WorldWideScience

Sample records for cell line glycoproteins

  1. Mosquito cell line glycoproteins: an unsuitable model system for the Plasmodium ookinete-mosquito midgut interaction?

    Directory of Open Access Journals (Sweden)

    Wilkins Simon

    2010-03-01

    Full Text Available Abstract Background Mosquito midgut glycoproteins may act as key recognition sites for the invading malarial ookinete. Effective transmission blocking strategies require the identification of novel target molecules. We have partially characterised the surface glycoproteins of two cell lines from two mosquito species; Anopheles stephensi and Anopheles gambiae, and investigated the binding of Plasmodium berghei ookinetes to carbohydrate ligands on the cells. Cell line extracts were run on SDS-PAGE gels and carbohydrate moieties determined by blotting against a range of biotinylated lectins. In addition, specific glycosidases were used to cleave the oligosaccharides. Results An. stephensi 43 and An. gambiae 55 cell line glycoproteins expressed oligosaccharides containing oligomannose and hybrid oligosaccharides, with and without α1-6 core fucosylation; N-linked oligosaccharides with terminal Galβ1-3GalNAc or GalNAcβ1-3Gal; O-linked α/βGalNAc. An. stephensi 43 cell line glycoproteins also expressed N-linked Galβ1-4R and O-linked Galβ1-3GalNAc. Although P. berghei ookinetes bound to both mosquito cell lines, binding could not be inhibited by GlcNAc, GalNAc or Galactose. Conclusions Anopheline cell lines displayed a limited range of oligosaccharides. Differences between the glycosylation patterns of the cell lines and mosquito midgut epithelial cells could be a factor why ookinetes did not bind in a carbohydrate inhibitable manner. Anopheline cell lines are not suitable as a potential model system for carbohydrate-mediated adhesion of Plasmodium ookinetes.

  2. Dual regulation of P-glycoprotein expression by Trichostatin A in cancer cell lines

    Directory of Open Access Journals (Sweden)

    Balaguer Trinidad

    2012-07-01

    Full Text Available Abstract Background It has been reported that the histone deacetylase inhibitor (iHDAc trichostatin A (TSA induces an increase in MDR1 gene transcription (ABCB1. This result would compromise the use of iHDACs in combination with other cytotoxic agents that are substrates of P-glycoprotein (Pgp. It has also been reported the use of alternative promoters by the ABCB1 gene and the existence of a translational control of Pgp protein. Finally, the ABCB1 gene is located in a genetic locus with the nested gene RUNDC3B in the complementary DNA strand, raising the possibility that RUNDC3B expression could interfere with ABCB1 alternative promoter regulation. Methods A combination of RT-PCR, real time RT-PCR, Western blot and drug accumulation assays by flow cytometry has been used in this study. Results The iHDACs-induced increase in MDR1 mRNA levels is not followed by a subsequent increase in Pgp protein levels or activity in several pancreatic and colon carcinoma cell lines, suggesting a translational control of Pgp in these cell lines. In addition, the MDR1 mRNA produced in these cell lines is shorter in its 5′ end that the Pgp mRNA produced in cell lines expressing Pgp protein. The different size of the Pgp mRNA is due to the use of alternative promoters. We also demonstrate that these promoters are differentially regulated by TSA. The translational blockade of Pgp mRNA in the pancreatic carcinoma cell lines could be related to alterations in the 5′ end of the MDR1 mRNA in the Pgp protein expressing cell lines. In addition, we demonstrate that the ABCB1 nested gene RUNDC3B expression although upregulated by TSA is independent of the ABCB1 alternative promoter used. Conclusions The results show that the increase in MDR1 mRNA expression after iHDACs treatment is clinically irrelevant since this mRNA does not render an active Pgp protein, at least in colon and pancreatic cancer cell lines. Furthermore, we demonstrate that TSA in fact, regulates

  3. Release of an Mr 140,000 glycoprotein in the culture media of certain human sarcoma and melanoma cell lines.

    Science.gov (United States)

    Bízik, J; Grófová, M; Svec, J

    1985-03-01

    A 140 K glycoprotein was detected in the culture media of human sarcoma and melanoma cell lines by labeling with several radioactive amino acid and sugar precursors, followed by sodium dodecylsulfate-polyacrylamide gel electrophoresis and fluorography. In contrast to this, in the culture media of metabolically labeled embryonic and skin fibroblasts this glycoprotein was not found. Likewise, a protein with an identical molecular weight of 140 K was also found in culture media after cell surface labeling of the neoplastic cells but not in the culture media from control cells. The [35S]methionine-labeled 140 K was not split by collagenase and did not appear to be a fragment of fibronectin. We discuss the possibility that secretion of the 140 K glycoprotein is a transformation-related phenomenon.

  4. P-glycoprotein inhibition of drug resistant cell lines by nanoparticles.

    Science.gov (United States)

    Singh, Manu Smriti; Lamprecht, Alf

    2016-01-01

    Several pharmaceutical excipients are known for their ability to interact with cell membrane lipids and reverse the phenomenon of multidrug resistance (MDR) in cancer. Interestingly, many excipients act as stabilizers and are key ingredients in a variety of nano-formulations. In this study, representatives of ionic and non-ionic excipients were used as surface active agents in nanoparticle (NP) formulations to utilize their MDR reversing potential. In-vitro assays were performed to elucidate particle-cell interaction and accumulation of P-glycoprotein (P-gp) substrates-rhodamine-123 and calcein AM, in highly drug resistant glioma cell lines. Chemosensitization achieved using NPs and their equivalent dose of free excipients was assessed with the co-administered anti-cancer drug doxorubicin. Among the excipients used, non-ionic surfactant, Cremophor® EL, and cationic surfactant, cetyltrimethylammonuium bromide (CTAB), demonstrated highest P-gp modulatory activity in both free solution form (up to 7-fold lower IC50) and as a formulation (up to 4.7-fold lower IC50) as compared to doxorubicin treatment alone. Solutol® HS15 and Tween® 80 exhibited considerable chemosensitization as free solution but not when incorporated into a formulation. Sodium dodecyl sulphate (SDS)-based nanocarriers resulted in slightly improved cytotoxicity. Overall, the results highlight and envisage the usage of excipient in nano-formulations in a bid to improve chemosensitization of drug resistant cancer cells towards anti-cancer drugs.

  5. Identifying the differences in mechanisms of mycophenolic acid controlling fucose content of glycoproteins expressed in different CHO cell lines.

    Science.gov (United States)

    Zhang, An; Tsang, Valerie Liu; Markely, Lam R; Kurt, Lutfiye; Huang, Yao-Ming; Prajapati, Shashi; Kshirsagar, Rashmi

    2016-11-01

    In the biopharmaceutical industry, glycosylation is a critical quality attribute that can modulate the efficacy of a therapeutic glycoprotein. Obtaining a consistent glycoform profile is desired because molecular function can be defined by its carbohydrate structures. Specifically, the fucose content of oligosaccharides in glycoproteins is one of the most important attributes that can significantly affect antibody-dependent cellular cytotoxicity (ADCC) activity. It is therefore important to understand the fucosylation pathway and be able to control fucosylation at the desired level to match predecessor materials in late stage and biosimilar programs. Several strategies were explored in this study and mycophenolic acid (MPA) was able to finely modulate the fucose content with the least undesired side effects. However, the response was significantly different between CHO cell lines of different lineages. Further experiments were then performed for a deeper understanding of the mechanism of fucosylation in different CHO cell lines. Results indicated that changes in the intracellular nucleotide involved in fucosylation pathway after MPA treatment are the main cause of the differences in fucosylation level response in different CHO cell lines. Differences in MPA metabolism in the various CHO cell lines directly resulted in different levels of afucosylation measured in antibodies produced by the CHO cell lines. Biotechnol. Bioeng. 2016;113: 2367-2376. © 2016 Wiley Periodicals, Inc.

  6. Resistance to paclitaxel in a cisplatin-resistant ovarian cancer cell line is mediated by P-glycoprotein.

    Directory of Open Access Journals (Sweden)

    Britta Stordal

    Full Text Available The IGROVCDDP cisplatin-resistant ovarian cancer cell line is also resistant to paclitaxel and models the resistance phenotype of relapsed ovarian cancer patients after first-line platinum/taxane chemotherapy. A TaqMan low-density array (TLDA was used to characterise the expression of 380 genes associated with chemotherapy resistance in IGROVCDDP cells. Paclitaxel resistance in IGROVCDDP is mediated by gene and protein overexpression of P-glycoprotein and the protein is functionally active. Cisplatin resistance was not reversed by elacridar, confirming that cisplatin is not a P-glycoprotein substrate. Cisplatin resistance in IGROVCDDP is multifactorial and is mediated in part by the glutathione pathway and decreased accumulation of drug. Total cellular glutathione was not increased. However, the enzyme activity of GSR and GGT1 were up-regulated. The cellular localisation of copper transporter CTR1 changed from membrane associated in IGROV-1 to cytoplasmic in IGROVCDDP. This may mediate the previously reported accumulation defect. There was decreased expression of the sodium potassium pump (ATP1A, MRP1 and FBP which all have been previously associated with platinum accumulation defects in platinum-resistant cell lines. Cellular localisation of MRP1 was also altered in IGROVCDDP shifting basolaterally, compared to IGROV-1. BRCA1 was also up-regulated at the gene and protein level. The overexpression of P-glycoprotein in a resistant model developed with cisplatin is unusual. This demonstrates that P-glycoprotein can be up-regulated as a generalised stress response rather than as a specific response to a substrate. Mechanisms characterised in IGROVCDDP cells may be applicable to relapsed ovarian cancer patients treated with frontline platinum/taxane chemotherapy.

  7. A possible receptor for β2 glycoprotein Ⅰ on the membrane of hepatoma cell line smmc7721

    Institute of Scientific and Technical Information of China (English)

    高普均; 朴云峰; 王小丛; 曲立科; 时阳; 杨翰仪

    2003-01-01

    Objectives To study the interaction of beta-2-glycoprotein Ⅰ (β2GP Ⅰ) with the membrane of hepatocytes and determine whether β2GP Ⅰ participates in HBV infection.Methods Ligand blotting, fluorescence microscopy, and fluorescence activated cell sorter (FACS) analysis were used to detect the specific interaction of β2GP Ⅰ with the hepatoma cell line smmc7721, the gastric carcinoma cell line SGC7901, and the lymphoma cell line HL-60.Results A specific 40 kDa β2GP Ⅰ band was observed by ligand blotting in the case of smmc7721 cells. No such band was observed in SGC7901 or HL-60 cells. Fluorescence microscopy also revealed specific binding of FITC-β2GP Ⅰ to smmc7721 cells, but neither to SGC7901 nor HL-60 cells. FACS analysis demonstrated that the binding rate of FITC-β2GP Ⅰ to smmc7721 cells was significantly higher than these in SGC7901 and HL-60 cells (P<0.01). The binding rate to smmc7721 cells did not increase with increasing amounts of FITC-β2GP Ⅰ.Conclusions There is a specific β2GP Ⅰ-binding protein on the membrane of hepatoma cells in cell line smmc7721 which as the β2GP Ⅰ receptor may participate in HBV infection of hepatocytes.

  8. Temozolomide Resistance in Glioblastoma Cell Lines: Implication of MGMT, MMR, P-Glycoprotein and CD133 Expression.

    Directory of Open Access Journals (Sweden)

    Gloria Perazzoli

    Full Text Available The use of temozolomide (TMZ has improved the prognosis for glioblastoma multiforme patients. However, TMZ resistance may be one of the main reasons why treatment fails. Although this resistance has frequently been linked to the expression of O6-methylguanine-DNA methyltransferase (MGMT it seems that this enzyme is not the only molecular mechanism that may account for the appearance of drug resistance in glioblastoma multiforme patients as the mismatch repair (MMR complex, P-glycoprotein, and/or the presence of cancer stem cells may also be implicated.Four nervous system tumor cell lines were used to analyze the modulation of MGMT expression and MGMT promoter methylation by TMZ treatment. Furthermore, 5-aza-2'-deoxycytidine was used to demethylate the MGMT promoter and O(6-benzylguanine to block GMT activity. In addition, MMR complex and P-glycoprotein expression were studied before and after TMZ exposure and correlated with MGMT expression. Finally, the effect of TMZ exposure on CD133 expression was analyzed.Our results showed two clearly differentiated groups of tumor cells characterized by low (A172 and LN229 and high (SF268 and SK-N-SH basal MGMT expression. Interestingly, cell lines with no MGMT expression and low TMZ IC50 showed a high MMR complex expression, whereas cell lines with high MGMT expression and high TMZ IC50 did not express the MMR complex. In addition, modulation of MGMT expression in A172 and LN229 cell lines was accompanied by a significant increase in the TMZ IC50, whereas no differences were observed in SF268 and SK-N-SH cell lines. In contrast, P-glycoprotein and CD133 was found to be unrelated to TMZ resistance in these cell lines.These results may be relevant in understanding the phenomenon of TMZ resistance, especially in glioblastoma multiforme patients laking MGMT expression, and may also aid in the design of new therapeutic strategies to improve the efficacy of TMZ in glioblastoma multiforme patients.

  9. ENERGY-DEPENDENT PROCESSES INVOLVED IN REDUCED DRUG ACCUMULATION IN MULTIDRUG-RESISTANT HUMAN LUNG-CANCER CELL-LINES WITHOUT P-GLYCOPROTEIN EXPRESSION

    NARCIS (Netherlands)

    VERSANTVOORT, CHM; BROXTERMAN, HJ; PINEDO, HM; DEVRIES, EGE; FELLER, N; KUIPER, CM; LANKELMA, J

    1992-01-01

    Mechanisms contributing to reduced cytotoxic drug accumulation were studied in two multidrug-resistant (MDR) human lung cancer cell lines without P-glycoprotein expression. In these (non-small cell) SW-1573/ 2R120 and (small cell) GLC4/ADR MDR cells, the steady-state accumulation of [C-14]daunorubic

  10. Reversion of P-Glycoprotein-Mediated Multidrug Resistance in Human Leukemic Cell Line by Diallyl Trisulfide

    Directory of Open Access Journals (Sweden)

    Qing Xia

    2012-01-01

    Full Text Available Multidrug resistance (MDR is the major obstacle in chemotherapy, which involves multiple signaling pathways. Diallyl trisulfide (DATS is the main sulfuric compound in garlic. In the present study, we aimed to explore whether DATS could overcome P-glycoprotein-(P-gp-mediated MDR in K562/A02 cells, and to investigate whether NF-κB suppression is involved in DATS-induced reversal of MDR. MTT assay revealed that cotreatment with DATS increased the response of K562/A02 cells to adriamycin (the resistance reversal fold was 3.79 without toxic side effects. DATS could enhance the intracellular concentration of adriamycin by inhibiting the function and expression of P-gp, as shown by flow cytometry, RT-PCR, and western blot. In addition, DATS resulted in more K562/A02 cell apoptosis, accompanied by increased expression of caspase-3. The expression of NF-κB/p65 (downregulation was significantly linked to the drug-resistance mechanism of DATS, whereas the expression of IκBα was not affected by DATS. Our findings demonstrated that DATS can serve as a novel, nontoxic modulator of MDR, and can reverse the MDR of K562/A02 cells in vitro by increasing intracellular adriamycin concentration and inducing apoptosis. More importantly, we proved for the first time that the suppression of NF-κB possibly involves the molecular mechanism in the course of reversion by DATS.

  11. Reversion of p-glycoprotein-mediated multidrug resistance in human leukemic cell line by diallyl trisulfide.

    Science.gov (United States)

    Xia, Qing; Wang, Zhi-Yong; Li, Hui-Qing; Diao, Yu-Tao; Li, Xiao-Li; Cui, Jia; Chen, Xue-Liang; Li, Hao

    2012-01-01

    Multidrug resistance (MDR) is the major obstacle in chemotherapy, which involves multiple signaling pathways. Diallyl trisulfide (DATS) is the main sulfuric compound in garlic. In the present study, we aimed to explore whether DATS could overcome P-glycoprotein-(P-gp-)mediated MDR in K562/A02 cells, and to investigate whether NF-κB suppression is involved in DATS-induced reversal of MDR. MTT assay revealed that cotreatment with DATS increased the response of K562/A02 cells to adriamycin (the resistance reversal fold was 3.79) without toxic side effects. DATS could enhance the intracellular concentration of adriamycin by inhibiting the function and expression of P-gp, as shown by flow cytometry, RT-PCR, and western blot. In addition, DATS resulted in more K562/A02 cell apoptosis, accompanied by increased expression of caspase-3. The expression of NF-κB/p65 (downregulation) was significantly linked to the drug-resistance mechanism of DATS, whereas the expression of IκBα was not affected by DATS. Our findings demonstrated that DATS can serve as a novel, nontoxic modulator of MDR, and can reverse the MDR of K562/A02 cells in vitro by increasing intracellular adriamycin concentration and inducing apoptosis. More importantly, we proved for the first time that the suppression of NF-κB possibly involves the molecular mechanism in the course of reversion by DATS. PMID:22919419

  12. The inhibitory and combinative mechanism of HZ08 with P-glycoprotein expressed on the membrane of Caco-2 cell line

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yanyan; Hu, Yahui; Feng, Yidong; Kodithuwakku, Nandani Darshika; Fang, Weirong [State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Nanjing 210009 (China); Li, Yunman, E-mail: yunmanlicpu@hotmail.com [State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Nanjing 210009 (China); Huang, Wenlong [Center of Drug Discovery, China Pharmaceutical University, Nanjing 210009 (China)

    2014-01-15

    Recently, the research and development of agents to reverse the phenomenon of multidrug resistance has been an attractive goal as well as a key approach to elevating the clinical survival of cancer patients. Although three generations of P-glycoprotein modulators have been identified, poor clearance and metabolism render these agents too toxic to be used in clinical application. HZ08, which has been under investigation for several years, shows a dramatic reversal effect with low cytotoxicity. For the first time, we aimed to describe the interaction between HZ08 and P-glycoprotein in Caco-2 cell line in which P-glycoprotein is overexpressed naturally. Cytotoxicity and multidrug resistance reversal assays, together with flow cytometry, fluorescence microscopy and siRNA interference as well as Caco-2 monolayer transport model were employed in this study to evaluate the interaction between HZ08 and P-glycoprotein. This study revealed that HZ08 was capable of reversing adriamycin resistance mediated by P-glycoprotein as a result of intracellular enhancement of adriamycin accumulation, which was found to be superior to verapamil. In addition, we confirmed that HZ08 suppressed the transport of Rhodamine123 in the Caco-2 monolayer model but had little effect on P-glycoprotein expression. The transport of HZ08 was diminished by P-glycoprotein inhibitors (verapamil and LY335979) and its accumulation was increased via siRNA targeting MDR1 in Caco-2 cells. Furthermore, considering the binding site of P-glycoprotein, verapamil performed as a competitive inhibitor with HZ08. In conclusion, as a P-glycoprotein substrate, HZ08 inhibited P-glycoprotein activity and may share the same binding site of verapamil to P-glycoprotein. - Highlights: • The cytotoxicity and reversing effect of HZ08 was measured in Caco-2 cell line. • HZ08 inhibited the transport of Rhodamine123 across Caco-2 cell monolayer. • The efflux ratio of HZ08 was dropped when combined with P-glycoprotein

  13. Establishment and characterization of an MDCK cell line stably-transfected with chicken Abcb1 encoding P-glycoprotein.

    Science.gov (United States)

    Sun, Yong; Guo, Tingting; Guo, Dawei; Guo, Li; Chen, Li; Zhang, Yu; Wang, Liping

    2016-06-01

    Chicken P-glycoprotein (chP-gp), encoded by Abcb1, determines the bioavailability because of its effect on pharmacokinetics of various drugs. However, comprehensive studies on chP-gp are still limited. In this study, the chicken full-length cDNA was first successfully cloned and then stably expressed in MDCK cell line. The open reading frame of chicken Abcb1 consists of 3864 nucleotides, encoding for a 1287-amino acid protein. Sequence alignments analysis showed that chicken P-gp had high identities with the homologues of turkey (95%), human (72%), pig (72%), rat (71%) and cattle (68%). The efflux ratio of rhodamine123 (Rho123, a human P-gp substrate) in chAbcb1 transfected MDCK cells was significantly higher than that in the wild type MDCK cell (6.24 vs 1.64, P<0.05), suggesting a good transporting function of chicken P-gp overexpressed in the transfected cell. Importantly, MDCK-chAbcb1 cells, unlike Caco-2 cells, exhibited biphasic saturation kinetics in transporting Rho123. In conclusion, an MDCK cell line stably expressing chAbcb1 was successfully established, which could provide a new cell model to screen its substrates and inhibitors and study the drug-drug interaction medicated via chicken P-gp. PMID:27234533

  14. Collagen promotes sustained glycoprotein VI signaling in platelets and cell lines

    NARCIS (Netherlands)

    Tomlinson, M. G.; Calaminus, S. D.; Berlanga, O.; Bori-Sanz, T.; Meyaard, L.; Watson, S. P.; Auger, J.M.

    2007-01-01

    Background: Glycoprotein (GP)VI is the major signaling receptor for collagen on platelets and signals via the associated FcR-gamma-chain, which has an immunoreceptor tyrosine-containing activation motif (ITAM). Objective: To determine why GPVI-FcR gamma signals poorly, or not at all, in response to

  15. Effect of recombinant human interleukin-11 on expressions of interleukin-11 receptor α-chain and glycoprotein 130 in intestinal epithelium cell line-6 after neutron irradiation

    OpenAIRE

    Wang, Rui-Juan; Peng, Rui-Yun; Fu, Kai-Fei; Gao, Ya-Bing; Han, Rui-Gang; Hu, Wen-Hua; Luo, Qing-Liang; Ma, Jun-Jie

    2006-01-01

    AIM: To explore the effect of recombinant human interleukin-11 (rhIL-11) on the expressions of interleukin-11 receptor α-chain (IL-11Rα) and an additional signal transducer glycoprotein 130 (gp130) in intestinal epithelium cell line-6 (IEC-6) after neutron irradiation.

  16. TRANSFECTED MDCK CELL LINE WITH ENHANCED EXPRESSION OF CYP3A4 AND P-GLYCOPROTEIN AS A MODEL TO STUDY THEIR ROLE IN DRUG TRANSPORT AND METABOLISM

    OpenAIRE

    Kwatra, Deep; Budda, Balasubramanyam; Vadlapudi, Aswani Dutt; Vadlapatla, Ramya Krishna; Pal, Dhananjay; Ashim K. Mitra

    2012-01-01

    The aim of this study was to characterize and utilize MDCK cell line expressing CYP3A4 and P-glycoprotein as an in vitro model for evaluating drug-herb and drug-drugs of abuse interactions. MDCK cell line simultaneously expressing P-gp and CYP3A4 (MMC) was developed and characterized by using expression and activity studies. Cellular transport study of 200 μM cortisol was performed to determine their combined activity. The study was carried across MDCK-WT, MDCK-MDR1 and MMC cell lines. Simila...

  17. Expression of the glycoprotein of viral haemorrhagic septicaemia virus (VHSV) on the surface of the fish cell line RTG-P1 induces type 1 interferon expression in neighbouring cells

    DEFF Research Database (Denmark)

    Acosta, F.; Collet, B.; Lorenzen, Niels;

    2006-01-01

    In the present study using a luciferase/Mx promoter reporter system, it was shown that the rainbow trout gonad cell line (RTG-P1), a fibroblastic cell line, produces IFN when transfected with a plasmid encoding the glycoprotein of VHSV but not with plasmid vector alone. Only a small percentage...

  18. Alpha-2 Heremans Schmid Glycoprotein (AHSG) Modulates Signaling Pathways in Head and Neck Squamous Cell Carcinoma Cell Line SQ20B

    International Nuclear Information System (INIS)

    This study was performed to identify the potential role of Alpha-2 Heremans Schmid Glycoprotein (AHSG) in Head and Neck Squamous Cell Carcinoma (HNSCC) tumorigenesis using an HNSCC cell line model. HNSCC cell lines are unique among cancer cell lines, in that they produce endogenous AHSG and do not rely, solely, on AHSG derived from serum. To produce our model, we performed a stable transfection to down-regulate AHSG in the HNSCC cell line SQ20B, resulting in three SQ20B sublines, AH50 with 50% AHSG production, AH20 with 20% AHSG production and EV which is the empty vector control expressing wild-type levels of AHSG. Utilizing these sublines, we examined the effect of AHSG depletion on cellular adhesion, proliferation, migration and invasion in a serum-free environment. We demonstrated that sublines EV and AH50 adhered to plastic and laminin significantly faster than the AH20 cell line, supporting the previously reported role of exogenous AHSG in cell adhesion. As for proliferative potential, EV had the greatest amount of proliferation with AH50 proliferation significantly diminished. AH20 cells did not proliferate at all. Depletion of AHSG also diminished cellular migration and invasion. TGF-β was examined to determine whether levels of the TGF-β binding AHSG influenced the effect of TGF-β on cell signaling and proliferation. Whereas higher levels of AHSG blunted TGF-β influenced SMAD and ERK signaling, it did not clearly affect proliferation, suggesting that AHSG influences on adhesion, proliferation, invasion and migration are primarily due to its role in adhesion and cell spreading. The previously reported role of AHSG in potentiating metastasis via protecting MMP-9 from autolysis was also supported in this cell line based model system of endogenous AHSG production in HNSCC. Together, these data show that endogenously produced AHSG in an HNSCC cell line, promotes in vitro cellular properties identified as having a role in tumorigenesis. Highlights: • Head

  19. Alpha-2 Heremans Schmid Glycoprotein (AHSG) Modulates Signaling Pathways in Head and Neck Squamous Cell Carcinoma Cell Line SQ20B

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Pamela D.; Sakwe, Amos [Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN 37208 (United States); Koumangoye, Rainelli [Division of Surgical Oncology and Endocrine Surgery, Vanderbilt University Medical Center, Nashville, TN 37232 (United States); Yarbrough, Wendell G. [Division of Otolaryngology, Departments of Surgery and Pathology and Yale Cancer Center, Yale University, New Haven, CT 06520 (United States); Ochieng, Josiah [Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN 37208 (United States); Marshall, Dana R., E-mail: dmarshall@mmc.edu [Department of Pathology, Anatomy and Cell Biology, Meharry Medical College, Nashville, TN 37208 (United States)

    2014-02-15

    This study was performed to identify the potential role of Alpha-2 Heremans Schmid Glycoprotein (AHSG) in Head and Neck Squamous Cell Carcinoma (HNSCC) tumorigenesis using an HNSCC cell line model. HNSCC cell lines are unique among cancer cell lines, in that they produce endogenous AHSG and do not rely, solely, on AHSG derived from serum. To produce our model, we performed a stable transfection to down-regulate AHSG in the HNSCC cell line SQ20B, resulting in three SQ20B sublines, AH50 with 50% AHSG production, AH20 with 20% AHSG production and EV which is the empty vector control expressing wild-type levels of AHSG. Utilizing these sublines, we examined the effect of AHSG depletion on cellular adhesion, proliferation, migration and invasion in a serum-free environment. We demonstrated that sublines EV and AH50 adhered to plastic and laminin significantly faster than the AH20 cell line, supporting the previously reported role of exogenous AHSG in cell adhesion. As for proliferative potential, EV had the greatest amount of proliferation with AH50 proliferation significantly diminished. AH20 cells did not proliferate at all. Depletion of AHSG also diminished cellular migration and invasion. TGF-β was examined to determine whether levels of the TGF-β binding AHSG influenced the effect of TGF-β on cell signaling and proliferation. Whereas higher levels of AHSG blunted TGF-β influenced SMAD and ERK signaling, it did not clearly affect proliferation, suggesting that AHSG influences on adhesion, proliferation, invasion and migration are primarily due to its role in adhesion and cell spreading. The previously reported role of AHSG in potentiating metastasis via protecting MMP-9 from autolysis was also supported in this cell line based model system of endogenous AHSG production in HNSCC. Together, these data show that endogenously produced AHSG in an HNSCC cell line, promotes in vitro cellular properties identified as having a role in tumorigenesis. Highlights: • Head

  20. Comparison of P-glycoprotein expression in cell lines and xenogragraft sections using I-125 MRK-16 monoclonal antibody (MAB)

    Energy Technology Data Exchange (ETDEWEB)

    Mehta, B.M.; Kostakoglu, L.; Levchenko, A. [Kettering Cancer, New York, NY (United States)] [and others

    1994-05-01

    P-glycoprotein (Pgp) is known to be associated with multidrug resistance (MDR). Quantitation of P-glycoprotein expression may permit appropriate therapy depending on Pgp expression in tumors. The present study was undertaken to evaluate the utility of quantitative autoradiography (QAR) in the quantification of MDR using MRK-16, a murine IgG mAb reactive against Pgp. Balb/c mice were xenografted with colchicine resistant BE(2)C/CHC cells. Animals with established tumors were sacrificed, and 8 {mu}m tumor sections were prepared. Mab MRK-16 was labeled with I-125 (150 {mu}Ci/0.625 nmole) by the iodogen method and subsequently purified by size exclusion chromatography. Consecutive tumor sections were incubated overnight at 4{degrees}C with serial dilutions of I-125 MRK-16. Similarly cell suspensions containing 1 X 10{sup 7} cells per ml were also incubated with serial dilutions. QAR analysis of tissue sections of BE(2)C/CHC tumors growing as xenografts in nude mice, determined the binding affinity (K{sub a}) for MRK-16 to be 1 x 10{sup 9} L/M and the number of binding sites (B{sub max}) to be 137, 700 per cell (222 picomols/g); it compared very well with the K{sub a} value of 5 x 10{sup 8} L/M and the B{sub max} value of 130,000 per cell (217 picomols/g) obtained from binding analysis with cell suspensions.

  1. Astragaloside Ⅳ reduces the expression level of P-glycoprotein in multidrug-resistant human hepatic cancer cell lines.

    Science.gov (United States)

    Wang, Pei-Pei; Xu, Du-Juan; Huang, Can; Wang, Wei-Ping; Xu, Wen-Ke

    2014-06-01

    Astragaloside is a saponin widely used in traditional Chinese medicine and has been reported to be a potent multidrug resistance (MDR) reversal agent. The present study investigated the role of astragaloside Ⅳ (ASIV) in the regulation of P-glycoprotein (P-gp, encoded by the mdr1 gene) and its effect on the reversal of MDR. The activity of ASIV was evaluated using human hepatic cancer cells Bel-7402 and the corresponding 5-fluorouracil (5-FU) resistant cells Bel-7402/FU. ASIV (0.08 mg/ml) potentiated the cytotoxicity of 5-FU which was demonstrated using the MTT assay on Bel-7402/FU cells. ASIV reduced the expression of P-gp as was revealed by immunocytochemistry. Accumulation and efflux studies with the P-gp substrate, rhodamine 123 (Rh123), demonstrated that ASIV inhibited P-gp-mediated drug efflux. Furthermore, it was demonstrated that ASⅣ enhanced the drug accumulation of 5-FU using a high performance liquid chromatography (HPLC) assay for drug resistant cells. Furthermore, ASIV may downregulate the expression of P-gp, which was examined using western blot analysis and polymerase chain reaction. In conclusion, the results of the present study indicated that ASIV reverses the drug resistance of Bel-7402/FU cells by downregulating the expression of mdr1. ASIV may represent a potent modulator of P-gp-mediated MDR in hepatic cancer therapy. PMID:24676670

  2. IPEC-J2 MDR1, a Novel High-Resistance Cell Line with Functional Expression of Human P-glycoprotein (ABCB1) for Drug Screening Studies

    DEFF Research Database (Denmark)

    Saaby, Lasse; Helms, Hans Christian Cederberg; Brodin, Birger

    2016-01-01

    The P-glycoprotein (P-gp) efflux pump has been shown to affect drug distribution and absorption in various organs and to cause drug resistance in cancer therapy. The aim of this work was to develop a cell line to serve as a screening system for potential substrates of P-gp. This requires a cell...... line with high paracellular tightness, low expression of nonhuman ABC transporters, and high expression of functional human P-gp (ABCB1). The porcine intestinal epithelial cell line, IPEC-J2, was selected as a transfection host, due to its ability to form extremely high-resistance monolayers (>10,000 Ω......·cm(2)) and its low endogenous expression of ABC-type efflux transporters. The IPEC-J2 cells were transfected with a plasmid that contained the sequence of the human MDR1 gene, which encodes P-gp, followed by a selection of successfully transfected cells with geneticin and puromycin. The resulting cell...

  3. Quercetin as a Potential Modulator of P-Glycoprotein Expression and Function in Cells of Human Pancreatic Carcinoma Line Resistant to Daunorubicin

    Directory of Open Access Journals (Sweden)

    Piotr Dziegiel

    2010-02-01

    Full Text Available P-glycoprotein (P-gp is one of the ABC transporters responsible for the resistance of several tumours to successful chemotherapy. Numerous agents are capable of interfering with the P-gp-mediated export of drugs but unfortunately most of them produce serious side effects. Some plant polyphenols, including the flavonol quercetin (Q, manifest anti-neoplastic activity mainly due to their influence on cell cycle control and apoptosis. Reports are also available which show that Q may intensify action of cytostatic drugs and suppress the multidrug resistance (MDR phenomenon. The study aimed at determination if Q sensitizes cells resistant to daunorubicin (DB through its effect on P-gp expression and action. The experiments were conducted on two cell lines of human pancreatic carcinoma, resistant to DB EPP85-181RDB and sensitive EPP85-181P as a comparison. Cells of both lines were exposed to selected concentrations of Q and DB, and then membranous expression of P-gp and its transport function were examined. The influence on expression of gene for P-gp (ABCB1 was also investigated. Results of the studies confirmed that Q affects expression and function of P-gp in a concentration-dependent manner. Moreover it decreased expression of ABCB1. Thus, Q may be considered as a potential modulator of P-gp.

  4. Effect of three fatty acids from the leaf extract of Tiliacora triandra on P-glycoprotein function in multidrug-resistant A549RT-eto cell line

    Directory of Open Access Journals (Sweden)

    Chutima Kaewpiboon

    2014-01-01

    Full Text Available Background: Cancer cells have the ability to develop resistance to chemotherapy drugs, which then leads to a reduced effectiveness and success of the treatment. Multidrug resistance (MDR involves the resistance in the same cell/tissue to a diverse range of drugs of different structures. One of the characteristics of MDR is an overexpression of P-glycoprotein (P-gp, which causes the efflux of the accumulated drug out of the cell. The MDR human non-small cell lung carcinoma cell line with a high P-gp expression level (A549RT-eto was used to investigate the bioactive compounds capable of reversing the etoposide resistance in this cell line. Materials and Methods: The leaves of Tiliacora triandra were sequentially extracted with hexane, dichloromethane, methanol and water. Only the hexane extract reduced the etoposide resistance of the A549RT-eto cell line, and was further fractionated by column chromatography using the TLC-pattern and the restoration of etoposide sensitivity as the selection criteria. Results: The obtained active fraction (F22 was found by nuclear magnetic resonance and gas chromatography-mass spectroscopy analyses to be comprised of a 49.5:19.6:30.9 (w/w/w mixture of hexadecanoic: octadecanoic acid: (Z-6-octadecenoic acids. This stoichiometric mixture was recreated using pure fatty acids (MSFA and gave a similar sensitization to etoposide and enhanced the relative rate of rhodamine-123 accumulation to a similar extent as F22, supporting the action via reducing P-gp activity. In contrast, the fatty acids alone did not show this effect. Conclusion: This is the first report of the biological activity from the leaves of T. triandra as a potential source of a novel chemosensitizer.

  5. Generation and efficacy evaluation of recombinant classical swine fever virus E2 glycoprotein expressed in stable transgenic mammalian cell line.

    Directory of Open Access Journals (Sweden)

    Rong-Hong Hua

    Full Text Available Classical swine fever virus (CSFV is the causative agent of classical swine fever (CSF, which is a highly contagious swine disease that causes significant economic loses to the pig industry worldwide. The envelope E2 glycoprotein of CSFV is the most important viral antigen in inducing protective immune response against CSF. In this study, we generated a mammalian cell clone (BCSFV-E2 that could stably produce a secreted form of CSFV E2 protein (mE2. The mE2 protein was shown to be N-linked glycosylated and formed a homodimer. The vaccine efficacy of mE2 was evaluated by immunizing pigs. Twenty-five 6-week-old Landrace piglets were randomly divided into five groups. Four groups were intramuscularly immunized with mE2 emulsified in different adjuvants twice at four-week intervals. One group was used as the control group. All mE2-vaccinated pigs developed CSFV-neutralizing antibodies two weeks after the first vaccination with neutralizing antibody titers ranging from 1:40 to 1:320. Two weeks after the booster vaccination, the neutralizing antibody titers increased greatly and ranged from 1:10,240 to 1:81,920. At 28 weeks after the booster vaccine was administered, the neutralizing antibody titers ranged from 1:80 to 1:10240. At 32 weeks after the first vaccination, pigs in all the groups were challenged with a virulent CSFV strain at a dose of 1 × 10(5 TCID50. At two weeks after the challenge, all the mE2-immunized pigs survived and exhibited no obvious symptoms of CSF. The neutralizing antibody titer at this time was 20,480. Unvaccinated pigs in the control group exhibited symptoms of CSF 3-4 days after challenge and were euthanized from 7-9 days after challenge when the pigs became moribund. These results indicate that the mE2 is a good candidate for the development of a safe and effective CSFV subunit vaccine.

  6. Effect of recombinant human interleukin-11 on expressions of interleukin-11 receptor α-chain and glycoprotein 130 in intestinal epithelium cell line-6 after neutron irradiation

    Institute of Scientific and Technical Information of China (English)

    Rui-Juan Wang; Rui-Yun Peng; Kai-Fei Fu; Ya-Bing Gao; Rui-Gang Han; Wen-Hua Hu; Qing-Liang Luo; Jun-Jie Ma

    2006-01-01

    AIM: To explore the effect of recombinant human interleukin-11 (rhIL-11) on the expressions of interleukin-11 receptor α-chain (IL-11Rα) and an additional signal transducer glycoprotein 130 (gp130) in intestinal epithelium cell line-6 (IEC-6) after neutron irradiation.METHODS: Cultured IEC-6 cells were exposed to 4.0Gy neutron and treated with 100 ng/mL rhIL-11 12 h prior to or immediately after irradiation. The apoptosis and necrosis rates and expressions of IL-11Rα and gp130 were observed by flow cytometry, immunohistochemistry, Western blot and image analysis.RESULTS: The apoptosis rate of IEC-6 cells was increased by irradiation at 6 h (P < 0.01), IL-11 stimulation resulted in a decreased apoptosis rate in irradiated IEC-6 cells (P < 0.05). In normal control IEC-6 cells, intense immunoreactivity of IL-11Rα was located within the cell membrane and cytoplasm. The level of IL-11Rα expression significantly decreased at 6 h after irradiation (P < 0.01) and restored at 24 h after irradiation. In IEC-6 cells treated with both radiation and rhIL-11, the level of IL-11Rα expression was higher than that of irradiated cells (P < 0.05). When it came to gp130 protein, it was located in the cytoplasm of IEC-6 cells. After irradiation, we found a progressive decrease in the expression of gp130 protein (P < 0.05) in 48 hours post-radiation, while in rhIL-11-stimulated cells, it came back to normal level at 24 h after irradiation and decreased at 48 h, but was still higher than that of only irradiated cells (P < 0.05).CONCLUSION: rhIL-11 can protect IEC-6 cells from neutron irradiation. The protective effect of rhIL-11 might be connected with its ability to up-regulate the expressions of specific ligand-binding subunit IL-11Rα and signal-transducing subunit gp130.

  7. Nuclear localization of P-glycoprotein is responsible for protection of the nucleus from doxorubicin in the resistant LoVo cell line.

    Science.gov (United States)

    Szaflarski, Witold; Sujka-Kordowska, Patrycja; Januchowski, Radosław; Wojtowicz, Karolina; Andrzejewska, Małgorzata; Nowicki, Michał; Zabel, Maciej

    2013-07-01

    The high expression of P-glycoprotein (P-gp) belongs to one of the most important factors causing multidrug-resistant (MDR) of cancer cells. P-gp is primarily associated with plasma membrane; however, small fraction of that protein is present in the nuclear envelope. Such phenomenon is observed in cancer cells and may result in the selection of MDR cells as the secondary tumor and/or resistant metastasis that significantly shorten patient survival rate. Here, we confirmed nuclear localization of P-gp in resistant LoVo cells and demonstrated its impact on doxorubicin efflux from the nucleus to cytoplasm. Furthermore, we showed that P-gp located at the nuclear envelope might have a different glycoside chain when compared to the form located in the cytoplasm. It suggests that the glycoside chain plays a role in the intracellular trafficking of P-gp and may decide about the destination place in the cell. PMID:23602050

  8. Nuclear localization of P-glycoprotein is responsible for protection of the nucleus from doxorubicin in the resistant LoVo cell line.

    Science.gov (United States)

    Szaflarski, Witold; Sujka-Kordowska, Patrycja; Januchowski, Radosław; Wojtowicz, Karolina; Andrzejewska, Małgorzata; Nowicki, Michał; Zabel, Maciej

    2013-07-01

    The high expression of P-glycoprotein (P-gp) belongs to one of the most important factors causing multidrug-resistant (MDR) of cancer cells. P-gp is primarily associated with plasma membrane; however, small fraction of that protein is present in the nuclear envelope. Such phenomenon is observed in cancer cells and may result in the selection of MDR cells as the secondary tumor and/or resistant metastasis that significantly shorten patient survival rate. Here, we confirmed nuclear localization of P-gp in resistant LoVo cells and demonstrated its impact on doxorubicin efflux from the nucleus to cytoplasm. Furthermore, we showed that P-gp located at the nuclear envelope might have a different glycoside chain when compared to the form located in the cytoplasm. It suggests that the glycoside chain plays a role in the intracellular trafficking of P-gp and may decide about the destination place in the cell.

  9. Amphiregulin: A bifunctional growth-modulating glycoprotein produced by the phorbol 12-myristate 13-acetate-treated human breast adenocarcinoma cell line MCF-7

    Energy Technology Data Exchange (ETDEWEB)

    Shoyab, M.; McDonald, V.L.; Bradley, G.; Todaro, G.J. (Oncogen, Seattle, WA (USA))

    1988-09-01

    A glycoprotein, termed amphiregulin (AR), inhibits growth of several human carcinoma cells in culture and stimulates proliferation of human fibroblasts and certain other tumor cells. It has been purified to apparent homogeneity from serum-free conditioned medium of MCF-7 human breast carcinoma cells that had been treated with phorbol 12-myristate 13-acetate. AR is a single-chain extremely hydrophilic glycoprotein containing cysteines in disulfide linkage(s) that are essential for biological activity; it is stable between pH2 and pH12 and after heating for 30 min at 56{degree}C but unstable at 100{degree}C. The apparent molecular weights of AR and N-Glycanase-treated AR are 14,000 and 15,000, respectively, as assessed by gel chromatography, and {approx}22,500 and {approx}14,000, respectively, as determined by polyacrylamide gel electrophoresis. A growth modulatory assay was performed with {sup 125}I-labeled deoxyuridine incorporation into DNA. The amino-terminal amino acid sequence of AR has been determined, and no significant sequence homology between AR and other proteins was found. The molecule thus appears to be a distinct growth regulatory protein.

  10. Inhibitors of glycoprotein processing alter T-cell proliferative responses to antigen and to interleukin 2.

    OpenAIRE

    Wall, K A; Pierce, J D; Elbein, A D

    1988-01-01

    Most of the cell-surface molecules involved in T-cell immune responses are N-linked glycoproteins. We have investigated the effects of inhibitors of glycoprotein processing on specific T-cell functions, with the dual aims of examining the functional role of carbohydrate and of testing the usefulness of such compounds as immunomodulators. Treatment of a cloned murine helper T-cell line with these inhibitors differentially affects the proliferative response of the cell, depending upon the natur...

  11. A novel baculovirus vector for the production of nonfucosylated recombinant glycoproteins in insect cells

    OpenAIRE

    Mabashi-Asazuma, Hideaki; Kuo, Chu-Wei; Khoo, Kay-Hooi; Jarvis, Donald L

    2013-01-01

    Glycosylation is an important attribute of baculovirus-insect cell expression systems, but some insect cell lines produce core α1,3-fucosylated N-glycans, which are highly immunogenic and render recombinant glycoproteins unsuitable for human use. To address this problem, we exploited a bacterial enzyme, guanosine-5′-diphospho (GDP)-4-dehydro-6-deoxy-d-mannose reductase (Rmd), which consumes the GDP-l-fucose precursor. We expected this enzyme to block glycoprotein fucosylation by blocking the ...

  12. Pneumocystis carinii major surface glycoprotein induces interleukin-8 and monocyte chemoattractant protein-1 release from a human alveolar epithelial cell line

    DEFF Research Database (Denmark)

    Benfield, T L; Lundgren, Bettina; Shelhamer, J H;

    1999-01-01

    (IL-8) and monocyte chemoattractant protein-1 (MCP-1) from an alveolar epithelial cell line (A549). RESULTS: Incubation of A549 cells with MSG in concentrations from 0.4 to 10 microg mL-1 for 24 h caused dose-dependent increases in IL-8 release (3.4-fold above control, P ..., suggesting that MSG stimulates A549 cells in part through carbohydrate moieties. Dexamethasone significantly inhibited MSG-induced IL-8 release in concentrations of 10-6-10-8 mol L-1 compared with control experiments (P

  13. An unusual dependence of human herpesvirus-8 glycoproteins-induced cell-to-cell fusion on heparan sulfate

    Energy Technology Data Exchange (ETDEWEB)

    Tiwari, Vaibhav [Department of Ophthalmology, University of Illinois at Chicago, Chicago, IL 60612 (United States); Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL 60612 (United States); Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific and College of Optometry, Western University of Health Sciences, Pomona, CA 91766 (United States); Darmani, Nissar A.; Thrush, Gerald R. [Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific and College of Optometry, Western University of Health Sciences, Pomona, CA 91766 (United States); Shukla, Deepak, E-mail: dshukla@uic.edu [Department of Ophthalmology, University of Illinois at Chicago, Chicago, IL 60612 (United States); Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL 60612 (United States)

    2009-12-18

    Human herpesvirus-8 (HHV-8) is known to interact with cell surface heparan sulfate (HS) for entry into a target cell. Here we investigated the role of HS during HHV-8 glycoproteins-induced cell fusion. Interestingly, the observed fusion demonstrated an unusual dependence on HS as evident from following lines of evidence: (1) a significant reduction in cell-to-cell fusion occurred when target cells were treated with heparinase; (2) in a competition assay, when the effector cells expressing HHV-8 glycoproteins were challenged with soluble HS, cell-to-cell fusion was reduced; and, (3) co-expression of HHV-8 glycoproteins gH-gL on target cells resulted in inhibition of cell surface HS expression. Taken together, our results indicate that cell surface HS can play an additional role during HHV-8 pathogenesis.

  14. Clitocine reversal of P-glycoprotein associated multi-drug resistance through down-regulation of transcription factor NF-κB in R-HepG2 cell line.

    Directory of Open Access Journals (Sweden)

    Jianguo Sun

    Full Text Available Multidrug resistance (MDR is one of the major reasons for failure in cancer chemotherapy and its suppression may increase the efficacy of therapy. The human multidrug resistance 1 (MDR1 gene encodes the plasma membrane P-glycoprotein (P-gp that pumps various anti-cancer agents out of the cancer cell. R-HepG2 and MES-SA/Dx5 cells are doxorubicin induced P-gp over-expressed MDR sublines of human hepatocellular carcinoma HepG2 cells and human uterine carcinoma MES-SA cells respectively. Herein, we observed that clitocine, a natural compound extracted from Leucopaxillus giganteus, presented similar cytotoxicity in multidrug resistant cell lines compared with their parental cell lines and significantly suppressed the expression of P-gp in R-HepG2 and MES-SA/Dx5 cells. Further study showed that the clitocine increased the sensitivity and intracellular accumulation of doxorubicin in R-HepG2 cells accompanying down-regulated MDR1 mRNA level and promoter activity, indicating the reversal effect of MDR by clitocine. A 5'-serial truncation analysis of the MDR1 promoter defined a region from position -450 to -193 to be critical for clitocine suppression of MDR1. Mutation of a consensus NF-κB binding site in the defined region and overexpression of NF-κB p65 could offset the suppression effect of clitocine on MDR1 promoter. By immunohistochemistry, clitocine was confirmed to suppress the protein levels of both P-gp and NF-κB p65 in R-HepG2 cells and tumors. Clitocine also inhibited the expression of NF-κB p65 in MES-SA/Dx5. More importantly, clitocine could suppress the NF-κB activation even in presence of doxorubicin. Taken together; our results suggested that clitocine could reverse P-gp associated MDR via down-regulation of NF-κB.

  15. Cell wall O-glycoproteins and N-glycoproteins: aspects of biosynthesis and function

    Science.gov (United States)

    Nguema-Ona, Eric; Vicré-Gibouin, Maïté; Gotté, Maxime; Plancot, Barbara; Lerouge, Patrice; Bardor, Muriel; Driouich, Azeddine

    2014-01-01

    Cell wall O-glycoproteins and N-glycoproteins are two types of glycomolecules whose glycans are structurally complex. They are both assembled and modified within the endomembrane system, i.e., the endoplasmic reticulum (ER) and the Golgi apparatus, before their transport to their final locations within or outside the cell. In contrast to extensins (EXTs), the O-glycan chains of arabinogalactan proteins (AGPs) are highly heterogeneous consisting mostly of (i) a short oligo-arabinoside chain of three to four residues, and (ii) a larger β-1,3-linked galactan backbone with β-1,6-linked side chains containing galactose, arabinose and, often, fucose, rhamnose, or glucuronic acid. The fine structure of arabinogalactan chains varies between, and within plant species, and is important for the functional activities of the glycoproteins. With regards to N-glycans, ER-synthesizing events are highly conserved in all eukaryotes studied so far since they are essential for efficient protein folding. In contrast, evolutionary adaptation of N-glycan processing in the Golgi apparatus has given rise to a variety of organism-specific complex structures. Therefore, plant complex-type N-glycans contain specific glyco-epitopes such as core β,2-xylose, core α1,3-fucose residues, and Lewisa substitutions on the terminal position of the antenna. Like O-glycans, N-glycans of proteins are essential for their stability and function. Mutants affected in the glycan metabolic pathways have provided valuable information on the role of N-/O-glycoproteins in the control of growth, morphogenesis and adaptation to biotic and abiotic stresses. With regards to O-glycoproteins, only EXTs and AGPs are considered herein. The biosynthesis of these glycoproteins and functional aspects are presented and discussed in this review. PMID:25324850

  16. Pneumocystis carinii major surface glycoprotein induces interleukin-8 and monocyte chemoattractant protein-1 release from a human alveolar epithelial cell line

    DEFF Research Database (Denmark)

    Benfield, T L; Lundgren, Bettina; Shelhamer, J H;

    1999-01-01

    experiments showed increases in IL-8 release at 4 h, 8 h and 24 h compared with control cultures (all P minor (13%) dose- and time-related increase in MCP-1 release at 24 h (P = 0.02). Co-incubation of MSG with mannan or beta-glucan decreased IL-8 release by 48% and 42% respectively......, suggesting that MSG stimulates A549 cells in part through carbohydrate moieties. Dexamethasone significantly inhibited MSG-induced IL-8 release in concentrations of 10-6-10-8 mol L-1 compared with control experiments (P protection assays for steady-state IL-8 mRNA showed that increases...

