WorldWideScience

Sample records for cell line-derived neurotrophic

  1. Transfection of the glial cell line-derived neurotrophic factor gene promotes neuronal differentiation

    OpenAIRE

    Du, Jie; Gao, Xiaoqing; Deng, Li; Chang, Nengbin; Xiong, Huailin; Zheng, Yu

    2014-01-01

    Glial cell line-derived neurotrophic factor recombinant adenovirus vector-transfected bone marrow mesenchymal stem cells were induced to differentiate into neuron-like cells using inductive medium containing retinoic acid and epidermal growth factor. Cell viability, microtubule-associated protein 2-positive cell ratio, and the expression levels of glial cell line-derived neurotrophic factor, nerve growth factor and growth-associated protein-43 protein in the supernatant were significantly hig...

  2. Glial cell line-derived neurotrophic factor gene therapy ameliorates chronic hyperprolactinemia in senile rats

    OpenAIRE

    Morel, Gustavo R.; Sosa, Yolanda E.; Bellini, Maria J.; Carri, Nestor G.; Rodriguez, Silvia S.; Bohn, Martha C.; Goya, Rodolfo G.

    2010-01-01

    Progressive dysfunction of hypothalamic tuberoinfundibular dopaminergic (TIDA) neurons during normal aging is associated in the female rat with chronic hyperprolactinemia. We assessed the effectiveness of glial cell line-derived neurotrophic factor (GDNF) gene therapy to restore TIDA neuron function in senile female rats and reverse their chronic hyperprolactinemia. Young (2.5 months) and senile (29 months) rats received a bilateral intrahypothalamic injection (1010 pfu) of either an adenovir...

  3. Effect of glial cell line-derived neurotrophic factor on retinal function after experimental branch retinal vein occlusion

    DEFF Research Database (Denmark)

    Ejstrup, Rasmus; Dornonville de la Cour, Morten; Kyhn, Maria Voss;

    2012-01-01

    The objective of the study was to investigate the effect of glial cell line-derived neurotrophic factor (GDNF) on the multifocal electroretinogram (mfERG) following an induced branch retinal vein occlusion (BRVO) in pigs.......The objective of the study was to investigate the effect of glial cell line-derived neurotrophic factor (GDNF) on the multifocal electroretinogram (mfERG) following an induced branch retinal vein occlusion (BRVO) in pigs....

  4. Postnatal roles of glial cell line-derived neurotrophic factor family members in nociceptors plasticity

    Institute of Scientific and Technical Information of China (English)

    Sacha A. Malin; Brian M. Davis

    2008-01-01

    The neurotrophin and glial cell line-derived neurotrophic factor (GDNF) family of growth factors have been extensively studied because of their proven ability to regulate development of the peripheral nervous system. The neurotrophin family,which includes nerve growth factor (NGF), NT-3, NT4/5 and BDNF, is also known for its ability to regulate the function of adult sensory neurons. Until recently, little was known concerning the role of the GNDF-family (that includes GDNF, artemin, neurturin and persephin) in adult sensory neuron function. Here we describe recent data that indicates that the GDNF family can regulate sensory neuron function, that some of its members are elevated in inflammatory pain models and that application of these growth factors produces pain in vivo. Finally we discuss how these two families of growth factors may converge on a single membrane receptor, TRPV 1, to produce long-lasting hyperalgesia.

  5. Glial cell line-derived neurotrophic factor (GDNF therapy for Parkinson's disease.

    Directory of Open Access Journals (Sweden)

    Shingo,Tetsuro

    2007-04-01

    Full Text Available Many studies using animals clarify that glial cell line-derived neurotrophic factor (GDNF has strong neuroprotective and neurorestorative effects on dopaminergic neurons. Several pilot studies clarified the validity of continuous intraputaminal GDNF infusion to patients with Parkinson's disease (PD, although a randomized controlled trial of GDNF therapy published in 2006 resulted in negative outcomes, and controversy remains about the efficacy and safety of the treatment. For a decade, our laboratory has investigated the efficacy and the most appropriate method of GDNF administration using animals, and consequently we have obtained some solid data that correspond to the results of clinical trials. In this review, we present an outline of our studies and other key studies related to GDNF, the current state of the research, problems to be overcome, and predictions regarding the use of GDNF therapy for PD in the future.

  6. Zirconium oxide ceramic foam: a promising supporting biomaterial for massive production of glial cell line-derived neurotrophic factor*

    OpenAIRE

    Liu, Zhong-Wei; Li, Wen-qiang; Wang, Jun-kui; Ma, Xian-cang; Liang, Chen; Liu, Peng; Chu, Zheng; Dang, Yong-hui

    2014-01-01

    This study investigated the potential application of a zirconium oxide (ZrO2) ceramic foam culturing system to the production of glial cell line-derived neurotrophic factor (GDNF). Three sets of ZrO2 ceramic foams with different pore densities of 10, 20, and 30 pores per linear inch (PPI) were prepared to support a 3D culturing system. After primary astrocytes were cultured in these systems, production yields of GDNF were evaluated. The biomaterial biocompatibility, cell proliferation and act...

  7. Secretion of nerve growth factor, brain-derived neurotrophic factor, and glial cell-line derived neurotrophic factor in co-culture of four cell types in cerebrospinal fluid-containing medium

    Institute of Scientific and Technical Information of China (English)

    Sanjiang Feng; Minghua Zhuang; Rui Wu

    2012-01-01

    The present study co-cultured human embryonic olfactory ensheathing cells, human Schwann cells, human amniotic epithelial cells and human vascular endothelial cells in complete culture medium- containing cerebrospinal fluid. Enzyme linked immunosorbent assay was used to detect nerve growth factor, brain-derived neurotrophic factor, and glial cell line-derived neurotrophic factor secretion in the supernatant of co-cultured cells. Results showed that the number of all cell types reached a peak at 7–10 days, and the expression of nerve growth factor, brain-derived neurotrophic factor, and glial cell line-derived neurotrophic factor peaked at 9 days. Levels of secreted nerve growth factor were four-fold higher than brain-derived neurotrophic factor, which was three-fold higher than glial cell line-derived neurotrophic factor. Increasing concentrations of cerebrospinal fluid (10%, 20% and 30%) in the growth medium caused a decrease of neurotrophic factor secretion. Results indicated co-culture of human embryonic olfactory ensheathing cells, human Schwann cells, human amniotic epithelial cells and human vascular endothelial cells improved the expression of nerve growth factor, brain-derived neurotrophic factor, and glial cell line-derived neurotrophic factor. The reduction of cerebrospinal fluid extravasation at the transplant site after spinal cord injury is beneficial for the survival and secretion of neurotrophic factors from transplanted cells.

  8. Glial cell line-derived neurotrophic factor gene delivery via a polyethylene imine grafted chitosan carrier

    Directory of Open Access Journals (Sweden)

    Peng YS

    2014-06-01

    Full Text Available Yu-Shiang Peng,1,* Po-Liang Lai,2,* Sydney Peng,1 His-Chin Wu,3 Siang Yu,1 Tsan-Yun Tseng,4 Li-Fang Wang,5 I-Ming Chu1 1Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 2Department of Orthopedic Surgery, Chang Gung Memorial Hospital at Linkou, Chang Gung University College of Medicine, Taoyuan, 3Department of Materials Engineering, Tatung University, Taipei, 4Graduate School of Biotechnology and Bioengineering, College of Engineering, Yuan Ze University, Chung-Li, 5Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, Taiwan *Yu-Shiang Peng and Po-Liang Lai contributed equally to this work Abstract: Parkinson’s disease is known to result from the loss of dopaminergic neurons. Direct intracerebral injections of high doses of recombinant glial cell line-derived neurotrophic factor (GDNF have been shown to protect adult nigral dopaminergic neurons. Because GDNF does not cross the blood–brain barrier, intracerebral gene transfer is an ideal option. Chitosan (CHI is a naturally derived material that has been used for gene transfer. However, the low water solubility often leads to decreased transfection efficiency. Grafting of highly water-soluble polyethylene imines (PEI and polyethylene glycol onto polymers can increase their solubility. The purpose of this study was to design a non-viral gene carrier with improved water solubility as well as enhanced transfection efficiency for treating Parkinsonism. Two molecular weights (Mw =600 and 1,800 g/mol of PEI were grafted onto CHI (PEI600-g-CHI and PEI1800-g-CHI, respectively by opening the epoxide ring of ethylene glycol diglycidyl ether (EX-810. This modification resulted in a non-viral gene carrier with less cytotoxicity. The transfection efficiency of PEI600-g-CHI/deoxyribonucleic acid (DNA polyplexes was significantly higher than either PEI1800-g-CHI/DNA or CHI/DNA polyplexes. The maximal GDNF expression of PEI600-g-CHI/DNA was at the

  9. Intraspinal transplantation of motoneuron-like cell combined with delivery of polymer-based glial cell line-derived neurotrophic factor for repair of spinal cord contusion injury

    Institute of Scientific and Technical Information of China (English)

    Alireza Abdanipour; Taki Tiraihi; Taher Taheri

    2014-01-01

    To evaluate the effects of glial cell line-derived neurotrophic factor transplantation combined with adipose-derived stem cells-transdifferentiated motoneuron delivery on spinal cord con-tusion injury, we developed rat models of spinal cord contusion injury, 7 days later, injected adipose-derived stem cells-transdifferentiated motoneurons into the epicenter, rostral and caudal regions of the impact site and simultaneously transplanted glial cell line-derived neuro-trophic factor-gelfoam complex into the myelin sheath. Motoneuron-like cell transplantation combined with glial cell line-derived neurotrophic factor delivery reduced cavity formations and increased cell density in the transplantation site. The combined therapy exhibited superior promoting effects on recovery of motor function to transplantation of glial cell line-derived neurotrophic factor, adipose-derived stem cells or motoneurons alone. These ifndings suggest that motoneuron-like cell transplantation combined with glial cell line-derived neurotrophic factor delivery holds a great promise for repair of spinal cord injury.

  10. Lipid-mediated glial cell line-derived neurotrophic factor gene transfer to cultured porcine ventral mesencephalic tissue

    DEFF Research Database (Denmark)

    Bauer, Matthias; Meyer, Morten; Brevig, Thomas;

    2002-01-01

    -mediated transfer of the gene for human glial cell line-derived neurotrophic factor (GDNF) to embryonic (E27/28) porcine VM tissue kept as organotypic explant cultures. Treatment of the developing VM with two mitogens, basic fibroblast growth factor and epidermal growth factor, prior to transfection significantly...... increased transfection yields. Expression of human GDNF via an episomal vector could be detected by in situ hybridization and by the measuring of GDNF protein secreted into the culture medium. When compared to mock-transfected controls, VM tissue expressing recombinant GDNF contained significantly higher...

  11. Sequence analysis and functional study of the Han Nationality glial cell line-derived neurotrophic factor transcript

    Institute of Scientific and Technical Information of China (English)

    CHEN Zhe-yu; HUANG Ai-jun; LU Chang-lin; WU Xiang-fu; HE Cheng

    2001-01-01

    To study the sequence and function of the glial cell line-derived neurotrophic factor (GDNF) transcript in subjects of Han nationality. Methods: The Han nationality GDNF transcript was amplified by RT-PCR and expressed by baculovirus expression system. Biological activity of the expressed product was measured by the primary culture of midbrain dopaminergic neurons. Results: There only existed the shorter GDNF transcript of 555 bp in the Han nationality. The secretory expression product of the shorter transcript in insect cells promoted the survival and differentiation of dopaminergic neurons. Conclusion: It is found that there is a 78 bp deletion in the Han nationality GDNF transcript compared with the reported 633 bp GDNF transcript. The 78 bp deletion does not affect the secretory expression and biological activity of GDNF mature protein.

  12. Sympathetic Innervation Induced in Engrafted Engineered Cardiomyocyte Sheets by Glial Cell Line Derived Neurotrophic Factor In Vivo

    Directory of Open Access Journals (Sweden)

    Xian-ming Fu

    2013-01-01

    Full Text Available The aim of myocardial tissue engineering is to repair or regenerate damaged myocardium with engineered cardiac tissue. However, this strategy has been hampered by lack of functional integration of grafts with native myocardium. Autonomic innervation may be crucial for grafts to function properly with host myocardium. In this study, we explored the feasibility of in vivo induction of autonomic innervation to engineered myocardial tissue using genetic modulation by adenovirus encoding glial cell line derived neurotrophic factor (GDNF. GFP-transgene (control group or GDNF overexpressing (GDNF group engineered cardiomyocyte sheets were transplanted on cryoinjured hearts in rats. Nerve fibers in the grafts were examined by immunohistochemistry at 1, 2, and 4 weeks postoperatively. Growth associated protein-43 positive growing nerves and tyrosine hydroxylase positive sympathetic nerves were first detected in the grafts at 2 weeks postoperatively in control group and 1 week in GDNF group. The densities of growing nerve and sympathetic nerve in grafts were significantly increased in GDNF group. No choline acetyltransferase immunopositive parasympathetic nerves were observed in grafts. In conclusion, sympathetic innervation could be effectively induced into engrafted engineered cardiomyocyte sheets using GDNF.

  13. Pharmacokinetics of intravitreal glial cell line-derived neurotrophic factor: experimental studies in pigs

    DEFF Research Database (Denmark)

    Ejstrup, Rasmus; Kiilgaard, J F; Tucker, B A; Klassen, H J; Young, Jette Feveile; La Cour, M

    2010-01-01

    retinal ganglion cell line (RGC5) bioassay. Indirect ophthalmoscopy, intraocular pressure assessment, and fundus photography were performed before enucleation. There was initial variability in the cGDNF, but after 24h GDNF was cleared in a monoexponential fashion with a half-life of 37 h (CL 33-43 h...

  14. The niche-derived glial cell line-derived neurotrophic factor (GDNF induces migration of mouse spermatogonial stem/progenitor cells.

    Directory of Open Access Journals (Sweden)

    Lisa Dovere

    Full Text Available In mammals, the biological activity of the stem/progenitor compartment sustains production of mature gametes through spermatogenesis. Spermatogonial stem cells and their progeny belong to the class of undifferentiated spermatogonia, a germ cell population found on the basal membrane of the seminiferous tubules. A large body of evidence has demonstrated that glial cell line-derived neurotrophic factor (GDNF, a Sertoli-derived factor, is essential for in vivo and in vitro stem cell self-renewal. However, the mechanisms underlying this activity are not completely understood. In this study, we show that GDNF induces dose-dependent directional migration of freshly selected undifferentiated spermatogonia, as well as germline stem cells in culture, using a Boyden chamber assay. GDNF-induced migration is dependent on the expression of the GDNF co-receptor GFRA1, as shown by migration assays performed on parental and GFRA1-transduced GC-1 spermatogonial cell lines. We found that the actin regulatory protein vasodilator-stimulated phosphoprotein (VASP is specifically expressed in undifferentiated spermatogonia. VASP belongs to the ENA/VASP family of proteins implicated in actin-dependent processes, such as fibroblast migration, axon guidance, and cell adhesion. In intact seminiferous tubules and germline stem cell cultures, GDNF treatment up-regulates VASP in a dose-dependent fashion. These data identify a novel role for the niche-derived factor GDNF, and they suggest that GDNF may impinge on the stem/progenitor compartment, affecting the actin cytoskeleton and cell migration.

  15. Glial cell line-derived neurotrophic factor alters the growth characteristics and genomic imprinting of mouse multipotent adult germline stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Yoon Hee [Department of Bioscience and Biotechnology, Bio-Organ Research Center/Animal Resources Research Center, Konkuk University, Hwayang-dong, Gwangjin-Gu, Seoul 143 701 (Korea, Republic of); Gupta, Mukesh Kumar, E-mail: goops@konkuk.ac.kr [Department of Animal Biotechnology, Bio-Organ Research Center/Animal Resources Research Center, Konkuk University, Hwayang-dong, Gwangjin-Gu, Seoul 143 701 (Korea, Republic of); Oh, Shin Hye [Department of Bioscience and Biotechnology, Bio-Organ Research Center/Animal Resources Research Center, Konkuk University, Hwayang-dong, Gwangjin-Gu, Seoul 143 701 (Korea, Republic of); Uhm, Sang Jun [Department of Animal Biotechnology, Bio-Organ Research Center/Animal Resources Research Center, Konkuk University, Hwayang-dong, Gwangjin-Gu, Seoul 143 701 (Korea, Republic of); Lee, Hoon Taek, E-mail: htl3675@konkuk.ac.kr [Department of Bioscience and Biotechnology, Bio-Organ Research Center/Animal Resources Research Center, Konkuk University, Hwayang-dong, Gwangjin-Gu, Seoul 143 701 (Korea, Republic of); Department of Animal Biotechnology, Bio-Organ Research Center/Animal Resources Research Center, Konkuk University, Hwayang-dong, Gwangjin-Gu, Seoul 143 701 (Korea, Republic of)

    2010-03-10

    This study evaluated the essentiality of glial cell line-derived neurotrophic factor (GDNF) for in vitro culture of established mouse multipotent adult germline stem (maGS) cell lines by culturing them in the presence of GDNF, leukemia inhibitory factor (LIF) or both. We show that, in the absence of LIF, GDNF slows the proliferation of maGS cells and result in smaller sized colonies without any change in distribution of cells to different cell-cycle stages, expression of pluripotency genes and in vitro differentiation potential. Furthermore, in the absence of LIF, GDNF increased the expression of male germ-line genes and repopulated the empty seminiferous tubule of W/W{sup v} mutant mouse without the formation of teratoma. GDNF also altered the genomic imprinting of Igf2, Peg1, and H19 genes but had no effect on DNA methylation of Oct4, Nanog and Stra8 genes. However, these effects of GDNF were masked in the presence of LIF. GDNF also did not interfere with the multipotency of maGS cells if they are cultured in the presence of LIF. In conclusion, our results suggest that, in the absence of LIF, GDNF alters the growth characteristics of maGS cells and partially impart them some of the germline stem (GS) cell-like characteristics.

  16. Glial cell line-derived neurotrophic factor alters the growth characteristics and genomic imprinting of mouse multipotent adult germline stem cells

    International Nuclear Information System (INIS)

    This study evaluated the essentiality of glial cell line-derived neurotrophic factor (GDNF) for in vitro culture of established mouse multipotent adult germline stem (maGS) cell lines by culturing them in the presence of GDNF, leukemia inhibitory factor (LIF) or both. We show that, in the absence of LIF, GDNF slows the proliferation of maGS cells and result in smaller sized colonies without any change in distribution of cells to different cell-cycle stages, expression of pluripotency genes and in vitro differentiation potential. Furthermore, in the absence of LIF, GDNF increased the expression of male germ-line genes and repopulated the empty seminiferous tubule of W/Wv mutant mouse without the formation of teratoma. GDNF also altered the genomic imprinting of Igf2, Peg1, and H19 genes but had no effect on DNA methylation of Oct4, Nanog and Stra8 genes. However, these effects of GDNF were masked in the presence of LIF. GDNF also did not interfere with the multipotency of maGS cells if they are cultured in the presence of LIF. In conclusion, our results suggest that, in the absence of LIF, GDNF alters the growth characteristics of maGS cells and partially impart them some of the germline stem (GS) cell-like characteristics.

  17. Role of PI3-K/Akt pathway and its effect on glial cell line-derived neurotrophic factor in midbrain dopamine cells

    Institute of Scientific and Technical Information of China (English)

    Hong-jun WANG; Jun-ping CAO; Jing-kao YU; Dian-shuai GAO

    2007-01-01

    Aim: To explore the intracellular mechanisms underlying the survival/differentia-don effect of the glial cell line-derived neurotrophic factor (GDNF) on dopamine(DA) cells. Methods: Midbrain slice culture and primary cell culture were established, and the cultures were divided into 3 groups: control group, GDNF group, and the phosphatidylinositol 3-kinase/Akt (PI3-K/Akt) pathway-inhibited group. Then the expression of tyrosine hydroxylase (TH) was detected by immunostaining as well as Western blotting. Results: GDNF treatment induced an increase in the number of TH-immunoreactive (ir) cells and the neurite number of TH-ir cells, as well as in the level of TH expression in cultures (Number of TH-ir cells in the slice culture: control group, 8.76±0.75; GDNF group, 18.63±0.95.Number of TH-ir cells and neurite number of TH-ir cells in cell culture: controlgroup, 3.65±0.88 and 2.49±0.42; GDNF group, 6.01±0.43 and 4.89±0.46). Meanwhile, the stimulation of cultured cells with GDNF increased the phosphorylation of Akt, which is a downstream effector of PI3-K/Akt. The effects of GDNF were specifically blocked by the inhibitor of the PI3-K/Akt pathway, wortmannin (Number of TH-ir cells in slice culture: PI3-K/Akt pathway-inhibited group, 6.98±0.58. Num-ber of TH-ir cells and neurite number of TH-ir cells in cell culture: PI3-K/Aktpathway-inhibited group, 3.79±0.62 and 2.50±0.25, respectively). Conclusion: The PI3-K/Akt pathway mediates the survival/differentiation effect of GDNF on DA cells.8±0.58.

  18. Combination effects of epidermal growth factor and glial cell line-derived neurotrophic factor on the in vitro developmental potential of porcine oocytes.

    Science.gov (United States)

    Valleh, Mehdi Vafaye; Rasmussen, Mikkel Aabech; Hyttel, Poul

    2016-06-01

    The developmental potential of in vitro matured porcine oocytes is still lower than that of oocytes matured and fertilized in vivo. Major problems that account for the lower efficiency of in vitro production include the improper nuclear and cytoplasmic maturation of oocytes. With the aim of improving this issue, the single and combined effects of epidermal growth factor (EGF) and glial cell line-derived neurotrophic factor (GDNF) on oocyte developmental competence were investigated. Porcine cumulus-oocyte cell complexes (COCs) were matured in serum-free medium supplemented with EGF (0, 10 or 50 ng/ml) and/or GDNF (0, 10 or 50 ng/ml) for 44 h, and subsequently subjected to fertilization and cultured for 7 days in vitro. The in vitro-formed blastocysts derived from selected growth factor groups (i.e. EGF = 50 ng/ml; GDNF = 50 ng/ml; EGF = 50 ng/ml + GDNF = 50 ng/ml) were also used for mRNA expression analysis, or were subjected to Hoechst staining. The results showed that the addition of EGF and/or GDNF during oocyte maturation dose dependently enhanced oocyte developmental competence. Compared with the embryos obtained from control or single growth factor-treated oocytes, treatment with the combination of EGF and GDNF was shown to significantly improve oocyte competence in terms of blastocyst formation, blastocyst cell number and blastocyst hatching rate (P competency and blastocyst quality. PMID:26350562

  19. Glial cell line-derived neurotrophic factor protects against high-fat diet-induced hepatic steatosis by suppressing hepatic PPAR-γ expression.

    Science.gov (United States)

    Mwangi, Simon Musyoka; Peng, Sophia; Nezami, Behtash Ghazi; Thorn, Natalie; Farris, Alton B; Jain, Sanjay; Laroui, Hamed; Merlin, Didier; Anania, Frank; Srinivasan, Shanthi

    2016-01-15

    Glial cell line-derived neurotrophic factor (GDNF) protects against high-fat diet (HFD)-induced hepatic steatosis in mice, however, the mechanisms involved are not known. In this study we investigated the effects of GDNF overexpression and nanoparticle delivery of GDNF in mice on hepatic steatosis and fibrosis and the expression of genes involved in the regulation of hepatic lipid uptake and de novo lipogenesis. Transgenic overexpression of GDNF in liver and other metabolically active tissues was protective against HFD-induced hepatic steatosis. Mice overexpressing GDNF had significantly reduced P62/sequestosome 1 protein levels suggestive of accelerated autophagic clearance. They also had significantly reduced peroxisome proliferator-activated receptor-γ (PPAR-γ) and CD36 gene expression and protein levels, and lower expression of mRNA coding for enzymes involved in de novo lipogenesis. GDNF-loaded nanoparticles were protective against short-term HFD-induced hepatic steatosis and attenuated liver fibrosis in mice with long-standing HFD-induced hepatic steatosis. They also suppressed the liver expression of steatosis-associated genes. In vitro, GDNF suppressed triglyceride accumulation in Hep G2 cells through enhanced p38 mitogen-activated protein kinase-dependent signaling and inhibition of PPAR-γ gene promoter activity. These results show that GDNF acts directly in the liver to protect against HFD-induced cellular stress and that GDNF may have a role in the treatment of nonalcoholic fatty liver disease. PMID:26564715

  20. Deconstructing the Iboga Alkaloid Skeleton: Potentiation of FGF2-induced Glial Cell Line-Derived Neurotrophic Factor Release by a Novel Compound.

    Science.gov (United States)

    Gassaway, Madalee M; Jacques, Teresa L; Kruegel, Andrew C; Karpowicz, Richard J; Li, Xiaoguang; Li, Shu; Myer, Yves; Sames, Dalibor

    2016-01-15

    Modulation of growth factor signaling pathways in the brain represents a new experimental approach to treating neuropsychiatric disorders such as depression, anxiety, and addiction. Neurotrophins and growth factors exert synaptic, neuronal, and circuit level effects on a wide temporal range, which suggests a possibility of rapid and lasting therapeutic effects. Consequently, identification of small molecules that can either enhance the release of growth factors or potentiate their respective pathways will provide a drug-like alternative to direct neurotrophin administration or viral gene delivery and thus represents an important frontier in chemical biology and drug design. Glial cell line-derived neurotrophic factor (GDNF), in particular, has been implicated in marked reduction of alcohol consumption in rodent addiction models, and the natural product ibogaine, a substance used traditionally in ritualistic ceremonies, has been suggested to increase the synthesis and release of GDNF in the dopaminergic system in rats. In this report, we describe a novel iboga analog, XL-008, created by unraveling the medium size ring of the ibogamine skeleton, and its ability to induce release of GDNF in C6 glioma cells. Additionally, XL-008 potentiates the release of GDNF induced by fibroblast growth factor 2 (FGF2), another neurotrophin implicated in major depressive disorder, increasing potency more than 2-fold (from 7.85 ± 2.59 ng/mL to 3.31 ± 0.98 ng/mL) and efficacy more than 3-fold. The GDNF release by both XL-008 and the FGF2/XL-008 mixture was found to be mediated through the MEK and PI3K signaling pathways but not through PLCγ in C6 glioma cells. PMID:26517751

  1. Visual detection of glial cell line-derived neurotrophic factor based on a molecular translator and isothermal strand-displacement polymerization reaction

    Directory of Open Access Journals (Sweden)

    Zhang LY

    2015-03-01

    Full Text Available Li-Yong Zhang,1,* Tao Xing,1,* Li-Xin Du,1,* Qing-Min Li,2 Wei-Dong Liu,1 Ji-Yue Wang,1 Jing Cai31Department of neurosurgery, Liaocheng People’s Hospital, Liaocheng, Shandong, People’s Republic of China; 2Department of Neurosurgery, Tai’an Central Hospital, Tai’an, Shandong, People’s Republic of China; 3Department of Neurosurgery, LinYi People Hospital, LinYi, Shandong, People’s Republic of China*These authors contributed equally to this workBackground: Glial cell line-derived neurotrophic factor (GDNF is a small protein that potently promotes the survival of many types of neurons. Detection of GDNF is vital to monitoring the survival of sympathetic and sensory neurons. However, the specific method for GDNF detection is also un-discovered. The purpose of this study is to explore the method for protein detection of GDNF.Methods: A novel visual detection method based on a molecular translator and isothermal strand-displacement polymerization reaction (ISDPR has been proposed for the detection of GDNF. In this study, a molecular translator was employed to convert the input protein to output deoxyribonucleic acid signal, which was further amplified by ISDPR. The product of ISDPR was detected by a lateral flow biosensor within 30 minutes.Results: This novel visual detection method based on a molecular translator and ISDPR has very high sensitivity and selectivity, with a dynamic response ranging from 1 pg/mL to 10 ng/mL, and the detection limit was 1 pg/mL of GDNF.Conclusion: This novel visual detection method exhibits high sensitivity and selectivity, which is very simple and universal for GDNF detection to help disease therapy in clinical practice.Keywords: lateral flow biosensor, molecular translator, isothermal strand-displacement polymerization reaction

  2. Relationship Between Chronic Tinnitus and Glial Cell Line-Derived Neurotrophic Factor Gene rs3812047, rs1110149, and rs884344 Polymorphisms in a Turkish Population.

    Science.gov (United States)

    Orenay-Boyacioglu, Seda; Coskunoglu, Aysun; Caki, Zerrin; Cam, Fethi Sirri

    2016-08-01

    Glial cell line-derived neurotrophic factor (GDNF) plays a key role in early development of central auditory pathway and the inner ear. However, the auditory pathway studies of GDNF gene polymorphisms are scarce in the literature, and the studies especially associated with tinnitus are limited. Our study aimed to identify whether GDNF gene polymorphisms play any roles in the pathophysiology of tinnitus by investigating the relationship between tinnitus and GDNF polymorphisms. A total of 52 patients with chronic tinnitus and ages ranging from 18 to 55 were admitted to the Ear-Nose-Throat outpatient clinic of Celal Bayar University Medical Faculty Hospital of Manisa, Turkey and constituted the study group. Another 42 patients of the same age range, without tinnitus symptoms and lacking any systemic disease, were also admitted to the clinic and formed the control group. The tympanometric, audiological, and psychoacoustic assessments of the subjects were performed. Deoxyribonucleic acid samples obtained using venous blood taken for routine inspections were used to investigate GDNF gene polymorphisms (rs884344, rs3812047, and rs1110149) by polymerase chain reaction-based restriction fragment length polymorphism method. No correlation could be detected between GDNF rs884344 and rs3812047 polymorphisms and subjects with tinnitus (p > 0.05). Heterozygosity was significantly lower for GDNF rs1110149 polymorphism in tinnitus subjects compared to the controls (p tinnitus and control groups (p > 0.05). Failure to detect correlations between tinnitus and GDNF gene polymorphisms suggests this may be due to the fact that the GDNF gene has a variable expression pattern in different tissues and pathologies. Therefore, the study should be improved and its scope should be expanded by including a larger group of patients and different tissues to investigate the expression pattern of GDNF. PMID:27180191

  3. Protective effect of liposome-mediated glial cell line-derived neurotrophic factor gene transfer in vivo on motoneurons following spinal cord injury in rats

    Institute of Scientific and Technical Information of China (English)

    鲁凯伍; 陈哲宇; 侯铁胜

    2004-01-01

    Objective:To investigate the effect of liposomemediated glial cell line-derived neurotrophic factor (GDNF) gene transfer in vivo on spinal cord motoneurons after spinal cord injury (SCI) in adult rats.Methods: Sixty male Sprague-Dawley rats were divided equally into two groups: GDNF group and control group. The SCI model was established according to the method of Nystrom, and then the DC-Chol liposomes and recombinant plasmid pEGFP-GDNF cDNA complexes were injected into the injured spinal cord. The expression of GDNF cDNA 1 week after injection was detected by RTPCR and fluorescence microscope. We observed the remaining motoneurons in the anterior horn and the changes of cholinesterase (CHE) and acid phosphatase (ACP) activity using Nissl and enzyme histochemistry staining. The locomotion function of hind limbs of rats was evaluated using inclined plane test and BBB locomotor scale.Results: RT-PCR and fluorescence observation confirmed the presence of expression of GDNF cDNA 1week and 4 weeks after injection. At 1, 2, 4 weeks after SCI, the number of motoneurons in the anterior horn in GDNF group (20.4±3.2, 21.7±3.6, 22.5±3.4) was more than that in control group ( 16.8±2.8, 17.3 ± 2.7,18.2±3.2, P<0.05). At 1, 2 weeks after SCI, the mean gray of the CHE-stained spinal motoneurons in GDNF group (74.2± 25.8, 98.7± 31.6 was less than that in control group (98.5 ±32.2, 134.6 ±45.2, P<0.01), and the mean gray of ACP in GDNF group (84.5±32.6, 79.5±28.4) was more than that in control group (61.2±24.9,52.6±19.9, P<0.01). The locomotion functional scales in GDNF group were higher than that in control group within 1 to 4 weeks after SCI (P<0.05).Conclusions: GDNF gene transfer in vivo can protect motoneurons from death and degeneration induced by incompleted spinal cord injury as well as enhance locomotion functional restoration of hind limbs. These results suggest that liposome-mediated delivery of GDNF cDNA might be a practical method for treating

  4. Efficient Transduction of Feline Neural Progenitor Cells for Delivery of Glial Cell Line-Derived Neurotrophic Factor Using a Feline Immunodeficiency Virus-Based Lentiviral Construct

    Directory of Open Access Journals (Sweden)

    X. Joann You

    2011-01-01

    Full Text Available Work has shown that stem cell transplantation can rescue or replace neurons in models of retinal degenerative disease. Neural progenitor cells (NPCs modified to overexpress neurotrophic factors are one means of providing sustained delivery of therapeutic gene products in vivo. To develop a nonrodent animal model of this therapeutic strategy, we previously derived NPCs from the fetal cat brain (cNPCs. Here we use bicistronic feline lentiviral vectors to transduce cNPCs with glial cell-derived neurotrophic factor (GDNF together with a GFP reporter gene. Transduction efficacy is assessed, together with transgene expression level and stability during induction of cellular differentiation, together with the influence of GDNF transduction on growth and gene expression profile. We show that GDNF overexpressing cNPCs expand in vitro, coexpress GFP, and secrete high levels of GDNF protein—before and after differentiation—all qualities advantageous for use as a cell-based approach in feline models of neural degenerative disease.

  5. Feline Neural Progenitor Cells II: Use of Novel Plasmid Vector and Hybrid Promoter to Drive Expression of Glial Cell Line-Derived Neurotrophic Factor Transgene

    Directory of Open Access Journals (Sweden)

    X. Joann You

    2012-01-01

    Full Text Available Sustained transgene expression is required for the success of cell transplant-based gene therapy. Most widely used are lentiviral-based vectors which integrate into the host genome and thereby maintain sustained transgene expression. This requires integration into the nuclear genome, and potential risks include activation of oncogenes and inactivation of tumor suppressor genes. Plasmids have been used; however lack of sustained expression presents an additional challenge. Here we used the pCAG-PyF101-eGFP plasmid to deliver the human GDNF gene to cat neural progenitor cells (cNPCs. This vector consists of a CAGG composite promoter linked to the polyoma virus mutant enhancer PyF101. Expression of an episomal eGFP reporter and GDNF transgene were stably maintained by the cells, even following induction of differentiation. These genetically modified cells appear suitable for use in allogeneic models of cell-based delivery of GDNF in the cat and may find veterinary applications should such strategies prove clinically beneficial.

  6. Delayed administration of glial cell line-derived neurotrophic factor (GDNF) protects retinal ganglion cells in a pig model of acute retinal ischemia

    DEFF Research Database (Denmark)

    Kyhn, Maria Voss; Klassen, Henry; Johansson, Ulrica Englund; Warfvinge, Karin; Lavik, Erin; Kiilgaard, Jens F; Prause, Jan Ulrik; Scherfig, Erik; Young, Michael; la Cour, Morten

    2009-01-01

    eyes injected with GDNF microspheres compared to eyes injected with blank microspheres. In eyes injected with GDNF microspheres the ganglion cell count was 9.5/field (s.e.m.: 2.1, n = 8), in eyes injected with blank microspheres it was 3.5/field (s.e.m.: 1.2, n = 7). This difference was statistically...

  7. Glial Cell Line-derived Neurotrophic Factor(GDNF):Expression,function and Mechanisms in Drug Addiction%胶质细胞源性神经营养因子的表达、功能和在药物依赖中的作用

    Institute of Scientific and Technical Information of China (English)

    陈为升; 周文华; 杨国栋

    2004-01-01

    1993年,Lin等从大鼠胶质细胞株B49中提纯到一种可促进胚胎中脑多巴胺能神经元存活的神经营养因子,并命名为胶质细胞源性神经营养因子(glial cell line-derived neurotrophic factor,GDNF)。GDNF和后来发现的neurturin(NRTN)、persephin(PSPN)、artemin(ARTN)在结构和功能上有很大的相似性,共同构成一个家族,称为GDNF家族。

  8. Nestin expression in the cell lines derived from glioblastoma multiforme

    International Nuclear Information System (INIS)

    Nestin is a protein belonging to class VI of intermediate filaments that is produced in stem/progenitor cells in the mammalian CNS during development and is consecutively replaced by other intermediate filament proteins (neurofilaments, GFAP). Down-regulated nestin may be re-expressed in the adult organism under certain pathological conditions (brain injury, ischemia, inflammation, neoplastic transformation). Our work focused on a detailed study of the nestin cytoskeleton in cell lines derived from glioblastoma multiforme, because re-expression of nestin together with down-regulation of GFAP has been previously reported in this type of brain tumor. Two cell lines were derived from the tumor tissue of patients treated for glioblastoma multiforme. Nestin and other cytoskeletal proteins were visualized using imunocytochemical methods: indirect immunofluorescence and immunogold-labelling. Using epifluorescence and confocal microscopy, we described the morphology of nestin-positive intermediate filaments in glioblastoma cells of both primary cultures and the derived cell lines, as well as the reorganization of nestin during mitosis. Our most important result came through transmission electron microscopy and provided clear evidence that nestin is present in the cell nucleus. Detailed information concerning the pattern of the nestin cytoskeleton in glioblastoma cell lines and especially the demonstration of nestin in the nucleus represent an important background for further studies of nestin re-expression in relationship to tumor malignancy and invasive potential

  9. 多发性硬化、视神经脊髓炎患者血清及脑脊液中脑源性神经营养因子与胶质细胞源性神经营养因子水平%Investigation of brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor concentrations in serum and cerebrospinal fluid of patients with multiple sclerosis and neuromyelitis optica

    Institute of Scientific and Technical Information of China (English)

    麦卫华; 胡学强; 陆正齐; 王玉鸽; 康庄

    2009-01-01

    Objective To investigate brain-derived neurotrophic factor (BDNF) and glial cell line-derived neurotrophic factor (GDNF) concentrations in serum and cerebrospinal fluid (CSF) in patients with multiple sclerosis (MS) and neuromyelitis optica (NMO),and their neuroprotective effects.Methods Sixty-two patients (49 patients were MS and 13 patients were NMO) and 21 controls were investigated in our studies.The disability severity in MS and NMO patients in their relapse period was assessed by the Expanded Disability Status Scale (EDSS).MRI scanning of brain,spinal cord or optic nerve was examined and the oligoclonal band in serum and CSF were detected.BDNF and GDNF concentrations in serum and CSF were assessed by Liquid Assay.Results There were no significant differences of BDNF (μg/L,5.616±0.650 in serum and 0.186±0.012 in CSF of MS patients;6.584±0.929 in serum and 0.176± 0.006 in CSF of NMO patients) and GDNF (μg/L,0.039 in serum and 0.080 in CSF of MS patients;0.029 in serum and 0.050 in CSF of NMO patients) concentrations in serum and CSF in patients with MS and NMO in relapse,compared with those in controls.There was a positive correlation between BDNF and GDNF concentrations in CSF (r=0.756,P=0.000),and a negative correlation between BDNF and GDNF concentrations in serum (r=-0.329,P=0.018).There were no correlations of BDNF and GDNF concentrations in serum and CSF with EDSS,blood brain barrier index,Delpech index and Tourtellotte synthesis rate.There were no significant differences of BDNF and GDNF concentration in serum and CSF between NMO/MS patients with and without atrophy.Conclusions The level of BDNF in patients with MS and NMO is correlated with that of GDNF,which may have a synergistic neurotrophic effect on MS and NMO.BDNF and GDNF are not associated with the blood-brain harrier destruction and lgG synthesis in central nervous system.However,associations of BDNF and GDNF with functional disability and neuron atrophy in NMO and MS patients still need

  10. Co-transplantation of controlled release glial cell line-derived neurotrophic factor and bone marrow mesenchymal stem cells-derived neuron-like cells reduces glial scars after spinal cord injury%控释神经营养因子与细胞移植减少损伤脊髓的胶质瘢痕

    Institute of Scientific and Technical Information of China (English)

    刘晓刚; 邓宇斌; 蔡辉; 张新鹏; 马郁琳; 魏可心

    2013-01-01

    BACKGROUND:Previous studies have demonstrated that transplantation of control ed release glial cellline-derived neurotrophic factor and bone marrow mesenchymal stem cells-derived neuron-like cells can effectively promote the motor function and sensory function recovery of rhesus monkeys with spinal cord injury. OBJECTIVE:To validate whether co-transplantation of control ed release glial cellline-derived neurotrophic factor and bone marrow mesenchymal stem cells-derived neuron-like cells exhibits better protective effects on spinal cord glial scar of rhesus monkeys with spinal cord injury than celltransplantation alone. METHODS:Twelve rhesus monkeys were col ected to prepare animal models of acute severe spinal cord injury using modified Al en’s method, and then randomly divided into three groups:experimental group, co-transplantation of control ed release glial cellline-derived neurotrophic factor and bone marrow mesenchymal stem cells-derived neuron-like cells;control group, simple transplantation of bone marrow mesenchymal stem cells-derived neuron-like cells;blank control group, PBS. After 5 months, paraffin specimens of the spinal cord were made for detection of morphological and compositional characteristics of glial scar, regeneration of nerve fibers in the scar, glial scar area, and average absorbance of glial fibril ary acidic protein. RESULTS AND CONCLUSION:Glial scar in the injured spinal cord was composed of astrocytes and histocytes. Less spinal cord glial scar area and lower absorbance value could be observed in the experimental and control groups as compared with the blank control group (P  目的:观察控释胶质细胞源性神经营养因子联合骨髓间充质干细胞源神经元样细胞移植抑制猴脊髓损伤后胶质瘢痕形成的作用是否优于单纯细胞移植。  方法:取12只恒河猴,采用改良Al en氏法制作急性重度脊髓损伤模型,随机数字表法分为3组,实验组以控释胶质细胞源

  11. 单用或联用UDP-糖、GDNF和美金刚对脑白质损伤大鼠长期预后的改善作用%Effects of single or combined application of UDP-glucose, glial cell line derived neurotrophic factor and memantine on long-term prognosis of neonatal rats with periventricular leukomalacia

    Institute of Scientific and Technical Information of China (English)

    毛凤霞; 陈惠金; 钱龙华; 李文娟

    2012-01-01

    目的 探讨单用和联用尿苷二磷酸葡萄糖(UDP-糖)、胶质细胞源性神经营养因子(GDNF)和美金刚对脑室周围白质软化(PVL)新生大鼠体格发育、学习记忆和肢体运动功能的远期影响. 方法 5日龄SD新生大鼠按照随机数字表法分为对照组、PVL组、UDP-糖组和UDP-糖+GDNF+美金刚组(简称三联药组).对照组大鼠仅游离右侧颈总动脉,不接扎和缺氧;PVL组大鼠结扎颈总动脉和缺氧;UDP-糖组大鼠在缺血缺氧后给予腹腔注射UDP-糖;三联药组大鼠在缺血缺氧后给予颅内注射GDNF,同时腹腔注射UDP-糖和美金刚.每组大鼠造模前后称重并记录睁眼日龄,在PVL造模后21d进行水迷宫和斜板测试,记录各组大鼠逃逸潜伏期、游泳距离及在不同倾斜角度下的斜板得分. 结果 PVL组在各时段的体质量及睁眼日龄均显著低于其他3组,四象限的平均逃逸潜伏期值和游泳距离数值均显著长于其他3组,在45°和50°斜板上的得分均显著低于其他3组,差异有统计学意义(P<0.05);两个用药组间以及两个用药组分别和对照组间大鼠体质量、睁眼日龄、逃逸潜伏期值、游泳距离以及斜板评分的差异均无统计学意义(P>0.05). 结论 单用UDP-糖或联用UDP-糖、GDNF和美金刚能明显改善脑白质损伤大鼠的长期预后,三联药组的改善作用略微更明显.%Objective To explore the effects of the single or combined application of UDP-glucose,glial cell line derived neurotrophic factor (GDNF) and memantine on the long-term prognosis (physical development,learning and memory and limb function) of rats with periventricular leukomalacia (PVL).Methods Five-day-old SD rats were randomly divided into the sham-operated group,PVL group,PVL plus UDP-glucose group,and PVL plus UDP-glucose combining GDNF and memantine group (three drugs group).The rats in the sham-operated group were performed dissociation but not ligation of the right

  12. 季铵盐壳聚糖三维支架复合GNDF载间充质干细胞向神经样细胞分化%Neuron-like differentiation of mesenchymal stem cells induced by quaternary chitosan thermosensitive hydrogel scaffolds combined with glial cell line-derived neurotrophic factor

    Institute of Scientific and Technical Information of China (English)

    黄成; 杨建东; 冯新民; 李广峰; 李艺楠; 肖海祥; 孙钰

    2013-01-01

    chitosan thermosensitive hydrogel scaffold and to look for more ideal tissue engineering materials for the treatment of nervous system damage. METHODS:The thermosensitive hygrogel scaffold was prepared using hydroxypropyltrimethyl ammonium chloride chitosan (HACC) andβ-glycerophosphate (β-GP). The spatial structure of scaffold was observed by scanning electronic microscope. Effect of leaching liquor from the HACC/β-GP scaffold on the viability of bone marrow mesenchymal stem cells was detected by (4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. The albumin from bovine serum was combined with the scaffold, and the slow-release effect of the scaffold was detected by ultraviolet absorption spectrometry. Bone marrow mesenchymal stem cells were incubated onto the compound scaffold at 3 passages. The adhesion, growth and differentiation of bone marrow mesenchymal stem cells on the compound scaffold were observed by the scanning electron microscope. Neuron-specific enolase was detected by immunofluorescence. RESULTS AND CONCLUSION:The porosity and thermal sensitivity of HACC/β-GP scaffold and slow-release effect of glial cellline-derived neurotrophic factor were apparent. The results of MTT showed that the compound scaffold cannot take apparent negative effects to the proliferation of bone marrow mesenchymal stem cells. After inoculation, bone marrow mesenchymal stem cells permeated the porous structure of the scaffold and adhered to the scaffold. Under the role of glial cellline-derived neurotrophic factor, bone marrow mesenchymal stem cells showed neuron-like cellmorphology and cells co-cultured with the compound scaffold expressed the marker of neurons, neuron-specific enolase. Under the role of slow-release glial cellline-derived neurotrophic factor, bone marrow mesenchymal stem cells can grow wel in vitro and differentiate into neuron-like cells on the HACC/β-GP scaffold.

  13. Near neighbour analysis of variant cell lines derived from the promyeloid cell line HL60.

    OpenAIRE

    Bunce, C. M.; Lord, J M; Wong, A K; Brown, G.

    1988-01-01

    The human promyeloid cell line H60 can be induced to differentiate towards either neutrophils or monocytes. Variant cell lines, derived from HL60, which show reduced capacities for neutrophil and monocyte differentiation can be arranged in a developmental sequence which suggests that the potentials for neutrophil and monocyte differentiation are expressed sequentially by HL60 cells in this order. Analysis of the patterns of total cellular phosphoproteins within HL60 and 5 variant cell lines, ...

  14. Human embryonic stem cell lines derived from the Chinese population

    Institute of Scientific and Technical Information of China (English)

    Zhen Fu FANG; Fan JIN; Hui GAI; Ying CHEN; Li WU; Ai Lian LIU; Bin CHEN; Hui Zhen SHENG

    2005-01-01

    Six human embryonic stem cell lines were established from surplus blastocysts. The cell lines expressed alkaline phosphatase and molecules typical of primate embryonic stem cells, including Oct-4, Nanog, TDGF1, Sox2, EBAF,Thy-1, FGF4, Rex-1, SSEA-3, SSEA-4, TRA-1-60 and TRA-1-81. Five of the six lines formed embryoid bodies that expressed markers of a variety of cell types; four of them formed teratomas with tissue types representative of all three embryonic germ layers. These human embryonic stem cells are capable of producing clones of undifferentiated morphology, and one of them was propagated to become a subline. Human embryonic stem cell lines from the Chinese population should facilitate stem cell research and may be valuable in studies of population genetics and ecology.

  15. Induced pluripotent stem cell lines derived from equine fibroblasts.

    Science.gov (United States)

    Nagy, Kristina; Sung, Hoon-Ki; Zhang, Puzheng; Laflamme, Simon; Vincent, Patrick; Agha-Mohammadi, Siamak; Woltjen, Knut; Monetti, Claudio; Michael, Iacovos Prodromos; Smith, Lawrence Charles; Nagy, Andras

    2011-09-01

    The domesticated horse represents substantial value for the related sports and recreational fields, and holds enormous potential as a model for a range of medical conditions commonly found in humans. Most notable of these are injuries to muscles, tendons, ligaments and joints. Induced pluripotent stem (iPS) cells have sparked tremendous hopes for future regenerative therapies of conditions that today are not possible to cure. Equine iPS (EiPS) cells, in addition to bringing promises to the veterinary field, open up the opportunity to utilize horses for the validation of stem cell based therapies before moving into the human clinical setting. In this study, we report the generation of iPS cells from equine fibroblasts using a piggyBac (PB) transposon-based method to deliver transgenes containing the reprogramming factors Oct4, Sox2, Klf4 and c-Myc, expressed in a temporally regulated fashion. The established iPS cell lines express hallmark pluripotency markers, display a stable karyotype even during long-term culture, and readily form complex teratomas containing all three embryonic germ layer derived tissues upon in vivo grafting into immunocompromised mice. Our EiPS cell lines hold the promise to enable the development of a whole new range of stem cell-based regenerative therapies in veterinary medicine, as well as aid the development of preclinical models for human applications. EiPS cell could also potentially be used to revive recently extinct or currently threatened equine species. PMID:21347602

  16. Induced Pluripotent Stem Cell Lines Derived from Equine Fibroblasts

    OpenAIRE

    Nagy, Kristina; Sung, Hoon-Ki; Zhang, Puzheng; Laflamme, Simon; Vincent, Patrick; Agha-Mohammadi, Siamak; Woltjen, Knut; Monetti, Claudio; Michael, Iacovos Prodromos; Smith, Lawrence Charles; Nagy, Andras

    2011-01-01

    The domesticated horse represents substantial value for the related sports and recreational fields, and holds enormous potential as a model for a range of medical conditions commonly found in humans. Most notable of these are injuries to muscles, tendons, ligaments and joints. Induced pluripotent stem (iPS) cells have sparked tremendous hopes for future regenerative therapies of conditions that today are not possible to cure. Equine iPS (EiPS) cells, in addition to bringing promises to the ve...

  17. Genomic and phenotypic profiles of two Brazilian breast cancer cell lines derived from primary human tumors

    OpenAIRE

    CORRÊA, NATÁSSIA C.R.; Kuasne, Hellen; Faria, Jerusa A. Q. A.; SEIXAS, CIÇA C.S.; SANTOS, IRIA G.D.; ABREU, FRANCINE B.; Nonogaki, Suely; Rocha, Rafael M.; Silva, Gerluza Aparecida Borges; Gobbi, Helenice; Silvia R Rogatto; Alfredo M. Goes; Gomes, Dawidson A

    2013-01-01

    Breast cancer is the most common type of cancer among women worldwide. Research using breast cancer cell lines derived from primary tumors may provide valuable additional knowledge regarding this type of cancer. Therefore, the aim of this study was to investigate the phenotypic profiles of MACL-1 and MGSO-3, the only Brazilian breast cancer cell lines available for comparative studies. We evaluated the presence of hormone receptors, proliferation, differentiation and stem cell markers, using ...

  18. Immortalized Human Schwann Cell Lines Derived From Tumors of Schwannomatosis Patients.

    Science.gov (United States)

    Ostrow, Kimberly Laskie; Donaldson, Katelyn; Blakeley, Jaishri; Belzberg, Allan; Hoke, Ahmet

    2015-01-01

    Schwannomatosis, a rare form of neurofibromatosis, is characterized predominantly by multiple, often painful, schwannomas throughout the peripheral nervous system. The current standard of care for schwannomatosis is surgical resection. A major obstacle to schwannomatosis research is the lack of robust tumor cell lines. There is a great need for mechanistic and drug discovery studies of schwannomatosis, yet appropriate tools are not currently available. Schwannomatosis tumors are difficult to grow in culture as they survive only a few passages before senescence. Our lab has extensive experience in establishing primary and immortalized human Schwann cell cultures from normal tissue that retain their phenotypes after immortalization. Therefore we took on the challenge of creating immortalized human Schwann cell lines derived from tumors from schwannomatosis patients. We have established and fully characterized 2 schwannomatosis cell lines from 2 separate patients using SV40 virus large T antigen. One patient reported pain and the other did not. The schwannomatosis cell lines were stained with S100B antibodies to confirm Schwann cell identity. The schwannomatosis cells also expressed the Schwann cell markers, p75NTR, S100B, and NGF after multiple passages. Cell morphology was retained following multiple passaging and freeze/ thaw cycles. Gene expression microarray analysis was used to compare the cell lines with their respective parent tumors. No differences in key genes were detected, with the exception that several cell cycle regulators were upregulated in the schwannomatosis cell lines when compared to their parent tumors. This upregulation was apparently a product of cell culturing, as the schwannomatosis cells exhibited the same expression pattern of cell cycle regulatory genes as normal primary human Schwann cells. Cell growth was also similar between normal primary and immortalized tumor cells in culture. Accurate cell lines derived directly from human tumors

  19. Immortalized Human Schwann Cell Lines Derived From Tumors of Schwannomatosis Patients.

    Directory of Open Access Journals (Sweden)

    Kimberly Laskie Ostrow

    Full Text Available Schwannomatosis, a rare form of neurofibromatosis, is characterized predominantly by multiple, often painful, schwannomas throughout the peripheral nervous system. The current standard of care for schwannomatosis is surgical resection. A major obstacle to schwannomatosis research is the lack of robust tumor cell lines. There is a great need for mechanistic and drug discovery studies of schwannomatosis, yet appropriate tools are not currently available. Schwannomatosis tumors are difficult to grow in culture as they survive only a few passages before senescence. Our lab has extensive experience in establishing primary and immortalized human Schwann cell cultures from normal tissue that retain their phenotypes after immortalization. Therefore we took on the challenge of creating immortalized human Schwann cell lines derived from tumors from schwannomatosis patients. We have established and fully characterized 2 schwannomatosis cell lines from 2 separate patients using SV40 virus large T antigen. One patient reported pain and the other did not. The schwannomatosis cell lines were stained with S100B antibodies to confirm Schwann cell identity. The schwannomatosis cells also expressed the Schwann cell markers, p75NTR, S100B, and NGF after multiple passages. Cell morphology was retained following multiple passaging and freeze/ thaw cycles. Gene expression microarray analysis was used to compare the cell lines with their respective parent tumors. No differences in key genes were detected, with the exception that several cell cycle regulators were upregulated in the schwannomatosis cell lines when compared to their parent tumors. This upregulation was apparently a product of cell culturing, as the schwannomatosis cells exhibited the same expression pattern of cell cycle regulatory genes as normal primary human Schwann cells. Cell growth was also similar between normal primary and immortalized tumor cells in culture. Accurate cell lines derived directly

  20. Genomic and phenotypic profiles of two Brazilian breast cancer cell lines derived from primary human tumors

    DEFF Research Database (Denmark)

    Corrêa, Natássia C R; Kuasne, Hellen; Faria, Jerusa A Q A;

    2013-01-01

    Breast cancer is the most common type of cancer among women worldwide. Research using breast cancer cell lines derived from primary tumors may provide valuable additional knowledge regarding this type of cancer. Therefore, the aim of this study was to investigate the phenotypic profiles of MACL-1...... and MGSO-3, the only Brazilian breast cancer cell lines available for comparative studies. We evaluated the presence of hormone receptors, proliferation, differentiation and stem cell markers, using immunohistochemical staining of the primary tumor, cultured cells and xenografts implanted....... This shift in expression may be due to the selection of an 'establishment' phenotype in vitro. Whole-genome DNA evaluation showed a large amount of copy number alterations (CNAs) in the two cell lines. These findings render MACL-1 and MGSO-3 the first characterized Brazilian breast cancer cell lines...

  1. Preferential metabolism of N-nitrosodiethylamine by two cell lines derived from human pulmonary adenocarcinomas

    International Nuclear Information System (INIS)

    Diethylnitrosamine (DEN), in common with other nitrosamines, is a carcinogenic agent which produces tumors in a wide variety of tissues in experimental animals. The pulmonary Clara cell is a major target of N-nitrosamine-induced carcinogenesis in hamsters and rats. DEN is believed to require metabolic activation to elicit its carcinogenic effects. The metabolism of [14C]DEN was studied in two cell lines derived from human lung adenocarcinomas and two cell lines derived from human small cell lung cancers by monitoring 14CO2 production and covalent binding of radiolabel from [14C]DEN to the cell protein and DNA fractions. [14C]DEN was metabolized by adenocarcinoma-derived NCI-H322 (with Clara cell features) and NCI-H358 (with features of alveolar type II cells) but not by NCI-H69 and NCI-H128 (derived from small cell carcinoma). Metabolism was markedly inhibited by heat denaturation of the cell protein. [14C]DEN metabolism by NCI-H322 was greatly decreased when the incubation was carried out under anaerobic conditions and in the presence of a carbon monoxide enriched atmosphere. These results suggested the involvement of the cytochrome P-450-dependent monooxygenase enzyme system. Metabolism by NCI-H358 was also decreased in the absence of oxygen or presence of carbon monoxide although the effects were relatively small compared with the results with NCI-H322. On the other hand, aspirin or indomethacin, which are inhibitors of the fatty acid cyclooxygenase component of prostaglandin endoperoxide synthetase, preferentially inhibited [14C]DEN metabolism by NIC-H358. There were little or no effects of these inhibitors on the metabolism of DEN in NCI-H322. The data suggest that DEN metabolism in different lung cell types may be carried out by different enzyme systems which in turn may contribute to the selective effect of DEN in the lung

  2. Establishment of an Immortalized Skin Keratinocyte Cell Line Derived from the Animal Model Mastomys coucha

    Science.gov (United States)

    Hasche, Daniel; Stephan, Sonja; Savelyeva, Larissa; Westermann, Frank; Rösl, Frank

    2016-01-01

    In the present report we describe the establishment of a spontaneous immortalized skin keratinocyte cell line derived from the skin of the multimammate rodent Mastomys coucha. These animals are used in preclinical studies for a variety of human diseases such as infections with nematodes, bacteria and papillomaviruses, especially regarding cutaneous manifestations such as non-melanoma skin cancer. Here we characterize the cells in terms of their origin and cytogenetic features. Searching for genomic signatures, a spontaneous mutation in the splicing donor sequence of Trp53 (G to A transition at the first position of intron 7) could be detected. This point mutation leads to alternative splicing and to a premature stop codon, resulting in a truncated and, in turn, undetectable form of p53, probably contributing to the process of immortalization. Mastomys coucha-derived skin keratinocytes can be used as an in vitro system to investigate molecular and immunological aspects of infectious agent interactions with their host cells. PMID:27533138

  3. LncRNA analysis of mouse spermatogonial stem cells following glial cell-derived neurotrophic factor treatment

    OpenAIRE

    Lufan Li; Min Wang; Mei Wang; Xiaoxi Wu; Lei Geng; Yuanyuan Xue; Xiang Wei; Yuanyuan Jia; Xin Wu

    2015-01-01

    Spermatonial stem cells (SSCs) are the foundation of spermatogenesis. Long non-coding RNAs (lncRNAs) are a class of non-coding RNAs with at least 200 bp in length, which play important roles in various biological processes. Growth factor glial cell line-derived neurotrophic factor (GDNF), secreted from testis niches, is critical for self-renewal of SSCs in vitro and in vivo. Using Illumina HiSeq™ 2000 high throughput sequencing, we found 55924 lncRNAs which were regulated by GDNF in SSCs in v...

  4. Establishment and characterization of a human intrahepatic cholangiocarcinoma cell line derived from an Italian patient.

    Science.gov (United States)

    Cavalloni, Giuliana; Peraldo-Neia, Caterina; Varamo, Chiara; Casorzo, Laura; Dell'Aglio, Carmine; Bernabei, Paola; Chiorino, Giovanna; Aglietta, Massimo; Leone, Francesco

    2016-03-01

    Biliary tract carcinoma is a rare malignancy with multiple causes, which underlie the different genetic and molecular profiles. Cancer cell lines are affordable models, reflecting the characteristics of the tumor of origin. They represent useful tools to identify molecular targets for treatment. Here, we established and characterized from biological, molecular, and genetic point of view, an Italian intrahepatic cholangiocarcinoma cell line (ICC), the MT-CHC01. MT-CHC01 cells were isolated from a tumor-derived xenograft. Immunophenotypical characterization was evaluated both at early and after stabilization passages. In vitro biological, genetic, and molecular features were also investigated. In vivo tumorigenicity was assessed in NOD/SCID mice. MT-CHC01cells retain epithelial cell markers, EPCAM, CK7, and CK19, and some stemness and pluripotency markers, i.e., SOX2, Nanog, CD49f/integrin-α6, CD24, PDX1, FOXA2, and CD133. They grow as a monolayer, with a population double time of about 40 h; they show a low migration and invasion potential. In low attachment conditions, they are able to form spheres and to growth in anchorage-independent manner. After subcutaneous injection, they retain in vivo tumorigenicity; the expression of biliary markers as CA19-9 and CEA were maintained from primary tumor. The karyotype is highly complex, with a hypotriploid to hypertriploid modal number (3n+/-) (52 to 77 chromosomes); low level of HER2 gene amplification, TP53 deletion, gain of AURKA were identified; K-RAS G12D mutation were maintained from primary tumor to MT-CHC01 cells. We established the first ICC cell line derived from an Italian patient. It will help to study either the biology of this tumor or to test drugs both in vitro and in vivo. PMID:26486326

  5. Establishment of epidermal cell lines derived from the skin of the Atlantic bottlenose dolphin (Tursiops truncatus).

    Science.gov (United States)

    Yu, Jin; Kindy, Mark S; Ellis, Blake C; Baatz, John E; Peden-Adams, Margie; Ellingham, Tara J; Wolff, Daynna J; Fair, Patricia A; Gattoni-Celli, Sebastiano

    2005-12-01

    The Atlantic bottlenose dolphin (Tursiops truncatus), a marine mammal found off the Atlantic coast, has become the focus of considerable attention because of an increasing number of mortality events witnessed in this species over the last several years along the southeastern United States. Assessment of the impact of environmental stressors on bottlenose dolphins (BND) has been difficult because of the protected status of these marine mammals. The studies presented herein focused on establishing epidermal cell cultures and cell lines as tools for the in vitro evaluation of environmental stressors on BND skin. Epidermal cell cultures were established from skin samples obtained from Atlantic BND and subjected to karyotype analysis. These cultures were further characterized using immunohistochemical methods demonstrating expression of cytokeratins. By two-dimensional polyacrylamide gel electrophoresis (2D-PAGE), we observed that the proteomic profile of BND skin tissue samples shared distinct similarities with that of skin-derived cultures. Epidermal cell cultures were transfected with a plasmid encoding the SV40 small t- and large T-antigens, as well as the neomycin-resistance gene. Five neomycin-resistant clones were isolated and expanded, and all of them proliferated at a faster rate than nontransfected BND epidermal cultures, which exhibited signs of senescence. Cell lysates prepared from two transfected clones were shown to express, by Western blot analysis, both SV40 tumor antigens. These experimental results are consistent with the concept that transfected clones expressing SV40 tumor antigens represent immortalized BND cell lines. Epidermal cell lines derived from Tursiops truncatus will provide a unique tool for studying key features of the interaction occurring between dolphins and the environment in which they live at their most crucial interface: the skin. PMID:16281302

  6. Comparison of ultracentrifugation and density gradient separation methods for isolating Tca8113 human tongue cancer cell line-derived exosomes

    OpenAIRE

    Zhang, Zhuoyuan; Wang, Chenxing; Li, Tang; LIU, ZHE; LI, LONGJIANG

    2014-01-01

    The aim of the present study was to compare the method of ultracentrifugation and density gradient separation for isolating Tca8113 human tongue squamous cell carcinoma cell line-derived exosomes. The exosomes were obtained from the culture supernatant of cultured Tca8113 cells, respectively, followed by identification with transmission electron microscopy observation and western blot analysis. The two different methods were then compared by the morphology, the distribution range of the parti...

  7. Rabbit embryonic stem cell lines derived from fertilized, parthenogenetic or somatic cell nuclear transfer embryos

    International Nuclear Information System (INIS)

    Embryonic stem cells were isolated from rabbit blastocysts derived from fertilization (conventional rbES cells), parthenogenesis (pES cells) and nuclear transfer (ntES cells), and propagated in a serum-free culture system. Rabbit ES (rbES) cells proliferated for a prolonged time in an undifferentiated state and maintained a normal karyotype. These cells grew in a monolayer with a high nuclear/cytoplasm ratio and contained a high level of alkaline phosphate activity. In addition, rbES cells expressed the pluripotent marker Oct-4, as well as EBAF2, FGF4, TDGF1, but not antigens recognized by antibodies against SSEA-1, SSEA-3, SSEA-4, TRA-1-10 and TRA-1-81. All 3 types of ES cells formed embryoid bodies and generated teratoma that contained tissue types of all three germ layers. rbES cells exhibited a high cloning efficiency, were genetically modified readily and were used as nuclear donors to generate a viable rabbit through somatic cell nuclear transfer. In combination with genetic engineering, the ES cell technology should facilitate the creation of new rabbit lines

  8. Biological characteristics of a novel giant cell tumor cell line derived from spine.

    Science.gov (United States)

    Zhou, Zhenhua; Li, Yan; Xu, Leqin; Wang, Xudong; Chen, Su; Yang, Cheng; Xiao, Jianru

    2016-07-01

    Giant cell tumor of bone(GCTB) is a special bone tumor for it consists of various cell types, and its biological characteristics is different from common benign or malignant neoplasm. In the present study, we report the biological features of a primary Asian GCTB cell line named GCTB28. We analyzed extensive properties of the GCTB28 cells including morphological observations, growth, cell cycle, karyotype, proliferation, proteins expression, surface biomarker verification, and tumorigenicity in nude mice. We found that the stromal cells of GCTB were endowed with self-renewal capacity and played dominant roles in GCTB development. Moreover, we confirmed that GCTB cells can be CD33(-)CD14(-) phenotype which was not in accord with previous study. This study provides an in vitro model system to investigate pathogenic mechanisms and molecular characteristics of GCTB and also provides a useful tool for researching the therapeutic targeting of GCTB. PMID:26801673

  9. Cell surface glycopeptides from human intestinal epithelial cell lines derived from normal colon and colon adenocarcinomas

    International Nuclear Information System (INIS)

    The cell surface glycopeptides from an epithelial cell line (CCL 239) derived from normal human colon were compared with those from three cell lines (HCT-8R, HCT-15, and CaCo-2) derived independently from human colonic adenocarcinomas. Cells were incubated with D-[2-3H]mannose or L-[5,6-3H]fucose for 24 h and treated with trypsin to release cell surface components which were then digested exhaustively with Pronase and fractionated on Bio-Gel P-6 before and after treatment with endo-beta-N-acetylglucosaminidase H. The most noticeable difference between the labeled glycopeptides from the tumor and CCL 239 cells was the presence in the former of an endo-beta-N-acetylglucosaminidase H-resistant high molecular weight glycopeptide fraction which was eluted in the void volume of Bio-Gel P-6. This fraction was obtained with both labeled mannose and fucose as precursors. However, acid hydrolysis of this fraction obtained after incubation with [2-3H]mannose revealed that as much as 60-90% of the radioactivity was recovered as fucose. Analysis of the total glycopeptides (cell surface and cell pellet) obtained after incubation with [2-3H]mannose showed that from 40-45% of the radioactivity in the tumor cells and less than 10% of the radioactivity in the CCL 239 cells was recovered as fucose. After incubation of the HCT-8R cells with D-[1,6-3H]glucosamine and L-[1-14C]fucose, strong acid hydrolysis of the labeled glycopeptide fraction excluded from Bio-Gel P-6 produced 3H-labeled N-acetylglucosamine and N-acetylgalactosamine

  10. Analysis of G-banding in tumor cell lines derived from human neural stem cells

    Institute of Scientific and Technical Information of China (English)

    Junhua Zou; Yanhui Li

    2006-01-01

    BACKGROUND: The application of neural stem cell (NSC) is restricted because of its tumorigenesis, and the possible pathogenesis needs investigation.OBJECTIVE: To compare the differences of chromosomal G-banding between human NSCs (hNSCs) derived tumor cell line and hNSCs derived normal cell lines.DESIGN: A randomized controlled observation.SETTING: Building of Anatomy, Peking University Health Science Center.MATERIALS: The hNSC lines and hNSC-derived tumor cell lines were provided by the Research Center of Stem Cells, Peking University; DMEM/F12 (1:1) medium, N2 additive, B27 additive epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF) were produced by GIBCO BRL Company (USA); fetal bovine serum by HYCLONE Company (USA).METHODS: The experiments were carried out in the Department of Genetics, Peking University Health Science Center from February 2003 to July 2004. Human fetal striatal NSCs were inoculated hypodermically on the right scapular of nude mice; Normal human fetal striatal NSCs were cultured to 5-8 passages as controls. Karyotyping was performed on the 5th passage of hNSC-derived tumor cells at 6 weeks after hN-SC transplantation into nude mice (T1) and tumor cells at 15 weeks after transplantation (T2). Metaphase chromosomes were examined with microscope, G-banding cytogenetic analysis and karyotyping were performed according to the Cytoscan Karyotyping FISH and CGH software system (United biotechnology USA Corporation).MAIN OUTCOME MEASURES: G-banded analytical results of human fetal striatal nerve stem cells derived tumor cell lines (T1 and T2) of metaphase chromosomes were observed.RESULTS: ① Chromosome analysis of hNSC-derived tumor cell lines 1 (T1): Twenty-five well-spread metaphases were randomly selected for analysis. The karyotypes were 64, XX (8, 32%); 65, XX (1, 4%); 67,XX (5, 20%); 68, XX (11, 44%). The modal number of chromosomes in this cell lines was 68, which were all hypotriploid. The analysis of 8 G

  11. Solutions for the Cell Cycle in Cell Lines Derived from Human Tumors

    Directory of Open Access Journals (Sweden)

    B. Zubik-Kowal

    2006-01-01

    Full Text Available The goal of the paper is to compute efficiently solutions for model equations that have the potential to describe the growth of human tumor cells and their responses to radiotherapy or chemotherapy. The mathematical model involves four unknown functions of two independent variables: the time variable t and dimensionless relative DNA content x. The unknown functions can be thought of as the number density of cells and are solutions of a system of four partial differential equations. We construct solutions of the system, which allow us to observe the number density of cells for different t and x values. We present results of our experiments which simulate population kinetics of human cancer cells in vitro. Our results show a correspondence between predicted and experimental data.

  12. Genetic instability of cell lines derived from a single human small cell carcinoma of the lung

    DEFF Research Database (Denmark)

    Engelholm, S A; Vindeløv, L L; Spang-Thomsen, M;

    1985-01-01

    different DNA content appeared. By cloning, permanent cell lines were established from the new subpopulations, whereas the original population stopped growing. The cloned cell lines were characterized by morphology, chromosomes analysis, electron microscopy and plating efficiency; the stability of the DNA...... instability was demonstrated in these mouse-grown tumors as well. Development of resistance to antineoplastic treatment may be due to heterogeneity in sensitivity among subpopulations in a tumor. Isolation of populations with different DNA contents allows the study of interaction between subpopulations and...

  13. LncRNA analysis of mouse spermatogonial stem cells following glial cell-derived neurotrophic factor treatment

    Directory of Open Access Journals (Sweden)

    Lufan Li

    2015-09-01

    Full Text Available Spermatonial stem cells (SSCs are the foundation of spermatogenesis. Long non-coding RNAs (lncRNAs are a class of non-coding RNAs with at least 200 bp in length, which play important roles in various biological processes. Growth factor glial cell line-derived neurotrophic factor (GDNF, secreted from testis niches, is critical for self-renewal of SSCs in vitro and in vivo. Using Illumina HiSeq™ 2000 high throughput sequencing, we found 55924 lncRNAs which were regulated by GDNF in SSCs in vitro; these included 21,929 known lncRNAs from NONCODE library (version 3.0 and 33,975 predicted lncRNAs which were identified using Coding Potential Calculator. Analyses of these data should provide new insights into regulated mechanism in SSC self-renewal and proliferation. The data have been deposited in the Gene Expression Omnibus (series GSE66998.

  14. LncRNA analysis of mouse spermatogonial stem cells following glial cell-derived neurotrophic factor treatment

    Science.gov (United States)

    Li, Lufan; Wang, Min; Wang, Mei; Wu, Xiaoxi; Geng, Lei; Xue, Yuanyuan; Wei, Xiang; Jia, Yuanyuan; Wu, Xin

    2015-01-01

    Spermatonial stem cells (SSCs) are the foundation of spermatogenesis. Long non-coding RNAs (lncRNAs) are a class of non-coding RNAs with at least 200 bp in length, which play important roles in various biological processes. Growth factor glial cell line-derived neurotrophic factor (GDNF), secreted from testis niches, is critical for self-renewal of SSCs in vitro and in vivo. Using Illumina HiSeq™ 2000 high throughput sequencing, we found 55924 lncRNAs which were regulated by GDNF in SSCs in vitro; these included 21,929 known lncRNAs from NONCODE library (version 3.0) and 33,975 predicted lncRNAs which were identified using Coding Potential Calculator. Analyses of these data should provide new insights into regulated mechanism in SSC self-renewal and proliferation. The data have been deposited in the Gene Expression Omnibus (series GSE66998). PMID:26484267

  15. Influence of Spray-dried Hydroxyapatite-5-Fluorouracil Granules on Cell Lines Derived from Tissues of Mesenchymal Origin

    Directory of Open Access Journals (Sweden)

    Tim Scharnweber

    2008-11-01

    Full Text Available In our previous work we described the preparation and characterization of spray dried hydroxyapatite micro granules loaded with 5-fluorouracil (5-FU. These loaded particles are used as a model drug delivery system (DDS. In this study we examined the in vitro response of two cell lines derived from different tissues to 5-FU loaded granules (LG. Both cell lines, either L929 cells of a mouse fibroblast lineage or cells originating from a rat osteosarcoma (ROS 17/2.8 showed a dose dependent decrease in cell proliferation in response to 5-FU-, either dissolved in the culture medium or loaded onto particles. The response of the two cell lines to loaded and nonloaded particles was different. The effect of LG and of a corresponding concentration of free 5-FU was practically the same for the ROS 17/2.8 cells indicating that ROS 17/2.8 cells were not affected by the carrier material. In contrast, L929 cells showed a slight decrease in cell proliferation also in the presence of granules not loaded with 5-FU. This is thought to be attributed to the inhibition of mitogenesis by phosphocitrates, already demonstrated in fibroblasts. In summary, we found that the loaded 5-FU kept its effectivity after the spray drying process and that the response towards the granules varied with cell type. This is the first step towards a tissue specific DDS.

  16. Generation of cardiomyocytes from new human embrionic stem cell lines derived from poor-quanlity blastocysts

    OpenAIRE

    Raya Chamorro, ??ngel; Aran, Bego??a; Consiglio, Antonella; Barri, Pere N.; Veiga, Anna; Izpis??a Belmonte, J. C.; Rodr??guez Piz??, Ignasi

    2008-01-01

    Human embryonic stem (hES) cells represent a potential source for cell replacement therapy of many degenerative diseases. Most frequently, hES cell lines are derived from surplus embryos from assisted reproduction cycles, independent of their quality or morphology. Here, we show that hES cell lines can be obtained from poor-quality blastocysts with the same efficiency as that obtained from good- or intermediate-quality blastocysts. Furthermore, we show that the self-renewal, pluripotency, and...

  17. Establishment and characterization of a new highly metastatic human osteosarcoma cell line derived from Saos2

    OpenAIRE

    Du, Lin; Fan, Qiming; Tu, Bing; Yan, Wei; Tang, Tingting

    2014-01-01

    Osteosarcoma is the most common primary malignancy of bone in adolescents and young adults. There is a shortage of tumorigenic and highly metastatic human osteosarcoma cell lines that can be used for metastasis study. Here we establish and characterize a highly metastatic human osteosarcoma cell line that is derived from Saos2 cell line based on bioluminescence. The occasional pulmonary metastatic cells developed from Saos2 were isolated, harvested, characterized and named Saos2-l. The parent...

  18. Beta-cell lines derived from transgenic mice expressing a hybrid insulin gene-oncogene

    DEFF Research Database (Denmark)

    Efrat, S; Linde, S; Kofod, Hans;

    1988-01-01

    Three pancreatic beta-cell lines have been established from insulinomas derived from transgenic mice carrying a hybrid insulin-promoted simian virus 40 tumor antigen gene. The beta tumor cell (beta TC) lines maintain the features of differentiated beta cells for about 50 passages in culture. The ...

  19. Establishment and Molecular Characterization of Mesenchymal Stem Cell Lines Derived From Human Visceral & Subcutaneous Adipose Tissues

    Directory of Open Access Journals (Sweden)

    Jyoti Prakash Sutar

    2010-01-01

    Full Text Available Mesenchymal stem cells (MSCs, are multipotent stem cells that can differentiate into osteoblasts, chondrocytes, myocytes and adipocytes. We utilized adipose tissue as our primary source, since it is a rich source of MSCs as well as it can be harvested using a minimally invasive surgical procedure. Both visceral and subcutaneous adipose tissue (VSAT, SCAT respectively samples were cultured using growth medium without using any substratum for their attachment. We observed growth of mesenchymal like cells within 15 days of culturing. In spite of the absence of any substratum, the cells adhered to the bottom of the petri dish, and spread out within 2 hours. Presently VSAT cells have reached at passage 10 whereas; SCAT cells have reached at passage 14. Morphologically MSCs obtained from visceral adipose tissue were larger in shape than subcutaneous adipose tissue. We checked these cells for presence or absence of specific stem cell molecular markers. We found that VSAT and SCAT cells confirmed their MSC phenotype by expression of specific MSC markers CD 105 and CD13 and absence of CD34 and CD 45 markers which are specific for haematopoietic stem cells. These cells also expressed SOX2 gene confirming their ability of self-renewal as well as expressed OCT4, LIF and NANOG for their properties for pluripotency & plasticity. Overall, it was shown that adipose tissue is a good source of mesenchymal stem cells. It was also shown that MSCs, isolated from adipose tissue are multipotent stem cells that can differentiate into osteoblasts, chondrocytes, cardiomyocytes, adipocytes and liver cells which may open a new era for cell based regenerative therapies for bone, cardiac and liver disorders.

