WorldWideScience

Sample records for cell line mcf-7

  1. Steroid metabolism in the hormone dependent MCF-7 human breast carcinoma cell line and its two hormone resistant subpopulations MCF-7/LCC1 and MCF-7/LCC2

    DEFF Research Database (Denmark)

    Jørgensen, L; Brünner, N; Spang-Thomsen, M;

    1998-01-01

    and 17beta-hydroxysteroid oxidoreductase were investigated isolating the following steroids: estriol (E3), estradiol (E2), estrone (E1), 3alpha/beta-androstanediol (A-diol), testosterone (T), dihydrotestosterone (DHT), androsterone (AND), androstenedion (4-AD) and androstanedione (A-dion). For all......, and preincubation with cortisol had no effect on the enzyme activity. With [14C]T as the substrate, the metabolized level of DHT was very similar in the three cell lines, though MCF-7/LCC1 and MCF-7/LCC2 utilized the substrate to a much lesser extent. The amount of DHT and 4-AD produced were comparable in the two...... to the parent MCF-7. However, since treatment with DHT and T inhibited cell growth equally well in all three tumor cell lines, it is unlikely that the found differences in steroid metabolism was involved in the acquisition of the endocrine resistance of the two MCF-7 sublines....

  2. IMTA-cultivated Osmundea pinnatifida inhibited cell proliferation in MCF-7 cell line

    Directory of Open Access Journals (Sweden)

    Paulo Jorge Silva

    2014-06-01

    The antitumor potential of methanolic and dichloromethane extracts, obtained from wild and IMTA-cultivated seaweed, were evaluated on the MCF-7 cells (human breast adenocarcinoma cell line. The cell viability and the cell proliferation assays were performed according to MTT method. The viability of MCF-7 cells was not significantly reduced by the tested extracts (1 mg/ml; 24 h, remaining below 20%. However, MCF-7 cell proliferation was reduced 61% and 75% by the dichloromethane extracts (1 mg/ml; 24 h obtained from wild and IMTA-cultivated algae, respectively. The data suggests that O. pinnatifida is a promising source of new bioactive molecules with high antiproliferative properties.

  3. Hesperidin as a preventive resistance agent in MCF-7 breast cancer cells line resistance to doxorubicin

    Institute of Scientific and Technical Information of China (English)

    Rifki Febriansah; Dyaningtyas Dewi PP; Sarmoko; Nunuk Aries Nurulita; Edy Meiyanto; Agung Endro Nugroho

    2014-01-01

    Objective:To evaluate of hesperidin to overcome resistance of doxorubicin in MCF-7 resistant doxorubicin cells (MCF-7/Dox) in cytotoxicity apoptosis and P-glycoprotein (Pgp) expression in combination with doxorubicin. Methods:The cytotoxic properties, 50%inhibition concentration (IC50) and its combination with doxorubicin in MCF-7 cell lines resistant to doxorubicin (MCF-7/Dox) cells were determined using MTT assay. Apoptosis induction was examined by double staining assay using ethidium bromide-acridine orange. Immunocytochemistry assay was performed to determine the level and localization of Pgp. Results: Single treatment of hesperidin showed cytotoxic activity on MCF-7/Dox cells with IC50 value of 11 µmol/L. Thus, combination treatment from hesperidin and doxorubicin showed addictive and antagonist effect (CI>1.0). Hesperidin did not increase the apoptotic induction, but decreased the Pgp expressions level when combined with doxorubicin in low concentration. Conclusions: Hesperidin has cytotoxic effect on MCF-7/Dox cells with IC50 of 11 µmol/L. Hesperidin did not increased the apoptotic induction combined with doxorubicin. Co-chemotherapy application of doxorubicin and hesperidin on MCF-7/Dox cells showed synergism effect through inhibition of Pgp expression.

  4. A new MCF-7 breast cancer cell line resistant to the arzoxifene metabolite desmethylarzoxifene

    DEFF Research Database (Denmark)

    Freddie, Cecilie T; Christensen, Gitte Lund; Lykkesfeldt, Anne E

    2004-01-01

    estrogenic effects than tamoxifen on gene expression. A cell line with acquired resistance to ARZm (MCF-7/ARZm(R)-1) was established from MCF-7 cells. MCF-7/ARZm(R)-1 cells responded to treatment with tamoxifen and the pure antiestrogen ICI 182,7870. The estrogen receptor alpha (ERalpha) level in MCF-7/ARZm......The development of resistance in tamoxifen-treated breast cancer patients and the estrogenic side effects of tamoxifen have lead to the design of many new drugs. The new SERM arzoxifene and its active metabolite desmethylarzoxifene (ARZm) inhibits growth of breast cancer cells and has less......(R)-1 cells was lower than in MCF-7 cells due to a destabilization of the receptor by ARZm. A significant reduction in the mRNA and protein level of some estrogen-regulated genes was observed in MCF-7/ARZm(R)-1 compared to MCF-7. However, both the level of the ERalpha and several ER-regulated gene...

  5. Cytotoxicity of methanol extracts of Elaeis guineensis on MCF-7 and Vero cell lines

    Institute of Scientific and Technical Information of China (English)

    Soundararajan Vijayarathna; Sreenivasan Sasidharan

    2012-01-01

    To investigate the cytotoxic effect of Elaeis guineensis methanol extract on MCF-7 and Vero cell. Methods: In vitro cytotoxicity was evaluated in by MTT assay. Cell morphological changes were observed by using light microscope. Results: The MTT assay indicated that methanol extract of the plant exhibited significant cytotoxic effects on MCF-7. Morphological alteration of the cell lines after exposure with Elaeis guineensis extract were observed under phase contrast microscope in the dose dependent manner. Conclusions: The results suggest the probable use of the Elaeis guineensis methanol extract in preparing recipes for cancer-related ailments. Further studies on isolation of metabolites and their in vivo cytotoxicity are under investigation.

  6. Curcumin Induces Cell Death and Restores Tamoxifen Sensitivity in the Antiestrogen-Resistant Breast Cancer Cell Lines MCF-7/LCC2 and MCF-7/LCC9

    Directory of Open Access Journals (Sweden)

    Min Jiang

    2013-01-01

    Full Text Available Curcumin, a principal component of turmeric (Curcuma longa, has potential therapeutic activities against breast cancer through multiple signaling pathways. Increasing evidence indicates that curcumin reverses chemo-resistance and sensitizes cancer cells to chemotherapy and targeted therapy in breast cancer. To date, few studies have explored its potential antiproliferation effects and resistance reversal in antiestrogen-resistant breast cancer. In this study, we therefore investigated the efficacy of curcumin alone and in combination with tamoxifen in the established antiestrogen-resistant breast cancer cell lines MCF-7/LCC2 and MCF-7/LCC9. We discovered that curcumin treatment displayed anti-proliferative and pro-apoptotic activities and induced cell cycle arrest at G2/M phase. Of note, the combination of curcumin and tamoxifen resulted in a synergistic survival inhibition in MCF-7/LCC2 and MCF-7/LCC9 cells. Moreover, we found that curcumin targeted multiple signals involved in growth maintenance and resistance acquisition in endocrine resistant cells. In our cell models, curcumin could suppress expression of pro-growth and anti-apoptosis molecules, induce inactivation of NF-κB, Src and Akt/mTOR pathways and downregulate the key epigenetic modifier EZH2. The above findings suggested that curcumin alone and combinations of curcumin with endocrine therapy may be of therapeutic benefit for endocrine-resistant breast cancer.

  7. Expression of vascular endothelial growth factor C in human breast cancer cell lines MCF-7 and MCF-7/Adr%血管内皮生长因子C在人乳腺癌细胞株MCF-7MCF-7/Adr中的表达

    Institute of Scientific and Technical Information of China (English)

    刘执玉; 高杰; 房云海; 田铧; 李贵宝; 宋涛

    2002-01-01

    Objective:The study was designed to examine the expressions of vascular endothelial growth factor C(VEGF-C) mRNA and protein in human breast cancer cell line MCF-7 and drug resistant cell line MCF 7/Adr.Methods:According to the VEGF-C gene sequence,we designed and constructed a specific oligonucleotide probe labeled with digoxin.Then in situ hybridization was employed to detect respectively the expression of VEGF-C mRNA in the cultured human breast cancer cell lines MCF-7 and MCF-7/Adr.In addition immunohistochemistry was employed to examine the expression of VEGF-C protein in both cell lines.Results:Blue positive stainning granules for VEGF-C mRNA were observed in the cytoplasm of these cells by in situ hybridization where brown positive staining granules for VEGF-C protein were also observed by immunohistochemistry.While there were no positive staining granules in neither control cells.Conclusion:Human breast cancer cell lines MCF-7 and MCF-7/Adr can transcribe VEGF-C mRNA and translate corresponding protein in their cytoplasm.%目的:检测血管内皮生长因子C(vascular endothelial growth factor C,VEGF-C)mRNA和蛋白在人乳腺癌细胞株MCF-7及其耐药株MCF-7/Adr中的定位、定性表达.方法:根据VEGF-C基因序列,设计合成地高辛标记的特异性寡核苷酸探针,运用原位杂交方法检测培养的细胞株MCF-7MCF-7/Adr中VEGF-C mRNA的表达;并运用免疫组织化学方法检测了两种细胞中VEGF-C蛋白的表达.结果:原位杂交检测到MCF-7MCF-7/Adr细胞的胞浆中有阳性蓝色颗粒,免疫组化检测发现两种细胞的胞浆中均有阳性棕黄色颗粒,而阴性对照细胞的胞浆中则均无阳性颗粒.结论:人乳腺癌细胞株MCF-7及其耐药株MCF-7/Adr细胞能够转录VEGF-C mRNA并在其细胞浆中翻译合成相应的蛋白.

  8. Anticancer activity ofTephrosia purpurea andFicus religiosa using MCF 7 cell lines

    Institute of Scientific and Technical Information of China (English)

    Vishal Gulecha; Thangavel Sivakuma

    2011-01-01

    Objective:To investigate anticancer activity of different fractions ofTephrosia purpurea[TP] (Sharapunkha, Fabaceae) andFicus religiosa[FR] (Peepal, Moraceae).Methods: The fractions ofTP andFR were prepared and tested forin vitro anticancer activity using humanMCF 7cell line by trypan blue exclusion method.Results: The result showed that among all these fractions ofTPI, TPIII, FRI andFRIIIshowed better anticancer activity compared to other fractions. The IC50 value for TPI (152.4 μM), TPIII (158.71μM), FRI (160.3 μM) and for FRIII (222.7 μM) was observed.Conclusions: The present study shows anticancer potential ofTP and FR fractions in MCF 7 cell line.

  9. Cytotoxicity of methanol extracts of Elaeis guineensis on MCF-7 and Vero cell lines

    Institute of Scientific and Technical Information of China (English)

    Soundararajan; Vijayarathna; Sreenivasan; Sasidharan

    2012-01-01

    Objective:To investigate the cytotoxic effect of Elaeis guineensis methanol extract on MCF-7and Vero cell.Methods:In vitro cytotoxicity was evaluated in by MTT assay.Cell morphological changes were observed by using light microscope.Results:The MTT assay indicated that methanol extract of the plant exhibited significant cytotoxic effects on MCF-7.Morphological alteration of the cell lines after exposure with lilaeis guineensis extract were observed under phase contrast microscope in the dose dependent manner.Conclusions:The results suggest the probable use of the Elaeis guineensis methanol extract in preparing recipes for cancer-related ailments.Further studies on isolation of metabolites and their in vivo cytotoxicity are under investigation.

  10. Piezo1 forms mechanosensitive ion channels in the human MCF-7 breast cancer cell line

    Science.gov (United States)

    Li, Chouyang; Rezania, Simin; Kammerer, Sarah; Sokolowski, Armin; Devaney, Trevor; Gorischek, Astrid; Jahn, Stephan; Hackl, Hubert; Groschner, Klaus; Windpassinger, Christian; Malle, Ernst; Bauernhofer, Thomas; Schreibmayer, Wolfgang

    2015-02-01

    Mechanical interaction between cells - specifically distortion of tensional homeostasis-emerged as an important aspect of breast cancer genesis and progression. We investigated the biophysical characteristics of mechanosensitive ion channels (MSCs) in the malignant MCF-7 breast cancer cell line. MSCs turned out to be the most abundant ion channel species and could be activated by negative pressure at the outer side of the cell membrane in a saturable manner. Assessing single channel conductance (GΛ) for different monovalent cations revealed an increase in the succession: Li+ < Na+ < K+ ~Rb+ ~ Cs+. Divalent cations permeated also with the order: Ca2+ < Ba2+. Comparison of biophysical properties enabled us to identify MSCs in MCF-7 as ion channels formed by the Piezo1 protein. Using patch clamp technique no functional MSCs were observed in the benign MCF-10A mammary epithelial cell line. Blocking of MSCs by GsMTx-4 resulted in decreased motility of MCF-7, but not of MCF-10A cells, underscoring a possible role of Piezo1 in invasion and metastatic propagation. The role of Piezo1 in biology and progression of breast cancer is further substantiated by markedly reduced overall survival in patients with increased Piezo1 mRNA levels in the primary tumor.

  11. Cytotoxicity and genotoxicity assessment of Euphorbia hirta in MCF-7 cell line model using comet assay

    Institute of Scientific and Technical Information of China (English)

    Kwan Yuet Ping; Ibrahim Darah; Yeng Chen; Sreenivasan Sasidharan

    2013-01-01

    Objective:To evaluate the cytotoxicity and genotoxicity activity of Euphorbia hirta (E. hirta) in MCF-7 cell line model using comet assay. Methods: The cytotoxicity of E. hirta extract was investigated by employing brine shrimp lethality assay and the genotoxicity of E. hirta was assessed by using Comet assay. Results: Both toxicity tests exhibited significant toxicity result. In the comet assay, the E. hirta extract exhibited genotoxicity effects against MCF-7 DNA in a time-dependent manner by increasing mean percentage of DNA damage. The extract of E. hirta showed significant toxicity against brine shrimp with an LC50 value of 620.382 μg/mL (24 h). Comparison with positive control potassium dichromate signifies that cytotoxicity exhibited by the methanol extract might have moderate activity. Conclusion:The present work confirmed the cytotoxicity and genotoxicity of E. hirta. However, the observed toxicity of E. hirta extracts needs to be confirmed in additional studies.

  12. Deletion breakpoint mapping on chromosome 9p21 in breast cancer cell line MCF-7

    Directory of Open Access Journals (Sweden)

    Hua-ping XIE

    2012-05-01

    Full Text Available Objective  To map the deletion breakpoint of chromosome 9p21 in breast cancer cell line MCF-7. Methods  The deletion of chromosome 9p21 was checked by Multiplex Ligation-dependent Probe Amplification (MLPA in MCF-7. Subsequently, the deletion breakpoint was amplified by long range PCR and the deletion region was narrowed by primer walking. Finally, the deletion position was confirmed by sequencing. Results  The deletion was found starting within the MTAP gene and ending within CDKN2A gene by MLPA. Based on long range PCR and primer walking, the deletion was confirmed to cover the region from chr9:21819532 to chr9:21989622 by sequencing, with a deletion size of 170kb, starting within the intron 4 of MTAP and ending within the intron 1 near exon 1β of CDKN2A. Conclusions  Long range PCR is an efficient way to detect deletion breakpoints. In MCF-7, the deletion has been confirmed to be 170kb, starting within the MTAP gene and ending within the CDKN2A gene. The significance of the deletion warrants further research.

  13. In vitro Studies on anticancer activity of fungal taxol against human breast cancer cell line MCF-7 cells

    Institute of Scientific and Technical Information of China (English)

    R. Vennila; S. Kamalraj; J. Muthumary

    2012-01-01

    Objective: To prove the anticancer activity of fungal taxol obtained from Pestalotiopsis pauciseta VM1 endophytic fungus of Tabebuia pentaphylla on human breast cancer cell line MCF-7 by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay.record ethnobotanical information from a hill-dwelling aboriginal tribe of Odisha. Methods: Different concentrations of fungal taxol ranging from 100 µg to 700 µg were tested against the MCF-7 breast cancer cell line showed significant decrease in the concentration of 350 µg. Results: This cell viability of control cells was consistently 85-90%, The cell shrinkage increased progressively. Conclusions: Thus, the fungal taxol isolated from Pestalotiopsis pauciseta VM1, exhibited a very high degree of in vitro cytotoxic activity against MCF-7 breast cancer cell line.

  14. Metabolic Response to XD14 Treatment in Human Breast Cancer Cell Line MCF-7

    Science.gov (United States)

    Pan, Daqiang; Kather, Michel; Willmann, Lucas; Schlimpert, Manuel; Bauer, Christoph; Lagies, Simon; Schmidtkunz, Karin; Eisenhardt, Steffen U.; Jung, Manfred; Günther, Stefan; Kammerer, Bernd

    2016-01-01

    XD14 is a 4-acyl pyrrole derivative, which was discovered by a high-throughput virtual screening experiment. XD14 inhibits bromodomain and extra-terminal domain (BET) proteins (BRD2, BRD3, BRD4 and BRDT) and consequently suppresses cell proliferation. In this study, metabolic profiling reveals the molecular effects in the human breast cancer cell line MCF-7 (Michigan Cancer Foundation-7) treated by XD14. A three-day time series experiment with two concentrations of XD14 was performed. Gas chromatography-mass spectrometry (GC-MS) was applied for untargeted profiling of treated and non-treated MCF-7 cells. The gained data sets were evaluated by several statistical methods: analysis of variance (ANOVA), clustering analysis, principle component analysis (PCA), and partial least squares discriminant analysis (PLS-DA). Cell proliferation was strongly inhibited by treatment with 50 µM XD14. Samples could be discriminated by time and XD14 concentration using PLS-DA. From the 117 identified metabolites, 67 were significantly altered after XD14 treatment. These metabolites include amino acids, fatty acids, Krebs cycle and glycolysis intermediates, as well as compounds of purine and pyrimidine metabolism. This massive intervention in energy metabolism and the lack of available nucleotides could explain the decreased proliferation rate of the cancer cells. PMID:27783056

  15. Ethanolic Extract Cytotoxic Effect of Zingiber Afficinale in Breast Cancer (MCF7 Cell Line

    Directory of Open Access Journals (Sweden)

    J Tavakkol Afshari

    2010-07-01

    Full Text Available Introduction & Objective: Biological activities of Zingiber afficieale plants have been reported as possessing anticancer, antibacterial, anti ulcer, antifungal, and insecticidal properties. However, its antitumor effects haven't been studied in cancer cell lines. The aim of this study was to investigate the antitumor effect of zingiber afficieale on breast cancer cell lines. Materials & Methods: This experimental study was conducted in 2010 at Mashhad University of medical Sciences. Breast cancer cell line (MCF7 and normal connective tissue cell line (L929 were cultured in DMEM medium. Ethanolic extract of Zingiber afficinale was prepared and cell lines were treated with different concentration of extract (5000 to 78 µg. Cell viability was measured by MTT assay after 24, 48, and 72 hours. The collected data were statistically analyzed by SPSS software. Results: The effects of Zingiber afficinale on cell viability were observed after 48 hours on cell lines. Ginger doses in 2500 µg concentration inhibited 50% of cell growth (IC50 in cell lines after 48 hours. Conclusion: Our study revealed that fresh ginger extract has cytotoxic effects on tumor cells, but it doesn’t have any cytotoxic effect on normal cells. It seems that ginger could be considered as a promising chemotherapeutic agent in cancer treatment.

  16. Enhancement of radiation cytotoxicity by gold nanoparticles in MCF-7 breast cancer cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Rosli, Nur Shafawati binti; Rahman, Azhar Abdul [School of Physics, Universiti Sains Malaysia, 11800, Pulau Pinang (Malaysia); Aziz, Azlan Abdul [School of Physics, Universiti Sains Malaysia, 11800, Pulau Pinang (Malaysia); Nano-Biotechnology Research and Innovation (NanoBRI), Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800, Pulau Pinang (Malaysia); Shamsuddin, Shaharum [Nano-Biotechnology Research and Innovation (NanoBRI), Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800, Pulau Pinang (Malaysia); School of Health Sciences, Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan (Malaysia)

    2015-04-24

    Therapy combined with metallic nanoparticles is a new way to treat cancer, in which gold nanoparticles (AuNPs) are injected through intravenous administration and bound to tumor sites. Radiotherapy aims to deliver a high therapeutic dose of ionizing radiation to the tumor without exceeding normal tissue tolerance. The use of AuNPs which is a high-atomic-number (Z) material in radiotherapy will provide a high probability for photon interaction by photoelectric effect. These provide advantages in terms of radiation dose enhancement. The high linear energy transfer and short range of photoelectric interaction products (photoelectrons, characteristic x-rays, Auger electrons) produce localized dose enhancement of the tumor. In this work, breast cancer cell lines (MCF-7) are seeded in the 96-well plate and were treated with 13 nm AuNPs before they were irradiated with 6 MV and 10 MV photon beam from a medical linear accelerator at various radiation doses. To validate the enhanced killing effect, both with and without AuNPs MCF-7 cells is irradiated simultaneously. By comparison, the results show that AuNPs significantly enhance cancer killing.

  17. Peroxiredoxin I and II inhibit H2O2-induced cell death in MCF-7 cell lines.

    Science.gov (United States)

    Bae, Ji-Yeon; Ahn, Soo-Jung; Han, Wonshik; Noh, Dong-Young

    2007-07-01

    Apoptosis is known to be induced by direct oxidative damage due to oxygen-free radicals or hydrogen peroxide or by their generation in cells by the actions of injurious agents. Together with glutathione peroxidase and catalase, peroxiredoxin (Prx) enzymes play an important role in eliminating peroxides generated during metabolism. We investigated the role of Prx enzymes during cellular response to oxidative stress. Using Prx isoforms-specific antibodies, we investigated the presence of Prx isoforms by immunoblot analysis in cell lysates of the MCF-7 breast cancer cell line. Treatment of MCF-7 with hydrogen peroxide (H2O2) resulted in the dose-dependent expressions of Prx I and II at the protein and mRNA levels. To investigate the physiologic relevance of the Prx I and II expressions induced by H2O2, we compared the survivals of MCF10A normal breast cell line and MCF-7 breast cancer cell line following exposure to H2O2. The treatment of MCF10A with H2O2 resulted in rapid cell death, whereas MCF-7 was resistant to H2O2. In addition, we found that Prx I and II transfection enabled MCF10A cells to resist H2O2-induced cell death. These findings suggest that Prx I and II have important functions as inhibitors of cell death during cellular response to oxidative stress.

  18. Anticancer studies of the synthesized gold nanoparticles against MCF 7 breast cancer cell lines

    Science.gov (United States)

    Kamala Priya, M. R.; Iyer, Priya R.

    2015-04-01

    It has been previously stated that gold nanoparticles have been successfully synthesized using various green extracts of plants. The synthesized gold nanoparticles were characterized under scanning electron microscopy and EDX to identify the size of the nanoparticles. It was found that the nanoparticles were around 30 nm in size, which is a commendable nano dimension achieved through a plant mediated synthesis. The nanoparticles were further studied for their various applications. In the current study, we have made attempts to exploit the anticancer ability of the gold nano particles. The nanoparticles were studied against MCF 7 breast cancer cell lines. The results obtained from the studies of anticancer activity showed that gold nanoparticles gave an equivalent good results, in par with the standard drugs against cancer. The AuNP's proved to be efficient even from the minimum concentrations of 2 μg/ml, and as the concentration increased the anticancer efficacy as well increased.

  19. Anticancer potential of Syzygium aromaticum L. in MCF-7 human breast cancer cell lines

    Directory of Open Access Journals (Sweden)

    Parvinnesh S Kumar

    2014-01-01

    Full Text Available Background: The common treatment for cancer is unfavorable because it causes many detrimental side effects, and lately, there has been a growing resistance toward anticancer drugs, which worsens the future of cancer treatment. Therefore, the focus has now shifted toward natural products, such as spices and plants, among many others, to save the future of cancer treatment. Cloves (Syzygium aromaticum L. are spices with the highest antioxidant content among natural products. Besides acting as an antioxidant, cloves also possess many other functions, such as anti-inflammatory, antibacterial, and antiseptic, which makes them an ideal natural source to be developed as an anticancer agent. Objective: This study aims to evaluate the cytotoxic activity of cloves toward MCF-7 human breast cancer cell lines. Materials and Methods: Different concentrations of water extract, ethanol extract, and essential oil of cloves were investigated for their anticancer potential in vitro through a brine shrimp lethality test (BSLT and an MTT assay. Results: In both BSLT and MTT assays, the essential oil showed the highest cytotoxic effect, followed by ethanol and water extract. The LD 50 concentration of essential oil in the 24 hours BSLT was 37 μg/mL. Furthermore, the IC 50 values in the 24 hours and 48 hours MTT assays of the essential oil were 36.43 μg/mL and 17.6 μg/mL, respectively. Conclusion: Cloves are natural products with excellent cytotoxicity toward MCF-7 cells; thus, they are promising sources for the development of anticancer agents.

  20. Anticancer property of sediment actinomycetes against MCF-7 and MDA-MB-231 cell lines

    Institute of Scientific and Technical Information of China (English)

    Ravikumar S; Fredimoses M; Gnanadesigan M

    2012-01-01

    Objective: To investigate the anticancer property of marine sediment actinomycetes against two different breast cancer cell lines. Methods:In vitro anticancer activity was carried out against breast (MCF-7 and MDA-MB-231) cancer cell lines. Partial sequences of the 16s rRNA gene, phylogenetic tree construction, multiple sequence analysis and secondary structure analysis were also carried out with the actinomycetes isolates. Results: Of the selected five actinomycete isolates, ACT01 and ACT02 showed the IC50 value with (10.13±0.92) and (22.34±5.82)μg/mL concentrations, respectively for MCF-7 cell line at 48 h, but ACT01 showed the minimum (18.54±2.49 μg/mL) level of IC50 value with MDA-MB-231 cell line. Further, the 16s rRNA partial sequences of ACT01, ACT02, ACT03, ACT04 and ACT05 isolates were also deposited in NCBI data bank with the accession numbers of GQ478246, GQ478247, GQ478248, GQ478249 and GQ478250, respectively. The phylogenetic tree analysis showed that, the isolates of ACT02 and ACT03 were represented in group I and III, respectively, but ACT01 and ACT02 were represented in group II. The multiple sequence alignment of the actinomycete isolates showed that, the maximum identical conserved regions were identified with the nucleotide regions of 125 to 221st base pairs, 65 to 119th base pairs and 55, 48 and 31st base pairs. Secondary structure prediction of the 16s rRNA showed that, the maximum free energy was consumed with ACT03 isolate (-45.4 kkal/mol) and the minimum free energy was consumed with ACT04 isolate (-57.6 kkal/mol). Conclusions:The actinomycete isolates of ACT01 and ACT02 (GQ478246 and GQ478247) which are isolated from sediment sample can be further used as anticancer agents against breast cancer cell lines.

  1. Evaluation of Antiproliferative Activity of Red Sorghum Bran Anthocyanin on a Human Breast Cancer Cell Line (MCF-7)

    International Nuclear Information System (INIS)

    Breast cancer is a leading cause of death in women worldwide both in the developed and developing countries. Thus effective treatment of breast cancer with potential antitumour drugs is important. In this paper, human breast cancer cell line MCF-7 has been employed to evaluate the antiproliferative activity of red sorghum bran anthocyanin. The present investigation showed that red sorghum bran anthocyanin induced growth inhibition of MCF-7 cells at significant level. The growth inhibition is dose dependent and irreversible in nature. When MCF-7 cells were treated with red sorghum bran anthocyanins due to activity of anthocyanin morphological changes were observed. The morphological changes were identified through the formation of apoptopic bodies. The fragmentation by these anthocyanins on DNA to oligonuleosomal-sized fragments, is a characteristic of apoptosis, and it was observed as concentration-dependent. Thus, this paper clearly demonstrates that human breast cancer cell MCF-7 is highly responsive by red sorghum bran anthocyanins result from the induction of apoptosis in MCF-7 cells.

  2. Comparison of functional proteomic analyses of human breast cancer cell lines T47D and MCF7.

    Directory of Open Access Journals (Sweden)

    Juliette Adjo Aka

    Full Text Available T47D and MCF7 are two human hormone-dependent breast cancer cell lines which are widely used as experimental models for in vitro and in vivo (tumor xenografts breast cancer studies. Several proteins involved in cancer development were identified in these cell lines by proteomic analyses. Although these studies reported the proteomic profiles of each cell line, until now, their differential protein expression profiles have not been established. Here, we used two-dimensional gel and mass spectrometry analyses to compare the proteomic profiles of the two cell lines, T47D and MCF7. Our data revealed that more than 164 proteins are differentially expressed between them. According to their biological functions, the results showed that proteins involved in cell growth stimulation, anti-apoptosis mechanisms and cancerogenesis are more strongly expressed in T47D than in MCF7. These proteins include G1/S-specific cyclin-D3 and prohibitin. Proteins implicated in transcription repression and apoptosis regulation, including transcriptional repressor NF-X1, nitrilase homolog 2 and interleukin-10, are, on the contrary, more strongly expressed in MCF7 as compared to T47D. Five proteins that were previously described as breast cancer biomarkers, namely cathepsin D, cathepsin B, protein S100-A14, heat shock protein beta-1 (HSP27 and proliferating cell nuclear antigen (PCNA, are found to be differentially expressed in the two cell lines. A list of differentially expressed proteins between T47D and MCF7 was generated, providing useful information for further studies of breast cancer mechanisms with these cell lines as models.

  3. The Acetone Extract of Sclerocarya birrea (Anacardiaceae Possesses Antiproliferative and Apoptotic Potential against Human Breast Cancer Cell Lines (MCF-7

    Directory of Open Access Journals (Sweden)

    Nicoline Fri Tanih

    2013-01-01

    Full Text Available Interesting antimicrobial data from the stem bark of Sclerocarya birrea, which support its use in traditional medicine for the treatment of many diseases, have been delineated. The current study was aimed to further study some pharmacological and toxicological properties of the plant to scientifically justify its use. Anticancer activity of water and acetone extracts of S. birrea was evaluated on three different cell lines, HT-29, HeLa, and MCF-7 using the cell titre blue viability assay in 96-well plates. Apoptosis was evaluated using the acridine orange and propidium iodide staining method, while morphological structure of treated cells was examined using SEM. The acetone extract exhibited remarkable antiproliferative activities on MCF-7 cell lines at dose- and time-dependent manners (24 h and 48 h of incubation. The extract also exerted apoptotic programmed cell death in MCF-7 cells with significant effect on the DNA. Morphological examination also displayed apoptotic characteristics in the treated cells, including clumping, condensation, and culminating to budding of the cells to produce membrane-bound fragmentation, as well as formation of apoptotic bodies. The acetone extract of S. birrea possesses antiproliferative and apoptotic potential against MCF-7-treated cells and could be further exploited as a potential lead in anticancer therapy.

  4. Different cell death responses induced by eupomatenoid-5 in MCF-7 and 786-0 tumor cell lines.

    Science.gov (United States)

    Longato, Giovanna Barbarini; Fiorito, Giovanna Francisco; Vendramini-Costa, Débora Barbosa; de Oliveira Sousa, Ilza Maria; Tinti, Sirlene Valério; Ruiz, Ana Lúcia Tasca Gois; de Almeida, Sinara Mônica Vitalino; Padilha, Rafael José Ribeiro; Foglio, Mary Ann; de Carvalho, João Ernesto

    2015-08-01

    Natural products remain an important source of new drugs, including anticancer drugs. Recently, our group reported the anticancer activity of eupomatenoid-5 (eup-5), a neolignan isolated from Piper regnellii (Miq.) C. DC. var. regnellii leaves. In vitro studies demonstrated that MCF-7 (breast) and 786-0 (kidney) were among the cancer cell lines most sensitive to eup-5 treatment. The current results demonstrate that mitochondrial membrane depolarization and generation of reactive oxygen species are implicated in eup-5-mediated cytotoxic effects on these cancer cells lines. In MCF-7 cells, eup-5 led to phosphatidylserine externalization and caspase activation, whereas the same did not occur in 786-0 cells. Scanning electron microscopy revealed a reduction of microvilli density, as well as cell morphology alterations. Moreover, treated MCF-7 cells exhibited well-characterized apoptosis alterations, while treated 786-0 cells exhibited characteristics of programmed necroptosis process. These findings support the possibility that different mechanisms may be targeted by eup-5 in cell death response.

  5. Estrogenic effect of procymidone through activation of MAPK in MCF-7 breast carcinoma cell line.

    Science.gov (United States)

    Radice, Sonia; Chiesara, Enzo; Frigerio, Silvia; Fumagalli, Roberta; Parolaro, Daniela; Rubino, Tiziana; Marabini, Laura

    2006-05-01

    Procymidone modifies sexual differentiation in vitro and induces estrogenic activity in primary cultured rainbow trout hepatocytes, as shown by an increase in the contents of vitellogenin and heat shock proteins. Since this dicarboximide fungicide is found in human tissues, it was considered of interest to investigate its ability to induce endocrine damage in the MCF-7 human cell line. The mechanism of this estrogenic action was also evaluated. Procymidone 100 microM stimulated cell growth from day 3 up to day 12 and raised the level of pS2 on day 3. Although procymidone does not bind the estrogen receptor (ER), the antiestrogen ICI 182780 inhibited its effect on cell growth and pS2 content, suggesting that the ER is involved indirectly in these effects. In exploring the mechanism of ER indirect activation we found that the antibody against c-Neu receptor (9G6) did not modify procymidone's effects on cell growth and pS2 expression. Thus, procymidone does not bind the c-Neu membrane receptor, excluding this indirect ER activation pathway. We also found that procymidone induced mitogen-activated protein kinase (MAPK) at 15 and 30 min, and that PD 98059, a MAPK (Erk1/2) inhibitor, prevented procymidone's effects on cell growth and pS2, indicating that MAPK activation is responsible for procymidone ER activation. The production of reactive oxygen species (ROS) with these times and elimination of the phenomenon by alpha-tocopherol (alpha-T), a ROS scavenger, is proof that oxygen free-radical production is at the basis of the MAPK activation by procymidone. PMID:16310225

  6. Autophagy is involved in cytotoxic effects of crotoxin in human breast cancer cell line MCF-7 cells

    Institute of Scientific and Technical Information of China (English)

    Ci-hui YAN; Ya-ping YANG; Zheng-hong QIN; Zhen-lun GU; Paul REID; Zhong-qin LIANG

    2007-01-01

    Aim: To investigate the role of crotoxin (CrTX)-induced autophagy in the death of MCF-7 cells, a caspase-3-deficient, human breast cancer cell line. Methods: Cul-tured MCF-7 cells were treated with various doses of CrTX, a phospholipase A2(PLA2) isolated from the venom of the South American rattlesnake, Crotalus durissus terrificus. The cytotoxicity of CrTX in the presence and absence of caspase inhibitors was measured with methyl thiazolyl tetrazolium (MTT) and lactate dehydrogenase (LDH) leakage assays. The activation of autophagy was determined with transmission electron microscope and monodansylcadaverin(MDC) labeling. The upregulation of lysosomal enzymes, the release of cyto-chrome c (cyto-c), and the nuclear translocation of the apoptosis inducing factor(AIF) were examined by immunoblotting and immunofluorescence. Results: CrTX inhibited the viability of MCF-7 cells in a dose- and time-dependent manner. CrTX-activated autophagy was revealed by punctuate MDC labeling, and an increase in the formation of autophagosomes as well as apoptosis, as evidenced by nuclear condensation and fragmentation. The activation of cathepsin B, D, and L, in addition to the release of cytochrome c and the relocation of AIF into nuclei, were observed after CrTX treatment. Autophagy inhibitors 3-methyladenine (3-MA),NH4Cl, and the pan-caspase inhibitor, Z-Val-Ala-Asp-fluoromethylketone (Z-Vad-fmk), attenuated CrTX-induced cell death. Conclusion: An autophagic mecha-nism contributes to the apoptosis of MCF-7 cells induced by CrTX.

  7. Overexpression of miR-34c regulates the sensitivity to doxorubicin in drug-resistant breast cancer cell lines MCF-7/DOX

    Institute of Scientific and Technical Information of China (English)

    Han Li; Tong Li; Li-Hong Zhang

    2016-01-01

    Objective:To study the regulating effect of overexpressing miR-34c on the sensitivity to doxorubicin in drug-resistant breast cancer cell line MCF-7/DOX. Methods:Breast cancer cell lines MCF-7 and drug-resistant breast cancer cell lines MCF-7/DOX were cultured, transfected with miR-34c and negative control fragments and treated with different doses of doxorubicin;treated cells were taken, CCK-8 kits were used to detect cell viability, and RNA detection kits were used to detect mRNA contents of drug resistance-related genes. Results: miR-34a, 34b and 34c expression levels in MCF-7/DOX cell lines were lower than those in MCF-7 cell lines and the reduction of miR-34c expression level was the most significant, and mRNA contents of MDR1, BCRP, UCP2, Twist and c-Src were significantly higher than those in MCF-7 cell lines;after transfection of miR-34c, the inhibitory effect of doxorubicin on the viability of MCF-7/DOX cell lines was stronger than that of MCF-7/DOX cell lines transfected with negative control, and mRNA contents of MDR1, BCRP, UCP2, Twist and c-Src were significantly lower than those in MCF-7 cell lines transfected with negative control. Conclusions:Overexpression of miR-34c in drug-resistant breast cancer cell lines MCF-7/DOX can increase the sensitivity to doxorubicin and inhibit the expression levels of drug resistance-related genes MDR1, BCRP, UCP2, Twist and c-Src .

  8. Cytotoxic evaluation of different fractions of Salvia chorassanica Bunge on MCF-7 and DU 145 cell lines

    Directory of Open Access Journals (Sweden)

    Alireza Golshan

    2016-01-01

    Full Text Available Because of antimicrobial, antioxidant, and anticancer potential, Salvia chorassanica Bunge (Lamiaceae has been considered as a popular herb in Iranian traditional medicine. Previous studies have shown remarkable cytotoxic properties of the methanol, n-hexane and dichloromethane extract of S. chorassanica on human cervical cancer cells. To seek the therapeutic potentials of S. chorassanica, this study was undertaken to evaluate the cytotoxic activities of various extracts of this plant on human breast MCF-7 and prostate cancer DU 145 cells. The DU 145 cells were exposed to different concentrations of plant extracts (1-200 μg/ml. Cytotoxic activities were examined using alamarBlue ® assay and apoptosis was assessed by acridine orange/propodium iodide double staining and evaluation of DNA fragmentation by flow cytometry. Our findings indicated that n-hexane and dichloromethane extracts had more cytotoxic activities against DU 145 and MCF-7 cell lines compared with other extracts (P<0.05. The acridine orange/propodium iodide staining showed apoptogenic properties of n-hexane and dichloromethane extracts which was consequently confirmed by flow cytometric histogram that exhibited an increase in sub-G1 peak in treated cells as compared with untreated cancer cell lines. Taken together, these observations demonstrated cytotoxic effects of S. chorassanica extracts on MCF-7 and DU 145 cell lines which is most likely exerted via apoptosis cell death. Therefore, further investigations on S. chorassanica extracts as potential chemotherapeutic agents are warranted.

  9. Cytotoxicity and Genotoxicity Assessment of Sandalwood Essential Oil in Human Breast Cell Lines MCF-7 and MCF-10A

    OpenAIRE

    Carmen Ortiz; Luisa Morales; Miguel Sastre; Haskins, William E.; Jaime Matta

    2016-01-01

    Sandalwood essential oil (SEO) is extracted from Santalum trees. Although α-santalol, a main constituent of SEO, has been studied as a chemopreventive agent, the genotoxic activity of the whole oil in human breast cell lines is still unknown. The main objective of this study was to assess the cytotoxic and genotoxic effects of SEO in breast adenocarcinoma (MCF-7) and nontumorigenic breast epithelial (MCF-10A) cells. Proteins associated with SEO genotoxicity were identified using a proteomics ...

  10. Analysis of Protein–Protein Interactions in MCF-7 and MDA-MB-231 Cell Lines Using Phthalic Acid Chemical

    OpenAIRE

    Shih-Shin Liang; Tsu-Nai Wang; Eing-Mei Tsai

    2014-01-01

    Phthalates are a class of plasticizers that have been characterized as endocrine disrupters, and are associated with genital diseases, cardiotoxicity, hepatotoxicity, and nephrotoxicity in the GeneOntology gene/protein database. In this study, we synthesized phthalic acid chemical probes and demonstrated differing protein–protein interactions between MCF-7 cells and MDA-MB-231 breast cancer cell lines. Phthalic acid chemical probes were synthesized using silicon dioxide particle carriers, whi...

  11. Ctotoxic and apoptogenic effects of Perovskia abrotanoides flower extract on MCF-7 and HeLa cell lines

    Science.gov (United States)

    Geryani, Mohamad Ali; Mahdian, Davood; Mousavi, Seyed Hadi; Hosseini, Azar

    2016-01-01

    Objective: Perovskia abrotanoides Karel, belongs to the family Lamiaceae and grows wild alongside the mountainous roads inarid and cold climate of Northern Iran. The anti-tumor activity of P. abrotanoides root extract has been shown previously. This study was designed to examine in vitro anti-proliferative and pro-apoptotic effects of flower extract of P. abrotanoides on MCF-7 and Hela cell lines. Materials and Methods: Cells were cultured in DMEM medium with 10% fetal bovine serum, 100 units/ml penicillin and 100 µg/ml streptomycin and incubated with different concentrations of plant extracts. Cell viability was quantified by MTT assay. Apoptotic cells were determined using propidium iodide (PI) staining of DNA fragmentation by flow cytometry (sub-G1 peak). Results: P. abrotanoides extract inhibited the growth of malignant cells in a time and dose-dependent manner and 1000 µg/ml of extract following 48h of incubation was the most cytotoxic dose against Hela cell in comparison with other doses; however, in MCF-7 cells,1000 and 500 µg/ml PA induced toxicity at all time points but with different features.. Analysis of flowcytometry histogram of treated cells compared with control cells indicated that the cytotoxic effect is partly due toapoptosis induction. Conclusion: Hydro-alcoholic extract of P. abrotanoides flowers inhibits the growth of MCF-7 and HeLa cell lines, partly via inducing apoptosis. Their inhibitory effect was increased in a time and dose-dependent manner, especially in MCF7 cells. However, further studies are needed to reveal the mechanisms of P. abrotanoides extract-induced cell death.

  12. Ctotoxic and apoptogenic effects of Perovskia abrotanoides flower extract on MCF-7 and HeLa cell lines

    Directory of Open Access Journals (Sweden)

    Mohamad Ali Geryani

    2016-06-01

    Full Text Available Objective: Perovskia abrotanoides Karel, belongs to the family Lamiaceae and grows wild alongside the mountainous roads inarid and cold climate of Northern Iran. The anti-tumor activity of P. abrotanoides root extract has been shown previously. This study was designed to examine in vitro anti-proliferative and pro-apoptotic effects of flower extract of P. abrotanoides on MCF-7 and Hela cell lines. Materials and Methods: Cells were cultured in DMEM medium with 10% fetal bovine serum, 100 units/ml penicillin and 100 µg/ml streptomycin and incubated with different concentrations of plant extracts. Cell viability was quantified by MTT assay. Apoptotic cells were determined using propidium iodide (PI staining of DNA fragmentation by flow cytometry (sub-G1 peak. Results: P. abrotanoides extract inhibited the growth of malignant cells in a time and dose-dependent manner and 1000 µg/ml of extract following 48h of incubation was the most cytotoxic dose against Hela cell in comparison with other doses; however, in MCF-7 cells,1000 and 500 µg/ml PA induced toxicity at all time points but with different features.. Analysis of flowcytometry histogram of treated cells compared with control cells indicated that the cytotoxic effect is partly due toapoptosis induction. Conclusion: Hydro-alcoholic extract of P. abrotanoides flowers inhibits the growth of MCF-7 and HeLa cell lines, partly via inducing apoptosis. Their inhibitory effect was increased in a time and dose-dependent manner, especially in MCF7 cells. However, further studies are needed to reveal the mechanisms of P. abrotanoides extract-induced cell death.

  13. Proteomic Analysis of MCF-7 Breast Cancer Cell Line Exposed To Leptin

    Directory of Open Access Journals (Sweden)

    A. Valle

    2011-01-01

    Full Text Available Background: Obesity is a well-known factor risk for breast cancer in postmenopausal women. Circulating leptin levels are increased in obese and it has been suggested to play an important role in mammary tumor formation and progression. To contribute to the understanding of the molecular mechanisms underlying leptin action in breast cancer, our aim was to identify proteins regulated by leptin in MCF-7 human breast cancer cells. Methods: We used two-dimensional gel electrophoresis (2-DE and matrix assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS to identify proteins affected by leptin. Results: Thirty proteins were found differentially expressed in MCF-7 cells after 48 h leptin exposure. Proteins regulated by leptin included proteins previously implicated in breast cancer such as catechol-o-methyltransferase, cathepsin D, hsp27, serine/threonine-protein phosphatase and regulatory proteins of the Ras signaling pathway. Proteins involved in other cellular functions such as stress response, cytosqueleton remodeling and proteins belonging to ubiquitin-proteasome system, were also identified. Furthermore, leptin-treated cells showed a substantial uptake of the serum carrier proteins albumin and alpha-2-HS-glycoprotein. Conclusions: This screening reveals that leptin influences the levels of key proteins involved in breast cancer which opens new avenues for the study of the molecular mechanisms linking obesity to breast cancer.

  14. Oncolytic Effect of Newcastle Disease Virus AF2240 Strain on the MCF-7 Breast Cancer Cell Line

    Directory of Open Access Journals (Sweden)

    Fauziah Othman

    2010-01-01

    Full Text Available Objective: This study was carried out to investigate the oncolytic effect of the Newcastledisease virus (NDV strain AF2240 on the MCF-7 breast cancer cell line.Materials and Methods: The NDV-AF2240 was propagated in 11 days old embryonatedchicken eggs for 72 hours. The virus in the allantoic fluid was harvested andpurified. The haemagglutination (HA test was conducted on the purified virus to determinethe virus titre which was 16384 haemagglutination units (HAUs. The microculturetetrazolium assay (MTA was carried out via two methods-the monolayer and co-culturetechniques- to determine the inhibitory concentration (IC50 of NDV-AF2240 against theMCF-7 breast cancer cell line. Confocal laser scanning microscopy was carried out onpolyclonal chicken antibody and fluorescein isothiocynate (FITC conjugated goat antichickenantibody to observe virus localization in the cells. The terminal deoxynucleotidyltransferase-mediated dUTP nick end-labeling (TUNEL assay was conducted to quantifythe percentage of apoptotic cells.Results: IC50 value of NDV-AF2240 was two HAUs in both the monolayer and co-cultures.Virus particles were detected in the cytoplasm of MCF-7 breast cancer cell lineafter 24 and 48 hours post treatment. Virus budding was detected 72 hours post treatment.The number of apoptotic cells was significantly increased (p<0.05 72 hours postNDV-AF2240 treatment.Conclusion: The findings of this study show that NDV-AF2240 has an oncolytic effectagainst the MCF-7 breast cancer cell line. Further studies are needed to understand theanti cancer mechanism of this virus.

  15. Antioxidant and Cytotoxic Effect of Barringtonia racemosa and Hibiscus sabdariffa Fruit Extracts in MCF-7 Human Breast Cancer Cell Line

    OpenAIRE

    Norliyana Amran; Anis Najwa Abdul Rani; Roziahanim Mahmud; Khoo Boon Yin

    2016-01-01

    Background: The fruits of Barringtonia racemosa and Hibiscus sabdariffa have been used in the treatment of abscess, ulcer, cough, asthma, and diarrhea as traditional remedy. Objective: This study aims to evaluate cytotoxic effect of B. racemosa and H. sabdariffa methanol fruit extracts toward human breast cancer cell lines (MCF-7) and its antioxidant activities. Materials and Methods: Total antioxidant activities of extracts were assayed using 2,2′-diphenyl-1-picrylhydrazyl radical (DPPH) and...

  16. Cytotoxic evaluation of different fractions of Salvia chorassanica Bunge on MCF-7 and DU 145 cell lines.

    Science.gov (United States)

    Golshan, Alireza; Amini, Elaheh; Emami, Seyed Ahmad; Asili, Javad; Jalali, Zahra; Sabouri-Rad, Sarvenaz; Sanjar-Mousavi, Naghmeh; Tayarani-Najaran, Zahra

    2016-01-01

    Because of antimicrobial, antioxidant, and anticancer potential, Salvia chorassanica Bunge (Lamiaceae) has been considered as a popular herb in Iranian traditional medicine. Previous studies have shown remarkable cytotoxic properties of the methanol, n-hexane and dichloromethane extract of S. chorassanica on human cervical cancer cells. To seek the therapeutic potentials of S. chorassanica, this study was undertaken to evaluate the cytotoxic activities of various extracts of this plant on human breast MCF-7 and prostate cancer DU 145 cells. The DU 145 cells were exposed to different concentrations of plant extracts (1-200 μg/ml). Cytotoxic activities were examined using alamarBlue(®) assay and apoptosis was assessed by acridine orange/propodium iodide double staining and evaluation of DNA fragmentation by flow cytometry. Our findings indicated that n-hexane and dichloromethane extracts had more cytotoxic activities against DU 145 and MCF-7 cell lines compared with other extracts (Pcytotoxic effects of S. chorassanica extracts on MCF-7 and DU 145 cell lines which is most likely exerted via apoptosis cell death. Therefore, further investigations on S. chorassanica extracts as potential chemotherapeutic agents are warranted.

  17. Analysis of Protein–Protein Interactions in MCF-7 and MDA-MB-231 Cell Lines Using Phthalic Acid Chemical

    Directory of Open Access Journals (Sweden)

    Shih-Shin Liang

    2014-11-01

    Full Text Available Phthalates are a class of plasticizers that have been characterized as endocrine disrupters, and are associated with genital diseases, cardiotoxicity, hepatotoxicity, and nephrotoxicity in the GeneOntology gene/protein database. In this study, we synthesized phthalic acid chemical probes and demonstrated differing protein–protein interactions between MCF-7 cells and MDA-MB-231 breast cancer cell lines. Phthalic acid chemical probes were synthesized using silicon dioxide particle carriers, which were modified using the silanized linker 3-aminopropyl triethoxyslane (APTES. Incubation with cell lysates from breast cancer cell lines revealed interactions between phthalic acid and cellular proteins in MCF-7 and MDA-MB-231 cells. Subsequent proteomics analyses indicated 22 phthalic acid-binding proteins in both cell types, including heat shock cognate 71-kDa protein, ATP synthase subunit beta, and heat shock protein HSP 90-beta. In addition, 21 MCF-7-specific and 32 MDA-MB-231 specific phthalic acid-binding proteins were identified, including related proteasome proteins, heat shock 70-kDa protein, and NADPH dehydrogenase and ribosomal correlated proteins, ras-related proteins, and members of the heat shock protein family, respectively.

  18. Evidence of a Genomic Biomarker in Normal Human Epithelial Mammary Cell Line, MCF-10A, That Is Absent in the Human Breast Cancer Cell Line, MCF-7

    Directory of Open Access Journals (Sweden)

    Brian H. Crawford

    2006-01-01

    MCF-7 cells, it was transfected into MCF-7 cells. There were observable changes in the morphology of the transfected cells. These changes included an increase in cell elongation and a decrease in cell aggregation.

  19. IN VITRO CYTOTOXICITY STUDY OF AGAVE AMERICANA, STRYCHNOS NUX-VOMICA AND ARECA CATECHU EXTRACTS USING MCF-7 CELL LINE

    Directory of Open Access Journals (Sweden)

    Anajwala Chetan C.

    2010-06-01

    Full Text Available Research is focusing on the search for new types of natural chemotherapeutic agent that is plant based medicines which are proving to be excellent sources of new compounds. In present research study, an attempt was made to prove cytotoxicity activity of various parts of medicinal plants such as Agave americana, Strychnos nux-vomica and Areca catechu using MCF-7 and Vero cell line. Various parts of the medicinal plants were extracted by soxhlet apparatus using solvents likes methanol and water. By trypan blue dye exclusion method, Viability of MCF-7 and Vero cell lines were 85.50 and 81.13%, respectively. IC50 value of methanol extract of Agave americana leaves and aqueous extract of Areca catechu fruits were found to be 545.9 & 826.1 µg/ml by SRB assay and 775.1 & 1461µg/ml by MTT assay, respectively, against MCF-7 cell line. From cytotoxicity study data by SRB and MTT assay, it revealed that methanol extract of Agave americana and aqueous extract of Areca catechu are potent cytotoxic.

  20. Rapid bioreduction of trivalent aurum using banana stem powder and its cytotoxicity against MCF-7 and HEK-293 cell lines

    International Nuclear Information System (INIS)

    Bioreduction of metal ions for the synthesis of nanoparticles of well-defined shape and size has been a great challenge in the field of nanotechnology. In this study, we explored the reduction potential of banana stem powder (BSP) for the synthesis of gold nanoparticles (GNP). The kinetics of GNP synthesis was monitored using UV–Vis spectroscopy. The synthesized GNP was characterized using dynamic light scattering (DLS), transmission electron microscopy, and fourier transform infrared spectroscopy. In addition, the cytotoxic potential of the synthesized GNP was investigated using human breast cancer (MCF-7) and normal human embryonic kidney (HEK-293) cell lines, as evaluated by changes in cell morphology, cell viability (MTT), and metabolic activity. BSP exhibited a strong reduction of Au(III) to Au (0) at room temperature within 5 min of reaction time. The synthesized GNP was found to be spherical with an average diameter of 30 nm by DLS analysis. The cytotoxicity analysis reveals a direct dose–response relationship, indicating that the cytotoxicity increases with increasing concentrations of the GNP. Significant cytotoxicity was observed in cancer cells (MCF-7) compared to normal cells (HEK-293). Also the cellular uptake of GNP was more pronounced in MCF-7 cells than HEK-293 cells as evidenced by zeta potential, implicating the possible reason for differential cytotoxicity. Thus the present study demonstrates the importance of these unique, less time-consuming, and stable BSP-mediated GNP as potential drug delivery vehicles in the application of anticancer therapy.

  1. Rapid bioreduction of trivalent aurum using banana stem powder and its cytotoxicity against MCF-7 and HEK-293 cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Arunkumar, Pichaimani [Bharathidasan University, Cancer Genetics and Nanomedicine Laboratory, Department of Biomedical Science, School of Basic Medical Sciences (India); Vedagiri, Hemamalini [Bharathidasan University, Department of Biotechnology (India); Premkumar, Kumpati, E-mail: pkumpati@hotmail.com [Bharathidasan University, Cancer Genetics and Nanomedicine Laboratory, Department of Biomedical Science, School of Basic Medical Sciences (India)

    2013-03-15

    Bioreduction of metal ions for the synthesis of nanoparticles of well-defined shape and size has been a great challenge in the field of nanotechnology. In this study, we explored the reduction potential of banana stem powder (BSP) for the synthesis of gold nanoparticles (GNP). The kinetics of GNP synthesis was monitored using UV-Vis spectroscopy. The synthesized GNP was characterized using dynamic light scattering (DLS), transmission electron microscopy, and fourier transform infrared spectroscopy. In addition, the cytotoxic potential of the synthesized GNP was investigated using human breast cancer (MCF-7) and normal human embryonic kidney (HEK-293) cell lines, as evaluated by changes in cell morphology, cell viability (MTT), and metabolic activity. BSP exhibited a strong reduction of Au(III) to Au (0) at room temperature within 5 min of reaction time. The synthesized GNP was found to be spherical with an average diameter of 30 nm by DLS analysis. The cytotoxicity analysis reveals a direct dose-response relationship, indicating that the cytotoxicity increases with increasing concentrations of the GNP. Significant cytotoxicity was observed in cancer cells (MCF-7) compared to normal cells (HEK-293). Also the cellular uptake of GNP was more pronounced in MCF-7 cells than HEK-293 cells as evidenced by zeta potential, implicating the possible reason for differential cytotoxicity. Thus the present study demonstrates the importance of these unique, less time-consuming, and stable BSP-mediated GNP as potential drug delivery vehicles in the application of anticancer therapy.

  2. Multidrug resistance-associated protein gene overexpression and reduced drug sensitivity of topoisomerase II in a human breast carcinoma MCF7 cell line selected for etoposide resistance.

    Science.gov (United States)

    Schneider, E; Horton, J K; Yang, C H; Nakagawa, M; Cowan, K H

    1994-01-01

    A human breast cancer cell line (MCF7/WT) was selected for resistance to etoposide (VP-16) by stepwise exposure to 2-fold increasing concentrations of this agent. The resulting cell line (MCF7/VP) was 28-, 21-, and 9-fold resistant to VP-16, VM-26, and doxorubicin, respectively. MCF7/VP cells also exhibited low-level cross-resistance to 4'-(9-acridinylamino)-methanesulfon-m-anisidide, mitoxantrone, and vincristine and no cross-resistance to genistein and camptothecin. Furthermore, these cells were collaterally sensitive to the alkylating agents melphalan and chlorambucil. DNA topoisomerase II levels were similar in both wild-type MCF7/WT and drug-resistant MCF7/VP cells. In contrast, topoisomerase II from MCF7/VP cells appeared to be 7-fold less sensitive to drug-induced cleavable complex formation in whole cells and 3-fold less sensitive in nuclear extracts than topoisomerase II from MCF7/WT cells. Although this suggested that the resistant cells may contain a qualitatively altered topoisomerase II, no mutations were detected in either the ATP-binding nor the putative breakage/resealing regions of either DNA topoisomerase II alpha or II beta. In addition, the steady-state intracellular VP-16 concentration was reduced by 2-fold in the resistant cells, in the absence of detectable mdr1/P-gp expression and without any change in drug efflux. In contrast, expression of the gene encoding the MRP was increased at least 10-fold in resistant MCF7/VP cells as compared to sensitive MCF7/WT cells. These results suggest that resistance to epipodophyllotoxins in MCF7/VP cells is multifactorial, involving a reduction in intracellular drug concentration, possibly as a consequence of MRP overexpression, and an altered DNA topoisomerase II drug sensitivity. PMID:7903202

  3. Ethanol Extracts of Selected Cyathea Species Decreased Cell Viability and Inhibited Growth in MCF 7 Cell Line Cultures.

    Science.gov (United States)

    Janakiraman, Narayanan; Johnson, Marimuthu

    2016-06-01

    Cancer is the cause of more than 6 million deaths worldwide every year. For centuries, medicinal plants have been used in the treatment of cancer. Chemotherapy, radiotherapy, surgery and acupuncture point stimulation are also used to treat cancer. The present study was intended to reveal the cytotoxic and anticancer potential of selected Cyathea species and to highlight their importance in the pharmaceutical industry for the development of cost-effective drugs. Cytotoxic studies using brine shrimp lethality bioassays and MCF 7 cell line cultures were carried out. Compared to petroleum ether, chloroform and acetone extracts, the ethanol extracts of selected Cyathea species were found to be more effective against brine shrimps. The ethanol extracts were further subjected to 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) cell proliferation assays. A decrease in cell viability and an increase in growth inhibition were observed for the MCF 7 cell line. The maximum percentage of cell inhibition was observed in Cyathea crinit, followed by Cyathea nilgirensis and Cyathea gigantea. The results of the present study suggest that Cyathea species are an effective source of cytotoxic compounds. PMID:27342889

  4. A Variant of Human Estrogen Receptor-α, hER-α36 Weakens Docetaxel Drug Efficacy against Human Breast Cancer Cell Line MCF-7

    Institute of Scientific and Technical Information of China (English)

    Li Yu; Peng Shen

    2009-01-01

    Objective: hER-α36 is a variant of estrogen receptor-α, identified and cloned by a team of American. This research is to determine whether hER-α36 can enhance or weaken chemosensitivity to docetaxel in breast cancer cell line MCF-7(ERα66 positive).Methods: RT-PCR was used to detect the expressions of ERα66 and ERα36 in the two human breast cancer cell lines MCF-7(MCF-7/ERα66)and MCF-7 transfected with ERα36(MCF-7/ERα36). The two cell lines were treated with docetaxel(0~100μmol/L), and cell growth and apoptosis were evaluated using MTT (3-(4,5-dimethylthiazol- 2-yl)-2,5-diphenyl tetrazolium bromide) assay (using adriamycin (0~50μmol/L)as the control) and flowcytometry. Western blot analysis was used to measure the effect of docetaxel on phosphor-ERK1/2 expression in the two cell lines.Results: The expressions of ERα36 and ERα66 were detectable in both MCF-7/ERα66 and MCF-7/ERα36 cell lines, while the expression of ERα36 in MCF-7/ER36 cells was higher. Both docetaxel and adriamycin inhibited the proliferation of both cells lines in a dose and time dependent manner. In comparison with MCF-7/ERα36 cell line, the MCF-7/ERα66 cells produced greater growth inhibition and apoptosis after treatment with docetaxel, but there was no significant difference in growth inhibition between the two cell lines treated with adriamycin; The MCF-7/ERα36 cell line resulted in a significant activation (phosphorylation) of ERK1/2 after treatment with docetaxel in a dose-dependent manner, but in the MCF-7/ERα66 cell line , a decrease in the level of phosphor- ERK1/2 expression was observed as the dose of docetaxel increased.Conclusion: ERα36 may be an agent that weakens chemosensitivity to docetaxel in breast cancer, probably by activating the expression of ERK1/2.

  5. Inhibitory effect of metformin on SP cells in tumor cell line MCF-7%二甲双胍对MCF-7肿瘤细胞系SP细胞的抑制作用

    Institute of Scientific and Technical Information of China (English)

    刘畅; 周恩相

    2015-01-01

    目的研究二甲双胍、紫杉醇脂质体、他莫昔芬对人乳腺癌MCF-7肿瘤细胞系SP细胞的杀伤作用及相互的协同效应。方法将二甲双胍(0.3 mmol/L)、紫杉醇脂质体(60.0μg/L)、他莫昔芬(10.0μmol/L)分别对MCF-7肿瘤细胞进行单一或联合干预,并应用流式细胞仪分析SP细胞比例。结果空白对照组、二甲双胍组、紫杉醇脂质体组、他莫昔芬组、二甲双胍联合紫杉醇脂质体组、二甲双胍联合他莫昔芬组MCF-7肿瘤细胞系SP细胞比例各不相同,二甲双胍干预各组MCF-7肿瘤细胞系SP细胞比例分别较其余各组下降,差异均有统计学意义(P0.05). Conclu-sion 0.3 mmol/L metformin can effectively kill SP cells in tumor cell line MCF-7;the combined use of metformin with paclitaxil liposome or tamoxifen has no synergistic effects.

  6. Retinoic acid induces sodium/iodide symporter gene expression and radioiodide uptake in the MCF-7 breast cancer cell line

    OpenAIRE

    Kogai, Takahiko; Schultz, James J.; Johnson, Laura S.; Huang, Min; Brent, Gregory A.

    2000-01-01

    The sodium/iodide symporter (NIS) stimulates iodide uptake in normal lactating breast, but is not known to be active in nonlactating breast or breast cancer. We studied NIS gene regulation and iodide uptake in MCF-7 cells, an estrogen receptor (ER)-positive human breast cancer cell line. All-trans retinoic acid (tRA) treatment stimulated iodide uptake in a time- and dose-dependent fashion up to ≈9.4-fold above baseline. Stimulation with selective retinoid compounds indicated that the inductio...

  7. Inositol Hexakisphosphate Mediates Apoptosis in Human Breast Adenocarcinoma MCF-7 Cell Line via Intrinsic Pathway

    Science.gov (United States)

    Agarwal, Rakhee; Ali, Nawab

    2010-04-01

    Inositol polyphosphates (InsPs) are naturally occurring compounds ubiquitously present in plants and animals. Inositol hexakisphosphate (InsP6) is the most abundant among all InsPs and constitutes the major portion of dietary fiber in most cereals, legumes and nuts. Certain derivatives of InsPs also regulate cellular signaling mechanisms. InsPs have also been shown to reduce tumor formation and induce apoptosis in cancerous cells. Therefore, in this study, the effects of InsPs on apoptosis were studied in an attempt to investigate their potential anti-cancer therapeutic application and understand their mechanism of action. Acridine orange and ethidium bromide staining suggested that InsP6 dose dependently induced apoptosis in human breast adenocarcinoma MCF-7 cells. Among InsPs tested (InsP3, InsP4, InsP5, and InsP6), InsP6 was found to be the most effective in inducing apoptosis. Furthermore, effects of InsP6 were found most potent inducing apoptosis. Etoposide, the drug known to induce apoptosis in both in vivo and in vitro, was used as a positive control. Western blotting experiments using specific antibodies against known apoptotic markers suggested that InsP6 induced apoptotic changes were mediated via an intrinsic apoptotic pathway.

  8. Cytotoxic and Antiproliferative Effect of Tepary Bean Lectins on C33-A, MCF-7, SKNSH, and SW480 Cell Lines

    Directory of Open Access Journals (Sweden)

    Carmen Valadez-Vega

    2014-07-01

    Full Text Available For many years, several studies have been employing lectin from vegetables in order to prove its toxic effect on various cell lines. In this work, we analyzed the cytotoxic, antiproliferative, and post-incubatory effect of pure tepary bean lectins on four lines of malignant cells: C33-A; MCF-7; SKNSH, and SW480. The tests were carried out employing MTT and 3[H]-thymidine assays. The results showed that after 24 h of lectin exposure, the cells lines showed a dose-dependent cytotoxic effect, the effect being higher on MCF-7, while C33-A showed the highest resistance. Cell proliferation studies showed that the toxic effect induced by lectins is higher even when lectins are removed, and in fact, the inhibition of proliferation continues after 48 h. Due to the use of two techniques to analyze the cytotoxic and antiproliferative effect, differences were observed in the results, which can be explained by the fact that one technique is based on metabolic reactions, while the other is based on the 3[H]-thymidine incorporated in DNA by cells under division. These results allow concluding that lectins exert a cytotoxic effect after 24 h of exposure, exhibiting a dose-dependent effect. In some cases, the cytotoxic effect is higher even when the lectins are eliminated, however, in other cases, the cells showed a proliferative effect.

  9. 光动力疗法对人乳腺癌MCF-7细胞增殖凋亡的影响%Effect of photodynamic therapy on the proliferation and apoptosis of human breast carcinoma cell line MCF-7

    Institute of Scientific and Technical Information of China (English)

    王宏; 张洪梅; 阴慧娟; 顾立超; 陈洪丽; 杨基春; 王磊; 李迎新

    2013-01-01

    Objective To observe the effects of photodynamic therapy (PDT) on proliferation and apoptosis of human breast carcinoma cell line MCF-7 in vitro.Methods MCF-7 cells were treated with PSD-007 for 2 h under the influence of low-level laser (635 nm) therapy at different doses.Then the optical density (OD) values and survival rates of MCF-7 cells were measured by MTT assay at different time (0.5,1,3,6,12,24 h) after PDT.The nucleus morphological changes of the MCF-7 cells stained by DAPI were observed under the reversal fluorescence microscope.The apoptosis was analyzed using flow cytometry through Annexin/PI double-labeled staining.Results PSD-007 mediated PDT inhibited the proliferation of MCF-7 cells,which depended on laser power and time after PDT.The morphological study proved that the multinucleate giant cells existed in the apoptotic cells in PSD-007 PDT.Flow cytometry of Annexin/PI double-labeled staining verified the results as well.Conclusion PDT inhibit the proliferation of MCF-7 cells in vitro by inducing apoptosis,and the results show an effect of time and dose dependence.%目的 研究光动力疗法(PDT)对人乳腺癌MCF-7细胞增殖的影响和诱导凋亡的作用.方法 癌光啉(PSD-007)与细胞共同孵育2h后,以不同能量635 nm激光照射,通过噻唑蓝(MTT)比色法测定PDT后不同时间(0.5、1、3、6、12、24h)细胞的光密度(0D)值及存活率.DAPI染色观察PDT后不同时间细胞凋亡中细胞核形态学的改变.Annexin-V/PI双染法结合流式细胞术分析细胞凋亡率的变化.结果 PDT对MCF-7细胞的增殖有抑制作用,且随着PDT光照能量的提高而增强,PDT作用后细胞存活率随时间延长而逐渐降低.细胞形态学观察结果表明,MCF-7细胞呈典型的凋亡形态特征.Annexin-V/PI双染也证实PDT可以诱导细胞凋亡,且凋亡率随PDT作用后时间的延长而升高.结论 PDT能显著抑制MCF-7细胞增殖,诱导细胞凋亡,且其诱导肿瘤细胞的凋亡是一渐进性

  10. Cytotoxicity and Genotoxicity Assessment of Sandalwood Essential Oil in Human Breast Cell Lines MCF-7 and MCF-10A

    Directory of Open Access Journals (Sweden)

    Carmen Ortiz

    2016-01-01

    Full Text Available Sandalwood essential oil (SEO is extracted from Santalum trees. Although α-santalol, a main constituent of SEO, has been studied as a chemopreventive agent, the genotoxic activity of the whole oil in human breast cell lines is still unknown. The main objective of this study was to assess the cytotoxic and genotoxic effects of SEO in breast adenocarcinoma (MCF-7 and nontumorigenic breast epithelial (MCF-10A cells. Proteins associated with SEO genotoxicity were identified using a proteomics approach. Commercially available, high-purity, GC/MS characterized SEO was used to perform the experiments. The main constituents reported in the oil were (Z-α-santalol (25.34%, (Z-nuciferol (18.34%, (E-β-santalol (10.97%, and (E-nuciferol (10.46%. Upon exposure to SEO (2–8 μg/mL for 24 hours, cell proliferation was determined by the MTT assay. Alkaline and neutral comet assays were used to assess genotoxicity. SEO exposure induced single- and double-strand breaks selectively in the DNA of MCF-7 cells. Quantitative LC/MS-based proteomics allowed identification of candidate proteins involved in this response: Ku70 (p=1.37E-2, Ku80 (p=5.8E-3, EPHX1 (p=3.3E-3, and 14-3-3ζ (p=4.0E-4. These results provide the first evidence that SEO is genotoxic and capable of inducing DNA single- and double-strand breaks in MCF-7 cells.

  11. Cytotoxicity and Genotoxicity Assessment of Sandalwood Essential Oil in Human Breast Cell Lines MCF-7 and MCF-10A.

    Science.gov (United States)

    Ortiz, Carmen; Morales, Luisa; Sastre, Miguel; Haskins, William E; Matta, Jaime

    2016-01-01

    Sandalwood essential oil (SEO) is extracted from Santalum trees. Although α-santalol, a main constituent of SEO, has been studied as a chemopreventive agent, the genotoxic activity of the whole oil in human breast cell lines is still unknown. The main objective of this study was to assess the cytotoxic and genotoxic effects of SEO in breast adenocarcinoma (MCF-7) and nontumorigenic breast epithelial (MCF-10A) cells. Proteins associated with SEO genotoxicity were identified using a proteomics approach. Commercially available, high-purity, GC/MS characterized SEO was used to perform the experiments. The main constituents reported in the oil were (Z)-α-santalol (25.34%), (Z)-nuciferol (18.34%), (E)-β-santalol (10.97%), and (E)-nuciferol (10.46%). Upon exposure to SEO (2-8 μg/mL) for 24 hours, cell proliferation was determined by the MTT assay. Alkaline and neutral comet assays were used to assess genotoxicity. SEO exposure induced single- and double-strand breaks selectively in the DNA of MCF-7 cells. Quantitative LC/MS-based proteomics allowed identification of candidate proteins involved in this response: Ku70 (p = 1.37E - 2), Ku80 (p = 5.8E - 3), EPHX1 (p = 3.3E - 3), and 14-3-3ζ (p = 4.0E - 4). These results provide the first evidence that SEO is genotoxic and capable of inducing DNA single- and double-strand breaks in MCF-7 cells. PMID:27293457

  12. Cytotoxic activity of Macrosolen parasiticus (L. Danser on the growth of breast cancer cell line (MCF-7

    Directory of Open Access Journals (Sweden)

    Vijay Kumar Sodde

    2015-01-01

    Full Text Available Background: Macrosolen parasiticus (L. Danser belonging to Loranthaceaea (mistletoe family is a parasitic plant that grows on different host plants such as mango, jack fruit, peepal, neem tree, etc., This study was aimed to investigate the anti-cancer activity of methanolic and aqueous extract of stem of M. parasiticus. Objectives: To investigate the in vitro cytotoxic potential of the methanolic and aqueous extracts from stems of M. parasiticus against MCF-7 breast cancer cells by brine shrimp lethality (BSL bioassay, MTT assay and sulforhodamine B (SRB assay. Materials and Methods: The extracts were tested in human breast cancer cell lines in vitro for percentage cytotoxicity, apoptosis by acridine orange/ethidium bromide staining, LD 50 and IC 50 values after treatment with M. parasiticus extracts. Results: In BSL bioassay, aqueous extract showed more significant (P < 0.01 cytotoxicity with LD 50 82.79 ± 2.67 μg/mL as compared to methanolic extract with LD 50 125 ± 3.04 μg/mL. The methanolic extract of M. parasiticus showed IC 50 97.33 ± 3.75 μg/mL (MTT (P < 0.05 and 94.58 ± 3.84 μg/mL (SRB (P < 0.01 assays against MCF-7. The aqueous extract of M. parasiticus demonstrated higher activity with IC 50 59.33 ± 3.3 μg/mL (MTT (P < 0.01 and 51.9 ± 1.87 μg/mL (SRB (P < 0.01 assays, after 48 h of exposure and thus showed significant dose-dependent cytotoxic activity. Conclusion: The finding demonstrated that both extracts of M. parasiticus showed significant cytotoxic activity, however aqueous extract demonstrated higher activity against MCF-7 breast cancer cells.

  13. TIMP-1 protects the human breast carcinoma cell line MCF-7 S1 against antracycline-induced cell death by activation of the akt survival pathway

    DEFF Research Database (Denmark)

    Würtz, Sidse Ørnbjerg; Rasmussen, Anne-Sofie Schrohl; Brunner, Nils;

    an in vitro approach. Methods. We stably transfected the human breast carcinoma cell line MCF-7 S1 with the human TIMP-1 gene and established single cell clones expressing different levels of TIMP-1. We then compared the sensitivity of these cells to epirubicin and taxol using a cell death assay. In addition...... treatment. Conclusion.  TIMP-1 protects the MCF-7 S1 cells against antracycline-induced cell death but not against taxol. Thus, TIMP-1 may be used to discriminate between patients likely to benefit from antracyclines and patients who should be offered an alternative drug. Furthermore, we found...

  14. In vitro evaluation of anticancer potentials of lupeol isolated from Elephantopus scaber L. on MCF-7 cell line

    Directory of Open Access Journals (Sweden)

    Daisy Pitchai

    2014-01-01

    Full Text Available Lupeol is a triterpenoid, present in most of the medicinally effective plants and possess a wide range of biological activity against human diseases. The present study aims at evaluating the anticancer potentials of lupeol, isolated from the leaves of Elephantopus scaber L. and thereby explores its action on key cancer marker, Bcl-2. The effect of lupeol on the cell viability of MCF-7 was determined by MTT and lactate dehydrogenase assays at different concentrations. The efficacy of the compound to induce cell death was analyzed using AO/EtBr staining. Phase contrast microscopic analysis provided the changes in cell morphology of the compound treated normal breast cells (MCF-10A and MCF-7 cells. The expression of Bcl-2 and Bcl-xL proteins in the normal, cancer and lupeol treated cancer cell was analyzed by western blotting. Lupeol induced an effective change in the cell viability of MCF-7 cells with IC 50 concentration as 80 μM. Induction of cell death, change in cell morphology and population of the cancer cells was observed in the lupeol treated cells, but the normal cells were not affected. The compound effectively downregulated Bcl-2 and Bcl-xL protein expressions, which directly contribute for the induction of MCF-7 cell apoptosis. Conclusion: Thus, lupeol acts as an anticancer agent against MCF-7 cells and is a potent phytodrug to be explored further for its cytotoxic mechanism.

  15. Exogenous coenzyme Q10 modulates MMP-2 activity in MCF-7 cell line as a breast cancer cellular model

    Directory of Open Access Journals (Sweden)

    Mirmiranpour Hossein

    2010-11-01

    Full Text Available Abstract Background/Aims Matrix Metalloproteinases 2 is a key molecule in cellular invasion and metastasis. Mitochondrial ROS has been established as a mediator of MMP activity. Coenzyme Q10 contributes to intracellular ROS regulation. Coenzyme Q10 beneficial effects on cancer are still in controversy but there are indications of Coenzyme Q10 complementing effect on tamoxifen receiving breast cancer patients. Methods In this study we aimed to investigate the correlation of the effects of co-incubation of coenzyme Q10 and N-acetyl-L-cysteine (NAC on intracellular H2O2 content and Matrix Metalloproteinase 2 (MMP-2 activity in MCF-7 cell line. Results and Discussion Our experiment was designed to assess the effect in a time and dose related manner. Gelatin zymography and Flowcytometric measurement of H2O2 by 2'7',-dichlorofluorescin-diacetate probe were employed. The results showed that both coenzyme Q10 and N-acetyl-L-cysteine reduce MMP-2 activity along with the pro-oxidant capacity of the MCF-7 cell in a dose proportionate manner. Conclusions Collectively, the present study highlights the significance of Coenzyme Q10 effect on the cell invasion/metastasis effecter molecules.

  16. Evaluation of anticancer potential of Bacopa monnieri L. against MCF-7 and MDA-MB 231 cell line

    Directory of Open Access Journals (Sweden)

    Md. Nasar Mallick

    2015-01-01

    Full Text Available Background: The ethanolic extract of Bacopa monnieri contains bacoside A and B, brahmin, cucurbitacins, and betulinic acid. Currently, cucurbitacins have also been reported for their strong anti-tumorigenic and anti-proliferative activity by inducing cell cycle arrest at the G2/M phase and formation of multiplied cells. The present study was carried out to evaluate the in vitro cytotoxic activity of ethanolic extract of dichloromethane (DCM fraction of B. monnieri on two different cell lines. Materials and Methods: The ethanolic extract of B. monnieri was prepared using soxhlet extraction method and different fractions (hexane, DCM, methanol, acetone, and water of ethanolic extracts were prepared. The 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide assay of ethanolic extract and of all fractions was carried out on MCF-7 and MDA-MB 231 cell lines. The presence of cucurbitacins and betulinic acid in these fractions was confirmed by high-performance thin layer chromatography. Results: The IC50 values of ethanolic extract of B. monnieri in MCF-7 and MDA-MB 231 cell lines were 72.0 μg/mL and 75.0 μg/mL, respectively. The DCM fraction of B. monnieri showed maximum cytotoxic activity among all fraction upto 72 h and was found to be 57.0 μg/mL and 42.0 μg/mL, respectively. Conclusion: The results showed good cytotoxic activity in DCM fraction in both the cell lines may be due to the presence of cucurbitacins and betulinic acid in DCM fraction.