  17. Glucocorticoid-regulated and constitutive trafficking of proteolytically processed cell surface-associated glycoproteins in wild type and variant rat hepatoma cells

    International Nuclear Information System (INIS)

    Glucocorticoids regulate the trafficking of mouse mammary tumor virus (MMTV) glycoproteins to the cell surface in the rat hepatoma cell line M1.54, but not in the immunoselected sorting variant CR4. To compare the localization of MMTV glycoproteins to another proteolytically processed glycoprotein, both wild type M1.54 cells and variant CR4 cells were transfected with a human insulin receptor (hIR) expression vector, pRSVhIR. The production of cell surface hIR was monitored in dexamethasone-treated and -untreated wild type M1.54 and variant CR4 cells by indirect immunofluorescence, direct plasma membrane immunoprecipitation, and by [125I] insulin binding. In both wild type and variant rat hepatoma cells, hIR were localized at the cell surface in the presence or in the absence of 1 microM dexamethasone. In contrast, the glucocorticoid-regulated trafficking of cell surface MMTV glycoproteins occurred only in wild type M1.54 cells. We conclude that the hIR, which undergoes posttranslational processing reactions similar to MMTV glycoproteins, does not require glucocorticoids to be transported to the plasma membrane and is representative of a subset of cell surface glycoproteins whose trafficking is constitutive in rat hepatoma cells. Thus, MMTV glycoproteins and hIR provide specific cell surface markers to characterize the glucocorticoid-regulated and constitutive sorting pathways

  18. EFFECTS OF AMIODARONE, CYCLOSPORINE-A, AND PSC-833 ON THE CYTOTOXICITY OF MITOXANTRONE, DOXORUBICIN, AND VINCRISTINE IN NON-P-GLYCOPROTEIN HUMAN SMALL-CELL LUNG-CANCER CELL-LINES

    NARCIS (Netherlands)

    VANDERGRAAF, WTA; DEVRIES, EGE; TIMMERBOSSCHA, H; MEERSMA, GJ; MESANDER, G; VELLENGA, E; MULDER, NH

    1994-01-01

    The multidrug resistance (MDR) modulators amiodarone (AM), cyclosporin A (CsA), and PSC 833 were tested for their potential to modulate cytotoxicity of doxorubicin (DOX), vincristine (VCR), and mitoxantrone (MX) in a sensitive human small cell lung carcinoma cell line GLC4 in its DOX-resistant non-P

  19. Nipah virus infection and glycoprotein targeting in endothelial cells

    Directory of Open Access Journals (Sweden)

    Maisner Andrea

    2010-11-01

    Full Text Available Abstract Background The highly pathogenic Nipah virus (NiV causes fatal respiratory and brain infections in animals and humans. The major hallmark of the infection is a systemic endothelial infection, predominantly in the CNS. Infection of brain endothelial cells allows the virus to overcome the blood-brain-barrier (BBB and to subsequently infect the brain parenchyma. However, the mechanisms of NiV replication in endothelial cells are poorly elucidated. We have shown recently that the bipolar or basolateral expression of the NiV surface glycoproteins F and G in polarized epithelial cell layers is involved in lateral virus spread via cell-to-cell fusion and that correct sorting depends on tyrosine-dependent targeting signals in the cytoplasmic tails of the glycoproteins. Since endothelial cells share many characteristics with epithelial cells in terms of polarization and protein sorting, we wanted to elucidate the role of the NiV glycoprotein targeting signals in endothelial cells. Results As observed in vivo, NiV infection of endothelial cells induced syncytia formation. The further finding that infection increased the transendothelial permeability supports the idea of spread of infection via cell-to-cell fusion and endothelial cell damage as a mechanism to overcome the BBB. We then revealed that both glycoproteins are expressed at lateral cell junctions (bipolar, not only in NiV-infected primary endothelial cells but also upon stable expression in immortalized endothelial cells. Interestingly, mutation of tyrosines 525 and 542/543 in the cytoplasmic tail of the F protein led to an apical redistribution of the protein in endothelial cells whereas tyrosine mutations in the G protein had no effect at all. This fully contrasts the previous results in epithelial cells where tyrosine 525 in the F, and tyrosines 28/29 in the G protein were required for correct targeting. Conclusion We conclude that the NiV glycoprotein distribution is responsible for

  20. Glycoprotein H of herpes simplex virus type 1 requires glycoprotein L for transport to the surfaces of insect cells

    NARCIS (Netherlands)

    Westra, DF; Glazenburg, KL; Harmsen, MC; Tiran, A; Scheffer, AJ; Welling, GW; The, TH; WellingWester, S

    1997-01-01

    In mammalian cells, formation of heterooligomers consisting of the glycoproteins H and L (gH and gL) of herpes simplex virus type 1 is essential for the cell-to-cell spread of virions and for the penetration of virions into cells. We examined whether formation of gH1/gL1 heterooligomers and cell sur

  1. siRNA-based targeting of antiapoptotic genes can reverse chemoresistance in P-glycoprotein expressing chondrosarcoma cells

    Directory of Open Access Journals (Sweden)

    Yang Jay

    2009-05-01

    Full Text Available Abstract Background High expression of P-glycoprotein is one of the well-known mechanisms of chemoresistance in chondrosarcomas. However, the role of antiapoptotic proteins, a common mechanism responsible for chemoresistance in other tumors, has not been well studied in chondrosarcomas. We examined the importance of P-glycoprotein and antiapoptotic proteins in the chemoresistance to doxorubicin of two Grade II chondrosarcoma cell lines, JJ012 and SW1353. Results We confirmed that both chondrosarcoma cell types expressed P-glycoprotein and antiapoptotic proteins (Bcl-2, Bcl-xL and XIAP. siRNA knockdown as well as pharmacologic inhibitors of cell survival proteins (Bcl-2, Bcl-xL and XIAP enhanced apoptosis of chemoresistant chondrosarcoma cells by up to 5.5 fold at 0.1 μmol and 5.5 fold at 1 μmol doxorubicin. These chemosensitizing effects were comparable to those of P-glycoprotein inhibition by siRNA or pharmacologic inhibitor. Conclusion These findings suggest that antiapoptotic proteins play a significant role in the chemoresistance of chondrosarcoma cells independent of P-glycoprotein. Based on the results, a new siRNA-based therapeutic strategy targeting antiapoptotic genes can be designed to overcome the chemoresistance of chondrosarcomas which is often conferred by P-glycoprotein.

  2. Evidence for P-Glycoprotein Involvement in Cell Volume Regulation Using Coulter Sizing in Flow Cytometry.

    Science.gov (United States)

    Pasquier, Jennifer; Rioult, Damien; Abu-Kaoud, Nadine; Hoarau-Véchot, Jessica; Marin, Matthieu; Le Foll, Frank

    2015-06-24

    The regulation of cell volume is an essential function that is coupled to a variety of physiological processes such as receptor recycling, excitability and contraction, cell proliferation, migration, and programmed cell death. Under stress, cells undergo emergency swelling and respond to such a phenomenon with a regulatory volume decrease (RVD) where they release cellular ions, and other osmolytes as well as a concomitant loss of water. The link between P-glycoprotein, a transmembrane transporter, and cell volume regulation is controversial, and changes in cells volume are measured using microscopy or electrophysiology. For instance, by using the patch-clamp method, our team demonstrated that chloride currents activated in the RVD were more intense and rapid in a breast cancer cell line overexpressing the P-glycoprotein (P-gp). The Cell Lab Quanta SC is a flow cytometry system that simultaneously measures electronic volume, side scatter and three fluorescent colors; altogether this provides unsurpassed population resolution and accurate cell counting. Therefore, here we propose a novel method to follow cellular volume. By using the Coulter-type channel of the cytometer Cell Lab Quanta SC MPL (multi-platform loading), we demonstrated a role for the P-gp during different osmotic treatments, but also a differential activity of the P-gp through the cell cycle. Altogether, our data strongly suggests a role of P-gp in cell volume regulation.

  3. Evidence for P-Glycoprotein Involvement in Cell Volume Regulation Using Coulter Sizing in Flow Cytometry

    Directory of Open Access Journals (Sweden)

    Jennifer Pasquier

    2015-06-01

    Full Text Available The regulation of cell volume is an essential function that is coupled to a variety of physiological processes such as receptor recycling, excitability and contraction, cell proliferation, migration, and programmed cell death. Under stress, cells undergo emergency swelling and respond to such a phenomenon with a regulatory volume decrease (RVD where they release cellular ions, and other osmolytes as well as a concomitant loss of water. The link between P-glycoprotein, a transmembrane transporter, and cell volume regulation is controversial, and changes in cells volume are measured using microscopy or electrophysiology. For instance, by using the patch-clamp method, our team demonstrated that chloride currents activated in the RVD were more intense and rapid in a breast cancer cell line overexpressing the P-glycoprotein (P-gp. The Cell Lab Quanta SC is a flow cytometry system that simultaneously measures electronic volume, side scatter and three fluorescent colors; altogether this provides unsurpassed population resolution and accurate cell counting. Therefore, here we propose a novel method to follow cellular volume. By using the Coulter-type channel of the cytometer Cell Lab Quanta SC MPL (multi-platform loading, we demonstrated a role for the P-gp during different osmotic treatments, but also a differential activity of the P-gp through the cell cycle. Altogether, our data strongly suggests a role of P-gp in cell volume regulation.

  4. Metabolic labeling of Caenorhabditis elegans primary embryonic cells with azido-sugars as a tool for glycoprotein discovery.

    Directory of Open Access Journals (Sweden)

    Amanda R Burnham-Marusich

    Full Text Available Glycobiology research with Caenorhabditis elegans (C. elegans has benefitted from the numerous genetic and cell biology tools available in this system. However, the lack of a cell line and the relative inaccessibility of C. elegans somatic cells in vivo have limited the biochemical approaches available in this model. Here we report that C. elegans primary embryonic cells in culture incorporate azido-sugar analogs of N-acetylgalactosamine (GalNAc and N-acetylglucosamine (GlcNAc, and that the labeled glycoproteins can be analyzed by mass spectrometry. By using this metabolic labeling approach, we have identified a set of novel C. elegans glycoprotein candidates, which include several mitochondrially-annotated proteins. This observation was unexpected given that mitochondrial glycoproteins have only rarely been reported, and it suggests that glycosylation of mitochondrially-annotated proteins might occur more frequently than previously thought. Using independent experimental strategies, we validated a subset of our glycoprotein candidates. These include a mitochondrial, atypical glycoprotein (ATP synthase α-subunit, a predicted glycoprotein (aspartyl protease, ASP-4, and a protein family with established glycosylation in other species (actin. Additionally, we observed a glycosylated isoform of ATP synthase α-subunit in bovine heart tissue and a primate cell line (COS-7. Overall, our finding that C. elegans primary embryonic cells are amenable to metabolic labeling demonstrates that biochemical studies in C. elegans are feasible, which opens the door to labeling C. elegans cells with other radioactive or azido-substrates and should enable the identification of additional post-translationally modified targets and analysis of the genes required for their modification using C. elegans mutant libraries.

  5. Baculovirus Coinfection Strategy for Improved Galactosylation of Recombinant Glycoprotein Produced by Insect Cell Culture

    Science.gov (United States)

    Ney, Yap Wei; Rahman, Badarulhisam Abdul; Aziz, Azila Abdul

    Baculovirus Expression Vector System (BEVS) is widely used for the production of recombinant glycoproteins, but it is not ideal for pharmaceutical glycoprotein production due to incomplete glycosylation. The factors that ensure successful glycosylation are the presence of sufficient amount of glycosyltransferases, sugar nucleotides as the substrate donor and the recombinant protein as the substrate acceptor. In this study, we analyzed the galactosylation process by the introduction of ß-1,4galactosyltransferase (ß-1,4GalT) as the glycosyltransferase of interest and uridine-5`-diphosphogalactose (UDP-Gal) as the substrate donor. Recombinant human transferrin (rhTf) as a model protein was used as the substrate acceptor. Insect cell lines have been reported to produce a small amount of ß-1,4GalT and thus insufficient for effective galactosylation. In this study, we developed a method to produce galactosylated rhTf and optimized the expression of rhTf with better N-glycan quality. Recombinant ß-1,4GalT was introduced during protein expression by the coinfection of the BEVS with baculovirus carrying bovine ß-1,4GalT. To evaluate the extent of galactosylation by the coinfection strategy, a binding assay was established. In this binding assay, glycoprotein acceptor was absorbed onto ELISA plate surface. A lectin known as Ricinus communis agglutinin-I (RCA-I) labeled with peroxidase, was added and allowed to recognize Gal ß1>4GlcNAc group on the N-glycan of the glycoprotein, followed by appropriate color reaction measurements. Coexpression between rhTf and ß-1,4GalT did not show encouraging results due to the reduction of UDP-Gal upon baculovirus infection. This interesting finding suggested that the introduction of ß-1,4GalT alone was not sufficient for successful galactosylation. Alternatively, post harvest glycosylation method strategy seems to be a promising technique in the improvement of glycoprotein quality.

  6. Tomato spotted wilt virus glycoproteins exhibit trafficking and localization signals that are functional in mammalian cells

    NARCIS (Netherlands)

    Kikkert, M.; Verschoor, A.; Kormelink, R.; Rottier, P.; Goldbach, R.

    2001-01-01

    The glycoprotein precursor (G1/G2) gene of tomato spotted wilt virus (TSWV) was expressed in BHK cells using the Semliki Forest virus expression system. The results reveal that in this cell system, the precursor is efficiently cleaved and the resulting G1 and G2 glycoproteins are transported from th

  7. Laurus nobilis L. Seed Extract Reveals Collateral Sensitivity in Multidrug-Resistant P-Glycoprotein-Expressing Tumor Cells.

    Science.gov (United States)

    Saab, Antoine M; Guerrini, Alessandra; Zeino, Maen; Wiench, Benjamin; Rossi, Damiano; Gambari, Roberto; Sacchetti, Gianni; Greten, Henry Johannes; Efferth, Thomas

    2015-01-01

    The frequent failure of standard cancer chemotherapy requires the development of novel drugs capable of killing otherwise drug-resistant tumors. Here, we have investigated a chloroform extract of Laurus nobilis seeds. Fatty acids and 23 constituents of the volatile fraction were identified by gas chromotography/flame ionization detection (GC/FID) and gas chromatography/mass spectrometry (GC/MS), in good agreement with (1)H NMR (nuclear magnetic resonance) spectrum. Multidrug-resistant P-glycoprotein-expressing CEM/ADR5000 leukemia cells were hypersensitive (collaterally sensitive) toward this extract compared to drug-sensitive CCRF-CEM cells, whereas CEM/ADR5000 cells were 2586-fold resistant to doxorubicin as control drug. Collateral sensitivity was verified by measurement of apoptotic cells by flow cytometry. The log10IC50 values of 3 compounds in the extract (limonene, eucalyptol, oleic acid) did not correlate with mRNA expression of the P-glycoprotein-coding ABCB1/MDR1 gene and accumulation of the P-glycoprotein substrate rhodamine in the NCI panel of tumor cell lines. A microarray-based profile of 20 genes predicted resistance to doxorubicin and 7 other anticancer drugs involved in the multidrug resistance phenotype but not to limonene, eucalyptol and oleic acid. In conclusion, our results show that Laurus nobilis seed extract is suitable to kill multidrug-resistant P-glycoprotein expressing tumor cells.

  8. DUSP1 induces paclitaxel resistance through the regulation of p-glycoprotein expression in human ovarian cancer cells.

    Science.gov (United States)

    Kang, Yu-Seon; Seok, Hyun-Jeong; Jeong, Eun-Jeong; Kim, Yuna; Yun, Seok-Joong; Min, Jeong-Ki; Kim, Sun Jin; Kim, Jang-Seong

    2016-09-01

    The heterogeneity and genetic instability of ovarian cancer cells often lead to the development of drug resistance, closely related with the increased cancer-related mortality. In this study, we investigated the role of dual-specificity phosphatase 1 (DUSP1) in the development of the resistance in human ovarian cancer cells against paclitaxel. Overexpression of DUSP1 in HeyA8 human ovarian cancer cells (HeyA8-DUSP1) up-regulated the expression of the drug efflux pump, p-glycoprotein. Consequently, HeyA8-DUSP1 cells are highly resistant to paclitaxel, with the resistance comparable to that of a multi-drug resistance cell line (HeyA8-MDR). Moreover, over expression of DUSP1 significantly increased the activation of p38 MAPK, leaving the activation of ERK1/2 and JNK1/2 unaffected. Pharmacological suppression of p38 MAPK activity prevents the up-regulation of p-glycoprotein expression and the consequent resistance against paclitaxel in HeyA8-DUSP1 cells. By contrast, HeyA8-MDR cells expressed a significantly higher level of DUSP1, but treatment with small interference RNA against DUSP1 significantly suppressed the expression of p-glycoprotein and the resistance against paclitaxel in HeyA8-MDR cells. Ectopic expression of MKK3, an upstream activator of p38 MAPK, significantly up-regulated the expression of p-glycoprotein and increased the consequent resistance against paclitaxel in HeyA8 cells. Collectively, these data indicated that DUSP1 may induce the resistance against paclitaxel through the p38 MAPK-mediated overexpression of p-glycoprotein in human ovarian cancer cells.

  9. DUSP1 induces paclitaxel resistance through the regulation of p-glycoprotein expression in human ovarian cancer cells.

    Science.gov (United States)

    Kang, Yu-Seon; Seok, Hyun-Jeong; Jeong, Eun-Jeong; Kim, Yuna; Yun, Seok-Joong; Min, Jeong-Ki; Kim, Sun Jin; Kim, Jang-Seong

    2016-09-01

    The heterogeneity and genetic instability of ovarian cancer cells often lead to the development of drug resistance, closely related with the increased cancer-related mortality. In this study, we investigated the role of dual-specificity phosphatase 1 (DUSP1) in the development of the resistance in human ovarian cancer cells against paclitaxel. Overexpression of DUSP1 in HeyA8 human ovarian cancer cells (HeyA8-DUSP1) up-regulated the expression of the drug efflux pump, p-glycoprotein. Consequently, HeyA8-DUSP1 cells are highly resistant to paclitaxel, with the resistance comparable to that of a multi-drug resistance cell line (HeyA8-MDR). Moreover, over expression of DUSP1 significantly increased the activation of p38 MAPK, leaving the activation of ERK1/2 and JNK1/2 unaffected. Pharmacological suppression of p38 MAPK activity prevents the up-regulation of p-glycoprotein expression and the consequent resistance against paclitaxel in HeyA8-DUSP1 cells. By contrast, HeyA8-MDR cells expressed a significantly higher level of DUSP1, but treatment with small interference RNA against DUSP1 significantly suppressed the expression of p-glycoprotein and the resistance against paclitaxel in HeyA8-MDR cells. Ectopic expression of MKK3, an upstream activator of p38 MAPK, significantly up-regulated the expression of p-glycoprotein and increased the consequent resistance against paclitaxel in HeyA8 cells. Collectively, these data indicated that DUSP1 may induce the resistance against paclitaxel through the p38 MAPK-mediated overexpression of p-glycoprotein in human ovarian cancer cells. PMID:27422607

  10. Glycoproteins of coated pits, cell junctions, and the entire cell surface revealed by monoclonal antibodies and immunoelectron microscopy

    OpenAIRE

    1983-01-01

    Topographical descriptions of three major plasma membrane glycoproteins of murine 3T3 cells were obtained by immunoelectron microscopy with monoclonal antibodies. A glycoprotein of Mr 80,000 was distributed throughout the total cell surface. A second of Mr 90,000 was concentrated in coated pits, and a third of Mr 100,000 was localized at cell junctions.

  11. Integrated Proteomic and Glycoproteomic Analyses of Prostate Cancer Cells Reveal Glycoprotein Alteration in Protein Abundance and Glycosylation.

    Science.gov (United States)

    Shah, Punit; Wang, Xiangchun; Yang, Weiming; Toghi Eshghi, Shadi; Sun, Shisheng; Hoti, Naseruddin; Chen, Lijun; Yang, Shuang; Pasay, Jered; Rubin, Abby; Zhang, Hui

    2015-10-01

    Prostate cancer is the most common cancer among men in the U.S. and worldwide, and androgen-deprivation therapy remains the principal treatment for patients. Although a majority of patients initially respond to androgen-deprivation therapy, most will eventually develop castration resistance. An increased understanding of the mechanisms that underline the pathogenesis of castration resistance is therefore needed to develop novel therapeutics. LNCaP and PC3 prostate cancer cell lines are models for androgen-dependence and androgen-independence, respectively. Herein, we report the comparative analysis of these two prostate cancer cell lines using integrated global proteomics and glycoproteomics. Global proteome profiling of the cell lines using isobaric tags for relative and absolute quantitation (iTRAQ) labeling and two- dimensional (2D) liquid chromatography-tandem MS (LC-MS/MS) led to the quantification of 8063 proteins. To analyze the glycoproteins, glycosite-containing peptides were isolated from the same iTRAQ-labeled peptides from the cell lines using solid phase extraction followed by LC-MS/MS analysis. Among the 1810 unique N-linked glycosite-containing peptides from 653 identified N-glycoproteins, 176 glycoproteins were observed to be different between the two cell lines. A majority of the altered glycoproteins were also observed with changes in their global protein expression levels. However, alterations in 21 differentially expressed glycoproteins showed no change at the protein abundance level, indicating that the glycosylation site occupancy was different between the two cell lines. To determine the glycosylation heterogeneity at specific glycosylation sites, we further identified and quantified 1145 N-linked glycopeptides with attached glycans in the same iTRAQ-labeled samples. These intact glycopeptides contained 67 glycan compositions and showed increased fucosylation in PC3 cells in several of the examined glycosylation sites. The increase in

  12. Evaluation of the expression of P-glycoprotein in propoxur-resistant Caco-2 cells.

    Directory of Open Access Journals (Sweden)

    Shabnam Yazdian

    2014-10-01

    Full Text Available There is a great concern about the effect of propoxur, as one of the more common N-methyl carbamate pesticides, on human health due to its extensive use in agricultural and non-agricultural applications. Caco-2 cells became resistant to propoxur, and the resistance was confirmed through MTT assay. Then the cell membrane integrity and P-glycoprotein expression were measured by LDH assay and western blot analysis, respectively and compared to the parent cells.  Contrary to what was expected, the expression of P-glycoprotein in propoxur resistant cells was lower than parent cells.This study indicates that the resistance to propoxur may not be related to P-glycoprotein expression directly, since P-glycoprotein expression has decreased in these cells.

  13. Genetic transfer of non-P-glycoprotein-mediated multidrug resistance (MDR) in somatic cell fusion : Dissection of a compound MDR phenotype

    NARCIS (Netherlands)

    EIJDEMS, EWHM; BORST, P; JONGSMA, APM; de Jong, Steven; DEVRIES, EGE; VANGROENIGEN, M; VERSANTVOORT, CHM; NIEUWINT, AWM; BAAS, F

    1992-01-01

    A non-P-glycoprotein-mediated mechanism of multidrug resistance (non-Pgp MDR) bas been identified in doxorubicin-selected sublines of the human non-small cell lung carcinoma cell lines SW-1573. These sublines are cross-resistant to daunorubicin, VP16-213, Vinca alkaloids, colchicine, gramicidin D, a

  14. Secretion of N- and O-linked Glycoproteins from 4T1 Murine Mammary Carcinoma Cells.

    Science.gov (United States)

    Phang, Wai-Mei; Tan, Aik-Aun; Gopinath, Subash C B; Hashim, Onn H; Kiew, Lik Voon; Chen, Yeng

    2016-01-01

    Breast cancer is one of the most common cancers that affect women globally and accounts for ~23% of all cancers diagnosed in women. Breast cancer is also one of the leading causes of death primarily due to late stage diagnoses and a lack of effective treatments. Therefore, discovering protein expression biomarkers is mandatory for early detection and thus, critical for successful therapy. Two-dimensional electrophoresis (2D-E) coupled with lectin-based analysis followed by mass spectrometry were applied to identify potential biomarkers in the secretions of a murine mammary carcinoma cell line. Comparisons of the protein profiles of the murine 4T1 mammary carcinoma cell line and a normal murine MM3MG mammary cell line indicated that cadherin-1 (CDH), collagenase 3 (MMP-13), Viral envelope protein G7e (VEP), Gag protein (GAG) and Hypothetical protein LOC433182 (LOC) were uniquely expressed by the 4T1 cells, and pigment epithelium-derived factor (PEDF) was exclusively secreted by the MM3MG cells. Further analysis by a lectin-based study revealed that aberrant O-glycosylated CDH, N-glycosylated MMP-13 and LOC were present in the 4T1 medium. These differentially expressed N- and O-linked glycoprotein candidates, which were identified by combining lectin-based analysis with 2D-E, could serve as potential diagnostic and prognostic markers for breast cancer. PMID:27226773

  15. Thyroid Hormone and P-Glycoprotein in Tumor Cells

    Directory of Open Access Journals (Sweden)

    Paul J. Davis

    2015-01-01

    Full Text Available P-glycoprotein (P-gp; multidrug resistance pump 1, MDR1; ABCB1 is a plasma membrane efflux pump that when activated in cancer cells exports chemotherapeutic agents. Transcription of the P-gp gene (MDR1 and activity of the P-gp protein are known to be affected by thyroid hormone. A cell surface receptor for thyroid hormone on integrin αvβ3 also binds tetraiodothyroacetic acid (tetrac, a derivative of L-thyroxine (T4 that blocks nongenomic actions of T4 and of 3,5,3′-triiodo-L-thyronine (T3 at αvβ3. Covalently bound to a nanoparticle, tetrac as nanotetrac acts at the integrin to increase intracellular residence time of chemotherapeutic agents such as doxorubicin and etoposide that are substrates of P-gp. This action chemosensitizes cancer cells. In this review, we examine possible molecular mechanisms for the inhibitory effect of nanotetrac on P-gp activity. Mechanisms for consideration include cancer cell acidification via action of tetrac/nanotetrac on the Na+/H+ exchanger (NHE1 and hormone analogue effects on calmodulin-dependent processes and on interactions of P-gp with epidermal growth factor (EGF and osteopontin (OPN, apparently via αvβ3. Intracellular acidification and decreased H+ efflux induced by tetrac/nanotetrac via NHE1 is the most attractive explanation for the actions on P-gp and consequent increase in cancer cell retention of chemotherapeutic agent-ligands of MDR1 protein.

  16. A 220-kilodalton glycoprotein in yeast extract inhibits Staphylococcus aureus adherence to human endothelial cells.

    OpenAIRE

    Elliott, D.A.; Hatcher, V B; Lowy, F D

    1991-01-01

    A 220-kDa glycoprotein from yeast extract causes a twofold decrease in S. aureus adherence to human endothelial cells in vitro. Medium constituents can have a significant effect on bacterial adherence interactions.

  17. Spontaneous canine transmissible venereal tumor: cell morphology and influence on P-glycoprotein expression

    OpenAIRE

    GASPAR, Luis Fernando Jantzen; FERREIRA, Isabelle; COLODEL, Marcia MOLETA

    2010-01-01

    The present study aimed to determine P-glycoprotein expression according to TVT cell morphology in 42 dogs with confirmed TVT, classified into lymphocytoid, plasmocytoid, and mixed. The chemotherapy efficiency was investigated along with its relation to P-glycoprotein expression in tumoral cells, evaluated by immunocytochemistry, considering positive tumors more than 10% stained. Among the samples collected, 50.00% possessed plasmocytoid morphology, 18.63% lymphocytoid, and 31.37% mixed. The ...

  18. Cell surface localization and tissue distribution of a hepatocyte cell-cell adhesion glycoprotein (cell-CAM 105)

    OpenAIRE

    Ocklind, C; Forsum, U; Obrink, B

    1983-01-01

    We recently identified a 105,000-dalton plasma membrane glycoprotein, denoted cell-CAM 105 (CAM, cell adhesion molecule), that is involved in intercellular adhesion of reaggregating rat hepatocytes (Ocklind, C., and B. Obrink, 1982, J. Biol. Chem., 257:6788-6795). In this communication we used a monospecific rabbit antiserum against cell-CAM 105 to localize the antigen by indirect immunofluorescence on isolated rat cells and on frozen rat tissue sections. This antiserum stained the surface of...

  19. Overexpression of P-glycoprotein induces acquired resistance to imatinib in chronic myelogenous leukemia cells

    Institute of Scientific and Technical Information of China (English)

    Xing-Xiang Peng; Amit K. Tiwari; Hsiang-Chun Wu; Zhe-Sheng Chen

    2012-01-01

    Imatinib,a breakpoint cluster region (BCR)-Abelson murine leukemia (ABL) tyrosine kinase inhibitor (TKI),has revolutionized the treatment of chronic myelogenous leukemia (CML).However,development of multidrug resistance(MDR) limits the use of imatinib.In the present study,we aimed to investigate the mechanisms of cellular resistance to imatinib in CML.Therefore,we established an imatinib-resistant human CML cell line (K562-imatinib) through a stepwise selection process.While characterizing the phenotype of these cells,we found that K562-imatinib cells were 124.6-fold more resistant to imatinib than parental K562 cells.In addition,these cells were cross-resistant to second- and third-generation BCR-ABL TKIs.Western blot analysis and reverse transcription-polymerase chain reaction(RT-PCR) demonstrated that P-glycoprotein (P-gp) and MDR1 mRNA levels were increased in K562-imatinib cells.In addition,accumulation of [14C]6-mercaptopurine (6-MP) was decreased,whereas the ATP-dependent efflux of [14C] 6-MP and [3H]methotrexate transport were increased in K562-imatinib cells.These data suggest that the overexpression of P-gp may play a crucial role in acquired resistance to imatinib in CML K562-imatinib cells.

  20. The putative P-gp inhibitor telmisartan does not affect the transcellular permeability and cellular uptake of the calcium channel antagonist verapamil in the P-glycoprotein expressing cell line MDCK II MDR1

    DEFF Research Database (Denmark)

    Saaby, Lasse; Tfelt-Hansen, Peer; Brodin, Birger

    2015-01-01

    Verapamil is used in high doses for the treatment of cluster headache. Verapamil has been described as a P-glycoprotein (P-gp, ABCB1) substrate. We wished to evaluate in vitro whether co administration of a P-gp inhibitor with verapamil could be a feasible strategy for increasing CNS uptake...... of verapamil. Fluxes of radiolabelled verapamil across MDCK II MDR1 monolayers were measured in the absence and presence of the putative P-gp inhibitor telmisartan (a clinically approved drug compound). Verapamil displayed a vectorial basolateral-to-apical transepithelial efflux across the MDCK II MDR1...... monolayers with a permeability of 5.7 × 10−5 cm sec−1 compared to an apical to basolateral permeability of 1.3 × 10−5 cm sec-1. The efflux could be inhibited with the P-gp inhibitor zosuquidar. Zosuquidar (0.4 μmol/L) reduced the efflux ratio (PB-A/PA-B) for verapamil 4.6–1.6. The presence of telmisartan...

  1. Interactions of bovine viral diarrhoea virus glycoprotein E(rns) with cell surface glycosaminoglycans.

    Science.gov (United States)

    Iqbal, M; Flick-Smith, H; McCauley, J W

    2000-02-01

    Recombinant E(rns) glycoprotein of bovine viral diarrhoea virus (BVDV) has been tagged with a marker epitope or linked to an immunoglobulin Fc tail and expressed in insect and mammalian cell lines. The product was shown to be functional, both having ribonuclease activity and binding to a variety of cells that were permissive and non-permissive for replication of BVDV. Addition of soluble E(rns) to the medium blocked replication of BVDV in permissive cells. Binding of epitope-tagged E(rns) to permissive calf testes (CTe) cells was abolished and virus infection was reduced when cells were treated with heparinases I or III. E(rns) failed to bind to mutant Chinese hamster ovary (CHO) cells that lacked glycosaminoglycans (pgsA-745 cells) or heparan sulphate (pgsD-677 cells) but bound to normal CHO cells. E(rns) also bound to heparin immobilized on agarose and could be eluted by heparin and by a high concentration of salt. Flow cytometric analysis of E(rns) binding to CTe cell cultures showed that glycosaminoglycans such as heparin, fucoidan and dermatan sulphate all inhibit binding but dextran sulphate, keratan sulphate, chondroitin sulphate and mannan fail to inhibit binding. The low molecular mass polysulphonated inhibitor suramin also inhibited binding to CTe cells but poly-L-lysine did not. Furthermore, suramin, the suramin analogue CPD14, fucoidan and pentosan polysulphate inhibited the infectivity of virus. It is proposed that binding of E(rns) to cells is through an interaction with glycosaminoglycans and that BVDV may bind to cells initially through this interaction. PMID:10644844

  2. Radiosensitivity of mesothelioma cell lines

    International Nuclear Information System (INIS)

    The present study was carried out in order to examine the radiosensitivity of malignant pleural mesothelioma cell lines. Cell kinetics, radiation-induced delay of the cell cycle and DNA ploidy of the cell lines were also determined. For comparison an HeLa and a human foetal fibroblast cell line were simultaneously explored. Six previously cytogenetically and histologically characterized mesothelioma tumor cell lines were applied. A rapid tiazolyl blue microtiter (MTT) assay was used to analyze radiosensitivity and cell kinetics and DNA ploidy of the cultured cells were determined by flow cytometry. The survival fraction after a dose of 2 Gy (SF2), parameters α and β of the linear quadratic model (LQ-model) and mean inactivation dose (DMID) were also estimated. The DNA index of four cell lines equaled 1.0 and two cell lines equaled 1.5 and 1.6. Different mesothelioma cell lines showed a great variation in radiosensitivity. Mean survival fraction after a radiation dose of 2 Gy (SF2) was 0.60 and ranged from 0.36 to 0.81 and mean α value was 0.26 (range 0.48-0.083). The SF2 of the most sensitive diploid mesothelioma cell line was 0.36: Less than that of the foetal fibroblast cell line (0.49). The survival fractions (0.81 and 0.74) of the two most resistant cell lines, which also were aneuploid, were equal to that of the HeLa cell line (0.78). The α/β ratios of the most sensitive cell lines were almost an order of magnitude greater than those of the two most resistant cell lines. Radiation-induced delay of the most resistant aneuploid cell line was similar to that of HeLa cells but in the most sensitive (diploid cells) there was practically no entry into the G1 phase following the 2 Gy radiation dose during 36 h. (orig.)

  3. Altered intracellular pH regulation in cells with high levels of P-glycoprotein expression.

    Science.gov (United States)

    Young, Gregory; Reuss, Luis; Altenberg, Guillermo A

    2011-01-01

    P-glycoprotein is an ATP-binding-cassette transporter that pumps many structurally unrelated drugs out of cells through an ATP-dependent mechanism. As a result, multidrug-resistant cells that overexpress P-glycoprotein have reduced intracellular steady-state levels of a variety of chemotherapeutic agents. In addition, increased cytosolic pH has been a frequent finding in multidrug-resistant cells that express P-glycoprotein, and it has been proposed that this consequence of P-glycoprotein expression may contribute to the lower intracellular levels of chemotherapeutic agents. In these studies, we measured intracellular pH and the rate of acid extrusion in response to an acid load in two cells with very different levels of P-glycoprotein expression: V79 parental cells and LZ-8 multidrug resistant cells. Compared to the wild-type V79 cells, LZ-8 cells have a lower intracellular pH and a slower recovery of intracellular pH after an acid load. The data also show that LZ-8 cells have reduced ability to extrude acid, probably due to a decrease in Na(+)/H(+) exchanger activity. The alterations in intracellular pH and acid extrusion in LZ-8 cells are reversed by 24-h exposure to the multidrug-resistance modulator verapamil. The lower intracellular pH in LZ-8 indicates that intracellular alkalinization is not necessary for multidrug resistance. The reversal by verapamil of the decreased acid-extrusion suggests that P-glycoprotein can affect other membrane transport mechanism. PMID:22003434

  4. Phosphatidylinositol-anchored glycoproteins of PC12 pheochromocytoma cells and brain

    International Nuclear Information System (INIS)

    PC12 pheochromocytoma cells and cultures of early postnatal rat cerebellium were labeled with [3H]glucosamine, [3H]fucose, [3H]leucine, [3H]ethanolamine, or sodium [35S]sulfate and treated with a phosphatidylinositol-specific phospholipase C. Enzyme treatment of [3H] glucosamine- or [3H]fucose-labeled PC12 cells led to a 15-fold increase in released glycoproteins. On sodium dodecyl sulfate-polyacrylamide gel ectrophoresis, most of the released material migrated as a broad band with an apparent molecular size of 32,000 daltons (Da), which was specifically immunoprecipitated by a monoclonal antibody to the Thy-l glycoprotein. A second glycoprotein, with an apparent molecular size of 158,000 Da, was also released. After treatment with endo-β-galactosidase, 40-45% of the [3H]glucosamine of [3H]fucose radioactivity in the phospholipase-released glycoproteins was converted to products of disaccharide size, and the molecular size of the 158-kDa glycoprotein decreased to 145 kDa, demonstrating that it contains fucosylated poly-(N-acetyllactosaminyl) oligosaccharides. The phospholipase also released labeled Thy-1 and the 158-kDa glycoprotein from PC12 cells cultured in the presence of [3H]ethanolamine, which specifically labels this component of the phosphatidylinositol membrane-anchoring sequence,while in the lipid-free protein residue of cells not treated with phospholipase, Thy-1 and a doublet at 46/48 kDa were the only labeled proteins. Sulfated glycoproteins of 155, 132/134, 61, and 21 kDa are the predominant species released by phospholipase, which does not affect a major 44-kDa protein seen in [3H]ethanolamine-labeled brain cultures. The 44-48- and 155/158-kDa proteins may be common to both PC12 cells and brain

  5. CLO : The cell line ontology

    NARCIS (Netherlands)

    Sarntivijai, Sirarat; Lin, Yu; Xiang, Zuoshuang; Meehan, Terrence F.; Diehl, Alexander D.; Vempati, Uma D.; Schuerer, Stephan C.; Pang, Chao; Malone, James; Parkinson, Helen; Liu, Yue; Takatsuki, Terue; Saijo, Kaoru; Masuya, Hiroshi; Nakamura, Yukio; Brush, Matthew H.; Haendel, Melissa A.; Zheng, Jie; Stoeckert, Christian J.; Peters, Bjoern; Mungall, Christopher J.; Carey, Thomas E.; States, David J.; Athey, Brian D.; He, Yongqun

    2014-01-01

    Background: Cell lines have been widely used in biomedical research. The community-based Cell Line Ontology (CLO) is a member of the OBO Foundry library that covers the domain of cell lines. Since its publication two years ago, significant updates have been made, including new groups joining the CLO

  6. Involvement of cell surface phosphatidylinositol-anchored glycoproteins in cell-cell adhesion of chick embryo myoblasts

    OpenAIRE

    1989-01-01

    During myogenesis myoblasts fuse to form multinucleate cells that express muscle-specific proteins. A specific cell-cell adhesion process precedes lipid bilayer union during myoblast fusion (Knudsen, K. A., and A. F. Horwitz. 1977. Dev. Biol. 58:328-338) and is mediated by cell surface glycoproteins (Knudsen, K. A., 1985. J. Cell Biol. 101:891- 897). In this paper we show that myoblast adhesion and myotube formation are inhibited by treating fusion-competent myoblasts with phosphatidylinosito...

  7. Expression of bovine herpesvirus 1 glycoproteins gI and gIII in transfected murine cells

    International Nuclear Information System (INIS)

    Genes encoding two of the major glycoproteins of bovine herpesvirus 1 (BHV-1), gI and gIII, were cloned into the eucaryotic expression vectors pRSVcat and pSV2neo and transfected into murine LMTK- cells, and cloned cell lines were established. The relative amounts of gI or gIII expressed from the two vectors were similar. Expression of gI was cell associated and localized predominantly in the perinuclear region, but nuclear and plasma membrane staining was also observed. Expression of gI was additionally associated with cell fusion and the formation of polykaryons and giant cells. Expression of gIII was localized predominantly in the nuclear and plasma membranes. Radioimmunoprecipitation in the presence or absence of tunicamycin revealed that the recombinant glycoproteins were proteolytically processed and glycosylated and had molecular weights similar to those of the forms of gI and gIII expressed in BHV-1 infected bovine cells. However, both recombinant glycoproteins were glycosylated to a lesser extent than were the forms found in BHV-1 infected bovine cells. For gI, a deficiency in N-linked glycosylated of the amino-terminal half of the protein was identified; for gIII, a deficiency in O-linked glycosylation was implicated. The reactivity pattern of a panel of gI- and gIII-specific monoclonal antibodies, including six which recognize conformation-dependent epitopes, was found to be unaffected by the glycosylation differences and was identical for transfected of BHV-1-infected murine cells. Use of the transfected cells as targets in immune-mediated cytotoxicity assays demonstrated the functional recognition of recombinant gI and gIII by murine antibody and cytotoxic T lymphocytes

  8. Interaction of herpes simplex virus glycoprotein gC with mammalian cell surface molecules.

    OpenAIRE

    Tal-Singer, R; Peng, C.; Ponce de Leon, M; Abrams, W R; Banfield, B W; Tufaro, F; Cohen, G H; Eisenberg, R J

    1995-01-01

    The entry of herpes simplex virus (HSV) into mammalian cells is a multistep process beginning with an attachment step involving glycoproteins gC and gB. A second step requires the interaction of glycoprotein gD with a cell surface molecule. We explored the interaction between gC and the cell surface by using purified proteins in the absence of detergent. Truncated forms of gC and gD, gC1(457t), gC2(426t), and gD1(306t), lacking the transmembrane and carboxyl regions were expressed in the bacu...

  9. Effect of the ionophore monensin on herpes simplex virus type 1-induced cell fusion, glycoprotein synthesis, and virion infectivity.

    Science.gov (United States)

    Kousoulas, K G; Bzik, D J; Person, S

    1983-01-01

    The ionophore monensin inhibited the formation of mature, fully glycosylated glycoproteins gB, gC, and gD during herpes simplex virus type 1 infection of human embryonic lung cells. Underglycosylated forms, including the apparent high-mannose precursor forms of the major glycoproteins, appeared. Monensin inhibited virus-induced cell fusion. Infectious virions produced in the presence of monensin appeared to contain predominantly underglycosylated glycoproteins. PMID:6307921

  10. Effect of PSC 833, a potent inhibitor of P-glycoprotein, on the growth of astrocytoma cells in vitro.

    Science.gov (United States)

    Sadanand, V; Kankesan, J; Yusuf, A; Stewart, C; Rutka, J T; Thiessen, J J; Ling, V; Rao, P M; Rajalakshmi, S; Sarma, D S R

    2003-07-30

    Malignant astrocytomas have been found to express P-glycoprotein (Pgp, mdr1 gene product). It was hypothesized that in addition to conferring multidrug resistance, Pgp is intimately associated with the development of astrocytomas. Accordingly, we studied the effect of PSC 833 (PSC, Novartis), a potent inhibitor of Pgp, on the growth of Pgp-expressing astrocytoma cells. The results showed that in all the cell lines tested, PSC (10-60 microM) inhibited the growth as well as induced cell death. Cells exposed to PSC exhibited DNA ladder characteristic of apoptosis. PSC-induced cell death could be reversed by Z-VAD-fmk, a general caspase inhibitor, indicating that PSC-induced cell death was characteristic of caspase-mediated apoptosis. These results suggest a novel therapeutic strategy in the treatment of malignant astrocytomas by inhibitors of Pgp.

  11. Cell-surface expression of a mutated Epstein–Barr virus glycoprotein B allows fusion independent of other viral proteins

    OpenAIRE

    McShane, Marisa P.; Longnecker, Richard

    2004-01-01

    Epstein–Barr virus (EBV) infects human B lymphocytes and epithelial cells. We have compared the requirements for EBV glycoprotein-induced cell fusion between Chinese hamster ovary effecter cells and human B lymphoblasts or epithelial cells by using a virus-free cell fusion assay. EBV-encoded gB, gH, gL, and gp42 glycoproteins were required for efficient B cell fusion, whereas EBV gB, gH, and gL glycoproteins were required for Chinese hamster ovary effecter cell fusion with epithelial cell lin...

  12. Temozolomide competes for P-glycoprotein and contributes to chemoresistance in glioblastoma cells.

    Science.gov (United States)

    Munoz, Jessian L; Walker, Nykia D; Scotto, Kathleen W; Rameshwar, Pranela

    2015-10-10

    Chemotherapeutic resistance can occur by P-glycoprotein (P-gp), a 12-transmembrane ATP-dependent drug efflux pump. Glioblastoma (GBM) has poor survival rate and uniformly acquired chemoresistance to its frontline agent, Temozolomide (TMZ). Despite much effort, overcoming TMZ resistance remains a challenge. We reported on autonomous induction of TMZ resistance by increased transcription MDR1, the gene for P-gp. This study investigated how P-gp and TMZ interact to gain resistance. Using an experimental model of Adriamycin-resistant DC3F cells (DC3F/Adx), we showed that increased P-gp caused TMZ resistance. Increasing concentrations of TMZ competed with Calcein for P-gp, resulting in reduced efflux in the DC3F/Adx cells. Three different inhibitors of P-gp reversed the resistance to TMZ in two different GBM cell lines, by increasing active Caspase 3. Molecular modeling predicted the binding sites to be the intracellular region of P-gp and also identified specific amino acids and kinetics of energy for the efflux of TMZ. Taken together, we confirmed P-gp targeting of TMZ, a crucial regulator of TMZ resistance in GBM. This study provides insights on the effectiveness by which TMZ competes with other P-gp substrates, thereby opening the door for combined targeted therapies.

  13. Toll-like receptor 4 promotes macrophage foam cell formation induced by oxidized low-density/β2-glycoprotein I/β2-glycoprotein I antibodies complex

    Institute of Scientific and Technical Information of China (English)

    张晓蕾

    2014-01-01

    Objective To explore the role of toll-like receptor 4(TLR4)on oxidized low-density/β2-glycoprotein I/β2-glycoprotein I(ox-LDL/β2GPI/anti-β2GPI)antibodies complex induced macrophage foam cell formation.Methods The peritoneal macrophages were separated from TLR4 intact C3H/HeN mice and TLR4 defective C3H/HeJ mice.The cells were treated with ox-LDL,ox-LDL/

  14. Selection of mutant Chinese hamster ovary cells altered glycoproteins by means of tritiated fucose suicide.

    OpenAIRE

    Hirschberg, C B; Baker, R.M.; Perez, M.; Spencer, L A; Watson, D

    1981-01-01

    Mutant Chinese hamster ovary cells altered in glycoproteins have been isolated by selecting for ability to survive exposure to [6-3H]fucose. Mutagenized wild-type cells were permitted to incorporate [3H]fucose to approximately 1 cpm of trichloroacetic acid-insoluble radioactivity per cell and then frozen for several days to accumulate radiation damage. The overall viability of the population was reduced by 5- to 50-fold. Four consecutive selection cycles were carried out. The surviving cells ...

  15. Pluripotent stem cell lines

    OpenAIRE

    Yu, Junying; Thomson, James A.

    2008-01-01

    The derivation of human embryonic stem cells 10 years ago ignited an explosion of public interest in stem cells, yet this achievement depended on prior decades of research on mouse embryonic carcinoma cells and embryonic stem cells. In turn, the recent derivation of mouse and human induced pluripotent stem cells depended on the prior studies on mouse and human embryonic stem cells. Both human embryonic stem cells and induced pluripotent stem cells can self-renew indefinitely in vitro while ma...

  16. Sialic Acids on Varicella-Zoster Virus Glycoprotein B Are Required for Cell-Cell Fusion.

    Science.gov (United States)

    Suenaga, Tadahiro; Matsumoto, Maki; Arisawa, Fuminori; Kohyama, Masako; Hirayasu, Kouyuki; Mori, Yasuko; Arase, Hisashi

    2015-08-01

    Varicella-zoster virus (VZV) is a member of the human Herpesvirus family that causes varicella (chicken pox) and zoster (shingles). VZV latently infects sensory ganglia and is also responsible for encephalomyelitis. Myelin-associated glycoprotein (MAG), a member of the sialic acid (SA)-binding immunoglobulin-like lectin family, is mainly expressed in neural tissues. VZV glycoprotein B (gB) associates with MAG and mediates membrane fusion during VZV entry into host cells. The SA requirements of MAG when associating with its ligands vary depending on the specific ligand, but it is unclear whether the SAs on gB are involved in the association with MAG. In this study, we found that SAs on gB are essential for the association with MAG as well as for membrane fusion during VZV infection. MAG with a point mutation in the SA-binding site did not bind to gB and did not mediate cell-cell fusion or VZV entry. Cell-cell fusion and VZV entry mediated by the gB-MAG interaction were blocked by sialidase treatment. N-glycosylation or O-glycosylation inhibitors also inhibited the fusion and entry mediated by gB-MAG interaction. Furthermore, gB with mutations in N-glycosylation sites, i.e. asparagine residues 557 and 686, did not associate with MAG, and the cell-cell fusion efficiency was low. Fusion between the viral envelope and cellular membrane is essential for host cell entry by herpesviruses. Therefore, these results suggest that SAs on gB play important roles in MAG-mediated VZV infection. PMID:26105052

  17. Effect of carbenoxolone on the synthesis of glycoproteins and DNA in rat gastric epithelial cells.

    OpenAIRE

    van Huis, G A; Kramer, M.F.

    1981-01-01

    The influence of carbenoxolone on the synthesis of glycoproteins in the surface mucous cells and the production of new cells in the rat gastric mucosa was studied by means of a vascular perfusion system. The rate of incorporation of tritiated galactose, glucosamine, serine, and sulphate in surface mucous cells, studied by autoradiography, was not affected by the addition of carbenoxolone to the drinking water. The sugar composition (determined by gas-liquid chromatography) of the gastric glyc...

  18. P-glycoprotein regulating biphasic insulin secretion in rat pancreatic beta cells

    Institute of Scientific and Technical Information of China (English)

    TANG Yun-zhao; LI Dai-qing; SUN Fu-jun; LI Li; YU De-min

    2009-01-01

    Background A 65-kD mdr1(multi-drug resistance protein 1,P-glycoprotein)-like protein has been suggested to be the regulatory protein to the chloride channel protein 3(CIC-3)mediating insulin granules acidification and release in mouse pancreatic beta cells.But the protein has not been deeply investigated.In this study,we identified existence of the 65-kda protein in rat islets and preliminarily explored its biological functions.Methods Total RNAs of rat kidneys served as positive controls,and pancreas,islets and INS-1 cells were extracted for reverse-transcript PCR(RT-PCR),respectively.The cDNAs were run with specific primers selected from the mRNA of abcblb encoding P-glycoprotein.All PCR products were visualized in agarose gel electrophoresis and sequenced.Homogenates of rat islets and INS-1 cells were applied to SDS-PAGE.P-glycoprotein was detected by a specific monoclonal antibody,C219.Biphasic insulin release was measured in static incubations of rat islets with radioimmunology assay.Results Compared with positive control,expression of the P-glycoprotein mRNA segments were detected in the islets,INS-1 cells and pancreas.Sequence analysis confirmed that the PCR products were matched with mRNA of P-glycoprotein.A 65-kda protein was recognized by the antibody in the islets homogenate but not in that of INS-1 cells in Western-blotting.Instead,the homogenate of INS-1 cells contained a 160-kda protein recognized by the antibody.Insulin secretion of rat islets were stimulated by high glucose(16.7mmol/L),and showed biphasic curve during 60-minute incubation.After co-incubation with cyclosporine A(CsA),specific inhibitor to P-glycoprotein,the second phase of insulin secretion was reduced significantly while the first phase was not influenced.Conclusions The 65-kda protein expressed in rat islets is most likely a mini-P-glycoprotein.It may play a key role regulating biphasic insulin release.