  20. Mimicking the Neurotrophic Factor Profile of Embryonic Spinal Cord Controls the Differentiation Potential of Spinal Progenitors into Neuronal Cells

    OpenAIRE

    Nakamura, Masaya; Tsuji, Osahiko; BREGMAN, BARBARA S.; Toyama, Yoshiaki; Okano, Hideyuki

    2011-01-01

    Recent studies have indicated that the choice of lineage of neural progenitor cells is determined, at least in part, by environmental factors, such as neurotrophic factors. Despite extensive studies using exogenous neurotrophic factors, the effect of endogenous neurotrophic factors on the differentiation of progenitor cells remains obscure. Here we show that embryonic spinal cord derived-progenitor cells express both ciliary neurotrophic factor (CNTF) and brain-derived neurotrophic factor (BD...

  1. Dysfunctional p53 deletion mutants in cell lines derived from Hodgkin's lymphoma

    DEFF Research Database (Denmark)

    Feuerborn, Alexander; Moritz, Constanze; von Bonin, Frederike;

    2006-01-01

    transcriptional activity of p53. Transcriptional inactivity was also found for p53 in L428 cells. This study characterizes mutations in TP53 transcripts within cHL cell lines with associated functional defects in the resulting p53 proteins and therefore reintroduces the concept that mutations of TP53 might be...

  2. A new cell line derived from embryonic tissues of Holotrichia parallela (Coleoptera:Scarabaeidae).

    Science.gov (United States)

    Li, Miao-Miao; Zheng, Gui-Ling; Su, Rui; Wan, Fang-Hao; Li, Chang-You

    2016-06-01

    Holotrichia parallela is an important agricultural underground insect pest and also an edible and medicinal insect. Establishing a new cell line of H. parallela will provide a rapid and convenient tool for the studies on its physiology, pathology, and gene functions. In this study, by using the embryonic tissue of H. parallela as the material, we established a new cell line named Hp-E-1. The microscopic observation of its morphological characteristics revealed that its cellular morphology was mainly in the spherical morphology with a mean cellular diameter of 17.71 ± 2.34 μm, accounting for 67% of the total cells. The spindle-shaped cells accounted for 33% of the total cells with a mean size of 23.51 ± 4.37 × 13.98 ± 2.05 μm. The chromosomal number varied from 7 to 40, with about 50% of the cells having a diploid chromosome number of 2n = 20. Random amplified polymorphic DNA (RAPD) analysis indicated that the profiles of PCR-amplified fragments of this cell line were basically similar to those of the embryonic tissues of H. parallela but were obviously different from those of cell line BTI-Tn5B1-4 of Trichoplusia ni and cell line Sf-9 of Spodoptera frugiperda. The DNA fragment encoding mitochondrial cytochrome C oxidase subunit I (COI) gene of this cell line shared 99.7% homology with that of the embryonic tissue of H. parallela, confirming that this cell line is indeed derived from H. parallela. The results of growth curve measurement indicated that the population doubling time of this cell line was 136.7 h. Cell line Hp-E-1 could not be infected by three viruses Autographa californica multiple nucleopolyhedrovirus (AcMNPV), Bombyx mori nucleopolyhedrovirus (BmNPV), and Spodoptera exigua multiple nucleopolyhedrovirus (SeMNPV). PMID:27083164

  3. Susceptibility Analysis of a Cell Line Derived from Aedes aegypti (Diptera: ulicidae

    Directory of Open Access Journals (Sweden)

    Carolina Muñoz-Camargo

    2005-12-01

    Full Text Available The susceptibility of culture cells derived fromembryonic tissues of Aedes aegypti to theinfection with Leishmania (L chagasi andLeishmania (V braziliensis was evaluated.Methodology: These parasites are etiologicalagents of American visceral leishmaniasis andcutaneous leishmaniasis, respectively. Selectedcells of Aedes aegypti were maintained in culturemedium Grace/L15, supplement with 15% bovinefetal serum, 5,4 mg/ml of albendazol and anantibiotic mixture and incubated at an average temperature of 26°C. The cultures were inoculatedwith metacyclic promastigotes of the strain MH/CO/84/CI-044B of L. chagasi and the strainHOM/BR752903 of L. braziliensis in a concentrationof 10 parasites by cell. The J774 cellline was used as positive control of infection.Results: The highest percentage of infectionrepresented as the number of amastigotes per cellin A. aegyti cell cultures and in the J774 cell linewere obtained on days 6 and 9 post-infection.The results showed interaction, internalizationand maturation in vitro of the two species of theparasite in the cells of a non-vector insect ofLeishmania. Infected A. aegypti cells showedchanges in its area because of the influence of theparasites that differ significantly (P <0.05compared to not infected cells. Conclusion: Cellcultures from A. aegypti emerge as a new in vitromodel for the study of the biological cycle of L.chagasi and L. braziliensis.

  4. Establishment and characterisation of a new cell line derived from Culex quinquefasciatus (Diptera: Culicidae

    Directory of Open Access Journals (Sweden)

    Nidya A Segura

    2012-02-01

    Full Text Available Insect cell cultures are an important biotechnological tool for basic and applied studies. The objective of this work was to establish and characterise a new cell line from Culex quinquefasciatus embryonic tissues. Embryonated eggs were taken as a source of tissue to make explants that were seeded in L-15, Grace's, Grace's/L-15, MM/VP12, Schneider's and DMEM culture media with a pH range from 6.7-6.9 and incubated at 28ºC. The morphological, cytogenetic, biochemical and molecular characteristics of the cell cultures were examined by observing the cell shapes, obtaining the karyotypes, using a cellulose-acetate electrophoretic system and performing random amplified polymorphic DNA-polymerase chain reaction analysis, respectively. The Grace's/L-15 medium provided the optimal nutritional conditions for cell adhesion and proliferation. Approximately 40-60 days following the explant procedure, a confluent monolayer was formed. Cellular morphology in the primary cultures and the subcultures was heterogeneous, but in the monolayer the epithelioid morphology type predominated. A karyotype with a diploid number of six chromosomes (2n = 6 was observed. Isoenzymatic and molecular patterns of the mosquito cell cultures matched those obtained from the immature and adult forms of the same species. Eighteen subcultures were generated. These cell cultures potentially constitute a useful tool for use in biomedical applications.

  5. Properties of an EBV-B cell line derived interleukin 1 (IL 1) receptor

    International Nuclear Information System (INIS)

    The properties of an human IL 1 receptor on a human EBV-B line were studied. Purified human IL 1-β produced by a myelomonocytic cell line (THP-1) was labeled with 125I by the Bolton-Hunter method without loss of biological activity. Among four EBV-B cell lines tested, a pre-B cell type (VDS-O) specifically bound the most 125I IL-β. Maximal binding was reached within 20 min at 40C. Scatchard analysis of the binding of 125I-IL 1-β to VDS-O cells yielded a Kd of 2.4-5.9 x 10-00 M with 110 to 220 binding (receptor) sites/cell. The binding of 125I-IL 1-β to VDS-O cells was inhibited by anti-human IL 1 antibody, natural and recombinant human IL 1-α as well as IL 1-β, but not by IFN-α, TNF, or LT, suggesting that IL 1-α and IL 1-β specifically bind to the same receptor. The mw of the IL 1 receptor on human EBV-B cells was estimated to be 60 Kd both by a chemical crosslinking method and by HPLC gel filtration analysis of solubilized receptor extracted from membranes by a nonionic detergent (CHAPS). The pI of solubilized human IL 1 receptor was 7.3 by HPLC chromatofocusing. Data showing that VDS-O cells proliferate in response to exogenously added IL 1, express IL 1 receptors and also produce IL 1 all support the hypothesis that IL 1 may function as an autocrine signal for B lymphocytes

  6. Characterization of HGF/Met Signaling in Cell Lines Derived From Urothelial Carcinoma of the Bladder

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young H. [Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 (United States); Apolo, Andrea B. [Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 (United States); Agarwal, Piyush K.; Bottaro, Donald P., E-mail: dbottaro@helix.nih.gov [Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 (United States)

    2014-11-25

    There is mounting evidence of oncogenic hepatocyte growth factor (HGF)/Met signaling in urothelial carcinoma (UC) of the bladder. The effects of three kinase inhibitors, cabozantinib, crizotinib and EMD1214063, on HGF-driven signaling and cell growth, invasion and tumorigenicity were analyzed in cultured UC cell lines. SW780 xenograft growth in SCID and human HGF knock-in SCID (hHGF/SCID) mice treated with cabozantinib or vehicle, as well as tumor levels of Met and pMet, were also determined. Met content was robust in most UC-derived cell lines. Basal pMet content and effector activation state in quiescent cells were low, but significantly enhanced by added HGF, as were cell invasion, proliferation and anchorage independent growth. These HGF-driven effects were reversed by Met inhibitor treatment. Tumor xenograft growth was significantly higher in hHGF/SCID mice vs. SCID mice and significantly inhibited by cabozantinib, as was tumor phospho-Met content. These studies indicate the prevalence and functionality of the HGF/Met signaling pathway in UC cells, suggest that paracrine HGF may contribute to UC tumor growth and progression, and that support further preclinical investigation of Met inhibitors for the treatment of UC is warranted.

  7. Radiosensitivity in lymphoblastoid cell lines derived from Shwachman-Diamond syndrome patients

    International Nuclear Information System (INIS)

    Shwachman-Diamond syndrome is an autosomal-recessive disorder characterised by bone marrow failure and a cumulative risk of progression to acute myeloid leukaemia. The Shwachman-Bodian-Diamond syndrome (SBDS) gene, the only gene known to be causative of the pathology, is involved in ribosomal biogenesis, stress responses and DNA repair, and the lack of SBDS sensitises cells to many stressors and leads to mitotic spindle destabilisation. The effect of ionising radiation on SBDS-deficient cells was investigated using immortalised lymphocytes from SDS patients in comparison with positive and negative controls in order to test whether, in response to ionising radiation exposure, any impairment in the DNA repair machinery could be observed. After irradiating cells with different doses of X-rays or gamma-rays, DNA repair kinetics and the residual damages using the alkaline COMET assay and the γ-H2AX assay were assessed, respectively. In this work, preliminary data about the comparison between ionising radiation effects in different patients-derived cells and healthy control cells are presented. (authors)

  8. Invasion of primary glioma- and cell line-derived spheroids implanted into corticostriatal slice cultures

    DEFF Research Database (Denmark)

    Aaberg-Jessen, Charlotte; Nørregaard, Annette; Christensen, Karina Garnier; Pedersen, CB; Andersen, Claus; Kristensen, Bjarne Winther

    2013-01-01

    Gliomas are highly invasive tumors and the pronounced invasive features of gliomas prevent radical surgical resection. In the search for new therapeutics targeting invasive glioma cells, in vivo-like in vitro models are of great interest. We developed and evaluated an in vivo-like in vitro model...

  9. Invasion of primary glioma- and cell line-derived spheroids implanted into corticostriatal slice cultures

    DEFF Research Database (Denmark)

    Aaberg-Jessen, Charlotte; Nørregaard, Annette; Christensen, Karina;

    2013-01-01

    Gliomas are highly invasive tumors and the pronounced invasive features of gliomas prevent radical surgical resection. In the search for new therapeutics targeting invasive glioma cells, in vivo-like in vitro models are of great interest. We developed and evaluated an in vivo-like in vitro model ...

  10. Immortalized Human Schwann Cell Lines Derived From Tumors of Schwannomatosis Patients

    OpenAIRE

    Kimberly Laskie Ostrow; Katelyn Donaldson; Jaishri Blakeley; Allan Belzberg; Ahmet Hoke

    2015-01-01

    Schwannomatosis, a rare form of neurofibromatosis, is characterized predominantly by multiple, often painful, schwannomas throughout the peripheral nervous system. The current standard of care for schwannomatosis is surgical resection. A major obstacle to schwannomatosis research is the lack of robust tumor cell lines. There is a great need for mechanistic and drug discovery studies of schwannomatosis, yet appropriate tools are not currently available. Schwannomatosis tumors are difficult to ...

  11. The Effect of Erythropoietin on Neurotrophic Factors in N9 Murine Microglial Cells

    OpenAIRE

    Kuralay, Filiz; ÇAKIRLI, Başak BİNGOL; GENÇ, Şermin

    2008-01-01

    Aim: In this study, we investigated whether interferon gamma (IFNg), lipopolysaccharides (LPS) and amyloid beta (AMYb), as toxic stimulator agents, and erythropoietin (EPO), as a neurotrophic agent, have an effect on the production of the following neurotrophic factors in the N9 murine microglia cell line: neurotrophin 3 (NT3), neurotrophin 4 (NT4), and brain-derived neurotrophic factor (BDNF). Materials and Methods: Microglial cells were incubated with 50 μg/ml AMYb, or 1 _...

  12. Enteric glia mediate neuronal outgrowth through release of neurotrophic factors

    Institute of Scientific and Technical Information of China (English)

    Christopher R.Hansebout; Caixin Su; Kiran Reddy; Donald Zhang; Cai Jiang; Michel P.Rathbone; Shucui Jiang

    2012-01-01

    Previous studies have shown that transplanted enteric glia enhance axonal regeneration,reduce tissue damage,and promote functional recovery following spinal cord injury.However,the mechanisms by which enteric glia mediate these beneficial effects are unknown.Neurotrophic factors can promote neuronal differentiation,survival and neurite extension.We hypothesized that enteric glia may exert their protective effects against spinal cord injury partially through the secretion of neurotrophic factors.In the present study,we demonstrated that primary enteric glia cells release nerve growth factor,brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor over time with their concentrations reaching approximately 250,100 and 50 pg/mL of culture medium respectively after 48 hours.The biological relevance of this secretion was assessed by incubating dissociated dorsal root ganglion neuronal cultures in enteric glia-conditioned medium with and/or without neutralizing antibodies to each of these proteins and evaluating the differences in neurite growth.We discovered that conditioned medium enhances neurite outgrowth in dorsal root ganglion neurons.Even though there was no detectable amount of neurotrophin-3 secretion using ELISA analysis,the neurite outgrowth effect can be attenuated by the antibody-mediated neutralization of each of the aforementioned neurotrophic factors.Therefore,enteric glia secrete nerve growth factor,brain-derived neurotrophic factor,glial cell line-derived neurotrophic factor and neurotrophin-3 into their surrounding environment in concentrations that can cause a biological effect.

  13. Optimizing neurotrophic factor combinations for neurite outgrowth

    Science.gov (United States)

    Deister, C.; Schmidt, C. E.

    2006-06-01

    Most neurotrophic factors are members of one of three families: the neurotrophins, the glial cell-line derived neurotrophic factor family ligands (GFLs) and the neuropoietic cytokines. Each family activates distinct but overlapping cellular pathways. Several studies have shown additive or synergistic interactions between neurotrophic factors from different families, though generally only a single combination has been studied. Because of possible interactions between the neurotrophic factors, the optimum concentration of a factor in a mixture may differ from the optimum when applied individually. Additionally, the effect of combinations of neurotrophic factors from each of the three families on neurite extension is unclear. This study examines the effects of several combinations of the neurotrophin nerve growth factor (NGF), the GFL glial cell-line derived neurotrophic factor (GDNF) and the neuropoietic cytokine ciliary neurotrophic factor (CNTF) on neurite outgrowth from young rat dorsal root ganglion (DRG) explants. The combination of 50 ng ml-1 NGF and 10 ng ml-1 of each GDNF and CNTF induced the highest level of neurite outgrowth at a 752 ± 53% increase over untreated DRGs and increased the longest neurite length to 2031 ± 97 µm compared to 916 ± 64 µm for untreated DRGs. The optimum concentrations of the three factors applied in combination corresponded to the optimum concentration of each factor when applied individually. These results indicate that the efficacy of future therapies for nerve repair would be enhanced by the controlled release of a combination of neurotrophins, GFLs and neuropoietic cytokines at higher concentrations than used in previous conduit designs.

  14. Generation, isolation, and maintenance of human mast cells and mast cell lines derived from peripheral blood or cord blood

    DEFF Research Database (Denmark)

    Rådinger, Madeleine; Jensen, Bettina M; Kuehn, Hye Sun; Kirshenbaum, Arnold; Gilfillan, Alasdair M

    conducted in rodent mast cells. However, to understand how these responses pertain to human disease, and to investigate and develop novel therapies for the treatment of human mast cell-driven disease, human mast cell models may have greater relevance. Recently, a number of systems have been developed to...

  15. Proliferative and antiproliferative effects of interferon-gamma and tumor necrosis factor-alpha on cell lines derived from cervical and ovarian malignancies

    International Nuclear Information System (INIS)

    Four human cell lines derived from cervical carcinomas (ME-180, SiHa, HT-3, and MS751) and three human cell lines derived from ovarian carcinomas (SK-OV-3, Caov-3, and NIH:OVCAR-3) were analyzed in vitro to determine the effect of recombinant interferon-gamma and recombinant human tumor necrosis factor-alpha on cell growth and survival. The effects of interferon-gamma, tumor necrosis factor-alpha, and both interferon-gamma and tumor necrosis factor-alpha on cell growth were measured after 24 and 72 hours of incubation by the incorporation of chromium 51. The results of this analysis showed that all seven cell lines were resistant to the antiproliferative action of tumor necrosis factor-alpha, that the growth of most cell lines was inhibited by interferon-gamma by 72 hours of incubation, and that after 72 hours of incubation all cell lines demonstrated a synergistic antiproliferative response to the combination of interferon-gamma and tumor necrosis factor-alpha. However, the effects of these cytokines on cell growth were found to differ among cell lines and varied with the concentration and the duration of incubation. The growth of one cell line (Caov-3) was stimulated by both tumor necrosis factor-alpha and interferon-gamma. These results suggest that the clinical effects of these cytokines on the growth of gynecologic cancers may be more complex than previously supposed

  16. Sox10 regulates ciliary neurotrophic factor gene expression in Schwann cells

    OpenAIRE

    Ito, Yasuhiro; Wiese, Stefan; Funk, Natalja; Chittka, Alexandra; Rossoll, Wilfried; Bömmel, Heike; Watabe, Kazuhiko; Wegner, Michael; Sendtner, Michael

    2006-01-01

    Ciliary neurotrophic factor (Cntf) plays an essential role in postnatal maintenance of spinal motoneurons. Whereas the expression of this neurotrophic factor is low during embryonic development, it is highly up-regulated after birth in myelinating Schwann cells of rodents. To characterize the underlying transcriptional mechanisms, we have analyzed and compared the effects of various glial transcription factors. In contrast to Pit-1, Oct-1, Unc-86 homology region (POU) domain class 3, transcri...

  17. Electroacupuncture-regulated neurotrophic factor mRNA expression in the substantia nigra of Parkinson's disease rats.

    Science.gov (United States)

    Wang, Shuju; Fang, Jianqiao; Ma, Jun; Wang, Yanchun; Liang, Shaorong; Zhou, Dan; Sun, Guojie

    2013-02-25

    Acupuncture for the treatment of Parkinson's disease has a precise clinical outcome. This study investigated the effect of electroacupuncture at Fengfu (GV16) and Taichong (LR3) acupoints in rat models of Parkinson's disease induced by subcutaneous injection of rotenone into rat neck and back. Reverse transcription-PCR demonstrated that brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor mRNA expression was significantly increased in the substantia nigra of rat models of Parkinson's disease, and that abnormal behavior of rats was significantly improved following electroacupuncture treatment. These results indicated that electroacupuncture treatment upregulated brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor mRNA expression in the substantia nigra of rat models of Parkinson's disease. Thus, electroacupuncture may be useful in the treatment of Parkinson's disease. PMID:25206697

  18. Streptococcus pneumoniae infection regulates expression of neurotrophic factors in the olfactory bulb and cultured olfactory ensheathing cells.

    Science.gov (United States)

    Ruiz-Mendoza, S; Macedo-Ramos, H; Santos, F A; Quadros-de-Souza, L C; Paiva, M M; Pinto, T C A; Teixeira, L M; Baetas-da-Cruz, W

    2016-03-11

    Streptococcus pneumoniae is the causative agent of numerous diseases including severe invasive infections such as bacteremia and meningitis. It has been previously shown that strains of S. pneumoniae that are unable to survive in the bloodstream may colonize the CNS. However, information on cellular components and pathways involved in the neurotropism of these strains is still scarce. The olfactory system is a specialized tissue in which olfactory receptor neurons (ORNs) are interfacing with the external environment through several microvilli. Olfactory ensheathing cells (OECs) which also form the glial limiting membrane at the surface of the olfactory bulb (OB) are the only cells that ensheathe the ORNs axons. Since previous data from our group showed that OECs may harbor S. pneumoniae, we decided to test whether infection of the OB or OEC cultures modulates the expression levels of neurotrophic factor's mRNA and its putative effects on the activation and viability of microglia. We observed that neurotrophin-3 (NT-3) and glial cell-line-derived neurotrophic factor (GDNF) expression was significantly higher in the OB from uninfected mice than in infected mice. A similar result was observed when we infected OEC cultures. Brain-derived neurotrophic factor (BNDF) expression was significantly lower in the OB from infected mice than in uninfected mice. In contrast, in vitro infection of OECs resulted in a significant increase of BDNF mRNA expression. An upregulation of high-mobility group box 1 (HMGB1) expression was observed in both OB and OEC cultures infected with S. pneumoniae. Moreover, we found that conditioned medium from infected OEC cultures induced the expression of the pro-apoptotic protein cleaved-caspase-3 and an apparently continuous nuclear factor-kappa B (NF-κB) p65 activation in the N13 microglia. Altogether, our data suggest the possible existence of an OEC-pathogen molecular interface, through which the OECs could interfere on the activation and

  19. Electroacupuncture-regulated neurotrophic factor mRNA expression in the substantia nigra of Parkinson's disease rats☆

    OpenAIRE

    Wang, Shuju; Fang, Jianqiao; Ma, Jun; Wang, Yanchun; Liang, Shaorong; Zhou, Dan; Sun, Guojie

    2013-01-01

    Acupuncture for the treatment of Parkinson's disease has a precise clinical outcome. This study investigated the effect of electroacupuncture at Fengfu (GV16) and Taichong (LR3) acupoints in rat models of Parkinson's disease induced by subcutaneous injection of rotenone into rat neck and back. Reverse transcription-PCR demonstrated that brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor mRNA expression was significantly increased in the substantia nigra of rat m...

  20. Ciliary neurotrophic factor (CNTF) for human retinal degeneration: Phase I trial of CNTF delivered by encapsulated cell intraocular implants

    OpenAIRE

    Sieving, Paul A.; Caruso, Rafael C.; Tao, Weng; Coleman, Hanna R.; Thompson, Darby J. S.; Fullmer, Keri R.; Bush, Ronald A.

    2006-01-01

    Neurotrophic factors are agents with a promising ability to retard progression of neurodegenerative diseases and are effective in slowing photoreceptor degeneration in animal models of retinitis pigmentosa. Here we report a human clinical trial of a neurotrophic factor for retinal neurodegeneration. In this Phase I safety trial, human ciliary neurotrophic factor (CNTF) was delivered by cells transfected with the human CNTF gene and sequestered within capsules that were surgically implanted in...

  1. Cellular X-ray repair parameters of early passage squamous cell carcinoma lines derived from patients with known responses to radiotherapy

    International Nuclear Information System (INIS)

    X-ray survival parameters and repair of potentially lethal damage (PLDR) were investigated in ten early passage squamous cell carcinoma cell lines derived from patients who were biopsied before initiation of radiotherapy or after radiation therapy failure. Radiosensitivity (D0) ranged from 1.07 to 1.93 (Gy), extrapolation numbers (n-bar) from 1.17 to 2.14 and PLD recovery at 24 h from 1.4 to 20.3. Despite significant differences in these parameters amongst the cell lines, a firm correlation between radiocurability and any individual radiobiological parameter could not be established. The data suggest that the mechanisms associated with radioresistance are complex and that any single radiobiological parameter may not predict clinical success or failure. (author)

  2. Experimental infection of Leishmania (L. chagasi in a cell line derived from Lutzomyia longipalpis (Diptera:Psychodidae

    Directory of Open Access Journals (Sweden)

    Felio J Bello

    2005-10-01

    Full Text Available The present work describes the in vitro infection of a cell line Lulo, derived from Lutzomyia longipalpis embryonic tissue, by Leishmania chagasi promastigotes. This infection process is compared with a parallel one developed using the J774 cell line. The L. chagasi MH/CO/84/CI-044B strain was used for experimental infection in two cell lines. The cells were seeded on glass coverslips in 24-well plates to reach a final number of 2 x 10(5 cells/well. Parasites were added to the adhered Lulo and J774 cells in a 10:1 ratio and were incubated at 28 and 37ºC respectively. After 2, 4, 6, 8, and 10 days post-infection, the cells were extensively washed with PBS, fixed with methanol, and stained with Giemsa. The number of internalized parasites was determined by counting at least 400 cultured cells on each coverslip. The results showed continuous interaction between L. chagasi promastigotes with the cell lines. Some ultrastructural characteristics of the amastigote forms were observed using transmission electron microscopy. The highest percentage of infection in Lulo cells was registered on day 6 post-infection (29.6% and on day 4 in the J774 cells (51%. This work shows similarities and differences in the L. chagasi experimental infection process in the two cell lines. However, Lulo cells emerge as a new model to study the life-cycle of this parasite.

  3. Establishment of a preadipocyte cell line derived from mature adipocytes of GFP transgenic mice and formation of adipose tissue.

    Science.gov (United States)

    Nobusue, Hiroyuki; Endo, Tsuyoshi; Kano, Koichiro

    2008-06-01

    We established a preadipocyte cell line from mature adipocytes obtained from subcutaneous fat tissue of green fluorescent protein (GFP) transgenic mice. The floating top layer, containing mature adipocytes, was isolated from subcutaneous fat tissue by collagenase digestion and filtration. Fluorescence-activated cell sorting and microscopic analysis revealed that the floating cell fraction comprised a highly homogeneous adipocyte population with no adipose stromal-vascular cells. Isolated mature adipocytes dedifferentiated into fibroblast-like cells and actively proliferated in ceiling culture. In vitro studies showed that the cells could redifferentiate into mature adipocytes in an identical way to 3T3-L1 preadipocytes. No changes in the differentiation pattern were observed during the propagation of our cells. They were successfully maintained and differentiated for at least 22 passages. We named these cells dedifferentiated fat (DFAT-GFP) cells. When DFAT-GFP cells were implanted subcutaneously into C57BL/6N mice, they developed highly vascularized fat pads that morphologically resembled normal subcutaneous adipose tissue and consisted of GFP-positive cells; however, implanted 3T3-L1 cells did not have such an effect on the mice. We conclude that DFAT-GFP cells provide a model that should enable us to study the mechanisms of adipocyte differentiation and adipose tissue formation in vivo and in vitro. PMID:18386066

  4. Correction: BTI-Tnao38, a new cell line derived from Trichoplusia ni, is permissive for AcMNPV infection and produces high levels of recombinant proteins

    Directory of Open Access Journals (Sweden)

    Hashimoto Yoshi

    2012-04-01

    Full Text Available Abstract After publication we discovered an error in the identification of the origin of the cell line reported in our article in BMC Biotechnology (2010, 10:50, entitled "Ao38, a new cell line from eggs of the black witch moth, Ascalapha odorata (Lepidoptera: Noctuidae, is permissive for AcMNPV infection and produces high levels of recombinant proteins". Upon analysis of primary A. odorata cultures, we found that they were contaminated with cells of Trichoplusia ni origin. The origin of the Ao38 cell line was determined as T. ni using three marker genes and the Ao38 cell line was renamed BTI-Tnao38. References to the origin of the cell line as Ascalapha odorata should be replaced with "a cell line of Trichoplusia ni origin". The absence of TNCL virus detection in the BTI-Tnao38 (Ao38 cell line was confirmed using a highly sensitive RT-PCR protocol capable of detecting TNCL virus RNA at approximately 0.018 copies/cell. Because of these observations, we have revised the title of the original article to "Correction: BTI-Tnao38, a new cell line derived from Trichoplusia ni, is permissive for AcMNPV infection and produces high levels of recombinant proteins" and two additional authors were added to reflect their contributions to the analysis of this cell line.

  5. Ciliary neurotrophic factor (CNTF) plus soluble CNTF receptor α increases cyclooxygenase-2 expression, PGE2 release and interferon-γ-induced CD40 in murine microglia

    OpenAIRE

    Li Hong; Jain Mohit; Lin Hsiao-Wen; Levison Steven W

    2009-01-01

    Abstract Background Ciliary neurotrophic factor (CNTF) has been regarded as a potent trophic factor for motor neurons. However, recent studies have shown that CNTF exerts effects on glial cells as well as neurons. For instance, CNTF stimulates astrocytes to secrete FGF-2 and rat microglia to secrete glial cell line-derived neurotrophic factor (GDNF), which suggest that CNTF exerts effects on astrocytes and microglia to promote motor neuron survival indirectly. As CNTF is structurally related ...

  6. Comparison of radiosensitivity between human hematopoietic cell lines derived from patients with Down's syndrome and from normal persons

    International Nuclear Information System (INIS)

    Seven hematopoietic cell lines, four derived from the peripheral blood of patients with Down's syndrome (DS) and three from normal persons, were irradiated with 100, 150, 300, and 500 rads from a 60Co source and harvested for cell count and chromosome aberration studies every 12 hours for 72 hours post irradiation. Cell growth inhibition and an increase in chromosome aberration were observed in all the cell lines at each dose level and time interval. No significant difference was observed in the effects between DS and normal cell lines. The most common types of aberrations in the 12-hour samples were chromosome and/or chromatid breaks. In the later samples, chromatid exchanges were predominant. The results of the variance analyses on the induced chromosome aberrations in six lines (three DS and three normal lines) showed radiation dosage to be the largest component of total variance, following postirradiation duration and cell lines. The samples harvested 24 and 36 hours post irradiation generally showed greater effects than the samples of other harvest durations. The cell line variance could only be attributed to the differences among and between individual cell lines rather than the difference between DS and normal cell lines

  7. Investigation of Content, Stoichiometry and Transfer of miRNA from Human Neural Stem Cell Line Derived Exosomes

    OpenAIRE

    Stevanato, Lara; Thanabalasundaram, Lavaniya; Vysokov, Nickolai; Sinden, John D.

    2016-01-01

    Exosomes are small (30-100 nm) membrane vesicles secreted by a variety of cell types and only recently have emerged as a new avenue for cell-to-cell communication. They are natural shuttles of RNA and protein cargo, making them attractive as potential therapeutic delivery vehicles. MicroRNAs (miRNAs) are short non-coding RNAs which regulate biological processes and can be found in exosomes. Here we characterized the miRNA contents of exosomes derived from human neural stem cells (hNSCs). Our ...

  8. Investigation of Content, Stoichiometry and Transfer of miRNA from Human Neural Stem Cell Line Derived Exosomes

    OpenAIRE

    Stevanato, Lara; Thanabalasundaram, Lavaniya; Vysokov, Nickolai; Sinden, John D.

    2016-01-01

    Exosomes are small (30–100 nm) membrane vesicles secreted by a variety of cell types and only recently have emerged as a new avenue for cell-to-cell communication. They are natural shuttles of RNA and protein cargo, making them attractive as potential therapeutic delivery vehicles. MicroRNAs (miRNAs) are short non-coding RNAs which regulate biological processes and can be found in exosomes. Here we characterized the miRNA contents of exosomes derived from human neural stem cells (hNSCs). Our ...

  9. Generation and Characterization of Vascular Smooth Muscle Cell Lines Derived from a Patient with a Bicuspid Aortic Valve

    Directory of Open Access Journals (Sweden)

    Pamela Lazar-Karsten

    2016-04-01

    Full Text Available Thoracic aortic dilation is the most common malformation of the proximal aorta and is responsible for 1%–2% of all deaths in industrialized countries. In approximately 50% of patients with a bicuspid aortic valve (BAV, dilation of any or all segments of the aorta occurs. BAV patients with aortic dilation show an increased incidence of cultured vascular smooth muscle cell (VSMC loss. In this study, VSMC, isolated from the ascending aorta of BAV, was treated with Simian virus 40 to generate a BAV-originated VSMC cell line. To exclude any genomic DNA or cross-contamination, highly polymorphic short tandem repeats of the cells were profiled. The cells were then characterized using flow cytometry and karyotyping. The WG-59 cell line created is the first reported VSMC cell line isolated from a BAV patient. Using an RT2 Profiler PCR Array, genes within the TGFβ/BMP family that are dependent on losartan treatment were identified. Endoglin was found to be among the regulated genes and was downregulated in WG-59 cells following treatment with different losartan concentrations, when compared to untreated WG-59 cells.

  10. Mimicking the neurotrophic factor profile of embryonic spinal cord controls the differentiation potential of spinal progenitors into neuronal cells.

    Directory of Open Access Journals (Sweden)

    Masaya Nakamura

    Full Text Available Recent studies have indicated that the choice of lineage of neural progenitor cells is determined, at least in part, by environmental factors, such as neurotrophic factors. Despite extensive studies using exogenous neurotrophic factors, the effect of endogenous neurotrophic factors on the differentiation of progenitor cells remains obscure. Here we show that embryonic spinal cord derived-progenitor cells express both ciliary neurotrophic factor (CNTF and brain-derived neurotrophic factor (BDNF mRNA before differentiation. BDNF gene expression significantly decreases with their differentiation into the specific lineage, whereas CNTF gene expression significantly increases. The temporal pattern of neurotrophic factor gene expression in progenitor cells is similar to that of the spinal cord during postnatal development. Approximately 50% of spinal progenitor cells differentiated into astrocytes. To determine the effect of endogenous CNTF on their differentiation, we neutralized endogenous CNTF by administration of its polyclonal antibody. Neutralization of endogenous CNTF inhibited the differentiation of progenitor cells into astrocytes, but did not affect the numbers of neurons or oligodendrocytes. Furthermore, to mimic the profile of neurotrophic factors in the spinal cord during embryonic development, we applied BDNF or neurotrophin (NT-3 exogenously in combination with the anti-CNTF antibody. The exogenous application of BDNF or NT-3 promoted the differentiation of these cells into neurons or oligodendrocytes, respectively. These findings suggest that endogenous CNTF and exogenous BDNF and NT-3 play roles in the differentiation of embryonic spinal cord derived progenitor cells into astrocytes, neurons and oligodendrocytes, respectively.

  11. Investigation of Content, Stoichiometry and Transfer of miRNA from Human Neural Stem Cell Line Derived Exosomes.

    Directory of Open Access Journals (Sweden)

    Lara Stevanato

    Full Text Available Exosomes are small (30-100 nm membrane vesicles secreted by a variety of cell types and only recently have emerged as a new avenue for cell-to-cell communication. They are natural shuttles of RNA and protein cargo, making them attractive as potential therapeutic delivery vehicles. MicroRNAs (miRNAs are short non-coding RNAs which regulate biological processes and can be found in exosomes. Here we characterized the miRNA contents of exosomes derived from human neural stem cells (hNSCs. Our investigated hNSC line is a clonal, conditionally immortalized cell line, compliant with good manufacturing practice (GMP, and in clinical trials for stroke and critical limb ischemia in the UK (clinicaltrials.gov: NCT01151124, NCT02117635, and NCT01916369. By using next generation sequencing (NGS technology we identified the presence of a variety of miRNAs in both exosomal and cellular preparations. Many of these miRNAs were enriched in exosomes indicating that cells specifically sort them for extracellular release. Although exosomes have been proven to contain miRNAs, the copy number quantification per exosome of a given miRNA remains unclear. Herein we quantified by real-time PCR a highly shuttled exosomal miRNA subtype (hsa-miR-1246 in order to assess its stoichiometry per exosome. Furthermore, we utilized an in vitro system to confirm its functional transfer by measuring the reduction in luciferase expression using a 3' untranslated region dual luciferase reporter assay. In summary, NGS analysis allowed the identification of a unique set of hNSC derived exosomal miRNAs. Stoichiometry and functional transfer analysis of one of the most abundant identified miRNA, hsa-miR-1246, were measured to support biological relevance of exosomal miRNA delivery.

  12. Analysis of Marker Expression in Porcine Cell Lines Derived from Blastocysts Produced In Vitro and In Vivo

    Czech Academy of Sciences Publication Activity Database

    Vacková, I.; Nováková, Z.; Krylov, V.; Okada, K.; Kott, T.; Fulka, H.; Motlík, Jan

    2011-01-01

    Roč. 57, č. 5 (2011), s. 594-603. ISSN 0916-8818 R&D Projects: GA MZe QI101A166; GA MŠk 1M0538 Institutional research plan: CEZ:AV0Z50450515 Keywords : Blastocyst * In vivo and in vitro * Pig * Stem cells Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.459, year: 2011

  13. Low or undetectable TPO receptor expression in malignant tissue and cell lines derived from breast, lung, and ovarian tumors

    Directory of Open Access Journals (Sweden)

    Erickson-Miller Connie L

    2012-09-01

    Full Text Available Abstract Background Numerous efficacious chemotherapy regimens may cause thrombocytopenia. Thrombopoietin receptor (TPO-R agonists, such as eltrombopag, represent a novel approach for the treatment of chemotherapy-induced thrombocytopenia. The TPO-R MPL is expressed on megakaryocytes and megakaryocyte precursors, although little is known about its expression on other tissues. Methods Breast, lung, and ovarian tumor samples were analyzed for MPL expression by microarray and/or quantitative reverse transcription-polymerase chain reaction (qRT-PCR, and for TPO-R protein expression by immunohistochemistry (IHC. Cell line proliferation assays were used to analyze the in vitro effect of eltrombopag on breast, lung, and ovarian tumor cell proliferation. The lung carcinoma cell lines were also analyzed for TPO-R protein expression by Western blot. Results MPL mRNA was not detectable in 118 breast tumors and was detectable at only very low levels in 48% of 29 lung tumors studied by microarray analysis. By qRT-PCR, low but detectable levels of MPL mRNA were detectable in some normal (14-43% and malignant (3-17% breast, lung, and ovarian tissues. A comparison of MPL to EPOR, ERBB2, and IGF1R mRNA demonstrates that MPL mRNA levels were far lower than those of EPOR and ERBB2 mRNA in the same tissues. IHC analysis showed negligible TPO-R protein expression in tumor tissues, confirming mRNA analysis. Culture of breast, lung, and ovarian carcinoma cell lines showed no increase, and in fact, showed a decrease in proliferation following incubation with eltrombopag. Western blot analyses revealed no detectable TPO-R protein expression in the lung carcinoma cell lines. Conclusions Multiple analyses of breast, lung, and ovarian tumor samples and/or cell lines show no evidence of MPL mRNA or TPO-R protein expression. Eltrombopag does not stimulate growth of breast, lung, or ovarian tumor cell lines at doses likely to exert their actions on megakaryocytes and

  14. Low or undetectable TPO receptor expression in malignant tissue and cell lines derived from breast, lung, and ovarian tumors

    International Nuclear Information System (INIS)

    Numerous efficacious chemotherapy regimens may cause thrombocytopenia. Thrombopoietin receptor (TPO-R) agonists, such as eltrombopag, represent a novel approach for the treatment of chemotherapy-induced thrombocytopenia. The TPO-R MPL is expressed on megakaryocytes and megakaryocyte precursors, although little is known about its expression on other tissues. Breast, lung, and ovarian tumor samples were analyzed for MPL expression by microarray and/or quantitative reverse transcription-polymerase chain reaction (qRT-PCR), and for TPO-R protein expression by immunohistochemistry (IHC). Cell line proliferation assays were used to analyze the in vitro effect of eltrombopag on breast, lung, and ovarian tumor cell proliferation. The lung carcinoma cell lines were also analyzed for TPO-R protein expression by Western blot. MPL mRNA was not detectable in 118 breast tumors and was detectable at only very low levels in 48% of 29 lung tumors studied by microarray analysis. By qRT-PCR, low but detectable levels of MPL mRNA were detectable in some normal (14-43%) and malignant (3-17%) breast, lung, and ovarian tissues. A comparison of MPL to EPOR, ERBB2, and IGF1R mRNA demonstrates that MPL mRNA levels were far lower than those of EPOR and ERBB2 mRNA in the same tissues. IHC analysis showed negligible TPO-R protein expression in tumor tissues, confirming mRNA analysis. Culture of breast, lung, and ovarian carcinoma cell lines showed no increase, and in fact, showed a decrease in proliferation following incubation with eltrombopag. Western blot analyses revealed no detectable TPO-R protein expression in the lung carcinoma cell lines. Multiple analyses of breast, lung, and ovarian tumor samples and/or cell lines show no evidence of MPL mRNA or TPO-R protein expression. Eltrombopag does not stimulate growth of breast, lung, or ovarian tumor cell lines at doses likely to exert their actions on megakaryocytes and megakaryocyte precursors

  15. Dissociation of thyrotropin receptor function and thyrotropin dependency in rat thyroid tumour cell lines derived from FRTL-5.

    OpenAIRE

    van der Kallen, C. J.; Coes, J. H.; van Grafhorst, J. P.; Schuuring, E. M.; Ossendorp, F. A.; Thijssen, J. H.; Blankenstein, M. A.; Bruin, T.W.

    1996-01-01

    Spontaneously transformed somatic thyrocyte mutants, FRTL-5/TA and FRTL-5/TP, are thyrotropin (TSH) independent for growth and show loss of the thyroid-specific phenotype, with absent thyroglobulin and thyroid peroxidase gene expression. To investigate the role of TSH-receptor (TSH-R) activation in rat thyroid growth and function, binding of TSH and TSH-induced cAMP production were measured in intact cells under identical assay conditions. TSH binding did not differ in terms of affinity and r...

  16. A new type of papillomavirus DNA, its presence in genital cancer biopsies and in cell lines derived from cervical cancer.

    Science.gov (United States)

    Boshart, M; Gissmann, L; Ikenberg, H; Kleinheinz, A; Scheurlen, W; zur Hausen, H

    1984-01-01

    DNA of a new papillomavirus type was cloned from a cervical carcinoma biopsy. Two EcoRI clones of 7.8 and 6.9 kb in length were obtained, the latter contained a 900-bp deletion. The BamHI fragments of both clones were used to characterize the DNA. It represents a distinct type of papillomavirus as determined by its size, its cross-hybridization with DNA of other papillomavirus types under conditions of low stringency only, the co-linear alignment of its genome with HPV 6 and HPV 16 prototypes and its occasional occurrence as oligomeric episomes. We tentatively propose to designate it as HPV 18. DNA hybridizing with HPV 18 under stringent conditions was detected in 9/36 cervical carcinomas from Africa and Brazil, in 2/13 cervical tumors from Germany and 1/10 penile carcinomas. Benign tumors (17 cervical dysplasias, 29 genital warts), eight carcinomata in situ and 15 biopsies of normal cervical tissue were devoid of detectable HPV 18 DNA. HPV 18-related DNA was found, however, in cells of the HeLa, KB and C4-1 lines all derived from cervical cancer. The state of the viral DNA was investigated in four cervical cancer biopsies. The data reveal that the DNA might be integrated into the host cell genome. One tumor provided evidence for head to tail tandem repeats some of which persisted as circular episomes. Images Fig. 1. Fig. 2. Fig. 5. Fig. 6. Fig. 7. Fig. 8. Fig. 9. Fig. 10. PMID:6329740

  17. Ciliary neurotrophic factor has intrinsic and extrinsic roles in regulating B cell differentiation and bone structure.

    OpenAIRE

    Maria Askmyr; White, Kirby E; Tanja Jovic; King, Hannah A.; Quach, Julie M.; Maluenda, Ana C.; Baker, Emma K; Smeets, Monique F.; Walkley, Carl R.; Purton, Louise E.

    2015-01-01

    The gp130 receptor and its binding partners play a central role in cytokine signalling. Ciliary neurotrophic factor (CNTF) is one of the cytokines that signals through the gp130 receptor complex. CNTF has previously been shown to be a negative regulator of trabecular bone remodelling and important for motor neuron development. Since haematopoietic cell maintenance and differentiation is dependent on the bone marrow (BM) microenvironment, where cells of the osteoblastic lineage are important r...

  18. Neurotrophic Effect of Bone Marrow Stromal Cells on Proliferation and Committed Differentiation of Ventral Mesencephalic Precursors

    OpenAIRE

    Xiao-dong Wang; Heng-zhu Zhang; Zhi-gang Gong; Xi-gang Yan; Qing Lan; Qiang Huang

    2011-01-01

    OBJECTIVE To explore the potential neurotrophic effect of bone marrow stromal cells (BMSCs) on cell proliferation and committed neuronal differentiation of ventral mesencephalic precursors (VMPs) in vitro.METHODS Ventral mesencephalic precursors from E11 inbred rat embryos and BMSCs from adult rats were cultured both separately and in co-culture. After a 7-day incubation in vitro, three conditioned culture media were obtained, termed VMP or common medium, BMSC medium, and BMSC+VMP medium. V...

  19. Neurotrophic requirements of human motor neurons defined using amplified and purified stem cell-derived cultures.

    Directory of Open Access Journals (Sweden)

    Nuno Jorge Lamas

    Full Text Available Human motor neurons derived from embryonic and induced pluripotent stem cells (hESCs and hiPSCs are a potentially important tool for studying motor neuron survival and pathological cell death. However, their basic survival requirements remain poorly characterized. Here, we sought to optimize a robust survival assay and characterize their response to different neurotrophic factors. First, to increase motor neuron yield, we screened a small-molecule collection and found that the Rho-associated kinase (ROCK inhibitor Y-27632 enhances motor neuron progenitor proliferation up to 4-fold in hESC and hiPSC cultures. Next, we FACS-purified motor neurons expressing the Hb9::GFP reporter from Y-27632-amplified embryoid bodies and cultured them in the presence of mitotic inhibitors to eliminate dividing progenitors. Survival of these purified motor neurons in the absence of any other cell type was strongly dependent on neurotrophic support. GDNF, BDNF and CNTF all showed potent survival effects (EC(50 1-2 pM. The number of surviving motor neurons was further enhanced in the presence of forskolin and IBMX, agents that increase endogenous cAMP levels. As a demonstration of the ability of the assay to detect novel neurotrophic agents, Y-27632 itself was found to support human motor neuron survival. Thus, purified human stem cell-derived motor neurons show survival requirements similar to those of primary rodent motor neurons and can be used for rigorous cell-based screening.

  20. Effects of gamma-rays and glucose analogs on the energy metabolism of a cell line derived from human cerebral glioma

    International Nuclear Information System (INIS)

    Effects of gamma-rays and glucose analogs, 2-deoxy-D-glucose (2-DG), 5-thio-D-glucose (5-TG) and 3-O-methyl glucose (3-O-MG) on cellular energy metabolism have been studied in a cell line, derived from a human cerebral glioma, by analysing intermediates of glycolysis and some important nucleotides (ATP, NAD etc.) using the technique of isotachophoresis. Gamma-irradiation induced a transient decrease in the nucleotide levels accompanied by an accumulation of sugar phosphates, the nucleotide levels recovering in a few hours post-irradiation. 2-DG inhibited glycolysis and reduced the nucleotide levels of irradiated as well as unirradiated cells in a concentration-dependent manner both in presence and absence of respiration, whereas 5-TG and 3-OMG did not show significant effects in the presence of respiration. Reduced energy status observed with 2-DG under respiratory proficient conditions was completely reversed in 2 hr following its removal, whereas such a recovery was not observed in the absence of respiration. These results have important implications in the energy-linked modifications of tumor radiation response using glucose analogs. (author). 36 refs., 6 figs., 4 tabs

  1. Characterization of an RNA-directed DNA polymerase from a cell line derived from a radiation-induced lymphoma in mice

    International Nuclear Information System (INIS)

    An RNA-directed DNA polymerase was purified from a cell line derived from a radiation-induced lymphoma in NIH Swiss mice which produced non-infectious type C virus particles. The enzyme was isolated from a high speed particulate fraction which bands at a density of 1.16-1.19 g/ml in a sucrose gradient, and purified by successive chromatography on DEAE-cellulose, phosphocellulose and hydroxyapatite. The purified DNA polymerase has a molecular weight of 68 000, a pH optimum of 7.5, a KCl optimum of 50 mM, and a Mn2+ optimum of 0.25 mM. It prefers (dT)15.(A)sub(n) to (dT)15.(dA)sub(n) as the primer template and transcribes the poly(C) strand of (dG)15.(C)sub(n) and (dG)15.(OMeC)sub(n). It transcribes heteropolymeric regions of avian myeloblastosis virus 70 S RNA, and is inhibited by antiserum to Rauscher murine leukemia virus DNA polymerase. Comparison of the properties of DNA polymerase purified from radiation-induced lymphoma cells with the DNA polymerase purified from non-defective murine type C RNA tumor viruses shows that the mouse lymphoma enzyme is both biochemically and immunologically related to murine leukemia virus DNA polymerases. (Auth.)

  2. Perivascular Cells Increase Expression of Ciliary Neurotrophic Factor Following Partial Denervation of the Rat Neurohypophysis

    OpenAIRE

    Lo, David; SunRhodes, Neil; Watt, John A.

    2008-01-01

    The expression of ciliary neurotrophic factor (CNTF) was investigated immunocytochemically during the axonal degeneration and collateral axonal sprouting response that follows partial denervation of the rat neurohypophysis. A significant increase in the number of CNTF-immunoreactive (CNTF-ir) cells was observed in the neurohypophysis of partially denervated animals compared to age-matched sham-operated controls by 5 days post-denervation, remaining elevated throughout the 30 day post denervat...

  3. Glial Cell Line-Derived Neurotrophic Factor Mediates the Desirable Actions of the Anti-Addiction Drug Ibogaine against Alcohol Consumption

    OpenAIRE

    He, Dao-Yao; McGough, Nancy N.H.; Ravindranathan, Ajay; Jeanblanc, Jerome; Logrip, Marian L.; Phamluong, Khanhky; Janak, Patricia H.; Ron, Dorit

    2005-01-01

    Alcohol addiction manifests as uncontrolled drinking despite negative consequences. Few medications are available to treat the disorder. Anecdotal reports suggest that ibogaine, a natural alkaloid, reverses behaviors associated with addiction including alcoholism; however, because of side effects, ibogaine is not used clinically. In this study, we first characterized the actions of ibogaine on ethanol self-administration in rodents. Ibogaine decreased ethanol intake by rats in two-bottle choi...

  4. Glial cell line-derived neurotrophic factor up-regulates GTP-cyclohydrolase I activity and tetrahydrobiopterin levels in primary dopaminergic neurones

    DEFF Research Database (Denmark)

    Bauer, M; Suppmann, S; Meyer, M;

    2002-01-01

    the mode of action for that up-regulation is not directly connected to the regulation of GTPCH I transcription. We conclude that GDNF, in addition to its action in structural differentiation, also promotes differentiation regarding expression and enzymatic activity of a crucial component in the...

  5. Changes in skin levels of two neutotrophins (glial cell line derived neurotrohic factor and neurotrophin-3) cause alterations in cutaneous neuron responses to mechanical stimuli

    Institute of Scientific and Technical Information of China (English)

    Jeffrey Lawson; Sabrina L. Mcllwrath; H. Richard Koerber

    2008-01-01

    Neurotrophins are important for the development and maintenance of both high and low threshold mechanoreceptors (HTMRs and LTMRs). In this series of studies, the effects of constitutive overexpression of two different neurotrophins, neurotrophin-3 (NT-3) and glial cell line derived neurotrohic factor (GDNF), were examined. Previous studies indicated that both of them may be implicated in the normal development of mouse dorsal root ganglion (DRG) neurons. Neurons from mice transgenically altered to overexpress NT-3 or GDNF (NT-3-OE or GDNF-OE mice) in the skin were examined using several physiological, immunohistochemi-cal and molecular techniques. Ex vivo skin/nerve/DRG/spinal cord and skin/nerve preparations were used to determine the response characteristics of the cutaneous neurons; immunohistochemistry was used to examine the biochemical phenotype of DRG cells and the skin; RT-PCR was used to examine the levels of candidate ion channels in skin and DRG that may correlate with changes in physiologi-cal responses. In GDNF-OE mice, I-isolectin B4 (IB4)-immunopositive C-HTMRs (nociceptors), a large percentage of which are sensitive to GDNF, had significantly lower mechanical thresholds than wildtype (WT) neurons. Heat thresholds for the same cells were not different. Mechanical sensitivity changes in GDNF-OE mice were correlated with significant increases in acid sensing ion channels 2a (ASIC2a) and 2b (ASIC2b) and transient receptor potential channel AI (TRPAI), all of which are putative mechanosensitive ion channels. Overexpression of NT-3 affected the responses of A-LTMRs and A-HTMRs, hut had no effect on C-HTMRs. Slowly adapting type 1 (SA1) LTMRs and A-HTMRs had increased mechanical sensitivity compared to WT. Mechanical sensitivity was correlated with significant increases in acid-sensing ion channels ASIC1 and ASIC3. This data indicates that both neurotrophins play roles in determining mechanical thresholds of cutaneous HTMRs and LTMRs and that sensitivity

  6. Adenovirus-mediated human brain-derived neurotrophic factor gene-modified bone marrow mesenchymal stem cell transplantation for spinal cord injury

    Institute of Scientific and Technical Information of China (English)

    Changsheng Wang; Jianhua Lin; Chaoyang Wu; Rongsheng Chen

    2011-01-01

    Rat bone marrow mesenchymal stem cells expressing brain-derived neurotrophic factor were successfully obtained using a gene transfection method, then intravenously transplanted into rats with spinal cord injury. At 1, 3, and 5 weeks after transplantation, the expression of ??brain-derived neurotrophic factor and neurofilament-200 was upregulated in the injured spinal cord, spinal cord injury was alleviated, and Basso-Beattie-Bresnahan scores of hindlimb motor function were significantly increased. This evidence suggested that intravenous transplantation of adenovirus- mediated brain-derived neurotrophic factor gene-modified rat bone marrow mesenchymal stem cells could play a dual role, simultaneously providing neural stem cells and neurotrophic factors.

  7. Cell Line Derived Multi-Gene Predictor of Pathologic Response to Neoadjuvant Chemotherapy in Breast Cancer: A Validation Study on US Oncology 02-103 Clinical Trial

    Directory of Open Access Journals (Sweden)

    Shen Kui

    2012-11-01

    Full Text Available Abstract Background The purpose of this study is to assess the predictive accuracy of a multi-gene predictor of response to docetaxel, 5-fluorouracil, epirubicin and cyclophosphamide combination chemotherapy on gene expression data from patients who received these drugs as neoadjuvant treatment. Methods Tumor samples were obtained from patients with stage II-III breast cancer before starting neoadjuvant chemotherapy with four cycles of 5-fluorouracil/epirubicin/cyclophosphamide (FEC followed by four cycles of docetaxel/capecitabine (TX on US Oncology clinical trial 02-103. Most patients with HER-2-positive cancer also received trastuzumab (H. The chemotherapy predictor (TFEC-MGP was developed from publicly available gene expression data of 42 breast cancer cell-lines with corresponding in vitro chemotherapy sensitivity results for the four chemotherapy drugs. No predictor was developed for treatment with trastuzumab. The predictive performance of TFEC-MGP in distinguishing cases with pathologic complete response from those with residual disease was evaluated for the FEC/TX and FEC/TX plus H group separately. The area under the receiver-operating characteristic curve (AU-ROC was used as the metric of predictive performance. Genomic predictions were performed blinded to clinical outcome. Results The AU-ROC was 0.70 (95% CI: 0.57-0.82 for the FEC/TX group (n=66 and 0.43 (95% CI: 0.20-0.66 for the FEC/TX plus H group (n=25. Among the patients treated with FEC/TX, the AU-ROC was 0.69 (95% CI: 0.52-0.86 for estrogen receptor (ER-negative (n=28 and it was 0.59 (95% CI: 0.36-0.82 for ER-positive cancers (n=37. ER status was not reported for one patient. Conclusions Our results indicate that the cell line derived 291-probeset genomic predictor of response to FEC/TX combination chemotherapy shows good performance in a blinded validation study, particularly in ER-negative patients.

  8. Neuroblastoma cells contain a trophic factor sharing biological and molecular properties with ciliary neurotrophic factor.

    OpenAIRE

    Heymanns, J.; Unsicker, K

    1987-01-01

    Ciliary neurotrophic factor (CNTF) is a protein supporting the in vitro survival of a characteristic spectrum of embryonic chicken and rat peripheral neurons. High-speed supernatants of extracts from two neuroblastoma (NB) cell lines--the mouse C 1300 N2a and the human IMR 32--mimic the effects of CNTF on identical target neurons. Promotion of survival is dose-dependent with an ED50 of 80 micrograms (IMR 32) and 140 micrograms (C 1300 N2a) of protein per ml and saturable at plateau values for...

  9. The intricacies of neurotrophic factor therapy for retinal ganglion cell rescue in glaucoma: a case for gene therapy

    Science.gov (United States)

    Foldvari, Marianna; Chen, Ding Wen

    2016-01-01

    Regeneration of damaged retinal ganglion cells (RGC) and their axons is an important aspect of reversing vision loss in glaucoma patients. While current therapies can effectively lower intraocular pressure, they do not provide extrinsic support to RGCs to actively aid in their protection and regeneration. The unmet need could be addressed by neurotrophic factor gene therapy, where plasmid DNA, encoding neurotrophic factors, is delivered to retinal cells to maintain sufficient levels of neurotrophins in the retina. In this review, we aim to describe the intricacies in the design of the therapy including: the choice of neurotrophic factor, the site and route of administration and target cell populations for gene delivery. Furthermore, we also discuss the challenges currently being faced in RGC-related therapy development with special considerations to the existence of multiple RGC subtypes and the lack of efficient and representative in vitro models for rapid and reliable screening in the drug development process.

  10. Expression of ciliary neurotrophic factor (CNTF) and its tripartite receptor complex by cells of the human optic nerve head

    OpenAIRE

    Liu, Xiaochun; Clark, Abbot F.; Wordinger, Robert J.

    2007-01-01

    Purpose Ciliary neurotrophic factor (CNTF) promotes gene expression, cell survival and differentiation in various types of peripheral and central neurons, glia and nonneural cells. The level of CNTF rises rapidly upon injury to neural tissue, suggesting that CNTF exerts its cytoprotective effects after release from cells via mechanisms induced by cell injury. The purpose of this study was to determine if cells in the optic nerve head express CNTF and its tripartite receptor complex. Methods W...

  11. Light-induced retinal injury enhanced neurotrophins secretion and neurotrophic effect of mesenchymal stem cells in vitro

    Directory of Open Access Journals (Sweden)

    Wei Xu

    2013-04-01

    Full Text Available PURPOSE: To investigate neurotrophins expression and neurotrophic effect change in mesenchymal stem cells (MSCs under different types of stimulation. METHODS: Rats were exposed in 10,000 lux white light to develop light-induced retinal injury. Supernatants of homogenized retina (SHR, either from normal or light-injured retina, were used to stimulate MSCs. Quantitative real time for polymerase chain reaction (RT-PCR and enzyme-linked immunosorbent assay (ELISA were conducted for analysis the expression change in basic fibroblast growth factor (bFGF, brain-derived neurotrophic factor (BDNF and ciliary neurotrophic factor (CNTF in MSCs after stimulation. Conditioned medium from SHR-stimulated MSCs and control MSCs were collected for evaluation their effect on retinal explants. RESULTS: Supernatants of homogenized retina from light-injured rats significantly promoted neurotrophins secretion from MSCs (p<0.01. Conditioned medium from mesenchymal stem cells stimulated by light-injured SHR significantly reduced DNA fragmentation (p<0.01, up-regulated bcl-2 (p<0.01 and down-regulated bax (p<0.01 in retinal explants, displaying enhanced protective effect. CONCLUSIONS: Light-induced retinal injury is able to enhance neurotrophins secretion from mesenchymal stem cells and promote the neurotrophic effect of mesenchymal stem cells.

  12. Human umbilical cord blood stem cells and brain-derived neurotrophic factor for optic nerve injury: a biomechanical evaluation

    Directory of Open Access Journals (Sweden)

    Zhong-jun Zhang

    2015-01-01

    Full Text Available Treatment for optic nerve injury by brain-derived neurotrophic factor or the transplantation of human umbilical cord blood stem cells has gained progress, but analysis by biomechanical indicators is rare. Rabbit models of optic nerve injury were established by a clamp. At 7 days after injury, the vitreous body received a one-time injection of 50 μg brain-derived neurotrophic factor or 1 × 10 6 human umbilical cord blood stem cells. After 30 days, the maximum load, maximum stress, maximum strain, elastic limit load, elastic limit stress, and elastic limit strain had clearly improved in rabbit models of optical nerve injury after treatment with brain-derived neurotrophic factor or human umbilical cord blood stem cells. The damage to the ultrastructure of the optic nerve had also been reduced. These findings suggest that human umbilical cord blood stem cells and brain-derived neurotrophic factor effectively repair the injured optical nerve, improve biomechanical properties, and contribute to the recovery after injury.

  13. Human umbilical cord blood stem cells and brain-derived neurotrophic factor for optic nerve injury:a biomechanical evaluation

    Institute of Scientific and Technical Information of China (English)

    Zhong-jun Zhang; Ya-jun Li; Xiao-guang Liu; Feng-xiao Huang; Tie-jun Liu; Dong-mei Jiang; Xue-man Lv; Min Luo

    2015-01-01

    Treatment for optic nerve injury by brain-derived neurotrophic factor or the transplantation of human umbilical cord blood stem cells has gained progress, but analysis by biomechanical indicators is rare. Rabbit models of optic nerve injury were established by a clamp. At 7 days after injury, the vitreous body received a one-time injection of 50 μg brain-derived neurotrophic factor or 1 × 106 human umbilical cord blood stem cells. After 30 days, the maximum load, max-imum stress, maximum strain, elastic limit load, elastic limit stress, and elastic limit strain had clearly improved in rabbit models of optical nerve injury after treatment with brain-derived neu-rotrophic factor or human umbilical cord blood stem cells. The damage to the ultrastructure of the optic nerve had also been reduced. These ifndings suggest that human umbilical cord blood stem cells and brain-derived neurotrophic factor effectively repair the injured optical nerve, im-prove biomechanical properties, and contribute to the recovery after injury.

  14. Ciliary neurotrophic factor has intrinsic and extrinsic roles in regulating B cell differentiation and bone structure.

    Science.gov (United States)

    Askmyr, Maria; White, Kirby E; Jovic, Tanja; King, Hannah A; Quach, Julie M; Maluenda, Ana C; Baker, Emma K; Smeets, Monique F; Walkley, Carl R; Purton, Louise E

    2015-01-01

    The gp130 receptor and its binding partners play a central role in cytokine signalling. Ciliary neurotrophic factor (CNTF) is one of the cytokines that signals through the gp130 receptor complex. CNTF has previously been shown to be a negative regulator of trabecular bone remodelling and important for motor neuron development. Since haematopoietic cell maintenance and differentiation is dependent on the bone marrow (BM) microenvironment, where cells of the osteoblastic lineage are important regulators, we hypothesised that CNTF may also have important roles in regulating haematopoiesis. Analysis of haematopoietic parameters in male and female Cntf(-/-) mice at 12 and 24 weeks of age revealed altered B lymphopoiesis. Strikingly, the B lymphocyte phenotype differed based on sex, age and also the BM microenvironment in which the B cells develop. When BM cells from wildtype mice were transplanted into Cntf(-/-) mice, there were minimal effects on B lymphopoiesis or bone parameters. However, when Cntf(-/-) BM cells were transplanted into a wildtype BM microenvironment, there were changes in both haematopoiesis and bone parameters. Our data reveal that haematopoietic cell-derived CNTF has roles in regulating BM B cell lymphopoiesis and both trabecular and cortical bone, the latter in a sex-dependent manner. PMID:26487326

  15. Effects of hypoxia on expression of a panel of stem cell and chemosensitivity markers in glioblastoma cell line-derived spheroids

    DEFF Research Database (Denmark)

    Kolenda, Jesper; Jensen, Stine Skov; Aaberg-Jessen, Charlotte;

    entire immunohistochemical panel included hypoxia (HIF-1α, HIF-2α), proliferation (Ki-67) and stem cell (CD133, nestin, podoplanin, Bmi-1, Sox-2) markers as well as markers related to chemosensitivity (MGMT, MDR-1, TIMP-1, Lamp-1). Since spheroids derived in hypoxia were smaller than in normoxia, a set...... differences were found for podoplanin, nestin and TIMP-1 as well as for Ki-67. Hif-2α, Sox-2, MGMT and MDR-1 were not detectable in normoxic and hypoxic U87 spheroids. In conclusion, the expression of tumor stem cell and chemosensitivity markers seems to depend on the oxygen tension suggesting that future...... oxygen tensions below 1-5% O2 has been attributed to play a crucial role in tumorigenesis and therapeutic resistance in glioblastoma. This is in contrast to most in vitro experiments in this field being performed in atmospheric air with 21% O2. In this study the influence of hypoxia on the expression of...

  16. Dopamine D3 receptor-preferring agonists induce neurotrophic effects on mesencephalic dopamine neurons.

    Science.gov (United States)

    Du, Fang; Li, Rui; Huang, Yuangui; Li, Xuping; Le, Weidong

    2005-11-01

    Anti-parkinsonian agents, pramipexole (PPX) and ropinirole (ROP), have been reported to possess neuroprotective properties, both in vitro and in vivo. The mechanisms underlying neuroprotection afforded by the D3-preferring receptor agonists remain poorly understood. The present study demonstrates that incubation of primary mesencephalic cultures with PPX and ROP or the conditioned medium from PPX- or ROP-treated primary cultures induced a marked increase in the number of dopamine (DA) neurons in the cultures. Similar effects can be observed after incubating with the conditioned medium derived from PPX- and ROP-treated substantia nigra astroglia. Meanwhile, PPX and ROP can protect the primary cells from insult of 1-methyl-4-phenylpyridinium (MPP+), the active metabolite of the neurotoxin 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine (MPTP). Furthermore, the neurotrophic effects of PPX and ROP on mesencephalic dopamine neurons could be significantly blocked by D3 receptor antagonist, but not by D2 receptor antagonist. Moreover, we found that the levels of glial cell line-derived neurotrophic factor (GDNF) and brain-derived neurotrophic factor (BDNF) in the conditioned medium of mesencephalic cultures treated with PPX and ROP were significantly increased. Blocking GDNF and BDNF with the neutralizing antibodies, the neurotrophic effects of PPX and ROP were greatly diminished. These results suggest that D3 dopamine receptor-preferring agonists, PPX and ROP, exert neurotrophic effects on cultured DA neurons by modulating the production of endogenous GDNF and BDNF, which may participate in their neuroprotection. PMID:16307585

  17. Combining acellular nerve allografts with brain-derived neurotrophic factor transfected bone marrow mesenchymal stem cells restores sciatic nerve injury better than either intervention alone

    OpenAIRE

    Zhang, Yanru; Zhang, Hui; Zhang, Gechen; Ka, Ka; Huang, Wenhua

    2014-01-01

    In this study, we chemically extracted acellular nerve allografts from bilateral sciatic nerves, and repaired 10-mm sciatic nerve defects in rats using these grafts and brain-derived neurotrophic factor transfected bone marrow mesenchymal stem cells. Experiments were performed in three groups: the acellular nerve allograft bridging group, acellular nerve allograft + bone marrow mesenchymal stem cells group, and the acellular nerve allograft + brain-derived neurotrophic factor transfected bone...

  18. Effects of ciliary neurotrophic factor on retrograde cell reaction after facial nerve crush in young adults rats

    OpenAIRE

    Gispen, W.H.; Ulenkate, H.J.L.M.; Jennekens, F.G.I.

    1996-01-01

    Locally applied ciliary neurotrophic factor (CNTF) has a powerful effect on retrograde axonal reaction following facial nerve crush in neonatal rats. We examined whether it also exerts a strong effect on retrograde axonal reaction in young adult rats when administered subcutaneously. The dose was 1 mg/kg body weight, three times a week, similar to that used in a previous experiment in which CNTF was reported to have an effect. We studied changes in the morphology of the motor nerve cell bodie...

  19. Human umbilical cord blood-derived stem cells and brain-derived neurotrophic factor protect injured optic nerve: viscoelasticity characterization.

    Science.gov (United States)

    Lv, Xue-Man; Liu, Yan; Wu, Fei; Yuan, Yi; Luo, Min

    2016-04-01

    The optic nerve is a viscoelastic solid-like biomaterial. Its normal stress relaxation and creep properties enable the nerve to resist constant strain and protect it from injury. We hypothesized that stress relaxation and creep properties of the optic nerve change after injury. More-over, human brain-derived neurotrophic factor or umbilical cord blood-derived stem cells may restore these changes to normal. To validate this hypothesis, a rabbit model of optic nerve injury was established using a clamp approach. At 7 days after injury, the vitreous body re-ceived a one-time injection of 50 μg human brain-derived neurotrophic factor or 1 × 10(6) human umbilical cord blood-derived stem cells. At 30 days after injury, stress relaxation and creep properties of the optic nerve that received treatment had recovered greatly, with patho-logical changes in the injured optic nerve also noticeably improved. These results suggest that human brain-derived neurotrophic factor or umbilical cord blood-derived stem cell intervention promotes viscoelasticity recovery of injured optic nerves, and thereby contributes to nerve recovery. PMID:27212930

  20. Human umbilical cord blood-derived stem cells and brain-derived neurotrophic factor protect injured optic nerve: viscoelasticity characterization

    Directory of Open Access Journals (Sweden)

    Xue-man Lv

    2016-01-01

    Full Text Available The optic nerve is a viscoelastic solid-like biomaterial. Its normal stress relaxation and creep properties enable the nerve to resist constant strain and protect it from injury. We hypothesized that stress relaxation and creep properties of the optic nerve change after injury. More-over, human brain-derived neurotrophic factor or umbilical cord blood-derived stem cells may restore these changes to normal. To validate this hypothesis, a rabbit model of optic nerve injury was established using a clamp approach. At 7 days after injury, the vitreous body re-ceived a one-time injection of 50 µg human brain-derived neurotrophic factor or 1 × 106 human umbilical cord blood-derived stem cells. At 30 days after injury, stress relaxation and creep properties of the optic nerve that received treatment had recovered greatly, with patho-logical changes in the injured optic nerve also noticeably improved. These results suggest that human brain-derived neurotrophic factor or umbilical cord blood-derived stem cell intervention promotes viscoelasticity recovery of injured optic nerves, and thereby contributes to nerve recovery.

  1. Upregulation of mesencephalic astrocyte-derived neurotrophic factor in glial cells is associated with ischemia-induced glial activation

    Directory of Open Access Journals (Sweden)

    Shen Yujun

    2012-11-01

    Full Text Available Abstract Background Mesencephalic astrocyte-derived neurotrophic factor (MANF, a 20 kDa secreted protein, was originally derived from a rat mesencephalic type-1 astrocyte cell line. MANF belongs to a novel evolutionally conserved family of neurotrophic factors along with conserved dopamine neurotrophic factor. In recent years, ever-increasing evidence has shown that both of them play a remarkable protective role against various injuries to neurons in vivo or in vitro. However, the characteristics of MANF expression in the different types of glial cells, especially in astrocytes, remain unclear. Methods The model of focal cerebral ischemia was induced by rat middle cerebral artery occlusion. Double-labeled immunofluorescent staining was used to identify the types of neural cells expressing MANF. Primarily cultured glial cells were used to detect the response of glial cells to endoplasmic reticulum stress stimulation. Propidium iodide staining was used to determine dead cells. Reverse transcription PCR and western blotting were used to detect the levels of mRNA and proteins. Results We found that MANF was predominantly expressed in neurons in both normal and ischemic cortex. Despite its name, MANF was poorly expressed in glial cells, including astrocytes, in normal brain tissue. However, the expression of MANF was upregulated in the glial cells under focal cerebral ischemia, including the astrocytes. This expression was also induced by several endoplasmic reticulum stress inducers and nutrient deprivation in cultured primary glial cells. The most interesting phenomenon observed in this study was the pattern of MANF expression in the microglia. The expression of MANF was closely associated with the morphology and state of microglia, accompanied by the upregulation of BIP/Grp78. Conclusions These results indicate that MANF expression was upregulated in the activated glial cells, which may contribute to the mechanism of ischemia-induced neural injury.

  2. Type C virus particles produced in human T-cell lines derived from acute lymphoblastic leukemia and a leukemic T-lymphoid malignancy.

    Directory of Open Access Journals (Sweden)

    Oda,Takuzo

    1983-12-01

    Full Text Available Electron microscopy of four human T-cell lines revealed the production of type C virus particles in two T-cell lines: one derived from acute lymphoblastic leukemia and the other from a leukemic T-lymphoid malignancy. Virus particles isolated from these cells had reverse transcriptase activity and the major internal structural protein of 30,000 daltons (p30. The indirect immunofluorescence test of these virus-producing cells with sera of patients with adult T-cell leukemia (ATL was negative. The data indicate that these retroviruses are different from adult T-cell leukemia virus (ATLV.

  3. Type C virus particles produced in human T-cell lines derived from acute lymphoblastic leukemia and a leukemic T-lymphoid malignancy.

    OpenAIRE

    Oda, Takuzo; Watanabe,Sekiko; Nakamura,Takashi

    1983-01-01

    Electron microscopy of four human T-cell lines revealed the production of type C virus particles in two T-cell lines: one derived from acute lymphoblastic leukemia and the other from a leukemic T-lymphoid malignancy. Virus particles isolated from these cells had reverse transcriptase activity and the major internal structural protein of 30,000 daltons (p30). The indirect immunofluorescence test of these virus-producing cells with sera of patients with adult T-cell leukemia (ATL) was negative....

  4. Regulation of proteolytic cleavage of brain-derived neurotrophic factor precursor by antidepressants in human neuroblastoma cells

    Directory of Open Access Journals (Sweden)

    Lin PY

    2015-10-01

    Full Text Available Pao-Yen Lin1,2 1Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, 2Center for Translational Research in Biomedical Sciences, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan Abstract: Evidence has supported the role of brain-derived neurotrophic factor (BDNF in antidepressant effect. The precursor of BDNF (proBDNF often exerts opposing biological effects on mature BDNF (mBDNF. Hence, the balance between proBDNF and mBDNF might be critical in total neurotrophic effects, leading to susceptibility to or recovery from depression. In the current study, we measured the protein expression levels of proBDNF, and its proteolytic products, truncated BDNF, and mBDNF, in human SH-SY5Y cells treated with different antidepressants. We found that the treatment significantly increased the production of mBDNF, but decreased the production of truncated BDNF and proBDNF. These results support that antidepressants can promote proBDNF cleavage. Further studies are needed to clarify whether proBDNF cleavage plays a role in antidepressant mechanisms. Keywords: antidepressant, mature BDNF, neurotrophic effect, proBDNF cleavage 

  5. Physiological properties of astroglial cell lines derived from mice with high (SAMP8 and low (SAMR1, ICR levels of endogenous retrovirus

    Directory of Open Access Journals (Sweden)

    Choi Eun-Kyoung

    2008-11-01

    Full Text Available Abstract Previous studies have reported that various inbred SAM mouse strains differ markedly with regard to a variety of parameters, such as capacity for learning and memory, life spans and brain histopathology. A potential cause of differences seen in these strains may be based on the fact that some strains have a high concentration of infectious murine leukemia virus (MuLV in the brain, whereas other strains have little or no virus. To elucidate the effect of a higher titer of endogenous retrovirus in astroglial cells of the brain, we established astroglial cell lines from SAMR1 and SAMP8 mice, which are, respectively, resistant and prone to deficit in learning and memory and shortened life span. MuLV-negative astroglial cell lines established from ICR mice served as controls. Comparison of these cell lines showed differences in: 1 levels of the capsid antigen CAgag in both cell lysates and culture media, 2 expression of genomic retroelements, 3 the number of virus particles, 4 titer of infectious virus, 5 morphology, 6 replication rate of cells in culture and final cell concentrations, 7 expression pattern of proinflammatory cytokine genes. The results show that the expression of MuLV is much higher in SAMP8 than SAMR1 astrocyte cultures and that there are physiological differences in astroglia from the 2 strains. These results raise the possibility that the distinct physiological differences between SAMP8 and SAMR1 are a function of activation of endogenous retrovirus.

  6. Whole-exome sequencing of fibroblast and its iPS cell lines derived from a patient diagnosed with xeroderma pigmentosum.

    Science.gov (United States)

    Okamura, Kohji; Toyoda, Masashi; Hata, Kenichiro; Nakabayashi, Kazuhiko; Umezawa, Akihiro

    2015-12-01

    Cells from a patient with a DNA repair-deficiency disorder are anticipated to bear a large number of somatic mutations. Because such mutations occur independently in each cell, there is a high degree of mosaicism in patients' tissues. While major mutations that have been expanded in many cognate cells are readily detected by sequencing, minor ones are overlaid with a large depth of non-mutated alleles and are not detected. However, cell cloning enables us to observe such cryptic mutations as well as major mutations. In the present study, we focused on a fibroblastic cell line that is derived from a patient diagnosed with xeroderma pigmentosum (XP), which is an autosomal recessive disorder caused by a deficiency in nucleotide excision repair. By making a list of somatic mutations, we can expect to see a characteristic pattern of mutations caused by the hereditary disorder. We cloned a cell by generating an iPS cell line and performed a whole-exome sequencing analysis of the progenitor and its iPS cell lines. Unexpectedly, we failed to find causal mutations in the XP-related genes, but we identified many other mutations including homozygous deletion of GSTM1 and GSTT1. In addition, we found that the long arm of chromosome 9 formed uniparental disomy in the iPS cell line, which was also confirmed by a structural mutation analysis using a SNP array. Type and number of somatic mutations were different from those observed in XP patients. Taken together, we conclude that the patient might be affected by a different type of the disorder and that some of the mutations that we identified here may be responsible for exhibiting the phenotype. Sequencing and SNP-array data have been submitted to SRA and GEO under accession numbers SRP059858 and GSE55520, respectively. PMID:26697316

  7. A highly homozygous and parthenogenetic human embryonic stem cell line derived from a one-pronuclear oocyte following in vitro fertilization procedure

    Institute of Scientific and Technical Information of China (English)

    Ge Lin; Qi OuYang; Xiaoying Zhou; Yifan Gu; Ding Yuan; Wen Li; Gang Liu; Tiancheng Liu; Guanexiu Lu

    2007-01-01

    Homozygous human embryonic stem cells (hESCs) are thought to be better cell sources for hESC banking because their human leukocyte antigen (HLA) haplotype would strongly increase the degree of matching for certain populations with relatively smaller cohorts of cell lines. Homozygous hESCs can be generated from parthenogenetic embryos, but only heterozygous hESCs have been established using the current strategy to artificially activate the oocyte without second polar body extrusion. Here we report the first successful derivation of a human homozygous ESC line (chHES-32) from a one-pronuclear oocyte following routine in vitro fertilization treatment. cAHES-32 cells express common markers and genes with normal hESCs. They have been propagated in an undifferentiated state for more than a year (>P50) and have maintained a stable karyotype of 46, XX. When differentiated in vivo and in vitro, c/zHES-32 cells can form derivatives from all three embryonic germ layers. The almost undetectable expression of five paternally expressed imprinted genes and their HLA genotype identical to the oocyte donor indicated their parthenogenetic origin. Using genome-wide single-nucleotide polymorphism analysis and DNA fingerprinting, the homozygosity of c/zHES-32 cells was further confirmed. The results indicated that 'unwanted' one-pronuclear oocytes might be a potential source for human homozygous and parthenogenetic ESCs, and suggested an alternative strategy for obtaining homozygous hESC lines from parthenogenetic haploid oocytes.

