human T-cell differentiation.

    Science.gov (United States)

    Ha, V L; Luong, A; Li, F; Casero, D; Malvar, J; Kim, Y M; Bhatia, R; Crooks, G M; Parekh, C

    2017-11-01

    The initial stages of T-cell differentiation are characterized by a progressive commitment to the T-cell lineage, a process that involves the loss of alternative (myelo-erythroid, NK, B) lineage potentials. Aberrant differentiation during these stages can result in T-cell acute lymphoblastic leukemia (T-ALL). However, the mechanisms regulating the initial stages of human T-cell differentiation are obscure. Through loss of function studies, we showed BCL11B, a transcription factor recurrently mutated T-ALL, is essential for T-lineage commitment, particularly the repression of NK and myeloid potentials, and the induction of T-lineage genes, during the initial stages of human T-cell differentiation. In gain of function studies, BCL11B inhibited growth of and induced a T-lineage transcriptional program in T-ALL cells. We found previously unknown differentiation stage-specific DNA binding of BCL11B at multiple T-lineage genes; target genes showed BCL11B-dependent expression, suggesting a transcriptional activator role for BCL11B at these genes. Transcriptional analyses revealed differences in the regulatory actions of BCL11B between human and murine thymopoiesis. Our studies show BCL11B is a key regulator of the initial stages of human T-cell differentiation and delineate the BCL11B transcriptional program, enabling the dissection of the underpinnings of normal T-cell differentiation and providing a resource for understanding dysregulations in T-ALL.