  19. Structure of a Pestivirus Envelope Glycoprotein E2 Clarifies Its Role in Cell Entry

    Directory of Open Access Journals (Sweden)

    Kamel El Omari

    2013-01-01

    Full Text Available Enveloped viruses have developed various adroit mechanisms to invade their host cells. This process requires one or more viral envelope glycoprotein to achieve cell attachment and membrane fusion. Members of the Flaviviridae such as flaviviruses possess only one envelope glycoprotein, E, whereas pestiviruses and hepacivirus encode two glycoproteins, E1 and E2. Although E2 is involved in cell attachment, it has been unclear which protein is responsible for membrane fusion. We report the crystal structures of the homodimeric glycoprotein E2 from the pestivirus bovine viral diarrhea virus 1 (BVDV1 at both neutral and low pH. Unexpectedly, BVDV1 E2 does not have a class II fusion protein fold, and at low pH the N-terminal domain is disordered, similarly to the intermediate postfusion state of E2 from sindbis virus, an alphavirus. Our results suggest that the pestivirus and possibly the hepacivirus fusion machinery are unlike any previously observed.

  20. Intercellular transfer of P-glycoprotein in human blood-brain barrier endothelial cells is increased by histone deacetylase inhibitors.

    Science.gov (United States)

    Noack, Andreas; Noack, Sandra; Buettner, Manuela; Naim, Hassan Y; Löscher, Wolfgang

    2016-01-01

    The blood-brain barrier (BBB) controls the entry of compounds into the brain, thereby regulating brain homeostasis. Efflux transporters such as P-glycoprotein (Pgp) significantly contribute to BBB function. Multiple signaling pathways modulate the expression and activity of Pgp in response to xenobiotics and disease. A non-genetic way of intercellular transfer of Pgp occurs in cancer cells, but whether this also occurs in non-cancer cells such as endothelial cells that form the BBB is not known. A human brain endothelial cell line (hCMEC/D3) was used to study whether cell-to-cell Pgp transfer occurs during co-culturing with Pgp-EGFP expressing hCMEC/D3 cells. The Pgp-EGFP fusion protein was transferred from donor to recipient cells by cell-to-cell contact and Pgp-EGFP enriched vesicles, which were exocytosed by donor cells and endocytosed by adherent recipient cells. Flow cytometry experiments with the Pgp substrate eFLUXX-ID Gold demonstrated that the transferred Pgp is functional in the recipient cells. Exposure of the donor cells with inhibitors of histone deacetylases (HDACs) resulted in an enhanced intercellular Pgp transfer. Non-genetic transfer of a resistance phenotype and its regulation by HDACs is a novel mechanism of altering BBB functionality. This mechanism may have important implications for understanding drug-induced alterations in Pgp expression and activity. PMID:27375084

  1. P-Glycoprotein Induction Ameliorates Colistin Induced Nephrotoxicity in Cultured Human Proximal Tubular Cells.

    Directory of Open Access Journals (Sweden)

    Sun-hyo Lee

    Full Text Available The pathogenesis of colistin induced nephrotoxicity is poorly understood. Currently there are no effective therapeutic or prophylactic agents available. This study was aimed to determine the mechanism of colistin induced nephrotoxicity and to determine whether P-glycoprotein (P-gp induction could prevent colistin induced nephrotoxicity. Colistin induced cell toxicity in cultured human proximal tubular cells in both dose and time dependent manner. Colistin provoked ROS in a dose dependent manner as measured by DCF-DA. To investigate apoptosis, caspase 3/7 activity was determined. Caspase 3/7 activity was increased dose dependently (25, 50, 100 μg/ml at 6 h. Autophagosome formation was assessed by measuring LC3- II/LC3-I ratio. The ratio of LC3-II to LC3- I was increased at 2 h (25 μg/ml. Suppression of autophagosome formation increased colistin induced nephrotoxicity. The expression of P-gp and the cell toxicity was determined in colistin with or without dexamethasone (P-gp inducer and verapamil (selective P-gp inhibitor. Colistin itself suppressed the expression of P-gp. P-gp expression and activity decreased colistin induced nephrotoxicity with dexamethasone treatment. In addition induced P-gp transporter was shown to improve the efflux effect on colistin treated HK2 cell line, which was demonstrated by calcein-AM fluorescence accumulation assay. The increased activity could be blocked by N-acetylcysteine. In conclusion, colistin induces nephrotoxicity by suppressing P-gp. Induction of P-gp could ameliorate colistin induced nephrotoxicity by decreasing apoptosis.

  2. The B-cell lymphoma 2 (BCL2)-inhibitors, ABT-737 and ABT-263, are substrates for P-glycoprotein

    Energy Technology Data Exchange (ETDEWEB)

    Vogler, Meike, E-mail: mv62@le.ac.uk [MRC Toxicology Unit, University of Leicester, LE1 9HN Leicester (United Kingdom); Dickens, David, E-mail: David.Dickens@liverpool.ac.uk [Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, L69 3GL Liverpool (United Kingdom); Dyer, Martin J.S., E-mail: mjsd1@le.ac.uk [MRC Toxicology Unit, University of Leicester, LE1 9HN Leicester (United Kingdom); Owen, Andrew, E-mail: aowen@liverpool.ac.uk [Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, L69 3GL Liverpool (United Kingdom); Pirmohamed, Munir, E-mail: munirp@liv.ac.uk [Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, L69 3GL Liverpool (United Kingdom); Cohen, Gerald M., E-mail: gmc2@le.ac.uk [MRC Toxicology Unit, University of Leicester, LE1 9HN Leicester (United Kingdom)

    2011-05-06

    Highlights: {yields} The BCL2-inhibitor ABT-263 is a substrate for P-glycoprotein. {yields} Apoptosis is inhibited by P-glycoprotein expression. {yields} Overexpression of P-glycoprotein may contribute to resistance to ABT-263 or ABT-737. -- Abstract: Inhibition of BCL2 proteins is one of the most promising new approaches to targeted cancer therapy resulting in the induction of apoptosis. Amongst the most specific BCL2-inhibitors identified are ABT-737 and ABT-263. However, targeted therapy is often only effective for a limited amount of time because of the occurrence of drug resistance. In this study, the interaction of BCL2-inhibitors with the drug efflux transporter P-glycoprotein was investigated. Using {sup 3}H labelled ABT-263, we found that cells with high P-glycoprotein activity accumulated less drug. In addition, cells with increased P-glycoprotein expression were more resistant to apoptosis induced by either ABT-737 or ABT-263. Addition of tariquidar or verapamil sensitized the cells to BCL2-inhibitor treatment, resulting in higher apoptosis. Our data suggest that the BCL2-inhibitors ABT-737 and ABT-263 are substrates for P-glycoprotein. Over-expression of P-glycoprotein may be, at least partly, responsible for resistance to these BCL2-inhibitors.

  3. Impact of small molecules immunosuppressants on P-glycoprotein activity and T-cell function

    OpenAIRE

    Llaudó Vallmajor, Inés; Cassis, L.; Torras Ambròs, Joan; Bestard Matamoros, Oriol; Franquesa, M.; Cruzado, Josep Ma.; Cerezo, G.; Castaño Boldú, Esther; Pétriz, J; Herrero Fresneda, Immaculada; Grinyo Boira, Josep M.; Lloberas Blanch, Núria

    2012-01-01

    Purpose. P-glycoprotein (Pgp) is a member of the ABC-transporter family that transports substances across cellular membranes acting as an efflux pump extruding drugs out of the cells. Pgp plays a key role on the pharmacokinetics of several dr ugs. Herein, we have studied the effects of immunosuppressants on Pgp function, assessing rhodamine-123 (Rho123) uptake and efflux in different T- cell subsets. Methods. Different immunosuppressants such as Cyclosporine (CsA), Rapamycin (Rapa) and Tacrol...

  4. Transient axonal glycoprotein-1 induces apoptosis-related gene expression without triggering apoptosis in U251 glioma cells

    Institute of Scientific and Technical Information of China (English)

    Haigang Chang; Xiaodan Jiang; Shanshan Song; Zhongcan Chen; Yaxiao Wang; Lujun Yang; Mouxuan Du; Yiquan Ke; Ruxiang Xu; Baozhe Jin

    2014-01-01

    Previous studies show that transient axonal glycoprotein-1, a ligand of amyloid precursor pro-tein, increases the secretion of amyloid precursor protein intracellular domain and is involved in apoptosis in Alzheimer’s disease. In this study, we examined the effects of transient axonal glyco-protein-1 on U251 glioma cells. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay showed that transient axonal glycoprotein-1 did not inhibit the proliferation of U251 cells, but promoted cell viability. The terminal deoxynucleotidyl transferase dUTP nick end labeling assay showed that transient axonal glycoprotein-1 did not induce U251 cell apoptosis. Real-time PCR revealed that transient axonal glycoprotein-1 substantially upregulated levels of amyloid precursor protein intracellular C-terminal domain, and p53 and epidermal growth factor recep-tor mRNA expression. Thus, transient axonal glycoprotein-1 increased apoptosis-related gene expression in U251 cells without inducing apoptosis. Instead, transient axonal glycoprotein-1 promoted the proliferation of these glioma cells.

  5. 3,3′,4,4′,5-Pentachlorobiphenyl Inhibits Drug Efflux Through P-Glycoprotein in KB-3 Cells Expressing Mutant Human P-Glycoprotein

    Directory of Open Access Journals (Sweden)

    Hiroshi Fujise

    2004-01-01

    Full Text Available The effects on the drug efflux of 3,3′,4,4′,5-pentachlorobiphenyl (PCB-126, the most toxic of all coplanar polychlorinated biphenyls (Co-PCBs, were examined in KB-3 cells expressing human wild-type and mutant P-glycoprotein in which the 61st amino acid was substituted for serine or phenylalanine (KB3-Phe61. In the cells expressing P-glycoproteins, accumulations of vinblastine and colchicine decreased form 85% to 92% and from 62% to 91%, respectively, and the drug tolerances for these chemicals were increased. In KB3-Phe61, the decreases in drug accumulation were inhibited by adding PCB-126 in a way similar to that with cyclosporine A: by adding 1 μM PCB-126, the accumulations of vinblastine and colchicine increased up to 3.3- and 2.3-fold, respectively. It is suggested that PCB-126 decreased the drug efflux by inhibiting the P-glycoprotein in KB3-Phe61. Since there were various P-glycoproteins and many congeners of Co-PCBs, this inhibition has to be considered a new cause of the toxic effects of Co-PCBs.

  6. P-glycoprotein is expressed and causes resistance to chemotherapy in EBV-positive T-cell lymphoproliferative diseases.

    Science.gov (United States)

    Yoshimori, Mayumi; Takada, Honami; Imadome, Ken-Ichi; Kurata, Morito; Yamamoto, Kouhei; Koyama, Takatoshi; Shimizu, Norio; Fujiwara, Shigeyoshi; Miura, Osamu; Arai, Ayako

    2015-10-01

    Epstein-Barr virus-positive T-cell lymphoproliferative diseases (EBV-T-LPDs) are rare lymphomas with poor prognosis. Although chemotherapeutic strategies such as CHOP have been often selected, they have exhibited only limited efficacy. To clarify the mechanism of chemoresistance, we examined P-glycoprotein (P-gp) expression. P-gp acts as an energy-dependent efflux pump that excretes drugs from the cytoplasm, resulting in low-intracellular drug concentrations and poor sensitivity to chemotherapy. We examined P-gp expression in EBV-positive cells by immunohistochemistry staining in three patients of EBV-T-LPDs and the expression was detected in all patients. We also examined mdr1 mRNA expression by reverse-transcriptase polymerase-chain reaction (RT-PCR) in EBV-positive tumor cells from these patients and additional three patients. The expression was detected in all examined patients. In five EBV-T-LPDs patients, P-gp function was detected by Rhodamine-123 efflux assay in these cells. The efflux was inhibited by treatment with a P-gp inhibitor, cyclosporine A (CsA). We also examined and detected P-gp expression in EBV-positive T-cell lines SNT8 and SNT16 established from EBV-T-LPDs patients, by RT-PCR and western blotting. The function was also detected by Rhodamine-123 efflux in these cell lines. Inhibition and knock down of P-gp by CsA and siRNA, respectively, enhanced etoposide- and doxorubicin-induced cell death in the EBV-positive T-cell lines. Finally, we infected the T-cell line MOLT4 with EBV, and found that mdr1 mRNA expression and Rhodamine 123 efflux were upregulated after infection. These results indicated that enhanced P-gp expression contributed to the chemoresistance of EBV-T-LPDs.

  7. P-glycoprotein is expressed and causes resistance to chemotherapy in EBV-positive T-cell lymphoproliferative diseases

    International Nuclear Information System (INIS)

    Epstein–Barr virus-positive T-cell lymphoproliferative diseases (EBV-T-LPDs) are rare lymphomas with poor prognosis. Although chemotherapeutic strategies such as CHOP have been often selected, they have exhibited only limited efficacy. To clarify the mechanism of chemoresistance, we examined P-glycoprotein (P-gp) expression. P-gp acts as an energy-dependent efflux pump that excretes drugs from the cytoplasm, resulting in low-intracellular drug concentrations and poor sensitivity to chemotherapy. We examined P-gp expression in EBV-positive cells by immunohistochemistry staining in three patients of EBV-T-LPDs and the expression was detected in all patients. We also examined mdr1 mRNA expression by reverse-transcriptase polymerase-chain reaction (RT-PCR) in EBV-positive tumor cells from these patients and additional three patients. The expression was detected in all examined patients. In five EBV-T-LPDs patients, P-gp function was detected by Rhodamine-123 efflux assay in these cells. The efflux was inhibited by treatment with a P-gp inhibitor, cyclosporine A (CsA). We also examined and detected P-gp expression in EBV-positive T-cell lines SNT8 and SNT16 established from EBV-T-LPDs patients, by RT-PCR and western blotting. The function was also detected by Rhodamine-123 efflux in these cell lines. Inhibition and knock down of P-gp by CsA and siRNA, respectively, enhanced etoposide- and doxorubicin-induced cell death in the EBV-positive T-cell lines. Finally, we infected the T-cell line MOLT4 with EBV, and found that mdr1 mRNA expression and Rhodamine 123 efflux were upregulated after infection. These results indicated that enhanced P-gp expression contributed to the chemoresistance of EBV-T-LPDs

  8. Characterisation of non-P-glycoprotein multidrug-resistant Ehrlich ascites tumour cells selected for resistance to mitoxantrone

    DEFF Research Database (Denmark)

    Nielsen, D; Eriksen, J; Maare, C;

    2000-01-01

    showed moderate sensitisation to mitoxantrone on treatment with verapamil or cyclosporin A. Compared with EHR2, the multidrug resistance-associated protein mRNA was increased 13-fold in EHR2/MITOX. Western blot analysis showed an unchanged, weak expression of P-glycoprotein. Topoisomerase IIalpha......(i) value for P-glycoprotein-positive cells. However, whereas verapamil (50 microM) inhibited the ATPase activity of EHR2/MITOX microsomes, it stimulated the ATPase activity of microsomes derived from P-glycoprotein-positive cells. In conclusion, the resistance in EHR2/MITOX was multifactorial and appeared...

  9. Expression and Purification of E2 Glycoprotein from Insect Cells (Sf9) for Use in Serology.

    Science.gov (United States)

    Chua, Chong Long; Sam, I-Ching; Chan, Yoke Fun

    2016-01-01

    Chikungunya virus (CHIKV) is a mosquito-borne arbovirus which poses a major threat to global public health. Definitive CHIKV diagnosis is crucial, especially in distinguishing the disease from dengue virus, which co-circulates in endemic areas and shares the same mosquito vectors. Laboratory diagnosis is mainly based on serological or molecular approaches. The E2 glycoprotein is a good candidate for serological diagnosis since it is the immunodominant antigen during the course of infection, and reacts with seropositive CHIKV sera. In this chapter, we describe the generation of stable clone Sf9 (Spodoptera frugiperda) cells expressing secreted, soluble, and native recombinant CHIKV E2 glycoprotein. We use direct plasmid expression in insect cells, rather than the traditional technique of generating recombinant baculovirus. This recombinant protein is useful for serological diagnosis of CHIKV infection. PMID:27233260

  10. High-Throughput Selection of Retrovirus Producer Cell Lines Leads to Markedly Improved Efficiency of Germ Line-Transmissible Insertions in Zebra Fish

    OpenAIRE

    Chen, Wenbiao; Burgess, Shawn; Golling, Greg; Amsterdam, Adam; Hopkins, Nancy

    2002-01-01

    Vesicular stomatitis virus glycoprotein G-pseudotyped mouse retroviral vectors have been used as mutagens for a large-scale insertional mutagenesis screen in the zebra fish. To reproducibly generate high-titer virus stocks, we devised a method for rapidly selecting cell lines that can yield high-titer viruses and isolated a producer cell line that yields virus at a high titer on zebra fish embryos. Virus produced from this line, designated GT virus, is nontoxic following injection of zebra fi...

  11. SweetBac: a new approach for the production of mammalianised glycoproteins in insect cells.

    Directory of Open Access Journals (Sweden)

    Dieter Palmberger

    Full Text Available Recombinant production of therapeutically active proteins has become a central focus of contemporary life science research. These proteins are often produced in mammalian cells, in order to obtain products with post-translational modifications similar to their natural counterparts. However, in cases where a fast and flexible system for recombinant production of proteins is needed, the use of mammalian cells is limited. The baculoviral insect cell system has proven to be a powerful alternative for the expression of a wide range of recombinant proteins in short time frames. The major drawback of baculoviral systems lies in the inability to perform mammalian-like glycosylation required for the production of therapeutic glycoproteins. In this study we integrated sequences encoding Caenorhabditis elegans N-acetylglucosaminyltransferase II and bovine β1,4-galactosyltransferase I into the backbone of a baculovirus genome. The thereby generated SweetBac virus was subsequently used for the production of the human HIV anti-gp41 antibody 3D6 by integrating heavy and light chain open reading frames into the SweetBac genome. The parallel expression of target genes and glycosyltransferases reduced the yield of secreted antibody. However, the overall expression rate, especially in the recently established Tnao38 cell line, was comparable to that of transient expression in mammalian cells. In order to evaluate the ability of SweetBac to generate mammalian-like N-glycan structures on 3D6 antibody, we performed SDS-PAGE and tested for the presence of terminal galactose using Riccinus communis agglutinin I. The mammalianised variants of 3D6 showed highly specific binding to the lectin, indicating proper functionality. To confirm these results, PNGase A released N-glycans were analyzed by MALDI-TOF-MS and shown to contain structures with mainly one or two terminal galactose residues. Since the presence of specific N-glycans has an impact on antibodies ability to

  12. The effect of the state of differentiation on labeling of epidermal cell surface glycoproteins

    International Nuclear Information System (INIS)

    Epidermal cells were grown in a medium in which the Ca++ concentration controlled the stage of differentiation. Cell surface molecules of differentiated and undifferentiated cells were compared by lactoperoxidase-catalyzed iodination, by the interaction with 125I-lectins, and by the metabolic incorporation of L-(3H)-fucose. Molecular weights of the labeled components were determined by SDS-PAGE and autoradiography. After lactoperoxidase iodination, most of the radioactivity was found in polypeptide bands of 79,000, 65,000 and 56,000 daltons. The 79,000 band is the most intense for undifferentiated cells but disappears as differentiation proceeds. The 56,000 band is present in normal cells at all stages of differentiation but is absent from neoplastic cells. Glycoproteins reacted with 125I-lectins were found at 180,000, 130,000 and 85,000 daltons. The 130,000 band was the most prominent for differentiated cells labeled with wheat germ agglutinin but was essentially absent from the undifferentiated cells. With Ricinus communis agglutinin, this band was weaker for undifferentiated than for differentiated cells but was the most intense for both. After metabolic incorporation of tritiated fucose, radioactive glycoproteins were found at 130,000 and 85,000 daltons, with comparable intensities for differentiated and undifferentiated cells

  13. Cell lines and Salmonella

    NARCIS (Netherlands)

    Jonge R de; Hendriks H; Garssen J; Universteit Utrecht, afdeling; MGB; LPI

    2001-01-01

    In human gastrointestinal disease caused by Salmonella, transepithelial migration of neutrophils follows the attachment of bacteria to epithelial tissue. This migration of neutrophils is stimulated by the release of chemokines, including interleukin-8 (Il -8), from the epithelial cells. We have dev

  14. Thyroid cell lines in research on goitrogenesis.

    Science.gov (United States)

    Gerber, H; Peter, H J; Asmis, L; Studer, H

    1991-12-01

    Thyroid cell lines have contributed a lot to the understanding of goitrogenesis. The cell lines mostly used in thyroid research are briefly discussed, namely the rat thyroid cell lines FRTL and FRTL-5, the porcine thyroid cell lines PORTHOS and ARTHOS, The sheep thyroid cell lines OVNIS 5H and 6H, the cat thyroid cell lines PETCAT 1 to 4 and ROMCAT, and the human thyroid cell lines FTC-133 and HTh 74. Chinese hamster ovary (CHO) cells and COS-7 cells, stably transfected with TSH receptor cDNA and expressing a functional TSH receptor, are discussed as examples for non-thyroidal cells, transfected with thyroid genes. PMID:1726925

  15. [Hydroxyproline: Rich glycoproteins of the plant and cell wall

    Energy Technology Data Exchange (ETDEWEB)

    Varner, J.E.

    1993-01-01

    Since xylem tissue includes the main cell types which are lignified, we are interested in gene expression of glycine-rich proteins and proline-rich proteins, and other proteins which are involved in secondary cell wall thickening during xylogenesis. Since the main feature of xylogenesis is the deposition of additional wall components, study of the mechanism of xylogenesis will greatly advance our knowledge of the synthesis and assembly of wall macromolecules. We are using the in vitro xylogenesis system from isolated Zinnia mesophyll cells to isolate genes which are specifically expressed during xylogenesis. We have used subtractive hybridization methods to isolate a number of cDNA clones for differentially regulated genes from the cells after hormonal induction. So far, we have partially characterized 18 different cDNA clones from 239 positive clones. These differentially regulated genes can be divided into three sets according to the characteristics of gene expression in the induction medium and the control medium. The first set is induced in both the induction medium and the control medium without hormones. The second set is induced mainly in the induction medium and in the control medium with the addition of NAA alone. Two of thesegenes are exclusively induced by auxin. The third set of genes is induced mainly in the induction medium. Since these genes are not induced by either auxin or cytokinin alone, they may be directly involved in the process of xylogenesis. Our experiments on the localization of H[sub 2]O[sub 2] production reinforce the earlier ideas of others that H[sub 2]O[sub 2] is involved in normal lignification.

  16. Lactobacillus plantarum L67 glycoprotein protects against cadmium chloride toxicity in RAW 264.7 cells.

    Science.gov (United States)

    Song, Sooyeon; Oh, Sejong; Lim, Kye-Taek

    2016-03-01

    The food and water we consume may be contaminated with a range of chemicals and heavy metals, such as lead, cadmium, arsenic, chromium, and mercury by accumulation through the food chain. Cadmium is known to be one of the major components in cigarette smoke and can cause lesions in many organs. Some lactobacilli can bind and remove heavy metals such as cadmium, lead, and copper. However, the mechanisms of cadmium toxicity and inhibition by probiotics are not clear. In this study, we demonstrated that glycoprotein (18 kDa) isolated from Lactobacillus plantarum L67 protected RAW 264.7 cells from expression of inflammation-related factors stimulated by cadmium chloride (100 µM). Furthermore, we evaluated the cytotoxicity of cadmium using the MTT assay and intracellular Ca(2+) using fluorescence, and assessed activities of activator protein kinase C (PKC-α), inducible nitric oxide synthase, activator protein (AP)-1, and mitogen-activated protein kinases using immunoblot. Our results indicated that glycoprotein isolated from L. plantarum L67 inhibited intracellular Ca(2+) mobilization. It also significantly suppressed inflammatory factors such as AP-1 (c-Jun and c-Fos), mitogen-activated protein kinases (ERK, JNK, and p38), and inducible nitric oxide synthase. Our findings suggest that the 24-kDa glycoprotein isolated from L. plantarum L67 might be used as a food component for protection of inflammation caused by cadmium ion.

  17. Genetic analysis of the SARS-coronavirus spike glycoprotein functional domains involved in cell-surface expression and cell-to-cell fusion

    International Nuclear Information System (INIS)

    The SARS-coronavirus (SARS-CoV) is the etiological agent of severe acute respiratory syndrome (SARS). The SARS-CoV spike (S) glycoprotein mediates membrane fusion events during virus entry and virus-induced cell-to-cell fusion. To delineate functional domains of the SARS-CoV S glycoprotein, single point mutations, cluster-to-lysine and cluster-to-alanine mutations, as well as carboxyl-terminal truncations were investigated in transient expression experiments. Mutagenesis of either the coiled-coil domain of the S glycoprotein amino terminal heptad repeat, the predicted fusion peptide, or an adjacent but distinct region, severely compromised S-mediated cell-to-cell fusion, while intracellular transport and cell-surface expression were not adversely affected. Surprisingly, a carboxyl-terminal truncation of 17 amino acids substantially increased S glycoprotein-mediated cell-to-cell fusion suggesting that the terminal 17 amino acids regulated the S fusogenic properties. In contrast, truncation of 26 or 39 amino acids eliminating either one or both of the two endodomain cysteine-rich motifs, respectively, inhibited cell fusion in comparison to the wild-type S. The 17 and 26 amino-acid deletions did not adversely affect S cell-surface expression, while the 39 amino-acid truncation inhibited S cell-surface expression suggesting that the membrane proximal cysteine-rich motif plays an essential role in S cell-surface expression. Mutagenesis of the acidic amino-acid cluster in the carboxyl terminus of the S glycoprotein as well as modification of a predicted phosphorylation site within the acidic cluster revealed that this amino-acid motif may play a functional role in the retention of S at cell surfaces. This genetic analysis reveals that the SARS-CoV S glycoprotein contains extracellular domains that regulate cell fusion as well as distinct endodomains that function in intracellular transport, cell-surface expression, and cell fusion

  18. Reversal of acquired resistance to adriamycin in CHO cells by tamoxifen and 4-hydroxy tamoxifen: role of drug interaction with alpha 1 acid glycoprotein.

    OpenAIRE

    Chatterjee, M.; Harris, A. L.

    1990-01-01

    Tamoxifen and 4-OH tamoxifen were used to reverse multidrug resistance (MDR) in CHO cells with acquired resistance to adriamycin (CHO-Adrr). Because alpha 1 acid glycoprotein (AAG) can bind a range of calcium channel blockers that also reverse MDR and rises in malignancy, its interactions with tamoxifen and 4-OH tamoxifen were also studied. Tamoxifen decreased the IC50 of 10 microM adriamycin 4.8-fold in the parent CHO-K1 cell line and 16-fold in CHO-Adrr. Similarly 4-OH tamoxifen decreased t...

  19. OVEREXPRESSION OF A M(R) 110,000 VESICULAR PROTEIN IN NON-P-GLYCOPROTEIN-MEDIATED MULTIDRUG RESISTANCE

    NARCIS (Netherlands)

    SCHEPER, RJ; BROXTERMAN, HJ; SCHEFFER, GL; KAAIJK, P; DALTON, WS; VANHEIJNINGEN, THM; VANKALKEN, CK; SLOVAK, ML; DEVRIES, EGE; VANDERVALK, P; MEIJER, CJLM; PINEDO, HM

    1993-01-01

    A M(r)110,000 protein (p110) is overexpressed in P-glycoprotein-negative multidrug-resistant tumor cell lines of different histogenetic origins. These cell lines show an ATP-dependent drug accumulation defect, suggesting the presence of drug transporter molecules different from P-glycoprotein. Immun

  20. Comparison of the lectin-binding pattern in different human melanoma cell lines.

    Science.gov (United States)

    Lityńska, A; Przybyło, M; Pocheć, E; Hoja-Łukowicz, D; Ciołczyk, D; Laidler, P; Gil, D

    2001-06-01

    Glycosylation is generally altered in tumour cells in comparison with their normal counterparts. These alterations are thought to be important because they contribute to the abnormal behaviour of cancer cells. Therefore, we have comparatively analysed the glycoproteins in cell extracts from human melanoma (primary site--WM35; metastatic sites-- WM239, WM9 and A375) cell lines using sodium dodecyl sulphate-polyacrylamide gel electrophoresis and lectin staining. The glycoprotein pattern of the WM35 line differed from that of the other cell lines in having less proteins that reacted with Sambucus nigra, Maackia amurensis and Phaseolus vulgaris agglutinins. A glycoprotein of about 70 kDa had a significantly increased reaction with Sambucus nigra agglutinin in all the cell lines from metastatic sites. In the WM9, WM239 and A375 cell lines, additional bands (160-100 kDa) were stained with Phaseolus vulgaris agglutinin, suggesting that cells from metastatic sites contain more glycoproteins with beta1-6 branches. On the other hand, only minor changes in the reaction with Galanthus nivalis agglutinin, a mannose-specific lectin, were detected. Among the proteins showing different lectin staining, one, with an apparent molecular weight of 133 kDa, was recognized by antibodies as N-cadherin. The present results suggest that in human melanoma the expression of branched and sialylated complex type N-oligosaccharides consistently increased in cells from metastatic sites, and support the view that carbohydrates are associated with the acquisition of the metastatic potential of tumour cells.

  1. Profiling of Concanavalin A-Binding Glycoproteins in Human Hepatic Stellate Cells Activated with Transforming Growth Factor-β1

    Directory of Open Access Journals (Sweden)

    Yannan Qin

    2014-11-01

    Full Text Available Glycoproteins play important roles in maintaining normal cell functions depending on their glycosylations. Our previous study indicated that the abundance of glycoproteins recognized by concanavalin A (ConA was increased in human hepatic stellate cells (HSCs following activation by transforming growth factor-β1 (TGF-β1; however, little is known about the ConA-binding glycoproteins (CBGs of HSCs. In this study, we employed a targeted glycoproteomics approach using lectin-magnetic particle conjugate-based liquid chromatography-tandem mass spectrometry to compare CBG profiles between LX-2 HSCs with and without activation by TGF-β1, with the aim of discovering novel CBGs and determining their possible roles in activated HSCs. A total of 54 and 77 proteins were identified in the quiescent and activated LX-2 cells, respectively. Of the proteins identified, 14.3% were glycoproteins and 73.3% were novel potential glycoproteins. Molecules involved in protein processing in the endoplasmic reticulum (e.g., calreticulin and calcium signaling (e.g., 1-phosphatidylinositol-4,5-bisphosphate phosphodiesterase β-2 [PLCB2] were specifically identified in activated LX-2 cells. Additionally, PLCB2 expression was upregulated in the cytoplasm of the activated LX-2 cells, as well as in the hepatocytes and sinusoidal cells of liver cirrhosis tissues. In conclusion, the results of this study may aid future investigations to find new molecular mechanisms involved in HSC activation and antifibrotic therapeutic targets.

  2. eEF-2 Phosphorylation Down-Regulates P-Glycoprotein Over-Expression in Rat Brain Microvessel Endothelial Cells.

    Directory of Open Access Journals (Sweden)

    Xing Hua Tang

    Full Text Available We investigated whether glutamate, NMDA receptors, and eukaryote elongation factor-2 kinase (eEF-2K/eEF-2 regulate P-glycoprotein expression, and the effects of the eEF-2K inhibitor NH125 on the expression of P-glycoprotein in rat brain microvessel endothelial cells (RBMECs.Cortex was obtained from newborn Wistar rat brains. After surface vessels and meninges were removed, the pellet containing microvessels was resuspended and incubated at 37°C in culture medium. Cell viability was assessed by the MTT assay. RBMECs were identified by immunohistochemistry with anti-vWF. P-glycoprotein, phospho-eEF-2, and eEF-2 expression were determined by western blot analysis. Mdr1a gene expression was analyzed by RT-PCR.Mdr1a mRNA, P-glycoprotein and phospho-eEF-2 expression increased in L-glutamate stimulated RBMECs. P-glycoprotein and phospho-eEF-2 expression were down-regulated after NH125 treatment in L-glutamate stimulated RBMECs.eEF-2K/eEF-2 should have played an important role in the regulation of P-glycoprotein expression in RBMECs. eEF-2K inhibitor NH125 could serve as an efficacious anti-multidrug resistant agent.

  3. Distinct Glycoprotein O Complexes Arise in a Post-Golgi Compartment of Cytomegalovirus-Infected Cells

    OpenAIRE

    Theiler, Regan N.; Compton, Teresa

    2002-01-01

    Human cytomegalovirus (CMV) glycoproteins H, L, and O (gH, gL, and gO, respectively) form a heterotrimeric disulfide-bonded complex that participates in the fusion of the viral envelope with the host cell membrane. During virus maturation, this complex undergoes a series of intracellular assembly and processing events which are not entirely defined (M. T. Huber and T. Compton, J. Virol. 73:3886-3892, 1999). Here, we demonstrate that gO does not undergo the same posttranslational processing in...

  4. IRES-mediated translation of membrane proteins and glycoproteins in eukaryotic cell-free systems.

    Directory of Open Access Journals (Sweden)

    Andreas K Brödel

    Full Text Available Internal ribosome entry site (IRES elements found in the 5' untranslated region of mRNAs enable translation initiation in a cap-independent manner, thereby representing an alternative to cap-dependent translation in cell-free protein expression systems. However, IRES function is largely species-dependent so their utility in cell-free systems from different species is rather limited. A promising approach to overcome these limitations would be the use of IRESs that are able to recruit components of the translation initiation apparatus from diverse origins. Here, we present a solution to this technical problem and describe the ability of a number of viral IRESs to direct efficient protein expression in different eukaryotic cell-free expression systems. The IRES from the intergenic region (IGR of the Cricket paralysis virus (CrPV genome was shown to function efficiently in four different cell-free systems based on lysates derived from cultured Sf21, CHO and K562 cells as well as wheat germ. Our results suggest that the CrPV IGR IRES-based expression vector is universally applicable for a broad range of eukaryotic cell lysates. Sf21, CHO and K562 cell-free expression systems are particularly promising platforms for the production of glycoproteins and membrane proteins since they contain endogenous microsomes that facilitate the incorporation of membrane-spanning proteins and the formation of post-translational modifications. We demonstrate the use of the CrPV IGR IRES-based expression vector for the enhanced synthesis of various target proteins including the glycoprotein erythropoietin and the membrane proteins heparin-binding EGF-like growth factor receptor as well as epidermal growth factor receptor in the above mentioned eukaryotic cell-free systems. CrPV IGR IRES-mediated translation will facilitate the development of novel eukaryotic cell-free expression platforms as well as the high-yield synthesis of desired proteins in already established

  5. Transient expression of Fc-fused human glycoprotein 130 in Expi293F suspension cells.

    Science.gov (United States)

    Zhao, Xiaozhi; Chen, Wei; Ge, Liyuan; Jiang, Wei; Tang, Bo; Zhang, Qing; Xu, Xiaoyu; Wang, Chong; Cao, Lin; Guo, Hongqian

    2016-08-01

    Human glycoprotein 130 (gp130) is a signal-transducing receptor for interleukin 6 (IL-6), whose signaling plays a critical role in chronic inflammation and cancer. The soluble form of gp130 specifically inhibits IL-6 trans-signaling. However, achieving high-level expression of a large glycoprotein such as gp130 is difficult. Here, we designed and constructed one Fc-gp130-pcDNA mammalian expression vector, with the mouse IgG2a Fc fragment added to the N-terminus of human gp130, which greatly increased the secretion of recombinant gp130 protein from Expi293F suspension cells. Recombinant fusion Fc-gp130 was easily and efficiently purified from the supernatant of transfected cells by one-step affinity chromatography. Moreover, Fc-gp130 could automatically form dimers by the disulfide bond. Fc-gp130 was confirmed as a more efficient IL-6 trans-signaling blocker by its higher biological activity against signal transducer and activator of transcription 3 (STAT3). This purified active Fc-gp130 could be used to develop valuable therapeutic agents against inflammatory diseases and cancers. PMID:27113713

  6. Sucrose esters increase drug penetration, but do not inhibit p-glycoprotein in caco-2 intestinal epithelial cells.

    Science.gov (United States)

    Kiss, Lóránd; Hellinger, Éva; Pilbat, Ana-Maria; Kittel, Ágnes; Török, Zsolt; Füredi, András; Szakács, Gergely; Veszelka, Szilvia; Sipos, Péter; Ózsvári, Béla; Puskás, László G; Vastag, Monika; Szabó-Révész, Piroska; Deli, Mária A

    2014-10-01

    Sucrose fatty acid esters are increasingly used as excipients in pharmaceutical products, but few data are available on their toxicity profile, mode of action, and efficacy on intestinal epithelial models. Three water-soluble sucrose esters, palmitate (P-1695), myristate (M-1695), laurate (D-1216), and two reference absorption enhancers, Tween 80 and Cremophor RH40, were tested on Caco-2 cells. Caco-2 monolayers formed a good barrier as reflected by high transepithelial resistance and positive immunostaining for junctional proteins claudin-1, ZO-1, and β-catenin. Sucrose esters in nontoxic concentrations significantly reduced resistance and impedance, and increased permeability for atenolol, fluorescein, vinblastine, and rhodamine 123 in Caco-2 monolayers. No visible opening of the tight junctions was induced by sucrose esters assessed by immunohistochemistry and electron microscopy, but some alterations were seen in the structure of filamentous actin microfilaments. Sucrose esters fluidized the plasma membrane and enhanced the accumulation of efflux transporter ligands rhodamine 123 and calcein AM in epithelial cells, but did not inhibit the P-glycoprotein (P-gp)-mediated calcein AM accumulation in MES-SA/Dx5 cell line. These data indicate that in addition to their dissolution-increasing properties sucrose esters can enhance drug permeability through both the transcellular and paracellular routes without inhibiting P-gp.

  7. Mining the O-glycoproteome using zinc-finger nuclease-glycoengineered SimpleCell lines

    DEFF Research Database (Denmark)

    Steentoft, Catharina; Vakhrushev, Sergey Y; Vester-Christensen, Malene B;

    2011-01-01

    targeting to truncate the O-glycan elongation pathway in human cells, generating stable 'SimpleCell' lines with homogenous O-glycosylation. Three SimpleCell lines expressing only truncated GalNAca or NeuAca2-6GalNAca O-glycans were produced, allowing straightforward isolation and sequencing of GalNAc O......-glycopeptides from total cell lysates using lectin chromatography and nanoflow liquid chromatography-mass spectrometry (nLC-MS/MS) with electron transfer dissociation fragmentation. We identified >100 O-glycoproteins with >350 O-glycan sites (the great majority previously unidentified), including a GalNAc O...

  8. [Effect of Siwu decoction on function and expression of P-glycoprotein in Caco-2 cells].

    Science.gov (United States)

    Jiang, Yi; Ma, Zeng-chun; Huang, Xian-ju; You, Qing; Tan, Hong-ling; Wang, Yu-guang; Liang, Qian-de; Tang, Xiang-lin; Xiao, Cheng-rong; Gao, Yue

    2015-03-01

    To study the effect of Siwu decoction on the function and expression of P-glycoprotein (P-gp) in Caco-2 cells. The Real-time quantitative poly-merase chain reaction (Q-PCR) was used to analyze the mRNA expression of MDR1 gene in Caco-2 cells. Flow cytometer was used to study the effect of Siwu decoction on the uptake of Rhodamine 123 in Caco-2 cells, in order to evaluate the efflux function of P-gp. Western blotting method was used to detect the effect of Siwu decoction on the P-gp protein expression of Caco-2 cells. Compared with the blank control group, after Caco-2 incubation with Siwu decoction at concentrations of 3.3, 5.0, 10.0 g x L(-1) for 24, 48, 72 h, the mRNA expression of MDR1 was up-regulated, suggesting the effect of Siwu decoction in inducing the expression of MDR1. After the administration with Siwu decoction in Caco-2 cells for 48 h, the uptake of Rhodamine 123 in Caco-2 cells decreased by respectively 16.6%, 22.1% (P P P-gp efflux function of Caco-2 cells. After the incubation of Caco-2 cells with Siwu decoction for 48 h, the P-gp protein expression on Caco-2 cell emebranes, demonstrating the effect of Siwu decoction in inducing the protein expression of P-gp.

  9. Adenovirus vector infection of non-small-cell lung cancer cells is a trigger for multi-drug resistance mediated by P-glycoprotein.

    Science.gov (United States)

    Tomono, Takumi; Kajita, Masahiro; Yano, Kentaro; Ogihara, Takuo

    2016-08-01

    P-glycoprotein (P-gp) is an ATP-binding cassette protein involved in cancer multi-drug resistance (MDR). It has been reported that infection with some bacteria and viruses induces changes in the activities of various drug-metabolizing enzymes and transporters, including P-gp. Although human adenoviruses (Ad) cause the common cold, the effect of Ad infection on MDR in cancer has not been established. In this study, we investigated whether Ad infection is a cause of MDR in A549, H441 and HCC827 non-small-cell lung cancer (NSCLC) cell lines, using an Ad vector system. We found that Ad vector infection of NSCLC cell lines induced P-gp mRNA expression, and the extent of induction was dependent on the number of Ad vector virus particles and the infection time. Heat-treated Ad vector, which is not infectious, did not alter P-gp mRNA expression. Uptake experiments with doxorubicin (DOX), a P-gp substrate, revealed that DOX accumulation was significantly decreased in Ad vector-infected A549 cells. The decrease of DOX uptake was blocked by verapamil, a P-gp inhibitor. Our results indicated that Ad vector infection of NSCLC cells caused MDR mediated by P-gp overexpression. The Ad vector genome sequence is similar to that of human Ad, and therefore human Ad infection of lung cancer patients may lead to chemoresistance in the clinical environment. PMID:27286705

  10. Rift Valley fever virus incorporates the 78 kDa glycoprotein into virions matured in mosquito C6/36 cells.

    Directory of Open Access Journals (Sweden)

    Hana M Weingartl

    Full Text Available Rift Valley fever virus (RVFV, genus Phlebovirus, family Bunyaviridae is a zoonotic arthropod-borne virus able to transition between distant host species, causing potentially severe disease in humans and ruminants. Viral proteins are encoded by three genomic segments, with the medium M segment coding for four proteins: nonstructural NSm protein, two glycoproteins Gn and Gc and large 78 kDa glycoprotein (LGp of unknown function. Goat anti-RVFV polyclonal antibody and mouse monoclonal antibody, generated against a polypeptide unique to the LGp within the RVFV proteome, detected this protein in gradient purified RVFV ZH501 virions harvested from mosquito C6/36 cells but not in virions harvested from the mammalian Vero E6 cells. The incorporation of LGp into the mosquito cell line - matured virions was confirmed by immune-electron microscopy. The LGp was incorporated into the virions immediately during the first passage in C6/36 cells of Vero E6 derived virus. Our data indicate that LGp is a structural protein in C6/36 mosquito cell generated virions. The protein may aid the transmission from the mosquitoes to the ruminant host, with a possible role in replication of RVFV in the mosquito host. To our knowledge, this is a first report of different protein composition between virions formed in insect C6/36 versus mammalian Vero E6 cells.

  11. Rift Valley fever virus incorporates the 78 kDa glycoprotein into virions matured in mosquito C6/36 cells.

    Science.gov (United States)

    Weingartl, Hana M; Zhang, Shunzhen; Marszal, Peter; McGreevy, Alan; Burton, Lynn; Wilson, William C

    2014-01-01

    Rift Valley fever virus (RVFV), genus Phlebovirus, family Bunyaviridae is a zoonotic arthropod-borne virus able to transition between distant host species, causing potentially severe disease in humans and ruminants. Viral proteins are encoded by three genomic segments, with the medium M segment coding for four proteins: nonstructural NSm protein, two glycoproteins Gn and Gc and large 78 kDa glycoprotein (LGp) of unknown function. Goat anti-RVFV polyclonal antibody and mouse monoclonal antibody, generated against a polypeptide unique to the LGp within the RVFV proteome, detected this protein in gradient purified RVFV ZH501 virions harvested from mosquito C6/36 cells but not in virions harvested from the mammalian Vero E6 cells. The incorporation of LGp into the mosquito cell line - matured virions was confirmed by immune-electron microscopy. The LGp was incorporated into the virions immediately during the first passage in C6/36 cells of Vero E6 derived virus. Our data indicate that LGp is a structural protein in C6/36 mosquito cell generated virions. The protein may aid the transmission from the mosquitoes to the ruminant host, with a possible role in replication of RVFV in the mosquito host. To our knowledge, this is a first report of different protein composition between virions formed in insect C6/36 versus mammalian Vero E6 cells. PMID:24489907

  12. THE AMPLIFICATION AND EXPRESSION OF MDR1 GENE IN ADRIAMYCINE RESISTANT CELL LINE OF COLON CANCER CELL HR8348

    Institute of Scientific and Technical Information of China (English)

    周中军; 罗贤懋; 林晨; 陈凤

    1996-01-01

    P-glycoprotein plays an important role in highly drug resistant cells. But its high expression cannot be acheived by chemotherapy. In order to study the effect of P-glycoprotein on clinical tumors, wo ostablished a low ADM resistant colon cancer ceil line HR/ADM and determined the amplification and expression of mdr-1 gene. The GLC/ADM showed a resistant pattern similar to classical MDR and the transcription of mdr-1 gene determined by RT-PCR increased. The immunocytcchemical analysis showed strong positive staining with monoelonal antibozly. The gene amplification of mdr-l was dearly demonstrated by southern blot. Our results suggested that moderate expression of P-glycoprotein might be enough for a high resistant pattern.

  13. Effects of P-Glycoprotein and Its Inhibitors on Apoptosis in K562 Cells

    Directory of Open Access Journals (Sweden)

    Yaqiong Zu

    2014-08-01

    Full Text Available P-glycoprotein (P-gp is a major factor in multidrug resistance (MDR which is a serious obstacle in chemotherapy. P-gp has also been implicated in causing apoptosis of tumor cells, which was shown to be another important mechanism of MDR recently. To study the influence of P-gp in tumor cell apoptosis, K562/A cells (P-gp+ and K562/S cells (P-gp− were subjected to doxorubicin (Dox, serum withdrawal, or independent co-incubation with multiple P-gp inhibitors, including valspodar (PSC833, verapamil (Ver and H108 to induce apoptosis. Apoptosis was simultaneously detected by apoptotic rate, cell cycle by flow cytometry and cysteine aspartic acid-specific protease 3 (caspase 3 activity by immunoassay. Cytotoxicity and apoptosis induced by PSC833 were evaluated through an MTT method and apoptosis rate, and cell cycle combined with caspase 3 activity, respectively. The results show that K562/A cells are more resistant to apoptosis and cell cycle arrest than K562/S cells after treatment with Dox or serum deprivation. The apoptosis of K562/A cells increased after co-incubation with each of the inhibitors of P-gp. P-gp inhibitors also enhanced cell cycle arrest in K562/A cell. PSC833 most strikingly decreased viability and led to apoptosis and S phase arrest of cell cycle in K562/A cells. Our study demonstrates that P-gp inhibits the apoptosis of tumor cells in addition to participating in the efflux of intracellular chemotherapy drugs. The results of the caspase 3 activity assay also suggest that the role of P-gp in apoptosis avoidance is caspase-related.

  14. Trans-differentiation of prostatic stromal cells leads to decreased glycoprotein hormone alpha production.

    Science.gov (United States)

    Rumpold, Holger; Mascher, Katarina; Untergasser, Gerold; Plas, Eugen; Hermann, Martin; Berger, Peter

    2002-11-01

    Age-related development of benign prostatic hyperplasia is an important health issue in developed countries. The histopathogenetic hallmark of this disease is the increase in relative and absolute numbers of smooth muscle cells (SMC). Glycoprotein hormone alpha-subunit (GPHalpha) is expressed in the human prostate, and, because of its structural similarities to other cystine knot growth factors, it has been considered to have growth regulatory functions of its own. Primary cell cultures allowing for selective cultivation of prostatic epithelial cells, fibroblasts, and SMC were established. Directed trans-differentiation and cellular homogeneity was pursued by confocal scanning laser microscopy with cell type-specific markers. GPHalpha production by these cells was assessed by immunofluorimetric assays. Its predominant source was young fibroblasts, whereas replicative senescent fibroblasts, SMC, and control fibroblasts from foreskin did not produce significant amounts. Functionally, GPHalpha reduced growth of stromal cells at concentrations of 10 and 100 nmol/liter as shown by cell viability assays. It is concluded that histogenetic reorganization over the adult lifetime, guided by endocrine factors like steroid hormones together with senescence of fibroblasts, leads to a decreased production of growth inhibitors, such as GPHalpha, favoring proliferation and the development of benign prostatic hyperplasia.

  15. Interlab Cell Line Collection: Bioresource of Established Human and Animal Cell Lines

    OpenAIRE

    Parodi, Barbara; Aresu, Ottavia; Visconti, Paola; Manniello, Maria Assunta; Strada, Paolo

    2015-01-01

    The Interlab Cell Line Collection (ICLC) was established in 1994 as a core facility of the National Institute of Cancer Research. It supplies: human and animal cell lines; Short Tandem Repeat (STR) profiling of human cell lines; quality control service; mycoplasma detection and eradication service; safe deposit service and patent deposit service of cell lines and hybridomas. The catalogue of services is on-line, and the cell lines are distributed all over the world. 

  16. Effects of Astragalus polysaccharides on P-glycoprotein efflux pump function and protein expression in H22 hepatoma cells in vitro

    Directory of Open Access Journals (Sweden)

    Tian Qing E

    2012-07-01

    Full Text Available Abstract Background Astragalus polysaccharides (APS are active constituents of Astragalus membranaceus. They have been widely studied, especially with respect to their immunopotentiating properties, their ability to counteract the side effects of chemotherapeutic drugs, and their anticancer properties. However, the mechanism by which APS inhibit cancer and the issue of whether that mechanism involves the reversal of multidrug resistance (MDR is not completely clear. The present paper describes an investigation of the effects of APS on P-glycoprotein function and expression in H22 hepatoma cell lines resistant to Adriamycin (H22/ADM. Methods H22/ADM cell lines were treated with different concentrations of APS and/or the most common chemotherapy drugs, such as Cyclophosphamid, Adriamycin, 5-Fluorouracil, Cisplatin, Etoposide, and Vincristine. Chemotherapeutic drug sensitivity, P-glycoprotein function and expression, and MDR1 mRNA expression were detected using MTT assay, flow cytometry, Western blotting, and quantitative RT-PCR. Results When used alone, APS had no anti-tumor activity in H22/ADM cells in vitro. However, it can increase the cytotoxicity of certain chemotherapy drugs, such as Cyclophosphamid, Adriamycin, 5-Fluorouracil, Cisplatin, Etoposide, and Vincristine, in H22/ADM cells. It acts in a dose-dependent manner. Compared to a blank control group, APS increased intracellular Rhodamine-123 retention and decreased P-glycoprotein efflux function in a dose-dependent manner. These factors were assessed 24 h, 48 h, and 72 h after administration. APS down regulated P-glycoprotein and MDR1 mRNA expression in a concentration-dependent manner within a final range of 0.8–500 mg/L and in a time-dependent manner from 24–72 h. Conclusion APS can enhance the chemosensitivity of H22/ADM cells. This may involve the downregulation of MDR1 mRNA expression, inhibition of P-GP efflux pump function, or both, which would decrease the expression

  17. A 160-kilodalton epithelial cell surface glycoprotein recognized by plant lectins that inhibit the adherence of Actinomyces naeslundii.

    OpenAIRE

    Brennan, M J; Cisar, J O; Sandberg, A L

    1986-01-01

    The adherence of Actinomyces naeslundii to human epithelial (KB) cells is mediated by the interaction of a fimbrial lectin on this oral bacterium with epithelial cell receptors exposed by sialidase. The D-galactose- and N-acetyl-D-galactosamine-reactive plant lectins from peanut and from Bauhinia purpurea inhibit this interaction. This report describes the partial purification and characterization of a 160-kilodalton (kDa) cell surface glycoprotein which is the principal receptor for these le...