  8. PrPC displays an essential protective role from oxidative stress in an astrocyte cell line derived from PrPC knockout mice

    International Nuclear Information System (INIS)

    Highlights: ► PrPC in solution acts as a radical scavenger. ► PrPC reduces hydrogen peroxide toxicity in astrocytes. ► Increase in ROS disrupted the cell cycle in the PrPC-knockout astrocytes. ► PrPC prevents the cell death independently of an SOD-like activity. -- Abstract: The PrPC protein, which is especially present in the cellular membrane of nervous system cells, has been extensively studied for its controversial antioxidant activity. In this study, we elucidated the free radical scavenger activity of purified murine PrPC in solution and its participation as a cell protector in astrocytes that were subjected to treatment with an oxidant. In vitro and using an EPR spin-trapping technique, we observed that PrPC decreased the oxidation of the DMPO trap in a Fenton reaction system (Cu2+/ascorbate/H2O2), which was demonstrated by approximately 70% less DMPO/OH·. In cultured PrPC-knockout astrocytes from mice, the absence of PrPC caused an increase in intracellular ROS (reactive oxygen species) generation during the first 3 h of H2O2 treatment. This rapid increase in ROS disrupted the cell cycle in the PrPC-knockout astrocytes, which increased the population of cells in the sub-G1 phase when compared with cultured wild-type astrocytes. We conclude that PrPC in solution acts as a radical scavenger, and in astrocytes, it is essential for protection from oxidative stress caused by an external chemical agent, which is a likely condition in human neurodegenerative CNS disorders and pathological conditions such as ischemia.

  9. PrP{sup C} displays an essential protective role from oxidative stress in an astrocyte cell line derived from PrP{sup C} knockout mice

    Energy Technology Data Exchange (ETDEWEB)

    Bertuchi, Fernanda R. [Center for Natural Sciences and Humanities, Federal University of ABC - UFABC, Avenida dos Estados, 5001, Bloco B, 09210-170, Santo Andre, SP (Brazil); Bourgeon, Dominique M.G.; Landemberger, Michele C.; Martins, Vilma R. [International Center for Research and Education, A.C. Camargo Hospital, Rua Tagua 440, 01505-010 Sao Paulo, SP (Brazil); Cerchiaro, Giselle, E-mail: giselle.cerchiaro@ufabc.edu.br [Center for Natural Sciences and Humanities, Federal University of ABC - UFABC, Avenida dos Estados, 5001, Bloco B, 09210-170, Santo Andre, SP (Brazil)

    2012-02-03

    Highlights: Black-Right-Pointing-Pointer PrP{sup C} in solution acts as a radical scavenger. Black-Right-Pointing-Pointer PrP{sup C} reduces hydrogen peroxide toxicity in astrocytes. Black-Right-Pointing-Pointer Increase in ROS disrupted the cell cycle in the PrP{sup C}-knockout astrocytes. Black-Right-Pointing-Pointer PrP{sup C} prevents the cell death independently of an SOD-like activity. -- Abstract: The PrP{sup C} protein, which is especially present in the cellular membrane of nervous system cells, has been extensively studied for its controversial antioxidant activity. In this study, we elucidated the free radical scavenger activity of purified murine PrP{sup C} in solution and its participation as a cell protector in astrocytes that were subjected to treatment with an oxidant. In vitro and using an EPR spin-trapping technique, we observed that PrP{sup C} decreased the oxidation of the DMPO trap in a Fenton reaction system (Cu{sup 2+}/ascorbate/H{sub 2}O{sub 2}), which was demonstrated by approximately 70% less DMPO/OH{sup {center_dot}}. In cultured PrP{sup C}-knockout astrocytes from mice, the absence of PrP{sup C} caused an increase in intracellular ROS (reactive oxygen species) generation during the first 3 h of H{sub 2}O{sub 2} treatment. This rapid increase in ROS disrupted the cell cycle in the PrP{sup C}-knockout astrocytes, which increased the population of cells in the sub-G1 phase when compared with cultured wild-type astrocytes. We conclude that PrP{sup C} in solution acts as a radical scavenger, and in astrocytes, it is essential for protection from oxidative stress caused by an external chemical agent, which is a likely condition in human neurodegenerative CNS disorders and pathological conditions such as ischemia.

  10. Comparison of the effect of cortisol on aromatase activity and androgen metabolism in two human fibroblast cell lines derived from the same individual

    DEFF Research Database (Denmark)

    Svenstrup, B; Brünner, N; Dombernowsky, P;

    1990-01-01

    The effect of preincubation with cortisol on estrogen and androgen metabolism was investigated in human fibroblast monolayers grown from biopsies of genital and non-genital skin of the same person. The activity in the cells of aromatase, 5 alpha-reductase, 17 beta-hydroxysteroid oxidoreductase and...... 3 alpha-hydroxysteroid oxidoreductase was investigated by isolating estrone, estradiol, estriol, dihydrotestosterone, androstanedione, androsterone, 3 alpha-androstanediol, testosterone and androstenedione after incubation of the cells with [14C]testosterone or [14C]androstenedione. For experiments...

  11. Brain-derived neurotrophic factor promotes cochlear spiral ganglion cell survival and function in deafened, developing cats.

    Science.gov (United States)

    Leake, Patricia A; Hradek, Gary T; Hetherington, Alexander M; Stakhovskaya, Olga

    2011-06-01

    Postnatal development and survival of spiral ganglion (SG) neurons depend on both neural activity and neurotrophic support. Our previous studies showed that electrical stimulation from a cochlear implant only partially prevents SG degeneration after early deafness. Thus, neurotrophic agents that might be combined with an implant to improve neural survival are of interest. Recent studies reporting that brain-derived neurotrophic factor (BDNF) promotes SG survival after deafness have been conducted in rodents and limited to relatively short durations. Our study examined longer duration BDNF treatment in deafened cats that may better model the slow progression of SG degeneration in human cochleae, and this is the first study of BDNF in the developing auditory system. Kittens were deafened neonatally, implanted at 4-5 weeks with intracochlear electrodes containing a drug-delivery cannula, and BDNF or artificial perilymph was infused for 10 weeks from a miniosmotic pump. In BDNF-treated cochleae, SG cells grew to normal size and were significantly larger than cells on the contralateral side. However, their morphology was not completely normal, and many neurons lacked or had thinned perikaryl myelin. Unbiased stereology was employed to estimate SG cell density, independent of cell size. BDNF was effective in promoting significantly improved survival of SG neurons in these developing animals. BDNF treatment also resulted in higher density and larger size of myelinated radial nerve fibers, sprouting of fibers into the scala tympani, and improvement of electrically evoked auditory brainstem response thresholds. BDNF may have potential therapeutic value in the developing auditory system, but many serious obstacles currently preclude clinical application. PMID:21452221

  12. Ciliary Neurotrophic Factor Promotes the Migration of Corneal Epithelial Stem/progenitor Cells by Up-regulation of MMPs through the Phosphorylation of Akt

    OpenAIRE

    Chen, Jialin; Chen, Peng; Backman, Ludvig J; Zhou, Qingjun; Danielson, Patrik

    2016-01-01

    The migration of limbal epithelial stem cells is important for the homeostasis and regeneration of corneal epithelium. Ciliary neurotrophic factor (CNTF) has been found to promote corneal epithelial wound healing by activating corneal epithelial stem/progenitor cells. However, the possible effect of CNTF on the migration of corneal epithelial stem/progenitor cells is not clear. This study found the expression of CNTF in mouse corneal epithelial stem/progenitor cells (TKE2) to be up-regulated ...

  13. Upregulation of p‑Akt by glial cell line‑derived neurotrophic factor ameliorates cell apoptosis in the hippocampus of rats with streptozotocin‑induced diabetic encephalopathy.

    Science.gov (United States)

    Cui, Weigang; Zhang, Yinghua; Lu, Derong; Ren, Mingxin; Yuan, Guoyan

    2016-01-01

    The loss of neurotrophic factor support has been shown to contribute to the development of the central nervous system. Glial cell line‑derived neurotrophic factor (GDNF), a potent neurotrophic factor, is closely associated with apoptosis and exerts neuroprotective effects on numerous populations of cells. However, the underlying mechanisms of these protective effects remain unknown. In the present study, a significant increase in Bax levels and DNA fragmentation was observed in the hippocampus obtained from the brains of diabetic rats 60 days after diabetes had been induced. The apoptotic changes were correlated with the loss of GDNF/Akt signaling. GDNF administration was found to reverse the diabetes‑induced Bax and DNA fragmentation changes. This was associated with an improvement in the level of p‑Akt/Akt. In addition, combination of GDNF with a specific inhibitor of the phosphoinositide 3‑kinase (PI3K)/Akt pathway, Wortmannin, significantly abrogated the effects of GDNF on the levels of p‑Akt/Akt, Bax and DNA fragmentation. However, a p38 mitogen‑activated proten kinase (MAPK) inhibitor, SB203580, had no effect on the expression of p‑Akt/Akt, Bax or DNA fragmentation. These results demonstrate the pivotal role of GDNF as well as the PI3K/Akt pathway, but not the MAPK pathway, in the prevention of diabetes‑induced neuronal apoptosis in the hippocampus. PMID:26549420

  14. Bone marrow-derived mesenchymal stem cells in three-dimensional culture promote neuronal regeneration by neurotrophic protection and immunomodulation.

    Science.gov (United States)

    Han, Sufang; Wang, Bin; Li, Xing; Xiao, Zhifeng; Han, Jin; Zhao, Yannan; Fang, Yongxiang; Yin, Yanyun; Chen, Bing; Dai, Jianwu

    2016-07-01

    Accumulating evidence has revealed three-dimensional (3D) culture could better mimic the stem cell niche in vivo in comparison with conventional two-dimensional (2D) culture. In this study, we found that bone marrow derived mesenchymal stem cells (BMSCs) cultured in 3D collagen scaffold (3D BMSCs) exhibited distinctive features including significantly enhancing neurotrophic factor secretions and reducing macrophage activations challenged by lipopolysaccharide (LPS) in vitro. To further evaluate 3D BMSCs' potential benefits to the regeneration of spinal cord injury (SCI), the 3D and 2D BMSCs were respectively implanted in rat hemisected SCI. Compared with 2D cohort, 3D BMSCs transplantation significantly reduced the expressions of inflammatory cytokines such as TNF-α, IL-1β, and IL-6 at 5 days after transplantation, markedly enhanced axonal regeneration, and promoted motor functional recovery during 8 weeks of observation. When Nocodazole was used to depolymerize the cytoskeleton of 3D BMSCs, the changed expressions of neurotrophic factors and inflammatory cytokines were blunted, at least partially. Thus synergistic effects of neuronal protection and immunomodulation of 3D BMSCs may lead to a better functional recovery of SCI and the underlying mechanism may involve the alteration of their cellular morphology because of 3D culture. This study contributes to a better understanding of the cellular characteristics of 3D BMSCs and provides a novel strategy to promote the repair of the injured spinal cord. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1759-1769, 2016. PMID:26990583

  15. Mesenchymal Stem Cells Expressing Brain-Derived Neurotrophic Factor Enhance Endogenous Neurogenesis in an Ischemic Stroke Model

    Directory of Open Access Journals (Sweden)

    Chang Hyun Jeong

    2014-01-01

    Full Text Available Numerous studies have reported that mesenchymal stem cells (MSCs can ameliorate neurological deficits in ischemic stroke models. Among the various hypotheses that have been suggested to explain the therapeutic mechanism underlying these observations, neurogenesis is thought to be critical. To enhance the therapeutic benefits of human bone marrow-derived MSCs (hBM-MSCs, we efficiently modified hBM-MSCs by introduction of the brain-derived neurotrophic factor (BDNF gene via adenoviral transduction mediated by cell-permeable peptides and investigated whether BDNF-modified hBM-MSCs (MSCs-BDNF contributed to functional recovery and endogenous neurogenesis in a rat model of middle cerebral artery occlusion (MCAO. Transplantation of MSCs induced the proliferation of 5-bromo-2′-deoxyuridine (BrdU- positive cells in the subventricular zone. Transplantation of MSCs-BDNF enhanced the proliferation of endogenous neural stem cells more significantly, while suppressing cell death. Newborn cells differentiated into doublecortin (DCX- positive neuroblasts and Neuronal Nuclei (NeuN- positive mature neurons in the subventricular zone and ischemic boundary at higher rates in animals with MSCs-BDNF compared with treatment using solely phosphate buffered saline (PBS or MSCs. Triphenyltetrazolium chloride staining and behavioral analysis revealed greater functional recovery in animals with MSCs-BDNF compared with the other groups. MSCs-BDNF exhibited effective therapeutic potential by protecting cell from apoptotic death and enhancing endogenous neurogenesis.

  16. Distinction Between Cell Proliferation and Apoptosis Signals Regulated by Brain-Derived Neurotrophic Factor in Human Periodontal Ligament Cells and Gingival Epithelial Cells.

    Science.gov (United States)

    Kashiwai, Kei; Kajiya, Mikihito; Matsuda, Shinji; Ouhara, Kazuhisa; Takeda, Katsuhiro; Takata, Takashi; Kitagawa, Masae; Fujita, Tsuyoshi; Shiba, Hideki; Kurihara, Hidemi

    2016-07-01

    Previously, we reported that brain-derived neurotrophic factor (BDNF) enhances periodontal tissue regeneration by inducing periodontal ligament cell proliferation in vivo. In addition, the down growth of gingival epithelial cells, which comprises a major obstacle to the regeneration, was not observed. However, the underlying molecular mechanism is still unclear. Therefore, this study aimed to investigate the effect of BDNF on cell proliferation and apoptosis in human periodontal ligament (HPL) cells and human gingival epithelial cells (OBA9 cells) and to explore the molecular mechanism in vitro. HPL cells dominantly expressed a BDNF receptor, TrkB, and BDNF increased cell proliferation and ERK phosphorylation. However, its proliferative effect was diminished by a MEK1/2 inhibitor (U0126) and TrkB siRNA transfection. Otherwise, OBA9 cells showed a higher expression level of p75, which is a pan-neurotrophin receptor, than that of HPL cells. BDNF facilitated not cell proliferation but cell apoptosis and JNK phosphorylation in OBA9 cells. A JNK inhibitor (SP600125) and p75 siRNA transfection attenuated the BDNF-induced cell apoptosis. Moreover, OBA9 cells pretreated with SP600125 or p75 siRNA showed cell proliferation by BDNF stimulation, though it was reduced by U0126 and TrkB siRNA. Interestingly, overexpression of p75 in HPL cells upregulated cell apoptosis and JNK phosphorylation by BDNF treatment. These results indicated that TrkB-ERK signaling regulates BDNF-induced cell proliferation, whereas p75-JNK signaling plays roles in cell apoptotic and cytostatic effect of BDNF. Overall, BDNF activates periodontal ligament cells proliferation and inhibits the gingival epithelial cells growth via the distinct pathway. J. Cell. Biochem. 117: 1543-1555, 2016. © 2015 Wiley Periodicals, Inc. PMID:26581032

  17. Neurotrophic factors and their receptors in human sensory neuropathies.

    Science.gov (United States)

    Anand, Praveen

    2004-01-01

    Neurotrophic factors may play key roles in pathophysiological mechanisms of human neuropathies. Nerve growth factor (NGF) is trophic to small-diameter sensory fibers and regulates nociception. This review focuses on sensory dysfunction and the potential of neurotrophic treatments. Genetic neuropathy. Mutations of the NGF high-affinity receptor tyrosine kinase A (Trk A) have been found in congenital insensitivity to pain and anhidrosis; these are likely to be partial loss-of-function mutations, as axon-reflex vasodilatation and sweating can be elicited albeit reduced, suggesting rhNGF could restore nociception in some patients. Leprous neuropathy. Decreased NGF in leprosy skin may explain cutaneous hypoalgesia even with inflammation and rhNGF may restore sensation, as spared nerve fibers show Trk A-staining. Diabetic neuropathy. NGF is depleted in early human diabetic neuropathy skin, in correlation with dysfunction of nociceptor fibers. We proposed rhNGF prophylaxis may prevent diabetic foot ulceration. Clinical trials have been disappointed, probably related to difficulty delivering adequate doses and need for multiple trophic factors. NGF and glial cell line-derived neurotrophic factor (GDNF) are both produced by basal keratinocytes and neurotrophin (NT-3) by suprabasal keratinocytes: relative mRNA expression was significantly lower in early diabetic neuropathy skin compared to controls, for NGF (P 0.05). Posttranslational modifications of mature and pro-NGF may also affect bioactivity and immunoreactivity. A 53 kD band that could correspond to a prepro-NGF-like molecule was reduced in diabetic skin. Traumatic neuropathy and pain. While NGF levels are acutely reduced in injured nerve trunks, neuropathic patients with chronic skin hyperalgesia and allodynia show marked local increases of NGF levels; here anti-NGF agents may provide analgesia. Physiological combinations of NGF, NT-3 and GDNF, to mimic a 'surrogate target organ', may provide a novel 'homeostatic

  18. Retinal pigment epithelial cells secrete neurotrophic factors and synthesize dopamine: possible contribution to therapeutic effects of RPE cell transplantation in Parkinson's disease

    Directory of Open Access Journals (Sweden)

    Gu Qing

    2009-06-01

    Full Text Available Abstract Background New strategies for the treatment of Parkinson's disease (PD are shifted from dopamine (DA replacement to regeneration or restoration of the nigro-striatal system. A cell therapy using human retinal pigment epithelial (RPE cells as substitution for degenerated dopaminergic (DAergic neurons has been developed and showed promising prospect in clinical treatment of PD, but the exact mechanism underlying this therapy is not fully elucidated. In the present study, we investigated whether the beneficial effects of this therapy are related to the trophic properties of RPE cells and their ability to synthesize DA. Methods We evaluated the protective effects of conditioned medium (CM from cultured RPE cells on the DAergic cells against 6-hydroxydopamine (6-OHDA- and rotenone-induced neurotoxicity and determined the levels of glial cell derived neurotrophic factor (GDNF and brain derived neurotrophic factor (BDNF released by RPE cells. We also measured the DA synthesis and release. Finally we transplanted microcarriers-RPE cells into 6-OHDA lesioned rats and observed the improvement in apomorphine-induced rotations (AIR. Results We report here: (1 CM from RPE cells can secret trophic factors GDNF and BDNF, and protect DAergic neurons against the 6-OHDA- and rotenone-induced cell injury; (2 cultured RPE cells express L-dopa decarboxylase (DDC and synthesize DA; (3 RPE cells attached to microcarriers can survive in the host striatum and improve the AIR in 6-OHDA-lesioned animal model of PD; (4 GDNF and BDNF levels are found significantly higher in the RPE cell-grafted tissues. Conclusion These findings indicate the RPE cells have the ability to secret GDNF and BDNF, and synthesize DA, which probably contribute to the therapeutic effects of RPE cell transplantation in PD.

  19. Proliferative responses and binding properties of hematopoietic cells transfected with low-affinity receptors for leukemia inhibitory factor, oncostatin M, and ciliary neurotrophic factor.

    OpenAIRE

    Gearing, D P; Ziegler, S F; Comeau, M R; Friend, D; Thoma, B; Cosman, D; Park, L.; Mosley, B

    1994-01-01

    Specific low-affinity receptors for leukemia inhibitory factor (LIF), oncostatin M (OSM; gp130), and ciliary neurotrophic factor (CNTF; receptor alpha, CNTFR alpha) may be utilized in various combinations to generate high-affinity binding sites and signal transduction. We have tested the ability of combinations of these receptors to transduce a proliferative signal in BAF-B03 cells. Coexpression of the LIF receptor and gp130 in these cells conferred high-affinity LIF and OSM binding and respo...

  20. Comparative Analysis of the Effects of Neurotrophic Factors CDNF and GDNF in a Nonhuman Primate Model of Parkinson's Disease.

    Directory of Open Access Journals (Sweden)

    Enrique Garea-Rodríguez

    Full Text Available Cerebral dopamine neurotrophic factor (CDNF belongs to a newly discovered family of evolutionarily conserved neurotrophic factors. We demonstrate for the first time a therapeutic effect of CDNF in a unilateral 6-hydroxydopamine (6-OHDA lesion model of Parkinson's disease in marmoset monkeys. Furthermore, we tested the impact of high chronic doses of human recombinant CDNF on unlesioned monkeys and analyzed the amino acid sequence of marmoset CDNF. The severity of 6-OHDA lesions and treatment effects were monitored in vivo using 123I-FP-CIT (DaTSCAN SPECT. Quantitative analysis of 123I-FP-CIT SPECT showed a significant increase of dopamine transporter binding activity in lesioned animals treated with CDNF. Glial cell line-derived neurotrophic factor (GDNF, a well-characterized and potent neurotrophic factor for dopamine neurons, served as a control in a parallel comparison with CDNF. By contrast with CDNF, only single animals responded to the treatment with GDNF, but no statistical difference was observed in the GDNF group. However, increased numbers of tyrosine hydroxylase immunoreactive neurons, observed within the lesioned caudate nucleus of GDNF-treated animals, indicate a strong bioactive potential of GDNF.

  1. Ciliary neurotrophic factor promotes the activation of corneal epithelial stem/progenitor cells and accelerates corneal epithelial wound healing.

    Science.gov (United States)

    Zhou, Qingjun; Chen, Peng; Di, Guohu; Zhang, Yangyang; Wang, Yao; Qi, Xia; Duan, Haoyun; Xie, Lixin

    2015-05-01

    Ciliary neurotrophic factor (CNTF), a well-known neuroprotective cytokine, has been found to play an important role in neurogenesis and functional regulations of neural stem cells. As one of the most innervated tissue, however, the role of CNTF in cornea epithelium remains unclear. This study was to explore the roles and mechanisms of CNTF in the activation of corneal epithelial stem/progenitor cells and wound healing of both normal and diabetic mouse corneal epithelium. In mice subjecting to mechanical removal of corneal epithelium, the corneal epithelial stem/progenitor cell activation and wound healing were promoted by exogenous CNTF application, while delayed by CNTF neutralizing antibody. In cultured corneal epithelial stem/progenitor cells, CNTF enhanced the colony-forming efficiency, stimulated the mitogenic proliferation, and upregulated the expression levels of corneal epithelial stem/progenitor cell-associated transcription factors. Furthermore, the promotion of CNTF on the corneal epithelial stem/progenitor cell activation and wound healing was mediated by the activation of STAT3. Moreover, in diabetic mice, the content of CNTF in corneal epithelium decreased significantly when compared with that of normal mice, and the supplement of CNTF promoted the diabetic corneal epithelial wound healing, accompanied with the advanced activation of corneal epithelial stem/progenitor cells and the regeneration of corneal nerve fibers. Thus, the capability of expanding corneal epithelial stem/progenitor cells and promoting corneal epithelial wound healing and nerve regeneration indicates the potential application of CNTF in ameliorating limbal stem cell deficiency and treating diabetic keratopathy. PMID:25546438

  2. Brain-derived neurotrophic factor promotes nerve regeneration by activating the JAK/STAT pathway in Schwann cells

    Science.gov (United States)

    Lin, Guiting; Zhang, Haiyang; Sun, Fionna; Lu, Zhihua; Reed-Maldonado, Amanda; Lee, Yung-Chin; Wang, Guifang; Banie, Lia

    2016-01-01

    Background Radical prostatectomy (RP) carries the risk of erectile dysfunction (ED) due to cavernous nerve (CN) injury. Schwann cells are essential for the maintenance of integrity and function of peripheral nerves such as the CNs. We hypothesize that brain-derived neurotrophic factor (BDNF) activates the Janus kinase (JAK)/(signal transducer and activator of transcription) STAT pathway in Schwann cells, not in neuronal axonal fibers, with the resultant secretion of cytokines from Schwann cells to facilitate nerve recovery. Methods Using four different cell lines—human neuroblastoma BE(2)-C and SH-SY5Y, human Schwann cell (HSC), and rat Schwann cell (RSC) RT4-D6P2T—we assessed the effect of BDNF application on the activation of the JAK/STAT pathway. We also assessed the time response of JAK/STAT pathway activation in RSCs and HSCs after BDNF treatment. We then assayed cytokine release from HSCs as a response to BDNF treatment using oncostatin M and IL6 as markers. Results We showed extensive phosphorylation of STAT3/STAT1 by BDNF at high dose (100 pM) in RSCs, with no JAK/STAT pathway activation in human neuroblastoma cell lines. The time response of JAK/STAT pathway activation in RSCs and HSCs after BDNF treatment showed an initial peak at shortly after treatment and then a second higher peak at 24–48 hours. Cytokine release from HSCs increased progressively after BDNF application, reaching statistical significance for IL6. Conclusions We demonstrated for the first time the indirect mechanism of BDNF enhancement of nerve regeneration through the activation of JAK/STAT pathway in Schwann cells, rather than directly on neurons. As a result of BDNF application, Schwann cells produce cytokines that promote nerve regeneration.

  3. Brain-Derived Neurotrophic Factor (BDNF) Promotes Cochlear Spiral Ganglion Cell Survival and Function in Deafened, Developing Cats

    OpenAIRE

    Leake, Patricia A.; Hradek, Gary T.; Hetherington, Alexander M.; Stakhovskaya, Olga

    2011-01-01

    Postnatal development and survival of spiral ganglion (SG) neurons depend upon both neural activity and neurotrophic support. Our previous studies showed that electrical stimulation from a cochlear implant only partly prevents SG degeneration after early deafness. Thus, neurotrophic agents that might be combined with an implant to improve neural survival are of interest. Recent studies reporting that BDNF promotes SG survival after deafness, have been conducted in rodents and limited to relat...

  4. Ciliary neurotrophic factor cell-based delivery prevents synaptic impairment and improves memory in mouse models of Alzheimer's disease.

    OpenAIRE

    Garcia, Pierre

    2010-01-01

    The development of novel therapeutic strategies for Alzheimer’s disease (AD) represents one of the biggest unmet medical needs today. Application of neurotrophic factors able to modulate neuronal survival and synaptic connectivity is a promising therapeutic approach for AD. We aimed to determine whether the loco-regional delivery of ciliary neurotrophic factor (CNTF) could prevent amyloid-beta oligomer-induced synaptic damages and associated cognitive impairments that typify AD. To ensure lo...

  5. Ciliary Neurotrophic Factor Induces Genes Associated with Inflammation and Gliosis in the Retina: A Gene Profiling Study of Flow-Sorted, Müller Cells

    OpenAIRE

    Xue, Wei; Cojocaru, Radu I.; Dudley, V. Joseph; Brooks, Matthew; Swaroop, Anand; Sarthy, Vijay P.

    2011-01-01

    Background Ciliary neurotrophic factor (CNTF), a member of the interleukin-6 cytokine family, has been implicated in the development, differentiation and survival of retinal neurons. The mechanisms of CNTF action as well as its cellular targets in the retina are poorly understood. It has been postulated that some of the biological effects of CNTF are mediated through its action via retinal glial cells; however, molecular changes in retinal glia induced by CNTF have not been elucidated. We hav...

  6. Human Mesenchymal Stem Cells Genetically Engineered to Overexpress Brain-derived Neurotrophic Factor Improve Outcomes in Huntington's Disease Mouse Models.

    Science.gov (United States)

    Pollock, Kari; Dahlenburg, Heather; Nelson, Haley; Fink, Kyle D; Cary, Whitney; Hendrix, Kyle; Annett, Geralyn; Torrest, Audrey; Deng, Peter; Gutierrez, Joshua; Nacey, Catherine; Pepper, Karen; Kalomoiris, Stefanos; D Anderson, Johnathon; McGee, Jeannine; Gruenloh, William; Fury, Brian; Bauer, Gerhard; Duffy, Alexandria; Tempkin, Theresa; Wheelock, Vicki; Nolta, Jan A

    2016-05-01

    Huntington's disease (HD) is a fatal degenerative autosomal dominant neuropsychiatric disease that causes neuronal death and is characterized by progressive striatal and then widespread brain atrophy. Brain-derived neurotrophic factor (BDNF) is a lead candidate for the treatment of HD, as it has been shown to prevent cell death and to stimulate the growth and migration of new neurons in the brain in transgenic mouse models. BDNF levels are reduced in HD postmortem human brain. Previous studies have shown efficacy of mesenchymal stem/stromal cells (MSC)/BDNF using murine MSCs, and the present study used human MSCs to advance the therapeutic potential of the MSC/BDNF platform for clinical application. Double-blinded studies were performed to examine the effects of intrastriatally transplanted human MSC/BDNF on disease progression in two strains of immune-suppressed HD transgenic mice: YAC128 and R6/2. MSC/BDNF treatment decreased striatal atrophy in YAC128 mice. MSC/BDNF treatment also significantly reduced anxiety as measured in the open-field assay. Both MSC and MSC/BDNF treatments induced a significant increase in neurogenesis-like activity in R6/2 mice. MSC/BDNF treatment also increased the mean lifespan of the R6/2 mice. Our genetically modified MSC/BDNF cells set a precedent for stem cell-based neurotherapeutics and could potentially be modified for other neurodegenerative disorders such as amyotrophic lateral sclerosis, Alzheimer's disease, and some forms of Parkinson's disease. These cells provide a platform delivery system for future studies involving corrective gene-editing strategies. PMID:26765769

  7. Cognitive disorder and changes in cholinergic receptors, N-methyl-D aspartate receptors, neural cell adhesion molecule, and brain-derived neurotrophic factor following brain injury

    Institute of Scientific and Technical Information of China (English)

    Weiliang Zhao; Dezhi Kang; Yuanxiang Lin

    2008-01-01

    BACKGROUND: Learning and memory damage is one of the most permanent and the severest symptoms of traumatic brain injury; it can seriously influence the normal life and work of patients. Some research has demonstrated that cognitive disorder is closely related to nicotine cholinergic receptors, N-methyl-D aspartate receptors, neural cell adhesion molecule, and brain-derived neurotrophic factor. OBJECTIVE: To summarize the cognitive disorder and changes in nicotine cholinergic receptors, N-methyl-D aspartate receptors, neural cell adhesion molecule, and brain-derived neurotrophic factor following brain injury. RETRIEVAL STRATEGY: A computer-based online search was conducted in PUBMED for English language publications containing the key words "brain injured, cognitive handicap, acetylcholine, N-methyl-D aspartate receptors, neural cell adhesion molecule, brain-derived neurotrophic factor" from January 2000 to December 2007. There were 44 papers in total. Inclusion criteria: ① articles about changes in nicotine cholinergic receptors, N-methyl-D aspartate receptors, neural cell adhesion molecule, and brain-derived neurotrophic factor following brain injury; ② articles in the same researching circle published in authoritative journals or recently published. Exclusion criteria: duplicated articles.LITERATURE EVALUATION: References were mainly derived from research on changes in these four factors following brain injury. The 20 included papers were clinical or basic experimental studies. DATA SYNTHESIS: After craniocerebral injury, changes in these four factors in brain were similar to those during recovery from cognitive disorder, to a certain degree. Some data have indicated that activation of nicotine cholinergic receptors, N-methyl-D aspartate receptors, neural cell adhesion molecule, and brain-derived neurotrophic factor could greatly improve cognitive disorder following brain injury. However, there are still a lot of questions remaining; for example, how do these

  8. Stem cells modified by brain-derived neurotrophic fac-tor to promote stem cells differentiation into neurons and enhance neuromotor function after brain injury

    Institute of Scientific and Technical Information of China (English)

    ZHANG Sai; LIU Xiao-zhi; LIU Zhen-lin; WANG Yan-min; HU Qun-liang; MA Tie-zhu; SUN Shi-zhong

    2009-01-01

    Objective: To promote stem cells differentiation into neurons and enhance neuromotor function after brain in-jury through brain-derived neurotrophic factor (BDNF) induction.Methods: Recombinant adenovirus vector was ap-plied to the transfection of BDNF into human-derived um-bilical cord mesenchymal stem cells (UCMSCs). Enzyme linked immunosorbent assay (ELISA) was used to deter-mine the secretion phase of BDNF. The brain injury model of athymic mice induced by hydraulic pressure percussion was established for transplantation of stem cells into the edge of injury site. Nerve function scores were obtained, and the expression level of transfected and non-transfected BDNF, proportion of neuron specific enolase (NSE) andglial fibrillary acidic protein (GFAP), and the number of apoptosis cells were compared respectively. Results: The BDNF expression achieved its stabiliza-tion at a high level 72 hours after gene transfection. The mouse obtained a better score of nerve function, and the proportion of the NSE-positive cells increased significantly (P<0.05), but GFAP-positive cells decreased in BDNF-UCMSCs group compared with the other two groups (P<0.05). At the site of high expression of BDNF, the number of apoptosis cells decreased markedly.Conclusion: BDNF gene can promote the differentia-tion of the stem cells into neurons rather than gliai cells, and enhance neuromotor function after brain injury.

  9. Upregulated gene expression of local brain-derived neurotrophic factor and nerve growth factor after intracisternal administration of marrow stromal cells in rats with traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    胡德志; 周良辅; 朱剑虹; 毛颖; 吴雪海

    2005-01-01

    Objective: To examine the effects of rat marrow stromal cells (rMSCs) on gene expression of local brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) after injection of rMSCs into Cistern Magnum of adult rats subjected to traumatic brain injury(TBI).Results: Group cell transplantation had higher BDNF and NGF gene expressions than Group saline control during a period of less than 3 weeks (P<0.05).Conclusions: rMSCs transplantation via Cistern Magnum in rats subjected to traumatic brain injury can enhance expressions of local brain NGF and BDNF to a certain extent.

  10. Ciliary neurotrophic factor coordinately activates transcription of neuropeptide genes in a neuroblastoma cell line.

    OpenAIRE

    Symes, A.J.; Rao, M S; Lewis, S. E.; Landis, S C; Hyman, S E; Fink, J S

    1993-01-01

    Differentiation factors have been identified that influence the phenotype of sympathetic neurons by altering expression of classical neurotransmitters and neuropeptides. Investigation of the molecular mechanisms through which such factors act would be facilitated by the availability of a neuronal cell line that responds to these factors in a fashion similar to sympathetic neurons. We have identified a human neuroblastoma cell line, NBFL, that responds to the differentiation factor ciliary neu...

  11. Brain derived neurotrophic factor

    DEFF Research Database (Denmark)

    Mitchelmore, Cathy; Gede, Lene

    2014-01-01

    Brain Derived Neurotrophic Factor (BDNF) is a neurotrophin with important functions in neuronal development and neuroplasticity. Accumulating evidence suggests that alterations in BDNF expression levels underlie a variety of psychiatric and neurological disorders. Indeed, BDNF therapies are...

  12. Brain derived neurotrophic factor

    DEFF Research Database (Denmark)

    Mitchelmore, Cathy; Gede, Lene

    2014-01-01

    Brain Derived Neurotrophic Factor (BDNF) is a neurotrophin with important functions in neuronal development and neuroplasticity. Accumulating evidence suggests that alterations in BDNF expression levels underlie a variety of psychiatric and neurological disorders. Indeed, BDNF therapies are curre......Brain Derived Neurotrophic Factor (BDNF) is a neurotrophin with important functions in neuronal development and neuroplasticity. Accumulating evidence suggests that alterations in BDNF expression levels underlie a variety of psychiatric and neurological disorders. Indeed, BDNF therapies...

  13. Rat ciliary neurotrophic factor (CNTF)

    OpenAIRE

    Carroll, P.; Sendtner, M.; Meyer, Michael; Thoenen, Hans

    1993-01-01

    The structure of the rat ciliary neurotrophic factor (CNTF) gene and the regulation of CNTF mRNA levels in cultured glial cells were investigated. The rat mRNA is encoded by a simple two-exon transcription unit. Sequence analysis of the region upstream of the transcription start-site did not reveal a typical TATA-box consensus sequence. Low levels of CNTF mRNA were detected in cultured Schwann cells, and CNTF mRNA was not increased by a variety of treatments. Three-week-old astrocyte-enriched...

  14. Transplanted Dentate Progenitor Cells Show Increased Survival in an Enriched Environment But Do Not Exert a Neurotrophic Effect on Spatial Memory Within 2 Weeks of Engraftment.

    Science.gov (United States)

    Jamal, Amanda L; Walker, Tara L; Waber Nguyen, Amanda J; Berman, Robert F; Kempermann, Gerd; Waldau, Ben

    2015-01-01

    Cyclin D2 knockout mice show decreased levels of endogenous dentate neurogenesis. We investigated whether transplanted dentate progenitor cells from wild-type mice respond in vivo to an enriched environment and whether they improve deficient dentate neurogenesis through a neurotrophic effect. Adult cyclin D2 knockout mice were transplanted with passaged adult progenitor cells and kept in an enriched environment or under standard housing conditions in isolation. After 1 week, animals living in an enriched environment underwent water maze testing. Progenitor cells grown on a laminin/poly-d-lysine monolayer expressed Sox2 and nestin and could be differentiated in vitro into neurons and astrocytes. After transplantation into the dentate gyrus, cells preferentially survived along the laminin-rich ependymal lining of the basal cistern or basal membrane of capillaries. A subpopulation of transplanted cells migrated into the interstitial space of the hippocampus and was not associated with laminin. Environmental enrichment led to a significant increase in the survival of transplanted progenitor cells on laminin in the dentate gyrus after 2 weeks. However, animals did not show an enhanced performance in the Morris water maze, and transplantation failed to exert a neurotrophic effect on endogenous neurogenesis after 2 weeks. However, a major limitation of the study is the short-term period of investigation, which may have been insufficient to capture functional effects. In conclusion, initial survival of transplanted neural progenitor cells was dependent on the presence of laminin and was significantly enhanced by environmental enrichment. Further studies are needed to address whether an enriched environment continues to promote graft survival over longer periods of time. PMID:25621922

  15. Inflammatory and neuropathic cold allodynia are selectively mediated by the neurotrophic factor receptor GFRα3.

    Science.gov (United States)

    Lippoldt, Erika K; Ongun, Serra; Kusaka, Geoffrey K; McKemy, David D

    2016-04-19

    Tissue injury prompts the release of a number of proalgesic molecules that induce acute and chronic pain by sensitizing pain-sensing neurons (nociceptors) to heat and mechanical stimuli. In contrast, many proalgesics have no effect on cold sensitivity or can inhibit cold-sensitive neurons and diminish cooling-mediated pain relief (analgesia). Nonetheless, cold pain (allodynia) is prevalent in many inflammatory and neuropathic pain settings, with little known of the mechanisms promoting pain vs. those dampening analgesia. Here, we show that cold allodynia induced by inflammation, nerve injury, and chemotherapeutics is abolished in mice lacking the neurotrophic factor receptor glial cell line-derived neurotrophic factor family of receptors-α3 (GFRα3). Furthermore, established cold allodynia is blocked in animals treated with neutralizing antibodies against the GFRα3 ligand, artemin. In contrast, heat and mechanical pain are unchanged, and results show that, in striking contrast to the redundant mechanisms sensitizing other modalities after an insult, cold allodynia is mediated exclusively by a single molecular pathway, suggesting that artemin-GFRα3 signaling can be targeted to selectively treat cold pain. PMID:27051069

  16. Scorpion venom heat-resistant peptide (SVHRP enhances neurogenesis and neurite outgrowth of immature neurons in adult mice by up-regulating brain-derived neurotrophic factor (BDNF.

    Directory of Open Access Journals (Sweden)

    Tao Wang

    Full Text Available Scorpion venom heat-resistant peptide (SVHRP is a component purified from Buthus martensii Karsch scorpion venom. Although scorpions and their venom have been used in Traditional Chinese Medicine (TCM to treat chronic neurological disorders, the underlying mechanisms of these treatments remain unknown. We applied SVHRP in vitro and in vivo to understand its effects on the neurogenesis and maturation of adult immature neurons and explore associated molecular mechanisms. SVHRP administration increased the number of 5-bromo-2'-dexoxyuridine (BrdU-positive cells, BrdU-positive/neuron-specific nuclear protein (NeuN-positive neurons, and polysialylated-neural cell adhesion molecule (PSA-NCAM-positive immature neurons in the subventricular zone (SVZ and subgranular zone (SGZ of hippocampus. Furthermore immature neurons incubated with SVHRP-pretreated astrocyte-conditioned medium exhibited significantly increased neurite length compared with those incubated with normal astrocyte-conditioned medium. This neurotrophic effect was further confirmed in vivo by detecting an increased average single area and whole area of immature neurons in the SGZ, SVZ and olfactory bulb (OB in the adult mouse brain. In contrast to normal astrocyte-conditioned medium, higher concentrations of brain-derived neurotrophic factor (BDNF but not nerve growth factor (NGF or glial cell line-derived neurotrophic factor (GDNF was detected in the conditioned medium of SVHRP-pretreated astrocytes, and blocking BDNF using anti-BDNF antibodies eliminated these SVHRP-dependent neurotrophic effects. In SVHRP treated mouse brain, more glial fibrillary acidic protein (GFAP-positive cells were detected. Furthermore, immunohistochemistry revealed increased numbers of GFAP/BDNF double-positive cells, which agrees with the observed changes in the culture system. This paper describes novel effects of scorpion venom-originated peptide on the stem cells and suggests the potential therapeutic values

  17. Expression of low-, intermediate-, and high-affinity IL-2 receptors on B cell lines derived from patients with undifferentiated lymphoma of Burkitt's and non-Burkitt's types

    Energy Technology Data Exchange (ETDEWEB)

    Benjamin, D.; Rosolen, A.; Wormsley, S.B.; DeBault, L.E.; Colamonici, O.R. (Saint Francis Research Institute, Oklahoma City, OK (USA))

    1990-08-01

    IL-2 receptors on T cells exist in at least three forms which differ in their ligand-binding affinity. The low-affinity IL-2 receptor (IL-2R) consists of the 55-kDa Tac protein (p55 alpha), the intermediate-affinity site corresponds to the 70-kDa molecule (p70 beta), and the high-affinity IL-2R consists of a noncovalent heterodimeric structure involving both p55 alpha and p70 beta. We studied 24 B cell lines (8 EBV-negative and 16 EBV-positive) for IL-2R expression in the presence or absence of the tumor promoter, teleocidin. 125I-IL-2 radioreceptor binding assays and crosslinking studies demonstrated the sole expression of p55 alpha in EBV-negative cell lines only, whereas p55 alpha present in EBV-positive cell lines was always associated with p70 beta to construct high-affinity IL-2R. p70 beta was not detected in any of the EBV-negative cell lines, but was expressed on most of the EBV-positive cell lines (13 of 16). Our data also indicate that the expression of p55 alpha and p70 beta by radiolabeling correlates with their expression in flow cytometry, and that a large excess of p55 alpha is required to construct high-affinity IL-2R. Coexpression of p55 alpha and p70 beta on human B cells contributed to constructing high-affinity IL-2R hybrid complex as shown by rapid association rate contributed by p55 alpha and slow dissociation rate by p70 beta; teleocidin's ability to induce p55 alpha on cell lines which express p70 beta only, resulting in appearance of high-affinity IL-2R; and blocking p55 alpha by anti-Tac mAb in cell lines which constitutively express high-affinity IL-2R eliminated both high- and low-affinity components. The existence of low, intermediate, and high IL-2R on human B cells bears important future implications for understanding the mechanism of IL-2 signaling and the role of IL-2 in B cell activation, proliferation, and differentiation.

  18. Induced mutant lines derived from irradiated mungbean varieties

    International Nuclear Information System (INIS)

    The mungbean cultivars Manyar and Walet were irradiated with several doses of gamma rays and Nuri with fast neutrons. Selection for desired characters, such as synchronized maturity and more pods per plant than the control, were carried out in the M2 generation. In the M5 generation, about 164 mungbean mutant lines were selected. In 1988, a preliminary yield trial was carried out on 46 selected M5 homogenous lines and, in 1989, an advanced yield trial on selected M6 lines. From these observations, it was shown that some promising mutant lines had been recovered, i.e. four high yielding mutant lines derived from the gamma irradiation of Walet, three lines which showed synchronized maturity as well as larger pods and a greater number of seeds derived from the gamma irradiation of Manyar, and a high seed protein content in mutant lines derived from the fast neutron irradiation of Nuri. (author). 2 refs, 2 tabs

  19. Ciliary Neurotrophic Factor Promotes the Migration of Corneal Epithelial Stem/progenitor Cells by Up-regulation of MMPs through the Phosphorylation of Akt.

    Science.gov (United States)

    Chen, Jialin; Chen, Peng; Backman, Ludvig J; Zhou, Qingjun; Danielson, Patrik

    2016-01-01

    The migration of limbal epithelial stem cells is important for the homeostasis and regeneration of corneal epithelium. Ciliary neurotrophic factor (CNTF) has been found to promote corneal epithelial wound healing by activating corneal epithelial stem/progenitor cells. However, the possible effect of CNTF on the migration of corneal epithelial stem/progenitor cells is not clear. This study found the expression of CNTF in mouse corneal epithelial stem/progenitor cells (TKE2) to be up-regulated after injury, on both gene and protein level. CNTF promoted migration of TKE2 in a dose-dependent manner and the peak was seen at 10 ng/ml. The phosphorylation level of Akt (p-Akt), and the expression of MMP3 and MMP14, were up-regulated after CNTF treatment both in vitro and in vivo. Akt and MMP3 inhibitor treatment delayed the migration effect by CNTF. Finally, a decreased expression of MMP3 and MMP14 was observed when Akt inhibitor was applied both in vitro and in vivo. This study provides new insights into the role of CNTF on the migration of corneal epithelial stem/progenitor cells and its inherent mechanism of Up-regulation of matrix metalloproteinases through the Akt signalling pathway. PMID:27174608

  20. Trigeminal Neurotrophic Ulceration

    OpenAIRE

    El-Daly, Ahmed; Snyderman, Carl H.

    1997-01-01

    A 74 year-old female developed a trigeminal neurotrophic ulcer (TNU) 20 years following surgical ablation of the trigeminal nerve. The diagnosis of this unusual disorder is suggested when an ulcerative lesion develops. In the ala nasi in a patient with trigeminal sensory loss. A history of self-induced trauma to that area and some form of mental impairment further support the diagnosis.

  1. Ciliary neurotrophic factor induces genes associated with inflammation and gliosis in the retina: a gene profiling study of flow-sorted, Muller cells.

    Directory of Open Access Journals (Sweden)

    Wei Xue

    Full Text Available BACKGROUND: Ciliary neurotrophic factor (CNTF, a member of the interleukin-6 cytokine family, has been implicated in the development, differentiation and survival of retinal neurons. The mechanisms of CNTF action as well as its cellular targets in the retina are poorly understood. It has been postulated that some of the biological effects of CNTF are mediated through its action via retinal glial cells; however, molecular changes in retinal glia induced by CNTF have not been elucidated. We have, therefore, examined gene expression dynamics of purified Müller (glial cells exposed to CNTF in vivo. METHODOLOGY/PRINCIPAL FINDINGS: Müller cells were flow-sorted from mgfap-egfp transgenic mice one or three days after intravitreal injection of CNTF. Microarray analysis using RNA from purified Müller cells showed differential expression of almost 1,000 transcripts with two- to seventeen-fold change in response to CNTF. A comparison of transcriptional profiles from Müller cells at one or three days after CNTF treatment showed an increase in the number of transcribed genes as well as a change in the expression pattern. Ingenuity Pathway Analysis showed that the differentially regulated genes belong to distinct functional types such as cytokines, growth factors, G-protein coupled receptors, transporters and ion channels. Interestingly, many genes induced by CNTF were also highly expressed in reactive Müller cells from mice with inherited or experimentally induced retinal degeneration. Further analysis of gene profiles revealed 20-30% overlap in the transcription pattern among Müller cells, astrocytes and the RPE. CONCLUSIONS/SIGNIFICANCE: Our studies provide novel molecular insights into biological functions of Müller glial cells in mediating cytokine response. We suggest that CNTF remodels the gene expression profile of Müller cells leading to induction of networks associated with transcription, cell cycle regulation and inflammatory response. CNTF

  2. Sex and age differences in brain-derived neurotrophic factor and vimentin in the zebra finch song system: Relationships to newly generated cells.

    Science.gov (United States)

    Tang, Yu Ping; Wade, Juli

    2016-04-01

    The neural song circuit is enhanced in male compared with female zebra finches due to differential rates of incorporation and survival of cells between the sexes. Two double-label immunohistochemical experiments were conducted to increase the understanding of relationships between newly generated cells (marked with bromodeoxyuridine [BrdU]) and those expressing brain-derived neurotrophic factor (BDNF) and vimentin, a marker for radial glia. The song systems of males and females were investigated at posthatching day 25 during a heightened period of sexual differentiation (following BrdU injections on days 6-10) and in adulthood (following a parallel injection paradigm). In both HVC (proper name) and the robust nucleus of the arcopallium (RA), about half of the BrdU-positive cells expressed BDNF across sexes and ages. Less than 10% of the BDNF-positive cells expressed BrdU, but this percentage was greater in juveniles than adults. Across both brain regions, more BDNF-positive cells were detected in males compared with females. In RA, the number of these cells was also greater in juveniles than adults. In HVC, the average cross-sectional area covered by the vimentin labeling was greater in males than females and in juveniles compared with adults. In RA, more vimentin was detected in juveniles than adults, and within adults it was greater in females. In juveniles only, BrdU-positive cells appeared in contact with vimentin-labeled fibers in HVC, RA, and Area X. Collectively, the results are consistent with roles of BDNF- and vimentin-labeled cells influencing sexually differentiated plasticity of the song circuit. PMID:26355496

  3. Repair of spinal cord injury by neural stem cells transfected with brain-derived neurotrophic factor-green fluorescent protein in rats A double effect of stem cells and growth factors

    Institute of Scientific and Technical Information of China (English)

    Yansong Wang; Gang Lü

    2010-01-01

    Brain-derived neurotrophic factor(BDNF)can significantly promote nerve regeneration and repair.High expression of the BDNF-green fluorescent protein(GFP)gene persists for a long time after transfection into neural stem cells.Nevertheless,little is known about the biological characteristics of BDNF-GFP modified nerve stem cells in vivo and their ability to induce BDNF expression or repair spinal cord injury.In the present study,we transplanted BDNF-GFP transgenic neural stem cells into a hemisection model of rats.Rats with BDNF-GFP stem cells exhibited significantly increased BDNF expression and better locomotor function compared with stem cells alone.Cellular therapy with BDNF-GFP transgenic stem cells can improve outcomes better than stem cells alone and may have therapeutic potential for spinal cord injury.

  4. Regulation of Schwann cell proliferation and migration by miR-1 targeting brain-derived neurotrophic factor after peripheral nerve injury

    Science.gov (United States)

    Yi, Sheng; Yuan, Ying; Chen, Qianqian; Wang, Xinghui; Gong, Leilei; Liu, Jie; Gu, Xiaosong; Li, Shiying

    2016-01-01

    Peripheral nerve injury is a global problem that causes disability and severe socioeconomic burden. Brain-derived neurotrophic factor (BDNF) benefits peripheral nerve regeneration and becomes a promising therapeutic molecule. In the current study, we found that microRNA-1 (miR-1) directly targeted BDNF by binding to its 3′-UTR and caused both mRNA degradation and translation suppression of BDNF. Moreover, miR-1 induced BDNF mRNA degradation primarily through binding to target site 3 rather than target site 1 or 2 of BDNF 3′-UTR. Following rat sciatic nerve injury, a rough inverse correlation was observed between temporal expression profiles of miR-1 and BDNF in the injured nerve. The overexpression or silencing of miR-1 in cultured Schwann cells (SCs) inhibited or enhanced BDNF secretion from the cells, respectively, and also suppressed or promoted SC proliferation and migration, respectively. Interestingly, BDNF knockdown could attenuate the enhancing effect of miR-1 inhibitor on SC proliferation and migration. These findings will contribute to the development of a novel therapeutic strategy for peripheral nerve injury, which overcomes the limitations of direct administration of exogenous BDNF by using miR-1 to regulate endogenous BDNF expression. PMID:27381812

  5. Cerebrolysin, a mixture of neurotrophic factors induces marked neuroprotection in spinal cord injury following intoxication of engineered nanoparticles from metals.

    Science.gov (United States)

    Menon, Preeti Kumaran; Muresanu, Dafin Fior; Sharma, Aruna; Mössler, Herbert; Sharma, Hari Shanker

    2012-02-01

    Spinal cord injury (SCI) is the world's most disastrous disease for which there is no effective treatment till today. Several studies suggest that nanoparticles could adversely influence the pathology of SCI and thereby alter the efficacy of many neuroprotective agents. Thus, there is an urgent need to find suitable therapeutic agents that could minimize cord pathology following trauma upon nanoparticle intoxication. Our laboratory has been engaged for the last 7 years in finding suitable therapeutic strategies that could equally reduce cord pathology in normal and in nanoparticle-treated animal models of SCI. We observed that engineered nanoparticles from metals e.g., aluminum (Al), silver (Ag) and copper (Cu) (50-60 nm) when administered in rats daily for 7 days (50 mg/kg, i.p.) resulted in exacerbation of cord pathology after trauma that correlated well with breakdown of the blood-spinal cord barrier (BSCB) to serum proteins. The entry of plasma proteins into the cord leads to edema formation and neuronal damage. Thus, future drugs should be designed in such a way to be effective even when the SCI is influenced by nanoparticles. Previous research suggests that a suitable combination of neurotrophic factors could induce marked neuroprotection in SCI in normal animals. Thus, we examined the effects of a new drug; cerebrolysin that is a mixture of different neurotrophic factors e.g., brain-derived neurotrophic factor (BDNF), glial cell line derived neurotrophic factor (GDNF), nerve growth factor (NGF), ciliary neurotrophic factor (CNTF) and other peptide fragments to treat normal or nanoparticle-treated rats after SCI. Our observations showed that cerebrolysin (2.5 ml/kg, i.v.) before SCI resulted in good neuroprotection in normal animals, whereas nanoparticle-treated rats required a higher dose of the drug (5.0 ml/kg, i.v.) to induce comparable neuroprotection in the cord after SCI. Cerebrolysin also reduced spinal cord water content, leakage of plasma proteins

  6. Effect of ciliary neurotrophic factor (CNTF) on motoneuron survival

    OpenAIRE

    Sendtner, Michael; Arakawa, Yoshihiro; Stöckli, Kurt A.; Kreutzberg, Georg W.; Thoenen, Hans

    2010-01-01

    We have demonstrated that the extensive degeneration of motoneurons in the rat facial nucleus after transection of the facial nerve in newborn rats can be prevented by local ciliary neurotrophic factor (CNTF) administration. CNTF differs distinctly from known neurotrophic molecules such as NGF, BDNF and NT-3 in both its molecular characteristics (CNTF is a cytosolic rather than a secretory molecule) and its broad spectrum of biological activities. CNTF is expressed selectively by Schwann cell...

  7. Glial cell-derived neurotrophic factor mRNA expression in a rat model of spinal cord injury following bone marrow stromal cell transplantation

    Institute of Scientific and Technical Information of China (English)

    Lei Li; Gang Lü; Yanfeng Wang; Hong Gao; Xin Xu; Lunhao Bai; Huan Wang

    2008-01-01

    BACKGROUND: Several animal experiments utilizing bone marrow stromal cell (BMSC) transplantation for the treatment of spinal cord injury have proposed a hypothesis that BMSC transplantation effects are associated with increased glial cell-derived neurotrophic factor (GDNF) expression.OBJECTIVE: To confirm the effects of BMSC transplantation on GDNF mRNA expression in rats with spinal cord injury by reverse transcription-polymerase chain reaction (RT-PCR).DESIGN, TIME AND SETTING: The present molecular, cell biology experiment was performed at the Key Laboratory of Children's Congenital Malformation, Ministry of Health of China & Department of Developmental Biology, Basic Medical College, China Medical University between March 2006 and May 2007.MATERIALS: Sixty healthy Wistar rats aged 2--4-months and of either gender were included in this study. Spinal cord injury was induced in all rats by hemisection ofT9 on the left side. RT-PCR kits were purchased from TaKaRa Company, China. Type 9600 RCR amplifier was provided by PerkinElmer Company, USA. METHODS: Three rats were selected for BMSC culture and subsequent transplantation (after three passages). Of the remaining 57 rats, nine were selected for sham-operation (sham-operated group), where only the T9 spinal cord was exposed without hemisection. A total of 48 rats were randomly and evenly divided into BMSC transplantation and model groups. In the BMSC transplantation group, following spinal cord injury induction, each rat was administered a BMSC suspension through two injection sites selected on the gray and white matter boundary caudally and cephalically, seperately and near to injury site in the spinal cord. The model group received an equal volume of PBS through the identical injection sites.MAIN OUTCOME MEASURES: At 24 and 72 hours, as well as at 7 days, following spinal cord injury, the spinal cord at the T9 segment was removed. Eight rats were allocated to each time point in the BMSC transplantation and model

  8. Modulation of the tyrosine kinase receptor Ret/glial cell-derived neurotrophic factor (GDNF) signaling: a new player in reproduction induced anterior pituitary plasticity?

    Science.gov (United States)

    Guillou, Anne; Romanò, Nicola; Bonnefont, Xavier; Le Tissier, Paul; Mollard, Patrice; Martin, Agnès O

    2011-02-01

    During gestation, parturition, and lactation, the endocrine axis of the dam must continually adapt to ensure the continual and healthy development of offspring. The anterior pituitary gland, which serves as the endocrine interface between the brain and periphery, undergoes adaptations that contribute to regulation of the reproductive axis. Growth factors and their receptors are potential candidates for intrapituitary and paracrine factors to participate in the functional and anatomical plasticity of the gland. We examined the involvement of the growth factor glial cell-derived neurotrophic factor (GDNF) and its receptor tyrosine kinase rearranged during transfection (Ret) in the physiological functional and anatomical plasticity of the anterior pituitary gland. We found that variations in both expression and subcellular localization of Ret during gestation and lactation are temporally correlated with changes in pituitary gland function. We showed that Ret/GDNF signaling could endorse two different functional roles depending on the physiological status. At the end of lactation and after weaning, Ret was colocalized with markers of apoptosis. We found that Ret could therefore act as a physiological dependence receptor capable of inducing apoptosis in the absence of GDNF. In addition, we identified the follicullostellate cell as a probable source for intrapituitary GDNF and proposed GDNF as a potential physiological modulator of endocrine cell function. During all stages studied, we showed that acute application of GDNF to pituitary slices was able to modulate both positively and negatively intracellular calcium activity. Altogether our results implicate Ret/GDNF as a potent pleiotropic factor able to influence pituitary physiology during a period of high plasticity. PMID:21239429

  9. Depletion of polyamines prevents the neurotrophic activity of the GABA-agonist THIP in cultured rat cerebellar granule cells

    DEFF Research Database (Denmark)

    Abraham, J H; Hansen, Gert Helge; Seiler, N; Schousboe, A

    1993-01-01

    Effects of polyamine depletion by alpha-difluoromethylornithine (DFMO) were studied on the GABA-agonist mediated enhancement of the morphological development of cultured rat cerebellar granule cells. An increase in the number of neurite extending cells and in the cytoplasmic density of organelles...... morphological development of the granule cell cultures. Thus, the number of neurite extending cells was reduced to 50% of the number in the control cultures upon culturing in the presence of DFMO alone or in combination with THIP. Moreover, the THIP mediated increase in the cytoplasmic density of rough...

  10. Brain-derived neurotrophic factor induces post-lesion transcommissural growth of olivary axons that develop normal climbing fibers on mature Purkinje cells.

    Science.gov (United States)

    Dixon, Kirsty J; Sherrard, Rachel M

    2006-11-01

    In the adult mammalian central nervous system, reinnervation and recovery from trauma is limited. During development, however, post-lesion plasticity may generate alternate paths providing models to investigate factors that promote reinnervation to appropriate targets. Following unilateral transection of the neonatal rat olivocerebellar pathway, axons from the remaining inferior olive reinnervate the denervated hemicerebellum and develop climbing fiber arbors on Purkinje cells. However, the capacity to recreate this accurate target reinnervation in a mature system remains unknown. In rats lesioned on day 15 (P15) or 30 and treated with intracerebellar injection of brain-derived neurotrophic factor (BDNF) or vehicle 24 h later, the morphology and organisation of transcommissural olivocerebellar reinnervation was examined using neuronal tracing and immunohistochemistry. In all animals BDNF, but not vehicle, induced transcommissural olivocerebellar axonal growth into the denervated hemicerebellum. The distribution of reinnervating climbing fibers was not confined to the injection sites but extended throughout the denervated hemivermis and, less densely, up to 3.5 mm into the hemisphere. Transcommissural olivocerebellar axons were organised into parasagittal microzones that were almost symmetrical to those in the right hemicerebellum. Reinnervating climbing fiber arbors were predominantly normal, but in the P30-lesioned group 10% were either branched within the molecular layer forming a smaller secondary arbor or were less branched, and in the P15 lesion group the reinnervating arbors extended their terminals almost to the pial surface and were larger than control arbors (P < 0.02). These results show that BDNF can induce transcommissural olivocerebellar reinnervation, which resembles developmental neuroplasticity to promote appropriate target reinnervation in a mature environment. PMID:16790241

  11. Hippocampal neurogenesis, neurotrophic factors and depression: possible therapeutic targets?

    Science.gov (United States)

    Serafini, Gianluca; Hayley, Shawn; Pompili, Maurizio; Dwivedi, Yogesh; Brahmachari, Goutam; Girardi, Paolo; Amore, Mario

    2014-01-01

    Major depression is one of the leading causes of disability and psychosocial impairment worldwide. Although many advances have been made in the neurobiology of this complex disorder, the pathophysiological mechanisms are still unclear. Among the proposed theories, impaired neuroplasticity and hippocampal neurogenesis have received considerable attention. The possible association between hippocampal neurogenesis, neurotrophic factors, major depression, and antidepressant responses was critically analyzed using a comprehensive search of articles/book chapters in English language between 1980 and 2014. One common emerging theme was that chronic stress and major depression are associated with structural brain changes such as a loss of dendritic spines and synapses, as well as reduced dendritic arborisation, together with diminished glial cells in the hippocampus. Both central monoamines and neurotrophic factors were associated with a modulation of hippocampal progenitor proliferation and cell survival. Accordingly, antidepressants are generally suggested to reverse stress-induced structural changes augmenting dendritic arborisation and synaptogenesis. Such antidepressant consequences are supposed to stem from their stimulatory effects on neurotrophic factors, and possibly modulation of glial cells. Of course, accumulating evidence also suggested that glutamatergic systems are implicated in not only basic neuroplastic processes, but also in the core features of depression. Hence, it is critical that antidepressant strategies focus on links between the various neurotransmitter systems, neurotrophic processes of hippocampal neurogenesis, and neurotrophic factors with regards to depressive symptomology. The identification of novel alternative antidepressant medications that target these systems is discussed in this review. PMID:25470403

  12. Changes in brain-derived neurotrophic factor expression after transplanting microencapsulated sciatic nerve cells of rabbits into injured spinal cord of rats

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    BACKGROUND: Changes of brain-derived neurotrophic factor (BDNF) expression reflect function of nerve cells; meanwhile, they play a significant role in researching interventions on plerosis of nerve injury.OBJECTIVE: To observe and compare the effects on changes of BDNF expression in rats with spinal cord injury between microencapsulated sciatic nerve cells of rabbits and only transplanting sciatic nerve cells of rabbits.DESIGN: Randomized controlled animal study.SETTING: Medical School of Jiujiang College.MATERIALS: The experiment was carried out in the Medical Science Researching Center, Jiujiang College from May 2004 to May 2006. A total of 90 healthy adult SD rats, weighing 250 - 300 g, of either gender; and 10 rabbits, weighing 2.0 - 2.5 kg, of either gender, were provided by Jiangxi Experimental Animal Center.METHODS: Sciatic nerve tissue of rabbits was separated to make cell suspension. After centrifugation,suspension was mixed with 15 g/L alginate saline solution and ejaculated to 20 mmol/L barium chloride saline solution by double-cavity ejaculator. The obtained cell microcapsules were suspended in saline. Rats were randomly divided into microencapsulated group, only suspension group, and only injured group with 30 animals in each group. After anesthesia, T10 spinous process and vertebra lamina of rats in the former two groups were exposed. Spinal cord tissue in 2-mm length was removed from rats by spinal cord right hemi-section. The gelatin sponges with the size of 2 mm × 2 mm × 2 mm were grafted as filing cage,and absorbed 10 μμ L microencapsulated sciatic nerve cells of rabbit in the microencapsulated group and 10 μ L sciatic nerve cells of rabbits in the only suspension group; respectively. No graft was placed in the only injured group.MAIN OUTCOME MEASURES: On the 1st, 3rd, 7th, 14th and 28th days after operation,immunohistochemistry (SABC technique) was used to detect distribution and amount of positive-reactive neurons in BDNF of spinal cord

  13. Determining Concentration of Neurotrophic Factors and Neuron Specific Enolase in the Blood of Newborns with Central Nervous System Damages as a New Approach in Clinical Diagnostics

    Directory of Open Access Journals (Sweden)

    M.V. Vedunova

    2015-06-01

    Full Text Available The aim of the investigation is to assess the quantity of brain-derived neurotrophic factor (BDNF, glial cell line-derived neurotrophic factor (GDNF and neuron specific enolase (NSE in plasma of newborns with perinatal hypoxic damage of CNS. Materials and Methods. Neurotrophic factors and NSE enzyme concentrations in plasma of newborns (gestation age 31–42 weeks was studied. The main groups consisted of newborns with the symptoms of perinatal CNS damage (group 1 — with convulsive states, group 2 — with the signs of severe perinatal CNS damage, diagnosed according to physical examination, evaluation of the neurological status dynamics and neurosonographic studies. Control group included healthy neonates. Concentration of BDNF, GDNF (R&D Systems, USA and NSE enzyme (Vector Best, Russia was determined by ELISA kit during hospitalization and on day 10–14 after the rehabilitation therapy. Results. Carried out experiments revealed the significant increase of NSE concentration in plasma of newborns with convulsive states. The higher levels of this enzyme were detected in infants with severe perinatal CNS damage. Moreover, BDNF concentration significantly increases in plasma of patients with the symptoms of severe CNS damage in the period following rehabilitation therapy. These experiments also demonstrate the inverse correlation between BDNF and GDNF levels. It was shown the important prognostic value of BDNF and NSE determination in plasma of newborns with CNS injury. Conclusion. The most diagnostic value for assessing the severity of brain damage in early neonatal period is associated with measurements of NSE and BDNF concentrations in plasma, which allows to use these markers immediately after birth and before the development of neurological symptoms.

  14. Improved neurological outcome by intramuscular injection of human amniotic fluid derived stem cells in a muscle denervation model.

    Directory of Open Access Journals (Sweden)

    Chun-Jung Chen

    Full Text Available The skeletal muscle develops various degrees of atrophy and metabolic dysfunction following nerve injury. Neurotrophic factors are essential for muscle regeneration. Human amniotic fluid derived stem cells (AFS have the potential to secrete various neurotrophic factors necessary for nerve regeneration. In the present study, we assess the outcome of neurological function by intramuscular injection of AFS in a muscle denervation and nerve anastomosis model.Seventy two Sprague-Dawley rats weighing 200-250 gm were enrolled in this study. Muscle denervation model was conducted by transverse resection of a sciatic nerve with the proximal end sutured into the gluteal muscle. The nerve anastomosis model was performed by transverse resection of the sciatic nerve followed by four stitches reconnection. These animals were allocated to three groups: control, electrical muscle stimulation, and AFS groups.NT-3 (Neurotrophin 3, BDNF (Brain derived neurotrophic factor, CNTF (Ciliary neurotrophic factor, and GDNF (Glia cell line derived neurotrophic factor were highly expressed in AFS cells and supernatant of culture medium. Intra-muscular injection of AFS exerted significant expression of several neurotrophic factors over the distal end of nerve and denervated muscle. AFS caused high expression of Bcl-2 in denervated muscle with a reciprocal decrease of Bad and Bax. AFS preserved the muscle morphology with high expression of desmin and acetylcholine receptors. Up to two months, AFS produced significant improvement in electrophysiological study and neurological functions such as SFI (sciatic nerve function index and Catwalk gait analysis. There was also significant preservation of the number of anterior horn cells and increased nerve myelination as well as muscle morphology.Intramuscular injection of AFS can protect muscle apoptosis and likely does so through the secretion of various neurotrophic factors. This protection furthermore improves the nerve

  15. Ciliary Neurotrophic Factor Receptor Regulation of Adult Forebrain Neurogenesis

    OpenAIRE

    Lee, Nancy; Batt, Myra K.; Cronier, Brigitte A.; Jackson, Michele C.; Bruno Garza, Jennifer L; Trinh, Dennis S.; Mason, Carter O.; Spearry, Rachel P.; Bhattacharya, Shayon; Robitz, Rachel; Nakafuku, Masato; MacLennan, A. John

    2013-01-01

    Appropriately targeted manipulation of endogenous neural stem progenitor (NSP) cells may contribute to therapies for trauma, stroke, and neurodegenerative disease. A prerequisite to such therapies is a better understanding of the mechanisms regulating adult NSP cells in vivo. Indirect data suggest that endogenous ciliary neurotrophic factor (CNTF) receptor signaling may inhibit neuronal differentiation of NSP cells. We challenged subventricular zone (SVZ) cells in vivo with low concentrations...

  16. Mesencephalic astrocyte-derived neurotrophic factor attenuates inflammatory responses in lipopolysaccharide-induced neural stem cells by regulating NF-κB and phosphorylation of p38-MAPKs pathways.

    Science.gov (United States)

    Zhu, Wei; Li, Jie; Liu, Yigang; Xie, Kun; Wang, Le; Fang, Jianmin

    2016-06-01

    Mesencephalic astrocyte-derived neurotrophic factor (MANF), a new evolutionary conserved neurotrophic factor (NTF), has been reported to protect midbrain dopaminergic neurons of neurodegenerative diseases such as Parkinson's disease (PD) model. Neural stem cells (NSCs) can play a role as the therapeutic tool in neurodegenerative diseases, but the inflammatory responses of central nervous system (CNS) appear to harm this function. Although studies have previously demonstrated the protective effect of MANF on neurons of CNS, it is lacking in making great efforts on the function of MANF on NSCs. The aim of this study was to investigate the antiinflammatory responses and signaling mechanisms of MANF on lipopolysaccharide (LPS)-induced NSCs. In the results, MANF decreased the proinflammatory cytokines of IL-1β, TNF-α, and IFN-γ induced by LPS by regulating NF-κB and phosphorylation of p38-mitogen-activated protein kinases (MAPKs) pathways, neither p-JNK nor p-ERK signaling. These findings suggest that MANF can facilitate to protect the inflammatory responses of NSCs, and provide beneficial function for the application of NSCs in the therapy. PMID:27075782

  17. The effects of docosahexaenoic acid on glial derived neurotrophic factor and neurturin in bilateral rat model of Parkinson's disease.

    Directory of Open Access Journals (Sweden)

    Gokhan Akkoyunlu

    2010-11-01

    Full Text Available Parkinson's disease (PD is the second most common neurodegenerative disorder marked by cell death in the Substantia nigra (SN. Docosahexaenoic acid (DHA is the major polyunsaturated fatty acid (PUFA in the phospholipid fraction of the brain and is required for normal cellular function. Glial cell line derived neurotrophic factor (GDNF and neurturin (NTN are very potent trophic factors for PD. The aim of the study was to evaluate the neuroprotective effects of GDNF and NTN by investigating their immunostaining levels after administration of DHA in a model of PD. For this reason we hypothesized that DHA administration of PD might alter GDNF, NTN expression in SN. MPTP neurotoxin that induces dopaminergic neurodegeneration was used to create the experimental Parkinsonism model. Rats were divided into; control, DHA-treated (DHA, MPTP-induced (MPTP, MPTP-induced+DHA-treated (MPTP+DHA groups. Dopaminergic neuron numbers were clearly decreased in MPTP, but showed an increase in MPTP+DHA group. As a result of this, DHA administration protected dopaminergic neurons as shown by tyrosine hydroxylase immunohistochemistry. In the MPTP+DHA group, GDNF, NTN immunoreactions in dopaminergic neurons were higher than that of the MPTP group. In conclusion, the characterization of GDNF and NTN will certainly help elucidate the mechanism of DHA action, and lead to better strategies for the use of DHA to treat neurodegenerative diseases.

  18. Brain-derived neurotrophic factors increase the proliferation and differentiation of endogenous neural stem cells in mouse models of cerebral infarction

    Institute of Scientific and Technical Information of China (English)

    Dawei Zang; Juan Liu; Xianhua Zuo; Surindar Cheema

    2007-01-01

    BACKGROUND: It has been confirmed that brain-derived neurotrophic factor (BDNF) can promote the proliferation of neural stem cells (NSCs) and protect neuron-like cells in vitro. However, its effect on endogenous NSCs in vivo is still unclear.OBJECTIVE: To evaluate whether BDNF can induce the endogenous NSCs to proliferate and differentiate into the neurons in the mice model of cerebral infarction.DESIGN: A synchronal controlled observation.SETTINGS: Department of Neurology, Microbiology Division of the Department of Laboratory, Tianjin First Central Hospital; Howard Florey Institute, Medical College, the University of Melbourne.MATERIALS: Twenty-four pure breed C57BL/6J mice at the age of 10 weeks old (12 males and 12 females)were divided into saline control group and BDNF-treated group, 6 males and 6 females in each group.METHODS: The experiments were performed at the University of Melbourne from July 2004 to February 2005. ① The left middle cerebral artery (MCA) was ligated in both groups to establish models of cerebral infarction and the Matsushita measuring method was used to monitor the blood flow of the lesioned region supplied by MCA. 75% reduction of blood flow should be reached in the lesioned region. ② At 24 hours after infarction, mice in the BDNF-treated group were administrated with BDNF, which was slowly delivered using an ALZET osmium pump design. BDNF was dissolved in saline at the dosage of 500 mg/kg and injected into the pump, which could release the solution consistently in the following 28 days. The mice in the saline control group accepted the same volume of saline at 24 hours after infarction. ③ The Rotarod function test began at 1 week preoperatively, the time stayed on Rotarod was recorded. The mice were tested once a day till the end of the experiment. At 4 weeks post cerebral infarction, double labeling of Nestin and GFAP, BⅢ tubulin and CNPase immunostaining was performed to observe the differentiation directions of the re

  19. Brain-derived neurotrophic factor is produced by skeletal muscle cells in response to contraction and enhances fat oxidation via activation of AMP-activated protein kinase

    DEFF Research Database (Denmark)

    Matthews, V B; Åström, Maj-Brit; Chan, M H S;

    2009-01-01

    AIMS/HYPOTHESIS: Brain-derived neurotrophic factor (BDNF) is produced in skeletal muscle, but its functional significance is unknown. We aimed to determine the signalling processes and metabolic actions of BDNF. METHODS: We first examined whether exercise induced BDNF expression in humans. Next, C2......(79)) were analysed, as was fatty acid oxidation (FAO). Finally, we electroporated a Bdnf vector into the tibialis cranialis muscle of mice. RESULTS: BDNF mRNA and protein expression were increased in human skeletal muscle after exercise, but muscle-derived BDNF appeared not to be released...

  20. Regulation of Schwann cell proliferation and migration by miR-1 targeting brain-derived neurotrophic factor after peripheral nerve injury

    OpenAIRE

    Sheng Yi; Ying Yuan; Qianqian Chen; Xinghui Wang; Leilei Gong; Jie Liu; Xiaosong Gu; Shiying Li

    2016-01-01

    Peripheral nerve injury is a global problem that causes disability and severe socioeconomic burden. Brain-derived neurotrophic factor (BDNF) benefits peripheral nerve regeneration and becomes a promising therapeutic molecule. In the current study, we found that microRNA-1 (miR-1) directly targeted BDNF by binding to its 3′-UTR and caused both mRNA degradation and translation suppression of BDNF. Moreover, miR-1 induced BDNF mRNA degradation primarily through binding to target site 3 rather th...

  1. Synergistic effects of brain-derived neurotrophic factor and retinoic acid on inducing the differentiation of bone marrow stromal cells into neuron-like cells in adult rats in vitro

    Institute of Scientific and Technical Information of China (English)

    Yonghai Liu; Yucheng Song; Zunsheng Zhang; Xia Shen

    2006-01-01

    BACKGROUND; Under induction of retinoic acid (RA), bone marrow stromal cells (BMSCs) can differentiate into nerve cells or neuron-like cells, which do not survive for a long time, so those are restricted to an application. Other neurotrophic factors can also differentiate into neuronal cells through inducing BMSCs; especially, brain-derived neurotrophic factor (BDNF) can delay natural death of neurons and play a key role in survival and growth of neurons. The combination of them is beneficial for differentiation of BMSCs.OBJECTIVE: To investigate the effects of BDNF combining with RA on inducing differentiation of BMSCs to nerve cells of adult rats and compare the results between common medium group and single BDNF group.DESIGN: Randomized controlled animal study.SETTING : Department of Neurology, Affiliated Hospital of Xuzhou Medical College.MATERIALS: The experiment was carried out in the Clinical Neurological Laboratory of Xuzhou MedicalCollege from September 2003 to April 2005. A total of 24 SD rats, of either gender, 2 months old,weighing 130-150 g, were provided by Experimental Animal Center of Xuzhou Medical College [certification: SYXK (su) 2002-0038]. Materials and reagents: low-glucose DMEM medium, bovine serum, BDNF,RA, trypsin, separating medium of lymphocyte, monoclonal antibody of mouse-anti-nestin, neuro-specific enolase, glial fibrillary acidic protein (GFAP) antibody, SABC kit, and diaminobenzidine (DAB) color agent. All these mentioned above were mainly provided by SIGMA Company, GIBCO Company and Boshide Company.METHODS: Bone marrow of SD rats was selected for density gradient centrifugation. BMSCs were undertaken primary culture and subculture; and then, those cells were induced respectively in various mediums in total of 3 groups, including control group (primary culture), BDNF group (20 μg/L BDNF) and BDNF+RA group (20 μg/L BDNF plus 20 μg/L RA). On the 3rd and the 7th days after induction, BMSCs were stained immunocytochemically with

  2. Codon optimization and factorial screening for enhanced soluble expression of human ciliary neurotrophic factor in Escherichia coli

    OpenAIRE

    Itkonen, Jaakko M; Urtti, Arto; Bird, Louise E.; Sarkhel, Sanjay

    2014-01-01

    Abstract Background Neurotrophic factors influence survival, differentiation, proliferation and death of neuronal cells within the central nervous system. Human ciliary neurotrophic factor (hCNTF) has neuroprotective properties and is also known to influence energy balance. Consequently, hCNTF has potential therapeutic applications in neurodegenerative, obesity and diabetes relat...