  17. Gene expression profiling and pathway analysis data in MCF-7 and MDA-MB-231 human breast cancer cell lines treated with dioscin.

    Science.gov (United States)

    Aumsuwan, Pranapda; Khan, Shabana I; Khan, Ikhlas A; Walker, Larry A; Dasmahapatra, Asok K

    2016-09-01

    Microarray technology (Human OneArray microarray, phylanxbiotech.com) was used to compare gene expression profiles of non-invasive MCF-7 and invasive MDA-MB-231 breast cancer cells exposed to dioscin (DS), a steroidal saponin isolated from the roots of wild yam, (Dioscorea villosa). Initially the differential expression of genes (DEG) was identified which was followed by pathway enrichment analysis (PEA). Of the genes queried on OneArray, we identified 4641 DEG changed between MCF-7 and MDA-MB-231 cells (vehicle-treated) with cut-off log2 |fold change|≧1. Among these genes, 2439 genes were upregulated and 2002 were downregulated. DS exposure (2.30 μM, 72 h) to these cells identified 801 (MCF-7) and 96 (MDA-MB-231) DEG that showed significant difference when compared with the untreated cells (pMDA-MB-231 cells. Further comparison of DEG between MCF-7 and MDA-MB-231 cells exposed to DS identified 3626 DEG of which 1700 were upregulated and 1926 were down-regulated. Regarding to PEA, 12 canonical pathways were significantly altered between these two cell lines. However, there was no alteration in any of these pathways in MCF-7 cells, while in MDA-MB-231 cells only MAPK pathway showed significant alteration. When PEA comparison was made on DS exposed cells, it was observed that only 2 pathways were significantly affected. Further, we identified the shared DEG, which were targeted by DS and overlapped in both MCF-7 and MDA-MB-231 cells, by intersection analysis (Venn diagram). We found that 7 DEG were overlapped of which six are reported in the database. This data highlight the diverse gene networks and pathways in MCF-7 and MDA-MB-231 human breast cancer cell lines treated with dioscin. PMID:27331101

  18. Evaluation of cytotoxic activities of snake venoms toward breast (MCF-7) and skin cancer (A-375) cell lines.

    Science.gov (United States)

    Bradshaw, Michael J; Saviola, Anthony J; Fesler, Elizabeth; Mackessy, Stephen P

    2016-08-01

    Snake venoms are mixtures of bioactive proteins and peptides that exhibit diverse biochemical activities. This wide array of pharmacologies associated with snake venoms has made them attractive sources for research into potentially novel therapeutics, and several venom-derived drugs are now in use. In the current study we performed a broad screen of a variety of venoms (61 taxa) from the major venomous snake families (Viperidae, Elapidae and "Colubridae") in order to examine cytotoxic effects toward MCF-7 breast cancer cells and A-375 melanoma cells. MTT cell viability assays of cancer cells incubated with crude venoms revealed that most venoms showed significant cytotoxicity. We further investigated venom from the Red-bellied Blacksnake (Pseudechis porphyriacus); venom was fractionated by ion exchange fast protein liquid chromatography and several cytotoxic components were isolated. SDS-PAGE and MALDI-TOF mass spectrometry were used to identify the compounds in this venom responsible for the cytotoxic effects. In general, viper venoms were potently cytotoxic, with MCF-7 cells showing greater sensitivity, while elapid and colubrid venoms were much less toxic; notable exceptions included the elapid genera Micrurus, Naja and Pseudechis, which were quite cytotoxic to both cell lines. However, venoms with the most potent cytotoxicity were often not those with low mouse LD50s, including some dangerously venomous viperids and Australian elapids. This study confirmed that many venoms contain cytotoxic compounds, including catalytic PLA2s, and several venoms also showed significant differential toxicity toward the two cancer cell lines. Our results indicate that several previously uncharacterized venoms could contain promising lead compounds for drug development.

  19. Low-density microarray analysis of TGFβ1-dependent cell cycle regulation in human breast adenocarcinoma MCF7 cell line

    Directory of Open Access Journals (Sweden)

    Dubrovska A. M.

    2014-03-01

    Full Text Available Transforming growth factor β1 (TGFβ1 is a growth regulator that has antiproliferative effects on a range of epithelial cells at the early stages and promoting tumorigenesis at the later stages of cancer progression. The molecular mechanisms of a duel role of TGFβ1 in tumor growth regulation remain poorly understood. Aim. To analyze the TGFβ1-dependent cell cycle regulation of tumorigenic breast epithelial cells. Methods. Our present study was designed to examine the regulatory effect of TGFβ1 on the expression of a panel of 96 genes which are known to be critically involved in cell cycle regulation. GEArray Q series Human Cell Cycle Gene Array was applied to profile the gene expression changes in MCF7 human breast adenocarcinoma cell line treated with TGFβ1. Results. The gene expression array data enabled us to reveal the molecular regulators that might connect TGFβ1 signaling to the promoting of the tumor growth, e. g. retinoblastoma protein (pRB1, check-point kinase 2 (Chk2, breast cancer 1, early onset (BRCA1, DNA damage checkpoint protein RAD9, cyclin-dependent kinase 2 (CDK2, cyclin D1 (CCND1. Conclusions. The uncovering of the key signaling modules involved in TGFβ1- dependent signaling might provide an insight into the mechanisms of TGFβ1-dependent tumor growth and can be beneficial for the development of novel therapeutic approaches.

  20. Phytochemical and toxicity evaluation ofPhaleria macrocarpa (Scheff.) Boerl by MCF-7 cell line and brine shrimp lethality bioassay

    Institute of Scientific and Technical Information of China (English)

    Abul Kalam Azad; Wan Mohd Azizi Wan Sulaiman; Nushrat Khan Sunzida

    2016-01-01

    Objective:To evaluate the cytotoxicity ofPhaleria macrocarpa fruits extracts. Methods: The cytotoxicity test was carried out byin vitroMCF-7 cell line andin vivo brine shrimp lethality bioassay. Results: The preliminary phytochemical test showed the presence of alkaloids, carbohydrate, glycosides, saponin, terpene, steroids, phenols and flavonoids. TheMTT-assay results showed that the highest percentage of cell viability was 106.23% at concentration of 1.25µL and the lowest percentage was 13.04% at concentration of 10µL. Conclusions:TheMTT-assay and brine shrimp lethality bioassay results showed that the extract was non-toxic and it would be consumable as a herbal remedy.

  1. Phytochemical and toxicity evaluation of Phaleria macrocarpa (Scheff. Boerl by MCF-7 cell line and brine shrimp lethality bioassay

    Directory of Open Access Journals (Sweden)

    Abul Kalam Azad

    2016-01-01

    Full Text Available Objective: To evaluate the cytotoxicity of Phaleria macrocarpa fruits extracts. Methods: The cytotoxicity test was carried out by in vitro MCF-7 cell line and in vivo brine shrimp lethality bioassay. Results: The preliminary phytochemical test showed the presence of alkaloids, carbohydrate, glycosides, saponin, terpene, steroids, phenols and flavonoids. The MTT-assay results showed that the highest percentage of cell viability was 106.23% at concentration of 1.25 µL and the lowest percentage was 13.04% at concentration of 10 µL. Conclusions: The MTT-assay and brine shrimp lethality bioassay results showed that the extract was non-toxic and it would be consumable as a herbal remedy.

  2. Convolvulus galaticus, Crocus antalyensis, and Lilium candidum extracts show their antitumor activity through induction of p53-mediated apoptosis on human breast cancer cell line MCF-7 cells.

    Science.gov (United States)

    Tokgun, Onur; Akca, Hakan; Mammadov, Ramazan; Aykurt, Candan; Deniz, Gökhan

    2012-11-01

    Conventional and newly emerging treatment procedures such as chemotherapy, catalytic therapy, photodynamic therapy, and radiotherapy have not succeeded in reversing the outcome of cancer diseases to any drastic extent, which has led researchers to investigate alternative treatment options. The extensive repertoire of traditional medicinal knowledge systems from various parts of the world are being re-investigated for their healing properties. It has been reported that several members of the Convolvulaceae, Iridaceae, and Liliaceae families have antitumor activity against some tumor cell lines. Here we first report that Convolvulus galaticus, Crocus antalyensis, and Lilium candidum species have cytotoxic activity on human breast cancer cell line MCF-7 cells. Plant samples were collected and identified, and their cytotoxic effects on the MCF-7 cell line were examined at different concentrations of methanol extracts. We found that all three plants have cytotoxic effects on MCF-7 cells but that C. galaticus has the strongest cytotoxic effect even in the lowest extract concentration tested (0.32 μg/mL). Our results indicate that these plant extracts have cytotoxic effects on human breast carcinoma cell line MCF-7 cells and that this cytotoxic effect comes from p53-mediated stimulation of apoptosis.

  3. Radiosensitizing Effect of ApoG2 on MCF-7 Breast Cancer Cell Line in vitro%Apogossypolone对乳腺癌MCF-7细胞株放射增敏的体外实验研究

    Institute of Scientific and Technical Information of China (English)

    魏芳; 汪森明; 胡丽娟; 胡喜钢; 曹漫明; 张积仁

    2012-01-01

    [Purpose] To investigate ApoG2 enhancing radiosensitivity to MCF-7 breast cancer cell line and its possible mechanism. [Methods] ①The inhibition of ApoG2 on MCF-7 cells was examined by MTT assay so as to define IC50. ② Low dosage (MCF-7 cell line was determined by clonogenic assay. ③The apoptosis rate and fluorescence intensity of autophagy in MCF-7 cells treated with ApoG2, irradiation and combination of ApoG2 and irradiation respectively were measured by flow cytometry. ④The expressions of Bcl-2 and Beclinl protein were measured by Western Blot. [Results] ApoG2 suppressed the proliferation of MCF-7 cells in a dose-time dependent manner. Clonogenic assay showed that in irradiation group, the values of SF2, Do and Dq were higher than those in 2.5μmol/L ApoG2 plus irradiation group and 5|xmol/L ApoG2 plus irradiation group. FCM assay indicated that apoptosis rate and fluorescence intensity of autophagy increased in combination group compared with those in irradiation group (P<0.05). Western Blot showed that the expression of Bcl-2 protein downregulated and the expression of Beclinl upregulated obviously in combination group compared with those in irradiation group(P<0.05). [Conclusion] ApoG2 possesses radiosensitizing effect to MCF-7 cells. The mechanism might relate to the induction of cell apoptosis and autophagy, and autophagy plays a major role.%[目的]探讨Apogossypolone (ApoG2)对乳腺癌MCF-7细胞株的放射增敏作用及其作用机制.[方法]①MTT法检测ApoG2单药对MCF-7细胞的抑制率,确立细胞半数抑制浓度(IC50).②根据MTT结果选取低浓度(<IC50)的ApoG2进行克隆形成实验,检测ApoG2对MCF-7细胞的放射增敏作用.③流式细胞仪检测经ApoG2、射线及两者联合作用细胞的凋亡率及自噬荧光强度.④Western Blot检测经ApoG2、射线及两者联合作用细胞的Bcl-2及Beclin1蛋

  4. Synthesis of an anthraquinone derivative (DHAQC and its effect on induction of G2/M arrest and apoptosis in breast cancer MCF-7 cell line

    Directory of Open Access Journals (Sweden)

    Yeap SK

    2015-02-01

    Full Text Available SweeKeong Yeap,1 Muhammad Nadeem Akhtar,2 Kian Lam Lim,3 Nadiah Abu,4,5 Wan Yong Ho,6 Seema Zareen,2 Kiarash Roohani,1 Huynh Ky,4 Sheau Wei Tan,1 Nordin Lajis,7 Noorjahan Banu Alitheen1,4 1Institute of Bioscience, Universiti Putra Malaysia, Selangor Darul Ehsan, Malaysia; 2Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, Kuantan, Pahang, Malaysia; 3Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Selangor Darul Ehsan, Malaysia; 4Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Selangor Darul Ehsan, Malaysia; 5Bright Sparks Unit, University of Malaya, Kuala Lumpur, Malaysia; 6School of Biomedical Sciences, University of Nottingham Malaysia Campus, Selangor Darul Ehsan, Malaysia; 7Scientific Chairs Unit, Taibah University, Medina, Saudi Arabia Abstract: Anthraquinones are an important class of naturally occurring biologically active compounds. In this study, anthraquinone derivative 1,3-dihydroxy-9,10-anthraquinone-2-carboxylic acid (DHAQC (2 was synthesized with 32% yield through the Friedel–Crafts condensation reaction. The mechanisms of cytotoxicity of DHAQC (2 in human breast cancer MCF-7 cells were further investigated. Results from the 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay showed that DHAQC (2 exhibited potential cytotoxicity and selectivity in the MCF-7 cell line, comparable with the naturally occurring anthraquinone damnacanthal. DHAQC (2 showed a slightly higher IC50 (inhibitory concentration with 50% cell viability value in the MCF-7 cell line compared to damnacanthal, but it is more selective in terms of the ratio of IC50 on MCF-7 cells and normal MCF-10A cells. (selective index for DHAQC (2 was 2.3 and 1.7 for damnacanthal. The flow cytometry cell cycle analysis on the MCF-7 cell line treated with the IC50 dose of DHAQC (2 for 48 hours showed that DHAQC (2 arrested MCF-7 cell line at the G2/M phase in association with an

  5. Flavokawain derivative FLS induced G2/M arrest and apoptosis on breast cancer MCF-7 cell line

    Science.gov (United States)

    Ali, Norlaily Mohd; Akhtar, M Nadeem; Ky, Huynh; Lim, Kian Lam; Abu, Nadiah; Zareen, Seema; Ho, Wan Yong; Alan-Ong, Han Kiat; Tan, Sheau Wei; Alitheen, Noorjahan Banu; Ismail, Jamil bin; Yeap, Swee Keong; Kamarul, Tunku

    2016-01-01

    Known as naturally occurring biologically active compounds, flavokawain A and B are the leading chalcones that possess anticancer properties. Another flavokawain derivative, (E)-1-(2′-Hydroxy-4′,6′-dimethoxyphenyl)-3-(4-methylthio)phenyl)prop-2-ene-1-one (FLS) was characterized with 1H-nuclear magnetic resonance, electron-impact mas spectrometry, infrared spectroscopy, and ultraviolet (1H NMR, EI-MS, IR, and UV) spectroscopic techniques. FLS cytotoxic efficacy against human cancer cells (MCF-7, MDA-MB-231, and MCF-10A) resulted in the reduction of IC50 values in a time- and dose-dependent mode with high specificity on MCF-7 (IC50 of 36 μM at 48 hours) against normal breast cell MCF-10A (no IC50 detected up to 180 μM at 72 hours). Light, scanning electron, and fluorescent microscopic analysis of MCF-7 cells treated with 36 μM of FLS displayed cell shrinkage, apoptotic body, and DNA fragmentation. Additionally, induction of G2/M cell arrest within 24 hours and apoptosis at subsequent time points was discovered via flow cytometry analysis. The roles of PLK-1, Wee-1, and phosphorylation of CDC-2 in G2/M arrest and proapoptotic factors (Bax, caspase 9, and p53) in promotion of apoptosis of FLS against MCF-7 cells were discovered using fluorometric, quantitative real-time polymerase chain reaction, and Western blot analysis. Interestingly, the presence of SCH3 (thiomethyl group) on ring B structure contributed to the selective cytotoxicity against MCF-7 cells compared to other chalcones, flavokawain A and B. Overall, our data suggest potential therapeutic value for flavokawain derivative FLS to be further developed as a new anticancer drug. PMID:27358555

  6. Flavokawain derivative FLS induced G2/M arrest and apoptosis on breast cancer MCF-7 cell line.

    Science.gov (United States)

    Ali, Norlaily Mohd; Akhtar, M Nadeem; Ky, Huynh; Lim, Kian Lam; Abu, Nadiah; Zareen, Seema; Ho, Wan Yong; Alan-Ong, Han Kiat; Tan, Sheau Wei; Alitheen, Noorjahan Banu; Ismail, Jamil Bin; Yeap, Swee Keong; Kamarul, Tunku

    2016-01-01

    Known as naturally occurring biologically active compounds, flavokawain A and B are the leading chalcones that possess anticancer properties. Another flavokawain derivative, (E)-1-(2'-Hydroxy-4',6'-dimethoxyphenyl)-3-(4-methylthio)phenyl)prop-2-ene-1-one (FLS) was characterized with (1)H-nuclear magnetic resonance, electron-impact mas spectrometry, infrared spectroscopy, and ultraviolet ((1)H NMR, EI-MS, IR, and UV) spectroscopic techniques. FLS cytotoxic efficacy against human cancer cells (MCF-7, MDA-MB-231, and MCF-10A) resulted in the reduction of IC50 values in a time- and dose-dependent mode with high specificity on MCF-7 (IC50 of 36 μM at 48 hours) against normal breast cell MCF-10A (no IC50 detected up to 180 μM at 72 hours). Light, scanning electron, and fluorescent microscopic analysis of MCF-7 cells treated with 36 μM of FLS displayed cell shrinkage, apoptotic body, and DNA fragmentation. Additionally, induction of G2/M cell arrest within 24 hours and apoptosis at subsequent time points was discovered via flow cytometry analysis. The roles of PLK-1, Wee-1, and phosphorylation of CDC-2 in G2/M arrest and proapoptotic factors (Bax, caspase 9, and p53) in promotion of apoptosis of FLS against MCF-7 cells were discovered using fluorometric, quantitative real-time polymerase chain reaction, and Western blot analysis. Interestingly, the presence of SCH3 (thiomethyl group) on ring B structure contributed to the selective cytotoxicity against MCF-7 cells compared to other chalcones, flavokawain A and B. Overall, our data suggest potential therapeutic value for flavokawain derivative FLS to be further developed as a new anticancer drug. PMID:27358555

  7. REVERSAL EFFECTS OF MIFEPRISTONE ON MULTIDRUG RESISTANCE(MDR) IN DRUG-RESISTANT BREAST CANCER CELL LINE MCF7/ADR IN VITRO AND IN VIVO

    Institute of Scientific and Technical Information of China (English)

    李大强; 潘丽华; 邵志敏

    2004-01-01

    Objective: To explore the reversal effect of mifepristone on multidrug resistance (MDR) in drug-resistant human breast cancer cell line MCF7/ADR and its mechanisms. Methods: Expression of MDR1 and MDR-associated protein(MRP) mRNA in MCF7/ADR cells was detected using reverse transcription- polymerase chain reaction(RT-PCR). Western blotting was used to assay the protein levels of P-glycoprotein (P-gp) and MRP. Intracellular rhodamine 123 retention and [3H]vincristine (VCR) accumulation were measured by flow cytometry and liquid scintillation counter, respectively. MTT reduction assay was used to determine the sensitivity of cells to the anticancer agent, adriamycin (ADR). Additionally, a MCF7/ADR cell xenograft model was established to assess the reversal effect of mifeprisone on MDR in MCF7/ADR cells in vivo. Results: Miferpristone dose-dependently down- regulated the expression of MDR1 and MRP mRNA in MCF7/ADR cells, accompanied by a significant decrease in the protein levels of P-gp and MRP. After exposure to 5, 10, and 20 μmol/L mifepristone, MCF7/ADR cells showed a 3.87-, 5.81-, and 7.40-fold increase in the accumulation of intracellular VCR(a known substrate of MRP), and a 2.14-, 4.39-, and 5.53-fold increase in the retention of intracellular rhodamine 123(an indicator of P-gp function), respectively. MTT analysis showed that the sensitivity of MCF7/ADR cells to ADR was enhanced by 7.23-, 13.62-, and 20.96-fold after incubation with mifepristone as above-mentioned doses for 96 h. In vivo, mifepristone effectively restored the chemosensitivity of MCF7/ADR cells to ADR. After 8 weeks of administration with ADR(2 mg·kg-1·d-1) alone or in combination with mifepristone(50 mg·kg-1·d-1), the growth inhibitory rate of xenografted tumors in nude mice was 8.08% and 37.25%, respectively. Conclusion: Mifepristone exerts potent reversal effects on MDR in MCF7/ADR cells in vitro and in vivo through down- regulation of MDR1/P-gp and MRP expression and inhibition of P

  8. Anti-proliferative effect of biogenic gold nanoparticles against breast cancer cell lines (MDA-MB-231 & MCF-7)

    Science.gov (United States)

    K. S., Uma Suganya; Govindaraju, K.; Ganesh Kumar, V.; Prabhu, D.; Arulvasu, C.; Stalin Dhas, T.; Karthick, V.; Changmai, Niranjan

    2016-05-01

    Breast cancer is a major complication in women and numerous approaches are being developed to overcome this problem. In conventional treatments such as chemotherapy and radiotherapy the post side effects cause an unsuitable effect in treatment of cancer. Hence, it is essential to develop a novel strategy for the treatment of this disease. In the present investigation, a possible route for green synthesis of gold nanoparticles (AuNPs) using leaf extract of Mimosa pudica and its anticancer efficacy in the treatment of breast cancer cell lines is studied. The synthesized nanoparticles were found to be effective in killing cancer cells (MDA-MB-231 & MCF-7) which were studied using various anticancer assays (MTT assay, cell morphology determination, cell cycle analysis, comet assay, Annexin V-FITC/PI staining and DAPI staining). Cell morphological analysis showed the changes occurred in cancer cells during the treatment with AuNPs. Cell cycle analysis revealed apoptosis in G0/G1 to S phase. Similarly in Comet assay, there was an increase in tail length in treated cells in comparison with the control. Annexin V-FITC/PI staining assay showed prompt fluorescence in treated cells indicating the translocation of phosphatidylserine from the inner membrane. PI and DAPI staining showed the DNA damage in treated cells.

  9. Research on the enrichment of CD44+CD24-cancer stem cells in breast cancer multi-drug resistant cell lines MCF-7/PTX%MCF-7/PTX多药耐药细胞株中CD44+CD24-乳腺癌干细胞富集的研究

    Institute of Scientific and Technical Information of China (English)

    韩娜娜; 孙长岗; 庄静; 杨静

    2013-01-01

    Objective To establish human breast cancer multi-drug resistant cell lines MCF-7/PTX in order to study the enrichment of CD+44CD-24 breast cancer cells. Methods We established the multidrug resistant cell line MCF-7/PTX by method of intermittently induction with high dose of PTX. The resistance and cross-resistance of MCF-7 and MCF-7/PTX on PTX were identified by MTT method. The proportion of CD+44CD-24 cells was detected by method of flow cytometry. Results The resistance indices of MCF-7/PTX on paclitaxel, doxorubicin, docetaxel, epirubicin, vincristine, methotrexate, cis-platin were 53, 45.72, 38.30,41.26, 23.75, 17.62 and 35. 80, respectively. The proportion of CD+44CD-24 cells in MCF-7 and MCF-7/PTX were 8.60% , 73. 20% , respectively. Conclusion The MCF-7/PTX cell line established in this study was a kind of multi-drug resistant cell line. The CD+44CD-24 cells in MCF-7/PTX were enriched.%目的 建立人乳腺癌紫杉醇(PTX)多药耐药细胞株MCF-7/PTX,观察MCF-7MCF-7/PTX细胞株中CD44+CD24-乳腺癌干细胞的富集情况.方法 以MCF-7为亲本细胞,以PTX为诱导药物,高浓度间歇诱导法建立多药耐药细胞株MCF-7/PTX;MTT法检测MCF-7MCF-7/PTX对PTX等多种化疗药物的耐药性及交叉耐药性;流式细胞术检测细胞株CD44+CD24-乳腺癌干细胞的含量.结果 ①MCF-7/PTX对PTX、阿霉素、多西紫杉醇、表阿霉素、长春新碱、甲氨蝶呤、顺铂的耐药指数分别为53.00、45.72、38.30、41.26、23.75、17.62、35.80.②MCF-7MCF-7/PTX细胞株中CD44+CD24-细胞的比例分别为8.60%、73.20%,P<0.01.结论 本实验所建立的MCF-7/PTX为多药耐药细胞株;MCF-7/PTX存在着CD44+CD24-乳腺癌干细胞的富集.

  10. Effects of berberine on proliferation, cell cycle distribution and apoptosis of human breast cancer T47D and MCF7 cell lines

    Science.gov (United States)

    Barzegar, Elmira; Fouladdel, Shamileh; Movahhed, Tahereh Komeili; Atashpour, Shekoufeh; Ghahremani, Mohammad Hossein; Ostad, Seyed Nasser; Azizi, Ebrahim

    2015-01-01

    Objective(s): Berberine, a naturally occurring isoquinoline alkaloid, has shown antitumor properties in some in vitro systems. But the effect of berberine on breast cancer has not yet been completely studied. In this study, we evaluated anticancer properties of berberine in comparison to doxorubicin. Materials and Methods: The antiproliferative effects of berberine and doxorubicin alone and in combination were evaluated in T47D and MCF7 cell lines using MTT cytotoxicity assay. In addition, flow cytometry analysis was performed to evaluate the cell cycle alteration and apoptosis induction in these cell lines following exposure to berberine and doxorubicin alone and in combination. Results: The IC50 of berberine was determined to be 25 µM after 48 hr of treatment in both cell lines but for doxorubicin it was 250 nM and 500 nM in T47D and MCF-7 cell lines, respectively. Co-treatment with berberine and doxorubicin increased cytotoxicity in T47D cells more significantly than in MCF-7 cells. Flow cytometry results demonstrated that berberine alone or in combination with doxorubicin induced G2/M arrest in the T47D cells, but G0/G1 arrest in the MCF-7 cells. Doxorubicin alone induced G2/M arrest in both cell lines. Furthermore, berberine and doxorubicin alone or in combination significantly induced apoptosis in both cell lines. Conclusion: Berberine alone and in combination with doxorubicin inhibited cell proliferation, induced apoptosis and altered cell cycle distribution of breast cancer cells. Therefore, berberine showed to be a good candidate for further studies as a new anticancer drug in the treatment of human breast cancer. PMID:26019795

  11. PI3K/Akt inhibition and down-regulation of BCRP re-sensitize MCF7 breast cancer cell line to mitoxantrone chemotherapy

    Directory of Open Access Journals (Sweden)

    Tahereh Komeili-Movahhed

    2015-05-01

    Full Text Available Objective(s:Multidrug resistance (MDR of cancer cells is a major obstacle to successful chemotherapy. Overexpression of breast cancer resistance protein (BCRP is one of the major causes of MDR. In addition, it has been shown that PI3K/Akt signaling pathway involves in drug resistance. Therefore, we evaluated the effects of novel approaches including siRNA directed against BCRP and targeted therapy against PI3K/Akt signaling pathway using LY294002 (LY to re-sensitize breast cancer MCF7 cell line to mitoxantrone (MTX chemotherapy. Materials and Methods: Anticancer effects of MTX, siRNA, and LY alone and in combination were evaluated in MCF7 cells using MTT cytotoxicity assay and flow cytometry analysis of cell cycle distribution and apoptosis induction. Results: MTT and apoptosis assays showed that both MTX and LY inhibited cell proliferation and induced apoptosis in MCF7 cells. Results indicated that inhibition of BCRP by siRNA or PI3K/Akt signaling pathway by LY significantly increased sensitivity of MCF7 cells to antiproliferation and apoptosis induction of MTX. Furthermore, MTX showed G2/M arrest, whereas LY induced G0/G1 arrest in cell cycle distribution of MCF7 cells. Combination of siRNA or LY with MTX chemotherapy significantly increased accumulation of MCF7 cells in the G2/M phase of cell cycle. Conclusion: Combination of MTX chemotherapy with BCRP siRNA and PI3K/Akt inhibition can overcome MDR in breast cancer cells. This study furthermore suggests that novel therapeutic approaches are needed to enhance anticancer effects of available drugs in breast cancer

  12. PI3K/Akt inhibition and down-regulation of BCRP re-sensitize MCF7 breast cancer cell line to mitoxantrone chemotherapy

    Science.gov (United States)

    Komeili-Movahhed, Tahereh; Fouladdel, Shamileh; Barzegar, Elmira; Atashpour, Shekoufeh; Hossein Ghahremani, Mohammad; Nasser Ostad, Seyed; Madjd, Zahra; Azizi, Ebrahim

    2015-01-01

    Objective(s): Multidrug resistance (MDR) of cancer cells is a major obstacle to successful chemotherapy. Overexpression of breast cancer resistance protein (BCRP) is one of the major causes of MDR. In addition, it has been shown that PI3K/Akt signaling pathway involves in drug resistance. Therefore, we evaluated the effects of novel approaches including siRNA directed against BCRP and targeted therapy against PI3K/Akt signaling pathway using LY294002 (LY) to re-sensitize breast cancer MCF7 cell line to mitoxantrone (MTX) chemotherapy. Materials and Methods: Anticancer effects of MTX, siRNA, and LY alone and in combination were evaluated in MCF7 cells using MTT cytotoxicity assay and flow cytometry analysis of cell cycle distribution and apoptosis induction. Results: MTT and apoptosis assays showed that both MTX and LY inhibited cell proliferation and induced apoptosis in MCF7 cells. Results indicated that inhibition of BCRP by siRNA or PI3K/Akt signaling pathway by LY significantly increased sensitivity of MCF7 cells to antiproliferation and apoptosis induction of MTX. Furthermore, MTX showed G2/M arrest, whereas LY induced G0/G1 arrest in cell cycle distribution of MCF7 cells. Combination of siRNA or LY with MTX chemotherapy significantly increased accumulation of MCF7 cells in the G2/M phase of cell cycle. Conclusion: Combination of MTX chemotherapy with BCRP siRNA and PI3K/Akt inhibition can overcome MDR in breast cancer cells. This study furthermore suggests that novel therapeutic approaches are needed to enhance anticancer effects of available drugs in breast cancer. PMID:26124933

  13. The Genotoxic and Cytotoxic Effects of Bisphenol-A (BPA) in MCF-7 Cell Line and Amniocytes.

    Science.gov (United States)

    Aghajanpour-Mir, Seyed Mohsen; Zabihi, Ebrahim; Akhavan-Niaki, Haleh; Keyhani, Elahe; Bagherizadeh, Iman; Biglari, Sajjad; Behjati, Farkhondeh

    2016-01-01

    Bisphenol-A (BPA) is an industrial xenoestrogen used widely in our living environment. Recently, several studies suggested that BPA has destructive effects on DNA and chromosomes in normal body cells via estrogen receptors (ER). Therefore, BPA could be considered as an important mediator in many diseases such as cancer. However, there are still many controversial issues which need clarification. In this study, we investigated the BPA-induced chromosomal damages in MCF-7 cell line, ER-positive and negative amniocyte cells. Cytotoxicity and genotoxicity effects of BPA were also compared between these three cell groups. Expression of estrogen receptors was determined using immunocytochemistry technique. The cell cytotoxicity of BPA was measured by MTT assay. Classic cytogenetic technique was carried out for the investigation of chromosome damage. BPA, in addition to cytotoxicity, had remarkable genotoxicity at concentrations close to the traceable levels in tissues or biological fluids. Although some differences were observed in the amount of damages between ER-positive and negative fetal cells, interestingly, these differences were not significant. The present study showed that BPA could lead to chromosomal aberrations in both ER-dependent and independent pathways at some concentrations or in cell types yet not reported. Also, BPA could probably be considered as a facilitator for some predisposed cells to be cancerous by raising the chromosome instability levels. Finally, estrogen receptor seems to have a different role in cytotoxicity and genotoxicity effects. PMID:27386435

  14. Curcumin Induces Cell Death and Restores Tamoxifen Sensitivity in the Antiestrogen-Resistant Breast Cancer Cell Lines MCF-7/LCC2 and MCF-7/LCC9

    OpenAIRE

    Min Jiang; Ou Huang; Xi Zhang; Zuoquan Xie; Aijun Shen; Hongchun Liu; Meiyu Geng; Kunwei Shen

    2013-01-01

    Curcumin, a principal component of turmeric (Curcuma longa), has potential therapeutic activities against breast cancer through multiple signaling pathways. Increasing evidence indicates that curcumin reverses chemo-resistance and sensitizes cancer cells to chemotherapy and targeted therapy in breast cancer. To date, few studies have explored its potential antiproliferation effects and resistance reversal in antiestrogen-resistant breast cancer. In this study, we therefore investigated the ef...

  15. The defensin from avocado (Persea americana var. drymifolia) PaDef induces apoptosis in the human breast cancer cell line MCF-7.

    Science.gov (United States)

    Guzmán-Rodríguez, Jaquelina Julia; López-Gómez, Rodolfo; Salgado-Garciglia, Rafael; Ochoa-Zarzosa, Alejandra; López-Meza, Joel E

    2016-08-01

    Antimicrobial peptides (AMPs) are cytotoxic to cancer cells; however, mainly the effects of AMPs from animals have been evaluated. In this work, we assessed the cytotoxicity of PaDef defensin from avocado (Persea americana var. drymifolia) on the MCF-7 cancer cell line (a breast cancer cell line) and evaluated its mechanism of action. PaDef inhibited the viability of MCF-7 cells in a concentration-dependent manner, with an IC50=141.62μg/ml. The viability of normal peripheral blood mononuclear cells was unaffected by this AMP. Additionally, PaDef induced apoptosis in MCF-7 cells in a time-dependent manner, but did not affect the membrane potential or calcium flow. In addition, PaDef IC50 induced the expression of cytochrome c, Apaf-1, and the caspase 7 and 9 genes. Likewise, this defensin induced the loss of mitochondrial Δψm and increased the phosphorylation of MAPK p38, which may lead to MCF-7 apoptosis by the intrinsic pathway. This is the first report of an avocado defensin inducing intrinsic apoptosis in cancer cells, which suggests that it could be a potential therapeutic molecule in the treatment of cancer.

  16. The defensin from avocado (Persea americana var. drymifolia) PaDef induces apoptosis in the human breast cancer cell line MCF-7.

    Science.gov (United States)

    Guzmán-Rodríguez, Jaquelina Julia; López-Gómez, Rodolfo; Salgado-Garciglia, Rafael; Ochoa-Zarzosa, Alejandra; López-Meza, Joel E

    2016-08-01

    Antimicrobial peptides (AMPs) are cytotoxic to cancer cells; however, mainly the effects of AMPs from animals have been evaluated. In this work, we assessed the cytotoxicity of PaDef defensin from avocado (Persea americana var. drymifolia) on the MCF-7 cancer cell line (a breast cancer cell line) and evaluated its mechanism of action. PaDef inhibited the viability of MCF-7 cells in a concentration-dependent manner, with an IC50=141.62μg/ml. The viability of normal peripheral blood mononuclear cells was unaffected by this AMP. Additionally, PaDef induced apoptosis in MCF-7 cells in a time-dependent manner, but did not affect the membrane potential or calcium flow. In addition, PaDef IC50 induced the expression of cytochrome c, Apaf-1, and the caspase 7 and 9 genes. Likewise, this defensin induced the loss of mitochondrial Δψm and increased the phosphorylation of MAPK p38, which may lead to MCF-7 apoptosis by the intrinsic pathway. This is the first report of an avocado defensin inducing intrinsic apoptosis in cancer cells, which suggests that it could be a potential therapeutic molecule in the treatment of cancer. PMID:27470405

  17. Antiproliferative activity of flower hexane extract obtained from Mentha spicata associated with Mentha rotundifolia against the MCF7, KB, and NIH/3T3 cell lines.

    Science.gov (United States)

    Nedel, Fernanda; Begnini, Karine; Carvalho, Pedro Henrique de Azambuja; Lund, Rafael Guerra; Beira, Fátima T A; Del Pino, Francisco Augusto B

    2012-11-01

    This study assessed the antiproliferative effect in vitro of the flower hexane extract obtained from Mentha spicata associated with Mentha rotundifolia against the human breast adenocarcinoma (MCF-7), human mouth epidermal carcinoma (KB), and mouse embryonic fibroblast (NIH 3T3) cell lines, using sulforhodamine B (SRB) assay. A cell density of 2×10(4)/well was seeded in 96-well plates, and samples at different concentrations ranging from 10 to 500 mg/mL were tested. The optical density was determined in an ELISA multiplate reader (Thermo Plate TP-Reader). Results demonstrated that the hexane extract presented antiproliferative activity against both the tumor cell lines KB and MCF-7, presenting a GI(50) (MCF-7=13.09 mg/mL), TGI (KB=37.76 mg/mL), and IL(50) (KB=291.07 mg/mL). Also, the hexane extract presented antiproliferative activity toward NIH 3T3 cells GI(50) (183.65 mg/mL), TGI (280.54 mg/mL), and IL(50) (384.59 mg/mL). The results indicate that the flower hexane extract obtained from M. spicata associated with M. rotundifolia presents an antineoplastic activity against KB and MCF-7, although an antiproliferative effect at a high concentration of the extract was observed toward NIH 3T3. PMID:23066647

  18. Antiproliferative activity of flower hexane extract obtained from Mentha spicata associated with Mentha rotundifolia against the MCF7, KB, and NIH/3T3 cell lines.

    Science.gov (United States)

    Nedel, Fernanda; Begnini, Karine; Carvalho, Pedro Henrique de Azambuja; Lund, Rafael Guerra; Beira, Fátima T A; Del Pino, Francisco Augusto B

    2012-11-01

    This study assessed the antiproliferative effect in vitro of the flower hexane extract obtained from Mentha spicata associated with Mentha rotundifolia against the human breast adenocarcinoma (MCF-7), human mouth epidermal carcinoma (KB), and mouse embryonic fibroblast (NIH 3T3) cell lines, using sulforhodamine B (SRB) assay. A cell density of 2×10(4)/well was seeded in 96-well plates, and samples at different concentrations ranging from 10 to 500 mg/mL were tested. The optical density was determined in an ELISA multiplate reader (Thermo Plate TP-Reader). Results demonstrated that the hexane extract presented antiproliferative activity against both the tumor cell lines KB and MCF-7, presenting a GI(50) (MCF-7=13.09 mg/mL), TGI (KB=37.76 mg/mL), and IL(50) (KB=291.07 mg/mL). Also, the hexane extract presented antiproliferative activity toward NIH 3T3 cells GI(50) (183.65 mg/mL), TGI (280.54 mg/mL), and IL(50) (384.59 mg/mL). The results indicate that the flower hexane extract obtained from M. spicata associated with M. rotundifolia presents an antineoplastic activity against KB and MCF-7, although an antiproliferative effect at a high concentration of the extract was observed toward NIH 3T3.

  19. Antioxidant and cytotoxic effect of Barringtonia racemosa and Hibiscus sabdariffa fruit extracts in MCF-7 human breast cancer cell line

    Directory of Open Access Journals (Sweden)

    Norliyana Amran

    2016-01-01

    Full Text Available Background: The fruits of Barringtonia racemosa and Hibiscus sabdariffa have been used in the treatment of abscess, ulcer, cough, asthma, and diarrhea as traditional remedy. Objective: This study aims to evaluate cytotoxic effect of B. racemosa and H. sabdariffa methanol fruit extracts toward human breast cancer cell lines (MCF-7 and its antioxidant activities. Materials and Methods: Total antioxidant activities of extracts were assayed using 2,2′-diphenyl-1-picrylhydrazyl radical (DPPH and β-carotene bleaching assay. Content of phytochemicals, total flavonoid content (TFC, and total phenolic content (TPC were determined using aluminum chloride colorimetric method and Folin-Ciocalteu′s reagent, respectively. Cytotoxic activity in vitro was investigated through 3-(4, 5-dimethylthiazol-2-yl-2, 5-diphenyl tetrazolium bromide (MTT assay. Results: B. racemosa extract exhibited high antioxidant activities compared to H. sabdariffa methanol fruit extracts in DPPH radical scavenging assay (inhibitory concentration [IC 50 ] 15.26 ± 1.25 μg/mL and ί-carotene bleaching assay (I% 98.13 ± 1.83%. B. racemosa also showed higher TPC (14.70 ± 1.05 mg gallic acid equivalents [GAE]/g and TFC (130 ± 1.18 mg quercetin equivalents [QE]/g compared to H. sabdariffa (3.80 ± 2.13 mg GAE/g and 40.75 ± 1.15 mg QE/g, respectively. In MTT assay, B. racemosa extract also showed a higher cytotoxic activity (IC 50 57.61 ± 2.24 μg/mL compared to H. sabdariffa. Conclusion: The present study indicated that phenolic and flavonoid compounds known for oxidizing activities indicated an important role among the contents of these plants extract. B. racemosa methanol extract have shown potent cytotoxic activity toward MCF-7. Following these promising results, further fractionation of the plant extract is underway to identify important phytochemical bioactives for the development of potential nutraceutical and pharmaceutical use.

  20. Insulin-like growth factor-1 signaling regulates miRNA expression in MCF-7 breast cancer cell line.

    Directory of Open Access Journals (Sweden)

    Elizabeth C Martin

    Full Text Available In breast carcinomas, increased levels of insulin-like growth factor 1 (IGF-1 can act as a mitogen to augment tumorigenesis through the regulation of MAPK and AKT signaling pathways. Signaling through these two pathways allows IGF-1 to employ mechanisms that favor proliferation and cellular survival. Here we demonstrate a subset of previously described tumor suppressor and oncogenic microRNAs (miRNAs that are under the direct regulation of IGF-1 signaling. Additionally, we show that the selective inhibition of either the MAPK or AKT pathways prior to IGF-1 stimulation prevents the expression of previously described tumor suppressor miRNAs that are family and cluster specific. Here we have defined, for the first time, specific miRNAs under the direct regulation of IGF-1 signaling in the estrogen receptor positive MCF-7 breast cancer cell line and demonstrate kinase signaling as a modulator of expression for a small subset of microRNAs. Taken together, these data give new insights into mechanisms governing IGF-1 signaling in breast cancer.

  1. Effects of berberine on proliferation, cell cycle distribution and apoptosis of human breast cancer T47D and MCF7 cell lines

    OpenAIRE

    Elmira Barzegar; Shamileh Fouladdel; Tahereh Komeili Movahhed; Shekoufeh Atashpour; Mohammad Hossein Ghahremani; Seyed Nasser Ostad; Ebrahim Azizi

    2015-01-01

    Objective(s): Berberine, a naturally occurring isoquinoline alkaloid, has shown antitumor properties in some in vitro systems. But the effect of berberine on breast cancer has not yet been completely studied. In this study, we evaluated anticancer properties of berberine in comparison to doxorubicin. Materials and Methods: The antiproliferative effects of berberine and doxorubicin alone and in combination were evaluated in T47D and MCF7 cell lines using MTT cytotoxicity assay. In addition, fl...

  2. Inhibitory effect of isoamericanol A from Jatropha curcas seeds on the growth of MCF-7 human breast cancer cell line by G2/M cell cycle arrest.

    Science.gov (United States)

    Katagi, Ayako; Sui, Li; Kamitori, Kazuyo; Suzuki, Toshisada; Katayama, Takeshi; Hossain, Akram; Noguchi, Chisato; Dong, Youyi; Yamaguchi, Fuminori; Tokuda, Masaaki

    2016-01-01

    Although various parts of J. curcas (Jatropha curcas L., Euphorbiaceae) have long been used as traditional folk medicines for their antiviral, analgesic, and/or antidotal efficacies, we are the first to investigate the role of anti-carcinogenicity of isoamericanol A (IAA) from the seed extract. Our results showed that IAA is capable of inhibiting cell proliferation in a dose-dependent manner on the human cancer cell lines of MCF-7, MDA-MB231, HuH-7, and HeLa. Flow cytometry analysis showed IAA significantly induces cell cycle arrest at G2/M on MCF-7 cells. At both protein and mRNA levels examined by western blot and real-time PCR, the results revealed increased expression of BTG2 (B-cell translocation gene 2), p21 (p21(WAF1/CIPI) ), and GADD45A (growth arrest and DNA-damage-inducible, alpha) after IAA treatment, but inversed expression in CDK1 (cyclin-dependent kinase 1) and cyclins B1 and B2. All these effects contribute to G2/M cell cycle arrest. Furthermore, these results coincide with the changes in molecular expressions determined by DNA-microarray analysis. Our findings indicate that IAA has an inhibitory effect on cell proliferation of MCF-7 through cell cycle arrest, giving it great potential as a future therapeutic reagent for cancers. PMID:27441238

  3. The role of a new CD44st in increasing the invasion capability of the human breast cancer cell line MCF-7

    Directory of Open Access Journals (Sweden)

    Jiang Wei

    2011-07-01

    Full Text Available Abstract Background CD44, a hyaluronan (HA receptor, is a multistructural and multifunctional cell surface molecule involved in cell proliferation, cell differentiation, cell migration, angiogenesis, presentation of cytokines, chemokines and growth factors to the corresponding receptors, and docking of proteases at the cell membrane, as well as in signaling for cell survival. The CD44 gene contains 20 exons that are alternatively spliced, giving rise to many CD44 isoforms, perhaps including tumor-specific sequences. Methods Reverse transcriptase polymerase chain reaction (RT-PCR and Western blotting were used to detect CD44st mRNA and CD44 protein in sensitive MCF-7, Lovo, K562 and HL-60 cell lines as well as their parental counterparts, respectively. The full length cDNA encoding CD44st was obtained from the total RNA isolated from MCF-7/Adr cells by RT-PCR, and subcloned into the pMD19-T vector. The CD44st gene sequence and open reading frame were confirmed by restriction enzyme analysis and nucleotide sequencing, and then inserted into the eukaryotic expression vector pcDNA3.1. The pcDNA3.1-CD44st was transfected into MCF-7 cells using Lipofectamine. After transfection, the positive clones were obtained by G418 screening. The changes of the MMP-2 and MMP-9 genes and protein levels were detected by RT-PCR and gelatin zymography, respectively. The number of the cells penetrating through the artificial matrix membrane in each group (MCF-7, MCF-7+HA, MCF-7/neo, MCF-7/neo+HA, MCF-7/CD44st, MCF-7/CD44st+HA and MCF-7/CD44st+Anti-CD44+HA was counted to compare the change of the invasion capability regulated by the CD44st. Erk and P-Erk were investigated by Western blotting to approach the molecular mechanisms of MMP-2 and MMP-9 expression regulated by the CD44st. Results Sensitive MCF-7, Lovo, K562 and HL-60 cells did not contain CD44st mRNA and CD44 protein. In contrast, the multidrug resistance MCF-7/Adr, Lovo/Adr, K562/Adr and HL-60/Adr cells

  4. The role of captopril and losartan in prevention and regression of tamoxifen-induced resistance of breast cancer cell line MCF-7: an in vitro study.

    Science.gov (United States)

    Namazi, Soha; Rostami-Yalmeh, Javad; Sahebi, Ebrahim; Jaberipour, Mansooreh; Razmkhah, Mahboobeh; Hosseini, Ahmad

    2014-06-01

    Innate and acquired tamoxifen (TAM) resistance in estrogen receptor positive (ER+) breast cancer is an important problem in adjuvant endocrine therapy. The underlying mechanisms of TAM resistance is yet unknown. In the present study, we evaluated the role of renin-angiotensin system (RAS) in the acquisition of TAM resistance in human breast cancer cell line MCF-7, and the potential role of captopril and captopril+losartan combination in the prevention and reversion of the TAM resistant phenotype. MCF-7 cells were continuously exposed to 1 μmol/L TAM to develop TAM resistant cells (TAM-R). MTT cell viability assay was used to determine the growth response of MCF-7 and TAM-R cells, and quantitative real-time polymerase chain reaction (qRT-PCR) was used to assess angiotensin I converting enzyme (ACE), angiotensin II receptor type-1 and type-2 (AGTR1 and AGTR2) mRNA expressions. Preventive and therapeutic effects of RAS blockers - captopril and losartan - were examined on MCF-7 and TAM-R cells. Based on qRT-PCR, TAM-R cells compared to MCF-7 cells, had a mean ± SD fold increase of 319.1 ± 204.1 (P = 0.002) in production of ACE mRNA level, 2211.8 ± 777.9 (P = 0.002) in AGTR1 mRNA level, and 265.9 ± 143.9 (P = 0.037) in production of AGTR2 mRNA level. The combination of either captopril or captopril+losartan with TAM led to the prevention and even reversion of TAM resistant phenotype.

  5. Flavokawain derivative FLS induced G2/M arrest and apoptosis on breast cancer MCF-7 cell line

    Directory of Open Access Journals (Sweden)

    Ali NM

    2016-06-01

    Full Text Available Norlaily Mohd Ali,1 M Nadeem Akhtar,2 Huynh Ky,3 Kian Lam Lim,1 Nadiah Abu,4 Seema Zareen,2 Wan Yong Ho,5 Han Kiat Alan-Ong,1 Sheau Wei Tan,6 Noorjahan Banu Alitheen,4 Jamil bin Ismail,2 Swee Keong Yeap,6 Tunku Kamarul7 1Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Selangor, 2Department of Industrial Biotechnology, Faculty of Industrial Sciences & Technology, Universiti Malaysia Pahang, Pahang, Malaysia; 3Department of Agriculture Genetics and Breeding, College of Agriculture and Applied Biology, Cantho University, CanTho City, Vietnam; 4Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 5School of Biomedical Sciences, The University of Nottingham Malaysia Campus, 6Institute of Bioscience, Universiti Putra Malaysia, Selangor, 7Tissue Engineering Group, National Orthopaedic Centre of Excellence for Research and Learning, Department of Orthopaedic Surgery, Faculty of Medicine, University Malaya, Kuala Lumpur, Malaysia Abstract: Known as naturally occurring biologically active compounds, flavokawain A and B are the leading chalcones that possess anticancer properties. Another flavokawain derivative, (E-1-(2'-Hydroxy-4',6'-dimethoxyphenyl-3-(4-methylthiophenylprop-2-ene-1-one (FLS was characterized with 1H-nuclear magnetic resonance, electron-impact mas spectrometry, infrared spectroscopy, and ultraviolet (1H NMR, EI-MS, IR, and UV spectroscopic techniques. FLS cytotoxic efficacy against human cancer cells (MCF-7, MDA-MB-231, and MCF-10A resulted in the reduction of IC50 values in a time- and dose-dependent mode with high specificity on MCF-7 (IC50 of 36 µM at 48 hours against normal breast cell MCF-10A (no IC50 detected up to 180 µM at 72 hours. Light, scanning electron, and fluorescent microscopic analysis of MCF-7 cell treated with 36 µM of FLS displayed cell shrinkage, apoptotic body, and DNA fragmentation. Additionally, induction of G2/M cell

  6. Study on the role and mechanism of phenethyl isothiocyanate on apoptosis of breast cancer cell line MCF-7%异硫氰酸苯乙酯对人乳腺癌MCF-7细胞凋亡作用及机制研究

    Institute of Scientific and Technical Information of China (English)

    孙娜

    2013-01-01

    目的 探讨异硫氰酸苯乙酯诱导人乳腺癌MCF-7细胞凋亡的作用及其可能的机制.方法 以不同浓度异硫氰酸苯乙酯处理人乳腺癌MCF-7细胞,应用MTS法观察异硫氰酸苯乙酯对MCF-7细胞的抑制率,流式细胞术检测异硫氰酸苯乙酯对细胞凋亡、细胞周期以及活性氧表达的影响.结果 将不同浓度的异硫氰酸苯乙酯作用于MCF-7细胞72 h后,抑制了MCF-7细胞的增殖,其IC50为15.2 μmol·L-1;以10 和20 μmol·L-1的异硫氰酸苯乙酯作用MCF-7细胞24 h后,细胞出现凋亡现象,细胞周期阻滞在G2/M期,并造成细胞氧化损伤.结论 异硫氰酸苯乙酯能够促进人乳腺癌MCF-7细胞凋亡,影响细胞周期,其作用机制可能与异硫氰酸苯乙酯可造成肿瘤细胞氧化损伤有关.%Objective To investigate the effect and mechanism of phenethyl isothiocyanate (PEITC) on apoptosis of breast cancer cell line MCF-7. Methods After treating of MCF-7 cells with different concentrations of phenethyl isothiocyanate, we used MTS assay to investigate the inhibition ratio of phenethyl isothiocyanate on MCF-7 cells,flow cytometry to investigate the effect of 10 and 20 μmol · L-1 phenethyl isothiocyanate on apoptosis,cell cycle and reactive oxygen. Results The phenethyl isothiocyanate could inhibit MCF-7 cells proliferation. After the treatment with phenethyl isothiocyanate 72 h later,the IC50 of phenethyl isothiocyanate was 15. 2 μmol·L-1; Affer treated with 10 and 20 μmol·L-1 phenethyl isothiocyanate for 24 h,MCF-7cells,appeared the apoptosis, cell cycle change and oxidative damage. Conclusion Phenethyl isothiocyanate could promote the apoptosis of MCF-7 cells and affect the cell cycle. Its mechanism may involve the oxidative damage of tumor cells.

  7. The Effects of Two Species of Daphne, Betulin and Betulinic Acid on Alkaline Phosphatase Activity in Two Human Cancer Cell lines, K562 and MCF-7

    Directory of Open Access Journals (Sweden)

    E Panahi Kokhdan

    2014-02-01

    Full Text Available Abstract Background & aim: Changes of alkaline phosphatase activity is one of the symptoms of many diseases. The aim of this study was to evaluate the effect of two types of Daphne, Betulin and Betulinic acid, on alkaline phosphatase activity in K562 and MCF-7 cell lines, respectively. Methods: In this study, 106 cancer cell lines of K562 and MCF-7 were cultured in presence of 5% carbon dioxide at 37 ° C. at doses near the IC50. The viability of cells, inside and outside alkaline phosphatase activity and the amount of total protein in each treatment were studied. The collected data was analyzed with a multivariate analysis of variance (Nested Design and Dunnett test. Results: The intracellular alkaline phosphatase activity of the cells showed different behavior compared to the extracellular alkaline phosphatase activity (p< 0.01. The highest increase of alkaline phosphatase activity in two cell lines (K562 and MCF-7 were 339% and 236% which was related to the treatment by macronata daphne. Conclusion: Unexpected increase in intracellular alkaline phosphatase activity in D. mucronata, D. oleides, Betulin, and Betulinic acid treatment may be due to changes in the composition of plasma membrane component and an increase the non-connected membrane of the protein which is due to the creation of more active proteins. Keywords: Daphne mucronata, Daphne oleoides, Alkaline Phosphatase, Betulinic Acid, Betulin

  8. Multiple mechanisms underlying acquired resistance to taxanes in selected docetaxel-resistant MCF-7 breast cancer cells

    International Nuclear Information System (INIS)

    Chemoresistance is a major factor involved in a poor response and reduced overall survival in patients with advanced breast cancer. Although extensive studies have been carried out to understand the mechanisms of chemoresistance, many questions remain unanswered. In this research, we used two isogenic MCF-7 breast cancer cell lines selected for resistance to doxorubicin (MCF-7DOX) or docetaxel (MCF-7TXT) and the wild type parental cell line (MCF-7CC) to study mechanisms underlying acquired resistance to taxanes in MCF-7TXT cells. Cytotoxicity assay, immunoblotting, indirect immunofluorescence and live imaging were used to study the drug resistance, the expression levels of drug transporters and various tubulin isoforms, apoptosis, microtubule formation, and microtubule dynamics. MCF-7TXT cells were cross resistant to paclitaxel, but not to doxorubicin. MCF-7DOX cells were not cross-resistant to taxanes. We also showed that multiple mechanisms are involved in the resistance to taxanes in MCF-7TXT cells. Firstly, MCF-7TXT cells express higher level of ABCB1. Secondly, the microtubule dynamics of MCF-7TXT cells are weak and insensitive to the docetaxel treatment, which may partially explain why docetaxel is less effective in inducing M-phase arrest and apoptosis in MCF-7TXT cells in comparison with MCF-7CC cells. Moreover, MCF-7TXT cells express relatively higher levels of β2- and β4-tubulin and relatively lower levels of β3-tubulin than both MCF-7CC and MCF-7DOX cells. The subcellular localization of various β-tubulin isoforms in MCF-7TXT cells is also different from that in MCF-7CC and MCF-7DOX cells. Multiple mechanisms are involved in the resistance to taxanes in MCF-7TXT cells. The high expression level of ABCB1, the specific composition and localization of β-tubulin isoforms, the weak microtubule dynamics and its insensitivity to docetaxel may all contribute to the acquired resistance of MCF-7TXT cells to taxanes

  9. Antibacterial effect of an extract of the endophytic fungus Alternaria alternata and its cytotoxic activity on MCF-7 and MDA MB-231 tumour cell lines

    Directory of Open Access Journals (Sweden)

    EZHIL ARIVUDAINAMBI U.S.

    2014-06-01

    Full Text Available There is a growing need for new and effective antimicrobial agents to treat life-threatening diseases. Fungal endophytes are receiving increasing attention by natural product chemists due to the diverse and structurally unprecedented compounds, which make them interesting candidates for drug discovery. The present study evaluates the antibacterial activity of ethyl acetate extract of the endophytic fungus Alternaria alternata VN3 on multi-resistant clinical strains of Staphylococcus aureus and Pseudomonas aeruginosa, as well as its cytotoxicity on MCF-7 and MDA MB-231 tumour cell lines of breast cancer. The maximum inhibition zone of 21.4±0.07 mm and 21.5±0.25 mm was observed for S. aureus strain 10 and P. aeruginosa strain 2, respectively. The ethyl acetate extract showed minimal inhibitory concentration ranging from 100 to 900 μg/ml for S. aureus and P. aeruginosa. Further, the ethyl acetate extract of A. alternata VN3 exhibited moderate anticancer activity against MCF-7 and MDA MB-231 cell lines. At 30 μg/ml the cell viability was decreased to 75.5% and 71.8% for MCF-7 and MDA MB-231 cells, respectively. These results clearly indicate that the metabolites of A. alternata VN3 are a potential source for production of new drugs.

  10. Melatonin affects voltage-dependent calcium and potassium currents in MCF-7 cell line cultured either in growth or differentiation medium.

    Science.gov (United States)

    Squecco, Roberta; Tani, Alessia; Zecchi-Orlandini, Sandra; Formigli, Lucia; Francini, Fabio

    2015-07-01

    Big efforts have been dedicated up to now to identify novel targets for cancer treatment. The peculiar biophysical profile and the atypical ionic channels activity shown by diverse types of human cancers suggest that ion channels may be possible targets in cancer therapy. Earlier studies have shown that melatonin exerts an oncostatic action on different tumors. In particular, it was shown that melatonin was able to inhibit growth/viability and proliferation, to reduce the invasiveness and metastatic properties of human estrogen-sensitive breast adenocarcinoma MCF-7 cell line cultured in growth medium, with substantial impairments of epidermal growth factor (EGF) and Notch-1-mediated signaling. The purpose of this work was to evaluate on MCF-7 cells the possible effects of melatonin on the biophysical features known to have a role in proliferation and differentiation, by using the patch-clamp technique. Our results show that in cells cultured in growth as well as in differentiation medium melatonin caused a hyperpolarization of resting membrane potential paralleled by significant changes of the inward Ca(2+) currents (T- and L-type), outward delayed rectifier K(+) currents and cell capacitance. All these effects are involved in MCF-7 growth and differentiation. These findings strongly suggest that melatonin, acting as a modulator of different voltage-dependent ion channels, might be considered a new promising tool for specifically disrupting cell viability and differentiation pathways in tumour cells with possible beneficial effects on cancer therapy. PMID:25843408

  11. Antiproliferative effect of Phytosome complex of Met hanolic extact of Terminalia Arjuna bark on Human Breast Cancer Cell Lines (MCF-7

    Directory of Open Access Journals (Sweden)

    Sharma Shalini 1

    2015-03-01

    Full Text Available Methanolic extract of Terminalia arjuna Roxb of family combretaceae is rich in flavonoids content which are responsible for its antiproliferative activity but these bioactive constituents have poor oral and topical absorption either due to the large molecular weight or poor miscibility with lipids. These poorly soluble herbal extracts can be converted into lipid compatible molecular complexes called phytosomes by binding individual constituents of the herbal extractto phosphatidylcholine. Phytosomes are known to show improved oral and topical absorption followed by enhanced activity as compared to pure herbal extracts. This study was aimed at preparing methanolic extract of Terminalia arjuna bark and Terminalia arjuna bark Extract Phytosome and investigating their antiproliferative activity on human MCF-7 cell line by MTT assay. Comparison of the antiproliferative activity was done with with quercetin and its phytosomes. IC50of methanolic extract of Terminalia arjuna bark and Terminalia arjuna bark Extract Phytosome against cancer cell lines MCF-7 was found to be 25μg/ml and 15μg/ml respectively whereas that of quercetin and its phytosomes was found to be 2μg/ml and 0.7μg/ml respectively. The results suggests that Terminalia arjuna bark Extract Phytosome & quercetin phytosomes are active pharmacologically and exerts more antiproliferative effect on MCF-7 cells as compared to pure methanolic extract of plant and pure quercetin respectively.

  12. Apoptosis-mediated antiproliferative activity of friedolanostane triterpenoid isolated from the leaves of Garcinia celebica against MCF-7 human breast cancer cell lines

    Science.gov (United States)

    SUBARNAS, ANAS; DIANTINI, AJENG; ABDULAH, RIZKY; ZUHROTUN, ADE; NUGRAHA, PATRIA A.; HADISAPUTRI, YUNI E.; PUSPITASARI, IRMA M.; YAMAZAKI, CHIHO; KUWANO, HIROYUKI; KOYAMA, HIROSHI

    2016-01-01

    The leaves of Garcinia celebica strongly inhibit the proliferation of MCF-7 human breast adenocarcinoma cell lines. The present study focused on investigating the active anticancer and antiproliferative compound from the G. celebica leaves and assessing its mechanism of action. Ethanol extracts of G. celebica were fractionated based on their polarity using n-hexane, ethyl acetate and water. The antiproliferative properties were tested in vitro against MCF-7 human breast cancer cell lines using the 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide assay. The active compound was subsequently isolated using column chromatography and identified by nuclear magnetic resonance. The characterized compound was also tested for its antiproliferative properties and the mechanism by which it induces apoptosis in MCF-7 cells by western blot analysis of the activated apoptotic proteins. This resulted in the isolation of a friedolanostane triterpenoid, which was determined to be methyl-3α, 23-dihydroxy-17,14-friedolanstan-8,14,24-trien-26-oat. This compound inhibited MCF-7 cell proliferation in a time- and dose-dependent manner with IC50 values of 82 and 70 µM for the 24 and 48 h treatments, respectively. Furthermore, the western blot analysis suggested that the compound exerted its anticancer activities by promoting apoptosis through the inhibition of the oncogenic protein Akt, thereby increasing the expression of poly (ADP-ribose) polymerase (PARP) protein. These results suggest that methyl-3α,23-dihydroxy-17,14-friedolanstan-8,14,24-trien-26-oat is the anticancer compound found in G. celebica, providing a basis for its potential use in cancer disease management. PMID:26870339

  13. Hormone Resistance in Two MCF-7 Breast Cancer Cell Lines is Associated with Reduced mTOR Signaling, Decreased Glycolysis, and Increased Sensitivity to Cytotoxic Drugs

    OpenAIRE

    Leung, Euphemia Yee; Kim, Ji Eun; Askarian-Amiri, Marjan; Joseph, Wayne R.; McKeage, Mark J; Baguley, Bruce C.

    2014-01-01

    The mTOR pathway is a key regulator of multiple cellular signaling pathways and is a potential target for therapy. We have previously developed two hormone-resistant sub-lines of the MCF-7 human breast cancer line, designated TamC3 and TamR3, which were characterized by reduced mTOR signaling, reduced cell volume, and resistance to mTOR inhibition. Here, we show that these lines exhibit increased sensitivity to carboplatin, oxaliplatin, 5-fluorouracil, camptothecin, doxorubicin, paclitaxel, d...

  14. Hormone resistance in two MCF-7 breast cancer cell lines is associated with reduced mTOR signaling, decreased glycolysis and increased sensitivity to cytotoxic drugs

    OpenAIRE

    Euphemia Yee Leung; Ji Eun eKim; Marjan eAskarian-Amiri; Joseph, Wayne R.; McKeage, Mark J; Bruce Charles Baguley

    2014-01-01

    The mTOR pathway is a key regulator of multiple cellular signaling pathways and is a potential target for therapy. We have previously developed two hormone-resistant sub-lines of the MCF-7 human breast cancer line, designated TamC3 and TamR3, which were characterized by reduced mTOR signaling, reduced cell volume and resistance to mTOR inhibition. Here we show that these lines exhibit increased sensitivity to carboplatin, oxaliplatin, 5-fluorouracil, camptothecin, doxorubicin, paclitaxel, doc...

  15. Evaluation of Synergetic Anticancer Activity of Berberine and Curcumin on Different Models of A549, Hep-G2, MCF-7, Jurkat, and K562 Cell Lines

    OpenAIRE

    Acharya Balakrishna; M. Hemanth kumar

    2015-01-01

    Ayurvedic system of medicine is using Berberis aristata and Curcuma longa herbs to treat different diseases including cancer. The study was performed to evaluate the synergetic anticancer activity of Berberine and Curcumin by estimating the inhibition of the cell proliferation by cytotoxicity assay using MTT method on specified human cell lines (A549, Hep-G2, MCF-7, Jurkat, and K562). All the cells were harvested from the culture and seeded in the 96-well assay plates at seeding density of 2....

  16. Stevioside induced ROS-mediated apoptosis through mitochondrial pathway in human breast cancer cell line MCF-7.

    Science.gov (United States)

    Paul, S; Sengupta, S; Bandyopadhyay, T K; Bhattacharyya, A

    2012-01-01

    Stevioside is a diterpene glycoside found in the leaf of Stevia rebaudiana, a traditional oriental medicinal herb, which has been shown to have various biological and ethno-medicinal activities including antitumor activity. In this study, we investigated the effects of stevioside on the cytotoxicity, induction of apoptosis, and the putative pathways of its action in human breast cancer cells (MCF-7). For the analysis of apoptotic pathway, measurement of reactive oxygen species (ROS) and assessment of mitochondrial transmembrane potential (MTP) were achieved. We showed that stevioside was a potent inducer of apoptosis and it conveyed the apoptotic signal via intracellular ROS generation; thereby inducing change in MTP and induction of mitochondrial mediated apoptotic pathway. Taken together, our data indicated that stevioside induces the ROS-mediated mitochondrial permeability transition and results in the increased expression of apoptotic proteins such as Bax, Bcl-2 and Caspase-9. Effect of stevioside on stress-related transcription factors like NF-E2-related factor-2 opens up a new vista for further studies. This is the first report on the mechanism of the antibreast cancer (in vitro) activity of stevioside. PMID:23061910

  17. The role of cancer stem cells in the acquired resistance to Taxol of human breast cancer cell line MCF-7%肿瘤干细胞在人乳腺癌细胞株MCF-7耐紫杉醇效应中的作用

    Institute of Scientific and Technical Information of China (English)

    韩娜; 穆永慧; 张庆

    2014-01-01

    目的 观察肿瘤干细胞(CSC)在人乳腺癌细胞株MCF-7对紫杉醇(Taxol)产生获得性耐药中的作用.方法 采用低浓度加量(起始浓度为0.005 mg/L)持续诱导法诱导产生人乳腺癌耐Taxol细胞株MCF-7/T=ol,噻唑蓝(MTT)法检测MCF-7/Taxol对Taxol的敏感性.实时定量聚合酶链反应(Real-time PCR)检测三磷酸腺苷结合转运蛋白G超家族成员2(ABCG2)和性别决定区Y框蛋白-2(SOx-2)的表达.结果 亲本株和耐药株细胞对Taxol的半数抑制浓度(IC5o)值分别为0.05 mg/L和4.2 mg/L,耐药指数为84.0.20 mg/L的As2O3降低了耐药株对Taxol的耐药性,逆转倍数为3.82,相对逆转效率为74.7%.耐药株细胞ABCG2和SOX-2的表达显著升高(P<0.01).As2O3处理后,ABCG2和SOX-2的表达显著下降(P<0.05).结论 CSC有可能是人乳腺癌细胞株MCF-7对Taxol产生耐药的机制之一.%Objective To investigate the role of cancer stem cells (CSC) in the acquired resist ance to Taxol of human breast cancer cell line MCF-7.Methods Taxol-resistant MCF-7 (MCF-7/Taxol) was established in vitro by exposure to low concentration (0.005 mg/L) and subsequently the gradually increased dose of Taxol.The proliferation and sensitivity to Taxol of MCF-7/Taxol before and after application of As2O3 were tested using methyl thiazol tetrazolium (MTT) assay.Real-time quantitative polymerase chain reaction (Real-time PCR) was employed to investigate the expression of ATP-binding cassette subfamily G member 2 (ABCG2) and sex determining region Y-box 2 (SOX-2) in wild type MCF-7 and MCF-7/Taxol cells.Results In the presence of Taxol (0.5 mg/L),the growth rate of MCF-7/ Taxol was significantly higher than the wild type MCF-7 cells (P < 0.01).It was also demonstrated that MCF-7/Taxol ceils treated by Taxol developed similar proliferation to wild type MCF-7 cells in the absence of Taxol (P > 0.05).The 50% inhibitory dose (IC50) of wild type MCF-7 and MCF-7/Taxol cells to Taxol was about 0.05 mg/L and 4.2 mg

  18. Stromelysin-3 over-expression enhances tumourigenesis in MCF-7 and MDA-MB-231 breast cancer cell lines: involvement of the IGF-1 signalling pathway

    Directory of Open Access Journals (Sweden)

    Mennerich Detlev

    2007-01-01

    Full Text Available Abstract Background Stromelysin-3 (ST-3 is over-expressed in the majority of human carcinomas including breast carcinoma. Due to its known effect in promoting tumour formation, but its impeding effect on metastasis, a dual role of ST-3 in tumour progression, depending on the cellular grade of dedifferentiation, was hypothesized. Methods The present study was designed to investigate the influence of ST-3 in vivo and in vitro on the oestrogen-dependent, non-invasive MCF-7 breast carcinoma cell line as well as on the oestrogen-independent, invasive MDA-MB-231 breast carcinoma cell line. Therefore an orthotopic human xenograft tumour model in nude mice, as well as a 3D matrigel cell culture system, were employed. Results Using both in vitro and in vivo techniques, we have demonstrated that over-expression of ST-3 in MCF-7 and MDA-MB-231 cells leads to both increased cell numbers and tumour volumes. This observation was dependent upon the presence of growth factors. In particular, the enhanced proliferative capacity was in MCF-7/ST-3 completely and in MDA-MB-231/ST-3 cells partially dependent on the IGF-1 signalling pathway. Microarray analysis of ST-3 over-expressing cells revealed that in addition to cell proliferation, further biological processes seemed to be affected, such as cell motility and stress response. The MAPK-pathway as well as the Wnt and PI3-kinase pathways, appear to also play a potential role. Furthermore, we have demonstrated that breast cancer cell lines of different differentiation status, as well as the non-tumourigenic cell line MCF-10A, have a comparable capability to induce endogenous ST-3 expression in fibroblasts. Conclusion These data reveal that ST-3 is capable of enhancing tumourigenesis in highly differentiated "early stage" breast cancer cell lines as well as in further progressed breast cancer cell lines that have already undergone epithelial-mesenchymal transition. We propose that ST-3 induction in tumour

  19. Establishment of a paclitaxel resistant human breast cancer cell strain (MCF-7/Taxol) and intracellular paclitaxel binding protein analysis.

    Science.gov (United States)

    Zuo, K-Q; Zhang, X-P; Zou, J; Li, D; Lv, Z-W

    2010-01-01

    Multidrug resistance of tumours is one of the most important factors that leads to chemotherapy failure. A multidrug-resistant breast cancer cell line, MCF-7/Taxol, was established from the drug-sensitive parent cell line MCF-7. The biological properties of MCF-7/Taxol, including its drug resistance profile and profile of paclitaxel binding proteins, were analysed and compared with the parent cell line. A number of paclitaxel binding proteins were present in MCF-7 cells but absent from MCF-7/Taxol cells, namely heat shock protein 90, actinin and dermcidin precursor. The identification of differential paclitaxel binding proteins between the multidrug-resistant MCF-7/Taxol cell line and the parent drug-sensitive cell line MCF-7 provides insight into possible mechanisms involved in resistance to these chemotherapy drugs.

  20. Effects of solanine on microtubules system of human breast cancer MCF-7 cells%龙葵碱对乳腺癌MCF-7细胞微管系统的影响

    Institute of Scientific and Technical Information of China (English)

    季宇彬; 刘家源; 高世勇

    2012-01-01

    Objective To investigate the effects of solanine on tnicrotubular system in MCF-7 cell line. Methods Proliferation inhibition of MCF-7 cell line was evaluated by MTT assay. Cell cycle of MCF-7 cells was analyzed and the changes of a-tubulin protein and microtubule-associated protein 2 (MAP-2) protein were detected by flow cytometry. Results The IC50 of MCF-7 cells was 22.08 ng/mL. Solanine could induce MCF-7 cells arrested in S phaseand increase the levels of a-tubulin and MAP-2 in MCF-7 cell line. Conclusion Solanine could inhibit the MCF-7 cell proliferation by increasing a-tubulin and MAP-2 expression and inducing MCF-7 cells arrested in S phase.%目的 研究龙葵碱对乳腺癌MCF-7细胞微管系统的影响.方法 MTT法检测龙葵碱对人乳腺癌MCF-7细胞增殖的抑制作用,流式细胞仪分析龙葵碱对MCF-7细胞周期的影响以及细胞内α-微管蛋白及微管相关蛋白(MAP-2)的变化.结果 龙葵碱对MCF-7细胞的IC50为22.08 μg/mL,能够将MCF-7细胞阻滞于S期;能够增加MCF-7细胞内α-微管蛋白和MAP-2的量.结论 龙葵碱通过升高MCF-7细胞内的微管蛋白及MAP-2的表达,将MCF-7细胞阻滞于S期,从而抑制乳腺癌MCF-7细胞的生长.

  1. Culture phases, cytotoxicity and protein expressions of agarose hydrogel induced Sp2/0, A549, MCF-7 cell line 3D cultures.

    Science.gov (United States)

    Ravi, Maddaly; Kaviya, S R; Paramesh, V

    2016-05-01

    Advancements in cell cultures are occurring at a rapid pace, an important direction is culturing cells in 3D conditions. We demonstrate the usefulness of agarose hydrogels in obtaining 3 dimensional aggregates of three cell lines, A549, MCF-7 and Sp2/0. The differences in culture phases, susceptibility to cisplatin-induced cytotoxicity are studied. Also, the 3D aggregates of the three cell lines were reverted into 2D cultures and the protein profile differences among the 2D, 3D and revert cultures were studied. The analysis of protein profile differences using UniProt data base further augment the usefulness of agarose hydrogels for obtaining 3D cell cultures.

  2. The effect of adenosine A1 receptor agonist and antagonist on p53 and caspase 3, 8, and 9 expression and apoptosis rate in MCF-7 breast cancer cell line.

    Science.gov (United States)

    Dastjerdi, Mehdi Nikbakht; Rarani, Mohammad Zamani; Valiani, Ali; Mahmoudieh, Mohsen

    2016-07-01

    Adenosine receptor family especially A1 type is expressed in breast cancer cells in which P53 and caspase genes are wild-type. The aim of this study was to investigate the correlation between A1 receptor and either cell apoptosis or proliferation and also to recognize the relationship between this receptor and P53 and the expression of caspases 3, 8 and 9 in MCF-7 cell line. MCF-7 cells were treated intermittently with A1 receptor agonist N6-Cyclopentyladenosine (CPA) and A1 receptor antagonist 1,3-dipropyl-8-cyclopentylxanthine (DPCPX) in different times to measure the expression of p53, caspase 3, 8 and 9 besides apoptosis and survival rate. Our findings indicated that DPCPX significantly induced apoptosis in MCF-7 cells while the cell viability was reduced specially 72 h after the treatment and the expression of p53 gene and caspase expressions was dramatically up-regulated. On the other hand, CPA increased the cell viability and reduced apoptosis in MCF-7 cells. Our results indicated a significant down-regulation in the MCF-7 mRNA expression of p53 and caspases 3, 8 and 9. Furthermore, DPCPX induced p53 and caspase 3, 8 and 9 expressions that consequently promotes the cell apoptosis in MCF-7 cells. Therefore, DPCPX can be considered as an anti-cancer drug. PMID:27651810

  3. Short-term effects of ultrahigh concentration cationic silica nanoparticles on cell internalization, cytotoxicity, and cell integrity with human breast cancer cell line (MCF-7)

    International Nuclear Information System (INIS)

    High concentrations of cationic colloidal silica nanoparticles (CCS-NPs) have been widely used for the enrichment of plasma membrane proteins. However, the interaction between the CCS-NPs and cells under the required concentration for the isolation of plasma membrane are rarely investigated. We evaluated the internalization and toxicity of the 15 nm CCS-NPs which were exposed at high concentrations with short time in human breast cancer cells (MCF-7) with transmission electron microscopy, energy dispersive X-ray spectroscopy, inductively coupled plasma atomic emission spectroscopy, and colorimetric assays. The NPs were observed throughout the cells, particularly in the cytoplasm and the nucleus, after short incubation periods. Additionally, the NPs significantly influenced the membrane integrity of the MCF-7 cells

  4. Short-term effects of ultrahigh concentration cationic silica nanoparticles on cell internalization, cytotoxicity, and cell integrity with human breast cancer cell line (MCF-7)

    Energy Technology Data Exchange (ETDEWEB)

    Seog, Ji Hyun [Korea Advanced Institute of Science and Technology, Graduate School of Nanoscience and Technology (Korea, Republic of); Kong, Bokyung [Corning Precision Materials (Korea, Republic of); Kim, Dongheun [Korea Advanced Institute of Science and Technology, Graduate School of Nanoscience and Technology (Korea, Republic of); Graham, Lauren M. [University of Maryland, Department of Chemistry and Biochemistry (United States); Choi, Joon Sig [Chungnam National University, Department of Biochemistry (Korea, Republic of); Lee, Sang Bok, E-mail: slee@umd.edu [Korea Advanced Institute of Science and Technology, Graduate School of Nanoscience and Technology (Korea, Republic of)

    2015-01-15

    High concentrations of cationic colloidal silica nanoparticles (CCS-NPs) have been widely used for the enrichment of plasma membrane proteins. However, the interaction between the CCS-NPs and cells under the required concentration for the isolation of plasma membrane are rarely investigated. We evaluated the internalization and toxicity of the 15 nm CCS-NPs which were exposed at high concentrations with short time in human breast cancer cells (MCF-7) with transmission electron microscopy, energy dispersive X-ray spectroscopy, inductively coupled plasma atomic emission spectroscopy, and colorimetric assays. The NPs were observed throughout the cells, particularly in the cytoplasm and the nucleus, after short incubation periods. Additionally, the NPs significantly influenced the membrane integrity of the MCF-7 cells.