  18. Intercellular transfer of P-glycoprotein in human blood-brain barrier endothelial cells is increased by histone deacetylase inhibitors

    OpenAIRE

    Andreas Noack; Sandra Noack; Manuela Buettner; Naim, Hassan Y.; Wolfgang Löscher

    2016-01-01

    The blood–brain barrier (BBB) controls the entry of compounds into the brain, thereby regulating brain homeostasis. Efflux transporters such as P-glycoprotein (Pgp) significantly contribute to BBB function. Multiple signaling pathways modulate the expression and activity of Pgp in response to xenobiotics and disease. A non-genetic way of intercellular transfer of Pgp occurs in cancer cells, but whether this also occurs in non-cancer cells such as endothelial cells that form the BBB is not kno...

  19. The Glycoproteins of All Filovirus Species Use the Same Host Factors for Entry into Bat and Human Cells but Entry Efficiency Is Species Dependent.

    Directory of Open Access Journals (Sweden)

    Markus Hoffmann

    Full Text Available Ebola and marburgviruses, members of the family Filoviridae, can cause severe hemorrhagic fever in humans. The ongoing Ebola virus (EBOV disease epidemic in Western Africa claimed more than 11,300 lives and was associated with secondary cases outside Africa, demonstrating that filoviruses pose a global health threat. Bats constitute an important natural reservoir of filoviruses, including viruses of the recently identified Cuevavirus genus within the Filoviridae family. However, the interactions of filoviruses with bat cells are incompletely understood. Here, we investigated whether filoviruses employ different strategies to enter human and bat cells. For this, we examined host cell entry driven by glycoproteins (GP from all filovirus species into cell lines of human and fruit bat origin. We show that all GPs were able to mediate entry into human and most fruit bat cell lines with roughly comparable efficiency. In contrast, the efficiency of entry into the cell line EidNi/41 derived from a straw-colored fruit bat varied markedly between the GPs of different filovirus species. Furthermore, inhibition studies demonstrated that filoviruses employ the same host cell factors for entry into human, non-human primate and fruit bat cell lines, including cysteine proteases, two pore channels and NPC1 (Niemann-Pick C1 molecule. Finally, processing of GP by furin and the presence of the mucin-like domain in GP were dispensable for entry into both human and bat cell lines. Collectively, these results show that filoviruses rely on the same host cell factors for entry into human and fruit bat cells, although the efficiency of the usage of these factors might differ between filovirus species.

  20. The Glycoproteins of All Filovirus Species Use the Same Host Factors for Entry into Bat and Human Cells but Entry Efficiency Is Species Dependent.

    Science.gov (United States)

    Hoffmann, Markus; González Hernández, Mariana; Berger, Elisabeth; Marzi, Andrea; Pöhlmann, Stefan

    2016-01-01

    Ebola and marburgviruses, members of the family Filoviridae, can cause severe hemorrhagic fever in humans. The ongoing Ebola virus (EBOV) disease epidemic in Western Africa claimed more than 11,300 lives and was associated with secondary cases outside Africa, demonstrating that filoviruses pose a global health threat. Bats constitute an important natural reservoir of filoviruses, including viruses of the recently identified Cuevavirus genus within the Filoviridae family. However, the interactions of filoviruses with bat cells are incompletely understood. Here, we investigated whether filoviruses employ different strategies to enter human and bat cells. For this, we examined host cell entry driven by glycoproteins (GP) from all filovirus species into cell lines of human and fruit bat origin. We show that all GPs were able to mediate entry into human and most fruit bat cell lines with roughly comparable efficiency. In contrast, the efficiency of entry into the cell line EidNi/41 derived from a straw-colored fruit bat varied markedly between the GPs of different filovirus species. Furthermore, inhibition studies demonstrated that filoviruses employ the same host cell factors for entry into human, non-human primate and fruit bat cell lines, including cysteine proteases, two pore channels and NPC1 (Niemann-Pick C1 molecule). Finally, processing of GP by furin and the presence of the mucin-like domain in GP were dispensable for entry into both human and bat cell lines. Collectively, these results show that filoviruses rely on the same host cell factors for entry into human and fruit bat cells, although the efficiency of the usage of these factors might differ between filovirus species. PMID:26901159

  1. Ferulic acid reverses ABCB1-mediated paclitaxel resistance in MDR cell lines.

    Science.gov (United States)

    Muthusamy, Ganesan; Balupillai, Agilan; Ramasamy, Karthikeyan; Shanmugam, Mohana; Gunaseelan, Srithar; Mary, Beaulah; Prasad, N Rajendra

    2016-09-01

    Multidrug resistance (MDR) remains a major obstacle in cancer chemotherapy. The use of the dietary phytochemicals as chemosensitizing agents to enhance the efficacy of conventional cytostatic drugs has recently gained the attention as a plausible approach for overcoming the drug resistance. The aim of this study was to investigate whether a naturally occurring diet-based phenolic acid, ferulic acid, could sensitize paclitaxel efficacy in ABCB1 overexpressing (P-glycoprotein) colchicine selected KB Ch(R)8-5 cell line. In vitro drug efflux assays demonstrated that ferulic acid inhibits P-glycoprotein transport function in drug resistant KB Ch(R)8-5 cell lines. However, ferulic acid significantly downregulates ABCB1 expression in a concentration dependent manner. Cytotoxicity assay reveals that ferulic acid decreased paclitaxel resistance in KBCh(R)8-5 and HEK293/ABCB1 cells, which indicates its chemosensitizing potential. Clonogenic cell survival assay and apoptotic morphological staining further confirm the chemosensitizing potential of ferulic acid in drug resistant KB Ch(R)8-5 cell lines. Ferulic acid treatment enhances paclitaxel mediated cell cycle arrest and upregulates paclitaxel-induced apoptotic signaling in KB resistant cells. Hence, it has been concluded that downregulation of ABCB1 and subsequent induction of paclitaxel-mediated cell cycle arrest and apoptotic signaling may be the cause for the chemosensitizing potential of ferulic acid in P-gp overexpressing cell lines. PMID:27262378

  2. Revealing the fate of cell surface human P-glycoprotein (ABCB1): The lysosomal degradation pathway.

    Science.gov (United States)

    Katayama, Kazuhiro; Kapoor, Khyati; Ohnuma, Shinobu; Patel, Atish; Swaim, William; Ambudkar, Indu S; Ambudkar, Suresh V

    2015-10-01

    P-glycoprotein (P-gp) transports a variety of chemically dissimilar amphipathic compounds including anticancer drugs. Although mechanisms of P-gp drug transport are widely studied, the pathways involving its internalization are poorly understood. The present study is aimed at elucidating the pathways involved in degradation of cell surface P-gp. The fate of P-gp at the cell surface was determined by biotinylating cell surface proteins followed by flow cytometry and Western blotting. Our data shows that the half-life of endogenously expressed P-gp is 26.7±1.1 h in human colorectal cancer HCT-15 cells. Treatment of cells with Bafilomycin A1 (BafA1) a vacuolar H+ ATPase inhibitor increased the half-life of P-gp at the cell surface to 36.1±0.5 h. Interestingly, treatment with the proteasomal inhibitors MG132, MG115 or lactacystin alone did not alter the half-life of the protein. When cells were treated with both lysosomal and proteasomal inhibitors (BafA1 and MG132), the half-life was further prolonged to 39-50 h. Functional assays done with rhodamine 123 or calcein-AM, fluorescent substrates of P-gp, indicated that the transport function of P-gp was not affected by either biotinylation or treatment with BafA1 or proteasomal inhibitors. Immunofluorescence studies done with the antibody against lysosomal marker LAMP1 and the P-gp-specific antibody UIC2 in permeabilized cells indicated that intracellular P-gp is primarily localized in the lysosomal compartment. Our results suggest that the lysosomal degradation system could be targeted to increase the sensitivity of P-gp- expressing cancer cells towards chemotherapeutic drugs.

  3. Host cell P-glycoprotein is essential for cholesterol uptake and replication of Toxoplasma gondii.

    Science.gov (United States)

    Bottova, Iveta; Hehl, Adrian B; Stefanić, Sasa; Fabriàs, Gemma; Casas, Josefina; Schraner, Elisabeth; Pieters, Jean; Sonda, Sabrina

    2009-06-26

    P-glycoprotein (P-gp) is a membrane-bound efflux pump that actively exports a wide range of compounds from the cell and is associated with the phenomenon of multidrug resistance. However, the role of P-gp in normal physiological processes remains elusive. Using P-gp-deficient fibroblasts, we showed that P-gp was critical for the replication of the intracellular parasite Toxoplasma gondii but was not involved in invasion of host cells by the parasite. Importantly, we found that the protein participated in the transport of host-derived cholesterol to the intracellular parasite. T. gondii replication in P-gp-deficient host cells not only resulted in reduced cholesterol content in the parasite but also altered its sphingolipid metabolism. In addition, we found that different levels of P-gp expression modified the cholesterol metabolism in uninfected fibroblasts. Collectively our findings reveal a key and previously undocumented role of P-gp in host-parasite interaction and suggest a physiological role for P-gp in cholesterol trafficking in mammalian cells. PMID:19389707

  4. Host Cell P-glycoprotein Is Essential for Cholesterol Uptake and Replication of Toxoplasma gondii*

    Science.gov (United States)

    Bottova, Iveta; Hehl, Adrian B.; Štefanić, Saša; Fabriàs, Gemma; Casas, Josefina; Schraner, Elisabeth; Pieters, Jean; Sonda, Sabrina

    2009-01-01

    P-glycoprotein (P-gp) is a membrane-bound efflux pump that actively exports a wide range of compounds from the cell and is associated with the phenomenon of multidrug resistance. However, the role of P-gp in normal physiological processes remains elusive. Using P-gp-deficient fibroblasts, we showed that P-gp was critical for the replication of the intracellular parasite Toxoplasma gondii but was not involved in invasion of host cells by the parasite. Importantly, we found that the protein participated in the transport of host-derived cholesterol to the intracellular parasite. T. gondii replication in P-gp-deficient host cells not only resulted in reduced cholesterol content in the parasite but also altered its sphingolipid metabolism. In addition, we found that different levels of P-gp expression modified the cholesterol metabolism in uninfected fibroblasts. Collectively our findings reveal a key and previously undocumented role of P-gp in host-parasite interaction and suggest a physiological role for P-gp in cholesterol trafficking in mammalian cells. PMID:19389707

  5. Inflammatory response of endothelial cells to hepatitis C virus recombinant envelope glycoprotein 2 protein exposure

    Directory of Open Access Journals (Sweden)

    Ana Carolina Urbaczek

    2014-09-01

    Full Text Available The hepatitis C virus (HCV encodes approximately 10 different structural and non-structural proteins, including the envelope glycoprotein 2 (E2. HCV proteins, especially the envelope proteins, bind to cell receptors and can damage tissues. Endothelial inflammation is the most important determinant of fibrosis progression and, consequently, cirrhosis. The aim of this study was to evaluate and compare the inflammatory response of endothelial cells to two recombinant forms of the HCV E2 protein produced in different expression systems (Escherichia coli and Pichia pastoris. We observed the induction of cell death and the production of nitric oxide, hydrogen peroxide, interleukin-8 and vascular endothelial growth factor A in human umbilical vein endothelial cells (HUVECs stimulated by the two recombinant E2 proteins. The E2-induced apoptosis of HUVECs was confirmed using the molecular marker PARP. The apoptosis rescue observed when the antioxidant N-acetylcysteine was used suggests that reactive oxygen species are involved in E2-induced apoptosis. We propose that these proteins are involved in the chronic inflammation caused by HCV.

  6. 碱性成纤维细胞生长因子单克隆抗体通过P-糖蛋白逆转乳腺癌MCF-7/ADM细胞多药耐药性的分子机制%Molecular mechanism of reversal effect of monoclonal antibody to basic fibroblast growth factor-mediated expression of P-glycoprotein on multiple drug resistance in adriamycin-resistant human breast cancer cell line MCF-7/ADM

    Institute of Scientific and Technical Information of China (English)

    陈文慧; 徐萌; 杜超超; 赵建夫; 潘兰红; 李汉初; 向军俭; 邓宁

    2013-01-01

    Objective: To investigate the mechanism of reversal effect of bFGF mAb (monoclonal antibody to basic fibroblast growth factor)-mediated expression of P-gp (permeability glycoprotein) on MDR (multidrug resistance) in ADM (adriamycin)-resistant human breast cancer cell line MCF-7/ADM. Methods: The effects of bFGF mAb on the proliferation of MCF-7/ADM cells and the reversal of MDR were detected by CCK-8 (cell counting kit-8) method. The cell cycle distribution of MCF-7/ADM cells and the expression of P-gp and intracellular fluorescence intensity of Rho123 (rhodamine 123) in MCF-7/ADM cells after bFGF mAb intervention were analyzed by flow cytometry. The expressions of MDR 1 (multidrug resistance protein 1) and bFGF mRNAs in MCF-7/ADM cells were examined by real-time fluorescence quantitative PCR. Results: The growth inhibition rates of MCF-7 cells and MCF-7/ADM cells after treatment with 1 μj/mL bFGF mAb were (1 9.87+1.05)% and (27.34±2.79)% (P < 0.01). bFGF mAb intervention could reverse ADM-, GEM (gemcitabine)- and OXA (oxaliplatin)-resistance of MCF-7/ADM cells, and the corresponding reversal index were 4.46, 4.25 and 2.18, respectively. As compared with the MCF-7/ADM cells without bFGF mAb intervention, the cell cycle of MCF-7/ADM cells after bFGF mAb intervention was arrested at G0/G1 phase, the expression level of P-gp was down-regulated, the intracellular Rho123 fluorescence intensity was increased, and the expression levels of MDR 1 and bFGF mRNAs were both decreased (P < 0.01). Conclusion: bFGF mAb can inhibit the proliferation of MCF-7/ADM and reverse MDR. This mechanism may be related to down-regulation of the expression levels of MDR 1 and P-gp, inhibition of the function of P-gp, and increasement of intracellular concentration of chemotherapeutic drugs.%目的:探讨碱性成纤维细胞生长因子单克隆抗体(monoclonal antibody to basic fibroblast growth factor,bFGF mAb)通过P-糖蛋白(permeability glycoprotein,P-gp)对人乳腺癌多柔比

  7. Marine sponge-derived sipholane triterpenoids reverse P-glycoprotein (ABCB1)-mediated multidrug resistance in cancer cells

    OpenAIRE

    Abraham, Ioana; Jain, Sandeep; Wu, Chung-pu; Khanfar, Mohammad A.; Kuang, Yehong; Dai, Chun-ling; Shi, Zhi; Chen, Xiang; FU, LIWU; Suresh V Ambudkar; Sayed, Khalid El; Chen, Zhe-Sheng

    2010-01-01

    Previously, we reported sipholenol A, a sipholane triterpenoid from the Red Sea sponge Callyspongia siphonella, as a potent reversal of multidrug resistance (MDR) in cancer cells that overexpressed P-glycoprotein (P-gp). Through extensive screening of several related sipholane triterpenoids that have been isolated from the same sponge, we identified sipholenone E, sipholenol L and siphonellinol D as potent reversals of MDR in cancer cells. These compounds enhanced the cytotoxicity of several ...

  8. Expression of Ebolavirus glycoprotein on the target cells enhances viral entry

    Directory of Open Access Journals (Sweden)

    Manicassamy Balaji

    2009-06-01

    Full Text Available Abstract Background Entry of Ebolavirus to the target cells is mediated by the viral glycoprotein GP. The native GP exists as a homotrimer on the virions and contains two subunits, a surface subunit (GP1 that is involved in receptor binding and a transmembrane subunit (GP2 that mediates the virus-host membrane fusion. Previously we showed that over-expression of GP on the target cells blocks GP-mediated viral entry, which is mostly likely due to receptor interference by GP1. Results In this study, using a tetracycline inducible system, we report that low levels of GP expression on the target cells, instead of interfering, specifically enhance GP mediated viral entry. Detailed mapping analysis strongly suggests that the fusion subunit GP2 is primarily responsible for this novel phenomenon, here referred to as trans enhancement. Conclusion Our data suggests that GP2 mediated trans enhancement of virus fusion occurs via a mechanism analogous to eukaryotic membrane fusion processes involving specific trans oligomerization and cooperative interaction of fusion mediators. These findings have important implications in our current understanding of virus entry and superinfection interference.

  9. The secreted glycoprotein lubricin protects cartilage surfaces and inhibits synovial cell overgrowth

    Science.gov (United States)

    Rhee, David K.; Marcelino, Jose; Baker, MacArthur; Gong, Yaoqin; Smits, Patrick; Lefebvre, Véronique; Jay, Gregory D.; Stewart, Matthew; Wang, Hongwei; Warman, Matthew L.; Carpten, John D.

    2005-01-01

    The long-term integrity of an articulating joint is dependent upon the nourishment of its cartilage component and the protection of the cartilage surface from friction-induced wear. Loss-of-function mutations in lubricin (a secreted glycoprotein encoded by the gene PRG4) cause the human autosomal recessive disorder camptodactyly-arthropathy-coxa vara-pericarditis syndrome (CACP). A major feature of CACP is precocious joint failure. In order to delineate the mechanism by which lubricin protects joints, we studied the expression of Prg4 mRNA during mouse joint development, and we created lubricin-mutant mice. Prg4 began to be expressed in surface chondrocytes and synoviocytes after joint cavitation had occurred and remained strongly expressed by these cells postnatally. Mice lacking lubricin were viable and fertile. In the newborn period, their joints appeared normal. As the mice aged, we observed abnormal protein deposits on the cartilage surface and disappearance of underlying superficial zone chondrocytes. In addition to cartilage surface changes and subsequent cartilage deterioration, intimal cells in the synovium surrounding the joint space became hyperplastic, which further contributed to joint failure. Purified or recombinant lubricin inhibited the growth of these synoviocytes in vitro. Tendon and tendon sheath involvement was present in the ankle joints, where morphologic changes and abnormal calcification of these structures were observed. We conclude that lubricin has multiple functions in articulating joints and tendons that include the protection of surfaces and the control of synovial cell growth. PMID:15719068

  10. Radioautographic study of the synthesis and migration of glycoproteins in the cells of the rat adrenal medulla

    International Nuclear Information System (INIS)

    Rats were injected intravenously with (3H) fucose to study the synthesis and migration of glycoproteins into adrenaline-storing and noradrenaline-storing cells of the adrenal medulla and to evaluate the fate of this radioactive sugar in both serum and adrenal-medulla at various time intervals. Radioactivity was decreased in serum by 50% between 5 and 20 min after the injection and by a hundred fold with 1 h. There was a sharp decrease in the radioactivity of the adrenal-medulla between 5 and 20 min after the injection and a slight, continuous decrease thereafter. The adrenal-medullae were fixed 5 min, 20 min, 1 h and 4 h after intravenous injection of [3H] fucose, and radiautographs were analysed quantitatively after development in Microdol X. Kinetic analysis showed that, in both cell types, glycoprotein synthesis is completed in the Golgi complex and glycoproteins migrate subsequently to the secretory granules and to the cell coat. This analysis also revealed that [3H] fucose moves much more rapidly in the Golgi complex of noradrenaline-storing cells than in that of adrenaline-storing cells and appears much earlier in the secretory granules of the former cell type

  11. Modulation of P-glycoprotein function and multidrug resistance in cancer cells by Thai plant extracts.

    Science.gov (United States)

    Takano, M; Kakizoe, S; Kawami, M; Nagai, J; Patanasethnont, D; Sripanidkulchai, B; Yumoto, R

    2014-11-01

    The effects of ethanol extracts from Thai plants belonging to the families of Annonaceae, Rutaceae, and Zingiberaceae on P-glycoprotein (P-gp) function and multidrug resistance were examined in paclitaxel-resistant HepG2 (PR-HepG2) cells. All the extracts tested, significantly increased the accumulation of [3H]paclitaxel, a P-gp substrate, in the cells. Among nine extracts, Z01 and Z02, extracts from Curcuma comosa and Kaempferia marginata (Zingiberaceae family), respectively, potently increased the accumulation. In addition, Z01 and Z02 increased the accumulation of other P-gp substrates, rhodamine 123 and doxorubicin, in PR-HepG2 cells in a concentration-dependent manner. Increased accumulation of rhodamine 123 and doxorubicin by Z01 and Z02 was also confirmed by confocal laser scanning microscopy. The effect of Z01 and Z02 pretreatment on the expression of MDR1 mRNA was also examined. The expression of MDR1 mRNA was not affected by the treatment of PR-HepG2 cells with these extracts for 48 hours. Cytotoxicity of paclitaxel was examined by XTT and protein assays in the absence and presence of Z02. Z02 potentiated the cytotoxicity of paclitaxel in PR-HepG2 cells. These results suggest that Curcuma comosa and Kaempferia marginata belonging to Zingiberaceae are useful sources to search for new P-gp modulator(s) that can be used to overcome multidrug resistance of cancer cells.

  12. Modulation of P-glycoprotein function and multidrug resistance in cancer cells by Thai plant extracts.

    Science.gov (United States)

    Takano, M; Kakizoe, S; Kawami, M; Nagai, J; Patanasethnont, D; Sripanidkulchai, B; Yumoto, R

    2014-11-01

    The effects of ethanol extracts from Thai plants belonging to the families of Annonaceae, Rutaceae, and Zingiberaceae on P-glycoprotein (P-gp) function and multidrug resistance were examined in paclitaxel-resistant HepG2 (PR-HepG2) cells. All the extracts tested, significantly increased the accumulation of [3H]paclitaxel, a P-gp substrate, in the cells. Among nine extracts, Z01 and Z02, extracts from Curcuma comosa and Kaempferia marginata (Zingiberaceae family), respectively, potently increased the accumulation. In addition, Z01 and Z02 increased the accumulation of other P-gp substrates, rhodamine 123 and doxorubicin, in PR-HepG2 cells in a concentration-dependent manner. Increased accumulation of rhodamine 123 and doxorubicin by Z01 and Z02 was also confirmed by confocal laser scanning microscopy. The effect of Z01 and Z02 pretreatment on the expression of MDR1 mRNA was also examined. The expression of MDR1 mRNA was not affected by the treatment of PR-HepG2 cells with these extracts for 48 hours. Cytotoxicity of paclitaxel was examined by XTT and protein assays in the absence and presence of Z02. Z02 potentiated the cytotoxicity of paclitaxel in PR-HepG2 cells. These results suggest that Curcuma comosa and Kaempferia marginata belonging to Zingiberaceae are useful sources to search for new P-gp modulator(s) that can be used to overcome multidrug resistance of cancer cells. PMID:25985578

  13. Human Cell Line and Tissue Sample Authentication

    OpenAIRE

    Ewing, Margaret M.; McLaren, Robert S.; Hebble, Kathryn D.; Ready, Kim; Storts, Douglas R.; Hooper, Kyle

    2013-01-01

    Background: Short Tandem Repeat (STR) genotyping analysis is a proven technology for uniquely identifying virtually all human samples. STR genotyping was adopted as the preferred technology for identification of human tissue culture cell lines by the ATCC Standards Development Organization (ASN-0002: Authentication of Human Cell Lines: Standardization of STR Profiling). We developed new automation-compatible protocols/systems for generating STR profiles from human cell lines or tissue samples...

  14. Molecular Characterization of Putative Chordoma Cell Lines

    Directory of Open Access Journals (Sweden)

    Silke Brüderlein

    2010-01-01

    Full Text Available Immortal tumor cell lines are an important model system for cancer research, however, misidentification and cross-contamination of cell lines are a common problem. Seven chordoma cell lines are reported in the literature, but none has been characterized in detail. We analyzed gene expression patterns and genomic copy number variations in five putative chordoma cell lines (U-CH1, CCL3, CCL4, GB60, and CM319. We also created a new chordoma cell line, U-CH2, and provided genotypes for cell lines for identity confirmation. Our analyses revealed that CCL3, CCL4, and GB60 are not chordoma cell lines, and that CM319 is a cancer cell line possibly derived from chordoma, but lacking expression of key chordoma biomarkers. U-CH1 and U-CH2 both have gene expression profiles, copy number aberrations, and morphology consistent with chordoma tumors. These cell lines also harbor genetic changes, such as loss of p16, MTAP, or PTEN, that make them potentially useful models for studying mechanisms of chordoma pathogenesis and for evaluating targeted therapies.

  15. Contribution of mdr1b-type P-glycoprotein to okadaic acid resistance in rat pituitary GH3 cells.

    Science.gov (United States)

    Ritz, V; Marwitz, J; Sieder, S; Ziemann, C; Hirsch-Ernst, K I; Quentin, I; Steinfelder, H J

    1999-08-01

    Okadaic acid as well as other, structurally different, inhibitors of serine/threonine phosphatases 1 and 2A induce apoptosis in pituitary GH3 cells. Incubation with stepwise raised concentrations of okadaic acid resulted in the isolation of cells that were increasingly less sensitive to the cytotoxic effect of this agent. After about 18 months cells were selected that survived at 300 nM okadaic acid, which is about 30 times the initially lethal concentration. This study revealed that a major pharmacokinetic mechanism underlying cell survival was the development of a P-glycoprotein-mediated multidrug resistance (MDR) phenotype. The increase in mRNA levels of the mdr1b P-glycoprotein isoform correlated with the extent of drug resistance. Functional assays revealed that increasing drug resistance was paralleled by a decreased accumulation of rhodamine 123, a fluorescent dye which is a substrate of mdr1-mediated efflux activity. Resistance could be abolished by structurally different chemosensitizers of P-glycoprotein function like verapamil and reserpine but not by the leukotriene receptor antagonist MK571 which is a modulator of the multidrug resistance-associated protein (MRP). Okadaic acid resistance included cross-resistance to other cytotoxic agents that are substrates of mdr1-type P-glycoproteins, like doxorubicin and actinomycin D, but not to non-substrates of mdr1, e.g. cytosine arabinoside. Thus, functional as well as biochemical features support the conclusion that okadaic acid is a substrate of the mdr1-mediated efflux activity in rat pituitary GH3 cells. Maintenance of resistance after withdrawal of okadaic acid as well as metaphase spreads of 100 nM okadaic acid-resistant cells suggested a stable MDR genotype without indications for the occurrence of extrachromosomal amplifications, e.g. double minute chromosomes.

  16. Cell Surface Glycoprotein of Reactive Stromal Fibroblasts as a Potential Antibody Target in Human Epithelial Cancers

    Science.gov (United States)

    Garin-Chesa, Pilar; Old, Lloyd J.; Rettig, Wolfgang J.

    1990-09-01

    The F19 antigen is a cell surface glycoprotein (M_r, 95,000) of human sarcomas and proliferating, cultured fibroblasts that is absent from resting fibroblasts in normal adult tissues. Normal and malignant epithelial cells are also F19^-. The present immunohistochemical study describes induction of F19 in the reactive mesenchyme of epithelial tumors. F19^+ fibroblasts were found in primary and metastatic carcinomas, including colorectal (18 of 18 cases studied), breast (14/14), ovarian (21/21), bladder (9/10), and lung carcinomas (13/13). In contrast, the stroma of benign colorectal adenomas, fibrocystic disease and fibroadenomas of breast, benign prostate hyperplasia, in situ bladder carcinomas, and benign ovarian tumors showed no or only moderate numbers of F19^+ fibroblasts. Analysis of dermal incision wounds revealed that F19 is strongly induced during scar formation. Comparison of F19 with the extracellular matrix protein tenascin, a putative marker of tumor mesenchyme, showed a cellular staining pattern for F19 vs. the extracellular matrix pattern for tenascin and widespread expression of tenascin in F19^- normal tissues and benign tumors. Our results suggest that the F19^+ phenotype correlates with specialized fibroblast functions in wound healing and malignant tumor growth. Because of its abundance in tumor mesenchyme, F19 may serve as a target for antibodies labeled with radioisotopes or toxic agents, or inflammatogenic antibodies, in carcinoma patients.

  17. Varicella-zoster virus glycoprotein expression differentially induces the unfolded protein response in infected cells.

    Science.gov (United States)

    Carpenter, John E; Grose, Charles

    2014-01-01

    Varicella-zoster virus (VZV) is a human herpesvirus that spreads to children as varicella or chicken pox. The virus then establishes latency in the nervous system and re-emerges, typically decades later, as zoster or shingles. We have reported previously that VZV induces autophagy in infected cells as well as exhibiting evidence of the Unfolded Protein Response (UPR): XBP1 splicing, a greatly expanded Endoplasmic Reticulum (ER) and CHOP expression. Herein we report the results of a UPR specific PCR array that measures the levels of mRNA of 84 different components of the UPR in VZV infected cells as compared to tunicamycin treated cells as a positive control and uninfected, untreated cells as a negative control. Tunicamycin is a mixture of chemicals that inhibits N-linked glycosylation in the ER with resultant protein misfolding and the UPR. We found that VZV differentially induces the UPR when compared to tunicamycin treatment. For example, tunicamycin treatment moderately increased (8-fold) roughly half of the array elements while downregulating only three (one ERAD and two FOLD components). VZV infection on the other hand upregulated 33 components including a little described stress sensor CREB-H (64-fold) as well as ER membrane components INSIG and gp78, which modulate cholesterol synthesis while downregulating over 20 components mostly associated with ERAD and FOLD. We hypothesize that this expression pattern is associated with an expanding ER with downregulation of active degradation by ERAD and apoptosis as the cell attempts to handle abundant viral glycoprotein synthesis. PMID:25071735

  18. Varicella-Zoster Virus glycoprotein expression differentially induces the unfolded protein response in infected cells.

    Directory of Open Access Journals (Sweden)

    John Earl Carpenter

    2014-07-01

    Full Text Available Varicella-zoster virus (VZV is a human herpesvirus that spreads to children as varicella or chicken pox. The virus then establishes latency in the nervous system and re-emerges, typically decades later, as zoster or shingles. We have reported previously that VZV induces autophagy in infected cells as well as exhibiting evidence of the Unfolded Protein Response (UPR: XBP1 splicing, a greatly expanded Endoplasmic Reticulum (ER and CHOP expression. Herein we report the results of a UPR specific PCR array that measures the levels of mRNA of 84 different components of the UPR in VZV infected cells as compared to tunicamycin treated cells as a positive control and uninfected, untreated cells as a negative control. Tunicamycin is a mixture of chemicals that inhibits N-linked glycosylation in the ER with resultant protein misfolding and the UPR. We found that VZV differentially induces the UPR when compared to tunicamycin treatment. For example, tunicamycin treatment moderately increased (8 fold roughly half of the array elements while downregulating only three (one ERAD and two FOLD components. VZV infection on the other hand upregulated 33 components including a little described stress sensor CREB-H (64 fold as well as ER membrane components INSIG and gp78, which modulate cholesterol synthesis while downregulating over 20 components mostly associated with ERAD and FOLD. We hypothesize that this expression pattern is associated with an expanding ER with downregulation of active degradation by ERAD and apoptosis as the cell attempts to handle abundant viral glycoprotein synthesis.

  19. HLA expression in hepatocellular carcinoma cell lines.

    Science.gov (United States)

    Wadee, A A; Paterson, A; Coplan, K A; Reddy, S G

    1994-08-01

    The present study undertook to investigate the biological significance of human leucocyte antigen expression in hepatocellular carcinoma and to elucidate the role of potential modulating agents on human leucocyte antigen expression. These studies used several hepatic tumour-derived cell lines as in vitro model systems. The cell lines included PLC/PRF/5 (Alexander cell line), Hep3B, HepG2, TONG PHC, HA22T/VGH, HA59T/VGH and Mahlavu. The cell lines K562 and Raji were used as negative and positive controls, respectively. K562, a B lymphoid-derived cell line, was shown to express negligible amounts of human leucocyte antigens, while Raji, an erythromyeloid-derived cell line, expressed both class I and class II human leucocyte antigens as well as their respective invariant chains, beta 2-microglobulin and Ii. Using an ELISA, experiments performed on these cell lines confirmed the natural expression of class I and class II antigens by the HA22T/VGH and HA59T/VGH cell lines, whereas PLC/PRF/5 displayed class II surface antigens only. The effects of modulating agents such as interferon-gamma sodium butyrate and clofazimine on human leucocyte antigen expression were investigated using the HA22T/VGH, HA59T/VGH and TONG PHC cell lines. These agents increased class II and class II human leucocyte antigen expression on HA22T/VGH and TONG PHC cells, but had no effect on the HA59T/VGH cell line. The results suggest a potential use for these agents as modulators of human leucocyte antigen expression by human heptocellular cell lines.

  20. Production of Highly Sialylated Recombinant Glycoproteins Using Ricinus communis Agglutinin-I-Resistant CHO Glycosylation Mutants.

    Science.gov (United States)

    Goh, John S Y; Chan, Kah Fai; Song, Zhiwei

    2015-01-01

    The degree of sialylation of therapeutic glycoproteins affects its circulatory half-life and efficacy because incompletely sialylated glycoproteins are cleared from circulation by asialoglycoprotein receptors present in the liver cells. Mammalian expression systems, often employed in the production of these glycoprotein drugs, produce heterogeneously sialylated products. Here, we describe how to produce highly sialylated glycoproteins using a Chinese hamster ovary (CHO) cell glycosylation mutant called CHO-gmt4 with human erythropoietin (EPO) as a model glycoprotein. The protocol describes how to isolate and characterize the CHO glycosylation mutants and how to assess the sialylation of the recombinant protein using isoelectric focusing (IEF). It further describes how to inactivate the dihydrofolate reductase (DHFR) gene in these cells using zinc finger nuclease (ZFN) technology to enable gene amplification and the generation of stable cell lines producing highly sialylated EPO.

  1. Biosynthesis of ascites sialoglycoprotein-1, the major O-linked glycoprotein of 13762 rat mammary adenocarcinoma ascites cells

    Energy Technology Data Exchange (ETDEWEB)

    Spielman, J.

    1987-01-01

    The present studies were undertaken to determine the timing of the major events in biosynthesis, and to characterize the contributions of chain initiation and elongation in maturation of the glycoprotein. Initiation of the earliest O-linked chains was detected by analysis of conversion of {sup 3}H-thr to {sup 3}H 2-aminobutyrate following mild alkaline borohydride elimination of O-linked sugars from peanut lectin-precipitated ASGP-1. Initiation was detected within 5 min of translation; amino sugar analysis of GlcNH{sub 2}-labeled, trypsinized cells also showed that GalNAc was added as late as 5 min prior to arrival of ASGP-1 at the cell surface. Thus initiation occurs throughout biosynthesis. Maturation of the glycoprotein from a lightly-glycosylated immature form to the heavily-glycosylated mature from involved both continued initiation of new chains and chain elongation, and occurred with a half-time of about 30 min. Analysis of labeled ASGP-1 released from the cell surface by trypsinization showed that although some newly-synthesized ASGP-1 reached the cell surface within 70-80 min of protein synthesis, the half-time for appearance of mature glycoprotein was in excess of 4 hr, indicating that most molecules reside in an intracellular compartment(s) for a considerable time.

  2. The cell-wall glycoproteins of the green alga Scenedesmus obliquus. The predominant cell-wall polypeptide of Scenedesmus obliquus is related to the cell-wall glycoprotein gp3 of Chlamydomonas reinhardtii.

    Science.gov (United States)

    Voigt, Jürgen; Stolarczyk, Adam; Zych, Maria; Malec, Przemysław; Burczyk, Jan

    2014-02-01

    The green alga Scenedesmus obliquus contains a multilayered cell wall, ultrastructurally similar to that of Chlamydomonas reinhardtii, although its proportion of hydroxyproline is considerably lower. Therefore, we have investigated the polypeptide composition of the insoluble and the chaotrope-soluble wall fractions of S. obliquus. The polypeptide pattern of the chaotrope-soluble wall fraction was strongly modified by chemical deglycosylation with anhydrous hydrogen fluoride (HF) in pyridine indicating that most of these polypeptides are glycosylated. Polypeptide constituents of the chaotrope-soluble cell-wall fraction with apparent molecular masses of 240, 270, 265, and 135 kDa cross-reacted with a polyclonal antibody raised against the 100 kDa deglycosylation product of the C. reinhardtii cell-wall glycoprotein GP3B. Chemical deglycosylation of the chaotrope-soluble wall fraction resulted in a 135 kDa major polypeptide and a 106 kDa minor component reacting with the same antibody. This antibody recognized specific peptide epitopes of GP3B. When the insoluble wall fraction of S. obliquus was treated with anhydrous HF/pyridine, three polypeptides with apparent molecular masses of 144, 135, and 65 kDa were solubilized, which also occured in the deglycosylated chaotrope-soluble wall fraction. These findings indicate that theses glycoproteins are cross-linked to the insoluble wall fraction via HF-sensitive bonds. PMID:24388513

  3. Enhanced de novo ceramide generation through activation of serine palmitoyltransferase by the P-glycoprotein antagonist SDZ PSC 833 in breast cancer cells.

    Science.gov (United States)

    Wang, Hongtao; Giuliano, Armando E; Cabot, Myles C

    2002-07-01

    SDZ PSC 833 (PSC 833), a P-glycoprotein-targeted multidrug resistance modulator, sensitizes cancer cells to chemotherapy. Here we show that PSC 833 also potentiates the formation of ceramide. Because ceramide is a second messenger in chemotherapy-induced apoptosis, knowledge of the lipid pathways influenced by PSC 833 is of relevance. In intact MDA-MB 468 breast cancer cells, ceramide generation increased 3-fold 1 h after PSC 833 addition (5.0 microM). Cyclosporine A, a structural analogue, failed to impact ceramide metabolism. Sphinganine, the upstream precursor of ceramide, also increased in response to PSC 833, and this could be blocked by adding L-cycloserine, a serine palmitoyltransferase (SPT) inhibitor. Exposure of cultured cells to PSC 833 (30 min to 4 h; 1-10 microM), followed by isolation of microsomes for in vitro assay, increased SPT activity 60%, whereas palmitoyl CoA synthetase and ceramide synthase activities were not altered. SPT activity was also heightened by pretreating cells with either paclitaxel, N-(4-hydroxyphenyl)retinamide, etoposide, or daunorubicin; however, activation was half that attained by PSC 833. PSC 833 stimulated ceramide generation in other breast cancer cell lines as well, including BT-20, MDA-MB 231, Hs 578T, T-47D, and MCF-7. In summary, several types of anticancer agents and the P-glycoprotein modulator PSC 833 share the ability to increase cellular ceramide levels by activation of SPT, the rate-limiting enzyme in the de novo pathway of ceramide synthesis. These data provide novel insight in the area of lipid-mediated cell death.

  4. The human rhabdomyosarcoma cell line TE671--Towards an innovative production platform for glycosylated biopharmaceuticals.

    Science.gov (United States)

    Rosenlöcher, Julia; Weilandt, Constanze; Sandig, Grit; Reinke, Stefan O; Blanchard, Véronique; Hinderlich, Stephan

    2015-11-01

    The market of therapeutic glycoproteins (including coagulation factors, antibodies, cytokines and hormones) is one of the profitable, fast-growing and challenging sectors of the biopharmaceutical industry. Although mammalian cell culture is still expensive and technically complex, the ability to produce desired post-translational modifications, in particular glycosylation, is a major issue. Glycans can influence ligand binding, serum half-life as well as biological activity or product immunogenicity. Aiming to establish a novel production platform for recombinant glycoproteins, the human TE671 cell line was investigated. Since the initial analysis of cell membrane proteins showed a promising glycosylation of TE671 cells for biotechnological purposes, we focused on the recombinant expression of two model glycoproteins of therapeutical relevance. The optimization of the cell transfection procedure and serum-free expression succeeded for the human serine protease inhibitor alpha-1-antitrypsin (A1AT) and the hematopoietic cytokine granulocyte-macrophage colony-stimulating factor (GM-CSF). N-glycan analyses of both purified proteins by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry provided first fundamental insights into the TE671 glycosylation potential. Besides protein specific pattern, strong distinctions - in particular for N-glycan fucosylation and sialylation - were observed depending on the medium conditions of the respective TE671 cell cultivations. The cell line's ability to synthesize complex and highly sialylated N-glycan structures has been shown. Our results demonstrate the TE671 cell line as a serious alternative to other existing human expression systems.

  5. Receptor-Targeted Nipah Virus Glycoproteins Improve Cell-Type Selective Gene Delivery and Reveal a Preference for Membrane-Proximal Cell Attachment.

    Directory of Open Access Journals (Sweden)

    Ruben R Bender

    2016-06-01

    Full Text Available Receptor-targeted lentiviral vectors (LVs can be an effective tool for selective transfer of genes into distinct cell types of choice. Moreover, they can be used to determine the molecular properties that cell surface proteins must fulfill to act as receptors for viral glycoproteins. Here we show that LVs pseudotyped with receptor-targeted Nipah virus (NiV glycoproteins effectively enter into cells when they use cell surface proteins as receptors that bring them closely enough to the cell membrane (less than 100 Å distance. Then, they were flexible in receptor usage as demonstrated by successful targeting of EpCAM, CD20, and CD8, and as selective as LVs pseudotyped with receptor-targeted measles virus (MV glycoproteins, the current standard for cell-type specific gene delivery. Remarkably, NiV-LVs could be produced at up to two orders of magnitude higher titers compared to their MV-based counterparts and were at least 10,000-fold less effectively neutralized than MV glycoprotein pseudotyped LVs by pooled human intravenous immunoglobulin. An important finding for NiV-LVs targeted to Her2/neu was an about 100-fold higher gene transfer activity when particles were targeted to membrane-proximal regions as compared to particles binding to a more membrane-distal epitope. Likewise, the low gene transfer activity mediated by NiV-LV particles bound to the membrane distal domains of CD117 or the glutamate receptor subunit 4 (GluA4 was substantially enhanced by reducing receptor size to below 100 Å. Overall, the data suggest that the NiV glycoproteins are optimally suited for cell-type specific gene delivery with LVs and, in addition, for the first time define which parts of a cell surface protein should be targeted to achieve optimal gene transfer rates with receptor-targeted LVs.

  6. Cell wall glycoproteins at interaction sites between parasitic giant dodder (Cuscuta reflexa) and its host Pelargonium zonale.

    Science.gov (United States)

    Striberny, Bernd; Krause, Kirsten

    2015-01-01

    The process of host plant penetration by parasitic dodder (genus Cuscuta) is accompanied by molecular and structural changes at the host/parasite interface. Recently, changes in pectin methyl esterification levels in the host cell walls abutting parasitic cells in established infection sites were reported. In addition to that, we show here that the composition of cell wall glycoproteins in Cuscuta-infected Pelargonium zonale undergoes substantial changes. While several arabinogalactan protein epitopes exhibit decreased abundances in the vicinity of the Cuscuta reflexa haustorium, extensins tend to increase in the infected areas. PMID:26367804

  7. Cell wall glycoproteins at interaction sites between parasitic giant dodder (Cuscuta reflexa) and its host Pelargonium zonale.

    Science.gov (United States)

    Striberny, Bernd; Krause, Kirsten

    2015-01-01

    The process of host plant penetration by parasitic dodder (genus Cuscuta) is accompanied by molecular and structural changes at the host/parasite interface. Recently, changes in pectin methyl esterification levels in the host cell walls abutting parasitic cells in established infection sites were reported. In addition to that, we show here that the composition of cell wall glycoproteins in Cuscuta-infected Pelargonium zonale undergoes substantial changes. While several arabinogalactan protein epitopes exhibit decreased abundances in the vicinity of the Cuscuta reflexa haustorium, extensins tend to increase in the infected areas.

  8. Delayed Biosynthesis of Varicella-Zoster Virus Glycoprotein C: Upregulation by Hexamethylene Bisacetamide and Retinoic Acid Treatment of Infected Cells

    OpenAIRE

    Storlie, Johnathan; Jackson, Wallen; Hutchinson, Jennifer; Grose, Charles

    2006-01-01

    In the course of examining the trafficking pathways of varicella-zoster virus (VZV) glycoproteins gE, gI, gH, and gB, we discovered that all four are synthesized within 4 to 6 h postinfection (hpi) in cultured cells. Thereafter, they travel via the trans-Golgi network to the outer cell membrane. When we carried out a similar analysis on VZV gC, we observed little gC biosynthesis in the first 72 hpi. Further examination disclosed that gC was present in the inocula of infected cells, but no new...

  9. Acute myeloid leukemia cells MOLM-13 and SKM-1 established for resistance by azacytidine are crossresistant to P-glycoprotein substrates.

    Science.gov (United States)

    Messingerova, Lucia; Imrichova, Denisa; Kavcova, Helena; Turakova, Katarina; Breier, Albert; Sulova, Zdena

    2015-10-01

    Establishment of the acute myeloid leukemia cells SKM-1 and MOLM-13 for resistance by azacytidine (AzaC) resulted in SKM-1/AzaC and MOLM-13/AzaC cell variants with reduced sensitivity to AzaC. Despite the fact that AzaC is not substrate of P-glycoprotein (P-gp), the adaptation procedure resulted in an induction in P-gp expression/efflux activity that confers crossresistance to P-gp substrates in both resistant cell variants. While the resistance to P-gp substrates in SKM-1/AzaC and MOLM-13/AzaC cells could be reversed by the P-gp inhibitors, resistance to AzaC was insensitive to these inhibitors in both resistant cell variants. In addition, NF-κB and the antiapoptotic protein Bcl-2 were downregulated and the proapoptotic proteins Bax and p53 were upregulated in both resistant cell variants when compared with their sensitive counterparts. Moreover, at least five times the elevation in overall glutathione S-transferase activity was measured with 1-chloro-2, 5-dinitrobenzene as a substrate in the resistant variant of both cell lines. Taken together, the findings of the present study indicate that the treatment of AML cells with AzaC might lead to a drug resistance phenotype that may be associated with cross resistance to P-gp substrates and substrates of glutathione S-transferases.

  10. Mining the O-mannose glycoproteome reveals cadherins as major O-mannosylated glycoproteins

    DEFF Research Database (Denmark)

    Vester-Christensen, Malene B; Halim, Adnan; Joshi, Hiren Jitendra;

    2013-01-01

    The metazoan O-mannose (O-Man) glycoproteome is largely unknown. It has been shown that up to 30% of brain O-glycans are of the O-Man type, but essentially only alpha-dystroglycan (α-DG) of the dystrophin-glycoprotein complex is well characterized as an O-Man glycoprotein. Defects in O......-Man glycans in cadherins suggest that they play important functional roles for this large group of cell adhesion glycoproteins, which can now be addressed. The developed O-Man SimpleCell strategy is applicable to most types of cell lines and enables proteome-wide discovery of O-Man protein glycosylation....

  11. Standards for Cell Line Authentication and Beyond

    Science.gov (United States)

    Cole, Kenneth D.; Plant, Anne L.

    2016-01-01

    Different genomic technologies have been applied to cell line authentication, but only one method (short tandem repeat [STR] profiling) has been the subject of a comprehensive and definitive standard (ASN-0002). Here we discuss the power of this document and why standards such as this are so critical for establishing the consensus technical criteria and practices that can enable progress in the fields of research that use cell lines. We also examine other methods that could be used for authentication and discuss how a combination of methods could be used in a holistic fashion to assess various critical aspects of the quality of cell lines. PMID:27300367

  12. Difference in Membrane Repair Capacity Between Cancer Cell Lines and a Normal Cell Line.

    Science.gov (United States)

    Frandsen, Stine Krog; McNeil, Anna K; Novak, Ivana; McNeil, Paul L; Gehl, Julie

    2016-08-01

    Electroporation-based treatments and other therapies that permeabilize the plasma membrane have been shown to be more devastating to malignant cells than to normal cells. In this study, we asked if a difference in repair capacity could explain this observed difference in sensitivity. Membrane repair was investigated by disrupting the plasma membrane using laser followed by monitoring fluorescent dye entry over time in seven cancer cell lines, an immortalized cell line, and a normal primary cell line. The kinetics of repair in living cells can be directly recorded using this technique, providing a sensitive index of repair capacity. The normal primary cell line of all tested cell lines exhibited the slowest rate of dye entry after laser disruption and lowest level of dye uptake. Significantly, more rapid dye uptake and a higher total level of dye uptake occurred in six of the seven tested cancer cell lines (p electroporation. Viability in the primary normal cell line (98 % viable cells) was higher than in the three tested cancer cell lines (81-88 % viable cells). These data suggest more effective membrane repair in normal, primary cells and supplement previous explanations why electroporation-based therapies and other therapies permeabilizing the plasma membrane are more effective on malignant cells compared to normal cells in cancer treatment. PMID:27312328

  13. Biphasic regulation of P-glycoprotein function and expression by NO donors in Caco-2 cells

    Institute of Scientific and Technical Information of China (English)

    Ru DUAN; Nan HU; Hai-yan LIU; Jia LI; Hai-fang GUO; Can LIU; Li LIU; Xiao-dong LIU

    2012-01-01

    Aim:To investigate the effects of nitric oxide (NO) donors on the function and expression of P-glycoprotein (P-gp) in Caco-2 cells.Methods:Caco-2 cells were exposed to NO donors for designated times.P-gp function and expression were assessed using Rhodamine123 uptake assay and Western blotting,respectively.Intracellular reactive oxygen species (iROS) and intracellular reactive nitrogen species (iRNS) levels were measured using ROS and RNS assay kits,respectively.Results:Exposure of Caco-2 cells to 0.1 or 2 mmol/L of sodium nitroprusside (SNP) affected the function and expression of P-gp in concentration- and time-dependent manners.A short-term (4 h) exposure reduced P-gp function and expression accompanied with significantly increased levels of iROS and iRNS.In contrast,a long-term (24 h) exposure stimulated the P-gp function and expression.The stimulatory effects of 2 mmol/L SNP was less profound as compared to those caused by 0.1 mmol/L SNP.The other NO donors SIN-1 and SNAP showed similar effects.Neither the NO scavenger PTIO (2 mmol/L) nor soluble guanylate cyclase inhibitor ODQ (50 μmol/L) reversed the SNP-induced alteration of P-gp function.On the other hand,free radical scavengers ascorbate,glutathione and uric acid (2 mmol/L for each),PKC inhibitor chelerythrine (5 μmol/L),PI3K/Akt inhibitor wortmannin (1 pmol/L) and p38 MAPK inhibitor SB203580 (10 μmol/L) reversed the upregulation of P-gp function by the long-term exposure to SNP,but these agents had no effect on the impaired P-gp function following the short-term exposure to SNP.Conclusion:NO donors time-dependently regulate P-gp function and expression in Caco-2 cells:short-term exposure impairs P-gp function and expression,whereas long-term exposure stimulates P-gp function and expression.The regulation occurs via a NO-independent mechanism.

  14. In vitro development of chemotherapy and targeted therapy drug-resistant cancer cell lines: A practical guide with case studies

    Directory of Open Access Journals (Sweden)

    Martina eMcDermott

    2014-03-01

    Full Text Available The development of a drug-resistant cell line can take from 3-18 months. However, little is published on the methodology of this development process. This article will discuss key decisions to be made prior to starting resistant cell line development; the choice of parent cell line, dose of selecting agent, treatment interval and optimising the dose of drug for the parent cell line. Clinically-relevant drug-resistant cell lines are developed by mimicking the conditions cancer patients experience during chemotherapy and cell lines display between 2-8 fold resistance compared to their parental cell line. Doses of drug administered are low, and a pulsed treatment strategy is often used where the cells recover in drug-free media. High-level laboratory models are developed with the aim of understanding potential mechanisms of resistance to chemotherapy agents. Doses of drug are higher and escalated over time. It is common to have difficulty developing stable clinically-relevant drug-resistant cell lines. A comparative selection strategy of multiple cell lines or multiple chemotherapeutic agents mitigates this risk and gives insight into which agents or type of cell line develops resistance easily. Successful selection strategies from our research are presented. Pulsed-selection produced platinum or taxane-resistant large cell lung cancer (H1299, H460 and temozolomide-resistant melanoma (Malme-3M and HT144 cell lines. Continuous selection produced lapatinib-resistant breast cancer cell line (HCC1954. Techniques for maintaining drug-resistant cell lines are outlined including; maintaining cells with chemotherapy, pulse treating with chemotherapy or returning to master drug-resistant stocks. The heterogeneity of drug-resistant models produced from the same parent cell line with the same chemotherapy agent is explored with reference to P-glycoprotein. Heterogeneity in drug-resistant cell lines reflects the heterogeneity that can occur in clinical drug

  15. Establishment of a hamster lymphoma cell line

    Directory of Open Access Journals (Sweden)

    Abe,Shinji

    1974-08-01

    Full Text Available The establishment of a hamster lymphoma cell line was attempted. Simple mincing and trypsinization of lymphoma tissue resulted in a high degree of cell degeneration. The ascitic tumor cells produced by intraperitoneal transplantation of lymphoma tissue gave a better result. These ascitic cells grew and were cultured successively in medium consisting of RPMI 1640 and 20% fetal calf serum. Cells were round and grew in suspension. Accelerated cell growth was observed one month after starting the culture. In the stained preparations, cells were lymphoblastic. Cells were transplantable into new-born hamsters and produced tumors, but not in young adult hamsters.