  3. Effects of the neurotrophic factor artemin on sensory afferent development and sensitivity

    Institute of Scientific and Technical Information of China (English)

    Shuying WANG; Christopher M. Elitt; Sacha A. Malin; Kathryn M. Albers

    2008-01-01

    Artemin is a neuronal survival and differentiation factor in the glial cell line-derived neurotrophic factor family. Its receptor GFRα3 is expressed by a subpopulation of nociceptor type sensory neurons in the dorsal root and trigeminal ganglia (DRG and TG). These neurons co-express the heat, capsaicin and proton-sensitive channel TRPV 1 and the cold and chemical-sensitive channel TRPA1. To further investigate the effects of artemin on sensory neurons, we isolated transgenic mice (ARTN-OE mice) that overexpress artemin in keratinocytes of the skin and tongue. Enhanced levels of artemin led to a 20% increase in the total number of DRG neurons and increases in the level of mRNA encoding TRPV1 and TRPAI. Calcium imaging showed that isolated sensory neurons from ARTN-OE mice were hypersensitive to the TRPV 1 agonist capsaicin and the TRPA1 agonist mustard oil. Behavioral testing of ARTN-OE mice also showed an increased sensitivity to heat, cold, capsaicin and mustard oil stimuli applied either to the skin or in the drinking water. Sensory neurons from wildtype mice also exhibited potentiated capsaicin responses following artemin addition to the media. In addition, injection of artemin into hindpaw skin produced transient thermal hyperalgesia. These findings indicate that artemin can modulate sensory function and that this regulation may occur through changes in channel gene expression. Because artemin mRNA expression is up-regulated in inflamed tissue and following nerve injury, it may have a significant role in cellular changes that underlie pain associated with pathological conditions. Manipulation of artemin expression may therefore offer a new pain treatment strategy.

  4. Vanillin and 4-hydroxybenzyl alcohol promotes cell proliferation and neuroblast differentiation in the dentate gyrus of mice via the increase of brain-derived neurotrophic factor and tropomyosin-related kinase B.

    Science.gov (United States)

    Cho, Jeong-Hwi; Park, Joon Ha; Ahn, Ji Hyeon; Lee, Jae-Chul; Hwang, In Koo; Park, Seung Min; Ahn, Ji Yun; Kim, Dong Won; Cho, Jun Hwi; Kim, Jong-Dai; Kim, Young-Myeong; Won, Moo-Ho; Kang, Il-Jun

    2016-04-01

    4-Hydroxy‑3-methoxybenzaldehyde (vanillin) and 4-hydroxybenzyl alcohol (4-HBA) are well‑known phenolic compounds, which possess various therapeutic properties and are widely found in a variety of plants. In the present study, the effects of vanillin and 4‑HBA were first investigated on cell proliferation, as well as neuronal differentiation and integration of granule cells in the dentate gyrus (DG) of adolescent mice using Ki‑67, doublecortin (DCX) immunohistochemistry and 5‑bromo‑2'‑deoxyuridine (BrdU)/feminizing Locus on X 3 (NeuN) double immunofluorescence. In both the vanillin and 4‑HBA groups, the number of Ki‑67+ cells, DCX+ neuroblasts and BrdU+/NeuN+ neurons were significantly increased in the subgranular zone of the DG, as compared with the vehicle group. In addition, the levels of brain‑derived neurotrophic factor (BDNF) and tropomyosin‑related kinase B (TrkB), a BDNF receptor, were significantly increased in the DG in the vanillin and 4‑HBA groups compared with the vehicle group. These results indicated that vanillin and 4‑HBA enhanced cell proliferation, neuroblast differentiation and integration of granule cells in the DG of adolescent mice . These neurogenic effects of vanillin and 4‑HBA may be closely associated with increases in BDNF and TrkB. PMID:26935641

  5. Activation of microglial cells triggers a release of brain-derived neurotrophic factor (BDNF) inducing their proliferation in an adenosine A2A receptor-dependent manner: A2A receptor blockade prevents BDNF release and proliferation of microglia

    OpenAIRE

    Gomes Catarina; Ferreira Raquel; George Jimmy; Sanches Rui; Rodrigues Diana I; Gonçalves Nélio; Cunha Rodrigo A

    2013-01-01

    Abstract Background Brain-derived neurotrophic factor (BDNF) has been shown to control microglial responses in neuropathic pain. Since adenosine A2A receptors (A2ARs) control neuroinflammation, as well as the production and function of BDNF, we tested to see if A2AR controls the microglia-dependent secretion of BDNF and the proliferation of microglial cells, a crucial event in neuroinflammation. Methods Murine N9 microglial cells were challenged with lipopolysaccharide (LPS, 100 ng/mL) in the...

  6. Deconstructing brain-derived neurotrophic factor actions in adult brain circuits to bridge an existing informational gap in neuro-cell biology

    Institute of Scientific and Technical Information of China (English)

    Heather Bowling; Aditi Bhattacharya; Eric Klann; Moses V Chao

    2016-01-01

    Brain-derived neurotrophic factor (BDNF) plays an important role in neurodevelopment, synaptic plas-ticity, learning and memory, and in preventing neurodegeneration. Despite decades of investigations into downstream signaling cascades and changes in cellular processes, the mechanisms of how BDNF reshapes circuitsin vivo remain unclear. This informational gap partly arises from the fact that the bulk of studies into the molecular actions of BDNF have been performed in dissociated neuronal cultures, while the ma-jority of studies on synaptic plasticity, learning and memory were performed in acute brain slices orin vivo. A recent study by Bowling-Bhattacharya et al., measured the proteomic changes in acute adult hippocampal slices following treatment and reported changes in proteins of neuronal and non-neuronal origin that may in concert modulate synaptic release and secretion in the slice. In this paper, we place these ifndings into the context of existing literature and discuss how they impact our understanding of how BDNF can reshape the brain.

  7. HBpF-proBDNF: A New Tool for the Analysis of Pro-Brain Derived Neurotrophic Factor Receptor Signaling and Cell Biology.

    Science.gov (United States)

    Gaub, Perrine; de Léon, Andrès; Gibon, Julien; Soubannier, Vincent; Dorval, Geneviève; Séguéla, Philippe; Barker, Philip A

    2016-01-01

    Neurotrophins activate intracellular signaling pathways necessary for neuronal survival, growth and apoptosis. The most abundant neurotrophin in the adult brain, brain-derived neurotrophic factor (BDNF), is first synthesized as a proBDNF precursor and recent studies have demonstrated that proBDNF can be secreted and that it functions as a ligand for a receptor complex containing p75NTR and sortilin. Activation of proBDNF receptors mediates growth cone collapse, reduces synaptic activity, and facilitates developmental apoptosis of motoneurons but the precise signaling cascades have been difficult to discern. To address this, we have engineered, expressed and purified HBpF-proBDNF, an expression construct containing a 6X-HIS tag, a biotin acceptor peptide (BAP) sequence, a PreScission™ Protease cleavage site and a FLAG-tag attached to the N-terminal part of murine proBDNF. Intact HBpF-proBDNF has activities indistinguishable from its wild-type counterpart and can be used to purify proBDNF signaling complexes or to monitor proBDNF endocytosis and retrograde transport. HBpF-proBDNF will be useful for characterizing proBDNF signaling complexes and for deciphering the role of proBDNF in neuronal development, synapse function and neurodegenerative disease. PMID:26950209

  8. Diagnosis and management of neurotrophic keratitis

    Directory of Open Access Journals (Sweden)

    Sacchetti M

    2014-03-01

    Full Text Available Marta Sacchetti,1 Alessandro Lambiase2 1Cornea and Ocular Surface Unit, Ospedale San Raffaele di Milano-IRCCS, Milan, 2Ophthalmology, University La Sapienza of Rome, Italy Abstract: Neurotrophic keratitis (NK is a degenerative disease characterized by corneal sensitivity reduction, spontaneous epithelium breakdown, and impairment of corneal healing. Several causes of NK, including herpetic keratitis, diabetes, and ophthalmic and neurosurgical procedures, share the common mechanism of trigeminal damage. Diagnosis of NK requires accurate investigation of clinical ocular and systemic history, complete eye examination, and assessment of corneal sensitivity. All diagnostic procedures to achieve correct diagnosis and classification of NK, including additional examinations such as in vivo confocal microscopy, are reviewed. NK can be classified according to severity of corneal damage, ie, epithelial alterations (stage 1, persistent epithelial defect (stage 2, and corneal ulcer (stage 3. Management of NK should be based on clinical severity, and aimed at promoting corneal healing and preventing progression of the disease to stromal melting and perforation. Concomitant ocular diseases, such as exposure keratitis, dry eye, and limbal stem cell deficiency, negatively influence the outcome of NK and should be treated. Currently, no specific medical treatment exists, and surgical approaches, such as amniotic membrane transplantation and conjunctival flap, are effective in preserving eye integrity, without ameliorating corneal sensitivity or visual function. This review describes experimental and clinical reports showing several novel and potential therapies for NK, including growth factors and metalloprotease inhibitors, as well as three ongoing Phase II clinical trials. Keywords: neurotrophic keratitis, cornea sensitivity, cornea innervation, persistent epithelial defect

  9. Systemic administration of ciliary neurotrophic factor induces cachexia in rodents.

    OpenAIRE

    Henderson, J T; Seniuk, N A; Richardson, P.M.; Gauldie, J; Roder, J. C.

    1994-01-01

    Ciliary neurotrophic factor (CNTF) has previously been shown to promote the survival of several classes of neurons and glial. We report here that in addition to its effects on the nervous system, CNTF can induce potent effects in extra-neural tissues. Implantation of C6 glioma cells engineered to secrete CNTF either subcutaneously or into the peritoneal cavity of adult mice, or systemic injections of purified rat or human recombinant CNTF, resulted in a rapid syndrome of weight loss resulting...

  10. Brain-derived neurotrophic factor expression is higher in brain tissue from patients with refractory epilepsy than in normal controls

    Institute of Scientific and Technical Information of China (English)

    Yudan Lv; Jiqing Qiu; Zan Wang; Li Cui; Hongmei Meng; Weihong Lin

    2011-01-01

    The role of the brain-derived neurotrophic factor in epilepsy remains controversial. The present study utilized light and electron microscopy to investigate pathological and ultrastructural changes in brain tissue obtained from the seizure foci of 24 patients with temporal epilepsy. We found that epileptic tissue showed neuronal degeneration, glial cell proliferation, nuclear vacuolization, and neural cell tropism. Immunoelectron microscopy and immunohistochemistry showed that brain-derived neurotrophic factor was expressed at significantly higher levels in patients with refractory temporal epilepsy compared with normal controls, demonstrating that the pathological changes within seizure foci in patients with refractory epilepsy are associated with brain-derived neurotrophic factor expression alterations.

  11. Difference in trafficking of brain-derived neurotrophic factor between axons and dendrites of cortical neurons, revealed by live-cell imaging

    Directory of Open Access Journals (Sweden)

    Kohara Keigo

    2005-06-01

    Full Text Available Abstract Background Brain-derived neurotrophic factor (BDNF, which is sorted into a regulated secretory pathway of neurons, is supposed to act retrogradely through dendrites on presynaptic neurons or anterogradely through axons on postsynaptic neurons. Depending on which is the case, the pattern and direction of trafficking of BDNF in dendrites and axons are expected to be different. To address this issue, we analyzed movements of green fluorescent protein (GFP-tagged BDNF in axons and dendrites of living cortical neurons by time-lapse imaging. In part of the experiments, the expression of BDNF tagged with cyan fluorescent protein (CFP was compared with that of nerve growth factor (NGF tagged with yellow fluorescent protein (YFP, to see whether fluorescent protein-tagged BDNF is expressed in a manner specific to this neurotrophin. Results We found that BDNF tagged with GFP or CFP was expressed in a punctated manner in dendrites and axons in about two-thirds of neurons into which plasmid cDNAs had been injected, while NGF tagged with GFP or YFP was diffusely expressed even in dendrites in about 70% of the plasmid-injected neurons. In neurons in which BDNF-GFP was expressed as vesicular puncta in axons, 59 and 23% of the puncta were moving rapidly in the anterograde and retrograde directions, respectively. On the other hand, 64% of BDNF-GFP puncta in dendrites did not move at all or fluttered back and forth within a short distance. The rest of the puncta in dendrites were moving relatively smoothly in either direction, but their mean velocity of transport, 0.47 ± 0.23 (SD μm/s, was slower than that of the moving puncta in axons (0.73 ± 0.26 μm/s. Conclusion The present results show that the pattern and velocity of the trafficking of fluorescence protein-tagged BDNF are different between axons and dendrites, and suggest that the anterograde transport in axons may be the dominant stream of BDNF to release sites.

  12. Activation of microglial cells triggers a release of brain-derived neurotrophic factor (BDNF inducing their proliferation in an adenosine A2A receptor-dependent manner: A2A receptor blockade prevents BDNF release and proliferation of microglia

    Directory of Open Access Journals (Sweden)

    Gomes Catarina

    2013-01-01

    Full Text Available Abstract Background Brain-derived neurotrophic factor (BDNF has been shown to control microglial responses in neuropathic pain. Since adenosine A2A receptors (A2ARs control neuroinflammation, as well as the production and function of BDNF, we tested to see if A2AR controls the microglia-dependent secretion of BDNF and the proliferation of microglial cells, a crucial event in neuroinflammation. Methods Murine N9 microglial cells were challenged with lipopolysaccharide (LPS, 100 ng/mL in the absence or in the presence of the A2AR antagonist, SCH58261 (50 nM, as well as other modulators of A2AR signaling. The BDNF cellular content and secretion were quantified by Western blotting and ELISA, A2AR density was probed by Western blotting and immunocytochemistry and cell proliferation was assessed by BrdU incorporation. Additionally, the A2AR modulation of LPS-driven cell proliferation was also tested in primary cultures of mouse microglia. Results LPS induced time-dependent changes of the intra- and extracellular levels of BDNF and increased microglial proliferation. The maximal LPS-induced BDNF release was time-coincident with an LPS-induced increase of the A2AR density. Notably, removing endogenous extracellular adenosine or blocking A2AR prevented the LPS-mediated increase of both BDNF secretion and proliferation, as well as exogenous BDNF-induced proliferation. Conclusions We conclude that A2AR activation plays a mandatory role controlling the release of BDNF from activated microglia, as well as the autocrine/paracrine proliferative role of BDNF.

  13. The link between mitochondrial complex I and brain-derived neurotrophic factor in SH-SY5Y cells--The potential of JNX1001 as a therapeutic agent.

    Science.gov (United States)

    Kim, Helena K; Mendonça, Karina M; Howson, Patrick A; Brotchie, Jonathan M; Andreazza, Ana C

    2015-10-01

    Mitochondrial complex I, which is the first member of the electron transport chain responsible for producing ATP, can produce reactive oxygen species and oxidative stress when it becomes dysfunctional. Complex I dysfunction and oxidative stress are strongly implicated in bipolar disorder (BD), a debilitating psychiatric disease, as is decreased levels of brain derived neurotrophic factor (BDNF) found in patients with BD, which is related to complex I activity. JNX1001, a clinical trial ready brain penetrant sapogenin, increases BDNF levels in animal models. Hence, we aimed to examine if JNX1001 can prevent complex I dysfunction-induced alterations produced by rotenone treatment in human neuroblastoma cells (SH-SY5Y). Complex I dysfunction decreased cell viability and increased protein carbonylation and nitration, confirming previous findings. Complex I dysfunction also decreased intracellular and extracellular BDNF levels. JNX1001 pre-treatment prevented complex I dysfunction-induced protein carbonylation and nitration and improved cell viability at concentrations of 30 nM and 300 nM, but more robustly at 300 nM. JNX1001 was also able to prevent decreased intracellular and extracellular BDNF levels, where it produced a ten-fold increase in intracellular BDNF levels at a concentration of 300 nM. While further studies are required to examine the neuroprotective ability of JNX1001 against alterations produced by complex I defect in more complex systems, such as in animal models, the findings of this study demonstrate the potential of JNX1001 to be used as a therapeutic agent to protect against complex I dysfunction-induced alterations that may be highly relevant to BD. PMID:26164791

  14. Synergistic neurotrophic effects of piracetam and thiotriazoline

    Directory of Open Access Journals (Sweden)

    O. A. Gromova

    2016-01-01

    Full Text Available The paper considers the synergy between the nootropic drug piracetam and the metabolic agent thiotriazoline that maintains energy metabolism and survival of neurons and other types of cells. Piracetam, a nootropic drug, a chemical pyrrolidone derivative, is used in neurological, psychiatric, and narcological practice. There is evidence on the positive effect of piracetam in elderly and senile patients with coronary heart disease. This drug is supposed to stimulate redox processes, to enhance glucose utilization, and to improve regional blood flow in the ischemic brain regions. Due to its action, the drug activates glycolytic processes and elevates ATP concentrations in brain tissue. Thiotriazoline is a compound that has antioxidant, anti-ischemic properties. The co-administration of piracetam and thiothriazoline is an innovation area in the treatment of stroke and other brain damages, especially in insulin resistance and high blood glucose levels. The paper considers the neurobiological properties of thiotriazoline and piracetam, which synergistically exert neuroprotective and neurotrophic effects.

  15. Enhancing nerve regeneration in the peripheral nervous system using polymeric scaffolds, stem cell engineering and nanoparticle delivery system

    Science.gov (United States)

    Sharma, Anup Dutt

    Peripheral nerve regeneration is a complex biological process responsible for regrowth of neural tissue following a nerve injury. The main objective of this project was to enhance peripheral nerve regeneration using interdisciplinary approaches involving polymeric scaffolds, stem cell therapy, drug delivery and high content screening. Biocompatible and biodegradable polymeric materials such as poly (lactic acid) were used for engineering conduits with micropatterns capable of providing mechanical support and orientation to the regenerating axons and polyanhydrides for fabricating nano/microparticles for localized delivery of neurotrophic growth factors and cytokines at the site of injury. Transdifferentiated bone marrow stromal cells or mesenchymal stem cells (MSCs) were used as cellular replacements for lost native Schwann cells (SCs) at the injured nerve tissue. MSCs that have been transdifferentiated into an SC-like phenotype were tested as a substitute for the myelinating SCs. Also, genetically modified MSCs were engineered to hypersecrete brain- derived neurotrophic factor (BDNF) and glial cell line-derived neurotrophic factor (GDNF) to secrete therapeutic factors which Schwann cell secrete. To further enhance the regeneration, nerve growth factor (NGF) and interleukin-4 (IL4) releasing polyanhydrides nano/microparticles were fabricated and characterized in vitro for their efficacy. Synergistic use of these proposed techniques was used for fabricating a multifunctional nerve regeneration conduit which can be used as an efficient tool for enhancing peripheral nerve regeneration.

  16. The Complex of Ciliary Neurotrophic Factor-Ciliary Neurotrophic Factor Receptor α Up-Regulates Connexin43 and Intercellular Coupling in Astrocytes via the Janus Tyrosine Kinase/Signal Transducer and Activator of Transcription PathwayD⃞

    OpenAIRE

    Ozog, Mark A.; Bernier, Suzanne M; Bates, Dave C.; Chatterjee, Bishwanath; Lo, Cecilia W.; Naus, Christian C.G.

    2004-01-01

    Cytokines regulate numerous cell processes, including connexin expression and gap junctional coupling. In this study, we examined the effect of ciliary neurotrophic factor (CNTF) on connexin43 (Cx43) expression and intercellular coupling in astrocytes. Murine cortical astrocytes matured in vitro were treated with CNTF (20 ng/ml), soluble ciliary neurotrophic factor receptor α (CNTFRα) (200 ng/ml), or CNTF-CNTFRα. Although CNTF and CNTFRα alone had no effect on Cx43 expression, the heterodimer...

  17. Modulation of the major histocompatibility complex by neural stem cell-derived neurotrophic factors used for regenerative therapy in a rat model of stroke

    OpenAIRE

    Sun Chongran; Zhang Han; Li Jin; Huang Hua; Cheng Hongbin; Wang Yajie; Li Ping, [No Value; An Yihua

    2010-01-01

    Abstract Background The relationship between functional improvements in ischemic rats given a neural stem cell (NSC) transplant and the modulation of the class I major histocompatibility complex (MHC) mediated by NSC-derived neurotrophins was investigated. Methods The levels of gene expression of nerve growth factor (NGF), brain-derived neurotropic factor (BDNF) and neurotrophin-3 (NT-3) were assayed from cultures of cortical NSC from Sprague-Dawley rat E16 embryos. The levels of translated N...

  18. Astrocytes produce an insulin-like neurotrophic factor

    International Nuclear Information System (INIS)

    They have previously reported that survival of dissociated neurons from fetal rat telencephalon plated at low density in serum-free, hormone-free defined medium is enhanced in the presence of insulin. In the absence of insulin a similar effect on neuronal survival is observed if cells are grown in medium conditioned by glial cells. The present study was carried out to characterize the insulin-like neurotrophic activity present in the glial conditioned medium (GLCM). Conditioned medium from confluent cultures of astrogial cells maintained in a serum free defined medium without insulin was collected every two or three days. A 5 to 30kDa fraction of this medium was obtained by filtering it sequentially through YM30 and YM5 membrane filters. Binding of 125I-insulin to high density neuronal cultures was inhibited 43% by this fraction. Radioimmunoassay for insulin indicated that 1-2 ng of immuno-reactive insulin were present per ml of GLCM. Immunosequestration of the factor by insulin antibodies bound to protein A agarose gel resulted in loss of neurotrophic activity of the 5 to 30 kDa fraction. These results indicate that cultured astrocytes produce a factor immunologically and biochemically similar to insulin. This factor enhances the survival of neurons in culture and may be important for their normal development and differentiation

  19. Regeneração de nervos periféricos: terapia celular e fatores neurotróficos Peripheral nerve regeneration: cell therapy and neurotrophic factors

    Directory of Open Access Journals (Sweden)

    Alessandra Deise Sebben

    2011-01-01

    surgical intervention is rare. Many surgical techniques can be used for nerve repair. Among these, the tubulization technique can be highlighted: this allows regenerative factors to be introduced into the chamber. Cell therapy and tissue engineering have arisen as an alternative for stimulating and aiding peripheral nerve regeneration. Therefore, the aim of this review was to provide a survey and analysis on the results from experimental and clinical studies that used cell therapy and tissue engineering as tools for optimizing the regeneration process. The articles used came from the LILACS, Medline and SciELO scientific databases. Articles on the use of stem cells, Schwann cells, growth factors, collagen, laminin and platelet-rich plasma for peripheral nerve repair were summarized over the course of the review. Based on these studies, it could be concluded that the use of stem cells derived from different sources presents promising results relating to nerve regeneration, because these cells have a capacity for neuronal differentiation, thus demonstrating effective functional results. The use of tubes containing bioactive elements with controlled release also optimizes the nerve repair, thus promoting greater myelination and axonal growth of peripheral nerves. Another promising treatment is the use of platelet-rich plasma, which not only releases growth factors that are important in nerve repair, but also serves as a carrier for exogenous factors, thereby stimulating the proliferation of specific cells for peripheral nerve repair.

  20. Measurements of brain-derived neurotrophic factor

    DEFF Research Database (Denmark)

    Trajkovska, Viktorija; Klein, Anders Bue; Vinberg, Maj;

    2007-01-01

    Although numerous studies have dealt with changes in blood brain-derived neurotrophic factor (BDNF), methodological issues about BDNF measurements have only been incompletely resolved. We validated BDNF ELISA with respect to accuracy, reproducibility and the effect of storage and repeated freezin...

  1. Ciliary neurotrophic factor (CNTF plus soluble CNTF receptor α increases cyclooxygenase-2 expression, PGE2 release and interferon-γ-induced CD40 in murine microglia

    Directory of Open Access Journals (Sweden)

    Li Hong

    2009-03-01

    Full Text Available Abstract Background Ciliary neurotrophic factor (CNTF has been regarded as a potent trophic factor for motor neurons. However, recent studies have shown that CNTF exerts effects on glial cells as well as neurons. For instance, CNTF stimulates astrocytes to secrete FGF-2 and rat microglia to secrete glial cell line-derived neurotrophic factor (GDNF, which suggest that CNTF exerts effects on astrocytes and microglia to promote motor neuron survival indirectly. As CNTF is structurally related to IL-6, which can stimulate immune functions of microglia, we hypothesized that CNTF might exert similar effects. Methods We performed 2-D and 1-D proteomic experiments with western blotting and flow cytometry to examine effects of CNTF on primary microglia derived from neonatal mouse brains. Results We show that murine microglia express CNTF receptor α (CNTFRα, which can be induced by interferon-γ (IFNγ. Whereas IL-6 activated STAT-3 and ERK phosphorylation, CNTF did not activate these pathways, nor did CNTF increase p38 MAP kinase phosphorylation. Using 2-D western blot analysis, we demonstrate that CNTF induced the dephosphorylation of a set of proteins and phosphorylation of a different set. Two proteins that were phosphorylated upon CNTF treatment were the LYN substrate-1 and β-tubulin 5. CNTF weakly stimulated microglia, whereas a stronger response was obtained by adding exogenous soluble CNTFRα (sCNTFRα as has been observed for IL-6. When used in combination, CNTF and sCNTFRα collaborated with IFNγ to increase microglial surface expression of CD40 and this effect was quite pronounced when the microglia were differentiated towards dendritic-like cells. CNTF/sCNTFRα complex, however, failed to increase MHC class II expression beyond that induced by IFNγ. The combination of CNTF and sCNTFRα, but not CNTF alone, enhanced microglial Cox-2 protein expression and PGE2 secretion (although CNTF was 30 times less potent than LPS. Surprisingly, Cox-2

  2. The Role of Neurotrophic Factors Conjugated to Iron Oxide Nanoparticles in Peripheral Nerve Regeneration: In Vitro Studies

    Directory of Open Access Journals (Sweden)

    Ofra Ziv-Polat

    2014-01-01

    Full Text Available Local delivery of neurotrophic factors is a pillar of neural repair strategies in the peripheral nervous system. The main disadvantage of the free growth factors is their short half-life of few minutes. In order to prolong their activity, we have conjugated to iron oxide nanoparticles three neurotrophic factors: nerve growth factor (βNGF, glial cell-derived neurotrophic factor (GDNF, and basic fibroblast growth factor (FGF-2. Comparative stability studies of free versus conjugated factors revealed that the conjugated neurotrophic factors were significantly more stable in tissue cultures and in medium at 37°C. The biological effects of free versus conjugated neurotrophic factors were examined on organotypic dorsal root ganglion (DRG cultures performed in NVR-Gel, composed mainly of hyaluronic acid and laminin. Results revealed that the conjugated neurotrophic factors enhanced early nerve fiber sprouting compared to the corresponding free factors. The most meaningful result was that conjugated-GDNF, accelerated the onset and progression of myelin significantly earlier than the free GDNF and the other free and conjugated factors. This is probably due to the beneficial and long-acting effect that the stabilized conjugated-GDNF had on neurons and Schwann cells. These conclusive results make NVR-Gel enriched with conjugated-GDNF, a desirable scaffold for the reconstruction of severed peripheral nerve.

  3. Modulation of the major histocompatibility complex by neural stem cell-derived neurotrophic factors used for regenerative therapy in a rat model of stroke

    Directory of Open Access Journals (Sweden)

    Sun Chongran

    2010-08-01

    Full Text Available Abstract Background The relationship between functional improvements in ischemic rats given a neural stem cell (NSC transplant and the modulation of the class I major histocompatibility complex (MHC mediated by NSC-derived neurotrophins was investigated. Methods The levels of gene expression of nerve growth factor (NGF, brain-derived neurotropic factor (BDNF and neurotrophin-3 (NT-3 were assayed from cultures of cortical NSC from Sprague-Dawley rat E16 embryos. The levels of translated NGF in spent culture media from NSC cultures and the cerebral spinal fluid (CSF of rats with and without NGF injection or NSC transplant were also measured. Results We found a significant increase of NGF, BDNF and NT-3 transcripts and NGF proteins in both the NSC cultures and the CSF of the rats. The immunochemical staining for MHC in brain sections and the enzyme-linked immunosorbent assay of CSF were carried out in sham-operated rats and rats with surgically induced focal cerebral ischemia. These groups were further divided into animals that did and did not receive NGF administration or NSC transplant into the cisterna magna. Our results show an up-regulation of class I MHC in the ischemic rats with NGF and NSC administration. The extent of caspase-III immunoreactivity was comparable among three arms in the ischemic rats. Conclusion Readouts of somatosensory evoked potential and the trap channel test illustrated improvements in the neurological function of ischemic rats treated with NGF administration and NSC transplant.

  4. Ciliary neurotrophic factor is an endogenous pyrogen.

    OpenAIRE

    Shapiro, L; Zhang, X. X.; Rupp, R G; Wolff, S. M.; Dinarello, C A

    1993-01-01

    Fever is initiated by the action of polypeptide cytokines called endogenous pyrogens, which are produced by the host during inflammation, trauma, or infection and which elevate the thermoregulatory set point in the hypothalamus. Ciliary neurotrophic factor (CNTF) supports the differentiation and survival of central and peripheral neurons. We describe the activity of CNTF as intrinsically pyrogenic in the rabbit. CNTF induced a monophasic fever which rose rapidly (within the first 12 min) foll...

  5. Neurotrophic effects of neudesin in the central nervous system

    OpenAIRE

    Kimura, Ikuo; Nakayama, Yoshiaki; Zhao, Ying; Konishi, Morichika; Itoh, Nobuyuki

    2013-01-01

    Neudesin (neuron-derived neurotrophic factor; NENF) was identified as a neurotrophic factor that is involved in neuronal differentiation and survival. It is abundantly expressed in the central nervous system, and its neurotrophic activity is exerted via the mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase (PI3K) pathways. Neudesin is also an anorexigenic factor that suppresses food intake in the hypothalamus. It is a member of the membrane-associated progesterone rece...

  6. Stability Test For Sorghum Mutant Lines Derived From Induced Mutations with Gamma-Ray Irradiation

    Directory of Open Access Journals (Sweden)

    S. Human

    2011-12-01

    Full Text Available Sorghum breeding program had been conducted at the Center for the Application of Isotopes and Radiation Technology, BATAN. Plant genetic variability was increased through induced mutations using gamma-ray irradiation. Through selection process in successive generations, some promising mutant lines had been identified to have good agronomic characteristics with high grain yield. These breeding lines were tested in multi location trials and information of the genotypic stability was obtained to meet the requirements for officially varietal release by the Ministry of Agriculture. A total of 11 sorghum lines and varieties consisting of 8 mutant lines derived from induced mutations (B-100, B-95, B-92, B-83, B-76, B-75, B-69 and Zh-30 and 3 control varieties (Durra, UPCA-S1 and Mandau were included in the experiment. All materials were grown in 10 agro-ecologically different locations namely Gunungkidul, Bantul, Citayam, Garut, Lampung, Bogor, Anyer, Karawaci, Cianjur and Subang. In each location, the local adaptability test was conducted by randomized block design with 3 replications. Data of grain yield was used for evaluating genotypic stability using AMMI approach. Results revealed that sorghum mutation breeding had generated 3 mutant lines (B-100, B-76 and Zh-30 exhibiting grain yield significantly higher than the control varieties. These mutant lines were genetically stable in all locations so that they would be recommended for official release as new sorghum varieties to the Ministry of Agriculture

  7. Stability Test For Sorghum Mutant Lines Derived From Induced Mutations with Gamma-Ray Irradiation

    International Nuclear Information System (INIS)

    Sorghum breeding program had been conducted at the Center for the Application of Isotopes and Radiation Technology, BATAN. Plant genetic variability was increased through induced mutations using gamma-ray irradiation. Through selection process in successive generations, some promising mutant lines had been identified to have good agronomic characteristics with high grain yield. These breeding lines were tested in multi location trials and information of the genotypic stability was obtained to meet the requirements for officially varietal release by the Ministry of Agriculture. A total of 11 sorghum lines and varieties consisting of 8 mutant lines derived from induced mutations (B-100, B-95, B-92, B-83, B-76, B-75, B-69 and Zh-30) and 3 control varieties (Durra, UPCA-S1 and Mandau) were included in the experiment. All materials were grown in 10 agro-ecologically different locations namely Gunungkidul, Bantul, Citayam, Garut, Lampung, Bogor, Anyer, Karawaci, Cianjur and Subang. In each location, the local adaptability test was conducted by randomized block design with 3 replications. Data of grain yield was used for evaluating genotypic stability using AMMI approach. Results revealed that sorghum mutation breeding had generated 3 mutant lines (B-100, B-76 and Zh-30) exhibiting grain yield significantly higher than the control varieties. These mutant lines were genetically stable in all locations so that they would be recommended for official release as new sorghum varieties to the Ministry of Agriculture. (author)

  8. Induction of adult human bone marrow mesenchymal stromal cells into functional astrocyte-like cells: potential for restorative treatment in Parkinson's disease.

    Science.gov (United States)

    Bahat-Stroomza, Merav; Barhum, Yael; Levy, Yossef S; Karpov, Olga; Bulvik, Shlomo; Melamed, Eldad; Offen, Daniel

    2009-09-01

    Parkinson's disease (PD) is a neurodegenerative disorder with its motor phenomena due mostly to loss of dopamine-producing neurons in the substantia nigra. Pharmacological treatments aimed to increase the deficient dopaminergic neurotransmission are effective in ameliorating the cardinal symptoms, but none of these therapies is curative. It has been suggested that treatment with neurotrophic factors (NTFs) might protect and prevent death of the surviving dopaminergic neurons and induce proliferation of their axonal nerve terminals with reinnervations of the deafferented striatum. However, long-term delivery of such proteins into the CNS is problematic. We therefore aimed to differentiate ex vivo human bone marrow-derived mesenchymal stromal cells into astrocyte-like cells, capable of generating NTFs for future transplantation into basal ganglia of PD patients. Indeed, mesenchymal stromal cells treated with our novel astrocyte differentiation medium, present astrocyte-like morphology and express the astrocyte markers S100beta, glutamine synthetase and glial fibrillary acidic protein. Moreover, these astrocyte-like cells produce and secrete significant amounts of glial cell line-derived neurotrophic factor (GDNF), nerve growth factor (NGF), and brain-derived neurotrophic factor as indicated by messenger RNA, real-time polymerase chain reaction, ELISA, and Western blot analyses. Such NTF-producing cells transplanted into the striatum of 6-hydroxydopamine-lesioned rats, a model of PD, produced a progressive reduction in the apomorphine-induced contralateral rotations as well as behavioral improvement in rotor-rod and the "sunflower seeds" eating motor tests. Histological assessments revealed that the engrafted cells survived and expressed astrocyte and human markers and acted to regenerate the damaged dopaminergic nerve terminal system. Findings indicate that our novel procedure to induce NTF-producing astrocyte-like cells derived from human bone marrow stromal cells

  9. A novel neurotrophic drug for cognitive enhancement and Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Qi Chen

    Full Text Available Currently, the major drug discovery paradigm for neurodegenerative diseases is based upon high affinity ligands for single disease-specific targets. For Alzheimer's disease (AD, the focus is the amyloid beta peptide (Aß that mediates familial Alzheimer's disease pathology. However, given that age is the greatest risk factor for AD, we explored an alternative drug discovery scheme that is based upon efficacy in multiple cell culture models of age-associated pathologies rather than exclusively amyloid metabolism. Using this approach, we identified an exceptionally potent, orally active, neurotrophic molecule that facilitates memory in normal rodents, and prevents the loss of synaptic proteins and cognitive decline in a transgenic AD mouse model.

  10. Perineural Growth in Head and Neck Squamous Cell Carcinoma: A Review

    Science.gov (United States)

    Roh, Joseph; Muelleman, Thomas; Tawfik, Ossama; Thomas, Sufi M

    2014-01-01

    Perineural growth is a unique route of tumor metastasis that is associated with poor prognosis in several solid malignancies. It is diagnosed by the presence of tumor cells inside the neural space seen on histological or imaging evaluations. Little is known about molecular mechanisms involved in the growth and spread of tumor cells in neural spaces. The poor prognosis associated with perineural growth and lack of targeted approaches necessitates the study of molecular factors involved in communication between tumor and neural cells. Perineural growth rates, shown to be as high as 63% in head and neck squamous cell carcinoma (HNSCC), correlate with increased local recurrence and decreased disease-free survival. Here we describe the literature on perineural growth in HNSCC. In addition, we discuss factors implicated in perineural growth of cancer. These factors include brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), neurotropin-3 and -4, glial cell-line derived neurotrophic factor (GDNF), the neural cell adhesion molecule (NCAM), substance P (SP), and chemokines. We also explore the literature on membrane receptors, including the Trk family and the low-affinity nerve growth factor receptor. This review highlights areas for further study of the mechanisms of perineural invasion which may facilitate the identification of therapeutic targets in HNSCC. PMID:25456006

  11. Exposure to Early Life Stress Results in Epigenetic Changes in Neurotrophic Factor Gene Expression in a Parkinsonian Rat Model

    Directory of Open Access Journals (Sweden)

    Thabisile Mpofana

    2016-01-01

    Full Text Available Early life adversity increases the risk of mental disorders later in life. Chronic early life stress may alter neurotrophic factor gene expression including those for brain derived neurotrophic factor (BDNF and glial cell derived neurotrophic factor (GDNF that are important in neuronal growth, survival, and maintenance. Maternal separation was used in this study to model early life stress. Following unilateral injection of a mild dose of 6-hydroxydopamine (6-OHDA, we measured corticosterone (CORT in the blood and striatum of stressed and nonstressed rats; we also measured DNA methylation and BDNF and GDNF gene expression in the striatum using real time PCR. In the presence of stress, we found that there was increased corticosterone concentration in both blood and striatal tissue. Further to this, we found higher DNA methylation and decreased neurotrophic factor gene expression. 6-OHDA lesion increased neurotrophic factor gene expression in both stressed and nonstressed rats but this increase was higher in the nonstressed rats. Our results suggest that exposure to early postnatal stress increases corticosterone concentration which leads to increased DNA methylation. This effect results in decreased BDNF and GDNF gene expression in the striatum leading to decreased protection against subsequent insults later in life.

  12. Drug carrier systems based on collagen-alginate composite structures for improving the performance of GDNF-secreting HEK293 cells.

    Science.gov (United States)

    Lee, M; Lo, A C; Cheung, P T; Wong, D; Chan, B P

    2009-02-01

    Glial cell line-derived neurotrophic factor (GDNF) is a potent neurotrophic factor. Development of drug delivery technologies facilitating controlled release of GDNF is critical to applying GDNF in treating neurodegenerative diseases. We previously developed 3D collagen microspheres and demonstrated enhanced GDNF secretion after encapsulation of HEK293 cells, which were transduced to overexpress GDNF in these microspheres. However, the entrapped HEK293 cells were able to migrate out of the collagen microspheres, making it undesirable for clinical applications. In this report, we investigate two new carrier designs, namely collagen-alginate composite gel and collagen microspheres embedded in alginate gel in preventing cell leakage, maintaining cell growth and controlling GDNF secretion in the HEK293 cells. We demonstrated that inclusion of alginate gel in both designs is efficient in preventing cell leakage to the surrounding yet permitting the GDNF secretion, although the cellular growth rate is reduced in an alginate concentration dependent manner. Differential patterns of GDNF secretion in the two designs were demonstrated. The collagen-alginate composite gel maintains a more or less constant GDNF secretion over time while the collagen microspheres embedded in alginate gel continue to increase the secretion level of GDNF over time. This study contributes towards the development of cell-based GDNF delivery devices for the future therapeutics of neurodegenerative diseases. PMID:19059641

  13. Vasoactive Intestinal Peptide Induction by Ciliary Neurotrophic Factor in Donor Human Corneal Endothelium in situ

    OpenAIRE

    Koh, Shay-Whey M.; Guo, Yan; Bernstein, Steve L.; Waschek, James A.; Liu, Xiuhuai; Symes, Aviva J

    2007-01-01

    After peripheral nerve axotomy, vasoactive intestinal peptide (VIP) gene expression is upregulated in neurons, whereas ciliary neurotrophic factor (CNTF) accumulates extracellularly at the lesion site. Although CNTF-induced VIP gene expression has been reported in cultured sympathetic neurons and neuroblastoma cells, it still remains to be determined if CNTF and VIP play interrelated roles in nerve injury. The corneal endothelium, like sympathetic neurons, derives from the neural crest. Previ...

  14. Ciliary neurotrophic factor prevents retrograde neuronal death in the adult central nervous system.

    OpenAIRE

    Clatterbuck, R E; Price, D L; Koliatsos, V E

    1993-01-01

    The neurocytokine ciliary neurotrophic factor (CNTF) was described originally as an activity that supports the survival of neurons of the chicken ciliary ganglia in vitro. The widespread expression of CNTF and its principal binding protein, CNTF receptor alpha, in the central and peripheral nervous systems suggests a broader trophic role for this peptide. In the present study, we report that CNTF prevents axotomy-induced cell death of neurons in the anteroventral and anterodorsal thalamic nuc...

  15. Ciliary neurotrophic factor corrects obesity and diabetes associated with leptin deficiency and resistance

    OpenAIRE

    Gloaguen, Isabelle; Costa, Patrizia; Demartis, Anna; Lazzaro, Domenico; Di Marco, Annalise; Graziani, Rita; Paonessa, Giacomo; Chen, Fang; Rosenblum, Charles I.; Van der Ploeg, Lex H. T.; Cortese, Riccardo; Ciliberto, Gennaro; Laufer, Ralph

    1997-01-01

    Receptor subunits for the neurocytokine ciliary neurotrophic factor (CNTF) share sequence similarity with the receptor for leptin, an adipocyte-derived cytokine involved in body weight homeostasis. We report here that CNTF and leptin activate a similar pattern of STAT factors in neuronal cells, and that mRNAs for CNTF receptor subunits, similarly to the mRNA of leptin receptor, are localized in mouse hypothalamic nuclei involved in the regulation of energy balance. Systemic administration of ...

  16. Ciliary neurotrophic factor prevents degeneration of adult rat substantia nigra dopaminergic neurons in vivo.

    OpenAIRE

    T. Hagg; Varon, S

    1993-01-01

    We have investigated the neuroprotective effects of recombinant human ciliary neurotrophic factor (CNTF) for injured dopaminergic neurons of the adult rat substantia nigra compacta. Fourteen days after a unilateral transection of the nigrostriatal pathway two-thirds of the neurons (identified by retrograde labeling) had degenerated. In sharp contrast, 73% (a few cases, > 90%) of this cell loss was prevented by continuous infusion of CNTF close to the injured neurons. However, CNTF did not pre...

  17. Transplantation of primed human fetal neural stem cells improves cognitive function in rats after traumatic brain injury.

    Science.gov (United States)

    Gao, Junling; Prough, Donald S; McAdoo, David J; Grady, James J; Parsley, Margaret O; Ma, Long; Tarensenko, Yevgeniya I; Wu, Ping

    2006-10-01

    Traumatic brain injury (TBI) often produces cognitive impairments by primary or secondary neuronal loss. Stem cells are a potential tool to treat TBI. However, most previous studies using rodent stem or progenitor cells failed to correlate cell grafting and cognitive improvement. Furthermore, the efficacy of fetal human neural stem cells (hNSCs) for ameliorating TBI cognitive dysfunction is undetermined. This study therefore characterized phenotypic differentiation, neurotrophic factor expression and release and functional outcome of grafting hNSCs into TBI rat brains. Adult Sprague-Dawley rats underwent a moderate parasagittal fluid percussion TBI followed by ipsilateral hippocampal transplantation of hNSCs or vehicle 1 day post-injury. Prior to grafting, hNSCs were treated in vitro for 7 days with our previously developed priming procedure. Significant spatial learning and memory improvements were detected by the Morris water maze (MWM) test in rats 10 days after receiving hNSC grafts. Morphological analyses revealed that hNSCs survived and differentiated mainly into neurons in the injured hippocampus at 2 weeks after grafting. Furthermore, hNSCs expressed and released glial-cell-line-derived neurotrophic factor (GDNF) in vitro and when grafted in vivo, as detected by RT-PCR, immunostaining, microdialysis and ELISA. This is the first direct demonstration of the release of a neurotrophic factor in conjunction with stem cell grafting. In conclusion, human fetal neural stem cell grafts improved cognitive function of rats with acute TBI. Grafted cells survived and differentiated into neurons and expressed and released GNDF in vivo, which may help protect host cells from secondary damage and aid host regeneration. PMID:16904107

  18. 神经营养因子与神经干细胞的增殖与分化:基于汤森路透Web of Science数据库文献检索%Neurotrophic factors participate in proliferation and differentiation of neural stem cells: literature retrieval results based on Web of Science

    Institute of Scientific and Technical Information of China (English)

    姜振

    2012-01-01

    BACKGROUND: Neurotrophic factors have a close relationship with proliferation and differentiation of neural stem cells andplay an important role in induced differentiation of neural stem cells.OBJECTIVE: To identify the global research trends of effects of neurotrophic factors on proliferation and differentiation of neuralstem cells via a bibliometric analysis of Web of Science.DESIGN: A bibliometric study.DATA RETRIEVAL: We performed a bibliometric analysis for data retrievals regarding effects of neurotrophic factors onproliferation and differentiation of neural stem cells from 2002 to 2011 via Web of Science.SELECTION CRITERIA: Inclusive criteria: Peer-reviewed articles about effects of neurotrophic factors on proliferation anddifferentiation of neural stem cells which were published and indexed in Web of Science, including articles of original researcharticles, reviews, meeting abstracts and proceeding paper. Exclusive criteria: articles need to be manually searched or accessedonly through telephone; unpublished articles; correction paper.MAIN OUTCOME MEASUREMENTS: Total article outputs; type of articles; distribution of output in subject categories;publication distribution of countries; publication distribution of institutions; top cited paper; distribution of publications.RESULTS: From 2002 to 2011, 257 papers studying effects of neurotrophic factors on proliferation and differentiation of neuralstem cells were indexed in Web of Science, including 88 papers addressing nerve growth factor on proliferation anddifferentiation of neural stem cells, 127 papers addressing brain-derived neurotrophic factor on proliferation and differentiation ofneural stem cells, and 42 papers addressing neurotrophin 3 on proliferation and differentiation of neural stem cells. There wereonly 7 articles published in 2002, whereas the number of publications doubled since 2007. Totally 43 articles addressingneurotrophic factors on proliferation and differentiation of neural stem cells

  19. Expression of surface differentiation antigens on dendritic cells and a cell line derived from dendritic cells during differentiation

    Czech Academy of Sciences Publication Activity Database

    Reiniš, Milan; Šímová, Jana; Jandlová, Táňa; Mendoza, Luis; Bubeník, Jan

    České Budějovice : KOPP nakladatelství, 1999. s. 113. [Biological Day /15./. 06.09.1999-08.09.1999, České Budějovice] R&D Projects: GA AV ČR IPP2020702 Subject RIV: EB - Genetics ; Molecular Biology

  20. Postnatal Expression of Neurotrophic Factors Accessible to Spiral Ganglion Neurons in the Auditory System of Adult Hearing and Deafened Rats

    OpenAIRE

    Bailey, Erin M.; Green, Steven H.

    2014-01-01

    Spiral ganglion neurons (SGNs) receive input from cochlear hair cells and project from the cochlea to the cochlear nucleus. After destruction of hair cells with aminoglycoside antibiotics or noise, SGNs gradually die. It has been assumed that SGN death is attributable to loss of neurotrophic factors (NTFs) derived from hair cells or supporting cells in the organ of Corti (OC). We used quantitative PCR (qPCR) to assay NTF expression—neurotrophin-3 (NT-3), BDNF, GDNF, neurturin, artemin, and CN...

  1. Gastrodin promotes the secretion of brain-derived neurotrophic factor in the injured spinal cord

    Institute of Scientific and Technical Information of China (English)

    Changwei Song; Shiqiang Fang; Gang Lv; Xifan Mei

    2013-01-01

    Gastrodin, an active component of tall gastrodia tuber, is widely used in the treatment of dizziness, paralysis, epilepsy, stroke and dementia, and exhibits a neuroprotective effect. A rat model of spinal cord injury was established using Allen's method, and gastrodin was administered via the subarachnoid cavity and by intraperitoneal injection for 7 days. Results show that gastrodin promoted the secretion of brain-derived neurotrophic factor in rats with spinal cord injury. After gastrodin treatment, the maximum angle of the inclined plane test, and the Basso, Beattie and Bresnahan scores increased. Moreover, gastrodin improved neural tissue recovery in the injured spinal cord. These results demonstrate that gastrodin promotes the secretion of brain-derived neurotrophic factor, contributes to the recovery of neurological function, and protects neural cells against injury.

  2. Neurotrophic factors in tension-type headache

    Directory of Open Access Journals (Sweden)

    Renan B. Domingues

    2015-05-01

    Full Text Available Neurotrophic factors (NF are involved in pain regulation and a few studies have suggested that they may play a pathophysiological role in primary headaches. The aim of this study was to investigate NF levels in patients with tension type headache (TTH. We carried out a cross sectional study including 48 TTH patients and 48 age and gender matched controls. Beck Depression and Anxiety Inventories, and Headache Impact Test were recorded. Serum levels of NF were determined by ELISA. There were not significant differences between NF levels between TTH patients and controls. Patients with chronic and episodic TTH had not significant differences in NF levels. The presence of headache at the time of evaluation did not significantly alter the levels of NF. Depression and anxiety scores as well as headache impact did not correlate with NF levels. Our study suggest that the serum levels of NF are not altered in TTH.

  3. The Brain Derived Neurotrophic Factor and Personality

    Directory of Open Access Journals (Sweden)

    Christian Montag

    2014-01-01

    Full Text Available The study of the biological basis of personality is a timely research endeavor, with the aim of deepening our understanding of human nature. In recent years, a growing body of research has investigated the role of the brain derived neurotrophic factor (BDNF in the context of individual differences across human beings, with a focus on personality traits. A large number of different approaches have been chosen to illuminate the role of BDNF for personality, ranging from the measurement of BDNF in the serum/plasma to molecular genetics to (genetic brain imaging. The present review provides the reader with an overview of the current state of affairs in the context of BDNF and personality.

  4. Neurotrophic factor control of satiety and body weight.

    Science.gov (United States)

    Xu, Baoji; Xie, Xiangyang

    2016-05-01

    Energy balance - that is, the relationship between energy intake and energy expenditure - is regulated by a complex interplay of hormones, brain circuits and peripheral tissues. Leptin is an adipocyte-derived cytokine that suppresses appetite and increases energy expenditure. Ironically, obese individuals have high levels of plasma leptin and are resistant to leptin treatment. Neurotrophic factors, particularly ciliary neurotrophic factor (CNTF) and brain-derived neurotrophic factor (BDNF), are also important for the control of body weight. CNTF can overcome leptin resistance in order to reduce body weight, although CNTF and leptin activate similar signalling cascades. Mutations in the gene encoding BDNF lead to insatiable appetite and severe obesity. PMID:27052383

  5. Therapeutic potential of mesenchymal stromal cells and MSC conditioned medium in Amyotrophic Lateral Sclerosis (ALS--in vitro evidence from primary motor neuron cultures, NSC-34 cells, astrocytes and microglia.

    Directory of Open Access Journals (Sweden)

    Hui Sun

    Full Text Available Administration of mesenchymal stromal cells (MSC improves functional outcome in the SOD1G93A mouse model of the degenerative motor neuron disorder amyotrophic lateral sclerosis (ALS as well as in models of other neurological disorders. We have now investigated the effect of the interaction between MSC and motor neurons (derived from both non-transgenic and mutant SOD1G93A transgenic mice, NSC-34 cells and glial cells (astrocytes, microglia (derived again from both non-transgenic and mutant SOD1G93A ALS transgenic mice in vitro. In primary motor neurons, NSC-34 cells and astrocytes, MSC conditioned medium (MSC CM attenuated staurosporine (STS - induced apoptosis in a concentration-dependent manner. Studying MSC CM-induced expression of neurotrophic factors in astrocytes and NSC-34 cells, we found that glial cell line-derived neurotrophic factor (GDNF and ciliary neurotrophic factor (CNTF gene expression in astrocytes were significantly enhanced by MSC CM, with differential responses of non-transgenic and mutant astrocytes. Expression of Vascular Endothelial Growth Factor (VEGF in NSC-34 cells was significantly upregulated upon MSC CM-treatment. MSC CM significantly reduced the expression of the cytokines TNFα and IL-6 and iNOS both in transgenic and non-transgenic astrocytes. Gene expression of the neuroprotective chemokine Fractalkine (CX3CL1 was also upregulated in mutant SOD1G93A transgenic astrocytes by MSC CM treatment. Correspondingly, MSC CM increased the respective receptor, CX3CR1, in mutant SOD1G93A transgenic microglia. Our data demonstrate that MSC modulate motor neuronal and glial response to apoptosis and inflammation. MSC therefore represent an interesting candidate for further preclinical and clinical evaluation in ALS.

  6. Resveratrol Produces Neurotrophic Effects on Cultured Dopaminergic Neurons through Prompting Astroglial BDNF and GDNF Release

    Directory of Open Access Journals (Sweden)

    Feng Zhang

    2012-01-01

    Full Text Available Increasing evidence indicated astroglia-derived neurotrophic factors generation might hold a promising therapy for Parkinson’s disease (PD. Resveratrol, naturally present in red wine and grapes with potential benefit for health, is well known to possess a number of pharmacological activities. Besides the antineuroinflammatory properties, we hypothesized the neuroprotective potency of resveratrol is partially due to its additional neurotrophic effects. Here, primary rat midbrain neuron-glia cultures were applied to investigate the neurotrophic effects mediated by resveratrol on dopamine (DA neurons and further explore the role of neurotrophic factors in its actions. Results showed resveratrol produced neurotrophic effects on cultured DA neurons. Additionally, astroglia-derived neurotrophic factors release was responsible for resveratrol-mediated neurotrophic properties as evidenced by the following observations: (1 resveratrol failed to exert neurotrophic effects on DA neurons in the cultures without astroglia; (2 the astroglia-conditioned medium prepared from astroglia-enriched cultures treated with resveratrol produced neurotrophic effects in neuron-enriched cultures; (3 resveratrol increased neurotrophic factors release in the concentration- and time-dependent manners; (4 resveratrol-mediated neurotrophic effects were suppressed by blocking the action of the neurotrophic factors. Together, resveratrol could produce neurotrophic effects on DA neurons through prompting neurotrophic factors release, and these effects might open new alternative avenues for neurotrophic factor-based therapy targeting PD.

  7. Use of suppression subtractive hybridization to identify genes regulated by ciliary neurotrophic factor in postnatal retinal explants

    OpenAIRE

    Roger, Jérôme; Goureau, Olivier; Sahel, José-Alain; Guillonneau, Xavier

    2007-01-01

    Purpose The retinal progenitors are multipotential, and the decision taken by a progenitor to differentiate along a particular path depends on both cell-intrinsic and cell-extrinsic factors. Ciliary neurotrophic factor (CNTF), a member of the interleukin-6 (IL-6) family, added to rat postnatal retinal progenitors inhibits rod photoreceptor cell differentiation, promotes Müller glia genesis and enhances the expression of bipolar neuron markers. We hypothesized that those transcripts regulated ...

  8. 许旺细胞源神经营养因子对脊髓背根节感觉神经元的保护作用%Protective effect of Schwann cell-derived neurotrophic factor on sensory neurons in spinal dorsal root ganglia

    Institute of Scientific and Technical Information of China (English)

    刘黎军; 朱家恺; 王大平; 肖建德; 杨雷

    2006-01-01

    BACKGROUND: Schwann cell-derived neurotrophic factor is a bioactive protein isolated and purified from the kytoplasm of Schwann cell. It can obviously maintain the survival of spinal cord anterior horn motor neuron and promote the regeneration of peripheral nerve.OBJECTIVE: To observe the protective effect of Schwann cell-derived neurotrophic factor on the high injury of peripheral nerve-induced apoptosis of sensory neurons in spinal dorsal root ganglia.DESIGN: Randomized and controlled animal experiment.SETTING: Shenzhen Second People's Hospital.MATERIALS: Totally 30 3-week-old SD infant rats, of clean grade and either gender, were used in this experiment. They were randomly divided into neurotrophic factor group and control group with 15 rats in each one.Left sides of the animals in both two groups were set as normal sides and right sides as injured sides.METHODS: This experiment was carried out at the Experimental Animal Center, Medical College of Sun Yat-sen University from May 2003 to July 2003. ① L4.5 nerve root high-mutilation animal models were developed on the rats in two groups. Proximal nerve stump was connected with silicone tube. According to grouping, 60 mg/L Schwann cell-derived neurotrophic factors and 20 μL normal saline were injected into the silicone tubes respectively. Two ends of silicone tube were enveloped with vaseline.② Sample collecting was conducted at postoperative 4 weeks, survival rate and morphological change of sensory neurons in dorsal root ganglia of injured nerve was observed.MAIN OUTCOME MEASURES: ① Gross observation of sciatic nerve regeneration at injured side of the rats in two groups ② Survival of sensory neurons in dorsal root ganglia ③ Morphological change of sensory neurons in dorsal root ganglia.RESULTS: All the 30 rats entered the stage of result analysis. ① Gross observation of sciatic nerve regeneration: In the neurotrophic factor group,nerve new born axon grew along silicone tube, with 1cm in length

  9. Neurotrophic and antioxidant potential of neuropeptides and trace elements

    Directory of Open Access Journals (Sweden)

    O. A. Gromova

    2016-01-01

    Full Text Available Neurotrophic therapy with brain extract-based drugs has been performed for decades. The basis for their neurotrophic activity is amino acids and neuropeptides. However, incomplete information on the composition of these drugs precludes a detailed description of mechanisms through which their pharmacological effects occur. The review considers the results of the most recent molecular pharmacological investigations and the mechanisms of therapeutic action of cerebrolysin.

  10. Neurotrophic and antioxidant potential of neuropeptides and trace elements

    OpenAIRE

    O. A. Gromova; A. V. Pronin; I. Yu. Torshin; A. G. Kalacheva; T. R. Grishina

    2016-01-01

    Neurotrophic therapy with brain extract-based drugs has been performed for decades. The basis for their neurotrophic activity is amino acids and neuropeptides. However, incomplete information on the composition of these drugs precludes a detailed description of mechanisms through which their pharmacological effects occur. The review considers the results of the most recent molecular pharmacological investigations and the mechanisms of therapeutic action of cerebrolysin.

  11. Nerve growth factor, brain-derived neurotrophic factor, and the chronobiology of mood: a new insight into the "neurotrophic hypothesis"

    Directory of Open Access Journals (Sweden)

    Tirassa P

    2015-10-01

    Full Text Available Paola Tirassa,1 Adele Quartini,2 Angela Iannitelli2–4 1National Research Council (CNR, Institute of Cell Biology and Neurobiology (IBCN, 2Department of Medical-Surgical Sciences and Biotechnologies, Faculty of Pharmacy and Medicine – "Sapienza" University of Rome, 3Italian Psychoanalytical Society (SPI, Rome, Italy; 4International Psychoanalytical Association (IPA, London, UKAbstract: The light information pathways and their relationship with the body rhythms have generated a new insight into the neurobiology and the neurobehavioral sciences, as well as into the clinical approaches to human diseases associated with disruption of circadian cycles. Light-based strategies and/or drugs acting on the circadian rhythms have widely been used in psychiatric patients characterized by mood-related disorders, but the timing and dosage use of the various treatments, although based on international guidelines, are mainly dependent on the psychiatric experiences. Further, many efforts have been made to identify biomarkers able to disclose the circadian-related aspect of diseases, and therefore serve as diagnostic, prognostic, and therapeutic tools in clinic to assess the different mood-related symptoms, including pain, fatigue, sleep disturbance, loss of interest or pleasure, appetite, psychomotor changes, and cognitive impairments. Among the endogenous factors suggested to be involved in mood regulation, the neurotrophins, nerve growth factor, and brain-derived neurotrophic factor show anatomical and functional link with the circadian system and mediate some of light-induced effects in brain. In addition, in humans, both nerve growth factor and brain-derived neurotrophic factor have showed a daily rhythm, which correlate with the morningness–eveningness dimensions, and are influenced by light, suggesting their potential role as biomarkers for chronotypes and/or chronotherapy. The evidences of the relationship between the diverse mood-related disorders

  12. Chronic neonatal nicotine exposure increases mRNA expression of neurotrophic factors in the postnatal rat hippocampus.

    Science.gov (United States)

    Son, Jong-Hyun; Winzer-Serhan, Ursula H

    2009-06-30

    Nicotine, the psychoactive ingredient in tobacco, can be neuroprotective but the mechanism is unknown. In the adult hippocampus, chronic nicotine can increase expression of growth factors which could contribute to nicotine's neuroprotective effects. During development, nicotine could also increase expression of neurotrophic factors. Therefore, we determined whether chronic neonatal nicotine (CNN) exposure increased mRNA expression levels of brain-derived neurotrophic factor (BDNF), nerve-growth factor (NGF), neurotrophin-3 (NT-3), fibroblast growth factor-2 (FGF-2), and insulin-like growth factor-1 (IGF-1). Nicotine (6 mg/kg/day in milk formula) or milk formula (controls) were delivered in three daily doses via oral gastric intubation to rat pups from postnatal day (P)1 to P8, and then sacrificed. Brains were processed for in situ hybridization using specific (35)S-labeled cRNA probes. At P8, CNN had a significant stimulant treatment effect on the expression of BDNF, FGF-2, NT-3 and IGF-1 [pCNN increased the number of IGF-1-expressing cells in CA1 (18.0%), CA3 (20.9%) and DG (17.7%). Thus, nicotine exposure during early postnatal development differentially up-regulated expression of neurotrophic factor mRNAs in the hippocampus, which could increase neurotrophic tone and alter developmental processes. PMID:19410565

  13. Synthesis and localization of ciliary neurotrophic factor in the sciatic nerve of the adult rat after lesion and during regeneration

    OpenAIRE

    Sendtner, Michael; Stöckli, K. A.; Thoenen, Hans

    2009-01-01

    Ciliary neurotrophic factor (CNTF) is expressed in high quantities in Schwann cells of peripheral nerves during postnatal development of the rat. The absence of a hydrophobic leader sequence and the immunohistochemical localization of CNTF within the cytoplasm of these cells indicate that the factor might not be available to responsive neurons under physiological conditions. However, CNTF supports the survival of a variety of embryonic neurons, including spinal motoneurons in culture. Moreove...

  14. Neurotrophic keratitis in a patient with disseminated lymphangiomatosis

    Directory of Open Access Journals (Sweden)

    Jared E Knickelbein

    2009-10-01

    Full Text Available Jared E Knickelbein1,2, Susan T Stefko1, Puwat Charukamnoetkanok11Department of Ophthalmology, 2Medical Scientist Training Program, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA Introduction: Neurotrophic keratitis, a degenerative corneal disease caused by trigeminal nerve impairment, has many etiologies and remains very difficult to treat.Methods: Case report of a 23-year-old male with a right corneal ulcer that failed to improve despite broad-spectrum antimicrobials.Results: Prior diagnosis of disseminated lymphangiomatosis with a lesion in the right petrous apex effacing Meckel’s (trigeminal cave in conjunction with a history of nonhealing corneal abrasions suggested a neurotrophic etiology. Drawstring temporary tarsorrhaphy, in addition to antibiotics and autologous serum, lead to successful clearing of the infection and resolution of the corneal ulcer. Visual acuity improved from light perception (LP at the peak of infection to 20/40 six weeks after treatment.Conclusions: To our knowledge, we report the first case of neurotrophic keratitis in a patient with disseminated lymphangiomatosis that caused a mass effect in Meckel’s (trigeminal cave leading to compression of the trigeminal nerve. The antibiotic-resistant corneal ulcer was successfully treated with drawstring tarsorrhaphy, confirming the utility of this therapeutic measure in treating neurotrophic keratitis.Keywords: neurotrophic keratitis, corneal abrasion, drawstring tarsorrhaphy, disseminated lymphangiomatosis

  15. Neurotrophic regulation of synapse development and plasticity

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Neurotrophic factors are traditionally thought to be secretory proteins that regulate long-tern survival and differe, ntiation of neurons. Recent studies have revealed a previously unexpected role for these factors in synaptie de velopment ami plasticity in diverse neuronal populations. Here we review experimeuts carried oul in our own laboratory in the last few years.. We have made two important discoveries.First,we were among the first to report that brain-derived. neurotrophie faclor (BDNF) facilitates hippocampal hmg-term potentiation (LTP), a form of synaptic plaslicity believed to be involved in learning and memory. BDNF modulates LTP al CAI synapses by enhaneing synaptic responses to high frequency, tetanic slimulalion. This is achieved primafily by facilitating synaptie vesicle doeking, possibly due to an in crease in the levels of the vesicle prolein synaptobrevin and synaptoplysin in the nerve terminals. Gene knockout study demonstrates thai the effects of BDNF are primarily mediated through presynaptic mechanisms. Second, we demonstrated a form of long-term, neurotrophin-mediated synaptic regulation. We showed that long-term treatment of the neuromuscu lar synapses with neurotrophin-3 (NT3) resulted in an enhancement of both spontaneous and evoked synaptic currcuts, as well as profound changes in thc number of synaptic varicosities and syuaptic vesicle proteins in motoneurons, all of which are indicative of more mature synapses. Our current work addresses the following issues:(i) activity-dependent trafficking of neurotrophin receptors, and its role in synapse-specific modulation; (ii) signal transduction mechanisms medialing the acute enhancement of synaplic transmission by neurotrophins; (iii) acute and long-tenn synaptie actions of the GDNF family; (iv) role of BDNF in late-phase LTP and in the development of hippocampal circuit.

  16. Ciliary neurotrophic factor (CNTF) prevents the degeneration of motor neurons after axotomy

    OpenAIRE

    Sendtner, Michael; Kreutzberg, Georg W.; Thoenen, Hans

    2009-01-01

    The period of natural cell death in the development of rodent motor neurons is followed by a period of sensitivity to axonal injury1-3. In the rat this early postnatal period of vulnerability coincides with that of very low ciliary neurotrophic factor (CNTF) levels in the sciatic nerve before CNTF increases to the high, adult levels4. The developmental time course of CNTF expression, its regional tissue distribution and its cytosolic localization (as suggested by its primary structure)4*5 fav...

  17. Effect of neurturin on multipotent cells isolated from the adult skeletal muscle

    International Nuclear Information System (INIS)

    Ligands of the glial cell line-derived neurotrophic factors (GDNF)-family are trophic factors for the development and survival of multiple cell types, however their effects on non-neuronal stem cells are unknown. We examined the action of neurturin on a candidate stem cell population isolated from adult skeletal muscles. When grown as spheres, these cells expressed mRNAs for GDNF, persephin, GFR-α2, GFR-α4 (neurturin receptor), and Ret. Exposure of these cells to neurturin significantly augmented cell numbers via increased cell proliferation. After addition of retinoic acid, the cells exited the cell cycle, developed thin processes, and became immunoreactive for βIII-tubulin, while Ret mRNA expression decreased, without changes in the level of GFR-α2 mRNA. Neurturin induced an outgrowth of processes on these βIII-tubulin positive cells. Neurturin may therefore be beneficial in the use of these multipotent cells isolated from adult muscles for autologous transplants in neurological applications

  18. Opposite effects of a high-fat diet and calorie restriction on ciliary neurotrophic factor signalling in the mouse hypothalamus

    OpenAIRE

    AntonioGiordano; SaverioCinti

    2013-01-01

    In the mouse hypothalamus, ciliary neurotrophic factor (CNTF) is mainly expressed by ependymal cells and tanycytes of the ependymal layer covering the third ventricle. Since exogenously administered CNTF causes reduced food intake and weight loss, we tested whether endogenous CNTF might be involved in energy balance regulation. We thus evaluated CNTF production and responsiveness in the hypothalamus of mice fed a high-fat diet (HFD), of ob/ob obese mice, and of mice fed a calorie restriction ...

  19. Opposite effects of a high-fat diet and calorie restriction on ciliary neurotrophic factor signaling in the mouse hypothalamus

    OpenAIRE

    Severi, Ilenia; Perugini, Jessica; Mondini, Eleonora; Smorlesi, Arianna; Frontini, Andrea; Cinti, Saverio; Giordano, Antonio

    2013-01-01

    In the mouse hypothalamus, ciliary neurotrophic factor (CNTF) is mainly expressed by ependymal cells and tanycytes of the ependymal layer covering the third ventricle. Since exogenously administered CNTF causes reduced food intake and weight loss, we tested whether endogenous CNTF might be involved in energy balance regulation. We thus evaluated CNTF production and responsiveness in the hypothalamus of mice fed a high-fat diet (HFD), of ob/ob obese mice, and of mice fed a calorie restriction ...

  20. TARGETING OF NEUROTROPHIC FACTORS, THEIR RECEPTORS, AND SIGNALING PATHWAYS IN THE DEVELOPMENTAL NEUROTOXICITY OF ORGANOPHOSPHATES IN VIVO AND IN VITRO

    OpenAIRE

    Slotkin, Theodore A.; Seidler, Frederic J; Fumagalli, Fabio

    2008-01-01

    Neurotrophic factors control neural cell differentiation and assembly of neural circuits. We previously showed that organophosphate pesticides differentially regulate members of the fibroblast growth factor (fgf) gene family. We administered chlorpyrifos and diazinon to neonatal rats on postnatal days 1–4 at doses devoid of systemic toxicity or growth impairment, and spanning the threshold for barely-detectable cholinesterase inhibition. We evaluated the impact on gene families for different ...

  1. Intravitreal injection of ciliary neurotrophic factor (CNTF) causes peripheral remodeling and does not prevent photoreceptor loss in canine RPGR mutant retina

    OpenAIRE

    Beltran, William A.; Wen, Rong; Acland, Gregory M.; Aguirre, Gustavo D.

    2007-01-01

    Ciliary neurotrophic factor (CNTF) rescues photoreceptors in several animal models of retinal degeneration and is currently being evaluated as a potential treatment for retinitis pigmentosa in humans. This study was conducted to test whether CNTF prevents photoreceptor cell loss in XLPRA2, an early onset canine model of X-linked retinitis pigmentosa caused by a frameshift mutation in RPGR exon ORF15.

  2. CNTF mediates neurotrophic factor secretion and fluid absorption in human retinal pigment epithelium.

    Directory of Open Access Journals (Sweden)

    Rong Li

    Full Text Available Ciliary neurotrophic factor (CNTF protects photoreceptors and regulates their phototransduction machinery, but little is known about CNTF's effects on retinal pigment epithelial (RPE physiology. Therefore, we determined the expression and localization of CNTF receptors and the physiological consequence of their activation in primary cultures of human fetal RPE (hfRPE. Cultured hfRPE express CNTF, CT1, and OsM and their receptors, including CNTFRα, LIFRβ, gp130, and OsMRβ, all localized mainly at the apical membrane. Exogenous CNTF, CT1, or OsM induces STAT3 phosphorylation, and OsM also induces the phosphorylation of ERK1/2 (p44/42 MAP kinase. CNTF increases RPE survivability, but not rates of phagocytosis. CNTF increases secretion of NT3 to the apical bath and decreases that of VEGF, IL8, and TGFβ2. It also significantly increases fluid absorption (J(V across intact monolayers of hfRPE by activating CFTR chloride channels at the basolateral membrane. CNTF induces profound changes in RPE cell biology, biochemistry, and physiology, including the increase in cell survival, polarized secretion of cytokines/neurotrophic factors, and the increase in steady-state fluid absorption mediated by JAK/STAT3 signaling. In vivo, these changes, taken together, could serve to regulate the microenvironment around the distal retinal/RPE/Bruch's membrane complex and provide protection against neurodegenerative disease.

  3. Vanillin and 4-hydroxybenzyl alcohol promotes cell proliferation and neuroblast differentiation in the dentate gyrus of mice via the increase of brain-derived neurotrophic factor and tropomyosin-related kinase B

    OpenAIRE

    Cho, Jeong-Hwi; Park, Joon Ha; AHN, JI HYEON; Lee, Jae-Chul; Hwang, In Koo; PARK, SEUNG MIN; AHN, JI YUN; Kim, Dong Won; Cho, Jun Hwi; Kim, Jong-Dai; Kim, Young-Myeong; Won, Moo-Ho; Kang, Il-Jun

    2016-01-01

    4-Hydroxy-3-methoxybenzaldehyde (vanillin) and 4-hydroxybenzyl alcohol (4-HBA) are well-known phenolic compounds, which possess various therapeutic properties and are widely found in a variety of plants. In the present study, the effects of vanillin and 4-HBA were first investigated on cell proliferation, as well as neuronal differentiation and integration of granule cells in the dentate gyrus (DG) of adolescent mice using Ki-67, doublecortin (DCX) immunohistochemistry and 5-bromo-2′-de-oxyur...

  4. Quantitative trait loci for rice yield-related traits using recombinant inbred lines derived from two diverse cultivars

    Indian Academy of Sciences (India)

    Xu Feng Bai; Li Jun Luo; Wen Hao Yan; Mallikarjuna Rao Kovi; Yong Zhong Xing

    2011-08-01

    The thousand-grain weight and spikelets per panicle directly contribute to rice yield. Heading date and plant height also greatly influence the yield. Dissection of genetic bases of yield-related traits would provide tools for yield improvement. In this study, quantitative trait loci (QTL) mapping for spikelets per panicle, thousand-grain weight, heading date and plant height was performed using recombinant inbred lines derived from a cross between two diverse cultivars, Nanyangzhan and Chuan7. In total, 20 QTLs were identified for four traits. They were located to 11 chromosomes except on chromosome 4. Seven and five QTLs were detected for thousand-grain weight and spikelets per panicle, respectively. Four QTLs were identified for both heading date and plant height. About half the QTLs were commonly detected in both years, 2006 and 2007. Six QTLs are being reported for the first time. Two QTL clusters were identified in regions flanked by RM22065 and RM5720 on chromosome 7 and by RM502 and RM264 on chromosome 8, respectively. The parent, Nanyangzhan with heavy thousand-grain weight, carried alleles with increased effects on all seven thousand-grain weight QTL, which explained why there was no transgressive segregation for thousand-grain weight in the population. In contrast, Chuan7 with more spikelets per panicle carried positive alleles at all five spikelets per panicle QTL except qspp5. Further work on distinction between pleiotropic QTL and linked QTL is needed in two yield-related QTL clusters.

  5. Brain Ciliary Neurotrophic Factor (CNTF and hypothalamic control of energy homeostasis

    Directory of Open Access Journals (Sweden)

    Vacher Claire-Marie

    2011-09-01

    Full Text Available Cytokines play an important role in energy-balance regulation. Notably leptin, an adipocyte-secreted cytokine, regulates the activity of hypothalamic neurons that are involved in the modulation of appetite. Leptin decreases appetite and stimulates weight loss in rodents. Unfortunately, numerous forms of obesity in humans seem to be resistant to leptin action. The ciliary neurotrophic factor (CNTF is a neurocytokine that belongs to the same family as leptin and that was originally characterized as a neurotrophic factor that promotes the survival of a broad spectrum of neuronal cell types and that enhances neurogenesis in adult rodents. It presents the advantage of stimulating weight loss in humans, despite the leptin resistance. Moreover, the weight loss persists several weeks after the cessation of treatment. Hence, CNTF has been considered as a promising therapeutic tool for the treatment of obesity and has prompted intense research aimed at identifying the cellular and molecular mechanisms underlying its potent anorexigenic properties. It has been found that CNTF shares signaling pathways with leptin and is expressed in the arcuate nucleus (ARC, a key hypothalamic region controlling food intake. Endogenous CNTF may also participate in the control of energy balance. Indeed, its expression in the ARC is inversely correlated to body weight in rats fed a high-sucrose diet. Thus hypothalamic CNTF may act, in some individuals, as a protective factor against weight gain during hypercaloric diet and could account for individual differences in the susceptibility to obesity.

  6. Regulation of neurotrophic factors and energy metabolism by antidepressants in astrocytes

    KAUST Repository

    Martin, Jean Luc

    2013-09-01

    There is growing evidence that astrocytes are involved in the neuropathology of major depression. In particular, decreases in glial cell density observed in the cerebral cortex of individuals with major depressive disorder are accompanied by a reduction of several astrocytic markers suggesting that astrocyte dysfunction may contribute to the pathophysiology of major depression. In rodents, glial loss in the prefrontal cortex is sufficient to induce depressive-like behaviors and antidepressant treatment prevents the stress-induced reduction of astrocyte number in the hippocampus. Collectively, these data support the existence of a link between astrocyte loss or dysfunction, depressive-like behavior and antidepressant treatment. Astrocytes are increasingly recognized to play important roles in neuronal development, neurotransmission, synaptic plasticity and maintenance of brain homeostasis. It is also well established that astrocytes provide trophic, structural, and metabolic support to neurons. In this article, we review evidence that antidepressants regulate energy metabolism and neurotrophic factor expression with particular emphasis on studies in astrocytes. These observations support a role for astrocytes as new targets for antidepressants. The contribution of changes in astrocyte glucose metabolism and neurotrophic factor expression to the therapeutic effects of antidepressants remains to be established. © 2013 Bentham Science Publishers.

  7. Treatment with the neurotoxic Aβ (25-35) peptide modulates the expression of neuroprotective factors Pin1, Sirtuin 1, and brain-derived neurotrophic factor in SH-SY5Y human neuroblastoma cells.

    Science.gov (United States)

    Lattanzio, Francesca; Carboni, Lucia; Carretta, Donatella; Candeletti, Sanzio; Romualdi, Patrizia

    2016-05-01

    The deposition of Amyloid β peptide plaques is a pathological hallmark of Alzheimer's disease (AD). The Aβ (25-35) peptide is regarded as the toxic fragment of full-length Aβ (1-42). The mechanism of its toxicity is not completely understood, along with its contribution to AD pathological processes. The aim of this study was to investigate the effect of the neurotoxic Aβ (25-35) peptide on the expression of the neuroprotective factors Pin1, Sirtuin1, and Bdnf in human neuroblastoma cells. Levels of Pin1, Sirtuin 1, and Bdnf were compared by real-time PCR and Western blotting in SH-SY5Y cells treated with Aβ (25-35) or administration vehicle. The level of Pin1 gene and protein expression was significantly decreased in cells exposed to 25μM Aβ (25-35) compared to vehicle-treated controls. Similarly, Sirtuin1 expression was significantly reduced by Aβ (25-35) exposure. In contrast, both Bdnf mRNA and protein levels were significantly increased by Aβ (25-35) treatment, suggesting the activation of a compensatory response to the insult. Both Pin1 and Sirtuin 1 exert a protective role by reducing the probability of plaque deposition, since they promote amyloid precursor protein processing through non-amyloidogenic pathways. The present results show that Aβ (25-35) peptide reduced the production of these neuroprotective proteins, thus further increasing Aβ generation. PMID:26915812

  8. Influence of Some Neurotrophic Factors on Proliferation and Differentiation of Neural Stem Cells%一些神经营养因子对神经干细胞的增殖和分化的影响

    Institute of Scientific and Technical Information of China (English)

    谷平; 陈付学; 文铁桥

    2001-01-01

    A certain number of neural stem cells that exist in the embryonic and adult mammalian brain can potentially differentiate into neurons or neuroglia. Those stem cells isolated from adult and embryonic brain are regulated by a series of growth factors, such as fibroblast growth factor (FGF), epidermal growth factor (EGF), etc. However, the effects of growth factors on the proliferation and differentiation of neural stem cells showed difference under different culture conditions.%胚胎和成年哺乳动物脑内存在能分化为神经元和神经胶质细胞的神经干细胞,从成年脑和胚脑分离的神经干细胞能在体外分裂并进一步分化成神经元和胶质细胞,许多生长因子,如成纤维细胞生长因子和表皮生长因子等都参与了这一分裂、分化过程,对神经干细胞的增殖及分化产生一定的影响.但在不同的情况下,它们对增殖及分化的作用不同.