  5. Cytotoxic activity of ten algae from the Persian Gulf and Oman Sea on human breast cancer cell lines; MDA-MB-231, MCF-7, and T-47D

    Directory of Open Access Journals (Sweden)

    Nasrollah Erfani

    2015-01-01

    Full Text Available Background: Seaweeds have proven to be a promising natural source of bioactive metabolites for drug development. Objective: This study aimed to monitor the ethanol extract of ten algae from the Persian Gulf and Oman Sea, for their in vitro cytotoxic activity on three human breast cancer cell lines. Materials and Methods: Three human breast cancer cell lines including MDA-MB-231(ER− , MCF-7(ER + , and T-47D (ER + were treated by different concentrations of total ethanol (90% algae extracts and the cytotoxic effects were evaluated by 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide assay. Doxorubicin (Ebewe, Austria was used as a positive control. After 72 h of incubation, the cytotoxic effect of the algae was calculated and presented as 50%-inhibitory concentration (IC 50 . Results: The results indicated Gracilaria foliifera and Cladophoropsis sp. to be the most active algae in terms of cytotoxic effects on the investigated cancer cell lines. The IC 50 values against MDA-MB-231, MCF-7, and T-47D cells were, respectively, 74.89 ± 21.71, 207.81 ± 12.07, and 203.25 ± 30.98 mg/ml for G. foliifera and 66.48 ± 4.96, 150.86 ± 51.56 and >400 mg/ml for Cladophoropsis sp. The rest of the algal extracts were observed not to have significant cytotoxic effects in the concentration range from 6.25 mg/ml to 400 mg/ml. Conclusion: Our data conclusively suggest that G. foliifera and Cladophoropsis sp. may be good candidates for further fractionation to obtain novel anticancer substances. Moreover, stronger cytotoxic effects on estrogen negative breast cancer cell line (MDA-MB-231(ER− in comparison to estrogen positive cells (MCF-7 and T-47D suggest that the extract of G. foliifera and Cladophoropsis sp. may have an estrogen receptor/progesterone receptor-independent mechanism for their cellular growth inhibition.

  6. Hormone resistance in two MCF-7 breast cancer cell lines is associated with reduced mTOR signaling, decreased glycolysis and increased sensitivity to cytotoxic drugs

    Directory of Open Access Journals (Sweden)

    Euphemia Yee Leung

    2014-09-01

    Full Text Available The mTOR pathway is a key regulator of multiple cellular signaling pathways and is a potential target for therapy. We have previously developed two hormone-resistant sub-lines of the MCF-7 human breast cancer line, designated TamC3 and TamR3, which were characterized by reduced mTOR signaling, reduced cell volume and resistance to mTOR inhibition. Here we show that these lines exhibit increased sensitivity to carboplatin, oxaliplatin, 5-fluorouracil, camptothecin, doxorubicin, paclitaxel, docetaxel and hydrogen peroxide. The mechanisms underlying these changes have not yet been characterized but may include a shift from glycolysis to mitochondrial respiration. If this phenotype is found in clinical hormone-resistant breast cancers, conventional cytotoxic therapy may be a preferred option for treatment.

  7. Evaluation of the radioinduced damage, repair capacity and cell death on human tumorigenic (T-47D and MCF-7) and nontumorigenic (MCF-10) cell lines of breast

    International Nuclear Information System (INIS)

    Breast cancer is one of the most common malignancies that account women, representing about one in three of all female neoplasm. Approximately, 90% of cases are considered sporadic, attributed to somatic events and about 10% have a family history and this only 4 - 5 % is due to hereditary factors. In the clinic, ionizing radiation is a major tool utilized in the control of tumour growth, besides surgery and chemotherapy. There is, however, little information concerning cellular response to the action of ionizing radiation in the target cells, i.e., cell lines originating from breast cancer. The present study proposed to analyze the radiosensitivity of the human tumorigenic (T-47D and MCF-7) and non tumorigenic (MCF-10) cell lines, originating from breast and submitted to various doses (0.5 to 30 Gy) of 60Co rays (0.72 - 1.50 Gy/min). For this purpose, DNA radioinduced damage, repair capacity and cell death were utilized as parameters of radiosensitivity by micronucleus, single cell gel electrophoresis (Comet assay) and cell viability techniques. The data obtained showed that tumorigenic cell lines were more radiosensitive than non tumorigenic breast cells in all assays here utilized. The T-47D cell line was presenting the highest amount of radioinduced damage, a more accelerated proliferation rate and a higher rate of cell death. The three cell lines presented a relatively efficient repair capacity, since one hour after the irradiation all of them showed a considerable reduction of radioinduced damage. The techniques employed showed to be secure, sensitive and reproducible, allowing to quantify and evaluate DNA damage, repair capacity and cell death in the three human breast cell lines. (author)

  8. Evaluation of antioxidant potential of leaves of Leonotis nepetifolia and its inhibitory effect on MCF7 and Hep2 cancer cell lines

    Science.gov (United States)

    Veerabadran, Usharani; Venkatraman, Anuradha; Souprayane, Aroumougame; Narayanasamy, Mathivanan; Perumal, Dhanalakshmi; Elumalai, Sagadevan; Sivalingam, Sindhu; Devaraj, Vadivelu; Perumal, Arumugam

    2013-01-01

    Objective To investigate the antioxidant and antiproliferative potential of Leonotis nepetifolia (L. nepetifolia) leaves. Methods The leaves of L. nepetifolia were subjected to extraction using three different solvents and the antioxidant potential of those extracts were tested by using various in vitro assays. Further, the best screened extract was analyzed for its phytochemical profile by both qualitative and quantitative assays. In order to determine its anti-proliferative activity, the best screened extract was treated with breast and laryngeal cancer cell lines such as MCF-7 cells and Hep2 cells, respectively. The cytotoxicity of the extract was also studied using MTT assay. The inhibitory effect of the extract of leaves of L. nepetifolia on the selected cell-line DNA was determined by DNA fragmentation assay. Also, the extract was subjected to TLC and bioautography analysis. Results The DPPH assay showed methanol extract of L. nepetifolia leaves to be more significant in scavenging free radicals with inhibition percentage of 60.57%. From the data obtained, the methanol extract proved to be significant in all anti-oxidant assays and this effect was well comparable with the standard used in the study. The predominant phytochemicals such as phenols and flavonoids were further quantified as 0.107% and 0.089%. The cytotoxicity assay showed that the cell viability increased with increasing concentration of methanol extract. In addition, the extract caused dose dependent damage to the cancer cell lines MCF-7 and Hep2. Conclusions Our study suggests that the leaves of L. nepetifolia were significant in scavenging free radicals and causing damage to proliferative cells. Further mechanistic studies would help in proving the efficiency of the selected plant under in vivo conditions.

  9. Increased generation of intracellular reactive oxygen species initiates selective cytotoxicity against the MCF-7 cell line resultant from redox active combination therapy using copper-thiosemicarbazone complexes.

    Science.gov (United States)

    Akladios, Fady N; Andrew, Scott D; Parkinson, Christopher J

    2016-06-01

    The combination of cytotoxic copper-thiosemicarbazone complexes with phenoxazines results in an up to 50-fold enhancement in the cytotoxic potential of the thiosemicarbazone against the MCF-7 human breast adenocarcinoma cell line over the effect attributable to drug additivity-allowing minimization of the more toxic copper-thiosemicarbazone component of the therapy. The combination of a benzophenoxazine with all classes of copper complex examined in this study proved more effective than combinations of the copper complexes with related isoelectronic azines. The combination approach results in rapid elevation of intracellular reactive oxygen levels followed by apoptotic cell death. Normal fibroblasts representative of non-cancerous cells (MRC-5) did not display a similar elevation of reactive oxygen levels when exposed to similar drug levels. The minimization of the copper-thiosemicarbazone component of the therapy results in an enhanced safety profile against normal fibroblasts. PMID:26951232

  10. Salubrinal-Mediated Upregulation of eIF2α Phosphorylation Increases Doxorubicin Sensitivity in MCF-7/ADR Cells.

    Science.gov (United States)

    Jeon, Yong-Joon; Kim, Jin Hyun; Shin, Jong-Il; Jeong, Mini; Cho, Jaewook; Lee, Kyungho

    2016-02-01

    Eukaryotic translation initiation factor 2 alpha (eIF2α), which is a component of the eukaryotic translation initiation complex, functions in cell death and survival under various stress conditions. In this study, we investigated the roles of eIF2α phosphorylation in cell death using the breast cancer cell lines MCF-7 and MCF-7/ADR. MCF-7/ADR cells are MCF-7-driven cells that have acquired resistance to doxorubicin (ADR). Treatment of doxorubicin reduced the viability and induced apoptosis in both cell lines, although susceptibility to the drug was very different. Treatment with doxorubicin induced phosphorylation of eIF2α in MCF-7 cells but not in MCF-7/ADR cells. Basal expression levels of Growth Arrest and DNA Damage 34 (GADD34), a regulator of eIF2α, were higher in MCF-7/ADR cells compared to MCF-7 cells. Indeed, treatment with salubrinal, an inhibitor of GADD34, resulted in the upregulation of eIF2α phosphorylation and enhanced doxorubicin-mediated apoptosis in MCF-7/ADR cells. However, MCF-7 cells did not show such synergic effects. These results suggest that dephosphorylation of eIF2α by GADD34 plays an important role in doxorubicin resistance in MCF-7/ADR cells. PMID:26743901

  11. Effect of Crocus sativus L. on Expression of VEGF-A and VEGFR-2 Genes (Angiogenic Biomarkers in MCF-7 Cell Line

    Directory of Open Access Journals (Sweden)

    Marzeih Mousavi

    2014-12-01

    Full Text Available Background: Both in vivo and in vitro studies focused on anticancer effects of saffron. Angiogenesis, which is required for embryonic development and many physiological events play crucial role in many pathological conditions such as tumor growth. Two principal genes which involved in this process are VEGF-A and its main receptor VEGFR-2. Effects of saffron on VEGF-A and VEGFR-2 gene expression were examined. Materials and Methods: In this experimental study, saffron aqueous extract obtained by Soxhlet and lyophilized using freeze dryer. MCF-7 cells were grown in RPMI1640 medium supplemented with 10 fetal bovine serum and incubated at 37ºC with 5% CO2. After 24 h of cell culture, their adhesion to the flasks investigated, then cells were treated by saffron extract at concentration of 100, 200, 400 and 800 µg/mL. Forty eight hours after treatment, total RNA extracted and cDNA was synthesized using sequence of target gene. Finally synthesized products analyzed by real time PCR to determine and compare expression level of VEGF-A and VEGFR-2. Results: Data analysis shows inhibitory effect of saffron extract in concentration 100, 200, 400 and 800 µg/mL on VEGF-A and VEGFR-2 gene expression in MCF-7 cell line in compare with control group. For VEGF-A, most reduction can be seen in the highest concentration of saffron extract (800 µg/mL with 17% reduction on gene expression, while critical inhibitory effects on gene expression of VEGFR-2 was 20% in 400 µg/mL concentration. Conclusion: Results indicate a decrease in the expression of VEGF-A and VEGFR-2 as specific biomarkers of angiogenesis in the treated samples compared to controls.

  12. Anticancer effects of tributyltin chloride and triphenyltin chloride in human breast cancer cell lines MCF-7 and MDA-MB-231.

    Science.gov (United States)

    Hunakova, Luba; Macejova, D; Toporova, L; Brtko, J

    2016-05-01

    Triorganotin compounds induce hormonal alterations, i.e., endocrine-disrupting effects in mammals, including humans. Tributyltin chloride (TBT-Cl) and triphenyltin chloride (TPT-Cl) are known to function as nuclear retinoid X receptor (RXR) agonists. Their cytotoxic effects in ER(+) luminal human breast cancer cell line MCF-7 and ER(-) basal-like human breast cancer cell line MDA-MB-231 were examined. We observed significantly higher toxicity of TBT-Cl in comparison with TPT-Cl in both cell lines. Comparable apoptosis-inducing concentrations were 200 and 800 nM, respectively, as shown by PARP cleavage and FDA staining. Both compounds activated executive caspases in the concentration-dependent manner in MDA-MB-231 cells, but the onset of TPT-Cl-induced caspase-3/7 activation was delayed in comparison with TBT-Cl. Both compounds slowed down the migration of these highly invasive cells, which was accompanied by RARbeta upregulation. Other RAR and RXR expressions were differentially modulated by studied organotins in both cell lines. PMID:26662104

  13. 表没食子儿茶素没食子酸酯对人乳腺癌MCF-7细胞及其血管内皮细胞生长因子-C表达的影响%Effects of epigallocateclin-3-gallate on human breast cancer cell line MCF-7 and its vascular endothelial growth factor-C expression

    Institute of Scientific and Technical Information of China (English)

    邓思浩; 张雅芳; 刘春玲

    2011-01-01

    Objective: Effects of epigallocateclin-3-gallate (EGCG) were examined on human breast cancer cell line MCF-7 in vitro for the proliferation, invasion and expression of vascular endothelial growth factor-C (VEGF-C). Methods: In vitro, human breast cancer cell line MCF-7 was treated with EGCG at different concentrations, and then the proliferation and migration of cells were assayed by MTT method and Transwell respectively. Immunocytochemistry and Western blot assay were used to investigate the secretion and expression of VEGF-C respectively. Results : EGCG treatment inhibited the proliferation and migration of MCF-7 cell, and it also reduced the secretion and protein expression of VEGF-C. Conclusion: EGCG can exert the anti-tumor effect by inhibiting the proliferation and migration of tumor cells, as well as the secretion and protein expression of VEGF-C.%目的:探讨体外应用表没食子儿茶素没食子酸酯(EGCG)对人乳腺癌MCF-7细胞增殖、侵袭及其对血管内皮细胞生长因子-C (VEGF-C)表达的影响.方法:体外培养MCF-7细胞,设立对照组及EGCG实验组,应用MTT法及Transwell侵袭实验观察不同浓度EGCG对MCF-7细胞增殖及侵袭的影响;应用免疫细胞化学显色及免疫印迹法观测EGCG对VEGF-C分泌及蛋白表达水平的影响.结果:一定浓度的EGCG可抑制人乳腺癌MCF-7细胞的增殖及侵袭,同时可抑制VEGF-C的分泌及蛋白的表达.结论:EGCG可以通过抑制肿瘤细胞的增殖、侵袭及VEGF-C的表达来发挥抗肿瘤的作用.

  14. CDK2-AP1基因过表达对乳腺癌MCF-7细胞增殖及周期的影响%Effect of CDK2-AP1 gene over-expression on proliferation and cell cycle regulation of breast cancer cell line MCF-7

    Institute of Scientific and Technical Information of China (English)

    关晓燕; 周卫兵; 黄隽; 王龙云; 廖遇平

    2012-01-01

    Objective: To over-express cyclin-dependent kinase 2-associated protein 1 (CDK2-AP1) gene, and investigate its effect on the proliferation and cell cycle regulation in breast cancer cell line MCF-7. Methods: CDK2-AP1 gene coding region was cloned into lentivirus vector. Lentivirus particles were infected into MCF-7 cells to upregulate the expression of CDK2-AP1 gene. The expression level of CDK2-AP1 was detected at both mRNA and protein levels by real-time PCR and Western blot. MTT assay, colony formatting assay, and flow cytometry were performed to detect the change of proliferation and cell cycle in MCF-7 cells. We examined the expression of cell cycle associated genes (CDK2, CDK4, P16Ink4A, and P2lCiP1/Wafl) followed by CDK2-AP1 over-expression by Western blot.Results: CDK2-AP1 gene was up-regulated significantly at both mRNA (6.94 folds) and protein level. MTT based growth curve, colony formatting assay and flow cytometry showed that CDK2- API over-expression lentivirus inhibited the proliferation of MCF-7 cells with statistical difference (P<0.05). In addition, with CDK2-AP1 over-expression, MCF-7 cells were arrested in G1 phase accompanied by apoptosis. Western blot showed that the expression level of P21Clpl/wafl and P16Int4A was upregulated, while the expression level of CDK2 and CDK4, members of the CDK family, was downregulated.Conclusion: CDK2-AP1 gene plays a cancer suppressor role in breast cancer. Its function includes inhibiting the proliferation of MCF-7 cells and arresting the cell cycle in G, phase.%目的:通过过表达手段上调细胞周期调节蛋白依赖性激酶2-关联蛋白1(CDK2-AP1)基因在乳腺癌细胞MCF-7中的表达,并观察其对MCF-7细胞生长和细胞周期调控的作用.方法:将CDK2-AP1基因的编码框构建于慢病毒表达载体,导入MCF-7细胞,应用实时定量PCR和Western印迹验证CDK2-AP1基因mRNA和蛋白的表达效率.利用MTT法绘制生长曲线、克隆形成实验观察CDK2-AP1基因过表达后MCF

  15. Gene expression profiling and pathway analysis data in MCF-7 and MDA-MB-231 human breast cancer cell lines treated with dioscin

    OpenAIRE

    Aumsuwan, Pranapda; Khan, Shabana I.; Khan, Ikhlas A.; Walker, Larry A.; Dasmahapatra, Asok K

    2016-01-01

    Microarray technology (Human OneArray microarray, phylanxbiotech.com) was used to compare gene expression profiles of non-invasive MCF-7 and invasive MDA-MB-231 breast cancer cells exposed to dioscin (DS), a steroidal saponin isolated from the roots of wild yam, (Dioscorea villosa). Initially the differential expression of genes (DEG) was identified which was followed by pathway enrichment analysis (PEA). Of the genes queried on OneArray, we identified 4641 DEG changed between MCF-7 and MDA-M...

  16. Primary study on the mechanism of reversal drug-resistance of human breast cancer cell line MCF-7 by Huaier Granule%槐耳颗粒逆转人乳腺癌细胞MCF-7耐药的初步机制

    Institute of Scientific and Technical Information of China (English)

    李戎; 谢莎; 张莉; 王先明

    2009-01-01

    目的 研究槐耳颗粒逆转乳腺癌细胞株MCF-7耐药的初步机制.方法 使用四甲基偶氮唑蓝(MTT)比色法测定敏感/耐药乳腺癌细胞MCF-7-S/A对单药阿霉素(ADM)和槐耳颗粒的药物毒性,耐药倍数和槐耳颗粒对MCF-7/A的耐药逆转倍数,分别采用荧光定量逆转录-聚合酶链反应和免疫组化SP法测定多药耐药基因mdr1、多药耐药相关蛋白基因MRP的mRNA和其相应的表达产物P-gp、MRP蛋白,在MCF-7/S及非细胞毒性剂量的槐耳颗粒处理前后MCF-7/A上的表达.结果 非细胞毒性剂量(0.01 mg/ml)的槐耳颗粒能显著降低ADM对MCF-7/A的IC 50(5.06 μm),与逆转前MCF-7/A的IC50(25.8 μm),相比差异有统计学意义(P<0.01),其逆转倍数为5.1倍;0.01 mg/ml的槐耳颗粒使MCF-7/A细胞的耐药基因mdr1、MDR-1的mRNA以及相应的P-gp、MRP蛋白的表达水平均下调,与未加槐耳颗粒处理的对照组MCF-7/A相比有显著性差异(P<0.01).结论 非细胞毒性剂量槐耳颗粒具有逆转MCF-7/A细胞耐药性的作用,逆转机制和其耐药基因mdr1、MDR-1的mRNA以及相应的P-gp、MRP蛋白的表达水平下调相关,暗示槐耳颗粒是一种有潜力的耐药逆转剂.%Objective To investigate the mechanism of the reversal drug-resistance of human breast cancer cell MCF-7 by Huaier Granule.Methods MTT method was used to detect the cell toxicity,drug-resistant multiple and reversing multiple; fluorescent quantitation reverse transcription polymerase chain reaction and immuno-histo-chemical SP staining was used to detect the mRNA level of multidrug resistance 1(mdr1),multidrug resistance-associated protein(MRP)and their corresponding proteins P-gp,MRP expression of drug sensitive cell line MCF-7/S and drug resistant cell line MCF-7/A before and after treated by non-toxicity dose of Huaier Granule,respectively.Results Non-toxicity dose(0.01 mg/ml)of Huaier Granule could significantly reduce the IC 50(5.06 μm)of ADM to the MCF-7/A,compared to the

  17. Effects of Mitofusin-2 Gene on Cell Proliferation and Chemotherapy Sensitivity of MCF-7

    Institute of Scientific and Technical Information of China (English)

    Yun XIA; Yaqun WU; Xiaojun HE; Jianping GONG; Fazu QIU

    2008-01-01

    In order to evaluate the effect of mitofusin-2 gene (mfn2) on proliferation and chemotherapy sensitivity of human breast carcinoma cell line MCF-7 in vitro, pEGFPmfn2 plasmid carrying full length of mitofusin-2 gene was transfected, by using sofast, into MCF-7 cells. Mitofusin-2 gene expression in MCF-7 cells transfected by sofast after 48 h was detected by PCR and Western blotting, and the stable expression of GFP protein in MCF-7 cells by Western blot analysis. The proliferation of MCF-7 cells was assayed by MTT and cell counting. By using PI method, the effects of mfn2 on the cell cycle distribution of MCF-7 were measured. Annexin-V/PI double labeling method was em- ployed to detect the changes in apoptosis induced by chemotherapeutics before and after transfection. The results showed that the MCF-7 cells transfected with mfn2 gene could stably and highly express GFP protein. MTT assay revealed that after transfection of mfn2 eDNA, the proliferation of MCF-7 cells was significantly inhibited. DNA histogram showed that cells arrested in S phase, and the per- centage of S phase cells was 42.7, 17.2 and 19.6 in mfn2 cDNA transfection group, blank plasmid transfection group and blank control group, respectively (P<0.05). The apoptosis ratio of the cells transfected with mfn2 gene was increased from 3.56% to 15.95%, that of the cells treated with camptothecin (CAMP) followed by mfn2 gene transfection was 69.6%, and that in blank plasmid transfection group and blank control group was 31.0% and 23.4% respectively (P<0.05). It was suggested that transfection of mfn2 gene could significantly inhibit the proliferation of MCF-7 cells and pro- mote their sensitivity to CAMP with a synergic effect.

  18. Evaluation of Synergetic Anticancer Activity of Berberine and Curcumin on Different Models of A549, Hep-G2, MCF-7, Jurkat, and K562 Cell Lines

    Directory of Open Access Journals (Sweden)

    Acharya Balakrishna

    2015-01-01

    Full Text Available Ayurvedic system of medicine is using Berberis aristata and Curcuma longa herbs to treat different diseases including cancer. The study was performed to evaluate the synergetic anticancer activity of Berberine and Curcumin by estimating the inhibition of the cell proliferation by cytotoxicity assay using MTT method on specified human cell lines (A549, Hep-G2, MCF-7, Jurkat, and K562. All the cells were harvested from the culture and seeded in the 96-well assay plates at seeding density of 2.0 × 104 cells/well and were incubated for 24 hours. Test items Berberine with Curcumin (1 : 1, Curcumin 95% pure, and Berberine 95% pure were exposed at the concentrations of 1.25, 0.001, and 0.5 mg/mL, respectively, and incubated for a period of 48 hours followed by dispensing MTT solution (5 mg/mL. The cells were incubated at 37 ± 1°C for 4 hours followed by addition of DMSO for dissolving the formazan crystals and absorbance was read at 570 nm. Separate wells were prepared for positive control, controls (only medium with cells, and blank (only medium. The results had proven the synergetic anticancer activity of Berberine with Curcumin inducing cell death greater percentage of >77% when compared to pure curcumin with <54% and pure Berberine with <45% on average on all cell line models.

  19. Evaluation of Synergetic Anticancer Activity of Berberine and Curcumin on Different Models of A549, Hep-G2, MCF-7, Jurkat, and K562 Cell Lines.

    Science.gov (United States)

    Balakrishna, Acharya; Kumar, M Hemanth

    2015-01-01

    Ayurvedic system of medicine is using Berberis aristata and Curcuma longa herbs to treat different diseases including cancer. The study was performed to evaluate the synergetic anticancer activity of Berberine and Curcumin by estimating the inhibition of the cell proliferation by cytotoxicity assay using MTT method on specified human cell lines (A549, Hep-G2, MCF-7, Jurkat, and K562). All the cells were harvested from the culture and seeded in the 96-well assay plates at seeding density of 2.0 × 10(4) cells/well and were incubated for 24 hours. Test items Berberine with Curcumin (1 : 1), Curcumin 95% pure, and Berberine 95% pure were exposed at the concentrations of 1.25, 0.001, and 0.5 mg/mL, respectively, and incubated for a period of 48 hours followed by dispensing MTT solution (5 mg/mL). The cells were incubated at 37 ± 1°C for 4 hours followed by addition of DMSO for dissolving the formazan crystals and absorbance was read at 570 nm. Separate wells were prepared for positive control, controls (only medium with cells), and blank (only medium). The results had proven the synergetic anticancer activity of Berberine with Curcumin inducing cell death greater percentage of >77% when compared to pure curcumin with <54% and pure Berberine with <45% on average on all cell line models. PMID:26247019

  20. An Îto stochastic differential equations model for the dynamics of the MCF-7 breast cancer cell line treated by radiotherapy.

    Science.gov (United States)

    Oroji, Amin; Omar, Mohd; Yarahmadian, Shantia

    2016-10-21

    In this paper, a new mathematical model is proposed for studying the population dynamics of breast cancer cells treated by radiotherapy by using a system of stochastic differential equations. The novelty of the model is essentially in capturing the concept of the cell cycle in the modeling to be able to evaluate the tumor lifespan. According to the cell cycle, each cell belongs to one of three subpopulations G, S, or M, representing gap, synthesis and mitosis subpopulations. Cells in the M subpopulation are highly radio-sensitive, whereas cells in the S subpopulation are highly radio-resistant. Therefore, in the process of radiotherapy, cell death rates of different subpopulations are not equal. In addition, since flow cytometry is unable to detect apoptotic cells accurately, the small changes in cell death rate in each subpopulation during treatment are considered. Subsequently, the proposed model is calibrated using experimental data from previous experiments involving the MCF-7 breast cancer cell line. Consequently, the proposed model is able to predict tumor lifespan based on the number of initial carcinoma cells. The results show the effectiveness of the radiation under the condition of stability, which describes the decreasing trend of the tumor cells population. PMID:27457094

  1. The effect of insulin analogues only or combined with metformin on the prolifeation of breast cancer cell line (MCF-7)%胰岛素及其类似物单独或联合二甲双胍对人乳腺癌细胞系(MCF-7)增殖的影响

    Institute of Scientific and Technical Information of China (English)

    皇甫建林; 马向华; 卢姗; 沈捷; 李慧; 周佳雁

    2012-01-01

    Objective:To investigate the effect of human insulin and insulin analogues combined with or without metformin on the proliferation of human mammary carcinoma cell line MCF-7. Methods:Firstly,human mammary carcinoma cell line (MCF-7) was treated with different concentrations (1,10,100,1 000 nmol/L) of insulin analogues or human insulin. Secondly,MCF-7 cells was treated with insulin analogues or human insulin at the concentration of 1 000 nmol/L,and the cell proliferation was tested by CCK-8 assay after 24 h,48 h and 72 h treatment. Thirdly,MCF-7 cells were treated with different concentrations (0,2.5,5,10,20 mmol/L) of metformin combined with human insulin or insulin analogues (1 000 nmol/L each). The proliferation of MCF-7 cells was also examined by CCK-8 assay. Results: Both insulin analogues and human insulin could increase the proliferation of cell line MCF-7. Glargine, Lispro and human insulin had a dose-and time-dependent effect on the cell proliferation while Detemir and Aspart had only a time-dependent effect. Metfomin could inhibit the proliferation of MCF-7 cells in a dose-dependent response. Metformin could decrease the effect on the proliferation that was induced by human insulin and insulin analogues. Conclusion: Human insulin and insulin analogues couid increase the proliferation of human mammary carcinoma cell line MCF-7. Metformin could decrease the proliferation of MCF-7 induced by human insulin and insulin analogues.%目的:探讨人胰岛素及其类似物对人乳腺癌细胞系(MCF-7)增殖的影响及二甲双胍联合胰岛素及其类似物对MCF-7细胞增殖的影响.方法:①使用不同浓度(0、1、10、100、1000 nmol/L)的人胰岛素及类似物干预MCF-7细胞72 h后,用CCK-8法检测干预后细胞增殖情况.②用胰岛素及类似物(每种胰岛素浓度均为1 000 nmol/L)干预MCF-7细胞,分别用CCK-8法检测各胰岛素在干预24、48、72 h后的细胞增殖.③用CCK-8法检测单纯二甲双胍(0、2.5、5.0、10.0

  2. Phorbol Esters from Jatropha Meal Triggered Apoptosis, Activated PKC-δ, Caspase-3 Proteins and Down-Regulated the Proto-Oncogenes in MCF-7 and HeLa Cancer Cell Lines

    OpenAIRE

    Syahida Ahmad; Norhani Abdullah; Ehsan Oskoueian

    2012-01-01

    Jatropha meal produced from the kernel of Jatropha curcas Linn. grown in Malaysia contains phorbol esters (PEs). The potential benefits of PEs present in the meal as anticancer agent are still not well understood. Hence, this study was conducted to evaluate the cytotoxic effects and mode of actions of PEs isolated from Jatropha meal against breast (MCF-7) and cervical (HeLa) cancer cell lines. Isolated PEs inhibited cells proliferation in a dose-dependent manner of both MCF-7 and HeLa cell li...

  3. The dose dependent in vitro responses of MCF-7 and MDA-MB-231 cell lines to extracts of Vatica diospyroides symington type SS fruit include effects on mode of cell death

    Science.gov (United States)

    Srisawat, Theera; Sukpondma, Yaowapa; Graidist, Potchanapond; Chimplee, Siriphon; Kanokwiroon, Kanyanatt

    2015-01-01

    Background: Vatica diospyroides type LS is a known source of valuable compounds for cancer treatment, however, in contrast little is known about therapeutic efficacy of type SS. Objective: This study focused on in vitro cytotoxicity of these fruit extracts, and the cell death mode they induce in breast cancer cells. Materials and Methods: Acetone extracts of fruit were tested for cytotoxicity against MCF-7 and MDA-MB-231 cell lines. The apoptosis and necrosis of these cells were quantified by fluorescence activated cell sorter (FACS) and western blot analyses. Results: After 72 h of treatment, the 50% growth inhibition concentrations (IC50) levels were 16.21 ± 0.13 µg/mL against MCF-7 and 30.0 ± 4.30 µg/mL against MDA-MB-231, indicating high and moderate cytotoxicity, respectively. From the FACS results, we estimate that the cotyledon extract at half IC50 produced 11.7% dead MCF-7 cells via apoptosis, whereas another concentrations both apoptosis and necrosis modes co-existed in a dose-dependent manner. In MDA-MB-231 cell line, only the apoptosis was induced by the pericarp extract in a dose-dependent manner. With the extracts at half IC50 concentration, in both cells, the expression of p21 decreased while that of Bax increased within 12–48 h of dosing, confirming apoptosis induced by time-dependent responses. Apoptosis dependent on p53 was found in MCF-7, whereas the mutant p53 of MDA-MB-231 cells was expressed. Conclusion: The results indicate that fruit extracts of V. diospyroides have cytotoxic effects against MCF-7 and MDA-MB-231 cells via apoptosis pathway in a dose-dependent manner. This suggests that the extracts could provide active ingredients for the development, targeting breast cancer therapy. PMID:26109760

  4. Distinct Biochemical Pools of Golgi Phosphoprotein 3 in the Human Breast Cancer Cell Lines MCF7 and MDA-MB-231.

    Directory of Open Access Journals (Sweden)

    María J Tenorio

    Full Text Available Golgi phosphoprotein 3 (GOLPH3 has been implicated in the development of carcinomas in many human tissues, and is currently considered a bona fide oncoprotein. Importantly, several tumor types show overexpression of GOLPH3, which is associated with tumor progress and poor prognosis. However, the underlying molecular mechanisms that connect GOLPH3 function with tumorigenicity are poorly understood. Experimental evidence shows that depletion of GOLPH3 abolishes transformation and proliferation of tumor cells in GOLPH3-overexpressing cell lines. Conversely, GOLPH3 overexpression drives transformation of primary cell lines and enhances mouse xenograft tumor growth in vivo. This evidence suggests that overexpression of GOLPH3 could result in distinct features of GOLPH3 in tumor cells compared to that of non-tumorigenic cells. GOLPH3 is a peripheral membrane protein mostly localized at the trans-Golgi network, and its association with Golgi membranes depends on binding to phosphatidylinositol-4-phosphate. GOLPH3 is also contained in a large cytosolic pool that rapidly exchanges with Golgi-associated pools. GOLPH3 has also been observed associated with vesicles and tubules arising from the Golgi, as well as other cellular compartments, and hence it has been implicated in several membrane trafficking events. Whether these and other features are typical to all different types of cells is unknown. Moreover, it remains undetermined how GOLPH3 acts as an oncoprotein at the Golgi. Therefore, to better understand the roles of GOLPH3 in cancer cells, we sought to compare some of its biochemical and cellular properties in the human breast cancer cell lines MCF7 and MDA-MB-231 with that of the non-tumorigenic breast human cell line MCF 10A. We found unexpected differences that support the notion that in different cancer cells, overexpression of GOLPH3 functions in diverse fashions, which may influence specific tumorigenic phenotypes.

  5. Distinct Biochemical Pools of Golgi Phosphoprotein 3 in the Human Breast Cancer Cell Lines MCF7 and MDA-MB-231

    Science.gov (United States)

    Luchsinger, Charlotte; Rivera-Dictter, Andrés; Arriagada, Cecilia; Acuña, Diego; Aguilar, Marcelo; Cavieres, Viviana; Burgos, Patricia V.; Ehrenfeld, Pamela; Mardones, Gonzalo A.

    2016-01-01

    Golgi phosphoprotein 3 (GOLPH3) has been implicated in the development of carcinomas in many human tissues, and is currently considered a bona fide oncoprotein. Importantly, several tumor types show overexpression of GOLPH3, which is associated with tumor progress and poor prognosis. However, the underlying molecular mechanisms that connect GOLPH3 function with tumorigenicity are poorly understood. Experimental evidence shows that depletion of GOLPH3 abolishes transformation and proliferation of tumor cells in GOLPH3-overexpressing cell lines. Conversely, GOLPH3 overexpression drives transformation of primary cell lines and enhances mouse xenograft tumor growth in vivo. This evidence suggests that overexpression of GOLPH3 could result in distinct features of GOLPH3 in tumor cells compared to that of non-tumorigenic cells. GOLPH3 is a peripheral membrane protein mostly localized at the trans-Golgi network, and its association with Golgi membranes depends on binding to phosphatidylinositol-4-phosphate. GOLPH3 is also contained in a large cytosolic pool that rapidly exchanges with Golgi-associated pools. GOLPH3 has also been observed associated with vesicles and tubules arising from the Golgi, as well as other cellular compartments, and hence it has been implicated in several membrane trafficking events. Whether these and other features are typical to all different types of cells is unknown. Moreover, it remains undetermined how GOLPH3 acts as an oncoprotein at the Golgi. Therefore, to better understand the roles of GOLPH3 in cancer cells, we sought to compare some of its biochemical and cellular properties in the human breast cancer cell lines MCF7 and MDA-MB-231 with that of the non-tumorigenic breast human cell line MCF 10A. We found unexpected differences that support the notion that in different cancer cells, overexpression of GOLPH3 functions in diverse fashions, which may influence specific tumorigenic phenotypes. PMID:27123979

  6. Molecular and Computational Studies on Apoptotic Pathway Regulator, Bcl-2 Gene from Breast Cancer Cell Line MCF-7.

    Science.gov (United States)

    Tiwari, Pragya; Khan, M J

    2016-01-01

    Cancer is a dreadful disease constituting abnormal growth and proliferation of malignant cells in the body. Next to lung cancer, breast cancer is the most common form of cancer affecting women. The apoptotic pathway regulators, B cell lymphoma family of protein, play a key role in various malignancies defining cancer and their constitutive expression plays an integral role in breast cancer chemotherapy. The research work discusses the identification and molecular cloning of a B cell lymphoma like gene from human breast cancer cell line. The open reading frame of the gene consisted of 965 nucleotides, encoding a protein of 380 amino acids with a predicted molecular weight of 42.5 kilodalton. The predicted physiochemical properties of the gene were as follows: Isoelectric point - 9.49, molecular formula - C1893H3004N534O548S16, total number of negatively charged residues, (Aspartate+Glutamate) - 26, total number of positively charged residues, (Arginine+Lysine)-39, instability index-42.08 (unstable protein) and grand average of hydropathicity is -0.202. Additionally, phobius prediction suggested non-cytoplasmic localization of the putative protein. The presence of secondary structure in the protein was determined by Memsat program. A 3 dimensional protein homology model was generated using threading based method of protein modeling for structural and functional annotation of the putative protein. Future prospects accounts for the biochemical characterization of the enzyme including in vitro assays on breast cancer cell line would establish the functional characteristics of the protein and its physiological mechanisms in breast cancer development and its therapeutic-target role in future. PMID:27168686

  7. The dose dependent in vitro responses of MCF-7 and MDA-MB-231 cell lines to extracts of Vatica diospyroides symington type SS fruit include effects on mode of cell death

    OpenAIRE

    Theera Srisawat; Yaowapa Sukpondma; Potchanapond Graidist; Siriphon Chimplee; Kanyanatt Kanokwiroon

    2015-01-01

    Background: Vatica diospyroides type LS is a known source of valuable compounds for cancer treatment, however, in contrast little is known about therapeutic efficacy of type SS. Objective: This study focused on in vitro cytotoxicity of these fruit extracts, and the cell death mode they induce in breast cancer cells. Materials and Methods: Acetone extracts of fruit were tested for cytotoxicity against MCF-7 and MDA-MB-231 cell lines. The apoptosis and necrosis of these cells were quantified by...

  8. Salubrinal-Mediated Upregulation of eIF2α Phosphorylation Increases Doxorubicin Sensitivity in MCF-7/ADR Cells

    OpenAIRE

    Jeon, Yong-Joon; Kim, Jin Hyun; Shin, Jong-Il; Jeong, Mini; Cho, Jaewook; Lee, Kyungho

    2016-01-01

    Eukaryotic translation initiation factor 2 alpha (eIF2α), which is a component of the eukaryotic translation initiation complex, functions in cell death and survival under various stress conditions. In this study, we investigated the roles of eIF2α phosphorylation in cell death using the breast cancer cell lines MCF-7 and MCF-7/ADR. MCF-7/ADR cells are MCF-7-driven cells that have acquired resistance to doxorubicin (ADR). Treatment of doxorubicin reduced the viability and induced apoptosis in...

  9. Silencing of the metastasis-linked gene, AEG-1, using siRNA-loaded cholamine surface-modified gelatin nanoparticles in the breast carcinoma cell line MCF-7.

    Science.gov (United States)

    Abozeid, Salma M; Hathout, Rania M; Abou-Aisha, Khaled

    2016-09-01

    Cholamine surface-modified gelatin nanoparticles prepared by the double desolvation method using acetone as a dehydrating agent were selected and potentially evaluated as non viral vectors of siRNA targeting a metastatic gene AEG-1 in MCF-7 breast carcinoma cells. The ability of modified gelatin nanoparticle to complex and deliver siRNA for gene silencing was investigated. Hence, Particle size, surface charge (zeta potential) and morphology of siRNA/Gelatin nanoparticles (siGNPs) were characterized via dynamic light scattering (DLS), scanning electron microscopy (SEM) and transmission electron microscope (TEM). Moreover, the nanoparticles cytotoxicity, loading efficiency and interaction with MCF-7 human breast carcinoma cells were evaluated. Cationized GNPs of mean size range of 174nm and PDI of 0.101 were produced. The loading efficiency of siGNPs at a Nitrogen/Phosphate (N/P) ratio (w/w) of 200:1 was approximately 96%. Cellular uptake was evaluated after FITC conjugation where the particles produced high transfection efficiency. Finally, ELISA analysis of AEG-1/MTDH expression demonstrated the gene silencing effect of siGNPs, as more than 75% MTDH protein were inhibited. Our data indicate that cholamine modified GNPs pose a promising non-viral siRNA carrier for altering gene expression in MCF-7 breast cancer cells with many advantages such as relatively high gene transfection efficiency and efficient silencing ability. PMID:27285732

  10. The synergistic effect between vanillin and doxorubicin in ehrlich ascites carcinoma solid tumor and MCF-7 human breast cancer cell line.

    Science.gov (United States)

    Elsherbiny, Nehal M; Younis, Nahla N; Shaheen, Mohamed A; Elseweidy, Mohamed M

    2016-09-01

    Despite the remarkable anti-tumor activity of doxorubicin (DOX), its clinical application is limited due to multiple organ toxicities. Products with less side effects are therefore highly requested. The current study investigated the anti-cancer activities of vanillin against breast cancer and possible synergistic potentiation of DOX chemotherapeutic effects by vanillin. Vanillin (100mg/kg), DOX (2mg/kg) and their combination were administered i.p. to solid Ehrlich tumor-bearing mice for 21days. MCF-7 human breast cancer cell line was treated with vanillin (1 and 2mM), DOX (100μM) or their combination. Protection against DOX-induced nephrotoxicity was studied in rats that received vanillin (100mg/kg, ip) for 10days with a single dose of DOX (15mg/kg) on day 6. Vanillin exerted anticancer effects comparable to DOX and synergesticlly potentiated DOX anticancer effects both in-vivo and in-vitro. The anticancer potency of vanillin in-vivo was mediated via apoptosis and antioxidant capacity. It also offered an in-vitro growth inhibitory effect and cytotoxicity mediated by apoptosis (increased caspase-9 and Bax:Bcl-2 ratio) along with anti-metasasis effect. Vanillin protected against DOX-induced nephrotoxicity in rats. In conclusion, vanillin can be a potential lead molecule for the development of non-toxic agents for the treatment of breast cancer either alone or combined with DOX. PMID:27493101

  11. The synergistic effect between vanillin and doxorubicin in ehrlich ascites carcinoma solid tumor and MCF-7 human breast cancer cell line.

    Science.gov (United States)

    Elsherbiny, Nehal M; Younis, Nahla N; Shaheen, Mohamed A; Elseweidy, Mohamed M

    2016-09-01

    Despite the remarkable anti-tumor activity of doxorubicin (DOX), its clinical application is limited due to multiple organ toxicities. Products with less side effects are therefore highly requested. The current study investigated the anti-cancer activities of vanillin against breast cancer and possible synergistic potentiation of DOX chemotherapeutic effects by vanillin. Vanillin (100mg/kg), DOX (2mg/kg) and their combination were administered i.p. to solid Ehrlich tumor-bearing mice for 21days. MCF-7 human breast cancer cell line was treated with vanillin (1 and 2mM), DOX (100μM) or their combination. Protection against DOX-induced nephrotoxicity was studied in rats that received vanillin (100mg/kg, ip) for 10days with a single dose of DOX (15mg/kg) on day 6. Vanillin exerted anticancer effects comparable to DOX and synergesticlly potentiated DOX anticancer effects both in-vivo and in-vitro. The anticancer potency of vanillin in-vivo was mediated via apoptosis and antioxidant capacity. It also offered an in-vitro growth inhibitory effect and cytotoxicity mediated by apoptosis (increased caspase-9 and Bax:Bcl-2 ratio) along with anti-metasasis effect. Vanillin protected against DOX-induced nephrotoxicity in rats. In conclusion, vanillin can be a potential lead molecule for the development of non-toxic agents for the treatment of breast cancer either alone or combined with DOX.

  12. Screening of antiproliferative effect of aqueous extracts of plant foods consumed in México on the breast cancer cell line MCF-7.

    Science.gov (United States)

    García-Solís, Pablo; Yahia, Elhadi M; Morales-Tlalpan, Verónica; Díaz-Muñoz, Mauricio

    2009-01-01

    We evaluated the antiproliferative effect of aqueous extracts of 14 plant foods consumed in Mexico on the breast cancer cell line MCF-7. The plant foods used were avocado, black sapote, guava, mango, prickly pear cactus stems (called nopal in Mexico, cooked and raw), papaya, pineapple, four different cultivars of prickly pear fruit, grapes and tomato. β-Carotene, total phenolics and gallic acid contents and the antioxidant capacity, measured by the ferric reducing/antioxidant power and the 2,2-diphenyl-1,1-picrylhydrazyl radical scavenging assays, were analyzed in each aqueous extract. Only the papaya extract had a significant antiproliferative effect measured with the methylthiazolydiphenyl-tetrazolium bromide assay. We did not notice a relationship between the total phenolic content and the antioxidant capacity with antiproliferative effect. It is suggested that each extract of plant food has a unique combination of the quantity and quality of phytochemicals that could determine its biological activity. Besides, papaya represents a very interesting fruit to explore its antineoplastic activities. PMID:19468947

  13. Synthesis of silver nanoparticles using Solanum trilobatum fruits extract and its antibacterial, cytotoxic activity against human breast cancer cell line MCF 7

    Science.gov (United States)

    Ramar, Manikandan; Manikandan, Beulaja; Marimuthu, Prabhu Narayanan; Raman, Thiagarajan; Mahalingam, Anjugam; Subramanian, Palanisamy; Karthick, Saravanan; Munusamy, Arumugam

    2015-04-01

    In the present study, we have synthesized silver nanoparticles by a simple and eco-friendly method using unripe fruits of Solanum trilobatum. The aqueous silver ions when exposed to unripe fruits extract were reduced and stabilized over long time resulting in biosynthesis of surface functionalized silver nanoparticles. The bio-reduced silver nanoparticles were characterized by UV-visible spectroscopy, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive spectroscopy (EDX) and X-ray diffraction (XRD). These biologically synthesized silver nanoparticles were tested for its antibacterial activity against few human pathogenic bacteria including Gram-positive (Streptococcus mutans, Enterococcus faecalis) and Gram-negative (Escherichia coli, Klebsiella pneumoniae) bacteria. In addition, we also demonstrated anticancer activity of these nanoparticles in vitro against human breast cancer cell line (MCF 7) using MTT, nuclear morphology assay, Western blot and RT-PCR expression. These results taken together show the potential applications of biosynthesized silver nanoparticles using S. trilobatum fruits.

  14. Beta-elemene blocks epithelial-mesenchymal transition in human breast cancer cell line MCF-7 through Smad3-mediated down-regulation of nuclear transcription factors.

    Directory of Open Access Journals (Sweden)

    Xian Zhang

    Full Text Available Epithelial-mesenchymal transition (EMT is the first step required for breast cancer to initiate metastasis. However, the potential of drugs to block and reverse the EMT process are not well explored. In the present study, we investigated the inhibitory effect of beta-elemene (ELE, an active component of a natural plant-derived anti-neoplastic agent in an established EMT model mediated by transforming growth factor-beta1 (TGF-β1. We found that ELE (40 µg/ml blocked the TGF-β1-induced phenotypic transition in the human breast cancer cell line MCF-7. ELE was able to inhibit TGF-β1-mediated upregulation of mRNA and protein expression of nuclear transcription factors (SNAI1, SNAI2, TWIST and SIP1, potentially through decreasing the expression and phosphorylation of Smad3, a central protein mediating the TGF-β1 signalling pathway. These findings suggest a potential therapeutic benefit of ELE in treating basal-like breast cancer.

  15. Thymoquinone-Loaded Nanostructured Lipid Carrier Exhibited Cytotoxicity towards Breast Cancer Cell Lines (MDA-MB-231 and MCF-7) and Cervical Cancer Cell Lines (HeLa and SiHa)

    OpenAIRE

    Wei Keat Ng; Latifah Saiful Yazan; Li Hua Yap; Wan Abd Ghani Wan Nor Hafiza; Chee Wun How; Rasedee Abdullah

    2015-01-01

    Thymoquinone (TQ) has been shown to exhibit antitumor properties. Thymoquinone-loaded nanostructured lipid carrier (TQ-NLC) was developed to improve the bioavailability and cytotoxicity of TQ. This study was conducted to determine the cytotoxic effects of TQ-NLC on breast cancer (MDA-MB-231 and MCF-7) and cervical cancer cell lines (HeLa and SiHa). TQ-NLC was prepared by applying the hot high pressure homogenization technique. The mean particle size of TQ-NLC was 35.66 ± 0.1235 nm with a narr...

  16. Effect of survivin siRNA on biological behaviour of breast cancer MCF7 cells

    Institute of Scientific and Technical Information of China (English)

    Hao Wang; Yi-Feng Ye

    2015-01-01

    Objective:To investigate the expression of survivin in breast cancer cell lines and explore the effect of survivin siRNA on biology behavior of breast cancer cells.Methods: Western blot was performed to detect the expression of survivin in breast cancer cell lines. Eukaryotic expression vector pIRES2-EGFP-Survivin siRNA was constructed and transfected in MCF7 cells with liposome, the efficiency of survivin siRNA was measured by Western blot and RT-PCR. Cell proliferation and apoptosis were detected by CCK8 and cell flow respectively. Cell migration and invasion was measured by transwell assay.Results: Survivin was highly expressed in MCF-7. Green fluorescence was found in MCF-7 cells tranfected with survivin siRNA and control siRNA by inverted fluorescence microscopy, the protein and mRNA level of survivin was significantly lower in cells tranfected with survivin siRNA compared with control group. Compared with control group, interfering the expression of survivin by siRNA significantly decreased the proliferation, migration and invasion of MCF-7 cells, the percentage of apoptosis cells was greatly promoted.Conclusions: Interfering the expression of Survivin can inhibit the cell proliferation, migration and invasion, and promot apoptosis in MCF-7.

  17. Quercetin Suppresses Twist to Induce Apoptosis in MCF-7 Breast Cancer Cells.

    Directory of Open Access Journals (Sweden)

    Santhalakshmi Ranganathan

    Full Text Available Quercetin is a dietary flavonoid which exerts anti-oxidant, anti-inflammatory and anti-cancer properties. In this study, we investigated the anti-proliferative effect of quercetin in two breast cancer cell lines (MCF-7 and MDA-MB-231, which differed in hormone receptor. IC50 value (37μM of quercetin showed significant cytotoxicity in MCF-7 cells, which was not observed in MDA-MB-231 cells even at 100μM of quercetin treatment. To study the response of cancer cells to quercetin, with respect to different hormone receptors, both the cell lines were treated with a fixed concentration (40μM of quercetin. MCF-7 cells on quercetin treatment showed more apoptotic cells with G1 phase arrest. In addition, quercetin effectively suppressed the expression of CyclinD1, p21, Twist and phospho p38MAPK, which was not observed in MDA-MB-231 cells. To analyse the molecular mechanism of quercetin in exerting an apoptotic effect in MCF-7 cells, Twist was over-expressed and the molecular changes were observed after quercetin administration. Quercetin effectively regulated the expression of Twist, in turn p16 and p21 which induced apoptosis in MCF-7 cells. In conclusion, quercetin induces apoptosis in breast cancer cells through suppression of Twist via p38MAPK pathway.

  18. Antisense oligonucleotide targeting p53 increased apoptosis of MCF-7 cells induced by ionizing radiation

    Institute of Scientific and Technical Information of China (English)

    Li-cheng DAI; Xiang WANG; Xing YAO; Li-shan MIN; Fu-chu QIAN; Jian-fang HE

    2006-01-01

    Aim: To investigate the effect of antisense compounds (AS) targeting human p53 mRNA on radiosensitivity of MCF-7 cells. Methods: Western blotting and RT-PCR were used to analyze the protein content and mRNA level. Additionally, cell proliferation, cell cycle and cell apoptosis were all analyzed in irradiated or sham-irradiated cells. Results: Among the five antisense compounds (AS), AS3 was identified to efficiently inhibit p53 mRNA level and protein content. Interestingly, ASS transfer has little effect on cell proliferation in DU-145 cells (mutant p53) after ionizing radiation (IR). In contrast, a marked increase of cell apoptosis and growth inhibition were observed in MCF-7 cells (wild-type p53), suggesting that AS3 can increase radiosensitivity of MCF-7 cells. Additionally, it was also observed that the transfection of AS3 decreased the fraction of G1 phase cells, and increased the proportion of S phase cells compared to untreated cells 24 h after IR in MCF-7 cell lines. Conclusion: AS3 transfection increases MCF-7 cell apoptosis induced by 5 Gy-radiation, and this mechanism may be closely associated with abrogation of G1 phase arrest.

  19. The comparison of radiation responses in MCF-7 and HeLa cells

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Mi Young; Jang, Eun Yeong; Ryu, Tae Ho; Chung, Dong-Min; Kim, Jin Hong; Kim, Jin Kyu [Advanced Radiation Technology Institute, Jeongeup (Korea, Republic of)

    2014-11-15

    Activation of this pathway temporarily arrests cells at the G1 or G2 checkpoints of cell cycle, or terminates DNA replication and cell division. The present study was carried out to identify the fate of cells to cope with DNA damage stress. Cellular responses following IR treatment were different depending on the characteristics (origin, organism and genes expressed etc.) of cell line used and extent of genomic injury. p53 expression level was increased in a dose-dependent manner in both cells. IR induced a drastic increase in expression of p21 in MCF-7 compared to that in HeLa cells. Cell cycle analysis using flow cytometry showed a significant accumulation in G2/M phase after treatment of MCF-7 with IR. This study identified that IR-induced cell fates were determined through p53-dependent activation of p21, which resulted in senescence of MCF-7 cells and autophagy of HeLa cells.

  20. The Effect of Melatonin on the Sensitivity of ER~+ Breast Carcinoma Cell Line MCF-7 to Adriamycin and Its Mechanism%褪黑素对阿霉素抗ER~+乳腺癌细胞MCF-7作用的影响及其机制

    Institute of Scientific and Technical Information of China (English)

    张燕; 祝淑钗; 赵蔚然; 董英辉; 张献波; 乞国艳

    2009-01-01

    Objective: To investigate the sensitization of physiological (10~(-9)mol/L) and pharmacological (10~(-5)mol/L) concentrations of melatonin on cell line MCF-7 for adriamycin and its mechanism. Methods: (1) MTT was applied to test the changes in inhibition ratio and IC_(50) of call line MCF-7 for adriamycin before and af-ter incubation with melatonin. (2) Flow cytometry was used to observe the effect of different concentrations of melatonin, adriamycin and melatonin plus adriamycin on cell apoptosis. (3) Western blot was employed to de-termine the expression of p53 and bcl-2 in MCF-7 cells incubated with melatonin, adriamycin and melatonin plus adriamycin. Results: (1) MTT method showed that adriamycin had inhibitive effect on the growth of MCF-7 cells in a dose- and time-dependent manner. The IC_(50) of cell line MCF-7 for adnamycin before treat-ment with melatonin was 0.62±0.07ug/mL (P>0.05). The IC50 of cell line MCF-7 for adriamycin incubated with physiological and pharmacological concentrations of melatonin was 0.59±0.09ug/mL and 0.42±0.02ug/mL, re-spectively, with a significant difference (P0.05). With the same concentration of adriamycin, the apoptosis index of cells treated with physiological concentration of melatonin plus adriamycin was not changed (P=>0.05), but the apop-tosis index of cells treated with pharmacological concentrations of melatonin plus addamycin was increased significantly. The concentration of adriamycin had no effect on the apoptosis index. (3) Western blot showed that P53 protein was expressed at a lower level and bcl-2 protein was highly expressed. Physiological concen-trations of melatonin increased the expression of p53 and decreased bcl-2 expression in a dose - dependent manner. The concentration of addamycin had no effect on the expression of p53 and bcl-2 proteins. Conclu-sion: (1) Physiological concentrations of melatonin had no effect on the anti-cancer effect of adriamycin. Phar-macological concentrations of melatonin showed

  1. The novel mTORC1/2 dual inhibitor INK128 enhances radiosensitivity of breast cancer cell line MCF-7.

    Science.gov (United States)

    Liu, Zhi-Gang; Tang, Jiao; Chen, Zhenghu; Zhang, Huiyuan; Wang, Hui; Yang, Jianhua; Zhang, Hong

    2016-09-01

    mTOR, a member of the PIKK family, is crucial for cell growth, survival, motility, proliferation, protein synthesis and DNA transcription. Many studies have demonstrated that mTOR inhibitor could enhance radiosensitivity. However, the effect of the novel mTORC1/2 dual inhibitor, INK128, on the radiosensitivity of breast cancer and the underlying mechanisms are still vague. In the present study, the cell viability was estimated using CCK-8 assay, and the dose-survival relationship was analyzed using a clonogenic survival assay. Cell cycle was evaluated by flow cytometry. The staining of γH2AX foci was assessed by immunofluorescence. In addition, we used western blots to verify the downregulating signal protein and to detect the potential related pathway. We found that the exposure of MCF-7 cells to INK128 decreased the cell viability. Exposure of MCF-7 cells to INK128 and combined ionizing radiation greatly reduced the survival rate. INK128 combined radiotherapy significantly induced G2/M arrest, double strand breaks and inhibited its repair. Furthermore, INK128 plus radiation downregulated p-Chk2, p21 and upregulated cleaved PARP, LC3B expression. These findings suggest that mTOR inhibitor could be used as a novel radiosensitizing target for breast cancer patients. PMID:27574017

  2. Effects of Ganoderma lucidum (Higher Basidiomycetes) Extracts on the miRNA Profile and Telomerase Activity of the MCF-7 Breast Cancer Cell Line.

    Science.gov (United States)

    Gonul, Oyku; Aydin, Hikmet Hakan; Kalmis, Erbil; Kayalar, Husniye; Ozkaya, Ali Burak; Atay, Sevcan; Ak, Handan

    2015-01-01

    Ganoderma lucidum is a medicinal higher Basidiomycetes mushroom that exerts anticancer effects through several different mechanisms. This study investigated the effects of G. lucidum on the telomerase activity and microRNA (miRNA) profiles of MCF-7 cells. According to the cytotoxicity results, the G. lucidum ether extract exhibits the highest cytotoxic potency; therefore it was chosen for the subsequent telomerase activity assay and miRNA profiling. The telomerase activity observed in the cells treated with a half-maximal inhibitory concentration of G. lucidum ether extract (100 µg/mL in dimethyl sulfoxide) was 32.2% lower than that of the control cells treated with 1% dimethyl sulfoxide. Among 1066 miRNAs, the most downregulated miRNA was hsa-miR-27a* (4.469-fold), and the most upregulated miRNA was hsa-miR-1285 (10.462-fold). A database search revealed the predicted miRNAs that target the catalytic subunit of the telomerase enzyme telomerase reverse transcriptase, and only miR-3687 (upregulated 2.153-fold) and miR-1207-5p (upregulated 2.895-fold) were changed by at least 2-fold. The miRNA profile changes demonstrated in this study provide a data set regarding their effects on the pathways that regulate telomerase activity in MCF-7 breast cancer cells treated with G. lucidum. These data should aid the development of novel cancer treatment strategies.

  3. Studies on mechanism of cis9,trans11-CLA and trans10,cis12-CLA inducing apoptosis of human breast cancer cell line MCF-7

    Institute of Scientific and Technical Information of China (English)

    Xianzi Wan; Xianlin Yuan; Xiangling Yang; Yichen Li; Ling Zhong

    2010-01-01

    Objective:The aim of the study was to explore the activities of cis9,trans11-CLA (C9,t11-CLA) and trans10,cis12-CLA (t10,c12-CLA)inhibiting tumor,and investigate their relationships with PPARy and apoptotic proteins,and mechanism of anti-cancer.Methods:The inhibitory rate,cell growth curve and apoptotic morphological observation of MCF-7 cells were obtained by MTT assay,trypan blue staining and Hoechst33342 fluorescence staining.The apoptotic rate and cell cycle were detected with flow cytometry.Transcriptional level of genes was detected with RT-PCR semi-quantitative method,and Western blot was performed to detect proteins levels.Results:The two CLA isomers could reduce cell proliferation (P<0.05),increase apoptotic rate (P<0.05),and increase obviously the transcriptional and protein levels of PPARy (P<0.01).The synchronism and correlation between the effects of CLA to PPARy and apoptotic proteins Bax,Bcl-2,Caspase 3 changes were found with the dose-and time-dependent manners.There was cooperative relation between the levels of PPARy and the rates of Bax/Bcl-2,Caspase 3 (small fragment) by experiments of PPARy inhibitor GW9662 and ligand Rosiglitazone.Conclusion:The apoptotic pathway of PPARy-Bcl-2-Caspase 3 signaling was found.The C9,t11-CLA and t10,c12-CLA could inhibit MCF-7 cell proliferation and promote apoptosis via activating PPARy-Bcl-2-Caspase 3 pathway.CLA may be a kind of activator of PPARy.

  4. 碱性成纤维细胞生长因子单克隆抗体通过P-糖蛋白逆转乳腺癌MCF-7/ADM细胞多药耐药性的分子机制%Molecular mechanism of reversal effect of monoclonal antibody to basic fibroblast growth factor-mediated expression of P-glycoprotein on multiple drug resistance in adriamycin-resistant human breast cancer cell line MCF-7/ADM

    Institute of Scientific and Technical Information of China (English)

    陈文慧; 徐萌; 杜超超; 赵建夫; 潘兰红; 李汉初; 向军俭; 邓宁

    2013-01-01

    Objective: To investigate the mechanism of reversal effect of bFGF mAb (monoclonal antibody to basic fibroblast growth factor)-mediated expression of P-gp (permeability glycoprotein) on MDR (multidrug resistance) in ADM (adriamycin)-resistant human breast cancer cell line MCF-7/ADM. Methods: The effects of bFGF mAb on the proliferation of MCF-7/ADM cells and the reversal of MDR were detected by CCK-8 (cell counting kit-8) method. The cell cycle distribution of MCF-7/ADM cells and the expression of P-gp and intracellular fluorescence intensity of Rho123 (rhodamine 123) in MCF-7/ADM cells after bFGF mAb intervention were analyzed by flow cytometry. The expressions of MDR 1 (multidrug resistance protein 1) and bFGF mRNAs in MCF-7/ADM cells were examined by real-time fluorescence quantitative PCR. Results: The growth inhibition rates of MCF-7 cells and MCF-7/ADM cells after treatment with 1 μj/mL bFGF mAb were (1 9.87+1.05)% and (27.34±2.79)% (P < 0.01). bFGF mAb intervention could reverse ADM-, GEM (gemcitabine)- and OXA (oxaliplatin)-resistance of MCF-7/ADM cells, and the corresponding reversal index were 4.46, 4.25 and 2.18, respectively. As compared with the MCF-7/ADM cells without bFGF mAb intervention, the cell cycle of MCF-7/ADM cells after bFGF mAb intervention was arrested at G0/G1 phase, the expression level of P-gp was down-regulated, the intracellular Rho123 fluorescence intensity was increased, and the expression levels of MDR 1 and bFGF mRNAs were both decreased (P < 0.01). Conclusion: bFGF mAb can inhibit the proliferation of MCF-7/ADM and reverse MDR. This mechanism may be related to down-regulation of the expression levels of MDR 1 and P-gp, inhibition of the function of P-gp, and increasement of intracellular concentration of chemotherapeutic drugs.%目的:探讨碱性成纤维细胞生长因子单克隆抗体(monoclonal antibody to basic fibroblast growth factor,bFGF mAb)通过P-糖蛋白(permeability glycoprotein,P-gp)对人乳腺癌多柔比星(adriamycin,ADM)耐药细胞株MCF

  5. PNIPAAm-MAA nanoparticles as delivery vehicles for curcumin against MCF-7 breast cancer cells.

    Science.gov (United States)

    Zeighamian, Vahideh; Darabi, Masoud; Akbarzadeh, Abolfazl; Rahmati-Yamchi, Mohammad; Zarghami, Nosratollah; Badrzadeh, Fariba; Salehi, Roya; Mirakabad, Fatemeh Sadat Tabatabaei; Taheri-Anganeh, Mortaza

    2016-01-01

    Breast cancer is the most frequently occurring cancer among women throughout the world. Natural compounds such as curcumin hold promise to treat a variety of cancers including breast cancer. However, curcumin's therapeutic application is limited, due to its rapid degradation and poor aqueous solubility. On the other hand, previous studies have stated that drug delivery using nanoparticles might improve the therapeutic response to anticancer drugs. Poly(N-isopropylacrylamide-co-methacrylic acid) (PNIPAAm-MAA) is one of the hydrogel copolymers utilized in the drug delivery system for cancer therapy. The aim of this study was to examine the cytotoxic potential of curcumin encapsulated within the NIPAAm-MAA nanoparticle, on the MCF-7 breast cancer cell line. In this work, polymeric nanoparticles were synthesized through the free radical mechanism, and curcumin was encapsulated into NIPAAm-MAA nanoparticles. Then, the cytotoxic effect of curcumin-loaded NIPAAm-MAA on the MCF-7 breast cancer cell line was measured by MTT assays. The evaluation of the results showed that curcumin-loaded NIPAAm-MAA has more cytotoxic effect on the MCF-7 cell line and efficiently inhibited the growth of the breast cancer cell population, compared with free curcumin. In conclusion, this study indicates that curcumin-loaded NIPAAm-MAA suppresses the growth of the MCF-7 cell line. Overall, it is concluded that encapsulating curcumin into the NIPAAm-MAA copolymer could open up new avenues for breast cancer treatment.

  6. In vitro Evaluation of Cytotoxic Activities of Essential Oil from Moringa oleifera Seeds on HeLa, HepG2, MCF-7, CACO-2 and L929 Cell Lines.

    Science.gov (United States)

    Elsayed, Elsayed Ahmed; Sharaf-Eldin, Mahmoud A; Wadaan, Mohammad

    2015-01-01

    Moringa oleifera Lam. (Moringaceae) is widely consumed in tropical and subtropical regions for their valuable nutritional and medicinal characteristics. Recently, extensive research has been conducted on leaf extracts of M. oleifera to evaluate their potential cytotoxic effects. However, with the exception of antimicrobial and antioxidant activities, little information is present on the cytotoxic activity of the essential oil obtained from M. oleifera seeds. Therefore, the present investigation was designed to investigate the potential cytotoxic activity of seed essential oil obtained from M. oleifera on HeLa, HepG2, MCF-7, CACO-2 and L929 cell lines. The different cell lines were subjected to increasing oil concentrations ranging from 0.15 to 1 mg/mL for 24h, and the cytotoxicity was assessed using MTT assay. All treated cell lines showed a significant reduction in cell viability in response to the increasing oil concentration. Moreover, the reduction depended on the cell line as well as the oil concentration applied. Additionally, HeLa cells were the most affected cells followed by HepG2, MCF-7, L929 and CACO-2, where the percentages of cell toxicity recorded were 76.1, 65.1, 59.5, 57.0 and 49.7%, respectively. Furthermore, the IC50 values obtained for MCF-7, HeLa and HepG2 cells were 226.1, 422.8 and 751.9 μg/mL, respectively. Conclusively, the present investigation provides preliminary results which suggest that seed essential oil from M. oleifera has potent cytotoxic activities against cancer cell lines. PMID:26107222

  7. Critical parameters in the MCF-7 cell proliferation bioassay (E-Screen)

    DEFF Research Database (Denmark)

    Rasmussen, Thomas Høj; Nielsen, Jesper Bo

    2002-01-01

    of hormone-free controls. In the highly responsive MCF-7 BUS cell line, we evaluated critical assay parameters for test performance, including growth conditions, initial seeding densities and differences in growth stimulation in medium containing human serum or fetal calf serum as well as appropriate...

  8. Studies on inhibitory effect of Baicalein on MCF-7 Cells and its mechanism of action

    International Nuclear Information System (INIS)

    Acute toxicity to the normal cells from the conventional chemotherapeutic drugs has been one of the stumbling blocks for effective therapy. Further, increased acidity and hypoxia in solid tumour decreases the therapeutic effectiveness of radiotherapy and chemotherapy. The transcriptional response to cellular hypoxia is primarily mediated by the transcription factor hypoxia-inducible factor-1 (HIF-1). Thus, controlling HIF-1 could be an attractive target for cancer therapy. In view of the above considerations studies were undertaken to identify the phytoceutical which can be effective for cancer therapy. One of the phytoceutical being studied is Saicalein (BA), a compound extracted from the root of Scutellaria boicalensis, which is an active flavonoid extensively used in traditional Chinese medicine. In the present study the effects of BA on toxicity to the MCF-7 line was tested. MCF-7 cells when treated with BA exhibited concentration dependent toxicity. MCF-7 cells when treated with BA at the concentration of 50 μM, 50% cells lost viability. Further, it was shown that BA radio-sensitize the MCF-7 cells in vitro, as tested by LDH leakage assay. Radiation (4 Gy) alone did not show marked LDH leakage, however post radiation exposure treatment with BA (50 μM) of MCF-7 cells resulted in increased LDH leakage. In vitro wound healing assay was performed - which is the test for cell migration and cell proliferation. BA inhibited the wound closure by 97%. Overall the results demonstrate the anticancer potential of BA. In order to determine the effect of BA on transcription activation by HIF-1, a cell-based reporter assay for HIF-1 functional antagonist in MCF-7 cells was established. A luciferase reporter gene under the control of HRE from the erythropoietin gene (pTK-HRE3-luc) was employed to monitor HIF-1 activity. MCF-7 cells were transiently transfected with aforementioned plasmid followed by growing them in the presence of CoCl2, (hypoxia mimetic agent) and under

  9. Nuclear β-catenin and CD44 upregulation characterize invasive cell populations in non-aggressive MCF-7 breast cancer cells

    International Nuclear Information System (INIS)

    In breast cancer cells, the metastatic cell state is strongly correlated to epithelial-to-mesenchymal transition (EMT) and the CD44+/CD24- stem cell phenotype. However, the MCF-7 cell line, which has a luminal epithelial-like phenotype and lacks a CD44+/CD24- subpopulation, has rare cell populations with higher Matrigel invasive ability. Thus, what are the potentially important differences between invasive and non-invasive breast cancer cells, and are the differences related to EMT or CD44/CD24 expression? Throughout the sequential selection process using Matrigel, we obtained MCF-7-14 cells of opposite migratory and invasive capabilities from MCF-7 cells. Comparative analysis of epithelial and mesenchymal marker expression was performed between parental MCF-7, selected MCF-7-14, and aggressive mesenchymal MDA-MB-231 cells. Furthermore, using microarray expression profiles of these cells, we selected differentially expressed genes for their invasive potential, and performed pathway and network analysis to identify a set of interesting genes, which were evaluated by RT-PCR, flow cytometry or function-blocking antibody treatment. MCF-7-14 cells had enhanced migratory and invasive ability compared with MCF-7 cells. Although MCF-7-14 cells, similar to MCF-7 cells, expressed E-cadherin but neither vimentin nor fibronectin, β-catenin was expressed not only on the cell membrane but also in the nucleus. Furthermore, using gene expression profiles of MCF-7, MCF-7-14 and MDA-MB-231 cells, we demonstrated that MCF-7-14 cells have alterations in signaling pathways regulating cell migration and identified a set of genes (PIK3R1, SOCS2, BMP7, CD44 and CD24). Interestingly, MCF-7-14 and its invasive clone CL6 cells displayed increased CD44 expression and downregulated CD24 expression compared with MCF-7 cells. Anti-CD44 antibody treatment significantly decreased cell migration and invasion in both MCF-7-14 and MCF-7-14 CL6 cells as well as MDA-MB-231 cells. MCF-7-14 cells are a

  10. Phorbol esters from Jatropha meal triggered apoptosis, activated PKC-δ, caspase-3 proteins and down-regulated the proto-oncogenes in MCF-7 and HeLa cancer cell lines.

    Science.gov (United States)

    Oskoueian, Ehsan; Abdullah, Norhani; Ahmad, Syahida

    2012-01-01

    Jatropha meal produced from the kernel of Jatropha curcas Linn. grown in Malaysia contains phorbol esters (PEs). The potential benefits of PEs present in the meal as anticancer agent are still not well understood. Hence, this study was conducted to evaluate the cytotoxic effects and mode of actions of PEs isolated from Jatropha meal against breast (MCF-7) and cervical (HeLa) cancer cell lines. Isolated PEs inhibited cells proliferation in a dose-dependent manner of both MCF-7 and HeLa cell lines with the IC₅₀ of 128.6 ± 2.51 and 133.0 ± 1.96 µg PMA equivalents/mL respectively, while the values for the phorbol 12-myristate 13-acetate (PMA) as positive control were 114.7 ± 1.73 and 119.6 ± 3.73 µg/mL, respectively. Microscopic examination showed significant morphological changes that resemble apoptosis in both cell lines when treated with PEs and PMA at IC₅₀ concentration after 24 h. Flow cytometry analysis and DNA fragmentation results confirmed the apoptosis induction of PEs and PMA in both cell lines. The PEs isolated from Jatropha meal activated the PKC-δ and down-regulated the proto-oncogenes (c-Myc, c-Fos and c-Jun). These changes probably led to the activation of Caspase-3 protein and apoptosis cell death occurred in MCF-7 and HeLa cell lines upon 24 h treatment with PEs and PMA. Phorbol esters of Jatropha meal were found to be promising as an alternative to replace the chemotherapeutic drugs for cancer therapy. PMID:22964499

  11. Phorbol Esters from Jatropha Meal Triggered Apoptosis, Activated PKC-δ, Caspase-3 Proteins and Down-Regulated the Proto-Oncogenes in MCF-7 and HeLa Cancer Cell Lines

    Directory of Open Access Journals (Sweden)

    Syahida Ahmad

    2012-09-01

    Full Text Available Jatropha meal produced from the kernel of Jatropha curcas Linn. grown in Malaysia contains phorbol esters (PEs. The potential benefits of PEs present in the meal as anticancer agent are still not well understood. Hence, this study was conducted to evaluate the cytotoxic effects and mode of actions of PEs isolated from Jatropha meal against breast (MCF-7 and cervical (HeLa cancer cell lines. Isolated PEs inhibited cells proliferation in a dose-dependent manner of both MCF-7 and HeLa cell lines with the IC50 of 128.6 ± 2.51 and 133.0 ± 1.96 µg PMA equivalents/mL respectively, while the values for the phorbol 12-myristate 13-acetate (PMA as positive control were 114.7 ± 1.73 and 119.6 ± 3.73 µg/mL, respectively. Microscopic examination showed significant morphological changes that resemble apoptosis in both cell lines when treated with PEs and PMA at IC50 concentration after 24 h. Flow cytometry analysis and DNA fragmentation results confirmed the apoptosis induction of PEs and PMA in both cell lines. The PEs isolated from Jatropha meal activated the PKC-δ and down-regulated the proto-oncogenes (c-Myc, c-Fos and c-Jun. These changes probably led to the activation of Caspase-3 protein and apoptosis cell death occurred in MCF-7 and HeLa cell lines upon 24 h treatment with PEs and PMA. Phorbol esters of Jatropha meal were found to be promising as an alternative to replace the chemotherapeutic drugs for cancer therapy.

  12. Phorbol esters from Jatropha meal triggered apoptosis, activated PKC-δ, caspase-3 proteins and down-regulated the proto-oncogenes in MCF-7 and HeLa cancer cell lines.

    Science.gov (United States)

    Oskoueian, Ehsan; Abdullah, Norhani; Ahmad, Syahida

    2012-09-10

    Jatropha meal produced from the kernel of Jatropha curcas Linn. grown in Malaysia contains phorbol esters (PEs). The potential benefits of PEs present in the meal as anticancer agent are still not well understood. Hence, this study was conducted to evaluate the cytotoxic effects and mode of actions of PEs isolated from Jatropha meal against breast (MCF-7) and cervical (HeLa) cancer cell lines. Isolated PEs inhibited cells proliferation in a dose-dependent manner of both MCF-7 and HeLa cell lines with the IC₅₀ of 128.6 ± 2.51 and 133.0 ± 1.96 µg PMA equivalents/mL respectively, while the values for the phorbol 12-myristate 13-acetate (PMA) as positive control were 114.7 ± 1.73 and 119.6 ± 3.73 µg/mL, respectively. Microscopic examination showed significant morphological changes that resemble apoptosis in both cell lines when treated with PEs and PMA at IC₅₀ concentration after 24 h. Flow cytometry analysis and DNA fragmentation results confirmed the apoptosis induction of PEs and PMA in both cell lines. The PEs isolated from Jatropha meal activated the PKC-δ and down-regulated the proto-oncogenes (c-Myc, c-Fos and c-Jun). These changes probably led to the activation of Caspase-3 protein and apoptosis cell death occurred in MCF-7 and HeLa cell lines upon 24 h treatment with PEs and PMA. Phorbol esters of Jatropha meal were found to be promising as an alternative to replace the chemotherapeutic drugs for cancer therapy.

  13. Dioscin strengthens the efficiency of adriamycin in MCF-7 and MCF-7/ADR cells through autophagy induction: More than just down-regulation of MDR1.