  16. Reversal of resistance by GF120918 in cell lines expressing the ABC half-transporter, MXR

    DEFF Research Database (Denmark)

    de Bruin, M; Miyake, K; Litman, Thomas;

    1999-01-01

    assays, rhodamine and calcein efflux assays, and confocal microscopy in cell lines expressing different multidrug resistance transporters. At a concentration of 1 microM in cytotoxicity assays, GF120918 was able to sensitize both S1-B1-20, a subline expressing P-glycoprotein (Pgp), and S1-M1...... concentrations as low as 25-50 nM, with 250 nM giving complete inhibition of rhodamine efflux. Complete inhibition of rhodamine efflux in mitoxantrone-resistant S1-M1-80 cells required 10 microM. Examination of intracellular mitoxantrone accumulation by confocal microscopy confirmed higher levels of mitoxantrone...

  17. Herpes simplex virus (HSV)-specific proliferative and cytotoxic T-cell responses in humans immunized with an HSF type 2 glycoprotein subunit vaccine

    International Nuclear Information System (INIS)

    Studies were undertaken to determine whether immunization of humans with a herpes simplex virus type 2 (HSV-2) glycoprotein-subunit vaccine would result in the priming of both HSV-specific proliferating cells and cytotoxic T cells. Peripheral blood lymphocytes (PBL) from all eight vaccinees studied responded by proliferating after stimulation with HSV-2, HSV-1, and glycoprotein gB-1. The PBL of five of these eight vaccinees proliferated following stimulation with gD-2, whereas stimulation with Gd-1 resulted in relatively low or no proliferative responses. T-cell clones were generated from HSV-2-stimulated PBL of three vaccinees who demonstrated strong proliferative responses to HSV-1 and HSV-2. Of 12 clones studied in lymphoproliferative assays, 9 were found to be cross-reactive for HSV-1 and HSV-2. Of the approximately 90 T-cell clones isolated, 14 demonstrated HSV-specific cytotoxic activity. Radioimmunoprecipitation-polyacrylamide gel electrophoresis analyses confirmed that the vaccinees had antibodies only to HSV glycoproteins, not to proteins which are absent in the subunit vaccine, indicating that these vaccinees had not become infected with HSV. Immunization of humans with an HSV-2 glycoprotein-subunit vaccine thus results in the priming of T cells that proliferate in response to stimulation with HSV and its glycoproteins and T cells that have cytotoxic activity against HSV-infected cells. Such HSV-specific memory T cells were detected as late as 2 years following the last boost with the subunit vaccine

  18. Herpes simplex virus (HSV)-specific proliferative and cytotoxic T-cell responses in humans immunized with an HSF type 2 glycoprotein subunit vaccine

    Energy Technology Data Exchange (ETDEWEB)

    Zarling, J.M.; Moran, P.A.; Brewer, L.; Ashley, R.; Corey, L.

    1988-12-01

    Studies were undertaken to determine whether immunization of humans with a herpes simplex virus type 2 (HSV-2) glycoprotein-subunit vaccine would result in the priming of both HSV-specific proliferating cells and cytotoxic T cells. Peripheral blood lymphocytes (PBL) from all eight vaccinees studied responded by proliferating after stimulation with HSV-2, HSV-1, and glycoprotein gB-1. The PBL of five of these eight vaccinees proliferated following stimulation with gD-2, whereas stimulation with Gd-1 resulted in relatively low or no proliferative responses. T-cell clones were generated from HSV-2-stimulated PBL of three vaccinees who demonstrated strong proliferative responses to HSV-1 and HSV-2. Of 12 clones studied in lymphoproliferative assays, 9 were found to be cross-reactive for HSV-1 and HSV-2. Of the approximately 90 T-cell clones isolated, 14 demonstrated HSV-specific cytotoxic activity. Radioimmunoprecipitation-polyacrylamide gel electrophoresis analyses confirmed that the vaccinees had antibodies only to HSV glycoproteins, not to proteins which are absent in the subunit vaccine, indicating that these vaccinees had not become infected with HSV. Immunization of humans with an HSV-2 glycoprotein-subunit vaccine thus results in the priming of T cells that proliferate in response to stimulation with HSV and its glycoproteins and T cells that have cytotoxic activity against HSV-infected cells. Such HSV-specific memory T cells were detected as late as 2 years following the last boost with the subunit vaccine.

  19. Golgi-specific localization of transglycosylases engaged in glycoprotein biosynthesis in suspension-cultured cells of sycamore (Acer pseudoplatanus L.).

    Science.gov (United States)

    Ali, M S; Mitsui, T; Akazawa, T

    1986-12-01

    Golgi complex and endoplasmic reticulum (ER) were isolated from suspension-cultured cells of sycamore (Acer pseudoplatanus L.) by stepwise sucrose density gradient centrifugation using protoplasts as starting material. The purity of the two organelle fractions isolated was assessed by measuring marker enzyme activities. Localization of glycolipid and glycoprotein glycosyltransferase activities in the isolated Golgi and ER fractions was examined; three glycosyltransferases, i.e., galactosyltransferase, fucosyltransferase, and xylosyltransferase, proved to be almost exclusively confined to the Golgi, whereas the ER fractions contained glycolipid glycosyltransferase. The Golgi complex was further subfractionated on a discontinuous sucrose density gradient into two components, migrating at densities of 1.118 and 1.127 g/cm3. The two fractions differed in their compositional polypeptide bands discernible from Na-dodecylsulfate gel electrophoresis. Galactosyltransferase distributed nearly equally between the two protein peaks and xylosyltransferase activities using the endogenous acceptor also appeared to be localized in the two subcompartments. By contrast, fucosyltransferase, engaged in the terminal stage of glycosylation, banded in the lower density fractions. Golgi-specific alpha-mannosidase, which is presumably engaged in the sugar trimming of Asn-N-linked glycoprotein carbohydrate core, was enriched fourfold in specific activity in the fractions of the higher density. The overall experimental results indicate that the cotranslational glycosylation of Asn-N-linked glycoproteins, e.g., polyphenol oxidase (laccase), takes place in the ER, while subsequent post-translational processing of the oligosaccharide moiety proceeds successively in the two physically separable compartments of the Golgi complex.

  20. Susceptibility of cell lines to avian viruses

    Directory of Open Access Journals (Sweden)

    Simoni Isabela Cristina

    1999-01-01

    Full Text Available The susceptibility of the five cell lines - IB-RS-2, RK-13, Vero, BHK-21, CER - to reovirus S1133 and infectious bursal disease virus (IBDV vaccine GBV-8 strain was studied to better define satisfactory and sensitive cell culture systems. Cultures were compared for presence of CPE, virus titers and detection of viral RNA. CPE and viral RNA were detected in CER and BHK-21 cells after reovirus inoculation and in RK-13 cell line after IBDV inoculation and with high virus titers. Virus replication by production of low virus titers occurred in IB-RS-2 and Vero cells with reovirus and in BHK-21 cell line with IBDV.

  1. Characterisation and Manipulation of Docetaxel Resistant Prostate Cancer Cell Lines

    LENUS (Irish Health Repository)

    O'Neill, Amanda J

    2011-10-07

    Abstract Background There is no effective treatment strategy for advanced castration-resistant prostate cancer. Although Docetaxel (Taxotere®) represents the most active chemotherapeutic agent it only gives a modest survival advantage with most patients eventually progressing because of inherent or acquired drug resistance. The aims of this study were to further investigate the mechanisms of resistance to Docetaxel. Three Docetaxel resistant sub-lines were generated and confirmed to be resistant to the apoptotic and anti-proliferative effects of increasing concentrations of Docetaxel. Results The resistant DU-145 R and 22RV1 R had expression of P-glycoprotein and its inhibition with Elacridar partially and totally reversed the resistant phenotype in the two cell lines respectively, which was not seen in the PC-3 resistant sublines. Resistance was also not mediated in the PC-3 cells by cellular senescence or autophagy but multiple changes in pro- and anti-apoptotic genes and proteins were demonstrated. Even though there were lower basal levels of NF-κB activity in the PC-3 D12 cells compared to the Parental PC-3, docetaxel induced higher NF-κB activity and IκB phosphorylation at 3 and 6 hours with only minor changes in the DU-145 cells. Inhibition of NF-κB with the BAY 11-7082 inhibitor reversed the resistance to Docetaxel. Conclusion This study confirms that multiple mechanisms contribute to Docetaxel resistance and the central transcription factor NF-κB plays an immensely important role in determining docetaxel-resistance which may represent an appropriate therapeutic target.

  2. Identification of P-Glycoprotein and Transport Mechanism of Paclitaxel in Syncytiotrophoblast Cells

    OpenAIRE

    Lee, Na-Young; Lee, Ha-Eun; Kang, Young-Sook

    2014-01-01

    When chemotherapy is administered during pregnancy, it is important to consider the fetus chemotherapy exposure, because it may lead to fetal consequences. Paclitaxel has become widely used in the metastatic and adjuvant settings for woman with cancer including breast and ovarian cancer. Therefore, we attempted to clarify the transport mechanisms of paclitaxel through blood-placenta barrier using rat conditionally immortalized syncytiotrophoblast cell lines (TR-TBTs). The uptake of paclitaxel...

  3. Glycoprotein 130 receptor signaling mediates α-cell dysfunction in a rodent model of type 2 diabetes

    DEFF Research Database (Denmark)

    Chow, Samuel Z; Speck, Madeleine; Yoganathan, Piriya;

    2014-01-01

    knockout (αgp130KO) mice showed no differences in glycemic control, α-cell function, or α-cell mass. However, when subjected to streptozotocin plus high-fat diet to induce islet inflammation and pathophysiology modeling type 2 diabetes, αgp130KO mice had reduced fasting glycemia, improved glucose tolerance......Dysregulated glucagon secretion accompanies islet inflammation in type 2 diabetes. We recently discovered that interleukin (IL)-6 stimulates glucagon secretion from human and rodent islets. IL-6 family cytokines require the glycoprotein 130 (gp130) receptor to signal. In this study, we elucidated...... the effects of α-cell gp130 receptor signaling on glycemic control in type 2 diabetes. IL-6 family cytokines were elevated in islets in rodent models of this disease. gp130 receptor activation increased STAT3 phosphorylation in primary α-cells and stimulated glucagon secretion. Pancreatic α-cell gp130...

  4. Fluorescent Protein-Tagged Sindbis Virus E2 Glycoprotein Allows Single Particle Analysis of Virus Budding from Live Cells.

    Science.gov (United States)

    Jose, Joyce; Tang, Jinghua; Taylor, Aaron B; Baker, Timothy S; Kuhn, Richard J

    2015-12-01

    Sindbis virus (SINV) is an enveloped, mosquito-borne alphavirus. Here we generated and characterized a fluorescent protein-tagged (FP-tagged) SINV and found that the presence of the FP-tag (mCherry) affected glycoprotein transport to the plasma membrane whereas the specific infectivity of the virus was not affected. We examined the virions by transmission electron cryo-microscopy and determined the arrangement of the FP-tag on the surface of the virion. The fluorescent proteins are arranged icosahedrally on the virus surface in a stable manner that did not adversely affect receptor binding or fusion functions of E2 and E1, respectively. The delay in surface expression of the viral glycoproteins, as demonstrated by flow cytometry analysis, contributed to a 10-fold reduction in mCherry-E2 virus titer. There is a 1:1 ratio of mCherry to E2 incorporated into the virion, which leads to a strong fluorescence signal and thus facilitates single-particle tracking experiments. We used the FP-tagged virus for high-resolution live-cell imaging to study the spatial and temporal aspects of alphavirus assembly and budding from mammalian cells. These processes were further analyzed by thin section microscopy. The results demonstrate that SINV buds from the plasma membrane of infected cells and is dispersed into the surrounding media or spread to neighboring cells facilitated by its close association with filopodial extensions.

  5. Fluorescent Protein-Tagged Sindbis Virus E2 Glycoprotein Allows Single Particle Analysis of Virus Budding from Live Cells

    Directory of Open Access Journals (Sweden)

    Joyce Jose

    2015-11-01

    Full Text Available Sindbis virus (SINV is an enveloped, mosquito-borne alphavirus. Here we generated and characterized a fluorescent protein-tagged (FP-tagged SINV and found that the presence of the FP-tag (mCherry affected glycoprotein transport to the plasma membrane whereas the specific infectivity of the virus was not affected. We examined the virions by transmission electron cryo-microscopy and determined the arrangement of the FP-tag on the surface of the virion. The fluorescent proteins are arranged icosahedrally on the virus surface in a stable manner that did not adversely affect receptor binding or fusion functions of E2 and E1, respectively. The delay in surface expression of the viral glycoproteins, as demonstrated by flow cytometry analysis, contributed to a 10-fold reduction in mCherry-E2 virus titer. There is a 1:1 ratio of mCherry to E2 incorporated into the virion, which leads to a strong fluorescence signal and thus facilitates single-particle tracking experiments. We used the FP-tagged virus for high-resolution live-cell imaging to study the spatial and temporal aspects of alphavirus assembly and budding from mammalian cells. These processes were further analyzed by thin section microscopy. The results demonstrate that SINV buds from the plasma membrane of infected cells and is dispersed into the surrounding media or spread to neighboring cells facilitated by its close association with filopodial extensions.

  6. Inhibitory effect of glycoprotein isolated from Opuntia ficus-indica var. saboten MAKINO on activities of allergy-mediators in compound 48/80-stimulated mast cells.

    Science.gov (United States)

    Lim, Kye-Taek

    2010-01-01

    The present study was performed to investigate the anti-allergy potentials of glycoprotein (90kDa) isolated from Opuntia ficus-indica var. saboten MAKINO (OFI glycoprotein) in vivo (ICR mice) and in vitro (RBL-2H3 cells). At first, to know whether the OFI glycoprotein has an inhibitory ability for allergy in vivo, we evaluated the activities of allergy-related factors such as histamine and beta-hexosaminidase release, lactate dehydrogenase (LDH), and interleukin 4 (IL-4) in compound 48/80 (8 ml/kg BW)-treated ICR mice. After that, we studied to found the effect for anti-allergy in vitro such as nuclear factor kappa B (NF-kappaB) and inducible nitric oxide synthase (iNOS), extracellular signal-regulated kinase (ERK) 1/2, arachidonic acid, and cyclooxygenase-2 (COX-2) in compound 48/80 (5 microg/ml)-treated RBL-2H3 cells. Our results showed that the OFI glycoprotein (5 mg/kg) inhibited histamine and beta-hexosaminidase release, lactate dehydrogenase (LDH), and interleukin 4 (IL-4) in mice serum. Also OFI glycoprotein (25 microg/ml) has suppressive effects on the expression of MAPK (ERK1/2), and on protein expression of anti-allergic proteins (iNOS and COX-2). Thus, we speculate that the OFI glycoprotein is an example of natural compound that blocks anti-allergic signal transduction pathways.

  7. Plant-originated glycoprotein (24 kDa) has an inhibitory effect on proliferation of BNL CL.2 cells in response to di(2-ethylhexyl)phthalate.

    Science.gov (United States)

    Lee, Jin; Lim, Kye-Taek

    2011-08-01

    Di(2-ethylhexyl)phthalate (DEHP) is one of the many environmental chemicals that are widely used in polyvinyl chloride products, vinyl flooring, food packaging and infant toys. They cause cell proliferation or dysfunction of human liver. The purpose of this study is to investigate the inhibitory effect of a glycoprotein (24 kDa) isolated from Zanthoxylum piperitum DC (ZPDC) on proliferation of liver cell in the DEHP-induced BNL CL. 2 cells. [³H]-thymidine incorporation, intracellular reactive oxygen species (ROS), intracellular Ca²⁺ mobilization and activity of protein kinase C (PKC) were measured using radioactivity and fluorescence method respectively. The expression of mitogen-activated protein kinases [extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK)], activator protein (AP)-1 (c-Jun and c-Fos), proliferating cell nuclear antigen (PCNA) and cell cycle-related factors (cyclin D1/cyclin-dependent kinase [CDK] 4) were evaluated using Western blotting or electrophoretic mobility shift assay. The results in this study showed that the levels of [³H]-thymidine incorporation, intracellular ROS, intracellular Ca²⁺ mobilization and activity of PKCα were inhibited by ZPDC glycoprotein (100 µg/ml) in the DEHP-induced BNL CL. 2 cells. Also, activities of ERK, JNK and AP-1 were reduced by ZPDC glycoprotein (100 µg/ml). With regard to cell proliferation, activities of PCNA and cyclin D1/CDK4 were significantly suppressed at treatment with ZPDC glycoprotein (100 µg/ml) in the presence of DEHP. Taken together, these findings suggest that ZPDC glycoprotein significantly normalized activities of PCNA and cyclin D1/CDK4, which relate to cell proliferation factors. Thus, ZPDC glycoprotein appears to be one of the compounds derived from natural products that are able to inhibit cell proliferation in the phthalate-induced BNL CL. 2 cells. PMID:21721021

  8. The equine herpesvirus 1 glycoprotein gp21/22a, the herpes simplex virus type 1 gM homolog, is involved in virus penetration and cell-to-cell spread of virions.

    OpenAIRE

    Osterrieder, N.; Neubauer, A.; Brandmuller, C; Braun, B.; Kaaden, O R; Baines, J D

    1996-01-01

    Experiments to analyze the function of the equine herpesvirus 1 (EHV-1) glycoprotein gM homolog were conducted. To this end, an Rk13 cell line (TCgM) that stably expressed EHV-1 gM was constructed. Proteins with apparent M(r)s of 46,000 to 48,000 and 50,000 to 55,000 were detected in TCgM cells with specific anti-gM antibodies, and the gM protein pattern was indistinguishable from that in cells infected with EHV-1 strain RacL11. A viral mutant (L11deltagM) bearing an Escherichia coli lacZ gen...

  9. Induction of actin disruption and downregulation of P-glycoprotein expression by solamargine in multidrug-resistant K562/A02 cells

    Institute of Scientific and Technical Information of China (English)

    LI Xia; ZHAO Ying; JI Mei; LIU Shan-shan; CUI Min; LOU Hong-xiang

    2011-01-01

    Background Solamargine (SM), a steroidal glycoalkaloid isolated from the Chinese herb Solarium incanum, has been shown to inhibit the growth of some cancer cell lines and induce significant apoptosis. However, the effects of SM on multidrug-resistant (MDR) cells and the molecular mechanisms involved are poorly understood. The purpose of this study was to evaluate the anti-MDR effects of SM and the associated mechanisms in MDR K562/A02 cells.Methods The cytotoxicity of SM was measured by 3-(4,5-dimethylthiazol)-2,5-diphenyltetrazolium bromide (MTT) assay. The 14',6-diamidino-2-phenylindole (DAPI) nuclear staining and flow cytometry were used to detect SM-induced apoptosis. The mRNA expression of P-glycoprotein (P-gp) was investigated by real-time PCR (RT-PCR). Western blotting was used to determine the expression of Bcl-2, Bax, and actin. The changes in the morphology of actin were examined with immunofluorescence staining.Results MTT results showed that SM effectively killed the MDR sublines K562/A02, KB/VCR, and H460/paclitaxel (Taxol), and their parental cell lines K562, KB, and H460 to an equivalent or more sensitive degree. Based on the results by flow cytometry and immunostaining, the pro-apoptotic effects of SM were observed in MDR K562/A02 cells. Furthermore, the RT-PCR results showed that SM induced the downregulation of MDR1 mRNA. In addition, the expression of P-gp and actin was decreased in the SM-treated cells, as measured by western blotting and immunostaining.Conclusions These results demonstrate that SM effectively triggers apoptosis in MDR tumor cells, which is associated with actin disruption and downregulation of MDR1 expression. This compound may merit further investigation as a potential therapeutic agent that bypasses the MDR mechanism for the treatment of MDR tumors.

  10. Virus Discovery Using Tick Cell Lines

    Science.gov (United States)

    Bell-Sakyi, Lesley; Attoui, Houssam

    2016-01-01

    While ticks have been known to harbor and transmit pathogenic arboviruses for over 80 years, the application of high-throughput sequencing technologies has revealed that ticks also appear to harbor a diverse range of endogenous tick-only viruses belonging to many different families. Almost nothing is known about these viruses; indeed, it is unclear in most cases whether the identified viral sequences are derived from actual replication-competent viruses or from endogenous virus elements incorporated into the ticks’ genomes. Tick cell lines play an important role in virus discovery and isolation through the identification of novel viruses chronically infecting such cell lines and by acting as host cells to aid in determining whether or not an entire replication-competent, infective virus is present in a sample. Here, we review recent progress in tick-borne virus discovery and comment on the actual and potential applications for tick cell lines in this emerging research area. PMID:27679414

  11. Chimeric antigen receptor (CAR)-engineered T cells redirected against hepatitis C virus (HCV) E2 glycoprotein

    Science.gov (United States)

    Sautto, Giuseppe A; Wisskirchen, Karin; Clementi, Nicola; Castelli, Matteo; Diotti, Roberta A; Graf, Julia; Clementi, Massimo; Burioni, Roberto; Protzer, Ulrike; Mancini, Nicasio

    2016-01-01

    Objective The recent availability of novel antiviral drugs has raised new hope for a more effective treatment of hepatitis C virus (HCV) infection and its severe sequelae. However, in the case of non-responding or relapsing patients, alternative strategies are needed. To this end we have used chimeric antigen receptors (CARs), a very promising approach recently used in several clinical trials to redirect primary human T cells against different tumours. In particular, we designed the first CARs against HCV targeting the HCV/E2 glycoprotein (HCV/E2). Design Anti-HCV/E2 CARs were composed of single-chain variable fragments (scFvs) obtained from a broadly cross-reactive and cross-neutralising human monoclonal antibody (mAb), e137, fused to the intracellular signalling motif of the costimulatory CD28 molecule and the CD3ζ domain. Activity of CAR-grafted T cells was evaluated in vitro against HCV/E2-transfected cells as well as hepatocytes infected with cell culture-derived HCV (HCVcc). Results In this proof-of-concept study, retrovirus-transduced human T cells expressing anti-HCV/E2 CARs were endowed with specific antigen recognition accompanied by degranulation and secretion of proinflammatory and antiviral cytokines, such as interferon γ, interleukin 2 and tumour necrosis factor α. Moreover, CAR-grafted T cells were capable of lysing target cells of both hepatic and non-hepatic origin expressing on their surface the HCV/E2 glycoproteins of the most clinically relevant genotypes, including 1a, 1b, 2a, 3a, 4 and 5. Finally, and more importantly, they were capable of lysing HCVcc-infected hepatocytes. Conclusions Clearance of HCV-infected cells is a major therapeutic goal in chronic HCV infection, and adoptive transfer of anti-HCV/E2 CARs-grafted T cells represents a promising new therapeutic tool. PMID:25661083

  12. Dynamics of synthetic activity of RNA and glycoproteins in epithel cells of endometrium in heifers after ovulation

    International Nuclear Information System (INIS)

    Synchronized heifers (n=9) of Black Pied HF breed were slaughtered on 3rd, 6th and 9th day of sexual cycle (first day of estrus = 0). Excisions from basal part (A) and functional part (B) of uteri were taken immediately after killing and were processed for autoradiographic analyses. The samples of endometrium were incubated for 20 minutes in isotonic medium with 100 micro Ci uridine (5 -3H) additive with specific activity 740 GBq/mM (UVVVR Prague) to study the RNA synthesis. The endometrium samples were incubated for 60 minutes, and 240 minutes in isotonic medium with 100 micro Ci L-(6-3 H) fucose with specific activity 0.55-1.1 TBqImM (Amersham Int., G.B.) for autoradiographic analysis of the glycoprotein synthesis. The samples were fixed, dehydrated and embedded in Epon 812 after the incubation. The prepared cuts were covered with photographic emulsion and stored in dark box in a refrigerator at 5øC. They were developed in the developer ORWO D 19, stained with methylene blue and examined through the light microscope after one month exposition. We found out by the autoradiographic analysis that the activity of RNA synthesis in cells of the surface epithel is of rising tendency from 3rd to 9th day. The intensity of RNA synthesis does not change in the functional zone during the early lutheal phase, it rises in the basal layer on 6th day, but on 9th day it is the same as on 3rd day. The autoradiographical analysis showed that the activity of RNA synthesis in cells of the surface epithel is of rising tendency from 3rd to 9th day The intensity of RNA synthesis in functional zone does not change during the early lutheal phase, it rises in the basal layer on 6th day, but on 9th day it is the same as on 3rd day. The glycoproteins are synthetised mainly by the Golgi apparatus in supranuclear sphere in the cells of surface epithel and in glandular cells. The glycoproteins were not observed in apical regions of cells on 3rd day of cycle, however, they are intensively

  13. Entamoeba histolytica P-glycoprotein (EhPgp) inhibition, induce trophozoite acidification and enhance programmed cell death.

    Science.gov (United States)

    Medel Flores, Olivia; Gómez García, Consuelo; Sánchez Monroy, Virgina; Villalba Magadaleno, José D'Artagnan; Nader García, Elvira; Pérez Ishiwara, D Guillermo

    2013-11-01

    Programmed cell death (PCD) is induced in Entamoeba histolytica by a variety of stimuli in vitro and in vivo. In mammals, intracellular acidification serves as a global switch for inactivating cellular processes and initiates molecular mechanisms implicated in the destruction of the genome. In contrast, intracellular alkalinization produced by P-glycoprotein overexpression in multidrug-resistant cells has been related to apoptosis resistance. Our previous studies showed that overexpression of E. histolytica P-glycoprotein (PGP) altered chloride-dependent currents and triggered trophozoite swelling, the reverse process of cell shrinkage produced during PCD. Here we showed that antisense inhibition of PGP expression produced a synchronous death of trophozoites and the enhancement of biochemical and morphological characteristics of PCD induced by G418. The nucleus was contracted, and the nuclear membrane was disrupted. Moreover, chromatin was extensively fragmented. Ca(2+) concentration was increased, while the intracellular pH (ipH) was acidified. In contrast, PGP overexpression prevented intracellular acidification and circumvented the apoptotic effect of G418.

  14. Molecular and immuno-characteristics of immunoglobulin-like glycoproteins in cancer cell-expressed biomarker, CA215.

    Science.gov (United States)

    Lee, Gregory; Cheung, Anthony P; Li, Bo; Ge, Bixia; Chow, Po-Ming

    2012-01-01

    RP215 monoclonal antibody (Mab) was shown to recognize a specific carbohydrate-associated epitope found in cancer cell-expressed glycoproteins, known as CA215. The membrane-bound and soluble forms of CA215 were detected in almost all of the cancer cells in humans, but rarely found in normal tissues. Through MALDI-TOF MS analysis, it has been reported previously that as much as 40% of the detected tryptic peptides of CA215 showed high degrees of sequence homology to those found in immunoglobulin heavy chains. The cancer cell-derived immunoglobulins were further purified from CA215 by affinity column-linked with goat anti-human IgG for molecular characterizations. Semi-quantitative RT-PCR was used to determine the mRNA levels of various immunoglobulin genes expressed by cancer cells of single or multi-cell origins and compared with those found in normal human serum. The stability of CA215 was investigated under different experimental conditions. It was observed that the RP215-specific epitope in CA215 is stable at neutral pH, in human serum or in mice (half life of 5-18 days), but unstable at extreme pH's (pH ≤ 2.0; pH ≥ 12.0) or high temperatures. Enzyme immunoassays were performed with several secondary antibody probes related to human IgG. It was demonstrated that cancer cell-expressed immunoglobulins with RP215-specific epitope have much lower immunoactivity than that of normal human IgG (≤ 5%), despite the fact that both showed almost identical amino acid sequence in the respective Fc region reported previously. This could be the result of aberrant glycosylation of CA215 in cancer cells. Aberrant glycosylation of glycoproteins may have important biological implications on the proliferation of cancer cells in vitro or in vivo. PMID:22417288

  15. Clearance and binding of radiolabeled glycoproteins by cells of the murine mononuclear phagocyte system

    International Nuclear Information System (INIS)

    The clearance and binding of radiolabeled lactoferrin and fast α2-macroglobulin were studied. Both glycoproteins cleared rapidly following intravenous injection in mice, and both bound specifically to discrete receptors on murine peritoneal macrophages. The simultaneous presence of excess, unlabeled ligands specific for receptors recognizing terminal fucose, mannose, N-acetylglucosamine or galactose residues did not inhibit the clearance or binding of either lactoferrin or fast-α2M. The clearance and binding of enzymatically defucosylated lactoferrin was indistinguishable from native lactoferrin, indicating that terminal α(1-3)-linked fucose on lactoferrin is not necessary for receptor recognition. The clearance and binding of two fast -α2M forms, α2M-trypsin and α2M-MeNH2 cross compete with each other. Saturation binding studies indicated that the total binding of mannosyl -BSA, fusocyl-BSA, and N-acetylglucosaminyl-BSA to macrophages activated by BCG was approximately 15% of the levels observed with inflammatory macrophages elicited by thioglycollate broth. Cross-competition binding studies demonstrated a common surface receptor mediated binding of all three neoglycoprotein ligands and was identical to the receptor on mononuclear phagocytes that binds mannosyl- and N-acetylglucosaminyl-terminated glycoproteins. These results suggest that difference between discrete states of macrophage function may be correlated with selective changes in levels of the surface receptor for mannose-containing glycoproteins

  16. Analysis of glycoprotein E-selectin ligANDs on human and mouse marrow cells enriched for hematopoietic stem/progenitor cells

    KAUST Repository

    Merzaban, Jasmeen

    2011-06-09

    Although well recognized that expression of E-selectin on marrow microvessels mediates osteotropism of hematopoietic stem/progenitor cells (HSPCs), our knowledge regarding the cognate E-selectin ligand(s) on HSPCs is incomplete. Flow cytometry using E-selectin-Ig chimera (E-Ig) shows that human marrow cells enriched for HSPCs (CD34+ cells) display greater E-selectin binding than those obtained from mouse (lin-/Sca-1+/c-kit+ [LSK] cells). To define the relevant glycoprotein E-selectin ligands, lysates from human CD34+ and KG1a cells and from mouse LSK cells were immunoprecipitated using E-Ig and resolved byWestern blot using E-Ig. In both human and mouse cells, E-selectin ligand reactivity was observed at ∼ 120- to 130-kDa region, which contained two E-selectin ligands, the P-selectin glycoprotein ligand- 1 glycoform "CLA," and CD43. Human, but not mouse, cells displayed a prominent ∼ 100-kDa band, exclusively comprising the CD44 glycoform "HCELL."E-Ig reactivity was most prominent on CLA in mouse cells and on HCELL in human cells. To further assess HCELL\\'s contribution to E-selectin adherence, complementary studies were performed to silence (via CD44 siRNA) or enforce its expression (via exoglycosylation). Under physiologic shear conditions, CD44/HCELL-silenced human cells showed striking decreases (> 50%) in E-selectin binding. Conversely, enforced HCELL expression of LSK cells profoundly increased E-selectin adherence, yielding > 3-fold more marrow homing in vivo. These data define the key glycoprotein E-selectin ligands of human and mouse HSPCs, unveiling critical species-intrinsic differences in both the identity and activity of these structures. © 2011 by The American Society of Hematology.

  17. Investigation of the selenium metabolism in cancer cell lines

    DEFF Research Database (Denmark)

    Lunøe, Kristoffer; Gabel-Jensen, Charlotte; Stürup, Stefan;

    2011-01-01

    The aim of this work was to compare different selenium species for their ability to induce cell death in different cancer cell lines, while investigating the underlying chemistry by speciation analysis. A prostate cancer cell line (PC-3), a colon cancer cell line (HT-29) and a leukaemia cell line...

  18. Natural lignans from Arctium lappa modulate P-glycoprotein efflux function in multidrug resistant cancer cells.

    Science.gov (United States)

    Su, Shan; Cheng, Xinlai; Wink, Michael

    2015-02-15

    Arctium lappa is a well-known traditional medicinal plant in China (TCM) and Europe that has been used for thousands of years to treat arthritis, baldness or cancer. The plant produces lignans as secondary metabolites which have a wide range of bioactivities. Yet, their ability to reverse multidrug resistance (MDR) in cancer cells has not been explored. In this study, we isolated six lignans from A. lappa seeds, namely arctigenin, matairesinol, arctiin, (iso)lappaol A, lappaol C, and lappaol F. The MDR reversal potential of the isolated lignans and the underlying mechanism of action were studied using two MDR cancer cell lines, CaCo2 and CEM/ADR 5000 which overexpress P-gp and other ABC transporters. In two-drug combinations of lignans with the cytotoxic doxorubicin, all lignans exhibited synergistic effects in CaCo2 cells and matairesinol, arctiin, lappaol C and lappaol F display synergistic activity in CEM/ADR 5000 cells. Additionally, in three-drug combinations of lignans with the saponin digitonin and doxorubicin MDR reversal activity was even stronger enhanced. The lignans can increase the retention of the P-gp substrate rhodamine 123 in CEM/ADR 5000 cells, indicating that lignans can inhibit the activity of P-gp. Our study provides a first insight into the potential chemosensitizing activity of a series of natural lignans, which might be candidates for developing novel adjuvant anticancer agents.

  19. Natural lignans from Arctium lappa modulate P-glycoprotein efflux function in multidrug resistant cancer cells.

    Science.gov (United States)

    Su, Shan; Cheng, Xinlai; Wink, Michael

    2015-02-15

    Arctium lappa is a well-known traditional medicinal plant in China (TCM) and Europe that has been used for thousands of years to treat arthritis, baldness or cancer. The plant produces lignans as secondary metabolites which have a wide range of bioactivities. Yet, their ability to reverse multidrug resistance (MDR) in cancer cells has not been explored. In this study, we isolated six lignans from A. lappa seeds, namely arctigenin, matairesinol, arctiin, (iso)lappaol A, lappaol C, and lappaol F. The MDR reversal potential of the isolated lignans and the underlying mechanism of action were studied using two MDR cancer cell lines, CaCo2 and CEM/ADR 5000 which overexpress P-gp and other ABC transporters. In two-drug combinations of lignans with the cytotoxic doxorubicin, all lignans exhibited synergistic effects in CaCo2 cells and matairesinol, arctiin, lappaol C and lappaol F display synergistic activity in CEM/ADR 5000 cells. Additionally, in three-drug combinations of lignans with the saponin digitonin and doxorubicin MDR reversal activity was even stronger enhanced. The lignans can increase the retention of the P-gp substrate rhodamine 123 in CEM/ADR 5000 cells, indicating that lignans can inhibit the activity of P-gp. Our study provides a first insight into the potential chemosensitizing activity of a series of natural lignans, which might be candidates for developing novel adjuvant anticancer agents. PMID:25765837

  20. Therapeutic implications of an enriched cancer stem-like cell population in a human osteosarcoma cell line

    International Nuclear Information System (INIS)

    Osteosarcoma is a bone-forming tumor of mesenchymal origin that presents a clinical pattern that is consistent with the cancer stem cell model. Cells with stem-like properties (CSCs) have been identified in several tumors and hypothesized as the responsible for the relative resistance to therapy and tumor relapses. In this study, we aimed to identify and characterize CSCs populations in a human osteosarcoma cell line and to explore their role in the responsiveness to conventional therapies. CSCs were isolated from the human MNNG/HOS cell line using the sphere formation assay and characterized in terms of self-renewal, mesenchymal stem cell properties, expression of pluripotency markers and ABC transporters, metabolic activity and tumorigenicity. Cell's sensitivity to conventional chemotherapeutic agents and to irradiation was analyzed and related with cell cycle-induced alterations and apoptosis. The isolated CSCs were found to possess self-renewal and multipotential differentiation capabilities, express markers of pluripotent embryonic stem cells Oct4 and Nanog and the ABC transporters P-glycoprotein and BCRP, exhibit low metabolic activity and induce tumors in athymic mice. Compared with parental MNNG/HOS cells, CSCs were relatively more resistant to both chemotherapy and irradiation. None of the treatments have induced significant cell-cycle alterations and apoptosis in CSCs. MNNG/HOS osteosarcoma cells contain a stem-like cell population relatively resistant to conventional chemotherapeutic agents and irradiation. This resistant phenotype appears to be related with some stem features, namely the high expression of the drug efflux transporters P-glycoprotein and BCRP and their quiescent nature, which may provide a biological basis for resistance to therapy and recurrence commonly observed in osteosarcoma

  1. Therapeutic implications of an enriched cancer stem-like cell population in a human osteosarcoma cell line

    Directory of Open Access Journals (Sweden)

    Martins-Neves Sara R

    2012-04-01

    Full Text Available Abstract Background Osteosarcoma is a bone-forming tumor of mesenchymal origin that presents a clinical pattern that is consistent with the cancer stem cell model. Cells with stem-like properties (CSCs have been identified in several tumors and hypothesized as the responsible for the relative resistance to therapy and tumor relapses. In this study, we aimed to identify and characterize CSCs populations in a human osteosarcoma cell line and to explore their role in the responsiveness to conventional therapies. Methods CSCs were isolated from the human MNNG/HOS cell line using the sphere formation assay and characterized in terms of self-renewal, mesenchymal stem cell properties, expression of pluripotency markers and ABC transporters, metabolic activity and tumorigenicity. Cell's sensitivity to conventional chemotherapeutic agents and to irradiation was analyzed and related with cell cycle-induced alterations and apoptosis. Results The isolated CSCs were found to possess self-renewal and multipotential differentiation capabilities, express markers of pluripotent embryonic stem cells Oct4 and Nanog and the ABC transporters P-glycoprotein and BCRP, exhibit low metabolic activity and induce tumors in athymic mice. Compared with parental MNNG/HOS cells, CSCs were relatively more resistant to both chemotherapy and irradiation. None of the treatments have induced significant cell-cycle alterations and apoptosis in CSCs. Conclusions MNNG/HOS osteosarcoma cells contain a stem-like cell population relatively resistant to conventional chemotherapeutic agents and irradiation. This resistant phenotype appears to be related with some stem features, namely the high expression of the drug efflux transporters P-glycoprotein and BCRP and their quiescent nature, which may provide a biological basis for resistance to therapy and recurrence commonly observed in osteosarcoma.

  2. Differential expression of several drug transporter genes in HepG2 and Huh-7 cell lines

    Science.gov (United States)

    Louisa, Melva; Suyatna, Frans D.; Wanandi, Septelia Inawati; Asih, Puji Budi Setia; Syafruddin, Din

    2016-01-01

    Background: Cell culture techniques have many advantages for investigation of drug transport to target organ like liver. HepG2 and Huh-7 are two cell lines available from hepatoma that can be used as a model for hepatic drug transport. The present study is aimed to analyze the expression level of several drug transporter genes in two hepatoma cell lines, HepG2 and Huh-7 and their response to inhibitors. Materials and Methods: This is an in vitro study using HepG2 and Huh-7 cells. The expression level of the following drug transporter genes was quantified: P-glycoprotein/multidrug resistance protein 1, Organic Anionic Transporter Protein 1B1 (OATP1B1) and Organic Cationic Transporter-1 (OCT1). Ribonucleic acid was extracted from the cells using Tripure isolation reagent, then gene expression level of the transporters is quantified using Applied Biosystems quantitative reverse transcriptase polymerase chain reaction. Verapamil (P-glycoprotein inhibitor), nelfinavir (OATP1B1 inhibitor), quinidine (OCT1 inhibitor) were used to differentiate the inhibitory properties of these agents to the transporter expressions in HepG2 and Huh-7 cells. Results: Huh-7 shows a higher level of P-glycoprotein, OATP1B1 and OCT1 expressions compared with those of HepG2. Verapamil reduces the expressions of P-glycoprotein in HepG2 and Huh-7; nelfinavir reduces the expression of OATP1B1 in HepG2 and Huh-7; while quinidine reduces the OCT1 gene expressions in HepG2, but not in Huh-7 cells. Conclusion: This study indicates that HepG2 might be a more suitable in vitro model than Huh-7 to study drug transport in hepatocytes involving drug transporters. PMID:27376043

  3. Characterization of naturally acquired multiple-drug resistance of Yoshida rat ascites hepatoma AH66 cell line.

    Science.gov (United States)

    Miyamoto, K; Wakabayashi, D; Minamino, T; Nomura, M; Wakusawa, S; Nakamura, S

    1996-01-01

    Characteristics of multiple-drug resistance of rat ascites hepatoma AH66, a cell line induced by dimethylaminoazobenzene and established as a transplantable tumor, were compared with those of AH66F, a drug sensitive line obtained from AH66. The AH66 cell line was resistant to vinblastine, adriamycin, SN-38 an active form of camptothesine, etoposide, and clorambucil by 10-fold or more than the AH66F cell line. The resistance of AH66 cells to vinblastine, adriamycin, and SN-38 was closely related to P-glycoprotein overexpression in the plasma membrane, because the resistance was significantly inhibited by verapamil. AH66 cells contained much glutahione and had a high activity of glutathione S-transferase P-form (GST-P), compared with AH66F cells, and resistance to clorambucil was decreased by treatment with buthionine sulfoximine, an inhibitor of glutathione synthesis. AH66 cells have a similar topoisomerase I activity, but about 6 times lower topoisomerase II activity than AH66F cells. Therefore, the resistance to etoposide and a part of the resistance to adriamycin of AH66 cells seems to depend upon this low topoisomerase II activity. These results, show that the AH66 cell line has high multiple-drug resistance compared with the AH66F cell line, by several mechanisms. Consequently, the AH66 and AH66F cell lines are useful to study naturally acquired multiple-drug resistance of hepatomas. PMID:8702243

  4. Evidence that muscle cells do not express the histidine-rich glycoprotein associated with AMP deaminase but can internalise the plasma protein

    Directory of Open Access Journals (Sweden)

    A.R.M. Sabbatini

    2011-02-01

    Full Text Available Histidine-rich glycoprotein (HRG is synthesized by liver and is present at relatively high concentration in the plasma of vertebrates. We have previously described the association of a HRG-like molecule to purified rabbit skeletal muscle AMP deaminase (AMPD. We also provided the first evidence for the presence of a HRG-like protein in human skeletal muscle where a positive correlation between HRG content and total determined AMPD activity has been shown. In the present paper we investigate the origin of skeletal muscle HRG. The screening of a human skeletal muscle cDNA expression library using an anti-HRG antibody failed to reveal any positive clone. The RT-PCR analysis, performed on human skeletal muscle RNA as well as on RNA from the rhabdomyosarcoma (RD cell line, failed to show any mRNA specific for the plasma HRG or for the putative muscle variant. When the RD cells were incubated with human plasma HRG, a time-dependent increase of the HRG immunoreactivity was detected both at the plasma membrane level and intracellularly. The internalisation of HRG was inhibited by the addition of heparin. The above data strongly suggest that skeletal muscle cells do not synthesize the muscle variant of HRG but instead can actively internalise it from plasma.

  5. Palmitoylation of the cysteine-rich endodomain of the SARS-coronavirus spike glycoprotein is important for spike-mediated cell fusion

    International Nuclear Information System (INIS)

    The SARS-coronavirus (SARS-CoV) is the etiological agent of the severe acute respiratory syndrome (SARS). The SARS-CoV spike (S) glycoprotein mediates membrane fusion events during virus entry and virus-induced cell-to-cell fusion. The cytoplasmic portion of the S glycoprotein contains four cysteine-rich amino acid clusters. Individual cysteine clusters were altered via cysteine-to-alanine amino acid replacement and the modified S glycoproteins were tested for their transport to cell-surfaces and ability to cause cell fusion in transient transfection assays. Mutagenesis of the cysteine cluster I, located immediately proximal to the predicted transmembrane, domain did not appreciably reduce cell-surface expression, although S-mediated cell fusion was reduced by more than 50% in comparison to the wild-type S. Similarly, mutagenesis of the cysteine cluster II located adjacent to cluster I reduced S-mediated cell fusion by more than 60% compared to the wild-type S, while cell-surface expression was reduced by less than 20%. Mutagenesis of cysteine clusters III and IV did not appreciably affect S cell-surface expression or S-mediated cell fusion. The wild-type S was palmitoylated as evidenced by the efficient incorporation of 3H-palmitic acid in wild-type S molecules. S glycoprotein palmitoylation was significantly reduced for mutant glycoproteins having cluster I and II cysteine changes, but was largely unaffected for cysteine cluster III and IV mutants. These results show that the S cytoplasmic domain is palmitoylated and that palmitoylation of the membrane proximal cysteine clusters I and II may be important for S-mediated cell fusion

  6. Cell-surface glycoproteins of human sarcomas: differential expression in normal and malignant tissues and cultured cells

    Energy Technology Data Exchange (ETDEWEB)

    Rettig, W.F.; Garin-Chesa, P.; Beresford, H.R.; Oettgen, H.F.; Melamed, M.R.; Old, L.J.

    1988-05-01

    Normal differentiation and malignant transformation of human cells are characterized by specific changes in surface antigen phenotype. In the present study, the authors have defined six cell-surface antigens of human sarcomas and normal mesenchymal cells, by using mixed hemadsorption assays and immunochemical methods for the analysis of cultured cells and immunohistochemical staining for the analysis of normal tissues and > 200 tumor specimens. Differential patterns of F19, F24, G171, G253, S5, and Thy-1 antigen expression were found to characterize (i) subsets of cultured sarcoma cell lines, (ii) cultured fibroblasts derived from various organs, (iii) normal resting and activated mesenchymal tissues, and (iv) sarcoma and nonmesenchymal tumor tissues. These results provide a basic surface antigenic map for cultured mesenchymal cells and mesenchymal tissues and permit the classification of human sarcomas according to their antigenic phenotypes.

  7. Herpesvirus 6 Glycoproteins B (gB), gH, gL, and gQ Are Necessary and Sufficient for Cell-to-Cell Fusion

    OpenAIRE

    Tanaka, Yuki; Suenaga, Tadahiro; Matsumoto, Misako; Seya, Tsukasa; Arase, Hisashi

    2013-01-01

    The human herpesvirus 6 (HHV-6) envelope glycoprotein gH/gL/gQ1/gQ2 complex associates with host cell CD46 as its cellular receptor. Although gB has been suggested to be involved in HHV-6 infection, its function in membrane fusion has remained unclear. Here, we have developed an HHV-6A (strain GS)and HHV-6B (strain Z29) virus-free cell-to-cell fusion assay and demonstrate that gB and the gH/gL/gQ1/gQ2 complex are the minimum components required for membrane fusion by HHV-6.

  8. Stressor-dependent Alterations in Glycoprotein 130: Implications for Glial Cell Reactivity, Cytokine Signaling and Ganglion Cell Health in Glaucoma

    Science.gov (United States)

    Echevarria, FD; Walker, CC; Abella, SK; Won, M; Sappington, RM

    2013-01-01

    Objective: The interleukin-6 (IL-6) family of cytokines is associated with retinal ganglion cell (RGC) survival and glial reactivity in glaucoma. The purpose of this study was to evaluate glaucoma-related changes in glycoprotein-130 (gp130), the common signal transducer of the IL-6 family of cytokines, as they relate to RGC health, glial reactivity and expression of IL-6 cytokine family members. Methods: For all experiments, we examined healthy retina (young C57), aged retina (aged C57), retina predisposed to glaucoma (young DBA/2) and retina with IOP-induced glaucoma (aged DBA/2). We determined retinal gene expression of gp130 and IL-6 family members, using quantitative PCR, and protein expression of gp130, using multiplex ELISA. For protein localization and cell-specific expression, we performed co-immunolabeling for gp130 and cell type-specific markers. We used quantitative microscopy to measure layer-specific expression of gp130 and its relationships to astrocyte and Müller glia reactivity and RGC axonal transport, as determined by uptake and transport of cholera toxin β-subunit (CTB). Results: Gene expression of gp130 was elevated with all glaucoma-related stressors, but only normal aging increased protein levels. In healthy retina, gp130 localized primarily to the inner retina, where it was expressed by astrocytes, Müller cells and RGCs. Layer-specific analysis of gp130 expression revealed increased expression in aging retina and decreased expression in glaucomatous retina that was eccentricity-dependent. These glaucoma-related changes in gp130 expression correlated with the level of GFAP and glutamine synthetase expression, as well as axonal transport in RGCs. The relationships between gp130, glial reactivity and RGC health could impact signaling by many IL-6 family cytokines, which exhibited overall increased expression in a stressor-dependent manner. Conclusions: Glaucoma-related stressors, including normal aging, glaucoma predisposition and IOP

  9. P-Glycoprotein/MDR1 Regulates Pokemon Gene Transcription Through p53 Expression in Human Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Wei Xu

    2010-08-01

    Full Text Available P-glycoprotein (Pgp, encoded by the multidrug resistance 1 (MDR1 gene, is an efflux transporter and plays an important role in pharmacokinetics. In this study, we demonstrated that the pokemon promoter activity, the pokemon mRNA and protein expression can be significantly inhibited by Pgp. Chromatin immunoprecipitation assay showed that Pgp can bind the pokemon prompter to repress pokemon transcription activity. Furthermore, Pgp regulated pokemon transcription activity through expression of p53 as seen by use of p53 siRNA transfected MCF-7 cells or p53 mutated MDA-MB-231 cells. Moreover, p53 was detected to bind with Pgp in vivo using immunoprecipitation assay. Taken together, we conclude that Pgp can regulate the expression of pokemon through the presence of p53, suggesting that Pgp is a potent regulator and may offer an effective novel target for cancer therapy.

  10. P-Glycoprotein/MDR1 regulates pokemon gene transcription through p53 expression in human breast cancer cells.

    Science.gov (United States)

    He, Shengnan; Liu, Feng; Xie, Zhenhua; Zu, Xuyu; Xu, Wei; Jiang, Yuyang

    2010-01-01

    P-glycoprotein (Pgp), encoded by the multidrug resistance 1 (MDR1) gene, is an efflux transporter and plays an important role in pharmacokinetics. In this study, we demonstrated that the pokemon promoter activity, the pokemon mRNA and protein expression can be significantly inhibited by Pgp. Chromatin immunoprecipitation assay showed that Pgp can bind the pokemon prompter to repress pokemon transcription activity. Furthermore, Pgp regulated pokemon transcription activity through expression of p53 as seen by use of p53 siRNA transfected MCF-7 cells or p53 mutated MDA-MB-231 cells. Moreover, p53 was detected to bind with Pgp in vivo using immunoprecipitation assay. Taken together, we conclude that Pgp can regulate the expression of pokemon through the presence of p53, suggesting that Pgp is a potent regulator and may offer an effective novel target for cancer therapy. PMID:20957096

  11. Analysis of COPII Vesicles Indicates a Role for the Emp47-Ssp120 Complex in Transport of Cell Surface Glycoproteins.

    Science.gov (United States)

    Margulis, Neil G; Wilson, Joshua D; Bentivoglio, Christine M; Dhungel, Nripesh; Gitler, Aaron D; Barlowe, Charles

    2016-03-01

    Coat protein complex II (COPII) vesicle formation at the endoplasmic reticulum (ER) transports nascent secretory proteins forward to the Golgi complex. To further define the machinery that packages secretory cargo and targets vesicles to Golgi membranes, we performed a comprehensive proteomic analysis of purified COPII vesicles. In addition to previously known proteins, we identified new vesicle proteins including Coy1, Sly41 and Ssp120, which were efficiently packaged into COPII vesicles for trafficking between the ER and Golgi compartments. Further characterization of the putative calcium-binding Ssp120 protein revealed a tight association with Emp47 and in emp47Δ cells Ssp120 was mislocalized and secreted. Genetic analyses demonstrated that EMP47 and SSP120 display identical synthetic positive interactions with IRE1 and synthetic negative interactions with genes involved in cell wall assembly. Our findings support a model in which the Emp47-Ssp120 complex functions in transport of plasma membrane glycoproteins through the early secretory pathway.