  9. Brain-Derived Neurotrophic Factor in the Airways

    OpenAIRE

    Y S Prakash; Richard J Martin

    2014-01-01

    In addition to their well-known roles in the nervous system, there is increasing recognition that neurotrophins such as brain derived neurotrophic factor (BDNF) as well as their receptors are expressed in peripheral tissues including the lung, and can thus potentially contribute to both normal physiology and pathophysiology of several diseases. The relevance of this family of growth factors lies in emerging clinical data indicating altered neurotrophin levels and function in a range of diseas...

  10. Brain-derived neurotrophic factor and cocaine addiction

    OpenAIRE

    McGinty, Jacqueline F.; Whitfield, Timothy W.; Berglind, William J.

    2009-01-01

    The effects of brain-derived neurotrophic factor (BDNF) on cocaine-seeking are brain region-specific. Infusion of BDNF into subcortical structures, like the nucleus accumbens and ventral tegmental area, enhances cocaine-induced behavioral sensitization and cocaine seeking. Conversely, repeated administration of BDNF antiserum into the nucleus accumbens during chronic cocaine self-administration attenuates cocaine-induced reinstatement. In contrast, BDNF infusion into the dorsomedial prefronta...

  11. Rodent Models of Depression: Neurotrophic and Neuroinflammatory Biomarkers

    OpenAIRE

    Mikhail Stepanichev; Nikolay N Dygalo; Grigory Grigoryan; Shishkina, Galina T.; Natalia Gulyaeva

    2014-01-01

    Rodent models are an indispensable tool for studying etiology and progress of depression. Since interrelated systems of neurotrophic factors and cytokines comprise major regulatory mechanisms controlling normal brain plasticity, impairments of these systems form the basis for development of cerebral pathologies, including mental diseases. The present review focuses on the numerous experimental rodent models of depression induced by different stress factors (exteroceptive and interoceptive) du...

  12. Genetic relationships between interspecific lines derived from Oryza glaberrima and Oryza sativa crosses using microsatellites and agro-morphological markers

    Directory of Open Access Journals (Sweden)

    Yonnelle D. Moukoumbi

    2015-06-01

    Full Text Available New Rice(s for Africa (NERICA are high yielding rice varieties mostly cultivated in Sub-Saharan Africa and developed by the Africa Rice Center. This study is aimed at investigating the proportion of introgression of parental genomic contribution of 60 lowland NERICA varieties and establishment of molecular profiling. Agro-morphological data from 17 characteristics was recorded and significant (p<0.05 to high significant (p<0.0001 differences were obtained with leaf length and width, plant height at maturity, days to heading, maturity, primary and secondary branching of panicles, and grain width and grain thickness. A total of 114 microsatellite polymorphic markers covering 2183.13 cM of the rice genome showed the proportions of alleles introgressed from the donor parent (Oryza glaberrima into 52 lowland NERICA lines (TOG5681 and IR64as follows: 11% for BC2, 6.07% for BC3, and 7.55% for BC4. The introgression proportions for the eight remaining lowland NERICA lines derived from other crosses ranged from 5.5 to 11.3%. The proportion recorded with the recurrent parent was 83.99%. The highest introgression proportions of the O. glaberrima allele for all 60 lowland NERICA lines were found on chromosomes 2, 6, and 12 (TOG5681/IR64 and on chromosome 3 with NERIC-L-29 (TOG5681/IR1529-680-3-2. Multivariate analyses performed using an association of agro-morphological and molecular data revealed two major groups according to the distribution of the lowland NERICAs including the lowland NERICAs released were found in cluster 1 of the dendrogram. Genetic and genomic studies, QTL identification and analysis using agro-morphologically significant traits revealed should be used to develop mega-varieties adapted in rice growth conditions in Sub-Saharan Africa.

  13. Effect of Brain-derived Neurotrophic Factor (BDNF in Organotypic Retinal Cultures

    Directory of Open Access Journals (Sweden)

    N.A. Gavrilova

    2009-02-01

    Full Text Available ABSTRACT Purpose To study the influence of recombinant brain-derived neurotrophic factor (BDNF on organotypic retinal cultures. Material and methods Experiments were performed in human and rat retinal explants cultured in culture dishes, flasks and flasks for roller cultivation. BDNF was added at the concentration of 100 ng⁄ml. Cultures were tested for viability and stained immunohistochemically for neuronal markers. Culture conditions and results of cultivation were controlled using phase contrast and fluorescent microscopes. Conclusions Results of the study showed that cultivation of organotypic cultures of the human and rat retina in the presence of BDNF at the concentration of 100 ng⁄ml increases viability of retinal cells. Active cell migration and outgrowth of β-III-tubulin-positive axon-like processes of neuronal origin outside the borders of explants were observed.

  14. Lack of telomerase activity in rabbit bone marrow stromal cells during differentiation along neural pathway

    Institute of Scientific and Technical Information of China (English)

    CHEN Zhen-zhou; XU Ru-xiang; JIANG Xiao-dan; TENG Xiao-hua; LI Gui-tao; ZHOU Yü-xi

    2006-01-01

    Objective: To investigate telomerase activity in rabbit bone marrow stromal cells (BMSCs) during their committed differentiation in vitro along neural pathway and the effect of glial cell line-derived neurotrophic factor (GDNF) on the expression of telomerase.Methods: BMSCs were acquired from rabbit marrow and divided into control group, GDNF (10 ng/ml) group.No. ZL02134314. 4) supplemented with 10% fetal bovine serum (FBS) was used to induce BMSCs differentiation along neural pathway. Fluorescent immunocytochemistry was employed to identify the expressions of Nestin, neuronspecific endase (NSE), and gial fibrillary acidic protein (GFAP). The growth curves of the cells and the status of cell cycles were analyzed, respectively. During the differentiation, telomerase activitys were detected using the telomeric repeat amplification protocol-enzyme-linked immunosorbent assay (TRAP-ELISA).Results: BMSCs were successfully induced to differentiate along neural pathway and expressed specific markers of fetal neural epithelium, mature neuron and glial cells. Telomerase activities were undetectable in BMSCs during differentiation along neural pathway. Similar changes of cell growth curves, cell cycle status and telomerase expression were observed in the two groups.Conclusions: Rabbit BMSCs do not display telomerase activity during differentiation along neural pathway. GDNF shows little impact on proliferation and telomerase activity of BMSCs.

  15. Brain-derived neurotrophic factor inhibits glucose intolerance after cerebral ischemia

    OpenAIRE

    Shu, Xiaoliang; Zhang, Yongsheng; Xu, Han; Kang, Kai; Cai, Donglian

    2013-01-01

    Brain-derived neurotrophic factor is associated with the insulin signaling pathway and glucose tabolism. We hypothesized that expression of brain-derived neurotrophic factor and its receptor may be involved in glucose intolerance following ischemic stress. To verify this hypothesis, this study aimed to observe the changes in brain-derived neurotrophic factor and tyrosine kinase B receptor expression in glucose metabolism-associated regions following cerebral ischemic stress in mice. At day 1 ...

  16. Synergistic neurotrophic effects of piracetam and thiotriazoline

    OpenAIRE

    O. A. Gromova; I. Yu. Torshin; Pronin, A. V.; A. Yu. Volkov

    2016-01-01

    The paper considers the synergy between the nootropic drug piracetam and the metabolic agent thiotriazoline that maintains energy metabolism and survival of neurons and other types of cells. Piracetam, a nootropic drug, a chemical pyrrolidone derivative, is used in neurological, psychiatric, and narcological practice. There is evidence on the positive effect of piracetam in elderly and senile patients with coronary heart disease. This drug is supposed to stimulate redox processes, to enhance ...

  17. Immune modulation and increased neurotrophic factor production in multiple sclerosis patients treated with testosterone

    Directory of Open Access Journals (Sweden)

    Giesser Barbara S

    2008-07-01

    Full Text Available Abstract Background Multiple sclerosis is a chronic inflammatory disease of the central nervous system with a pronounced neurodegenerative component. It has been suggested that novel treatment options are needed that target both aspects of the disease. Evidence from basic and clinical studies suggests that testosterone has an immunomodulatory as well as a potential neuroprotective effect that could be beneficial in MS. Methods Ten male MS patients were treated with 10 g of gel containing 100 mg of testosterone in a cross-over design (6 month observation period followed by 12 months of treatment. Blood samples were obtained at three-month intervals during the observation and the treatment period. Isolated blood peripheral mononuclear cells (PBMCs were used to examine lymphocyte subpopulation composition by flow cytometry and ex vivo protein production of cytokines (IL-2, IFNγ, TNFα, IL-17, IL-10, IL-12p40, TGFβ1 and growth factors (brain-derived neurotrophic factor BDNF, platelet-derived growth factor PDGF-BB, nerve growth factor NGF, and ciliary neurotrophic factor CNTF. Delayed type hypersensitivity (DTH skin recall tests were obtained before and during treatment as an in vivo functional immune measure. Results Testosterone treatment significantly reduced DTH recall responses and induced a shift in peripheral lymphocyte composition by decreasing CD4+ T cell percentage and increasing NK cells. In addition, PBMC production of IL-2 was significantly decreased while TGFβ1 production was increased. Furthermore, PBMCs obtained during the treatment period produced significantly more BDNF and PDGF-BB. Conclusion These results are consistent with an immunomodulatory effect of testosterone treatment in MS. In addition, increased production of BDNF and PDGF-BB suggests a potential neuroprotective effect. Trial Registration NCT00405353 http://www.clinicaltrials.gov

  18. Targeted delivery of brain-derived neurotrophic factor for the treatment of blindness and deafness

    Directory of Open Access Journals (Sweden)

    Khalin I

    2015-04-01

    Full Text Available Igor Khalin,1 Renad Alyautdin,2 Ganna Kocherga,3 Muhamad Abu Bakar1 1Faculty of Medicine and Defence Health, National Defence University of Malaysia, Kuala Lumpur, Malaysia; 2Scientific Centre for Expertise of Medical Application Products, Moscow, Russia; 3Ophthalmic Microsurgery Department, International Medical Center Oftalmika, Kharkiv, UkraineAbstract: Neurodegenerative causes of blindness and deafness possess a major challenge in their clinical management as proper treatment guidelines have not yet been found. Brain-derived neurotrophic factor (BDNF has been established as a promising therapy against neurodegenerative disorders including hearing and visual loss. Unfortunately, the blood–retinal barrier and blood–cochlear barrier, which have a comparable structure to the blood–brain barrier prevent molecules of larger sizes (such as BDNF from exiting the circulation and reaching the targeted cells. Anatomical features of the eye and ear allow use of local administration, bypassing histo-hematic barriers. This paper focuses on highlighting a variety of strategies proposed for the local administration of the BDNF, like direct delivery, viral gene therapy, and cell-based therapy, which have been shown to successfully improve development, survival, and function of spiral and retinal ganglion cells. The similarities and controversies for BDNF treatment of posterior eye diseases and inner ear diseases have been analyzed and compared. In this review, we also focus on the possibility of translation of this knowledge into clinical practice. And finally, we suggest that using nanoparticulate drug-delivery systems may substantially contribute to the development of clinically viable techniques for BDNF delivery into the cochlea or posterior eye segment, which, ultimately, can lead to a long-term or permanent rescue of auditory and optic neurons from degeneration. Keywords: brain-derived neurotrophic factor, neurodegeneration, posterior eye segment

  19. Dysregulation of neurotrophic and inflammatory systems accompanied by decreased CREB signaling in ischemic rat retina.

    Science.gov (United States)

    Guo, Xian Jun; Tian, Xue Song; Ruan, Zhi; Chen, Yu Ting; Wu, Lei; Gong, Qi; Wang, Wei; Zhang, Hai Yan

    2014-08-01

    Although permanent bilateral common carotid artery occlusion (2VO) has been demonstrated to induce retinal injury, there is still a lack of systematic research on the complex processing of retinal degeneration. In the present study, time-dependent (at three, 14, 60 days after 2VO surgery) changes of neurotrophic and inflammatory systems, as well as cAMP-responsive element binding protein (CREB) signaling, which has been previously reported to effectively regulate these two systems, were evaluated. First, a morphological study confirmed that 2VO surgery progressively induced severe inner retinal degeneration and down-regulation of synaptic proteins, PSD95 and synaptophysin. The mRNA or protein levels of neurotrophic factors (NGF, BDNF, NT-3 and GDNF) and their receptors (TrkA, TrkB and TrkC) showed marked and persistent down-regulation in the rat retina since three days after 2VO surgery, whereas the gene transcription levels of CNTF were increased and p75(NTR) mRNA levels remained unchanged. In contrast to inner retinal degeneration, retinal Müller cells displayed rapid and prolonged activation since three days after 2VO lesion, whereas the microglia cell number, and TNF-α and IL-1β levels showed a robust increase with a maximal effect at three days and returned to levels that were slightly over baseline at 14 and 60 days after 2VO lesion. Interestingly, the gene expression levels of iNOS significantly decreased in the rat retina at both three and 14 days after 2VO surgery. Finally, as we hypothesized, remarkable reduction of CREB and extracellular signal-regulated kinase (ERK) phosphorylation levels were observed in the rat retina at three days after 2VO surgery. Thus, for the first time, our study demonstrated that chronic ischemia induced long-term aberrant CREB signaling and time-dependent progressive dysregulation of neurotrophic and inflammatory systems in the retina, which may provide important clues for a better understanding of the pathogenesis of

  20. Intravenous administration of bone marrow mononuclear cells alleviates hearing loss after transient cochlear ischemia through paracrine effects.

    Science.gov (United States)

    Takagi, Taro; Yoshida, Tadashi; Okada, Masahiro; Hata, Ryuji; Hato, Naohito; Gyo, Kiyofumi; Hakuba, Nobuhiro

    2014-05-16

    Bone marrow mononuclear cells (BMMCs) are known to enhance recovery from ischemic insults by secreting angiogenic factors and inducing the expression of angiogenic factors from host tissues. Therefore, the transplantation of BMMCs is considered a potential approach to promoting the repair of ischemic damaged organs. Here, we investigated the influence of BMMCs on progressive hair cell degeneration after transient cochlear ischemia in gerbils. Transient cochlear ischemia was produced by extracranial occlusion of the bilateral vertebral arteries immediately before their entry into the transverse foramen of the cervical vertebra. An intravenous injection of BMMCs prevented ischemia-induced hair cell degeneration and ameliorated hearing impairment. A tracking study showed that BMMCs injected into the femoral vein were limited in the spiral artery of the cochlea, suggesting that, although transplanted BMMCs were retained within the spiral ganglion area of the cochlea, they were neither transdifferentiated into cochlear cells nor fused with the injured hair cells and supporting cells in the organ of Corti to restore their functions. We also showed that the protein level of neurotrophin-3 and glial cell line-derived neurotrophic factor in the organ of Corti was upregulated after treatment with BMMCs. These results suggested that BMMCs have therapeutic potential possibly through paracrine effects. Thus, we propose the use of BMMCs as a potential new therapeutic strategy for hearing loss. PMID:24840930

  1. Gas1 inhibits cell proliferation and induces apoptosis of human primary gliomas in the absence of Shh.

    Science.gov (United States)

    Domínguez-Monzón, Gabriela; Benítez, Jorge A; Vergara, Paula; Lorenzana, Rodrigo; Segovia, José

    2009-06-01

    Growth arrest specific1 (Gas1) is a protein expressed during development and when cells arrest their growth. The potential of Gas1 as an adjuvant in the treatment of cancer, and its role as a tumor suppressor have also been proposed. In this work we are addressing the molecular mechanisms by which Gas1 induces cell arrest and apoptosis of cancer cells, using primary cultures of human gliomas as a model. We had previously demonstrated the structural relationship between Gas1 and the alpha receptors for the Glial-cell line-Derived Neurotrophic Factor (GDNF) family of ligands, and showed that Gas1 acts by inhibiting the intracellular signaling induced by GDNF. There are also reports indicating that Gas1 positively cooperates with Sonic Hedgehog (Shh) during embryonic development and in this paper we analyzed the potential interactions between Gas1 and Shh. We show that human gliomas do not express Shh, whereas GDNF and the molecular components necessary to transduce its signaling are present in human gliomas. Furthermore, the over-expression of Gas1 induces cell arrest, apoptosis and prevents the activation of Akt, a crucial mediator of survival and cellular proliferation pathways. In the present work, we present evidence demonstrating that Gas1 exerts its effects inhibiting cell growth and inducing apoptosis of glioma cells in the absence of Shh. PMID:19460624

  2. Electroacupuncture stimulation of the brachial plexus trunk on the healthy side promotes brain-derived neurotrophic factor mRNA expression in the ischemic cerebral cortex of a rat model of cerebral ischemia/reperfusion injury

    Institute of Scientific and Technical Information of China (English)

    Zongjun Guo; Lumin Wang

    2012-01-01

    A rat model of cerebral ischemia/reperfusion was established by suture occlusion of the left middle cerebral artery. In situ hybridization results showed that the number of brain-derived neurotrophic factor mRNA-positive cells in the ischemic rat cerebral cortex increased after cerebral ischemia/ reperfusion injury. Low frequency continuous wave electroacupuncture (frequency 2-6 Hz, current intensity 2 mA) stimulation of the brachial plexus trunk on the healthy (right) side increased the number of brain-derived neurotrophic factor mRNA-positive cells in the ischemic cerebral cortex 14 days after cerebral ischemia/reperfusion injury. At the same time, electroacupuncture stimulation of the healthy brachial plexus truck significantly decreased neurological function scores and alleviated neurological function deficits. These findings suggest that electroacupuncture stimulation of the brachial plexus trunk on the healthy (right) side can greatly increase brain-derived neurotrophic factor mRNA expression and improve neurological function.

  3. The pharmacology of neurotrophic treatment with Cerebrolysin: brain protection and repair to counteract pathologies of acute and chronic neurological disorders.

    Science.gov (United States)

    Masliah, E; Díez-Tejedor, E

    2012-04-01

    Neurotrophic factors are considered as part of the therapeutic strategy for neurological disorders like dementia, stroke and traumatic brain injury. Cerebrolysin is a neuropeptide preparation which mimics the action of endogenous neurotrophic factors on brain protection and repair. In dementia models, Cerebrolysin decreases β-amyloid deposition and microtubule-associated protein tau phosphorylation by regulating glycogen synthase kinase-3β and cyclin-dependent kinase 5 activity, increases synaptic density and restores neuronal cytoarchitecture. These effects protect integrity of the neuronal circuits and thus result in improved cognitive and behavioral performance. Furthermore, Cerebrolysin enhances neurogenesis in the dentate gyrus, the basis for neuronal replacement therapy in neurodegenerative diseases. Experimental studies in stroke animal models have shown that Cerebrolysin stabilizes the structural integrity of cells by inhibition of calpain and reduces the number of apoptotic cells after ischemic lesion. Cerebrolysin induces restorative processes, decreases infarct volume and edema formation and promotes functional recovery. Stroke-induced neurogenesis in the subventricular zone was also promoted by Cerebrolysin, thus supporting the brain's self-repair after stroke. Both, traumatic brain and spinal cord injury conditions stimulate the expression of natural neurotrophic factors to promote repair and regeneration processes -axonal regeneration, neuronal plasticity and neurogenesis- that is considered to be crucial for the future recovery. Neuroprotective effects of Cerebrolysin on experimentally induced traumatic spinal cord injury have shown that Cerebrolysin prevents apoptosis of lesioned motoneurons and promotes functional recovery. This section summarizes the most relevant data on the pharmacology of Cerebrolysin obtained from in vitro assays (biochemical and cell cultures) and in vivo animal models of acute and chronic neurological disorders. PMID

  4. Continued administration of ciliary neurotrophic factor protects mice from inflammatory pathology in experimental autoimmune encephalomyelitis

    DEFF Research Database (Denmark)

    Kuhlmann, Tanja; Remington, Leah; Cognet, Isabelle;

    2006-01-01

    Multiple sclerosis is an inflammatory disease of the central nervous system that leads to loss of myelin and oligodendrocytes and damage to axons. We show that daily administration (days 8 to 24) of murine ciliary neurotrophic factor (CNTF), a neurotrophic factor that has been described as a...

  5. GDNF facilitates differentiation of the adult dentate gyrus-derived neural precursor cells into astrocytes via STAT3

    Energy Technology Data Exchange (ETDEWEB)

    Boku, Shuken, E-mail: shuboku@med.hokudai.ac.jp [Department of Psychiatry, Hokkaido University Graduate School of Medicine, Sapporo (Japan); Nakagawa, Shin [Department of Psychiatry, Hokkaido University Graduate School of Medicine, Sapporo (Japan); Takamura, Naoki [Pharmaceutical Laboratories, Dainippon Sumitomo Pharma Co. Ltd., Osaka (Japan); Kato, Akiko [Department of Psychiatry, Hokkaido University Graduate School of Medicine, Sapporo (Japan); Takebayashi, Minoru [Department of Psychiatry, National Hospital Organization Kure Medical Center, Kure (Japan); Hisaoka-Nakashima, Kazue [Department of Pharmacology, Hiroshima University Graduate School of Biomedical Sciences, Hiroshima (Japan); Omiya, Yuki; Inoue, Takeshi; Kusumi, Ichiro [Department of Psychiatry, Hokkaido University Graduate School of Medicine, Sapporo (Japan)

    2013-05-17

    Highlights: •GDNF has no effect on ADP proliferation and apoptosis. •GDNF increases ADP differentiation into astrocyte. •A specific inhibitor of STAT3 decreases the astrogliogenic effect of GDNF. •STAT3 knockdown by lentiviral shRNA vector also decreases the astrogliogenic effect of GDNF. •GDNF increases the phosphorylation of STAT3. -- Abstract: While the pro-neurogenic actions of antidepressants in the adult hippocampal dentate gyrus (DG) are thought to be one of the mechanisms through which antidepressants exert their therapeutic actions, antidepressants do not increase proliferation of neural precursor cells derived from the adult DG. Because previous studies showed that antidepressants increase the expression and secretion of glial cell line-derived neurotrophic factor (GDNF) in C6 glioma cells derived from rat astrocytes and GDNF increases neurogenesis in adult DG in vivo, we investigated the effects of GDNF on the proliferation, differentiation and apoptosis of cultured neural precursor cells derived from the adult DG. Data showed that GDNF facilitated the differentiation of neural precursor cells into astrocytes but had no effect on their proliferation or apoptosis. Moreover, GDNF increased the phosphorylation of STAT3, and both a specific inhibitor of STAT3 and lentiviral shRNA for STAT3 decreased their differentiation into astrocytes. Taken together, our findings suggest that GDNF facilitates astrogliogenesis from neural precursor cells in adult DG through activating STAT3 and that this action might indirectly affect neurogenesis.

  6. GDNF facilitates differentiation of the adult dentate gyrus-derived neural precursor cells into astrocytes via STAT3

    International Nuclear Information System (INIS)

    Highlights: •GDNF has no effect on ADP proliferation and apoptosis. •GDNF increases ADP differentiation into astrocyte. •A specific inhibitor of STAT3 decreases the astrogliogenic effect of GDNF. •STAT3 knockdown by lentiviral shRNA vector also decreases the astrogliogenic effect of GDNF. •GDNF increases the phosphorylation of STAT3. -- Abstract: While the pro-neurogenic actions of antidepressants in the adult hippocampal dentate gyrus (DG) are thought to be one of the mechanisms through which antidepressants exert their therapeutic actions, antidepressants do not increase proliferation of neural precursor cells derived from the adult DG. Because previous studies showed that antidepressants increase the expression and secretion of glial cell line-derived neurotrophic factor (GDNF) in C6 glioma cells derived from rat astrocytes and GDNF increases neurogenesis in adult DG in vivo, we investigated the effects of GDNF on the proliferation, differentiation and apoptosis of cultured neural precursor cells derived from the adult DG. Data showed that GDNF facilitated the differentiation of neural precursor cells into astrocytes but had no effect on their proliferation or apoptosis. Moreover, GDNF increased the phosphorylation of STAT3, and both a specific inhibitor of STAT3 and lentiviral shRNA for STAT3 decreased their differentiation into astrocytes. Taken together, our findings suggest that GDNF facilitates astrogliogenesis from neural precursor cells in adult DG through activating STAT3 and that this action might indirectly affect neurogenesis

  7. Targeting exogenous GDNF gene to the bovine somatic cell beta-casein locus for the production of transgenic bovine animals.

    Science.gov (United States)

    Zhang, X M; Luo, F H; Ding, H M; Li, B; Zhang, J J; Wu, Y J

    2015-01-01

    Considerable attention is currently being directed toward methods for producing recombinant human proteins in the mammary glands of genetically modified transgenic livestock. However, the expression of inserted genes in transgenic animals is variable and often very low because of the randomness of the site of transgene integration. One possible strategy to avoid the expression problem associated with random integration is to use site-specific integration by targeting integration to a high expression locus and, thereby, to improve expression of the transferred gene. In the present study, we focused on glial cell line-derived neurotrophic factor (GDNF), a novel type of neurotrophic factor first cloned in 1993. Research has shown that GDNF may have potential applications in the treatment of Parkinson's disease and other diseases of the central nervous system since it acts as a protective factor for central dopaminergic neurons. Here, we constructed a gene targeting vector to knock-in the human GDNF gene at the bovine beta-casein gene locus as a first step to producing transgenic animals with a high level of expression of human GDNF protein in their mammary glands. Bovine fetal fibroblast cells were transfected with linearized pNRTCNbG by electroporation. Three cell clones were identified with successful targeting to the beta-casein locus; and were confirmed using both polymerase chain reaction analysis and sequencing. Gene-targeted cells were used as nuclear donors; a total of 161 embryos were reconstructed, 23 of which developed to the blastocyst stage. These blastocysts were transferred to 8 recipient cows, but no offspring were obtained. PMID:26634460

  8. Increased neurotrophic factor levels in ventral mesencephalic cultures do not explain the protective effect of osteopontin and the synthetic 15-mer RGD domain against MPP+ toxicity.

    Science.gov (United States)

    Broom, Lauren; Jenner, Peter; Rose, Sarah

    2015-01-01

    The synthetic 15-mer arginine-glycine-aspartic acid (RGD) domain of osteopontin (OPN) is protective in vitro and in vivo against dopaminergic cell death and this protective effect may be mediated through interaction with integrin receptors to regulate neurotrophic factor levels. We now examine this concept in rat primary ventral mesencephalic (VM) cultures. 1-Methyl-4-phenylpyridinium (MPP+) exposure reduced tyrosine hydroxylase (TH)-positive cell number and activated glial cells as shown by increased glial fibrillary acidic protein (GFAP), oxycocin-42 (OX-42) and ectodermal dysplasia 1 (ED-1) immunoreactivity. Both OPN and the RGD domain of OPN were equally protective against MPP+ toxicity in VM cultures and both increased glial-derived neurotrophic factor (GDNF) and brain-derived neurotrophic factor (BDNF) levels. The effects of OPN and the RGD domain were accompanied by a decrease in numbers of activated microglia but with no change in astrocyte number. However, full-length OPN and the RGD domain of OPN remained protective against MPP+ toxicity in the presence of a GDNF neutralising antibody. This suggests that increased GDNF levels do not underlie the protective effect observed with OPN. Rather, OPN's protective effect may be mediated through decreased glial cell activation. PMID:25218309

  9. Brain-Derived Neurotrophic Factor in Chronic Periodontitis

    Directory of Open Access Journals (Sweden)

    Jôice Dias Corrêa

    2014-01-01

    Full Text Available Brain-derived neurotrophic factor (BDNF is a member of the neurotrophic factor family. Outside the nervous system, BDNF has been shown to be expressed in various nonneural tissues, such as periodontal ligament, dental pulp, and odontoblasts. Although a role for BDNF in periodontal regeneration has been suggested, a function for BDNF in periodontal disease has not yet been studied. The aim of this study was to analyze the BDNF levels in periodontal tissues of patients with chronic periodontitis (CP and periodontally healthy controls (HC. All subjects were genotyped for the rs4923463 and rs6265 BDNF polymorphisms. Periodontal tissues were collected for ELISA, myeloperoxidase (MPO, and microscopic analysis from 28 CP patients and 29 HC subjects. BDNF levels were increased in CP patients compared to HC subjects. A negative correlation was observed when analyzing concentration of BDNF and IL-10 in inflamed periodontium. No differences in frequencies of BDNF genotypes between CP and HC subjects were observed. However, BDNF genotype GG was associated with increased levels of BDNF, TNF-α, and CXCL10 in CP patients. In conclusion, BDNF seems to be associated with periodontal disease process, but the specific role of BDNF still needs to be clarified.

  10. The ciliary neurotrophic factor receptor α component induces the secretion of and is required for functional responses to cardiotrophin-like cytokine

    OpenAIRE

    Plun-Favreau, Hélène; Elson, Greg; Chabbert, Marie; Froger, Josy; deLapeyrière, Odile; Lelièvre, Eric; Guillet, Catherine; Hermann, Jacques; Gauchat, Jean-François; Gascan, Hugues; Chevalier, Sylvie

    2001-01-01

    Ciliary neurotrophic factor (CNTF) is involved in the survival of a number of different neural cell types, including motor neurons. CNTF functional responses are mediated through a tripartite membrane receptor composed of two signalling receptor chains, gp130 and the leukaemia inhibitory factor receptor (LIFR), associated with a non-signalling CNTF binding receptor α component (CNTFR). CNTFR-deficient mice show profound neuronal deficits at birth, leading to a lethal phenotype. In contrast, i...

  11. Distinct efficacy of pre-differentiated versus intact fetal mesencephalon-derived human neural progenitor cells in alleviating rat model of Parkinson's disease

    Institute of Scientific and Technical Information of China (English)

    XuanWang; YanyanLu; HuanqingZhang; KunWang; QihuaHe; YueWang; XianyuLiu; LinsongLi; XiaominWang

    2005-01-01

    Neural progenitor cells have shown tile effectiveness in the treatment of Parkinson's disease, but tile therapeutic efficacy remains variable. One of important factors that determine the efficacy is the necessity ofpre-differentiation of progenitor cells into dopaminergic neurons before transplantation. This study therefore investigated the therapeutic efficacy of mesencephalon-derived human neural progenitor cells with or without the pre-differentiation in alleviating a rat model of Parkinson's disease. We found that a combination of 50ng/ml fibroblast growth factor 8, 10ng/ml glial cell line-derived neurotrophic factor and 10μM forskolin facilitated the differentiation of human fetal mesencephalic progenitor cells into dopaminergic neurons in vitro. More importantly, after transplanted into the striatum ofparkinsonian rats, only pre-differentiated grafts resulted in an elevated production ofdopamine in the transplanted site and the amelioration of behavioral impairments of the parkinsonian rats. Unlike pre-differentiated progenitors, grafted intactprogenitors rarely differentiated into dopaminergic neurons in vivo and emigrated actively away from the transplanted site. These data demonstrates the importance ofpre-differentiation of human progenitor cells before transplantation in enhancing therapeutic potency for Parkinson's disease.

  12. Brain-derived neurotrophic factor inhibits glucose intolerance after cerebral ischemia

    Science.gov (United States)

    Shu, Xiaoliang; Zhang, Yongsheng; Xu, Han; Kang, Kai; Cai, Donglian

    2013-01-01

    Brain-derived neurotrophic factor is associated with the insulin signaling pathway and glucose tabolism. We hypothesized that expression of brain-derived neurotrophic factor and its receptor may be involved in glucose intolerance following ischemic stress. To verify this hypothesis, this study aimed to observe the changes in brain-derived neurotrophic factor and tyrosine kinase B receptor expression in glucose metabolism-associated regions following cerebral ischemic stress in mice. At day 1 after middle cerebral artery occlusion, the expression levels of brain-derived neurotrophic factor were significantly decreased in the ischemic cortex, hypothalamus, liver, skeletal muscle, and pancreas. The expression levels of tyrosine kinase B receptor were decreased in the hypothalamus and liver, and increased in the skeletal muscle and pancreas, but remained unchanged in the cortex. Intrahypothalamic administration of brain-derived neurotrophic factor (40 ng) suppressed the decrease in insulin receptor and tyrosine-phosphorylated insulin receptor expression in the liver and skeletal muscle, and inhibited the overexpression of gluconeogenesis-associated phosphoenolpyruvate carboxykinase and glucose-6-phosphatase in the liver of cerebral ischemic mice. However, serum insulin levels remained unchanged. Our experimental findings indicate that brain-derived neurotrophic factor can promote glucose metabolism, reduce gluconeogenesis, and decrease blood glucose levels after cerebral ischemic stress. The low expression of brain-derived neurotrophic factor following cerebral ischemia may be involved in the development of glucose intolerance. PMID:25206547

  13. Brain-derived neurotrophic factor inhibits glucose intolerance after cerebral ischemia***

    Institute of Scientific and Technical Information of China (English)

    Xiaoliang Shu; Yongsheng Zhang; Han Xu; Kai Kang; Donglian Cai

    2013-01-01

    Brain-derived neurotrophic factor is associated with the insulin signaling pathway and glucose tabolism. We hypothesized that expression of brain-derived neurotrophic factor and its receptor may be involved in glucose intolerance fol owing ischemic stress. To verify this hypothesis, this study aimed to observe the changes in brain-derived neurotrophic factor and tyrosine kinase B receptor expression in glucose metabolism-associated regions fol owing cerebral ischemic stress in mice. At day 1 after middle cerebral artery occlusion, the expression levels of brain-derived neurotrophic factor were significantly decreased in the ischemic cortex, hypothalamus, liver, skeletal muscle, and pancreas. The expression levels of tyrosine kinase B receptor were decreased in the hypothalamus and liver, and increased in the skeletal muscle and pancreas, but remained unchanged in the cortex. Intrahypothalamic administration of brain-derived neurotrophic factor (40 ng) suppressed the de-crease in insulin receptor and tyrosine-phosphorylated insulin receptor expression in the liver and skeletal muscle, and inhibited the overexpression of gluconeogenesis-associated phosphoenolpy-ruvate carboxykinase and glucose-6-phosphatase in the liver of cerebral ischemic mice. However, serum insulin levels remained unchanged. Our experimental findings indicate that brain-derived neurotrophic factor can promote glucose metabolism, reduce gluconeogenesis, and decrease blood glucose levels after cerebral ischemic stress. The low expression of brain-derived neurotrophic factor fol owing cerebral ischemia may be involved in the development of glucose intolerance.

  14. Construction of eukaryotic expression vector of rat epidermal growth factor and ciliary neurotrophic factor and their expression in cos-7 cells%大鼠表皮生长因子、睫状神经营养因子真核表达载体的构建及其体外表达的鉴定

    Institute of Scientific and Technical Information of China (English)

    何健; 尹宗生; 高维陆; 罗庆礼; 张胜权

    2012-01-01

    BACKGROUND: After activation, astrocytes exhibit the characteristics of neural stem cells and overexpress the receptor of epidermal growth factor (EGF), ciliary neurotrophic factor (CNTF), which improves complex internal environment andtherefore benefits for neuronal differentiation of neural stem cells.OBJECTIVE: To construct the eukaryotic expression vectors of pSecTag2/Hygro B-EGF and pSecTag2/Hygro B-CNTF,and detect EGF and CNTF expression in cos-7 cells so as to provide experimental evidence for gene therapy on spinalcord injury.METHODS: The cDNA fragments of EGF and CNTF genes were amplified from total RNAs respectively. The amplifiedfragments were respectively inserted into eukaryotic expression vector pSecTag2/Hygro B to construct the recombinedplasmid that encoded EGF and CNTF cDNA. The plasmids carrying EGF and CNTF genes were transfected alonerespectively or cotransfected into cos-7 cells by liposome method. Then the protein expressions were detected by westernblot method.RESULTS AND CONCLUSION: RT-PCR results confirmed that EGF and CNTF cDNAs were successfully cloned. DNAsequence analysis confirmed that EGF and CNTF cDNAs in the constructed vectors were consistent with targetsequences in the GenBank. Then two recombinant plasmids were cotransfected into cos-7 cells by liposome reagent. At48 hours after transfection, EGF and CNTF protein expressions in cos-7 cells with the molecular weight of Mr6 000, 22000 were identified by western blot analysis. These findings suggest that the eukaryotic expression vectors ofpSecTag2/Hygro B-EGF and pSecTag2/Hygro B-CNTF were successfully constructed and they co-express EGF andCNTF after transfected into cos-7 cells.%背景:星形胶质细胞被激活后表现出神经干细胞的特性,细胞表面的神经营养因子(表皮生长因子、睫状神经营养因子)受体超表达,通过改善复杂的内环境,有利于定向诱导神经干细胞向神经元的分化.目的:构建大鼠pSecTag2/Hygro B-EGF、pSecTag2

  15. Peripheral blood brain-derived neurotrophic factor in bipolar disorder

    DEFF Research Database (Denmark)

    Munkholm, K; Vinberg, M; Kessing, L V

    2016-01-01

    Peripheral blood brain-derived neurotrophic factor (BDNF) has been proposed as a potential biomarker related to disease activity and neuroprogression in bipolar disorder, speculated to mirror alterations in brain expression of BDNF. The research area is rapidly evolving; however, recent...... investigations have yielded conflicting results with substantial variation in outcomes, highlighting the need to critically assess the state of current evidence. The aims of the study were to investigate differences in peripheral blood BDNF concentrations between bipolar disorder patients and healthy control...... subjects and between affective states in bipolar disorder patients, including assessment of the effect of treatment of acute episodes on BDNF levels. A systematic review of English language studies without considering publication status was conducted in PubMed (January 1950-November 2014), Embase (1974...

  16. Brain-derived neurotrophic factor (BDNF) and type 2 diabetes

    DEFF Research Database (Denmark)

    Krabbe, K. S.; Nielsen, A. R.; Krogh-Madsen, R.;

    2006-01-01

    Aims/hypothesis  Decreased levels of brain-derived neurotrophic factor (BDNF) have been implicated in the pathogenesis of Alzheimer's disease and depression. These disorders are associated with type 2 diabetes, and animal models suggest that BDNF plays a role in insulin resistance. We therefore...... and a hyperinsulinaemic-euglycaemic clamp. Results  Plasma levels of BDNF in Study 1 were decreased in humans with type 2 diabetes independently of obesity. Plasma BDNF was inversely associated with fasting plasma glucose, but not with insulin. No association was found between the BDNF G196A (Val66Met) polymorphism...... and diabetes or obesity. In Study 2 an output of BDNF from the human brain was detected at basal conditions. This output was inhibited when blood glucose levels were elevated. In contrast, when plasma insulin was increased while maintaining normal blood glucose, the cerebral output of BDNF was not inhibited...

  17. Recombinant GDNF: Tetanus toxin fragment C fusion protein produced from insect cells

    International Nuclear Information System (INIS)

    Glial cell line-derived neurotrophic factor (GDNF) has potent survival-promoting effects on CNS motor neurons in experimental animals. Its therapeutic efficacy in humans, however, may have been limited by poor bioavailability to the brain and spinal cord. With a view toward improving delivery of GDNF to CNS motor neurons in vivo, we generated a recombinant fusion protein comprised of rat GDNF linked to the non-toxic, neuron-binding fragment of tetanus toxin. Recombinant GDNF:TTC produced from insect cells was a soluble homodimer like wild-type GDNF and was bi-functional with respect to GDNF and TTC activity. Like recombinant rat GDNF, the fusion protein increased levels of immunoreactive phosphoAkt in treated NB41A3-hGFRα-1 neuroblastoma cells. Like TTC, GDNF:TTC bound to immobilized ganglioside GT1b in vitro with high affinity and selectivity. These results support further testing of recombinant GDNF:TTC as a non-viral vector to improve delivery of GDNF to brain and spinal cord in vivo.

  18. Recombinant GDNF: Tetanus toxin fragment C fusion protein produced from insect cells

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jianhong; Chian, Ru-Ju; Ay, Ilknur; Celia, Samuel A.; Kashi, Brenda B.; Tamrazian, Eric; Matthews, Jonathan C. [Cecil B. Day Laboratory for Neuromuscular Research, Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129 (United States); Remington, Mary P. [Research Service, Baltimore Veterans Affairs Medical Center, Baltimore, MD 21201 (United States); Pepinsky, R. Blake [BiogenIdec, Inc., 14 Cambridge Center, Cambridge, MA 02142 (United States); Fishman, Paul S. [Research Service, Baltimore Veterans Affairs Medical Center, Baltimore, MD 21201 (United States); Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201 (United States); Brown, Robert H. [Cecil B. Day Laboratory for Neuromuscular Research, Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129 (United States); Francis, Jonathan W., E-mail: jwfrancisby@gmail.com [Cecil B. Day Laboratory for Neuromuscular Research, Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129 (United States)

    2009-07-31

    Glial cell line-derived neurotrophic factor (GDNF) has potent survival-promoting effects on CNS motor neurons in experimental animals. Its therapeutic efficacy in humans, however, may have been limited by poor bioavailability to the brain and spinal cord. With a view toward improving delivery of GDNF to CNS motor neurons in vivo, we generated a recombinant fusion protein comprised of rat GDNF linked to the non-toxic, neuron-binding fragment of tetanus toxin. Recombinant GDNF:TTC produced from insect cells was a soluble homodimer like wild-type GDNF and was bi-functional with respect to GDNF and TTC activity. Like recombinant rat GDNF, the fusion protein increased levels of immunoreactive phosphoAkt in treated NB41A3-hGFR{alpha}-1 neuroblastoma cells. Like TTC, GDNF:TTC bound to immobilized ganglioside GT1b in vitro with high affinity and selectivity. These results support further testing of recombinant GDNF:TTC as a non-viral vector to improve delivery of GDNF to brain and spinal cord in vivo.

  19. Brain-derived neurotrophic factor: role in depression and suicide

    Directory of Open Access Journals (Sweden)

    Yogesh Dwivedi

    2009-08-01

    Full Text Available Yogesh DwivediPsychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USAAbstract: Depression and suicidal behavior have recently been shown to be associated with disturbances in structural and synaptic plasticity. Brain-derived neurotrophic factor (BDNF, one of the major neurotrophic factors, plays an important role in the maintenance and survival of neurons and in synaptic plasticity. Several lines of evidence suggest that BDNF is involved in depression, such that the expression of BDNF is decreased in depressed patients. In addition, antidepressants up-regulate the expression of BDNF. This has led to the proposal of the “neurotrophin hypothesis of depression”. Increasing evidence demonstrates that suicidal behavior is also associated with lower expression of BDNF, which may be independent from depression. Recent genetic studies also support a link of BDNF to depression/suicidal behavior. Not only BDNF, but abnormalities in its cognate receptor tropomycin receptor kinase B (TrkB and its splice variant (TrkB.T1 have also been reported in depressed/suicidal patients. It has been suggested that epigenetic modulation of the Bdnf and Trkb genes may contribute to their altered expression and functioning. More recently, impairment in the functioning of pan75 neurotrophin receptor has been reported in suicide brain specimens. pan75 neurotrophin receptor is a low-affinity neurotrophin receptor that, when expressed in conjunction with low availability of neurotropins/Trks, induces apoptosis. Overall, these studies suggest the possibility that BDNF and its mediated signaling may participate in the pathophysiology of depression and suicidal behavior. This review focuses on the critical evidence demonstrating the involvement of BDNF in depression and suicide.Keywords: BDNF, neurotrophins, p75NTR, Trk receptor, depression, antidepressants, suicide, genetics, epigenetics

  20. Cometin is a novel neurotrophic factor that promotes neurite outgrowth and neuroblast migration in vitro and supports survival of spiral ganglion neurons in vivo.

    Science.gov (United States)

    Jørgensen, Jesper Roland; Fransson, Anette; Fjord-Larsen, Lone; Thompson, Lachlan H; Houchins, Jeffrey P; Andrade, Nuno; Torp, Malene; Kalkkinen, Nisse; Andersson, Elisabet; Lindvall, Olle; Ulfendahl, Mats; Brunak, Søren; Johansen, Teit E; Wahlberg, Lars U

    2012-01-01

    Neurotrophic factors are secreted proteins responsible for migration, growth and survival of neurons during development, and for maintenance and plasticity of adult neurons. Here we present a novel secreted protein named Cometin which together with Meteorin defines a new evolutionary conserved protein family. During early mouse development, Cometin is found exclusively in the floor plate and from E13.5 also in dorsal root ganglions and inner ear but apparently not in the adult nervous system. In vitro, Cometin promotes neurite outgrowth from dorsal root ganglion cells which can be blocked by inhibition of the Janus or MEK kinases. In this assay, additive effects of Cometin and Meteorin are observed indicating separate receptors. Furthermore, Cometin supports migration of neuroblasts from subventricular zone explants to the same extend as stromal cell derived factor 1a. Given the neurotrophic properties in vitro, combined with the restricted inner ear expression during development, we further investigated Cometin in relation to deafness. In neomycin deafened guinea pigs, two weeks intracochlear infusion of recombinant Cometin supports spiral ganglion neuron survival and function. In contrast to the control group receiving artificial perilymph, Cometin treated animals retain normal electrically-evoked brainstem response which is maintained several weeks after treatment cessation. Neuroprotection is also evident from stereological analysis of the spiral ganglion. Altogether, these studies show that Cometin is a potent new neurotrophic factor with therapeutic potential. PMID:21985865

  1. Neurotrophic factors in women with crack cocaine dependence during early abstinence: the role of early life stress

    Science.gov (United States)

    Viola, Thiago Wendt; Tractenberg, Saulo Gantes; Levandowski, Mateus Luz; Pezzi, Júlio Carlos; Bauer, Moisés Evandro; Teixeira, Antonio Lúcio; Grassi-Oliveira, Rodrigo

    2014-01-01

    Background Neurotrophic factors have been investigated in the pathophysiology of alcohol and drug dependence and have been related to early life stress driving developmental programming of neuroendocrine systems. Methods We conducted a follow-up study that aimed to assess the plasma levels of glial cell line–derived neurotrophic factor (GDNF), brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), neurotrophin-3 (NT3) and neurotrophin-4/5 (NT4/5) in crack users during 3 weeks of early abstinence in comparison with healthy controls. We performed a comprehensive clinical assessment in female inpatients with crack cocaine dependence (separated into 2 groups: participants with (CSA+) and without (CSA−) a history of childhood sexual abuse) and a group of nonuser control participants. Results Our sample included 104 women with crack cocaine dependence and 22 controls; of the women who used crack cocaine, 22 had a history of childhood sexual abuse and 82 did not. The GDNF plasma levels in the CSA+ group increased dramatically during 3 weeks of detoxification. In contrast, those in the CSA− group showed lower and stable levels of GDNF under the same conditions. Compared with the control group, BDNF plasma levels remained elevated and NGF levels were reduced during early abstinence. We found no differences in NT3 and NT4/5 between the patients and controls. However, within-group analyses showed that the CSA+ group exhibited higher levels of NT4/5 than the CSA− group at the end of detoxification. Limitations Some of the participants were using neuroleptics, mood stabilizers or antidepressants; our sample included only women; memory bias could not be controlled; and we did not investigate the possible confounding effects of other forms of stress during childhood. Conclusion This study supports the association between early life stress and peripheral neurotrophic factor levels in crack cocaine users. During early abstinence, plasmastic GDNF and NT4/5 were

  2. Effects of glial cell-derived neurotrophic factor on SCF protein and antioxidant enzyme activity in the testis of unilateral cryptorchidism rats%胶质细胞源性神经营养因子对大鼠单侧隐睾组织中干细胞因子及抗氧化酶活性的影响

    Institute of Scientific and Technical Information of China (English)

    邱胜华; 庄会义; 张华锋; 李长岭

    2013-01-01

    Objective:To explore the effects of glial cell-derived neurotrophic factor (GDNF) on the stem cell factor (SCF),superoxide dismutase (SOD),catalase (CAT) and malondialdehyde (MDA) in the undescended testis tissue of rats.Methods:Models of left cryptorchidism were made in 48 healthy male rats weighing (200 ± 20) g and randomly divided into four groups:model control,GDNF 7 d,GDNF 14 d and GDNF 21 d.The rats in the latter three groups were killed at 7,14 and 21 days after intravenous injection of GDNF,their left testes harvested for measurement of the activities of SOD and CAT and the content of MDA.The apoptosis index of spermatogenic cells was detected by TUNEL,the histological changes of the testis tissue observed under the light microscope,and the gene and protein expressions of SCF determined by real-time quantitative PCR and Western blotting,respectively.Resudts:The apoptosis indexes of spermatogenic cells were obviously decreased in the GDNF 7 d,GDNF 14 d and GDNF 21 d groups (8.42 ±0.16,4.45 ± 0.34 and 7.32 ± 0.09) as compared with that of the model control (13.5 ± 0.64),with statistically significant difference between the GDNF 14 d and control groups (P < 0.01).The SCF expression and SOD activity were remarkably increased while the MDA content markedly reduced in the GDNF groups in comparison with those in the model control (P < 0.01).Conclusion:GDNF had a protective effect on the spermatogenic function of rat testes with unilateral cryptorchidism.It could enhance the antioxidant enzyme activity of the antioxidant enzyme system,elevate the expression of SCF and thus improve the testicular reproductivity,which were best indicated in the GDNF 14 d group.%目的:探讨胶质细胞源性神经营养因子(GDNF)对大鼠隐睾睾丸组织中干细胞因子(SCF)、超氧化物歧化酶(SOD)、过氧化氢酶(CAT)活性及丙二醛(MDA)含量的影响. 方法:选取雄性SD大鼠左侧隐睾成功模型48只,体重(200±20)g,完全随机法分为4

  3. Brain-derived neurotrophic factor and substantia nigra dopaminergic neurons in Parkinson's disease

    Institute of Scientific and Technical Information of China (English)

    Haixia Ding; Meijiang Feng; Xinsheng Ding

    2008-01-01

    BACKGROUND:Parkinson's disease (PD) is a chronic, progressive neurodegenerative central nervous system disease which occurs in the substantia nigra-corpus striatum system. The main pathological feature of PD is selective dopaminergic neuronal loss with distinctive Lewy bodies in populations of surviving dopaminergic neurons. In the clinical and neuropathological diagnosis of PD, brain-derived neurotrophic factor mRNA expression in the substantia nigra pars compacta is reduced by 70%, and surviving dopaminergic neurons in the PD substantia nigra pars compacta express less brain-derived neurotrophic factor (BDNF) mRNA (20%) than their normal counterparts. In recent years, knowledge surrounding the relationship between neurotrophic factors and PD has increased, and detailed pathogenesis of the role of neurotrophic factors in PD becomes more important.

  4. Continuous Brain-derived Neurotrophic Factor (BDNF) Infusion After Methylprednisolone Treatment in Severe Spinal Cord Injury

    OpenAIRE

    Kim, Daniel H.; Jahng, Tae-Ahn

    2004-01-01

    Although methylprednisolone (MP) is the standard of care in acute spinal cord injury (SCI), its functional outcome varies in clinical situation. Recent report demonstrated that MP depresses the expression of growth-promoting neurotrophic factors after acute SCI. The present study was designed to investigate whether continuous infusion of brain-derived neurotrophic factor (BDNF) after MP treatment promotes functional recovery in severe SCI. Contusion injury was produced at the T10 vertebral le...

  5. Resveratrol Produces Neurotrophic Effects on Cultured Dopaminergic Neurons through Prompting Astroglial BDNF and GDNF Release

    OpenAIRE

    Feng Zhang; Yan-Ying Wang; Hang Liu; Yuan-Fu Lu; Qin Wu; Jie Liu; Jing-Shan Shi

    2012-01-01

    Increasing evidence indicated astroglia-derived neurotrophic factors generation might hold a promising therapy for Parkinson’s disease (PD). Resveratrol, naturally present in red wine and grapes with potential benefit for health, is well known to possess a number of pharmacological activities. Besides the antineuroinflammatory properties, we hypothesized the neuroprotective potency of resveratrol is partially due to its additional neurotrophic effects. Here, primary rat midbrain neuron-glia c...

  6. Continued Administration of Ciliary Neurotrophic Factor Protects Mice from Inflammatory Pathology in Experimental Autoimmune Encephalomyelitis

    OpenAIRE

    Kuhlmann, Tanja; Remington, Leah; Cognet, Isabelle; Bourbonniere, Lyne; Zehntner, Simone; Guilhot, Florence; Herman, Alexandra; Guay-Giroux, Angélique; Antel, Jack P.; Owens, Trevor; Gauchat, Jean-François

    2006-01-01

    Multiple sclerosis is an inflammatory disease of the central nervous system that leads to loss of myelin and oligodendrocytes and damage to axons. We show that daily administration (days 8 to 24) of murine ciliary neurotrophic factor (CNTF), a neurotrophic factor that has been described as a survival and differentiation factor for neurons and oligodendrocytes, significantly ameliorates the clinical course of a mouse model of multiple sclerosis. In the acute phase of experimental autoimmune en...

  7. Association analysis between polymorphisms in the conserved dopamine neurotrophic factor (CDNF) gene and cocaine dependence

    OpenAIRE

    Lohoff, Falk W.; Bloch, Paul J.; Ferraro, Thomas N.; Berrettini, Wade H.; Pettinati, Helen M.; Dackis, Charles A.; O’Brien, Charles P.; Kampman, Kyle M.; Oslin, David W

    2009-01-01

    Cocaine induced neuroplasticity changes in the mesocorticolimbic dopamine systems are thought to be involved in the pathophysiology of cocaine dependence. Since neurotrophic factors have been observed to prevent/reverse and mimic cocaine-induced neurobiological changes in the brain, related genes are plausible candidates for susceptibility to cocaine dependence. The novel conserved dopamine neurotrophic factor protein (CDNF) promotes the survival, growth, and function of dopamine-specific neu...

  8. Decreased Cerebrovascular Brain-Derived Neurotrophic Factor–Mediated Neuroprotection in the Diabetic Brain

    OpenAIRE

    Hayakawa, Kazhuhide; Navaratna, Deepti; Guo, Shu-Zhen; WANG, XIAOYING; Gerhardinger, Chiara; Lo, Eng H.

    2011-01-01

    Objective: Diabetes is an independent risk factor for stroke. However, the underlying mechanism of how diabetes confers that this risk is not fully understood. We hypothesize that secretion of neurotrophic factors by the cerebral endothelium, such as brain-derived neurotrophic factor (BDNF), is suppressed in diabetes. Consequently, such accrued neuroprotective deficits make neurons more vulnerable to injury. Research Design and Methods: We examined BDNF protein levels in a streptozotocin-indu...

  9. Involvement of Brain-Derived Neurotrophic Factor in Late-Life Depression

    OpenAIRE

    Dwivedi, Yogesh

    2013-01-01

    Brain-derived neurotrophic factor (BDNF), one of the major neurotrophic factors, plays an important role in the maintenance and survival of neurons, synaptic integrity, and synaptic plasticity. Evidence suggests that BDNF is involved in major depression, such that the level of BDNF is decreased in depressed patients and that antidepressants reverse this decrease. Stress, a major factor in depression, also modulates BDNF expression. These studies have led to the proposal of the neurotrophin hy...

  10. Changes in neurotrophic factors of adult rat laryngeal muscles during nerve regeneration.

    Science.gov (United States)

    Hernandez-Morato, Ignacio; Sharma, Sansar; Pitman, Michael J

    2016-10-01

    Injury to the recurrent laryngeal nerve (RLN) leads to the loss of ipsilateral laryngeal fold movement, with dysphonia, and occasionally dysphagia. Functional movement of the vocal folds is never restored due to misrouting of regenerating axons to agonist and antagonist laryngeal muscles. Changes of neurotrophic factor expression within denervated muscles occur after nerve injury and may influence nerve regeneration, axon guidance and muscle reinnervation. This study investigates the expression of certain neurotrophic factors in the laryngeal muscles during the course of axonal regeneration using RT-PCR. The timing of neurotrophic factor expression was correlated to the reinnervation of the laryngeal muscles by motor axons. Nerve Growth Factor (NGF), Brain-Derived Neurotrophic Factor (BDNF) and Netrin-1 (NTN-1) increased their expression levels in laryngeal muscles after nerve section and during regeneration of RLN. The upregulation of trophic factors returned to control levels following regeneration of RLN. The expression levels of the neurotrophic factors were correlated with the innervation of regenerating axons into the denervated muscles. The results suggest that certain neurotrophic factor expression is strongly correlated to the reinnervation pattern of the regenerating RLN. These factors may be involved in guidance and neuromuscular junction formation during nerve regeneration. In the future, their manipulation may enhance the selective reinnervation of the larynx. PMID:27421227

  11. Abortive Process of a Novel Rapeseed Cytoplasmic Male Sterility Line Derived from Somatic Hybrids Between Brassica napus and Sinapis alba

    Institute of Scientific and Technical Information of China (English)

    WANG Juan; GAO Ya-nan; KONG Yue-qin; JIANG Jin-jin; LI Ai-min; ZHANG Yong-tai; WANG You-ping

    2014-01-01

    Somatic hybridization is performed to obtain significant cytoplasmic male sterility (CMS) lines, whose CMS genes are derived either from the transfer of sterile genes from the mitochondrial genome of donor parent to the counterpart of receptor or production of new sterile genes caused by mitochondrial genome recombination of the biparent during protoplast fusion. In this study, a novel male sterile line, SaNa-1A, was obtained from the somatic hybridization between Brassica napus and Sinapis alba. The normal anther development of the maintainer line, SaNa-1B, and the abortive process of SaNa-1A were described through phenotypic observations and microtome sections. The lforal organ of the sterile line SaNa-1A was sterile with a shortened iflament and delfated anther. No detectable pollen grains were found on the surface of the sterile anthers. Semi-thin sections indicated that SaNa-1A aborted in the pollen mother cell (PMC) stage when vacuolization of the tapetum and PMCs began. The tapetum radically elongated and became highly vacuolated, occupying the entire locule together with the vacuolated microspores. Therefore, SaNa-1A is different from other CMS lines, such as ogu CMS, pol CMS and nap CMS as shown by the abortive process of the anther.

  12. Accelerated senescence and enhanced disease resistance in hybrid chlorosis lines derived from interspecific crosses between tetraploid wheat and Aegilops tauschii.

    Directory of Open Access Journals (Sweden)

    Hiroki Nakano

    Full Text Available Hybrid chlorosis, a type of hybrid incompatibility, has frequently been reported in inter- and intraspecific crosses of allopolyploid wheat. In a previous study, we reported some types of growth abnormalities such as hybrid necrosis and observed hybrid chlorosis with mild or severe abnormalities in wheat triploids obtained in crosses between tetraploid wheat cultivar Langdon and four Ae. tauschii accessions and in their derived synthetic hexaploids. However, the molecular mechanisms underlying hybrid chlorosis are not well understood. Here, we compared cytology and gene expression in leaves to characterize the abnormal growth in wheat synthetics showing mild and severe chlorosis. In addition, we compared disease resistance to wheat blast fungus. In total 55 and 105 genes related to carbohydrate metabolism and 53 and 89 genes for defense responses were markedly up-regulated in the mild and severe chlorosis lines, respectively. Abnormal chloroplasts formed in the mesophyll cells before the leaves yellowed in the hybrid chlorosis lines. The plants with mild chlorosis showed increased resistance to wheat blast and powdery mildew fungi, although significant differences only in two, third internode length and maturation time, out of the examined agricultural traits were found between the wild type and plants showing mild chlorosis. These observations suggest that senescence might be accelerated in hybrid chlorosis lines of wheat synthetics. Moreover, in wheat synthetics showing mild chlorosis, the negative effects on biomass can be minimized, and they may show substantial fitness under pathogen-polluted conditions.

  13. Accelerated senescence and enhanced disease resistance in hybrid chlorosis lines derived from interspecific crosses between tetraploid wheat and Aegilops tauschii.

    Science.gov (United States)

    Nakano, Hiroki; Mizuno, Nobuyuki; Tosa, Yukio; Yoshida, Kentaro; Park, Pyoyun; Takumi, Shigeo

    2015-01-01

    Hybrid chlorosis, a type of hybrid incompatibility, has frequently been reported in inter- and intraspecific crosses of allopolyploid wheat. In a previous study, we reported some types of growth abnormalities such as hybrid necrosis and observed hybrid chlorosis with mild or severe abnormalities in wheat triploids obtained in crosses between tetraploid wheat cultivar Langdon and four Ae. tauschii accessions and in their derived synthetic hexaploids. However, the molecular mechanisms underlying hybrid chlorosis are not well understood. Here, we compared cytology and gene expression in leaves to characterize the abnormal growth in wheat synthetics showing mild and severe chlorosis. In addition, we compared disease resistance to wheat blast fungus. In total 55 and 105 genes related to carbohydrate metabolism and 53 and 89 genes for defense responses were markedly up-regulated in the mild and severe chlorosis lines, respectively. Abnormal chloroplasts formed in the mesophyll cells before the leaves yellowed in the hybrid chlorosis lines. The plants with mild chlorosis showed increased resistance to wheat blast and powdery mildew fungi, although significant differences only in two, third internode length and maturation time, out of the examined agricultural traits were found between the wild type and plants showing mild chlorosis. These observations suggest that senescence might be accelerated in hybrid chlorosis lines of wheat synthetics. Moreover, in wheat synthetics showing mild chlorosis, the negative effects on biomass can be minimized, and they may show substantial fitness under pathogen-polluted conditions. PMID:25806790

  14. Brain-derived neurotrophic factor, food intake regulation, and obesity.

    Science.gov (United States)

    Rosas-Vargas, Haydeé; Martínez-Ezquerro, José Darío; Bienvenu, Thierry

    2011-08-01

    Brain-derived neurotrophic factor (BDNF) is a neurotrophin that plays a fundamental role in development and plasticity of the central nervous system (CNS). It is currently recognized as a major participant in the regulation of food intake. Multiple studies have shown that different regulators of appetite such as leptin, insulin and pancreatic polypeptide (PP) potentially exert anorexigenic effects through BDNF. Low circulating levels of BDNF are associated with a higher risk of eating disorders such as anorexia nervosa (AN) and bulimia nervosa (BN). Strict food restriction reduces BDNF and may trigger binge-eating episodes and weight gain. The existence of mutations that cause haploinsufficiency of BDNF as well as some genetic variants, notably the BDNF p.Val66Met polymorphism, are also associated with the development of obese phenotypes and hyperphagia. However, association of the Met allele with AN and BN, which have different phenotypic characteristics, shows clearly the existence of other relevant factors that regulate eating behavior. This may, in part, be explained by the epigenetic regulation of BDNF through mechanisms like DNA methylation and histone acetylation. Environmental factors, primarily during early development, are crucial to the establishment of these stable but reversible changes that alter the transcriptional expression and are transgenerationally heritable, with potential concomitant effects on the development of eating disorders and body weight control. PMID:21945389

  15. Brain-derived neurotrophic factor and cocaine addiction

    Science.gov (United States)

    McGinty, Jacqueline F.; Whitfield, Timothy W.; Berglind, William J.

    2009-01-01

    The effects of brain-derived neurotrophic factor (BDNF) on cocaine-seeking are brain region-specific. Infusion of BDNF into subcortical structures, like the nucleus accumbens and ventral tegmental area, enhances cocaine-induced behavioral sensitization and cocaine seeking. Conversely, repeated administration of BDNF antiserum into the nucleus accumbens during chronic cocaine self-administration attenuates cocaine-induced reinstatement. In contrast, BDNF infusion into the dorsomedial prefrontal cortex immediately following a final session of cocaine self-administration attenuates relapse to cocaine seeking after abstinence, as well as cue- and cocaine prime-induced reinstatement of cocaine-seeking following extinction. BDNF-induced alterations in the ERK-MAP kinase cascade and in prefronto-accumbens glutamatergic transmission are implicated in BDNF’s ability to alter cocaine seeking. Within 22 hr after infusion into the prefrontal cortex, BDNF increases BDNF protein in prefrontal cortical targets, including nucleus accumbens, and restores cocaine-mediated decreases in phospho-ERK expression in the nucleus accumbens. Furthermore, three weeks after BDNF infusion in animals with a cocaine self-administration history, suppressed basal levels of glutamate are normalized and a cocaine-prime-induced increase in extracellular glutamate levels in the nucleus accumbens is prevented. Thus, BDNF may have local effects at the site of infusion and distal effects in target areas that are critical to mediating or preventing cocaine-induced dysfunctional neuroadaptations. PMID:19732758

  16. Anti-neurotrophic effects from autoantibodies in adult diabetes having primary open angle glaucoma or dementia

    Directory of Open Access Journals (Sweden)

    Mark B Zimering

    2013-05-01

    Full Text Available Aims: To test for anti-endothelial and anti-neurotrophic effects from autoantibodies in subsets of diabetes having open- angle glaucoma, dementia or control subjects.Methods: Protein-A eluates from plasma of 20 diabetic subjects having glaucoma or suspects and 34 age-matched controls were tested for effects on neurite outgrowth in rat pheochromocytoma PC12 cells or endothelial cell survival. The mechanism of the diabetic glaucoma autoantibodies' neurite inhibitory effect was investigated in coincubations with the selective Rho kinase inhibitor Y27632 or the sulfated proteoglycan synthesis inhibitor sodium chlorate. Stored protein-A eluates from certain diabetic glaucoma or dementia subjects which contained long-lasting, highly stable cell inhibitory substances were characterized using mass spectrometry and amino acid sequencing.Results: Diabetic primary open angle glaucoma or suspects (n=20 or diabetic dementia (n=3 autoantibodies caused significantly greater mean inhibition of neurite outgrowth in PC12 cells (p < .0001 compared to autoantibodies in control diabetic (n=24 or nondiabetic (n=10 subjects without glaucoma (p < .01. Neurite inhibition by the diabetic glaucoma autoantibodies was completely abolished by 10 µM concentrations of Y27632 (n=4. It was substantially reduced by 30 mM concentrations of sodium chlorate (n=4. Peak, long-lasting activity survived storage x 5 years at 0-4 deg C and was associated with a restricted subtype of Ig kappa light chain. Diabetic glaucoma or dementia autoantibodies (n=5 caused contraction and process retraction in quiescent cerebral cortical astrocytes effects which were blocked by 5 µM concentrations of Y27632. Conclusion: These data suggest that autoantibodies in adult diabetes having primary open angle glaucoma (glaucoma suspects and/or dementia inhibit neurite outgrowth and promote a reactive astrocyte morphology by a mechanism which may involve activation of the RhoA/p160 ROCK signaling pathway.

  17. Low-level laser therapy promotes dendrite growth via upregulating brain-derived neurotrophic factor expression

    Science.gov (United States)

    Meng, Chengbo; He, Zhiyong; Xing, Da

    2014-09-01

    Downregulation of brain-derived neurotrophic factor (BDNF) in the hippocampus occurs early in the progression of Alzheimer's disease (AD). Since BDNF plays a critical role in neuronal survival and dendrite growth, BDNF upregulation may contribute to rescue dendrite atrophy and cell loss in AD. Low-level laser therapy (LLLT) has been demonstrated to regulate neuronal function both in vitro and in vivo. In the present study, we found that LLLT rescued neurons loss and dendritic atrophy via the increase of both BDNF mRNA and protein expression. In addition, dendrite growth was improved after LLLT, characterized by upregulation of PSD95 expression, and the increase in length, branching, and spine density of dendrites in hippocampal neurons. Together, these studies suggest that upregulation of BDNF with LLLT can ameliorate Aβ-induced neurons loss and dendritic atrophy, thus identifying a novel pathway by which LLLT protects against Aβ-induced neurotoxicity. Our research may provide a feasible therapeutic approach to control the progression of Alzheimer's disease.

  18. Ciliary neurotrophic factor protects striatal neurons against excitotoxicity by enhancing glial glutamate uptake.

    Directory of Open Access Journals (Sweden)

    Corinne Beurrier

    Full Text Available Ciliary neurotrophic factor (CNTF is a potent neuroprotective cytokine in different animal models of glutamate-induced excitotoxicity, although its action mechanisms are still poorly characterized. We tested the hypothesis that an increased function of glial glutamate transporters (GTs could underlie CNTF-mediated neuroprotection. We show that neuronal loss induced by in vivo striatal injection of the excitotoxin quinolinic acid (QA was significantly reduced (by approximately 75% in CNTF-treated animals. In striatal slices, acute QA application dramatically inhibited corticostriatal field potentials (FPs, whose recovery was significantly higher in CNTF rats compared to controls (approximately 40% vs. approximately 7%, confirming an enhanced resistance to excitotoxicity. The GT inhibitor DL-threo-beta-benzyloxyaspartate greatly reduced FP recovery in CNTF rats, supporting the role of GT in CNTF-mediated neuroprotection. Whole-cell patch-clamp recordings from striatal medium spiny neurons showed no alteration of basic properties of striatal glutamatergic transmission in CNTF animals, but the increased effect of a low-affinity competitive glutamate receptor antagonist (gamma-D-glutamylglycine also suggested an enhanced GT function. These data strongly support our hypothesis that CNTF is neuroprotective via an increased function of glial GTs, and further confirms the therapeutic potential of CNTF for the clinical treatment of progressive neurodegenerative diseases involving glutamate overflow.

  19. EXPRESSING HUMAN MATURED BRAIN-DERIVED NEUROTROPHIC FACTOR GENE IN E. Coli AND DETERMINING ITS BIOACTIVITY

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Objective Expressing the human matured brain-derived neurotrophic factor (mBDNF) gene in E.Coli and determining its bioactivity. Methods The resulting gene of mBDNF was subcloned into the EcoRI-BamHI site of the expression vector plasmid pBV220. The ligation products were used to transform the competent E. Coli DH5α. The proteins of mBDNF were experessed by temperature inducing. The expression products were dealed with solubilizing inclusion bodies and refolding protein. It was introduced into the embryonic chicken DRG to test whether the expressed mBDNF is a biologically active protein. Results The recombinant plasmid pBV/mBDNF was successfully constructed. By temperature inducing,under the control of the bacteriophage λ PL promoter, the experessed mBDNF protein was a 14Kd non-fusion protein,which existed in E. Coli as inclusion bodies. The size of expressed mBDNF is identical to the prediction. Bioactivity of the products was proved that it could support the cell survival and neurite growth in the primary cultures of embryonic 8-day-old chicken DRG neurons as compared to control.Conclusion The mBDNF gene can be expressed bioactively in E. Coli.

  20. Spiral ganglion neuron survival and function in the deafened cochlea following chronic neurotrophic treatment.

    Science.gov (United States)

    Landry, Thomas G; Wise, Andrew K; Fallon, James B; Shepherd, Robert K

    2011-12-01

    Cochlear implants electrically stimulate residual spiral ganglion neurons (SGNs) to provide auditory cues for the severe-profoundly deaf. However, SGNs gradually degenerate following cochlear hair cell loss, leaving fewer neurons available for stimulation. Providing an exogenous supply of neurotrophins (NTs) has been shown to prevent SGN degeneration, and when combined with chronic intracochlear electrical stimulation (ES) following a short period of deafness (5 days), may also promote the formation of new neurons. The present study assessed the histopathological response of guinea pig cochleae treated with NTs (brain-derived neurotrophic factor and neurotrophin-3) with and without ES over a four week period, initiated two weeks after deafening. Results were compared to both NT alone and artificial perilymph (AP) treated animals. AP/ES treated animals exhibited no evidence of SGN rescue compared with untreated deafened controls. In contrast, NT administration showed a significant SGN rescue effect in the lower and middle cochlear turns (two-way ANOVA, p evoked auditory brainstem response (EABR) thresholds. EABR thresholds following NT treatment were significantly lower than animals treated with AP (two-way ANOVA, p = 0.033). Finally, the potential for induced neurogenesis following the combined treatment was investigated using a marker of DNA synthesis. However, no evidence of neurogenesis was observed in the SGN population. The results indicate that chronic NT delivery to the cochlea may be beneficial to cochlear implant patients by increasing the number of viable SGNs and decreasing activation thresholds compared to chronic ES alone. PMID:21762764

  1. Brain-derived neurotrophic factor differentially modulates excitability of two classes of hippocampal output neurons.

    Science.gov (United States)

    Graves, A R; Moore, S J; Spruston, N; Tryba, A K; Kaczorowski, C C

    2016-08-01

    Brain-derived neurotrophic factor (BDNF) plays an important role in hippocampus-dependent learning and memory. Canonically, this has been ascribed to an enhancing effect on neuronal excitability and synaptic plasticity in the CA1 region. However, it is the pyramidal neurons in the subiculum that form the primary efferent pathways conveying hippocampal information to other areas of the brain, and yet the effect of BDNF on these neurons has remained unexplored. We present new data that BDNF regulates neuronal excitability and cellular plasticity in a much more complex manner than previously suggested. Subicular pyramidal neurons can be divided into two major classes, which have different electrophysiological and morphological properties, different requirements for the induction of plasticity, and different extrahippocampal projections. We found that BDNF increases excitability in one class of subicular pyramidal neurons yet decreases excitability in the other class. Furthermore, while endogenous BDNF was necessary for the induction of synaptic plasticity in both cell types, BDNF enhanced intrinsic plasticity in one class of pyramidal neurons yet suppressed intrinsic plasticity in the other. Taken together, these data suggest a novel role for BDNF signaling, as it appears to dynamically and bidirectionally regulate the output of hippocampal information to different regions of the brain. PMID:27146982

  2. MYELIN BASIC PROTEIN-PRIMED T CELLS INDUCE NEUROTROPHINS IN GLIAL CELLS VIA α5β3 INTEGRIN

    OpenAIRE

    Roy, Avik; Liu, Xiaojuan; Pahan, Kalipada

    2007-01-01

    Increasing the level of neurotrophins within the CNS may have therapeutic efficacy in patients with various neurological diseases. Earlier we have demonstrated that myelin basic protein (MBP)-primed T cells induce the expression of various proinflammatory molecules in glial cells via cell-to-cell contact. Here we describe that after Th2 polarization by gemfibrozil or other drugs, MBP-primed T cells induced the expression of neurotrophic molecules such as, brain-derived neurotrophic factor (BD...

  3. Transplantation of CNTF-expressing adult oligodendrocyte precursor cells promotes remyelination and functional recovery after spinal cord injury

    OpenAIRE

    Cao, Qilin; He, Qian; Wang, Yaping; Cheng, Xiaoxin; Howard, Russell M.; Yiping ZHANG; DeVries, William H.; Shields, Christopher B.; Magnuson, David S.K.; Xu, Xiaoming; Kim, Dong H.; Whittemore, Scott R.

    2010-01-01

    Demyelination contributes to the dysfunction after traumatic spinal cord injury (SCI). We explored whether the combination of neurotrophic factors and transplantation of adult rat spinal cord oligodendrocyte precursor cells (OPCs) could enhance remyelination and functional recovery after SCI. Ciliary neurotrophic factor (CNTF) was the most effective neurotrophic factor to promote oligodendrocyte (OL) differentiation and survival of OPCs in vitro. OPCs were infected with retroviruses expressin...

  4. Hyperbaric oxygen preserves neurotrophic activity of carbon monoxide-exposed astrocytes.

    Science.gov (United States)

    Jurič, Damijana M; Šuput, Dušan; Brvar, Miran

    2016-06-24

    In astrocytes, carbon monoxide (CO) poisoning causes oxidative stress and mitochondrial dysfunction accompanied by caspase and calpain activation. Impairment in astrocyte function can be time-dependently reduced by hyperbaric (3bar) oxygen (HBO). Due to the central role of astrocytes in maintaining neuronal function by offering neurotrophic support we investigated the hypothesis that HBO therapy may exert beneficial effect on acute CO poisoning-induced impairment in intrinsic neurotrophic activity. Exposure to 3000ppm CO in air followed by 24-72h of normoxia caused a progressive decline of gene expression, synthesis and secretion of nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) to different extent. 1h treatment with 100% oxygen disclosed a pressure- and time-dependent efficacy in preserving astrocytic neurotrophic support. The beneficial effect was most evident when the astrocytes were exposed to HBO 1-5h after exposure to CO. The results further support an active role of hyperbaric, not normobaric, oxygenation in reducing dysfunction of astrocytes after acute CO poisoning. By preserving endogenous neurotrophic activity HBO therapy might promote neuronal protection and thus prevent the occurrence of late neuropsychological sequelae. PMID:27113706

  5. Effect of neurotrophic factor, MDP, on rats’ nerve regeneration

    Directory of Open Access Journals (Sweden)

    A.A. Fornazari

    2011-04-01

    Full Text Available Our objective was to determine the immune-modulating effects of the neurotrophic factor N-acetylmuramyl-L-alanyl-D-isoglutamine (MDP on median nerve regeneration in rats. We used male Wistar rats (120-140 days of age, weighing 250-332 g and compared the results of three different techniques of nerve repair: 1 epineural neurorrhaphy using sutures alone (group S - 10 rats, 2 epineural neurorrhaphy using sutures plus fibrin tissue adhesive (FTA; group SF - 20 rats, and 3 sutures plus FTA, with MDP added to the FTA (group SFM - 20 rats. Functional assessments using the grasp test were performed weekly for 12 weeks to identify recovery of flexor muscle function in the fingers secondary to median nerve regeneration. Histological analysis was also utilized. The total number and diameter of myelinated fibers were determined in each proximal and distal nerve segment. Two indices, reported as percentage, were calculated from these parameters, namely, the regeneration index and the diameter change index. By the 8th week, superiority of group SFM over group S became apparent in the grasping test (P = 0.005. By the 12th week, rats that had received MDP were superior in the grasping test compared to both group S (P < 0.001 and group SF (P = 0.001. Moreover, group SF was better in the grasping test than group S (P = 0.014. However, no significant differences between groups were identified by histological analysis. In the present study, rats that had received MDP obtained better function, in the absence of any significant histological differences.