    Science.gov (United States)

    Wang, Changyuan; Huo, Xiaokui; Wang, Lijuan; Meng, Qiang; Liu, Zhihao; Liu, Qi; Sun, Huijun; Sun, Pengyuan; Peng, Jinyong; Liu, Kexin

    2016-01-01

    The purpose of present study was to investigate the effect of dioscin on activity of adriamycin (ADR) in ADR-sensitive (MCF-7) and ADR-resistant (MCF-7/ADR) human breast cancer cells and to clarify the molecular mechanisms involved. Antiproliferation effect of ADR was enhanced by dioscin in MCF-7 and MCF-7/ADR cells. Dioscin significantly inhibited MDR1 mRNA and protein expression and MDR1 promoter and nuclear factor κ-B (NF-κB) activity in MCF-7/ADR cells. Additionally, inhibitor κB-α (IκB-α) degradation was inhibited by dioscin. Moreover, dioscin induced the formation of vacuoles in the cytoplasm and protein level of LC3-II in MCF-7 and MCF-7/ADR cells. Autophagy inhibitor 3-MA abolished the effect of dioscin on ADR cytotoxicity. Dioscin inhibited phosphorylation of PI3K and Akt, resulting in upregulation of LC3-II expression. In conclusion, dioscin increased ADR chemosensitivity by down-regulating MDR1 expression through NF-κB signaling inhibition in MCF-7/ADR cells. Autophagy was induced by dioscin to ameliorate the cytotoxicity of ADR via inhibition of the PI3K/AKT pathways in MCF-7 and MCF-7/ADR cells. These findings provide evidence in support of further investigation into the clinical application of dioscin as a chemotherapy adjuvant. PMID:27329817

  14. Recombinant adenovirus of human p66Shc inhibits MCF-7 cell proliferation.

    Science.gov (United States)

    Yang, Xiaoshan; Xu, Rong; Lin, Yajun; Zhen, Yongzhan; Wei, Jie; Hu, Gang; Sun, Hongfan

    2016-01-01

    The aim of this work was to construct a human recombinant p66Shc adenovirus and to investigate the inhibition of recombinant p66Shc adenovirus on MCF-7 cells. The recombinant adenovirus expression vector was constructed using the Adeno-X Adenoviral System 3. Inhibition of MCF-7 cell proliferation was determined by MTT. Intracellular ROS was measured by DCFH-DA fluorescent probes, and 8-OHdG was detected by ELISA. Cell apoptosis and the cell cycle were assayed by flow cytometry. Western blot were used to observe protein expression. p66Shc expression was upregulated in 4 cell lines after infection. The inhibitory effect of p66Shc recombinant adenovirus on MCF-7 cells was accompanied by enhanced ROS and 8-OHdG. However, no significant differences were observed in the cell apoptosis rate. The ratio of the cell cycle G2/M phase showed a significant increase. Follow-up experiments demonstrated that the expressions of p53, p-p53, cyclin B1 and CDK1 were upregulated with the overexpression of p66Shc. The Adeno-X Adenoviral System 3 can be used to efficiently construct recombinant adenovirus containing p66Shc gene, and the Adeno-X can inhibit the proliferation of MCF-7 cells by inducing cell cycle arrest at the G2/M phase. These results suggested that p66Shc may be a key target for clinical cancer therapy. PMID:27530145

  15. Proapoptotic and Antiproliferative Effects of Thymus caramanicus on Human Breast Cancer Cell Line (MCF-7 and Its Interaction with Anticancer Drug Vincristine

    Directory of Open Access Journals (Sweden)

    Saeed Esmaeili-Mahani

    2014-01-01

    Full Text Available Thymus caramanicus Jalas is one of the species of thymus that grows in the wild in different regions of Iran. Traditionally, leaves of this plant are used in the treatment of diabetes, arthritis, and cancerous situation. Therefore, the present study was designed to investigate the selective cytotoxic and antiproliferative properties of Thymus caramanicus extract (TCE. MCF-7 human breast cancer cells were used in this study. Cytotoxicity of the extract was determined using MTT and neutral red assays. Biochemical markers of apoptosis (caspase 3, Bax, and Bcl-2 and cell proliferation (cyclin D1 were evaluated by immunoblotting. Vincristine was used as anticancer control drug in extract combination therapy. The data showed that incubation of cells with TCE (200 and 250 μg/mL significantly increased cell damage, activated caspase 3 and Bax/Bcl2 ratio. In addition, cyclin D1 was significantly decreased in TCE-treated cells. Furthermore, concomitant treatment of cells with extract and anticancer drug produced a significant cytotoxic effect as compared to extract or drugs alone. In conclusion, thymus extract has a potential proapoptotic/antiproliferative property against human breast cancer cells and its combination with chemotherapeutic agent vincristine may induce cell death effectively and be a potent modality to treat this type of cancer.

  16. Downregulation of SOK1 promotes the migration of MCF-7 cells

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xu-Dong, E-mail: xudongchen305@hotmail.com [Key Lab of Molecular Medicine, Ministry of Education, Shanghai Medical College, Fudan University, Shanghai (China); Cho, Chien-Yu [Department of Biochemistry, College of Medicine, National Cheng Kung University, Taiwan (China)

    2011-04-08

    Highlights: {yields} SOK1 is a member of GCK-III subfamily. It is activated by oxidative stress or chemical anoxia. {yields} Barr's group have found that autophosphorylation of SOK1 is triggered by binding to the Golgi matrix protein GM130 and made the cells migration through dimeric adaptor protein 14-3-3. {yields} But what we found is that downregulation of SOK1 promotes cell migration and leads to the upregulation of GM130 and Tyr861 of FAK in MCF-7 cells. -- Abstract: SOK1 is a member of the germinal center kinase (GCK-III) subfamily but little is known about it, particularly with respect to its role in signal transduction pathways relative to tumor metastasis. By stably transfecting SOK1 siRNA into the MCF-7 breast cancer cell line we found that SOK1 promotes the migration of MCF-7 cells, as determined using wound-healing and Boyden chamber assays. However, cell proliferation assays revealed that silencing SOK1 had no effect on cell growth relative to the normal cells. Silencing SOK1 also had an effect on the expression and phosphorylation status of a number of proteins in MCF-7 cells, including FAK and GM130, whereby a decrease in SOK1 led to an increase in the expression of these proteins.

  17. Overexpression of Cell Surface Cytokeratin 8 in Multidrug-Resistant MCF-7/MX Cells Enhances Cell Adhesion to the Extracellular Matrix

    Directory of Open Access Journals (Sweden)

    Fang Liu

    2008-11-01

    Full Text Available Accumulating evidence suggests that multiple complex mechanisms may be involved, simultaneously or complementarily, in the emergence and development of multidrug resistance (MDR in various cancers. Cell adhesion-mediated MDR is one such mechanism. In the present study, we initially observed increased cell adhesion to extracellular matrix proteins by the MDR human breast tumor cell line MCF-7/MX compared to its parental cells. We then used a strategy that combined antibody-based screening technique and mass spectrometry-based proteomics to identify membrane proteins that contribute to the enhanced adhesion of MCF-7/MX cells. Using MCF-7/MX cells as immunogen, we isolated a mouse monoclonal antibody, 9C6, that preferentially reacts with MCF-7/MX cells over the parental MCF-7 cells. The molecular target of 9C6 was identified as cytokeratin 8 (CK8, which was found to be overexpressed on the cell surface of MCF-7/MX cells. We further observed that down-regulation of cell surface levels of CK8 through siRNA transfection significantly inhibited MCF-7/MX cell adhesion to fibronectin and vitronectin. In addition, anti-CK8 siRNA partially reversed the MDR phenotype of MCF-7/MX cells. Taken together, our results suggest that alterations in the expression level and cellular localization of CK8 may play a significant role in enhancing the cellular adhesion of MDR MCF-7/MX cells.

  18. Synthesis, structural characterization, and anticancer activity of a monobenzyltin compound against MCF-7 breast cancer cells

    Directory of Open Access Journals (Sweden)

    Fani S

    2015-11-01

    Full Text Available Somayeh Fani,1 Behnam Kamalidehghan,1 Kong Mun Lo,2 Najihah Mohd Hashim,1 Kit May Chow,2 Fatemeh Ahmadipour1 1Department of Pharmacy, Faculty of Medicine, 2Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia Abstract: A new monoorganotin Schiff base compound, [N-(3,5-dichloro-2-oxidobenzylidene-4-chlorobenzyhydrazidato](o-methylbenzylaquatin(IV chloride, (compound C1, was synthesized, and its structural features were investigated by spectroscopic techniques and single-crystal X-ray diffractometry. Compound C1 was exposed to several human cancer cell lines, including breast adenocarcinoma cell lines MCF-7 and MDA-MB-231, ovarian adenocarcinoma cell lines Skov3 and Caov3, and prostate cancer cell line PC3, in order to examine its cytotoxic effect for different forms of cancer. Human hepatic cell line WRL-68 was used as a normal cell line. We concentrated on the MCF-7 cell line to detect possible underlying mechanism involvement of compound C1. 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay revealed the strongest cytotoxicity of compound C1 against MCF-7 cells, with a half maximal inhibitory concentration (IC50 value of 2.5±0.50 µg/mL after 48 hours treatment. The IC50 value was >30 µg/mL in WRL-68 cells. Induced antiproliferative activity of compound C1 for MCF-7 cells was further confirmed by lactate dehydrogenase, reactive oxygen species, acridine orange/propidium iodide staining, and DNA fragmentation assays. A significant increase of lactate dehydrogenase release in treated cells was observed via fluorescence analysis. Luminescent analysis showed significant growth in intracellular reactive oxygen species production after treatment. Morphological changes of necrosis and early and late apoptosis stages were observed in treated cells after staining with acridine orange/propidium iodide. DNA fragmentation was observed as a characteristic of apoptosis in treated cells. Results of the

  19. Phenotyping breast cancer cell lines EM-G3, HCC1937, MCF7 and MDA-MB-231 using 2-D electrophoresis and affinity chromatography for glutathione-binding proteins

    Directory of Open Access Journals (Sweden)

    Mladkova Jana

    2010-08-01

    Full Text Available Abstract Background Transformed phenotypes are common to cell lines derived from various cancers. Proteome profiling is a valuable tool that may reveal uncharacteristic cell phenotypes in transformed cells. Changes in expression of glutathione S-transferases (GSTs and other proteins interacting with glutathione (GSH in model cell lines could be of particular interest. Methods We compared the phenotypes of breast cell lines EM-G3, HCC1937, MCF7 and MDA-MB-231 using 2-D electrophoresis (2-DE. We further separated GSH-binding proteins from the cell lines using affinity chromatography with GSH-Sepharose 4B, performed 2-DE analysis and identified the main protein spots. Results Correlation coefficients among 2-DE gels from the cell lines were lower than 0.65, pointing to dissimilarity among the cell lines. Differences in primary constituents of the cytoskeleton were shown by the 2-D protein maps and western blots. The spot patterns in gels of GSH-binding fractions from primary carcinoma-derived cell lines HCC1937 and EM-G3 were similar to each other, and they differed from the spot patterns of cell lines MCF7 and MDA-MB-231 that were derived from pleural effusions of metastatic mammary carcinoma patients. Major differences in the expression of GST P1-1 and carbonyl reductase [NADPH] 1 were observed among the cell lines, indicating differential abilities of the cell lines to metabolize xenobiotics. Conclusions Our results confirmed the applicability of targeted affinity chromatography to proteome profiling and allowed us to characterize the phenotypes of four breast cancer cell lines.

  20. Regulation of MCF-7 breast cancer cell growth by beta-estradiol sulfation.

    Science.gov (United States)

    Falany, Josie L; Macrina, Nancy; Falany, Charles N

    2002-07-01

    Estrogen stimulation is an important factor in human breast cancer cell growth and development. Metabolism of beta-estradiol (E2), the major endogenous human estrogen, is important in regulating both the level and activity of the hormone in breast tissues. Conjugation of E2 with a sulfonate moiety is an inactivation process since the sulfate ester formed by this reaction can not bind and activate the estrogen receptor. In human tissues including the breast, estrogen sulfotransferase (EST, SULT1E1) is responsible for high affinity E2 sulfation activity. EST is expressed in human mammary epithelial (HME) cells but not in most cultured breast cancer cell lines, including estrogen responsive MCF-7 cells. Stable expression of EST in MCF-7 cells at levels similar to those detected in HME cells significantly inhibits cell growth at physiologically relevant E2 concentrations. The mechanism of cell growth inhibition involves the abrogation of responses observed in growth factor expression in MCF-7 cells following E2 stimulation. MCF-7 cells expressing EST activity did not show a decrease in estrogen receptor-alpha levels, nor a characteristic increase in progesterone receptor or decrease in transforming growth factor-beta expression upon exposure to 100 pM or 1 nM E2. The lack of response in these MCF-7 cells is apparently due to the rapid sulfation and inactivation of free E2 by EST. These results suggest that loss of EST expression in the transformation of normal breast tissues to breast cancer may be an important factor in increasing the growth responsiveness of preneoplastic or tumor cells to estrogen stimulation.

  1. Amphiregulin: A bifunctional growth-modulating glycoprotein produced by the phorbol 12-myristate 13-acetate-treated human breast adenocarcinoma cell line MCF-7

    Energy Technology Data Exchange (ETDEWEB)

    Shoyab, M.; McDonald, V.L.; Bradley, G.; Todaro, G.J. (Oncogen, Seattle, WA (USA))

    1988-09-01

    A glycoprotein, termed amphiregulin (AR), inhibits growth of several human carcinoma cells in culture and stimulates proliferation of human fibroblasts and certain other tumor cells. It has been purified to apparent homogeneity from serum-free conditioned medium of MCF-7 human breast carcinoma cells that had been treated with phorbol 12-myristate 13-acetate. AR is a single-chain extremely hydrophilic glycoprotein containing cysteines in disulfide linkage(s) that are essential for biological activity; it is stable between pH2 and pH12 and after heating for 30 min at 56{degree}C but unstable at 100{degree}C. The apparent molecular weights of AR and N-Glycanase-treated AR are 14,000 and 15,000, respectively, as assessed by gel chromatography, and {approx}22,500 and {approx}14,000, respectively, as determined by polyacrylamide gel electrophoresis. A growth modulatory assay was performed with {sup 125}I-labeled deoxyuridine incorporation into DNA. The amino-terminal amino acid sequence of AR has been determined, and no significant sequence homology between AR and other proteins was found. The molecule thus appears to be a distinct growth regulatory protein.

  2. Preliminary Investigation of Myo-Inositol Phosphates Produced by ASUIA279 Phytase on MCF-7 Cancer Cells

    Directory of Open Access Journals (Sweden)

    N. Mohd. Yusoff

    2011-12-01

    Full Text Available Phytate or myo-inositol hexakisphosphates (IP6 is widely distributed in plants like rice brans. The production of myo-inositol phosphate intermediates has received much attention due to the remarkable potential health benefits offered by the compounds. In this study, the cytotoxicity of the partially purified myo-inositol phosphate fractions and commercial IP1 and IP6 were investigated against MCF-7 breast cancer cell lines. The study showed that the commercial standard IP1 and IP6 showed good inhibition towards the MCF-7 cell line. The MCF-7 cells growth was inhibited in minimum concentration of myo-inositol phosphates (<1000 µg/ml. However, no inhibition observed on the MCF-7 cell line by the myo-inositol phosphates fractions partially purified from rice bran at concentration <1000 ?g/ml. The inhibition of MCF-7 was only observed at concentration more than 30 mg/ml with more than 40% cells were inhibited. This indicates that the partially purified rice bran myo-inositol phosphates degraded by ASUIA279 phytase on MCF-7 breast cancer cells exhibit positive results towards the inhibition of cancer cells growth at relatively high concentration..KEYWORDS: myo-inositol phosphates, phytase, MCF-7,  cancerABSTRAK: Fitat atau myo-inositol hexakisphosphate (IP6 dikenali umum teragih di dalam tumbuhan seperti dedak padi. Penghasilan perantaraan fosfat myo-inositol mendapat perhatian memandangkan ia berpotensi tinggi dalam kesihatan. Dalam kajian ini, kesitotoksikan sebahagian daripada fosfat myo-inositol separa tulen, IP1 komersil dan IP6 komersil dikaji terhadap produk yang berupa sel kekal (cell lines kanser payu dara MCF-7. Tumbesaran sel MCF-7 direncatkan dalam pekatan minima fosfat myo-inositol (<1000 μg/ml. Tetapi, tidak ada perencatan dilihat terhadap sel kekal MCF-7 oleh sebahagian fosfat myo-inositol separa tulen daripada dedak padi pada kepekatan <1000 mg/ml. Perencatan MCF-7 hanya dilihat pada kepekatan lebih daripada 30 mg/ml dengan lebih

  3. Lithium-Acetate-Mediated Biginelli One-Pot Multicomponent Synthesis under Solvent-Free Conditions and Cytotoxic Activity against the Human Lung Cancer Cell Line A549 and Breast Cancer Cell Line MCF7

    Directory of Open Access Journals (Sweden)

    Harshita Sachdeva

    2012-01-01

    Full Text Available Various Biginelli compounds (dihydropyrimidinones have been synthesized efficiently and in high yields under mild, solvent-free, and eco-friendly conditions in a one-pot reaction of 1,3-dicarbonyl compounds, aldehydes, and urea/thiourea/acetyl thiourea using lithium-acetate as a novel catalyst without the addition of any proton source. Comparative catalytic efficiency of lithium-acetate and polyphosphoric acid to catalyze Biginelli condensation is also studied under neat conditions. The reaction is carried out in the absence of any solvent and represents an improvement of the classical Biginelli protocol and an advantage in comparison with FeCl3·6H2O, NiCl2·6H2O and CoCl2·6H2O that were used with HCl as a cocatalyst. Compared to classical Biginelli reaction conditions, the present method has advantages of good yields, short reaction times, and experimental simplicity. The obtained products have been identified by spectral (1H NMR and IR data and their melting points. The prepared compounds are evaluated for anticancer activity against two human cancer cell lines (lung cancer cell line A549 and breast cancer cell line MCF7.

  4. Berberine Regulated Lipid Metabolism in the Presence of C75, Compound C, and TOFA in Breast Cancer Cell Line MCF-7

    Directory of Open Access Journals (Sweden)

    Wen Tan

    2015-01-01

    Full Text Available Berberine interfering with cancer reprogramming metabolism was confirmed in our previous study. Lipid metabolism and mitochondrial function were also the core parts in reprogramming metabolism. In the presence of some energy-related inhibitors, including C75, compound C, and TOFA, the discrete roles of berberine in lipid metabolism and mitochondrial function were elucidated. An altered lipid metabolism induced by berberine was observed under the inhibition of FASN, AMPK, and ACC in breast cancer cell MCF-7. And the reversion of berberine-induced lipid suppression indicated that ACC inhibition might be involved in that process instead of FASN inhibition. A robust apoptosis induced by berberine even under the inhibition of AMPK and lipid synthesis was also indicated. Finally, mitochondrial function regulation under the inhibition of AMPK and ACC might be in an ACL-independent manner. Undoubtedly, the detailed mechanisms of berberine interfering with lipid metabolism and mitochondrial function combined with energy-related inhibitors need further investigation, including the potential compensatory mechanisms for ATP production and the upregulation of ACL.

  5. Low milli-ampere electrochemical therapy reverses multidrug resistance and induces apoptosis on breast cancer MCF-7/adriamycin cell line%低毫安电化学疗法诱导人乳腺癌耐药株MCF-7/阿霉素细胞凋亡及逆转多药耐药的研究

    Institute of Scientific and Technical Information of China (English)

    周炳刚; 沈义军; 魏昌晟; 杨涛; 张智; 余生林; 余建军

    2015-01-01

    Objective To explore the mechanism of reversing mutidrug reisistance and inducing apoptosis on human breast cancer MCF-7/adriamycin (ADR) cell line by electrochemical therapy (ECT).Methods Methyl thiazol tetrazolium (MTT) assay,Annexin V assay and confocal laser scanning microscope were used to measure the inhibitory rate an the change of apoptosis.Fluorospectrophotometry was usd to measure the change of the concertration of ADR in the cells.Real-time quantitative polymerase chain reaction (Real-time PCR) and Western blotting were used to evaluate the mRNA and protein expression levels of multidrug resistance 1 gene (MDR1),phosphatase and tensin homologue deleted on chromosometen (PTEN),protein kinase B (Akt) and Caspase-3 in MCF-7/ADR cells.Results ECT could inhibit growth obviously of the MCF-7/ADR cells,and the apoptosis rate of cells was increased obviously in the treated group as compared with that in the control group (P < 0.05).5 C ECT could obviously increase the intracellular concentration of ADR 4.61 times.With the increases in the power of electricity,the expression of PTEN and cleaved Caspase-3 was obviously higher than in the control group,but the protein expression of Permeability glycoprotein (P-gp) (0.293 ± 0.013),and p-Akt (0.397 ± 0.020) in 5 C ECT group (P < 0.01) was reduced gradually with the increases in the power electricity.Conclusion ECT can inhibit the proliferation of MCF-7/ADR cells,induce apoptosis and reverse MDR probably by inhibiting PI3K/Akt signal pathway.%目的 探讨低毫安电化学疗法(ECT)对人乳腺癌耐药株MCF-7/阿霉素(ADR)细胞诱导凋亡及逆转多药耐药(MDR)的作用机制.方法 电化学处理细胞后继续培养6h和24h,用噻唑蓝(MTT)法、膜联蛋白V(Annexin V)染色、激光共聚焦显微镜观察ECT对肿瘤细胞的生长抑制、凋亡变化;荧光分光光度法检测细胞内ADR的浓度;实时定量聚合酶链反应(Real-time PCR)法、Western blot法检测多药耐药基因(MDR1

  6. Drug Efflux Transporters Are Overexpressed in Short-Term Tamoxifen-Induced MCF7 Breast Cancer Cells.

    Science.gov (United States)

    Krisnamurti, Desak Gede Budi; Louisa, Melva; Anggraeni, Erlia; Wanandi, Septelia Inawati

    2016-01-01

    Tamoxifen is the first line drug used in the treatment of estrogen receptor-positive (ER+) breast cancer. The development of multidrug resistance (MDR) to tamoxifen remains a major challenge in the treatment of cancer. One of the mechanisms related to MDR is decrease of drug influx via overexpression of drug efflux transporters such as P-glycoprotein (P-gp/MDR1), multidrug resistance associated protein (MRP), or BCRP (breast cancer resistance protein). We aimed to investigate whether the sensitivity of tamoxifen to the cells is maintained through the short period and whether the expressions of several drug efflux transporters have been upregulated. We exposed MCF7 breast cancer cells with tamoxifen 1 μM for 10 passages (MCF7 (T)). The result showed that MCF7 began to lose their sensitivity to tamoxifen from the second passage. MCF7 (T) also showed a significant increase in all transporters examined compared with MCF7 parent cells. The result also showed a significant increase of CC50 in MCF7 (T) compared to that in MCF7 (97.54 μM and 3.04 μM, resp.). In conclusion, we suggest that the expression of several drug efflux transporters such as P-glycoprotein, MRP2, and BCRP might be used and further studied as a marker in the development of tamoxifen resistance. PMID:26981116

  7. Salinomycin efficiency assessment in non-tumor (HB4a) and tumor (MCF-7) human breast cells.

    Science.gov (United States)

    Niwa, Andressa Megumi; D Epiro, Gláucia Fernanda Rocha; Marques, Lilian Areal; Semprebon, Simone Cristine; Sartori, Daniele; Ribeiro, Lúcia Regina; Mantovani, Mário Sérgio

    2016-06-01

    The search for anticancer drugs has led researchers to study salinomycin, an ionophore antibiotic that selectively destroys cancer stem cells. In this study, salinomycin was assessed in two human cell lines, a breast adenocarcinoma (MCF-7) and a non-tumor breast cell line (HB4a), to verify its selective action against tumor cells. Real-time assessment of cell proliferation showed that HB4a cells are more resistant to salinomycin than MCF-7 tumor cell line, and these data were confirmed in a cytotoxicity assay. The half maximal inhibitory concentration (IC50) values show the increased sensitivity of MCF-7 cells to salinomycin. In the comet assay, only MCF-7 cells showed the induction of DNA damage. Flow cytometric analysis showed that cell death by apoptosis/necrosis was only induced in the MCF-7 cells. The increased expression of GADD45A and CDKN1A genes was observed in all cell lines. Decreased expression of CCNA2 and CCNB1 genes occurred only in tumor cells, suggesting G2/M cell cycle arrest. Consequently, cell death was activated in tumor cells through strong inhibition of the antiapoptotic genes BCL-2, BCL-XL, and BIRC5 genes in MCF-7 cells. These data demonstrate the selectivity of salinomycin in killing human mammary tumor cells. The cell death observed only in MCF-7 tumor cells was confirmed by gene expression analysis, where there was downregulation of antiapoptotic genes. These data contribute to clarifying the mechanism of action of salinomycin as a promising antitumor drug and, for the first time, we observed the higher resistance of HB4a non-tumor breast cells to salinomycin. PMID:26932586

  8. Leptin regulates energy metabolism in MCF-7 breast cancer cells.

    Science.gov (United States)

    Blanquer-Rosselló, Maria del Mar; Oliver, Jordi; Sastre-Serra, Jorge; Valle, Adamo; Roca, Pilar

    2016-03-01

    Obesity is known to be a poorer prognosis factor for breast cancer in postmenopausal women. Among the diverse endocrine factors associated to obesity, leptin has received special attention since it promotes breast cancer cell growth and invasiveness, processes which force cells to adapt their metabolism to satisfy the increased demands of energy and biosynthetic intermediates. Taking this into account, our aim was to explore the effects of leptin in the metabolism of MCF-7 breast cancer cells. Polarographic analysis revealed that leptin increased oxygen consumption rate and cellular ATP levels were more dependent on mitochondrial oxidative metabolism in leptin-treated cells compared to the more glycolytic control cells. Experiments with selective inhibitors of glycolysis (2-DG), fatty acid oxidation (etomoxir) or aminoacid deprivation showed that ATP levels were more reliant on fatty acid oxidation. In agreement, levels of key proteins involved in lipid catabolism (FAT/CD36, CPT1, PPARα) and phosphorylation of the energy sensor AMPK were increased by leptin. Regarding glucose, cellular uptake was not affected by leptin, but lactate release was deeply repressed. Analysis of pyruvate dehydrogenase (PDH), lactate dehydrogenase (LDH) and pyruvate carboxylase (PC) together with the pentose-phosphate pathway enzyme glucose-6 phosphate dehydrogenase (G6PDH) revealed that leptin favors the use of glucose for biosynthesis. These results point towards a role of leptin in metabolic reprogramming, consisting of an enhanced use of glucose for biosynthesis and lipids for energy production. This metabolic adaptations induced by leptin may provide benefits for MCF-7 growth and give support to the reverse Warburg effect described in breast cancer. PMID:26772821

  9. Effects of PP4 suppression on the proliferation of MCF7 cells

    Institute of Scientific and Technical Information of China (English)

    NING Lifeng; LONG Zhitao; HUANG Xiuqing; SUN Lingling; SANG Jianli

    2006-01-01

    PP4, one of the few protein phosphatases associated with centrosome in cells of many species such as Drosophila, C. elegans and mammals, plays an essential role in the regulation of centrosome functions in Drosophila and C. elegans. In order to explore the role of PP4 in mammalian cells, full-length PP4 gene was obtained by RT-PCR from MCF7 cell total RNA and inserted into eukaryotic expression vector pEGFP-C1. The resultant construct pEGFP-C1-PP4 was transfected into MCF7 cells and immunostaining was carried out to confirm the centrosome localization of PP4. Then we reversely subcloned a non-conserved domain of PP4 into pXJ41 to construct an anti-sense vector pXJ41- as-PP4. By transfecting pXJ41-as-PP4 into MCF7 cells and screening with G418, we obtained a stable cell line in which PP4 expression was stably suppressed. The cell line was analyzed on cell morphology, cytoskeleton structure, growth characteristics and the mitosis process. It was found that the proliferation rate decreased and serum-dependence increased in PP4-suppressed cells. Furthermore, flow cytometry and mitotic index analysis showed that G2/M transition was prolonged. PP4 suppression resulted in abnormal interphase microtubule, formation of multipolar spindles and an increase in percentage of multinuclear cells. These results suggested that PP4 is required for centrosome function in mammalian cells.

  10. Effects of metformin on cell kinetic parameters of MCF-7 breast cancer cells in vitro.

    Science.gov (United States)

    Topcul, Mehmet; Cetin, Idil

    2015-01-01

    In this study, the antiproliferative effects of the metformin was evaluated on MCF-7 Cells (human breast adenocarcinoma cell line). For this purpose cell kinetic parameters including cell proliferation assay, mitotic index and labelling index analysis were used. 30 μM, 65 μM and 130 μM Metformin doses were applied to cells for 24, 48 and 72 hours. The results showed that there was a significant decrease in cell proliferation, mitotic index and labelling index for all experimental groups (p<0.05) for all applications. PMID:25824763

  11. Effect of HAP1 gene overexpression on biological characteristics of breast cancer cell MCF-7%HAP1对乳腺癌细胞MCF-7生物学特性影响的观察

    Institute of Scientific and Technical Information of China (English)

    宋雪; 朱丽伟; 唐金海; 吴建中; 马蓉; 曹海霞

    2013-01-01

    目的:探讨亨廷顿相关蛋白1(HAP1)基因过表达对人乳腺癌细胞株MCF-7增殖、体外迁移侵袭和细胞凋亡的影响及其可能机制.方法:通过转染的方法将逆转录病毒pBabe-puro(嘌呤霉素)HAP1质粒和pBabe-puro质粒导入人乳腺癌细胞系MCF-7,用嘌呤霉素筛选稳定表达两质粒的细胞系,荧光定量PCR和蛋白质印迹法鉴定是否成功构建HAP1过表达细胞系;细胞增殖-毒性检测试剂盒(CCK-8)和克隆形成实验检测细胞的生长增殖,Transwell小室法检测细胞的侵袭和迁移,流式细胞仪检测细胞的凋亡.结果:成功构建稳定表达pBabe-HAP1的MCF-7-pBabe-puro-HAP1细胞模型.CCK-8检测72 h细胞增殖率,MCF-7-pBabe-puro-HAP1为(75.97±6.76)%,明显低于MCF-7-pBabe-puro细胞(93.98±6.63)%(P=0.03)及MCF-7细胞(100.00±0.oo)%,P=0.004;MCF-7-pBabe-puro-HAP1细胞克隆形成率为(22.67±1.26)%,明显低于MCF-7(35.00±0.50)%(P=0.000)和MCF-7-pBabe-puro细胞(33.83±0.76)%,P=0.000;Transwell小室侵袭和迁移实验表明,MCF-7-pBabe-puro-HAP1组的侵袭(3.33±0.58,P=0.000)和迁移(50.00±3.61,P<0.01)能力明显降低;流式细胞仪检测细胞凋亡,MCF-7-pBabe-puro-HAP1凋亡率为(8.03±0.15)%,高于MCF-7-pBabe-puro(3.13土0.25)%(P=0.000)和MCF-7细胞(3.33±0.35)%,P=0.000.结论:HAP1基因能够抑制肿瘤细胞增殖和迁移侵袭,并能诱导细胞凋亡,其可能作为一个抑癌基因在肿瘤发生发展中发挥重要作用.%OBJECTIVE: To investigate the effect of HAP1 gene overexpression on proliferation,migration and invasion capability,cell apoptosis of MCF-7 breast cancer cell line in vitro and possible mechanism. METHODS: Human breast cancer cell line MCF-7 was cultured and transfected with recombinant plasmid pBabe-puro-HAPl or blank plasmid pBabe-puro. Real-time PCR and Western blot were used to detect the mRNA and protein expression of HAP1. The cell proliferation was detected by CCK-8 assay. The migration and

  12. Elevation of cysteine consumption in tamoxifen-resistant MCF-7 cells.

    Science.gov (United States)

    Ryu, Chang Seon; Kwak, Hui Chan; Lee, Ji-Yoon; Oh, Soo Jin; Phuong, Nguyen Thi Thuy; Kang, Keon Wook; Kim, Sang Kyum

    2013-01-15

    Tamoxifen (TAM) resistance is a main cause of therapeutic failure in breast cancers. Although methionine dependency is a phenotypic characteristic of tumor cells, the role of sulfur amino acid metabolism in chemotherapy resistance remains to be elucidated. This study compared metabolite profiles of sulfur amino acid metabolism from methionine to taurine or glutathione (GSH) between normal MCF-7 and TAM-resistant MCF-7 (TAMR-MCF-7) cells. TAMR-MCF-7 cells showed elevated levels and activities of enzymes involved in both transsulfuration from methionine to cysteine and metabolism of cysteine to GSH and taurine. Cysteine concentrations in TAMR-MCF-7 cells and medium conditioned by cell culture for 42h were markedly decreased, while GSH, hypotaurine, and taurine concentrations in the medium were increased. These results show that TAMR-MCF-7 cells display enhanced cysteine utilization. The addition of propargylglycine, a specific cystathionine γ-lyase inhibitor, and buthionine sulfoximine, a specific γ-glutamylcysteine ligase inhibitor, to TAMR-MCF-7 cells, but not to MCF-7 cells, resulted in cytotoxicity after sulfur amino acid deprivation. These results suggest that cell viability of TAMR-MCF-7 cells is affected by inhibition of sulfur amino acid metabolism, particularly cysteine synthesis from homocysteine and GSH synthesis from cysteine. Additionally, the S-adenosylmethionine/S-adenosylhomocysteine ratio, an index of transmethylation potential, in TAMR-MCF-7 cells increased to ~3.6-fold relative to that in MCF-7 cells, a finding that may result from upregulation of methionine adenosyltransferase IIa and S-adenosylhomocysteine hydrolase. In conclusion, this study suggests that TAMR-MCF-7 cells display enhanced cysteine utilization for synthesis of GSH and taurine, and are sensitive to inhibition of cysteine metabolism.

  13. Nitrophenols isolated from diesel exhaust particles promote the growth of MCF-7 breast adenocarcinoma cells

    International Nuclear Information System (INIS)

    Diesel exhaust particles (DEPs) cause many adverse health problems, and reports indicate increased risk of breast cancer in men and women through exposure to gasoline and vehicle exhaust. However, DEPs include vast numbers of compounds, and the specific compound(s) responsible for these actions are not clear. We recently isolated two nitrophenols from DEPs-3-methyl-4-nitrophenol (4-nitro-m-cresol; PNMC) and 4-nitro-3-phenylphenol (PNMPP)-and showed that they had estrogenic and anti-androgenic activities. Here, we tried to clarify the involvement of these two nitrophenols in promoting the growth of the MCF-7 breast cancer cell line. First, comet assay was used to detect the genotoxicity of PNMC and PNMPP in a CHO cell line. At all doses tested, PNMC and PNMPP showed negative genotoxicity, indicating that they had no tumor initiating activity. Next, the estrogen-responsive breast cancer cell line MCF-7 was used to assess cell proliferation. Proliferation of MCF-7 cells was stimulated by PNMC, PNMPP, and estradiol-17β and the anti-estrogens 4-hydroxytamoxifen and ICI 182,780 inhibited the proliferation. To further investigate transcriptional activity through the estrogen receptor, MCF-7 cells were transfected with a receptor gene that allowed expression of luciferase enzyme under the control of the estrogen regulatory element. PNMC and PNMPP induced luciferase activity in a dose-dependent manner at submicromolar concentrations. ICI 182,780 inhibited the luciferase activity induced by PNMC and PNMPP. These results clearly indicate that PNMC and PNMPP do not show genotoxicity but act as tumor promoters in an estrogen receptor α-predominant breast cancer cell line

  14. The Study on the Anti-tumor Activity of Tanshinone I and Dihydrotan-shinone I on MCF-7 Human Breast and MGC-803 Gastric Cancer Cell Lines%丹参酮 I 和二氢丹参酮 I 对人胃癌细胞 MGC-803、乳腺癌细胞MCF-7的抗肿瘤活性研究

    Institute of Scientific and Technical Information of China (English)

    宋烨

    2015-01-01

    目的::比较研究丹参酮 I 和二氢丹参酮 I 对人胃癌细胞 MGC-803、乳腺癌细胞 MCF-7的抗肿瘤活性。方法:从白花丹参中分离、纯化丹参酮 I 和二氢丹参酮 I 成分,采用 MTT 法测定对肿瘤细胞的生长抑制作用,同时采用流式细胞仪检测细胞周期的改变以及凋亡情况。结果:丹参酮 I、二氢丹参酮 I 对 MCF-7几乎没有生长抑制作用,对 MGC-803有很明显的生长抑制作用,同时可明显阻滞人胃癌细胞 MGC-803的细胞周期,使细胞核裂解呈现碎片状而产生凋亡小体,且其凋亡率成明显的上升趋势。结论:丹参酮 I、二氢丹参酮 I 通过诱导细胞凋亡,对 MGC-803肿瘤细胞具有很好的抑制作用,而对 MCF-7几乎没有活性。%Objective:To investigate the anti-tumor activity of tanshinone I and dihydrotanshinone I on the MCF-7 human breast cancer cell line and MGC-803 Gastric cancer cell line.Methods:Tanshinone I and di-hydrotanshinone I were isolated from Salviamiltiorrhiza Bunge.The anti-tumor activity of the compounds was evaluated by MTT tests.The apoptosis case was observed during the whole experiment with the optimal dosing concentration by fowctometry technology.Results:There was no inhibited effect in MCF-7 human breast cancer cell line and MGC-803 Gastric cancer cell line treated with tanshinone I and dihydrotanshinone I.On the contrary,the two compounds can significantly suppressed the grow of MGC-803 cell line by leading to the cell cycle arrest in MGC-803 cell line,and the cleavage of the nucleus to pruduceapoptotic bodies.The apoptosis rates showed a significant upward trend.Conclusion:Tanshinone I and dihydrotanshinone I can in-duced apoptosis to display potent anti-tumor activity in human MGC-803 Gastric cancer cell line.

  15. The influence of calreticulin on oxidative stress i n MCF-7 cells

    Directory of Open Access Journals (Sweden)

    Sree Jaya S

    2014-09-01

    Full Text Available Calreticulin (CRT, a multifunctional protein that regulates varied important cell functions, in addition CRT recently drawn notice that the function of oxidative stress induced apoptosis. At this point, the role of CRT through oxidative stress mediated apoptotic cell death is focused. Herein, we used mammary gland adenocarcinoma cell cells (MCF-7 in vitroto investigate the role CRT overexpression in cell death by promoting ROS induced apoptosis. Human CRT gene was isolated from blood, cDNA was synthesized, CRT was cloned to the XhoI/EcoRI restriction sites of a mammalian expression vector pcDNA 3.1 and plasmid was transfected in to MCF-7 cell line to promote apoptosis. After 24 h and 48 h transfection, cell proliferation, LDH leakage, lipid peroxidation, total protein, and glutathione concentrations were measured. CRT transfected cells expressed higher concentrations of lipid peroxidation and LDHleakage than control MCF -7 cells. There was a significant negative correlation between lipid peroxidation and cell proliferation. Glutathione did not appear to be a significant factor. Therefore, stimulation of CRT may modulate the growth inhibitory effects in human breast cancer cells. One mechanism of growth inhibition may be through increased lipid peroxidation.

  16. 诱导建立乳腺癌MCF-7放射耐受细胞亚株的实验研究%Inducing and Establishing Cell Sublines with Radiation Resistance in Human Breast Cancer MCF-7 Cells

    Institute of Scientific and Technical Information of China (English)

    向晶; 周明利; 谢荣俊; 张树友

    2012-01-01

    greater SF2 ( survival fraction after 2 Gy irradiation, increased by 34 %. P < 0.001 ), Dq ( 2.261 to 3.695, P < 0.05) and Do (1.215 to 1.834, P < 0.05). Conclusion: The method of radiating cell step by step and repeatedly is viable to establish radio-resistant breast cancer sub-cell line, and the radioresistant sub-cell line MCF-7R has conspicuous changes in morphological and biological characteristics compared with the parental cell line.

  17. Product of aromatase activity in intact LNCaP and MCF-7 human cancer cells.

    Science.gov (United States)

    Castagnetta, L A; Granata, O M; Bellavia, V; Amodio, R; Scaccianoce, E; Notarbartolo, M; Follari, M R; Miceli, M D; Carruba, G

    1997-04-01

    We investigated conversion rates of androgens to estrogens in cultured, hormone-responsive prostate (LNCaP) and breast (MCF-7) human cancer cells. For this purpose, we adopted an intact cell analysis, whereby cells were incubated for different incubation times in the presence of close-to-physiological (1 nM) or supraphysiological (1 microM) concentrations of labelled androgen precursors, i.e. testosterone (T) and androstenedione (delta4Ad). The aromatase activity, as measured by estrogen formation, was detected in LNCaP cells (0.5 pmol/ml), even though to a significantly lower extent than in MCF-7 cells (5.4 pmol/ml), using 1 microM T after 72 h incubation. Surprisingly, LNCaP cells displayed a much higher aromatase activity when T was used as a substrate with respect to delta4Ad. In either cell line, T transformation to delta4Ad was relatively low, attaining only 2.8% in LNCaP and 7.5% MCF-7 cells. However, T was mostly converted to conjugates (over 95%), glucuronides and some sulphates, in LNCaP cells, whereas it was only partly converted to sulphates (<10%) in MCF-7 cells. Aromatase activity seems to be inconsistent in LNCaP cells, being strongly affected by culture conditions, especially by fetal calf serum (FCS). Further studies should assess the regulation of aromatase expression by serum or growth factors in different human cancer cells, also using anti-aromatase and/or anti-estrogen compounds, in different culture conditions.

  18. Assessment of Interactions between Cisplatin and Two Histone Deacetylase Inhibitors in MCF7, T47D and MDA-MB-231 Human Breast Cancer Cell Lines - An Isobolographic Analysis.

    Directory of Open Access Journals (Sweden)

    Anna Wawruszak

    Full Text Available Histone deacetylase inhibitors (HDIs are promising anticancer drugs, which inhibit proliferation of a wide variety of cancer cells including breast carcinoma cells. In the present study, we investigated the influence of valproic acid (VPA and suberoylanilide hydroxamic acid (SAHA, vorinostat, alone or in combination with cisplatin (CDDP on proliferation, induction of apoptosis and cell cycle progression in MCF7, T47D and MDA-MB-231 human breast carcinoma cell lines. The type of interaction between HDIs and CDDP was determined by an isobolographic analysis. The isobolographic analysis is a very precise and rigorous pharmacodynamic method, to determine the presence of synergism, addition or antagonism between different drugs with using variety of fixed dose ratios. Our experiments show that the combinations of CDDP with SAHA or VPA at a fixed-ratio of 1:1 exerted additive interaction in the viability of MCF7 cells, while in T47D cells there was a tendency to synergy. In contrast, sub-additive (antagonistic interaction was observed for the combination of CDDP with VPA in MDA-MB-231 "triple-negative" (i.e. estrogen receptor negative, progesterone receptor negative, and HER-2 negative human breast cancer cells, whereas combination of CDDP with SAHA in the same MDA-MB-231 cell line yielded additive interaction. Additionally, combined HDIs/CDDP treatment resulted in increase in apoptosis and cell cycle arrest in all tested breast cancer cell lines in comparison with a single therapy. In conclusion, the additive interaction of CDDP with SAHA or VPA suggests that HDIs could be combined with CDDP in order to optimize treatment regimen in some human breast cancers.

  19. Effect of Cytotoxic Compounds on Activity of Antioxidant Enzyme System in MCF-7 and H1299 Cells.

    Science.gov (United States)

    Mumyatova, V A; Balakina, A A; Filatova, N V; Sen', V D; Korepin, A G; Terentev, A A

    2016-05-01

    We studied the function of the antioxidant system in tumor cell lines MCF-7 and H1299 that differ by the state of tumor suppressor gene p53. Exposure to different classes of cytotoxic compounds induced several types of antioxidant system responses that depend on the type of cell line. The effects of platinum(II) and platinum(IV) complexes on activity of antioxidant enzymes vary, which can be explained by differences in their accumulation and biotransformation in tumor cells. Triazole and oxazolidinone derivatives had little effect on activity of superoxide dismutase and catalase in H1299 cells, but increased superoxide dismutase activity in MCF-7 cells. PMID:27265137

  20. Effects of ELF magnetic fields on protein expression profile of human breast cancer cell MCF7

    Institute of Scientific and Technical Information of China (English)

    LI; Han; ZENG; Qunli; WENG; Yu; LU; Deqiang; JIANG; Huai; XU

    2005-01-01

    Extremely Low Frequency Magnetic Fields (ELF MF) has been considered as a "possible human carcinogen" by International Agency for Research on Cancer (IARC) while credible mechanisms of its carcinogenicity remain unknown. In this study, a proteomics approach was employed to investigate the changes of protein expression profile induced by ELF MF in human breast cancer cell line MCF7, in order to determine ELF MF-responsive proteins. MCF7 cells were exposed to 50 Hz, 0.4 mT ELF MF for 24 h and the changes of protein profile were examined using two dimensional electrophoresis. Up to 6 spots have been statistically significantly altered (their expression levels were changed at least 5 fold up or down) compared with sham-exposed group. 19 ones were only detected in exposure group while 19 ones were missing. Three proteins were identified by LC-IT Tandem MS as RNA binding protein regulatory subunit、Proteasome subunit beta type 7 precursor and Translationally Controlled Tumor Protein. Our finding showed that 50 Hz, 0.4 mT ELF MF alternates the protein profile of MCF7 cell and may affect many physiological functions of normal cell and 2-DE coupled with MS is a promising approach to elucidating cellular effects of electromagnetic fields.

  1. Differential Ratios of Omega Fatty Acids (AA/EPA+DHA Modulate Growth, Lipid Peroxidation and Expression of Tumor Regulatory MARBPs in Breast Cancer Cell Lines MCF7 and MDA-MB-231.

    Directory of Open Access Journals (Sweden)

    Prakash P Mansara

    Full Text Available Omega 3 (n3 and Omega 6 (n6 polyunsaturated fatty acids (PUFAs have been reported to exhibit opposing roles in cancer progression. Our objective was to determine whether different ratios of n6/n3 (AA/EPA+DHA FAs could modulate the cell viability, lipid peroxidation, total cellular fatty acid composition and expression of tumor regulatory Matrix Attachment Region binding proteins (MARBPs in breast cancer cell lines and in non-cancerous, MCF10A cells. Low ratios of n6/n3 (1:2.5, 1:4, 1:5, 1:10 FA decreased the viability and growth of MDA-MB-231 and MCF7 significantly compared to the non-cancerous cells (MCF10A. Contrarily, higher n6/n3 FA (2.5:1, 4:1, 5:1, 10:1 decreased the survival of both the cancerous and non-cancerous cell types. Lower ratios of n6/n3 selectively induced LPO in the breast cancer cells whereas the higher ratios induced in both cancerous and non-cancerous cell types. Interestingly, compared to higher n6/n3 FA ratios, lower ratios increased the expression of tumor suppressor MARBP, SMAR1 and decreased the expression of tumor activator Cux/CDP in both breast cancer and non-cancerous, MCF10A cells. Low n6/n3 FAs significantly increased SMAR1 expression which resulted into activation of p21WAF1/CIP1 in MDA-MB-231 and MCF7, the increase being ratio dependent in MDA-MB-231. These results suggest that increased intake of n3 fatty acids in our diet could help both in the prevention as well as management of breast cancer.

  2. FFJ-5下调PKM2抑制MCF7生长及逆转MCF7/DO X细胞耐药性的研究%FFJ-5 inhibits growth of MCF7 cells and reverses drug resistance of MCF7/DOX cells via down-regulation of PKM2

    Institute of Scientific and Technical Information of China (English)

    王天晓; 魏晓利; 李登云

    2015-01-01

    目的:探讨 FFJ-5对人乳腺癌细胞 MCF7及其耐药细胞 MCF7/DOX 的作用及其机制。方法采用 MTT 法检测FFJ-5对 MCF7MCF7/DOX 细胞的增殖抑制作用及其对柔红霉素(doxorubicin,DOX)在耐药细胞 MCF7/DOX 中化疗敏感性的影响;Western blot检测FFJ-5对EGFR、p-EGFR、Akt、p-Akt、PKM2、caspase-3、cleaved caspase-3、PARP、cleaved PARP及P-gp蛋白表达的影响;DNA ladder 分析检测FFJ-5对细胞基因组DNA的影响;RT-PCR检测低剂量 FFJ-5对多药耐药基因MDR1 mRNA水平的影响。结果 FFJ-5抑制了MCF7细胞生长,降低了MCF7细胞中EGFR、Akt 的表达及活性,下调了PKM2水平;FFJ-5可激活caspase-3、促使基因组DNA断裂;同时FFJ-5也能抑制耐药细胞MCF7/DOX生长,并增强 DOX 在MCF7/DOX细胞中的活性,同时降低了MCF7/DOX 细胞中 EGFR、p-EGFR 及 PKM2水平,但对MDR1 mRNA水平无影响。结论 FFJ-5可通过抑制 EGFR-Akt-PKM2通路及激活线粒体凋亡相关因子 caspase-3来抑制MCF7细胞生长,并诱导其凋亡,并可逆转MCF7/DOX的耐药性。%Aim To investigate the roles of FFJ-5 in human breast cancer MCF7 cells and drug-resistant MCF7/DOX cells and to explore its mechanisms. Methods MTT assay was used to detect the effect of FFJ-5 on MCF7 and MCF7/DOX cell proliferation and sensitivity of doxorubicin in MCF7/DOX cells.West-ern blot was used to investigate the effect of FFJ-5 on expression of EGFR,p-EGFR,Akt,p-Akt,PKM2, cleaved caspase-3,cleaved PARP and P-gp.DNA lad-der analysis was performed to determine the effect of FFJ-5 on genomic DNA.RT-PCR was performed to de-tect the influence of FFJ-5 on multidrug resistance gene MDR1 mRNA levels.Results The results showed that FFJ-5 inhibited the growth of MCF7 ,inhibited the expression and activity of EGFR and Akt,and conse-quently reduced the expression of PKM2 in MCF7 cells;FFJ-5 activated caspase-3 and induced genomic DNA fragmentation;FFJ-5 also inhibited

  3. Trefoil factor-2, human spasmolytic polypeptide, promotes branching morphogenesis in MCF-7 cells.

    Science.gov (United States)

    Lalani, E N; Williams, R; Jayaram, Y; Gilbert, C; Chaudhary, K S; Siu, L S; Koumarianou, A; Playford, R; Stamp, G W

    1999-05-01

    Members of the trefoil factor (TFF) family are highly expressed in endodermal ulcerative wound healing and selectively in neoplastic proliferation of various glandular epithelia. There is some evidence that TFF1 and TFF3 affect cell motility, are indirectly involved in growth suppression, and are associated with mucin expression. TFF2 is co-expressed with TFF1 in gastric surface epithelial cells, but its potential role in vivo is unclear. We analyzed potential effects on cell proliferation and morphogenesis of TFF2 on a panel of epithelial and mesenchymal cell lines. TFF2 had no measurable effect on the proliferation of any of the cell lines tested. In type 1 collagen lattices, TFF2 at a low concentration (25-100 nM) induced the formation of highly complex branched structures in the breast carcinoma cell line MCF-7 over a period of 14 to 42 days. No significant effect was shown with other cell lines. This morphogenic effect was abolished by monoclonal antibodies specific for either TFF2 or TFF1. TFF2 did not affect cell motility in MCF-7 cells as measured by videomicroscopy, in contrast to previous studies using TFF1. TFF2-treated MCF-7 colonies showed a 30% reduction in the number of apoptotic bodies, corroborated by trypan blue exclusion and DNA fragmentation ELISA, indicating TFF2 promotes cell survival via inhibition of apoptosis and can act as a morphogen in the presence of TFF1. These properties may complement the actions of TFF1 as a motogen and may explain differential expression in endodermal wound healing.

  4. THE INFLUENCE OF MAGNETIC FIELDS ON INHIBITION OF MCF-7 CELL GROWTH BY TAMOXIFEN

    Science.gov (United States)

    THE INFLUENCE OF MAGNETIC FIELDS ON INHIBITION OF MCF-7 CELL GROWTH BY TAMOXIFEN.Harland and Liburdy (1) reported that 1.2-uT, 60-Hz magnetic fields could significantly block the inhibitory action of pharmacological levels of tamoxifen (10-7 M) on the growth of MCF-7 human br...

  5. Effects of 60Co γ rays on the cell cycle progress of MCF-7 cells

    International Nuclear Information System (INIS)

    To investigate the effects of ionizing radiation on cell cycle progress of tumor cell lines, the human breast cancer MCF-7 cell line cultured in vitro was exposed to 60Co γ rays and the alterations in cell cycle progress after irradiation were measured by flow cytometry. The results indicated that the MCF-7 cells showed a transient S arrest continuing for about 6 h and an obvious G2 arrest continuing for about 63 h after irradiation with 5.0 Gy γ rays. S and G2 arrest culminated at 9 h and 18 h respectively after irradiation and the peak values of S and G2 arrest reached respectively 1.6 times and 6.2 times as many as normal value. The dose-effect curve examined 9 h after irradiation was quite different from that examined 18 h after irradiation. Both of the S arrest at 9 h after irradiation and the G2 arrest at 18 h after irradiation presented significant relationship with irradiation dose

  6. 细胞外基质蛋白1对乳腺癌MCF-7细胞和HUVEC生物学功能影响的研究%The biology function effect of extracellular matrix protein 1 on breast tumor cell MCF-7 line and HUVEC

    Institute of Scientific and Technical Information of China (English)

    侯彦强; 仲人前; 娄加陶; 耿红莲; 孔宪涛

    2008-01-01

    目的 探讨细胞外基质蛋白1(extracellular matrix protein 1,ECM1)在肿瘤中的生物学功能.方法 构建ECM1-pEGFP-N2真核表达载体,利用脂质体介导的转染技术转染MCF-7细胞,药物G418筛选稳定转染细胞株,荧光显微镜检测报告基因表达产物EGFP,免疫组化检测ECM1蛋白表达.经细胞粘附实验、体外侵袭力实验比较转染前后细胞侵袭力的变化;用MTT比色法分析ECM1对MCF-7和人脐静脉内皮细胞(human umbilical vein endothelial cells,HUVEC)增殖的影响.结果 成功构建了ECM1-pEGFP-N2真核表达载体,并在MCF-7中稳定表达;转染ECM1后的MCF-7细胞的细胞形态、粘附性、侵袭力和增殖能力无明显变化;MTT比色法检测HUVEC增殖结果示培养液组、空载体转染上清组、ECM1转染上清组HU-VEC D570值分别为0.89±0.06,0.92±0.09和1.39 ±0.10,各组问差异具有显著统计学意义(p<0.01).结论 ECM1对乳腺癌细胞株MCF-7的生物学特性在体外未见明显影响,但能显著促进血管内皮细胞体外增殖.

  7. ShRNA-mediated gene silencing of MTA1 influenced on protein expression of ER alpha, MMP-9, CyclinD1 and invasiveness, proliferation in breast cancer cell lines MDA-MB-231 and MCF-7 in vitro

    Directory of Open Access Journals (Sweden)

    Zhang Ping

    2011-05-01

    Full Text Available Abstract Background MTA1(metastasis associated-1 is a tumor metastasis associated candidate gene and overexpression in many human tumors, including breast cancer. In this study, we investigated depressive effect on MTA1 by MTA1-specific short hairpin RNA(shRNA expression plasmids in human breast cancer cell lines MDA-MB-231 and MCF-7, and effect on protein levels of ER alpha, MMP-9, cyclinD1, and tumor cell invasion, proliferation. Methods ShRNA expression vectors targeting MTA1 was constructed and transfected into human breast cancer cell lines MDA-MB-231 and MCF-7. The transfection efficiency was evaluated by fluorescence microscopy, mRNA levels of MTA1 were detected by reverse transcription-polymerase chain reaction (RT-PCR, protein levels of ER alpha, MMP-9 and cyclinD1 were detected by Western blotting, respectively. Tumor cells invasive ability were evaluated by Boyden chamber assay, the cells proliferation were evaluated using cell growth curve and MTT analysis, the cell cycle analysis was performed using flow cytometry. Results Down-regulation of MTA1 by RNAi approach led to re-expression of ER alpha in ER-negative breast cancer cell lines MDA-MB-231, and reduced protein levels of MMP-9 and CyclinD1, as well as decreased tumor cell invasion and proliferation, more cells were blocked in G0/G1 stage(P 0.05. Conclusions ShRNA targeted against MTA1 could specifically mediate the MTA1 gene silencing and consequentially recover the protein expression of ER alpha, resulting in increase sensitivity of antiestrogens, as well as suppress the protein levels of MMP-9 and cyclinD1 in ER-negative human breast cancer cell lines MDA-MB-231. Silencing effect of MTA1 could efficiently inhibit the invasion and proliferation in MDA-MB-231 cells. The shRNA interference targeted against MTA1 may have potential therapeutic utility in human breast cancer.

  8. MCF-7 human mammary adenocarcinoma cells exhibit augmented responses to human insulin on a collagen IV surface

    DEFF Research Database (Denmark)

    Listov-Saabye, Nicolai; Jensen, Marianne Blirup; Kiehr, Benedicte;

    2009-01-01

    Human mammary cell lines are extensively used for preclinical safety assessment of insulin analogs. However, it is essentially unknown how mitogenic responses can be optimized in mammary cell-based systems. We developed an insulin mitogenicity assay in MCF-7 human mammary adenocarcinoma cells, un...

  9. INHIBITION OF PROLIFERATION OF HUMAN BREAST CANCER MCF-7 CELLS BY SMALL INTERFERENCE RNA AGAINST LRP16 GENE

    Institute of Scientific and Technical Information of China (English)

    韩为东; 赵亚力; 李琦; 母义明; 李雪; 宋海静; 陆祖谦

    2004-01-01

    Objective: Our previous studies have firstly demonstrated that 17(-E2 up-regulates LRP16 gene expression in human breast cancer MCF-7 cells, and ectopic expression of the LRP16 gene promotes MCF-7 cells proliferation. Here, the effects of the LRP16 gene expression on growth of MCF-7 human breast cancer cells and the mechanism were further studied by establishing two stably LRP16-inhibitory MCR-7 cell lines. Methods: Hairpin small interference RNA (siRNA) strategy, by which hairpin siRNA was released by U6 promoter and was mediated by pLPC-based retroviral vector, was adopted to knockdown endogenous LRP16 level in MCF-7 cells. And the hairpin siRNA against green fluorescence protein (GFP) was used as the negative control. The suppressant efficiency of the LRP16 gene expression was confirmed by Nothern blot. Cell proliferation assay and soft agar colony formation assay were used to determine the status of the cells proliferation. Cell cycle checkpoints including cyclin E and cyclin D1 were examined by Western blot. Results: The results from cell proliferation assays suggested that down-regulation of LRP16 gene expression is capable of inhibiting MCF-7 breast cancer cell growth and down-regulation of the LRP16 gene expression is able to inhibit anchorage-independent growth of breast cancer cells in soft agar. We also demonstrated that cyclin E and cyclin D1 proteins were much lower in the LRP16-inhibitory cells than in the control cells. Conclusion: These data suggest that LRP16 gene play an important role in MCF-7 cells proliferation by regulating the pathway of the G1/S transition and may function as an important modulator in regulating the process of tumorigenesis in human breast.

  10. The mechanism of TSA inhibiting proliferation and promoting apoptosis in breast carcinoma cell line MCF-7%曲古抑菌素A抑制乳腺癌细胞MCF-7生长增殖及促进凋亡的机制

    Institute of Scientific and Technical Information of China (English)

    张秀梅; 刘超; 刘阳; 肖建英

    2013-01-01

    目的 探讨曲古抑菌素A(TSA)对乳腺癌细胞系MCF-7细胞生长增殖、凋亡及p21、p53表达的影响.方法 分别以不同浓度的TSA处理MCF-7细胞,采用MTT比色法测定细胞增殖活性;用流式细胞仪检测细胞凋亡率;用RT-PCR方法检测细胞p21、p53mRNA的表达水平;用Western印迹法检测MCF-7细胞的p21、p53蛋白表达.结果 TSA作用后,各组细胞均出现显著的生长抑制作用,存活率明显降低,并呈剂量依赖性.流式细胞仪分析,在100 ~ 400 nmol/L范围内凋亡率随TSA浓度的升高而升高(P<0.01).经不同浓度TSA处理的细胞p21mRNA和蛋白表达水平明显上调(P<0.01);、而p53mRNA和蛋白表达水平则没有明显变化.结论 TSA显著抑制MCF-7细胞生长,促进凋亡可能与TSA维持p53的稳定表达,从而促进其下游因子p21的表达有关.%Objective To study the effects of trichostatin A (TSA) on cell proliferation,apoptosis and expressions of p21,p53 in MCF-7 cells.Methods The proliferation of the cells treated with different dose of TSA were observed with MTT and apoptosis were measured by flow cytometry; the p21,p53 mRNA expression levels were determined by RT-PCR; p21,p53 protein expression were determined by Western blot.Results After cells were treated with TSA the proliferation index decreased markedly with a dose-dependent manner.Flow cytometry analysis showed TSA increased apoptosis index,the mRNA and protein expression of p21 were increased dramatically (P < 0.01) ;but the mRNA and protein expression of p53 were not increased dramatically (P > 0.05).Conclusions TSA could inhibit the proliferation and promote apoptosis of MCF-7 cell in a dose-dependent manner thus up-regulating of p21.

  11. Effects of berberine on proliferation, cell cycle distribution and apoptosis of human breast cancer T47D and MCF7 cell lines

    Directory of Open Access Journals (Sweden)

    Elmira Barzegar

    2015-04-01

    Conclusion: Berberine alone and in combination with doxorubicin inhibited cell proliferation, induced apoptosis and altered cell cycle distribution of breast cancer cells. Therefore, berberine showed to be a good candidate for further studies as a new anticancer drug in the treatment of human breast cancer.

  12. Knockdown of dual specificity phosphatase 4 enhances the chemosensitivity of MCF-7 and MCF-7/ADR breast cancer cells to doxorubicin

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yu; Du, Feiya; Chen, Wei; Yao, Minya; Lv, Kezhen; Fu, Peifen, E-mail: fupeifendoczju@163.com

    2013-12-10

    Background: Breast cancer is the major cause of cancer-related deaths in females world-wide. Doxorubicin-based therapy has limited efficacy in breast cancer due to drug resistance, which has been shown to be associated with the epithelial-to-mesenchymal transition (EMT). However, the molecular mechanisms linking the EMT and drug resistance in breast cancer cells remain unclear. Dual specificity phosphatase 4 (DUSP4), a member of the dual specificity phosphatase family, is associated with cellular proliferation and differentiation; however, its role in breast cancer progression is controversial. Methods: We used cell viability assays, Western blotting and immunofluorescent staining, combined with siRNA interference, to evaluate chemoresistance and the EMT in MCF-7 and adriamycin-resistant MCF-7/ADR breast cancer cells, and investigate the underlying mechanisms. Results: Knockdown of DUSP4 significantly increased the chemosensitivity of MCF-7 and MCF-7/ADR breast cancer cells to doxorubicin, and MCF-7/ADR cells which expressed high levels of DUSP4 had a mesenchymal phenotype. Furthermore, knockdown of DUSP4 reversed the EMT in MCF-7/ADR cells, as demonstrated by upregulation of epithelial biomarkers and downregulation of mesenchymal biomarkers, and also increased the chemosensitivity of MCF-7/ADR cells to doxorubicin. Conclusions: DUSP4 might represent a potential drug target for inhibiting drug resistance and regulating the process of the EMT during the treatment of breast cancer. - Highlights: • We used different technologies to prove our conclusion. • DUSP4 knockdown increased doxorubicin chemosensitivity in breast cancer cells. • DUSP4 is a potential target for combating drug resistance in breast cancer. • DUSP4 is a potential target for regulating the EMT in breast cancer.

  13. INDUCTION OF APOPTOSIS IN MCF-7 CELLS BY METHANOLIC EXTRACT OF CLITORIA TERNATEA L

    Directory of Open Access Journals (Sweden)

    Priyanka Shivaprakash

    2015-11-01

    Full Text Available Aim: Investigation of apoptosis induction by methanolic extract of Clitoria ternateaL. flower against multiple cancer cell lines. Main Methods: In the present study cytotoxic activity of Clitoria ternateaL flower was determined using MTT cell viability assay. The induction of cell death/apoptosis was evaluated by light microscopy, DNA fragmentation and caspase-3 enzyme activation. Key Findings: The methanolic extract from C. ternatea(MECT showed cytotoxic activity against several cancer cell lines. The most potent activity exhibited by MECT was against MCF-7 breast carcinoma cells with an IC50value of 27.2 ± 2.6 μg/mL. Light microscopic evaluation clearly indicated the apoptotic morphology of MECT treated cells. Treatment of MCF-7 cells with various MECT concentrations resulted in growth inhibition and induction of apoptosis as indicated by DNA fragmentation and caspase-3 enzyme activation. Significance: The current report strongly suggests the pro-apoptotic properties of C. ternateaflowers. Our findings demonstrate that C. ternateaphyto-constituents may have beneficial applications in the field of anti-cancer drug discovery.

  14. P53 but not cyclin E acts in a negative regulatory loop to control HER-2 expression in MCF-7 breast carcinoma cell line.

    Directory of Open Access Journals (Sweden)

    Hamed Montazeri

    2013-08-01

    Full Text Available Cyclin E, HER-2 and p53, are considered as major prognostic markers in breast cancer. As they are related in patho-clinical level, we aimed to check if they have any direct interaction on expression of each other. To study the effect of cyclin E on HER-2 expression, cell lines stably overexpressing cyclin E or its low molecular weight (LMW isoforms were generated. To understand the results of p53 silencing either alone or in combination with cyclin E overexpression, we created three different p53 stably knocked down cell lines. Protein expression was analyzed by western blot, HER-2 expression in the established cell lines were determined using SYBR green real time PCR and data analyzed by REST software. Results indicate that HER-2 expression is only downregulated following p53 silencing and none of cyclin E isoforms can alter its expression. The presence of cyclin E isoforms in p53 silenced clones also does not altered HER-2 expression. Given the fact that p53 degradation is increased by HER-2 overexpression, these data can draw a regulatory loop in which a non-mutated functional p53 and HER-2 can bidirectionally regulate the expression of these two genes. This study improves our understandings of these pathways and these proteins can be introduced either as a marker or as a target in cancer treatment.

  15. Oridonin Loaded Solid Lipid Nanoparticles Enhanced Antitumor Activity in MCF-7 Cells

    Directory of Open Access Journals (Sweden)

    Lu Wang

    2014-01-01

    Full Text Available Oridonin (ORI, a famous diterpenoid from Chinese herbal medicine, has drawn rising attention for its remarkable apoptosis and autophagy-inducing activity in human cancer therapy, while clinical application of ORI is limited by its strong hydrophobicity and rapid plasma clearance. The purpose of this study was to evaluate whether the antitumor activity of ORI could be enhanced by loading into solid lipid nanoparticles (SLNs. ORI-loaded SLNs were prepared by hot high pressure homogenization with narrow size distribution and good entrapment efficacy. MTT assay indicated that ORI-loaded SLNs enhanced the inhibition of proliferation against several human cancer cell lines including breast cancer MCF-7 cells, hepatocellular carcinoma HepG 2 cells, and lung carcinoma A549 cells compared with free ORI, while no significant enhancement of toxicity to human mammary epithelial MCF-10A cells was shown. Meanwhile, flow cytometric analysis demonstrated that ORI-SLNs induced more significant cell cycle arrest at S and decreased cell cycle arrest at G1/G0 phase in MCF-7 cells than bulk ORI solution. Hoechst 33342 staining and Annexin V/PI assay indicated that apoptotic rates of cells treated with ORI-loaded SLNs were higher compared with free ORI. In summary, our data indicated that SLNs may be a potential carrier for enhancing the antitumor effect of hydrophobic drug ORI.

  16. Proteomic evaluation of MCF-7 human breast cancer cells after treatment with retinoic acid isomers: Preliminary insights

    OpenAIRE

    Flodrová, Dana

    2012-01-01

    The effects of 9-cis retinoic acid and all-trans retinoic acid in human MCF-7 breast cancer line have been investigated. The total cell proteins were extracted and separated on 1D SDS-PAGE. The proteins were subsequently in-gel digested by trypsin and identified by MALDI-TOF/TOF.

  17. Correlation of CDK2-AP1 gene over-expression with proliferation and cell cycle regulation of breast cancer cell line MCF-7%乳腺癌MCF-7细胞的增殖及周期与CDK2-AP1基因的表达的相关性研究

    Institute of Scientific and Technical Information of China (English)

    高双全; 高双荣; 肖高芳; 丁宇; 王林辉; 黄伟; 李静

    2013-01-01

    目的 探讨乳腺癌MCF-7细胞的增殖及周期与CDK2-AP1基因的表达的相关性研究,为临床乳腺癌的分子治疗提供基础.方法 取我院研究所保存的人乳腺癌细胞MCF-7进行培养,并构建CDK2-AP1基因编码的病毒表达载体,应用实时定量PCR验证CDK2-AP1基因mRNA和蛋白的表达率.利用流式细胞仪检测MCF-7细胞周期的改变.结果 过表达CDK2-AP1基因的慢病毒感染MCF-7细胞可上调其mRNA表达6.87倍.MCF-7细胞过表达CDK2-AP1基因后,增殖能力显著降低,差异具有统计学意义(P<0.05).流式细胞仪检测证实MCF-7细胞过表达CDK2-AP1能够使细胞周期出现G1期阻滞.结论 CDK2-AP1基因具有抑癌基因的功能,在乳腺癌MCF-7细胞过表达该基因能够抑制细胞的生长和克隆形成能力,并且使细胞阻滞于G1期.

  18. Effects of HIF-1α on the metastatic ability of human breast cancer cell line MCF-7(study of animal model)%HIF-1α对乳腺癌MCF-7细胞裸鼠血行肺转移能力的影响及机制

    Institute of Scientific and Technical Information of China (English)

    赵婷婷; 刘群; 金锋; 李继光

    2014-01-01

    目的:干扰HIF-1α表达,建立乳腺癌血行转移的动物模型,检验HIF-1α表达在血行肺转移中的作用.方法:慢病毒转染干扰乳腺癌细胞系MCF-7中HIF-1α的表达,得到HIF-1α表达正常的乳腺癌细胞系MCF-7-NC和HIF-1α表达受干扰的细胞系MCF-7-HIF.分别将两组细胞系进行裸鼠鼠尾静脉注射建立乳腺癌血行转移模型,检测两组细胞在小鼠肺部形成转移瘤的能力.免疫组化方法检测2组肺转移灶中E-钙黏素和Notch-1受体胞内结构域(Notch-1 intracellular domain,NICD)的表达情况.结果:注射MCF-7-NC组裸鼠肺部转移瘤数量、大小均高MCF-7-HIF组,MCF-7-NC组平均成瘤数22.4±4.1个,MCF-7-HIF组13.8±3.2个.肺最大转移瘤平均直径MCF-7-NC组3.2mm,MCF-7-HIF组 2.5mm.胸水的出现,MCF-7-NC组显著高于MCF-7-HIF组.免疫组化结果提示MCF-7-NC组E-钙黏素低表达,NICD高表达,而MCF-7-HIF组恰好与其相反.结论:干扰HIF-1α的表达,可以显著减低乳腺癌细胞系MFC-7的血行肺转移能力.转移灶中E-钙黏素和NICD的表达与HIF-1α表达是否受干扰密切相关.

  19. Inhibitive effect of 3-bromopyruvic acid on human breast cancer MCF-7 cells involves cell cycle arrest and apoptotic induction

    Institute of Scientific and Technical Information of China (English)

    LIU Xiao-hong; ZHENG Xue-fang; WANG Yong-li

    2009-01-01

    Background Breast cancer is one of the most common malignancies in women and is highly resistant to chemotherapy. Due to its high tumour selectivity, 3-bromopyruvic acid (3-BrPA), a well-known inhibitor of energy metabolism has been proposed as a specific anticancer agent. The present study determined the effect of 3-BrPA on proliferation, cell cycle and apoptosis in the human breast cancer MCF-7 cell line and other antitumour mechanisms. Methods MCF-7 cells were treated with various concentrations of 3-BrPA for 1-4 days, and cell growth was measured by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide assay. Marked morphological changes in MCF-7 cells after treatment with 3-BrPA were observed using transmission electron microscopy. The distributions of the cell cycle and apoptosis were analyzed by flow cytometry. Immunohistochemistry was used to indicate the changes in the expression of Bcl-2, c-Myc, and mutant p53. Results 3-BrPA (25 μg/ml) significantly inhibited the proliferation of MCF-7 cells in a time-dependent manner. The MCF-7 cells exposed to 3-BrPA showed the typical morphological characteristics of apoptosis, including karyopycnosis, nuclear condensation and oversize cytoplasmic particles. In addition, flow cytometric assay also showed more apoptotic cells after 3-BrPA stimulation. The cells at the GO and G1 phases were dramatically decreased while cells at the S and G2/M phases were increased in response to 3-BrPA treatment after 48 hours. Furthermore, 3-BrPA stimulation decreased the expressions of Bcl-2, c-Myc and mutant p53, which were strongly associated with the programmed cell death signal transduction pathway. Conclusion 3-BrPA inhibits proliferation, induces S phase and G2/M phase arrest, and promotes apoptosis in MCF-7 cells, which processes might be mediated by the downregulation of the expressions of Bcl-2, c-Myc and mutant p53.

  20. Δ9-Tetrahydrocannabinol enhances MCF-7 cell proliferation via cannabinoid receptor-independent signaling

    International Nuclear Information System (INIS)

    We recently reported that Δ9-tetrahydrocannabinol (Δ9-THC) has the ability to stimulate the proliferation of human breast carcinoma MCF-7 cells. However, the mechanism of action remains to be clarified. The present study focused on the relationship between receptor expression and the effects of Δ9-THC on cell proliferation. RT-PCR analysis demonstrated that there was no detectable expression of CB receptors in MCF-7 cells. In accordance with this, no effects of cannabinoid 1/2 (CB1/2) receptor antagonists and pertussis toxin on cell proliferation were observed. Although MCF-7 cell proliferation is suggested to be suppressed by Δ9-THC in the presence of CB receptors, it was revealed that Δ9-THC could exert upregulation of living cells in the absence of the receptors. Interestingly, Δ9-THC upregulated human epithelial growth factor receptor type 2 (HER2) expression, which is known to be a predictive factor of human breast cancer and is able to stimulate cancer cells as well as MCF-7 cells. Actinomycin D-treatment interfered with the upregulation of HER2 and cell proliferation by cannabinoid. Taken together, these studies suggest that, in the absence of CB receptors, Δ9-THC can stimulate the proliferation of MCF-7 cells by modulating, at least in part, HER2 transcription

  1. Inductoin of Radioresistance by Overexpression of Glutathione S-Transferase K1 (hGSTK1) in MCF-7 Cells

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Chul [Kyungpook National University College of Medicine, Taegu (Korea, Republic of); Shin, Sei One [Yeungnam University College of Medicine, Taegu (Korea, Republic of)

    2001-12-15

    Purpose : This study was conducted to assess the effects of x-irradiation on the expression of the novel glutathione S-transferase K1 gene. Materials and methods : Human glutathione S-transferase K1 (hGSTK1) DNA was purified and ligated to a pcDNA3.1/Myc-His(+) vector for the overexpression of hGSTK1 gene. MCF-7 cells were transfected with or without the recombinant hGSTK1 gene, and irradiated with 6 MV x-ray. After incubation of 14 days, cell survival was measured and compared. The expression of hGSTK1 and the effect of x- irradiation on hGSTK1 expression were also estimated in MCF-7 cells transfected with or without the hGSTK1 gene by RT-PCR. Results : Following 2 to 12 Gy of x-irradiation, the cell survivals were higher in the MCF-7 cells transfected with the hGSTK1 gene than in those without transfection. Despite the higher cell survival in the hGSTK1-transfected cells, RT-PCR for hGSTK1 mRNA revealed no significant differences according to radiation dose, fractionation, and time after irradiation. Conclusion : The MCF-7 cells transfected with the hGSTK1 gene showed higher cell survival than those without transfection of the gene. The hGSTK1 gene might be associated with the radiosensitivity of MCF-7 cell line and further analysis should be needed.

  2. Sodium butyrate-induced apoptosis and ultrastructural changes in MCF-7 breast cancer cells.

    Science.gov (United States)

    Wang, Ying; Hu, Peng-Chao; Ma, Yan-Bin; Fan, Rong; Gao, Fang-Fang; Zhang, Jing-Wei; Wei, Lei

    2016-01-01

    This study investigated the effects of sodium butyrate (NaB) on Michigan Cancer Foundation-7 (MCF-7) breast cancer cells and analyzed the relevant mechanism. Here, we demonstrated that a certain concentration of NaB effectively induced MCF-7 cell apoptosis. Cell counting kit-8 (CCK-8) assay was used to detect cell viability and the apoptosis rate. Western blotting was used to detect changes in the Bcl-2 expression level. We observed cell shape changes with microscopy. Immunofluorescence revealed some apoptotic nuclei. Electron microscopy revealed thick nucleoli, chromatin margination, reduced mitochondria, and dramatic vacuoles. Collectively, our findings elucidated the morphological mechanism by which NaB changed the ultrastructure of MCF-7 cells.

  3. Experimental study of retinoic acid on improving iodide uptake in MCF-7 breast cancer cells

    Institute of Scientific and Technical Information of China (English)

    FU Hong-Liang; WU Jing-Chuan; DU Xue-Liang; LI Jia-Ning; WU Zhen; ZOU Ren-Jian

    2005-01-01

    The study aims to investigate the effect of retinoic acid on the iodide uptake of MCF-7 cells and its mechanism. The iodide uptake and expression of hNIS(human sodium/iodide symporter)mRNA in the breast cancer MCF-7 cells were compared individually before and after the intervention of all-trans retinoic acid (ATRA) with the iodide uptake assay and RT-PCR. The following results are obtained: (1) when treated with all-trans retinoic acid in the concentration of 1.0 μmol/L, the capacity of iodide uptake of MCF-7 cells reached about 1.5 times of the basal state; (2) 12 h after the intervention of 1.0 μmol/L ATRA, the hNISmRNA expression of the MCF-7 cells reached maximum. The study shows that all-trans retinoic acid has the effect to improve the iodide uptake of the MCF-7 cells and this effect may result from its up-regulation of the hNISmRNA expression.

  4. Suberoyl bis-hydroxamic acid induces p53-dependent apoptosis of MCF-7 breast cancer cells

    Institute of Scientific and Technical Information of China (English)

    Zhi-gang ZHUANG; Fei FEI; Ying CHEN; Wei JIN

    2008-01-01

    Aim: To study the effects of suberoyl bis-hydroxamic acid (SBHA), an inhibitor of histone deacetylases, on the apoptosis of MCF-7 breast cancer cells. Meth-ods: Apoptosis in MCF-7 cells induced by SBHA was demonstrated by flow cytometric analysis, morphological observation, and DNA ladder. Mitochondrial membrane potential (△ψm) was measured using the fluorescent probe JC-1. The expressions of p53, p21, Bax, and PUMA were determined using RT-PCR or Western blotting analysis after the MCF-7 cells were treated with SBHA or p53 siRNA. Results: SBHA induced apoptosis in MCF-7 cells. The expressions of p53, p21, Bax, and PUMA were induced, and △ψm collapsed after treatment with SBHA. p53 siRNA abrogated the SBHA-induced apoptosis and the expressions of p53, p21, Bax, and PUMA. Conclusion: The activation of the p53 pathway is involved in SBHA-induced apoptosis in MCF-7 cells.