  12. Guggulsterone of Commiphora mukul resin reverses drug resistance in imatinib-resistant leukemic cells by inhibiting cyclooxygenase-2 and P-glycoprotein.

    Science.gov (United States)

    Xu, Hong-Bin; Xu, Lu-Zhong; Mao, Xia-Ping; Fu, Jun

    2014-06-15

    The purpose of this study was to investigate the effects of guggulsterone on cyclooxygenase-2 and P-glycoprotein mediated drug resistance in imatinib-resistant K562 cells (K562/IMA). MTT cytotoxicity assay, flow cytometry, western blot analysis, and ELISA were performed to investigate the anti-proliferative effect, the reversal action of drug resistance, and the inhibitory effect on cyclooxygenase-2, P-glycoprotein, BCR/ABL kinase, and PGE2 release in K562/IMA cells by guggulsterone. The results showed that co-administration of guggulsterone resulted in a significant increase in chemo-sensitivity of K562/IMA cells to imatinib, compared with imatinib treatment alone. Rhodamine123 accumulation in K562/IMA cells was significantly enhanced after incubation with guggulsterone (60, 120 μM), compared with untreated K562/IMA cells (pP-glycoprotein and prostaglandin E2. However, guggulsterone had little inhibitory effect on the activity of BCR/ABL kinase. The present study indicates guggulsterone induces apoptosis by inhibiting cyclooxygenase-2 and down-regulating P-glycoprotein expression in K562/IMA cells.

  13. Cancer stem cell-like cells from a single cell of oral squamous carcinoma cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Felthaus, O. [Department of Operative Dentistry and Periodontology, University of Regensburg (Germany); Department of Oral and Maxillofacial Surgery, University of Regensburg (Germany); Ettl, T.; Gosau, M.; Driemel, O. [Department of Oral and Maxillofacial Surgery, University of Regensburg (Germany); Brockhoff, G. [Department of Gynecology and Obstetrics, University of Regensburg (Germany); Reck, A. [Department of Oral and Maxillofacial Surgery, University of Regensburg (Germany); Zeitler, K. [Institute of Pathology, University of Regensburg (Germany); Hautmann, M. [Department of Radiotherapy, University of Regensburg (Germany); Reichert, T.E. [Department of Oral and Maxillofacial Surgery, University of Regensburg (Germany); Schmalz, G. [Department of Operative Dentistry and Periodontology, University of Regensburg (Germany); Morsczeck, C., E-mail: christian.morsczeck@klinik.uni-regensburg.de [Department of Operative Dentistry and Periodontology, University of Regensburg (Germany)

    2011-04-01

    Research highlights: {yields} Four oral squamous cancer cell lines (OSCCL) were analyzed for cancer stem cells (CSCs). {yields} Single cell derived colonies of OSCCL express CSC-marker CD133 differentially. {yields} Monoclonal cell lines showed reduced sensitivity for Paclitaxel. {yields} In situ CD133{sup +} cells are slow cycling (Ki67-) indicating a reduced drug sensitivity. {yields} CD133{sup +} and CSC-like cells can be obtained from single colony forming cells of OSCCL. -- Abstract: Resistance of oral squamous cell carcinomas (OSCC) to conventional chemotherapy or radiation therapy might be due to cancer stem cells (CSCs). The development of novel anticancer drugs requires a simple method for the enrichment of CSCs. CSCs can be enriched from OSCC cell lines, for example, after cultivation in serum-free cell culture medium (SFM). In our study, we analyzed four OSCC cell lines for the presence of CSCs. CSC-like cells could not be enriched with SFM. However, cell lines obtained from holoclone colonies showed CSC-like properties such as a reduced rate of cell proliferation and a reduced sensitivity to Paclitaxel in comparison to cells from the parental lineage. Moreover, these cell lines differentially expressed the CSC-marker CD133, which is also upregulated in OSCC tissues. Interestingly, CD133{sup +} cells in OSCC tissues expressed little to no Ki67, the cell proliferation marker that also indicates reduced drug sensitivity. Our study shows a method for the isolation of CSC-like cell lines from OSCC cell lines. These CSC-like cell lines could be new targets for the development of anticancer drugs under in vitro conditions.

  14. Cancer stem cell-like cells from a single cell of oral squamous carcinoma cell lines

    International Nuclear Information System (INIS)

    Research highlights: → Four oral squamous cancer cell lines (OSCCL) were analyzed for cancer stem cells (CSCs). → Single cell derived colonies of OSCCL express CSC-marker CD133 differentially. → Monoclonal cell lines showed reduced sensitivity for Paclitaxel. → In situ CD133+ cells are slow cycling (Ki67-) indicating a reduced drug sensitivity. → CD133+ and CSC-like cells can be obtained from single colony forming cells of OSCCL. -- Abstract: Resistance of oral squamous cell carcinomas (OSCC) to conventional chemotherapy or radiation therapy might be due to cancer stem cells (CSCs). The development of novel anticancer drugs requires a simple method for the enrichment of CSCs. CSCs can be enriched from OSCC cell lines, for example, after cultivation in serum-free cell culture medium (SFM). In our study, we analyzed four OSCC cell lines for the presence of CSCs. CSC-like cells could not be enriched with SFM. However, cell lines obtained from holoclone colonies showed CSC-like properties such as a reduced rate of cell proliferation and a reduced sensitivity to Paclitaxel in comparison to cells from the parental lineage. Moreover, these cell lines differentially expressed the CSC-marker CD133, which is also upregulated in OSCC tissues. Interestingly, CD133+ cells in OSCC tissues expressed little to no Ki67, the cell proliferation marker that also indicates reduced drug sensitivity. Our study shows a method for the isolation of CSC-like cell lines from OSCC cell lines. These CSC-like cell lines could be new targets for the development of anticancer drugs under in vitro conditions.

  15. The leukocyte common antigen (CD45) on human pre-B leukemia cells: variant glycoprotein form expression during the cell exposure to phorbol ester is blocked by a nonselective protein kinase inhibitor H7

    International Nuclear Information System (INIS)

    The human pre-B acute lymphoblastic leukemia cell line REH6 was utilized for characterization of CD45 glycoprotein by monoclonal antibodies (mAb) recognizing four distinct CD45 antigen specificities, i.e. nonrestricted CD45, restricted, CD45RA, CD45RB and CD45R0. Immunoprecipitation revealed two antigen specificities on REH6 cells of m.w. 220 kDa and 190 kDa, both presenting wide range of isoelectric point pI∼6.0-7.5. Nonrestricted CD45 epitopes were not affected by the sialyl acid cleavage with sodium meta-periodate or neuraminidase, but were sensitive to both, tunicamycin, the N-glycosylation inhibitor and monensin, an inhibitor of protein transport through the Golgi compartment. O-sialoglycoprotein endopeptidase from Pasteurella haemolytica A1 partially cleaved CD45RA and CD45RB epitopes, while nonrestricted CD45 determinants were not affected by this enzyme. Limited proteolysis of this antigen resulted in the appearance of 160-180 kDa peptide domains which retained CD45 epitopes. Further, the treatment of cells with phorbol myristate acetate (PMA) induced marked down-regulation of 220 and 190 kDa isoforms and the appearance of new 210, 180 and 170 kDa variant glycoprotein forms which were not found on parental cells. This PMA effect was not accompanied by the programmed cell death and was markedly blocked by a nonselective protein kinase (PK) inhibitor iso-quinoline sulfonamide H7. Modulation of CD45 by phorbol esters might serve as an in vitro model for an additional insight into the function of CD45 in hematopoietic cells. (author)

  16. Effect of the infectious laryngotracheitis virus (ILTV) glycoprotein G on virus attachment, penetration, growth curve and direct cell-to-cell spread

    Institute of Scientific and Technical Information of China (English)

    SUN Zhaogang; ZHANG Manfu

    2005-01-01

    The secreted alphaherpesvirus glycoprotein G (gG) works differently from other proteins. Analysis of the role of ILTV gG in virus attachment, penetration, direct cell-to-cell spread (CTCS) and the growth curve showed that gG or its antibody had no effect on ILTV attachment and penetration and that the gG antibody reduced the virus plaque size and the one-step growth curve on chicken embryo liver (CEL) cells, but gG did not affect the virus plaque size or the one-step growth curve on CEL cells. Laser scanning confocal microscopy (LSCM) detection showed that ILTV gG is located in the perinuclear region and the membrane of the CEL cells. These results suggested that ILTV gG might contribute to direct cell-to-cell transmission.

  17. Reversion effects of curcumin on multidrug resistance of MNNG/HOS human osteosarcoma cells in vitro and in vivo through regulation of P-glycoprotein

    Institute of Scientific and Technical Information of China (English)

    SI Meng; ZHAO Jie; LI Xin; TIAN Ji-guang; LI Yong-gang; LI Jian-min

    2013-01-01

    Background P-glycoprotein (P-gp) encoded by ATP-binding cassette sub-family B member 1 (ABCB1) gene is a kind of ATP-dependent drug transporter,which plays important roles in multidrug resistance (MDR) of human cancers,such as osteosarcoma.Curcumin is a natural phenolic coloring compound originating from the rhizomes of Curcuma longa,which is proved to possess antitumor biological activities including reversion of MDR.However,the effect and molecular mechanisms of curcumin to osteosarcoma MDR remain unclear.Methods We established a human osteosarcoma drug-resistant cell line MNNG/HOS/MTX by pulse exposure to methotrexate (MTX) and verified that the new cell lines were cross-resistant to other anticancer agents.Then,according to the cytotoxicity assay,we reversed MDR of MNNG/HOS/MTX by 30 μmol/L curcumin,and detected the mechanisms of curcumin reversing MDR through Real-time PCR,Western blotting assay,and Rhodamine123 (Rh123)transport test.Finally,we evaluated the effect of curcumin reversing MDR in vivo by MNNG/HOS/MTX cells xenograft-nude mice model.Results MNNG/HOS/MTX was proved to be a human osteosarcoma MDR cell line.MTT tumor chemosensitivity test indicates that 30 μmol/L curcumin attenuates the half maximal inhibitory concentration (IC50) and resistance index (RI)to MTX,diamminedichloroplatinum (DDP),adriamycin (ADM),ifosfamide (IFO),and epirubicin (EPI) in MNNG/HOS/MTX cells (P <0.05).Real-time PCR and Western blotting assays demonstrated that curcumin down-regulated P-gp expression of MNNG/HOS/MTX cells.Rh123 transport test showed that curcumin inhibited the transport function of P-gp in vitro.In vivo studies showed that curcumin displayed the features of sensitizing antitumor drugs and inhibiting the proliferation,invasion,and metastasis of osteosarcoma MDR cells.Conclusion Down-regulation of P-gp and inhibition of the function of P-gp efflux pump may contribute to MDR reversion induced by curcumin in vitro and in vivo.

  18. Rhesus and Human Cytomegalovirus Glycoprotein L Are Required for Infection and Cell-to-Cell Spread of Virus but Cannot Complement Each Other▿

    OpenAIRE

    Bowman, J. Jason; Lacayo, Juan C.; Burbelo, Peter; Fischer, Elizabeth R.; Cohen, Jeffrey I.

    2010-01-01

    Rhesus cytomegalovirus (RhCMV), the homolog of human cytomegalovirus (HCMV), serves as a model for understanding the pathogenesis of HCMV and for developing candidate vaccines. In order to develop a replication-defective virus as a vaccine candidate, we constructed RhCMV with glycoprotein L (gL) deleted. RhCMV gL was essential for viral replication, and virus with gL deleted could only replicate in cells expressing RhCMV gL. Noncomplementing cells infected with RhCMV with gL deleted released ...

  19. Cyparissins A and B, jatrophane diterpenes from Euphorbia cyparissias as Pgp inhibitors and cytotoxic agents against ovarian cancer cell lines.

    Science.gov (United States)

    Lanzotti, Virginia; Barile, Elisa; Scambia, Giovanni; Ferlini, Cristiano

    2015-07-01

    From the whole plant of Euphorbia cyparissias, two new diterpenes based on jatrophane skeleton, named cyparissins A and B (1 and 2) were isolated. Their chemical structures were established through a combination of nuclear magnetic resonance spectroscopy and mass spectrometric methods. The new cyparissins A and B were tested to evaluate their ability to inhibit P-glycoprotein-mediated multidrug resistance and their cytotoxic activity against A2780 human ovarian cancer cells, both WT and ADR. Compounds 1 and 2 showed moderate inhibitory effects on P-glycoprotein while showing a significant concentration-depending cytotoxic activity for both cancer cell lines. These isolated compounds are based on a new chemical structure that expands the knowledge base for this class of bioactive metabolites. PMID:26003936

  20. The major surface glycoprotein (gp63) from Leishmania major and Leishmania donovani cleaves CD4 molecules on human T cells

    DEFF Research Database (Denmark)

    Hey, A S; Theander, T G; Hviid, L;

    1994-01-01

    The effect of Leishmania major and L. donovani surface protease gp63 on surface markers on human T cells was studied using fluorescence-activated flow cytometry. Purified gp63 (63,000 m.w. glycoprotein) at concentrations above 10 micrograms/ml completely inhibited binding of six different anti-CD4...... Abs to human T cells, whereas the binding of one Ab, OKT4, was not inhibited. Heat inactivation of the protease before the incubation with cells abolished the effect on binding of anti-CD4 Abs. Cells incubated for 2 h with the protease and subsequently washed free of the protease showed a gradual re......-expression of CD4, reaching 50% of the initial level after 72 h of incubation in medium. Preincubation of cells with live promastigotes showed an inhibitory effect on CD4 comparable to that seen with purified gp63. The binding of Abs directed against other surface markers present on human T-cells--CD2, CD3, CD5...

  1. Understanding the accumulation of P-glycoprotein substrates within cells: The effect of cholesterol on membrane partitioning.

    Science.gov (United States)

    Subramanian, Nandhitha; Schumann-Gillett, Alexandra; Mark, Alan E; O'Mara, Megan L

    2016-04-01

    The apparent activity of the multidrug transporter P-glycoprotein (P-gp) is enhanced by the presence of cholesterol. Whether this is due to the direct effect of cholesterol on the activity of P-gp, its effect on the local concentration of substrate in the membrane, or its effect on the rate of entry of the drug into the cell, is unknown. In this study, molecular dynamics simulation techniques coupled with potential of mean force calculations have been used to investigate the role of cholesterol in the movement of four P-gp substrates across a POPC bilayer in the presence or absence of 10% cholesterol. The simulations suggest that the presence of cholesterol lowers the free energy associated with entering the middle of the bilayer in a substrate-specific manner. These findings suggest that P-gp substrates may preferentially accumulate in cholesterol-rich regions of the membrane, which may explain its enhanced transport activity.

  2. Selection of resistant acute myeloid leukemia SKM-1 and MOLM-13 cells by vincristine-, mitoxantrone- and lenalidomide-induced upregulation of P-glycoprotein activity and downregulation of CD33 cell surface exposure.

    Science.gov (United States)

    Imrichova, D; Messingerova, L; Seres, M; Kavcova, H; Pavlikova, L; Coculova, M; Breier, A; Sulova, Z

    2015-09-18

    Bone marrow cells and peripheral blood mononuclear cells obtained from both acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS) patients contain upregulated levels of cell surface antigen CD33 compared with healthy controls. This difference enables the use of humanized anti-CD33 antibody conjugated to cytotoxic agents for CD33 targeted immunotherapy. However, the expression of the membrane-bound drug transporter P-glycoprotein (P-gp) has been shown to be critical for resistance against the cytotoxicity of a humanized anti-CD33 antibody conjugated to maytansine-derivative DM4. The aim of the present study was to examine whether the expression of P-gp in AML cell lines is associated with changes in CD33 expression. For this purpose, we established drug resistant variants of SKM-1 and MOLM-13 AML cell lines via the selection of parental cells for resistance to vincristine, mitoxantrone and lenalidomide. All three substances induced a multidrug resistance (MDR) phenotype in SKM-1 cells associated with strong upregulation of P-gp and downregulation of CD33. However, in MOLM-13 cells, the upregulation of P-gp and downregulation of CD33 were present only in cells selected for resistance to vincristine and mitoxantrone but not lenalidomide. Inverse expression of P-gp and CD33 were observed in all resistant variants of SKM-1 and MOLM-13 cells. The MDR phenotype of resistant variants of SKM-1 and MOLM-13 cells was associated with alterations in apoptotic regulatory proteins and downregulation of the multidrug resistance associated protein 1 and breast cancer resistance protein.

  3. Comparative uptake of Tc-99m sestamibi and Tc-99m tetrofosmin in cancer cells and tissue expressing P-Glycoprotein or multidrug resistance associated protein

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jung Ah; Lee, Jae Tae; Yoo, Jung Ah [School of Medicine, Kyungpook National University, Daegu (Korea, Republic of)] (and others)

    2005-02-15

    {sup 99m}Tc-sestamibi(MIBI) and {sup 99m}Tc-tetrofosmin have been used as substrates for P-glycoprotein (Pgp) and multidrug resistance associated protein (MRP), which are closely associated with multidrug resistance of the tumors. To understand different handling of radiotracers in cancer cell lines expressing Pgp and MRP, we compared cellular uptakes of {sup 99m}Tc-MIBI and {sup 99m}Tc-tetrofosmin. The effects of cyclosporin A (CsA), well-known multidrug resistant reversing agent, on the uptake of both tracers were also compared. HCT15/CL02 human colorectal cancer cells for Pgp expressing cells, and human non-small cell lung cancer A549 cells for MRP expressing cells, were used for in vitro and in vivo studies. RT-PCR, western blot analysis and immunohistochemistry were used for detection of Pgp and MRP. MDR-reversal effect with CsA was evaluated at different drug concentrations after incubation with MIBI or tetrofosmin. Radioactivities of supernatant and pellet were measured with gamma well counter. Tumoral uptake of the tracers were measured from tumor bearing nude mice treated with or without CsA. RT-PCR, western blot analysis of the cells and immunochemical staining revealed selective expression of Pgp and MRP for HCT15/CL02 and A549 cells, respectively. There were no significant difference in cellular uptakes of both tracers in HCT15/CL02 cells, but MIBI uptake was slightly higher than that of tetrofosmin in A549 cells. Co-incubation with CsA resulted in a increase in cellular uptakes of MIBI and tetrofosmin. Uptake of MIBI or tetrofosmin in HCT15/CL02 cells was increased by 10-and 2.4-fold, and by 7.5 and 6.3-fold in A549 cells, respectively. Percentage increase of MIBI was higher than that of tetrofosmin with CsA for both cells ({rho} < 0.05). In vivo biodistribution study showed that MIBI (114% at 10 min, 257% at 60 min, 396% at 24C min) and tetrofosmin uptake (110% at 10 min, 205% at 60 min, 410% at 240 min) were progressively increased by the time, up to

  4. Establishment of hepatocellular carcinoma multidrug resistant monoclone cell line HepG2/mdr1

    Institute of Scientific and Technical Information of China (English)

    CHEN Yong-bing; XIE Jian-guo; YANG Jia-yin; YAN Lü-nan; YAN Mao-lin; GONG Jian-ping; XIA Ren-pin; LIU Li-xin; LI Ning; LU Shi-chun; ZHANG Jing-guang; ZENG Dao-bing

    2007-01-01

    Background The multidrug resistance (MDR) associated with the expression of the mdr1 gene and its product P-glycoprotein is a major factor in the prognosis of hepatocellular carcinoma cell (HCC) patients treated with chemotherapy. Our study was to establish a stable HCC MDR cell line where a de novo acquisition of multidrug resistance specifically related to overexpression of a transgenic mdr1.Methods The 4.5-kb mdr1 cDNA obtained from the plasmid pHaMDR1-1 was cloned into the PCI-neo mammalian expression vector, later was transferred by liposome to human hepatocarcinoma cell line HepG2. Then the transfected HepG2 cells resisting G418 were clustered and cultured and the specific fragment of mdr1 cDNA, mRNA and the P-glycoprotein (Pgp) in these HepG2 cells were detected by PCR, RT-PCR and flow cytometry, respectively. The accumulation of the daunorubicin was determinated by flow cytometry simultaneously. The nude mice model of grafting tumour was established by injecting subcutaneously HepG2/mdr1 cells in the right axilla. When the tumour diameter reached 5 mm, adriamycin was injected into peritoneal cavity. The size and growth inhibition of tumour were evaluated.Results The mdr1 expression vector was constructed successfully and the MDR HCC line HepG2/mdr1 developed.The PCR analysis showed that the specific fragment of mdr1 cDNA in HepG2/mdr1 cells, but not in the control group HepG2 cells. Furthermore, the content of the specific fragment of mdr1 mRNA and Pgp expression in HepG2/mdr1 cells were (59.7±7.9)% and (12.28±2.09)%, respectively, compared with (16.9±3.2)% and (3.07±1.06)% in HepG2 cells.In the nude mice HCC model, the tumour genes of both groups were identified. After ADM therapy, the mean size of HepG2 cell tumours was significantly smaller than HepG2/mdr1 cell tumours.Conclusion The approach using the transfer of mdr1 cDNA may be applicable to the development of MDR hepatocarcinoma cell line, whose MDR mechanism is known. This would provide the

  5. P-glycoprotein in adriamycin-resistant cells functions as an efflux pump for benzopyrene, a chemical carcinogen

    Energy Technology Data Exchange (ETDEWEB)

    Chao Yeh, G.; Poore, C.M.; Lopaczynska, J.; Phang, J.M. (NCI-FCRDC, Frederick, MD (United States))

    1991-03-15

    The physiological function of multidrug resistant gene (MDR 1) coded P-glycoprotein 170 (P-gp) in normal tissues remains unknown. The authors propose that P-gp functions as an efflux pump in normal tissues for benzopyrene and other xenobiotic substances. To examine their hypothesis the authors used a series of MDR human breast cancer MCF-7 cells with increasing degrees of drug resistance, expression of MDR and levels of P-gp. First, they found the IC{sub 50} for benzopyrene is linearly correlated with the levels of P-gp at different stages of adriamycin resistant MCF-7 cells. Using P-gp ({sup 3}H)azidopine labeling as a measurement of P-gp they found benzopyrene competes for labeling of P-gp. Finally, they directly measured cellular efflux of benzopyrene with adherent cell laser cytometry and found that resistant cells expressing high levels of P-gp showed rapid efflux of benzopyrene. By contrast, drug sensitive wild type cells with undetectable P-gp showed negligible efflux. They conclude that P-gp can function as an efflux pump for benzopyrene and suggest that P-gp may be a cellular mechanism for resistance to carcinogens.

  6. Multidrug resistance in tumour cells: characterisation of the multidrug resistant cell line K562-Lucena 1

    Directory of Open Access Journals (Sweden)

    VIVIAN M. RUMJANEK

    2001-03-01

    Full Text Available Multidrug resistance to chemotherapy is a major obstacle in the treatment of cancer patients. The best characterised mechanism responsible for multidrug resistance involves the expression of the MDR-1 gene product, P-glycoprotein. However, the resistance process is multifactorial. Studies of multidrug resistance mechanisms have relied on the analysis of cancer cell lines that have been selected and present cross-reactivity to a broad range of anticancer agents. This work characterises a multidrug resistant cell line, originally selected for resistance to the Vinca alkaloid vincristine and derived from the human erythroleukaemia cell K562. This cell line, named Lucena 1, overexpresses P-glycoprotein and have its resistance reversed by the chemosensitisers verapamil, trifluoperazine and cyclosporins A, D and G. Furthermore, we demonstrated that methylene blue was capable of partially reversing the resistance in this cell line. On the contrary, the use of 5-fluorouracil increased the resistance of Lucena 1. In addition to chemotherapics, Lucena 1 cells were resistant to ultraviolet A radiation and hydrogen peroxide and failed to mobilise intracellular calcium when thapsigargin was used. Changes in the cytoskeleton of this cell line were also observed.A resistência a múltiplos fármacos é o principal obstáculo no tratamento de pacientes com câncer. O mecanismo responsável pela resistência múltipla mais bem caracterizado envolve a expressão do produto do gene MDR-1, a glicoproteína P. Entretanto, o processo de resistência tem fatores múltiplos. Estudos de mecanismos de resistência m��ltipla a fármacos têm dependido da análise de linhagens celulares tumorais que foram selecionadas e apresentam reatividade cruzada a uma ampla faixa de agentes anti-tumorais. Este trabalho caracteriza uma linhagem celular com múltipla resistência a fármacos, selecionada originalmente pela resistência ao alcalóide de Vinca vincristina e derivado

  7. Expression of the chitinase family glycoprotein YKL-40 in undifferentiated, differentiated and trans-differentiated mesenchymal stem cells.

    Directory of Open Access Journals (Sweden)

    Daniel J Hoover

    Full Text Available The glycoprotein YKL-40 (CHI3L1 is a secreted chitinase family protein that induces angiogenesis, cell survival, and cell proliferation, and plays roles in tissue remodeling and immune regulation. It is expressed primarily in cells of mesenchymal origin, is overexpressed in numerous aggressive carcinomas and sarcomas, but is rarely expressed in normal ectodermal tissues. Bone marrow-derived mesenchymal stem cells (MSCs can be induced to differentiate into various mesenchymal tissues and trans-differentiate into some non-mesenchymal cell types. Since YKL-40 has been used as a mesenchymal marker, we followed YKL-40 expression as undifferentiated MSCs were induced to differentiate into bone, cartilage, and neural phenotypes. Undifferentiated MSCs contain significant levels of YKL-40 mRNA but do not synthesize detectable levels of YKL-40 protein. MSCs induced to differentiate into chondrocytes and osteocytes soon began to express and secrete YKL-40 protein, as do ex vivo cultured chondrocytes and primary osteocytes. In contrast, MSCs induced to trans-differentiate into neurons did not synthesize YKL-40 protein, consistent with the general absence of YKL-40 protein in normal CNS parenchyma. However, these trans-differentiated neurons retained significant levels of YKL-40 mRNA, suggesting the mechanisms which prevented YKL-40 translation in undifferentiated MSCs remained in place, and that these trans-differentiated neurons differ in at least this way from neurons derived from neuronal stem cells. Utilization of a differentiation protocol containing β-mercaptoethanol resulted in cells that expressed significant amounts of intracellular YKL-40 protein that was not secreted, which is not seen in normal cells. Thus the synthesis of YKL-40 protein is a marker for MSC differentiation into mature mesenchymal phenotypes, and the presence of untranslated YKL-40 mRNA in non-mesenchymal cells derived from MSCs reflects differences between differentiated and

  8. Recombinant Outer Capsid Glycoprotein (VP7 of Rotavirus Expressed in Insect Cells Induces Neutralizing Antibodies in Rabbits

    Directory of Open Access Journals (Sweden)

    H Keyvani

    2012-04-01

    Full Text Available Background:Rotaviruses cause diarrhea in infants and young children worldwide. Rotavirus outer capsid protein, VP7 is major neutralizing antigen that is important component of subunit vaccine to prevent rotavirus infection.Many efforts have been done to produce recombinant VP7 that maintain native characteristics.We used baculovirus expression system to produce rotavirus VP7 protein and to study its immunogenicity. Methods: Simian rotavirus SA11 full-length VP7 ORF was cloned into a cloning plasmid and then the cloned gene was inserted into the linear DNA of baculovirus Autographa californica Nuclear Polyhedrosis Virus (AcNPV downstream of the polyhedrin promoter by in vitro recombination reactions. The expressed VP7 in the insect cells was recognized by rabbit hyperimmune serum raised against SA11 rotavirus by Immunofluorescence and western blotting assays. Rabbits were immunized subcutaneously by cell extracts expressing VP7 protein. Results: Reactivity with anti-rotavirus antibody suggested that expressed VP7 protein had native antigenic determinants.Injection of recombinant VP7 in rabbits elicited the production of serum antibodies,which were able to recognize VP7 protein from SA11 rotavirus by Western blotting test and neutralized SA11 rotavirus in cell culture.Conclusion: Recombinant outer capsid glycoprotein (VP7 of rotavirus expressed in insect cells induces neutralizing antibodies in rabbits and may be a candidate of rotavirus vaccine.

  9. Inhibition of P-Glycoprotein Mediated Efflux of Paclitaxel by Coumarin Derivatives in Cancer Stem Cells: An In Silico Approach.

    Science.gov (United States)

    Tripathi, Anushree; Misra, Krishna

    2016-01-01

    P-glycoprotein (P-gp) is well known to cause multidrug resistance (MDR) in cancer cells. This MDR leads to cancer recurrence which is a major obstacle in cancer treatment. High P-gp expression has been observed in the population of cancer stem cells (CSCs) having self-renewal potential. Early detection and inhibition of these CSCs is directly beneficial to cancer treatment. In this study coumarin derivatives are used to inhibit efflux process and thereby enhance bioavailability of various drugs like paclitaxel (PTX). This drug is most commonly used for the treatment of cancers of breast, ovary, head and neck. Coumarin derivatives can be used to reduce the growth of breast cancer stem cells through P-gp mediated efflux inhibition and paclitaxel bioavailability enhancement. With the use of computational approaches including molecular docking simulation and pharmacophore study, few coumarin derivatives have been found to be more potential inhibitors of P-gp mediated efflux. Based on high affinity inhibitors, new coumarin derivatives have been designed and docked at active site cavity of P-gps. Some newly designed coumarin derivatives were found to be more potent due to their higher binding affinity towards target protein. The finding that newly designed coumarins can be exploited for inhibition of P-gp mediated efflux in order to enhance paclitaxel bioavailability and can inhibit breast cancer stem cell growth is significant for designing potent anticancer drugs.

  10. Susceptibility testing of fish cell lines for virus isolation

    DEFF Research Database (Denmark)

    Ariel, Ellen; Skall, Helle Frank; Olesen, Niels Jørgen

    2009-01-01

    compare susceptibility between cell lines and between lineages within a laboratory and between laboratories (Inter-laboratory Proficiency Test). The objective being that the most sensitive cell line and lineages are routinely selected for diagnostic purposes.In comparing cell lines, we simulated "non......-cell-culture-adapted" virus by propagating the virus in heterologous cell lines to the one tested. A stock of test virus was produced and stored at - 80 °C and tests were conducted biannually. This procedure becomes complicated when several cell lines are in use and does not account for variation among lineages. In comparing...... cell lineages, we increased the number of isolates of each virus, propagated stocks in a given cell line and tested all lineages of that line in use in the laboratory. Testing of relative cell line susceptibility between laboratories is carried out annually via the Inter-laboratory Proficiency Test...

  11. Distribution features of the rats’ major salivary glands cells glycoproteins during early postnatal period after antenatal antigen action

    Directory of Open Access Journals (Sweden)

    Syrtsov V.K.

    2014-06-01

    animals group. Citation: Syrtsov VK, Maslova IN. Distribution features of the rats’ major salivary glands cells glycoproteins during early postnatal period after antenatal antigen action. Morphologia. 2014;8(2:56-60.

  12. Using 99mTc-MIBI to Evaluate the Effects of Chemosensitizer on P-glycoprotein in Multidrug-resistant Carcinoma Cells

    Institute of Scientific and Technical Information of China (English)

    ZHANGZhenwei; ZHANGXuemei; WUHua; ZHAOMing; XIANYUZhiqun; ZHOUJian; LAIShiying

    2005-01-01

    Objective: To establish a method to evaluate the effects of chemosensitizer on P-glycoprotein using 99mTc-MIBI, and observe the changes of 99mTc-MIBI uptake kinetics and P-glycoprotein levels after using verapamil in MDR human breast cells MCF-7/Adr. Methods: MDR breast carcinoma cells, MCF-7/Adr, were incubated and different protocols were performed. Protocol I: a chemosensitizer, verapamil (10μmol/L), was added into cell culture medium, while in control group, the same volume of DMEM was given. Cells were harvested after 2 h incubation with 99mTc-MIBI. Protocol Ⅱ: Verapamil (10μmol/L) was added into cell culture medium and incubated for 20 min, 40 min, 60 rain, 80 min, 8 h, 24 h, 48 h and 72 h respectively. Cells were harvested after 2 h incubation with 99mTc-MIBI. The radioactivity of the cells was measured and P-glycoprotein expression levels were determined with immunohistochemical stain. Results: Protocol I: After 2h incubation with verapamil the cellular uptake of 99mTc-MIBI was remarkably higher than control group (t=2.33, P0.05). Protocol

  13. The Neurospora crassa dfg5 and dcw1 Genes Encode α-1,6-Mannanases That Function in the Incorporation of Glycoproteins into the Cell Wall

    OpenAIRE

    Abhiram Maddi; Ci Fu; Free, Stephen J.

    2012-01-01

    The covalent cross-linking of cell wall proteins into the cell wall glucan/chitin matrix is an important step in the biogenesis of the fungal cell wall. We demonstrate that the Neurospora crassa DFG5 (NCU03770) and DCW1 (NCU08127) enzymes function in vivo to cross-link glycoproteins into the cell wall. Mutants lacking DFG5 or DCW1 release slightly elevated levels of cell wall proteins into their growth medium. Mutants lacking both DFG5 and DCW1 have substantially reduced levels of cell wall p...

  14. Huh-7 cell line as an alternative cultural model for the production of human like erythropoietin (EPO

    Directory of Open Access Journals (Sweden)

    Kausar Humera

    2011-11-01

    Full Text Available Abstract Background and Aims Erythropoietin (EPO is a glycoprotein hormone which is required to regulate the production of red blood cells. Deficiency of EPO is known to cause anemia in chronically infected renal patients and they require regular blood transfusion. Availability of recombinant EPO has eliminated the need for blood transfusion and now it is extensively used for the treatment of anemia. Glycosylation of erythropoietin is essential for its secretion, stability, protein conformation and biological activity. However, maintenance of human like glycosylation pattern during manufacturing of EPO is a major challenge in biotechnology. Currently, Chinese hamster ovary (CHO cell line is used for the commercial production of erythropoietin but this cell line does not maintain glycosylation resembling human system. With the trend to eliminate non-human constituent from biopharmaceutical products, as a preliminary approach, we have investigated the potential of human hepatoma cell line (Huh-7 to produce recombinant EPO. Materials and methods Initially, the secretory signal and Kozak sequences was added before the EPO mature protein sequence using overlap extension PCR technique. PCR-amplified cDNA fragments of EPO was inserted into mammalian expression vector under the control of the cytomegalovirus (CMV promoter and transiently expressed in CHO and Huh-7 cell lines. After RT-PCR analysis, ELISA and Western blotting was performed to verify the immunochemical properties of secreted EPO. Results Addition of secretory signal and Kozak sequence facilitated the extra-cellular secretion and enhanced the expression of EPO protein. Significant expression (P Conclusion Huh-7 cell line has a great potential to produce glycosylated EPO, suggesting the use of this cell line to produce glycoproteins of the therapeutic importance resembling to the natural human system.

  15. Enhancement of cellular uptake and cytotoxicity of curcumin-loaded PLGA nanoparticles by conjugation with anti-P-glycoprotein in drug resistance cancer cells

    Institute of Scientific and Technical Information of China (English)

    Wanisa PUNFA; Supachai YODKEEREE; Pornsiri PITCHAKARN; Chadarat AMPASAVATE; Pornngarm LIMTRAKUL

    2012-01-01

    Aim:To compare the anti-cancer activity and cellular uptake of curcumin (Cur) delivered by targeted and non-targeted drug delivery systems in multidrug-resistant cervical cancer cells.Methods:Cur was entrapped into poly (DL-lactide-co-glycolide) (PLGA) nanoparticles (Cur-NPs) in the presence of modified-pluronic F127 stabilizer using nano-precipitation technique.On the surface of Cur-NPs,the carboxy-terminal of modified pluronic F127 was conjugated to the amino-terminal of anti-P-glycoprotein (P-gp) (Cur-NPs-APgp).The physical properties of the Cur-NPs,including particle size,zeta potential,particle morphology and Cur release kinetics,were investigated.Cellular uptake and specificity of the Cur-NPs and Cur-NPs-APgp were detected in cervical cancer cell lines KB-V1 (higher expression of P-gp) and KB-3-1 (lower expression of P-gp) using fluorescence microscope and flow cytometry,respectively.Cytotoxicity of the Cur-NPs and Cur-NPs-APgp was determined using MTT assay.Results:The particle size of Cur-NPs and Cur-NPs-APgp was 127 and 132 nm,respectively.The entrapment efficiency and actual loading of Cur-NPs-APgp (60% and 5μg Cur/mg NP) were lower than those of Cur-NPs (99% and 7 μg Cur/mg NP).The specific binding of Cur-NPs-APgp to KB-V1 cells was significantly higher than that to KB-3-1 cells.Cellular uptake of Cur-NPs-APgp into KB-V1 cells was higher,as compared to KB-3-1 cells.However,the cellular uptake of Cur-NPs and Cur-NPs-lgG did not differ between the two types of cells.Besides,the cytotoxicity of Cur-NPs-APgp in KB-V1 cells was higher than those of Cur and Cur-NPs.Conclusion:The results demonstrate that Cur-NPs-APgp targeted to P-gp on the cell surface membrane of KB-V1 cells,thus enhancing the cellular uptake and cytotoxicity of Cur.

  16. Regulatory networks define phenotypic classes of human stem cell lines

    OpenAIRE

    Müller, Franz-Josef; Louise C. Laurent; Kostka, Dennis; Ulitsky, Igor; Williams, Roy; Lu, Christina; Park, In-Hyun; Rao, Mahendra S.; Shamir, Ron; Philip H. Schwartz; Schmidt, Nils O.; Loring, Jeanne F.

    2008-01-01

    Stem cells are defined as self-renewing cell populations that can differentiate into multiple distinct cell types. However, hundreds of different human cell lines from embryonic, fetal, and adult sources have been called stem cells, even though they range from pluripotent cells, typified by embryonic stem cells, which are capable of virtually unlimited proliferation and differentiation, to adult stem cell lines, which can generate a far more limited repertory of differentiated cell types. The...

  17. Influence of Disulfide-Stabilized Structure on the Specificity of Helper T-Cell and Antibody Responses to HIV Envelope Glycoprotein gp120▿ †

    OpenAIRE

    Mirano-Bascos, Denise; Steede, N. Kalaya; Robinson, James E.; Landry, Samuel J.

    2010-01-01

    CD4+ helper T cells specific for human immunodeficiency virus type 1 (HIV-1) are associated with control of viremia. Nevertheless, vaccines have had limited effectiveness thus far, in part because sequence variability and other structural features of the HIV envelope glycoprotein deflect the immune response. Previous studies indicated that CD4+ T-cell epitope dominance is controlled by antigen three-dimensional structure through its influence on antigen processing and presentation. In this wo...

  18. High prevalence of side population in human cancer cell lines

    OpenAIRE

    Boesch, Maximilian; Zeimet, Alain G; Fiegl, Heidi; Wolf, Barbara; Huber, Julia; Klocker, Helmut; Gastl, Guenther; Sopper, Sieghart; Wolf, Dominik

    2016-01-01

    Cancer cell lines are essential platforms for performing cancer research on human cells. We here demonstrate that, across tumor entities, human cancer cell lines harbor minority populations of putative stem-like cells, molecularly defined by dye extrusion resulting in the side population phenotype. These findings establish a heterogeneous nature of human cancer cell lines and argue for their stem cell origin. This should be considered when interpreting research involving these model systems.

  19. CD44 expression in oro-pharyngeal carcinoma tissues and cell lines.

    Directory of Open Access Journals (Sweden)

    Abirami Rajarajan

    Full Text Available Expression of CD44, a transmembrane hyaluronan-binding glycoprotein, is variably considered to have prognostic significance for different cancers, including oral squamous cell carcinoma. Although unclear at present, tissue-specific expression of particular isoforms of CD44 might underlie the different outcomes in currently available studies. We mined public transcriptomics databases for gene expression data on CD44, and analyzed normal, immortalized and tumour-derived human cell lines for splice variants of CD44 at both the transcript and protein levels. Bioinformatics readouts, from a total of more than 15,000 analyses, implied an increased CD44 expression in head and neck cancer, including increased expression levels relative to many normal and tumor tissue types. Also, meta-analysis of over 260 cell lines and over 4,000 tissue specimens of diverse origins indicated lower CD44 expression levels in cell lines compared to tissue. With minor exceptions, reverse transcribed polymerase chain reaction identified expression of the four main isoforms of CD44 in normal oral keratinocytes, transformed lines termed DT and HaCaT, and a series of paired primary and metastasis-derived cell lines from oral or pharyngeal carcinomas termed HN4/HN12, HN22/HN8 and HN30/HN31. Immunocytochemistry, Western blotting and flow cytometric assessments all confirmed the isoform expression pattern at the protein level. Overall, bioinformatic processing of large numbers of global gene expression analyses demonstrated elevated CD44 expression in head and neck cancer relative to other cancer types, and that the application of standard cell culture protocols might decrease CD44 expression. Additionally, the results show that the many variant CD44 exons are not fundamentally deregulated in a diverse range of cultured normal and transformed keratinocyte lines.

  20. Expression of Cyclooxygenase-2 in Ovarian Cancer Cell Lines

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    To investigate the expression of cyclooxygenase-2 (COX-2) in ovarian cancer cell lines,RT-PCR and immunocytochemistry were used to detect the expression of COX-2 in 5 ovarian cancer cell lines. The expression of COX-2 mRNA and protein was detected in all 5 cell lines. It is suggested that COX-2 is expressed in ovarian cancer cell lines, which provides a basis for the chemoprevention of ovarian cancer.

  1. Development of Novel Rifampicin-Derived P-Glycoprotein Activators/Inducers. Synthesis, In Silico Analysis and Application in the RBE4 Cell Model, Using Paraquat as Substrate

    Science.gov (United States)

    Vilas-Boas, Vânia; Silva, Renata; Palmeira, Andreia; Sousa, Emília; Ferreira, Luísa Maria; Branco, Paula Sério; Carvalho, Félix; Bastos, Maria de Lourdes; Remião, Fernando

    2013-01-01

    P-glycoprotein (P-gp) is a 170 kDa transmembrane protein involved in the outward transport of many structurally unrelated substrates. P-gp activation/induction may function as an antidotal pathway to prevent the cytotoxicity of these substrates. In the present study we aimed at testing rifampicin (Rif) and three newly synthesized Rif derivatives (a mono-methoxylated derivative, MeORif, a peracetylated derivative, PerAcRif, and a reduced derivative, RedRif) to establish their ability to modulate P-gp expression and activity in a cellular model of the rat’s blood–brain barrier, the RBE4 cell line P-gp expression was assessed by western blot using C219 anti-P-gp antibody. P-gp function was evaluated by flow cytometry measuring the accumulation of rhodamine123. Whenever P-gp activation/induction ability was detected in a tested compound, its antidotal effect was further tested using paraquat as cytotoxicity model. Interactions between Rif or its derivatives and P-gp were also investigated by computational analysis. Rif led to a significant increase in P-gp expression at 72 h and RedRif significantly increased both P-gp expression and activity. No significant differences were observed for the other derivatives. Pre- or simultaneous treatment with RedRif protected cells against paraquat-induced cytotoxicity, an effect reverted by GF120918, a P-gp inhibitor, corroborating the observed P-gp activation ability. Interaction of RedRif with P-gp drug-binding pocket was consistent with an activation mechanism of action, which was confirmed with docking studies. Therefore, RedRif protection against paraquat-induced cytotoxicity in RBE4 cells, through P-gp activation/induction, suggests that it may be useful as an antidote for cytotoxic substrates of P-gp. PMID:23991219

  2. 77 FR 5489 - Identification of Human Cell Lines Project

    Science.gov (United States)

    2012-02-03

    ... National Institute of Standards and Technology Identification of Human Cell Lines Project AGENCY: National... tandem repeat (STR) profiling up to 1500 human cell line samples as part of the Identification of Human Cell Lines Project. All data and corresponding information will be posted in a publically held...

  3. pH-Responsive therapeutic solid lipid nanoparticles for reducing P-glycoprotein-mediated drug efflux of multidrug resistant cancer cells

    Directory of Open Access Journals (Sweden)

    Chen HH

    2015-08-01

    enhanced passive tumor accumulation due to the loose intercellular junctions of endothelial cells lining inside blood vessels at tumor site, and the lack of lymphatic drainage. The growth of MCF-7/MDR xenografted tumor on Balb/c nude mice was inhibited to ~400 mm3 in volume as compared with the free DOX treatment group, 1,140 mm3, and the group treated with 1,2 distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol] solid lipid nanoparticles, 820 mm3. Analysis of the body weight of nude mice and the histology of organs and tumor after the administration of DOX-loaded SLNs show that the SLNs have no observable side effects. These results indicate that the C-PEG-SLN is a promising platform for the delivery of therapeutic agents for MDR cancer chemotherapy. Keywords: pH-responsive, solid lipid nanoparticles, multidrug resistance, permeability glycoprotein

  4. Effect of Procyanidin-rich Extract from Natural Cocoa Powder on Cellular Viability, Cell Cycle Progression, and Chemoresistance in Human Epithelial Ovarian Carcinoma Cell Lines

    Science.gov (United States)

    Taparia, Shruti; Khanna, Aparna

    2016-01-01

    Background: Over the last 400 years, cocoa and chocolate have been described as having potential medicinal value, being consumed as a beverage or eaten as food. Concentration–dependant, antiproliferation, and cytotoxic effects of some of their polyphenolic constituents have been demonstrated against various cancers. Such an effect remains to be demonstrated in ovarian cancer Objective: To investigate the effect of cocoa procyanidins against ovarian cancer in vitro using OAW42 and OVCAR3 cell lines. Materials and Methods: Cocoa procyanidins were extracted and enriched from non alkalized cocoa powder. The polyphenolic content and antioxidant activity were determined. Effect on cell viability was determined after the treatment with ≤1000 μg/mL cocoa procyanidin-rich extract on OAW42 and OVCAR3 and normal human dermal fibroblasts. Similarly, chemosensitization effect was determined by pretreating cancer cell lines with extract followed by doxorubicin hydrochloride treatment. The effect of treatment on cell cycle and P-glycoprotein (P-gp) expression was determined using flow cytometry. Results: The cocoa extract showed high polyphenolic content and antioxidant activity. Treatment with extract caused cytotoxicity and chemosensitization in OAW42 and OVCAR3 cell lines. Normal dermal fibroblasts showed an increase in cell viability post treatment with extract. Treatment with extract affected the cell cycle and an increasing percentage of cells in hypodiploid sub-G1/G0 phase was observed. Treatment of OVCAR3 with the extract caused reduction of P-gp expression. Conclusion: Cocoa procyanidins were found to be selectively cytotoxic against epithelial ovarian cancer, interfered with the normal cell cycle and sensitized cells to subsequent chemotherapeutic treatment. Chemosensitization was found to be associated with P-gp reduction in OVCAR3 cells. SUMMARY Among the naturally occurring flavonoids, procyanidins have been shown to be effective against cancersNon alkalized

  5. pH-Responsive therapeutic solid lipid nanoparticles for reducing P-glycoprotein-mediated drug efflux of multidrug resistant cancer cells.

    Science.gov (United States)

    Chen, Hsin-Hung; Huang, Wen-Chia; Chiang, Wen-Hsuan; Liu, Te-I; Shen, Ming-Yin; Hsu, Yuan-Hung; Lin, Sung-Chyr; Chiu, Hsin-Cheng

    2015-01-01

    In this study, a novel pH-responsive cholesterol-PEG adduct-coated solid lipid nanoparticles (C-PEG-SLNs) carrying doxorubicin (DOX) capable of overcoming multidrug resistance (MDR) breast cancer cells is presented. The DOX-loaded SLNs have a mean hydrodynamic diameter of ~100 nm and a low polydispersity index (under 0.20) with a high drug-loading efficiency ranging from 80.8% to 90.6%. The in vitro drug release profiles show that the DOX-loaded SLNs exhibit a pH-controlled drug release behavior with the maximum and minimum unloading percentages of 63.4% at pH 4.7 and 25.2% at pH 7.4, respectively. The DOX-loaded C-PEG-SLNs displayed a superior ability in inhibiting the proliferation of MCF-7/MDR cells. At a DOX concentration of 80 μM, the cell viabilities treated with C-PEG-SLNs were approximately one-third of the group treated with free DOX. The inhibition activity of C-PEG-SLNs could be attributed to the transport of C-PEG to cell membrane, leading to the change of the composition of the cell membrane and thus the inhibition of permeability glycoprotein activity. This hypothesis is supported by the confocal images showing the accumulation of DOX in the nuclei of cancer cells and the localization of C-PEG on the cell membranes. The results of in vivo study further demonstrated that the DOX delivered by the SLNs accumulates predominantly in tumor via enhanced permeability and retention effect, the enhanced passive tumor accumulation due to the loose intercellular junctions of endothelial cells lining inside blood vessels at tumor site, and the lack of lymphatic drainage. The growth of MCF-7/MDR xenografted tumor on Balb/c nude mice was inhibited to ~400 mm(3) in volume as compared with the free DOX treatment group, 1,140 mm(3), and the group treated with 1,2 distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)] solid lipid nanoparticles, 820 mm(3). Analysis of the body weight of nude mice and the histology of organs and tumor after the

  6. Respiratory syncytial virus fusion glycoprotein expressed in insect cells form protein nanoparticles that induce protective immunity in cotton rats.

    Directory of Open Access Journals (Sweden)

    Gale Smith

    Full Text Available Respiratory Syncytial Virus (RSV is an important viral agent causing severe respiratory tract disease in infants and children as well as in the elderly and immunocompromised individuals. The lack of a safe and effective RSV vaccine represents a major unmet medical need. RSV fusion (F surface glycoprotein was modified and cloned into a baculovirus vector for efficient expression in Sf9 insect cells. Recombinant RSV F was glycosylated and cleaved into covalently linked F2 and F1 polypeptides that formed homotrimers. RSV F extracted and purified from insect cell membranes assembled into 40 nm protein nanoparticles composed of multiple RSV F oligomers arranged in the form of rosettes. The immunogenicity and protective efficacy of purified RSV F nanoparticles was compared to live and formalin inactivated RSV in cotton rats. Immunized animals induced neutralizing serum antibodies, inhibited virus replication in the lungs, and had no signs of disease enhancement in the respiratory track of challenged animals. RSV F nanoparticles also induced IgG competitive for binding of palivizumab neutralizing monoclonal antibody to RSV F antigenic site II. Antibodies to this epitope are known to protect against RSV when passively administered in high risk infants. Together these data provide a rational for continued development a recombinant RSV F nanoparticle vaccine candidate.

  7. P-glycoprotein Mediates Ceritinib Resistance in Anaplastic Lymphoma Kinase-rearranged Non-small Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Ryohei Katayama

    2016-01-01

    Full Text Available The anaplastic lymphoma kinase (ALK fusion oncogene is observed in 3%–5% of non-small cell lung cancer (NSCLC. Crizotinib and ceritinib, a next-generation ALK tyrosine kinase inhibitor (TKI active against crizotinib-refractory patients, are clinically available for the treatment of ALK-rearranged NSCLC patients, and multiple next-generation ALK-TKIs are currently under clinical evaluation. These ALK-TKIs exhibit robust clinical activity in ALK-rearranged NSCLC patients; however, the emergence of ALK-TKI resistance restricts the therapeutic effect. To date, various secondary mutations or bypass pathway activation-mediated resistance have been identified, but large parts of the resistance mechanism are yet to be identified. Here, we report the discovery of p-glycoprotein (P-gp/ABCB1 overexpression as a ceritinib resistance mechanism in ALK-rearranged NSCLC patients. P-gp exported ceritinib and its overexpression conferred ceritinib and crizotinib resistance, but not to PF-06463922 or alectinib, which are next-generation ALK inhibitors. Knockdown of ABCB1 or P-gp inhibitors sensitizes the patient-derived cancer cells to ceritinib, in vitro and in vivo. P-gp overexpression was identified in three out of 11 cases with in ALK-rearranged crizotinib or ceritinib resistant NSCLC patients. Our study suggests that alectinib, PF-06463922, or P-gp inhibitor with ceritinib could overcome the ceritinib or crizotinib resistance mediated by P-gp overexpression.