  6. Treatment of diabetic polyneuropathy with the neurotrophic peptide ORG 2766.

    Science.gov (United States)

    Valk, G D; Kappelle, A C; Tjon-A-Tsien, A M; Bravenboer, B; Bakker, K; Michels, R P; Groenhout, C M; Bertelsmann, F W

    1996-03-01

    The efficacy of the neurotrophic peptide ORG 2766 in diabetic patients with polyneuropathy was evaluated in a double-blind, placebo-controlled, multicentre trial. One hundred and twenty four patients were randomised in five groups to receive 0.1, 0.4, 2 or 5 mg ORG 2766 or placebo, once daily, administered subcutaneously 52 weeks. Thermal discrimination thresholds (TDT) and vibration perception thresholds (VPT), motor and sensory nerve conduction velocity, Hoffmann reflex, heart rate variation during deep breathing and heart rate response after standing up, neurological examination score and neuropathic symptom score were determined at baseline and after 17, 34 and 52 weeks of treatment. Of the nerve function indices studied, at week 52 the TDTwarmth of the hand in the ORG 2766 0.1, 0.4 and 5 mg groups and the TDTcold of the foot in the ORG 2766 0.1 and 0.4 mg groups significantly improved compared with placebo. Further significant improvement as compared with placebo was observed in the paraesthesia score at week 34 and week 52 in the ORG 2766 2 mg group. Only at week 34 had both the heartbeat variation during deep breathing and the VPT of the foot in the ORG 2766 0.1 mg group improved significantly, compared with placebo. No further statistically significant differences were observed at time for the other measures. No adverse reactions were observed. The only recorded drug-induced side effect was pain at the injection site. Taking all measures of efficacy into account, the statistically significant results observed did not show consistency within each measure. Therefore, it is concluded that ORG 2766, in contrast to earlier reports, is not effective in treating diabetic polyneuropathy. PMID:8936356

  7. Neurotrophic effects of a cyanine dye via the PI3K-Akt pathway: attenuation of motor discoordination and neurodegeneration in an ataxic animal model.

    Directory of Open Access Journals (Sweden)

    Hitomi Ohta

    Full Text Available BACKGROUND: Neurotrophic factors may be future therapeutic agents for neurodegenerative disease. In the screening of biologically active molecules for neurotrophic potency, we found that a photosensitizing cyanine dye, NK-4, had remarkable neurotrophic activities and was a potent radical scavenger. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we evaluated the effect of NK-4 on the protection of neurons against oxidative damage and investigated the associated intracellular signaling pathways. Subsequently, we evaluated the effect of NK-4 in an animal model of neurodegeneration. In vitro, NK-4 showed dose-dependent protection of PC12 cells from toxicity induced by oxidative stress caused by hydrogen peroxide (H(2O(2 or 6-hydroxydopamine (6-OHDA. Comparison of extracellular signal-regulated kinase signaling pathways between treatment with NK-4 and nerve growth factor (NGF using K252a, an inhibitor of the NGF receptor TrkA, revealed that NK-4 activity occurs independently of NGF receptors. LY294002, a phosphatidylinositol 3-kinase (PI3K inhibitor, blocked the protective effect of NK-4, and NK-4 caused activation of Akt/protein kinase B, a downstream effector of PI3K. These results suggest that the neuroprotective effects of NK-4 are mediated by the PI3K-Akt signaling pathway. NK-4 treatment also attenuated stress-induced activation of SAPK/JNK, which suggests that NK-4 activates a survival signaling pathway and inhibits stress-activated apoptotic pathways independently of the TrkA receptor in neuronal cells. In vivo, administration of NK-4 improved motor coordination in genetic ataxic hamsters, as assessed by rota-rod testing. Histological analysis showed that cerebellar atrophy was significantly attenuated by NK-4 treatment. Notably, the Purkinje cell count in the treated group was threefold higher than that in the vehicle group. CONCLUSIONS/SIGNIFICANCE: These results suggest that NK-4 is a potential agent for therapy for neurodegenerative

  8. Both 5' and 3' flanks regulate Zebrafish brain-derived neurotrophic factor gene expression

    Directory of Open Access Journals (Sweden)

    Heinrich Gerhard

    2004-05-01

    Full Text Available Abstract Background Precise control of developmental and cell-specific expression of the brain-derived neurotrophic factor (BDNF gene is essential for normal neuronal development and the diverse functions of BDNF in the adult organism. We previously showed that the zebrafish BDNF gene has multiple promoters. The complexity of the promoter structure and the mechanisms that mediate developmental and cell-specific expression are still incompletely understood. Results Comparison of pufferfish and zebrafish BDNF gene sequences as well as 5' RACE revealed three additional 5' exons and associated promoters. RT-PCR with exon-specific primers showed differential developmental and organ-specific expression. Two exons were detected in the embryo before transcription starts. Of the adult organs examined, the heart expressed a single 5' exon whereas the brain, liver and eyes expressed four of the seven 5' exons. Three of the seven 5' exons were not detectable by RT-PCR. Injection of promoter/GFP constructs into embryos revealed distinct expression patterns. The 3' flank profoundly affected expression in a position-dependent manner and a highly conserved sequence (HCS1 present in 5' exon 1c in a dehancer-like manner. Conclusions The zebrafish BDNF gene is as complex in its promoter structure and patterns of differential promoter expression as is its murine counterpart. The expression of two of the promoters appears to be regulated in a temporally and/or spatially highly circumscribed fashion. The 3' flank has a position-dependent effect on expression, either by affecting transcription termination or post-transcriptional steps. HCS1, a highly conserved sequence in 5' exon 1c, restricts expression to primary sensory neurons. The tools are now available for detailed genetic and molecular analyses of zebrafish BDNF gene expression.

  9. Brain-derived neurotrophic factor acutely inhibits AMPA-mediated currents in developing sensory relay neurons.

    Science.gov (United States)

    Balkowiec, A; Kunze, D L; Katz, D M

    2000-03-01

    Brain-derived neurotrophic factor (BDNF) is expressed by many primary sensory neurons that no longer require neurotrophins for survival, indicating that BDNF may be used as a signaling molecule by the afferents themselves. Because many primary afferents also express glutamate, we investigated the possibility that BDNF modulates glutamatergic AMPA responses of newborn second-order sensory relay neurons. Perforated-patch, voltage-clamp recordings were made from dissociated neurons of the brainstem nucleus tractus solitarius (nTS), a region that receives massive primary afferent input from BDNF-containing neurons in the nodose and petrosal cranial sensory ganglia. Electrophysiological analysis was combined in some experiments with anterograde labeling of primary afferent terminals to specifically analyze responses of identified second-order neurons. Our data demonstrate that BDNF strongly inhibits AMPA-mediated currents in a large subset of nTS cells. Specifically, AMPA responses were either completely abolished or markedly inhibited by BDNF in 73% of postnatal day (P0) cells and in 82% of identified P5 second-order sensory relay neurons. This effect of BDNF is mimicked by NT-4, but not NGF, and blocked by the Trk tyrosine kinase inhibitor K252a, consistent with a requirement for TrkB receptor activation. Moreover, analysis of TrkB expression in culture revealed a close correlation between the percentage of nTS neurons in which BDNF inhibits AMPA currents and the percentage of neurons that exhibit TrkB immunoreactivity. These data document a previously undefined mechanism of acute modulation of AMPA responses by BDNF and indicate that BDNF may regulate glutamatergic transmission at primary afferent synapses. PMID:10684891

  10. Influence of tail vein administration of bone marrow mesenchymal stem cells on expression of brain-derived neurotrophic factor and nerve growth factor after spinal cord injury in rats%骨髓间充质干细胞尾静脉移植脊髓损伤大鼠脑源性神经营养因子及神经生长因子的表达

    Institute of Scientific and Technical Information of China (English)

    董锋; 林建华; 吴朝阳

    2011-01-01

    BACKGROUND: Transplantation of bone marrow mesenchymal stem cells has an effect on the treatment of spinal cord injury, but the mechanism is not fully understood.OBJECTIVE: To explore the influence of intravenous administration of bone marrow mesenchymal stem cells on expression of brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) after spinal cord injury in rats and to study possible mechanism of intravenous administration of bone marrow mesenchymal stem cells after spinal cord injury in adult rats.METHODS: Modified Allen method was applied to induce T 10 spinal cord injury to prepare rat models of paraplegia. There were 6 rats in sham operation group and 24 rats in injury group. Then, the injury group was randomly divided into transplantation group and control group. Rats in the sham operation and transplantation groups received tail vein transplantation of 1 mL bone marrow mesenchymal stem cells (1×106 cells), while those in the control group were treated with PBS.RESULTS AND CONCLUSION: After spinal cord injury in rats, the expression of BDNF and NGF was improved and advanced to increase via intravenous administration of bone marrow mesenchymal stem cells. Maybe it is one of the mechanisms of promoting restoration of injured spinal cord and improving motor function.%背景:骨髓间充质干细胞移植对脊髓损伤有治疗作用,但其机制尚不完全清楚.目的:应用免疫组织化学方法观察骨髓间充质干细胞静脉移植损伤脊髓局部脑源性神经营养因子及神经生长因子的表达,分析骨髓间充质干细胞移植治疗大鼠脊髓损伤的作用途径.方法:运用改良Allen 法制备T10 脊髓外伤性截瘫大鼠模型,假手术组6 只,脊髓损伤组24 只随机分为对照组和骨髓间充质干细胞移植组.骨髓间充质干细胞移植组、假手术组接受骨髓间充质干细胞单细胞悬液1 mL(1×106 cells)自大鼠尾静脉缓慢注射移植,对照组静脉注射PBS 1 mL.结果

  11. Flavonoids Induce the Synthesis and Secretion of Neurotrophic Factors in Cultured Rat Astrocytes: A Signaling Response Mediated by Estrogen Receptor

    Directory of Open Access Journals (Sweden)

    Sherry L. Xu

    2013-01-01

    Full Text Available Neurotrophic factors are playing vital roles in survival, growth, and function of neurons. Regulation of neurotrophic factors in the brain has been considered as one of the targets in developing drug or therapy against neuronal disorders. Flavonoids, a family of multifunctional natural compounds, are well known for their neuronal beneficial effects. Here, the effects of flavonoids on regulating neurotrophic factors were analyzed in cultured rat astrocytes. Astrocyte is a major secreting source of neurotrophic factors in the brain. Thirty-three flavonoids were screened in the cultures, and calycosin, isorhamnetin, luteolin, and genistein were identified to be highly active in inducing the synthesis and secretion of neurotrophic factors, including nerve growth factor (NGF, glial-derived neurotrophic factor (GDNF, and brain-derived neurotrophic factor (BDNF. The inductions were in time- and dose-dependent manners. In cultured astrocytes, the phosphorylation of estrogen receptor was triggered by application of flavonoids. The phosphorylation was blocked by an inhibitor of estrogen receptor, which in parallel reduced the flavonoid-induced expression of neurotrophic factors. The results proposed the role of flavonoids in protecting brain diseases, and therefore these flavonoids could be developed for health food supplement for patients suffering from neurodegenerative diseases.

  12. Ciliary neurotrophic factor is not required for terminal sprouting and compensatory reinnervation of neuromuscular synapses: Re-evaluation of CNTF null mice

    OpenAIRE

    Wright, Megan C.; Son, Young-Jin

    2007-01-01

    Loss of synaptic activity or innervation induces sprouting of intact motor nerve terminals that adds or restores nerve-muscle connectivity. Ciliary neurotrophic factor (CNTF) and terminal Schwann cells (tSCs) have been implicated as molecular and cellular mediators of the compensatory process. We wondered if the previously reported lack of terminal sprouting in CNTF null mice was due to abnormal reactivity of tSCs. To this end, we examined nerve terminal and tSC responses in CNTF null mice us...

  13. Mesencephalic Astrocyte-derived Neurotrophic Factor (MANF) Has a Unique Mechanism to Rescue Apoptotic Neurons

    OpenAIRE

    Hellman, M.; Arumae, U.; Yu, L.-y.; Lindholm, P.; Peranen, J.; Saarma, M.; Permi, P. (Perttu)

    2010-01-01

    Mesencephalic astrocyte-derived neurotrophic factor (MANF) protects neurons and repairs the Parkinson disease-like symptoms in a rat 6-hydroxydopamine model. We show a three-dimensional solution structure of human MANF that differs drastically from other neurotrophic factors. Remarkably, the C-terminal domain of MANF (C-MANF) is homologous to the SAP domain of Ku70, a well known inhibitor of proapoptotic Bax (Bcl-2-associated X protein). Cellular studies confirm that MANF and C-MANF protect n...

  14. Brain derived neurotrophic factor in newly diagnosed diabetes and prediabetes.

    Science.gov (United States)

    Liu, Wei; Han, Xueyao; Zhou, Xianghai; Zhang, Simin; Cai, Xiaoling; Zhang, Lihua; Li, Yufeng; Li, Meng; Gong, Siqian; Ji, Linong

    2016-07-01

    Brain derived neurotrophic factor (BDNF) is thought to play an important role in glucose metabolism, but the exact mechanism has not been elucidated. The aim was to assess differences in serum BDNF levels across individuals with varying levels of glucose tolerance, and the association of serum BDNF levels with genetic variants and DNA methylation. Participants were selected from an ongoing population-based cohort study in rural China. In a randomly selected subsample of healthy participants (n = 33 males, n = 52 female), we assessed serum BDNF and in n = 50 of these, also DNA methylation. In a second subsample (all women; n = 28 with diabetes, n = 104 with prediabetes, and n = 105 age- and body mass index (BMI)-matched controls), we assessed serum BDNF and genetic variants. In a third subsample (all with diabetes; n = 7 normal BMI + low insulin level, n = 9 normal BMI + high insulin level, n = 9 obese + high insulin level), we assessed DNA methylation. Compared to age- and BMI-matched controls (24.71 (IQR, 20.44, 29.80) ng/ml), serum BDNF was higher in participants with prediabetes (27.38 (IQR, 20.64, 34.29) ng/ml), but lower in those with diabetes (23.40 (IQR, 18.12, 30.34) ng/ml) (P < 0.05). Two genetic variants near BDNF (rs4074134 and rs6265) were confirmed to be associated with BMI. BDNF CpG-6 methylation was positively associated with waist-to-hip ratio (P < 0.05). Furthermore, hyper-methylation in this site was found in participants with diabetes and high fasting insulin levels compared to those with diabetes and low fasting insulin levels, regardless of BMI status (P < 0.001 and P = 0.001, respectively). Observed differences in serum BDNF levels, genetic variants, and DNA methylation patterns across different glucose metabolic state suggest that BDNF may be involved in the pathophysiological process of insulin resistance and type 2 diabetes. PMID:27062899

  15. Peripheral brain-derived neurotrophic factor is related to cardiovascular risk factors in active and inactive elderly men.

    Science.gov (United States)

    Zembron-Lacny, A; Dziubek, W; Rynkiewicz, M; Morawin, B; Woźniewski, M

    2016-06-20

    Regular exercise plays an important preventive and therapeutic role in heart and vascular diseases, and beneficially affects brain function. In blood, the effects of exercise appear to be very complex and could include protection of vascular endothelial cells via neurotrophic factors and decreased oxidative stress. The purpose of this study was to identify the age-related changes in peripheral brain-derived neurotrophic factor (BDNF) and its relationship to oxidative damage and conventional cardiovascular disease (CVD) biomarkers, such as atherogenic index, C-reactive protein (hsCRP) and oxidized LDL (oxLDL), in active and inactive men. Seventeen elderly males (61-80 years) and 17 young males (20-24 years) participated in this study. According to the 6-min Åstrand-Rhyming bike test, the subjects were classified into active and inactive groups. The young and elderly active men had a significantly better lipoprotein profile and antioxidant status, as well as reduced oxidative damage and inflammatory state. The active young and elderly men had significantly higher plasma BDNF levels compared to their inactive peers. BDNF was correlated with VO2max (r=0.765, P<0.001). In addition, we observed a significant inverse correlation of BDNF with atherogenic index (TC/HDL), hsCRP and oxLDL. The findings demonstrate that a high level of cardiorespiratory fitness reflected in VO2max was associated with a higher level of circulating BDNF, which in turn was related to common CVD risk factors and oxidative damage markers in young and elderly men. PMID:27332774

  16. Peripheral brain-derived neurotrophic factor is related to cardiovascular risk factors in active and inactive elderly men

    Directory of Open Access Journals (Sweden)

    A. Zembron-Lacny

    2016-01-01

    Full Text Available Regular exercise plays an important preventive and therapeutic role in heart and vascular diseases, and beneficially affects brain function. In blood, the effects of exercise appear to be very complex and could include protection of vascular endothelial cells via neurotrophic factors and decreased oxidative stress. The purpose of this study was to identify the age-related changes in peripheral brain-derived neurotrophic factor (BDNF and its relationship to oxidative damage and conventional cardiovascular disease (CVD biomarkers, such as atherogenic index, C-reactive protein (hsCRP and oxidized LDL (oxLDL, in active and inactive men. Seventeen elderly males (61-80 years and 17 young males (20-24 years participated in this study. According to the 6-min Åstrand-Rhyming bike test, the subjects were classified into active and inactive groups. The young and elderly active men had a significantly better lipoprotein profile and antioxidant status, as well as reduced oxidative damage and inflammatory state. The active young and elderly men had significantly higher plasma BDNF levels compared to their inactive peers. BDNF was correlated with VO2max (r=0.765, P<0.001. In addition, we observed a significant inverse correlation of BDNF with atherogenic index (TC/HDL, hsCRP and oxLDL. The findings demonstrate that a high level of cardiorespiratory fitness reflected in VO2max was associated with a higher level of circulating BDNF, which in turn was related to common CVD risk factors and oxidative damage markers in young and elderly men.

  17. Cyclical and patch-like GDNF distribution along the basal surface of Sertoli cells in mouse and hamster testes.

    Directory of Open Access Journals (Sweden)

    Takeshi Sato

    Full Text Available BACKGROUND AND AIMS: In mammalian spermatogenesis, glial cell line-derived neurotrophic factor (GDNF is one of the major Sertoli cell-derived factors which regulates the maintenance of undifferentiated spermatogonia including spermatogonial stem cells (SSCs through GDNF family receptor α1 (GFRα1. It remains unclear as to when, where and how GDNF molecules are produced and exposed to the GFRα1-positive spermatogonia in vivo. METHODOLOGY AND PRINCIPAL FINDINGS: Here we show the cyclical and patch-like distribution of immunoreactive GDNF-positive signals and their close co-localization with a subpopulation of GFRα1-positive spermatogonia along the basal surface of Sertoli cells in mice and hamsters. Anti-GDNF section immunostaining revealed that GDNF-positive signals are mainly cytoplasmic and observed specifically in the Sertoli cells in a species-specific as well as a seminiferous cycle- and spermatogenic activity-dependent manner. In contrast to the ubiquitous GDNF signals in mouse testes, high levels of its signals were cyclically observed in hamster testes prior to spermiation. Whole-mount anti-GDNF staining of the seminiferous tubules successfully visualized the cyclical and patch-like extracellular distribution of GDNF-positive granular deposits along the basal surface of Sertoli cells in both species. Double-staining of GDNF and GFRα1 demonstrated the close co-localization of GDNF deposits and a subpopulation of GFRα1-positive spermatogonia. In both species, GFRα1-positive cells showed a slender bipolar shape as well as a tendency for increased cell numbers in the GDNF-enriched area, as compared with those in the GDNF-low/negative area of the seminiferous tubules. CONCLUSION/SIGNIFICANCE: Our data provide direct evidence of regionally defined patch-like GDNF-positive signal site in which GFRα1-positive spermatogonia possibly interact with GDNF in the basal compartment of the seminiferous tubules.

  18. Special Morphological Features at the Interface of the Renal Stem/Progenitor Cell Niche Force to Reinvestigate Transport of Morphogens During Nephron Induction.

    Science.gov (United States)

    Minuth, Will W; Denk, Lucia

    2016-01-01

    Formation of a nephron depends on reciprocal signaling of different morphogens between epithelial and mesenchymal cells within the renal stem/progenitor cell niche. Previously, it has been surmised that a close proximity exists between both involved cell types and that morphogens are transported between them by diffusion. However, actual morphological data illustrate that mesenchymal and epithelial stem/progenitor cell bodies are separated by a striking interface. Special fixation of specimens by glutaraldehyde (GA) solution including cupromeronic blue, ruthenium red, or tannic acid for electron microscopy depicts that the interface is not void but filled in extended areas by textured extracellular matrix. Surprisingly, projections of mesenchymal cells cross the interface to contact epithelial cells. At those sites the plasma membranes of a mesenchymal and an epithelial cell are connected via tunneling nanotubes. Regarding detected morphological features in combination with involved morphogens, their transport cannot longer be explained solely by diffusion. Instead, it has to be sorted according to biophysical properties of morphogens and to detected environment. Thus, the new working hypothesis is that morphogens with good solubility such as glial cell line-derived neurotrophic factor (GDNF) or fibroblast growth factors (FGFs) are transported by diffusion. Morphogens with minor solubility such as bone morphogenetic proteins (BMPs) are secreted and stored for delivery on demand in illustrated extracellular matrix. In contrast, morphogens with poor solubility such as Wnts are transported in mesenchymal cell projections along the plasma membrane or via illustrated tunneling nanotubes. However, the presence of an intercellular route between mesenchymal and epithelial stem/progenitor cells by tunneling nanotubes also makes it possible that all morphogens are transported this way. PMID:26862472

  19. Ciliary neurotrophic factor (CNTF): New facets of an old molecule for treating neurodegenerative and metabolic syndrome pathologies.

    Science.gov (United States)

    Pasquin, Sarah; Sharma, Mukut; Gauchat, Jean-François

    2015-10-01

    Ciliary neurotrophic factor (CNTF) is the most extensively studied member of the cytokine family that signal through intracellular chains of the gp130/LIFRβ receptor. The severe phenotype in patients suffering from mutations inactivating LIFRβ indicates that members of this cytokine family play key, non-redundant roles during development. Accordingly, three decades of research has revealed potent and promising trophic and regulatory activities of CNTF in neurons, oligodendrocytes, muscle cells, bone cells, adipocytes and retinal cells. These findings led to clinical trials to test the therapeutic potential of CNTF and CNTF derivatives for treating neurodegenerative and metabolic diseases. Promising results have encouraged continuation of studies for treating retinal degenerative diseases. Results of some clinical trials showed that side-effects may limit the systemically administrated doses of CNTF. Therefore, therapies being currently tested rely on local delivery of CNTF using encapsulated cytokine-secreting implants. Since the side effects of CNTF might be linked to its ability to activate the alternative IL6Rα-LIFRβ-gp130 receptor, CNTFR-specific mutants of CNTF have been developed that bind to the CNTFRα-LIFRβ-gp130 receptor. These developments may prove to be a breakthrough for therapeutic applications of systemically administered CNTF in pathologies such as multiple sclerosis or Alzheimer's disease. The "designer cytokine approach" offers future opportunities to further enhance specificity by conjugating mutant CNTF with modified soluble CNTFRα to target therapeutically relevant cells that express gp130-LIFRβ and a specific cell surface marker. PMID:26187860

  20. Conservation of spermatogonial stem cell marker expression in undifferentiated felid spermatogonia.

    Science.gov (United States)

    Vansandt, Lindsey M; Livesay, Janelle L; Dickson, Melissa Joy; Li, Lei; Pukazhenthi, Budhan S; Keefer, Carol L

    2016-09-01

    Spermatogonial stem cells (SSCs) are distinct in their ability to self-renew, transmit genetic information, and persist throughout the life of an individual. These characteristics make SSCs a useful tool for addressing diverse challenges such as efficient transgenic production in nonrodent, biomedical animal models, or preservation of the male genome for species in which survival of frozen-thawed sperm is low. A requisite first step to access this technology in felids is the establishment of molecular markers. This study was designed to evaluate, in the domestic cat (Felis catus), the expression both in situ and following enrichment in vitro of six genes (GFRA1, GPR125, ZBTB16, POU5F1, THY1, and UCHL1) that had been previously identified as SSC markers in other species. Antibodies for surface markers glial cell line-derived neurotrophic factor family receptor alpha 1, G protein-coupled receptor 125, and thymus cell antigen 1 could not be validated, whereas Western blot analysis of prepubertal, peripubertal, and adult cat testis confirmed protein expression for the intracellular markers ubiquitin carboxy-terminal hydrolase 1, zinc finger and BTB domain-containing protein 16, and POU domain, class 5, transcription factor 1. Colocalization of the markers by immunohistochemistry revealed that several cells within the subpopulation adjacent to the basement membrane of the seminiferous tubules and identified morphologically as spermatogonia, expressed all three intracellular markers. Studies performed on cheetah (Acinonyx jubatus) and Amur leopard (Panthera pardus orientalis) testis exhibited a conserved expression pattern in protein molecular weights, relative abundance, and localization of positive cells within the testis. The expression of the three intracellular SSC marker proteins in domestic and wild cat testes confirms conservation of these markers in felids. Enrichment of marker transcripts after differential plating was also observed. These markers will

  1. Action of Administered Ciliary Neurotrophic Factor on the Mouse Dorsal Vagal Complex

    Science.gov (United States)

    Senzacqua, Martina; Severi, Ilenia; Perugini, Jessica; Acciarini, Samantha; Cinti, Saverio; Giordano, Antonio

    2016-01-01

    Ciliary neurotrophic factor (CNTF) induces weight loss in obese rodents and humans through activation of the hypothalamic Jak-STAT (Janus kinase-signal transducer and activator of transcription) signaling pathway. Here, we tested the hypothesis that CNTF also affects the brainstem centers involved in feeding and energy balance regulation. To this end, wild-type and leptin-deficient (ob/ob and db/db) obese mice were acutely treated with intraperitoneal recombinant CNTF. Coronal brainstem sections were processed for immunohistochemical detection of STAT3, STAT1, STAT5 phosphorylation and c-Fos. In wild-type mice, CNTF treatment for 45 min induced STAT3, STAT1, and STAT5 phosphorylation in neurons as well as glial cells of the area postrema; here, the majority of CNTF-responsive cells activated multiple STAT isoforms, and a significant proportion of CNTF-responsive glial cells bore the immaturity and plasticity markers nestin and vimentin. After 120 min CNTF treatment, c-Fos expression was intense in glial cells and weak in neurons of the area postrema, it was intense in several neurons of the rostral and caudal solitary tract nucleus (NTS), and weak in some cholinergic neurons of the dorsal motor nucleus of the vagus. In the ob/ob and db/db mice, Jak-STAT activation and c-Fos expression were similar to those induced in wild-type mouse brainstem. Treatment with CNTF (120 min, to induce c-Fos expression) and leptin (25 min, to induce STAT3 phosphorylation) demonstrated the co-localization of the two transcription factors in a small neuron population in the caudal NTS portion. Finally, weak immunohistochemical CNTF staining, detected in funiculus separans, and meningeal glial cells, matched the modest amount of CNTF found by RT-qPCR in micropunched area postrema tissue, which in contrast exhibited a very high amount of CNTF receptor. Collectively, the present findings show that the area postrema and the NTS exhibit high, distinctive responsiveness to circulating

  2. Action of Administered Ciliary Neurotrophic Factor on the Mouse Dorsal Vagal Complex.

    Science.gov (United States)

    Senzacqua, Martina; Severi, Ilenia; Perugini, Jessica; Acciarini, Samantha; Cinti, Saverio; Giordano, Antonio

    2016-01-01

    Ciliary neurotrophic factor (CNTF) induces weight loss in obese rodents and humans through activation of the hypothalamic Jak-STAT (Janus kinase-signal transducer and activator of transcription) signaling pathway. Here, we tested the hypothesis that CNTF also affects the brainstem centers involved in feeding and energy balance regulation. To this end, wild-type and leptin-deficient (ob/ob and db/db) obese mice were acutely treated with intraperitoneal recombinant CNTF. Coronal brainstem sections were processed for immunohistochemical detection of STAT3, STAT1, STAT5 phosphorylation and c-Fos. In wild-type mice, CNTF treatment for 45 min induced STAT3, STAT1, and STAT5 phosphorylation in neurons as well as glial cells of the area postrema; here, the majority of CNTF-responsive cells activated multiple STAT isoforms, and a significant proportion of CNTF-responsive glial cells bore the immaturity and plasticity markers nestin and vimentin. After 120 min CNTF treatment, c-Fos expression was intense in glial cells and weak in neurons of the area postrema, it was intense in several neurons of the rostral and caudal solitary tract nucleus (NTS), and weak in some cholinergic neurons of the dorsal motor nucleus of the vagus. In the ob/ob and db/db mice, Jak-STAT activation and c-Fos expression were similar to those induced in wild-type mouse brainstem. Treatment with CNTF (120 min, to induce c-Fos expression) and leptin (25 min, to induce STAT3 phosphorylation) demonstrated the co-localization of the two transcription factors in a small neuron population in the caudal NTS portion. Finally, weak immunohistochemical CNTF staining, detected in funiculus separans, and meningeal glial cells, matched the modest amount of CNTF found by RT-qPCR in micropunched area postrema tissue, which in contrast exhibited a very high amount of CNTF receptor. Collectively, the present findings show that the area postrema and the NTS exhibit high, distinctive responsiveness to circulating

  3. Exposure to Organophosphates Reduces the Expression of Neurotrophic Factors in Neonatal Rat Brain Regions: Similarities and Differences in the Effects of Chlorpyrifos and Diazinon on the Fibroblast Growth Factor Superfamily

    OpenAIRE

    Slotkin, Theodore A.; Seidler, Frederic J; Fumagalli, Fabio

    2007-01-01

    Background The fibroblast growth factor (FGF) superfamily of neurotrophic factors plays critical roles in neural cell development, brain assembly, and recovery from neuronal injury. Objectives We administered two organophosphate pesticides, chlorpyrifos and diazinon, to neonatal rats on postnatal days 1–4, using doses below the threshold for systemic toxicity or growth impairment, and spanning the threshold for barely detectable cholinesterase inhibition: 1 mg/kg/day chlorpyrifos and 1 or 2 m...

  4. Repetitive acute intermittent hypoxia increases growth/neurotrophic factor expression in non-respiratory motor neurons.

    Science.gov (United States)

    Satriotomo, I; Nichols, N L; Dale, E A; Emery, A T; Dahlberg, J M; Mitchell, G S

    2016-05-13

    Repetitive acute intermittent hypoxia (rAIH) increases growth/trophic factor expression in respiratory motor neurons, thereby eliciting spinal respiratory motor plasticity and/or neuroprotection. Here we demonstrate that rAIH effects are not unique to respiratory motor neurons, but are also expressed in non-respiratory, spinal alpha motor neurons and upper motor neurons of the motor cortex. In specific, we used immunohistochemistry and immunofluorescence to assess growth/trophic factor protein expression in spinal sections from rats exposed to AIH three times per week for 10weeks (3×wAIH). 3×wAIH increased brain-derived neurotrophic factor (BDNF), its high-affinity receptor, tropomyosin receptor kinase B (TrkB), and phosphorylated TrkB (pTrkB) immunoreactivity in putative alpha motor neurons of spinal cervical 7 (C7) and lumbar 3 (L3) segments, as well as in upper motor neurons of the primary motor cortex (M1). 3×wAIH also increased immunoreactivity of vascular endothelial growth factor A (VEGFA), the high-affinity VEGFA receptor (VEGFR-2) and an important VEGF gene regulator, hypoxia-inducible factor-1α (HIF-1α). Thus, rAIH effects on growth/trophic factors are characteristic of non-respiratory as well as respiratory motor neurons. rAIH may be a useful tool in the treatment of disorders causing paralysis, such as spinal injury and motor neuron disease, as a pretreatment to enhance motor neuron survival during disease, or as preconditioning for cell-transplant therapies. PMID:26944605

  5. Gender and environmental effects on regional brain-derived neurotrophic factor expression after experimental traumatic brain injury.

    Science.gov (United States)

    Chen, X; Li, Y; Kline, A E; Dixon, C E; Zafonte, R D; Wagner, A K

    2005-01-01

    Alterations in brain-derived neurotrophic factor expression have been reported in multiple brain regions acutely after traumatic brain injury, however neither injury nor post-injury environmental enrichment has been shown to affect hippocampal brain-derived neurotrophic factor gene expression in male rats chronically post-injury. Studies have demonstrated hormone-related neuroprotection for female rats after traumatic brain injury, and estrogen and exercise both influence brain-derived neurotrophic factor levels. Despite recent studies suggesting that exposure post-traumatic brain injury to environmental enrichment improves cognitive recovery in male rats, we have shown that environmental enrichment mediated improvements with spatial learning are gender specific and only positively affect males. Therefore the purpose of this study was to evaluate the effect of gender and environmental enrichment on chronic post-injury cortical and hippocampal brain-derived neurotrophic factor protein expression. Sprague-Dawley male and cycling female rats were placed into environmental enrichment or standard housing after controlled cortical impact or sham surgery. Four weeks post-surgery, hippocampal and frontal cortex brain-derived neurotrophic factor expression were examined using Western blot. Results revealed significant increases in brain-derived neurotrophic factor expression in the frontal cortex ipsilateral to injury for males (P=0.03). Environmental enrichment did not augment this effect. Neither environmental enrichment nor injury significantly affected cortical brain-derived neurotrophic factor expression for females. In the hippocampus ipsilateral to injury brain-derived neurotrophic factor expression for both males and females was half (49% and 51% respectively) of that observed in shams housed in the standard environment. For injured males, there was a trend in this region for environmental enrichment to restore brain-derived neurotrophic factor levels to sham values

  6. Decreased levels of brain-derived neurotrophic factor in the remitted state of unipolar depressive disorder

    DEFF Research Database (Denmark)

    Hasselbalch, Jacob; Knorr, U; Bennike, B;

    2012-01-01

    Decreased levels of peripheral brain-derived neurotrophic factor (BDNF) have been associated with depression. It is uncertain whether abnormally low levels of BDNF in blood are present beyond the depressive state and whether levels of BDNF are associated with the course of clinical illness....

  7. Brain-derived neurotrophic factor in human subjects with function-altering melanocortin-4 receptor variants

    Science.gov (United States)

    In rodents, hypothalamic brain-derived neurotrophic factor (BDNF) expression appears to be regulated by melanocortin-4 receptor (MC4R) activity. The impact of MC4R genetic variation on circulating BDNF in humans is unknown. The objective of this study is to compare BDNF concentrations of subjects wi...

  8. Chemically extracted acellular allogeneic nerve graft combined with ciliary neurotrophic factor promotes sciatic nerve repair.

    Science.gov (United States)

    Zhang, Yanru; Zhang, Hui; Katiella, Kaka; Huang, Wenhua

    2014-07-15

    A chemically extracted acellular allogeneic nerve graft can reduce postoperative immune rejection, similar to an autologous nerve graft, and can guide neural regeneration. However, it remains poorly understood whether a chemically extracted acellular allogeneic nerve graft combined with neurotrophic factors provides a good local environment for neural regeneration. This study investigated the repair of injured rat sciatic nerve using a chemically extracted acellular allogeneic nerve graft combined with ciliary neurotrophic factor. An autologous nerve anastomosis group and a chemical acellular allogeneic nerve bridging group were prepared as controls. At 8 weeks after repair, sciatic functional index, evoked potential amplitude of the soleus muscle, triceps wet weight recovery rate, total number of myelinated nerve fibers and myelin sheath thickness were measured. For these indices, values in the three groups showed the autologous nerve anastomosis group > chemically extracted acellular nerve graft + ciliary neurotrophic factor group > chemical acellular allogeneic nerve bridging group. These results suggest that chemically extracted acellular nerve grafts combined with ciliary neurotrophic factor can repair sciatic nerve defects, and that this repair is inferior to autologous nerve anastomosis, but superior to chemically extracted acellular allogeneic nerve bridging alone. PMID:25221592

  9. Chemically extracted acellular allogeneic nerve graft combined with ciliary neurotrophic factor promotes sciatic nerve repair

    Institute of Scientific and Technical Information of China (English)

    Yanru Zhang; Hui Zhang; Kaka Katiella; Wenhua Huang

    2014-01-01

    A chemically extracted acellular allogeneic nerve graft can reduce postoperative immune re-jection, similar to an autologous nerve graft, and can guide neural regeneration. However, it remains poorly understood whether a chemically extracted acellular allogeneic nerve graft combined with neurotrophic factors provides a good local environment for neural regenera-tion. This study investigated the repair of injured rat sciatic nerve using a chemically extracted acellular allogeneic nerve graft combined with ciliary neurotrophic factor. An autologous nerve anastomosis group and a chemical acellular allogeneic nerve bridging group were prepared as controls. At 8 weeks after repair, sciatic functional index, evoked potential amplitude of the soleus muscle, triceps wet weight recovery rate, total number of myelinated nerve fibers and myelin sheath thickness were measured. For these indices, values in the three groups showed the autologous nerve anastomosis group > chemically extracted acellular nerve graft + ciliary neurotrophic factor group > chemical acellular allogeneic nerve bridging group. These results suggest that chemically extracted acellular nerve grafts combined with ciliary neurotrophic factor can repair sciatic nerve defects, and that this repair is inferior to autologous nerve anasto-mosis, but superior to chemically extracted acellular allogeneic nerve bridging alone.

  10. [Correction of neurotrophic disorders in patients, suffering consequences of a spinal cord and peripheral nerves trauma].

    Science.gov (United States)

    2014-08-01

    On clinical base of cathedra of the disasters medicine, military medicine, anesthesiology and reanimatology in 2010 - 2013 yrs 62 patients were treated for neurotrophic disorders, in 12 of them the method was applied, elaborated in the clinic. For neurotrophic ulcers in 5 patients autodermoplasty was performed, using splitted cutaneous flap, in 1 for the wound defect on a forearm--plasty, using rotational cutaneo-adipose flap, based on axial blood supply. In 44 patients after a spinal cord trauma a neurotrophic defects degree III - IV have formed. The kind of operative intervention was selected depending on size of the defect, the wound depth and functional peculiarities of the injured area. Introduction of a new method of treatment of neurotrophic ulcers of the lower extremities, using preparation of hyaluronic acid with sodium succinate, expands the perspectives of treatment in patients, suffering defects of cover tissues. Differentiated approach to choice of the wound closure method, caused by damage of central and peripheral neural system, have permitted to achieve positive results in 98.1% of patients. PMID:25507021

  11. Human obesity associated with an intronic SNP in the brain-derived neurotrophic factor locus

    Science.gov (United States)

    Brain-derived neurotrophic factor (BDNF) plays a key role in energy balance. In population studies, SNPs of the BDNF locus have been linked to obesity, but the mechanism by which these variants cause weight gain is unknown. Here, we examined human hypothalamic BDNF expression in association with 44 ...

  12. Polylactic-co-glycolic acid microspheres containing three neurotrophic factors promote sciatic nerve repair after injury

    Institute of Scientific and Technical Information of China (English)

    Qun Zhao; Zhi-yue Li; Ze-peng Zhang; Zhou-yun Mo; Shi-jie Chen; Si-yu Xiang; Qing-shan Zhang; Min Xue

    2015-01-01

    A variety of neurotrophic factors have been shown to repair the damaged peripheral nerve. However, in clinical practice, nerve growth factor, neurotrophin-3 and brain-derived neuro-trophic factor are all peptides or proteins that may be rapidly deactivated at the focal injury site;their local effective concentration time following a single medication cannot meet the required time for spinal axons to regenerate and cross the glial scar. In this study, we produced polymer sustained-release microspheres based on the polylactic-co-glycolic acid copolymer; the micro-spheres at 300-µm diameter contained nerve growth factor, neurotrophin-3 and brain-derived neurotrophic factor. Six microspheres were longitudinally implanted into the sciatic nerve at the anastomosis site, serving as the experimental group; while the sciatic nerve in the control group was subjected to the end-to-end anastomosis using 10/0 suture thread. At 6 weeks after implanta-tion, the lower limb activity, weight of triceps surae muscle, sciatic nerve conduction velocity and the maximum amplitude were obviously better in the experimental group than in the control group. Compared with the control group, more regenerating nerve ifbers were observed and dis-tributed in a dense and ordered manner with thicker myelin sheaths in the experimental group. More angiogenesis was also visible. Experimental findings indicate that polylactic-co-glycolic acid composite microspheres containing nerve growth factor, neurotrophin-3 and brain-derived neurotrophic factor can promote the restoration of sciatic nerve in rats after injury.

  13. Expression and Localization of Brain-Derived Neurotrophic Factor (BDNF) mRNA and Protein in Human Submandibular Gland

    International Nuclear Information System (INIS)

    Brain-derived neurotrophic factor (BDNF) promotes cell survival and differentiation in the central and peripheral nervous systems. Previously, we reported that BDNF is produced by salivary glands under acute immobilization stress in rats. However, expression of BDNF is poorly understood in humans, although salivary gland localization of BDNF in rodents has been demonstrated. In the present study, we investigated the expression and localization of BDNF in the human submandibular gland (HSG) using reverse transcription-polymerase chain reaction, western blot analysis, in situ hybridization (ISH), immunohistochemistry (IHC), and ELISA. BDNF was consistently localized in HSG serous and ductal cells, as detected by ISH and IHC, with reactivity being stronger in serous cells. In addition, immunoreactivity for BDNF was observed in the saliva matrix of ductal cavities. Western blotting detected one significant immunoreactive 14 kDa band in the HSG and saliva. Immunoreactivities for salivary BDNF measured by ELISA in humans were 40.76±4.83 pg/mL and 52.64±8.42 pg/mL, in men and women, respectively. Although salivary BDNF concentrations in females tended to be higher than in males, the concentrations were not significantly different. In conclusion, human salivary BDNF may originate from salivary glands, as the HSG appears to produce BDNF

  14. Brain-derived neurotrophic factor expression predicts adverse pathological & clinical outcomes in human breast cancer

    Directory of Open Access Journals (Sweden)

    Mokbel Kefah

    2011-07-01

    Full Text Available Abstract Introduction Brain-derived neurotrophic factor (BDNF has established physiological roles in the development and function of the vertebrate nervous system. BDNF has also been implicated in several human malignancies, including breast cancer (BC. However, the precise biological role of BDNF and its utility as a novel biomarker have yet to be determined. The objective of this study was to determine the mRNA and protein expression of BDNF in a cohort of women with BC. Expression levels were compared with normal background tissues and evaluated against established pathological parameters and clinical outcome over a 10 year follow-up period. Methods BC tissues (n = 127 and normal tissues (n = 33 underwent RNA extraction and reverse transcription, BDNF transcript levels were determined using real-time quantitative PCR. BDNF protein expression in mammary tissues was assessed with standard immuno-histochemical methodology. Expression levels were analyzed against tumour size, grade, nodal involvement, TNM stage, Nottingham Prognostic Index (NPI and clinical outcome over a 10 year follow-up period. Results Immuno-histochemical staining revealed substantially greater BDNF expression within neoplastic cells, compared to normal mammary epithelial cells. Significantly higher mRNA transcript levels were found in the BC specimens compared to background tissues (p = 0.007. The expression of BDNF mRNA was demonstrated to increase with increasing NPI; NPI-1 vs. NPI-2 (p = 0.009. Increased BDNF transcript levels were found to be significantly associated with nodal positivity (p = 0.047. Compared to patients who remained disease free, higher BDNF expression was significantly associated with local recurrence (LR (p = 0.0014, death from BC (p = 0.018 and poor prognosis overall (p = 0.013. After a median follow up of 10 years, higher BDNF expression levels were significantly associated with reduced overall survival (OS (106 vs. 136 months, p = 0.006. BDNF

  15. Ciliary derived neurotrophic factor protects oligodendrocytes against radiation induced damage in vitro by a mechanism independent of a proliferative effect

    International Nuclear Information System (INIS)

    Purpose/Objective: Radiation-induced damage to the central nervous system in the from of myelopathy is a dose-limiting complication in the treatment of tumors situated in or close to the spinal cord. The target cell for this damage is not definitively identified, but demyelination due to oligodendrocyte damage is strongly implicated. Multiple neurotrophic factors have recently been identified which demonstrate a survival effect on oligodendrocytes. We investigated the effect of Ciliary Derived Neurotrophic Factor (CNTF), Neurotrophin-3 (NT-3) and Nerve Growth Factor (NGF) on the radiosensitivity of oligodendrocytes in vitro to determine if this may ameliorate radiation damage, as a model for reducing myelopathy in vivo. Materials and Methods: Mature oligodendrocytes were cultured from the cortex of newborn Sprague-Dawley white rats and maintained on poly-d-lysine plates. The experimental arm was exposed to CNTF (0.01-100ng/ml), NGF (100ng/ml) or NT-3 (20ng/ml) for 24 hours prior to radiation, and control and experimental arms radiated using a cobalt 60 irradiator at a dose rate of .87 Gy/min with doses from 2 Gy to 10 Gy. Oligodendrocytes were identified using an O4 antibody, assessed for viability at 5 days using an MTT assay and counted using a phase contrast microscope. Combination studies of CNTF and NT-3 were also performed. BrdU studies were performed to determine if the various neurotrophins induced proliferation, with BrdU added for the 24 hour period prior to radiation only, for the 5 day period following radiation only, or for both periods combined. Results: The proportion of mature oligodendrocytes surviving 5 days after irradiation was not significantly increased by NGF, and was only modestly increased by NT-3. However, CNTF significantly increased the surviving proportion at all doses The addition of NT-3 to CNTF did not further increase the proportion of oligodendrocytes surviving. CNTF dose escalation studies confirmed 20ng/ml as an optimal dose. Brd

  16. Resveratrol induces the expression of interleukin-10 and brain-derived neurotrophic factor in BV2 microglia under hypoxia.

    Science.gov (United States)

    Song, Juhyun; Cheon, So Yeong; Jung, Wonsug; Lee, Won Taek; Lee, Jong Eun

    2014-01-01

    Microglia are the resident macrophages of the central nervous system (CNS) and play an important role in neuronal recovery by scavenging damaged neurons. However, overactivation of microglia leads to neuronal death that is associated with CNS disorders. Therefore, regulation of microglial activation has been suggested to be an important target for treatment of CNS diseases. In the present study, we investigated the beneficial effect of resveratrol, a natural phenol with antioxidant effects, in the microglial cell line, BV2, in a model of hypoxia injury. Resveratrol suppressed the mRNA expression of the pro-inflammatory molecule, tumor necrosis factor-α, and promoted the mRNA expression of the anti-inflammatory molecule, interleukin-10, in BV2 microglia under hypoxic conditions. In addition, resveratrol inhibited the activation of the transcription factor, nuclear factor kappa-light-chain enhancer of activated B cells (NF-κB), which is upstream in the control of inflammatory reactions in hypoxia-injured BV2 microglia. Moreover, resveratrol promoted the expression of brain-derived neurotrophic factor (BDNF) in BV2 microglia under hypoxic stress. Overall, resveratrol may promote the beneficial function of microglia in ischemic brain injury. PMID:25184950

  17. Resveratrol Induces the Expression of Interleukin-10 and Brain-Derived Neurotrophic Factor in BV2 Microglia under Hypoxia

    Directory of Open Access Journals (Sweden)

    Juhyun Song

    2014-09-01

    Full Text Available Microglia are the resident macrophages of the central nervous system (CNS and play an important role in neuronal recovery by scavenging damaged neurons. However, overactivation of microglia leads to neuronal death that is associated with CNS disorders. Therefore, regulation of microglial activation has been suggested to be an important target for treatment of CNS diseases. In the present study, we investigated the beneficial effect of resveratrol, a natural phenol with antioxidant effects, in the microglial cell line, BV2, in a model of hypoxia injury. Resveratrol suppressed the mRNA expression of the pro-inflammatory molecule, tumor necrosis factor-α, and promoted the mRNA expression of the anti-inflammatory molecule, interleukin-10, in BV2 microglia under hypoxic conditions. In addition, resveratrol inhibited the activation of the transcription factor, nuclear factor kappa-light-chain enhancer of activated B cells (NF-κB, which is upstream in the control of inflammatory reactions in hypoxia-injured BV2 microglia. Moreover, resveratrol promoted the expression of brain-derived neurotrophic factor (BDNF in BV2 microglia under hypoxic stress. Overall, resveratrol may promote the beneficial function of microglia in ischemic brain injury.

  18. Brain-derived neurotrophic factor (BDNF) is required for the enhancement of hippocampal neurogenesis following environmental enrichment.

    Science.gov (United States)

    Rossi, Chiara; Angelucci, Andrea; Costantin, Laura; Braschi, Chiara; Mazzantini, Mario; Babbini, Francesco; Fabbri, Maria Elena; Tessarollo, Lino; Maffei, Lamberto; Berardi, Nicoletta; Caleo, Matteo

    2006-10-01

    Neurogenesis continues to occur in the adult mammalian hippocampus and is regulated by both genetic and environmental factors. It is known that exposure to an enriched environment enhances the number of newly generated neurons in the dentate gyrus. However, the mechanisms by which enriched housing produces these effects are poorly understood. To test a role for neurotrophins, we used heterozygous knockout mice for brain-derived neurotrophic factor (BDNF+/-) and mice lacking neurotrophin-4 (NT-4-/-) together with their wild-type littermates. Mice were either reared in standard laboratory conditions or placed in an enriched environment for 8 weeks. Animals received injections of the mitotic marker bromodeoxyuridine (BrdU) to label newborn cells. Enriched wild-type and enriched NT-4-/- mice showed a two-fold increase in hippocampal neurogenesis as assessed by stereological counting of BrdU-positive cells in the dentate gyrus and double labelling for BrdU and the neuronal marker NeuN. Remarkably, this enhancement of hippocampal neurogenesis was not seen in enriched BDNF+/- mice. Failure to up-regulate BDNF accompanied the lack of a neurogenic response in enriched BDNF heterozygous mice. We conclude that BDNF but not NT-4 is required for the environmental induction of neurogenesis. PMID:17040481

  19. Acute strength exercise and the involvement of small or large muscle mass on plasma brain‐derived neurotrophic factor levels

    OpenAIRE

    Paulo Roberto Correia; Aline Pansani; Felipe Machado; Marilia Andrade; Antonio Carlos da Silva; Fulvio Alexandre Scorza; Esper Abrão Cavalheiro; Ricardo Mario Arida

    2010-01-01

    OBJECTIVE: Blood neurotrophins, such as the brain-derived neurotrophic factor, are considered to be of great importance in mediating the benefits of physical exercise. In this study, the effect of acute strength exercise and the involvement of small versus large muscle mass on the levels of plasma brain-derived neurotrophic factor were evaluated in healthy individuals. METHODS: The concentric strengths of knee (large) and elbow (small) flexor and extensor muscles were measured on two separate...

  20. The Impacts of Swimming Exercise on Hippocampal Expression of Neurotrophic Factors in Rats Exposed to Chronic Unpredictable Mild Stress

    OpenAIRE

    Pei Jiang; Rui-Li Dang; Huan-De Li; Li-Hong Zhang; Wen-Ye Zhu; Ying Xue; Mi-Mi Tang

    2014-01-01

    Depression is associated with stress-induced neural atrophy in limbic brain regions, whereas exercise has antidepressant effects as well as increasing hippocampal synaptic plasticity by strengthening neurogenesis, metabolism, and vascular function. A key mechanism mediating these broad benefits of exercise on the brain is induction of neurotrophic factors, which instruct downstream structural and functional changes. To systematically evaluate the potential neurotrophic factors that were invol...

  1. Acute strength exercise and the involvement of small or large muscle mass on plasma brain-derived neurotrophic factor levels

    Directory of Open Access Journals (Sweden)

    Paulo Roberto Correia

    2010-01-01

    Full Text Available OBJECTIVE: Blood neurotrophins, such as the brain-derived neurotrophic factor, are considered to be of great importance in mediating the benefits of physical exercise. In this study, the effect of acute strength exercise and the involvement of small versus large muscle mass on the levels of plasma brain-derived neurotrophic factor were evaluated in healthy individuals. METHODS: The concentric strengths of knee (large and elbow (small flexor and extensor muscles were measured on two separate days. Venous blood samples were obtained from 16 healthy subjects before and after exercise. RESULTS: The levels of brain-derived neurotrophic factor in the plasma did not significantly increase after both arm and leg exercise. There was no significant difference in the plasma levels of the brain-derived neurotrophic factor in the arms and legs. CONCLUSION: The present results demonstrate that acute strength exercise does not induce significant alterations in the levels of brain-derived neurotrophic factor plasma concentrations in healthy individuals. Considering that its levels may be affected by various factors, such as exercise, these findings suggest that the type of exercise program may be a decisive factor in altering peripheral brain-derived neurotrophic factor.

  2. Shuganjieyu capsule increases neurotrophic factor expression in a rat model of depression

    Institute of Scientific and Technical Information of China (English)

    Jinhua Fu; Yingjin Zhang; Renrong Wu; Yingjun Zheng; Xianghui Zhang; Mei Yang; Jingping Zhao; Yong Liu

    2014-01-01

    Shuganjieyu capsule has been approved for clinical treatment by the State Food and Drug Ad-ministration of China since 2008. In the clinic, Shuganjieyu capsule is often used to treat mild to moderate depression. In the rat model of depression established in this study, Shuganjieyu capsule was administered intragastrically daily before stress. Behavioral results conifrmed that depressive symptoms lessened after treatment with high-dose (150 mg/kg) Shuganjieyu capsule. Immunohistochemistry results showed that high-dose Shuganjieyu capsule signiifcantly increased phosphorylation levels of phosphorylation cyclic adenosine monophosphate response element binding protein and brain-derived neurotrophic factor expression in the medial prefrontal cortex and hippocampal CA3 area. Overall, our results suggest that in rats, Shuganjieyu capsule effec-tively reverses depressive-like behaviors by increasing expression levels of neurotrophic factors in the brain.

  3. Brain-derived neurotrophic factor inducing angiogenesis through modulation of matrix-degrading proteases

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Background Recent studies have proved that brain-derived neurotrophic factor (BDNF) possesses angiogenic activity in vitro and in vivo. However, the proangiogenic mechanism of BDNF has not yet been provided with enough information. To explore the proangiogenic mechanism of BDNF, we investigated the effects of BDNF on extracellular proteolytic enzymes, including matrix metalloproteinases (MMPs) and serine proteases, particularly the urokinase-type plasminogen activator (uPA)-plasmin system in human umbilical vein endothelial cells (HUVECs) model. Methods Tube formation assay was performed in vitro to evaluate the effects of BDNF on angiogenesis. The HUVECs were treated with various concentrations of BDNF (25-400 ng/ml) for different (6-48 hours), reverse transcriptase-polymerase chain reaction (RT-PCR) was used to assay MMP-2, MMP-9, TIMP-1, and TIMP-2 mRNA in HUVECs, and the conditioned medium was analyzed for MMP and uPA activity by gelatin zymography and fibrin zymography, respectively. uPA, plasminogen activator inhibitor (PAI)-1, tissue inhibitors of metalloproteinase (TIMP)-1, and TIMP-2 were quantified by western blotting analysis. Results BDNF elicited robust and elongated angiogeneis in two-dimensional cultures of HUVECs in comparison with control. The stimulation of serum-starved HUVECs with BDNF caused obvious increase in MMP-2 and MMP-9 mRNA expression and induced the pro-MMP-2 and pro-MMP-9 activation without significant differences in proliferation. However, BDNF had no effect on TIMP-1 and TIMP-2 production. BDNF increased uPA and PAI-1 production in a dose-dependent manner. Maximal activation of uPA and PAI-1 expression in HUVECs was induced by 100 ng/ml BDNF, while effects of 200 ng/ml and 400 ng/ml BDNF were slightly reduced in comparison with with those of 100 ng/ml. Protease activity for uPA was also increased by BDNF in a dose-dependent manner. BDNF also stimulated uPA and PAI-1 production beyond that in control cultures in a time

  4. Activity-dependent brain-derived neurotrophic factor expression regulates cortistatin-interneurons and sleep behavior

    OpenAIRE

    Martinowich Keri; Schloesser Robert J; Jimenez Dennisse V; Weinberger Daniel R; Lu Bai

    2011-01-01

    Abstract Background Sleep homeostasis is characterized by a positive correlation between sleep length and intensity with the duration of the prior waking period. A causal role for brain-derived neurotrophic factor (BDNF) in sleep homeostasis has been suggested, but the underlying mechanisms remain unclear. Cortistatin, a neuropeptide expressed primarily in a subset of cortical GABAergic interneurons, is another molecule implicated in sleep homeostasis. Results We confirmed that sleep deprivat...

  5. Decreased Plasma Brain-Derived Neurotrophic Factor and Vascular Endothelial Growth Factor Concentrations during Military Training

    OpenAIRE

    Suzuki, Go; Tokuno, Shinichi; Nibuya, Masashi; Ishida, Toru; Yamamoto, Tetsuo; Mukai, Yasuo; Mitani, Keiji; Tsumatori, Gentaro; Scott, Daniel; Shimizu, Kunio

    2014-01-01

    Decreased concentrations of plasma brain-derived neurotrophic factor (BDNF) and serum BDNF have been proposed to be a state marker of depression and a biological indicator of loaded psychosocial stress. Stress evaluations of participants in military mission are critically important and appropriate objective biological parameters that evaluate stress are needed. In military circumstances, there are several problems to adopt plasma BDNF concentration as a stress biomarker. First, in addition to...

  6. Neurotrophic effects of Cerebrolysin in the Mecp2308/Y transgenic model of Rett Syndrome

    OpenAIRE

    Doppler, Edith; Rockenstein, Edward; Ubhi, Kiren; Inglis, Chandra; Mante, Michael; Adame, Anthony; Crews, Leslie; Hitzl, Monika; Moessler, Herbert; Masliah, Eliezer

    2008-01-01

    Rett syndrome is a childhood neurodevelopmental disorder caused by mutations in the gene encoding for methyl CpG binding protein (MeCP2). Neuropathological studies in patients with Rett syndrome and in MeCP2 mutant models have shown reduced dendritic arborization and abnormal neuronal packing. We have previously shown that Cerebrolysin (CBL), a neurotrophic peptide mixture, ameliorates the synaptic and dendritic pathology in models of aging and neurodegeneration. This study aimed to determine...

  7. Neurotrophic Electrode: Method of assembly and implantation into human motor speech cortex

    OpenAIRE

    Bartels, Jess; Andreasen, Dinal; Ehirim, Princewill; Mao, Hui; Seibert, Steven; Wright, E. Joe; Kennedy, Philip

    2008-01-01

    The Neurotrophic Electrode (NE) is designed for longevity and stability of recorded signals. To achieve this aim it induces neurites to grow through its glass tip, thus anchoring it in neuropil. The glass tip contains insulated gold wires for recording the activity of the myelinated neurites that grow into the tip. Neural signals inside the tip are electrically insulated from surrounding neural activity by the glass. The most recent version of the electrode has four wires inside its tip to ma...

  8. Learned helplessness is independent of levels of brain-derived neurotrophic factor in the hippocampus

    OpenAIRE

    Greenwood, Benjamin N.; Strong, Paul V; Foley, Teresa E.; Thompson, Robert; Fleshner, Monika

    2006-01-01

    Reduced levels of brain-derived neurotrophic factor (BDNF) in the hippocampus have been implicated in human affective disorders and behavioral stress responses. The current studies examined the role of BDNF in the behavioral consequences of inescapable stress, or learned helplessness. Inescapable stress decreased BDNF mRNA and protein in the hippocampus of sedentary rats. Rats allowed voluntary access to running wheels for either 3 or 6 weeks prior to exposure to stress were protected against...

  9. Brain-derived neurotrophic factor promoter methylation and cortical thickness in recurrent major depressive disorder

    OpenAIRE

    Kyoung-Sae Na; Eunsoo Won; June Kang; Hun Soo Chang; Ho-Kyoung Yoon; Woo Suk Tae; Yong-Ku Kim; Min-Soo Lee; Sook-Haeng Joe; Hyun Kim; Byung-Joo Ham

    2016-01-01

    Recent studies have reported that methylation of the brain-derived neurotrophic factor (BDNF) gene promoter is associated with major depressive disorder (MDD). This study aimed to investigate the association between cortical thickness and methylation of BDNF promoters as well as serum BDNF levels in MDD. The participants consisted of 65 patients with recurrent MDD and 65 age- and gender-matched healthy controls. Methylation of BDNF promoters and cortical thickness were compared between the gr...

  10. Role of Hypoxia-Induced Brain Derived Neurotrophic Factor in Human Pulmonary Artery Smooth Muscle

    OpenAIRE

    Hartman, William; Helan, Martin; Smelter, Dan; Sathish, Venkatachalem; Thompson, Michael; Pabelick, Christina M.; Johnson, Bruce; Y S Prakash

    2015-01-01

    Background Hypoxia effects on pulmonary artery structure and function are key to diseases such as pulmonary hypertension. Recent studies suggest that growth factors called neurotrophins, particularly brain-derived neurotrophic factor (BDNF), can influence lung structure and function, and their role in the pulmonary artery warrants further investigation. In this study, we examined the effect of hypoxia on BDNF in humans, and the influence of hypoxia-enhanced BDNF expression and signaling in hu...

  11. Maternal separation produces alterations of forebrain brain-derived neurotrophic factor expression in differently aged rats

    OpenAIRE

    Wang, Qiong; Shao, Feng; Wang, Weiwen

    2015-01-01

    Early life adversity, such as postnatal maternal separation (MS), play a central role in the development of psychopathologies during individual ontogeny. In this study, we investigated the effects of repeated MS (4 h per day from postnatal day (PND) 1–21) on the brain-derived neurotrophic factor (BDNF) expression in the medial prefrontal cortex (mPFC), the nucleus accumbens (NAc) and the hippocampus of male and female juvenile (PND 21), adolescent (PND 35) and young adult (PND 56) Wistar rats...

  12. Conditional, genetic disruption of ciliary neurotrophic factor receptors reveals a role in adult motor neuron survival

    OpenAIRE

    Lee, Nancy; Robitz, Rachel; Zurbrugg, Rebekah J; Karpman, Adam M; Mahler, Ashley M.; Cronier, Samantha A.; Vesey, Rachel; Spearry, Rachel P.; Zolotukhin, Sergei; MacLennan, A. John

    2008-01-01

    Indirect evidence suggests that endogenous ciliary neurotrophic factor (CNTF) receptor signaling can promote motor neuron (MN) survival in the adult. If so, proper targeting of this signaling may selectively counteract the effects of adult MN diseases. However, direct evidence for CNTF receptor involvement in adult MN survival is lacking, presumably because the unconditional blockade of the mouse CNTF receptor in vivo [through genetic disruption of the essential CNTF receptor α (CNTFRα) gene]...

  13. Circulating levels of ciliary neurotrophic factor in normal pregnancy and preeclampsia

    OpenAIRE

    Akahori, Yoichiro; Takamoto, Norio; Masumoto,Akio; Inoue,Seiji; Nakatsukasa, Hideki; MASUYAMA, HISASHI; Hiramatsu,Yuji

    2010-01-01

    Ciliary neurotrophic factor (CNTF) has been shown to decrease food intake in mouse models of obesity and to improve insulin sensitivity. It is well known that tight regulation of glucose metabolism is essential for successful gestational outcomes (e.g. fetal growth), and that abnormal insulin resistance is associated with preeclampsia (PE). To investigate the possibility that CNTF might be involved in the regulation of insulin resistance during pregnancy, circulating levels of CNTF w...

  14. Expression of ciliary neurotrophic factor and its receptor in experimental obstructive nephropathy

    OpenAIRE

    Lee, Byoung-Seung; Choi, Jae-Youn; Cha, Jung-Ho

    2011-01-01

    Ciliary neurotrophic factor (CNTF) is well known as a growth/survival factor of neuronal tissue. We investigated the expression of CNTF and its specific receptor alpha (CNTFRα) in a unilateral ureteral obstruction (UUO) model. Complete UUO was produced by left ureteral ligation in Sprague-Dawley rats. The animals were sacrificed on days 1, 3, 5, 7, 14, 21, and 28 after UUO. The kidneys were fixed, and processed for both immunohistochemistry and in situ hybridization. CNTF immunoreactivity in ...

  15. Crystal structure of dimeric human ciliary neurotrophic factor determined by MAD phasing.

    OpenAIRE

    McDonald, N. Q.; Panayotatos, N; Hendrickson, W A

    1995-01-01

    Ciliary neurotrophic factor (CNTF) promotes the survival and differentiation of developing motor neurons and is a potential therapeutic for treating neurodegeneration and nerve injury. The crystal structure of human CNTF has been determined at 2.4 A resolution using multi-wavelength anomalous diffraction (MAD) phasing from a single Yb3+ ions. The structure reveals that CNTF is dimeric, with a novel anti-parallel arrangement of the subunits, not previously observed for other cytokines. Each su...

  16. Ciliary Neurotrophic Factor Protects Striatal Neurons against Excitotoxicity by Enhancing Glial Glutamate Uptake

    OpenAIRE

    Beurrier, Corinne; Faideau, Mathilde; Bennouar, Khaled-Ezaheir; Escartin, Carole; Kerkerian-Le Goff, Lydia; Bonvento, Gilles; Gubellini, Paolo

    2010-01-01

    Ciliary neurotrophic factor (CNTF) is a potent neuroprotective cytokine in different animal models of glutamate-induced excitotoxicity, although its action mechanisms are still poorly characterized. We tested the hypothesis that an increased function of glial glutamate transporters (GTs) could underlie CNTF-mediated neuroprotection. We show that neuronal loss induced by in vivo striatal injection of the excitotoxin quinolinic acid (QA) was significantly reduced (by ∼75%) in CNTF-treated anima...

  17. Ciliary neurotrophic factor prevents the degeneration of motor neurons in mouse mutant progressive motor neuronopathy

    OpenAIRE

    Sendtner, Michael; Stöckli, Kurt A.; Thoenen, Hans; Schmalbruch, H.; Carroll, P.; Kreutzberg, Georg W.

    2010-01-01

    CILIARY neurotrophic factor (CNTF) supports the survival of embryonic motor neurons in vitro and in vivo and prevents lesion-mediated degeneration of rat motor neuron~ during early post-natal stages. Here we report that CNTF greatly reduces all the functional and morphological changes in pmnlpmn mice5, an autosomal recessive mutant leading to progressive caudo-cranial motor neuron degeneration. The first manifestations of progressive motor neuronopathy in homozygous pmnl pmn mice become appar...

  18. The relationship between ciliary neurotrophic factor (CNTF) genotype and motor unit physiology: preliminary studies

    OpenAIRE

    Ferrell Robert; Hurley Ben; Roth Stephen; Stashuk Daniel; Ling Shari; Conwit Robin A; Metter E Jeffrey

    2005-01-01

    Abstract Background Ciliary neurotrophic factor (CNTF) is important for neuronal and muscle development, and genetic variation in the CNTF gene has been associated with muscle strength. The effect of CNTF on nerve development suggests that CNTF genotype may be associated with force production via its influence on motor unit size and firing patterns. The purpose of this study is to examine whether CNTF genotype differentially affects motor unit activation in the vastus medialis with increasing...

  19. CNTF Mediates Neurotrophic Factor Secretion and Fluid Absorption in Human Retinal Pigment Epithelium

    OpenAIRE

    Li, Rong; Wen, Rong; Banzon, Tina; Maminishkis, Arvydas; Miller, Sheldon S.

    2011-01-01

    Ciliary neurotrophic factor (CNTF) protects photoreceptors and regulates their phototransduction machinery, but little is known about CNTF's effects on retinal pigment epithelial (RPE) physiology. Therefore, we determined the expression and localization of CNTF receptors and the physiological consequence of their activation in primary cultures of human fetal RPE (hfRPE). Cultured hfRPE express CNTF, CT1, and OsM and their receptors, including CNTFRα, LIFRβ, gp130, and OsMRβ, all localized mai...

  20. Isolated Bilateral Trigeminal Neuropathy in Sarcoidosis Presenting with Neurotrophic Corneal Ulcers

    OpenAIRE

    L. Esakowit; M. Gupta; Lascaratos, G.; A. Syrogiannis

    2010-01-01

    Sarcoidosis is a multisystem granulomatous disease that may affect various organs. Nevertheless, involvement of the trigeminal nerve is exceedingly uncommon. This report presents a rare case of isolated bilateral trigeminal neuropathy presenting with neurotrophic corneal ulcers. The patient was treated with topical chloramphenicol and lubricants, as well as botulinum toxin injection to the upper eyelid to induce ptosis. Our case illustrates the importance of recognizing that bilateral corneal...

  1. Effects of Brain-Derived Neurotrophic Factor on Local Inflammation in Experimental Stroke of Rat

    OpenAIRE

    Xinfeng Liu; Gelin Xu; Zhaoyao Chen; Tingting Lu; Ning Wei; Juehua Zhu; Yongjun Jiang

    2011-01-01

    This study was aimed to investigate whether brain-derived neurotrophic factor (BDNF) can modulate local cerebral inflammation in ischemic stroke. Rats were subjected to ischemia by occluding the right middle cerebral artery (MCAO) for 2 hours. Rats were randomized as control, BDNF, and antibody groups. The local inflammation was evaluated on cellular, cytokine, and transcription factor levels with immunofluorescence, enzyme-linked immunosorbent assay, real-time qPCR, and electrophoretic mobil...

  2. Endogenous Brain Derived Neurotrophic Factor in the Nucleus Tractus Solitarius Tonically Regulates Synaptic and Autonomic Function

    OpenAIRE

    Clark, Catharine G.; Hasser, Eileen M.; Kunze, Diana L.; Katz, David M.; Kline, David D.

    2011-01-01

    Brain derived neurotrophic factor (BDNF) and its receptor, TrkB, are highly expressed in the nucleus tractus solitarius (nTS), the principal target of cardiovascular primary afferent input to the brainstem. However, little is known about the role of BDNF signaling in nTS in cardiovascular homeostasis. We examined whether BDNF in nTS modulates cardiovascular function in vivo and regulates synaptic and/or neuronal activity in isolated brainstem slices. Microinjection of BDNF into the rat medial...

  3. Chemically extracted acellular allogeneic nerve graft combined with ciliary neurotrophic factor promotes sciatic nerve repair

    OpenAIRE

    Zhang, Yanru; Zhang, Hui; Katiella, Kaka; Huang, Wenhua

    2014-01-01

    A chemically extracted acellular allogeneic nerve graft can reduce postoperative immune rejection, similar to an autologous nerve graft, and can guide neural regeneration. However, it remains poorly understood whether a chemically extracted acellular allogeneic nerve graft combined with neurotrophic factors provides a good local environment for neural regeneration. This study investigated the repair of injured rat sciatic nerve using a chemically extracted acellular allogeneic nerve graft com...

  4. Short term memory, physical fitness, and serum brain-derived neurotrophic factor in obese adolescents

    OpenAIRE

    Rini Rossanti; Dida Akhmad Gurnida; Eddy Fadlyana

    2015-01-01

    Background Obesity in adolescents is a major health problem and has been associated with low academic achievement. Brainderived neurotrophic factor (BDNF), a neurotrophin, plays a role in appetite suppression and memory, and its secretion is enhanced by physical activity. This neurotrophin may be associated with academic achievement in obese. Objective To compare physical fitness and serum BDNF levels to short term memory levels in obese adolescents aged 10–14 years. Methods This comparative,...

  5. Short term memory, physical fitness, and serum brain-derived neurotrophic factor in obese adolescents

    OpenAIRE

    Rini Rossanti; Dida Akhmad Gurnida; Eddy Fadlyana

    2015-01-01

    Background Obesity in adolescents is a major health problem and has been associated with low academic achievement. Brain-derived neurotrophic factor (BDNF), a neurotrophin, plays a role in appetite suppression and memory, and its secretion is enhanced by physical activity. This neurotrophin may be associated with academic achievement in obese. Objective To compare physical fitness and serum BDNF levels to short term memory levels in obese adolescents aged 10–14 years. Methods This com...

  6. Brain-derived neurotrophic factor augments rotational behavior and nigrostriatal dopamine turnover in vivo.

    OpenAIRE

    Altar, C A; Boylan, C B; Jackson, C; Hershenson, S; Miller, J.; Wiegand, S. J.; Lindsay, R M; Hyman, C.

    1992-01-01

    Brain-derived neurotrophic factor (BDNF), a member of the nerve growth factor (NGF)-related family of neutrophins, promotes the survival and differentiation of cultured nigral dopamine neurons. Two-week infusions of BDNF were made above the right pars compacta of the substantia nigra in adult rats. Systemic injection of these animals with (+)-amphetamine, a dopamine-releasing drug, induced 3 or 4 body rotations per minute directed away from the nigral infusion site. Neither supranigral NGF no...

  7. The effect of regular aerobic exercise on urinary brain-derived neurotrophic factor in children

    OpenAIRE

    Yunita Fediani; Masayu Rita Dewi; Muhammad Irfannuddin; Masagus Irsan Saleh; Safri Dhaini

    2014-01-01

    Background Nervous system development in early life influences the quality of cognitive ability during adulthood. Neuronal development and neurogenesis are highly influenced by neurotrophins. The most active neurotrophin is brain-derived neurotrophic factor (BDNF). Physical activity has a positive effect on cognitive function. However, few experimental studies have been done on children to assess the effect of aerobic regular exercise on BDNF levels. Objective To assess the effect of regu...

  8. Association study between brain-derived neurotrophic factor gene polymorphisms and methamphetamine abusers in Japan

    OpenAIRE

    Itoh, Kanako; Hashimoto, Kenji; Shimizu, Eiji; Sekine, Yoshimoto; Ozaki, Norio; Inada, Toshiya; Harano, Mutsuo; Iwata, Nakao; Komiyama, Tokutaro; Yamada, Mitsuhiko; Sora,Ichiro; Nakata, Kenji; Ujike, Hiroshi; Iyo, Masaomi

    2005-01-01

    Several lines of evidence suggest that genetic factors might contribute to drug abuse vulnerability. Recent genomic scans for association demonstrated that the brain-derived neurotrophic factor (BDNF) gene was associated with drug abuse vulnerability. In this study, we analyzed association of two BDNF gene single nucleotide polymorphisms (SNPs), 132C>T (C270T named formerly) in the noncoding region of exon V and 196G >A (val66met) in the coding region of exon XIIIA, with methamphetamine (MAP)...

  9. Gastrodin promotes the secretion of brain-derived neurotrophic factor in the injured spinal cord

    OpenAIRE

    Song, Changwei; Fang, Shiqiang; Gang LV; Mei, Xifan

    2013-01-01

    Gastrodin, an active component of tall gastrodia tuber, is widely used in the treatment of dizziness, paralysis, epilepsy, stroke and dementia, and exhibits a neuroprotective effect. A rat model of spinal cord injury was established using Allen's method, and gastrodin was administered via the subarachnoid cavity and by intraperitoneal injection for 7 days. Results show that gastrodin promoted the secretion of brain-derived neurotrophic factor in rats with spinal cord injury. After gastrodin t...

  10. Therapeutic effects of neurotrophic factors in experimental spinal cord injury models

    OpenAIRE

    Enomoto M

    2016-01-01

    Mitsuhiro Enomoto1,21Department of Orthopaedic and Spinal Surgery, Graduate School, 2Hyperbaric Medical Center, Tokyo Medical and Dental University, Tokyo, JapanAbstract: Neurotrophic factors (NFs) play important roles in regenerative medicine approaches to mitigate primary and secondary damage after spinal cord injury (SCI) because their receptors are still present in the injured spinal cord even though the expression of the NFs themselves is decreased. Several reports have shown that NF adm...

  11. Brain-Derived Neurotrophic Factor as a Biomarker in Children with Attention Deficit-Hyperactivity Disorder

    OpenAIRE

    Farshid Saadat; Maryam Kosha; Ali Amiry; Gholamreza Torabi

    2015-01-01

    Background: Evidence suggests that Brain-Derived Neurotrophic Factor (BDNF) is involved in the pathogenesis of Attention-Deficit Hyperactivity Disorder (ADHD), although experimental data regarding the contribution of BDNF concentration to this psychiatric disorder are controversial. Aim: To evaluate the plasma levels of BDNF in patients with ADHD. Material and Methods: In this cross sectional study, ADHD and controls were recruited from the outpatient clinic of the ...

  12. Brain-Derived Neurotrophic Factor Val66Met and Blood Glucose: A Synergistic Effect on Memory

    OpenAIRE

    Naftali Raz; Dahle, Cheryl L.; Rodrigue, Karen M.; Kennedy, Kristen M.; Land, Susan J.; Jacobs, Bradley S.

    2008-01-01

    Age-related declines in episodic memory performance are frequently reported, but their mechanisms remain poorly understood. Although several genetic variants and vascular risk factors have been linked to mnemonic performance in general and age differences therein, it is unknown whether and how they modify age-related memory declines. To address that question, we investigated the effect of Brain-Derived Neurotrophic Factor (BDNF) Val66Met polymorphism that affects secretion of BDNF, and fastin...

  13. Ectopic Muscle Expression of Neurotrophic Factors Improves Recovery After Nerve Injury.

    Science.gov (United States)

    Glat, Micaela Johanna; Benninger, Felix; Barhum, Yael; Ben-Zur, Tali; Kogan, Elena; Steiner, Israel; Yaffe, David; Offen, Daniel

    2016-01-01

    Sciatic nerve damage is a common medical problem. The main causes include direct trauma, prolonged external nerve compression, and pressure from disk herniation. Possible complications include leg numbness and the loss of motor control. In mild cases, conservative treatment is feasible. However, following severe injury, recovery may not be possible. Neuronal regeneration, survival, and maintenance can be achieved by neurotrophic factors (NTFs). In this study, we examined the potency of combining brain-derived neurotrophic factor (BDNF), glial-derived neurotrophic factor (GDNF), vascular endothelial growth factor (VEGF), and insulin-like growth factor-1 (IGF-1) on the recovery of motor neuron function after crush injury of the sciatic nerve. We show that combined NTF application increases the survival of motor neurons exposed to a hypoxic environment. The ectopic expression of NTFs in the injured muscle improves the recovery of the sciatic nerve after crush injury. A significantly faster recovery of compound muscle action potential (CMAP) amplitude and conduction velocity is observed after muscle injections of viral vectors expressing a mixture of the four NTF genes. Our findings suggest a rationale for using genetic treatment with a combination of NTF-expressing vectors, as a potential therapeutic approach for severe peripheral nerve injury. PMID:26385386

  14. Upregulation of Neurotrophic Factors Selectively in Frontal Cortex in Response to Olfactory Discrimination Learning

    Directory of Open Access Journals (Sweden)

    Ari Naimark

    2007-01-01

    Full Text Available We have previously shown that olfactory discrimination learning is accompanied by several forms of long-term enhancement in synaptic connections between layer II pyramidal neurons selectively in the piriform cortex. This study sought to examine whether the previously demonstrated olfactory-learning-task-induced modifications are preceded by suitable changes in the expression of mRNA for neurotrophic factors and in which brain areas this occurs. Rats were trained to discriminate positive cues in pair of odors for a water reward. The relationship between the learning task and local levels of mRNA for brain-derived neurotrophic factor, tyrosine kinase B, nerve growth factor, and neurotrophin-3 in the frontal cortex, hippocampal subregions, and other regions were assessed 24 hours post olfactory learning. The olfactory discrimination learning activated production of endogenous neurotrophic factors and induced their signal transduction in the frontal cortex, but not in other brain areas. These findings suggest that different brain areas may be preferentially involved in different learning/memory tasks.

  15. Activation of transcription factors STAT1 and STAT5 in the mouse median eminence after systemic ciliary neurotrophic factor administration.