  5. Fourier transform infrared spectroscopy for the distinction of MCF-7 cells treated with different concentrations of 5-fluorouracil

    OpenAIRE

    WU, BI-BO; Gong, Yi-Ping; Wu, Xin-Hong; Chen, Yuan-Yuan; Chen, Fang-Fang; Jin, Li-Ting; Cheng, Bo-Ran; Hu, Fen; Xiong, Bin

    2015-01-01

    Background In order to provide personalized treatment to patients with breast cancer, an accurate, reliable and cost-efficient analytical technique is needed for drug screening and evaluation of tumor response to chemotherapy. Methods Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) was used as a tool to assess cancer cell response to chemotherapy. MCF-7 cells (human breast adenocarcinoma cell line) were treated with different concentrations of 5-fluorouracil (5...

  6. Context dependent reversion of tumor phenotype by connexin-43 expression in MDA-MB231 cells and MCF-7 cells: Role of β-catenin/connexin43 association

    Energy Technology Data Exchange (ETDEWEB)

    Talhouk, Rabih S., E-mail: rtalhouk@aub.edu.lb [Department of Biology, Faculty of Arts and Sciences, American University of Beirut, P.O. Box 11-0236, Beirut (Lebanon); Fares, Mohamed-Bilal; Rahme, Gilbert J.; Hariri, Hanaa H.; Rayess, Tina; Dbouk, Hashem A.; Bazzoun, Dana; Al-Labban, Dania [Department of Biology, Faculty of Arts and Sciences, American University of Beirut, P.O. Box 11-0236, Beirut (Lebanon); El-Sabban, Marwan E., E-mail: me00@aub.edu.lb [Department of Anatomy, Cell Biology and Physiology, Faculty of Medicine, American University of Beirut, P.O. Box 11-0236, Beirut (Lebanon)

    2013-12-10

    Connexins (Cx), gap junction (GJ) proteins, are regarded as tumor suppressors, and Cx43 expression is often down regulated in breast tumors. We assessed the effect of Cx43 over-expression in 2D and 3D cultures of two breast adenocarcinoma cell lines: MCF-7 and MDA-MB-231. While Cx43 over-expression decreased proliferation of 2D and 3D cultures of MCF-7 by 56% and 80% respectively, MDA-MB-231 growth was not altered in 2D cultures, but exhibited 35% reduction in 3D cultures. C-terminus truncated Cx43 did not alter proliferation. Untransfected MCF-7 cells formed spherical aggregates in 3D cultures, and MDA-MB-231 cells formed stellar aggregates. However, MCF-7 cells over-expressing Cx43 formed smaller sized clusters and Cx43 expressing MDA-MB-231 cells lost their stellar morphology. Extravasation ability of both MCF-7 and MDA-MB-231 cells was reduced by 60% and 30% respectively. On the other hand, silencing Cx43 in MCF10A cells, nonneoplastic human mammary cell line, increased proliferation in both 2D and 3D cultures, and disrupted acinar morphology. Although Cx43 over-expression did not affect total levels of β-catenin, α-catenin and ZO-2, it decreased nuclear levels of β-catenin in 2D and 3D cultures of MCF-7 cells, and in 3D cultures of MDA-MB-231 cells. Cx43 associated at the membrane with α-catenin, β-catenin and ZO-2 in 2D and 3D cultures of MCF-7 cells, and only in 3D conditions in MDA-MB-231 cells. This study suggests that Cx43 exerts tumor suppressive effects in a context-dependent manner where GJ assembly with α-catenin, β-catenin and ZO-2 may be implicated in reducing growth rate, invasiveness, and, malignant phenotype of 2D and 3D cultures of MCF-7 cells, and 3D cultures of MDA-MB-231 cells, by sequestering β-catenin away from nucleus. - Highlights: • Cx43 over-expressing MCF-7 and MDA-MB-231 were grown in 2D and 3D cultures. • Proliferation and growth morphology were affected in a context dependent manner. • Extravasation ability of both MCF

  7. Induction of Apoptosis in Human Breast Cancer (MCF7) Cells by n-Hexane Extract of Plectranthus amboinicus (Lour.) Spreng.

    OpenAIRE

    Hasibuan, Poppy Anjelisa Z.

    2016-01-01

    The n-hexane extract of Plectranthus amboinicus, (Lour.) Spreng. reduced the proliferation of MCF7 cells. The present study was carried out to evaluate the effect of the extract on human breast cancer cells viability and apoptosis. To detect apoptotic cells, MCF7 cells were stained with etydium bromide-acrydine orange (double staining method). Quantitative detectin of apoptotic cells was performed by fluorescens microscope. The growth of MCF7 was inhibited by treatment with n-h...

  8. Ethanolic Extract of Hedyotis corymbosa L. Increases Cytotoxic Activity of Doxorubicin on MCF-7 Breast Cancer Cell

    OpenAIRE

    Sari Haryanti; Sendy Junedi; Edy Meiyanto

    2015-01-01

    Hedyotis corymbosa L. with ursolic acid as the main compound is one of the plants that has been used for traditional medicine including to cure breast cancer disease. The aim of this research is to examine the cytotoxic activity of rumput mutiara herb ethanolic extract (ERM) and its effect in combination with doxorubicin against MCF-7 breast cancer cell line as cell model of doxorubicin resistance. Hedyotis corymbosa L. herb powder extraction was done by maceration using ethanol 96% then the...

  9. The Effect of Melatonin Adsorbed to Polyethylene Glycol Microspheres on the Survival of MCF-7 Cells.

    Science.gov (United States)

    França, Eduardo Luzía; Honorio-França, Adenilda Cristina; Fernandes, Rubian Trindade da Silva; Marins, Camila Moreira Ferreira; Pereira, Claudia Cristina de Souza; Varotti, Fernando de Pilla

    2016-01-01

    Although melatonin exhibits oncostatic properties such as antiproliferative effects, the oral bioavailability of this hormone is less than 20%. Modified drug release systems have been used to improve the pharmacological efficiency of drugs. These systems can change the pharmacokinetics and biodistribution of the associated drugs. Thus, this study investigated the effect of melatonin adsorbed to polyethylene glycol (PEG) microspheres on MCF-7 human breast cancer cells. The MCF-7 cells were obtained from the American Type Culture Collection. MCF-7 cells were preincubated for 24 h with or without melatonin (100 ng/ml), PEG microspheres or melatonin adsorbed to PEG microspheres (100 ng/ml). Viability, intracellular calcium release and apoptosis in MCF-7 cells were determined by flow cytometry. MCF-7 cells incubated with melatonin adsorbed to PEG microspheres showed a lower viability rate (40.0 ± 8.3 with melatonin adsorbed to PEG microspheres compared to 54.1 ± 7.3 with melatonin; 81.8 ± 12.5 with PEG microsphere and 92.7 ± 4.1 with medium), increased spontaneous intracellular Ca2+ release (27.0 ± 8.6 with melatonin adsorbed to PEG microspheres compared to 21.5 ± 13.4 with melatonin; 10.1 ± 5.4 with PEG microsphere and 9.1 ± 5.6 with medium) and increased apoptosis index (51.2 ± 2.7 with melatonin adsorbed to PEG microspheres compared to 36.0 ± 2.1 with melatonin; 4.9 ± 0.5 with PEG microsphere and 3.1 ± 0.6 with medium). The results indicate that melatonin adsorbed to PEG microspheres exerts antitumor effects on human MCF-7 breast cancer cells. However, clinical tests must be performed to confirm the use of melatonin adsorbed to PEG microspheres as an alternative therapy against cancer. PMID:26445481

  10. GENISTEIN INHIBITS EXPRESSION OF VASCULAR ENDOTHELIAL GROWTH FACTOR IN HER-2/NEU TRANSFECTED HUMAN BREAST CANCER MCF-7 CELLS

    Institute of Scientific and Technical Information of China (English)

    ZHU Jun-dong; YU Xiao-ping; MI Man-tian

    2006-01-01

    Objective: our previous studies have demonstrated that HER-2/neu gene expression in human breast cancer MCF-7 cells promotes angiogenesis in MCF-7 cells xenograft tumors, and genistein inhibits angiogenesis in MCF-7 cells with HER-2/neu expression xenograft tumors. Here, the effects of genistein on the expression of vascular endothelial growth factor (VEGF) inMCR-7 cells with HER-2/neu expression were further studied for exploring the molecular mechanism of anti-angiogenesis in HER-2/neu-overexpressing breast cancer by genistein. Methods: HER-2/neu-overexpressing MCF-7 cells (MCF-7/HER-2)were established by transfecting HER-2/neu gene into HER-2/neu negative expression breast cancer MCF-7 cells.Immunocytochemical staining, western blot and reverse transcription-polymerase chain reaction (RT-PCR) were adopted to measure the expression of VEGF in MCF-7/HER-2 cells treated by genistein for 24, 48 and 72h. Results: HER-2/neu expression up-regulated VEGF mRNA and protein in MCF-7 cells, genistein decreased VEGF mRNA and protein level in MCF-7/HER-2 cells in a time-dependent manner. Conclusion: These results suggest that VEGF plays an important role in HER-2/neu gene expression promoted antiogenesis in breast cancer and genistein induced down-regulation of the expression of VEGF may be one of the molecular mechanisms of its anti-angiogenesis in HER-2/neu-overexpressing breast cancer.

  11. A smart tumor targeting peptide-drug conjugate, pHLIP-SS-DOX: synthesis and cellular uptake on MCF-7 and MCF-7/Adr cells.

    Science.gov (United States)

    Song, Qin; Chuan, Xingxing; Chen, Binlong; He, Bing; Zhang, Hua; Dai, Wenbing; Wang, Xueqing; Zhang, Qiang

    2016-06-01

    Doxorubicin (DOX) is a potent anticancer drug for the treatment of tumors, but the poor specificity and multi-drug resistance (MDR) on tumor cells have restricted its application. Here, a pH and reduction-responsive peptide-drug conjugate (PDC), pHLIP-SS-DOX, was synthesized to overcome these drawbacks. pH low insertion peptide (pHLIP) is a cell penetrating peptide (CPP) with pH-dependent transmembrane ability. And because of the unique cell membrane insertion pattern, it might reverse the MDR. The cellular uptake study showed that on both drug-sensitive MCF-7 and drug-resistant MCF-7/Adr cells, pHLIP-SS-DOX obviously facilitated the uptake of DOX at pH 6.0 and the uptake level on MCF-7/Adr cells was similar with that on MCF-7 cells, indicating that pHLIP-SS-DOX had the ability to target acidic tumor cells and reverse MDR. In vitro cytotoxicity study mediated by GSH-OEt demonstrated that the cytotoxic effect of pHLIP-SS-DOX was reduction responsive, with obvious cytotoxicity at pH 6.0; while it had poor cytotoxicity at pH 7.4, no matter with or without GSH-OEt pretreatment. This illustrated that pHLIP could deliver DOX into tumor cells with acidic microenvironment specifically and could not deliver drugs into normal cells with neutral microenvironment. In summary, pHLIP-SS-DOX is a promising strategy to target drugs to tumors and provides a possibility to overcome MDR.

  12. Application of metabolomics to investigate the antitumor mechanism of flavopiridol in MCF-7 breast cancer cells.

    Science.gov (United States)

    Shao, Xiaojian; Gao, Dan; Wang, Yini; Jin, Feng; Wu, Qin; Liu, Hongxia

    2016-07-01

    Flavopiridol is reported to have potent antitumor effects by inhibition of cyclin-dependent kinases (CDKs). However, most studies of flavopiridol focus on specific genes and kinases, so the antitumor mechanism needs further elucidation at the metabolic level. In the present study, an UPLC/Q-TOF MS metabolomics approach was used to investigate its antiproliferative effects on MCF-7 breast cancer cells. Comparing flavopiridol-treated MCF-7 cells with vehicle control, 21 potential biomarkers involved in five metabolism pathways were identified. Two pathways involving glutathione metabolism and glycerophospholipid metabolism showed that glutathione (GSH) and phosphatidylcholines (PCs) levels were reduced while their oxidized products oxidized glutathione (GSSG) and lysophosphatidylcholines (LysoPCs) were greatly increased. Further investigation showed an apparent accumulation of reactive oxygen species (ROS) and a decrease in mitochondrial membrane potential (MMP). Thus, we suggest that oxidative stress was provoked in MCF-7 cells to reduce the GSH and PCs levels and cause mitochondria lesions. Moreover, cell cycle analysis showed that flavopiridol blocked cells at G1 stage, which was consistent with the depletion of spermidine and spermine that are believed to promote cancer progression. Taking these together, we concluded that flavopiridol could induce oxidative stress and cell cycle arrest, which finally lead to cell apoptosis in MCF-7 cells. This study provides a new strategy for studying the antitumor mechanism of flavopiridol, which could be used for its further improvement and application. PMID:27208856

  13. Preliminary Investigation of Myo-Inositol Phosphates Produced by ASUIA279 Phytase on MCF-7 Cancer Cells

    OpenAIRE

    N. Mohd. Yusoff; T. Nuge; N.H. Zainan; Y.Z.H-Y. Hashim; P. JAMAL; Anis Shobirin Meor Hussin; Abd-Elaziem Farouk; and H.M. Salleh

    2011-01-01

    Phytate or myo-inositol hexakisphosphates (IP6) is widely distributed in plants like rice brans. The production of myo-inositol phosphate intermediates has received much attention due to the remarkable potential health benefits offered by the compounds. In this study, the cytotoxicity of the partially purified myo-inositol phosphate fractions and commercial IP1 and IP6 were investigated against MCF-7 breast cancer cell lines. The study showed that the commercial standard IP1 and IP6 showed go...

  14. Epithelial-Mesenchymal Transitions and the Expression of Twist in MCF-7/ADR,Human Multidrug-Resistant Breast Cancer Cells

    Institute of Scientific and Technical Information of China (English)

    Fei Zhang; Yurong Shi; Lin Zhang; Bin Zhang; Xiyin Wei; Yi Yang; RUi Wang; Ruifang Niu

    2007-01-01

    OBJECTIVE To study the expression levels of Twist and epithelialmesenchymal transitions in multidrug-resistant MCF-7/ADR breast cancer cells,and to study the relationship between multidrug resistance (MDR) and metastatic potential of the cells.METHODS RT-PCR,immunohislochemical and Western blotting methods were used to examine the changes of expression levels of the transcription factor Twist.E-cadherin and N-cadherin in the MCF-7 breast cancer cell line and its multidrug-resistant variant.MCF-7/ADR.RESULTS In MCF-7 cells,the expression of E-cadherin can be detected,but there is no expression of Twisl or N-cadherin.In MCF-7/ADR cells,E-cadherin expression is lost.bul the expression of two other genes was significantly positive.CONCLUSION Epithelial-mesenchymal transitions induced by Twist,may have a relationship with enhanced invasion and metastatic potential during the development of multidrug-resistant MCF-7/ADR breast cancer cells.

  15. Human adipocytes stimulate invasion of breast cancer MCF-7 cells by secreting IGFBP-2.

    Directory of Open Access Journals (Sweden)

    Chen Wang

    Full Text Available A better understanding of the effects of human adipocytes on breast cancer cells may lead to the development of new treatment strategies. We explored the effects of adipocytes on the migration and invasion of breast cancer cells both in vitro and in vivo.To study the reciprocal effects of adipocytes and cancer cells, we co-cultured human mature adipocytes and breast cancer cells in a system devoid of heterogeneous cell-cell contact. To analyze the factors that were secreted from adipocytes and that affected the invasive abilities of breast cancer cells, we detected different cytokines in various co-culture media. To study the communication of mature adipocytes and breast cancer cells in vivo, we chose 10 metastatic pathologic samples and 10 non-metastatic pathologic samples to do immunostaining.The co-culture media of human MCF-7 breast cancer cells and human mature adipocytes increased motility of MCF-7 cells. In addition, MMP-2 was remarkably up-regulated, whereas E-cadherin was down-regulated in these MCF-7 cells. Based on our co-culture medium chip results, we chose four candidate cytokines and tested their influence on metastasis individually. We found that IGFBP-2 enhanced the invasion ability of MCF-7 cells in vitro more prominently than did the other factors. In vivo, metastatic human breast tumors had higher levels of MMP-2 than did non-metastatic tumor tissue, whereas adipocytes around metastatic breast tumors had higher levels of IGFBP-2 than did adipocytes surrounding non-metastatic breast tumors.IGFBP-2 secreted by mature adipocytes plays a key role in promoting the metastatic ability of MCF-7 breast cancer cells.

  16. 5-azacytidine induces anoikis, inhibits mammosphere formation and reduces metalloproteinase 9 activity in MCF-7 human breast cancer cells.

    Science.gov (United States)

    Chang, Hsueh-Wei; Wang, Hui-Chun; Chen, Chiau-Yi; Hung, Ting-Wei; Hou, Ming-Feng; Yuan, Shyng-Shiou F; Huang, Chih-Jen; Tseng, Chao-Neng

    2014-01-01

    Cancer stem cells are a subset of cancer cells that initiate the growth of tumors. Low levels of cancer stem cells also exist in established cancer cell lines, and can be enriched in serum-free tumorsphere cultures. Since cancer stem cells have been reported to be resilient to common chemotherapeutic drugs in comparison to regular cancer cells, screening for compounds selectively targeting cancer stem cells may provide an effective therapeutic strategy. We found that 5-azacytidine (5-AzaC) selectively induced anoikis of MCF-7 in suspension cultures with an EC₅₀ of 8.014 µM, and effectively inhibited tumorsphere formation, as well as the migration and matrix metalloproteinases-9 (MMP-9) activity of MCF-7 cells. Furthermore, 5-AzaC and radiation collaboratively inhibited MCF-7 tumorsphere formation at clinically relevant radiation doses. Investigating the underlying mechanism may provide insight into signaling pathways crucial for cancer stem cell survival and pave the way to novel potential therapeutic targets. PMID:24633350

  17. 5-Azacytidine Induces Anoikis, Inhibits Mammosphere Formation and Reduces Metalloproteinase 9 Activity in MCF-7 Human Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Hsueh-Wei Chang

    2014-03-01

    Full Text Available Cancer stem cells are a subset of cancer cells that initiate the growth of tumors. Low levels of cancer stem cells also exist in established cancer cell lines, and can be enriched in serum-free tumorsphere cultures. Since cancer stem cells have been reported to be resilient to common chemotherapeutic drugs in comparison to regular cancer cells, screening for compounds selectively targeting cancer stem cells may provide an effective therapeutic strategy. We found that 5-azacytidine (5-AzaC selectively induced anoikis of MCF-7 in suspension cultures with an EC50 of 8.014 µM, and effectively inhibited tumorsphere formation, as well as the migration and matrix metalloproteinases-9 (MMP-9 activity of MCF-7 cells. Furthermore, 5-AzaC and radiation collaboratively inhibited MCF-7 tumorsphere formation at clinically relevant radiation doses. Investigating the underlying mechanism may provide insight into signaling pathways crucial for cancer stem cell survival and pave the way to novel potential therapeutic targets.

  18. Genetic variability in a frozen batch of MCF-7 cells invisible in routine authentication affecting cell function.

    Science.gov (United States)

    Kleensang, Andre; Vantangoli, Marguerite M; Odwin-DaCosta, Shelly; Andersen, Melvin E; Boekelheide, Kim; Bouhifd, Mounir; Fornace, Albert J; Li, Heng-Hong; Livi, Carolina B; Madnick, Samantha; Maertens, Alexandra; Rosenberg, Michael; Yager, James D; Zhaog, Liang; Hartung, Thomas

    2016-01-01

    Common recommendations for cell line authentication, annotation and quality control fall short addressing genetic heterogeneity. Within the Human Toxome Project, we demonstrate that there can be marked cellular and phenotypic heterogeneity in a single batch of the human breast adenocarcinoma cell line MCF-7 obtained directly from a cell bank that are invisible with the usual cell authentication by short tandem repeat (STR) markers. STR profiling just fulfills the purpose of authentication testing, which is to detect significant cross-contamination and cell line misidentification. Heterogeneity needs to be examined using additional methods. This heterogeneity can have serious consequences for reproducibility of experiments as shown by morphology, estrogenic growth dose-response, whole genome gene expression and untargeted mass-spectroscopy metabolomics for MCF-7 cells. Using Comparative Genomic Hybridization (CGH), differences were traced back to genetic heterogeneity already in the cells from the original frozen vials from the same ATCC lot, however, STR markers did not differ from ATCC reference for any sample. These findings underscore the need for additional quality assurance in Good Cell Culture Practice and cell characterization, especially using other methods such as CGH to reveal possible genomic heterogeneity and genetic drifts within cell lines. PMID:27456714

  19. The effect of anastrozole on mRNA expression of oestrogen related gene in MCF-7 breast cancer cells

    Institute of Scientific and Technical Information of China (English)

    SONG Zhang-jun; WU Yi; MA Qing-yong

    2006-01-01

    Objective: To look for additional markers of molecular biology response to anastrozole, a new aromatase inhibitor, on the growth and mRNA expression level of MCF-7 cell. Methods: We investigated the effect of anastrzole on growth and gene expression in the human breast cancer cell line MCF-7and compared with the most widely used antiestrogen tamoxifen. We chose 4 genes to examine regulation of gene expression of estrogen regulated genes: PR A, PR B, ErbB-2 and cyclin D1. Results: Compared with the tamoxifen, a statistically significant growth inhibition was observed with anastrozole. The PRA,PR B and cyclin D1 mRNA level in anastrozole treated cells was sigificantly below the level in tamoxifen treated cells (P<0. 05). They had agonistic effect on ErbB gene (P>0.05). Conclusion: The third generation of aromatase inhibitors anastrozole exert more inhibit function in some expression of estrogen regulated genes than tomoxifen in MCF-7 cell line.

  20. Cinnamomum cassia Suppresses Caspase-9 through Stimulation of AKT1 in MCF-7 Cells but Not in MDA-MB-231 Cells

    OpenAIRE

    Sima Kianpour Rad; Kanthimathi, M. S.; Sri Nurestri Abd Malek; Guan Serm Lee; Chung Yeng Looi; Won Fen Wong

    2015-01-01

    Background Cinnamomum cassia bark is a popular culinary spice used for flavoring and in traditional medicine. C. cassia extract (CE) induces apoptosis in many cell lines. In the present study, particular differences in the mechanism of the anti-proliferative property of C. cassia on two breast cancer cell lines, MCF-7 and MDA-MB-231, were elucidated. Methodology/Principal Findings The hexane extract of C. cassia demonstrated high anti-proliferative activity against MCF-7 and MDA-MB-231 cells ...

  1. Anticancer activity of Petroselinum sativum seed extracts on MCF-7 human breast cancer cells.

    Science.gov (United States)

    Farshori, Nida Nayyar; Al-Sheddi, Ebtesam Saad; Al-Oqail, Mai Mohammad; Musarrat, Javed; Al-Khedhairy, Abdulaziz Ali; Siddiqui, Maqsood Ahmed

    2013-01-01

    Pharmacological and preventive properties of Petroselinum sativum seed extracts are well known, but the anticancer activity of alcoholic extracts and oil of Petroselinum sativum seeds on human breast cancer cells have not been explored so far. Therefore, the present study was designed to investigate the cytotoxic activities of these extracts against MCF-7 cells. Cells were exposed to 10 to 1000 μg/ml of alcoholic seed extract (PSA) and seed oil (PSO) of Petroselinum sativum for 24 h. Post-treatment, percent cell viability was studied by 3-(4, 5-dimethylthiazol-2yl)-2, 5-biphenyl tetrazolium bromide (MTT) and neutral red uptake (NRU) assays, and cellular morphology by phase contrast inverted microscopy. The results showed that PSA and PSO significantly reduced cell viability, and altered the cellular morphology of MCF-7 cells in a concentration dependent manner. Concentrations of 50 μg/ml and above of PSA and 100 μg/ml and above of PSO were found to be cytotoxic in MCF-7 cells. Cell viability at 50, 100, 250, 500 and 1000 μg/ml of PSA was recorded as 81%, 57%, 33%, 8% and 5%, respectively, whereas at 100, 250, 500, and 1000 μg/ml of PSO values were 90%, 78%, 62%, and 8%, respectively by MTT assay. MCF-7 cells exposed to 250, 500 and 1000 μg/ml of PSA and PSO lost their typical morphology and appeared smaller in size. The data revealed that the treatment with PSA and PSO of Petroselinum sativum induced cell death in MCF-7 cells. PMID:24289568

  2. The Study of Apoptotic Effect of p-Coumaric Acid on Breast Cancer Cells MCF-7

    Directory of Open Access Journals (Sweden)

    M Kolahi

    2016-06-01

    Full Text Available Introduction: Polyphenolic compounds have anti proliferative and induced apoptotic features on cancer cells. p-Coumaric acid can be abundantly found in fruits, vegetables, plant production and honey. .  Breast cancer is the most frequently diagnosed cancer among women in the world. This study aimed to investigate the effect and mechanism of p- coumaric acid on apoptosis of MCF-7 breast cancer cells. Methods: In order to study appoptic effect of p- coumaric acid, MCF-7 breast cancer cells were treated with different concentrations of p- coumaric acid (10, 37, 70, 150 and 300 mM for 24 h. Cell viability was determined using MTT assay. Apoptosis markers including phosphatidylserine exposure at the outer leaflet of the plasma membrane were measured using flow cytometery for Annexin V affinity. Results: Cell viability of MCF-7 cells was decreased with increasing of p- coumaric acid concentration. Maximal effect of p- coumaric acid was observed in cells that treated with 300 mM for 24h (p< 0.05. Viability assay showed that the IC50 of p- coumaric acid in MCF-7 cells was about 40 mM. p- coumaric acid at dose of 300 mM significantly increased the late apoptotic cells with Annexin V+ and propium iodide (PI+ features after 24 h treatment. Conclusion: The results of this study showed that p- coumaric acid had effective appoptic activity against MCF-7 cells. The results can be helpful in understanding the anticancer mechanism of p- coumaric acid and using it was suggested as an alternative or complementary drug in cancer chemotherapy.

  3. The Signaling Cascades of Ginkgolide B-Induced Apoptosis in MCF-7 Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Wen-Hsiung Chan

    2007-11-01

    Full Text Available Ginkgolide B, the major active component of Ginkgo biloba extracts, can bothstimulate and inhibit apoptotic signaling. Here, we demonstrate that ginkgolide B caninduce the production of reactive oxygen species in MCF-7 breast cancer cells, leading toan increase in the intracellular concentrations of cytoplasmic free Ca2+ and nitric oxide(NO, loss of mitochondrial membrane potential (MMP, activation of caspase-9 and -3,and increase the mRNA expression levels of p53 and p21, which are known to be involvedin apoptotic signaling. In addition, prevention of ROS generation by pretreatment withN-acetyl cysteine (NAC could effectively block intracellular Ca2+ concentrationsincreases and apoptosis in ginkgolide B-treated MCF-7 cells. Moreover, pretreatment withnitric oxide (NO scavengers could inhibit ginkgolide B-induced MMP change andsequent apoptotic processes. Overall, our results signify that both ROS and NO playedimportant roles in ginkgolide B-induced apoptosis of MCF-7 cells. Based on these studyresults, we propose a model for ginkgolide B-induced cell apoptosis signaling cascades inMCF-7 cells.

  4. Electrochemical estrogen screen method based on the electrochemical behavior of MCF-7 cells.

    Science.gov (United States)

    Li, Jinlian; Song, Jia; Bi, Sheng; Zhou, Shi; Cui, Jiwen; Liu, Jiguang; Wu, Dongmei

    2016-08-01

    It was an urgent task to develop quick, cheap and accurate estrogen screen method for evaluating the estrogen effect of the booming chemicals. In this study, the voltammetric behavior between the estrogen-free and normal fragmented MCF-7 cell suspensions were compared, and the electrochemical signal (about 0.68V attributed by xanthine and guanine) of the estrogen-free fragmented MCF-7 cell suspension was obviously lower than that of the normal one. The electrochemistry detection of ex-secretion purines showed that the ability of ex-secretion purines of cells sharp decreased due to the removing of endogenous estrogen. The results indicated that the electrochemical signal of MCF-7 cells was related to the level of intracellular estrogen. When the level of intracellular estrogen was down-regulated, the concentrations of the xanthine and hypoxanthine decreased, which led to the electrochemical signal of MCF-7 cells fall. Based on the electrochemical signal, the electrochemical estrogen screen method was established. The estrogen effect of estradiol, nonylphenol and bisphenol A was evaluated with the electrochemical method, and the result was accordant with that of MTT assay. The electrochemical estrogen screen method was simple, quickly, cheap, objective, and it exploits a new way for the evaluation of estrogenic effects of chemicals. PMID:27108272

  5. Inhibitory effects and molecular mechanisms of tetrahydrocurcumin against human breast cancer MCF-7 cells

    Directory of Open Access Journals (Sweden)

    Xiao Han

    2016-02-01

    Full Text Available Background: Tetrahydrocurcumin (THC, an active metabolite of curcumin, has been reported to have similar biological effects to curcumin, but the mechanism of the antitumor activity of THC is still unclear. Methods: The present study was to investigate the antitumor effects and mechanism of THC in human breast cancer MCF-7 cells using the methods of MTT assay, LDH assay, flow cytometry analysis, and western blot assay. Results: THC was found to have markedly cytotoxic effect and antiproliferative activity against MCF-7 cells in a dose-dependent manner with the IC50 for 24 h of 107.8 μM. Flow cytometry analysis revealed that THC mediated the cell-cycle arrest at G0/G1 phase, and 32.8% of MCF-7 cells entered the early phase of apoptosis at 100 μM for 24 h. THC also dose-dependently led to apoptosis in MCF-7 cells via the mitochondrial pathway, as evidenced by the activation of caspase-3 and caspase-9, the elevation of intracellular ROS, a decrease in Bcl-2 and PARP expression, and an increase in Bax expression. Meanwhile, cytochrome C was released to cytosol and the loss of mitochondria membrane potential (Δψm was observed after THC treatment. Conclusion: THC is an excellent source of chemopreventive agents in the treatment of breast cancer and has excellent potential to be explored as antitumor precursor compound.

  6. Electrochemical estrogen screen method based on the electrochemical behavior of MCF-7 cells.

    Science.gov (United States)

    Li, Jinlian; Song, Jia; Bi, Sheng; Zhou, Shi; Cui, Jiwen; Liu, Jiguang; Wu, Dongmei

    2016-08-01

    It was an urgent task to develop quick, cheap and accurate estrogen screen method for evaluating the estrogen effect of the booming chemicals. In this study, the voltammetric behavior between the estrogen-free and normal fragmented MCF-7 cell suspensions were compared, and the electrochemical signal (about 0.68V attributed by xanthine and guanine) of the estrogen-free fragmented MCF-7 cell suspension was obviously lower than that of the normal one. The electrochemistry detection of ex-secretion purines showed that the ability of ex-secretion purines of cells sharp decreased due to the removing of endogenous estrogen. The results indicated that the electrochemical signal of MCF-7 cells was related to the level of intracellular estrogen. When the level of intracellular estrogen was down-regulated, the concentrations of the xanthine and hypoxanthine decreased, which led to the electrochemical signal of MCF-7 cells fall. Based on the electrochemical signal, the electrochemical estrogen screen method was established. The estrogen effect of estradiol, nonylphenol and bisphenol A was evaluated with the electrochemical method, and the result was accordant with that of MTT assay. The electrochemical estrogen screen method was simple, quickly, cheap, objective, and it exploits a new way for the evaluation of estrogenic effects of chemicals.

  7. Conjugated linoleic acid isomers induced apoptosis of human breast cancer cell line MCF-7%共轭亚油酸单体诱导乳腺癌细胞MCF-7凋亡及其作用机制的研究

    Institute of Scientific and Technical Information of China (English)

    袁贤琳; 陈青; 杨湘玲; 钟翎

    2009-01-01

    目的:研究2种共轭亚油酸(conjugated linoleic acid,CLA)单体--顺9,反11-CLA(cis 9,trans11-CLA, c 9,t11-CLA)和反10,顺12- CLA(trans10,cis12-CLA, t10,c12-CLA) 诱导乳腺癌细胞MCF-7凋亡及其作用机制.方法:采用MTT法检测CLA对MCF-7细胞的生长抑制作用,锥虫蓝染色绘制CLA作用后MCF-7细胞的生长曲线;荧光显微镜观察及FCM检测MCF-7细胞的凋亡和细胞周期的改变;RT-PCR和Western印迹法检测MCF-7细胞PPARγ、Bcl-xL和Bcl-xS mRNA以及PPARγ、Bcl-2、Bax和caspase-3的蛋白表达.结果:2种CLA单体均可抑制MCF-7细胞增殖并诱导细胞凋亡,与对照组相比差异有统计学意义(P<0.05);RT-PCR和Western印迹法检测结果显示,2种CLA单体均可以提高PPARγ、Bcl-xS mRNA和PPARγ、Bax、caspase-3蛋白的表达,降低Bcl-xL mRNA和Bcl-2蛋白的表达,与对照组比较差异有统计学意义(P<0.05);且2种CLA单体对PPARγ与凋亡相关蛋白Bax、Bcl-2和caspase-3的表达影响呈剂量和时间依赖性及同步相关性.结论:c 9,t11-CLA和t10,c12-CLA对乳腺癌MCF-7细胞具有抑制生长和促凋亡的作用,CLA可能作为PPARγ的配体通过激活PPARγ-Bcl-2-caspase-3细胞凋亡信号通路而实现抑制肿瘤细胞生长的作用.

  8. Expression and significance of Shh and Gli-1 in drug-resistant cell strain of human breast cancer MCF-7%Shh和Gli-1在人乳腺癌MCF-7耐药细胞株中的表达及意义∗

    Institute of Scientific and Technical Information of China (English)

    刘瑞娟; 臧传鑫; 孙月; 韩娜娜; 孙长岗

    2016-01-01

    Objective To investigate the expression of Shh,Gli-1 in human breast cancer resistant cell line and discuss the relationship between Hedgehog signaling pathway and drug resistance of breast cancer. Methods Drug-resistant strains of human breast cancer MCF-7 was established by high concentration intermittent induction. Paclitaxel( PTX) to half maximal inhibitory concen-tration( IC50 ) on MCF-7 and MCF-7/PTX cells was determined by MTT. QPCR was used to detect the mRNA expression of Shh, Gli-1 in MCF-7 and MCF-7/PTX cells. Protein expression of Shh, Gli-1 in MCF-7 and MCF-7/PTX cells was detected by Western blotting. Results IC50 of PTX for MCF-7 cells was ( 0. 10+0. 02) mg/L, and for MCF-7/PTX cell was ( 5. 30+0. 01) mg/L. The drug resistance index was 53. 0. The expression of Shh mRNA in MCF-7 and MCF-7/PTX cells was 0. 78 ± 0. 12 and 1. 45 ± 0. 56(P<0. 01), and the expression levels of Gli-1 mRNA was 1. 86±0. 02 and 3. 56±0. 26(P<0. 01). The expression level of Shh protein in MCF-7 and MCF-7/PTX cells was 0. 58 ±0. 06 and 1. 03 ± 0. 22(P<0. 01). Gli-1 protein expression in MCF-7 and MCF-7/PTX cells was 1. 17±0. 12 and 2. 78±0. 09(P<0. 01). Conclusion Shh, Gli-1 are highly expressed in MCF-7/PTX cells, indicating that chem-otherapy may guide drug resistance of breast cancer by up-regulating the protein and gene of hedgehog signaling pathway. The target to hedgehog signaling pathway may be a new direction to overcome drug resistance.%目的:研究Shh和Gli-1在人乳腺癌耐药株中的表达情况,探讨Hedgehog信号通路与乳腺癌耐药的关系。方法高浓度间歇诱导法建立人乳腺癌耐药细胞株MCF-7/PTX,MTT法检测紫杉醇( PTX)对MCF-7MCF-7/PTX细胞的半数抑制浓度(IC50)。实时定量PCR(QPCR)检测MCF-7MCF-7/PTX细胞中Shh、Gli-1 mRNA的表达。 Western blotting检测MCF-7MCF-7/PTX细胞中Shh、Gli-1蛋白的表达。结果 PTX 对 MCF-7细胞的IC50为(0.10±0.02

  9. Hedyotis diffusa water extract diminished the cytotoxic effects of chemotherapy drugs against human breast cancer MCF7 cells.

    Science.gov (United States)

    Dong, Qiulin; Ling, Binbing; Gao, Bosong; Maley, Jason; Sammynaiken, Ramaswami; Yang, Jian

    2014-05-01

    Hedyotis diffusa is a Chinese herbal medicine widely used in combination with other herbal medicines such as Scutellaria barbata to treat various types of cancer. Late-stage and recurrent cancer patients usually use H. diffusa during chemotherapy in expecting to achieve additive or synergistic therapeutic effects. Several classes of active ingredients, including anthraquinones, iridoid glucosides and stigmasterols. have been isolated and characterized from H. diffusa. In the current study, we isolated alkaloid/flavonoid from H diffusa and showed that the crude alkaloid/flavonoid extract rather than its three major components possessed antitumor activity against human breast cancer cell line MCF7. Co-administration of H. diffusa water extract diminished the cytotoxicities of chemotherapy drugs doxorubicin, cyclophosphamide and docetaxel towards the MCF7 cells, implicating that H. diffusa should not be used during breast cancer chemotherapy. PMID:25026725

  10. Immunogold electron microscopy and confocal analyses reveal distinctive patterns of histone H3 phosphorylation during mitosis in MCF-7 cells.

    Science.gov (United States)

    Yan, Yitang; Cummings, Connie A; Sutton, Deloris; Yu, Linda; Castro, Lysandra; Moore, Alicia B; Gao, Xiaohua; Dixon, Darlene

    2016-04-01

    Histone phosphorylation has a profound impact on epigenetic regulation of gene expression, chromosome condensation and segregation, and maintenance of genome integrity. Histone H3 Serine 10 is evolutionally conserved and heavily phosphorylated during mitosis. To examine Histone H3 Serine 10 phosphorylation (H3S10ph) dynamics in mitosis, we applied immunogold labeling and confocal microscopy to visualize H3S10ph expression in MCF-7 cells. Confocal observations showed that MCF-7 cells had abundant H3S10ph expression in prophase and metaphase. In anaphase, the H3S10ph expression was significantly decreased and displayed only sparsely localized staining that mainly associated with the chromatid tips. We showed that immunogold bead density distribution followed the H3S10ph expression patterns observed in confocal analysis. At a higher magnification in metaphase, the immunogold beads were readily visible and the bead distribution along the condensed chromosomes was distinctive, indicating the specificity and reliability of the immunogold staining procedure. In anaphase, the beads were found to distribute focally in specific regions of chromatids, reinforcing the confocal observations of differential H3 phosphorylation. To our knowledge, this is the first report to show the specific H3S10ph expression with an immunogold technique and transmission electron microscopy. Additionally, with confocal microscopy, we analyzed H3S10ph expression in an immortalized cell line derived from benign uterine smooth muscle tumor cells. H3S10ph epitope was expressed more abundantly during anaphase in the benign tumor cells, and there was no dramatic differential expression within the condensed chromatid clusters as observed in MCF-7 cells. The differences in H3S10ph expression pattern and dynamics may contribute to the differential proliferative potential between benign tumor cells and MCF-7 cells.

  11. Optical coherence tomography detection of shear wave propagation in MCF7 cell modules

    Science.gov (United States)

    Razani, Marjan; Mariampillai, Adrian; Berndl, Elizabeth S. L.; Kiehl, Tim-Rasmus; Yang, Victor X. D.; Kolios, Michael C.

    2014-02-01

    In this work, we explored the potential of measuring shear wave propagation using Optical Coherence Elastography (OCE) in MCF7 cell modules (comprised of MCF7 cells and collagen) and based on a swept-source optical coherence tomography (OCT) system. Shear waves were generated using a piezoelectric transducer transmitting sine-wave bursts of 400 μs, synchronized with an OCT swept source wavelength sweep imaging system. Acoustic radiation force was applied to the MCF7 cell constructs. Differential OCT phase maps, measured with and without the acoustic radiation force, demonstrate microscopic displacement generated by shear wave propagation in these modules. The OCT phase maps are acquired with a swept-source OCT (SS-OCT) system. We also calculated the tissue mechanical properties based on the propagating shear waves in the MCF7 + collagen phantoms using the Acoustic Radiation Force (ARF) of an ultrasound transducer, and measured the shear wave speed with the OCT phase maps. This method lays the foundation for future studies of mechanical property measurements of breast cancer structures, with applications in the study of breast cancer pathologies.

  12. Downregulation of steroid receptor coactivator-2 modulates estrogen-responsive genes and stimulates proliferation of mcf-7 breast cancer cells.

    Science.gov (United States)

    Fenne, Ingvild S; Helland, Thomas; Flågeng, Marianne H; Dankel, Simon N; Mellgren, Gunnar; Sagen, Jørn V

    2013-01-01

    The p160/Steroid Receptor Coactivators SRC-1, SRC-2/GRIP1, and SRC-3/AIB1 are important regulators of Estrogen Receptor alpha (ERα) activity. However, whereas the functions of SRC-1 and SRC-3 in breast tumourigenesis have been extensively studied, little is known about the role of SRC-2. Previously, we reported that activation of the cAMP-dependent protein kinase, PKA, facilitates ubiquitination and proteasomal degradation of SRC-2 which in turn leads to inhibition of SRC-2-coactivation of ERα and changed expression of the ERα target gene, pS2. Here we have characterized the global program of transcription in SRC-2-depleted MCF-7 breast cancer cells using short-hairpin RNA technology, and in MCF-7 cells exposed to PKA activating agents. In order to identify genes that may be regulated through PKA-induced downregulation of SRC-2, overlapping transcriptional targets in response to the respective treatments were characterized. Interestingly, we observed decreased expression of several breast cancer tumour suppressor genes (e.g., TAGLN, EGR1, BCL11b, CAV1) in response to both SRC-2 knockdown and PKA activation, whereas the expression of a number of other genes implicated in cancer progression (e.g., RET, BCAS1, TFF3, CXCR4, ADM) was increased. In line with this, knockdown of SRC-2 also stimulated proliferation of MCF-7 cells. Together, these results suggest that SRC-2 may have an antiproliferative function in breast cancer cells.

  13. SZC015, a synthetic oleanolic acid derivative, induces both apoptosis and autophagy in MCF-7 breast cancer cells.

    NARCIS (Netherlands)

    Wu, Jingjun; Yang, Chun; Guo, Chao; Li, Xiaorui; Hang, Hongdong; Wang, Shisheng; Tang, Zeyao

    2016-01-01

    Breast cancer is one of the most common cancers among women with high mortality and morbidity. The present study was aimed to investigate the cytotoxic mechanism of SZC015, a synthetic oleanolic acid (OA) derivative, in MCF-7 human breast cancer cells. SZC015 reduced MCF-7 cell viability with an IC5

  14. Methylation Level of Alu Elements is Closely Associated with Metastasis Ability of Breast Cancer Cell Lines MCF7 and MDA-MB-435S%Alu序列甲基化水平与两种乳腺癌细胞系转移能力高度相关

    Institute of Scientific and Technical Information of China (English)

    吕京澴; 徐酩; 谭建新; 王宗丹; 韩晓; 孙玉洁

    2009-01-01

    目的 探讨Alu序列甲基化与乳腺癌转移潜能的关系.方法 用亚硫酸氢盐修饰联合限制性内切酶分析法(combined bisulfite restriction analysis,COBRA)、亚硫酸氢盐修饰结合直接测序法(bisulfite sequencing,BSP)检测两株转移能力不同的乳腺癌细胞系MCF7和MDA-MB-435S中Alu甲基化状态,每个样品挑取10个克隆测序.结果 MCF7和MDA-MB-435S中Alu甲基化水平均明显低于报道的正常人体细胞Alu甲基化水平,但MCF7中Alu的甲基化水平明显高于MDA-MB-435S.同时,Alu甲基化位点在基因组中分布不均匀.结论 乳腺癌的转移潜能可能与Alu序列的去甲基化以及去甲基化位点的分布相关,值得进一步探讨.%Objective To determine the relationship between methylation level of Alu elements and breast cancer metastasis.Method COBRA and BSP were employed to detect the methylation level of Alu elements in two breast cancer cell lines (MCF7 and MDA-MB-435S) with significant different metastasis potential. For BSP analysis, ten clones of each sample were analyzed.Result The methylation level of Alu in MDA-MB-435S cells was lower than that in MCF7 cells, although the Alu methylation levels in both MCF7 and MDA-MB-435S cells were lower than those in normal tissue cells reported previously. Moreover, the methylated Alu sequences were non-uniform distributed in the genome.Conclusion Demethylation of Alu elements may be involved in breast cancer metastasis. The correlation between methylation status of Alu and breast cancer metastasis deserves further investigation.

  15. PEA3activates CXCL12transcription in MCF-7breast cancer cells%PEA3 activates CXCL12 transcription in MCF-7 breast cancer cells

    Institute of Scientific and Technical Information of China (English)

    CHEN Li; CHEN Bo-bin; LI Jun-jie; JIN Wei; SHAO Zhi-min

    2011-01-01

    Objective To explore the activity of PEA3 ( polyomavirus enhancer activator 3 ) on CXCL12 (Chemokine CXC motif ligand 12) transcription and to reveal the role of PEA3 involved in CXCL12-mediated metastasis and angiogenesis in breast cancer. Methods Methods such as cell transfection, ChIP assay (chromatin immunoprecipitation ), and siRNA (small interfering RNA) were applied to demonstrate and confirm the interaction between PEA3 and CXCL12. Results Over-expression of PEA3 could increase the CXCL12 mRNA level and the CXCL12 promoter activity in human MCF-7 breast cancer cells. ChIP assay demonstrated that PEA3 could bind to the CXCL12 promoter in the cells transfected with PEA3 expression vector. PEA3 siRNA decreased CXCL12 promoter activity and the binding of PEA3 to the CXCL12 promoter in MCF-7 cells. Conclusions PEA3 could activate CXCL12 promoter transcription. It may be a potential mechanism of tumor angiogenesis and metastasis regarding of PEA3 and CXCL12.

  16. Confocal Raman data analysis enables identifying apoptosis of MCF-7 cells caused by anticancer drug paclitaxel

    Science.gov (United States)

    Salehi, Hamideh; Middendorp, Elodie; Panayotov, Ivan; Dutilleul, Pierre-Yves Collard; Vegh, Attila-Gergely; Ramakrishnan, Sathish; Gergely, Csilla; Cuisinier, Frederic

    2013-05-01

    Confocal Raman microscopy is a noninvasive, label-free imaging technique used to study apoptosis of live MCF-7 cells. The images are based on Raman spectra of cells components, and their apoptosis is monitored through diffusion of cytochrome c in cytoplasm. K-mean clustering is used to identify mitochondria in cells, and correlation analysis provides the cytochrome c distribution inside the cells. Our results demonstrate that incubation of cells for 3 h with 10 μM of paclitaxel does not induce apoptosis in MCF-7 cells. On the contrary, incubation for 30 min at a higher concentration (100 μM) of paclitaxel induces gradual release of the cytochrome c into the cytoplasm, indicating cell apoptosis via a caspase independent pathway.

  17. Adiponectin mediates antiproliferative and apoptotic responses in human MCF7 breast cancer cells

    International Nuclear Information System (INIS)

    It is well established that obesity is a risk factor for breast cancer and that blood levels of adiponectin, a hormone mainly secreted by white adipocytes, are inversely correlated with the body fat mass. As adiponectin elicits anti-proliferative effects in some cell types, we tested the hypothesis that adiponectin could influence human breast cancer MCF-7 cell growth. Here we show that MCF-7 cells express adiponectin receptors and respond to human recombinant adiponectin by reducing their growth, AMPkinase activation, and p42/p44 MAPkinase inactivation. Further, we demonstrate that the anti-proliferative effect of adiponectin involves activation of cell apoptosis and inhibition of cell cycle. These findings suggest that adiponectin could act in vivo as a paracrine/endocrine growth inhibitor towards mammary epithelial cells. Moreover, adipose adiponectin production being strongly reduced in obesity, this study may help to explain why obesity is a risk factor of developing breast cancers

  18. Procyanidin b2 cytotoxicity to mcf-7 human breast adenocarcinoma cells.

    Science.gov (United States)

    Avelar, Monalisa M; Gouvêa, Cibele M C P

    2012-07-01

    Procyanidins have attracted some attention due to their demonstrated chemopreventive action, a relatively new and promising strategy to prevent cancer. Breast cancer is one of the leading causes of death in women worldwide and its treatment needs improvements. The aim of this work was to verify the procyanidin dimmer B2 cytotoxic effect to MCF-7 human breast cancer cells. MCF-7 cells were cultured in RPMI medium, containing 20% fetal bovine serum and antibiotics in a CO2 chamber. The cells were treated with different concentrations of B2 and its cytotoxic potential was assessed by the sulforhodamine B assay, morphologically through haematoxylin-eosin staining and by DNA fragmentation analysis. The significance of differences between experimental conditions was determined using the ANOVA test, followed by the Tukey test when P<0.05. Cell proliferation decreased in a concentration and time-dependent manner upon procyanidin dimmer B2 treatment, being 19.20 μM the IC50. Procyanidin dimmer B2 treatment displayed concentration and time-dependent decline in MCF-7 cells compared to control and also induced morphological alterations compatible with cell-death induction. Cell condensation and cell diameter decreased (3.5 folds compared to control cells), after 48 h cell-exposure to 50 μM procyanidin dimmer B2, but the DNA ladder formation was not observed. In conclusion, our results demonstrated that procyanidin dimmer B2 exhibits cytotoxic activity to MCF-7 cells and it could be a potential antineoplastic agent. Further studies are necessary to clarify the procyanidin dimmer B2 mechanism of action. The evaluation of biological efficacy of individual components is an important step towards drug discovery and development. PMID:23626391

  19. Procyanidin B2 cytotoxicity to MCF-7 human breast adenocarcinoma cells

    Directory of Open Access Journals (Sweden)

    Monalisa M Avelar

    2012-01-01

    Full Text Available Procyanidins have attracted some attention due to their demonstrated chemopreventive action, a relatively new and promising strategy to prevent cancer. Breast cancer is one of the leading causes of death in women worldwide and its treatment needs improvements. The aim of this work was to verify the procyanidin dimmer B2 cytotoxic effect to MCF-7 human breast cancer cells. MCF-7 cells were cultured in RPMI medium, containing 20% fetal bovine serum and antibiotics in a CO 2 chamber. The cells were treated with different concentrations of B2 and its cytotoxic potential was assessed by the sulforhodamine B assay, morphologically through haematoxylin-eosin staining and by DNA fragmentation analysis. The significance of differences between experimental conditions was determined using the ANOVA test, followed by the Tukey test when P<0.05. Cell proliferation decreased in a concentration and time-dependent manner upon procyanidin dimmer B2 treatment, being 19.20 μM the IC 50 . Procyanidin dimmer B2 treatment displayed concentration and time-dependent decline in MCF-7 cells compared to control and also induced morphological alterations compatible with cell-death induction. Cell condensation and cell diameter decreased (3.5 folds compared to control cells, after 48 h cell-exposure to 50 μM procyanidin dimmer B2, but the DNA ladder formation was not observed. In conclusion, our results demonstrated that procyanidin dimmer B2 exhibits cytotoxic activity to MCF-7 cells and it could be a potential antineoplastic agent. Further studies are necessary to clarify the procyanidin dimmer B2 mechanism of action. The evaluation of biological efficacy of individual components is an important step towards drug discovery and development.

  20. Euclidean distance harmonic method for establishing theoretical MAPK/Erk signaling pathway in treated breast cancer line MCF-7

    Institute of Scientific and Technical Information of China (English)

    ZHANG Hong-xin; LU Ying-hua; ZHANG Jin-ling

    2007-01-01

    Hierarchical clustering algorithms, such as Pearson's correlation, Euclidean distance, Euclidean distance harmonic,Spearman rank correlation, Kendall's tau, and City-block distance, were used to find the best way to establish theoretical MAPK/Erk signaling pathway on the basis of breast cancer line MCF-7 gene expressions. The algorithm consttucts a hierarchy from top to bottom on the basis of a self-organizing tree. It dynamically finds the number of clusters at each level. It was found that only Euclidean distance harmonic is fit for the analysis of the cascade composed from a RAF1 (c-Raf), a MKNK1, a MAPKK (MEK1/2) to MAPK (Erk) in breast cancer line MCF-7. The result is consistent with the biological experimental MAP/Erk signaling pathway, and the theoretical MAPK/Erk signaling pathway on breast cancer line MCF-7 is set up.

  1. Surface enhanced Raman spectroscopy measurements of MCF7 cells adhesion in confined micro-environments

    KAUST Repository

    De Vitis, Stefania

    2015-05-01

    Undoubtedly cells can perceive the external environment, not only from a biochemical point of view with the related signalling pathways, but also from a physical and topographical perspective. In this sense controlled three dimensional micro-structures as well as patterns at the nano-scale can affect and guide the cell evolution and proliferation, due to the fact that the surrounding environment is no longer isotropic (like the flat surfaces of standard cell culturing) but possesses well defined symmetries and anisotropies. In this work regular arrays of silicon micro-pillars with hexagonal arrangement are used as culturing substrates for MCF-7 breast cancer cells. The characteristic size and spacing of the pillars are tens of microns, comparable with MCF-7 cell dimensions and then well suited to induce acceptable external stimuli. It is shown that these cells strongly modify their morphology for adapting themselves to the micro-structured landscape, by means of protrusions from the main body of the cell. Scanning electron microscopy along with both Raman micro-spectroscopy and surface enhanced Raman spectroscopy are used for topographical and biochemical studies of the new cell arrangement. We have revealed that single MCF-7 cells exploit their capability to produce invadopodia, usually generated to invade the neighboring tissue in metastatic activity, for spanning and growing across separate pillars. © 2015 Elsevier Ltd.

  2. Multispectral lensless digital holographic microscope: imaging MCF-7 and MDA-MB-231 cancer cell cultures

    Science.gov (United States)

    Ryle, James P.; Molony, Karen M.; McDonnell, Susan; Naughton, Thomas J.; Sheridan, John T.

    2009-08-01

    Digital holography is the process where an object's phase and amplitude information is retrieved from intensity images obtained using a digital camera (e.g. CCD or CMOS sensor). In-line digital holographic techniques offer full use of the recording device's sampling bandwidth, unlike off-axis holography where object information is not modulated onto carrier fringes. Reconstructed images are obscured by the linear superposition of the unwanted, out of focus, twin images. In addition to this, speckle noise degrades overall quality of the reconstructed images. The speckle effect is a phenomenon of laser sources used in digital holographic systems. Minimizing the effects due to speckle noise, removal of the twin image and using the full sampling bandwidth of the capture device aids overall reconstructed image quality. Such improvements applied to digital holography can benefit applications such as holographic microscopy where the reconstructed images are obscured with twin image information. Overcoming such problems allows greater flexibility in current image processing techniques, which can be applied to segmenting biological cells (e.g. MCF-7 and MDA-MB- 231) to determine their overall cell density and viability. This could potentially be used to distinguish between apoptotic and necrotic cells in large scale mammalian cell processes, currently the system of choice, within the biopharmaceutical industry.

  3. Monobenzyltin Complex C1 Induces Apoptosis in MCF-7 Breast Cancer Cells through the Intrinsic Signaling Pathway and through the Targeting of MCF-7-Derived Breast Cancer Stem Cells via the Wnt/β-Catenin Signaling Pathway

    Science.gov (United States)

    Fani, Somayeh; Dehghan, Firouzeh; Karimian, Hamed; Mun Lo, Kong; Ebrahimi Nigjeh, Siyamak; Swee Keong, Yeap; Soori, Rahman; May Chow, Kit; Kamalidehghan, Behnam; Mohd Ali, Hapipah; Mohd Hashim, Najihah

    2016-01-01

    Monobenzyltin Schiff base complex, [N-(3,5-dichloro-2-oxidobenzylidene)-4-chlorobenzyhydrazidato](o-methylbenzyl)aquatin(IV) chloride, C1, is an organotin non-platinum metal-based agent. The present study was conducted to investigate its effects on MCF-7 cells with respect to the induction of apoptosis and its inhibitory effect against MCF-7 breast cancer stem cells. As determined in a previous study, compound C1 revealed strong antiproliferative activity on MCF-7 cells with an IC50 value of 2.5 μg/mL. Annexin V/propidium iodide staining coupled with flow cytometry indicated the induction of apoptosis in treated cells. Compound C1 induced apoptosis in MCF-7 cells and was mediated through the intrinsic pathway with a reduction in mitochondrial membrane potential and mitochondrial cytochrome c release to cytosol. Complex C1 activated caspase 9 as a result of cytochrome c release. Subsequently, western blot and real time PCR revealed a significant increase in Bax and Bad expression and a significant decrease in the expression levels of Bcl2 and HSP70. Furthermore, a flow cytometric analysis showed that treatment with compound C1 caused a significant arrest of MCF-7 cells in G0/G1 phase. The inhibitory analysis of compound C1 against derived MCF-7 stem cells showed a significant reduction in the aldehyde dehydrogenase-positive cell population and a significant reduction in the population of MCF-7 cancer stem cells in primary, secondary, and tertiary mammospheres. Moreover, treatment with C1 down-regulated the Wnt/β-catenin self-renewal pathway. These findings indicate that complex C1 is a suppressive agent of MCF-7 cells that functions through the induction of apoptosis, cell cycle arrest, and the targeting of MCF-7-derived cancer stem cells. This work may lead to a better treatment strategy for the reduction of breast cancer recurrence. PMID:27529753

  4. Cytotoxicity and apoptosis induced by a plumbagin derivative in estrogen positive MCF-7 breast cancer cells

    KAUST Repository

    Sagar, Sunil

    2014-01-31

    Plumbagin [5-hydroxy- 2-methyl-1, 4-naphthaquinone] is a well-known plant derived anticancer lead compound. Several efforts have been made to synthesize its analogs and derivatives in order to increase its anticancer potential. In the present study, plumbagin and its five derivatives have been evaluated for their antiproliferative potential in one normal and four human cancer cell lines. Treatment with derivatives resulted in dose- and time-dependent inhibition of growth of various cancer cell lines. Prescreening of compounds led us to focus our further investigations on acetyl plumbagin, which showed remarkably low toxicity towards normal BJ cells and HepG2 cells. The mechanisms of apoptosis induction were determined by APOPercentage staining, caspase-3/7 activation, reactive oxygen species production and cell cycle analysis. The modulation of apoptotic genes (p53, Mdm2, NF-kB, Bad, Bax, Bcl-2 and Casp-7) was also measured using real time PCR. The positive staining using APOPercentage dye, increased caspase-3/7 activity, increased ROS production and enhanced mRNA expression of proapoptotic genes suggested that acetyl plumbagin exhibits anticancer effects on MCF-7 cells through its apoptosis-inducing property. A key highlighting point of the study is low toxicity of acetyl plumbagin towards normal BJ cells and negligible hepatotoxicity (data based on HepG2 cell line). Overall results showed that acetyl plumbagin with reduced toxicity might have the potential to be a new lead molecule for testing against estrogen positive breast cancer. 2014 Bentham Science Publishers.

  5. Evaluation of Cytotoxicity of Sagebrush Plain Extract on Human Breast Cancer MCF7 Cells

    Directory of Open Access Journals (Sweden)

    B Gordanian

    2013-07-01

    Full Text Available Abstract Background & aim: Several studies have reported anti-cancer properties of sagebrush plain. The aim of this study was to evaluate the cytotoxicity of the methanol extract of sagebrush plain on human breast cancer MCF7 cells. Methods: In the present experimental study, the toxic effects of methanol extracts of flowers, leaves, stems and roots of sagebrush plain from of Khorassan and Esfahan province were tested on human breast cancer cells MCF-7 and normal cells HEK293 . Plant samples were extracted by methanol and their toxic effects on normal and breast cancer cells at concentrations of 5.62, 125, 250 and 500 µg/ml was determined by MTT. Both breast cancer cells MCF-7 and normal HEK293 cells were cultured in RPMI-1640 medium and DMEM containing 10% fetal calf serums were cultured. Data were analyzed by one-way ANOVA. Results: The methanol extract of sagebrush showed toxicity on MCF7 cells. The extract of Khorasan showed higher toxicity than Esfahan province. IC50 of sagebrush plant for all parts of the plant were obtained more than 500 µg/ml, but the IC50 of sagebrush plant of Khorasan region in leaf and flower were 205 ± 1.3 and 213 ± 5.3µg respectively. The leaves and flowers in both cases had the highest cytotoxicity. Plant extracts in both regions did not show significant cytotoxicity on normal HEK293 cells. Conclusion: The extract of the sagebrush plain region of Khorasan region showed greater cytotoxicity than Esfahan. It seems that different environmental conditionshas considerable cytotoxicity. Keywords: Sagebrush Plain, MTT, Breast Cancer

  6. Fluoropyrimidine sensitivity of human MCF-7 breast cancer cells stably transfected with human uridinehosphorylase

    OpenAIRE

    Cuq, P; Rouquet, C; Evrard, A.; Ciccolini, J; Vian, L; Cano, J-P

    2001-01-01

    The relationship between uridine phosphorylase (UP) expression level in cancer cells and the tumour sensitivity to fluoropyrimidines is unclear. In this study, we found that UP overexpression by gene transfer, and the subsequent efficient metabolic activation of 5-fluorouracil (5-FU) by the ribonucleotide pathway, does not increase the fluoropyrimidine sensitivity of MCF-7 human cancer cells. © 2001 Cancer Research Campaign http://www.bjcancer.com

  7. Antitumor activity of colloidal silver on MCF-7 human breast cancer cells

    Directory of Open Access Journals (Sweden)

    Franco-Molina Moisés A

    2010-11-01

    Full Text Available Abstract Background Colloidal silver has been used as an antimicrobial and disinfectant agent. However, there is scarce information on its antitumor potential. The aim of this study was to determine if colloidal silver had cytotoxic effects on MCF-7 breast cancer cells and its mechanism of cell death. Methods MCF-7 breast cancer cells were treated with colloidal silver (ranged from 1.75 to 17.5 ng/mL for 5 h at 37°C and 5% CO2 atmosphere. Cell Viability was evaluated by trypan blue exclusion method and the mechanism of cell death through detection of mono-oligonucleosomes using an ELISA kit and TUNEL assay. The production of NO, LDH, and Gpx, SOD, CAT, and Total antioxidant activities were evaluated by colorimetric assays. Results Colloidal silver had dose-dependent cytotoxic effect in MCF-7 breast cancer cells through induction of apoptosis, shown an LD50 (3.5 ng/mL and LD100 (14 ng/mL (*P Conclusions The present results showed that colloidal silver might be a potential alternative agent for human breast cancer therapy.

  8. Mitogenic Effects of Phosphatidylcholine Nanoparticles on MCF-7 Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Yamila B. Gándola

    2014-01-01

    Full Text Available Lecithins, mainly composed of the phospholipids phosphatidylcholines (PC, have many different uses in the pharmaceutical and clinical field. PC are involved in structural and biological functions as membrane trafficking processes and cellular signaling. Considering the increasing applications of lecithin-based nanosystems for the delivery of therapeutic agents, the aim of the present work was to determine the effects of phosphatidylcholine nanoparticles over breast cancer cellular proliferation and signaling. PC dispersions at 0.01 and 0.1% (w/v prepared in buffer pH 7.0 and 5.0 were studied in the MCF-7 breast cancer cell line. Neutral 0.1% PC-derived nanoparticles induced the activation of the MEK-ERK1/2 pathway, increased cell viability and induced a 1.2 fold raise in proliferation. These biological effects correlated with the increase of epidermal growth factor receptor (EGFR content and its altered cellular localization. Results suggest that nanoparticles derived from PC dispersion prepared in buffer pH 7.0 may induce physicochemical changes in the plasma membrane of cancer cells which may affect EGFR cellular localization and/or activity, increasing activation of the MEK-ERK1/2 pathway and inducing proliferation. Results from the present study suggest that possible biological effects of delivery systems based on lecithin nanoparticles should be taken into account in pharmaceutical formulation design.

  9. Tetrahydro-iso-alpha Acids Antagonize Estrogen Receptor Alpha Activity in MCF-7 Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Maëlle Lempereur

    2016-01-01

    Full Text Available Tetrahydro-iso-alpha acids commonly called THIAA or Tetra are modified hop acids extracted from hop (Humulus lupulus L. which are frequently used in brewing industry mainly in order to provide beer bitterness and foam stability. Interestingly, molecular structure of tetrahydro-iso-alpha acids is close to a new type of estrogen receptor alpha (ERα antagonists aimed at disrupting the binding of coactivators containing an LxxLL motif (NR-box. In this work we show that THIAA decreases estradiol-stimulated proliferation of MCF-7 (ERα-positive breast cancer cells. Besides, we show that it inhibits ERα transcriptional activity. Interestingly, this extract fails to compete with estradiol for ERα binding and does not significantly impact the receptor turnover rate in MCF-7 cells, suggesting that it does not act like classical antiestrogens. Hence, we demonstrate that THIAA is able to antagonize ERα estradiol-induced recruitment of the LxxLL binding motif.

  10. Tetrahydro-iso-alpha Acids Antagonize Estrogen Receptor Alpha Activity in MCF-7 Breast Cancer Cells.

    Science.gov (United States)

    Lempereur, Maëlle; Majewska, Claire; Brunquers, Amandine; Wongpramud, Sumalee; Valet, Bénédicte; Janssens, Philippe; Dillemans, Monique; Van Nedervelde, Laurence; Gallo, Dominique

    2016-01-01

    Tetrahydro-iso-alpha acids commonly called THIAA or Tetra are modified hop acids extracted from hop (Humulus lupulus L.) which are frequently used in brewing industry mainly in order to provide beer bitterness and foam stability. Interestingly, molecular structure of tetrahydro-iso-alpha acids is close to a new type of estrogen receptor alpha (ERα) antagonists aimed at disrupting the binding of coactivators containing an LxxLL motif (NR-box). In this work we show that THIAA decreases estradiol-stimulated proliferation of MCF-7 (ERα-positive breast cancer cells). Besides, we show that it inhibits ERα transcriptional activity. Interestingly, this extract fails to compete with estradiol for ERα binding and does not significantly impact the receptor turnover rate in MCF-7 cells, suggesting that it does not act like classical antiestrogens. Hence, we demonstrate that THIAA is able to antagonize ERα estradiol-induced recruitment of the LxxLL binding motif. PMID:27190515

  11. Ligand-specific sequential regulation of transcription factors for differentiation of MCF-7 cells

    Directory of Open Access Journals (Sweden)

    Toyoda Tetsuro

    2009-11-01

    Full Text Available Abstract Background Sharing a common ErbB/HER receptor signaling pathway, heregulin (HRG induces differentiation of MCF-7 human breast cancer cells while epidermal growth factor (EGF elicits proliferation. Although cell fates resulting from action of the aforementioned ligands completely different, the respective gene expression profiles in early transcription are qualitatively similar, suggesting that gene expression during late transcription, but not early transcription, may reflect ligand specificity. In this study, based on both the data from time-course quantitative real-time PCR on over 2,000 human transcription factors and microarray of all human genes, we identified a series of transcription factors which may control HRG-specific late transcription in MCF-7 cells. Results We predicted that four transcription factors including EGR4, FRA-1, FHL2, and DIPA should have responsibility of regulation in MCF-7 cell differentiation. Validation analysis suggested that one member of the activator protein 1 (AP-1 family, FOSL-1 (FRA-1 gene, appeared immediately following c-FOS expression, might be responsible for expression of transcription factor FHL2 through activation of the AP-1 complex. Furthermore, RNAi gene silencing of FOSL-1 and FHL2 resulted in increase of extracellular signal-regulated kinase (ERK phosphorylation of which duration was sustained by HRG stimulation. Conclusion Our analysis indicated that a time-dependent transcriptional regulatory network including c-FOS, FRA-1, and FHL2 is vital in controlling the ERK signaling pathway through a negative feedback loop for MCF-7 cell differentiation.

  12. A novel protoapigenone analog RY10-4 induces breast cancer MCF-7 cell death through autophagy via the Akt/mTOR pathway

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xuenong; Wei, Han; Liu, Ziwei; Yuan, Qianying [Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation of Hubei Province, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030 (China); Wei, Anhua [Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030 (China); Shi, Du; Yang, Xian [Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation of Hubei Province, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030 (China); Ruan, Jinlan, E-mail: jinlan8152@163.com [Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation of Hubei Province, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030 (China)

    2013-07-15

    Protoapigenone is a unique flavonoid and enriched in many ferns, showing potent antitumor activity against a broad spectrum of human cancer cell lines. RY10-4, a modified version of protoapigenone, manifested better anti-proliferation activity in human breast cancer cell line MCF-7. The cytotoxicity of RY10-4 against MCF-7 cells is exhibited in both time- and concentration-dependent manners. Here we investigated a novel effect of RY10-4 mediated autophagy in autophagy defect MCF-7 cells. Employing immunofluorescence assay for microtubule-associated protein light-chain 3 (LC3), monodansylcadaverine staining, Western blotting analyses for LC3 and p62 as well as ultrastructural analysis by transmission electron microscopy, we showed that RY10-4 induced autophagy in MCF-7 cells but protoapigenone did not. Meanwhile, inhibition of autophagy by pharmacological and genetic approaches significantly increased the viability of RY10-4 treated cells, suggesting that the autophagy induced by RY10-4 played as a promotion mechanism for cell death. Further studies revealed that RY10-4 suppressed the activation of mTOR and p70S6K via the Akt/mTOR pathway. Our results provided new insights for the mechanism of RY10-4 induced cell death and the cause of RY10-4 showing better antitumor activity than protoapigenone, and supported further evidences for RY10-4 as a lead to design a promising antitumor agent. - Highlights: • We showed that RY10-4 induced autophagy in MCF-7 cells but protoapigenone did not. • Autophagy induced by RY10-4 played as a promotion mechanism for cell death. • RY10-4 induced autophagy in MCF-7 cell through the Akt/mTOR pathway. • We provided new insights for the mechanism of RY10-4 induced cell death.

  13. In situ synthesized BSA capped gold nanoparticles: Effective carrier of anticancer drug Methotrexate to MCF-7 breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Murawala, Priyanka [Physical and Materials Chemistry Division, National Chemical Laboratory, Pune 411008 (India); Tirmale, Amruta [Physical and Materials Chemistry Division, National Chemical Laboratory, Pune 411008 (India); National Centre for Cell Science, NCCS, Pune 411007 (India); Shiras, Anjali, E-mail: anjalishiras@nccs.res.in [National Centre for Cell Science, NCCS, Pune 411007 (India); Prasad, B.L.V., E-mail: pl.bhagavatula@ncl.res.in [Physical and Materials Chemistry Division, National Chemical Laboratory, Pune 411008 (India)

    2014-01-01

    The proficiency of MTX loaded BSA capped gold nanoparticles (Au-BSA-MTX) in inhibiting the proliferation of breast cancer cells MCF-7 as compared to the free drug Methotrexate (MTX) is demonstrated based on MTT and Ki-67 proliferation assays. In addition, DNA ladder gel electrophoresis studies, flow cytometry and TUNEL assay confirmed the induction of apoptosis by MTX and Au-BSA-MTX in MCF-7 cells. Notably, Au-BSA-MTX was found to have higher cytotoxicity on MCF-7 cells compared with an equivalent dose of free MTX. The enhanced activity is attributed to the preferential uptake of Au-BSA-MTX particles by MCF-7 cells due to the presence of BSA that acts as a source of nutrient and energy to the rapidly proliferating MCF-7 cells. Moreover, the targeting ability of the drug MTX to the over expressed folate receptors on MCF-7 cells also contributes to the enhanced uptake and activity. Taken together, these results unveil that Au-BSA-MTX could be more effective than free drug for cancer treatment. - Highlights: • Gold nanoparticles prepared using bovine serum albumin as a reducing and capping agent. • These gold nanoparticles are extremely stable under strong electrolyte and pH conditions. • The anticancer drug methotrexate has been loaded on the Au-BSA nanoparticles. • Due to BSA loading these are taken up by cancerous cells preferentially. • Better proficiency in inhibiting MCF-7 cells as compared to the free drug Methotrexate is demonstrated.

  14. In situ synthesized BSA capped gold nanoparticles: Effective carrier of anticancer drug Methotrexate to MCF-7 breast cancer cells

    International Nuclear Information System (INIS)

    The proficiency of MTX loaded BSA capped gold nanoparticles (Au-BSA-MTX) in inhibiting the proliferation of breast cancer cells MCF-7 as compared to the free drug Methotrexate (MTX) is demonstrated based on MTT and Ki-67 proliferation assays. In addition, DNA ladder gel electrophoresis studies, flow cytometry and TUNEL assay confirmed the induction of apoptosis by MTX and Au-BSA-MTX in MCF-7 cells. Notably, Au-BSA-MTX was found to have higher cytotoxicity on MCF-7 cells compared with an equivalent dose of free MTX. The enhanced activity is attributed to the preferential uptake of Au-BSA-MTX particles by MCF-7 cells due to the presence of BSA that acts as a source of nutrient and energy to the rapidly proliferating MCF-7 cells. Moreover, the targeting ability of the drug MTX to the over expressed folate receptors on MCF-7 cells also contributes to the enhanced uptake and activity. Taken together, these results unveil that Au-BSA-MTX could be more effective than free drug for cancer treatment. - Highlights: • Gold nanoparticles prepared using bovine serum albumin as a reducing and capping agent. • These gold nanoparticles are extremely stable under strong electrolyte and pH conditions. • The anticancer drug methotrexate has been loaded on the Au-BSA nanoparticles. • Due to BSA loading these are taken up by cancerous cells preferentially. • Better proficiency in inhibiting MCF-7 cells as compared to the free drug Methotrexate is demonstrated

  15. Photosensitization by Diaziquone: Correlation Between Diaziquone Cytotoxicity and Photoinduced Free Radicals in MCF-7 Cells

    Science.gov (United States)

    Al-Nabulsi, Isaf

    The ability of visible light to enhance the activity of diaziquone (AZQ) was evaluated in MCF-7 human breast cancer cells. Exponentially growing monolayers of MCF -7 cells were incubated for 1 hr with AZQ (IC_ {90}, 0.05 muM, IC50, 0.3 muM, or various concentrations of AZQ) prior to variable time intervals of visible light irradiation. Irradiations were performed using a 100W quartz-halogen lamp or 100W mercury arc lamp with a dose rate of 30 or 170 mW/m ^2, respectively. The effect of visible light and/or AZQ on cellular growth was determined by clonogenic assay. The results show that MCF-7 cells were sensitive to growth inhibition by AZQ. Without AZQ, visible light irradiation had no effect on cell survival, while with AZQ, visible light potentiated its cytotoxicity by a factor of 1.6 at 10% survival. This potentiation of AZQ activity is correlated with the formation of free radicals (hydroxyl radicals and AZQ semiquinone) and with the production of DNA strand breaks as measured by electron paramagnetic resonance and gel electrophoresis, respectively. These results support the hypothesis that free radical formation is part of the mechanism of action of AZQ. Moreover, they indicate that visible light irradiation can increase the activity of AZQ and may allow its use in the treatment of tumor in human patients.

  16. Phthalates inhibit tamoxifen-induced apoptosis in MCF-7 human breast cancer cells.

    Science.gov (United States)

    Kim, In Young; Han, Soon Young; Moon, Aree

    2004-12-01

    Environmental estrogens represent a class of compounds that can mimic the function or activity of the endogenous estrogen 17 -estradiol (E2). Phthalates including butyl benzyl phthalate (BBP), di(n-butyl) phthalate (DBP), and di(2-ethylhexyl) phthalate (DEHP) are used as plasticizers, and also widely used in food wraps and cosmetic formulations. Phthalates have been shown to mimic estrogen and are capable of binding to the estrogen receptor (ER). It has been demonstrated that estrogen promotes drug resistance to tamoxifen (TAM) in breast cancer. In order to further evaluate the potential role of the phthalates as environmental estrogens, the effect of phthalates was investigated on TAM-induced apoptosis in MCF-7 human breast cancer cells. Our results show that phthalates, BBP (100 M), DBP (10 M), and DEHP (10 M), significantly increased cell proliferation in MCF-7, but not in MDA-MB-231 cells. In addition, BBP, DBP, and DEHP mimicked estrogen in the inhibition of TAM-induced apoptosis in MCF-7 cells. Our data suggest that the inhibitory effect of phthalates on TAM-induced apoptosis involves an increase in intracellular Bcl-2 to Bax ratio. Given that the phthalates are widely used in cosmetics mainly for women, our findings that revealed the promoting effect of BBP, DBP, and DEHP on chemotherapeutic drug resistance to TAM in breast cancer may be of biological relevance.

  17. Modulation of Tamoxifen Cytotoxicity by Caffeic Acid Phenethyl Ester in MCF-7 Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Tarek K. Motawi

    2016-01-01

    Full Text Available Although Tamoxifen (TAM is one of the most widely used drugs in managing breast cancer, many women still relapse after long-term therapy. Caffeic acid phenethyl ester (CAPE is a polyphenolic compound present in many medicinal plants and in propolis. The present study examined the effect of CAPE on TAM cytotoxicity in MCF-7 cells. MCF-7 cells were treated with different concentrations of TAM and/or CAPE for 48 h. This novel combination exerted synergistic cytotoxic effects against MCF-7 cells via induction of apoptotic machinery with activation of caspases and DNA fragmentation, along with downregulation of Bcl-2 and Beclin 1 expression levels. However, the mammalian microtubule-associated protein light chain LC 3-II level was unchanged. Vascular endothelial growth factor level was also decreased, whereas levels of glutathione and nitric oxide were increased. In conclusion, CAPE augmented TAM cytotoxicity via multiple mechanisms, providing a novel therapeutic approach for breast cancer treatment that can overcome resistance and lower toxicity. This effect provides a rationale for further investigation of this combination.