  8. Chloride transport in a glioma cell line

    Energy Technology Data Exchange (ETDEWEB)

    Wolpaw, E.W.

    1984-01-01

    Maintenance of the extracellular environment is a major function of central nervous system astroglia. The transport of Cl/sup -/ across the cell membrane may be an integral part of this function, since Cl/sup -/ transport has been implicated in homeostasis of cell volume, pH, and extracellular K/sup +/ concentration. The work presented here investigated Cl/sup -/ transport in the glioma cell line LRM55. Results indicate that LRM55 cells are a good model for astroglia and that these cells contain three Cl/sup -/ transporters; a Cl/sup -//HCO/sub 3//sup -/ exchanger, a K/sup +//Cl/sup -/ cotransporter, and a Cl/sup -//SO/sub 4//sup 2 -/ exchanger. Ion transport studies measured the fluxes of Cl/sup -/ (as /sup 36/Cl/sup -/), K/sup +/ (as /sup 86/Rb/sup +/), and SO/sub 4//sup 2 -/ (as /sup 35/SO/sub 4//sup 2 -/). Cl/sup -/ flux was trans-simulated by Cl/sup -/ or HCO/sub 3//sup -/ and was inhibited by SITS or furosemide. External K/sup +/ stimulated Cl/sup -/ influx and external Cl/sup -/ stimulated Rb/sup +/ influx. Furosemide, but not SITS, inhibited the K/sup +//Cl/sup -/ cotransporter. High K/sup +/ medium increased cell volume and Cl/sup -/ content. Steady-state Cl/sup -/ concentration was at least twice that predicted from passive equilibration according to the Nernst equation. SO/sub 4//sup 2 -/ flux was trans-stimulated by SO/sub 4//sup 2 -/ or by Cl/sup -/. Cl/sup -/ was a competitive inhibitor of SO/sub 4//sup 2 -/ influx, but SO/sub 4//sup 2 -/ had no detectable effect on Cl/sup -/ influx or efflux. SO/sub 4//sup 2 -/ flux was inhibited by SITS or furosemide.

  9. Effect of curcumin on multidrug resistance in resistant human gastric carcinoma cell line SGC7901/VCR

    Institute of Scientific and Technical Information of China (English)

    Xiao-qing TANG; Hu BI; Jian-qiang FENG; Jian-guo CAO

    2005-01-01

    Aim: To investigate the reversal effects of curcumin on multidrug resistance (MDR)in a resistant human gastric carcinoma cell line. Methods: The cytotoxic effect of vincristine (VCR) was evaluated by MTT assay. The cell apoptosis induced by VCR was determined by propidium iodide (PI)-stained flow cytometry (FCM) and a morphological assay using acridine orange (AO)/ethidium bromide (EB) dual staining. P-glycoprotein (P-gp) function was demonstrated by the accumulation and efflux of rhodamine123 (Rh123) using FCM. The expression of P-gp and the activation of caspase-3 were measured by FCM using fluorescein isothiocyanate (FITC)-conjugated anti-P-gp and anti-cleaved caspase-3 antibodies, respectively.Results: Curcumin, at concentrations of 5 μmol/L, 10 μmol/L, or 20 μmol/L, had no cytotoxic effect on a parent human gastric carcinoma cell line (SGC7901) or its VCR-resistant variant cell line (SGC7901/VCR). The VCR-IC50 value of the SGC7901/VCR cells was 45 times more than that of the SGC7901cells and the SGC7901/VCR cells showed apoptotic resistance to VCR. SGC7901/VCR cells treated with 5μmol/L, 10 μmol/L, or 20 μmol/L curcumin decreased the IC50 value of VCR and promoted VCR-mediated apoptosis in a dose-dependent manner. Curcumin (10μmol/L) increased Rh 123 accumulation and inhibited the efflux of Rh 123 in S GC7901/VCR cells, but did not change the accumulation and efflux of Rh123 in SGC7901cells. P-gp was overexpressed in SGC7901/VCR cells, whereas it was downregulated after a 24-h treatment with curcumin (10 μmol/L). Resistant cells treated with 1μmol/L VCR alone showed 77% lower levels of caspase-3 activation relative to SGC7901 cells, but the activation of caspase-3 in the resistant cell line increased by 44% when cells were treated with VCR in combination with curcumin.Conclusion: Curcumin can reverse the MDR of the human gastric carcinoma SGC7901/VCR cell line. This might be associated with decreased P-gp function and expression, and the promotion of

  10. Glycoprotein mucin molecular brush on cancer cell surface acting as mechanical barrier against drug delivery

    Science.gov (United States)

    Wang, Xin; Shah, Aalok A.; Campbell, Robert B.; Wan, Kai-tak

    2010-12-01

    Uptake of cytotoxic drugs by typical tumor cells is limited by the dense dendritic network of oligosaccharide mucin chains that forms a mechanical barrier. Atomic force microscopy is used to directly measure the force needed to pierce the mucin layer to reach the cell surface. Measurements are analyzed by de Gennes' steric reptation theory. Multidrug resistant ovarian tumor cells shows significantly larger penetration load compared to the wide type. A pool of pancreatic, lung, colorectal, and breast cells are also characterized. The chemotherapeutic agent, benzyl-α-GalNac, for inhibiting glycosylation is shown to be effective in reducing the mechanical barrier.

  11. Glycoprotein Mucin Molecular Brush on Cancer Cells and its Correlation with Resistance Against Drug Delivery

    Science.gov (United States)

    Wang, Xin; Shah, Aalok; Campbell, Robert; Wan, Kai-Tak

    2012-02-01

    Uptake of cytotoxic drugs by typical tumor cells is limited by the dense dendritic network of oligosaccharide mucin chains that forms a mechanical barrier. Atomic force microscopy is used to directly measure the force needed to pierce the mucin layer to reach the cell surface. Measurements are analyzed by deGennes' steric reputation theory. Multi-drug resistant ovarian tumor cells shows significantly larger penetration load compared to the wide type. A pool of pancreatic, lung, colorectal, and breast cells are also characterized. The chemotherapeutic agent, benzyl-α-GalNac, for inhibiting glycosylation is shown to be effective in reducing the mechanical barrier.

  12. EXPRESSION OF Fas LIGAND IN HUMAN COLON CANCER CELL LINES

    Institute of Scientific and Technical Information of China (English)

    张建军; 丁尔迅; 王强; 陈学云; 付志仁

    2001-01-01

    To investigate the expression of Fas ligand in human colon carcinoma cell lines. Methods: A total of six human colon cancer cell lines were examined for the expression of Fas ligand mRNA and cell surface protein by using RT-PCR and flow cytometry respectively. Results: The results showed that Fas ligand mRNA was expressed in all of the six cancer cell lines and Fas ligand cell surface protein was expressed in part of them. Conclusion: These data suggest that Fas ligand was expressed, at least in part, in human colon cancer cell lines and might facilitate to escape from immune surveillance of the host.

  13. Elevation of Serum KL-6 Glycoprotein or Surfactant Protein-D in Adult T-cell Leukemia with Distinct Pulmonary Complications

    OpenAIRE

    Osaka, Akemi; Yanagihara, Katsunori; Yamada, Yasuaki; Hasegawa, Hiroo; Inokuchi, Naoko; Hayashi, Tomayoshi; Komoda, Minori; Nakamura, Shigeki; Aoyama, Muneo; Sawada, Takashi; Kamihira, Shimeru

    2009-01-01

    Patients with hematological malignancies frequently suffer from lung diseases as a complication. However, it is difficult to discriminate leukemic invasion into the lung from infectious pulmonary complications. The serum level of Krebs von den Lungen-6 (KL-6), which is a mucin-like glycoprotein, is increased in more than 70% of patients with interstitial pneumonia. Surfactant protein-D (SP-D) is produced mainly in the lung by alveolar type II and bronchiolar epithelial cells and is a useful s...

  14. DNA profiling and characterization of animal cell lines.

    Science.gov (United States)

    Stacey, Glyn N; Byrne, Ed; Hawkins, J Ross

    2014-01-01

    The history of the culture of animal cell lines is littered with published and much unpublished experience with cell lines that have become switched, mislabelled, or cross-contaminated during laboratory handling. To deliver valid and good quality research and to avoid waste of time and resources on such rogue lines, it is vital to perform some kind of qualification for the provenance of cell lines used in research and particularly in the development of biomedical products. DNA profiling provides a valuable tool to compare different sources of the same cells and, where original material or tissue is available, to confirm the correct identity of a cell line. This chapter provides a review of some of the most useful techniques to test the identity of cells in the cell culture laboratory and gives methods which have been used in the authentication of cell lines. PMID:24297409

  15. Lysosome-associated membrane glycoprotein 3 is involved in influenza A virus replication in human lung epithelial (A549 cells

    Directory of Open Access Journals (Sweden)

    Wang Jianwei

    2011-08-01

    Full Text Available Abstract Background Influenza A virus mutates rapidly, rendering antiviral therapies and vaccines directed against virus-encoded targets ineffective. Knowledge of the host factors and molecular pathways exploited by influenza virus will provide further targets for novel antiviral strategies. However, the critical host factors involved in influenza virus infection have not been fully defined. Results We demonstrated that LAMP3, a member of lysosome-associated membrane glycoprotein (LAMP family, was significantly induced in human lung epithelial (A549 cells upon influenza A virus infection. Knockdown of LAMP3 expression by RNA interference attenuated production of viral nucleoprotein (NP as well as virus titers. Confocal microscopy results demonstrated that viral NP is colocalized within LAMP3 positive vesicles at early stages of virus infection. Furthermore, knockdown of LAMP3 expression led to a reduction in nuclear accumulation of viral NP and impeded virus replication. Conclusions LAMP3 is an influenza A virus inducible gene, and plays an important role in viral post-entry steps. Our observations may provide insights into the mechanism of influenza virus replication and potential targets for novel anti-influenza therapeutics.

  16. Biological characteristics of cell lines of human dental alveolus

    Institute of Scientific and Technical Information of China (English)

    陈世璋; 黄靖香; 孙明学; 赵斌

    2003-01-01

    Objective To investigate the biological characteristics of cell lines of healthy and diseased human dental alveoli. Methods Primary cell lines from either healthy or diseased human dental alveoli were obtained. Two cell lines, H-258 and H-171 derived from healthy and diseased human tissues respectively, were selected for morphological study and research on their growth and aging, using cell counting, and histochemical and immunohistochemical staining. Results Primary cell lines were successfully established from innormal dental alveoli. After freezing and thawing for three times, cell growth was continued and no morphological alterations were observed. The doubling time was 53.4 hours and mean division index (MDI) was 4‰. Cells were kept normal after twenty generations with no obvious reduction of doubling time and MDI. Of twenty-six primary cell lines derived from healthy human dental alveoli, only three cell lines achieved generation. After freezing and thawing for twice, cultured cells were still alive at a decreased growth speed, with doubling time of 85.9 hours and MDI of 3‰. Both cell lines, H-171 and H-258, shared the characteristics of osteoblast. Conclusions Primary cell lines of diseased human dental alveoli show greater growth potential. All cell lines of dental alveoli share characteristics of osteoblast. The technique we developed may be put into practice for the treatment of abnormal dental alveoli.

  17. Soluble THSD7A is an N-glycoprotein that promotes endothelial cell migration and tube formation in angiogenesis.

    Directory of Open Access Journals (Sweden)

    Meng-Wei Kuo

    Full Text Available BACKGROUND: Thrombospondin type I domain containing 7A (THSD7A is a novel neural protein that is known to affect endothelial migration and vascular patterning during development. To further understand the role of THSD7A in angiogenesis, we investigated the post-translational modification scheme of THS7DA and to reveal the underlying mechanisms by which this protein regulates blood vessel growth. METHODOLOGY/PRINCIPAL FINDINGS: Full-length THSD7A was overexpressed in human embryonic kidney 293T (HEK293T cells and was found to be membrane associated and N-glycosylated. The soluble form of THSD7A, which is released into the cultured medium, was harvested for further angiogenic assays. We found that soluble THSD7A promotes human umbilical vein endothelial cell (HUVEC migration and tube formation. HUVEC sprouts and zebrafish subintestinal vessel (SIV angiogenic assays further revealed that soluble THSD7A increases the number of branching points of new vessels. Interestingly, we found that soluble THSD7A increased the formation of filopodia in HUVEC. The distribution patterns of vinculin and phosphorylated focal adhesion kinase (FAK were also affected, which implies a role for THSD7A in focal adhesion assembly. Moreover, soluble THSD7A increased FAK phosphorylation in HUVEC, suggesting that THSD7A is involved in regulating cytoskeleton reorganization. CONCLUSIONS/SIGNIFICANCE: Taken together, our results indicate that THSD7A is a membrane-associated N-glycoprotein with a soluble form. Soluble THSD7A promotes endothelial cell migration during angiogenesis via a FAK-dependent mechanism and thus may be a novel neuroangiogenic factor.

  18. Tumor endothelial expression of P-glycoprotein upon microvesicular transfer of TrpC5 derived from adriamycin-resistant breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Dong, YePing; Pan, QiongXi; Jiang, Li; Chen, Zhen; Zhang, FangFang; Liu, YanJun; Xing, Hui; Shi, Mei; Li, Jiao; Li, XiYuan; Zhu, YaoDan; Chen, Yun; Bruce, Iain C.; Jin, Jian, E-mail: jinjian31@126.com; Ma, Xin, E-mail: maxin@jiangnan.edu.cn

    2014-03-28

    Highlights: • TrpC5 was mainly accumulated in microvesicles of drug-resistant MCF-7/ADM cells. • Microvesicles from MCF-7/ADM transferred TrpC5 to endothelial cells. • TrpC5 inhibition reduced P-glycoprotein accumulation on tumor blood vessels in vivo. - Abstract: Treatment of carcinoma commonly fails due to chemoresistance. Studies have shown that endothelial cells acquire resistance via the tumor microenvironment. Microvesicle (MV) shedding from the cell membrane to the microenvironment plays an important role in communication between cells. The aim of the present study was to determine whether MCF-7 adriamycin-resistant cells (MCF-7/ADM) shed MVs that alter the characteristics of human microvessel endothelial cells (HMECs). MVs from tumor cells transferred a Ca{sup 2+}-permeable channel TrpC5 to HMECs, inducing the expression of P-glycoprotein (P-gp) by activation of the transcription factor NFATc3 (nuclear factor of activated T cells isoform c3). Expression of the mdr1 gene was blocked by the TrpC5-blocking antibody T5E3, and the production of P-gp in HMECs was reduced by blockade of TrpC5. Thus, we postulate that endothelial cells acquire the resistant protein upon exposure to TrpC5-containg MVs in the microenvironment, and express P-gp in the TrpC5–NFATc3 signal pathway.

  19. Cloning of aminopeptidase Npromoter and its activity in hematopoietic cell and different tumor cell lines

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Aminopeptidase N (APN) promoter region was cloned and sequenced from peripheral blood mononuclear cells. The recombinant reporter construct containing the promoter and luciferase gene, designated pXP1-APNLuc, was introduced into myeloblastic cell line, T lymphocyte cell line and various tumor cell lines. Luciferase assay showed that APN upstream promoter is myeloid-specific for high expression in myeloblastic cell line and much lower expres sion in T lymphocyte cell line. The promoter activity was relatively high in lung adenoma cell line compared with other tumor cell lines including hepatoma cell line, tong cancer cell line and esophageal cancer cell line in which the promoter activity significantly diminished or was almost undetectable. The characteristics of APN promoter may pro vide a new strategy for specific myeloprotection while tumor patients are being treated with chemotherapy and/or radio therapy.

  20. Amaranthus leucocarpus lectin recognizes a moesin-like O-glycoprotein and costimulates murine CD3-activated CD4(+) T cells.

    Science.gov (United States)

    Arenas-Del Ángel, Maria; Legorreta-Herrera, Martha; Mendoza-Hernández, Guillermo; Garfias, Yonathan; Chávez, Raul; Zenteno, Edgar; Lascurain, Ricardo

    2015-09-01

    The Galβ1,3GalNAcα1,O-Ser/Thr specific lectin from Amaranthus leucocarpus (ALL) binds a ∼70 kDa glycoprotein on murine T cell surface. We show that in the absence of antigen presenting cells, murine CD4(+) T cells activated by an anti-CD3 antibody plus ALL enhanced cell proliferation similar to those cells activated via CD3/CD28 at 48 h of culture. Moreover, ALL induced the production of IL-4, IL-10, TNF-alpha, and TGF-beta in CD3-activated cells. Proteomic assay using two-dimensional electrophoresis and far-Western blotting, ALL recognized two prominent proteins associated to the lipid raft microdomains in CD3/CD28-activated CD4(+) T cells. By mass spectrometry, the peptide fragments from ALL-recognized proteins showed sequences with 33% homology to matricin (gi|347839 NCBInr) and 41% identity to an unnamed protein related to moesin (gi|74186081 NCBInr). Confocal microscopy analysis of CD3/CD28-activated CD4(+) T cells confirmed that staining by ALL colocalized with anti-moesin FERM domain antibody along the plasma membrane and in the intercellular contact sites. Our findings suggest that a moesin-like O-glycoprotein is the ALL-recognized molecule in lipid rats, which induces costimulatory signals on CD4(+) T cells. PMID:26417436

  1. Drug-induced trafficking of p-glycoprotein in human brain capillary endothelial cells as demonstrated by exposure to mitomycin C.

    OpenAIRE

    Noack, Andreas; Noack, Sandra; Hoffmann, Andrea; Maalouf, Katia; Buettner, Manuela; Couraud, Pierre-Olivier; Romero, Ignacio A.; Weksler, Babette; Alms, Dana; Römermann, Kerstin; Naim, Hassan Y; Löscher, Wolfgang

    2014-01-01

    P-glycoprotein (Pgp; ABCB1/MDR1) is a major efflux transporter at the blood-brain barrier (BBB), restricting the penetration of various compounds. In other tissues, trafficking of Pgp from subcellular stores to the cell surface has been demonstrated and may constitute a rapid way of the cell to respond to toxic compounds by functional membrane insertion of the transporter. It is not known whether drug-induced Pgp trafficking also occurs in brain capillary endothelial cells that form the BBB. ...

  2. Demonstration of immunochemical identity between the nerve growth factor-inducible large external (NILE) glycoprotein and the cell adhesion molecule L1

    DEFF Research Database (Denmark)

    Bock, E; Richter-Landsberg, C; Faissner, A;

    1985-01-01

    The nerve growth factor-inducible large external (NILE) glycoprotein and the neural cell adhesion molecule L1 were shown to be immunochemically identical. Immunoprecipitation with L1 and NILE antibodies of [3H]fucose-labeled material from culture supernatants and detergent extracts of NGF......]methionine-labeled early post-natal cerebellar cell cultures or [3H]fucose-labeled NGF-treated PC12 cells, all immunoreactivity for NILE antibody could be removed by pre-clearing with L1 antibody and vice versa....

  3. Antigenic properties of the human immunodeficiency virus envelope glycoprotein gp120 on virions bound to target cells.

    Directory of Open Access Journals (Sweden)

    Meron Mengistu

    2015-03-01

    Full Text Available The HIV-1 envelope glycoprotein, gp120, undergoes multiple molecular interactions and structural rearrangements during the course of host cell attachment and viral entry, which are being increasingly defined at the atomic level using isolated proteins. In comparison, antigenic markers of these dynamic changes are essentially unknown for single HIV-1 particles bound to target cells. Such markers should indicate how neutralizing and/or non-neutralizing antibodies might interdict infection by either blocking infection or sensitizing host cells for elimination by Fc-mediated effector function. Here we address this deficit by imaging fluorescently labeled CCR5-tropic HIV-1 pseudoviruses using confocal and superresolution microscopy to track the exposure of neutralizing and non-neutralizing epitopes as they appear on single HIV-1 particles bound to target cells. Epitope exposure was followed under conditions permissive or non-permissive for viral entry to delimit changes associated with virion binding from those associated with post-attachment events. We find that a previously unexpected array of gp120 epitopes is exposed rapidly upon target cell binding. This array comprises both neutralizing and non-neutralizing epitopes, the latter being hidden on free virions yet capable of serving as potent targets for Fc-mediated effector function. Under non-permissive conditions for viral entry, both neutralizing and non-neutralizing epitope exposures were relatively static over time for the majority of bound virions. Under entry-permissive conditions, epitope exposure patterns changed over time on subsets of virions that exhibited concurrent variations in virion contents. These studies reveal that bound virions are distinguished by a broad array of both neutralizing and non-neutralizing gp120 epitopes that potentially sensitize a freshly engaged target cell for destruction by Fc-mediated effector function and/or for direct neutralization at a post-binding step

  4. NMR detection and characterization of sialylated glycoproteins and cell surface polysaccharides

    Energy Technology Data Exchange (ETDEWEB)

    Barb, Adam W. [University of Georgia, Complex Carbohydrate Research Center (United States); Freedberg, Daron I.; Battistel, Marcos D. [Center for Biologics Evaluation and Research, Food and Drug Administration, Laboratory of Bacterial Polysaccharides (United States); Prestegard, James H., E-mail: jpresteg@ccrc.uga.edu [University of Georgia, Complex Carbohydrate Research Center (United States)

    2011-09-15

    Few solution NMR pulse sequences exist that are explicitly designed to characterize carbohydrates (glycans). This is despite the essential role carbohydrate motifs play in cell-cell communication, microbial pathogenesis, autoimmune disease progression and cancer metastasis, and despite that fact that glycans, often shed to extra-cellular fluids, can be diagnostic of disease. Here we present a suite of two dimensional coherence experiments to measure three different correlations (H3-C2, H3-C1, and C1-C2) on sialic acids, a group of nine-carbon carbohydrates found on eukaryotic cell surfaces that often play a key role in disease processes. The chemical shifts of the H3, C2, and C1 nuclei of sialic acids are sensitive to carbohydrate linkage, linkage conformation, and ionization state of the C1 carboxylate. The experiments reported include rigorous filter elements to enable detection and characterization of isotopically labeled sialic acids with high sensitivity in living cells and crude isolates with minimal interference from unwanted signals arising from the {approx}1% {sup 13}C-natural abundance of cellular metabolites. Application is illustrated with detection of sialic acids on living cells, in unpurified mixtures, and at the terminus of the N-glycan on the 55 kDa immunoglobulin G Fc.

  5. Cetuximab enhanced the efficacy of chemotherapeutic agent in ABCB1/P-glycoprotein-overexpressing cancer cells.

    Science.gov (United States)

    Wang, Fang; Chen, Yifan; Huang, Lihua; Liu, Tao; Huang, Yue; Zhao, Jianming; Wang, Xiaokun; Yang, Ke; Ma, Shaolin; Huang, Liyan; To, Kenneth Kin Wah; Gu, Yong; Fu, Liwu

    2015-12-01

    The overexpression of ATP-binding cassette (ABC) transporters is closely associated with the development of multidrug resistance (MDR) in certain types of cancer, which represents a formidable obstacle to the successful cancer chemotherapy. Here, we investigated that cetuximab, an EGFR monoclonal antibody, reversed the chemoresistance mediated by ABCB1, ABCG2 or ABCC1. Our results showed that cetuximab significantly enhanced the cytotoxicity of ABCB1 substrate agent in ABCB1-overexpressing MDR cells but had no effect in their parental drug sensitive cells and ABCC1, ABCG2 overexpressing cells. Furthermore, cetuximab markedly increased intracellular accumulation of doxorubicin (DOX) and rhodamine 123 (Rho 123) in ABCB1-overexpressing MDR cancer cells in a concentration-dependent manner. Cetuximab stimulated the ATPase activity but did not alter the expression level of ABCB1 or block phosphorylation of AKT and ERK. Interestingly, cetuximab decreased the cell membrane fluidity which was known to decrease the function of ABCB1. Our findings advocate further clinical investigation of combination chemotherapy of cetuximab and conventional chemotherapeutic drugs in ABCB1 overexpressing cancer patients.

  6. P-glycoprotein-mediated resistance to chemotherapy in cancer cells: using recombinant cytosolic domains to establish structure-function relationships

    Directory of Open Access Journals (Sweden)

    Di Pietro A.

    1999-01-01

    Full Text Available Resistance to chemotherapy in cancer cells is mainly mediated by overexpression of P-glycoprotein (Pgp, a plasma membrane ATP-binding cassette (ABC transporter which extrudes cytotoxic drugs at the expense of ATP hydrolysis. Pgp consists of two homologous halves each containing a transmembrane domain and a cytosolic nucleotide-binding domain (NBD which contains two consensus Walker motifs, A and B, involved in ATP binding and hydrolysis. The protein also contains an S signature characteristic of ABC transporters. The molecular mechanism of Pgp-mediated drug transport is not known. Since the transporter has an extraordinarily broad substrate specificity, its cellular function has been described as a "hydrophobic vacuum cleaner". The limited knowledge about the mechanism of Pgp, partly due to the lack of a high-resolution structure, is well reflected in the failure to efficiently inhibit its activity in cancer cells and thus to reverse multidrug resistance (MDR. In contrast to the difficulties encountered when studying the full-length Pgp, the recombinant NBDs can be obtained in large amounts as soluble proteins. The biochemical and biophysical characterization of recombinant NBDs is shown here to provide a suitable alternative route to establish structure-function relationships. NBDs were shown to bind ATP and analogues as well as potent modulators of MDR, such as hydrophobic steroids, at a region close to the ATP site. Interestingly, flavonoids also bind to NBDs with high affinity. Their binding site partly overlaps both the ATP-binding site and the steroid-interacting region. Therefore flavonoids constitute a new promising class of bifunctional modulators of Pgp.

  7. Identification of continuous human B-cell epitopes in the VP35, VP40, nucleoprotein and glycoprotein of Ebola virus.

    Directory of Open Access Journals (Sweden)

    Pierre Becquart

    Full Text Available Ebola virus (EBOV is a highly virulent human pathogen. Recovery of infected patients is associated with efficient EBOV-specific immunoglobulin G (IgG responses, whereas fatal outcome is associated with defective humoral immunity. As B-cell epitopes on EBOV are poorly defined, we sought to identify specific epitopes in four EBOV proteins (Glycoprotein (GP, Nucleoprotein (NP, and matrix Viral Protein (VP40 and VP35. For the first time, we tested EBOV IgG+ sera from asymptomatic individuals and symptomatic Gabonese survivors, collected during the early humoral response (seven days after the end of symptoms and the late memory phase (7-12 years post-infection. We also tested sera from EBOV-seropositive patients who had never had clinical signs of hemorrhagic fever or who lived in non-epidemic areas (asymptomatic subjects. We found that serum from asymptomatic individuals was more strongly reactive to VP40 peptides than to GP, NP or VP35. Interestingly, anti-EBOV IgG from asymptomatic patients targeted three immunodominant regions of VP40 reported to play a crucial role in virus assembly and budding. In contrast, serum from most survivors of the three outbreaks, collected a few days after the end of symptoms, reacted mainly with GP peptides. However, in asymptomatic subjects the longest immunodominant domains were identified in GP, and analysis of the GP crystal structure revealed that these domains covered a larger surface area of the chalice bowl formed by three GP1 subunits. The B-cell epitopes we identified in the EBOV VP35, VP40, NP and GP proteins may represent important tools for understanding the humoral response to this virus and for developing new antibody-based therapeutics or detection methods.

  8. Antibodies to endothelial cells and to beta 2-glycoprotein I in the antiphospholipid syndrome: prevalence and isotype distribution.

    Science.gov (United States)

    Navarro, M; Cervera, R; Teixidó, M; Reverter, J C; Font, J; López-Soto, A; Monteagudo, J; Escolar, G; Ingelmo, M

    1996-06-01

    The aim of this study was to analyse the prevalence and isotype distribution of antibodies to endothelial cells (aEC) and to beta 2-glycoprotein I (a beta 2GPI) in the antiphospholipid syndrome (APS). Fifteen patients with an APS [nine associated with systemic lupus erythematosus (SLE) and six "primary'] and 15 with SLE without an APS were prospectively studied. The aEC were determined by an enzyme-linked immunosorbent assay (ELISA) using endothelial cells derived from human umbilical vein and the a beta 2GPI by ELISA using highly purified beta 2GPI. A positive titre of aEC was detected in 20 out of 30 patients (67%), but in none of the control group. Ten patients had both IgG and IgM isotypes, five had IgG only and five had only IgM. Thirteen patients with the APS (87%) were found to have a positive titre of aEC, while only seven with SLE but without a history of APS (47%) had aEC (P < 0.05). Nine patients with the APS (60%) had a positive titre of a beta 2GPI (four had both IgG and IgM isotypes, one had IgG only and four had only IgM), while none of the patients without an APS (0%) had these antibodies (P < 0.001). A significant association was also found between the presence of aPL and aEC (P < 0.05), as well as between aPL and a beta 2GPI (P < 0.001). Both aEC and a beta 2GPI can be found in the APS. This reinforces the theory that APS represents a complex autoimmune disorder in which several autoantibodies co-exist with aPL.

  9. A functional glycoprotein competitive recognition and signal amplification strategy for carbohydrate-protein interaction profiling and cell surface carbohydrate expression evaluation

    Science.gov (United States)

    Wang, Yangzhong; Chen, Zhuhai; Liu, Yang; Li, Jinghong

    2013-07-01

    A simple and sensitive carbohydrate biosensor has been suggested as a potential tool for accurate analysis of cell surface carbohydrate expression as well as carbohydrate-based therapeutics for a variety of diseases and infections. In this work, a sensitive biosensor for carbohydrate-lectin profiling and in situ cell surface carbohydrate expression was designed by taking advantage of a functional glycoprotein of glucose oxidase acting as both a multivalent recognition unit and a signal amplification probe. Combining the gold nanoparticle catalyzed luminol electrogenerated chemiluminescence and nanocarrier for active biomolecules, the number of cell surface carbohydrate groups could be conveniently read out. The apparent dissociation constant between GOx@Au probes and Con A was detected to be 1.64 nM and was approximately 5 orders of magnitude smaller than that of mannose and Con A, which would arise from the multivalent effect between the probe and Con A. Both glycoproteins and gold nanoparticles contribute to the high affinity between carbohydrates and lectin. The as-proposed biosensor exhibits excellent analytical performance towards the cytosensing of K562 cells with a detection limit of 18 cells, and the mannose moieties on a single K562 cell were determined to be 1.8 × 1010. The biosensor can also act as a useful tool for antibacterial drug screening and mechanism investigation. This strategy integrates the excellent biocompatibility and multivalent recognition of glycoproteins as well as the significant enzymatic catalysis and gold nanoparticle signal amplification, and avoids the cell pretreatment and labelling process. This would contribute to the glycomic analysis and the understanding of complex native glycan-related biological processes.A simple and sensitive carbohydrate biosensor has been suggested as a potential tool for accurate analysis of cell surface carbohydrate expression as well as carbohydrate-based therapeutics for a variety of diseases and

  10. CIK cells from patients with HCC possess strong cytotoxicity to multidrug-resistant cell line Bel-7402/R

    Institute of Scientific and Technical Information of China (English)

    You-Shun Zhang; Fang-Jun Yuan; Guo-Feng Jia; Ji-Fa Zhang; Li-Yi Hu; Ling Huang; Ju Wang; Zong-Qing Dai

    2005-01-01

    AIM: To investigate the cytotoxicity of the cytokine-induced killer (CIK) cells from the post-operation patients with primary hepatocellular carcinoma (HCC) to multidrugresistant (MDR) cell of HCC bothin vitro and in vivo. METHODS: A drug-resistant cell line was established by culturing human HCC cell line Bel-7402 in complete RPMI 1640 medium with increasing concentrations of adriamycin from 10 to 2 000 nmol/L. CIK cells were obtained by inducing the peripheral blood mononuclear cells with rhIFN-γ, monoclonal anti-CD3 antibody, rhIL-1α as well as rhIL-2, which were added into the culture. To detect the cytotoxicityof the CIK cells from HCC patients, the Bel-7402/R was taken as target (T) cells and CIK cells as effect (E) cells. Cytotoxic test was performed and measured by MTT. Asto in vivo test, CIK cells were transfused into patients with HCC. The tumor specimens of the patients were obtained and immunohistochemistry was carried out to detect CD3, CD45, CD45RO as well as CD68. RESULTS: A MDR 1 HCC cell line Bel-7402/R was established. Its MDR1 mRNA overexpressed which was shown by RT PCR; the P-glycoprotein expression increased from 1.32%of parent cells to 54%. CIK cells expanded vigorously bymore than 70-fold and the CD3+CD56+ increased by more than 600-fold after 3-wk incubation on average. The cytotoxicity of CIK from HCC patients to Bel-7402/R was about 50% and to L-02 below 10% (t = 8.87, P<0.01),the same as that of CIK from normal individuals. Each of the 17 patients received 1-5×1010 of CIK celltransfusion. No side effects were observed. After CIK treatment, the tumor tissue nodules formed and a large amount of lymphocytes infiltrated in the liver cancer tissue and CD3, CD45, CD45RO, and CD68 increased greatly which was shown by immunohistochemistry.CONCLUSION: A stable MDR1 HCC cell line has been established which could recover from liquid nitrogen and CIK from HCC patients has strong cytotoxicity to MDR HCC cell. CIK adoptive immunotherapy is safe

  11. Polyphenols of Mangifera indica modulate arsenite-induced cytotoxicity in a human proximal tubule cell line

    Directory of Open Access Journals (Sweden)

    Gabino Garrido

    2012-04-01

    Full Text Available Inorganic arsenic is an ubiquitous environmental contaminant able to cause severe pathologies in humans, including kidney disorders. The possible protective effects of Mangifera indica L., Anacardiaceae, stem bark extract (MSBE and some mango phenols on the cytotoxicity of arsenite (AsIII in the proximal tubule cell line HK-2 was investigated. In cells cultured for 24 h in presence of AsIII, a dose-dependent loss of cell viability occurred that was significantly alleviated by MSBE, followed by gallic acid, catechin and mangiferin. Mangiferin complexed with Fe+++ proved more efficacious than mangiferin alone. MSBE and pure phenols increased significantly the cell surviving fraction in clonogenic assays. In cells pretreated with MSBE or phenols for 72 h the protection afforded by MSBE resulted decreased in comparison with the shorter experiments. Cells pretreated with a subcytotoxic amount of AsIII or cultured in continuous presence of low concentration of mangiferin proved to be more resistant to AsIII, while cells cultured in presence of albumin resulted more sensitive. Because all the above conditions share changes in expression/activity of P-glycoprotein (P-gp, a transporter potentially involved in arsenic resistance, the capability of M. indica phenols in modulating AsIII-induced cytotoxicity would be at least in part dependent on their interactions with P-gp.

  12. Development and characterization of a new human hepatic cell line

    Science.gov (United States)

    Ramboer, Eva; De Craene, Bram; De Kock, Joey; Berx, Geert; Rogiers, Vera; Vanhaecke, Tamara; Vinken, Mathieu

    2015-01-01

    The increasing demand and hampered use of primary human hepatocytes for research purposes have urged scientists to search for alternative cell sources, such as immortalized hepatic cell lines. The aim of this study was to develop a human hepatic cell line using the combined overexpression of TERT and the cell cycle regulators cyclin D1 and mutant isoform CDK4R24C. Following transduction of adult human primary hepatocytes with the selected immortalization genes, cell growth was triggered and a cell line was established. When cultured under appropriate conditions, the cell line expressed several hepatocytic markers and liver-enriched transcription factors at the transcriptional and/or translational level, secreted liver-specific proteins and showed glycogen deposition. These results suggest that the immortalization strategy applied to primary human hepatocytes could generate a novel hepatic cell line that seems to retain some key hepatic characteristics. PMID:26869867

  13. MODERATE CYTOTOXICITY OF PROANTHOCYANIDINS TO HUMAN TUMOR-CELL LINES

    NARCIS (Netherlands)

    KOLODZIEJ, H; HABERLAND, C; WOERDENBAG, HJ; KONINGS, AWT

    1995-01-01

    In the present study the cytotoxicity of 16 proanthocyanidins was evaluated in GLC(4), a human small cell lung carcinoma cell line, and in COLO 320, a human colorectal cancer cell line, using the microculture tetrazolium (MTT) assay. With IC50 values ranging from 18 to >200 mu m following continuous

  14. A functional glycoprotein competitive recognition and signal amplification strategy for carbohydrate-protein interaction profiling and cell surface carbohydrate expression evaluation.

    Science.gov (United States)

    Wang, Yangzhong; Chen, Zhuhai; Liu, Yang; Li, Jinghong

    2013-08-21

    A simple and sensitive carbohydrate biosensor has been suggested as a potential tool for accurate analysis of cell surface carbohydrate expression as well as carbohydrate-based therapeutics for a variety of diseases and infections. In this work, a sensitive biosensor for carbohydrate-lectin profiling and in situ cell surface carbohydrate expression was designed by taking advantage of a functional glycoprotein of glucose oxidase acting as both a multivalent recognition unit and a signal amplification probe. Combining the gold nanoparticle catalyzed luminol electrogenerated chemiluminescence and nanocarrier for active biomolecules, the number of cell surface carbohydrate groups could be conveniently read out. The apparent dissociation constant between GOx@Au probes and Con A was detected to be 1.64 nM and was approximately 5 orders of magnitude smaller than that of mannose and Con A, which would arise from the multivalent effect between the probe and Con A. Both glycoproteins and gold nanoparticles contribute to the high affinity between carbohydrates and lectin. The as-proposed biosensor exhibits excellent analytical performance towards the cytosensing of K562 cells with a detection limit of 18 cells, and the mannose moieties on a single K562 cell were determined to be 1.8 × 10(10). The biosensor can also act as a useful tool for antibacterial drug screening and mechanism investigation. This strategy integrates the excellent biocompatibility and multivalent recognition of glycoproteins as well as the significant enzymatic catalysis and gold nanoparticle signal amplification, and avoids the cell pretreatment and labelling process. This would contribute to the glycomic analysis and the understanding of complex native glycan-related biological processes.

  15. Distinct differentiation characteristics of individual human embryonic stem cell lines

    Directory of Open Access Journals (Sweden)

    Knuutila Sakari

    2006-08-01

    Full Text Available Abstract Background Individual differences between human embryonic stem cell (hESC lines are poorly understood. Here, we describe the derivation of five hESC lines (called FES 21, 22, 29, 30 and 61 from frozen-thawed human embryos and compare their individual differentiation characteristic. Results The cell lines were cultured either on human or mouse feeder cells. The cells grew significantly faster and could be passaged enzymatically only on mouse feeders. However, this was found to lead to chromosomal instability after prolonged culture. All hESC lines expressed the established markers of pluripotent cells as well as several primordial germ cell (PGC marker genes in a uniform manner. However, the cell lines showed distinct features in their spontaneous differentiation patterns. The embryoid body (EB formation frequency of FES 30 cell line was significantly lower than that of other lines and cells within the EBs differentiated less readily. Likewise, teratomas derived from FES 30 cells were constantly cystic and showed only minor solid tissue formation with a monotonous differentiation pattern as compared with the other lines. Conclusion hESC lines may differ substantially in their differentiation properties although they appear similar in the undifferentiated state.

  16. Loss of a novel mucin-like epithelial glycoprotein in oral and cervical squamous cell carcinomas

    DEFF Research Database (Denmark)

    Nielsen, P A; Mandel, U; Therkildsen, M H;

    1997-01-01

    layers of buccal epithelium and was also found in larynx, esophagus, vagina, and exocervix, but not in epidermis. Data showed that gp230 was distinct from MUC1 or CD44. It is interesting that in most cases gp230 was not expressed in squamous cell carcinomas of buccal and cervical mucosa. A few moderately...... differentiated carcinomas, mainly from cervix, expressed the gp230 epitope. The results suggest that a membrane-bound mucin-like molecule, gp230, is associated with the differentiated phenotype of normal mucosal stratified squamous epithelia and that expression of gp230 generally is lost in severe oral...... epithelial dysplasia and squamous cell carcinomas of oral and cervical mucosa....

  17. Analysis of three marine fish cell lines by rapd assay.

    Science.gov (United States)

    Guo, H R; Zhang, S C; Tong, S L; Xiang, J H

    2001-01-01

    We tested the applicability of the random amplified polymorphic deoxyribonucleic acid (RAPD) analysis for identification of three marine fish cell lines FG, SPH, and RSBF, and as a possible tool to detect cross-contamination. Sixty commercial 10-mer RAPD primers were tested on the cell lines and on samples collected from individual fish. The results obtained showed that the cell lines could be identified to the correspondent species on the basis of identical patterns produced by 35-48% of the primers tested; the total mean similarity indices for cell lines versus correspondent species of individual fish ranged from 0.825 to 0.851, indicating the existence of genetic variation in these cell lines in relation to the species of their origin. Also, four primers, which gave a monomorphic band pattern within species/line, but different among the species/line, were obtained. These primers can be useful for identification of these cell lines and for characterization of the genetic variation of these cell lines in relation to the species of their origin. This supported the use of RAPD analysis as an effective tool in species identification and cross-contamination test among different cell lines. PMID:11573817

  18. The calcium-dependent myoblast adhesion that precedes cell fusion is mediated by glycoproteins

    OpenAIRE

    1985-01-01

    Presumptive myoblasts from explants of chick embryo pectoral muscle proliferate, differentiate, and fuse to form multinucleate myotubes. One event critical to multinucleate cell formation is the specific adhesion of myoblasts before union of their membranes. In the studies reported here five known inhibitors of myotube formation-- trifluoperazine, sodium butyrate, chloroquine, 1,10 phenanthroline, and tunicamycin--were tested for their effect on the Ca++-dependent myoblast adhesion step. The ...

  19. [Hydroxyproline: Rich glycoproteins of the plant and cell wall]. Annual technical progress report, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Varner, J.E.

    1993-06-01

    Since xylem tissue includes the main cell types which are lignified, we are interested in gene expression of glycine-rich proteins and proline-rich proteins, and other proteins which are involved in secondary cell wall thickening during xylogenesis. Since the main feature of xylogenesis is the deposition of additional wall components, study of the mechanism of xylogenesis will greatly advance our knowledge of the synthesis and assembly of wall macromolecules. We are using the in vitro xylogenesis system from isolated Zinnia mesophyll cells to isolate genes which are specifically expressed during xylogenesis. We have used subtractive hybridization methods to isolate a number of cDNA clones for differentially regulated genes from the cells after hormonal induction. So far, we have partially characterized 18 different cDNA clones from 239 positive clones. These differentially regulated genes can be divided into three sets according to the characteristics of gene expression in the induction medium and the control medium. The first set is induced in both the induction medium and the control medium without hormones. The second set is induced mainly in the induction medium and in the control medium with the addition of NAA alone. Two of thesegenes are exclusively induced by auxin. The third set of genes is induced mainly in the induction medium. Since these genes are not induced by either auxin or cytokinin alone, they may be directly involved in the process of xylogenesis. Our experiments on the localization of H{sub 2}O{sub 2} production reinforce the earlier ideas of others that H{sub 2}O{sub 2} is involved in normal lignification.

  20. Varicella-zoster virus glycoprotein expression differentially induces the unfolded protein response in infected cells

    OpenAIRE

    Carpenter, John E.; Grose, Charles

    2014-01-01

    Varicella-zoster virus (VZV) is a human herpesvirus that spreads to children as varicella or chicken pox. The virus then establishes latency in the nervous system and re-emerges, typically decades later, as zoster or shingles. We have reported previously that VZV induces autophagy in infected cells as well as exhibiting evidence of the Unfolded Protein Response (UPR): XBP1 splicing, a greatly expanded Endoplasmic Reticulum (ER) and CHOP expression. Herein we report the results of a UPR specif...

  1. Varicella-Zoster Virus glycoprotein expression differentially induces the unfolded protein response in infected cells.

    OpenAIRE

    John Earl Carpenter; Charles eGrose

    2014-01-01

    Varicella-zoster virus (VZV) is a human herpesvirus that spreads to children as varicella or chicken pox. The virus then establishes latency in the nervous system and re-emerges, typically decades later, as zoster or shingles. We have reported previously that VZV induces autophagy in infected cells as well as exhibiting evidence of the Unfolded Protein Response (UPR): XBP1 splicing, a greatly expanded Endoplasmic Reticulum (ER) and CHOP expression. Herein we report the results of a UPR specif...

  2. Transport of radiolabelled glycoprotein to cell surface and lysosome-like bodies of absorptive cells in cultured small-intestinal tissue from normal subjects and patients with a lysosomal storage disease

    International Nuclear Information System (INIS)

    The transport of 3H-fucose and 3H-glucosamine-labelled glycoproteins in the absorptive cells of cultured human small-intestinal tissue was investigated with light- and electron-microscopical autoradiography. The findings showed that these glycoproteins were completed in the Golgi apparatus and transported in small vesicular structures to the apical cytoplasm of these cells. Since this material arrived in the cell coat on the microvilli and in the lysosome-like bodies simultaneously, a crinophagic function of these organelles in the regulation of the transport or secretion of cell-coat material was supported. In the absorptive cells of patients with fucosidosis or Hunter's type of lysosomal storage disease, a similar transport of cell-coat material to the lysosome-like bodies and a congenital defect of a lysosomal hydrolase normally involved in the degradation of cell-coat material, can explain the accumulation of this material in the dense bodies. (orig.)

  3. POTENTIAL CELL LINE TOXICITY OF ENVIRONMENTAL NANOPARTICLES

    Directory of Open Access Journals (Sweden)

    Mohan Durga

    2012-01-01

    Full Text Available In India, the unprecedented growth rate and urbanization along with the rapid increase in motor vehicle activity and industrialization are contributing to high levels of urban air pollution. The population is mainly exposed to high air pollution concentrations, where motor vehicle emissions constitute the main source of fine and ultrafine particles. Motor exhaust emissions is a mixture of gases and Particulate Matter (PM. Diesel and petrol fuels in vehicles produce combustion-derived particles as a result of combustion. Vehicle exhaust particles are the main constituents of environmental nanoparticles. In the present investigation, environmental nanoparticles such as Diesel Exhaust Particles (DEP and Petrol Exhaust Particles (PEP were collected from on-road vehicles using a specially designed collection chamber. The surface morphology of the collected particles was analyzed through Transmission Electron Microscope (TEM, and the elemental mapping was performed through EDAX analysis. Results indicated the presence of nanometer-size particles in both the categories of vehicle exhaust. These small-size particles of respirable range can enter the respiratory tract of humans and get deposited in the lungs and cause various effects inside the human body. The aim of this study is to assess the cytotoxicity of the collected Diesel Exhaust Nanoparticles (DENPs and Petrol Exhaust Nanoparticles (PENPs. Cytotoxicity endpoint, such as IC50 (50% Inhibitory Concentration, was determined after a 24-h exposure. Results of this study indicated that all five cell lines were sensitive to these vehicle exhaust nanoparticles at varying levels.

  4. Characterization of an Sf-rhabdovirus-negative Spodoptera frugiperda cell line as an alternative host for recombinant protein production in the baculovirus-insect cell system.

    Science.gov (United States)

    Maghodia, Ajay B; Geisler, Christoph; Jarvis, Donald L

    2016-06-01

    Cell lines derived from the fall armyworm, Spodoptera frugiperda (Sf), are widely used as hosts for recombinant protein production in the baculovirus-insect cell system (BICS). However, it was recently discovered that these cell lines are contaminated with a virus, now known as Sf-rhabdovirus [1]. The detection of this adventitious agent raised a potential safety issue that could adversely impact the BICS as a commercial recombinant protein production platform. Thus, we examined the properties of Sf-RVN, an Sf-rhabdovirus-negative Sf cell line, as a potential alternative host. Nested RT-PCR assays showed Sf-RVN cells had no detectable Sf-rhabdovirus over the course of 60 passages in continuous culture. The general properties of Sf-RVN cells, including their average growth rates, diameters, morphologies, and viabilities after baculovirus infection, were virtually identical to those of Sf9 cells. Baculovirus-infected Sf-RVN and Sf9 cells produced equivalent levels of three recombinant proteins, including an intracellular prokaryotic protein and two secreted eukaryotic glycoproteins, and provided similar N-glycosylation patterns. In fact, except for the absence of Sf-rhabdovirus, the only difference between Sf-RVN and Sf9 cells was SF-RVN produced higher levels of infectious baculovirus progeny. These results show Sf-RVN cells can be used as improved, alternative hosts to circumvent the potential safety hazard associated with the use of Sf-rhabdovirus-contaminated Sf cells for recombinant protein manufacturing with the BICS.

  5. Antibodies to P-selectin glycoprotein ligand-1 block dendritic cell-mediated enterovirus 71 transmission and prevent virus-induced cells death.

    Science.gov (United States)

    Ren, Xiao-Xin; Li, Chuan; Xiong, Si-Dong; Huang, Zhong; Wang, Jian-Hua; Wang, Hai-Bo

    2015-01-01

    P-selectin glycoprotein ligand-1 (PSGL-1) has been proved to serve as the functional receptor for enterovirus 71 (EV71). We found the abundant expression of PSGL-1 on monocyte-derived dendritic cells (MDDCs). However, we have previously demonstrated that MDDCs did not support efficient replication of EV71. Dendritic cells (DCs) have been described to be subverted by various viruses including EV71 for viral dissemination, we thus explore the potential contribution of PSGL-1 on DC-mediated EV71 transmission. We found that the cell-surface-expressing PSGL-1 on MDDCs mediated EV71 binding, and intriguingly, these loaded-viruses on MDDCs could be transferred to encountered target cells; Prior-treatment with PSGL-1 antibodies or interference with PSGL-1 expression diminished MDDC-mediated EV71 transfer and rescued virus-induced cell death. Our data uncover a novel role of PSGL-1 in DC-mediated EV71 spread, and provide an insight into blocking primary EV71 infection.

  6. Secretion of hepatitis C virus envelope glycoproteins depends on assembly of apolipoprotein B positive lipoproteins.

    Directory of Open Access Journals (Sweden)

    Vinca Icard

    Full Text Available The density of circulating hepatitis C virus (HCV particles in the blood of chronically infected patients is very heterogeneous. The very low density of some particles has been attributed to an association of the virus with apolipoprotein B (apoB positive and triglyceride rich lipoproteins (TRL likely resulting in hybrid lipoproteins known as lipo-viro-particles (LVP containing the viral envelope glycoproteins E1 and E2, capsid and viral RNA. The specific infectivity of these particles has been shown to be higher than the infectivity of particles of higher density. The nature of the association of HCV particles with lipoproteins remains elusive and the role of apolipoproteins in the synthesis and assembly of the viral particles is unknown. The human intestinal Caco-2 cell line differentiates in vitro into polarized and apoB secreting cells during asymmetric culture on porous filters. By using this cell culture system, cells stably expressing E1 and E2 secreted the glycoproteins into the basal culture medium after one week of differentiation concomitantly with TRL secretion. Secreted glycoproteins were only detected in apoB containing density fractions. The E1-E2 and apoB containing particles were unique complexes bearing the envelope glycoproteins at their surface since apoB could be co-immunoprecipitated with E2-specific antibodies. Envelope protein secretion was reduced by inhibiting the lipidation of apoB with an inhibitor of the microsomal triglyceride transfer protein. HCV glycoproteins were similarly secreted in association with TRL from the human liver cell line HepG2 but not by Huh-7 and Huh-7.5 hepatoma cells that proved deficient for lipoprotein assembly. These data indicate that HCV envelope glycoproteins have the intrinsic capacity to utilize apoB synthesis and lipoprotein assembly machinery even in the absence of the other HCV proteins. A model for LVP assembly is proposed.