    Science.gov (United States)

    Severi, Ilenia; Senzacqua, Martina; Mondini, Eleonora; Fazioli, Francesca; Cinti, Saverio; Giordano, Antonio

    2015-10-01

    Exogenously administered ciliary neurotrophic factor (CNTF) causes weight loss in obese rodents and humans through leptin-like activation of the Jak-STAT3 signaling pathway in hypothalamic arcuate neurons. Here we report for the first time that 40min after acute systemic treatment, rat recombinant CNTF (intraperitoneal injection of 0.3mg/kg of body weight) induced nuclear translocation of the tyrosine-phosphorylated forms of STAT1 and STAT5 in the mouse median eminence and other circumventricular organs, including the vascular organ of the lamina terminalis and the subfornical organ. In the tuberal hypothalamus of treated mice, specific nuclear immunostaining for phospo-STAT1 and phospho-STAT5 was detected in ependymal cells bordering the third ventricle floor and lateral recesses, and in median eminence cells. Co-localization studies documented STAT1 and STAT5 activation in median eminence β-tanycytes and underlying radial glia-like cells. A few astrocytes in the arcuate nucleus responded to CNTF by STAT5 activation. The vast majority of median eminence tanycytes and radial glia-like cells showing phospho-STAT1 and phospho-STAT5 immunoreactivity were also positive for phospho-STAT3. In contrast, STAT3 was the sole STAT isoform activated by CNTF in arcuate nucleus and median eminence neurons. Finally, immunohistochemical evaluation of STAT activation 20, 40, 80, and 120min from the injection demonstrated that cell activation was accompanied by c-Fos expression. Collectively, our findings show that CNTF activates STAT3, STAT1, and STAT5 in vivo. The distinctive activation pattern of these STAT isoforms in the median eminence may disclose novel targets and pathways through which CNTF regulates food intake. PMID:26133794

  16. Differentiation of embryonic versus adult rat neural stem cells into dopaminergic neurons in vitro

    Institute of Scientific and Technical Information of China (English)

    Chunlong Ke; Baili Chen; Shaolei Guo; Chao Yang

    2008-01-01

    BACKGROUND: It has been reported that the conversion of neural stem cells into dopaminergic neurons in vitro can be increased through specific cytokine combinations. Such neural stem cell-derived dopaminergic neurons could be used for the treatment of Parkinson's disease. However, little is known about the differences in dopaminergic differentiation between neural stem cells derived from adult and embryonic rats.OBJECTIVE: To study the ability of rat adult and embryonic-derived neural stem cells to differentiate into dopaminergic neurons in vitro.DESIGN: Randomized grouping design.SETTING: Department of Neurosurgery in the First Affiliated Hospital of Sun Yat-sen University.MATERIALS: This experiment was performed at the Surgical Laboratory in the First Affiliated Hospital of Sun Yat-scn University (Guangzhou, Guangdong, China) from June to December 2007. Eight, adult, male,Sprague Dawley rats and eight, pregnant, Sprague Dawley rats (embryonic day 14 or 15) were provided by the Experimental Animal Center of Sun Yat-sen University.METHODS: Neural stem cells derived from adult and embryonic rats were respectively cultivated in serum-free culture medium containing epidermal growth factor and basic fibroblast growth factor. After passaging, neural stem cells were differentiated in medium containing interleukin-1 ct, interleukin-11, human leukemia inhibition factor, and glial cell line-derived neurotrophic factor. Six days later, cells were analyzed by immunocytochemistry and flow cytometry.MAIN OUTCOME MEASURES: Alterations in cellular morphology after differentiation of neural stem cells derived from adult and embryonic rats; and percentage of tyrosine hydroxylase-positive neurons in the differentiated cells.RESULTS: Neural stem cells derived from adult and embryonic rats were cultivated in differentiation medium. Six days later, differentiated cells were immunoreactive for tyrosine hydroxylasc. The percentage of tyrosine hydroxylase positive neurons was (5.6 ± 2

  17. NS-417, a novel compound with neurotrophic-like effects

    DEFF Research Database (Denmark)

    Dagø, Lone; Peters, Dan; Meyer, Morten;

    2002-01-01

    NS-417 (5-(4-Chlorophenyl)-8-methyl-6-7-8-9-tetrahydro-1-H-pyrrolo[3.2-h]isoquinoline-2,3-dione-3-oxim hydrochloric acid salt) belongs to a new chemical series of compounds. NS-417 rescued differentiated PC12 cells from death induced by withdrawal of serum and nerve growth factor. Furthermore, NS...

  18. Brain-Derived Neurotrophic Factor Transgenic Mice Exhibit Passive Avoidance Deficits, Increased Seizure Severity and In Vitro Hyperexcitability in the Hippocampus and Entorhinal Cortex

    OpenAIRE

    Croll, S. D.; Suri, C; Compton, D. L.; Simmons, M. V.; Yancopoulos, G D; Lindsay, R M; Wiegand, S. J.; RUDGE, J. S.; Scharfman, H. E.

    1999-01-01

    Transgenic mice overexpressing brain-derived neurotrophic factor from the β-actin promoter were tested for behavioral, gross anatomical and physiological abnormalities. Brain-derived neurotrophic factor messenger RNA overexpression was widespread throughout brain. Overexpression declined with age, such that levels of overexpression decreased sharply by nine months. Brain-derived neurotrophic factor transgenic mice had no gross deformities or behavioral abnormalities. However, they showed a si...

  19. Genome-wide identification of Bcl11b gene targets reveals role in brain-derived neurotrophic factor signaling.

    Directory of Open Access Journals (Sweden)

    Bin Tang

    Full Text Available B-cell leukemia/lymphoma 11B (Bcl11b is a transcription factor showing predominant expression in the striatum. To date, there are no known gene targets of Bcl11b in the nervous system. Here, we define targets for Bcl11b in striatal cells by performing chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq in combination with genome-wide expression profiling. Transcriptome-wide analysis revealed that 694 genes were significantly altered in striatal cells over-expressing Bcl11b, including genes showing striatal-enriched expression similar to Bcl11b. ChIP-seq analysis demonstrated that Bcl11b bound a mixture of coding and non-coding sequences that were within 10 kb of the transcription start site of an annotated gene. Integrating all ChIP-seq hits with the microarray expression data, 248 direct targets of Bcl11b were identified. Functional analysis on the integrated gene target list identified several zinc-finger encoding genes as Bcl11b targets, and further revealed a significant association of Bcl11b to brain-derived neurotrophic factor/neurotrophin signaling. Analysis of ChIP-seq binding regions revealed significant consensus DNA binding motifs for Bcl11b. These data implicate Bcl11b as a novel regulator of the BDNF signaling pathway, which is disrupted in many neurological disorders. Specific targeting of the Bcl11b-DNA interaction could represent a novel therapeutic approach to lowering BDNF signaling specifically in striatal cells.

  20. Collagen scaffolds combined with collagen-binding ciliary neurotrophic factor facilitate facial nerve repair in mini-pigs.

    Science.gov (United States)

    Lu, Chao; Meng, Danqing; Cao, Jiani; Xiao, Zhifeng; Cui, Yi; Fan, Jingya; Cui, Xiaolong; Chen, Bing; Yao, Yao; Zhang, Zhen; Ma, Jinling; Pan, Juli; Dai, Jianwu

    2015-05-01

    The preclinical studies using animal models play a very important role in the evaluation of facial nerve regeneration. Good models need to recapitulate the distance and time for axons to regenerate in humans. Compared with the most used rodent animals, the structure of facial nerve in mini-pigs shares more similarities with humans in microanatomy. To evaluate the feasibility of repairing facial nerve defects by collagen scaffolds combined with ciliary neurotrophic factor (CNTF), 10-mm-long gaps were made in the buccal branch of mini-pigs' facial nerve. Three months after surgery, electrophysiological assessment and histological examination were performed to evaluate facial nerve regeneration. Immunohistochemistry and transmission electron microscope observation showed that collagen scaffolds with collagen binding (CBD)-CNTF could promote better axon regeneration, Schwann cell migration, and remyelination at the site of implant device than using scaffolds alone. Electrophysiological assessment also showed higher recovery rate in the CNTF group. In summary, combination of collagen scaffolds and CBD-CNTF showed promising effects on facial nerve regeneration in mini-pig models. PMID:25098760

  1. Histone deacetylase activity and brain-derived neurotrophic factor (BDNF levels in a pharmacological model of mania

    Directory of Open Access Journals (Sweden)

    Laura Stertz

    2014-03-01

    Full Text Available Objective: In the present study, we aimed to examine the effects of repeated D-amphetamine (AMPH exposure, a well-accepted animal model of acute mania in bipolar disorder (BD, and histone deacetylase (HDAC inhibitors on locomotor behavior and HDAC activity in the prefrontal cortex (PFC and peripheral blood mononuclear cells (PBMCs of rats. Moreover, we aimed to assess brain-derived neurotrophic factor (BDNF protein and mRNA levels in these samples. Methods: We treated adult male Wistar rats with 2 mg/kg AMPH or saline intraperitoneally for 14 days. Between the 8th and 14th days, rats also received 47.5 mg/kg lithium (Li, 200 mg/kg sodium valproate (VPT, 2 mg/kg sodium butyrate (SB, or saline. We evaluated locomotor activity in the open-field task and assessed HDAC activity in the PFC and PBMCs, and BDNF levels in the PFC and plasma. Results: AMPH significantly increased locomotor activity, which was reversed by all drugs. This hyperactivity was associated with increased HDAC activity in the PFC, which was partially reversed by Li, VPT, and SB. No differences were found in BDNF levels. Conclusion: Repeated AMPH administration increases HDAC activity in the PFC without altering BDNF levels. The partial reversal of HDAC increase by Li, VPT, and SB may account for their ability to reverse AMPH-induced hyperactivity.

  2. Brain-derived neurotrophic factor in arterial baroreceptor pathways: implications for activity-dependent plasticity at baroafferent synapses.

    Science.gov (United States)

    Martin, Jessica L; Jenkins, Victoria K; Hsieh, Hui-ya; Balkowiec, Agnieszka

    2009-01-01

    Functional characteristics of the arterial baroreceptor reflex change throughout ontogenesis, including perinatal adjustments of the reflex gain and adult resetting during hypertension. However, the cellular mechanisms that underlie these functional changes are not completely understood. Here, we provide evidence that brain-derived neurotrophic factor (BDNF), a neurotrophin with a well-established role in activity-dependent neuronal plasticity, is abundantly expressed in vivo by a large subset of developing and adult rat baroreceptor afferents. Immunoreactivity to BDNF is present in the cell bodies of baroafferent neurons in the nodose ganglion, their central projections in the solitary tract, and terminal-like structures in the lower brainstem nucleus tractus solitarius. Using ELISA in situ combined with electrical field stimulation, we show that native BDNF is released from cultured newborn nodose ganglion neurons in response to patterns that mimic the in vivo activity of baroreceptor afferents. In particular, high-frequency bursting patterns of baroreceptor firing, which are known to evoke plastic changes at baroreceptor synapses, are significantly more effective at releasing BDNF than tonic patterns of the same average frequency. Together, our study indicates that BDNF expressed by first-order baroreceptor neurons is a likely mediator of both developmental and post-developmental modifications at first-order synapses in arterial baroreceptor pathways. PMID:19054281

  3. Time Course of Behavioral Alteration and mRNA Levels of Neurotrophic Factor Following Stress Exposure in Mouse.

    Science.gov (United States)

    Hashikawa, Naoya; Ogawa, Takumi; Sakamoto, Yusuke; Ogawa, Mami; Matsuo, Yumi; Zamami, Yoshito; Hashikawa-Hobara, Narumi

    2015-08-01

    Stress is known to affect neurotrophic factor expression, which induces depression-like behavior. However, whether there are time-dependent changes in neurotrophic factor mRNA expression following stress remains unclear. In the present study, we tested whether chronic stress exposure induces long-term changes in depression-related behavior, serum corticosterone, and hippocampal proliferation as well as neurotrophic factor family mRNA levels, such as brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), neurotrophin-3 (NT-3), and ciliary neurotrophic factor (CNTF), in the mouse hippocampus. The mRNA level of neurotrophic factors (BDNF, NGF, NT-3, and CNTF) was measured using the real-time PCR. The serum corticosterone level was evaluated by enzyme-linked immunosorbent assay, and, for each subject, the hippocampal proliferation was examined by 5-bromo-2-deoxyuridine immunostaining. Mice exhibited depression-like behavior in the forced-swim test (FST) and decreased BDNF mRNA and hippocampal proliferation in the middle of the stress exposure. After 15 days of stress exposure, we observed increased immobility in the FST, serum corticosterone levels, and BDNF mRNA levels and degenerated hippocampal proliferation, maintained for at least 2 weeks. Anhedonia-like behavior in the sucrose preference test and NGF mRNA levels were decreased following 15 days of stress. NGF mRNA levels were significantly higher 1 week after stress exposure. The current data demonstrate that chronic stress exposure induces prolonged BDNF and NGF mRNA changes and increases corticosterone levels and depression-like behavior in the FST, but does not alter other neurotrophic factors or performance in the sucrose preference test. PMID:25820756

  4. Up-regulation of neurotrophic factors by cinnamon and its metabolite sodium benzoate: therapeutic implications for neurodegenerative disorders.

    Science.gov (United States)

    Jana, Arundhati; Modi, Khushbu K; Roy, Avik; Anderson, John A; van Breemen, Richard B; Pahan, Kalipada

    2013-06-01

    This study underlines the importance of cinnamon, a widely-used food spice and flavoring material, and its metabolite sodium benzoate (NaB), a widely-used food preservative and a FDA-approved drug against urea cycle disorders in humans, in increasing the levels of neurotrophic factors [e.g., brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3)] in the CNS. NaB, but not sodium formate (NaFO), dose-dependently induced the expression of BDNF and NT-3 in primary human neurons and astrocytes. Interestingly, oral administration of ground cinnamon increased the level of NaB in serum and brain and upregulated the levels of these neurotrophic factors in vivo in mouse CNS. Accordingly, oral feeding of NaB, but not NaFO, also increased the level of these neurotrophic factors in vivo in the CNS of mice. NaB induced the activation of protein kinase A (PKA), but not protein kinase C (PKC), and H-89, an inhibitor of PKA, abrogated NaB-induced increase in neurotrophic factors. Furthermore, activation of cAMP response element binding (CREB) protein, but not NF-κB, by NaB, abrogation of NaB-induced expression of neurotrophic factors by siRNA knockdown of CREB and the recruitment of CREB and CREB-binding protein to the BDNF promoter by NaB suggest that NaB exerts its neurotrophic effect through the activation of CREB. Accordingly, cinnamon feeding also increased the activity of PKA and the level of phospho-CREB in vivo in the CNS. These results highlight a novel neutrophic property of cinnamon and its metabolite NaB via PKA - CREB pathway, which may be of benefit for various neurodegenerative disorders. PMID:23475543

  5. Neurotrophic effects of amyloid precursor protein peptide 165 in vitro.

    Science.gov (United States)

    Yao, Jie; Ma, Lina; Wang, Rong; Sheng, Shuli; Ji, Zhijuan; Zhang, Jingyan

    2016-01-01

    Diabetic encephalopathy is one of the risk factors for Alzheimer's disease. Our previous findings indicated that animals with diabetic encephalopathy exhibit learning and memory impairment in addition to hippocampal neurodegeneration, both of which are ameliorated with amyloid precursor protein (APP) 17-mer (APP17) peptide treatment. Although APP17 is neuroprotective, it is susceptible to enzymatic degradation. Derived from the active sequence structure of APP17, we have previously structurally transformed and modified several APP5-mer peptides (APP328-332 [RERMS], APP 5). We have developed seven different derivatives of APP5, including several analogs. Results from the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay on human neuroblastoma SH-SY5Y cells in the present study showed that P165 was the most neuroprotective APP5 derivative. Furthermore, we tested the effects of APP5 and P165 on the number of cells and the release of lactate dehydrogenase. Western immunoblot analyses were also performed. The digestion rates of P165 and APP5 were determined by the pepsin digestion test. P165 resisted pepsin digestion significantly more than APP5. Therefore, P165 may be optimal for oral administration. Overall, these findings suggest that P165 may be a potential drug for the treatment of diabetic encephalopathy. PMID:26551064

  6. Binding characteristics of brain-derived neurotrophic factor to its receptors on neurons from the chick embryo

    International Nuclear Information System (INIS)

    Brain-derived neurotrophic factor (BDNF), a protein known to support the survival of embryonic sensory neurons and retinal ganglion cells, was derivatized with 125I-Bolton-Hunter reagent and obtained in a biologically active, radioactive form (125I-BDNF). Using dorsal root ganglion neurons from chick embryos at 9 d of development, the basic physicochemical parameters of the binding of 125I-BDNF with its receptors were established. Two different classes of receptors were found, with dissociation constants of 1.7 x 10(-11) M (high-affinity receptors) and 1.3 x 10(-9) M (low-affinity receptors). Unlabeled BDNF competed with 125I-BDNF for binding to the high-affinity receptors with an inhibition constant essentially identical to the dissociation constant of the labeled protein: 1.2 x 10(-11) M. The association and dissociation rates from both types of receptors were also determined, and the dissociation constants calculated from these kinetic experiments were found to correspond to the results obtained from steady-state binding. The number of high-affinity receptors (a few hundred per cell soma) was 15 times lower than that of low-affinity receptors. No high-affinity receptors were found on sympathetic neurons, known not to respond to BDNF, although specific binding of 125I-BDNF to these cells was detected at a high concentration of the radioligand. These results are discussed and compared with those obtained with nerve growth factor on the same neuronal populations

  7. Nerve growth factor, brain-derived neurotrophic factor, and the chronobiology of mood: a new insight into the "neurotrophic hypothesis"

    OpenAIRE

    Tirassa P; Quartini A; Iannitelli A

    2015-01-01

    Paola Tirassa,1 Adele Quartini,2 Angela Iannitelli2–4 1National Research Council (CNR), Institute of Cell Biology and Neurobiology (IBCN), 2Department of Medical-Surgical Sciences and Biotechnologies, Faculty of Pharmacy and Medicine – "Sapienza" University of Rome, 3Italian Psychoanalytical Society (SPI), Rome, Italy; 4International Psychoanalytical Association (IPA), London, UKAbstract: The light information pathways and their relationship with the body rhythms have ge...

  8. Deoxygedunin, a natural product with potent neurotrophic activity in mice.

    Directory of Open Access Journals (Sweden)

    Sung-Wuk Jang

    Full Text Available Gedunin, a family of natural products from the Indian neem tree, possess a variety of biological activities. Here we report the discovery of deoxygedunin, which activates the mouse TrkB receptor and its downstream signaling cascades. Deoxygedunin is orally available and activates TrkB in mouse brain in a BDNF-independent way. Strikingly, it prevents the degeneration of vestibular ganglion in BDNF -/- pups. Moreover, deoxygedunin robustly protects rat neurons from cell death in a TrkB-dependent manner. Further, administration of deoxygedunin into mice displays potent neuroprotective, anti-depressant and learning enhancement effects, all of which are mediated by the TrkB receptor. Hence, deoxygedunin imitates BDNF's biological activities through activating TrkB, providing a powerful therapeutic tool for treatment of various neurological diseases.

  9. Enhancement of Neurogenesis and Memory by a Neurotrophic Peptide in Mild to Moderate Traumatic Brain Injury

    Science.gov (United States)

    Chohan, Muhammad Omar; Bragina, Olga; Kazim, Syed Faraz; Statom, Gloria; Baazaoui, Narjes; Bragin, Denis; Iqbal, Khalid; Nemoto, Edwin; Yonas, Howard

    2016-01-01

    Background Traumatic Brain Injury (TBI) is a risk factor for Alzheimer disease (AD), a neurocognitive disorder with similar cellular abnormalities. We recently discovered a small molecule (Peptide 6) corresponding to an active region of human ciliary neurotrophic factor, with neurogenic and neurotrophic properties in mouse models of AD and Down syndrome. Objective To describe hippocampal abnormalities in a mouse model of mild to moderate TBI and their reversal by Peptide 6. Methods TBI was induced in adult C57Bl6 mice using controlled cortical impact (CCI) with 1.5 mm of cortical penetration. The animals were treated with 50 nmol/animal/day of Peptide 6 or saline for 30 days. Dentate gyrus (DG) neurogenesis, dendritic and synaptic density and AD biomarkers were quantitatively analyzed and behavioral tests were performed. Results Ipsilateral neuronal loss in CA1 and parietal cortex, and elevation of Alzheimer-type hyperphosphorylated tau and A-beta were seen in TBI-mice. When compared to saline, Peptide 6 treatment increased number of newborn neurons, but not uncommitted progenitors, in DG by 80%. Peptide 6 treatment also reversed TBI-induced dendritic and synaptic density loss while increasing activity in tri-synaptic hippocampal circuitry, ultimately leading to improvement in memory recall on behavioral testing. Conclusion Long-term treatment with Peptide 6 enhances the pool of newborn neurons in DG, prevents neuronal loss in CA1 and parietal cortex, preserves dendritic and synaptic architecture in the hippocampus, and improves performance on a hippocampus-dependent memory task in TBI mice. These findings necessitate further inquiry into therapeutic potential of small molecules based on neurotrophic factors. PMID:25255260

  10. Physical exercise in overweight to obese individuals induces metabolic- and neurotrophic-related structural brain plasticity

    Science.gov (United States)

    Mueller, Karsten; Möller, Harald E.; Horstmann, Annette; Busse, Franziska; Lepsien, Jöran; Blüher, Matthias; Stumvoll, Michael; Villringer, Arno; Pleger, Burkhard

    2015-01-01

    Previous cross-sectional studies on body-weight-related alterations in brain structure revealed profound changes in the gray matter (GM) and white matter (WM) that resemble findings obtained from individuals with advancing age. This suggests that obesity may lead to structural brain changes that are comparable with brain aging. Here, we asked whether weight-loss-dependent improved metabolic and neurotrophic functioning parallels the reversal of obesity-related alterations in brain structure. To this end we applied magnetic resonance imaging (MRI) together with voxel-based morphometry and diffusion-tensor imaging in overweight to obese individuals who participated in a fitness course with intensive physical training twice a week over a period of 3 months. After the fitness course, participants presented, with inter-individual heterogeneity, a reduced body mass index (BMI), reduced serum leptin concentrations, elevated high-density lipoprotein-cholesterol (HDL-C), and alterations of serum brain-derived neurotrophic factor (BDNF) concentrations suggesting changes of metabolic and neurotrophic function. Exercise-dependent changes in BMI and serum concentration of BDNF, leptin, and HDL-C were related to an increase in GM density in the left hippocampus, the insular cortex, and the left cerebellar lobule. We also observed exercise-dependent changes of diffusivity parameters in surrounding WM structures as well as in the corpus callosum. These findings suggest that weight-loss due to physical exercise in overweight to obese participants induces profound structural brain plasticity, not primarily of sensorimotor brain regions involved in physical exercise, but of regions previously reported to be structurally affected by an increased body weight and functionally implemented in gustation and cognitive processing. PMID:26190989

  11. Molecular mechanisms underlying the regulation of brain-derived neurotrophic factor (BDNF) translation in dendrites

    OpenAIRE

    Pinheiro, Vera Lúcia Margarido

    2010-01-01

    A especificidade espacial e temporal subjacente à diversidade de processos de plasticidade sináptica que ocorrem no sistema nervoso central está profundamente relacionada com a disponibilidade da proteína brain-derived neurotrophic factor (BDNF) em domínios sub-celulares distintos, especialmente na área pós-sináptica. Contudo, os mecanismos moleculares que regulam a síntese proteica de BDNF nas dendrites estão ainda por desvendar. Assim, o principal objectivo deste trabalho foi...

  12. Ciliary neurotrophic factor induces cholinergic differentiation of rat sympathetic neurons in culture

    OpenAIRE

    S. Saadat; Sendtner, Michael; H. Rohrer(Universität Mainz, Germany)

    1989-01-01

    Ciliary neurotrophic factor (CNTF) influences the levels of choline acetyltransferase (ChAT) and tyrosine hydroxylase (TH) in cultures of dissociated sympathetic neurons from newborn rats. In the presence of CNTF both the total and specific activity of ChAT was increased 7 d after culture by 15- and 18-fold, respectively, as compared to cultures kept in the absence of CNTF. Between 3 and 21 d in culture in the presence of CNTF the total ChAT activity increased by a factor of greater than 100....

  13. Increased serum brain-derived neurotrophic factor (BDNF) levels in patients with narcolepsy

    DEFF Research Database (Denmark)

    Klein, Anders B; Jennum, Poul; Knudsen, Stine;

    2013-01-01

    Narcolepsy is a lifelong sleep disorder characterized by excessive daytime sleepiness, sudden loss of muscle tone (cataplexy), fragmentation of nocturnal sleep and sleep paralysis. The symptoms of the disease strongly correlate with a reduction in hypocretin levels in CSF and a reduction in...... hypocretin neurons in hypothalamus in post-mortem tissue. Brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) are important for activity-dependent neuronal function and synaptic modulation and it is considered that these mechanisms are important in sleep regulation. We hypothesised that...

  14. Activity-dependent release of endogenous brain-derived neurotrophic factor from primary sensory neurons detected by ELISA in situ.

    Science.gov (United States)

    Balkowiec, A; Katz, D M

    2000-10-01

    To define activity-dependent release of endogenous brain-derived neurotrophic factor (BDNF), we developed an in vitro model using primary sensory neurons and a modified ELISA, termed ELISA in situ. Dissociate cultures of nodose-petrosal ganglion cells from newborn rats were grown in wells precoated with anti-BDNF antibody to capture released BDNF, which was subsequently detected using conventional ELISA. Conventional ELISA alone was unable to detect any increase in BDNF concentration above control values following chronic depolarization with 40 mM KCl for 72 hr. However, ELISA in situ demonstrated a highly significant increase in BDNF release, from 65 pg/ml in control to 228 pg/ml in KCl-treated cultures. The efficacy of the in situ assay appears to be related primarily to rapid capture of released BDNF that prevents BDNF binding to the cultured cells. We therefore used this approach to compare BDNF release from cultures exposed for 30 min to either continuous depolarization with elevated KCl or patterned electrical field stimulation (50 biphasic rectangular pulses of 25 msec, at 20 Hz, every 5 sec). Short-term KCl depolarization was completely ineffective at evoking any detectable release of BDNF, whereas patterned electrical stimulation increased extracellular BDNF levels by 20-fold. In addition, the magnitude of BDNF release was dependent on stimulus pattern, with high-frequency bursts being most effective. These data indicate that the optimal stimulus profile for BDNF release resembles that of other neuroactive peptides. Moreover, our findings demonstrate that BDNF release can encode temporal features of presynaptic neuronal activity. PMID:11007900

  15. Glial-cell-derived neuroregulators control type 3 innate lymphoid cells and gut defence.

    Science.gov (United States)

    Ibiza, Sales; García-Cassani, Bethania; Ribeiro, Hélder; Carvalho, Tânia; Almeida, Luís; Marques, Rute; Misic, Ana M; Bartow-McKenney, Casey; Larson, Denise M; Pavan, William J; Eberl, Gérard; Grice, Elizabeth A; Veiga-Fernandes, Henrique

    2016-07-21

    Group 3 innate lymphoid cells (ILC3) are major regulators of inflammation and infection at mucosal barriers. ILC3 development is thought to be programmed, but how ILC3 perceive, integrate and respond to local environmental signals remains unclear. Here we show that ILC3 in mice sense their environment and control gut defence as part of a glial–ILC3–epithelial cell unit orchestrated by neurotrophic factors. We found that enteric ILC3 express the neuroregulatory receptor RET. ILC3-autonomous Ret ablation led to decreased innate interleukin-22 (IL-22), impaired epithelial reactivity, dysbiosis and increased susceptibility to bowel inflammation and infection. Neurotrophic factors directly controlled innate Il22 downstream of the p38 MAPK/ERK-AKT cascade and STAT3 activation. Notably, ILC3 were adjacent to neurotrophic-factor-expressing glial cells that exhibited stellate-shaped projections into ILC3 aggregates. Glial cells sensed microenvironmental cues in a MYD88-dependent manner to control neurotrophic factors and innate IL-22. Accordingly, glial-intrinsic Myd88 deletion led to impaired production of ILC3-derived IL-22 and a pronounced propensity towards gut inflammation and infection. Our work sheds light on a novel multi-tissue defence unit, revealing that glial cells are central hubs of neuron and innate immune regulation by neurotrophic factor signals. PMID:27409807

  16. 神经营养因子-3联合神经干细胞移植治疗缺血缺氧性脑损伤乳鼠的病理实验研究%Pathology of Neurotrophic factor-3 combined Neural stem cell transplantation in the treatment of ischemic brain damage suckling rats

    Institute of Scientific and Technical Information of China (English)

    李凯; 冯冠军; 胡艳荣; 杨小朋; 陈刚; 刘伟; 张艳君

    2013-01-01

    Objective: To determine the effect of neurotrophin-3 combined with neural stem cell graft in neu rological function recovery of hypoxic-ischemic brain injury in suckling rats. Methods:Rat fetal cerebral cortical tissue NSCs was cultured in vitro and passaged, then cultured neural stem cells were suspended. 60 suckling rats were be divided into A, B, C and D, four groups by radom number; normal group (A) , hypoxia-ischemia model group (B) , the simple neural stem cell transplantation group (C) , NT-3 joint neural stem cell transplantation group (D). The classic ischemia and hypoxia model has been used for the balace beam test 3 days later; group A weren't given any intervention, group B were given saline on the third day after surgery, group C were transplanted by NSCs and the mice of group D were transplanted by NSC together with NT-3. 4 weeks after transplantation, the brains were removed for gross specimens, HE , immunohistochemical staining pathological comparison. Results:① The bulk multicelluar spheroids in cortex graft in vitro cultured rats' tiss were neural stemcell according to positive Nestin staining. ②Compared to group B, the blood supply of grop C and D increased, and the degree of the brain tiss atrophying and collapsing decreased. ③Besause of HE staining, the cells around lateral ventricle in group B were swelling, degeneration, necrosis, arranged disorder, local cystic changes and inflammatory cells accumula tion. Compared to structural damage, the damage degree of normal tissue in group C a improved, which was better in group D. ④In immune past, the neuroglia positive cells in group B were more than that in group A, and oligo dendroglia cells in group B were less. Compared to group B, the neuroglia cells in group C were less and oligoden droglia cells in group C were more. The situation of group D was the best. Conclusion: NT-3 can promote the re covery of neurological function of hypoxic-ischemic brain injury patients by promoting neural

  17. The Cytokine Ciliary Neurotrophic Factor (CNTF) Activates Hypothalamic Urocortin-Expressing Neurons Both In Vitro and In Vivo

    OpenAIRE

    Purser, Matthew J.; Dalvi, Prasad S.; Wang, Zi C.; Belsham, Denise D.

    2013-01-01

    Ciliary neurotrophic factor (CNTF) induces neurogenesis, reduces feeding, and induces weight loss. However, the central mechanisms by which CNTF acts are vague. We employed the mHypoE-20/2 line that endogenously expresses the CNTF receptor to examine the direct effects of CNTF on mRNA levels of urocortin-1, urocortin-2, agouti-related peptide, brain-derived neurotrophic factor, and neurotensin. We found that treatment of 10 ng/ml CNTF significantly increased only urocortin-1 mRNA by 1.84-fold...

  18. Biology of SNU Cell Lines

    OpenAIRE

    Ku, Ja-Lok; Park, Jae-Gahb

    2005-01-01

    SNU (Seoul National University) cell lines have been established from Korean cancer patients since 1982. Of these 109 cell lines have been characterized and reported, i.e., 17 colorectal carcinoma, 12 hepatocellular carcinoma, 11 gastric carcinoma, 12 uterine cervical carcinoma, 17 B-lymphoblastoid cell lines derived from cancer patients, 5 ovarian carcinoma, 3 malignant mixed Mllerian tumor, 6 laryngeal squamous cell carcinoma, 7 renal cell carcinoma, 9 brain tumor, 6 biliary tract, and 4 pa...

  19. Chronic administration of the neurotrophic agent cerebrolysin ameliorates the behavioral and morphological changes induced by neonatal ventral hippocampus lesion in a rat model of schizophrenia.

    Science.gov (United States)

    Vázquez-Roque, Rubén Antonio; Ramos, Brenda; Tecuatl, Carolina; Juárez, Ismael; Adame, Anthony; de la Cruz, Fidel; Zamudio, Sergio; Mena, Raúl; Rockenstein, Edward; Masliah, Eliezer; Flores, Gonzalo

    2012-01-01

    Neonatal ventral hippocampal lesion (nVHL) in rats has been widely used as a neurodevelopmental model to mimic schizophrenia-like behaviors. Recently, we reported that nVHLs result in dendritic retraction and spine loss in prefrontal cortex (PFC) pyramidal neurons and medium spiny neurons of the nucleus accumbens (NAcc). Cerebrolysin (Cbl), a neurotrophic peptide mixture, has been reported to ameliorate the synaptic and dendritic pathology in models of aging and neurodevelopmental disorder such as Rett syndrome. This study sought to determine whether Cbl was capable of reducing behavioral and neuronal alterations in nVHL rats. The behavioral analysis included locomotor activity induced by novel environment and amphetamine, social interaction, and sensoriomotor gating. The morphological evaluation included dendritic analysis by using the Golgi-Cox procedure and stereology to quantify the total cell number in PFC and NAcc. Behavioral data show a reduction in the hyperresponsiveness to novel environment- and amphetamine-induced locomotion, with an increase in the total time spent in social interactions and in prepulse inhibition in Cbl-treated nVHL rats. In addition, neuropathological analysis of the limbic regions also showed amelioration of dendritic retraction and spine loss in Cbl-treated nVHL rats. Cbl treatment also ameliorated dendritic pathology and neuronal loss in the PFC and NAcc in nVHL rats. This study demonstrates that Cbl promotes behavioral improvements and recovery of dendritic neuronal damage in postpubertal nVHL rats and suggests that Cbl may have neurotrophic effects in this neurodevelopmental model of schizophrenia. These findings support the possibility that Cbl has beneficial effects in the management of schizophrenia symptoms. PMID:21932359

  20. Dose-dependent neuroprotective effect of ciliary neurotrophic factor delivered via tetracycline-regulated lentiviral vectors in the quinolinic acid rat model of Huntington's disease.

    Science.gov (United States)

    Régulier, E; Pereira de Almeida, L; Sommer, B; Aebischer, P; Déglon, N

    2002-11-01

    The ability to regulate gene expression constitutes a prerequisite for the development of gene therapy strategies aimed at the treatment of neurologic disorders. In the present work, we used tetracycline (Tet)-regulated lentiviral vectors to investigate the dose-dependent neuroprotective effect of human ciliary neurotrophic factor (CNTF) in the quinolinic acid (QA) model of Huntington's disease (HD). The Tet system was split in two lentiviruses, the first one containing the CNTF or green fluorescent protein (GFP) cDNAs under the control of the Tet-response element (TRE) and a second vector encoding the transactivator (tTA). Preliminary coinfection study demonstrated that 63.8% +/- 2.0% of infected cells contain at least two viral copies. Adult rats were then injected with CNTF- and GFP-expressing viral vectors followed 3 weeks later by an intrastriatal administration of QA. A significant reduction of apomorphine-induced rotations was observed in the CNTF-on group. In contrast, GFP-treated animals or CNTF-off rats displayed an ipsilateral turning behavior in response to apomorphine. A selective sparing of DARPP-32-, choline acetyltransferase (ChAT)-, and NADPH-d-positive neurons was observed in the striatum of CNTF-on rats compared to GFP animals and CNTF-off group. Enzyme-linked immunosorbent assay (ELISA) performed on striatal samples of rats sacrificed at the same time point indicated that this neuroprotective effect was associated with the production of 15.5 +/- 4.7 ng CNTF per milligram of protein whereas the residual CNTF expression in the off state (0.54 +/- 0.02 ng/mg of protein) was not sufficient to protect against QA toxicity. These results establish the proof of principle of neurotrophic factor dosing for neurodegenerative diseases and demonstrate the feasibility of lentiviral-mediated tetracycline-regulated gene transfer in the brain. PMID:12427308

  1. Up-regulation of brain-derived neurotrophic factor in the dorsal root ganglion of the rat bone cancer pain model

    Directory of Open Access Journals (Sweden)

    Tomotsuka N

    2014-07-01

    Full Text Available Naoto Tomotsuka,1 Ryuji Kaku,1 Norihiko Obata,1 Yoshikazu Matsuoka,1 Hirotaka Kanzaki,2 Arata Taniguchi,1 Noriko Muto,1 Hiroki Omiya,1 Yoshitaro Itano,1 Tadasu Sato,3 Hiroyuki Ichikawa,3 Satoshi Mizobuchi,1 Hiroshi Morimatsu1 1Department of Anesthesiology and Resuscitology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan; 2Department of Pharmacy, Okayama University Hospital, Okayama, Japan; 3Department of Oral and Craniofacial Anatomy, Tohoku University Graduate School of Dentistry, Sendai, Japan Abstract: Metastatic bone cancer causes severe pain, but current treatments often provide insufficient pain relief. One of the reasons is that mechanisms underlying bone cancer pain are not solved completely. Our previous studies have shown that brain-derived neurotrophic factor (BDNF, known as a member of the neurotrophic family, is an important molecule in the pathological pain state in some pain models. We hypothesized that expression changes of BDNF may be one of the factors related to bone cancer pain; in this study, we investigated changes of BDNF expression in dorsal root ganglia in a rat bone cancer pain model. As we expected, BDNF mRNA (messenger ribonucleic acid and protein were significantly increased in L3 dorsal root ganglia after intra-tibial inoculation of MRMT-1 rat breast cancer cells. Among the eleven splice-variants of BDNF mRNA, exon 1–9 variant increased predominantly. Interestingly, the up-regulation of BDNF is localized in small neurons (mostly nociceptive neurons but not in medium or large neurons (non-nociceptive neurons. Further, expression of nerve growth factor (NGF, which is known as a specific promoter of BDNF exon 1–9 variant, was significantly increased in tibial bone marrow. Our findings suggest that BDNF is a key molecule in bone cancer pain, and NGF-BDNF cascade possibly develops bone cancer pain. Keywords: BDNF, bone cancer pain, chronic pain, nerve growth

  2. Decreased plasma brain-derived neurotrophic factor and vascular endothelial growth factor concentrations during military training.

    Directory of Open Access Journals (Sweden)

    Go Suzuki

    Full Text Available Decreased concentrations of plasma brain-derived neurotrophic factor (BDNF and serum BDNF have been proposed to be a state marker of depression and a biological indicator of loaded psychosocial stress. Stress evaluations of participants in military mission are critically important and appropriate objective biological parameters that evaluate stress are needed. In military circumstances, there are several problems to adopt plasma BDNF concentration as a stress biomarker. First, in addition to psychosocial stress, military missions inevitably involve physical exercise that increases plasma BDNF concentrations. Second, most participants in the mission do not have adequate quality or quantity of sleep, and sleep deprivation has also been reported to increase plasma BDNF concentration. We evaluated plasma BDNF concentrations in 52 participants on a 9-week military mission. The present study revealed that plasma BDNF concentration significantly decreased despite elevated serum enzymes that escaped from muscle and decreased quantity and quality of sleep, as detected by a wearable watch-type sensor. In addition, we observed a significant decrease in plasma vascular endothelial growth factor (VEGF during the mission. VEGF is also neurotrophic and its expression in the brain has been reported to be up-regulated by antidepressive treatments and down-regulated by stress. This is the first report of decreased plasma VEGF concentrations by stress. We conclude that decreased plasma concentrations of neurotrophins can be candidates for mental stress indicators in actual stressful environments that include physical exercise and limited sleep.

  3. Elevated levels of plasma brain derived neurotrophic factor in rapid cycling bipolar disorder patients

    DEFF Research Database (Denmark)

    Munkholm, Klaus; Pedersen, Bente Klarlund; Kessing, Lars Vedel;

    2014-01-01

    Impaired neuroplasticity may be implicated in the pathophysiology of bipolar disorder, involving peripheral alterations of the neurotrophins brain derived neurotrophic factor (BDNF) and neurotrophin 3 (NT-3). Evidence is limited by methodological issues and is based primarily on case-control desi......Impaired neuroplasticity may be implicated in the pathophysiology of bipolar disorder, involving peripheral alterations of the neurotrophins brain derived neurotrophic factor (BDNF) and neurotrophin 3 (NT-3). Evidence is limited by methodological issues and is based primarily on case......-control designs. The aim of this study was to investigate whether BDNF and NT-3 levels differ between patients with rapid cycling bipolar disorder and healthy control subjects and whether BDNF and NT-3 levels alter with affective states in rapid cycling bipolar disorder patients. Plasma levels of BDNF and NT-3...... were measured in 37 rapid cycling bipolar disorder patients and in 40 age- and gender matched healthy control subjects using enzyme-linked immunosorbent assay (ELISA). In a longitudinal design, repeated measurements of BDNF and NT-3 were evaluated in various affective states in bipolar disorder...

  4. Responses of serum neurotrophic factors to exercise in pregnant and postpartum women.

    Science.gov (United States)

    Vega, Sandra Rojas; Kleinert, Jens; Sulprizio, Marion; Hollmann, Wildor; Bloch, Wilhelm; Strüder, Heiko K

    2011-02-01

    It was recently shown in humans that exercise affects the neurotrophic factors known to function as neurogenesis regulators. No data related to exercise and pregnancy, however, is yet available. Thus, we investigated the effects of acute exercise on pregnant women during late pregnancy and women postpartum, on the serum concentration of the brain-derived neurotrophic factor (BDNF), the insulin-like growth factor 1 (IGF-1), the vascular endothelial growth factor (VEGF), prolactin (PRL) and cortisol (COR). Twenty women with uncomplicated pregnancies underwent a graded submaximal exercise test during pregnancy (weeks 32-36 of gestation; T(1)) and postpartum (10-12 weeks after childbirth; T(2)). On two of these test days the women carried out an intensifying exercise test (25 W steps) on a cycle ergometer until a heart rate of 150 bpm was reached. Blood samples were taken in the rest period before beginning the exercise, immediately at the end of the exercise and after recovery periods of 5 and 10 min, respectively. Basal maternal IGF-1, PRL and COR were found to be higher during T(1) (pexercise, was at a higher level after exercise (pExercise increased the BDNF and IGF-1 during T(1) and T(2) (pexercise increases the serum concentrations of IGF-1 and BDNF during pregnancy and postpartum as well as VEGF postpartum. Thus, exercise might be a beneficial lifestyle factor with therapeutic/public health implications i.e. with regard to maternal mood and cognitive performance. PMID:20692101

  5. Antenatal taurine reduces cerebral cell apoptosis in fetal rats with intrauterine growth restriction*

    Institute of Scientific and Technical Information of China (English)

    Jing Liu; Xiaofeng Wang; Ying Liu; Na Yang; Jing Xu; Xiaotun Ren

    2013-01-01

    From pregnancy to parturition, Sprague-Dawley rats were daily administered a low protein diet to establish a model of intrauterine growth restriction. From the 12th day of pregnancy, 300 mg/kg rine was daily added to food until spontaneous delivery occurred. Brain tissues from normal neo-natal rats at 6 hours after delivery, neonatal rats with intrauterine growth restriction, and neonatal rats with intrauterine growth restriction undergoing taurine supplement were obtained for further experiments. The terminal deoxyribonucleotidyl transferase (TdT)-mediated biotin-16-dUTP nick-end labeling assay revealed that the number of apoptotic cel s in the brain tissue of neonatal rats with intrauterine growth restriction significantly increased. Taurine supplement in pregnant rats reduced cel apoptosis in brain tissue from neonatal rats with intrauterine growth restriction. nohistochemical staining revealed that taurine supplement increased glial cel line-derived neuro-trophic factor expression and decreased caspase-3 expression in the cerebral cortex of intrauterine growth-restricted fetal rats. These results indicate that taurine supplement reduces cel apoptosis through the glial cel line-derived neurotrophic factor-caspase-3 signaling pathway, resulting in a protective effect on the intrauterine growth-restricted fetal rat brain.

  6. Is there a relationship between brain-derived neurotrophic factor for driving neuronal auditory circuits with onset of auditory function and the changes following cochlear injury or during aging?

    Science.gov (United States)

    Schimmang, T; Durán Alonso, B; Zimmermann, U; Knipper, M

    2014-12-26

    Brain-derived neurotrophic factor, BDNF, is one of the most important neurotrophic factors acting in the peripheral and central nervous system. In the auditory system its function was initially defined by using constitutive knockout mouse mutants and shown to be essential for survival of neurons and afferent innervation of hair cells in the peripheral auditory system. Further examination of BDNF null mutants also revealed a more complex requirement during re-innervation processes involving the efferent system of the cochlea. Using adult mouse mutants defective in BDNF signaling, it could be shown that a tonotopical gradient of BDNF expression within cochlear neurons is required for maintenance of a specific spatial innervation pattern of outer hair cells and inner hair cells. Additionally, BDNF is required for maintenance of voltage-gated potassium channels (KV) in cochlear neurons, which may form part of a maturation step within the ascending auditory pathway with onset of hearing and might be essential for cortical acuity of sound-processing and experience-dependent plasticity. A presumptive harmful role of BDNF during acoustic trauma and consequences of a loss of cochlear BDNF during aging are discussed in the context of a partial reversion of this maturation step. We compare the potentially beneficial and harmful roles of BDNF for the mature auditory system with those BDNF functions known in other sensory circuits, such as the vestibular, visual, olfactory, or somatosensory system. PMID:25064058

  7. Protecting Neural Structures and Cognitive Function During Prolonged Space Flight by Targeting the Brain Derived Neurotrophic Factor Molecular Network

    Science.gov (United States)

    Schmidt, M. A.; Goodwin, T. J.

    2014-01-01

    Brain derived neurotrophic factor (BDNF) is the main activity-dependent neurotrophin in the human nervous system. BDNF is implicated in production of new neurons from dentate gyrus stem cells (hippocampal neurogenesis), synapse formation, sprouting of new axons, growth of new axons, sprouting of new dendrites, and neuron survival. Alterations in the amount or activity of BDNF can produce significant detrimental changes to cortical function and synaptic transmission in the human brain. This can result in glial and neuronal dysfunction, which may contribute to a range of clinical conditions, spanning a number of learning, behavioral, and neurological disorders. There is an extensive body of work surrounding the BDNF molecular network, including BDNF gene polymorphisms, methylated BDNF gene promoters, multiple gene transcripts, varied BDNF functional proteins, and different BDNF receptors (whose activation differentially drive the neuron to neurogenesis or apoptosis). BDNF is also closely linked to mitochondrial biogenesis through PGC-1alpha, which can influence brain and muscle metabolic efficiency. BDNF AS A HUMAN SPACE FLIGHT COUNTERMEASURE TARGET Earth-based studies reveal that BDNF is negatively impacted by many of the conditions encountered in the space environment, including oxidative stress, radiation, psychological stressors, sleep deprivation, and many others. A growing body of work suggests that the BDNF network is responsive to a range of diet, nutrition, exercise, drug, and other types of influences. This section explores the BDNF network in the context of 1) protecting the brain and nervous system in the space environment, 2) optimizing neurobehavioral performance in space, and 3) reducing the residual effects of space flight on the nervous system on return to Earth

  8. Relationship between Levels of Brain-Derived Neurotrophic Factor and Metabolic Parameters in Patients with Type 2 Diabetes Mellitus

    Directory of Open Access Journals (Sweden)

    Banu Boyuk

    2014-01-01

    Full Text Available Background and Aim. Studies have suggested that brain-derived neurotrophic factor (BDNF plays a role in glucose and lipid metabolism and inflammation. The aim of this study was to evaluate the relationship between serum BDNF levels and various metabolic parameters and inflammatory markers in patients with type 2 diabetes mellitus (T2DM. Materials and Methods. The study included 88 T2DM patients and 33 healthy controls. Fasting blood samples were obtained from the patients and the control group. The serum levels of BDNF were measured with an ELISA kit. The current paper introduces a receiver-operating characteristic (ROC generalization curve to identify cut-off for the BDNF values in type 2 diabetes patients. Results. The serum levels of BDNF were significantly higher in T2DM patients than in the healthy controls (206.81 ± 107.32 pg/mL versus 130.84 ± 59.81 pg/mL; P<0.001. They showed a positive correlation with the homeostasis model assessment of insulin resistance (HOMA-IR (r=0.28; P<0.05, the triglyceride level (r=0.265; P<0.05, and white blood cell (WBC count (r=0.35; P<0.001. In logistic regression analysis, age (P<0.05, body mass index (BMI (P<0.05, C-reactive protein (CRP (P<0.05, and BDNF (P<0.01 were independently associated with T2DM. In ROC curve analysis, BDNF cut-off was 137. Conclusion. The serum BDNF level was higher in patients with T2DM. The BDNF had a cut-off value of 137. The findings suggest that BDNF may contribute to glucose and lipid metabolism and inflammation.

  9. Opposite effects of a high-fat diet and calorie restriction on ciliary neurotrophic factor signalling in the mouse hypothalamus

    Directory of Open Access Journals (Sweden)

    AntonioGiordano

    2013-12-01

    Full Text Available In the mouse hypothalamus, ciliary neurotrophic factor (CNTF is mainly expressed by ependymal cells and tanycytes of the ependymal layer covering the third ventricle. Since exogenously administered CNTF causes reduced food intake and weight loss, we tested whether endogenous CNTF might be involved in energy balance regulation. We thus evaluated CNTF production and responsiveness in the hypothalamus of mice fed a high-fat diet (HFD, of ob/ob obese mice, and of mice fed a calorie restriction (CR regimen. RT-PCR showed that CNTF mRNA increased significantly in HFD mice and decreased significantly in CR animals. Western blotting confirmed that CNTF expression was higher in HFD mice and reduced in CR mice, but high interindividual variability blunted the significance of these differences. By immunohistochemistry, hypothalamic tuberal and mammillary region tanycytes stained strongly for CNTF in HFD mice, whereas CR mice exhibited markedly reduced staining. RT-PCR and Western blotting disclosed that changes in CNTF expression were paralleled by changes in the expression of its specific receptor, CNTF receptor α (CNTFRα. Injection of recombinant CNTF and detection of phospho-signal transducer and activator of transcription 3 (P-STAT3 showed that CNTF responsiveness by the ependymal layer, mainly by tanycytes, was higher in HFD than CR mice. In addition, in HFD mice CNTF administration induced distinctive STAT3 signalling in a large neuron population located in the dorsomedial and ventromedial nuclei, perifornical area and mammillary body. The hypothalamic expression of CNTF and CNTFRα did not change in the hyperphagic, leptin-deficient ob/ob obese mice; accordingly, P-STAT3 immunoreactivity in CNTF-treated ob/ob mice was confined to ependymal layer and arcuate neurons. Collectively, these data suggest that hypothalamic CNTF is involved in controlling the energy balance and that CNTF signalling plays a role in HFD obese mice at specific sites.

  10. Antineuroinflammatory and neurotrophic effects of CNTF and C16 peptide in an acute experimental autoimmune encephalomyelitis rat model

    Directory of Open Access Journals (Sweden)

    Marong Fang

    2013-12-01

    Full Text Available Experimentalallergic encephalomyelitis (EAE is an animal model for inflammatory demyelinating autoimmune disease, i.e., multiple sclerosis (MS. In the present study, we investigated the antineuroinflammatory/neuroprotective effects of C16, an ανβ3 integrin-binding peptide, and recombinant rat ciliary neurotrophic factor (CNTF, a cytokine that was originally identified as a survival factor for neurons, in an acute rodent EAE model. In this model, C16 peptide was injected intravenously every day for 2 weeks, and CNTF was delivered into the cerebral ventricles with Alzet miniosmotic pumps. Disease severity was assessed weekly using a scale ranging from 0 to 5. Multiple histological and molecular biological assays were employed to assess inflammation, axonal loss, neuronal apoptosis, white matter demyelination, and gliosis in the brain and spinal cord of different groups. Our results showed that the EAE induced rats revealed a significant increase in inflammatory cells infiltration, while C16 treatment could inhibit the infiltration of leukocytes and macrophages down to 2/3-1/3 of vehicle treated EAE control (P<0.05. The delayed onset of disease, reduced clinical score (P<0.01 in peak stage and more rapid recovery also were achieved in C16 treated group. Besides impairing inflammation, CNTF treatment also exerted direct neuroprotective effects, decreasing demyelination and axon loss score (P<0.05 Vs vehicle treated EAE control, and reducing the neuronal death from 40%-50% to 10%-20% (P<0.05. Both treatments suppressed the expression of cytokine tumor necrosis factor-α and interferon-when compared with the vehicle control (P<0.05. Combined treatment with C16 and CNTF produced more obvious functional recovery and neuroprotective effects than individually treatment (P<0.05. These results suggested that combination treatment with C16 and CNTF, which target different neuroprotection pathways, may be an effective therapeutic alternative to

  11. Expression of Brain-derived Neurotrophic Factor and Tyrosine Kinase B in Cerebellum of Poststroke Depression Rat Model

    Institute of Scientific and Technical Information of China (English)

    Yun Li; Chun Peng; Xu Guo; Jun-Jie You; Harishankar Prasad Yadav

    2015-01-01

    Background:The pathophysiology of poststroke depression (PSD) remains elusive because of its proposed multifactorial nature.Accumulating evidence suggests that brain-derived neurotrophic factor (BDNF) plays a key role in the pathophysiology of depression and PSD.And the cerebellar dysfunction may be important in the etiology of depression;it is not clear whether it also has a major effect on the risk of PSD.This study aimed to explore the expression of BDNF and high-affinity receptors tyrosine kinase B (TrkB) in the cerebellum of rats with PSD.Methods:The rat models with focal cerebral ischemic were made using a thread embolization method.PSD rat models were established with comprehensive separate breeding and unpredicted chronic mild stress (UCMS) on this basis.A normal control group,depression group,and a stroke group were used to compare with the PSD group.Thirteen rats were used in each group.Immunohistochemistry and reverse transcription-polymerase chain reaction (RT-PCR) for detecting the expression of BDNF and TrkB protein and mRNA in the cerebellum were used at the 29th day following the UCMS.Results:Compared with the normal control group and the stroke group,the number ofBDNF immunoreactive (IR) positive neurons was less in the PSD group (P < 0.05).Furthermore,the number ofTrkB IR positive cells was significantly less in the PSD group than that in the normal control group (P < 0.05).The gene expression of BDNF and TrkB in the cerebellum of PSD rats also decreased compared to the normal control group (P < 0.05).Conclusions:These findings suggested a possible association between expression of BDNF and TrkB in the cerebellum and the pathogenesis of PSD.

  12. Upregulation of brain-derived neurotrophic factor expression in nodose ganglia and the lower brainstem of hypertensive rats.

    Science.gov (United States)

    Vermehren-Schmaedick, Anke; Jenkins, Victoria K; Hsieh, Hui-ya; Brown, Alexandra L; Page, Mollie P; Brooks, Virginia L; Balkowiec, Agnieszka

    2013-02-01

    Hypertension leads to structural and functional changes at baroreceptor synapses in the medial nucleus tractus solitarius (NTS), but the underlying molecular mechanisms remain unknown. Our previous studies show that brain-derived neurotrophic factor (BDNF) is abundantly expressed by rat nodose ganglion (NG) neurons, including baroreceptor afferents and their central terminals in the medial NTS. We hypothesized that hypertension leads to upregulation of BDNF expression in NG neurons. To test this hypothesis, we used two mechanistically distinct models of hypertension, the spontaneously hypertensive rat (SHR) and the deoxycorticosterone acetate (DOCA)-salt rat. Young adult SHRs, whose blood pressure was significantly elevated compared with age-matched Wistar-Kyoto (WKY) control rats, exhibited dramatic upregulation of BDNF mRNA and protein in the NG. BDNF transcripts from exon 4, known to be regulated by activity, and exon 9 (protein-coding region) showed the largest increases. Electrical stimulation of dispersed NG neurons with patterns that mimic baroreceptor activity during blood pressure elevations led to increases in BDNF mRNA that were also mediated through promoter 4. The increase in BDNF content of the NG in vivo was associated with a significant increase in the percentage of BDNF-immunoreactive NG neurons. Moreover, upregulation of BDNF in cell bodies of NG neurons was accompanied by a significant increase in BDNF in the NTS region, the primary central target of NG afferents. A dramatic increase in BDNF in the NG was also detected in DOCA-salt hypertensive rats. Together, our study identifies BDNF as a candidate molecular mediator of activity-dependent changes at baroafferent synapses during hypertension. PMID:23172808

  13. Brain-derived neurotrophic factor as a regulator of systemic and brain energy metabolism and cardiovascular health

    OpenAIRE

    Rothman, Sarah M.; Kathleen J Griffioen; Wan, Ruiqian; Mattson, Mark P.

    2012-01-01

    Overweight sedentary individuals are at increased risk for cardiovascular disease, diabetes, and some neurological disorders. Beneficial effects of dietary energy restriction (DER) and exercise on brain structural plasticity and behaviors have been demonstrated in animal models of aging and acute (stroke and trauma) and chronic (Alzheimer's and Parkinson's diseases) neurological disorders. The findings described later, and evolutionary considerations, suggest brain-derived neurotrophic factor...

  14. SorLA Controls Neurotrophic Activity by Sorting of GDNF and Its Receptors GFRα1 and RET

    DEFF Research Database (Denmark)

    Glerup, Simon; Lume, Maria; Olsen, Ditte; Nyengaard, Jens R; Vaegter, Christian B; Gustafsen, Camilla; Christensen, Erik I; Kjolby, Mads; Hay-Schmidt, Anders; Bender, Dirk; Madsen, Peder; Saarma, Mart; Nykjaer, Anders; Petersen, Claus M

    2013-01-01

    targeted to lysosomes and degraded while GFRα1 recycles, creating an efficient GDNF clearance pathway. The SorLA/GFRα1 complex further targets RET for endocytosis but not for degradation, affecting GDNF-induced neurotrophic activities. SorLA-deficient mice display elevated GDNF levels, altered dopaminergic...

  15. Association analysis of the brain-derived neurotrophic factor gene polymorphisms with early-onset schizophrenia in the Chinese population

    Institute of Scientific and Technical Information of China (English)

    易正辉

    2012-01-01

    Objective To investigate the relationship between the brain-derived neurotrophic factor (BDNF) gene Tag SNPs(rs 11030101 and rs6265) and early-onset schizophrenia in the Chinese Han population. Methods The tag single nucleotide polymorphisms (tag SNPs) rs11030101 and rs6265 in the BDNF gene were genotyped

  16. Treadmill exercise induced functional recovery after peripheral nerve repair is associated with increased levels of neurotrophic factors.

    Directory of Open Access Journals (Sweden)

    Jae-Sung Park

    Full Text Available Benefits of exercise on nerve regeneration and functional recovery have been reported in both central and peripheral nervous system disease models. However, underlying molecular mechanisms of enhanced regeneration and improved functional outcomes are less understood. We used a peripheral nerve regeneration model that has a good correlation between functional outcomes and number of motor axons that regenerate to evaluate the impact of treadmill exercise. In this model, the median nerve was transected and repaired while the ulnar nerve was transected and prevented from regeneration. Daily treadmill exercise resulted in faster recovery of the forelimb grip function as evaluated by grip power and inverted holding test. Daily exercise also resulted in better regeneration as evaluated by recovery of compound motor action potentials, higher number of axons in the median nerve and larger myofiber size in target muscles. Furthermore, these observations correlated with higher levels of neurotrophic factors, glial derived neurotrophic factor (GDNF, brain derived neurotrophic factor (BDNF and insulin-like growth factor-1 (IGF-1, in serum, nerve and muscle suggesting that increase in muscle derived neurotrophic factors may be responsible for improved regeneration.

  17. Brain-Derived Neurotrophic Factor Gene Expression in Pediatric Bipolar Disorder: Effects of Treatment and Clinical Response

    Science.gov (United States)

    Pandey, Ghanshyam N.; Rizavi, Hooriyah S.; Dwivedi, Yogesh; Pavuluri, Mani N.

    2008-01-01

    The study determines the gene expression of brain-derived neurotrophic factor (BDNF) in the lymphocytes of subjects with pediatric bipolar disorder (PBD) before and during treatment with mood stabilizers and in drug-free normal control subjects. Results indicate the potential of BDNF levels as a biomarker for PBD and as a treatment predictor and…

  18. Activity-dependent brain-derived neurotrophic factor expression regulates cortistatin-interneurons and sleep behavior

    Directory of Open Access Journals (Sweden)

    Martinowich Keri

    2011-03-01

    Full Text Available Abstract Background Sleep homeostasis is characterized by a positive correlation between sleep length and intensity with the duration of the prior waking period. A causal role for brain-derived neurotrophic factor (BDNF in sleep homeostasis has been suggested, but the underlying mechanisms remain unclear. Cortistatin, a neuropeptide expressed primarily in a subset of cortical GABAergic interneurons, is another molecule implicated in sleep homeostasis. Results We confirmed that sleep deprivation leads to an increase in cortical cortistatin mRNA expression. Disruption of activity-dependent BDNF expression in a genetically modified mouse line impairs both baseline levels of cortistatin mRNA as well as its levels following sleep deprivation. Disruption of activity-dependent BDNF also leads to a decrease in sleep time during the active (dark phase. Conclusion Our studies suggest that regulation of cortistatin-expressing interneurons by activity-dependent BDNF expression may contribute to regulation of sleep behavior.

  19. [Mechanisms of neurotrophic and neuroprotective effects of cerebrolysin in cerebral ischemia.

    Science.gov (United States)

    Gromova, O A; Torshin, I Iu; Gogoleva, I V

    2014-01-01

    Cerebrolysin is the drug which contains peptides derived from the brain of a pig. It is used in neurological practice for recovery of stroke patients and treatment of dementia. Despite the evidence-basis and some experimental studies, the distinct mechanisms of pharmacological action of this drug remain unclear for most neurologists. In this paper, we present results of a molecular-biological analysis of peptide content of cerebrolysin. We have demonstrated the presence of active peptide fragments of nerve growth factor, enkephalins, orexin, halanin. The results of current clinical and experimental studies of cerebrolysin have been compared. The activity of above-mentioned neuropeptides explain experimental and clinical details of all known effects (neurotrophic, neuroprotective and immunomodulating) of cerebrolysin in ischemic and neurodegenerative CNS injuries. The analysis allowed to make conclusions about mechanisms of cerebrolysin action that were important for increasing the efficacy of this drug in clinical practice. PMID:24781241

  20. Serum brain-derived neurotrophic factor (BDNF) is not regulated by testosterone in transmen.

    Science.gov (United States)

    Auer, Matthias K; Hellweg, Rainer; Briken, Peer; Stalla, Günter K; T'Sjoen, Guy; Fuss, Johannes

    2016-01-01

    Brain morphology significantly differs between the sexes. It has been shown before that some of these differences are attributable to the sex-specific hormonal milieu. Brain-derived neurotrophic factor (BDNF) is involved in myriads of neuroplastic processes and shows a sexual dimorphism. Transsexual persons may serve as a model to study sex steroid-mediated effects on brain plasticity. We have recently demonstrated that serum levels of BDNF are reduced in transwomen following 12 months of cross-sex hormone treatment. We now wanted to look at the effects of testosterone treatment on BDNF in transmen. In contrast to our initial hypothesis, BDNF levels did not significantly change, despite dramatic changes in the sex-hormonal milieu. Our data indicate that testosterone does not seem to play a major role in the regulation of BDNF in females. PMID:26753091

  1. Brain-derived neurotrophic factor: a bridge between inflammation and neuroplasticity

    Directory of Open Access Journals (Sweden)

    Francesca eCalabrese

    2014-12-01

    Full Text Available Cytokines are key regulatory mediators involved in the host response to immunological challenges, but also play a critical role in the communication between the immune and the central nervous system. For this, their expression in both systems is under a tight regulatory control. However, pathological conditions may lead to an overproduction of pro-inflammatory cytokines that may have a detrimental impact on central nervous system. In particular, they may damage neuronal structure and function leading to deficits of neuroplasticity, the ability of nervous system to perceive, respond and adapt to external or internal stimuli.In search of the mechanisms by which pro-inflammatory cytokines may affect this crucial brain capability, we will discuss one of the most interesting hypotheses: the involvement of the neurotrophin brain-derived neurotrophic factor, which represents one of the major mediators of neuroplasticity.

  2. The effects of physical activity and exercise on brain-derived neurotrophic factor in healthy humans

    DEFF Research Database (Denmark)

    Huang, T; Larsen, K T; Ried-Larsen, M;

    2014-01-01

    The purpose of this study was to summarize the effects of physical activity and exercise on peripheral brain-derived neurotrophic factor (BDNF) in healthy humans. Experimental and observational studies were identified from PubMed, Web of Knowledge, Scopus, and SPORT Discus. A total of 32 articles...... studies suggested an inverse relationship between the peripheral BDNF level and habitual physical activity or cardiorespiratory fitness. More research is needed to confirm the findings from the observational studies....... met the inclusion criteria. Evidence from experimental studies suggested that peripheral BDNF concentrations were elevated by acute and chronic aerobic exercise. The majority of the studies suggested that strength training had no influence on peripheral BDNF. The results from most observational...

  3. Brain-derived neurotrophic factor and neural plasticity in a rat model of spinal cord transection

    Institute of Scientific and Technical Information of China (English)

    Ruxin Xing; Jia Liu; Hua Jin; Ping Dai; Tinghua Wang

    2011-01-01

    The present study employed a rat model of T10 spinal cord transection. Western blot analyses revealed increased brain-derived neurotrophic factor (BDNF) expression in spinal cord segments caudal to the transection site following injection of replication incompetent herpes simplex virus vector (HSV-BDNF) into the subarachnoid space. In addition, hindlimb locomotor functions were improved. In contrast, BDNF levels decreased following treatment with replication defective herpes simplex virus vector construct small interference BDNF (HSV-siBDNF). Moreover, hindlimb locomotor functions gradually worsened. Compared with the replication incompetent herpes simplex virus vector control group, extracellular signal regulated kinase1/2 expression increased in the HSV-BDNF group on days 14 and 28 after spinal cord transection, but expression was reduced in the HSV-siBDNF group. These results suggested that BDNF plays an important role in neural plasticity via extracellular signal regulated kinase1/2 signaling pathway in a rat model of adult spinal cord transection.

  4. Evidence for a release of brain-derived neurotrophic factor from the brain during exercise

    DEFF Research Database (Denmark)

    Rasmussen, Peter; Brassard, Patrice; Adser, Helle; Pedersen, Martin V; Leick, Lotte; Hart, Emma; Secher, Niels H; Pedersen, Bente K; Pilegaard, Henriette

    2009-01-01

    Brain-derived neurotrophic factor (BDNF) has an important role in regulating maintenance, growth and survival of neurons. However, the main source of circulating BDNF in response to exercise is unknown. To identify whether the brain is a source of BDNF during exercise, eight volunteers rowed for 4...... h while simultaneous blood samples were obtained from the radial artery and the internal jugular vein. To further identify putative cerebral region(s) responsible for BDNF release, mouse brains were dissected and analysed for BDNF mRNA expression following treadmill exercise. In humans, a BDNF...... release from the brain was observed at rest (P < 0.05), and increased two- to threefold during exercise (P < 0.05). Both at rest and during exercise, the brain contributed 70-80% of circulating BDNF, while that contribution decreased following 1 h of recovery. In mice, exercise induced a three- to...

  5. No effect of escitalopram versus placebo on brain-derived neurotrophic factor in healthy individuals

    DEFF Research Database (Denmark)

    Knorr, Ulla; Koefoed, Pernille; Soendergaard, Mia H Greisen;

    2016-01-01

    OBJECTIVE: Brain-derived neurotrophic factor (BDNF) seems to play an important role in the course of depression including the response to antidepressants in patients with depression. We aimed to study the effect of an antidepressant intervention on peripheral BDNF in healthy individuals with a...... family history of depression. METHODS: We measured changes in BDNF messenger RNA (mRNA) expression and whole-blood BDNF levels in 80 healthy first-degree relatives of patients with depression randomly allocated to receive daily tablets of escitalopram 10 mg versus placebo for 4 weeks. RESULTS: We found...... no statistically significant difference between the escitalopram and the placebo group in the change in BDNF mRNA expression and whole-blood BDNF levels. Post hoc analyses showed a statistically significant negative correlation between plasma escitalopram concentration and change in whole-blood BDNF...

  6. Possible Role of Brain-Derived Neurotrophic Factor (BDNF) in Autism Spectrum Disorder: Current Status

    International Nuclear Information System (INIS)

    Brain-derived neurotrophic factor (BDNF), a member of the neurotrophin family of survival-promoting molecules, plays a vital role in the growth, development, maintenance, and function of several neuronal systems. The purpose of this review is to document the support for the involvement of this molecule in the maintenance of normal cognitive, emotional functioning, and to outline recent developments in the content of Autism spectrum disorder (ASD). Current and future treatment development can be guided by developing understanding of this molecules actions in the brain and the ways the expression of BDNF can be planned. Over the years, research findings suggested a critical role played by BDNF in the development of autism including increased serum concentrations of BDNF in children with autism and identification of different forms of BDNF in families of autistic individuals. (author)

  7. A One Line Derivation of EGARCH

    Directory of Open Access Journals (Sweden)

    Michael McAleer

    2014-06-01

    Full Text Available One of the most popular univariate asymmetric conditional volatility models is the exponential GARCH (or EGARCH specification. In addition to asymmetry, which captures the different effects on conditional volatility of positive and negative effects of equal magnitude, EGARCH can also accommodate leverage, which is the negative correlation between returns shocks and subsequent shocks to volatility. However, the statistical properties of the (quasi- maximum likelihood estimator of the EGARCH parameters are not available under general conditions, but rather only for special cases under highly restrictive and unverifiable conditions. It is often argued heuristically that the reason for the lack of general statistical properties arises from the presence in the model of an absolute value of a function of the parameters, which does not permit analytical derivatives, and hence does not permit (quasi- maximum likelihood estimation. It is shown in this paper for the non-leverage case that: (1 the EGARCH model can be derived from a random coefficient complex nonlinear moving average (RCCNMA process; and (2 the reason for the lack of statistical properties of the estimators of EGARCH under general conditions is that the stationarity and invertibility conditions for the RCCNMA process are not known.

  8. Brain-derived neurotrophic factor modulation of Kv1.3 channel is disregulated by adaptor proteins Grb10 and nShc

    Directory of Open Access Journals (Sweden)

    Marks David R

    2009-01-01

    Full Text Available Abstract Background Neurotrophins are important regulators of growth and regeneration, and acutely, they can modulate the activity of voltage-gated ion channels. Previously we have shown that acute brain-derived neurotrophic factor (BDNF activation of neurotrophin receptor tyrosine kinase B (TrkB suppresses the Shaker voltage-gated potassium channel (Kv1.3 via phosphorylation of multiple tyrosine residues in the N and C terminal aspects of the channel protein. It is not known how adaptor proteins, which lack catalytic activity, but interact with members of the neurotrophic signaling pathway, might scaffold with ion channels or modulate channel activity. Results We report the co-localization of two adaptor proteins, neuronal Src homology and collagen (nShc and growth factor receptor-binding protein 10 (Grb10, with Kv1.3 channel as demonstrated through immunocytochemical approaches in the olfactory bulb (OB neural lamina. To further explore the specificity and functional ramification of adaptor/channel co-localization, we performed immunoprecipitation and Western analysis of channel, kinase, and adaptor transfected human embryonic kidney 293 cells (HEK 293. nShc formed a direct protein-protein interaction with Kv1.3 that was independent of BDNF-induced phosphorylation of Kv1.3, whereas Grb10 did not complex with Kv1.3 in HEK 293 cells. Both adaptors, however, co-immunoprecipitated with Kv1.3 in native OB. Grb10 was interestingly able to decrease the total expression of Kv1.3, particularly at the membrane surface, and subsequently eliminated the BDNF-induced phosphorylation of Kv1.3. To examine the possibility that the Src homology 2 (SH2 domains of Grb10 were directly binding to basally phosphorylated tyrosines in Kv1.3, we utilized point mutations to substitute multiple tyrosine residues with phenylalanine. Removal of the tyrosines 111–113 and 449 prevented Grb10 from decreasing Kv1.3 expression. In the absence of either adaptor protein

  9. Cytokine-Like Factor 1, an Essential Facilitator of Cardiotrophin-Like Cytokine:Ciliary Neurotrophic Factor Receptor α Signaling and sorLA-Mediated Turnover

    Science.gov (United States)

    Kristensen, Anders Mejer; Pallesen, Lone Tjener; Bauer, Johannes; Vægter, Christian Bjerggaard; Nielsen, Morten Schallburg; Madsen, Peder

    2016-01-01

    Cardiotrophin-like cytokine:cytokine-like factor-1 (CLC:CLF-1) is a heterodimeric neurotropic cytokine that plays a crucial role during neuronal development. Mice lacking CLC:CLF-1 die soon after birth due to a suckling defect and show reduced numbers of motor neurons. Humans carrying mutations in CLC:CLF-1 develop similar disorders, known as Sohar-Crisponi or cold-induced sweating syndrome, and have a high risk of early death. It is well known that CLC binds the ciliary neurotrophic factor receptor α (CNTFRα) and is a prerequisite for signaling through the gp130/leukemia inhibitory factor receptor β (LIFRβ) heterodimer, whereas CLF-1 serves to promote the cellular release of CLC. However, the precise role of CLF-1 is unclear. Here, we report that CLF-1, based on its binding site for CLC and on two additional and independent sites for CNTFRα and sorLA, is a key player in CLC and CNTFRα signaling and turnover. The site for CNTFRα enables CLF-1 to promote CLC:CNTFRα complex formation and signaling. The second site establishes a link between the endocytic receptor sorLA and the tripartite CLC:CLF-1:CNTFRα complex and allows sorLA to downregulate the CNTFRα pool in stimulated cells. Finally, sorLA may bind and concentrate the tripartite soluble CLC:CLF-1:CNTFRα complex on cell membranes and thus facilitate its signaling through gp130/LIFRβ. PMID:26858303

  10. Cytokine-Like Factor 1, an Essential Facilitator of Cardiotrophin-Like Cytokine:Ciliary Neurotrophic Factor Receptor α Signaling and sorLA-Mediated Turnover.

    Science.gov (United States)

    Larsen, Jakob Vejby; Kristensen, Anders Mejer; Pallesen, Lone Tjener; Bauer, Johannes; Vægter, Christian Bjerggaard; Nielsen, Morten Schallburg; Madsen, Peder; Petersen, Claus Munck

    2016-04-15

    Cardiotrophin-like cytokine:cytokine-like factor-1 (CLC:CLF-1) is a heterodimeric neurotropic cytokine that plays a crucial role during neuronal development. Mice lacking CLC:CLF-1 die soon after birth due to a suckling defect and show reduced numbers of motor neurons. Humans carrying mutations in CLC:CLF-1 develop similar disorders, known as Sohar-Crisponi or cold-induced sweating syndrome, and have a high risk of early death. It is well known that CLC binds the ciliary neurotrophic factor receptor α (CNTFRα) and is a prerequisite for signaling through the gp130/leukemia inhibitory factor receptor β (LIFRβ) heterodimer, whereas CLF-1 serves to promote the cellular release of CLC. However, the precise role of CLF-1 is unclear. Here, we report that CLF-1, based on its binding site for CLC and on two additional and independent sites for CNTFRα and sorLA, is a key player in CLC and CNTFRα signaling and turnover. The site for CNTFRα enables CLF-1 to promote CLC:CNTFRα complex formation and signaling. The second site establishes a link between the endocytic receptor sorLA and the tripartite CLC:CLF-1:CNTFRα complex and allows sorLA to downregulate the CNTFRα pool in stimulated cells. Finally, sorLA may bind and concentrate the tripartite soluble CLC:CLF-1:CNTFRα complex on cell membranes and thus facilitate its signaling through gp130/LIFRβ. PMID:26858303

  11. Brain-derived neurotrophic factor protects neurons from GdCl3-induced impairment in neuron-astrocyte co-cultures

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Gadolinium (Gd3+) complexes are important contrast agents in medical magnetic resonance imaging (MRI) and of great potential value in brain research. In order to better understand the mechanisms of the action of Gd3+ on neurons in the complex central nervous system (CNS), the neurotoxic actions of GdCl3 have been investigated in both neuron monoculture and astrocyte-neuron co-culture systems. Measurements of lactate dehydrogenase release showed that GdCl3 causes significant cell death of monocultured neurons as a result of reactive oxygen species (ROS) generation and down-regulation of brain-derived neurotrophic factor (BDNF). However, GdCl3 does not affect the viability and BDNF expression of astrocytes. Both co-culturing of neurons with astrocytes and addition of BDNF ameliorated GdCl3-induced neurotoxicity by decreasing ROS generation and facilitating recovery of BDNF levels. The results obtained suggest that astrocytes in the CNS may protect neurons from GdCl3-induced impairment through secreting BDNF and thus up-regulating BDNF expression and interfering with Gd3+-induced cell signaling in neurons. A possible molecular mechanism is suggested which should be helpful in understand- ing the neurotoxic actions of gadolinium probes .

  12. Comparative Analysis of the Effects of Neurotrophic Factors CDNF and GDNF in a Nonhuman Primate Model of Parkinson’s Disease

    OpenAIRE

    Garea-Rodríguez, Enrique; Eesmaa, Ave; Lindholm, Päivi; Schlumbohm, Christina; König, Jessica; Meller, Birgit; Krieglstein, Kerstin; Helms, Gunther; Saarma, Mart; Fuchs, Eberhard

    2016-01-01

    Cerebral dopamine neurotrophic factor (CDNF) belongs to a newly discovered family of evolutionarily conserved neurotrophic factors. We demonstrate for the first time a therapeutic effect of CDNF in a unilateral 6-hydroxydopamine (6-OHDA) lesion model of Parkinson’s disease in marmoset monkeys. Furthermore, we tested the impact of high chronic doses of human recombinant CDNF on unlesioned monkeys and analyzed the amino acid sequence of marmoset CDNF. The severity of 6-OHDA lesions and treatmen...

  13. [The effect of neurotrophic treatment on the activation of reparative processes in patients with acute traumatic brain injury].