  18. Studies on resistant induction of breast cancer cell MCF-7 to tamoxifen in vitro%三苯氧胺诱导人乳腺癌MCF-7细胞株耐药及自噬的关系研究

    Institute of Scientific and Technical Information of China (English)

    马小俞; 刘哲斌; 喻三见; 李爽; 侯意枫; 邵志敏

    2011-01-01

    Background and purpose: Tamoxifen (TAM), the pioneering selective estrogen receptor modulator (SERM), which blocks estrogen action by binding to the ER in breast cancers, has been used ubiquitously for endocrine therapy for the hormone-sensitive breast cancer. Intrinsic and acquired resistance to TAM limits the clinical use of TAM to a narrow therapeutic window and they are big challenges to the drug therapy for breast cancer patients. Better understanding of the TAM resistant mechanisms is therefore of considerable clinical significance. In our study, we induced breast cancer cell MCF-7 resistant to TAM in vitro and tried to explore the changes of autophagic levels and the expression of ERK (extracellular signal-regulated kinase, one of MAPK family proteins) and Phospho-ERKl/2 in TAM resistant cells compared with MCF-7 cells. Methods: Stepwise TAM selection was used to establish the TAM resistant TR5 subline. Autophagic vacuoles in cells were observed by means of transmission electron microscopy. The growth of the two cell lines were measured by CCK8, and the expression of LC3 H, ERK1/2 and Phospho-ERKl/2 were measured by Western blot. Results: The TAM resistant cell line TR5 we established can be resistant to 5 umol/ L TAM. The number of autophagic vacuoles and the expression of LC3 D protein in TR5 were obviously higher than that in MCF-7. There was no significant difference in the protein expression level of ERK 1/2 between MCF-7 and TR5 cells, but the level of Phospho-ERKl/2 was markedly higher in TR5 cells than that in MCF-7 cells. Conclusion: TAM resistant MCF-7 cells have relatively high autophagic level and MAPK pathway is involved in facilitating TAM resistance.%背景与目的:三苯氧胺(tamoxifen)作为第一代选择性雌激素受体调节剂(selective estrogen receptor modulator,SERM)被广泛地应用于激素敏感型乳腺癌的内分泌一线治疗.三苯氧胺耐药的发生严重限制了临床治疗,是乳腺癌患者用药面临的重大

  19. Modulation of Δ9-tetrahydrocannabinol-induced MCF-7 breast cancer cell growth by cyclooxygenase and aromatase

    International Nuclear Information System (INIS)

    Δ9-Tetrahydrocannabinol (Δ9-THC), a major constituent of marijuana, has been shown to stimulate the growth of MCF-7 breast cancer cells through cannabinoid receptor-independent signaling [Takeda, S., Yamaori, S., Motoya, E., Matsunaga, T., Kimura, T., Yamamoto, I., Watanabe, K., 2008. Δ9-Tetrahydrocannabinol enhances MCF-7 cell proliferation via cannabinoid receptor-independent signaling. Toxicology 245, 141-146]. Although the growth of MCF-7 cells is known to be stimulated by 17β-estradiol (E2), the interaction of Δ9-THC and E2 in MCF-7 cell growth is not fully clarified so far. In the present study, by using E2-sensitive MCF-7 cells that have expressed cyclooxygenase-2 (COX-2) and cytochrome P450 19 (aromatase), we studied whether or not COX-2 and aromatase are involved in Δ9-THC-mediated MCF-7 cell proliferation. It was shown that Δ9-THC-induced MCF-7 cell growth was inhibited by COX-2 inhibitors and was stimulated by arachidonic acid (a COX substrate). However, the growth of MCF-7 cells induced by Δ9-THC was not stimulated by PGE2, and the expression of aromatase was not affected by COX-2 inhibitors, arachidonic acid, and PGE2, suggesting that there is a disconnection between COX-2 (PGE2) and aromatase in Δ9-THC-mediated MCF-7 cell proliferation. On the other hand, Δ9-THC-induced MCF-7 cell growth was elevated by two kinds of aromatase inhibitors. Taken together with the evidence that Δ9-THC-induced MCF-7 cell proliferation was interfered with testosterone (an aromatase substrate) and exogenously provided E2, it is suggested that (1) the growth stimulatory effects of Δ9-THC are mediated by the product(s) of COX-2 except for PGE2, (2) the action of Δ9-THC is modulated by E2, and (3) COX-2 and aromatase are individually engaged in the proliferation of MCF-7 cells induced by Δ9-THC.

  20. L-leucine transport in human breast cancer cells (MCF-7 and MDA-MB-231): kinetics, regulation by estrogen and molecular identity of the transporter.

    Science.gov (United States)

    Shennan, D B; Thomson, J; Gow, I F; Travers, M T; Barber, M C

    2004-08-30

    The transport of L-leucine by two human breast cancer cell lines has been examined. L-leucine uptake by MDA-MB-231 and MCF-7 cells was via a BCH-sensitive, Na+ -independent pathway. L-leucine uptake by both cell lines was inhibited by L-alanine, D-leucine and to a lesser extent by L-lysine but not by L-proline. Estrogen (17beta-estradiol) stimulated L-leucine uptake by MCF-7 but not by MDA-MB-231 cells. L-leucine efflux from MDA-MB-231 and MCF-7 cells was trans-stimulated by BCH in a dose-dependent fashion. The effect of external BCH on L-leucine efflux from both cell types was almost abolished by reducing the temperature from 37 to 4 degrees C. There was, however, a significant efflux of L-leucine under zero-trans conditions which was also temperature-sensitive. L-glutamine, L-leucine, D-leucine, L-alanine, AIB and L-lysine all trans-stimulated L-leucine release from MDA-MB-231 and MCF-7 cells. In contrast, D-alanine and L-proline had little or no effect. The anti-cancer agent melphalan inhibited L-leucine uptake by MDA-MB-231 cells but had no effect on L-leucine efflux. Quantitative real-time PCR revealed that LAT1 mRNA was approximately 200 times more abundant than LAT2 mRNA in MCF-7 cells and confirmed that MDA-MB-231 cells express LAT1 but not LAT2 mRNA. LAT1 mRNA levels were higher in MCF-7 cells than in MDA-MB-231 cells. Furthermore, LAT1 mRNA was more abundant than CD98hc mRNA in both MDA-MB-231 and MCF-7 cells. The results suggest that system L is the major transporter for L-leucine in both MDA-MB-231 and MCF-7 cells. It is possible that LAT1 may be the major molecular correlate of system L in both cell types. However, not all of the properties of system L reflected those of LAT1/LAT2/CD98hc. PMID:15328053

  1. Regulatory effects of ΔFosB on proliferation and apoptosis of MCF-7 breast cancer cells.

    Science.gov (United States)

    Li, Hui; Li, Lihui; Zheng, Huiling; Yao, Xiaotong; Zang, Wenjuan

    2016-05-01

    Matrix metalloproteinase-9 (MMP-9) plays a vital role in tumor angiogenesis, cell migration, and invasiveness because it can degrade almost all basement membrane and extracellular matrix components. MMP-9 has been reported in many cancers including breast cancer, lung cancer, and colon cancer. ΔFosB in mammary epithelial cells has been shown to regulate cell proliferation, differentiation, and death. We found that ΔFosB increased the expression of MMP-9 in MCF-7 breast cancer cells. ΔFosB overexpression in MCF-7 cells increased cellular viability and decreased cell apoptosis. SB-3CT, an inhibitor of MMP-9, promoted apoptosis, inhibited cell proliferation, induced cell cycle arrest, and downregulated the expression of antiapoptotic genes Bcl-2 and Bcl-xl in MCF-7 cells. ΔFosB increased the number of MCF-7 cells in G2/M and S phases, upregulated the expression of Bcl-2 and Bcl-xl, and protected MCF-7 cells from apoptosis induced by MMP-9 inhibition. We also found that ΔFosB overexpression in MCF-7 cells inhibited Ca(2+)-induced apoptosis and promoted cell proliferation. Therefore, ΔFosB may be a potential target in breast cancer cell apoptosis by regulating the expression of MMP-9. PMID:26608367

  2. Influence of cell cycle on responses of MCF-7 cells to benzo[a]pyrene

    Directory of Open Access Journals (Sweden)

    Giddings Ian

    2011-06-01

    Full Text Available Abstract Background Benzo[a]pyrene (BaP is a widespread environmental genotoxic carcinogen that damages DNA by forming adducts. This damage along with activation of the aryl hydrocarbon receptor (AHR induces complex transcriptional responses in cells. To investigate whether human cells are more susceptible to BaP in a particular phase of the cell cycle, synchronised breast carcinoma MCF-7 cells were exposed to BaP. Cell cycle progression was analysed by flow cytometry, DNA adduct formation was assessed by 32P-postlabeling analysis, microarrays of 44K human genome-wide oligos and RT-PCR were used to detect gene expression (mRNA changes and Western blotting was performed to determine the expression of some proteins, including cytochrome P450 (CYP 1A1 and CYP1B1, which are involved in BaP metabolism. Results Following BaP exposure, cells evaded G1 arrest and accumulated in S-phase. Higher levels of DNA damage occurred in S- and G2/M- compared with G0/G1-enriched cultures. Genes that were found to have altered expression included those involved in xenobiotic metabolism, apoptosis, cell cycle regulation and DNA repair. Gene ontology and pathway analysis showed the involvement of various signalling pathways in response to BaP exposure, such as the Catenin/Wnt pathway in G1, the ERK pathway in G1 and S, the Nrf2 pathway in S and G2/M and the Akt pathway in G2/M. An important finding was that higher levels of DNA damage in S- and G2/M-enriched cultures correlated with higher levels of CYP1A1 and CYP1B1 mRNA and proteins. Moreover, exposure of synchronised MCF-7 cells to BaP-7,8-diol-9,10-epoxide (BPDE, the ultimate carcinogenic metabolite of BaP, did not result in significant changes in DNA adduct levels at different phases of the cell cycle. Conclusions This study characterised the complex gene response to BaP in MCF-7 cells and revealed a strong correlation between the varying efficiency of BaP metabolism and DNA damage in different phases of the cell

  3. FOXA1 positively regulates gene expression by changing gene methylation status in human breast cancer MCF-7 cells

    OpenAIRE

    ZHENG, LU; Qian, Bo; Tian, Duo; Tang, Tong; Wan, Shengyun; Wang, Lei; Zhu, Lixin; Geng, Xiaoping

    2015-01-01

    Objective: DNA methylation is an important epigenetic modification with tumor suppressor gene silencing in cancer. The mechanisms underlying DNA methylation patterns are still poorly understood. This study aims to evaluate the potential value of FOXA1 for controlling gene CpG island methylation in breast cancer. Methods: FOXA1 was down-regulated by transfection with siRNA and up-regulated by transfection with plasmid in MCF-7 cell lines. The DNA methylation and mRNA levels were examined by qM...

  4. A naringenin–tamoxifen combination impairs cell proliferation and survival of MCF-7 breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Hatkevich, Talia; Ramos, Joseph; Santos-Sanchez, Idalys; Patel, Yashomati M., E-mail: ympatel@uncg.edu

    2014-10-01

    Since over 60% of breast cancers are estrogen receptor positive (ER+), many therapies have targeted the ER. The ER is activated by both estrogen binding and phosphorylation. While anti-estrogen therapies, such as tamoxifen (Tam) have been successful they do not target the growth factor promoting phosphorylation of the ER. Other proliferation pathways such as the phosphatidylinositol-3 kinase, (PI3K) and the mitogen-activated protein kinase (MAPK) pathways are activated in breast cancer cells and are associated with poor prognosis. Thus targeting multiple cellular proliferation and survival pathways at the onset of treatment is critical for the development of more effective therapies. The grapefruit flavanone naringenin (Nar) is an inhibitor of both the PI3K and MAPK pathways. Previous studies examining either Nar or Tam used charcoal-stripped serum which removed estrogen as well as other factors. We wanted to use serum containing medium in order to retain all the potential inducers of cell proliferation so as not to exclude any targets of Nar. Here we show that a Nar–Tam combination is more effective than either Tam alone or Nar alone in MCF-7 breast cancer cells. We demonstrate that a Nar–Tam combination impaired cellular proliferation and viability to a greater extent than either component alone in MCF-7 cells. Furthermore, the use of a Nar–Tam combination requires lower concentrations of both compounds to achieve the same effects on proliferation and viability. Nar may function by inhibiting both PI3K and MAPK pathways as well as localizing ERα to the cytoplasm in MCF-7 cells. Our results demonstrate that a Nar–Tam combination induces apoptosis and impairs proliferation signaling to a greater extent than either compound alone. These studies provide critical information for understanding the molecular mechanisms involved in cell proliferation and apoptosis in breast cancer cells. - Highlights: • Nar–Tam impairs cell viability more effectively than

  5. Copper ferrite nanoparticle-induced cytotoxicity and oxidative stress in human breast cancer MCF-7 cells.

    Science.gov (United States)

    Ahamed, Maqusood; Akhtar, Mohd Javed; Alhadlaq, Hisham A; Alshamsan, Aws

    2016-06-01

    Copper ferrite (CuFe2O4) nanoparticles (NPs) are important magnetic materials currently under research due to their applicability in nanomedicine. However, information concerning the biological interaction of copper ferrite NPs is largely lacking. In this study, we investigated the cellular response of copper ferrite NPs in human breast cancer (MCF-7) cells. Copper ferrite NPs were prepared by co-precipitation technique with the thermal effect. Prepared NPs were characterized by X-ray diffraction (XRD), field emission transmission electron microscopy (FETEM) and dynamic light scattering (DLS). Characterization data showed that copper ferrite NPs were crystalline, spherical with smooth surfaces and average diameter of 15nm. Biochemical studies showed that copper ferrite NPs induce cell viability reduction and membrane damage in MCF-7 cells and degree of induction was dose- and time-dependent. High SubG1 cell population during cell cycle progression and MMP loss with a concomitant up-regulation of caspase-3 and caspase-9 genes suggested that copper ferrite NP-induced cell death through mitochondrial pathway. Copper ferrite NP was also found to induce oxidative stress in MCF-7 cells as indicated by reactive oxygen species (ROS) generation and glutathione depletion. Cytotoxicity due to copper ferrite NPs exposure was effectively abrogated by N-acetyl-cysteine (ROS scavenger) suggesting that oxidative stress could be the plausible mechanism of copper ferrite NPs toxicity. Further studies are underway to explore the toxicity mechanisms of copper ferrite NPs in different types of human cells. This study warrants further generation of extensive biointeraction data before their application in nanomedicine.

  6. Radiosensitizing effect of conjugated linoleic acid in MCF-7 and MDA-MB-231 breast cancer cells

    International Nuclear Information System (INIS)

    Apoptotic pathways in breast cancer cells are frequently altered, reducing the efficiency of radiotherapy. Conjugated linoleic acid (CLA), known to trigger apoptosis, was tested as radiosensitizer in breast cancer cells MCF-7 and MDA-MB-231. The CLA-mix, made up of the isomers CLA-9cis 11trans and CLA-10trans 12cis, was compared to three purified isomers, i.e., the CLA-9cis 11cis, CLA-9cis 11trans, and CLA-10trans 12cis. Using the apoptotic marker YO-PRO-1, the CLA-9cis 11cis at 50 μmol/L turned out to be the best apoptotic inducer leading to a 10-fold increase in MCF-7 cells and a 2,5-fold increase in MDA-MB-231 cells, comparatively to the CLA-mix. Contrary to previous studies on colorectal and prostate cancer cells, CLA-10trans 12cis does not lead to an apoptotic response on breast cancer cell lines MCF-7 and MDA-MB-231. Our results also suggest that the main components of the CLA-mix (CLA-9cis 11trans and CLA-10trans 12cis) are not involved in the induction of apoptosis in the breast cancer cells studied. A dose of 5 Gy did not induce apoptosis in MCF-7 and MDA-MB-231 cells. The addition of CLA-9cis 11cis or CLA-mix has allowed us to observe a radiation-induced apoptosis, with the CLA-9cis 11cis being about 8-fold better than the CLA-mix. CLA-9cis 11cis turned out to be the best radiosensitizer, although the isomers CLA-9cis 11trans and CLA-10trans 12cis have also reduced the cell survival following irradiation, but using a mechanism not related to apoptosis. In conclusion, the radiosensitizing property of CLA-9cis 11cis supports its potential as an agent to improve radiotherapy against breast carcinoma. (author)

  7. Insulin like growth factor 2 regulation of aryl hydrocarbon receptor in MCF-7 breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Tomblin, Justin K.; Salisbury, Travis B., E-mail: salisburyt@marshall.edu

    2014-01-17

    Highlights: •IGF-2 stimulates concurrent increases in AHR and CCND1 expression. •IGF-2 promotes the binding of AHR to the endogenous cyclin D1 promoter. •AHR knockdown inhibits IGF-2 stimulated increases in CCND1 mRNA and protein. •AHR knockdown inhibits IGF-2 stimulated increases in MCF-7 proliferation. -- Abstract: Insulin like growth factor (IGF)-1 and IGF-2 stimulate normal growth, development and breast cancer cell proliferation. Cyclin D1 (CCND1) promotes cell cycle by inhibiting retinoblastoma protein (RB1). The aryl hydrocarbon receptor (AHR) is a major xenobiotic receptor that also regulates cell cycle. The purpose of this study was to investigate whether IGF-2 promotes MCF-7 breast cancer proliferation by inducing AHR. Western blot and quantitative real time PCR (Q-PCR) analysis revealed that IGF-2 induced an approximately 2-fold increase (P < .001) in the expression of AHR and CCND1. Chromatin immunoprecipitation (ChIP), followed by Q-PCR indicated that IGF-2 promoted (P < .001) a 7-fold increase in AHR binding on the CCND1 promoter. AHR knockdown significantly (P < .001) inhibited IGF-2 stimulated increases in CCND1 mRNA and protein. AHR knockdown cells were less (P < .001) responsive to the proliferative effects of IGF-2 than control cells. Collectively, our findings have revealed a new regulatory mechanism by which IGF-2 induction of AHR promotes the expression of CCND1 and the proliferation of MCF-7 cells. This previously uncharacterized pathway could be important for the proliferation of IGF responsive cancer cells that also express AHR.

  8. Selection of a MCF-7 Breast Cancer Cell Subpopulation with High Sensitivity to IL-1β: Characterization of and Correlation between Morphological and Molecular Changes Leading to Increased Invasiveness

    Directory of Open Access Journals (Sweden)

    Eloy Andres Pérez-Yépez

    2012-01-01

    Full Text Available Cancer and inflammation are closely related in tumor malignancy prognosis. Breast cancer MCF-7 cells have a poor invasive phenotype, although, under IL-1β stimulus, acquire invasive features. Cell response heterogeneity has precluded precise evaluation of the malignant transition. MCF-7A3 cells were selected for high sensitivity to IL-1β stimulus, uniform expression of CXCR4, and stability of IL1-RI. Structural changes, colony formation ability, proliferation rate, chemotaxis, Matrigel invasion, E-cadherin mRNA expression and protein localization were determined in these cells and in MCF-7 parental cells under the stimulus of IL-1β. Selected MCF-7A3 cells showed a uniform response to IL-1β stimulation increasing features of invasive cells such as scattering, colony formation, proliferation, chemokinesis and invasion. Basal expression of E-cadherin mRNA was higher, and IL-1β stimulus had no further effect at early times of cytokine exposure. Total E-cadherin levels remained unchanged in parental cells, whereas levels decreased, as MCF-7A3 cells became fibroblastoid or scattered. Triton X-100 soluble/insoluble E-cadherin ratios were highly increased in these cells, while, in MCF-7pl cells, ratios could not be correlated with morphology changes. MCF-7A3 cells uniform response to IL-1β allowed characterization of changes induced by the cytokine that had not been assessed when using heterogeneous cell lines.

  9. Effects of AGM-1470 and pentosan polysulphate on tumorigenicity and metastasis of FGF-transfected MCF-7 cells.

    OpenAIRE

    McLeskey, S W; Zhang, L.; Trock, B. J.; Kharbanda, S; Liu, Y; Gottardis, M. M.; Lippman, M E; Kern, F. G.

    1996-01-01

    Previously, we described FGF-1- or FGF-4-transfected MCF-7 breast carcinoma cells which are tumorigenic and metastatic in untreated or tamoxifen-treated ovariectomised nude mice. In this study, we have assessed the effects of AGM-1470, an antiangiogenic agent, and pentosan polysulphate (PPS), an agent that abrogates the effects of FGFs, on tumour growth and metastasis produced by these FGF-transfected MCF-7 cells. Untreated or tamoxifen-treated ovariectomised mice were injected with FGF-trans...

  10. In situ synthesized BSA capped gold nanoparticles: effective carrier of anticancer drug methotrexate to MCF-7 breast cancer cells.

    Science.gov (United States)

    Murawala, Priyanka; Tirmale, Amruta; Shiras, Anjali; Prasad, B L V

    2014-01-01

    The proficiency of MTX loaded BSA capped gold nanoparticles (Au-BSA-MTX) in inhibiting the proliferation of breast cancer cells MCF-7 as compared to the free drug Methotrexate (MTX) is demonstrated based on MTT and Ki-67 proliferation assays. In addition, DNA ladder gel electrophoresis studies, flow cytometry and TUNEL assay confirmed the induction of apoptosis by MTX and Au-BSA-MTX in MCF-7 cells. Notably, Au-BSA-MTX was found to have higher cytotoxicity on MCF-7 cells compared with an equivalent dose of free MTX. The enhanced activity is attributed to the preferential uptake of Au-BSA-MTX particles by MCF-7 cells due to the presence of BSA that acts as a source of nutrient and energy to the rapidly proliferating MCF-7 cells. Moreover, the targeting ability of the drug MTX to the over expressed folate receptors on MCF-7 cells also contributes to the enhanced uptake and activity. Taken together, these results unveil that Au-BSA-MTX could be more effective than free drug for cancer treatment.

  11. Effect of 3-bromopyruvate acid on the redox equilibrium in non-invasive MCF-7 and invasive MDA-MB-231 breast cancer cells.

    Science.gov (United States)

    Kwiatkowska, Ewa; Wojtala, Martyna; Gajewska, Agnieszka; Soszyński, Mirosław; Bartosz, Grzegorz; Sadowska-Bartosz, Izabela

    2016-02-01

    Novel approaches to cancer chemotherapy employ metabolic differences between normal and tumor cells, including the high dependence of cancer cells on glycolysis ("Warburg effect"). 3-Bromopyruvate (3-BP), inhibitor of glycolysis, belongs to anticancer drugs basing on this principle. 3-BP was tested for its capacity to kill human non-invasive MCF-7 and invasive MDA-MB-231 breast cancer cells. We found that 3-BP was more toxic for MDA-MB-231 cells than for MCF-7 cells. In both cell lines, a statistically significant decrease of ATP and glutathione was observed in a time- and 3-BP concentration-dependent manner. Transient increases in the level of reactive oxygen species and reactive oxygen species was observed, more pronounced in MCF-7 cells, followed by a decreasing tendency. Activities of glutathione peroxidase, glutathione reductase (GR) and glutathione S-transferase (GST) decreased in 3-BP treated MDA-MB-231 cells. For MCF-7 cells decreases of GR and GST activities were noted only at the highest concentration of 3-BP.These results point to induction of oxidative stress by 3-BP via depletion of antioxidants and inactivation of antioxidant enzymes, more pronounced in MDA-MB-231 cells, more sensitive to 3-BP.

  12. Effect of 3-bromopyruvate acid on the redox equilibrium in non-invasive MCF-7 and invasive MDA-MB-231 breast cancer cells.

    Science.gov (United States)

    Kwiatkowska, Ewa; Wojtala, Martyna; Gajewska, Agnieszka; Soszyński, Mirosław; Bartosz, Grzegorz; Sadowska-Bartosz, Izabela

    2016-02-01

    Novel approaches to cancer chemotherapy employ metabolic differences between normal and tumor cells, including the high dependence of cancer cells on glycolysis ("Warburg effect"). 3-Bromopyruvate (3-BP), inhibitor of glycolysis, belongs to anticancer drugs basing on this principle. 3-BP was tested for its capacity to kill human non-invasive MCF-7 and invasive MDA-MB-231 breast cancer cells. We found that 3-BP was more toxic for MDA-MB-231 cells than for MCF-7 cells. In both cell lines, a statistically significant decrease of ATP and glutathione was observed in a time- and 3-BP concentration-dependent manner. Transient increases in the level of reactive oxygen species and reactive oxygen species was observed, more pronounced in MCF-7 cells, followed by a decreasing tendency. Activities of glutathione peroxidase, glutathione reductase (GR) and glutathione S-transferase (GST) decreased in 3-BP treated MDA-MB-231 cells. For MCF-7 cells decreases of GR and GST activities were noted only at the highest concentration of 3-BP.These results point to induction of oxidative stress by 3-BP via depletion of antioxidants and inactivation of antioxidant enzymes, more pronounced in MDA-MB-231 cells, more sensitive to 3-BP. PMID:26715289

  13. Modulation of curcumin-induced Akt phosphorylation and apoptosis by PI3K inhibitor in MCF-7 cells

    International Nuclear Information System (INIS)

    Curcumin has been shown to induce apoptosis in various malignant cancer cell lines. One mechanism of curcumin-induced apoptosis is through the PI3K/Akt signaling pathway. Akt, also known as protein kinase B (PKB), is a member of the family of phosphatidylinositol 3-OH-kinase regulated Ser/Thr kinases. The active Akt regulates cell survival and proliferation; and inhibits apoptosis. In this study we found that curcumin induces apoptotic cell death in MCF-7 cells, as assessed by MTT assay, DNA ladder formation, PARP cleavage, p53 and Bax induction. At apoptotic inducing concentration, curcumin induces a dramatic Akt phosphorylation, accompanied by an increased phosphorylation of glycogen synthase kinase 3β (GSK3β), which has been considered to be a pro-growth signaling molecule. Combining curcumin with PI3K inhibitor, LY290042, synergizes the apoptotic effect of curcumin. The inhibitor LY290042 was capable of attenuating curcumin-induced Akt phosphorylation and activation of GSK3β. All together, our data suggest that blocking the PI3K/Akt survival pathway sensitizes the curcumin-induced apoptosis in MCF-7 cells.

  14. Modulation of curcumin-induced Akt phosphorylation and apoptosis by PI3K inhibitor in MCF-7 cells

    Energy Technology Data Exchange (ETDEWEB)

    Kizhakkayil, Jaleel; Thayyullathil, Faisal; Chathoth, Shahanas; Hago, Abdulkader; Patel, Mahendra [Cell Signaling Laboratory, Department of Biochemistry, Faculty of Medicine and Health Sciences, UAE University, P.O. Box 17666, Al Ain (United Arab Emirates); Galadari, Sehamuddin, E-mail: sehamuddin@uaeu.ac.ae [Cell Signaling Laboratory, Department of Biochemistry, Faculty of Medicine and Health Sciences, UAE University, P.O. Box 17666, Al Ain (United Arab Emirates)

    2010-04-09

    Curcumin has been shown to induce apoptosis in various malignant cancer cell lines. One mechanism of curcumin-induced apoptosis is through the PI3K/Akt signaling pathway. Akt, also known as protein kinase B (PKB), is a member of the family of phosphatidylinositol 3-OH-kinase regulated Ser/Thr kinases. The active Akt regulates cell survival and proliferation; and inhibits apoptosis. In this study we found that curcumin induces apoptotic cell death in MCF-7 cells, as assessed by MTT assay, DNA ladder formation, PARP cleavage, p53 and Bax induction. At apoptotic inducing concentration, curcumin induces a dramatic Akt phosphorylation, accompanied by an increased phosphorylation of glycogen synthase kinase 3{beta} (GSK3{beta}), which has been considered to be a pro-growth signaling molecule. Combining curcumin with PI3K inhibitor, LY290042, synergizes the apoptotic effect of curcumin. The inhibitor LY290042 was capable of attenuating curcumin-induced Akt phosphorylation and activation of GSK3{beta}. All together, our data suggest that blocking the PI3K/Akt survival pathway sensitizes the curcumin-induced apoptosis in MCF-7 cells.

  15. Piper betle shows antioxidant activities, inhibits MCF-7 cell proliferation and increases activities of catalase and superoxide dismutase

    Directory of Open Access Journals (Sweden)

    Abrahim Noor

    2012-11-01

    Full Text Available Abstract Background Breast cancer is the most common form of cancer and the focus on finding chemotherapeutic agents have recently shifted to natural products. Piper betle is a medicinal plant with various biological activities. However, not much data is available on the anti-cancer effects of P. betle on breast cancer. Due to the current interest in the potential effects of antioxidants from natural products in breast cancer treatment, we investigated the antioxidant activities of the leaves of P. betle and its inhibitory effect on the proliferation of the breast cancer cell line, MCF-7. Methods The leaves of P. betle were extracted with solvents of varying polarities (water, methanol, ethyl acetate and hexane and their phenolic and flavonoid content were determined using colorimetric assays. Phenolic composition was characterized using HPLC. Antioxidant activities were measured using FRAP, DPPH, superoxide anion, nitric oxide and hyroxyl radical scavenging assays. Biological activities of the extracts were analysed using MTT assay and antioxidant enzyme (catalase, superoxide dismutase, glutathione peroxidase assays in MCF-7 cells. Results Overall, the ethyl acetate extract showed the highest ferric reducing activity and radical scavenging activities against DPPH, superoxide anion and nitric oxide radicals. This extract also contained the highest phenolic content implying the potential contribution of phenolics towards the antioxidant activities. HPLC analyses revealed the presence of catechin, morin and quercetin in the leaves. The ethyl acetate extract also showed the highest inhibitory effect against the proliferation of MCF-7 cells (IC50=65 μg/ml. Treatment of MCF-7 cells with the plant extract increased activities of catalase and superoxide dismutase. Conclusions Ethyl acetate is the optimal solvent for the extraction of compounds with antioxidant and anti-proliferative activities. The increased activities of catalase and superoxide

  16. Nelfinavir targets multiple drug resistance mechanisms to increase the efficacy of doxorubicin in MCF-7/Dox breast cancer cells.

    Science.gov (United States)

    Chakravarty, Geetika; Mathur, Aditi; Mallade, Pallavi; Gerlach, Samantha; Willis, Joniece; Datta, Amrita; Srivastav, Sudesh; Abdel-Mageed, Asim B; Mondal, Debasis

    2016-05-01

    Development of multidrug resistance (MDR) remains a significant problem in cancer chemotherapy and underscores the importance of using chemosensitizers. Well known MDR mechanisms include: (i) upregulation of drug-efflux; (ii) increased signaling via AKT; and (iii) decreased apoptosis. Therefore, chemosensitizers should target multiple resistance mechanisms. We investigated the efficacy of nelfinavir (NFV), a clinically approved anti-HIV drug, in increasing doxorubicin (DOX) toxicity in a MDR breast cancer cell line, MCF-7/Dox. As compared to parental MCF-7 cells, the MCF-7/Dox were 15-20 fold more resistant to DOX-induced cytotoxicity at 48 h post-exposure (DOX IC50 = 1.8 μM vs. 32.4 μM). Coexposures to NFV could significantly (p cells. Multiple exposures to physiologic concentrations of NFV (2.25 μM or 6.75 μM) decreased DOX-IC50 by 21-fold and 50-fold, respectively. Interestingly, although single exposure to NFV transiently induced P-glycoprotein (P-gp) levels, multiple treatments with NFV inhibited both P-gp expression and efflux function, which increased intracellular DOX concentrations. Single exposure to NFV augmented the markers of cell-survival (AKT) and autophagy (LC3-II), whereas multiple exposures enabled suppression of both total AKT (t-AKT) and insulin like growth factor-1 (IGF-1)-induced phosphorylated AKT (p-AKT) levels. Multiple exposures to NFV also resulted in increased unfolded protein response (UPR) transducers, e.g. Grp78, p-PERK, p-eIF2α, and ATF-4; and endoplasmic reticulum (ER) stress induced death sensors, e.g. CHOP & TRIB-3. Multiple exposures to NFV also abrogated the mitogenic effects of IGF-1. In mice carrying MCF-7/Dox tumor xenografts, intraperitoneal (i.p.) injection of NFV (20 mg/kg/day) and DOX (2 mg/kg/twice/wk) decreased tumor growth more significantly (p cells and should be tested as an adjunct to chemotherapy. PMID:26844637

  17. Endoplasmic Reticulum Stress-induced Overexpression of CCL5 in Human Breast Cancer Cell MCF-7%内质网应激对乳腺癌MCF-7细胞CCL5表达的影响

    Institute of Scientific and Technical Information of China (English)

    范威; 潘翠萍; 张懿敏; 廖仕翀; 魏文; 马彪; 孙圣荣

    2012-01-01

    Objective To discuss the relationship between ER stress and the expression of CCL5 in human breast cancer cell MCF-7 and identify the correlation between CCL5 and the proliferation and metastasis capacity of human breast cancer MCF-7 cells. Methods The ER stress and the expression of CCL5 in the tissue of human breast cancer and adjacent tissue were datected by Western blot. ER stress inducer Tu-niamycin and ER stress inhibitor 4-PBA were used to MCF-7 cells respectively. Samples were collected the total cell protein after 24 hours treatment. Tthe ER stress and the expression of CCL5 in MCF-7 cells was analyzed by Westernblot. The proliferation and metastasis capacity of human breast cancer MCF-7 cells were measured by MTT colorimetry and transwell experiment respectively. ELISA was employed to detect the content of CCL5 in the culture medium. Results The ER stress and the expression of CCL5 in the tissue of human breast cancer were in higher level than that in adjacent tissue. The ER stress of the cells treated with ER stress inducer was in higher level and these cells expressed more CCL5. On the contrary, the ER stress of the cells treated with ER stress inhibitor was in lower level and these cells expressed less CCL5. In addition,the cells treated with ER stress inducer were more proliferative than the cells treated with ER stress inhibitor . CCL5 secreted to the culture medium could enhance the capacity of proliferation and metastasis of human breast cancer MCF-7 cells. Conclution ER stress can induce the endogenous expression of CCL5 in MCF-7 cells. Endogenous CCL5 can promote the proliferation of human breast cancer MCF-7 cells and extraneous CCL5 can promote the metastasis of MCF-7 cells.%目的 探讨内质网应激水平与人乳腺癌MCF-7细胞CCL5表达之间的关系,明确CCL5与人乳腺癌MCF-7细胞增殖侵袭转移能力之间的关系.方法 使用内质网应激诱导剂(Tuniamycin)和内质网应激抑制剂(4-PBA)分别处理人乳腺癌MCF-7

  18. Radiosensitizing effect of conjugated linoleic acid in MCF-7 and MDA-MB-231 breast cancer cells; Effet radiosensibilisateur de l'acide linoleique conjugue chez les cellules cancereuses de sein MCF-7 et MDA-MB-231

    Energy Technology Data Exchange (ETDEWEB)

    Drouin, G.; Douillette, A. [Univ. de Sherbrooke, Dept. de medecine nucleaire de radiobiologie, Faculte de medecine, Sherbrooke, Quebec (Canada); Lacasse, P. [Centre de recherche et development sur le bovin laitier et le porc, Lennoxville, Quebec (Canada); Paquette, B. [Univ. de Sherbrooke, Dept. de medecine nucleaire de radiobiologie, Faculte de medecine, Sherbrooke, Quebec (Canada)]. E-mail: benoit.paquette@USherbrooke.ca

    2004-02-01

    Apoptotic pathways in breast cancer cells are frequently altered, reducing the efficiency of radiotherapy. Conjugated linoleic acid (CLA), known to trigger apoptosis, was tested as radiosensitizer in breast cancer cells MCF-7 and MDA-MB-231. The CLA-mix, made up of the isomers CLA-9cis 11trans and CLA-10trans 12cis, was compared to three purified isomers, i.e., the CLA-9cis 11cis, CLA-9cis 11trans, and CLA-10trans 12cis. Using the apoptotic marker YO-PRO-1, the CLA-9cis 11cis at 50 {mu}mol/L turned out to be the best apoptotic inducer leading to a 10-fold increase in MCF-7 cells and a 2,5-fold increase in MDA-MB-231 cells, comparatively to the CLA-mix. Contrary to previous studies on colorectal and prostate cancer cells, CLA-10trans 12cis does not lead to an apoptotic response on breast cancer cell lines MCF-7 and MDA-MB-231. Our results also suggest that the main components of the CLA-mix (CLA-9cis 11trans and CLA-10trans 12cis) are not involved in the induction of apoptosis in the breast cancer cells studied. A dose of 5 Gy did not induce apoptosis in MCF-7 and MDA-MB-231 cells. The addition of CLA-9cis 11cis or CLA-mix has allowed us to observe a radiation-induced apoptosis, with the CLA-9cis 11cis being about 8-fold better than the CLA-mix. CLA-9cis 11cis turned out to be the best radiosensitizer, although the isomers CLA-9cis 11trans and CLA-10trans 12cis have also reduced the cell survival following irradiation, but using a mechanism not related to apoptosis. In conclusion, the radiosensitizing property of CLA-9cis 11cis supports its potential as an agent to improve radiotherapy against breast carcinoma. (author)

  19. αIIbβ3-integrin Ligands: Abciximab and Eptifibatide as Proapoptotic Factors in MCF-7 Human Breast Cancer Cells.

    Science.gov (United States)

    Kononczuk, Joanna; Surazynski, Arkadiusz; Czyzewska, Urszula; Prokop, Izabela; Tomczyk, Michal; Palka, Jerzy; Miltyk, Wojciech

    2015-01-01

    Integrin receptors are considered to be the key factors in carcinogenesis. αIIbβ3-Integrin (GP IIb/IIIa) is the main glycoprotein of the surface of platelets, its presence has also been noted on the certain cancer cell lines. The molecular mechanism of its action in cancer cells remains unknown. This study presents effects of two αIIbβ3-inhibitors: Abciximab and Eptifibatide on apoptosis, expression of proline oxidase (POX), signaling molecules ERK 1/2, transcription factor NF-κB and HIF-1α, vascular endothelial growth factor (VEGF) as well as DNA biosynthesis, collagen biosynthesis and prolidase activity in MCF-7 breast cancer cells. Both ligands induced apoptosis, however we found significant differences in molecular mechanism of action between tested αIIbβ3-inhibitors. These differences include expression of POX, HIF-1α, NF-κB,VEGF and collagen biosynthesis. Eptifibatide presented stronger proapoptotic activity in MCF-7 cells than Abciximab. Results of this study suggest that Eptifibatide may be considered as a novel candidate for development of new anticancer therapy. PMID:25090985

  20. CCL5 promotes proliferation of MCF-7 cells through mTOR-dependent mRNA translation

    Energy Technology Data Exchange (ETDEWEB)

    Murooka, Thomas T.; Rahbar, Ramtin [Division of Cellular and Molecular Biology, Toronto General Research Institute, University Health Network, Ont. (Canada); Department of Immunology, University of Toronto, Ont. (Canada); Fish, Eleanor N., E-mail: en.fish@utoronto.ca [Division of Cellular and Molecular Biology, Toronto General Research Institute, University Health Network, Ont. (Canada); Department of Immunology, University of Toronto, Ont. (Canada)

    2009-09-18

    The proliferative capacity of cancer cells is regulated by factors intrinsic to cancer cells and by secreted factors in the microenvironment. Here, we investigated the proto-oncogenic potential of the chemokine receptor, CCR5, in MCF-7 breast cancer cell lines. At physiological levels, CCL5, a ligand for CCR5, enhanced MCF-7.CCR5 proliferation. Treatment with the mTOR inhibitor, rapamycin, inhibited this CCL5-inducible proliferation. Because mTOR directly modulates mRNA translation, we investigated whether CCL5 activation of CCR5 leads to increased translation. CCL5 induced the formation of the eIF4F translation initiation complex through an mTOR-dependent process. Indeed, CCL5 initiated mRNA translation, shown by an increase in high-molecular-weight polysomes. Specifically, we show that CCL5 mediated a rapid up-regulation of protein expression for cyclin D1, c-Myc and Dad-1, without affecting their mRNA levels. Taken together, we describe a mechanism by which CCL5 influences translation of rapamycin-sensitive mRNAs, thereby providing CCR5-positive breast cancer cells with a proliferative advantage.

  1. Biocompatibility of magnetic Fe3O4 nanoparticles and their cytotoxic effect on MCF-7 cells

    Directory of Open Access Journals (Sweden)

    Chen DZ

    2012-09-01

    in mouse fibroblast (L-929 cell lines was between Grade 0 to Grade 1, and that the material lacked hemolysis activity. The acute toxicity (LD50 was 8.39 g/kg. Micronucleus testing showed no genotoxic effects. Pathomorphology and blood biochemistry testing demonstrated that the Fe3O4 nanoparticles had no effect on the main organs and blood biochemistry in a rabbit model. MTT and flow cytometry assays revealed that Fe3O4 nano magnetofluid thermotherapy inhibited MCF-7 cell proliferation, and its inhibitory effect was dose-dependent according to the Fe3O4 nano magnetofluid concentration.Conclusion: The Fe3O4 nanoparticles prepared in this study have good biocompatibility and are suitable for further application in tumor hyperthermia.Keywords: characterization, biocompatibility, Fe3O4, magnetic nanoparticles, hyperthermia

  2. 细胞代谢组学用于木犀草素抑制MCF-7细胞的机制研究%Metabonomics Study on Luteolin Intervention of Breast Cancer MCF-7 Cells

    Institute of Scientific and Technical Information of China (English)

    史栋栋; 王桂明; 况媛媛; 彭章晓; 王彦; 谷雪; 阎超

    2014-01-01

    The metabolic profiles of control and MCF-7 cells treated with luteolin were analyzed separately using gas chromatography/mass spectrometry ( GC/MS ) to study the mechanism of the luteolin treatment on MCF-7 cells. Cell viability assays showed that luteolin had inhibition effect on MCF-7 cells. Partial least square discriminant analysis ( OPLS-DA) was used to process the metabolic data. Since cells in phase of S were increased significantly, we speculated that luteolin had a blocking effect on pentose phosphate pathway of MCF-7 cells, which contributed to its inhibition effect on proliferation of MCF-7 cells.%基于气相色谱质谱联用(GC-MS)技术将代谢组学的方法结合细胞周期的实验,研究木犀草素作用于MCF-7细胞的作用机理。细胞活性实验验证,木犀草素对MCF-7细胞有抑制作用,GC-TOF/MS对加药细胞和未加药细胞代谢物进行指纹图谱分析,并进一步应用偏最小二乘判别分析( OPLS-DA)对代谢组学数据进行多维统计分析。结合木犀草素将细胞周期抑制在S期( Synthesis),推测木犀草素通过阻碍核酸代谢中的磷酸戊糖途径抑制MCF-7细胞的增殖。

  3. Effect of Paullinia cupana on MCF-7 breast cancer cell response to chemotherapeutic drugs.

    Science.gov (United States)

    Hertz, Everaldo; Cadoná, Francine Carla; Machado, Alencar Kolinski; Azzolin, Verônica; Holmrich, Sabrina; Assmann, Charles; Ledur, Pauline; Ribeiro, Euler Esteves; DE Souza Filho, Olmiro Cezimbra; Mânica-Cattani, Maria Fernanda; DA Cruz, Ivana Beatrice Mânica

    2015-01-01

    Previous studies suggested that certain plants, such as guarana (Paullinia cupana), exert a protective effect against cancer-related fatigue in breast cancer patients undergoing chemotherapy. However, guarana possesses bioactive molecules, such as caffeine and catechin, which may affect the pharmacological properties of antitumor drugs. Therefore, the aim of this study was to evaluate the effects of guarana on breast cancer cell response to 7 chemotherapeutic agents currently used in the treatment of breast cancer. To perform this study, MCF-7 breast cancer cells were cultured under controlled conditions and exposed to 1, 5 and 10 µg/ml guarana concentrations, with and without chemotherapeutics (gemcitabine, vinorelbine, methotrexate, 5-fluorouracil, paclitaxel, doxorubicin and cyclophosphamide). The effect of these treatments on MCF-7 cell viability and proliferation was spectrophotometrically analyzed with the MTT assay. The main results demonstrated an antiproliferative effect of guarana at concentrations of 5 and 10 µg/ml and a significant effect on chemotherapeutic drug action. In general, guarana improved the antiproliferative effect of chemotherapeutic agents, causing a decrease of >40% in cell growth after 72 h of exposure. The results suggested an interaction of guarana with the chemotherapeutic drugs, which requires confirmation by in vivo complementary studies. PMID:25469267

  4. Curcumin通过Wnt信号通路抑制乳腺癌细胞MCF-7增殖的研究%Inhibitory Effect of Curcumin on Human Breast Cancer Cells MCF-7 Proliferation through Wnt Signaling Pathway

    Institute of Scientific and Technical Information of China (English)

    古浠伶; 漆钟骁

    2012-01-01

    Objective To observe the inhibitory effect of curcumin on human breast cancer cells MCF-7 in vitro, and to detect the effect on Wnt signaling pathway,and to explore its possible molecular mechanisms. Methods Human breast cancer cells MCF-7 were cultured and treated with curcumin at different concentration and at different time points. The effects of curcumin on MCF-7 cells proliferation was studied by means of MTT. The exchange of cell cycle was examined by flow cytometry ( FCM ) . RT-PCR and western blot were used to detect the expression of p-catenin and its downstream gene CyclinDl at mRNA and protein levels. Results The proliferation of MCF-7 cells treated with curcumin was obviously decreased, and it was in a concentration- and time-dependent manner. The inhibitory effect of Curcumin was the most significant at the concentration of 20 u,mol. L "'. Curcumin prevented MCF-7 cells from G, to S phase period, and raised the percentage of Go/ G, phase cells (P <0. 05). RT-PCR and Western blot results showed that the expression of p-catenin and CyclinDl at mRNA and protein levels were inhibited by curcumin in a concentration- and time-dependent manner (P <0. 05). Conclusion Curcumin could prevent p-catenin of MCF-7 into the nucleus from the cytoplasm, and block Wnt signaling pathway, and inhibit the expression of its downstream target gene CyclinDl. Thereby, curcumin prevents breast cancer cells MCF-7 from Gl phase to S phase, and inhibits the proliferation of MCF-7 cells, which will provide an important therapeutic mechanism for treating with breast cancer.%目的 观察姜黄素(Curcumin)对乳腺癌细胞MCF-7增殖的影响,以及对细胞内Wnt信号通路的影响,探索Curcumin可能存在的抑制乳腺癌细胞增殖的分子机制.方法 体外培养人乳腺癌细胞MCF-7,并用不同浓度的Curcumin作用不同的时间.用MTT检测Curcumin对MCF-7细胞生长情况的影响;流式细胞仪观察经Curcumin作用后细胞周期的改变;RT

  5. Gold nanoparticle-lignan complexes inhibited MCF-7 cell proliferation in vitro: a novel conjugation for cancer therapy.

    Science.gov (United States)

    Bakar, Filiz; Caglayan, Mehmet G; Onur, Feyyaz; Nebioglu, Serpil; Palabiyik, Ismail M

    2015-01-01

    Nanoparticles, including gold nanoparticles (AuNP), have been used in imaging in cancer treatment and as therapeutic agents and drug delivery vehicles. Particularly lignans, also called phytoestrogens, have strong effects on the treatment of carcinomas due to their antiestrogenic, antiangiogenic and proapoptotic mechanism. The aim of this study is to investigate the antiproliferative effects of three lignans-AuNP conjugates, pinoresinol (PINO), lariciresinol (LARI) and secoisolariciresinol (SECO), on the MCF-7 cell lines. For this purpose, first, thiolated β-cyclodextrin (β-CD) was synthesized to achieve a surface modification of AuNP, and then the β-CD modified AuNP was characterized using the transmission electron microscopy (TEM), UV-Visible and Nuclear Magnetic Resonance (NMR) spectroscopy. Then, the selected lignans were conjugated to the β-CD-modified AuNP, and the antiproliferative effect of these conjugates was monitored. The results suggest that when compared to their non-conjugated forms, the AuNP-bound lignan conjugates prevented the proliferation of the MCF-7 cells significantly. Therefore, these AuNP-conjugated derivatives can be new candidate agents for breast cancer therapy.

  6. FHL2 Antagonizes Id1-Promoted Proliferation and Invasive Capacity of Human MCF-7 Breast Cancer Cells

    Institute of Scientific and Technical Information of China (English)

    Wei-dong Han; Zhi-qiang Wu; Ya-li Zhao; Yi-ling Si; Ming-zhou Guo; Xiao-bing Fu

    2010-01-01

    Objective:FHL2 was previously identified to be a novel interacting factor of Id family proteins.The aim of this study was to investigate,the effects of FHL2 on Id1-mediated transcriptional regulation activity and its oncogenic activity in human breast cancer cells.Methods:Cell transfection was performed by Superfect reagent.Id1 stably overexpressed MCF-7 cells was cloned by G418 screening.The protein level of Id1 was detected by western blot analysis.Dual relative luciferase assays were used to measure the effect of E47-mediated transcriptional activity in MCF-7 human breast cancer cells.MTT assay was used to measure cell proliferation.Transwell assay was used to measure the invasive capacity of MCF-7 cancer cells.Results:The basic helix-loop-helix(bHLH)factor E47-mediated transcription activity was markedly repressed by Id1 in MCF-7 cells.This Id1-mediated repression was effectively antagonized by FHL2 transduction.Overexpression of Id1 markedly promoted the proliferation rate and invasive capacity of MCF-7 cells; however,these effects induced by Id1 were significantly suppressed by overexpression of FHL2 in cells.Conclusion:FHL2 can inhibit the proliferation and invasiveness of human breast cancer cells by repressing the functional activity of Id1.These findings provide the basis for further investigating the functional roles of FHL2-Id1 signaling in the carcinogenesis and development of human breast cancer.

  7. 塞来昔布联合紫杉醇对人乳腺癌MCF-7/Taxol耐药细胞株多药耐药的逆转作用及机制的探讨%Effect of Combination of Taxol and Celecoxib on Reversing Multidrug Resistance Human Breast Cancer Cells (MCF-7/ Taxol) and Explore Its Underlying Mechanism

    Institute of Scientific and Technical Information of China (English)

    柳青; 刘雪娟; 陈玉娟; 汪静

    2011-01-01

    Objective To investigate the reversal effect of Celecoxib and Taxol on multidrug resistance (MDR) human breast cancer cells (MCF-7/Taxol) and its underlying mechanism.Methods After establishing the resistance cell lines of human breast cancer on Taxol (MCF-7/Taxol), the effects of the drugs on the toxicity of MCF-7/Taxol cells and the reversal effect of Celecoxib on MDR were determined by CCK-8 assay.The cells were divided into seven groups (A: MCF-7; B: MCF-7/Taxol; C: MCF-7/Taxol+ 0.03 μg/mL Taxol; D: MCF-7/Taxol+0.03 μg/mL Taxol+3 μg/mL Celecoxib; E: MCF-7/Taxol+0.03 μg/mL Taxoll6 μg/mL Celecoxib; F:MCF-7/Taxol+3 μg/mL Celecoxib; G: MCF-7/Taxol +6 μg/mL Celecoxib).The mRNA levels of MDR1 and BCRP in these treated cells were also determined by reverse transcription-polymerase chain reaction (RT-PCR), the protein levels of P-gp and BCRP in these treated cells were also determined by Western blot method.Results Compared with the Taxol control, the cytotoxicity effects was obviously increased by combination of Taxol and Celecoxib (P<0.05).Compared with the vehicle control, Taxol up-regulated mRNA and protein levels of P-gp,whereas Celecoxib down-regulated mRNA and protein levels of P-gp and BCRP (P<0.05).Conclusion Celecoxib has reversal effect on MDR in MCF-7/Taxol cells, it's possible mechanism might be related to reduce the protein expression of COX-2, the inhibition of P-gp, BCRP mRNA and protein overexpression.%目的 观察环氧化酶-2(COX-2)选择性抑制剂塞来昔布(Celecoxib)联合紫杉醇(Taxol)对人乳腺癌MCF-7/Taxol耐药细胞多药耐药(multiple drug resistance,MDR)的逆转作用,并初步探讨其作用机制.方法 体外诱导建立人乳腺癌MCF-7/Taxol耐药细胞株,CCK-8法检测Taxol、塞来昔布对MCF-7/Taxol细胞的毒性作用及塞来昔布对MCF-7/Taxol细胞多药耐药的逆转作用.实验分为:同步传代的MCF-7细胞组(A组),MCF-7/Taxol细胞阴性对照组(B组),单用Taxol无毒剂量的MCF-7/Taxol细

  8. Gene expression analysis in MCF-7 breast cancer cells treated with recombinant bromelain.

    Science.gov (United States)

    Fouz, Nour; Amid, Azura; Hashim, Yumi Zuhanis Has-Yun

    2014-08-01

    The contributing molecular pathways underlying the pathogenesis of breast cancer need to be better characterized. The principle of our study was to better understand the genetic mechanism of oncogenesis for human breast cancer and to discover new possible tumor markers for use in clinical practice. We used complimentary DNA (cDNA) microarrays to compare gene expression profiles of treated Michigan Cancer Foundation-7 (MCF-7) with recombinant bromelain and untreated MCF-7. SpringGene analysis was carried out of differential expression followed by Ingenuity Pathway Analysis (IPA), to understand the underlying consequence in developing disease and disorders. We identified 1,102 known genes differentially expressed to a significant degree (pbromelain produces a unique signature affecting different pathways, specific for each congener. The microarray results give a molecular mechanistic insight and functional effects, following recombinant bromelain treatment. The extent of changes in genes is related to and involved significantly in gap junction signaling, amyloid processing, cell cycle regulation by BTG family proteins, and breast cancer regulation by stathmin1 that play major roles. PMID:24928548

  9. Induction of cell cycle arrest in human MCF-7 breast cancer cells by cis-stilbene derivatives related to VIOXX.

    NARCIS (Netherlands)

    Sangjun, S.; de Jong, E.; Nijmeijer, S.; Mutarapat, T.; Ruchirawat, S.; van den Berg, M.; van Duursen, M.B.M.

    2009-01-01

    In our present study, 12 new cis-stilbene derivatives (CRI-1-CRI-13) related to VIOXX((R)) were synthesized and studied for their inhibitory effects on cell cycle progression and anti-estrogenicity in human adenoma breast cancer MCF-7 cells. Based on the different substituents in the cis-stilbene mo

  10. The Inhibitory Action of Resveratrol on Proliferation of MCF-7 Breast Cancer Cells%白藜芦醇抑制MCF-7乳腺癌细胞增殖的机制研究

    Institute of Scientific and Technical Information of China (English)

    郭慧琳; 张献全

    2011-01-01

    Objective: To investigate the inhibitory action of resveratrol on the proliferation of MCF-7 breast cancer cells and its underlying mechanisms. Methods: Human MCF-7 breast cancer cells were used and stimulated with resveratrol. The proliferation of MCF-7 breast cancer cells was determined using MTT assay. The changes in proliferation rate were also observed in cells co-stimulated with PD98059, an ERK1/2 inhibitor, and resveratrol. The effects of resveratrol expression on ERK1/2, p-ERKl/2, AKT, and p-AKT in the MCF-7 cancer cells were determined using immunoblotting. Results: The proliferation of MCF-7 breast cancer cells was obviously inhibited by resveratrol in a concentration-dependent manner. The inhibitory action of resveratrol on the MCF-7 cells was overtly repressed by PD98059. At the same time, resveratrol apparently increased p-ERKl/2 protein expression and decreased p-AKT protein expression. However, there was no change in the level of ERK1/2 and AKT protein expression after the resveratrol stimulation. Conclusion: Resveratrol effectively inhibits the proliferation of MCF-7 breast cancer cells, and its inhibitory action is through the regulation of the ERK1/2 and AKT signal pathway.%目的:研究白藜芦醇对MCF-7乳腺癌细胞抑制效应及其作用机制.方法:以人MCF-7乳腺癌细胞株为研究对象,利用MTT方法研究白藜芦醇抑制MCF-7乳腺癌细胞的生物学效应;观察在ERK1/2抑制剂PD98059预处理情况下,白藜芦醇抑制MCF-7乳腺癌细胞增殖效应的改变;利用免疫印迹方法观察白藜芦醇对MCF-7乳腺癌细胞中ERK1/2与AKT信号分子的蛋白表达.结果:白藜芦醇能够明显降低MCF-7乳腺癌细胞增殖能力,该作用呈一定的浓度依赖性关系.在ERK1/2抑制剂PD98059预处理情况下,白藜芦醇对MCF-7乳腺癌细胞增殖抑制效应能明显抑制,PD98059可明显减轻该效应.同时,白藜芦醇明显增加p-ERK1/2蛋白表达,降低p-AKT表达水平,但对ERK1/2与AKT蛋白

  11. Proteomic analysis of changes in the protein composition of MCF-7 human breast cancer cells induced by all-trans retinoic acid, 9-cis retinoic acid, and their combination

    OpenAIRE

    Flodrová, D. (Dana); Benkovská, D. (Dagmar); Macejová, D.; Bialesova, L.; Hunakova, L.; Brtko, J.; Bobálová, J. (Janette)

    2015-01-01

    Retinoic acid (all-trans and 9-cis) isomers represent important therapeutic agents for many types of cancers, including human breast cancer. Changes in protein composition of the MCF-7 human breast cancer cells were induced by all-trans retinoic acid, 9-cis retinoic acid, and their combination and subsequently proteomic strategies based on bottom-up method were applied. Proposed approach was used for the analysis of proteins extracted from MCF-7 human breast cancer cell line utilizing a ...

  12. Activities of ten essential oils towards Propionibacterium acnes and PC-3, A-549 and MCF-7 cancer cells.

    Science.gov (United States)

    Zu, Yuangang; Yu, Huimin; Liang, Lu; Fu, Yujie; Efferth, Thomas; Liu, Xia; Wu, Nan

    2010-05-01

    Ten essential oils, namely, mint (Mentha spicata L., Lamiaceae), ginger (Zingiber officinale Rosc., Zingiberaceae), lemon (Citrus limon Burm.f., Rutaceae), grapefruit (Citrus paradisi Macf., Rutaceae), jasmine (Jasminum grandiflora L., Oleaceae), lavender (Mill., Lamiaceae), chamomile (Matricaria chamomilla L., Compositae), thyme (Thymus vulgaris L., Lamiaceae), rose (Rosa damascena Mill., Rosaceae) and cinnamon (Cinnamomum zeylanicum N. Lauraceae) were tested for their antibacterial activities towards Propionibacterium acnes and in vitro toxicology against three human cancer cell lines. Thyme, cinnamon and rose essential oils exhibited the best antibacterial activities towards P. acnes, with inhibition diameters of 40 +/- 1.2 mm, 33.5 +/- 1.5 mm and 16.5 +/- 0.7 mm, and minimal inhibitory concentrations of 0.016% (v/v), 0.016% (v/v) and 0.031% (v/v), respectively. Time-kill dynamic procedures showed that thyme, cinnamon, rose, and lavender essential oils exhibited the strongest bactericidal activities at a concentration of 0.25% (v/v), and P. acnes was completely killed after 5 min. The thyme essential oil exhibited the strongest cytotoxicity towards three human cancer cells. Its inhibition concentration 50% (IC(50)) values on PC-3, A549 and MCF-7 tumor cell lines were 0.010% (v/v), 0.011% (v/v) and 0.030% (v/v), respectively. The cytotoxicity of 10 essential oils on human prostate carcinoma cell (PC-3) was significantly stronger than on human lung carcinoma (A549) and human breast cancer (MCF-7) cell lines. PMID:20657472

  13. Activities of Ten Essential Oils towards Propionibacterium acnes and PC-3, A-549 and MCF-7 Cancer Cells

    Directory of Open Access Journals (Sweden)

    Yuangang Zu

    2010-04-01

    Full Text Available Ten essential oils, namely, mint (Mentha spicata L.,Lamiaceae, ginger (Zingiber officinaleRosc.,Zingiberaceae, lemon (Citrus limon Burm.f.,Rutaceae, grapefruit (Citrus paradisi Macf., Rutaceae, jasmine (Jasminum grandiflora L.,Oleaceae, lavender (Mill.,Lamiaceae, chamomile (Matricaria chamomilla L., Compositae, thyme (Thymus vulgaris L., Lamiaceae, rose (Rosa damascena Mill.,Rosaceae and cinnamon (Cinnamomum zeylanicumN. Lauraceae were tested for their antibacterial activities towards Propionibacterium acnes and in vitro toxicology against three human cancer cell lines. Thyme, cinnamon and rose essential oils exhibited the best antibacterial activities towards P. acnes, with inhibition diameters of 40 ± 1.2 mm, 33.5 ± 1.5 mm and 16.5 ± 0.7 mm, and minimal inhibitory concentrations of 0.016% (v/v, 0.016% (v/v and 0.031% (v/v, respectively. Time-kill dynamic procedures showed that thyme, cinnamon, rose, and lavender essential oils exhibited the strongest bactericidal activities at a concentration of 0.25% (v/v, and P. acnes was completely killed after 5 min. The thyme essential oil exhibited the strongest cytotoxicity towards three human cancer cells. Its inhibition concentration 50% (IC50 values on PC-3, A549 and MCF-7 tumor cell lines were 0.010% (v/v, 0.011% (v/v and 0.030% (v/v, respectively. The cytotoxicity of 10 essential oils on human prostate carcinoma cell (PC-3 was significantly stronger than on human lung carcinoma (A549 and human breast cancer (MCF-7 cell lines.

  14. Polyphenols sensitization potentiates susceptibility of MCF-7 and MDA MB-231 cells to Centchroman.

    Directory of Open Access Journals (Sweden)

    Neetu Singh

    Full Text Available Polyphenols as "sensitizers" together with cytotoxic drugs as "inducers" cooperate to trigger apoptosis in various cancer cells. Hence, their combination having similar mode of mechanism may be a novel approach to enhance the efficacy of inducers. Additionally, this will also enable to achieve the physiological concentrations facilitating significant increase in the activity at concentrations which the compound can individually provide. Here we propose that polyphenols (Resveratrol (RES and Curcumin (CUR pre-treatment may sensitize MCF-7/MDA MB-231 (Human Breast Cancer Cells, HBCCs to Centchroman (CC, antineoplastic agent. 6 h pre-treated cells with 10 µM RES/CUR and 100 µM RES/30 µM CUR doses, followed by 10 µM CC for 18 h were investigated for Ser-167 ER-phosphorylation, cell cycle arrest, redox homeostasis, stress activated protein kinase (SAPKs: JNK and p38 MAPK pathways and downstream apoptosis effectors. Low dose RES/CUR enhances the CC action through ROS mediated JNK/p38 as well as mitochondrial pathway in MCF-7 cells. However, RES/CUR sensitization enhanced apoptosis in p53 mutant MDA MB-231 cells without/with involvement of ROS mediated JNK/p38 adjunct to Caspase-9. Contrarily, through high dose sensitization in CC treated cells, the parameters remained unaltered as in polyphenols alone. We conclude that differential sensitization of HBCCs with low dose polyphenol augments apoptotic efficacy of CC. This may offer a novel approach to achieve enhanced action of CC with concomitant reduction of side effects enabling improved management of hormone-dependent breast cancer.

  15. Global identification of genes regulated by estrogen signaling and demethylation in MCF-7 breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Putnik, Milica, E-mail: milica.putnik@ki.se [Department of Biosciences and Nutrition, Novum, Karolinska Institutet, Huddinge S-14183 (Sweden); Zhao, Chunyan, E-mail: chunyan.zhao@ki.se [Department of Biosciences and Nutrition, Novum, Karolinska Institutet, Huddinge S-14183 (Sweden); Gustafsson, Jan-Ake, E-mail: jan-ake.gustafsson@ki.se [Department of Biosciences and Nutrition, Novum, Karolinska Institutet, Huddinge S-14183 (Sweden); Department of Biology and Biochemistry, Science and Engineering Research Center Bldg, University of Houston, Houston, TX 77204-5056 (United States); Dahlman-Wright, Karin, E-mail: karin.dahlman-wright@ki.se [Department of Biosciences and Nutrition, Novum, Karolinska Institutet, Huddinge S-14183 (Sweden)

    2012-09-14

    Highlights: Black-Right-Pointing-Pointer Estrogen signaling and demethylation can both control gene expression in breast cancers. Black-Right-Pointing-Pointer Cross-talk between these mechanisms is investigated in human MCF-7 breast cancer cells. Black-Right-Pointing-Pointer 137 genes are influenced by both 17{beta}-estradiol and demethylating agent 5-aza-2 Prime -deoxycytidine. Black-Right-Pointing-Pointer A set of genes is identified as targets of both estrogen signaling and demethylation. Black-Right-Pointing-Pointer There is no direct molecular interplay of mediators of estrogen and epigenetic signaling. -- Abstract: Estrogen signaling and epigenetic modifications, in particular DNA methylation, are involved in regulation of gene expression in breast cancers. Here we investigated a potential regulatory cross-talk between these two pathways by identifying their common target genes and exploring underlying molecular mechanisms in human MCF-7 breast cancer cells. Gene expression profiling revealed that the expression of approximately 140 genes was influenced by both 17{beta}-estradiol (E2) and a demethylating agent 5-aza-2 Prime -deoxycytidine (DAC). Gene ontology (GO) analysis suggests that these genes are involved in intracellular signaling cascades, regulation of cell proliferation and apoptosis. Based on previously reported association with breast cancer, estrogen signaling and/or DNA methylation, CpG island prediction and GO analysis, we selected six genes (BTG3, FHL2, PMAIP1, BTG2, CDKN1A and TGFB2) for further analysis. Tamoxifen reverses the effect of E2 on the expression of all selected genes, suggesting that they are direct targets of estrogen receptor. Furthermore, DAC treatment reactivates the expression of all selected genes in a dose-dependent manner. Promoter CpG island methylation status analysis revealed that only the promoters of BTG3 and FHL2 genes are methylated, with DAC inducing demethylation, suggesting DNA methylation directs repression of

  16. 卡培他滨联合奥曲肽对人乳腺癌细胞MCF-7增殖的影响%Effects of capecitabine combined with octreotide on proliferation of human breast cancer cell MCF-7

    Institute of Scientific and Technical Information of China (English)

    张家铭; 颜家琪; 江学庆

    2015-01-01

    Objective To study the effect of capecitabine combined with octreotide on proliferation cycle of breast cancer MCF-7 cells.Methods The experiments were divided into 4 groups:control group,capecitabine group,octreotide group,combined group (capecitabine plus octreotide),and subgroups of each group were set up according to the concentrations.Cell proliferation was measured by methyl thiazol tetrazolium (MTT) assay.Results Combined use of capecitaine and octreotide in high concentrations could inhibited the proliferation of MCF-7 cells.The MCF cells grew faster within 4 days,then gradually slowed down,and 9 days later cell growth tended to stagnate.Capecitaine and octreotide in high concentrations showed a synergistic effect.Conclusion Capecitabine combined with octreotide can inhibit the proliferation of MCF-7 cells.%目的 观察卡培他滨联合奥曲肽对乳腺癌MCF-7细胞增殖周期的影响.方法 实验分为4组:对照组、卡培他滨组、奥曲肽组、联合组(卡培他滨+奥曲肽).每组分为不同浓度,以MTT法检测细胞增殖状况.结果 卡培他滨与奥曲肽在较高浓度水平联用抑制MCF-7细胞增殖,MCF细胞生长初期(4d内)生长速度较快,滞后逐渐减慢,9d后细胞生长趋于停滞;在高浓度水平联用抑制MCF-7细胞生长,表现为协同作用.结论 卡培他滨联合奥曲肽对MCF-7细胞增殖具有抑制作用.

  17. The Cytotoxic Effects of Low Intensity Visible and Infrared Light on Human Breast Cancer (MCF7 cells

    Directory of Open Access Journals (Sweden)

    P Peidaee

    2013-03-01

    Full Text Available A concept of using low intensity light therapy (LILT as an alternative approach to cancer treatment is at early stages of development; while the therapeutic effects of LILT as a non-invasive treatment modality for localized joint and soft tissue wound healing are widely corroborated. The LEDs-based exposure system was designed and constructed to irradiate the selected cancer and normal cells and evaluate the biological effects induced by light exposures in visible and infrared light range. In this study, human breast cancer (MCF7 cells and human epidermal melanocytes (HEM cells (control were exposed to selected far infrared light (3400nm, 3600nm, 3800nm, 3900nm, 4100nm and 4300nm and visible and near infrared wavelengths (466nm, 585nm, 626nm, 810nm, 850nm and 950nm. The optical intensities of LEDs used for exposures were in the range of 15µW to 30µW. Cellular morphological changes of exposed and sham-exposed cells were evaluated using light microscopy. The cytotoxic effects of these low intensity light exposures on human cancer and normal cell lines were quantitatively determined by Lactate dehydrogenase (LDH cytotoxic activity and PrestoBlueTM cell viability assays. Findings reveal that far-infrared exposures were able to reduce cell viability of MCF7 cells as measured by increased LDH release activity and PrestoBlueTM assays. Further investigation of the effects of light irradiation on different types of cancer cells, study of possible signaling pathways affected by electromagnetic radiation (EMR and in vivo experimentation are required in order to draw a firm conclusion about the efficacy of low intensity light as an alternative non-invasive cancer treatment.

  18. The microenvironment determines the breast cancer cells' phenotype: organization of MCF7 cells in 3D cultures

    Directory of Open Access Journals (Sweden)

    Soto Ana M

    2010-06-01

    Full Text Available Abstract Background Stromal-epithelial interactions mediate breast development, and the initiation and progression of breast cancer. In the present study, we developed 3-dimensional (3D in vitro models to study breast cancer tissue organization and the role of the microenvironment in phenotypic determination. Methods The human breast cancer MCF7 cells were grown alone or co-cultured with primary human breast fibroblasts. Cells were embedded in matrices containing either type I collagen or a combination of reconstituted basement membrane proteins and type I collagen. The cultures were carried out for up to 6 weeks. For every time point (1-6 weeks, the gels were fixed and processed for histology, and whole-mounted for confocal microscopy evaluation. The epithelial structures were characterized utilizing immunohistochemical techniques; their area and proliferation index were measured using computerized morphometric analysis. Statistical differences between groups were analyzed by ANOVA, Dunnett's T3 post-hoc test and chi-square. Results Most of the MCF7 cells grown alone within a collagen matrix died during the first two weeks; those that survived organized into large, round and solid clusters. The presence of fibroblasts in collagen gels reduced MCF7 cell death, induced cell polarity, and the formation of round and elongated epithelial structures containing a lumen. The addition of reconstituted basement membrane to collagen gels by itself had also survival and organizational effects on the MCF7 cells. Regardless of the presence of fibroblasts, the MCF7 cells both polarized and formed a lumen. The addition of fibroblasts to the gel containing reconstituted basement membrane and collagen induced the formation of elongated structures. Conclusions Our results indicate that a matrix containing both type I collagen and reconstituted basement membrane, and the presence of normal breast fibroblasts constitute the minimal permissive microenvironment to

  19. The microenvironment determines the breast cancer cells' phenotype: organization of MCF7 cells in 3D cultures

    International Nuclear Information System (INIS)

    Stromal-epithelial interactions mediate breast development, and the initiation and progression of breast cancer. In the present study, we developed 3-dimensional (3D) in vitro models to study breast cancer tissue organization and the role of the microenvironment in phenotypic determination. The human breast cancer MCF7 cells were grown alone or co-cultured with primary human breast fibroblasts. Cells were embedded in matrices containing either type I collagen or a combination of reconstituted basement membrane proteins and type I collagen. The cultures were carried out for up to 6 weeks. For every time point (1-6 weeks), the gels were fixed and processed for histology, and whole-mounted for confocal microscopy evaluation. The epithelial structures were characterized utilizing immunohistochemical techniques; their area and proliferation index were measured using computerized morphometric analysis. Statistical differences between groups were analyzed by ANOVA, Dunnett's T3 post-hoc test and chi-square. Most of the MCF7 cells grown alone within a collagen matrix died during the first two weeks; those that survived organized into large, round and solid clusters. The presence of fibroblasts in collagen gels reduced MCF7 cell death, induced cell polarity, and the formation of round and elongated epithelial structures containing a lumen. The addition of reconstituted basement membrane to collagen gels by itself had also survival and organizational effects on the MCF7 cells. Regardless of the presence of fibroblasts, the MCF7 cells both polarized and formed a lumen. The addition of fibroblasts to the gel containing reconstituted basement membrane and collagen induced the formation of elongated structures. Our results indicate that a matrix containing both type I collagen and reconstituted basement membrane, and the presence of normal breast fibroblasts constitute the minimal permissive microenvironment to induce near-complete tumor phenotype reversion. These human

  20. Effects of AGM-1470 and pentosan polysulphate on tumorigenicity and metastasis of FGF-transfected MCF-7 cells.

    Science.gov (United States)

    McLeskey, S W; Zhang, L; Trock, B J; Kharbanda, S; Liu, Y; Gottardis, M M; Lippman, M E; Kern, F G

    1996-05-01

    Previously, we described FGF-1- or FGF-4-transfected MCF-7 breast carcinoma cells which are tumorigenic and metastatic in untreated or tamoxifen-treated ovariectomised nude mice. In this study, we have assessed the effects of AGM-1470, an antiangiogenic agent, and pentosan polysulphate (PPS), an agent that abrogates the effects of FGFs, on tumour growth and metastasis produced by these FGF-transfected MCF-7 cells. Untreated or tamoxifen-treated ovariectomised mice were injected with FGF-transfected cells, treated with AGM-1470 or PPS, and tumour growth and metastasis analysed. The sensitivity of FGF-transfected and parental MCF-7 cells to AGM-1470 or PPS was also determined in vitro. Both AGM-1470 and PPS inhibited tumour growth in otherwise untreated or tamoxifen-treated mice injected with either FGF- or FGF-4-transfected MCF-7 cells. This effect was more reliably seen in tamoxifen-treated animals. AGM-1470 was about 10(5) times less potent in inhibiting the anchorage-dependent growth of parental MCF-7 or FGF-transfected MCF-7 cells than in inhibiting the growth of human umbilical vein endothelial cells. PPS did not affect the in vitro growth of the transfectants or parental cells. Thus, the growth-inhibitory effect on tumours was in excess of the effect of either drug on the same cells in tissue culture, implying that stromal elements are important determinants of the effects of these drugs. There was a positive correlation between tumour size and the extent of proximal lymph node metastasis. However, neither drug had a significant effect on the extent of metastasis to proximal or distal lymph nodes or lungs. AGM-1470 or PPS may be helpful in cases of breast carcinoma in which angiogenesis is due to expression of FGFs by the tumour cells and may be more effective when combined with tamoxifen. PMID:8624263

  1. Improved photodynamic action of nanoparticles loaded with indium (III) phthalocyanine on MCF-7 breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Souto, Carlos Augusto Zanoni [Federal Institute of Espirito Santo (Brazil); Madeira, Klesia Pirola [Federal University of Espirito Santo, Biotechnology Program/RENORBIO, Health Sciences Center (Brazil); Rettori, Daniel [Federal University of Sao Paulo, Department of Exact Sciences and Earth (Brazil); Baratti, Mariana Ozello [University of Campinas, Department of Cellular Biology (Brazil); Rangel, Leticia Batista Azevedo [Federal University of Espirito Santo, Department of Pharmaceutical Sciences (Brazil); Razzo, Daniel [University of Campinas, Department of Physical Chemistry, Institute of Chemistry (Brazil); Silva, Andre Romero da, E-mail: aromero@ifes.edu.br [Federal Institute of Espirito Santo (Brazil)

    2013-09-15

    Indium (III) phthalocyanine (InPc) was encapsulated into nanoparticles of PEGylated poly(d,l-lactide-co-glycolide) (PLGA-PEG) to improve the photobiological activity of the photosensitizer. The efficacy of nanoparticles loaded with InPc and their cellular uptake was investigated with MCF-7 breast tumor cells, and compared with the free InPc. The influence of photosensitizer (PS) concentration (1.8-7.5 {mu}mol/L), incubation time (1-2 h), and laser power (10-100 mW) were studied on the photodynamic effect caused by the encapsulated and the free InPc. Nanoparticles with a size distribution ranging from 61 to 243 nm and with InPc entrapment efficiency of 72 {+-} 6 % were used in the experiments. Only the photodynamic effect of encapsulated InPc was dependent on PS concentration and laser power. The InPc-loaded nanoparticles were more efficient in reducing MCF-7 cell viability than the free PS. For a light dose of 7.5 J/cm{sup 2} and laser power of 100 mW, the effectiveness of encapsulated InPc to reduce the viability was 34 {+-} 3 % while for free InPc was 60 {+-} 7 %. Confocal microscopy showed that InPc-loaded nanoparticles, as well as free InPc, were found throughout the cytosol. However, the nanoparticle aggregates and the aggregates of free PS were found in the cell periphery and outside of the cell. The nanoparticles aggregates were generated due to the particles concentration used in the experiment because of the small loading of the InPc while the low solubility of InPc caused the formation of aggregates of free PS in the culture medium. The participation of singlet oxygen in the photocytotoxic effect of InPc-loaded nanoparticles was corroborated by electron paramagnetic resonance experiments, and the encapsulation of photosensitizers reduced the photobleaching of InPc.

  2. Reversal of P-glycoprotein-mediated multidrug resistance in MCF-7/Adr cancer cells by sesquiterpene coumarins.

    Science.gov (United States)

    Kasaian, Jamal; Mosaffa, Fatemeh; Behravan, Javad; Masullo, Milena; Piacente, Sonia; Ghandadi, Morteza; Iranshahi, Mehrdad

    2015-06-01

    In the present study, fifteen sesquiterpene coumarins were isolated and purified from different Ferula species, and were tested for their MDR reversal properties. Enhancement of doxorubicin cytotoxicity in MCF-7/Adr cells (doxorubicin resistant derivatives of MCF-7 cells overexpressing P-gp), when combined with very non-toxic concentrations of the sesquiterpene coumarins (50 μM) including umbelliprenin, farnesiferol B, farnesiferol C and lehmferin, proved significant MDR reversal activity of these coumarins. Flow cytometric efflux assay confirmed that the intracellular accumulation of Rho123 was significantly increased in MCF-7/Adr cells when treated with sesquiterpene coumarins. A deeper insight into the structure-activity relationship of sesquiterpene coumarins revealed that ring-opened drimane-type sesquiterpene coumarins including farnesiferol B, farnesiferol C and lehmferin possessed the best inhibitory effects on P-gp pump efflux and they could be considered as lead scaffolds for further structure modifications. PMID:25843566

  3. EFFECT OF CIS-9, TRANS-11-CONJUGATED LINOLEIC ACID ON CELL CYCLE OF MAMMARY ADENOCARCINOMA CELLS(MCF-7)

    Institute of Scientific and Technical Information of China (English)

    刘家仁; 陈炳卿; 韩晓辉; 杨艳梅; 郑玉梅; 刘瑞海

    2002-01-01

    Objective: To determine the effect of cis-9, trans-1 1-conjugated linoleic acid on the cell cycle of mammary cancer cells (MCF-7) and the possible mechanism of the inhibitory effect of c9,t11-CLA. Methods: Using cell culture and immunocytochemical techniques, we examined the cell growth, DNA synthesis, expression of PCNA , cyclin A, B1, D1, p16ink4a and p21cip/waf1 of MCF-7 cells at various c9,t11-CLA concentrations (25μM, 50μM, 100μM and 200μM), at 24h and 48h. 96% ethand was used as negative control. Results: The cell growth and DNA synthesis of MCF-7 cells were inhibited by c9,t11-CLA. After treatment with various doses of c9,t11-CLA mentioned above for 8 days, the inhibition frequency was 27.18%, 35.43%, 91.05%, and 92.86%, respectively. Inhibitory effect of c9,t11-CLA on DNA synthesis (except for 25μM, 24h) was demonstrated by significantly less incorporation of 3H-TdR than the negative control (P<0.05 and P<0.01). To further investigate the influence of the cell cycle progression, we found that c9,t11-CLA may arrest the cell cycle of MCF-7 cells. Immunocytochemical staining demonstrated that incubation with different concentration of c9,t11-CLA at various times significantly decreased the expression of PCNA, Cyclin A, B1, D1 in MCF-7 cells compared to the negative control (P<0.01), whereas the expression of p16ink4a and p21cip/waf1, cyclin-dependent kinases inhibitors (CDKI), were increased. Conclusions: The cell growth and proliferation of MCF-7 cells is inhibited by c9,t11-CLA via blocking cell cycle, accompanying reduced expression of cyclin A, B1, D1 and enhanced expression of CDKI (p16ink4a and p21cip/wafl).

  4. Surface TRAIL decoy receptor-4 expression is correlated with TRAIL resistance in MCF7 breast cancer cells

    International Nuclear Information System (INIS)

    Tumor Necrosis Factor (TNF)-Related Apoptosis-Inducing Ligand (TRAIL) selectively induces apoptosis in cancer cells but not in normal cells. Despite this promising feature, TRAIL resistance observed in cancer cells seriously challenged the use of TRAIL as a death ligand in gene therapy. The current dispute concerns whether or not TRAIL receptor expression pattern is the primary determinant of TRAIL sensitivity in cancer cells. This study investigates TRAIL receptor expression pattern and its connection to TRAIL resistance in breast cancer cells. In addition, a DcR2 siRNA approach and a complementary gene therapy modality involving IKK inhibition (AdIKKβKA) were also tested to verify if these approaches could sensitize MCF7 breast cancer cells to adenovirus delivery of TRAIL (Ad5hTRAIL). TRAIL sensitivity assays were conducted using Molecular Probe's Live/Dead Cellular Viability/Cytotoxicity Kit following the infection of breast cancer cells with Ad5hTRAIL. The molecular mechanism of TRAIL induced cell death under the setting of IKK inhibition was revealed by Annexin V binding. Novel quantitative Real Time RT-PCR and flow cytometry analysis were performed to disclose TRAIL receptor composition in breast cancer cells. MCF7 but not MDA-MB-231 breast cancer cells displayed strong resistance to adenovirus delivery of TRAIL. Only the combinatorial use of Ad5hTRAIL and AdIKKβKA infection sensitized MCF7 breast cancer cells to TRAIL induced cell death. Moreover, novel quantitative Real Time RT-PCR assays suggested that while the level of TRAIL Decoy Receptor-4 (TRAIL-R4) expression was the highest in MCF7 cells, it was the lowest TRAIL receptor expressed in MDA-MB-231 cells. In addition, conventional flow cytometry analysis demonstrated that TRAIL resistant MCF7 cells exhibited substantial levels of TRAIL-R4 expression but not TRAIL decoy receptor-3 (TRAIL-R3) on surface. On the contrary, TRAIL sensitive MDA-MB-231 cells displayed very low levels of surface TRAIL-R4

  5. Surface TRAIL decoy receptor-4 expression is correlated with TRAIL resistance in MCF7 breast cancer cells

    Directory of Open Access Journals (Sweden)

    Aydin Cigdem

    2005-05-01

    Full Text Available Abstract Background Tumor Necrosis Factor (TNF-Related Apoptosis-Inducing Ligand (TRAIL selectively induces apoptosis in cancer cells but not in normal cells. Despite this promising feature, TRAIL resistance observed in cancer cells seriously challenged the use of TRAIL as a death ligand in gene therapy. The current dispute concerns whether or not TRAIL receptor expression pattern is the primary determinant of TRAIL sensitivity in cancer cells. This study investigates TRAIL receptor expression pattern and its connection to TRAIL resistance in breast cancer cells. In addition, a DcR2 siRNA approach and a complementary gene therapy modality involving IKK inhibition (AdIKKβKA were also tested to verify if these approaches could sensitize MCF7 breast cancer cells to adenovirus delivery of TRAIL (Ad5hTRAIL. Methods TRAIL sensitivity assays were conducted using Molecular Probe's Live/Dead Cellular Viability/Cytotoxicity Kit following the infection of breast cancer cells with Ad5hTRAIL. The molecular mechanism of TRAIL induced cell death under the setting of IKK inhibition was revealed by Annexin V binding. Novel quantitative Real Time RT-PCR and flow cytometry analysis were performed to disclose TRAIL receptor composition in breast cancer cells. Results MCF7 but not MDA-MB-231 breast cancer cells displayed strong resistance to adenovirus delivery of TRAIL. Only the combinatorial use of Ad5hTRAIL and AdIKKβKA infection sensitized MCF7 breast cancer cells to TRAIL induced cell death. Moreover, novel quantitative Real Time RT-PCR assays suggested that while the level of TRAIL Decoy Receptor-4 (TRAIL-R4 expression was the highest in MCF7 cells, it was the lowest TRAIL receptor expressed in MDA-MB-231 cells. In addition, conventional flow cytometry analysis demonstrated that TRAIL resistant MCF7 cells exhibited substantial levels of TRAIL-R4 expression but not TRAIL decoy receptor-3 (TRAIL-R3 on surface. On the contrary, TRAIL sensitive MDA-MB-231 cells

  6. Identification and Regulation of c-Myb Target Genes in MCF-7 Cells

    Directory of Open Access Journals (Sweden)

    O'Rourke John P

    2011-01-01

    Full Text Available Abstract Background The c-Myb transcription factor regulates differentiation and proliferation in hematopoietic cells, stem cells and epithelial cells. Although oncogenic versions of c-Myb were first associated with leukemias, over expression or rearrangement of the c-myb gene is common in several types of solid tumors, including breast cancers. Expression of the c-myb gene in human breast cancer cells is dependent on estrogen stimulation, but little is known about the activities of the c-Myb protein or what genes it regulates in estrogen-stimulated cells. Methods We used chromatin immunoprecipitation coupled with whole genome promoter tiling microarrays to identify endogenous c-Myb target genes in human MCF-7 breast cancer cells and characterized the activity of c-Myb at a panel of target genes during different stages of estrogen deprivation and stimulation. Results By using different antibodies and different growth conditions, the c-Myb protein was found associated with over 10,000 promoters in MCF-7 cells, including many genes that encode cell cycle regulators or transcription factors and more than 60 genes that encode microRNAs. Several previously identified c-Myb target genes were identified, including CCNB1, MYC and CXCR4 and novel targets such as JUN, KLF4, NANOG and SND1. By studying a panel of these targets to validate the results, we found that estradiol stimulation triggered the association of c-Myb with promoters and that association correlated with increased target gene expression. We studied one target gene, CXCR4, in detail, showing that c-Myb associated with the CXCR4 gene promoter and activated a CXCR4 reporter gene in transfection assays. Conclusions Our results show that c-Myb associates with a surprisingly large number of promoters in human cells. The results also suggest that estradiol stimulation leads to large-scale, genome-wide changes in c-Myb activity and subsequent changes in gene expression in human breast cancer

  7. Effect of aluminium on migratory and invasive properties of MCF-7 human breast cancer cells in culture.

    Science.gov (United States)

    Darbre, Philippa D; Bakir, Ayse; Iskakova, Elzira

    2013-11-01

    Aluminium (Al) has been measured in human breast tissue, nipple aspirate fluid and breast cyst fluid, and recent studies have shown that at tissue concentrations, aluminium can induce DNA damage and suspension growth in human breast epithelial cells. This paper demonstrates for the first time that exposure to aluminium can also increase migratory and invasive properties of MCF-7 human breast cancer cells. Long-term (32 weeks) but not short-term (1 week) exposure of MCF-7 cells to 10(-4) M aluminium chloride or 10(-4) M aluminium chlorohydrate increased motility of the cells as measured by live cell imaging (cumulative length moved by individual cells), by a wound healing assay and by migration in real time through 8 μm pores of a membrane using xCELLigence technology. Long-term exposure (37 weeks) to 10(-4) M aluminium chloride or 10(-4) M aluminium chlorohydrate also increased the ability of MCF-7 cells to invade through a matrigel layer as measured in real time using the xCELLigence system. Although molecular mechanisms remain to be characterized, the ability of aluminium salts to increase migratory and invasive properties of MCF-7 cells suggests that the presence of aluminium in the human breast could influence metastatic processes. This is important because mortality from breast cancer arises mainly from tumour spread rather than from the presence of a primary tumour in the breast.

  8. PROFILES OF GENE EXPRESSION ASSOCIATED WITH TETRACYCLINE OVER EXPRESSION OF HSP70 IN MCF-7 BREAST CANCER CELLS

    Science.gov (United States)

    Profiles of gene expression associated with tetracycline over expression of HSP70 in MCF-7 breast cancer cells. Heat shock proteins (HSPs) protect cells from damage through their function as molecular chaperones. Some cancers reveal high levels of HSP70 expression in asso...

  9. Proliferative effect of whey from cow's milk obtained at two different stages of pregnancy measured in MCF-7 cells

    DEFF Research Database (Denmark)

    Nielsen, Tina S; Andersen, Charlotte; Sejrsen, Kristen;

    2012-01-01

    (whey) in a proliferation assay with estrogen-sensitive MCF-7 human breast cancer cells. Milk samples were obtained from 22 cows representing different stages of pregnancy (first and second half) and whey was produced from the milk. 0·1, 0·25 or 0·5% whey was included in the cell culture medium...

  10. Antioxidant capacity of food mixtures is not correlated with their antiproliferative activity against MCF-7 breast cancer cells.

    Science.gov (United States)

    Wang, Sunan; Zhu, Fan; Meckling, Kelly A; Marcone, Massimo F

    2013-12-01

    Combining different foods may produce additive, synergistic, or antagonistic interactions that may modify certain physiological effects (i.e., anticancer properties). For investigating these interactions and potential synergetic combinations, thirteen foods from three categories, including fruits (raspberries, blackberries, apples, grapes), vegetables (broccoli, tomatoes, mushrooms, purple cauliflowers, onions), and legumes (soy beans, adzuki beans, red kidney beans, black beans), were evaluated for their inhibitory activity against MCF-7 breast cancer cells. Grape, onion, and adzuki bean showed maximal growth inhibition of MCF-7 from the fruit, vegetable, and legume groups, respectively. When these three foods were combined in pairs, unique interactions were observed that were not seen when individual extracts were used. Combining onion and grape resulted in a synergistic antiproliferative effect (APE) against MCF-7 compared with either onion or grape treatment alone. In contrast, combining grape and adzuki bean resulted in an antagonistic interaction. Additionally, four antioxidant assays (total phenolic contents, ferric reducing antioxidant power, 2,2-diphenyl-1-picrylhydrazyl, and oxygen radical absorbance capacity) were further used to evaluate the antioxidant capacities (AC) of individual foods and their combinations. Combining raspberry and adzuki bean extracts demonstrated synergistic AC in all four assays, but they did not show synergistic APE against the MCF-7 cells. Combining broccoli and soy produced antioxidant antagonism, but did not have an antagonistic APE against MCF-7. The synergistic or antagonistic AC of food mixtures did not correlate with the synergistic or antagonistic APE against MCF-7. Further investigation is to determine the mechanisms of these interactions and to predict and enhance the therapeutic benefits of foods and food components through strategic food combinations.

  11. Carbon Nanotube-Mediated Photothermal Disruption of Endosomes/Lysosomes Reverses Doxorubicin Resistance in MCF-7/ADR Cells.

    Science.gov (United States)

    Pai, Chin-Ling; Chen, Yu-Chun; Hsu, Chia-Yen; Su, Hong-Lin; Lai, Ping-Shan

    2016-04-01

    Cancer is the leading cause of human death worldwide. Although many scientists work to fight this disease, multiple drug resistance is a predominant obstacle for effective cancer therapy. In drug-resistant MCF-7/ADR cells, the acidic organelles with lower pH value than normal one can cause the protonation of anthracycline drugs, inducing drug accumulation in these organelles. In this study, single-walled carbon nanotubes with polyethylene glycol phospholipids surface modification (PEGylated SWNTs) were utilized as near infrared-activated drug carriers for doxorubicin (DOX) delivery against MCF-7/ADR cells. Our results showed that a concentration-dependent temperature increase was observed in a solution of PEGylated SWNTs with 808 nm laser irradiation, whereas a water solution showed no significant changes in temperature under a thermal camera using the same irradiation dose. Interestingly, PEGylated DOX-SWNTs enhanced the nuclear accumulation of DOX with 808 nm irradiation whereas free DOX or PEGylated DOX-SWNTs revealed discrete red spots in MCF-7/ADR cells by confocal microscopic observation. Cell viability of PEGylated DOX-SWNTs-treated cells was also significantly decreased after 808 nm laser irradiation. Thus, photothermally activated PEGylated SWNTs can be a potential nanocarrier to deliver DOX into cancer cells and successfully overcome drug-resistant behavior in MCF-7/ADR breast cancer cells. PMID:27301189

  12. Cytotoxicity and DNA damage associated with pyrazoloacridine in MCF-7 breast cancer cells.

    Science.gov (United States)

    Grem, J L; Politi, P M; Berg, S L; Benchekroun, N M; Patel, M; Balis, F M; Sinha, B K; Dahut, W; Allegra, C J

    1996-06-28

    We examined the effects of pyrazoloacridine (PZA), an investigational anticancer agent in clinical trials, on cytotoxicity, DNA synthesis, and DNA damage in MCF-7 human breast carcinoma cells. With PZA concentrations ranging from 0.5 to 50 microM for durations of 3-72 hr, cytotoxicity increased in proportion to the total PZA exposure (concentration x time). Inhibition of DNA and RNA syntheses increased with increasing PZA concentration x time (microM.hr). A 24-hr exposure to 1 and 10 microM PZA reduced DNA synthesis to 62 and 5% of control, respectively, decreased the proportion of cells in S phase with accumulation of cells in G2 + M phase, and inhibited cell growth at 72 hr by 68 and 100%. Newly synthesized DNA was more susceptible to damage during PZA exposure, with subsequent induction of parental DNA damage. Significant damage to newly synthesized DNA as monitored by alkaline elution was evident after a 3-hr exposure to > or = 5 microM PZA. Longer PZA exposures (> or = 10 microM for 16 hr) were required to elicit damage to parental DNA. Induction of single-strand breaks in parental DNA correlated closely with induction of double-strand breaks and detachment of cells from the monolayer. PZA-mediated DNA fragmentation was not accompanied by the generation of oligonucleosomal laddering in MCF-7 cells, but induction of very high molecular weight DNA fragmentation (0.5 to 1 Mb) was detected by pulsed-field gel electrophoresis. In vitro binding of PZA to linear duplex DNA (1 kb DNA ladder) and closed, circular plasmid DNA was demonstrated by a shift in migration during agarose electrophoresis. PZA interfered with topoisomerase I- and II-mediated relaxation of plasmid DNA in a cell-free system, but the cytotoxic effects of PZA did not appear to involve a direct interaction with topoisomerase I or II (stabilization of the topoisomerase I- or II-DNA cleavable complex). PZA-mediated cytotoxicity correlated strongly with inhibition of DNA and RNA syntheses, and damage to

  13. The redox state of cytochrome c modulates resistance to methotrexate in human MCF7 breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Susana Barros

    Full Text Available BACKGROUND: Methotrexate is a chemotherapeutic agent used to treat a variety of cancers. However, the occurrence of resistance limits its effectiveness. Cytochrome c in its reduced state is less capable of triggering the apoptotic cascade. Thus, we set up to study the relationship among redox state of cytochrome c, apoptosis and the development of resistance to methotrexate in MCF7 human breast cancer cells. RESULTS: Cell incubation with cytochrome c-reducing agents, such as tetramethylphenylenediamine, ascorbate or reduced glutathione, decreased the mortality and apoptosis triggered by methotrexate. Conversely, depletion of glutathione increased the apoptotic action of methotrexate, showing an involvement of cytochrome c redox state in methotrexate-induced apoptosis. Methotrexate-resistant MCF7 cells showed increased levels of endogenous reduced glutathione and a higher capability to reduce exogenous cytochrome c. Using functional genomics we detected the overexpression of GSTM1 and GSTM4 in methotrexate-resistant MCF7 breast cancer cells, and determined that methotrexate was susceptible of glutathionylation by GSTs. The inhibition of these GSTM isoforms caused an increase in methotrexate cytotoxicity in sensitive and resistant cells. CONCLUSIONS: We conclude that overexpression of specific GSTMs, GSTM1 and GSTM4, together with increased endogenous reduced glutathione levels help to maintain a more reduced state of cytochrome c which, in turn, would decrease apoptosis, thus contributing to methotrexate resistance in human MCF7 breast cancer cells.

  14. Identification of Secreted Proteins from Ionizing Radiation-Induced Senescent MCF7 Cells Using Comparative Proteomics

    International Nuclear Information System (INIS)

    Cellular senescence was first described by Hayflick and Moorhead in 1961 who observed that cultures of normal human fibroblasts had a limited replicative potential and eventually became irreversibly arrest. The majority of senescent cells assume a characteristic flattened and enlarged morphological change, senescence associated β-galactosidase positivity and over the years a large number of molecular phenotypes have been described, such as changes in gene expression, protein processing and chromatin organization. In contrast to apoptosis, senescence does not destroy the cells but leaves them metabolically and synthetically active and therefore able to affect their microenvironment. In particular, senescent fibroblasts and some cancer cells were found to secrete proteins with known or putative tumor-promoting functions such as growth factors or proteolytic enzymes. However, the knowledge about secreted proteins from senescent tumor cells and their functions to surrounding cells is still lacking. In this study, changes of senescence-associated secretory protein expression profile were observed in MCF7 human breast cancer cells exposed to gamma-ray radiation using two dimensional electrophoresis. Also, we identified up-regulated secretory proteins during ionizing radiation-induced cellular senescence

  15. Down-regulation of estrogen receptor-alpha and rearranged during transfection tyrosine kinase is associated with withaferin a-induced apoptosis in MCF-7 breast cancer cells

    Directory of Open Access Journals (Sweden)

    Samadi Abbas K

    2011-10-01

    Full Text Available Abstract Background Withaferin A (WA, a naturally occurring withanolide, induces apoptosis in both estrogen-responsive MCF-7 and estrogen-independent MDA-MB-231 breast cancer cell lines with higher sensitivity in MCF-7 cells, but the underlying mechanisms are not well defined. The purpose of this study was to determine the anti-cancer effects of WA in MCF-7 breast cancer cells and explore alterations in estrogen receptor alpha (ERα and its associated molecules in vitro as novel mechanisms of WA action. Methods The effects of WA on MCF-7 viability and proliferation were evaluated by 3-(4, 5-dimethylthiazol-2-yl-5-(3-carboxymethoxyphenyl-2-(4-sulfophenyl-2H-tetrazolium (MTS assay and trypan blue exclusion assays. Apoptosis was evaluated by Annexin V-fluorescein isothiocyanate (FITC/propidium iodide (PI flow cytometry and Western blot analysis of poly (ADP-ribose polymerase (PARP cleavage. Cell cycle effects were analyzed by PI flow cytometry. Western blotting was also conducted to examine alterations in the expression of ERα and pathways that are associated with ERα function. Results WA resulted in growth inhibition and decreased viability in MCF-7 cells with an IC50 of 576 nM for 72 h. It also caused a dose- and time-dependent apoptosis and G2/M cell cycle arrest. WA-induced apoptosis was associated with down-regulation of ERα, REarranged during Transfection (RET tyrosine kinase, and heat shock factor-1 (HSF1, as well as up-regulation of phosphorylated p38 mitogen-activated protein kinase (phospho-p38 MAPK, p53 and p21 protein expression. Co-treatment with protein synthesis inhibitor cycloheximide or proteasome inhibitor MG132 revealed that depletion of ERα by WA is post-translational, due to proteasome-dependent ERα degradation. Conclusions Taken together, down-regulation of ERα, RET, HSF1 and up-regulation of phospho-p38 MAPK, p53, p21 are involved in the pro-apoptotic and growth-inhibitory effects of WA in MCF-7 breast cancer cells in

  16. The photodamage effect and ROS generation induced by PDT with HMME in MCF-7cells in vitro

    Science.gov (United States)

    Yin, Huijuan; Li, Xiaoyuan; Liu, Jianzhong; Li, Yan

    2007-05-01

    Hematoporphyrin monomethyl ether (HMME) is a novel and promising porphyrin-related photosensitizer for photodynamic therapy (PDT). We use the human breast cancer MCF-7 cells to investigate the photodamage effect of HMME and reactive oxygen species (ROS) generation in HMME-PDT. Methods: The growth rates of MCF-7 cells at 24h after irradiation by 532nm laser with HMME of 5~20μg/ml and light dose of 0.3~4.8J/cm2 were determined by CCK-8 assays. Hoechst33342 staining was used to investigate the morphological change of the tumor cell. Flow cytometry combined with dual Annexin V/PI staining was used to identify the death mode of the cells following PDT. The changes of ROS labeled by DCFH-DA were observed by Laser Scanning Confocal Microscopy (LSCM). Our results show that HMME-based PDT induced significant cell death, and the photocytotoxity to MCF-7 cells is dose-dependent at the range of HMME concentration 5~20μg/ml and the light dose 0.3~4.8J/cm2. The nucleolus underwent apoptosis and/or necrosis observed by LSCM with Hoechst33342 staining. The necrosis and apoptosis rate were 16.0% and 12.4% respectively by FCM, showing the number of necrosic cells was more than that of apoptosis. There was an intense increase of fluorescence intensity standing for ROS generation within 30min post-PDT, and the peak was at about 10min after PDT. Our results suggest that HMME-PDT could inhibit the proliferation of MCF-7 cells remarkably. Because the MCF-7 cells lack procaspase-3, the apoptosis rate is lower. ROS played an important role in the photodamage with HMME.

  17. Stable expression of promyelocytic leukaemia (PML protein in telomerase positive MCF7 cells results in alternative lengthening of telomeres phenotype

    Directory of Open Access Journals (Sweden)

    Yong Jacklyn W Y

    2012-08-01

    Full Text Available Abstract Background Cancer cells can employ telomerase or the alternative lengthening of telomeres (ALT pathway for telomere maintenance. Cancer cells that use the ALT pathway exhibit distinct phenotypes such as heterogeneous telomeres and specialised Promyelocytic leukaemia (PML nuclear foci called APBs. In our study, we used wild-type PML and a PML mutant, in which the coiled-coil domain is deleted (PML C/C-, to investigate how these proteins can affect telomere maintenance pathways in cancer cells that use either the telomerase or ALT pathway. Results Stable over-expression of both types of PML does not affect the telomere maintenance in the ALT cells. We report novel observations in PML over-expressed telomerase-positive MCF7 cells: 1 APBs are detected in telomerase-positive MCF7 cells following over-expression of wild-type PML and 2 rapid telomere elongation is observed in MCF7 cells that stably express either wild-type PML or PML C/C-. We also show that the telomerase activity in MCF7 cells can be affected depending on the type of PML protein over-expressed. Conclusion Our data suggests that APBs might not be essential for the ALT pathway as MCF7 cells that do not contain APBs exhibit long telomeres. We propose that wild-type PML can either definitively dominate over telomerase or enhance the activity of telomerase, and PML C/C- can allow for the co-existence of both telomerase and ALT pathways. Our findings add another dimension in the study of telomere maintenance as the expression of PML alone (wild-type or otherwise is able to change the dynamics of the telomerase pathway.

  18. Using expression profiling to understand the effects of chronic cadmium exposure on MCF-7 breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Zelmina Lubovac-Pilav

    Full Text Available Cadmium is a metalloestrogen known to activate the estrogen receptor and promote breast cancer cell growth. Previous studies have implicated cadmium in the development of more malignant tumors; however the molecular mechanisms behind this cadmium-induced malignancy remain elusive. Using clonal cell lines derived from exposing breast cancer cells to cadmium for over 6 months (MCF-7-Cd4, -Cd6, -Cd7, -Cd8 and -Cd12, this study aims to identify gene expression signatures associated with chronic cadmium exposure. Our results demonstrate that prolonged cadmium exposure does not merely result in the deregulation of genes but actually leads to a distinctive expression profile. The genes deregulated in cadmium-exposed cells are involved in multiple biological processes (i.e. cell growth, apoptosis, etc. and molecular functions (i.e. cadmium/metal ion binding, transcription factor activity, etc.. Hierarchical clustering demonstrates that the five clonal cadmium cell lines share a common gene expression signature of breast cancer associated genes, clearly differentiating control cells from cadmium exposed cells. The results presented in this study offer insights into the cellular and molecular impacts of cadmium on breast cancer and emphasize the importance of studying chronic cadmium exposure as one possible mechanism of promoting breast cancer progression.

  19. Cathepsin G, a Neutrophil Protease, Induces Compact Cell-Cell Adhesion in MCF-7 Human Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Tomoya Kudo

    2009-01-01

    Full Text Available Cathepsin G is a serine protease secreted by activated neutrophils that play a role in the inflammatory response. Because neutrophils are known to be invading leukocytes in various tumors, their products may influence the characteristics of tumor cells such as the growth state, motility, and the adhesiveness between cells or the extracellular matrix. Here, we demonstrate that cathepsin G induces cell-cell adhesion of MCF-7 human breast cancer cells resulting from the contact inhibition of cell movement on fibronectin but not on type IV collagen. Cathepsin G subsequently induced cell condensation, a very compact cell colony, resulting due to the increased strength of E-cadherin-mediated cell-cell adhesion. Cathepsin G action is protease activity-dependent and was inhibited by the presence of serine protease inhibitors. Cathepsin G promotes E-cadherin/catenin complex formation and Rap1 activation in MCF-7 cells, which reportedly regulates E-cadherin-based cell-cell junctions. Cathepsin G also promotes E-cadherin/protein kinase D1 (PKD1 complex formation, and Go6976, the selective PKD1 inhibitor, suppressed the cathepsin G-induced cell condensation. Our findings provide the first evidence that cathepsin G regulates E-cadherin function, suggesting that cathepsin G has a novel modulatory role against tumor cell-cell adhesion.

  20. Sulforaphane controls TPA-induced MMP-9 expression through the NF-κB signaling pathway, but not AP-1, in MCF-7 breast cancer cells

    Directory of Open Access Journals (Sweden)

    Young-Rae Lee

    2013-04-01

    Full Text Available Sulforaphane [1-isothiocyanato-4-(methylsulfinyl-butane] is anisothiocyanate found in some cruciferous vegetables, especiallybroccoli. Sulforaphane has been shown to displayanti-cancer properties against various cancer cell lines. Matrixmetalloproteinase-9 (MMP-9, which degrades the extracellularmatrix (ECM, plays an important role in cancer cell invasion.In this study, we investigated the effect of sulforaphane on12-O-tetradecanoyl phorbol-13-acetate (TPA-induced MMP-9expression and cell invasion in MCF-7 cells. TPA-inducedMMP-9 expression and cell invasion were decreased bysulforaphane treatment. TPA substantially increased NF-κB andAP-1 DNA binding activity. Pre-treatment with sulforaphaneinhibited TPA-stimulated NF-κB binding activity, but not AP-1binding activity. In addition, we found that sulforaphanesuppressed NF-κB activation, by inhibiting phosphorylation ofIκB in TPA-treated MCF-7 cells. In this study, we demonstratedthat the inhibition of TPA-induced MMP-9 expression and cellinvasion by sulforaphane was mediated by the suppression ofthe NF-κB pathway in MCF-7 cells. [BMB Reports 2013; 46(4:201-206

  1. Effect of low dose irradiation on estrogen receptor level in MCF-7 breast cancer cells.

    Science.gov (United States)

    Devriendt, D; Ma, Y; Kinnaert, E; Journe, F; Seo, H S; Van Houtte, P; Leclercq, G

    2001-02-20

    Exposure of MCF-7 cells to single and/or repeated low gamma-ray doses (0.5 to 8 Gy) resulted in a decrease in the capacity of these cells to concentrate tritiated estradiol ([3H]E2) (reduction of the number of binding sites). The decrease in the [3H]E2-binding capacity was higher than the survival rate, indicating that it could not be ascribed to cell death. Moreover, such low irradiation doses failed to similarly affect the specific incorporation of [3H]ORG 2058, even when the progesterone receptor was induced by E2, a finding that rejects the hypothesis of a nonspecific effect on all steroid hormone receptors. This loss of [3H]E2 binding was reflected by the elimination of the estrogen receptor alpha (ER) when the latter was assessed by immunocytochemistry. However, additional immunochemical studies (Western blot data) performed on cell extracts under denaturing conditions failed to show any similar elimination of the ER peptide, suggesting that the loss of E2-binding capacity would be relevant to subtle changes in the ER structure and/or ER-associated proteins. The loss of binding capacity, produced by a 3-Gy irradiation, failed to decrease the sensitivity of the cells to E2, since progesterone receptor induction and growth stimulation were maintained. Insufficient ER diminution may explain this observation. PMID:11241328

  2. First Evidence that Ecklonia cava-Derived Dieckol Attenuates MCF-7 Human Breast Carcinoma Cell Migration

    Directory of Open Access Journals (Sweden)

    Eun-Kyung Kim

    2015-03-01

    Full Text Available We investigated the effect of Ecklonia cava (E. cava-derived dieckol on movement behavior and the expression of migration-related genes in MCF-7 human breast cancer cell. Phlorotannins (e.g., dieckol, 6,6′-biecko, and 2,7″-phloroglucinol-6,6′-bieckol were purified from E. cava by using centrifugal partition chromatography. Among the phlorotannins, we found that dieckol inhibited breast cancer cell the most and was selected for further study. Radius™-well was used to assess cell migration, and dieckol (1–100 µM was found to suppress breast cancer cell movement. Metastasis-related gene expressions were evaluated by RT-PCR and Western blot analysis. In addition, dieckol inhibited the expression of migration-related genes such as matrix metalloproteinase (MMP-9 and vascular endothelial growth factor (VEGF. On the other hand, it stimulated the expression of tissue inhibitor of metalloproteinase (TIMP-1 and TIMP-2. These results suggest that dieckol exerts anti-breast cancer activity via the regulation of the expressions of metastasis-related genes, and this is the first report on the anti-breast cancer effect of dieckol.

  3. Effects of chemotherapy agents on Sphingosine-1-Phosphate receptors expression in MCF-7 mammary cancer cells.

    Science.gov (United States)

    Ghosal, P; Sukocheva, O A; Wang, T; Mayne, G C; Watson, D I; Hussey, D J

    2016-07-01

    Sphingosine-1-phosphate (S1P) is a potent bioactive sphingolipid involved in the regulation of cell proliferation and cancer progression. Increased expression of S1P receptors has been detected in advanced breast tumours with poor prognosis suggesting that S1P receptors might control tumour response to chemotherapy. However, it remains unclear how the levels of S1P receptor expression are influenced by chemotherapy agents. Western immunoblotting, PCR analysis and fluorescent microscopy techniques were used in this study to analyze expression patterns of S1P receptors 2 and 3 (S1P2/S1P3) in MCF-7 breast adenocarcinoma cells treated by Tamoxifen (TAM) and/or Medroxyprogesterone acetate (MPA). We found that TAM/MPA induce downregulation of S1P3 receptors, but stimulate expression of S1P2. According to cell viability and caspase activity analyses, as expected, TAM activated apoptosis. We also detected TAM/MPA-induced autophagy marked by formation of macroautophagosomes and increased level of Beclin 1. Combined application of TAM and MPA resulted in synergistic apoptosis- and autophagy-stimulating effects. Assessed by fluorescent microscopy with autophagosome marker LAMP-2, changes in S1P receptor expression coincided with activation of autophagy, suggestively, directing breast cancer cells towards death. Further studies are warranted to explore the utility of manipulation of S1P2 and S1P3 receptor expression as a novel treatment approach. PMID:27261597

  4. Phorbol ester induced phosphorylation of the estrogen receptor in intact MCF-7 human breast cancer cells

    International Nuclear Information System (INIS)

    Recent studies with a variety of cellular receptors have shown that phorbol ester induced phosphorylation modulates ligand binding and function. In this study the authors present direct evidence that the estrogen receptor in MCF-7 human breast cancer cells is a phosphoprotein whose phosphorylation state can be enhanced specifically by phorbol-12-myristate-13-acetate (PMA). Cells were cultured to 6h in the presence of [32P]-orthophosphate. Whole cell extracts were immunoprecipitated with a monoclonal antibody (D58) against the estrogen receptor and subjected to SDS-polyacrylamide electrophoresis. Autoradiography showed a specific band in the region of 60-62 kDa which was significantly increased in preparations from PMA treated cells. Phospho-amino acid analysis demonstrated specific phosphorylation of serine and threonine residues. Cholera toxin or forskolin did not change the phosphorylation state of this protein. In a parallel binding analysis PMA led to a rapid decrease of estrogen binding sites. The estrogen induction of both progesterone receptors and growth in semisolid medium was blocked by PMA, whereas the estrogen induction of the 8kDa protein corresponding to the ps2 gene product and of the 52 kDa protein was not affected. In conclusion, phorbol esters can induce phosphorylation of the estrogen receptor. This process may be associated with the inactivation of certain receptor functions

  5. Hint2促进乳腺癌细胞株MCF7对紫杉醇注射液的敏感性%Over-expression of Hint2 Sensitizes Breast Cancer Cell MCF7 to Taxol

    Institute of Scientific and Technical Information of China (English)

    蔡少鑫; 陈成; 杨熹; 邓豫; 李兆明; 李小兰; 胡俊波

    2013-01-01

    目的 探讨高表达三联组氨酸核苷酸结合蛋白2 (Hint2)增强人乳腺癌细胞株MCF7对紫杉醇注射液敏感性的影响.方法 构建高表达Hint2的载体pCMV-HA-Hint2并转染MCF7细胞,通过免疫荧光和Western blot方法检测Hint2的表达,采用噻唑蓝(MTT)法检测高表达Hint2后MCF7细胞对紫杉醇注射液的敏感性,采用流式细胞AnnexinV方法检测细胞凋亡.结果 pCMV-HA-Hint2转染36 h后,细胞的Hint2基因表达明显增加,5μmol·L-1的紫杉醇注射液处理24 h后,Hint2高表达组细胞活性为33.78%,而对照组细胞活性为44.12%.结论 Hint2高表达能显著增加MCF7细胞对紫杉醇注射液的敏感性.%Objective To evaluate the effect of over-expression of Hint2 on sensitivity of breast cancer cell MCF7 to taxol . Methods The expression vector of pCMV-HA-Hint2 was constructed and transfected into MCF7 cells and the protein expression of Hint2 was detected by immunofluorescence and Western blotting. The changes of sensitivity to taxol after transfection were examined by MTT and flow cytometry respectively. Results In MCF7 cells, the protein levels of Hint2 were significantly increased after transfection, After exposed to 5 μmol · L-1 taxol for 24 h, cell viability of Hint2 over-expression group was 33. 78% , compared to 44. 12% in control group. Conclusion Over-expression of Hint2 can enhance the sensitivity of MCF7 to taxol.

  6. MiR-133a Is Functionally Involved in Doxorubicin-Resistance in Breast Cancer Cells MCF-7 via Its Regulation of the Expression of Uncoupling Protein 2.

    Directory of Open Access Journals (Sweden)

    Yuan Yuan

    Full Text Available The development of novel targeted therapies holds promise for conquering chemotherapy resistance, which is one of the major hurdles in current breast cancer treatment. Previous studies indicate that mitochondria uncoupling protein 2 (UCP-2 is involved in the development of chemotherapy resistance in colon cancer and lung cancer cells. In the present study we found that lower level of miR133a is accompanied by increased expression of UCP-2 in Doxorubicin-resistant breast cancer cell cline MCF-7/Dox as compared with its parental cell line MCF-7. We postulated that miR133a might play a functional role in the development of Doxorubicin-resistant in breast cancer cells. In this study we showed that: 1 exogenous expression of miR133a in MCF-7/Dox cells can sensitize their reaction to the treatment of Doxorubicin, which is coincided with reduced expression of UCP-2; 2 knockdown of UCP-2 in MCF-7/Dox cells can also sensitize their reaction to the treatment of Doxorubicin; 3 intratumoral delivering of miR133a can restore Doxorubicin treatment response in Doxorubicin-resistant xenografts in vivo, which is concomitant with the decreased expression of UCP-2. These findings provided direct evidences that the miR133a/UCP-2 axis might play an essential role in the development of Doxorubicin-resistance in breast cancer cells, suggesting that the miR133a/UCP-2 signaling cohort could be served as a novel therapeutic target for the treatment of chemotherapy resistant in breast cancer.

  7. Restoring wtp53 activity in HIPK2 depleted MCF7 cells by modulating metallothionein and zinc.

    Science.gov (United States)

    Puca, Rosa; Nardinocchi, Lavinia; Bossi, Gianluca; Sacchi, Ada; Rechavi, Gideon; Givol, David; D'Orazi, Gabriella

    2009-01-01

    The maintenance of p53 transactivation activity is important for p53 apoptotic function. We have shown that stable knockdown of HIPK2 induces p53 misfolding with inhibition of p53 target gene transcription. In this study we established a lentiviral-based system for doxycyclin (Dox)-induced conditional interference of HIPK2 expression to evaluate the molecular mechanisms involved in p53 deregulation. We found that HIPK2 knockdown induced metallothionein 2A (MT2A) upregulation as assessed by RT-PCR analysis, increased promoter acetylation, and increased promoter luciferase activity. The MT2A upregulation correlated with resistance to Adriamycin (ADR)-driven apoptosis and with p53 inhibition. Thus, acute knockdown of HIPK2 (HIPK2i) induced misfolded p53 protein in MCF7 breast cancer cells and inhibited p53 DNA-binding and transcription activities in response to ADR treatment. Previous works show that MT may modulate p53 activity through zinc exchange. Here, we found that inhibition of MT2A expression by siRNA in the HIPK2i cells restored p53 transcription activity. Similarly zinc supplementation to HIPK2i cells restored p53 transcription activity and drug-induced apoptosis. These data support the notion that MT2A is involved in p53 deregulation and strengthen the possibility that combination of chemotherapy and zinc might be useful to treat tumors with inactive wtp53. PMID:18996371

  8. Combinatorial Cytotoxic Effects of Damnacanthal and Doxorubicin against Human Breast Cancer MCF-7 Cells in Vitro

    Directory of Open Access Journals (Sweden)

    Muhammad Yusran Abdul Aziz

    2016-09-01

    Full Text Available Despite progressive research being done on drug therapy to treat breast cancer, the number of patients succumbing to the disease is still a major issue. Combinatorial treatment using different drugs and herbs to treat cancer patients is of major interest in scientists nowadays. Doxorubicin is one of the most used drugs to treat breast cancer patients. The combination of doxorubicin to other drugs such as tamoxifen has been reported. Nevertheless, the combination of doxorubicin with a natural product-derived agent has not been studied yet. Morinda citrifolia has always been sought out for its remarkable remedies. Damnacanthal, an anthraquinone that can be extracted from the roots of Morinda citrifolia is a promising compound that possesses a variety of biological properties. This study aimed to study the therapeutic effects of damnacanthal in combination with doxorubicin in breast cancer cells. Collectively, the combination of both these molecules enhanced the efficacy of induced cell death in MCF-7 as evidenced by the MTT assay, cell cycle, annexin V and expression of apoptosis-related genes and proteins. The effectiveness of doxorubicin as an anti-cancer drug was increased upon addition of damnacanthal. These results could provide a promising approach to treat breast cancer patients.

  9. Effects of MDM2 Antisense Oligonucleotide Combined with Paclitaxel on Human Breast Cancer Cells MCF-7%MDM2反义寡核苷酸联合紫杉醇对乳腺癌MCF-7细胞株的作用

    Institute of Scientific and Technical Information of China (English)

    田国梅; 赵长久; 付鹏; 栾厦; 张月红; 吴琼

    2012-01-01

    Objective: To investigate the effects of the MDM2 antisense oligonucleotide (ASON) combined with Paclitaxel on human breast cancer cells MCF-7. Methods: The synthesis of antisense oligonucleotides specific binding of MDM2 mRNA and missense oligonucleotides(MON) different from four bases, different concentrations of MDM2 ASON mediated by Lipofectamine 2000 transfected MCF-7 breast cancer cell lines, breast cancer cells transfected by 1 μmol/L paclitaxel treatment.The expression of MDM2 mRNA and protein was determined by RT-PCR and Western blotting, To detect synergies of MDM2 ASON combined with paclitaxel and the inhibition efficiency of breast cancer cells MCF-7, the proliferation of MCF-7 cell to paclitaxe and chemosensitivity were observed by MTT assay. Results: The antisense oligonucleotide combined with Paclitaxel efficiently down-regulated MDM2 mRNA and protein expression, inhibit the growth of MCF-7 cells. MDM2 expression was getting lower and lower with the increase of the concentration of MDM2 ASON growing in a dose dependent relationship, the synergy of the A500 combined with paclitaxel was the most obvious. MTT showed that proliferation inhibition rate of MCF-7 cell transfected to pactitaxel increased significantly, A500 was the most significant effect, inhibition rate was (13.0 ± 0.84)%. Conclusion: Human breast cancer cell MCF-7 transfected was treated by a concentration of paclitaxel, MDM2 expression was significantly decreased, increased apoptosis, MDM2 ASON combined with paclitaxel on MCF-7 cells had a syn-ergistic effect, improved the sensitivity of breast cancer MCF-7 cells to paclitaxel.%目的:探讨靶向MDM2反义寡核苷酸(ASON)联合紫杉醇对乳腺癌MCF-7细胞株的影响.方法:合成一段与MDM2 mRNA特异性结合的反义寡核苷酸和与反义寡核苷酸有4个碱基不同的的错义寡核苷酸(MON),脂质体2000介导不同浓度的MDM2ASON转染MCF-7乳腺癌细胞系,转染的乳腺癌细胞通过1μmol/L紫

  10. Ethanolic Extract of Hedyotis corymbosa L. Increases Cytotoxic Activity of Doxorubicin on MCF-7 Breast Cancer Cell

    Directory of Open Access Journals (Sweden)

    Sari Haryanti

    2015-11-01

    Full Text Available generated by an Adobe application 11.5606 Hedyotis corymbosa L. with ursolic acid as the main compound is one of the plants that has been used for traditional medicine including to cure breast cancer disease. The aim of this research is to examine the cytotoxic activity of rumput mutiara herb ethanolic extract (ERM and its effect in combination with doxorubicin against MCF-7 breast cancer cell line as cell model of doxorubicin resistance. Hedyotis corymbosa L. herb powder extraction was done by maceration using ethanol 96% then the extract is detected for ursolic acid content. Cell viability assay of ERM, doxorubicin and  the combination of ERM and doxorubicin treatments were carried out by MTT assay to determine IC50 and CI (Combination Index. Cell cycle distribution was determined by flowcytometry. Apoptosis assay was performed by ethidum bromide-acridine orange DNA staining method. Investigation on Bcl-2 expression was determined by immunocytochemistry method. Thin Layer Chromatography of ERM had similar Rf with ursolic acid standard: 0,6. ERM and doxorubicin inhibited cell growth against MCF-7 with IC50  of 77 µg/mL and 349 nM (0,19 µg/mL respectively. Combination of ERM and doxorubicin showed synergistic effect (CI 0.66-0.99. Combination of 25 ìg/mL ERM- 200 nM doxorubicin induced apoptosis and decreased Bcl-2 expression but showed no cell accumulation on cell cycle. Doxorubicin induced high cell accumulation in G2/M phase, but ERM at the concentration of 25 ìg/mL had a low effect in G1 phase, and ERM IC50 did not induce cell accumulation otherwise apoptosis. These results concluded that the apoptosis mechanism of combination doxorubicin-ERM is mediated by cell cycle arrest and non cell cycle arrest. Therefore ERM has a potential activity to be developed as co-chemotherapeutic agent.   Normal 0 36 false false false

  11. Investigation of anticancer effect of Xanthoceraside in vitro and the mechanism of Xanthoceraside-induced human breast cancer MCF-7 cell death

    Institute of Scientific and Technical Information of China (English)

    JI Xue-fei; XIA Ming-yu; CHI Tian-yan; WANG Li-hua; YANG Bai-zhen; ZOU Li-bo

    2008-01-01

    Objective To investigate the anticancer effect of xanthoceraside in vitro and the possible mechanisms involved in the potent antiproliferative effect on human breast cancer MCF-7 cell. Methods The inhibition rate of different tumor cells and human peripheral blood lymphocyte cells was investigated by MTT assay. AO/EB double fluorescent dye staining was used to investigate the morphology changes of MCF-7. The DNA agarose gel electrophoresis was further used to observe the DNA Fragmentation. Flow eytometry was employed to investigate the volume changes, the cell cycle distribution and the mitoehondrial membrane potential of MCF-7. The antioxidant N-acetylcysteine (NAC) was chosen to detect the influence on oxidantstress system of MCF-7 cells. Necrostatin-1 was next chosen to detect the influence on antiproliferative effect of xanthoceraside-treated MCF-7 cells. Results Xanthoceraside could inhibit the proliferation of tumor cells significantly in a dose-dependent manner and it has no eytotoxie effects on human peripheral blood lymphocyte cells in vitro. Cytoplasm vacuole was observed but no significant condense of nuclear ehromatin was found, meanwhile, MCF-7 cells were bigger and smear was observed by agarose gel electrophoresis after MCF-7 cells were exposed to xanthoceraside. The cell cycle distribution of MCF-7 was greatly changed after exposure to xanthoceraside with an obvious G1 arrest. The mitochondrial membrane potential showed significant decrease. NAC attenuate the antiproliferative effect of xanthoceraside-treated MCF-7 cells but necrostatin-1 had no effects. Conclnsions Xanthoceraside-indueed necrosis might be dependent of mitochondria, meanwhile reactive oxygen species (ROS) participated in it. The xanthoceraside-indueed MCF-7 cell death might not be the cell necrosis which initiated by Fas/TNFR and must be through RIP1 kinase.

  12. Effects and Potential Mechanisms of Danzhi Xiaoyao Pill(丹栀逍遥丸) on Proliferation of MCF-7 Human Breast Cancer Cells in vitro

    Institute of Scientific and Technical Information of China (English)

    LIAO Hui; Linda K Banbury; David N Leach

    2008-01-01

    Objective:To investigate the effects of 50% ethyl alcohol(EtOH)extracts from Danzhi mechanisms.Methods:ATP-Lite assay was performed to test the proliferation of the MCF-7 breast cancer cell line;and antioxidant activity was measured by the oxygen radical absorbance capacity (ORAC).The effects of DXP on nitric oxide(NO)production were tested by lipopolysaccharide(LPS)-stimulated RAW 264.7 murine macrophages using the Griess reaction.Results:The 50% EtOH DXP extracts displayed a cytotoxic response on MCF-7 cells at 0.10,0.25 and 0.50 mg/mL dosedependently with the proliferation inhibited by more than 85%.The ORAC value of the DXP was 820 μ moL Trolox equivalent/g.about 40% of the vitamin C value.DXP extracts had significant inhibitory effect on NO production at the concentration from 0.0625 mg/mL to 0.5 mg/mL(P<0.05,P<0.01).Conclusion:The extracts of DXP could significantly inhibit the proliferation of MCF-7 cells,with the effect possibly related to its antioxidant activity and the inhibition of NO production.

  13. Knockdown of c-Myc expression by RNAi inhibits MCF-7 breast tumor cells growth in vitro and in vivo

    International Nuclear Information System (INIS)

    Breast cancer is the leading cause of cancer death in women worldwide. Elevated expression of c-Myc is a frequent genetic abnormality seen in this malignancy. For a better understanding of its role in maintaining the malignant phenotype, we used RNA interference (RNAi) directed against c-Myc in our study. RNAi provides a new, reliable method to investigate gene function and has the potential for gene therapy. The aim of the study was to examine the anti-tumor effects elicited by a decrease in the protein level of c-Myc by RNAi and its possible mechanism of effects in MCF-7 cells. A plasmid-based polymerase III promoter system was used to deliver and express short interfering RNA (siRNA) targeting c-myc to reduce its expression in MCF-7 cells. Western blot analysis was used to measure the protein level of c-Myc. We assessed the effects of c-Myc silencing on tumor growth by a growth curve, by soft agar assay and by nude mice experiments in vivo. Standard fluorescence-activated cell sorter analysis and TdT-mediated dUTP nick end labelling assay were used to determine apoptosis of the cells. Our data showed that plasmids expressing siRNA against c-myc markedly and durably reduced its expression in MCF-7 cells by up to 80%, decreased the growth rate of MCF-7 cells, inhibited colony formation in soft agar and significantly reduced tumor growth in nude mice. We also found that depletion of c-Myc in this manner promoted apoptosis of MCF-7 cells upon serum withdrawal. c-Myc has a pivotal function in the development of breast cancer. Our data show that decreasing the c-Myc protein level in MCF-7 cells by RNAi could significantly inhibit tumor growth both in vitro and in vivo, and imply the therapeutic potential of RNAi on the treatment of breast cancer by targeting overexpression oncogenes such as c-myc, and c-myc might be a potential therapeutic target for human breast cancer

  14. Role of isothiocyanate conjugate of pterostilbene on the inhibition of MCF-7 cell proliferation and tumor growth in Ehrlich ascitic cell induced tumor bearing mice

    Energy Technology Data Exchange (ETDEWEB)

    Nikhil, Kumar; Sharan, Shruti; Chakraborty, Ajanta [Molecular Endocrinology Laboratory, Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247 667, Uttarakhand (India); Bodipati, Naganjaneyulu; Krishna Peddinti, Rama [Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247 667, Uttarakhand (India); Roy, Partha, E-mail: paroyfbs@iitr.ernet.in [Molecular Endocrinology Laboratory, Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247 667, Uttarakhand (India)

    2014-01-15

    Naturally occurring pterostilbene (PTER) and isothiocyanate (ITC) attract great attention due to their wide range of biological properties, including anti-cancer, anti-leukemic, anti-bacterial and anti-inflammatory activities. A novel class of hybrid compound synthesized by introducing an ITC moiety on PTER backbone was evaluated for its anti-cancer efficacy in hormone-dependent breast cancer cell line (MCF-7) in vitro and Ehrlich ascitic tumor bearing mice model in vivo. The novel hybrid molecule showed significant in vitro anti-cancer activity (IC{sub 50}=25±0.38) when compared to reference compound PTER (IC{sub 50}=65±0.42). The conjugate molecule induced both S and G2/M phase cell cycle arrest as indicated by flow cytometry analysis. In addition, the conjugate induced cell death was characterized by changes in cell morphology, DNA fragmentation, activation of caspase-9, release of cytochrome-c into cytosol and increased Bax: Bcl-2 ratio. The conjugate also suppressed the phosphorylation of Akt and ERK. The conjugate induced cell death was significantly increased in presence of A6730 (a potent Akt1/2 kinase inhibitor) and PD98059 (a specific ERK inhibitor). Moreover, the conjugated PTER inhibited tumor growth in Ehrlich ascitic cell induced tumor bearing mice as observed by reduction in tumor volume compared to untreated animals. Collectively, the pro-apoptotic effect of conjugate is mediated through the activation of caspases, and is correlated with the blockade of the Akt and ERK signaling pathways in MCF-7 cells. - Highlights: • Conjugate was prepared by appending isothiocyanate moiety on pterostilbene backbone. • Conjugate showed anticancer effects at comparatively lower dose than pterostilbene. • Conjugate caused blockage of the Akt and ERK signaling pathways in MCF-7 cells. • Conjugate significantly reduced solid tumor volume as compared to pterostilbene.

  15. Combined Treatment of MCF-7 Cells with AICAR and Methotrexate, Arrests Cell Cycle and Reverses Warburg Metabolism through AMP-Activated Protein Kinase (AMPK and FOXO1.

    Directory of Open Access Journals (Sweden)

    Tamás Fodor

    Full Text Available Cancer cells are characterized by metabolic alterations, namely, depressed mitochondrial oxidation, enhanced glycolysis and pentose phosphate shunt flux to support rapid cell growth, which is called the Warburg effect. In our study we assessed the metabolic consequences of a joint treatment of MCF-7 breast cancer cells with AICAR, an inducer of AMP-activated kinase (AMPK jointly with methotrexate (MTX, a folate-analog antimetabolite that blunts de novo nucleotide synthesis. MCF7 cells, a model of breast cancer cells, were resistant to the individual application of AICAR or MTX, however combined treatment of AICAR and MTX reduced cell proliferation. Prolonged joint application of AICAR and MTX induced AMPK and consequently enhanced mitochondrial oxidation and reduced the rate of glycolysis. These metabolic changes suggest an anti-Warburg rearrangement of metabolism that led to the block of the G1/S and the G2/M transition slowing down cell cycle. The slowdown of cell proliferation was abolished when mitotropic transcription factors, PGC-1α, PGC-1β or FOXO1 were silenced. In human breast cancers higher expression of AMPKα and FOXO1 extended survival. AICAR and MTX exerts similar additive antiproliferative effect on other breast cancer cell lines, such as SKBR and 4T1 cells, too. Our data not only underline the importance of Warburg metabolism in breast cancer cells but nominate the AICAR+MTX combination as a potential cytostatic regime blunting Warburg metabolism. Furthermore, we suggest the targeting of AMPK and FOXO1 to combat breast cancer.

  16. Biodegradable Eri silk nanoparticles as a delivery vehicle for bovine lactoferrin against MDA-MB-231 and MCF-7 breast cancer cells

    Directory of Open Access Journals (Sweden)

    Roy K

    2015-12-01

    Full Text Available Kislay Roy,1,* Yogesh S Patel,1,* Rupinder K Kanwar,1 Rangam Rajkhowa,2 Xungai Wang,2 Jagat R Kanwar1 1Nanomedicine-Laboratory of Immunology and Molecular Biomedical Research (NLIMBR, Centre for Molecular and Medical Research (C-MMR, School of Medicine (SoM, Faculty of Health, 2Institute for Frontier Materials (IFM, Deakin University, Waurn Ponds, VIC, Australia *These authors contributed equally to this work Abstract: This study used the Eri silk nanoparticles (NPs for delivering apo-bovine lactoferrin (Apo-bLf (~2% iron saturated and Fe-bLf (100% iron saturated in MDA-MB-231 and MCF-7 breast cancer cell lines. Apo-bLf and Fe-bLf-loaded Eri silk NPs with sizes between 200 and 300 nm (±10 nm showed a significant internalization within 4 hours in MDA-MB-231 cells when compared to MCF-7 cells. The ex vivo loop assay with chitosan-coated Fe-bLf-loaded silk NPs was able to substantiate its future use in oral administration and showed the maximum absorption within 24 hours by ileum. Both Apo-bLf and Fe-bLf induced increase in expression of low-density lipoprotein receptor-related protein 1 and lactoferrin receptor in epidermal growth factor (EGFR-positive MDA-MB-231 cells, while transferrin receptor (TfR and TfR2 in MCF-7 cells facilitated the receptor-mediated endocytosis of NPs. Controlled and sustained release of both bLf from silk NPs was shown to induce more cancer-specific cytotoxicity in MDA-MB-231 and MCF-7 cells compared to normal MCF-10A cells. Due to higher degree of internalization, the extent of cytotoxicity and apoptosis was significantly higher in MDA-MB-231 (EGFR+ cells when compared to MCF-7 (EGFR- cells. The expression of a prominent anti-cancer target, survivin, was found to be downregulated at both gene and protein levels. Taken together, all the observations suggest the potential use of Eri silk NPs as a delivery vehicle for an anti-cancer milk protein, and indicate bLf for the treatment of breast cancer. Keywords: breast

  17. Interaction of Vault Particles with Estrogen Receptor in the MCF-7 Breast Cancer Cell

    Science.gov (United States)

    Abbondanza, Ciro; Rossi, Valentina; Roscigno, Annarita; Gallo, Luigi; Belsito, Angela; Piluso, Giulio; Medici, Nicola; Nigro, Vincenzo; Molinari, Anna Maria; Moncharmont, Bruno; Puca, Giovanni A.

    1998-01-01

    A 104-kD protein was coimmunoprecipitated with the estrogen receptor from the flowtrough of a phosphocellulose chromatography of MCF-7 cell nuclear extract. mAbs to this protein identified several cDNA clones coding for the human 104-kD major vault protein. Vaults are large ribonucleoprotein particles of unknown function present in all eukaryotic cells. They have a complex morphology, including several small molecules of RNA, but a single protein species, the major vault protein, accounts for >70% of their mass. Their shape is reminiscent of the nucleopore central plug, but no proteins of known function have been described to interact with them. Western blot analysis of vaults purified on sucrose gradient showed the presence of estrogen receptor co-migrating with the vault peak. The AER317 antibody to estrogen receptor coimmunoprecipitated the major vault protein and the vault RNA also in the 20,000 g supernatant fraction. Reconstitution experiments of estrogen receptor fragments with the major vault protein mapped the site of the interaction between amino acids 241 and 280 of human estrogen receptor, where the nuclear localization signal sequences are located. Estradiol treatment of cells increased the amount of major vault protein present in the nuclear extract and coimmunoprecipitated with estrogen receptor, whereas the anti-estrogen ICI182,780 had no effect. The hormone-dependent interaction of vaults with estrogen receptor was reproducible in vitro and was prevented by sodium molybdate. Antibodies to progesterone and glucocorticoid receptors were able to coimmunoprecipitate the major vault protein. The association of nuclear receptors with vaults could be related to their intracellular traffic. PMID:9628887

  18. Increased sensitivity to the prodrug 5'-deoxy-5-fluorouridine and modulation of 5-fluoro-2'-deoxyuridine sensitivity in MCF-7 cells transfected with thymidine phosphorylase.

    OpenAIRE

    Patterson, A V; Zhang, H.; Moghaddam, A; Bicknell, R.; Talbot, D. C.; Stratford, I. J.; Harris, A. L.

    1995-01-01

    Platelet-derived endothelial cell growth factor (PD-ECGF) is identical to human thymidine phosphorylase (dThdPase). The human MCF-7 breast cancer cell line was transfected with the dThdPase cDNA and expressed a 45 kDa protein that was detected with anti-dThdPase antibody. Cell lysates possessed elevated dThdPase activity and cells had up to 165-fold increased sensitivity to the prodrug 5'-deoxy-5-fluorouridine (5'-DFUR) in vitro. Sensitivity to 5-fluorouracil (5-FU) and 5-fluoro-2'-deoxyuridi...

  19. PEA3 activates CXCR4 transcription in MDA-MB-231 and MCF7 breast cancer cells

    Institute of Scientific and Technical Information of China (English)

    Shengmei Gu; Li Chen; Qi Hong; Tingting Yan; Zhigang Zhuang; Qiaoqiao wang; Wei Jin; Hua Zhu; Jiong Wu

    2011-01-01

    CXC chemokine receptor 4 (CXCR4) is a cell surface receptor that has been shown to mediate the metastasis of many solid tumors including lung,breast,kidney,and prostate tumors.In this study,we found that overexpression of ets variant gene 4 (PEA3) could elevate CXCR4 mRNA level and CXCR4 promoter activity in human MDA-MB-231 and MCF-7 breast cancer cells.PEA3 promoted CXCR4 expression and breast cancer metastasis.Chromatin immunoprecipitation assay demonstrated that PEA3 could bind to the CXCR4 promoter in the cells transfected with PEA3 expression vector.PEA3 siRNA attenuated CXCR4 promoter activity and the binding of PEA3 to the CXCR4 promoter in MDA-MB-231 and MCF-7 cells.These results indicated that PEA3 could activate CXCR4 promoter transcription and promote breast cancer metastasis.

  20. FHL2 inhibits the Id3-promoted proliferation and invasive growth of human MCF-7 breast cancer cells

    Institute of Scientific and Technical Information of China (English)

    CHEN Yi-hong; WU Zhi-qiang; ZHAO Ya-li; SI Yi-ling; GUO Ming-zhou; HAN Wei-dong

    2012-01-01

    Background Id3 plays a key role in the progression of breast cancer.Previously,four and a half LIM protein (FHL2) was identified as a repressor of Id family proteins by interacting with them.This study aimed to investigate the effects of FHL2 on the transcriptional regulation and oncogenic activities of Id3 in human breast cancer cells.Methods Cell transfection was performed with SuperFect reagent.Stable transfectants that overexpressed Id3 were obtained by selection on G418.The level of Id3 protein was determined by Western blotting analysis.Dual luciferase assays were used to measure the effect of Id3 and FHL2 on E47-mediated transcriptional activity in MCF-7 human breast cancer cells.The MTT assay was used to measure cell proliferation.The transwell assay was used to measure the invasive capacity of MCF-7 cancer cells.Results Id3 markedly repressed transcription mediated by the basic helix-loop-helix (bHLH) factor E47 in MCF-7 cells.This Id3-mediated repression was effectively antagonized by FHL2.Overexpression of Id3 markedly promoted the proliferation and invasive capacity of MCF-7 cells; however,these effects were significantly suppressed by the overexpression of FHL2.Conclusions FHL2 can inhibit the proliferation and invasive growth of human breast cancer cells by repressing the functional activity of Id3.The functional roles of FHL2-1d3 signaling in the development of human breast cancer need further research.

  1. 紫杉醇肿瘤靶向给药系统对MCF-7细胞的抑制作用观察%Inhibition of NGR-SWCNTs-Paclitaxel on MCF-7 cells

    Institute of Scientific and Technical Information of China (English)

    张艳艳; 张晓艳; 付旭东; 刘康栋; 赵继敏; 董子明; 张振中

    2013-01-01

    Aim:To prepare targeting drug delivery system NGR-SWCNTs-Paclitaxel and observe its effect on MCF-7 cell.Methods:Single-walled carbon nanotubes loading paclitaxel (SWCNTs-Paclitaxel) and NGR-SWCNTs-Paclitaxel were prepared.The MCF-7 cells were treated with paclitaxel ,SWCNTs-Paclitaxel and NGR-SWCNTs-Paclitaxel labelled with FITC,then phagocytosis test was performed in order to evaluate the intake of MCF-7 cell, cell proliferation was tested by MTT assay, and cell cycle and apoptosis were determined by flow cytometry method .The cells without any treatment was the control.Results:NGR-SWCNTs-Paclitaxel was devoured by MCF-7 cell effectively compared with SWCNTs-Paclitaxel and Paclitaxel.The proliferation inhibition ratio and the apoptosis rate had significant difference among these groups ( P <0.05).The proliferation inhibition ratio and the apoptosis rate of the cells treated by NGR-SWCNTs-Paclitaxel were the highest, and the cells were blocked in G2/M(P<0.05).Conclusion: NGR-SWCNTs-Paclitaxel has been successfully constructed , which could target the MCF-7 cells and inhibit the cell proliferation .%目的:制备紫杉醇肿瘤靶向给药系统NGR-SWCNTs-Paclitaxel ,观察其对MCF-7乳癌细胞的影响。方法:实验分为对照组、Paclitaxel组、SWCNTs-Paclitaxel组和NGR-SWCNTs-Paclitaxel组。用荧光物质FITC标记单壁碳纳米管( SWCNTs ),采用细胞吞噬实验观察MCF-7细胞对各制剂的体外摄取情况,用MTT法观察各制剂对MCF-7细胞的增殖抑制作用,采用流式细胞术检测细胞周期和凋亡率。结果:MCF-7细胞能够有效吞噬NGR-SWCNTs-Pacli-taxel复合物,未经NGR-SWCNTs修饰的Paclitaxel 较少进入肿瘤细胞。 Paclitaxel、SWCNTs-Paclitaxel 和NGR-SWC-NTs-Paclitaxel组的细胞增殖抑制率、细胞周期和细胞凋亡率差异均有统计学意义(P<0.05);NGR-SWCNTs-Pacli-taxel对细胞的增殖抑制作用最强,诱导的细胞凋亡最有效,G2/M

  2. Suppression of the death gene BIK is a critical factor for resistance to tamoxifen in MCF-7 breast cancer cells.

    Science.gov (United States)

    Viedma-Rodriguez, Rubí; Baiza-Gutman, Luis Arturo; García-Carrancá, Alejandro; Moreno-Fierros, Leticia; Salamanca-Gómez, Fabio; Arenas-Aranda, Diego

    2013-12-01

    Apoptosis is controlled by the BCL-2 family of proteins, which can be divided into three different subclasses based on the conservation of BCL-2 homology domains. BIK is a founding member of the BH3-only pro-apoptotic protein family. BIK is predominantly localized in the endoplasmic reticulum (ER) and induces apoptosis through the mitochondrial pathway by mobilizing calcium from the ER to the mitochondria. In this study, we determined that suppression of the death gene Bik promotes resistance to tamoxifen (TAM) in MCF-7 breast cancer cells. We utilized small interfering (siRNA) to specifically knockdown BIK in MCF-7 cells and studied their response to tamoxifen. The levels of cell apoptosis, the potential mitochondrial membrane (∆Ψ(m)), and the activation of total caspases were analyzed. Western blot analysis was used to determine the expression of some BCL-2 family proteins. Flow cytometry studies revealed an increase in apoptosis level in MCF-7 cells and a 2-fold increase in relative BIK messenger RNA (mRNA) expression at a concentration of 6.0 μM of TAM. BIK silencing, with a specific RNAi, blocked TAM-induced apoptosis in 45 ± 6.78% of cells. Moreover, it decreased mitochondrial membrane potential (Ψm) and total caspase activity, and exhibited low expression of pro-apoptotic proteins BAX, BAK, PUMA and a high expression of BCl-2 and MCL-1. The above suggests resistance to TAM, regulating the intrinsic pathway and indicate that BIK comprises an important factor in the process of apoptosis, which may exert an influence the ER pathway, which regulates mitochondrial integrity. Collectively, our results show that BIK is a central component of the programmed cell death of TAM-induced MCF-7 breast cancer cells. The silencing of BIK gene will be useful for future studies to establish the mechanisms of regulation of resistance to TAM. PMID:24100375

  3. Leptin induces CYP1B1 expression in MCF-7 cells through ligand-independent activation of the ERα pathway

    Energy Technology Data Exchange (ETDEWEB)

    Khanal, Tilak; Kim, Hyung Gyun; Do, Minh Truong; Choi, Jae Ho; Won, Seong Su [Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon (Korea, Republic of); Kang, Wonku [College of Pharmacy, Yeungnam University, Gyeongsan (Korea, Republic of); Chung, Young Chul [Department of Food Science and Culinary, International University of Korea, Jinju (Korea, Republic of); Jeong, Tae Cheon, E-mail: taecheon@ynu.ac.kr [College of Pharmacy, Yeungnam University, Gyeongsan (Korea, Republic of); Jeong, Hye Gwang, E-mail: hgjeong@cnu.ac.kr [Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon (Korea, Republic of)

    2014-05-15

    Leptin, a hormone with multiple biological actions, is produced predominantly by adipose tissue. Among its functions, leptin can stimulate tumour cell growth. Oestrogen receptor α (ERα), which plays an essential role in breast cancer development, can be transcriptionally activated in a ligand-independent manner. In this study, we investigated the effect of leptin on CYP1B1 expression and its mechanism in breast cancer cells. Leptin induced CYP1B1 protein, messenger RNA expression and promoter activity in ERα-positive MCF-7 cells but not in ERα-negative MDA-MB-231 cells. Additionally, leptin increased 4-hydroxyoestradiol in MCF-7 cells. Also, ERα knockdown by siRNA significantly blocked the induction of CYP1B1 expression by leptin, indicating that leptin induced CYP1B1 expression via an ERα-dependent mechanism. Transient transfection with CYP1B1 deletion promoter constructs revealed that the oestrogen response element (ERE) plays important role in the up-regulation of CYP1B1 by leptin. Furthermore, leptin stimulated phosphorylation of ERα at serine residues 118 and 167 and increased ERE-luciferase activity, indicating that leptin induced CYP1B1 expression by ERα activation. Finally, we found that leptin activated ERK and Akt signalling pathways, which are upstream kinases related to ERα phosphorylation induced by leptin. Taken together, our results indicate that leptin-induced CYP1B1 expression is mediated by ligand-independent activation of the ERα pathway as a result of the activation of ERK and Akt in MCF-7 cells. - Highlights: • Leptin increased 4-hydroxyoestradiol in MCF-7 breast cancer cells. • Leptin activated ERK and Akt kinases related to ERα phosphorylation. • Leptin induces phosphorylation of ERα at serine residues 118 and 167. • Leptin induces ERE-luciferase activity.

  4. Correlation between Twist expression and multidrug resistance of breast cancer cell lines

    Institute of Scientific and Technical Information of China (English)

    Yue-Xi Wang; Xiao-Mei Chen; Jun Yan; Zhi-Ping Li

    2016-01-01

    Objective:To study the correlation between Twist expression and multidrug resistance of breast cancer cell lines. Methods:Human breast cancer cell lines MCF-7, cisplatin-resistant human breast cancer cell lines MCF-7/DDP, doxorubicin-resistant human breast cancer cell lines MCF-7/Adr and taxol-resistant human breast cancer cell lines MCF/PTX were cultured, Twist in human breast cancer cell lines MCF-7 was overexpressed and treated with doxorubicin, and then cell viability and expression levels of EMT marker molecules and related signaling pathway molecules were detected. Results:mRNA contents and protein contents of Twist in drug-resistant breast cancer cell lines MCF-7/DDP, MCF-7/Adr and MCF/PTX were higher than those in MCF-7 cell lines;after doxorubicin treatment, inhibitory rates of cell viability in MCF-7 cell lines were higher than those in MCF-7/Adr and MCF-7/Twist cell lines;E-cadherin expression levels in MCF-7/Adr cell lines and MCF-7/Twist cell lines were lower than those in MCF-7 cell lines, and mRNA contents and protein contents of N-cadherin, Vimentin, TGF-β, Smad, Wnt,β-catenin, TNF-αand NF-kB were higher than those in MCF-7 cell lines. Conclusion:Increased expression of Twist is associated with the occurrence of drug resistance in breast cancer cells.

  5. In vitro evaluation of antitumor activity of doxorubicin-loaded nanoemulsion in MCF-7 human breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Alkhatib, Mayson H., E-mail: mhalkhatib@kau.edu.sa; AlBishi, Hayat M. [College of Science, King Abdulaziz University, Department of Biochemistry (Saudi Arabia)

    2013-03-15

    Doxorubicin (DOX) is an anticancer drug used to treat several cancer diseases. However, it has several dose limitation aspects because of its poor bioavailability, hydrophobicity, and cytotoxicity. In this study, five nanoemulsion (NE) formulations, containing soya phosphatidylcholine/polyoxyethylenglycerol trihydroxy-stearate 40 (EU)/sodium oleate as surfactant, cholesterol (CHO) as oil phase, and Tris-HCl buffer (pH 7.22), were produced. The NE droplets morphologies of the entire blank and DOX-loaded formulations, revealed by the transmission electron microscope, were spherical. The droplet sizes of blank NEs, obtained between 2.9 and 6.4 nm, decreased significantly with the increase in the ratio of surfactant-to-oil, whereas the droplets sizes of DOX-loaded NE formulations were significantly higher and found in the range of 7.7-15.9 nm. The evaluation for both blank and DOX-loaded NE formulations proved that the NE carrier had improved the DOX efficacy and reduced its cytotoxicity. It showed that the cell growth inhibition of the breast cancer cells (MCF-7) have exceeded the commercial DOX by a factor of 1.7 with increased apoptosis activity and minimal cytotoxicity against the normal human foreskin cells (HFS). In contrast, commercial DOX was found to exhibit a significant non-selective toxicity against both MCF-7 and HFS cells. In conclusion, we have developed DOX-loaded NE formulations which selectively and significantly inhibited cell proliferation of MCF-7 cells and increased apoptosis.

  6. In vitro evaluation of antitumor activity of doxorubicin-loaded nanoemulsion in MCF-7 human breast cancer cells

    International Nuclear Information System (INIS)

    Doxorubicin (DOX) is an anticancer drug used to treat several cancer diseases. However, it has several dose limitation aspects because of its poor bioavailability, hydrophobicity, and cytotoxicity. In this study, five nanoemulsion (NE) formulations, containing soya phosphatidylcholine/polyoxyethylenglycerol trihydroxy-stearate 40 (EU)/sodium oleate as surfactant, cholesterol (CHO) as oil phase, and Tris–HCl buffer (pH 7.22), were produced. The NE droplets morphologies of the entire blank and DOX-loaded formulations, revealed by the transmission electron microscope, were spherical. The droplet sizes of blank NEs, obtained between 2.9 and 6.4 nm, decreased significantly with the increase in the ratio of surfactant-to-oil, whereas the droplets sizes of DOX-loaded NE formulations were significantly higher and found in the range of 7.7–15.9 nm. The evaluation for both blank and DOX-loaded NE formulations proved that the NE carrier had improved the DOX efficacy and reduced its cytotoxicity. It showed that the cell growth inhibition of the breast cancer cells (MCF-7) have exceeded the commercial DOX by a factor of 1.7 with increased apoptosis activity and minimal cytotoxicity against the normal human foreskin cells (HFS). In contrast, commercial DOX was found to exhibit a significant non-selective toxicity against both MCF-7 and HFS cells. In conclusion, we have developed DOX-loaded NE formulations which selectively and significantly inhibited cell proliferation of MCF-7 cells and increased apoptosis.

  7. Effects of cholesterol on plasma membrane lipid order in MCF-7 cells by two-photon microscopy

    Science.gov (United States)

    Zeng, Yixiu; Chen, Jianling; Yang, Hongqin; Wang, Yuhua; Li, Hui; Xie, Shusen

    2014-09-01

    Lipid rafts are cholesterol- and glycosphingolipids- enriched microdomains on plasma membrane surface of mammal cells, involved in a variety of cellular processes. Depleting cholesterol from the plasma membrane by drugs influences the trafficking of lipid raft markers. Optical imaging techniques are powerful tools to study lipid rafts in live cells due to its noninvasive feature. In this study, breast cancer cells MCF-7 were treated with different concentrations of MβCD to deplete cholesterol and an environmentally sensitive fluorescence probe, Laurdan was loaded to image lipid order by two-photon microscopy. The generalized polarization (GP) values were calculated to distinguish the lipid order and disorder phase. GP images and GP distributions of native and cholesterol-depleted MCF-7 cells were obtained. Our results suggest that even at low concentration (0.5 mM) of MβCD, the morphology of the MCF-7 cells changes. Small high GP areas (lipid order phase) decrease more rapidly than low GP areas (lipid disorder phase), indicating that lipid raft structure was altered more severely than nonraft domains. The data demonstrates that cholesterol dramatically affect raft coverage and plasma membrane fluidity in living cells.

  8. Efficiency of photodynamic therapy using indocyanine green and infrared light on MCF-7 breast cancer cells in vitro

    Science.gov (United States)

    Ruhi, Mustafa K.; Ak, Ayşe.; Gülsoy, Murat

    2016-03-01

    Cancer is one of the main reasons of death in all around the world. The main treatments of cancer include surgical intervention, radiation therapy and chemotherapy. These treatments can be applied separately or in a combined manner. Another therapeutic method that is still being researched and recently has started to be used in clinical applications is Photodynamic Therapy (PDT). Most photosensitizers currently being investigated are sensitive to red light. However, it is known that infrared light has a better penetration into the skin or tissue. Indocyanine Green (ICG), which is used in this study, is sensitive to infrared light. The aim of this in vitro study is to investigate the effect of PDT on breast cancer cells by using different doses of ICG and infrared light irradiation. 25, 50 and 100 μM ICG concentrations and 25 and 50 J/cm2 laser energy doses were applied to MCF-7 cell lines. MTT analyses were performed on 24, 48 and 72 hours following the treatments. As a result, inhibition of cell viability was observed in a time and dose dependent manner. It can be concluded that ICG-PDT application is a good alternative to conventional radiation therapy and chemotherapy for breast cancer treatment.

  9. Koenimbin, a natural dietary compound of Murraya koenigii (L Spreng: inhibition of MCF7 breast cancer cells and targeting of derived MCF7 breast cancer stem cells (CD44+/CD24-/low: an in vitro study

    Directory of Open Access Journals (Sweden)

    Ahmadipour F

    2015-02-01

    Full Text Available Fatemeh Ahmadipour,1 Mohamed Ibrahim Noordin,1 Syam Mohan,2 Aditya Arya,1 Mohammadjavad Paydar,3 Chung Yeng Looi,3 Yeap Swee Keong,4 Ebrahimi Nigjeh Siyamak,4 Somayeh Fani,1 Maryam Firoozi,5 Chung Lip Yong,1 Mohamed Aspollah Sukari,6 Behnam Kamalidehghan1 1Department of Pharmacy, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia; 2Medical Research Center, Jazan University, Jazan, Kingdom of Saudi Arabia; 3Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia; 4UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia; 5Department of Medical Genetics, National Institute for Genetic Engineering and Biotechnology, Tehran, Iran; 6Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang, Malaysia Background: Inhibition of breast cancer stem cells has been shown to be an effective therapeutic strategy for cancer prevention. The aims of this work were to evaluate the efficacy of koenimbin, isolated from Murraya koenigii (L Spreng, in the inhibition of MCF7 breast cancer cells and to target MCF7 breast cancer stem cells through apoptosis in vitro. Methods: Koenimbin-induced cell viability was evaluated using the MTT (3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide assay. Nuclear condensation, cell permeability, mitochondrial membrane potential, and cytochrome c release were observed using high-content screening. Cell cycle arrest was examined using flow cytometry, while human apoptosis proteome profiler assays were used to investigate the mechanism of apoptosis. Protein expression levels of Bax, Bcl2, and heat shock protein 70 were confirmed using Western blotting. Caspase-7, caspase-8, and caspase-9 levels were measured, and nuclear factor kappa B (NF-κB activity was assessed using a high-content screening assay. Aldefluor™ and mammosphere formation assays were used to evaluate the effect of koenimbin on MCF7

  10. Mango Fruit Extracts Differentially Affect Proliferation and Intracellular Calcium Signalling in MCF-7 Human Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Meng-Wong Taing

    2015-01-01

    Full Text Available The assessment of human cancer cell proliferation is a common approach in identifying plant extracts that have potential bioactive effects. In this study, we tested the hypothesis that methanolic extracts of peel and flesh from three archetypal mango cultivars, Irwin (IW, Nam Doc Mai (NDM, and Kensington Pride (KP, differentially affect proliferation, extracellular signal-regulated kinase (ERK activity, and intracellular calcium ([Ca2+]I signalling in MCF-7 human breast cancer cells. Mango flesh extracts from all three cultivars did not inhibit cell growth, and of the peel extracts only NDM reduced MCF-7 cell proliferation. Mango cultivar peel and flesh extracts did not significantly change ERK phosphorylation compared to controls; however, some reduced relative maximal peak [Ca2+]I after adenosine triphosphate stimulation, with NDM peel extract having the greatest effect among the treatments. Our results identify mango interfruit and intrafruit (peel and flesh extract variability in antiproliferative effects and [Ca2+]I signalling in MCF-7 breast cancer cells and highlight that parts of the fruit (such as peel and flesh and cultivar differences are important factors to consider when assessing potential chemopreventive bioactive compounds in plants extracts.