    Science.gov (United States)

    Selianina, N V; Karakulova, Iu V

    2012-01-01

    The complex study of cognitive and emotional status, levels of serum serotonin and brain-derived neurotrophic factor (BDNF) were performed in 72 patients with acute traumatic brain injury, with a special focus on middle brain injuries (MBI), treated with Cerebrolysin. The neurological and cognitive impairment, mild state anxiety and depression and increased levels of humoral serotonin, which depends on the severity of the injury, were identified in patients with MBI before treatment. After the treatment, there were the decrease in the severity of neurological symptoms and a significant positive dynamics on the FAB scale as well as the increase in blood BDNF and serotonin levels. It has been concluded that using cerebrolysin in complex treatment of acute MBI promotes activation of neurotrophic processes and improves outcomes of closed craniocerebral injury. PMID:22951781

  14. 神经营养因子对噪声引起豚鼠耳蜗外毛细胞损伤的防护作用%Neurotrophins decrease degeneration of out hair cells of the guinea pig after noise trauma

    Institute of Scientific and Technical Information of China (English)

    杨卫平; 杨伟炎; 郭维; 胡吟燕

    2003-01-01

    Objective To investigate whether glial cell line - derived neurotrophic factor (GDNF) combined with neurotrophin- 3 (NT- 3) provides the synergetic protection on hair cells (HC) from acoustic trauma. Methods Guinea pigs were ex-posed to a 4 kHz narrow band noise at 115 dB SPL for 4 hrs. The left cochlea of the animals was infused with aaificial perilymph (AP) containing (the test group) or without containing (the control group) a mixture of GDNF ( 100 ng/ml) and NT- 3(2.5μg/ml) via a mini - osmotic pump connected to the scala tympani. The infusion began at 4 days before the noise exposure and continued for 10 days after the noise exposure. Hearing function was assessed by measuring the thresholds of auditory brainstem responses (ABRs) elicited by clicks, before and 3 days after the osmotic pump implantation, and repeated 10 days after the noise exposure ( 14 days after the pump implantation). The numbers of damaged OHCs were quantitatively assessed by staining with rhodamine - phalloidin for F- actin in the cuticular plates and with Hoechst 33342 for HC nuclei. Results There was a statistically significant increase in the number of survived out hair cell (OHC) (p < 0. 001, p < 0.01 ) and a decrease in ABR threshold shifts (p < 0.05, p < 0.01 ) in both treated (left) and untreated ( right ) ears of animals received GDNF and NT- 3. Conclusion These findings indicate that GDNF combined with NT- 3 can effectively protects OHCs from noise - induced damage.%目的定量观察胶质细胞源性神经营养因子(glial cell line-derived neurotrophic factor,GDNF)和神经营养-3(neurotrphin-3,NT-3)对噪声引起豚鼠耳蜗外毛细胞损伤的防护作用.方法将微渗透压泵埋置于豚鼠背部,经固定于耳蜗底回鼓阶内的改良微导管将GDNF(100ng/ml)和NT-3(2.5μg/ml)的混合液缓慢注入12只豚鼠左侧内耳,以左侧内耳灌注人工外淋巴液的9只豚鼠为对照,检测噪声暴露后豚鼠听功能和耳蜗外毛细胞形态、数

  15. Plasma level of brain-derived neurotrophic factor and the related analysis in depressive patients with suicide attempt

    Institute of Scientific and Technical Information of China (English)

    操军

    2014-01-01

    Objective To explore the association between brainderived neurotrophic factor(BDNF)and suicidal behavior through analyzing and detecting the alteration of plasma BDNF level in depressive patients with suicide attempt.Methods Using enzyme-linked immunosorbent analysis(ELISA)to test the plasma level of BDNF in 27suicidal depressed patients,33 non-suicidal depressed patients and 30 normal controls.Meanwhile,the Hamilton Depression Scale(HAMD)and Beck

  16. Association of decreased serum brain-derived neurotrophic factor (BDNF) concentrations in early pregnancy with antepartum depression

    OpenAIRE

    Fung, Jenny; Gelaye, Bizu; Zhong, Qiu-Yue; Rondon, Marta B; Sanchez, Sixto E; Barrios, Yasmin V; Hevner, Karin; Qiu, Chunfang; Williams, Michelle A.

    2015-01-01

    Background Antepartum depression is one of the leading causes of maternal morbidity and mortality in the prenatal period. There is accumulating evidence for the role of brain-derived neurotrophic factor (BDNF) in the pathophysiology of depression. The present study examines the extent to which maternal early pregnancy serum BDNF levels are associated with antepartum depression. Method A total of 968 women were recruited and interviewed in early pregnancy. Antepartum depression prevalence and ...

  17. Association of decreased serum brain-derived neurotrophic factor (BDNF) concentrations in early pregnancy with antepartum depression

    OpenAIRE

    Fung, Jenny; Gelaye, Bizu; Zhong, Qiu-Yue; Rondon, Marta B; Sanchez, Sixto E; Barrios, Yasmin V; Hevner, Karin; Qiu, Chunfang; Williams, Michelle A.

    2015-01-01

    Background: Antepartum depression is one of the leading causes of maternal morbidity and mortality in the prenatal period. There is accumulating evidence for the role of brain-derived neurotrophic factor (BDNF) in the pathophysiology of depression. The present study examines the extent to which maternal early pregnancy serum BDNF levels are associated with antepartum depression. Method A total of 968 women were recruited and interviewed in early pregnancy. Antepartum depression prevalence and...

  18. Focal release of neurotrophic factors by biodegradable microspheres enhance motor and sensory axonal regeneration in vitro and in vivo

    OpenAIRE

    Santos, Daniel; GIUDETTI Guido; Micera, Silvestro; Navarro Acebes, Xavier; Valle Macia, Jaume del

    2016-01-01

    Neurotrophic factors (NTFs) promote nerve regeneration and neuronal survival after peripheral nerve injury. However, drawbacks related with administration and bioactivity during long periods limit their therapeutic application. In this study, PLGA microspheres (MPs) were used to locally release different NTFs and evaluate whether they accelerate axonal regeneration in comparison with free NTFs or controls. ELISA, SEM, UV/visible light microscopy, organotypic cultures of DRG explants and spina...

  19. Effect of Locally Administered Ciliary Neurotrophic Factor on the Survival of Transected and Repaired Adult Sheep Facial Nerve

    OpenAIRE

    Rashid Al Abri; Arif Ali Kolethekkat; Kelleher, Michael O.; Lynn M. Myles; Michael A. Glasby

    2014-01-01

    Objective: to determine whether the administration of Ciliary Neurotrophic Factor (CNTF) at the site of repaired facial nerve enhances regeneration in the adult sheep model. Methods: Ten adult sheep were divided into 2 groups: control and study group (CNTF group). In the CNTF group, the buccal branch of the facial nerve was transected and then repaired by epineural sutures. CNTF was injected over the left depressor labii maxillaris muscle in the vicinity of the transected and repaired ner...

  20. Antineuroinflammatory and neurotrophic effects of CNTF and C16 peptide in an acute experimental autoimmune encephalomyelitis rat model

    OpenAIRE

    Marong Fang; Zhiying Hu

    2013-01-01

    Experimentalallergic encephalomyelitis (EAE) is an animal model for inflammatory demyelinating autoimmune disease, i.e., multiple sclerosis (MS). In the present study, we investigated the antineuroinflammatory/neuroprotective effects of C16, an ανβ3 integrin-binding peptide, and recombinant rat ciliary neurotrophic factor (CNTF), a cytokine that was originally identified as a survival factor for neurons, in an acute rodent EAE model. In this model, C16 peptide was injected intravenously every...

  1. gp130 signaling in proopiomelanocortin neurons mediates the acute anorectic response to centrally applied ciliary neurotrophic factor

    OpenAIRE

    Janoschek, Ruth; Plum, Leona; Koch, Linda; Münzberg, Heike; Diano, Sabrina; Shanabrough, Marya; Müller, Werner; Horvath, Tamas L.; Brüning, Jens C.

    2006-01-01

    Ciliary neurotrophic factor (CNTF) exerts anorectic effects by overcoming leptin resistance via activation of hypothalamic neurons. However, the exact site of CNTF action in the hypothalamus has not yet been identified. Using Cre-loxP-mediated recombination in vivo, we have selectively ablated the common cytokine signaling chain gp130, which is required for functional CNTF signaling, in proopiomelanocortin (POMC)-expressing neurons. POMC-specific gp130 knockout mice exhibit unaltered numbers ...

  2. Long-term lentiviral-mediated expression of ciliary neurotrophic factor in the striatum of Huntington's disease transgenic mice

    OpenAIRE

    Zala, Diana; Bensadoun, Jean-Charles; Pereira de Almeida, Luis; Leavitt, Blair R.; Gutekunst, Claire-Anne; Aebischer, Patrick; Hayden, Michael R; Déglon, Nicole

    2004-01-01

    Ciliary neurotrophic factor (CNTF) has been shown to prevent behavioral deficits and striatal degeneration in neurotoxic models of Huntington's disease (HD), but its effect in a genetic model has not been evaluated. Lentiviral vectors expressing the human CNTF or LacZ reporter gene were therefore injected in the striatum of wild-type (WT) and transgenic mice expressing full-length huntingtin with 72 CAG repeats (YAC72). Behavioral analysis showed increased locomotor activity in 5- to 6-month-...

  3. Ciliary Neurotrophic Factor Stimulates Muscle Glucose Uptake by a PI3-Kinase–Dependent Pathway That Is Impaired With Obesity

    OpenAIRE

    Steinberg, Gregory R.; Watt, Matthew J.; Ernst, Matthias; Birnbaum, Morris J.; Kemp, Bruce E.; Jørgensen, Sebastian Beck

    2009-01-01

    OBJECTIVE Ciliary neurotrophic factor (CNTF) reverses muscle insulin resistance by increasing fatty acid oxidation through gp130-LIF receptor signaling to the AMP-activated protein kinase (AMPK). CNTF also increases Akt signaling in neurons and adipocytes. Because both Akt and AMPK regulate glucose uptake, we investigated muscle glucose uptake in response to CNTF signaling in lean and obese mice. RESEARCH DESIGN AND METHODS Mice were injected intraperitoneally with saline or CNTF, and blood g...

  4. Identification of ciliary neurotrophic factor (CNTF) residues essential for leukemia inhibitory factor receptor binding and generation of CNTF receptor antagonists.

    OpenAIRE

    Di Marco, A; Gloaguen, I; Graziani, R; Paonessa, G; Saggio, I; Hudson, K R; Laufer, R

    1996-01-01

    Ciliary neurotrophic factor (CNTF) drives the sequential assembly of a receptor complex containing the ligand-specific alpha-receptor subunit (CNTFR alpha) and the signal transducers gp130 and leukemia inhibitory factor receptor-beta (LIFR). The D1 structural motif, located at the beginning of the D-helix of human CNTF, contains two amino acid residues, F152 and K155, which are conserved among all cytokines that signal through LIFR. The functional importance of these residues was assessed by ...

  5. Brain-Derived Neurotrophic Factor Inhibits Calcium Channel Activation, Exocytosis, and Endocytosis at a Central Nerve Terminal

    OpenAIRE

    Baydyuk, Maryna; Wu, Xin-sheng; He, Liming; Wu, Ling-Gang

    2015-01-01

    Brain-derived neurotrophic factor (BDNF) is a neurotrophin that regulates synaptic function and plasticity and plays important roles in neuronal development, survival, and brain disorders. Despite such diverse and important roles, how BDNF, or more generally speaking, neurotrophins affect synapses, particularly nerve terminals, remains unclear. By measuring calcium currents and membrane capacitance during depolarization at a large mammalian central nerve terminal, the rat calyx of Held, we re...

  6. Ciliary neurotrophic factor promotes motor reinnervation of the musculocutaneous nerve in an experimental model of end-to-side neurorrhaphy

    OpenAIRE

    Čelakovský Pavel; Stejskal Lubomír; Raška Otakar; Klusáková Ilona; Dubový Petr; Haninec Pavel

    2011-01-01

    Abstract Background It is difficult to repair nerve if proximal stump is unavailable or autogenous nerve grafts are insufficient for reconstructing extensive nerve damage. Therefore, alternative methods have been developed, including lateral anastomosis based on axons' ability to send out collateral sprouts into denervated nerve. The different capacity of a sensory or motor axon to send a sprout is controversial and may be controlled by cytokines and/or neurotrophic factors like ciliary neuro...

  7. Brain-derived neurotrophic factor and its receptor in the human and the sand rat intervertebral disc

    OpenAIRE

    Gruber, Helen E.; Ingram, Jane A; Hoelscher, Gretchen; Zinchenko, Natalia; Norton, H. James; Hanley, Edward N

    2008-01-01

    Introduction Brain-derived neurotrophic factor (BDNF) was first identified in the intervertebral disc (IVD) when its molecular upregulation was observed in sections of nucleus pulposus cultured under conditions of increased osmolarity. BDNF is now known to be involved in a number of biologic functions, including regulation of differentiation/survival of sensory neurons, regulation of nociceptive function and central pain modulation, and modulation of inflammatory pain hypersensitivity. In add...

  8. Effects of the Brain Derived Neurotrophic Growth Factor Val66Met Variation on Hippocampus Morphology in Bipolar Disorder

    OpenAIRE

    Chepenik, Lara G.; Fredericks, Carolyn; Papademetris, Xenophon; Spencer, Linda; Lacadie, Cheryl; Wang, Fei; Pittman, Brian; Duncan, James S.; Staib, Lawrence H.; Duman, Ronald S.; Gelernter, Joel; Blumberg, Hilary P.

    2008-01-01

    Histological and behavioral research in bipolar disorder (BD) implicates structural abnormalities in the hippocampus. Brain-derived neurotrophic growth factor (BDNF) protein is associated with hippocampal development and plasticity, and in mood disorder pathophysiology. We tested the hypotheses both the BDNF val66met polymorphism and BD diagnosis are associated with decreased hippocampus volume, and individuals with BD who carry the met allele have the smallest hippocampus volumes compared to...

  9. The Effect of Exercise Training Modality on Serum Brain Derived Neurotrophic Factor Levels in Individuals with Type 2 Diabetes

    OpenAIRE

    Swift, Damon L.; Johannsen, Neil M.; Myers, Valerie H.; Earnest, Conrad P.; Smits, Jasper A. J.; Blair, Steven N.; Church, Timothy S.

    2012-01-01

    INTRODUCTION: Brain derived neurotrophic factor (BDNF) has been implicated in memory, learning, and neurodegenerative diseases. However, the relationship of BDNF with cardiometabolic risk factors is unclear, and the effect of exercise training on BDNF has not been previously explored in individuals with type 2 diabetes. METHODS: Men and women (N = 150) with type 2 diabetes were randomized to an aerobic exercise (aerobic), resistance exercise (resistance), or a combination of both (combination...

  10. The association between brain-derived neurotrophic factor Val66Met variants and psychotic symptoms in posttraumatic stress disorder

    OpenAIRE

    Pivac, Nela; Kozarić-Kovačić, Dragica; Grubišić-Ilić, Mirjana; Nedić, Gordana; Rakoš, Iva; Nikolac, Matea; Blažev, Martina; Muck-Šeler, Dorotea

    2012-01-01

    Objective: Psychotic symptoms frequently occur in veterans with combat-related posttraumatic stress disorder (PTSD). Brain-derived neurotrophic factor (BDNF) plays a major role in neurodevelopment, neuro-regeneration, neurotransmission, learning, regulation of mood and stress responses. The Met allele of the functional polymorphism, BDNF Val66Met, is associated with psychotic disorders. This study intended to assess whether the Met allele is overrepresented in unrelated Caucasian male veteran...

  11. Brain-derived neurotrophic factor functions as a metabotrophin to mediate the effects of exercise on cognition

    OpenAIRE

    Gomez-Pinilla, Fernando; Vaynman, Shoshanna; Ying, Zhe

    2008-01-01

    Brain-derived neurotrophic factor (BDNF) has been shown to mediate the effects of exercise on synaptic plasticity and cognitive function, in a process in which energy metabolism probably plays an important role. The purpose of the present study was to examine the influence of exercise on rat hippocampal expression of molecules involved in the regulation of energy management and cognitive function, and to determine the role of BDNF in these events. One week of voluntary exercise that enhanced ...

  12. The Brain-Derived Neurotrophic Factor Val66Met Polymorphism Moderates an Effect of Physical Activity on Working Memory Performance

    OpenAIRE

    Erickson, Kirk I.; Banducci, Sarah E.; Weinstein, Andrea M.; MacDonald, Angus W.; Ferrell, Robert E.; Halder, Indrani; Flory, Janine D.; Manuck, Stephen B.

    2013-01-01

    Physical activity enhances cognitive performance, yet individual variability in its effectiveness limits its widespread therapeutic application. Genetic differences might be one source of this variation. For example, carriers of the methionine-specifying (Met) allele of the brain-derived neurotrophic factor (BDNF) Val66Met polymorphism have reduced secretion of BDNF and poorer memory, yet physical activity increases BDNF levels. To determine whether the BDNF polymorphism moderated an associat...

  13. Brain-Derived Neurotrophic Factor Serum Levels and Genotype: Association with Depression during Interferon-α Treatment

    OpenAIRE

    Lotrich, Francis E.; Albusaysi, Salwa; Ferrell, Robert E.

    2013-01-01

    Depression has been associated with inflammation, and inflammation may both influence and interact with growth factors such as brain-derived neurotrophic factor (BDNF). Both the functional Val66Met BDNF polymorphism (rs6265) and BDNF levels have been associated with depression. It is thus plausible that decreased BDNF could mediate and/or moderate cytokine-induced depression. We therefore prospectively employed the Beck Depression Inventory-II (BDI-II), the Hospital Anxiety and Depression Sca...

  14. Effects of Music Aerobic Exercise on Depression and Brain-Derived Neurotrophic Factor Levels in Community Dwelling Women

    OpenAIRE

    2015-01-01

    A randomized clinical trial was utilized to compare the improvement of depression and brain-derived neurotrophic factor (BDNF) levels between community women with and without music aerobic exercise (MAE) for 12 weeks. The MAE group involved 47 eligible participants, whereas the comparison group had 59 participants. No significant differences were recorded in the demographic characteristics between the participants in the MAE group and the comparison group. Forty-one participants in the MAE gr...

  15. The effect of regular Taekwondo exercise on Brain-derived neurotrophic factor and Stroop test in undergraduate student

    OpenAIRE

    Kim, Youngil

    2015-01-01

    [Purpose] The purpose of this study was to investigate the effect of Taekwondo exercise on Brain-derived neurotrophic factor and the Stroop test in undergraduate students. [Methods] Fourteen male subjects participated in this study. They were separated into a Control group (N = 7) and an Exercise group (N = 7). Subjects participated in Taekwondo exercise training for 8 weeks. They underwent to Taekwondo exercise training for 85 minutes per day, 5 times a week at RPE of 11~15. The taekwondo ex...

  16. Brain-derived neurotrophic factor gene transfection promotes neuronal repair and neurite regeneration after diffuse axonal injury

    Institute of Scientific and Technical Information of China (English)

    Yin Yu; Chao Du; Xingli Zhao; Jiajia Shao; Qiang Shen; Tao Jiang; Wei Wu; Dong Zhu; Yu Tian; Yongchuan Guo

    2011-01-01

    This study sought to assess the potential of brain-derived neurotrophic factor (BDNF) to promote neuronal repair and regeneration in rats with diffuse axonal injury, and to examine the accompanying neurobiological changes. BDNF gene transfection reduced the severity of the pathological changes associated with diffuse axonal injury in cortical neurons of the frontal lobe and increased neurofilament protein expression. These findings demonstrate that BDNF can effectively promote neuronal repair and neurite regeneration after diffuse axonal injury.

  17. An Association Study of the Brain-Derived Neurotrophic Factor Val66Met Polymorphism and Amphetamine Response

    OpenAIRE

    Brody A Flanagin; Cook, Edwin H.; de Wit, Harriet

    2006-01-01

    Although genetic factors are known to be important in addiction, no candidate genes have yet been consistently linked to drug use or abuse. Brain-derived neurotrophic factor (BDNF), which has been implicated in the behavioral response to psychomotor stimulants and potentiates neurotransmitters that are strongly linked to addiction, is a logical candidate gene to study. Using a drug challenge approach, we tested for association between BDNF G196A (val66met) genotype and subjective responses to...

  18. Neuroprotective effects of brain-derived neurotrophic factor in rodent and primate models of Alzheimer’s disease

    OpenAIRE

    Nagahara, Alan H.; Merrill, David A.; Coppola, Giovanni; Tsukada, Shingo; Schroeder, Brock E; Shaked, Gideon M.; Wang, Ling; Blesch, Armin; Kim, Albert; Conner, James M; Rockenstein, Edward; Chao, Moses V.; Koo, Edward H.; Geschwind, Daniel; Masliah, Eliezer

    2009-01-01

    Profound neuronal dysfunction in the entorhinal cortex contributes to early loss of short-term memory in Alzheimer’s disease1–3. Here we show broad neuroprotective effects of entorhinal brain-derived neurotrophic factor (BDNF) administration in several animal models of Alzheimer’s disease, with extension of therapeutic benefits into the degenerating hippocampus. In amyloid-transgenic mice, BDNF gene delivery, when administered after disease onset, reverses synapse loss, partially normalizes a...

  19. A peptide derived from the CD loop-D helix region of ciliary neurotrophic factor (CNTF) induces neuronal differentiation and survival by binding to the leukemia inhibitory factor (LIF) receptor and common cytokine receptor chain gp130

    DEFF Research Database (Denmark)

    Rathje, Mette; Pankratova, Stanislava; Nielsen, Janne; Gotfryd, Kamil; Bock, Elisabeth; Berezin, Vladimir

    2011-01-01

    Ciliary neurotrophic factor (CNTF) induces neuronal differentiation and promotes the survival of various neuronal cell types by binding to a receptor complex formed by CNTF receptor a (CNTFRa), gp130, and the leukemia inhibitory factor (LIF) receptor (LIFR). The CD loop-D helix region of CNTF has...... that these receptors are involved in the effects of cintrofin. The C-terminal part of the peptide, corresponding to the D helix region of CNTF, was shown to be essential for the neuritogenic action of the peptide. CNTF and LIF induced neurite outgrowth in CGNs plated on laminin-coated slides. On...... uncoated slides, CNTF and LIF had no neuritogenic effect but were able to inhibit cintrofin-induced neuronal differentiation, indicating that cintrofin and cytokines compete for the same receptors. In addition, cintrofin induced the phosphorylation of STAT3, Akt, and ERK, indicating that it exerts cell...

  20. The Impacts of Swimming Exercise on Hippocampal Expression of Neurotrophic Factors in Rats Exposed to Chronic Unpredictable Mild Stress

    Directory of Open Access Journals (Sweden)

    Pei Jiang

    2014-01-01

    Full Text Available Depression is associated with stress-induced neural atrophy in limbic brain regions, whereas exercise has antidepressant effects as well as increasing hippocampal synaptic plasticity by strengthening neurogenesis, metabolism, and vascular function. A key mechanism mediating these broad benefits of exercise on the brain is induction of neurotrophic factors, which instruct downstream structural and functional changes. To systematically evaluate the potential neurotrophic factors that were involved in the antidepressive effects of exercise, in this study, we assessed the effects of swimming exercise on hippocampal mRNA expression of several classes of the growth factors (BDNF, GDNF, NGF, NT-3, FGF2, VEGF, and IGF-1 and peptides (VGF and NPY in rats exposed to chronic unpredictable mild stress (CUMS. Our study demonstrated that the swimming training paradigm significantly induced the expression of BDNF and BDNF-regulated peptides (VGF and NPY and restored their stress-induced downregulation. Additionally, the exercise protocol also increased the antiapoptotic Bcl-xl expression and normalized the CUMS mediated induction of proapoptotic Bax mRNA level. Overall, our data suggest that swimming exercise has antidepressant effects, increasing the resistance to the neural damage caused by CUMS, and both BDNF and its downstream neurotrophic peptides may exert a major function in the exercise related adaptive processes to CUMS.

  1. The impacts of swimming exercise on hippocampal expression of neurotrophic factors in rats exposed to chronic unpredictable mild stress.

    Science.gov (United States)

    Jiang, Pei; Dang, Rui-Li; Li, Huan-De; Zhang, Li-Hong; Zhu, Wen-Ye; Xue, Ying; Tang, Mi-Mi

    2014-01-01

    Depression is associated with stress-induced neural atrophy in limbic brain regions, whereas exercise has antidepressant effects as well as increasing hippocampal synaptic plasticity by strengthening neurogenesis, metabolism, and vascular function. A key mechanism mediating these broad benefits of exercise on the brain is induction of neurotrophic factors, which instruct downstream structural and functional changes. To systematically evaluate the potential neurotrophic factors that were involved in the antidepressive effects of exercise, in this study, we assessed the effects of swimming exercise on hippocampal mRNA expression of several classes of the growth factors (BDNF, GDNF, NGF, NT-3, FGF2, VEGF, and IGF-1) and peptides (VGF and NPY) in rats exposed to chronic unpredictable mild stress (CUMS). Our study demonstrated that the swimming training paradigm significantly induced the expression of BDNF and BDNF-regulated peptides (VGF and NPY) and restored their stress-induced downregulation. Additionally, the exercise protocol also increased the antiapoptotic Bcl-xl expression and normalized the CUMS mediated induction of proapoptotic Bax mRNA level. Overall, our data suggest that swimming exercise has antidepressant effects, increasing the resistance to the neural damage caused by CUMS, and both BDNF and its downstream neurotrophic peptides may exert a major function in the exercise related adaptive processes to CUMS. PMID:25477997

  2. Bone marrow stromal cell : mediated neuroprotection for spinal cord repair

    NARCIS (Netherlands)

    Ritfeld, Gaby Jane

    2014-01-01

    Currently, there is no treatment available that restores anatomy and function after spinal cord injury. This thesis explores transplantation of bone marrow-derived mesenchymal stem cells (bone marrow stromal cells; BMSCs) as a therapeutic approach for spinal cord repair. BMSCs secrete neurotrophic f

  3. [Hematopoietic growth factor EPO has neuro-protective and neuro-trophic effects--review].

    Science.gov (United States)

    Zhou, Zhuo-Yan; Yang, Mo; Fok, Tai-Fai

    2005-04-01

    Erythropoietin (EPO) is an acidic glycoprotein that was first detected as a hematopoietic factor and its synthesis is triggered in response to cellular hypoxia-sensing. EPO binds to type I cytokine receptors, which associate with the non-receptor tyrosine kinase Jak2, and thereby activate Stat 5a/5b, Ras/MAPK, and PI3-K/Akt signaling pathways. The recent discovery shows that there is a specific EPO/EPO-receptor system in the central nervous system (CNS), independently of the haematopoietic system. Hypoxia and anemia can up-regulate EPO/EPOR expressions in the CNS. Further studies demonstrate that EPO has substantial neuro-protective effects and acts as a neurotrophic factor on central cholinergic neurons, influencing their differentiation and regeneration. EPO also exerts neuro-protective activities in different models of brain damage in vivo and in vitro, such as hypoxia, cerebral ischaemia and sub-arachnoid haemorrhage. EPO may also be involved in synaptic plasticity via the inhibition or stimulation of various neurotransmitters. Therefore, human recombinant EPO that activate its receptors in the central nervous system might be utilized in the future clinical practice involving neuroprotection and brain repair. PMID:15854305

  4. Brain derived neurotrophic factor (BDNF contributes to the pain hypersensitivity following surgical incision in the rats

    Directory of Open Access Journals (Sweden)

    Zhang Jian-Yi

    2008-07-01

    Full Text Available Abstract Background The pathogenic role of brain derived neurotrophic factor (BDNF in the incisional pain is poorly understood. The present study explores the role of the BDNF in the incision-induced pain hypersensitivity. Methods A longitudinal incision was made in one plantar hind paw of isoflurane-anesthetized rats. Dorsal root ganglias (DRG and spinal cords were removed at various postoperative times (1–72 h. Expression pattern of BDNF was determined by immunohistochemistry and double-labeling immunofluorescence. Lidocaine-induced blockade of sciatic nerve function was used to determine the importance of afferent nerve activity on BDNF expression in the DRG and spinal cord after incision. BDNF antibody was administered intrathecally (IT or intraperitoneal (IP to modulate the spinal BDNF or peripheral BDNF after incision. Results After hind-paw incision, the BDNF was upregulated in the ipsilateral lumbar DRG and spinal cord whereas thoracic BDNF remained unchanged in response to incision. The upregulated BDNF was mainly expressed in the large-sized neurons in DRG and the neurons and the primary nerve terminals in the spinal cord. Sciatic nerve blockade prevented the increase of BDNF in the DRG and spinal cord. IT injection of BDNF antibody greatly inhibited the mechanical allodynia induced by incision whereas IP administration had only marginal effect. Conclusion The present study showed that incision induced the segmental upregulation of BDNF in the DRG and spinal cord through somatic afferent nerve transmission, and the upregulated BDNF contributed to the pain hypersensitivity induced by surgical incision.

  5. Effects of Brain-Derived Neurotrophic Factor on Local Inflammation in Experimental Stroke of Rat

    Directory of Open Access Journals (Sweden)

    Yongjun Jiang

    2010-01-01

    Full Text Available This study was aimed to investigate whether brain-derived neurotrophic factor (BDNF can modulate local cerebral inflammation in ischemic stroke. Rats were subjected to ischemia by occluding the right middle cerebral artery (MCAO for 2 hours. Rats were randomized as control, BDNF, and antibody groups. The local inflammation was evaluated on cellular, cytokine, and transcription factor levels with immunofluorescence, enzyme-linked immunosorbent assay, real-time qPCR, and electrophoretic mobility shift assay, respectively. Exogenous BDNF significantly improved motor-sensory, sensorimotor function, and vestibulomotor function, while BDNF did not decrease the infarct volume. Exogenous BDNF increased the number of both activated and phagocytotic microglia in brain. BDNF upregulated interleukin10 and its mRNA expression, while downregulated tumor necrosis factor α and its mRNA expression. BDNF also increased DNA-binding activity of nuclear factor-kappa B. BDNF antibody, which blocked the activity of endogenous BDNF, showed the opposite effect of exogenous BDNF. Our data indicated that BDNF may modulate local inflammation in ischemic brain tissues on the cellular, cytokine, and transcription factor levels.

  6. Overexpression of brain-derived neurotrophic factor in the hippocampus protects against post-stroke depression

    Institute of Scientific and Technical Information of China (English)

    Hao-hao Chen; Ning Zhang; Wei-yun Li; Ma-rong Fang; Hui Zhang; Yuan-shu Fang; Ming-xing Ding; Xiao-yan Fu

    2015-01-01

    Post-stroke depression is associated with reduced expression of brain-derived neurotrophic factor (BDNF). In this study, we evaluated whether BDNF overexpression affects depression-like behavior in a rat model of post-stroke depression. The middle cerebral artery was occluded to produce a model of focal cerebral ischemia. These rats were then subjected to isolation-housing combined with chronic unpredictable mild stress to generate a model of post-stroke depression. ABDNF gene lentiviral vector was injected into the hippocampus. At 7 days after injection, western blot assay and real-time quantitative PCR revealed that BDNF expression in the hippo-campus was increased in depressive rats injected with BDNF lentivirus compared with depressive rats injected with control vector. Furthermore, sucrose solution consumption was higher, and horizontal and vertical movement scores were increased in the open ifeld test in these rats as well. These ifndings suggest that BDNF overexpression in the hippocampus of post-stroke depressive rats alleviates depression-like behaviors.

  7. Circulating levels of ciliary neurotrophic factor in normal pregnancy and preeclampsia

    Directory of Open Access Journals (Sweden)

    Akahori,Yoichiro

    2010-04-01

    Full Text Available

    Ciliary neurotrophic factor (CNTF has been shown to decrease food intake in mouse models of obesity and to improve insulin sensitivity. It is well known that tight regulation of glucose metabolism is essential for successful gestational outcomes (e.g. fetal growth, and that abnormal insulin resistance is associated with preeclampsia (PE. To investigate the possibility that CNTF might be involved in the regulation of insulin resistance during pregnancy, circulating levels of CNTF were assessed in non-pregnant, normal pregnant, postpartum, and pregnant women with PE. Sera from healthy non-pregnant women (n10, pregnant women (n30:1st trimester;n10, 2nd trimester n10;3rd trimester;n10, postpartum women (n10, and patients with PE (n11 were studied with Western blotting. Circulating CNTF was detected by Western blotting, and the levels of CNTF in pregnant women were decreased as compared with those in non-pregnant women, and tended to decrease as pregnancy progressed. A significant decrease was found in PE as compared with normal pregnancy. Circulating CNTF might be associated with physiological and abnormal insulin resistance during pregnancy.

  8. An Overview of Brain-Derived Neurotrophic Factor and Implications for Excitotoxic Vulnerability in the Hippocampus

    Directory of Open Access Journals (Sweden)

    Patrick S. Murray

    2011-01-01

    Full Text Available The present paper examines the nature and function of brain-derived neurotrophic factor (BDNF in the hippocampal formation and the consequences of changes in its expression. The paper focuses on literature describing the role of BDNF in hippocampal development and neuroplasticity. BDNF expression is highly sensitive to developmental and environmental factors, and increased BDNF signaling enhances neurogenesis, neurite sprouting, electrophysiological activity, and other processes reflective of a general enhancement of hippocampal function. Such increases in activity may mediate beneficial effects such as enhanced learning and memory. However, the increased activity also comes at a cost: BDNF plasticity renders the hippocampus more vulnerable to hyperexcitability and/or excitotoxic damage. Exercise dramatically increases hippocampal BDNF levels and produces behavioral effects consistent with this phenomenon. In analyzing the literature regarding exercise-induced regulation of BDNF, this paper provides a theoretical model for how the potentially deleterious consequences of BDNF plasticity may be modulated by other endogenous factors. The peptide galanin may play such a role by regulating hippocampal excitability.

  9. Brain-derived neurotrophic factor into adult neocortex strengthens a taste aversion memory.

    Science.gov (United States)

    Martínez-Moreno, Araceli; Rodríguez-Durán, Luis F; Escobar, Martha L

    2016-01-15

    Nowadays, it is known that brain derived neurotrophic-factor (BDNF) is a protein critically involved in regulating long-term memory related mechanisms. Previous studies from our group in the insular cortex (IC), a brain structure of the temporal lobe implicated in acquisition, consolidation and retention of conditioned taste aversion (CTA), demonstrated that BDNF is essential for CTA consolidation. Recent studies show that BDNF-TrkB signaling is able to mediate the enhancement of memory. However, whether BDNF into neocortex is able to enhance aversive memories remains unexplored. In the present work, we administrated BDNF in a concentration capable of inducing in vivo neocortical LTP, into the IC immediately after CTA acquisition in two different conditions: a "strong-CTA" induced by 0.2M lithium chloride i.p. as unconditioned stimulus, and a "weak-CTA" induced by 0.1M lithium chloride i.p. Our results show that infusion of BDNF into the IC converts a weak CTA into a strong one, in a TrkB receptor-dependent manner. The present data suggest that BDNF into the adult insular cortex is sufficient to increase an aversive memory-trace. PMID:26433146

  10. Role of Stress-Related Brain-Derived Neurotrophic Factor (BDNF) in the Rat Submandibular Gland

    International Nuclear Information System (INIS)

    The nerve growth factor (NGF) family comprises NGF, brain-derived neurotrophic factor (BDNF) and neurotrophins (NTs)-3, -4/5, -6 and -7, all of which are collectively referred to as neurotrophins. However, the expression of neurotrophins other than NGF in the salivary gland has not been described in detail. Through interaction with the TrkB receptor, BDNF plays an important role in long-term potentiation. We found that BDNF expression increased within submandibular gland tissue in response to stress, suggesting that the salivary glands are sensitive to stress. In addition, stress caused increases in plasma BDNF derived from the submandibular gland and in TrkB receptor mRNA in the adrenal medulla. Plasma BDNF might activate TrkB receptors in the adrenal medulla during acute stress. The salivary glands are likely to influence not only oral health, but also systemic organs. This review addressed the relationship between hormone-like effects and stress-related BDNF expression in the rat submandibular gland

  11. Decreased serum levels of brain-derived neurotrophic factor in schizophrenic patients with deficit syndrome

    Science.gov (United States)

    Akyol, Esra Soydaş; Albayrak, Yakup; Beyazyüz, Murat; Aksoy, Nurkan; Kuloglu, Murat; Hashimoto, Kenji

    2015-01-01

    Background Brain-derived neurotrophic factor (BDNF) is a well-established neurotrophin that plays a role in the pathophysiology of numerous psychiatric disorders. Many studies have investigated the serum BDNF levels in patients with schizophrenia. However, there are restricted data in the literature that compare the serum BDNF levels in patients with deficit and nondeficit syndromes. In this study, we aimed to compare the serum BDNF levels between schizophrenic patients with deficit or nondeficit syndrome and healthy controls. Methods After fulfilling the inclusion and exclusion criteria, 58 patients with schizophrenia and 36 healthy controls were included in the study. The patients were grouped as deficit syndrome (N=23) and nondeficit syndrome (N=35) according to the Schedule for the Deficit Syndrome. Three groups were compared in terms of the sociodemographic and clinical variants and serum BDNF levels. Results The groups were similar in terms of age, sex, body mass index, and smoking status. The serum BDNF levels in patients with deficit syndrome were significantly lower than those in healthy controls. In contrast, the serum BDNF levels in patients with nondeficit syndrome were similar to those in healthy controls. Conclusion This study suggests that decreased BDNF levels may play a role in the pathophysiology of schizophrenic patients with deficit syndrome. Nonetheless, additional studies using a larger patient sample size are needed to investigate the serum BDNF levels in schizophrenic patients with deficit syndrome. PMID:25848285

  12. Maternal separation produces alterations of forebrain brain-derived neurotrophic factor expression in differently aged rats

    Directory of Open Access Journals (Sweden)

    Qiong eWang

    2015-09-01

    Full Text Available Early postnatal maternal separation (MS can play an important role in the development of psychopathologies during ontogeny. In the present study, we investigated the effects of repeated MS (4 h per day from postnatal day [PND] 1–21 on the brain-derived neurotrophic factor (BDNF expression in the medial prefrontal cortex (mPFC, the nucleus accumbens (NAc and the hippocampus of male and female juvenile (PND 21, adolescent (PND 35 and young adult (PND 56 Wistar rats. The results indicated that MS increased BDNF in the CA1 and the dentate gyrus (DG of adolescent rats as well as in the DG of young adult rats. However, the expression of BDNF in the mPFC in the young adult rats was decreased by MS. Additionally, in the hippocampus, there was decreased BDNF expression with age in both the MS and socially reared rats. However, in the mPFC, the BDNF expression was increased with age in the socially reared rats; nevertheless, the BDNF expression was significantly decreased in the MS young adult rats. In the NAc, the BDNF expression was increased with age in the male NMS rats, and the young adult female MS rats had less BDNF expression than the adolescent female MS rats. The

  13. Circulating brain-derived neurotrophic factor and indices of metabolic and cardiovascular health: data from the Baltimore Longitudinal Study of Aging.

    Directory of Open Access Journals (Sweden)

    Erin Golden

    Full Text Available BACKGROUND: Besides its well-established role in nerve cell survival and adaptive plasticity, brain-derived neurotrophic factor (BDNF is also involved in energy homeostasis and cardiovascular regulation. Although BDNF is present in the systemic circulation, it is unknown whether plasma BDNF correlates with circulating markers of dysregulated metabolism and an adverse cardiovascular profile. METHODOLOGY/PRINCIPAL FINDINGS: To determine whether circulating BDNF correlates with indices of metabolic and cardiovascular health, we measured plasma BDNF levels in 496 middle-age and elderly subjects (mean age approximately 70, in the Baltimore Longitudinal Study of Aging. Linear regression analysis revealed that plasma BDNF is associated with risk factors for cardiovascular disease and metabolic syndrome, regardless of age. In females, BDNF was positively correlated with BMI, fat mass, diastolic blood pressure, total cholesterol, and LDL-cholesterol, and inversely correlated with folate. In males, BDNF was positively correlated with diastolic blood pressure, triglycerides, free thiiodo-thyronine (FT3, and bioavailable testosterone, and inversely correlated with sex-hormone binding globulin, and adiponectin. CONCLUSION/SIGNIFICANCE: Plasma BDNF significantly correlates with multiple risk factors for metabolic syndrome and cardiovascular dysfunction. Whether BDNF contributes to the pathogenesis of these disorders or functions in adaptive responses to cellular stress (as occurs in the brain remains to be determined.

  14. Localization and expression of ciliary neurotrophic factor (CNTF) in postmortem sciatic nerve from patients with motor neuron disease and diabetic neuropathy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, D.A. [Univ. Medical Center, New Orleans, LA (United States); Gross, L.; Wittrock, D.A.; Windebank, A.J. [Mayo Clinic, Rochester, MN (United States)

    1996-08-01

    Ciliary neurotrophic factor (CNTF) is thought to play an important role in the maintenance of the mature motor system. The factor is found most abundantly in myelinating Schwann cells in the adult sciatic nerve. Lack of neuronal growth factors has been proposed as one possible etiology of amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy (SMA). Growth factor replacement therapies are currently being evaluated as a treatment for motor neuron disease. In this report we determined whether the expression of CNTF in sciatic nerve differed in patients with motor neuron disease compared to controls or patients with another form of axonopathy. We identified 8 patients (7 with ALS and 1 with SMA) with motor neuron disease and 6 patients with diabetic motor neuropathy who had autopsy material available. Immunoperoxidase staining showed reduced CNTF expression in nerves of patients with motor neuron disease but not in patients with diabetic motor neuropathy. Decreased CNTF appears be associated with primary motor neuron disease rather than a generalized process of axon loss. This result supports suggestions that CNTF deficiency may be an important factor in the development of motor neuron disease. 20 refs., 4 figs., 1 tab.

  15. The human gene for neurotrophic tyrosine kinase receptor type 2 (NTRK2) is located on chromosome 9 but is not the familial dysautonomia gene

    Energy Technology Data Exchange (ETDEWEB)

    Slaugenhaupt, S.A. [Massachusetts General Hospital, Boston, MA (United States)]|[Harvard Medical School, Boston, MA (United States); Liebert, C.B.; Lucente, D.E. [Massachusetts General Hospital, Boston, MA (United States)] [and others

    1995-02-10

    The neurotrophic tyrosine kinase receptor type 2 (NTRK2) gene is a member of the trk family of tyrosine protein kinases, which encode receptors for the nerve growth factor-related proteins known as neurotrophins. The neurotrophins and their receptors have long been considered candidate genes for familial dysautonomia (FD), a hereditary sensory neuropathy resulting from the congenital loss of both sensory and autonomic neurons. The DYS gene has recently been mapped to human chromosome 9q31-q33, and therefore we set out to determine the chromosomal localization of the candidate gene NTRK2. A mouse trkB probe was hybridized to both somatic cell hybrids containing human chromosome 9 and a human chromosome 9 flow-sorted cosmid library. The human homologue of trkB, NTRK2, was assigned to chromosome 9. To localize the NTRK2 gene further, a dinucleotide repeat polymorphism was identified within a cosmid that contains NTRK2 exon sequences. This marker was genotyped in the CEPH reference pedigrees and places the NTRK2 gene near D9S1 on the proximal long arm of human chromosome 9. The NTRK2 gene is located approximately 22 cm proximal to DYS and shows several recombinants in disease families. Therefore, the NTRK2 gene can now be excluded as a candidate gene for familial dysautonomia. 18 refs., 1 fig.

  16. An experimental platform for studying growth and invasiveness of tumor cells within teratomas derived from human embryonic stem cells

    OpenAIRE

    Tzukerman, Maty; Rosenberg, Tzur; Ravel, Yael; Reiter, Irena; Coleman, Raymond; Skorecki, Karl

    2003-01-01

    There is currently no available experimental system wherein human cancer cells can be grown in the context of a mixed population of normal differentiated human cells for testing biological aspects of cancer cell growth (e.g., tumor cell invasion and angiogenesis) or response to anti-cancer therapies. When implanted into immunocompromised mice, human embryonic stem cells develop teratomas containing complex structures comprising differentiated cell types representing the major germ line-derive...

  17. Differential expression of sphingolipids in MRP1 overexpressing HT29 cells

    NARCIS (Netherlands)

    Kok, JW; Veldman, Robert; Klappe, K; Koning, H; Filipeanu, Catalin M.; Muller, Michael

    2000-01-01

    We have obtained a novel multidrug resistant cell line, derived from HT29 G(+) human colon carcinoma cells, by selection with gradually increasing concentrations of the anti-mitotic, microtubule-disrupting agent colchicine. This HT29(col) cell line displayed a 25-fold increase in colchicine resistan

  18. Short term memory, physical fitness, and serum brain-derived neurotrophic factor in obese adolescents

    Directory of Open Access Journals (Sweden)

    Rini Rossanti

    2015-10-01

    Full Text Available Background Obesity in adolescents is a major health problem and has been associated with low academic achievement. Brainderived neurotrophic factor (BDNF, a neurotrophin, plays a role in appetite suppression and memory, and its secretion is enhanced by physical activity. This neurotrophin may be associated with academic achievement in obese. Objective To compare physical fitness and serum BDNF levels to short term memory levels in obese adolescents aged 10–14 years. Methods This comparative, cross-sectional, analytic study was carried out on 40 elementary and high school students in Bandung, West Java, who were recruited by stratified random sampling. Short term memory was assessed by a psychologist using the Wechsler Intelligence Scale for Children-III Digit Span test (WISC-III Digit Span. Physical fitness was assessed by a clinical exercise physiologist using the Asian Committee on the Standardization of Physical Fitness Test (ACSPFT. Serum BDNF levels were measured by ELISA test in a certified laboratory. ANOVA test was used to assess for a correlation between serum BDNF concentration and short term memory, as well as between physical fitness level and short term memory. Pearson’s correlation test was used to analyze for a correlation between serum BDNF and physical fitness levels. Results The majority of subjects were in the physical fitness categories of moderate or poor. Subjects had a mean BDNF level of 44,227.8 (SD 10,359 pg/mL. There was no statistically significant difference in physical fitness with either serum BDNF or with short term memory levels (P=0.139 and P=0.383, respectively. Also, no correlation was determined between serum BDNF and physical fitness levels (r=0.222; P=0.169. Conclusion In obese adolescents, short term memory levels are not significantly different between physical fitness levels nor between serum BDNF levels.

  19. Short term memory, physical fitness, and serum brain-derived neurotrophic factor in obese adolescents

    Directory of Open Access Journals (Sweden)

    Rini Rossanti

    2015-09-01

    Full Text Available Background Obesity in adolescents is a major health problem and has been associated with low academic achievement. Brain-derived neurotrophic factor (BDNF, a neurotrophin, plays a role in appetite suppression and memory, and its secretion is enhanced by physical activity. This neurotrophin may be associated with academic achievement in obese. Objective To compare physical fitness and serum BDNF levels to short term memory levels in obese adolescents aged 10–14 years. Methods This comparative, cross-sectional, analytic study was carried out on 40 elementary and high school students in Bandung, West Java, who were recruited by stratified random sampling. Short term memory was assessed by a psychologist using the Wechsler Intelligence Scale for Children-III Digit Span test (WISC-III Digit Span. Physical fitness was assessed by a clinical exercise physiologist using the Asian Committee on the Standardization of Physical Fitness Test (ACSPFT. Serum BDNF levels were measured by ELISA test in a certified laboratory. ANOVA test was used to assess for a correlation between serum BDNF concentration and short term memory, as well as between physical fitness level and short term memory. Pearson’s correlation test was used to analyze for a correlation between serum BDNF and physical fitness levels. Results The majority of subjects were in the physical fitness categories of moderate or poor. Subjects had a mean BDNF level of 44,227.8 (SD 10,359 pg/mL. There was no statistically significant difference in physical fitness with either serum BDNF or with short term memory levels (P=0.139 and P=0.383, respectively. Also, no correlation was determined between serum BDNF and physical fitness levels (r=0.222; P=0.169. Conclusion In obese adolescents, short term memory levels are not significantly different between physical fitness levels nor between serum BDNF levels.

  20. Attenuated brain-derived neurotrophic factor and hypertrophic remodelling: the SABPA study.

    Science.gov (United States)

    Smith, A J; Malan, L; Uys, A S; Malan, N T; Harvey, B H; Ziemssen, T

    2015-01-01

    Brain-derived neurotrophic factor (BDNF) has been linked to neurological pathologies, but its role in cardiometabolic disturbances is limited. We aimed to assess the association between serum BDNF levels and structural endothelial dysfunction (ED) as determined by cross-sectional wall area (CSWA) and albumin/creatinine ratio (ACR) in black Africans. Ambulatory blood pressure (BP) and ultrasound CSWA values were obtained from 82 males and 90 females. Fasting blood and 8 h overnight urine samples were collected to determine serum BDNF and cardiometabolic risk markers, that is, glycated haemoglobin (HbA1c), lipids, inflammation and ACR. BDNF median split × gender interaction effects for structural ED justified stratification of BDNF into low and high (⩽/>1.37 ng ml(-1)) gender groups. BDNF values (0.86-1.98 ng ml(-1)) were substantially lower than reference ranges (6.97-42.6 ng ml(-1)) in the African gender cohort, independent of age and body mass index. No relationship was revealed between BDNF and renal function and was opposed by an inverse relationship between BDNF and CSWA (r=-0.17; P=0.03) in the African cohort. Linear regression analyses revealed a positive relationship between systolic BP and structural remodelling in the total cohort and low-BDNF gender groups. In the high-BDNF females, HbA1C was associated with structural remodelling. Attenuated or possible downregulated BDNF levels were associated with hypertrophic remodelling, and may be a compensatory mechanism for the higher BP in Africans. In addition, metabolic risk and hypertrophic remodelling in women with high BDNF underpin different underlying mechanisms for impaired neurotrophin homeostasis in men and women. PMID:24898921

  1. Exenatide enhances cognitive performance and upregulates neurotrophic factor gene expression levels in diabetic mice.

    Science.gov (United States)

    Gumuslu, Esen; Mutlu, Oguz; Celikyurt, Ipek K; Ulak, Guner; Akar, Furuzan; Erden, Faruk; Ertan, Merve

    2016-08-01

    Exenatide is a potent and selective agonist for the GLP-1 (glucagon-like peptide-1) receptor. Recent studies are focused on the effects of GLP-1 analogues on hippocampal neurogenesis, cognition, learning and memory functions. The aim of this study was to assess the effects of chronic exenatide treatment (0.1 μg/kg, s.c, twice daily for 2 weeks) on spatial memory functions by using the modified elevated plus maze (mEPM) test and emotional memory functions by using the passive avoidance (PA) test in streptozotocin/nicotinamide (STZ-NA)-induced diabetic mice. As the genes involved in neurite remodelling are among the primary targets of regulation, the effects of diabetes and chronic administration of exenatide on brain-derived neurotrophic factor (BDNF) and cyclic adenosine monophosphate (cAMP) response element binding protein (CREB) messenger ribonucleic acid (mRNA) levels in the hippocampus of mice were also determined using quantitative real-time polymerase chain reaction (RT-PCR). This study revealed that in the mEPM and PA tests, type-2 diabetes-induced mice exhibited significant impairment of learning and memory which were ameliorated by GLP-1 receptor agonist exenatide. Quantitative RT-PCR revealed that CREB and BDNF gene expression levels were downregulated in diabetic mice, and these alterations were increased by exenatide treatment. Since, exenatide improves cognitive ability in STZ/NA-induced diabetic mice and activates molecular mechanisms of memory storage in response to a learning experience, it may be a candidate for alleviation of mood and cognitive disorder. PMID:26935863

  2. The relationship between ciliary neurotrophic factor (CNTF genotype and motor unit physiology: preliminary studies

    Directory of Open Access Journals (Sweden)

    Ferrell Robert

    2005-09-01

    Full Text Available Abstract Background Ciliary neurotrophic factor (CNTF is important for neuronal and muscle development, and genetic variation in the CNTF gene has been associated with muscle strength. The effect of CNTF on nerve development suggests that CNTF genotype may be associated with force production via its influence on motor unit size and firing patterns. The purpose of this study is to examine whether CNTF genotype differentially affects motor unit activation in the vastus medialis with increasing isometric force during knee extension. Results Sixty-nine healthy subjects were genotyped for the presence of the G and A (null alleles in the CNTF gene (n = 57 G/G, 12 G/A. They were tested using a dynamometer during submaximal isometric knee extension contractions that were from 10–50% of their maximal strength. During the contractions, the vastus medialis was studied using surface and intramuscular electromyography with spiked triggered averaging to assess surface-detected motor unit potential (SMUP area and mean firing rates (mFR from identified motor units. CNTF genotyping was performed using standard PCR techniques from DNA obtained from leucocytes of whole blood samples. The CNTF G/A genotype was associated with smaller SMUP area motor units and lower mFR at higher force levels, and fewer but larger units at lower force levels than G/G homozygotes. The two groups used motor units with different size and activation characteristics with increasing force generation. While G/G subjects tended to utilize larger motor units with increasing force, G/A subjects showed relatively less increase in size by using relatively larger units at lower force levels. At higher force levels, G/A subjects were able to generate more force per motor unit size suggesting more efficient motor unit function with increasing muscle force. Conclusion Differential motor unit responses were observed between CNTF genotypes at force levels utilized in daily activities.

  3. Brain-derived neurotrophic factor modulates auditory function in the hearing cochlea.

    Science.gov (United States)

    Sly, David J; Hampson, Amy J; Minter, Ricki L; Heffer, Leon F; Li, Jack; Millard, Rodney E; Winata, Leon; Niasari, Allen; O'Leary, Stephen J

    2012-02-01

    Neurotrophins prevent spiral ganglion neuron (SGN) degeneration in animal models of ototoxin-induced deafness and may be used in the future to improve the hearing of cochlear implant patients. It is increasingly common for patients with residual hearing to undergo cochlear implantation. However, the effect of neurotrophin treatment on acoustic hearing is not known. In this study, brain-derived neurotrophic factor (BDNF) was applied to the round window membrane of adult guinea pigs for 4 weeks using a cannula attached to a mini-osmotic pump. SGN survival was first assessed in ototoxically deafened guinea pigs to establish that the delivery method was effective. Increased survival of SGNs was observed in the basal and middle cochlear turns of deafened guinea pigs treated with BDNF, confirming that delivery to the cochlea was successful. The effects of BDNF treatment in animals with normal hearing were then assessed using distortion product otoacoustic emissions (DPOAEs), pure tone, and click-evoked auditory brainstem responses (ABRs). DPOAE assessment indicated a mild deficit of 5 dB SPL in treated and control groups at 1 and 4 weeks after cannula placement. In contrast, ABR evaluation showed that BDNF lowered thresholds at specific frequencies (8 and 16 kHz) after 1 and 4 weeks posttreatment when compared to the control cohort receiving Ringer's solution. Longer treatment for 4 weeks not only widened the range of frequencies ameliorated from 2 to 32 kHz but also lowered the threshold by at least 28 dB SPL at frequencies ≥16 kHz. BDNF treatment for 4 weeks also increased the amplitude of the ABR response when compared to either the control cohort or prior to treatment. We show that BDNF applied to the round window reduces auditory thresholds and could potentially be used clinically to protect residual hearing following cochlear implantation. PMID:22086147

  4. Correlation of brain-derived neurotrophic factor to cognitive impairment following traumatic brain injury in rats

    Institute of Scientific and Technical Information of China (English)

    Dezhi Kang; Zhang Guo

    2008-01-01

    BACKGROUND: In vitro and in vivo studies have confirmed that brain-derived neurotrophic factor (BDNF) can promote survival and differentiation of cholinergic, dopaminergic and motor neurons, and axonal regeneration. BDNF has neuroprotective effects on the nervous system. OBJECTIVE: To explore changes in BDNF expression and cognitive function in rats after brain injury DESIGN, TIME AND SETTING: The neuropathology experiment was performed at the Second Research Room, Department of Neurosurgery, Fujian Medical University (China) from July 2007 to July 2008. MATERIALS: A total of 72 healthy, male, Sprague Dawley, rats were selected for this study. METHODS: Rat models of mild and moderate traumatic brain injury were created by percussion, according to Feeney's method (n = 24, each group). A bone window was made in rats from the sham operation group (n = 24), but no attack was conducted. MAIN OUTCOME MEASURES: At days 1,2, 4 and 7 following injury, BDNF expression in the rat frontal lobe cortex, hippocampus and basal forebrain was examined by immunohistochemistry (streptavidin-biotin-peroxidase complex method). Changes in rat cognitive function were assessed by the walking test, balance-beam test and memory function detection. RESULTS: Cognitive impairment was aggravated at day 2, and recovered to normal at days 3 and 7 in rats from the mild and moderate traumatic brain injury groups. BDNF expression in the rat frontal lobe cortex, hippocampus and basal forebrain was increased at 1 day, decreased at day 2, and then gradually increased in the mild and moderate traumatic brain injury groups. BDNF expression was greater in rats from the moderate traumatic brain injury group than in the sham operation and mild traumatic brain injury groups (P < 0.05). CONCLUSION: BDNF expression in the rat frontal lobe cortex, hippocampus and basal forebrain is correlated to cognitive impairment after traumatic brain injury. BDNF has a protective effect on cognitive function in rats

  5. Brain-derived neurotrophic factor signaling is altered in the forebrain of Engrailed-2 knockout mice.

    Science.gov (United States)

    Zunino, G; Messina, A; Sgadò, P; Baj, G; Casarosa, S; Bozzi, Y

    2016-06-01

    Engrailed-2 (En2), a homeodomain transcription factor involved in regionalization and patterning of the midbrain and hindbrain regions has been associated to autism spectrum disorders (ASDs). En2 knockout (En2(-/-)) mice show ASD-like features accompanied by a significant loss of GABAergic subpopulations in the hippocampus and neocortex. Brain-derived neurotrophic factor (BDNF) is a crucial factor for the postnatal development of forebrain GABAergic neurons, and altered GABA signaling has been hypothesized to underlie the symptoms of ASD. Here we sought to determine whether interneuron loss in the En2(-/-) forebrain might be related to altered expression of BDNF and its signaling receptors. We first evaluated the expression of different BDNF mRNA isoforms in the neocortex and hippocampus of wild-type (WT) and En2(-/-) mice. Quantitative RT-PCR showed a marked down-regulation of several splicing variants of BDNF mRNA in the neocortex but not hippocampus of adult En2(-/-) mice, as compared to WT controls. Accordingly, levels of mature BDNF protein were lower in the neocortex but not hippocampus of En2(-/-) mice, as compared to WT. Increased levels of phosphorylated TrkB and decreased levels of p75 receptor were also detected in the neocortex of mutant mice. Accordingly, the expression of low density lipoprotein receptor (LDLR) and RhoA, two genes regulated via p75 was significantly altered in forebrain areas of mutant mice. These data indicate that BDNF signaling alterations might be involved in the anatomical changes observed in the En2(-/-) forebrain and suggest a pathogenic role of altered BDNF signaling in this mouse model of ASD. PMID:26987954

  6. The effect of regular aerobic exercise on urinary brain-derived neurotrophic factor in children

    Directory of Open Access Journals (Sweden)

    Yunita Fediani

    2014-11-01

    Full Text Available Background Nervous system development in early life influences the quality of cognitive ability during adulthood. Neuronal development and neurogenesis are highly influenced by neurotrophins. The most active neurotrophin is brain-derived neurotrophic factor (BDNF. Physical activity has a positive effect on cognitive function. However, few experimental studies have been done on children to assess the effect of aerobic regular exercise on BDNF levels. Objective To assess the effect of regular aerobic exercise on urinary BDNF levels in children. Methods This clinical study was performed in 67 children aged 6-8 years in Palembang. The intervention group (n=34 engaged in aerobic gymnastics three times per week for 8 weeks, while the control group (n=33 engaged in gymnastic only once per week. Measurements of urinary BDNF were performed on both groups before and after intervention. Mann-Whitney and Wilcoxon rank tests were used to analyze the differences between groups. Results There was no difference in urinary BDNF levels between the two groups prior to the intervention. After intervention, the mean urinary BDNF levels were significantly higher in the intervention group than in the control group, 230.2 (SD 264.4 pg/mL vs. 88.0 (SD 35.4 pg/mL, respectively (P=0.027. We also found that engaging in aerobic gymnastics significantly increased urinary BDNF levels from baseline in both groups (P=0.001. Conclusion Regular aerobic exercise can increase urinary BDNF levels and potentially improve cognitive function. Aerobic exercise should be a routine activity in school curriculums in combination with the learning process to improve children’s cognitive ability.[Paediatr Indones. 2014;54:351-7.].

  7. Acute aerobic exercise increases brain-derived neurotrophic factor levels in elderly with Alzheimer's disease.

    Science.gov (United States)

    Coelho, Flávia Gomes de Melo; Vital, Thays Martins; Stein, Angelica Miki; Arantes, Franciel José; Rueda, André Veloso; Camarini, Rosana; Teodorov, Elizabeth; Santos-Galduróz, Ruth Ferreira

    2014-01-01

    Studies indicate the involvement of brain-derived neurotrophic factor (BDNF) in the pathogenesis of Alzheimer's disease (AD). Decreased BDNF levels may constitute a lack of trophic support and contribute to cognitive impairment in AD. The benefits of acute and chronic physical exercise on BDNF levels are well-documented in humans, however, exercise effects on BDNF levels have not been analyzed in older adults with AD. The aim of this study was to investigate the effects of acute aerobic exercise on BDNF levels in older adults with AD and to verify associations among BDNF levels, aerobic fitness, and level of physical activity. Using a controlled design, twenty-one patients with AD (76.3 ± 6.2 years) and eighteen healthy older adults (74.6 ± 4.7 years) completed an acute aerobic exercise. The outcomes included measures of BDNF plasma levels, aerobic fitness (treadmill grade, time to exhaustion, VO2, and maximal lactate) and level of physical activity (Baecke Questionnaire Modified for the Elderly). The independent t-test shows differences between groups with respect to the BDNF plasma levels at baseline (p = 0.04; t = 4.53; df = 37). In two-way ANOVA, a significant effect of time was found (p = 0.001; F = 13.63; df = 37), the aerobic exercise significantly increased BDNF plasma levels in AD patients and healthy controls. A significant correlation (p = 0.04; r = 0.33) was found between BDNF levels and the level of physical activity. The results of our study suggest that aerobic exercise increases BDNF plasma levels in patients with AD and healthy controls. In addition to that, BDNF levels had association with level of physical activity. PMID:24164734

  8. Brain-derived neurotrophic factor Val66Met polymorphism and alcohol-related phenotypes.

    Science.gov (United States)

    Nedic, Gordana; Perkovic, Matea Nikolac; Sviglin, Korona Nenadic; Muck-Seler, Dorotea; Borovecki, Fran; Pivac, Nela

    2013-01-10

    Alcoholism is a chronic psychiatric disorder affecting neural pathways that regulate motivation, stress, reward and arousal. Brain-derived neurotrophic factor (BDNF) regulates mood, response to stress and interacts with neurotransmitters and stress systems involved in reward pathways and addiction. Aim of the study was to evaluate the association between a single nucleotide polymorphism (BDNF Val66Met or rs6265) and alcohol related phenotypes in Caucasian patients. In ethnically homogenous Caucasian subjects of the Croatian origin, the BDNF Val66Met genotype distribution was determined in 549 male and 126 female patients with alcohol dependence and in 655 male and 259 female healthy non-alcoholic control subjects. Based on the structured clinical interview, additional detailed clinical interview, the Brown-Goodwin Scale, the Hamilton Rating Scale for Depression and the Clinical Global Impression scores, alcoholic patients were subdivided into those with or without comorbid depression, aggression, delirium tremens, withdrawal syndrome, early/late onset of alcohol abuse, prior suicidal attempt during lifetime, current suicidal behavior, and severity of alcohol dependence. The results showed no significant association between BDNF Val66Met variants and alcohol dependence and/or any of the alcohol related phenotypes in either Caucasian women, or men, with alcohol dependence. There are few limitations of the study. The overall study sample size was large (N=1589) but not well-powered to detect differences in BDNF Val66Met genotype distribution between studied groups. Healthy control women were older than female alcoholic patients. Only one BDNF polymorphism (rs6265) was studied. In conclusion, these data do not support the view that BDNF Val66Met polymorphism correlates with the specific alcohol related phenotypes in ethnically homogenous medication-free Caucasian subjects with alcohol dependence. PMID:23023098

  9. Gender differences in platelet brain derived neurotrophic factor in patients with cardiovascular disease and depression.

    Science.gov (United States)

    Williams, Marlene S; Ngongang, Chelsea K; Ouyang, Pam; Betoudji, Fabrice; Harrer, Christine; Wang, Nae-Yuh; Ziegelstein, Roy C

    2016-07-01

    Women have a higher prevalence of depression compared to men. Serum levels of Brain-derived neurotrophic factor (BDNF) are decreased in depression. BDNF may also have a protective role in the pathogenesis of coronary artery disease (CAD) or events. We examined whether there are gender differences in BDNF levels in patients with stable CAD and comorbid depression. We enrolled 37 patients (17 women) with stable CAD with and without depression from a single medical center. All patients had depression assessment with the Beck Depression Inventory-II questionnaire. Both plasma and platelet BDNF were measured in all patients using a standard ELISA method. Platelet BDNF levels were higher than plasma BDNF levels in the entire group (5903.9 ± 1915.6 vs 848.5 ± 460.5 pg/ml, p depression (BDI-II depression (n = 8, 7382.8 ± 1633.1 vs 4811.7 ± 1642.3 pg/ml, p = 0.007). Women with no or minimal depression (BDI depression (n = 18, 6900.2 ± 1486.6 vs 4972.9 ± 1568.9 pg/ml, p = 0.001). The plasma BDNF levels were similar between men and women in all categories of depression. In conclusion, women with stable CAD have increased platelet BDNF levels when compared to men with stable CAD regardless of their level of depression. Sex specific differences in BDNF could possibly indicate differences in factors linking platelet activation and depression in men and women. PMID:27082490

  10. Neuro-peptide treatment with Cerebrolysin improves the survival of neural stem cell grafts in an APP transgenic model of Alzheimer disease

    OpenAIRE

    Edward Rockenstein; Paula Desplats; Kiren Ubhi; Michael Mante; Jazmin Florio; Anthony Adame; Stefan Winter; Hemma Brandstaetter; Dieter Meier; Eliezer Masliah

    2015-01-01

    Neural stem cells (NSCs) have been considered as potential therapy in Alzheimer's disease (AD) but their use is hampered by the poor survival of grafted cells. Supply of neurotrophic factors to the grafted cells has been proposed as a way to augment survival of the stem cells. In this context, we investigated the utility of Cerebrolysin (CBL), a peptidergic mixture with neurotrophic-like properties, as an adjunct to stem cell therapy in an APP transgenic (tg) model of AD. We grafted murine NS...

  11. Ciliary neurotrophic factor-treated astrocyte-conditioned medium increases the intracellular free calcium concentration in rat cortical neurons

    OpenAIRE

    SUN, MEIQUN; Liu, Hongli; MIN, SHENGPING; Wang, Hongtao; Wang, Xiaojing

    2016-01-01

    Ciliary neurotrophic factor (CNTF) is involved in the activation of astrocytes. A previous study showed that CNTF-treated astrocyte-conditioned medium (CNTF-ACM) contributed to the increase of the calcium current and the elevation of corresponding ion channels in cortical neurons. On this basis, it is reasonable to assume that CNTF-ACM may increase the intracellular free calcium concentration ([Ca2+]i) in neurons. In the present study, the effects of CNTF-ACM on [Ca2+]i in rat cortical neuron...

  12. New insight in expression, transport, and secretion of brain-derived neurotrophic factor: Implications in brainrelated diseases

    Institute of Scientific and Technical Information of China (English)

    Naoki; Adachi; Tadahiro; Numakawa; Misty; Richards; Shingo; Nakajima; Hiroshi; Kunugi

    2014-01-01

    Brain-derived neurotrophic factor(BDNF) attracts increasing attention from both research and clinical fields because of its important functions in the central nervous system. An adequate amount of BDNF is critical to develop and maintain normal neuronal circuits in the brain. Given that loss of BDNF function has beenreported in the brains of patients with neurodegenerative or psychiatric diseases, understanding basic properties of BDNF and associated intracellular processes is imperative. In this review, we revisit the gene structure, transcription, translation, transport and secretion mechanisms of BDNF. We also introduce implications of BDNF in several brain-related diseases including Alzheimer’s disease, Huntington’s disease, depression and schizophrenia.

  13. Effects of maternal smoking and exposure to methylmercury on brain-derived neurotrophic factor concentrations in umbilical cord serum

    DEFF Research Database (Denmark)

    Spulber, Stefan; Rantamäki, Tomi; Nikkilä, Outi;

    2010-01-01

    Brain-derived neurotrophic factor (BDNF) is a neurotrophin essential for neuronal survival and differentiation. We examined the concentration of BDNF in cord serum from newborns exposed to methylmercury (MeHg) and polychlorinated biphenyls (PCB) in utero by maternal consumption of whale meat. The...... decrease in serum BDNF induced by MeHg exposure. Cord blood BDNF has been reported to increase in association with perinatal brain injuries and has been proposed as a possible predictive marker of neurodevelopmental outcomes. The negative effect that MeHg seems to exert on cord blood BDNF concentration...

  14. The effect of recombinant erythropoietin on plasma brain derived neurotrophic factor levels in patients with affective disorders

    DEFF Research Database (Denmark)

    Vinberg, Maj; Miskowiak, Kamilla; Hoejman, Pernille;

    2015-01-01

    UNLABELLED: The study aims to investigate the effect of repeated infusions of recombinant erythropoietin (EPO) on plasma brain derived neurotrophic factor (BDNF) levels in patients with affective disorders. In total, 83 patients were recruited: 40 currently depressed patients with treatment-resistant...... depression (TRD) (Hamilton Depression Rating Scale-17 items (HDRS-17) score >17) (study 1) and 43 patients with bipolar disorder (BD) in partial remission (HDRS-17 and Young Mania Rating Scale (YMRS) ≤ 14) (study 2). In both studies, patients were randomised to receive eight weekly EPO (Eprex; 40,000 IU) or...

  15. Enhanced neuroprotection and improved motor function in traumatized rat spinal cords by rAAV2-mediated Glial-derived neurotrophic factor combined with early rehabilitation training

    Institute of Scientific and Technical Information of China (English)

    Han Qingquan; Xiang Jingjing; Zhang Yun; Qiao Hujun; Shen Yongwei; Zhang Chun

    2014-01-01

    Background Spinal cord injury (SCI) is a serious neurological injury that often leads to permanent disabilities for the victims.The aim of this study was to determine the effects of glial-derived neurotrophic factor (GDNF) mediated by recombinant adeno-associated virus type 2 (rAAV2) alone or in combination with early rehabilitation training on SCI.Methods SCI was induced on the T8-9 segments of the spinal cord by laminectomy in adult male Sprague-Dawley rats.Then besides the sham operation group,the SCI rats were randomly divided into four groups:natural healing group,gene therapy group,rehabilitation training group,and combination therapy group (gene therapy in combination with rehabilitation training).Motor dysfunction,protein expression of GDNF,edema formation,and cell injury were examined 7,14,and 21 days after trauma.Results The topical application of rAAV-GDNF-GFP resulted in strong expression of GDNF,especially after the 14th day,and could protect the motor neuron ceils.Early rehabilitative treatment resulted in significantly improved motor function,reduced edema formation,and protected the cells from injury,especially after the 7th and 14th days,and increased the GDNF expression in the damaged area,which was most evident after Day 14.The combined application of GDNF and early rehabilitative treatment after SCI resulted in a significant reduction in spinal cord pathology and motor dysfunction after the 7th and 14th days.Conclusion These observations suggest that rAAV2 gene therapy in combination with rehabilitation therapy has potential clinical value for the treatment of SCI.

  16. Heterogeneous intracellular trafficking dynamics of brain-derived neurotrophic factor complexes in the neuronal soma revealed by single quantum dot tracking.

    Science.gov (United States)

    Vermehren-Schmaedick, Anke; Krueger, Wesley; Jacob, Thomas; Ramunno-Johnson, Damien; Balkowiec, Agnieszka; Lidke, Keith A; Vu, Tania Q

    2014-01-01

    Accumulating evidence underscores the importance of ligand-receptor dynamics in shaping cellular signaling. In the nervous system, growth factor-activated Trk receptor trafficking serves to convey biochemical signaling that underlies fundamental neural functions. Focus has been placed on axonal trafficking but little is known about growth factor-activated Trk dynamics in the neuronal soma, particularly at the molecular scale, due in large part to technical hurdles in observing individual growth factor-Trk complexes for long periods of time inside live cells. Quantum dots (QDs) are intensely fluorescent nanoparticles that have been used to study the dynamics of ligand-receptor complexes at the plasma membrane but the value of QDs for investigating ligand-receptor intracellular dynamics has not been well exploited. The current study establishes that QD conjugated brain-derived neurotrophic factor (QD-BDNF) binds to TrkB receptors with high specificity, activates TrkB downstream signaling, and allows single QD tracking capability for long recording durations deep within the soma of live neurons. QD-BDNF complexes undergo internalization, recycling, and intracellular trafficking in the neuronal soma. These trafficking events exhibit little time-synchrony and diverse heterogeneity in underlying dynamics that include phases of sustained rapid motor transport without pause as well as immobility of surprisingly long-lasting duration (several minutes). Moreover, the trajectories formed by dynamic individual BDNF complexes show no apparent end destination; BDNF complexes can be found meandering over long distances of several microns throughout the expanse of the neuronal soma in a circuitous fashion. The complex, heterogeneous nature of neuronal soma trafficking dynamics contrasts the reported linear nature of axonal transport data and calls for models that surpass our generally limited notions of nuclear-directed transport in the soma. QD-ligand probes are poised to provide

  17. Mechanisms of extracellular signal-regulated kinase/cAMP response element-binding protein/brain-derived neurotrophic factor signaltransduction pathway in depressive disorder

    Institute of Scientific and Technical Information of China (English)

    Hongyan Wang; Yingquan Zhang; Mingqi Qiao

    2013-01-01

    The extracellular signal-regulated kinase/cAMP response element-binding protein/brain-derived neurotrophic factor signal transduction pathway plays an important role in the mechanism of action of antidepressant drugs and has dominated recent studies on the pathogenesis of depression. In the present review we summarize the known roles of extracellular signal-regulated kinase, cAMP response element-binding protein and brain-derived neurotrophic factor in the pathogenesis of depression and in the mechanism of action of antidepressant medicines. The extracellular signal-regulated kinase/cAMP response element-binding protein/brain-derived neurotrophic factor pathway has potential to be used as a biological index to help diagnose depression, and as such it is considered as an important new target in the treatment of depression.

  18. The CC-chemokine receptor 5 (CCR5) is a marker of, but not essential for the development of human Th1 cells

    DEFF Research Database (Denmark)

    Odum, Niels; Bregenholt, S; Eriksen, K W;

    1999-01-01

    -cell lines derived from a CCR5-deficient individual (delta32 allele homozygote) contain high numbers of both interferon gamma (IFN-gamma) and interleukin (IL)-2 producing cells, low numbers of IL-10 producing cells and no IL4 or IL-5 producing cells when stimulated with phorbol ester and ionomycin in vitro...

  19. Decreased serum levels of brain-derived neurotrophic factor in schizophrenic patients with deficit syndrome

    Directory of Open Access Journals (Sweden)

    Akyol ES

    2015-03-01

    Full Text Available Esra Soydas Akyol,1 Yakup Albayrak,2 Murat Beyazyüz,3 Nurkan Aksoy,4 Murat Kuloglu,5 Kenji Hashimoto6 1Deparment of Psychiatry, Yenimahalle Education and Research Hospital, Ankara, Turkey; 2Department of Psychiatry, Faculty of Medicine, Namik Kemal University, Tekirdag, Turkey; 3Department of Psychiatry, Biga State Hospital, Çanakkale, Turkey; 4Department of Biochemistry, Yenimahalle Education and Research Hospital, Ankara, Turkey; 5Department of Psychiatry, Faculty of Medicine, Akdeniz University, Antalya, Turkey; 6Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan Background: Brain-derived neurotrophic factor (BDNF is a well-established neurotrophin that plays a role in the pathophysiology of numerous psychiatric disorders. Many studies have investigated the serum BDNF levels in patients with schizophrenia. However, there are restricted data in the literature that compare the serum BDNF levels in patients with deficit and nondeficit syndromes. In this study, we aimed to compare the serum BDNF levels between schizophrenic patients with deficit or nondeficit syndrome and healthy controls.Methods: After fulfilling the inclusion and exclusion criteria, 58 patients with schizophrenia and 36 healthy controls were included in the study. The patients were grouped as deficit syndrome (N=23 and nondeficit syndrome (N=35 according to the Schedule for the Deficit Syndrome. Three groups were compared in terms of the sociodemographic and clinical variants and serum BDNF levels.Results: The groups were similar in terms of age, sex, body mass index, and smoking status. The serum BDNF levels in patients with deficit syndrome were significantly lower than those in healthy controls. In contrast, the serum BDNF levels in patients with nondeficit syndrome were similar to those in healthy controls.Conclusion: This study suggests that decreased BDNF levels may play a role in the pathophysio­logy of schizophrenic

  20. Brain-derived neurotrophic factor ameliorates brain stem cardiovascular dysregulation during experimental temporal lobe status epilepticus.

    Directory of Open Access Journals (Sweden)

    Ching-Yi Tsai

    Full Text Available BACKGROUND: Status epilepticus (SE is an acute, prolonged epileptic crisis with a mortality rate of 20-30%; the underlying mechanism is not completely understood. We assessed the hypothesis that brain stem cardiovascular dysregulation occurs during SE because of oxidative stress in rostral ventrolateral medulla (RVLM, a key nucleus of the baroreflex loop; to be ameliorated by brain-derived neurotrophic factor (BDNF via an antioxidant action. METHODOLOGY/PRINCIPAL FINDINGS: In a clinically relevant experimental model of temporal lobe SE (TLSE using Sprague-Dawley rats, sustained hippocampal seizure activity was accompanied by progressive hypotension that was preceded by a reduction in baroreflex-mediated sympathetic vasomotor tone; heart rate and baroreflex-mediated cardiac responses remained unaltered. Biochemical experiments further showed concurrent augmentation of superoxide anion, phosphorylated p47(phox subunit of NADPH oxidase and mRNA or protein levels of BDNF, tropomyosin receptor kinase B (TrkB, angiotensin AT1 receptor subtype (AT1R, nitric oxide synthase II (NOS II or peroxynitrite in RVLM. Whereas pretreatment by microinjection bilaterally into RVLM of a superoxide dismutase mimetic (tempol, a specific antagonist of NADPH oxidase (apocynin or an AT1R antagonist (losartan blunted significantly the augmented superoxide anion or phosphorylated p47(phox subunit in RVLM, hypotension and the reduced baroreflex-mediated sympathetic vasomotor tone during experimental TLSE, pretreatment with a recombinant human TrkB-Fc fusion protein or an antisense bdnf oligonucleotide significantly potentiated all those events, alongside peroxynitrite. However, none of the pretreatments affected the insignificant changes in heart rate and baroreflex-mediated cardiac responses. CONCLUSIONS/SIGNIFICANCE: We conclude that formation of peroxynitrite by a reaction between superoxide anion generated by NADPH oxidase in RVLM on activation by AT1R and NOS II