  11. Antitumor Activity of Chinese Propolis in Human Breast Cancer MCF-7 and MDA-MB-231 Cells

    Directory of Open Access Journals (Sweden)

    Hongzhuan Xuan

    2014-01-01

    Full Text Available Chinese propolis has been reported to possess various biological activities such as antitumor. In present study, anticancer activity of ethanol extract of Chinese propolis (EECP at 25, 50, 100, and 200 μg/mL was explored by testing the cytotoxicity in MCF-7 (human breast cancer ER(+ and MDA-MB-231 (human breast cancer ER(− cells. EECP revealed a dose- and time-dependent cytotoxic effect. Furthermore, annexin A7 (ANXA7, p53, nuclear factor-κB p65 (NF-κB p65, reactive oxygen species (ROS levels, and mitochondrial membrane potential were investigated. Our data indicated that treatment of EECP for 24 and 48 h induced both cells apoptosis obviously. Exposure to EECP significantly increased ANXA7 expression and ROS level, and NF-κB p65 level and mitochondrial membrane potential were depressed by EECP dramatically. The effects of EECP on p53 level were different in MCF-7 and MDA-MB-231 cells, which indicated that EECP exerted its antitumor effects in MCF-7 and MDA-MB-231 cells by inducing apoptosis, regulating the levels of ANXA7, p53, and NF-κB p65, upregulating intracellular ROS, and decreasing mitochondrial membrane potential. Interestingly, EECP had little or small cytotoxicity on normal human umbilical vein endothelial cells (HUVECs. These results suggest that EECP is a potential alternative agent on breast cancer treatment.

  12. Effects of Phytoestrogen Extracts Isolated from Elder Flower on Hormone Production and Receptor Expression of Trophoblast Tumor Cells JEG-3 and BeWo, as well as MCF7 Breast Cancer Cells

    Science.gov (United States)

    Schröder, Lennard; Richter, Dagmar Ulrike; Piechulla, Birgit; Chrobak, Mareike; Kuhn, Christina; Schulze, Sandra; Abarzua, Sybille; Jeschke, Udo; Weissenbacher, Tobias

    2016-01-01

    Herein we investigated the effect of elderflower extracts (EFE) and of enterolactone/enterodiol on hormone production and proliferation of trophoblast tumor cell lines JEG-3 and BeWo, as well as MCF7 breast cancer cells. The EFE was analyzed by mass spectrometry. Cells were incubated with various concentrations of EFE. Untreated cells served as controls. Supernatants were tested for estradiol production with an ELISA method. Furthermore, the effect of the EFE on ERα/ERβ/PR expression was assessed by immunocytochemistry. EFE contains a substantial amount of lignans. Estradiol production was inhibited in all cells in a concentration-dependent manner. EFE upregulated ERα in JEG-3 cell lines. In MCF7 cells, a significant ERα downregulation and PR upregulation were observed. The control substances enterolactone and enterodiol in contrast inhibited the expression of both ER and of PR in MCF7 cells. In addition, the production of estradiol was upregulated in BeWo and MCF7 cells in a concentration dependent manner. The downregulating effect of EFE on ERα expression and the upregulation of the PR expression in MFC-7 cells are promising results. Therefore, additional unknown substances might be responsible for ERα downregulation and PR upregulation. These findings suggest potential use of EFE in breast cancer prevention and/or treatment and warrant further investigation. PMID:27740591

  13. IFNB1/interferon-ß-induced autophagy in MCF-7 breast cancer cells counteracts its proapoptotic function

    DEFF Research Database (Denmark)

    Ambjørn, Malene; Ejlerskov, Patrick; Liu, Yawei;

    2013-01-01

    of survival pathways leading to treatment resistance. Defects in autophagy, a conserved cellular degradation pathway, are implicated in numerous cancer diseases. Autophagy is induced in response to cancer therapies and can contribute to treatment resistance. While the type II IFN, IFNG, which in many aspects...... differs significantly from type I IFNs, can induce autophagy, no such function for any type I IFN has been reported. We show here that IFNB1 induces autophagy in MCF-7, MDAMB231 and SKBR3 breast cancer cells by measuring the turnover of two autophagic markers, MAP1LC3B/LC3 and SQSTM1/p62. The induction...... of autophagy in MCF-7 cells occurred upstream of the negative regulator of autophagy MTORC1, and autophagosome formation was dependent on the known core autophagy molecule ATG7 and the IFNB1 signaling molecule STAT1. Using siRNA-mediated silencing of several core autophagy molecules and STAT1, we provide...

  14. JNK-dependent Atg4 upregulation mediates asperphenamate derivative BBP-induced autophagy in MCF-7 cells.

    Science.gov (United States)

    Li, Yanchun; Luo, Qiyu; Yuan, Lei; Miao, Caixia; Mu, Xiaoshuo; Xiao, Wei; Li, Jianchun; Sun, Tiemin; Ma, Enlong

    2012-08-15

    N-Benzoyl-O-(N'-(1-benzyloxycarbonyl-4-piperidiylcarbonyl)-D-phenylalanyl)-D-phenylalaninol (BBP), a novel synthesized asperphenamate derivative with the increased solubility, showed growth inhibitory effect on human breast carcinoma MCF-7 cells in a time- and concentration-dependent manner. The growth inhibitory effect of BBP was associated with induction of autophagy, which was demonstrated by the development of acidic vesicular organelles, cleavage of LC3 and upregulation of Atg4 in BBP-treated MCF-7 cells. Since the application of Atg4 siRNA totally blocked the cleavage of LC3, we demonstrated a central role of Atg4 in BBP-induced autophagy. The further studies showed that BBP increased the levels of reactive oxygen species (ROS), and pretreatment with NAC effectively blocked the accumulation of ROS, autophagy and growth inhibition triggered by BBP. Moreover, BBP induced the activation of JNK, and JNK inhibitor SP600125 reversed autophagy, the increase of Atg4 levels, conversion of LC3 and growth inhibition induced by BBP. Knockdown of JNK by siRNA efficiently inhibited ROS production and autophagy, but antioxidant NAC failed to block JNK activation induced by BBP, indicating that JNK activation may be a upstream signaling of ROS and should be a core component in BBP-induced autophagic signaling pathway. These results suggest that BBP produces its growth inhibitory effect through induction of the autophagic cell death in MCF-7 cells, which is modulated by a JNK-dependent Atg4 upregulation involving ROS production. PMID:22668848

  15. A polysaccharide from Huaier induced apoptosis in MCF-7 breast cancer cells via down-regulation of MTDH protein.

    Science.gov (United States)

    Luo, Zhiyong; Hu, Xiaopeng; Xiong, Hua; Qiu, Hong; Yuan, Xianglin; Zhu, Feng; Wang, Yihua; Zou, Yanmei

    2016-10-20

    In this study, one homogeneous polysaccharide (SP1), with a molecular weight of 56kDa, was isolated from the Huaier fruiting bodies. It had a backbone consisting of 1,4-linked-β-d-Galp and 1,3,6-linked-β-d-Galp residues, which was terminated with 1-linked-α-d-Glcp and 1-linked-α-l-Araf terminal at O-3 position of 1,3,6-linked-β-d-Galp unit along the main chain in the ratio of 1.1:2.0:1.1:1.1. MTT assay showed that shMTDH or SP1 (100, 200 and 400μg/ml) was able to suppress the proliferation of MCF-7 cells, due to a significant increase in the number of apoptotic cells as determined by flow cytometric analysis. Furthermore, Western blot analysis revealed that SP1 or shMTDH treatment led to a rise of ratio between proapoptotic Bax and antiapoptotic Bcl-2 protein in MCF-7 cells. In addition, carcinogene MTDH protein expression in MCF-7 cells received SP1 (100, 200 and 400μg/mL) or shMTDH treatment was also repressed after 48h incubation. Taken together, these findings indicated that SP1 has anticancer potential in the treatment of human breast cancer. PMID:27474651

  16. Down-regulation of PPARgamma1 suppresses cell growth and induces apoptosis in MCF-7 breast cancer cells

    Directory of Open Access Journals (Sweden)

    Wallis Natalie K

    2008-12-01

    Full Text Available Abstract Background Peroxisome proliferator-activated receptor gamma (PPARγ is a member of the nuclear hormone receptor superfamily and is highly expressed in many human tumors including breast cancer. PPARγ has been identified as a potential target for breast cancer therapy based on the fact that its activation by synthetic ligands affects the differentiation, proliferation, and apoptosis of cancer cells. However, the controversial nature of current studies and disappointing results from clinical trials raise questions about the contribution of PPARγ signaling in breast cancer development in the absence of stimulation by exogenous ligands. Recent reports from both in vitro and in vivo studies are inconsistent and suggest that endogenous activation of PPARγ plays a much more complex role in initiation and progression of cancer than previously thought. Results We have previously demonstrated that an increase in expression of PPARγ1 in MCF-7 breast cancer cells is driven by a tumor-specific promoter. Myc-associated zinc finger protein (MAZ was identified as a transcriptional mediator of PPARγ1 expression in these cells. In this study, using RNA interference (RNAi to inhibit PPARγ1 expression directly or via down-regulation of MAZ, we report for the first time that a decrease in PPARγ1 expression results in reduced cellular proliferation in MCF-7 breast cancer cells. Furthermore, we demonstrate that these changes in proliferation are associated with a significant decrease in cell transition from G1 to the S phase. Using a dominant-negative mutant of PPARγ1, Δ462, we confirmed that PPARγ1 acts as a pro-survival factor and showed that this phenomenon is not limited to MCF-7 cells. Finally, we demonstrate that down-regulation of PPARγ1 expression leads to an induction of apoptosis in MCF-7 cells, confirmed by analyzing Bcl-2 expression and PARP-1 cleavage. Conclusion Thus, these findings suggest that an increase in PPARγ1 signaling

  17. Physicochemical and biological characterization of chitosan-microRNA nanocomplexes for gene delivery to MCF-7 breast cancer cells.

    Science.gov (United States)

    Santos-Carballal, B; Aaldering, L J; Ritzefeld, M; Pereira, S; Sewald, N; Moerschbacher, B M; Götte, M; Goycoolea, F M

    2015-01-01

    Cancer gene therapy requires the design of non-viral vectors that carry genetic material and selectively deliver it with minimal toxicity. Non-viral vectors based on cationic natural polymers can form electrostatic complexes with negatively-charged polynucleotides such as microRNAs (miRNAs). Here we investigated the physicochemical/biophysical properties of chitosan-hsa-miRNA-145 (CS-miRNA) nanocomplexes and the biological responses of MCF-7 breast cancer cells cultured in vitro. Self-assembled CS-miRNA nanocomplexes were produced with a range of (+/-) charge ratios (from 0.6 to 8) using chitosans with various degrees of acetylation and molecular weight. The Z-average particle diameter of the complexes was dependent manner. Surface plasmon resonance spectroscopy shows that complexes formed by low degree of acetylation chitosans are highly stable, regardless of the molecular weight. We found no evidence that these complexes were cytotoxic towards MCF-7 cells. Furthermore, CS-miRNA nanocomplexes with degree of acetylation 12% and 29% were biologically active, showing successful downregulation of target mRNA expression in MCF-7 cells. Our data, therefore, shows that CS-miRNA complexes offer a promising non-viral platform for breast cancer gene therapy. PMID:26324407

  18. PKCη confers protection against apoptosis by inhibiting the pro-apoptotic JNK activity in MCF-7 cells

    International Nuclear Information System (INIS)

    Apoptosis is frequently regulated by different protein kinases including protein kinase C family enzymes. Both inhibitory and stimulatory effects were demonstrated for several of the different PKC isoforms. Here we show that the novel PKC isoform, PKCη, confers protection against apoptosis induced by the DNA damaging agents, UVC irradiation and the anti-cancer drug - Camptothecin, of the breast epithelial adenocarcinoma MCF-7 cells. The induced expression of PKCη in MCF-7 cells, under the control of the tetracycline-responsive promoter, resulted in increased cell survival and inhibition of cleavage of the apoptotic marker PARP-1. Activation of caspase-7 and 9 and the release of cytochrome c were also inhibited by the inducible expression of PKCη. Furthermore, JNK activity, required for apoptosis in MCF-7, as indicated by the inhibition of both caspase-7 cleavage and cytochrome c release from the mitochondria in the presence of the JNK inhibitor SP600125, was also suppressed by PKCη expression. Hence, in contrast to most PKC isoforms enhancing JNK activation, our studies show that PKCη is an anti-apoptotic protein, acting as a negative regulator of JNK activity. Thus, PKCη could represent a target for intervention aimed to reduce resistance to anti-cancer treatments.

  19. To construct the eukaryotic expression plasmid PIRESneo3/miR-194 and establish a miR-194 highly expressed MCF-7 cell%真核表达质粒PIRESneo3/miR-194的构建及其在乳腺癌细胞MCF-7中的表达

    Institute of Scientific and Technical Information of China (English)

    李佳; 王本忠

    2012-01-01

    目的 构建含miR-194基因的真核表达质粒,建立miR-194稳定表达的MCF-7乳腺癌细胞株.方法 设计合成miR-194引物序列,PCR法从乳腺癌231细胞中扩增出目的片段,经双酶切后定向连入PIRESneo3载体,构建PIRESneo3/miR-194真核表达质粒,经酶切、测序检测其构建的正确性.脂质体法将重组质粒转入MCF-7细胞,G418药物筛选出稳定转染的细胞,实时荧光定量PCR法检测稳定转染MCF-7细胞中miR-194基因的表达水平.结果 构建的PIRESneo3/miR-194质粒经酶切、测序等检验表明质粒构建成功,筛选获得稳定高表达miR-194的MCF-7乳腺癌细胞株.结论 成功构建了PIRESneo3/miR-194真核表达质粒以及稳定高表达miR-194的MCF-7细胞株.为进一步观察该基因对乳腺癌细胞的体外效应和以miR-194为靶点的乳腺癌基因治疗研究提供实验基础.%Objective To construct the eukaryotic expression plasmid containing miR-194 genes and establish breast cancer cell lines( MCF-7 ) with stabilized expression of miR-194. Methods MiR-194 primers were designed and miR-194 gene was amplified from cDNA of 231 breast cancer cells by reverse transcription polymerase chain re-action ( PCR ). The miR-194 gene was cloned into PIRESneo3 vector directionally after enzyme cut thus constructing the eukaryotic expression plasmid of PIRESneo3/miR-194. Then the recombinant PIRESneo3/miR-194 plasmid was transfected into the MCF-7 cell line by Lipofectamine, and miR-194 highly expressed cells was selected by G418 ( 600 μg/ml ). The expression level of miR-194 was detected by real-time quantitative PCR. Results The recombinant PIRESneo3/miR-194 plasmid was constructed, and the MCF-7 cell line with highly miR-194 gene was screened. Conclusion miR-194 highly expressed MCF-7 cell line is established sucessfully, which will be a perfect target of miR-194 gene therapy and for observing its function in breast cancer cells.

  20. Combination of survivin siRNA with neoadjuvant chemotherapy enhances apoptosis and reverses drug resistance in breast cancer MCF-7 cells

    Directory of Open Access Journals (Sweden)

    Honglin Dong

    2015-01-01

    Conclusion: Survivin siRNA combined with the neoadjuvant chemotherapy can significantly enhance the sensitivity of MCF-7 cells to chemotherapeutics and cell apoptosis. This technology has important potential value in the therapeutic study of breast cancer.

  1. MUC5B silencing reduces chemo-resistance of MCF-7 breast tumor cells and impairs maturation of dendritic cells.

    Science.gov (United States)

    García, Enrique P; Tiscornia, Inés; Libisch, Gabriela; Trajtenberg, Felipe; Bollati-Fogolín, Mariela; Rodríguez, Ernesto; Noya, Verónica; Chiale, Carolina; Brossard, Natalie; Robello, Carlos; Santiñaque, Federico; Folle, Gustavo; Osinaga, Eduardo; Freire, Teresa

    2016-05-01

    Mucins participate in cancer progression by regulating cell growth, adhesion, signaling, apoptosis or chemo-resistance to drugs. The secreted mucin MUC5B, the major component of the respiratory tract mucus, is aberrantly expressed in breast cancer, where it could constitute a cancer biomarker. In this study we evaluated the role of MUC5B in breast cancer by gene silencing the MUC5B expression with short hairpin RNA on MCF-7 cells. We found that MUC5B-silenced MCF-7 cells have a reduced capacity to grow, adhere and form cell colonies. Interestingly, MUC5B knock-down increased the sensitivity to death induced by chemotherapeutic drugs. We also show that MUC5B silencing impaired LPS-maturation of DCs, and production of cytokines. Furthermore, MUC5B knock-down also influenced DC-differentiation and activation since it resulted in an upregulation of IL-1β, IL-6 and IL-10, cytokines that might be involved in cancer progression. Thus, MUC5B could enhance the production of LPS-induced cytokines, suggesting that the use of MUC5B-based cancer vaccines combined with DC-maturation stimuli, could favor the induction of an antitumor immune response.

  2. Effect of human extracellular matrix protein 1 on proliferation of MCF-7 and human umbilical vein endothelial cells%细胞外基质蛋白1对MCF-7和HUVEC增殖影响的研究

    Institute of Scientific and Technical Information of China (English)

    侯彦强; 蔡丽君; 范列英; 罗鹏; 何玮; 娄加陶; 周演武; 倪健; 孔宪涛; 仲人前

    2004-01-01

    目的:探讨细胞外基质蛋白1(extracellular matrix protein 1,ECM1)对乳腺癌细胞株MCF-7和人脐静脉内皮细胞(human umbilical vein endothelial cell,HUVEC)增殖的影响.方法:构建ECM1-pEGFP-N2真核表达载体,采用PCR方法,扩增出ECM1基因,用BglⅡ和Kpn Ⅰ双酶切ECM1基因和pEGFP-N2载体,连接酶切目的片段,转化大肠杆菌DH5α,筛选阳性克隆酶切、测序鉴定;利用脂质体介导的转染技术转染MCF-7细胞,药物G418筛选稳定转染细胞株,荧光显微镜检测报告基因表达产物EGFP,免疫组化检测ECM1蛋白表达.用MTT比色法分析ECM1对MCF-7和HUVEC增殖的影响.结果:成功构建了ECM1-pEGFP-N2真核表达载体,并在MCF-7中稳定表达;MTT比色法检测MCF-7增殖结果显示未转染组、空载体转染组和ECM1转染组的D570值分别为0.95±0.07、0.97±0.09和1.03±0.12,三者无明显差异;MTT比色法检测HUVEC增殖结果示培养液组、空载体转染上清组、ECM1转染上清组HUVEC D570值分别为0.89±0.06、0.92±0.09和1.39±0.10,差异具有显著性意义(P<0.01).结论:ECM1对乳腺癌细胞株MCF-7的增殖无影响,但能显著促进血管内皮细胞体外增殖.

  3. DRF 3188 a novel semi-synthetic analog of andrographolide: cellular response to MCF 7 breast cancer cells

    OpenAIRE

    Srinivas Nanduri; Rajagopalan R; Deevi Dhanavanthri S; Satyanarayana Chitkala; Rajagopal Sriram

    2004-01-01

    Abstract Background We determined the effect of andrographolide and one of its novel semi-synthetic analog, DRF 3188, on the cell cycle of MCF 7 breast cancer cells. Methods The effect of the compounds on cell cycle was determined using FACS and western blot analysis of cell cycle proteins. Hollow fibre assay was used to determine if the compounds had the same effect on the cell cycle in vitro and in vivo. Results Our results from the in vitro and in vivo experiments show that both the compou...

  4. Estrogenicity and androgenicity screening of PCB sulfate monoesters in human breast cancer MCF-7 cells.

    Science.gov (United States)

    Flor, Susanne; He, Xianran; Lehmler, Hans-Joachim; Ludewig, Gabriele

    2016-02-01

    Recent studies identified polychlorinated biphenyl (PCB) sulfate esters as a major product of PCB metabolism. Since hydroxy-PCBs (HO-PCBs), the immediate precursors of PCB sulfates and important contributors to PCB toxicity, were shown to have estrogenic activity, we investigated the estrogenicity/androgenicty of a series of PCB sulfate metabolites. We synthesized the five possible structural sulfate monoester metabolites of PCB 3, a congener shown to be biotransformed to sulfates, a sulfate ester of the paint-specific congener PCB 11, and sulfate monoesters of two HO-PCBs reported to interact with sulfotransferases (PCB 39, no ortho chlorines, and PCB 53, 3 ortho chlorines). We tested these PCB sulfates and 4'-HO-PCB 3 as positive control for estrogenic, androgenic, anti-estrogenic, and anti-androgenic activity in the E- and A-screen with human breast cancer MCF7-derived cells at 100 μM-1 pM concentrations. Only 4'-HO-PCB 3 was highly cytotoxic at 100 μM. We observed structure-activity relationships: compounds with a sulfate group in the chlorine-containing ring of PCB 3 (2PCB 3 and 3PCB 3 sulfate) showed no interaction with the estrogen (ER) and androgen (AR) receptor. The 4'-HO-PCB 3 and its sulfate ester had the highest estrogenic effect, but at 100-fold different concentrations, i.e., 1 and 100 μM, respectively. Four of the PCB sulfates were estrogenic (2'PCB 3, 4'PCB 3, 4'PCB 39, and 4'PCB 53 sulfates; at 100 μM). These sulfates and 3'PCB 3 sulfate also exhibited anti-estrogenic activity, but at nM and pM concentrations. The 4'PCB 3 sulfate (para-para' substituted) had the strongest androgenic activity, followed by 3'PCB 3, 4'PCB 53, 4PCB11, and 4PCB 39 sulfates and the 4'HO-PCB 3. In contrast, anti-androgenicity was only observed with the two compounds that have the sulfate group in ortho- or meta- position in the second ring (2'PCB 3 and 3'PCB 3 sulfate). No dose-response was observed in any screen, but, with exception of estrogenic activity (only seen

  5. Snail-induced epithelial-to-mesenchymal transition of MCF-7 breast cancer cells: systems analysis of molecular changes and their effect on radiation and drug sensitivity

    OpenAIRE

    Mezencev, Roman; Matyunina, Lilya V.; Jabbari, Neda; John F. McDonald

    2016-01-01

    Background Epithelial-to-mesenchymal transition (EMT) has been associated with the acquisition of metastatic potential and the resistance of cancer cells to therapeutic treatments. MCF-7 breast cancer cells engineered to constitutively express the zinc-finger transcriptional repressor gene Snail (MCF-7-Snail cells) have been previously shown to display morphological and molecular changes characteristic of EMT. We report here the results of a comprehensive systems level molecular analysis of c...

  6. Loperamide, an FDA-Approved Antidiarrhea Drug, Effectively Reverses the Resistance of Multidrug Resistant MCF-7/MDR1 Human Breast Cancer Cells to Doxorubicin-Induced Cytotoxicity

    OpenAIRE

    Zhou, Yanfei; Sridhar, Rajagopalan; Shan, Liang; Sha, Wei; Gu, Xinbin; Sukumar, Saraswati

    2011-01-01

    Loperamide is an FDA-approved antidiarrhea drug which acts on the μ-opioid receptors in the mesenteric plexus of large intestine and exhibits limited side effects. We hypothesized that loperamide might reverse the multidrug resistance (MDR) of human cancer cells to chemotherapeutic agents. MCF-7/MDR1 cells express high level of MDR1 and are resistant to doxorubicin. We found that loperamide significantly enhanced the cytotoxicity of doxorubicin to MCF-7/MDR1 cells in a dose-dependent manner. ...

  7. Phospholipase C δ-4 overexpression upregulates ErbB1/2 expression, Erk signaling pathway, and proliferation in MCF-7 cells

    Directory of Open Access Journals (Sweden)

    Morris Valerie

    2004-05-01

    Full Text Available Abstract Background The expression of the rodent phosphoinositide-specific phospholipase C δ-4 (PLCδ4 has been found to be elevated upon mitogenic stimulation and expression analysis have linked the upregulation of PLCδ4 expression with rapid proliferation in certain rat transformed cell lines. The human homologue of PLCδ4 has not been extensively characterized. Accordingly, we investigate the effects of overexpression of human PLCδ4 on cell signaling and proliferation in this study. Results The cDNA for human PLCδ4 has been isolated and expressed ectopically in breast cancer MCF-7 cells. Overexpression of PLCδ4 selectively activates protein kinase C-φ and upregulates the expression of epidermal growth factor receptors EGFR/erbB1 and HER2/erbB2, leading to constitutive activation of extracellular signal-regulated kinases 1 and 2 (ERK1/2 pathway in MCF-7 cells. MCF-7 cells stably expressing PLCδ4 demonstrates several phenotypes of transformation, such as rapid proliferation in low serum, formation of colonies in soft agar, and capacity to form densely packed spheroids in low-attachment plates. The growth signaling responses induced by PLCδ4 are not reversible by siRNA. Conclusion Overexpression or dysregulated expression of PLCδ4 may initiate oncogenesis in certain tissues through upregulation of ErbB expression and activation of ERK pathway. Since the growth responses induced by PLCδ4 are not reversible, PLCδ4 itself is not a suitable drug target, but enzymes in pathways activated by PLCδ4 are potential therapeutic targets for oncogenic intervention.

  8. Study of a potential drug delivery system based on carbon nanoparticles: effects of fullerene derivatives in MCF7 mammary carcinoma cells

    International Nuclear Information System (INIS)

    Fullerenes (C60) represent important carbon nanoparticles, widely investigated for diagnostic and therapeutic uses, mainly because they are characterized by a small size (between 7 and 10 Å) and a large surface area. The cytotoxicity of two fullerene derivatives, functionalized by 1,3-dipolar cycloaddition of azomethine ylides to the C60 cage (1 and 2), the mechanism of cellular uptake (studied with a fluorescein-bearing derivative of 1, hereafter called derivative 3), and the intracellular distribution are the subject of this work. Cell cytotoxicity on human mammary carcinoma cell line (MCF7), evaluated with the MTT test and further confirmed by a flow cytometry approach with DiOC6 and PI probes, showed that derivative 1 was free of necrotic or apoptotic effects even after a long lasting cell exposure. Cell uptake and internalization of derivative 3 reach their zenith within 12 h after treatment, with a tendency to persist up to 72 h; this process was evaluated by flow cytometry and confirmed by confocal microscopy. Thus, it appears that a compound such as derivative 1 may be unspecifically taken up by MCF7 cells, in which it distributes throughout the cytoplasm, apparently avoiding any co-localization within the nucleus and secretory granules. These results suggest a strong interaction between the tested fullerene and mammalian cells and a significant ability of this compound to enter tumor cells, therefore resulting to be a suitable vector to deliver anticancer agents to tumor cells.

  9. Differential Epigenetic Effects of Atmospheric Cold Plasma on MCF-7 and MDA-MB-231 Breast Cancer Cells

    OpenAIRE

    Sung-Bin Park; Byungtak Kim; Hansol Bae; Hyunkyung Lee; Seungyeon Lee; Eun H. Choi; Sun Jung Kim

    2015-01-01

    Cold atmospheric plasma (plasma) has emerged as a novel tool for a cancer treatment option, having been successfully applied to a few types of cancer cells, as well as tissues. However, to date, no studies have been performed to examine the effect of plasma on epigenetic alterations, including CpG methylation. In this study, the effects of plasma on DNA methylation changes in breast cancer cells were examined by treating cultured MCF-7 and MDA-MB-231 cells, representing estrogen-positive and ...

  10. PKCeta enhances cell cycle progression, the expression of G1 cyclins and p21 in MCF-7 cells.

    Science.gov (United States)

    Fima, E; Shtutman, M; Libros, P; Missel, A; Shahaf, G; Kahana, G; Livneh, E

    2001-10-11

    Protein kinase C encodes a family of enzymes implicated in cellular differentiation, growth control and tumor promotion. However, not much is known with respect to the molecular mechanisms that link protein kinase C to cell cycle control. Here we report that the expression of PKCeta in MCF-7 cells, under the control of a tetracycline-responsive inducible promoter, enhanced cell growth and affected the cell cycle at several points. The induced expression of another PKC isoform, PKCdelta, in MCF-7 cells had opposite effects and inhibited their growth. PKCeta expression activated cellular pathways in these cells that resulted in the increased expression of the G1 phase cyclins, cyclin D and cyclin E. Expression of the cyclin-dependent kinase inhibitor p21(WAF1) was also specifically elevated in PKCeta expressing cells, but its overall effects were not inhibitory. Although, the protein levels of the cyclin-dependent kinase inhibitor p27(KIP1) were not altered by the induced expression of PKCeta, the cyclin E associated Cdk2 kinase activity was in correlation with the p27(KIP1) bound to the cyclin E complex and not by p21(WAF1) binding. PKCeta expression enhanced the removal of p27(KIP1) from this complex, and its re-association with the cyclin D/Cdk4 complex. Reduced binding of p27(KIP1) to the cyclin D/Cdk4 complex at early time points of the cell cycle also enhanced the activity of this complex, while at later time points the decrease in bound p21(WAF1) correlated with its increased activity in PKCeta-expressing cells. Thus, PKCeta induces altered expression of several cell cycle functions, which may contribute to its ability to affect cell growth.

  11. Histone deacetylase inhibitor, Trichostatin A induces ubiquitin-dependent cyclin D1 degradation in MCF-7 breast cancer cells

    Directory of Open Access Journals (Sweden)

    Charles Coombes R

    2006-02-01

    Full Text Available Abstract Background Cyclin D1 is an important regulator of G1-S phase cell cycle transition and has been shown to be important for breast cancer development. GSK3β phosphorylates cyclin D1 on Thr-286, resulting in enhanced ubiquitylation, nuclear export and degradation of the cyclin in the cytoplasm. Recent findings suggest that the development of small-molecule cyclin D1 ablative agents is of clinical relevance. We have previously shown that the histone deacetylase inhibitor trichostatin A (TSA induces the rapid ubiquitin-dependent degradation of cyclin D1 in MCF-7 breast cancer cells prior to repression of cyclin D1 gene (CCND1 transcription. TSA treatment also resulted in accumulation of polyubiquitylated GFP-cyclin D1 species and reduced levels of the recombinant protein within the nucleus. Results Here we provide further evidence for TSA-induced ubiquitin-dependent degradation of cyclin D1 and demonstrate that GSK3β-mediated nuclear export facilitates this activity. Our observations suggest that TSA treatment results in enhanced cyclin D1 degradation via the GSK3β/CRM1-dependent nuclear export/26S proteasomal degradation pathway in MCF-7 cells. Conclusion We have demonstrated that rapid TSA-induced cyclin D1 degradation in MCF-7 cells requires GSK3β-mediated Thr-286 phosphorylation and the ubiquitin-dependent 26S proteasome pathway. Drug induced cyclin D1 repression contributes to the inhibition of breast cancer cell proliferation and can sensitize cells to CDK and Akt inhibitors. In addition, anti-cyclin D1 therapy may be highly specific for treating human breast cancer. The development of potent and effective cyclin D1 ablative agents is therefore of clinical relevance. Our findings suggest that HDAC inhibitors may have therapeutic potential as small-molecule cyclin D1 ablative agents.

  12. 1'S-1'-acetoxyeugenol acetate: a new chemotherapeutic natural compound against MCF-7 human breast cancer cells.

    Science.gov (United States)

    Hasima, Noor; Aun, Lionel In Lian; Azmi, Mohamad Nurul; Aziz, Ahmad Nazif; Thirthagiri, Eswary; Ibrahim, Halijah; Awang, Khalijah

    2010-10-01

    Medicinal plants containing active natural compounds have been used as an alternative treatment for cancer patients in many parts of the world especially in Asia (Itharat et al. 2004). In this report, we describe the cytotoxic and apoptotic properties of 1'S-1'-acetoxyeugenol acetate (AEA), an analogue of 1'S-1'-acetoxychavicol acetate (ACA), isolated from the Malaysian ethno-medicinal plant Alpinia conchigera Griff (Zingiberaceae) on human breast cancer cells. Data from MTT cell viability assays indicated that AEA induced both time- and dose-dependent cytotoxicity with an IC(50) value of 14.0 μM within 36 h of treatment on MCF-7 cells, but not in HMEC normal control cells. Both annexin V-FITC/PI flow cytometric analysis and DNA fragmentation assays confirmed that AEA induced cell death via apoptosis. AEA was also found to induce cell cycle arrest in MCF-7 cells at the G(0)/G(1) phase with no adverse cell cycle arrest effects on HMEC normal control cells. It was concluded that AEA isolated from the Malaysian tropical ginger represents a potential chemotherapeutic agent against human breast cancer cells with higher cytotoxicity potency than its analogue, ACA. PMID:20729047

  13. JNK-dependent Atg4 upregulation mediates asperphenamate derivative BBP-induced autophagy in MCF-7 cells

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yanchun; Luo, Qiyu [Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016 (China); Yuan, Lei [School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016 (China); Miao, Caixia; Mu, Xiaoshuo [Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016 (China); Xiao, Wei [Jiangsu Kanion Pharmaceutical Co., Ltd., Nanjing 222001 (China); Li, Jianchun [Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016 (China); Sun, Tiemin, E-mail: suntiemin@126.com [School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016 (China); Ma, Enlong, E-mail: maenlong@hotmail.com [Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016 (China); Jiangsu Kanion Pharmaceutical Co., Ltd., Nanjing 222001 (China)

    2012-08-15

    N-Benzoyl-O-(N′-(1-benzyloxycarbonyl-4-piperidiylcarbonyl) -D-phenylalanyl)-D-phenylalaninol (BBP), a novel synthesized asperphenamate derivative with the increased solubility, showed growth inhibitory effect on human breast carcinoma MCF-7 cells in a time- and concentration-dependent manner. The growth inhibitory effect of BBP was associated with induction of autophagy, which was demonstrated by the development of acidic vesicular organelles, cleavage of LC3 and upregulation of Atg4 in BBP-treated MCF-7 cells. Since the application of Atg4 siRNA totally blocked the cleavage of LC3, we demonstrated a central role of Atg4 in BBP-induced autophagy. The further studies showed that BBP increased the levels of reactive oxygen species (ROS), and pretreatment with NAC effectively blocked the accumulation of ROS, autophagy and growth inhibition triggered by BBP. Moreover, BBP induced the activation of JNK, and JNK inhibitor SP600125 reversed autophagy, the increase of Atg4 levels, conversion of LC3 and growth inhibition induced by BBP. Knockdown of JNK by siRNA efficiently inhibited ROS production and autophagy, but antioxidant NAC failed to block JNK activation induced by BBP, indicating that JNK activation may be a upstream signaling of ROS and should be a core component in BBP-induced autophagic signaling pathway. These results suggest that BBP produces its growth inhibitory effect through induction of the autophagic cell death in MCF-7 cells, which is modulated by a JNK-dependent Atg4 upregulation involving ROS production. -- Highlights: ► Asperphenamate derivative BBP with increased solubility was synthesized. ► BBP selectively inhibited the growth of human breast tumor cells. ► The growth inhibitory effect of BBP was associated with induction of autophagy. ► JNK-dependent Atg4 upregulation mediated BBP-induced autophagy.

  14. Detection of weak estrogenic flavonoids using a recombinant yeast strain and a modified MCF7 cell proliferation assay

    DEFF Research Database (Denmark)

    Breinholt, Vibeke; Larsen, John Christian

    1998-01-01

    -estradiol, when compared on the basis of EC50 values. The estrogenic activity of the dietary flavonoids was further investigated in estrogen-dependent human MCF7 breast cancer cells. In this system several of the flavonoids were likewise capable of mimicking natural estrogens and thereby induce cell proliferation....... Similar structural requirements for estrogenic activity were found for the two assays. The present results provide evidence that several of the flavo-estrogens possess estrogenic properties comparable in activity to the well-established isoflavonoid estrogens. The use of Alamar Blue, a vital dye which...

  15. In-vitro anticancer activity of green synthesized silver nanoparticles on MCF-7 human breast cancer cells.

    Science.gov (United States)

    Jang, Suk Ju; Yang, In Jun; Tettey, Clement O; Kim, Ki Mo; Shin, Heung Mook

    2016-11-01

    In recent years, green synthesis of metallic nanoparticles is a growing area of research because of their potential applications in nanomedicine. In the present study we synthesized silver nanoparticles (silver NPs) from AgNO3 using aqueous extract of Lonicera hypoglauca flower as reducing and capping agents. The synthesized silver NPs were characterized using UV-Vis spectroscopy, FTIR, SEM-ED, TEM and SAED. Silver NPs were found to be significantly toxic to MCF-7 cells via the induction of apoptosis whereas sparing normal immune system (RAW 264.7) cells. PMID:27524038

  16. Flightless I (Drosophila) homolog facilitates chromatin accessibility of the estrogen receptor α target genes in MCF-7 breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Kwang Won, E-mail: kwjeong@gachon.ac.kr

    2014-04-04

    Highlights: • H3K4me3 and Pol II binding at TFF1 promoter were reduced in FLII-depleted MCF-7 cells. • FLII is required for chromatin accessibility of the enhancer of ERalpha target genes. • Depletion of FLII causes inhibition of proliferation of MCF-7 cells. - Abstract: The coordinated activities of multiple protein complexes are essential to the remodeling of chromatin structure and for the recruitment of RNA polymerase II (Pol II) to the promoter in order to facilitate the initiation of transcription in nuclear receptor-mediated gene expression. Flightless I (Drosophila) homolog (FLII), a nuclear receptor coactivator, is associated with the SWI/SNF-chromatin remodeling complex during estrogen receptor (ER)α-mediated transcription. However, the function of FLII in estrogen-induced chromatin opening has not been fully explored. Here, we show that FLII plays a critical role in establishing active histone modification marks and generating the open chromatin structure of ERα target genes. We observed that the enhancer regions of ERα target genes are heavily occupied by FLII, and histone H3K4me3 and Pol II binding induced by estrogen are decreased in FLII-depleted MCF-7 cells. Furthermore, formaldehyde-assisted isolation of regulatory elements (FAIRE)-quantitative polymerase chain reaction (qPCR) experiments showed that depletion of FLII resulted in reduced chromatin accessibility of multiple ERα target genes. These data suggest FLII as a key regulator of ERα-mediated transcription through its role in regulating chromatin accessibility for the binding of RNA Polymerase II and possibly other transcriptional coactivators.

  17. Estrogen induced {beta}-1,4-galactosyltransferase 1 expression regulates proliferation of human breast cancer MCF-7 cells

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hee-Jung [Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan (Korea, Republic of); Division of Applied Medicine, School of Korean Medicine, Pusan National University, Yangsan-city, Gyeongsangnam-do (Korea, Republic of); Chung, Tae-Wook; Kim, Cheorl-Ho [Department of Molecular and Cellular Glycobiology, College of Natural Science, Sungkyunkwan University, Suwon, Kyungki-do (Korea, Republic of); Jeong, Han-Sol; Joo, Myungsoo [Division of Applied Medicine, School of Korean Medicine, Pusan National University, Yangsan-city, Gyeongsangnam-do (Korea, Republic of); Youn, BuHyun, E-mail: bhyoun72@pusan.ac.kr [Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan (Korea, Republic of); Ha, Ki-Tae, E-mail: hagis@pusan.ac.kr [Division of Applied Medicine, School of Korean Medicine, Pusan National University, Yangsan-city, Gyeongsangnam-do (Korea, Republic of)

    2012-10-05

    Highlights: Black-Right-Pointing-Pointer We examined the regulation and biological functions of B4GALT1 expression induced by estrogen. Black-Right-Pointing-Pointer Estrogen-induced B4GALT1 expression through the direct binding of ER-{alpha} to ERE in MCF-7 cells. Black-Right-Pointing-Pointer B4GALT1 expression activates the proliferation of MCF-7 cells via its receptor function. Black-Right-Pointing-Pointer Thus, we suggest B4GALT1 as a molecular target for inhibiting breast cancer proliferation. -- Abstract: Beta 1,4-galactosyltransferase 1 (B4GALT1) synthesizes galactose {beta}-1,4-N-acetylglucosamine (Gal{beta}1-4GlcNAc) groups on N-linked sugar chains of glycoproteins, which play important roles in many biological events, including the proliferation and migration of cancer cells. A previous microarray study reported that this gene is expressed by estrogen treatment in breast cancer. In this study, we examined the regulatory mechanisms and biological functions of estrogen-induced B4GALT1 expression. Our data showed that estrogen-induced expression of B4GALT1 is localized in intracellular compartments and in the plasma membrane. In addition, B4GALT1 has an enzyme activity involved in the production of the Gal{beta}1-4GlcNAc structure. The result from a promoter assay and chromatin immunoprecipitation revealed that 3 different estrogen response elements (EREs) in the B4GALT1 promoter are critical for responsiveness to estrogen. In addition, the estrogen antagonists ICI 182,780 and ER-{alpha}-ERE binding blocker TPBM inhibit the expression of estrogen-induced B4GALT1. However, the inhibition of signal molecules relating to the extra-nuclear pathway, including the G-protein coupled receptors, Ras, and mitogen-activated protein kinases, had no inhibitory effects on B4GALT1 expression. The knock-down of the B4GALT1 gene and the inhibition of membrane B4GALT1 function resulted in the significant inhibition of estrogen-induced proliferation of MCF-7 cells. Considering

  18. Osthole inhibits the proliferation of breast cancer MCF-7 cells via activating peroxisome proliferator-activated receptor γ%蛇床子素通过过氧化物酶体增殖物活化受体γ抑制乳腺癌MCF-7细胞增殖的研究

    Institute of Scientific and Technical Information of China (English)

    张岩; 宋惠珠; 温浩; 张秀红; 陈晓亭; 亓志刚

    2015-01-01

    目的 研究蛇床子素对乳腺癌细胞MCF-7增殖和凋亡的影响并探讨其可能的作用机制.方法 分别以蛇床子素0、25、50、100、150、200 μmol/L干预MCF-7细胞;MTT法检测蛇床子素对细胞增殖的抑制程度;HE染色,在光学显微镜下观察蛇床子素干预后细胞的形态学改变;Annexin V-PI双染流式细胞术分析蛇床子素处理对细胞凋亡的影响,分别用反转录聚合酶链反应(RT-PCR)和Western blot法检测过氧化物酶体增殖物活化受体γ(PPARγ)和法尼醇X受体(FXR) mRNA和蛋白的表达.结果 蛇床子素干预72 h后对MCF-7细胞的增殖产生明显抑制,且有一定的剂量依赖趋势,蛇床子素200 μmol/L组对MCF-7细胞增殖的抑制率最高,为73.0%.光学显微镜下观察到蛇床子素干预72 h后MCF-7细胞数目较少,细胞核浓染及凋亡小体出现,并且呈现明显的剂量依赖关系.流式细胞术分析发现蛇床子素干预72 h后,与对照组相比,蛇床子素浓度达到50 μmol/L以上时,MCF-7早期凋亡细胞比例增加(P<0.01),尤其是蛇床子素200 μmol/L组达到(46.2±9.0)%;当蛇床子素浓度达到100 μmol/L以上时,中晚期凋亡率较对照组也升高(P<0.05,P< 0.01),尤其是蛇床子素200 μmol/L组达到(39.2±5.7)%,和MTT实验结果相吻合.另外,RT-PCR和Western Blot结果显示蛇床子素可上调PPARγ和FXR mRNA和蛋白的表达(P<0.01).结论 蛇床子素可抑制乳腺癌MCF-7细胞的增殖并可促进其凋亡,这些作用可能是通过调节与PPARγ和FXR介导的与细胞生长和代谢有关的基因来实现的.%Objective To investigate the effect of osthole on the proliferation and apoptosis of breast cancer cell line MCF-7 and its potential mechanisms.Methods Breast cancer cell line MCF-7 was treated by osthole 0,25,50,100,150 and 200 μmol/L respectively.MTT method was used to detect cell survival rate.HE staining was used to observe morphological changes,Annexin V-PI flow cytometry

  19. Implication of protein tyrosine phosphatase 1B in MCF-7 cell proliferation and resistance to 4-OH tamoxifen

    Energy Technology Data Exchange (ETDEWEB)

    Blanquart, Christophe; Karouri, Salah-Eddine [Institut Cochin, Universite Paris Descartes, CNRS (UMR 8104), Paris (France); Inserm, U567, Paris (France); Issad, Tarik, E-mail: tarik.issad@inserm.fr [Institut Cochin, Universite Paris Descartes, CNRS (UMR 8104), Paris (France); Inserm, U567, Paris (France)

    2009-10-02

    The protein tyrosine phosphatase 1B (PTP1B) and the T-cell protein tyrosine phosphatase (TC-PTP) were initially thought to be mainly anti-oncogenic. However, overexpression of PTP1B and TC-PTP has been observed in human tumors, and recent studies have demonstrated that PTP1B contributes to the appearance of breast tumors by modulating ERK pathway. In the present work, we observed that decreasing the expression of TC-PTP or PTP1B in MCF-7 cells using siRNA reduced cell proliferation without affecting cell death. This reduction in proliferation was associated with decreased ERK phosphorylation. Moreover, selection of tamoxifen-resistant MCF-7 cells, by long-term culture in presence of 4-OH tamoxifen, resulted in cells that display overexpression of PTP1B and TC-PTP, and concomitant increase in ERK and STAT3 phosphorylation. siRNA experiments showed that PTP1B, but not TC-PTP, is necessary for resistance to 4-OH tamoxifen. Therefore, our work indicates that PTP1B could be a relevant therapeutic target for treatment of tamoxifen-resistant breast cancers.

  20. Functional Metabolomics Uncovers Metabolic Alterations Associated to Severe Oxidative Stress in MCF7 Breast Cancer Cells Exposed to Ascididemin

    OpenAIRE

    Daniel Morvan

    2013-01-01

    Marine natural products are a source of promising agents for cancer treatment. However, there is a need to improve the evaluation of their mechanism of action in tumors. Metabolomics of the response to anti-tumor agents is a tool to reveal candidate biomarkers and metabolic targets. We used two-dimensional high-resolution magic angle spinning proton-NMR spectroscopy-based metabolomics to investigate the response of MCF7 breast cancer cells to ascididemin, a marine alkaloid and lead molecule f...

  1. Comparative Cytotoxicity of Artemisinin and Cisplatin and Their Interactions with Chlorogenic Acids in MCF7 Breast Cancer Cells

    OpenAIRE

    Suberu, John O.; Romero-Canel?n, Isolda; Sullivan, Neil; Lapkin, Alexei A.; Barker, Guy C

    2014-01-01

    In parts of Africa and Asia, self-medication with a hot water infusion of Artemisia annua (Artemisia tea) is a common practice for a number of ailments including malaria and cancer. In our earlier work, such an extract showed better potency than artemisinin alone against both chloroquine-sensitive and -resistant parasites. In this study, in vitro tests of the infusion in MCF7 cells showed high IC50 values (>200 μm). The combination of artemisinin and 3-caffeoylquinic acid (3CA), two major com...

  2. Low-level laser therapy on MCF-7 cells: a micro-Fourier transform infrared spectroscopy study

    Science.gov (United States)

    Magrini, Taciana D.; dos Santos, Nathalia Villa; Milazzotto, Marcella Pecora; Cerchiaro, Giselle; da Silva Martinho, Herculano

    2012-10-01

    Low-level laser therapy (LLLT) is an emerging therapeutic approach for several clinical conditions. The clinical effects induced by LLLT presumably scale from photobiostimulation/photobioinhibition at the cellular level to the molecular level. The detailed mechanism underlying this effect remains unknown. This study quantifies some relevant aspects of LLLT related to molecular and cellular variations. Malignant breast cells (MCF-7) were exposed to spatially filtered light from a He-Ne laser (633 nm) with fluences of 5, 28.8, and 1000 mJ/cm2. The cell viability was evaluated by optical microscopy using the Trypan Blue viability test. The micro-Fourier transform infrared technique was employed to obtain the vibrational spectra of each experimental group (control and irradiated) and identify the relevant biochemical alterations that occurred due to the process. It was observed that the red light influenced the RNA, phosphate, and serine/threonine/tyrosine bands. We found that light can influence cell metabolism depending on the laser fluence. For 5 mJ/cm2, MCF-7 cells suffer bioinhibition with decreased metabolic rates. In contrast, for the 1 J/cm2 laser fluence, cells present biostimulation accompanied by a metabolic rate elevation. Surprisingly, at the intermediate fluence, 28.8 mJ/cm2, the metabolic rate is increased despite the absence of proliferative results. The data were interpreted within the retrograde signaling pathway mechanism activated with light irradiation.

  3. Downregulation of the autophagy protein ATG-7 correlates with distinct sphingolipid profile in MCF-7 cells sensitized to photodamage

    Science.gov (United States)

    Separovic, Duska; Kelekar, Ameeta; Tarca, Adi L.; Bielawski, Jacek; Kessel, David

    2009-06-01

    The objective of this study was to determine the sphingolipid (SL) profile in autophagy-defective cells and overall cell death after PDT with Pc 4 (PDT). Human breast cancer MCF-7 cells with downregulated autophagy protein ATG-7 and their scrambled controls (Scr) were used. Exposure of ATG-7 knockdown cells to PDT led to defective processing of the autophagy marker LC3, and increased overall cell killing. In both cell types PDT evoked an early (2 h) increase in ceramides and dihydroceramides (DHceramides). When the two cell types were compared regarding time (2 and 24 h) and treatment conditions (with and without PDT), the levels of several ceramides and DHceramides were reduced, whereas the concentrations of C14-ceramide, C16-ceramide and C12-DHceramide were higher in ATG-7 knockdown cells. The data imply that the SL profile might be a marker of autophagy-deficiency in cells sensitized to PDT.

  4. Potential mechanisms involved in resistant phenotype of MCF-7 breast carcinoma cells to ionizing radiation induced apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Wang Yanling [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Lanzhou 730000 (China); Graduate School of Chinese Academy of Sciences, Beijing 100039 (China); Zhang Hong [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Lanzhou 730000 (China)], E-mail: zhangh@impcas.ac.cn; Li Ning [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Lanzhou 730000 (China); Graduate School of Chinese Academy of Sciences, Beijing 100039 (China); Wang Xiaohu [Department of Radiotherapy, Gansu Tumor Hospital, Lanzhou 730050 (China); Hao Jifang [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Lanzhou 730000 (China); Zhao Weiping [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, Lanzhou 730000 (China); Graduate School of Chinese Academy of Sciences, Beijing 100039 (China)

    2009-03-15

    In the present study, we investigated the mechanisms of apoptosis resistance and the roles of the phosphorylation of BRCA1, p21, the Bax/Bcl-2 protein ratio and cell cycle arrest in IR-induced apoptosis in MCF-7 cells. X-irradiation, in particular at low dose (1 Gy), but not carbon ion irradiation, had a significant antiproliferative effect on the growth of MCF-7 cells. 1 Gy X-irradiation resulted in G1 and G2 phase arrest, but 4 Gy induced a significant G1 block. In contrast, carbon ion irradiation resulted in a significant accumulation in the G2 phase. Concomitant with the phosphorylation of H2AX induced by DNA damage, carbon ion irradiation resulted in an approximately 1.9-2.8-fold increase in the phosphorylation of BRCA1 on serine residue 1524, significantly greater than that detected for X-irradiation. Carbon ion irradiation caused a dramatic increase in p21 expression and drastic decrease in Bax expression compared with X-irradiation. The data implicated that phosphorylation of BRCA1 on serine residue 1524 might, at least partially, induce p21 expression but repress Bax expression. Together, our results suggested that the phosphorylation of BRCA1 at Ser-1524 might contribute to the G2 phase arrest and might be an upstream signal involved in preventing apoptosis signal via upregulation of p21 and downregulation of the Bax/Bcl-2 ratio.

  5. Potential mechanisms involved in resistant phenotype of MCF-7 breast carcinoma cells to ionizing radiation induced apoptosis

    Science.gov (United States)

    Wang, Yan-ling; Zhang, Hong; Li, Ning; Wang, Xiao-hu; Hao, Ji-fang; Zhao, Wei-ping

    2009-03-01

    In the present study, we investigated the mechanisms of apoptosis resistance and the roles of the phosphorylation of BRCA1, p21, the Bax/Bcl-2 protein ratio and cell cycle arrest in IR-induced apoptosis in MCF-7 cells. X-irradiation, in particular at low dose (1 Gy), but not carbon ion irradiation, had a significant antiproliferative effect on the growth of MCF-7 cells. 1 Gy X-irradiation resulted in G1 and G2 phase arrest, but 4 Gy induced a significant G1 block. In contrast, carbon ion irradiation resulted in a significant accumulation in the G2 phase. Concomitant with the phosphorylation of H2AX induced by DNA damage, carbon ion irradiation resulted in an approximately 1.9-2.8-fold increase in the phosphorylation of BRCA1 on serine residue 1524, significantly greater than that detected for X-irradiation. Carbon ion irradiation caused a dramatic increase in p21 expression and drastic decrease in Bax expression compared with X-irradiation. The data implicated that phosphorylation of BRCA1 on serine residue 1524 might, at least partially, induce p21 expression but repress Bax expression. Together, our results suggested that the phosphorylation of BRCA1 at Ser-1524 might contribute to the G2 phase arrest and might be an upstream signal involved in preventing apoptosis signal via upregulation of p21 and downregulation of the Bax/Bcl-2 ratio.

  6. RIP3基因重组质粒构建及其表达对MCF7细胞死亡方式的影响%Construction of Recombinant Plasmid of Human RIP3 Gene and Its Effects on the Death of Breast Cancer MCF7 Cells

    Institute of Scientific and Technical Information of China (English)

    路灿; 徐惠君; 贾勇圣; 佟仲生

    2014-01-01

    目的:建立稳定过表达RIP3基因的乳腺癌细胞株,并证实融合蛋白在细胞内的表达、定位及对MCF7细胞死亡方式的影响。方法逆转录聚合酶链反应(RT-PCR)检测4种乳腺癌细胞及正常乳腺上皮细胞中RIP3 mRNA的表达。以正常乳腺上皮细胞MCF10A cDNA为模板,PCR扩增RIP3基因cDNA全长,将合成的RIP3编码区序列,克隆入mCherry载体的N末端,构建重组质粒mCherry-RIP3,对重组质粒进行酶切鉴定及DNA测序。钙法转染293T细胞,收集病毒感染MCF7细胞,杀稻瘟菌素(4 mg/L)维持筛选,构建稳定表达细胞株。Western blot、荧光显微镜等检测目的基因表达效率及蛋白定位。显微镜下观察肿瘤坏死因子(TNF)-α及Caspase抑制剂Z-VAD-FMK处理下mCherry-RIP3-MCF7细胞的死亡形态及比例。结果 RIP3 mRNA在乳腺癌细胞中普遍低表达。RIP3基因成功克隆入载体。过表达mCherry-RIP3基因的MCF7细胞可见红色荧光蛋白表达,定位于胞质。目的基因RIP3在转染细胞中为过表达。mCherry-RIP3转染后增强MCF7细胞对TNF-α联合Z-VAD-FMK诱导的细胞坏死的敏感性。结论成功构建RIP3基因过表达重组质粒,获得外源性RIP3稳定过表达的乳腺癌MCF7细胞株,mCherry-RIP3定位于胞质,并在TNF-α介导的程序性坏死中起作用。%Objective To construct the recombinant RIP3 over-expressed plasmids and transfect them in breast cancer MCF7 cells, and identify the expression and localization of fusion protein, as well as its effect on the death way of MCF7 cells. Methods The expression levels of RIP3 mRNA in four breast cancer cell lines and normal mammary epithelial cells were detected by reverse transcription polymerase chain reaction (RT-PCR). The RIP 3 coding sequence was amplified by polymerase chain reaction and subcloned into mCherry vector to construct recombinant plasmids. The plasmids were transfected into MCF7 cells by lentivirus after DNA

  7. DRF 3188 a novel semi-synthetic analog of andrographolide: cellular response to MCF 7 breast cancer cells

    International Nuclear Information System (INIS)

    We determined the effect of andrographolide and one of its novel semi-synthetic analog, DRF 3188, on the cell cycle of MCF 7 breast cancer cells. The effect of the compounds on cell cycle was determined using FACS and western blot analysis of cell cycle proteins. Hollow fibre assay was used to determine if the compounds had the same effect on the cell cycle in vitro and in vivo. Our results from the in vitro and in vivo experiments show that both the compounds block the cell cycle at the G0-G1 phase through the induction of the cell cycle inhibitor, p27, and the concomitant decrease in the levels of Cdk4. The results show that the novel semi-synthetic analog, DRF3188, and andrographolide bring about the anti cancer activity by a similar mechanism

  8. DRF 3188 a novel semi-synthetic analog of andrographolide: cellular response to MCF 7 breast cancer cells

    Directory of Open Access Journals (Sweden)

    Srinivas Nanduri

    2004-06-01

    Full Text Available Abstract Background We determined the effect of andrographolide and one of its novel semi-synthetic analog, DRF 3188, on the cell cycle of MCF 7 breast cancer cells. Methods The effect of the compounds on cell cycle was determined using FACS and western blot analysis of cell cycle proteins. Hollow fibre assay was used to determine if the compounds had the same effect on the cell cycle in vitro and in vivo. Results Our results from the in vitro and in vivo experiments show that both the compounds block the cell cycle at the G0-G1 phase through the induction of the cell cycle inhibitor, p27, and the concomitant decrease in the levels of Cdk4. Conclusion The results show that the novel semi-synthetic analog, DRF3188, and andrographolide bring about the anti cancer activity by a similar mechanism.

  9. 青蒿素对乳腺癌多药耐药MCF-7/ADR细胞的逆转作用%Reversal of Drug Resistance in Multidrug-resistant MCF-7/ADR Cells of Breast Cancer by Artemisinin

    Institute of Scientific and Technical Information of China (English)

    余和平; 崔乐; 潘跃进

    2011-01-01

    Objective To investigate the application of Artemisinin in multidrug resistance of breast cancer. Methods The effects of Artemisinin combined with adriamycin on growth and proliferation of MCF-7/ADR cells were observed by using MTT assay. The expression levels of P-gp in MCF-7/ADR cells treated with Artemisinin plus adriamycin were detected by flow cytometry. Results Artemisinin of 10,20 and 40 μmol/L could induce reversal of drug resistance with the reversal index being 1.53,1.90 and 3.62 times respectively. The positive expression rate of P-gp on the surface of MCF-7/ADR cells treated with Artemisinin(0,10,20 and 40 μmol/L) was ( 33.41±4.63) % , ( 23.07 ± 5.48) %, ( 21.82 ± 3.87) % , ( 16.62 ± 1.27) % respectively with the difference being significant among groups(P<0.05) ,and the total expression level of P-gp in cells was(37.19±5.16) %, (35.30±4.77) % , (37.45±5.19) % , ( 34.98±3.50)% respectively with the difference being not significant among groups(P>0.05). Conclusion Artemisinin can enhance the effect of adriamycin on MCF-7/ADR cells,indicating Artemisinin can partially induce reversal of multidrug resistance probably by influencing the exchange of P-gp between cytoplasm and cytomembrane, attenuating the expression of P-gp on cytomembrane, promoting the aggregation of adriamycin in cytoplasm and enhancing the killing effect of medicine on tumor cells.%目的 探讨青蒿素在乳腺癌多药耐药中的应用.方法 采用MTT法观察青蒿素联合阿霉素(ADR)对乳腺癌耐药株MCF-7/ADR细胞生长增殖的影响;应用流式细胞技术测定青蒿素联合ADR对MCF-7/ADR细胞P-糖蛋白(P-glycoprotein,P-gp)表达的影响.结果 10、20、40 μmol/L青蒿素实验组的细胞耐药逆转倍数分别为1.53、1.90和3.62倍.青蒿素联合ADR可抑制MCF-7/ADR细胞膜P-gp蛋白的表达,0、10、20、40 μmol/L青蒿素作用后的细胞表面P-gp表达阳性率分别为(33.41±4.63)%、(23.07±5.48)%、(21.82±3.87)%

  10. Influence of the Calmodulin Antagonist EBB on Cyclin B1 and Cdc2-p34 in Human Drug-resistant Breast Cancer MCF-7/ADR Cells

    Institute of Scientific and Technical Information of China (English)

    Xu Shi; Huifang Zhu; Yanhong Cheng; Linglin Zou; Dongsheng Xiong; Yuan Zhou; Ming Yang; Dongmei Fan; Xiaohua Dai; Chunzheng Yang

    2008-01-01

    OBJECTIVE To investigate the influence of O-(4-ethoxyl-butyl)-berbamine (EBB) on the expression of cyclin B1 and cdc2-p34 in the human drug-resistant breast cancer MCF-7/ADR cell line.METHODS The MTT assay was used to assess the cytotoxicity of EBB. Different levels of EBB were added to different cell lines at series of time points solely or combined with doxorubicin (DOX)to detect the effect on the expression of cyclinB1 and cdc2-p34 by Western blots, cdc2-p34 tyrosine phosphorylation was detected by immunoprecipitation. In addition, apoptosis and cytoplastic Ca2+concentrations were systematically examined by laser scanning confocal microscopy (LSCM).RESULTS EBB showed little inhibitory activity on human umbilical vein endothelial cells (ECV304), whereas EBB inhibited cell growth (IC50 range, 4.55~15.74 μmol/L) in a variety of sensitive and drug-resistance cell lines. EBB also down-regulated the expression of cyclin B1 and cdc2-p34 in a concentration and time dependent manner, which was an important reason for the G2/M phase arrest. EBB was shown to induce apoptosis of MCF-7/ADR cells while increasing the level of cytoplastic Ca2+.CONCLUSION The low cytotoxicity of EBB suggests it may be useful as a rational reversal agent. The effect of EBB on cell cycle arrest and related proteins, apoptosis, and cytoplastic Ca2+ concentration may be involved in reversing multidrug resistance.

  11. Inhibitory effects of polyphenol-enriched extract from Ziyang tea against human breast cancer MCF-7 cells through reactive oxygen species-dependent mitochondria molecular mechanism

    Directory of Open Access Journals (Sweden)

    Wenfeng Li

    2016-07-01

    Full Text Available A polyphenol-enriched extract from selenium-enriched Ziyang green tea (ZTP was selected to evaluate its antitumor effects against human breast cancer MCF-7 cells. In ZTP, (−-epigallocatechin gallate (28.2% was identified as the major catechin, followed by (−-epigallocatechin (5.7% and (−-epicatechin gallate (12.6%. ZTP was shown to inhibit MCF-7 cell proliferation (half maximal inhibitory concentration, IC50 = 172.2 μg/mL by blocking cell-cycle progression at the G0/G1 phase and inducing apoptotic death. Western blotting assay indicated that ZTP induced cell-cycle arrest by upregulation of p53 and reduced the expression of CDK2 in MCF-7 cells. ZTP-caused cell apoptosis was associated with an increase in Bax/Bcl-2 ratio, and activation of caspase-3 and -9. MCF-7 cells treated with ZTP also showed an overproduction of reactive oxygen species, suggesting that reactive oxygen species played an important role in the induction of apoptosis in MCF-7 cells. This is the first report showing that ZTP is a potential novel dietary agent for cancer chemoprevention or chemotherapy.

  12. The direct effect of Focal Adhesion Kinase (FAK), dominant-negative FAK, FAK-CD and FAK siRNA on gene expression and human MCF-7 breast cancer cell tumorigenesis

    International Nuclear Information System (INIS)

    Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase that plays an important role in survival signaling. FAK has been shown to be overexpressed in breast cancer tumors at early stages of tumorigenesis. To study the direct effect of FAK on breast tumorigenesis, we developed Tet-ON (tetracycline-inducible) system of MCF-7 breast cancer cells stably transfected with FAK or dominant-negative, C-terminal domain of FAK (FAK-CD), and also FAKsiRNA with silenced FAK MCF-7 stable cell line. Increased expression of FAK in isogenic Tet-inducible MCF-7 cells caused increased cell growth, adhesion and soft agar colony formation in vitro, while expression of dominant-negative FAK inhibitor caused inhibition of these cellular processes. To study the role of induced FAK and FAK-CD in vivo, we inoculated these Tet-inducible cells in nude mice to generate tumors in the presence or absence of doxycycline in the drinking water. FAKsiRNA-MCF-7 cells were also injected into nude mice to generate xenograft tumors. Induction of FAK resulted in significant increased tumorigenesis, while induced FAK-CD resulted in decreased tumorigenesis. Taq Man Low Density Array assay demonstrated specific induction of FAKmRNA in MCF-7-Tet-ON-FAK cells. DMP1, encoding cyclin D binding myb-like protein 1 was one of the genes specifically affected by Tet-inducible FAK or FAK-CD in breast xenograft tumors. In addition, silencing of FAK in MCF-7 cells with FAK siRNA caused increased cell rounding, decreased cell viability in vitro and inhibited tumorigenesis in vivo. Importantly, Affymetrix microarray gene profiling analysis using Human Genome U133A GeneChips revealed >4300 genes, known to be involved in apoptosis, cell cycle, and adhesion that were significantly down- or up-regulated (p < 0.05) by FAKsiRNA. Thus, these data for the first time demonstrate the direct effect of FAK expression and function on MCF-7 breast cancer tumorigenesis in vivo and reveal specific expression of genes affected by

  13. The direct effect of Focal Adhesion Kinase (FAK, dominant-negative FAK, FAK-CD and FAK siRNA on gene expression and human MCF-7 breast cancer cell tumorigenesis

    Directory of Open Access Journals (Sweden)

    Zhang Li

    2009-08-01

    Full Text Available Abstract Background Focal adhesion kinase (FAK is a non-receptor tyrosine kinase that plays an important role in survival signaling. FAK has been shown to be overexpressed in breast cancer tumors at early stages of tumorigenesis. Methods To study the direct effect of FAK on breast tumorigenesis, we developed Tet-ON (tetracycline-inducible system of MCF-7 breast cancer cells stably transfected with FAK or dominant-negative, C-terminal domain of FAK (FAK-CD, and also FAKsiRNA with silenced FAK MCF-7 stable cell line. Increased expression of FAK in isogenic Tet-inducible MCF-7 cells caused increased cell growth, adhesion and soft agar colony formation in vitro, while expression of dominant-negative FAK inhibitor caused inhibition of these cellular processes. To study the role of induced FAK and FAK-CD in vivo, we inoculated these Tet-inducible cells in nude mice to generate tumors in the presence or absence of doxycycline in the drinking water. FAKsiRNA-MCF-7 cells were also injected into nude mice to generate xenograft tumors. Results Induction of FAK resulted in significant increased tumorigenesis, while induced FAK-CD resulted in decreased tumorigenesis. Taq Man Low Density Array assay demonstrated specific induction of FAKmRNA in MCF-7-Tet-ON-FAK cells. DMP1, encoding cyclin D binding myb-like protein 1 was one of the genes specifically affected by Tet-inducible FAK or FAK-CD in breast xenograft tumors. In addition, silencing of FAK in MCF-7 cells with FAK siRNA caused increased cell rounding, decreased cell viability in vitro and inhibited tumorigenesis in vivo. Importantly, Affymetrix microarray gene profiling analysis using Human Genome U133A GeneChips revealed >4300 genes, known to be involved in apoptosis, cell cycle, and adhesion that were significantly down- or up-regulated (p Conclusion Thus, these data for the first time demonstrate the direct effect of FAK expression and function on MCF-7 breast cancer tumorigenesis in vivo and reveal

  14. Genistein at maximal physiologic serum levels induces G0/G1 arrest in MCF-7 and HB4a cells, but not apoptosis.

    Science.gov (United States)

    Tsuboy, Marcela S; Marcarini, Juliana C; de Souza, Alecsandra O; de Paula, Natália A; Dorta, Daniel J; Mantovani, Mário S; Ribeiro, Lucia R

    2014-02-01

    Several studies have demonstrated that a balanced diet can contribute to better human health. For this reason, soy-based food and pure isoflavones (pills) are one of the most consumed. The association of this consumption and lower risks of chronic diseases and cancer is well established for the Asian population and has been attracting the attention of people worldwide, especially women at menopause who seek to alleviate the symptoms associated with the lack of estrogen. Despite positive epidemiological data, concerns still exist because of conflicting results found in scientific literature with relation to the role of isoflavones in breast and hormone-related cancers. The aim of our study was to investigate the cytotoxicity, induction of apoptosis, and changes in apoptosis-related genes of maximal physiological serum levels of the isoflavone genistein (Gen) in MCF-7 tumoral cells and in HB4a non-tumoral cells. In addition, induction of cell cycle arrest was also investigated. Only supraphysiological levels of Gen (50 and 100 μM) were cytotoxic to these cell lines. Concentrations of 10 and 25 μM did not induce apoptosis and significant changes in expression of the studied genes. Positive results were found only in cell cycle analysis: G0/G1 delay of MCF-7 cells in both concentrations of Gen and at 25 μM in HB4a cells. It is the first study investigating effects of Gen in the HB4a cell line. Thus, despite the lack of apoptosis induction (generally found with high concentrations), Gen at physiologically relevant serum levels still exerts chemopreventive effects through the modulation of cell cycle. PMID:24325455

  15. Effect of recombinant human erythropoietin and doxorubicin in combination on the proliferation of MCF-7 and MDA-MB231 breast cancer cells.

    Science.gov (United States)

    Radwan, Esam M; Abdullah, Rasedee; Al-Qubaisi, Mothanna Sadiq; El Zowalaty, Mohamed E; Naadja, Seïf-Eddine; Alitheen, Noorjahan B; Omar, Abdul-Rahman

    2016-05-01

    Patients with cancer often exhibit signs of anemia as the result of the disease. Thus, cancer chemotherapies often include erythropoietin (EPO) in the regime to improve the survival rate of these patients. The aim of the present study was to determine the effect of EPO on doxorubicin-treated breast cancer cells. The cytotoxicity of doxorubicin alone or in combination with EPO against the MCF-7 and MDA-MB‑231 human breast cancer cells were determined using an MTT cell viability assay, neutral red (NR) uptake assay and lactate dehydrogenase (LDH) assay. The estimated half maximal inhibitory concentration values for doxorubicin and the combination of doxorubicin with EPO were between 0.140 and 0.260 µg/ml for all cells treated for 72 h. Treatment with doxorubicin in combination with EPO led to no notable difference in cytotoxicity, compared with treatment with doxorubicin alone. The antiproliferative effect of doxorubicin at a concentration of 1 µg/ml on the MDA‑MB‑231 cells was demonstrated by the decrease in viable cells from 3.6x10(5) at 24 h to 2.1x10(5) at 72 h of treatment. In order to confirm apoptosis in the doxorubicin-treated cells, the activities of caspases-3/7 and ‑9 were determined using a TBE assay. The results indicated that the activities of caspases-3/7 and ‑9 were significantly elevated in the doxorubicin-treated MDA-MB-231 cells by 571 and 645%, respectively, and in the MCF 7 cells by 471 and 345%, respectively, compared with the control cells. EPO did not modify the effect of doxorubicin on these cell lines. The results of the present study suggested that EPO was safe for use in combination with doxorubicin in the treatment of patients with breast cancer and concurrent anemia. PMID:26987078

  16. Paclitaxel-Loaded Polymeric Micelles Modified with MCF-7 Cell-Specific Phage Protein: Enhanced Binding to Target Cancer Cells and Increased Cytotoxicity

    Science.gov (United States)

    Wang, Tao; Petrenko, Valery A.; Torchilin, Vladimir P.

    2010-01-01

    Polymeric micelles are used as pharmaceutical carriers to increase solubility and bioavailability of poorly water-soluble drugs. Different ligands are used to prepare targeted polymeric micelles. Earlier, we developed the method for use of specific landscape phage fusion coat proteins as targeted delivery ligands and demonstrated the efficiency of this approach with doxorubicin-loaded PEGylated liposomes. Here, we describe a MCF-7 cell-specific micellar formulation self-assembled from the mixture of the micelle-forming amphiphilic polyethylene glycol-phosphatidylethanolamine (PEG-PE) conjugate, MCF-7-specific landscape phage fusion coat protein, and the hydrophobic drug paclitaxel. These micelles demonstrated a very low CMC value and specific binding to target cells. Using an in vitro co-culture model, FACS analysis, and fluorescence microscopy we showed that MCF-7 targeted phage micelles preferential bound to target cells compared to non-target cells. As a result, targeted paclitaxel-loaded phage micelles demonstrated a significantly higher cytotoxicity towards target MCF-7 cells than free drug or non-targeted micelle formulations, but failed to show such a differential toxicity towards non-target C166 cells. Overall, cancer cell-specific phage proteins identified from phage display peptide libraries can serve as targeting ligands (“substitute antibody”) for polymeric micelle-based pharmaceutical preparations. PMID:20518562

  17. Detention of copper by sulfur nanoparticles inhibits the proliferation of A375 malignant melanoma and MCF-7 breast cancer cells.

    Science.gov (United States)

    Liu, Hao; Zhang, Yikai; Zheng, Shanyuan; Weng, Zeping; Ma, Jun; Li, Yangqiu; Xie, Xinyuan; Zheng, Wenjie

    2016-09-01

    Selective induction of cell death or growth inhibition of cancer cells is the future of chemotherapy. Clinical trials have found that cancer tissues are enriched with copper. Based on this finding, many copper-containing compounds and complexes have been designed to "copper" cancer cells using copper as bait. However, recent studies have demonstrated that copper boosts tumor development, and copper deprivation from serum was shown to effectively inhibit the promotion of cancer. Mechanistically, copper is an essential cofactor for mitogen-activated protein kinase (MAPK)/extracellular activating kinase (ERK) kinase (MEK), a central molecule in the BRAF/MEK/ERK pathway. Therefore, depleting copper from cancer cells by directly sequestering copper has a wider field for research and potential for combination therapy. Based on the affinity between sulfur and copper, we therefore designed sulfur nanoparticles (Nano-S) that detain copper, achieving tumor growth restriction. We found that spherical Nano-S could effectively bind copper and form a tighter surficial structure. Moreover, this Nano-S detention of copper effectively inhibited the proliferation of A375 melanoma and MCF-7 breast cancer cells with minimum toxicity to normal cells. Mechanistic studies revealed that Nano-S triggered inactivation of the MEK-ERK pathway followed by inhibition of the proliferation of the A375 and MCF-7 cells. In addition, lower Nano-S concentrations and shorter exposure stimulated the expression of a copper transporter as compensation, which further increased the cellular uptake and anticancer activities of cisplatin. Collectively, our results highlight the potential of Nano-S as an anticancer agent or adjuvant through its detention of copper.

  18. Investigation of the apoptotic pathway induced by benzimidazole-oxindole conjugates against human breast cancer cells MCF-7.

    Science.gov (United States)

    Lakshma Nayak, Vadithe; Nagaseshadri, Bobburi; Vishnuvardhan, M V P S; Kamal, Ahmed

    2016-07-15

    In our previous studies, benzimidazole-oxindole conjugates were synthesized and evaluated by National Cancer Institute (NCI) for their cytotoxic activity and the new molecules like 5c and 5p were considered as potential leads. These conjugates arrested the cell cycle at G2/M phase and inhibited tubulin polymerization. These observations prompted us to investigate the apoptotic mechanism induced by these lead molecules against human breast cancer cells (MCF-7). Studies like measurement of mitochondrial membrane potential (ΔΨm), generation of reactive oxygen species (ROS) and Annexin V-FITC assay revealed that these compounds induced mitochondrial mediated (intrinsic apoptotic pathway) apoptosis in human breast cancer cells. It was further confirmed by western blot analysis of pro apoptotic protein Bax, anti apoptotic protein Bcl-2, cytochrome c release, caspase-9 activity and cleavage of PARP. PMID:27262596

  19. Matrix Gla protein repression by miR-155 promotes oncogenic signals in breast cancer MCF-7 cells.

    Science.gov (United States)

    Tiago, Daniel M; Conceição, Natércia; Caiado, Helena; Laizé, Vincent; Cancela, Maria Leonor

    2016-04-01

    MGP is a protein that was initially associated with the inhibition of calcification in skeleton, soft tissues, and arteries, but more recently also implicated in cancer. In breast cancer, higher levels of MGP mRNA were associated with poor prognosis, but since this deregulation was never demonstrated at the protein level, we postulated the involvement of a post-transcriptional regulatory mechanism. In this work we show that MGP is significantly repressed by miR-155 in breast cancer MCF-7 cells, and concomitantly there is a stimulation of cell proliferation and cell invasiveness. This study brings new insights into the putative involvement of MGP and oncomiR-155 in breast cancer, and may contribute to develop new therapeutic strategies. PMID:27009385

  20. Mechanism of Shenyi Capsule Concomitant with Endostar and Chemotherapy on the Growth and Apoptosis of MCF-7 Breast Cancer Cells

    Institute of Scientific and Technical Information of China (English)

    Shao Mingwen; Qiu Jinrong; Wu Hao; Liu Yiqian; Liu Lianke

    2014-01-01

    Objective:To observe the effect of Shenyi Capsule concomitant with Endosatr and chemotherapy in improving the proliferative activity and apoptosis of MCF-7 breast cancer cells. Methods:The cultured cells were randomly divided into control group, 5-Fu group, combination group 1, combination group 2 and combination group 3. The morphological changes were observed under inverted microscope, activity inhibition rate was calculated by methyl thiazolyl tetrazolium (MTT) method and lfuorescence microscope was applied to observe the apoptotic cells. Results: There were different degrees of morphological changes and functions of inhibiting cellactivity and improving apoptosis in each group except control group, which were the most signiifcant in combination group 3. Conclusion: Shenyi Capsule concomitant with endostar can be an optimal choice for the treatment of breast cancer.

  1. Transfer of p14ARF gene in drug-resistant human breast cancer MCF-7/Adr cells inhibits proliferation and reduces doxorubicin resistance

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Objective: To elucidate the effect of p14ARF gene on multidrug-resistant tumor cells. Methods: We transferred a p14ARF cDNA into p53-mutated MCF-7/Adr human breast cancer cells. Results: In this report we demonstrated for the first time that p14ARF expression was able to greatly inhibit the MCF-7/Adr cell proliferation. Furthermore, p14ARF expression resulted in decreases in MDR1 mRNA and P-glycoprotein production, which linked with the reducing resistance of MCF-7/Adr cells to doxorubicin. Conclusion: These results imply that drug resistance might be effectively reversed with the wild-type p14ARF expression in human breast cancer cells.