  7. Hesperidin as a preventive resistance agent in MCF-7 breast cancer cells line resistance to doxorubicin

    Institute of Scientific and Technical Information of China (English)

    Rifki Febriansah; Dyaningtyas Dewi PP; Sarmoko; Nunuk Aries Nurulita; Edy Meiyanto; Agung Endro Nugroho

    2014-01-01

    Objective:To evaluate of hesperidin to overcome resistance of doxorubicin in MCF-7 resistant doxorubicin cells (MCF-7/Dox) in cytotoxicity apoptosis and P-glycoprotein (Pgp) expression in combination with doxorubicin. Methods:The cytotoxic properties, 50%inhibition concentration (IC50) and its combination with doxorubicin in MCF-7 cell lines resistant to doxorubicin (MCF-7/Dox) cells were determined using MTT assay. Apoptosis induction was examined by double staining assay using ethidium bromide-acridine orange. Immunocytochemistry assay was performed to determine the level and localization of Pgp. Results: Single treatment of hesperidin showed cytotoxic activity on MCF-7/Dox cells with IC50 value of 11 µmol/L. Thus, combination treatment from hesperidin and doxorubicin showed addictive and antagonist effect (CI>1.0). Hesperidin did not increase the apoptotic induction, but decreased the Pgp expressions level when combined with doxorubicin in low concentration. Conclusions: Hesperidin has cytotoxic effect on MCF-7/Dox cells with IC50 of 11 µmol/L. Hesperidin did not increased the apoptotic induction combined with doxorubicin. Co-chemotherapy application of doxorubicin and hesperidin on MCF-7/Dox cells showed synergism effect through inhibition of Pgp expression.

  8. Pseudorabies virus glycoprotein L is necessary for virus infectivity but dispensable for virion localization of glycoprotein H.

    OpenAIRE

    Klupp, B G; Fuchs, W; Weiland, E; Mettenleiter, T.C.

    1997-01-01

    Herpesviruses contain a number of envelope glycoproteins which play important roles in the interaction between virions and target cells. Although several glycoproteins are not present in all herpesviruses, others, including glycoproteins H and L (gH and gL), are conserved throughout the Herpesviridae. To elucidate common properties and differences in herpesvirus glycoprotein function, corresponding virus mutants must be constructed and analyzed in different herpesvirus backgrounds. Analysis o...

  9. Mechanisms of confluence-dependent expression of CD26 in colon cancer cell lines

    Directory of Open Access Journals (Sweden)

    Morimoto Chikao

    2011-02-01

    Full Text Available Abstract Background CD26 (dipeptidyl peptidase IV, DPPIV is a 110 kDa surface glycoprotein expressed in most normal tissues, and is a potential novel therapeutic target for selected cancers. Our work evaluates the mechanism involved in confluence-dependent CD26 expression in colon cancer. Methods Colon adenocarcinoma cells were grown to confluence, and expression of CD26 and transcription factors implicated in its regulation was confirmed by immunofluorescence and Western blotting. Real-time PCR was also performed to evaluate CD26 upregulation at the transcriptional level. The influence of c-Myc on CD26 expression during different growth conditions was further evaluated following transient transfection of a c-Myc-expressing plasmid and a c-Myc specific siRNA. Results We found that the colon cancer cell lines HCT-116 and HCT-15 exhibited a confluence-dependent increase in CD26 mRNA and protein, associated with decreased expression of c-Myc, increased USF-1 and Cdx 2 levels, and unchanged HNF-1α expression. Meanwhile, ectopic expression of c-Myc in both cell lines led to decreased CD26 expression. In contrast, transfection of a siRNA targeted to Cdx2 resulted in decreased CD26 level. Importantly, culturing of cells in serum-depleted media, but not acidic conditions, upregulated CD26. While HIF-1α level also increased when cells were cultured in serum-depleted media, its expression was required but not sufficient for CD26 upregulation. Conclusions CD26 mRNA and protein levels increase in a confluence-dependent manner in colon carcinoma cell lines, with c-Myc acting as a repressor and Cdx2 acting as an enhancer of CD26 expression. The enhanced expression of CD26 in serum-depleted media and a requirement for HIF-1α suggest a role for nutrients or growth factors in the regulation of CD26 protein expression.

  10. EMA: a developmentally regulated cell-surface glycoprotein of CNS neurons that is concentrated at the leading edge of growth cones.

    Science.gov (United States)

    Baumrind, N L; Parkinson, D; Wayne, D B; Heuser, J E; Pearlman, A L

    1992-08-01

    To identify cell-surface molecules that mediate interactions between neurons and their environment during neural development, we used monoclonal antibody techniques to define a developmentally regulated antigen in the central nervous system of the mouse. The antibody we produced (2A1) immunolabels cells throughout the central nervous system; we analyzed its distribution in the developing cerebral cortex, where it is expressed on cells very soon after they complete mitosis and leave the periventricular proliferative zone. Expression continues into adult life. The antibody also labels the epithelium of the choroid plexus and the renal proximal tubules, but does not label neurons of the peripheral nervous system in the dorsal root ganglia. In dissociated cell culture of embryonic cerebral cortex, 2A1 labels the surface of neurons but not glia. Immunolabeling of neurons in tissue culture is particularly prominent on the edge of growth cones, including filopodia and the leading edge of lamellipodia, when observed with either immunofluorescence or freeze-etch immunoelectron microscopy. Immunopurification with 2A1 of a CHAPS-extracted membrane preparation from brains of neonatal mice produces a broad (32-36 kD) electrophoretic band and a less prominent 70 kD band that are sensitive to N-glycosidase but not endoglycosidase H. Thus the 2A1 antibody recognizes a developmentally regulated, neuronal cell surface glycoprotein (or glycoproteins) with complex N-linked oligosaccharide side chains. We have termed the glycoprotein antigen EMA because of its prominence on the edge membrane of growth cones. EMA is similar to the M6 antigen (Lagenaur et al: J. Neurobiol. 23:71-88, 1992) in apparent molecular weight, distribution in tissue sections, and immunoreactivity on Western blots, suggesting that the two antigens are similar or identical. Expression of EMA is a very early manifestation of neuronal differentiation; its distribution on growth cones suggests a role in mediating the

  11. Immunological responses to envelope glycoprotein 120 from subtypes of human immunodeficiency virus type 1.

    Science.gov (United States)

    Gilljam, G; Svensson, A; Ekström, A; Wahren, B

    1999-07-01

    The outer envelope glycoprotein (gp120) from subtypes A-E of HIV-1 was purified using a specific high mannose-binding lectin, Galanthus nivalis agglutinin. All isolates were grown in peripheral blood lymphocyte cells in order to avoid selection in cell lines. A comparison of the reactivities of the envelope proteins was made using sera from patients infected with the different subtypes. In this study, the B and C subtype envelope glycoproteins showed the strongest immunological reactivity, when reacted with sera from patients infected with the same subtype of virus. On the other hand, sera of patients infected with subtype A or C virus had the strongest and broadest reactivities, to envelope glycoproteins of many subtypes. The purified gp120 proteins from all five subtypes stimulated mononuclear cells from HIV-1 (subtype B)-infected patients, indicating conserved T cell-activating epitopes. The immunological reactivities indicate that strong antigenicity does not always predict the broadest immunogenicity of an envelope glycoprotein. Glycoprotein 120 from foreign subtypes may serve to induce strong cross-reactive immune responses.

  12. Cellular radiosensitivity of small-cell lung cancer cell lines

    DEFF Research Database (Denmark)

    Krarup, M; Poulsen, H S; Spang-Thomsen, M

    1997-01-01

    . The multitarget single hit model was applied to calculate the cellular radiosensitivity (D0), the capacity for sublethal damage repair (Dq), and the extrapolation number (n). Values for alpha and beta were determined from best-fit curves according to the linear-quadratic model and these values were applied...... to calculate the surviving fraction after 2-Gy irradiation (SF2). RESULTS: In our investigation, the extrapolation method proved to be inappropriate for the study of in vitro cellular radiosensitivity due to lack of reproducibility. The results obtained by the clonogenic assay showed that the cell lines...

  13. Expression of peanut agglutinin-binding mucin-type glycoprotein in human esophageal squamous cell carcinoma as a marker

    Directory of Open Access Journals (Sweden)

    Balakrishnan Ramathilakam

    2003-11-01

    Full Text Available Abstract Background The TF (Thomson – Friedenreich blood group antigen behaves as an onco-foetal carcinoma-associated antigen, showing increased expression in malignancies and its detection and quantification can be used in serologic diagnosis mainly in adenocarcinomas. This study was undertaken to analyze the sera and tissue level detectable mucin-type glycoprotein (TF-antigen by Peanut agglutinin (PNA and its diagnostic index in serum as well tissues of human esophageal squamous cell carcinoma as marker. Results We examined 100 patients for serological analysis by Enzyme Linked Lectin Assay (ELISA and demonstrated a sensitivity of 87.5%, specificity of 90% and a positive predictive value of 95%. The immuno-histochemical localization of TF antigen by Fluorescence Antigen Technique (FAT in 25 specimens of normal esophageal squamous epithelium specimens and 92 specimens with different grades of, allowed a quicker and more precise identification of its increased expression and this did not correlate with gender and tumor size. There was a positive correlation between membrane bound TF antigen expression with different histological progression, from well differentiated to poorly differentiated, determined by PNA binding. Specimens showed morphological changes and a pronounced increase in PNA binding in Golgi apparatus, secretory granules of the cytosol of well differentiated and an increased cell membrane labeling in moderately and poorly differentiated, when compared with ESCC and normal tissues. Conclusion The authors propose that the expression of TF-antigen in human may play an important role during tumorigenesis establishing it as a chemically well-defined carcinoma-associated antigen. Identification of the circulating TF-antigen as a reactive form and as a cryptic form in the healthy individuals, using PNA-ELLA and Immunohistochemical analysis of TF antigen by FAT is positively correlated with the different histological grades as a simple

  14. DNA content analysis of insect cell lines by flow cytometry

    OpenAIRE

    Léry, Xavier; Charpentier, Guy; Belloncik, Serge

    1999-01-01

    The DNA content of insect cell lines (6 lepidoptera, 1 coleoptera and 1 diptera) was determined by flow cytometry. The DNA profiles of the 8 cell lines tested were different. They were characterized by the presence of several peaks (2 to 7) corresponding to different ploidy levels, by differences in the fluorescence intensity of each peak and by the proportion of cells in each peak. Two cell lines (Cf124 and BmN) were constituted of 2 distinct populations of cells. The DNA profiles of the cel...

  15. A single mutation in the E2 glycoprotein important for neurovirulence influences binding of Sindbis virus to neuroblastoma cells

    NARCIS (Netherlands)

    Lee, PY; Knight, R; Smit, JM; Wilschut, J; Griffin, DE

    2002-01-01

    The amino acid at position 55 of the E2 glycoprotein (E2(55)) of Sindbis virus (SV) is a critical determinant of SV neurovirulence in mice. Recombinant virus strain TE (E2(55) = histidine) differs only at this position from virus strain 633 (E2(55) = glutamine), yet TE is considerably more neuroviru

  16. Trichloroethylene toxicity in a human hepatoma cell line

    Energy Technology Data Exchange (ETDEWEB)

    Thevenin, E.; McMillian, J. [Medical Univ. of Charleston South Carolina, SC (United States)

    1994-12-31

    The experiments conducted in this study were designed to determine the usefullness of hepatocyte cultures and a human hepatoma cell line as model systems for assessing human susceptibility to hepatocellular carcinoma due to exposure to trichloroethylene. The results from these studies will then be analyzed to determine if human cell lines can be used to conduct future experiments of this nature.

  17. Derivation of the human embryonic stem cell line RCM1

    Directory of Open Access Journals (Sweden)

    P.A. De Sousa

    2016-03-01

    Full Text Available The human embryonic stem cell line RCM-1 was derived from a failed to fertilise egg undergoing parthenogenetic stimulation. The cell line shows normal pluripotency marker expression and differentiation to three germ layers in vitro and in vivo. It has a normal 46XX female karyotype and microsatellite PCR identity, HLA and blood group typing data is available.

  18. Derivation of the human embryonic stem cell line RCM1.

    Science.gov (United States)

    De Sousa, P A; Tye, B J; Sneddon, S; Bruce, K; Dand, P; Russell, G; Collins, D M; Greenshields, A; McDonald, K; Bradburn, H; Gardner, J; Downie, J M; Courtney, A; Brison, D R

    2016-03-01

    The human embryonic stem cell line RCM-1 was derived from a failed to fertilise egg undergoing parthenogenetic stimulation. The cell line shows normal pluripotency marker expression and differentiation to three germ layers in vitro and in vivo. It has a normal 46XX female karyotype and microsatellite PCR identity, HLA and blood group typing data is available. PMID:27346018

  19. Cancer and inflammation studies using zebrafish cell lines

    NARCIS (Netherlands)

    He, Shuning

    2010-01-01

    As the zebrafish, Danio rerio, has been increasingly used as an animal model for biomedical research, we aimed to establish zebrafish cell line models for inflammation and cancer studies in this thesis. Several zebrafish cell lines were characterized and their genetic and physiological properties we

  20. Characterization of xenoantiserum produced against B cell acute lymphoblastic leukemia cell line

    Directory of Open Access Journals (Sweden)

    Akagi,Tadaatsu

    1982-10-01

    Full Text Available Antiserum was produced in white rabbit by intravenously injecting living cells of a B cell acute lymphoblastic leukemia (ALL line (BALL-1. The reactivity of the antiserum against various lymphoid cell lines was examined by membrane immunofluorescence after appropriate absorption. Serum absorbed with non-T, non-B (NALL-1 and T-ALL (TALL-1 cells recognized B cell antigens distinct from Ia-like antigens on both normal and neoplastic B cells. After further absorption with tonsillar cells or normal B cell line (KO-HL-3, it reacted only with BALL-1 cells and did not react with other leukemia/lymphoma and normal B cell lines. The serum absorbed with tonsillar cells reacted only with BALL-1 and some B cell lines. Thus we were able to obtain antisera with specificity to B cell antigen, B-ALL antigen, and B cell line antigen.

  1. Regulated expression of erythropoietin by two human hepatoma cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Goldberg, M.A.; Glass, G.A.; Cunningham, J.M.; Bunn, H.F.

    1987-11-01

    The development of a cell culture system that produces erythropoietin (Epo) in a regulated manner has been the focus of much effort. The authors have screened multiple renal and hepatic cell lines for either constitutive or regulated expression of Epo. Only the human hepatoma cell lines, Hep3B and HepG2, made significant amounts of Epo as measured both by radioimmunoassay and in vitro bioassay (as much as 330 milliunits per 10/sup 6/ cells in 24 hr). The constitutive production of Epo increased dramatically as a function of cell density in both cell lines. At cell densities < 3.3 x 10/sup 5/ cells per cm/sup 2/, there was little constitutive release of Epo in the medium. With Hep3B cells grown at low cell densities, a mean 18-fold increase in Epo expression was seen in response to hypoxia and a 6-fold increase was observed in response to incubation in medium containing 50 ..mu..M cobalt(II) chloride. At similar low cell densities, Epo production in HepG2 cells could be enhanced an average of about 3-fold by stimulation with either hypoxia or cobalt(II) chloride. Upon such stimulation, both cell lines demonstrated markedly elevated levels of Epo mRNA. Hence, both Hep3B and HepG2 cell lines provide an excellent in vitro system in which to study the physiological regulation of Epo expression.

  2. Human embryonic stem cell lines derived from the Chinese population

    Institute of Scientific and Technical Information of China (English)

    Zhen Fu FANG; Fan JIN; Hui GAI; Ying CHEN; Li WU; Ai Lian LIU; Bin CHEN; Hui Zhen SHENG

    2005-01-01

    Six human embryonic stem cell lines were established from surplus blastocysts. The cell lines expressed alkaline phosphatase and molecules typical of primate embryonic stem cells, including Oct-4, Nanog, TDGF1, Sox2, EBAF,Thy-1, FGF4, Rex-1, SSEA-3, SSEA-4, TRA-1-60 and TRA-1-81. Five of the six lines formed embryoid bodies that expressed markers of a variety of cell types; four of them formed teratomas with tissue types representative of all three embryonic germ layers. These human embryonic stem cells are capable of producing clones of undifferentiated morphology, and one of them was propagated to become a subline. Human embryonic stem cell lines from the Chinese population should facilitate stem cell research and may be valuable in studies of population genetics and ecology.

  3. The transcriptional diversity of 25 Drosophila cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Cherbas, L.; Willingham, A.; Zhang, D.; Yang, L.; Zou, Y.; Eads, B. D.; Carlson, J. W.; Landolin, J. M.; Kapranov, P.; Dumais, J.; Samsonova, A.; Choi, J. -H.; Roberts, J.; Davis, C. A.; Tang, H.; van Baren, M. J.; Ghosh, S.; Dobin, A.; Bell, K.; Lin, W.; Langton, L.; Duff, M. O.; Tenney, A. E.; Zaleski, C.; Brent, M. R.; Hoskins, R. A.; Kaufman, T. C.; Andrews, J.; Graveley, B. R.; Perrimon, N.; Celniker, S. E.; Gingeras, T. R.; Cherbas, P.

    2010-12-22

    Drosophila melanogaster cell lines are important resources for cell biologists. Here, we catalog the expression of exons, genes, and unannotated transcriptional signals for 25 lines. Unannotated transcription is substantial (typically 19% of euchromatic signal). Conservatively, we identify 1405 novel transcribed regions; 684 of these appear to be new exons of neighboring, often distant, genes. Sixty-four percent of genes are expressed detectably in at least one line, but only 21% are detected in all lines. Each cell line expresses, on average, 5885 genes, including a common set of 3109. Expression levels vary over several orders of magnitude. Major signaling pathways are well represented: most differentiation pathways are ‘‘off’’ and survival/growth pathways ‘‘on.’’ Roughly 50% of the genes expressed by each line are not part of the common set, and these show considerable individuality. Thirty-one percent are expressed at a higher level in at least one cell line than in any single developmental stage, suggesting that each line is enriched for genes characteristic of small sets of cells. Most remarkable is that imaginal discderived lines can generally be assigned, on the basis of expression, to small territories within developing discs. These mappings reveal unexpected stability of even fine-grained spatial determination. No two cell lines show identical transcription factor expression. We conclude that each line has retained features of an individual founder cell superimposed on a common ‘‘cell line‘‘ gene expression pattern. Wereport the transcriptional profiles of 25 Drosophila melanogaster cell lines, principally by whole-genome tiling microarray analysis of total RNA, carried out as part of the modENCODE project. The data produced in this study add to our knowledge of the cell lines and of the Drosophila transcriptome in several ways. We summarize the expression of previously annotated genes in each of the 25 lines with emphasis on what

  4. Using a split luciferase assay (SLA) to measure the kinetics of cell-cell fusion mediated by herpes simplex virus glycoproteins.

    Science.gov (United States)

    Saw, Wan Ting; Matsuda, Zene; Eisenberg, Roselyn J; Cohen, Gary H; Atanasiu, Doina

    2015-11-15

    Herpes simplex virus (HSV) entry and cell-cell fusion require the envelope proteins gD, gH/gL and gB. We propose that receptor-activated conformational changes to gD activate gH/gL, which then triggers gB (the fusogen) into an active form. To study this dynamic process, we have adapted a dual split protein assay originally developed to study the kinetics of human immunodeficiency virus (HIV) mediated fusion. This assay uses a chimera of split forms of renilla luciferase (RL) and green fluorescent protein (GFP). Effector cells are co-transfected with the glycoproteins and one of the split reporters. Receptor-bearing target cells are transfected with the second reporter. Co-culture results in fusion and restoration of RL, which can convert a membrane permeable substrate into a luminescent product, thereby enabling one to monitor initiation and extent of fusion in live cells in real time. Restoration of GFP can also be studied by fluorescence microscopy. Two sets of split reporters have been developed: the original one allows one to measure fusion kinetics over hours whereas the more recent version was designed to enhance the sensitivity of RL activity allowing one to monitor both initiation and rates of fusion in minutes. Here, we provide a detailed, step-by-step protocol for the optimization of the assay (which we call the SLA for split luciferase assay) using the HSV system. We also show several examples of the power of this assay to examine both the initiation and kinetics of cell-cell fusion by wild type forms of gD, gB, gH/gL of both serotypes of HSV as well as the effect of mutations and antibodies that alter the kinetics of fusion. The SLA can be applied to other viral systems that carry out membrane fusion.

  5. Formation of infectious hybrid virions with gibbon ape leukemia virus and human T-cell leukemia virus retroviral envelope glycoproteins and the gag and pol proteins of Moloney murine leukemia virus.

    OpenAIRE

    C. Wilson; Reitz, M S; Okayama, H; Eiden, M V

    1989-01-01

    The gibbon ape leukemia virus, SEATO strain, and human T-cell leukemia virus type I envelope glycoproteins can be functionally assembled with a Moloney murine leukemia virus core into infectious particles. The envelope-host cell receptor interaction is the major determinant of the host cell specificity for these hybrid virions.

  6. Derivation of human embryonic stem cell line Genea022

    Directory of Open Access Journals (Sweden)

    Biljana Dumevska

    2016-03-01

    Full Text Available The Genea022 human embryonic stem cell line was derived from a donated, fully commercially consented ART blastocyst, through ICM outgrowth on inactivated feeders. The line showed pluripotent cell morphology and genomic analysis verified a 46, XY karyotype and male allele pattern through CGH and STR analysis. Pluripotency of Genea022 was demonstrated with 84% of cells expressed Nanog, 98% Oct4, 55% Tra1–60 and 97% SSEA4, gave a Pluritest Pluripotency score of 42.95, Novelty of 1.23, demonstrated Alkaline Phosphatase activity and tri-lineage teratoma formation. The cell line was negative for Mycoplasma and visible contamination.

  7. Derivation of Genea052 human embryonic stem cell line

    Directory of Open Access Journals (Sweden)

    Biljana Dumevska

    2016-03-01

    Full Text Available The Genea052 human embryonic stem cell line was derived from a donated, fully commercially consented ART blastocyst, through ICM outgrowth on inactivated human feeders. The line showed pluripotent cell morphology and genomic analysis verified a 46, XY karyotype and male allele pattern through CGH and STR analysis. Pluripotency of Genea052 was demonstrated with 85% of cells expressing Nanog, 87% Oct4, 60% Tra1-60 and 97% SSEA4, a PluriTest Pluripotency score of 27.21, Novelty score of 1.2 and tri-lineage teratoma formation. The cell line was negative for Mycoplasma and any visible contamination.

  8. Derivation of Genea047 human embryonic stem cell line

    Directory of Open Access Journals (Sweden)

    Biljana Dumevska

    2016-03-01

    Full Text Available The Genea047 human embryonic stem cell line was derived from a donated, fully commercially consented ART blastocyst, through ICM outgrowth on inactivated human feeders. The line showed pluripotent cell morphology and genomic analysis verified a 46, XX karyotype and female allele pattern through traditional karyotyping, CGH and STR analysis. Pluripotency of Genea047 was demonstrated with 88% of cells expressing Nanog, 95% Oct4, 59% Tra1-60 and 99% SSEA4, a PluriTest Pluripotency score of 30.86, Novelty score of 1.23 and tri-lineage teratoma formation. The cell line was negative for Mycoplasma and any visible contamination.

  9. Derivation of Genea015 human embryonic stem cell line

    Directory of Open Access Journals (Sweden)

    Biljana Dumevska

    2016-03-01

    Full Text Available The Genea015 human embryonic stem cell line was derived from a donated, fully commercially consented ART blastocyst, through ICM outgrowth on inactivated human feeders. The line showed pluripotent cell morphology and genomic analysis verified a 46, XY karyotype and male Allele pattern through traditional karyotyping, CGH and STR analysis. Pluripotency of Genea015 was demonstrated with 80% of cells expressing Nanog, 97% Oct4, 75% Tra1-60 and 98% SSEA4, a PluriTest Pluripotency score of 29.52, Novelty score of 1.3 and Alkaline Phosphatase activity. The cell line was negative for Mycoplasma and any visible contamination.

  10. Derivation of human embryonic stem cell line Genea023

    Directory of Open Access Journals (Sweden)

    Biljana Dumevska

    2016-03-01

    Full Text Available The Genea023 human embryonic stem cell line was derived from a donated, fully commercially consented ART blastocyst, through ICM outgrowth on inactivated feeders. The line showed pluripotent cell morphology and genomic analysis verified a 46, XY karyotype and male allele pattern through CGH and STR analysis. Pluripotency of Genea023 was demonstrated with 85% of cells expressed Nanog, 98% Oct4, 55% Tra1-60 and 98% SSEA4, gave a Pluritest Pluripotency score of 42.76, Novelty of 1.23, demonstrated Alkaline Phosphatase activity and tri-lineage teratoma formation. The cell line was negative for Mycoplasma and visible contamination.

  11. Derivation of Genea042 human embryonic stem cell line

    Directory of Open Access Journals (Sweden)

    Biljana Dumevska

    2016-03-01

    Full Text Available The Genea042 human embryonic stem cell line was derived from a donated, fully commercially consented ART blastocyst, through ICM outgrowth on inactivated human feeders. The line showed pluripotent cell morphology and genomic analysis verified a 46, XX karyotype and female allele pattern through traditional karyotyping, CGH and STR analysis. Pluripotency of Genea042 was demonstrated with 81% of cells expressing Nanog, 95% Oct4, 53% Tra1-60 and 97% SSEA4, a PluriTest Pluripotency score of 30.06, Novelty score of 1.24 and Alkaline Phosphatase activity. The cell line was negative for Mycoplasma and any visible contamination.

  12. Cytotoxinic Mechanism of Hydroxyapatite Nanoparticles on Human Hepatoma Cell Lines

    Institute of Scientific and Technical Information of China (English)

    CAO Xian-ying; QI Zhi-tao; DAI Hong-lian; YAN Yu-hua; LI Shi-pu

    2003-01-01

    Stable and single-dispersed HAP nanoparticles were synthesized with chemical method assisted by ultrasonic treatment.HAP nanoparticles were surveyed by AFM and Zataplus.The effect on the Bel-7402 human hepatoma cell lines treated with HAP nanoparticles was investigated by the MTT methods and observation of morphology,and the mechanism was studied in changes of cell cycle and ultrastructure.The result shows that inhibition of HAP nanoparticles on the Bel-7402 human hepatoma cell lines is obviously in vitro.HAP nanoparticles the entered cancer cytoplasm,and cell proliferation is stopped at G1 phase of cell cycle,thus,cancer cells die directly.

  13. Recombinant protein production from stable mammalian cell lines and pools.

    Science.gov (United States)

    Hacker, David L; Balasubramanian, Sowmya

    2016-06-01

    We highlight recent developments for the production of recombinant proteins from suspension-adapted mammalian cell lines. We discuss the generation of stable cell lines using transposons and lentivirus vectors (non-targeted transgene integration) and site-specific recombinases (targeted transgene integration). Each of these methods results in the generation of cell lines with protein yields that are generally superior to those achievable through classical plasmid transfection that depends on the integration of the transfected DNA by non-homologous DNA end-joining. This is the main reason why these techniques can also be used for the generation of stable cell pools, heterogenous populations of recombinant cells generated by gene delivery and genetic selection without resorting to single cell cloning. This allows the time line from gene transfer to protein production to be reduced.

  14. Establishment of human embryonic stem cell line from gamete donors

    Institute of Scientific and Technical Information of China (English)

    LI Tao; ZHOU Can-quan; MAI Qing-yun; ZHUANG Guang-lun

    2005-01-01

    Background Human embryonic stem (HES) cell derived from human blastocyst can be propagated indefinitely in the primitive undifferentiated state while remaining pluripotent. It has exciting potential in human developmental biology, drug discovery, and transplantation medicine. But there are insufficient HES cell lines for further study. Methods Three oocyte donors were studied, and 3 in vitro fertilization (IVF) cycles were carried out to get blastocysts for the establishment of HES cell line. Isolated from blastocysts immunosurgically, inner cell mass (ICM) was cultured and propagated on mouse embryonic fibroblasts (MEFs). Once established, morphology, cell surface markers, karyotype and differentiating ability of the cell line were thoroughly analyzed.Results Four ICMs from 7 blastocysts were cultured on MEFs. After culture, one cell line (cHES-1) was established and met the criteria for defining human pluripotent stem cells including a series of markers used to identify pluripotent stem cells, morphological similarity to primate embryonic stem cells and HES reported else where. Normal and stable karyotype maintained over 60 passages, and demonstrated ability to differentiate into a wide variety of cell types.Conclusions HES cell lines can be established from gamete donors at a relatively highly efficient rate. The establishment will exert a widespread impact on biomedical research.

  15. Susceptibility of various cell lines to Neospora caninum tachyzoites cultivation

    Directory of Open Access Journals (Sweden)

    Khordadmehr, M.,

    2014-05-01

    Full Text Available Neospora caninum is a coccidian protozoan parasite which is a major cause of bovine abortions and neonatal mortality in cattle, sheep, goat and horse. Occasionally, cultured cells are used for isolation and multiplication of the agent in vitro with several purposes. In this study the tachyzoite yields of N. caninum were compared in various cell cultures as the host cell lines. Among the cell cultures tested, two presented good susceptibility to the agent: cell lines Vero and MA-104. SW742 and TLI (in vitro suspension culture of lymphoid cells infected with Theileria lestoquardi showed moderate sensitivity. No viable tachyzoite were detected in the culture of MDCK and McCoy cell lines. These results demonstrate that MA-104 and SW742 cells present adequate susceptibility to N. caninum compared to Vero cells, which have been largely used to multiply the parasite in vitro. Moreover, these have easy manipulation, fast multiplication and relatively low nutritional requirements. In addition, the result of this study showed that TLI cell line as a suspension cell culture is susceptible to Nc-1 tachyzoites infection and could be used as an alternative host cell line for tachyzoites culture in vitro studies.

  16. Establishment of Germ-line Competent C57BL/6J Embryonic Stem Cell Lines

    Institute of Scientific and Technical Information of China (English)

    Gui-jun YAN; Zheng GU; Jian WANG; Jia-ke TSO

    2004-01-01

    Objective To establish C57BL/6J embryonic stem (ES) cell lines with potential germline contribution Methods ES cells were isolated from blastocyst inner cell mass of C57BL/6J mice, and cultured for 15 passages, and then injected into blastococels of lCR mice blastocysts to establish chimeric mice.Results Three ES cell lines (mC57ESl,mC57ES3, mC57ES7) derived from the inner cell mass of C57BL/6J mice blastocysts were established. They were characteristic of undifferentiated state, including normal XY karyotype, expression of a specific cell surface marker "stage-specific embryonic antigen-1" and alkaline phosphatase in continuous passage. When injected into immunodeficient mice, mC5 7ES1 cells consis tently differentiated into derivatives of all three embryonic germ layers. When mC57ES1cells were transferred into ICR mice blastocysts, 4 chimeric mice have been obtained.One male of them revealed successful germ-line transmission. Conclussion We have obtained C57BL/6J ES cell lines with a potential germ-line contribution, which can be used to generate transgenic and gene knock-out mice.

  17. HIF-1α inhibition reverses multidrug resistance in colon cancer cells via downregulation of MDR1/P-glycoprotein.

    Directory of Open Access Journals (Sweden)

    Jianfang Chen

    Full Text Available BACKGROUND: Multidrug resistance (MDR is one of the major reasons chemotherapy-based treatments fail. Hypoxia is generally associated with tumor chemoresistance. However, the correlation between the heterodimeric hypoxia-inducible factor-1 (HIF-1 and the multidrug resistance (MDR1 gene/transporter P-glycoprotein (P-gp remains unclear. This study aims to explore the molecular mechanisms of reversing colon cancer MDR by focusing on the target gene HIF-1α. METHODS: A chemotherapeutic sensitivity assay was used to observe the efficiency of MDR reversal in LoVo multicellular spheroids (MCS. The apoptotic level induced by different drugs was examined by flow cytometry (FCM. Binding of HIF-1α to the MDR1 gene promoter was evaluated by Chromatin immunoprecipitation (ChIP. The relationship between HIF-1α/P-gp expression and sensitivity to chemotherapy was analyzed. RESULTS: The sensitivity of LoVo MCS to all four chemotherapy drugs was decreased to varying degrees under hypoxic conditions. After silencing the HIF-1α gene, the sensitivities of LoVo MCS to all four chemotherapy drugs were restored. The apoptotic levels that all the drugs induced were all decreased to various extents in the hypoxic group. After silencing HIF-1α, the apoptosis level induced by all four chemotherapy drugs increased. The expression of HIF-1α and P-gp was significantly enhanced in LoVo MCS after treatment with hypoxia. Inhibiting HIF-1α significantly decreased the expression of MDR1/P-gp mRNA or protein in both the LoVo monolayers and LoVo MCS. The ChIP assay showed that HIF-1α was bound to the MDR1 gene promoter. Advanced colon carcinoma patients with expression of both HIF-1α and P-gp were more resistant to chemotherapy than that with non expression. CONCLUSIONS: HIF-1α inhibition reverses multidrug resistance in colon cancer cells via downregulation of MDR1/P-gp. The expression of HIF-1α and MDR1/P-gp can be used as a predictive marker for chemotherapy resistance

  18. Generation and characterization of human insulin-releasing cell lines

    OpenAIRE

    Joffé Elisa; Machado Marcel CC; Buchanan Cecilia; Terra Letícia F; Stigliano Iván; Krogh Karin; Peters Maria G; Labriola Leticia; Puricelli Lydia; Sogayar Mari C

    2009-01-01

    Abstract Background The in vitro culture of insulinomas provides an attractive tool to study cell proliferation and insulin synthesis and secretion. However, only a few human beta cell lines have been described, with long-term passage resulting in loss of insulin secretion. Therefore, we set out to establish and characterize human insulin-releasing cell lines. Results We generated ex-vivo primary cultures from two independent human insulinomas and from a human nesidioblastosis, all of which w...

  19. Off-line hyphenation of boronate affinity monolith-based extraction with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry for efficient analysis of glycoproteins/glycopeptides.

    Science.gov (United States)

    Bie, Zijun; Chen, Yang; Li, Hengye; Wu, Ronghu; Liu, Zhen

    2014-06-27

    Boronate affinity materials have attracted increasing attentions as sample enrichment platforms for glycoproteomic analysis in recent years. However, most of the boronate affinity materials that have already employed for proteomic analysis are suffering from apparent disadvantages, such as alkaline pH for binding, weak affinity, and relatively poor selectivity. Benzoboroxoles are a unique class of boronic acids which have showed excellent binding properties for the recognition of cis-diol-containing compounds. Recently, a 3-carboxy-benzoboroxole-functionalized monolithic column had been reported and it had exhibited the best selectivity and affinity as well as the lowest binding pH among all reported boronate affinity monolithic columns. In this study, an off-line hyphenation of this boronate affinity monolithic column-based extraction with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) was developed and the powerfulness of this hyphenated approach in the analysis of glycoproteins and glycopeptides in complex samples was investigated. The approach was first applied to the analysis of glycopeptides in the tryptic digest of horseradish peroxidase (HRP). Totally 22 glycopeptides were identified. To the best of our knowledge, this is the best performance among all the boronic acid-functionalized materials. We further employed this approach to the analysis of intact proteins in human saliva. Totally 6 intact glycoproteins were successfully identified. As comparison, when the samples were analyzed without extraction, only a few glycopeptides were identified from the tryptic digest of HRP while no glycoproteins were found from the saliva samples. PMID:24928239

  20. Non-alkaloids extract from Stemona sessilifolia enhances the activity of chemotherapeutic agents through P-glycoprotein-mediated multidrug-resistant cancer cells.

    Science.gov (United States)

    Han, Lu; Ma, Yang-Mei; An, Li; Zhang, Qiao; Wang, Chang-Li; Zhao, Qing-Chun

    2016-01-01

    One of the major impediments to the successful treatment of cancer is the development of resistant cancer cells, which could cause multidrug resistance (MDR), and overexpression of ABCB1/P-glycoprotein (P-gp) is one of the most common causes of MDR in cancer cells. Recently, natural products or plant-derived chemicals have been investigated more and more widely as potential multidrug-resistant (MDR) reversing agents. The current study demonstrated for the first time that non-alkaloids extract from Stemona sessilifolia significantly reversed the resistance of chemotherapeutic agents, adriamycin, paclitaxel and vincristine to MCF-7/ADR cells compared with MCF-7/S cells in a dose-dependent manner. The results obtained from these studies indicated that the non-alkaloids extract from S. sessilifolia plays an important role in reversing MDR of cancer as a P-gp modulator in vitro and may be effective in the treatment of multidrug-resistant cancers. PMID:26190165

  1. Identification of an additional class of C3-binding membrane proteins of human peripheral blood leukocytes and cell lines.

    Science.gov (United States)

    Cole, J L; Housley, G A; Dykman, T R; MacDermott, R P; Atkinson, J P

    1985-02-01

    Proteins binding the third component of complement (C3) were isolated by affinity chromatography from surface-labeled solubilized membranes of human peripheral blood cells and cell lines. The isolated molecules were subjected to NaDodSO4/PAGE, and autoradiographs of these gels indicated that C3-binding proteins could be divided into three groups based on Mr: (i) gp200, an approximately 200,000 Mr molecule previously identified as the C3b/C4b receptor or CR1; (ii) gp140, an approximately 140,000 Mr molecule previously identified as the C3d receptor or CR2; and (iii) gp45-70, a heretofore unrecognized group of 45,000-70,000 Mr C3-binding molecules. The cell distribution, Mr, antigenic cross-reactivity, and specificity of gp45-70 were examined. Erythrocytes have no detectable gp45-70, but all leukocyte populations examined possess this group of molecules. On neutrophils and mononuclear phagocytes, CR1 is the predominant C3-binding glycoprotein, but gp45-70 is present on both cell populations and on macrophage and neutrophil cell lines. B plus null cells, chronic lymphocytic leukemia cells, and an Epstein-Barr virus-transformed B-cell line possess CR1, CR2, and gp45-70. On T cells and T-cell lines gp45-70 is the predominant or, in some cases, the only C3-binding protein isolated. gp45-70 is structurally characterized as a broad band or doublet with a mean Mr that is slightly different for each cell population. gp45-70 binds iC3, C3b, and C4b, but not C3d, indicating that the binding region is probably within the C3c portion of C3b. A polyclonal antibody to CR1 and monoclonal antibodies to CR1 and CR2 do not immunoprecipitate gp45-70. While gp45-70 has not been previously characterized on human cells, a C3b-binding glycoprotein of similar Mr is present on rabbit alveolar macrophages. We conclude that gp45-70 is an additional group of membrane proteins present on human leukocytes that possess ligand-binding activity for C3b. PMID:3871945

  2. Generation and characterization of human insulin-releasing cell lines

    Directory of Open Access Journals (Sweden)

    Joffé Elisa

    2009-06-01

    Full Text Available Abstract Background The in vitro culture of insulinomas provides an attractive tool to study cell proliferation and insulin synthesis and secretion. However, only a few human beta cell lines have been described, with long-term passage resulting in loss of insulin secretion. Therefore, we set out to establish and characterize human insulin-releasing cell lines. Results We generated ex-vivo primary cultures from two independent human insulinomas and from a human nesidioblastosis, all of which were cultured up to passage number 20. All cell lines secreted human insulin and C-peptide. These cell lines expressed neuroendocrine and islets markers, confirming the expression profile found in the biopsies. Although all beta cell lineages survived an anchorage independent culture, none of them were able to invade an extracellular matrix substrate. Conclusion We have established three human insulin-releasing cell lines which maintain antigenic characteristics and insulin secretion profiles of the original tumors. These cell lines represent valuable tools for the study of molecular events underlying beta cell function and dysfunction.

  3. Generation and characterization of human insulin-releasing cell lines

    Science.gov (United States)

    Labriola, Leticia; Peters, Maria G; Krogh, Karin; Stigliano, Iván; Terra, Letícia F; Buchanan, Cecilia; Machado, Marcel CC; Joffé, Elisa Bal de Kier; Puricelli, Lydia; Sogayar, Mari C

    2009-01-01

    Background The in vitro culture of insulinomas provides an attractive tool to study cell proliferation and insulin synthesis and secretion. However, only a few human beta cell lines have been described, with long-term passage resulting in loss of insulin secretion. Therefore, we set out to establish and characterize human insulin-releasing cell lines. Results We generated ex-vivo primary cultures from two independent human insulinomas and from a human nesidioblastosis, all of which were cultured up to passage number 20. All cell lines secreted human insulin and C-peptide. These cell lines expressed neuroendocrine and islets markers, confirming the expression profile found in the biopsies. Although all beta cell lineages survived an anchorage independent culture, none of them were able to invade an extracellular matrix substrate. Conclusion We have established three human insulin-releasing cell lines which maintain antigenic characteristics and insulin secretion profiles of the original tumors. These cell lines represent valuable tools for the study of molecular events underlying beta cell function and dysfunction. PMID:19545371

  4. P-Glycoprotein/MDR1 Regulates Pokemon Gene Transcription Through p53 Expression in Human Breast Cancer Cells

    OpenAIRE

    Wei Xu; Yuyang Jiang; Xuyu Zu; Shengnan He; Zhenhua Xie; Feng Liu(Central China Normal University)

    2010-01-01

    P-glycoprotein (Pgp), encoded by the multidrug resistance 1 (MDR1) gene, is an efflux transporter and plays an important role in pharmacokinetics. In this study, we demonstrated that the pokemon promoter activity, the pokemon mRNA and protein expression can be significantly inhibited by Pgp. Chromatin immunoprecipitation assay showed that Pgp can bind the pokemon prompter to repress pokemon transcription activity. Furthermore, Pgp regulated pokemon transcription activity through expression of...

  5. McCoy cell line as a possible model containing CD4+ receptors for the study of HIV-1 replication

    Directory of Open Access Journals (Sweden)

    Nogueira Yeda L.

    2003-01-01

    Full Text Available Several studies have recently shown the use of recombinant rabies virus as potential vector-viral vaccine for HIV-1. The sequence homology between gp 120 and rabies virus glycoprotein has been reported. The McCoy cell line has therefore been used to show CD4+ or CD4+ like receptors. Samples of HIV-1 were isolated, when plasma of HIV-1 positive patients was inoculated in the McCoy cell line. The virus infection was then studied during successive virus passages. The proteins released in the extra cellular medium were checked for protein activity, by exposure to SDS Electrophoresis and blotting to nitro-cellulose filter, then reacting with sera of HIV positive and negative patients. Successive passages were performed, and showed viral replication, membrane permeabilization, the syncytium formation, and the cellular lysis (cytopathic effect. Flow cytometry analysis shows clear evidence that CD4+ receptors are present in this cell line, which enhances the likelihood of easy isolation and replication of HIV. The results observed allow the use of this cell line as a possible model for isolating HIV, as well as for carrying out studies of the dynamics of viral infection in several situations, including exposure to drugs in pharmacological studies, and possibly studies and analyses of the immune response in vaccine therapies.

  6. Investigation of radiosensitivity gene signatures in cancer cell lines.

    Directory of Open Access Journals (Sweden)

    John S Hall

    Full Text Available Intrinsic radiosensitivity is an important factor underlying radiotherapy response, but there is no method for its routine assessment in human tumours. Gene signatures are currently being derived and some were previously generated by expression profiling the NCI-60 cell line panel. It was hypothesised that focusing on more homogeneous tumour types would be a better approach. Two cell line cohorts were used derived from cervix [n = 16] and head and neck [n = 11] cancers. Radiosensitivity was measured as surviving fraction following irradiation with 2 Gy (SF2 by clonogenic assay. Differential gene expression between radiosensitive and radioresistant cell lines (SF2 median was investigated using Affymetrix GeneChip Exon 1.0ST (cervix or U133A Plus2 (head and neck arrays. There were differences within cell line cohorts relating to tissue of origin reflected by expression of the stratified epithelial marker p63. Of 138 genes identified as being associated with SF2, only 2 (1.4% were congruent between the cervix and head and neck carcinoma cell lines (MGST1 and TFPI, and these did not partition the published NCI-60 cell lines based on SF2. There was variable success in applying three published radiosensitivity signatures to our cohorts. One gene signature, originally trained on the NCI-60 cell lines, did partially separate sensitive and resistant cell lines in all three cell line datasets. The findings do not confirm our hypothesis but suggest that a common transcriptional signature can reflect the radiosensitivity of tumours of heterogeneous origins.

  7. Down-regulation of the P-glycoprotein relevant for multidrug resistance by intracellular acidification through the crosstalk of MAPK signaling pathways.

    Science.gov (United States)

    Jin, Weina; Lu, Ying; Li, Qinghua; Wang, Jian; Zhang, Hongju; Chang, Guoqiang; Lin, Yani; Pang, Tianxiang

    2014-09-01

    In our previous study, we have found that the tumor multidrug resistance mediated by P-glycoprotein could be reversed by sustained intracellular acidification through down-regulating the multidrug resistance gene 1 mRNA and P-glycoprotein expression. However, the molecular events linking the intracellular acidification and the regulation of P-glycoprotein remain unclear. In the present study, the molecular pathways involved in the regulation of P-glycoprotein expression by the intracellular acidification were investigated. We found that the P-glycoprotein expression was down-regulated by the intracellular acidification through inhibition of p38 mitogen-activated protein kinase (MAPK) and the activation of c-Jun N-terminal kinase (JNK) in the resisitant K562/DOX cells. In the sensitive K562 and HL60 cell lines, the changes of the p38 MAPK expression after the acidification are not as obvious as that of K562/DOX cells, but the activation of extracellular signal-regulated kinase (ERK) is also observed, which indicates that the down-regulation of p38 MAPK by the intracellular acidification might be the resistant cell line specific. Blockade of ERK and JNK signaling by the inhibitors or RNA interference increased p38MAPK activities suggesting that cross-talk within MAPKs is also important for this response. Our study provides the first direct evidence that the reversal of P-glycoprotein-mediated multidrug resistance by intracellular acidification is mediated by the crosstalk of MAPK signaling pathways.

  8. Development of a cell line from Echinococcus granulosus germinal layer.

    Science.gov (United States)

    Albani, Clara María; Cumino, Andrea Carina; Elissondo, María Celina; Denegri, Guillermo María

    2013-10-01

    In vitro culture of parasitic helminths provides an important tool to study cell regeneration and physiology, as well as for molecular biology and genetic engineering studies. In the present study, we established in vitro propagation of cells from Echinococcus granulosus germinal cyst layer. E. granulosus germinal cells grew beyond 100 passages and showed no signs of reduced proliferation capacity. Microscopic analysis revealed that cells grew both attached to the substrate and in suspension, forming three-dimensional structures like mammalian stem cell aggregates. Examination of the chromosome number of attached germinal cells showed a high degree of heteroploidy, suggesting the occurrence of transformation during culture. Monolayer cells survived cryopreservation and were able to proliferate after thawing. Based on the characteristics displayed by E. granulosus germinal cells, we establish a cell line from the E. granulosus germinal layer. Furthermore, we propose that this cell line could be useful for drug screening and for obtaining parasite material.

  9. Effects of Kaempferia parviflora extracts and their flavone constituents on P-glycoprotein function

    OpenAIRE

    Patanasethanont, Denpong; Nagai, Junya; Yumoto, Ryoko; Murakami, Teruo; Sutthanut, Khaetthareeya; Sripanidkulchai, Bung-orn; Yenjai, Chavi; Takano, Mikihisa

    2006-01-01

    The purpose of this study was to examine the effects of extracts and flavone derivatives from the rhizome of Kaempferia parviflora on P-glycoprotein (P-gp)-mediated transport in LLC-GA5-COL150, a transfectant cell line of a porcine kidney epithelial cell line LLC-PK1 with human MDR1 cDNA. Ethanol extract obtained from Kaempferia parviflora rhizome significantly increased the accumulation of rhodamine 123 and daunorubicin, P-gp substrates, in LLC-GA5-COL150 cells, but not in LLC-PK1 cells. The...

  10. Expression of the Thy-1 glycoprotein gene by DNA-mediated gene transfer.

    OpenAIRE

    Evans, G A; Ingraham, H A; Lewis, K; Cunningham, K; Seki, T.; Moriuchi, T; Chang, H. C.; Silver, J; Hyman, R

    1984-01-01

    We isolated a gene encoding the Thy-1.2 glycoprotein from a recombinant library constructed from BALB/c mouse DNA. To evaluate the expression of this cloned gene in different genomic environments, we introduced it into cell lines derived from fibroblast, lymphoid, and neuronal tissues by DNA-mediated gene transfer. When integrated into the genome of mouse L cells, cell-surface Thy-1 can be detected with anti-Thy-1 monoclonal antibodies. These L-cell lines contain between two and four copies o...

  11. Differential heat shock response of primary human cell cultures and established cell lines

    DEFF Research Database (Denmark)

    Richter, W W; Issinger, O G

    1986-01-01

    degrees C treatment, whereas in immortalized cell lines usually 90% of the cells were found in suspension. Enhanced expression of the major heat shock protein (hsp 70) was found in all heat-treated cells. In contrast to the primary cell cultures, established and transformed cell lines synthesized a...

  12. Establishment of Jurkat tet-on cell line

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Tet-control system is developed to tightly control target gene expression in mammalian cells by using the regulatory elements of tetracycline-repressor of the transposor Tn10 from E.Coli.We have transfected reverse tetracycline-controlled transactivator gene (rtTA) into genome of Jurkat cells and established two Jurkat tet-on cell lines.Induction of luciferase reporter activity with doxycycline,a tetracycline derivative,is dose-dependent with a peak value of 32-fold increment.Establishment of Jurkat tet-on cell lines greatly facilitates quantitative studies on target gene functions in the cells.

  13. Antiproliferative effect of isopentenylated coumarins on several cancer cell lines.

    Science.gov (United States)

    Kawaii, S; Tomono, Y; Ogawa, K; Sugiura, M; Yano, M; Yoshizawa, Y; Ito, C; Furukawa, H

    2001-01-01

    33 coumarins, mainly the simple isopentenylated coumarins and derived pyrano- and furanocoumarins, were examined for their antiproliferative activity towards several cancer and normal human cell lines. The pyrano- and furanocoumarins showed strong activity against the cancer cell lines, whereas they had weak antiproliferative activity against the normal human cell lines. The decreasing rank order of potency was osthenone (10), clausarin (25), clausenidin (26), dentatin (24), nordentatin (23), imperatorin (29), seselin (27), xanthyletin (21), suberosin (17), phebalosin (8) and osthol (12). The structure-activity relationship established from the results revealed that the 1,1-dimethylallyl and isopentenyl groups have an important role for antiproliferative activity. PMID:11497276

  14. Isolation and Characterization of a Novel Gammaherpesvirus from a Microbat Cell Line.

    Science.gov (United States)

    Shabman, Reed S; Shrivastava, Susmita; Tsibane, Tshidi; Attie, Oliver; Jayaprakash, Anitha; Mire, Chad E; Dilley, Kari E; Puri, Vinita; Stockwell, Timothy B; Geisbert, Thomas W; Sachidanandam, Ravi; Basler, Christopher F

    2016-01-01

    While employing deep sequencing and de novo assembly to characterize the mRNA transcript profile of a cell line derived from the microbat Myotis velifer incautus, we serendipitously identified mRNAs encoding proteins with a high level of identity to herpesviruses. A majority were closely related to proteins of equine herpesvirus 2 (EHV-2), a horse gammaherpesvirus. We demonstrated by electron microscopy the presence of herpesvirus-like particles in the microbat cells. Passage of supernatants from microbat cells to Vero cells resulted in syncytium formation, and expression of viral genes and amplification of viral DNA were demonstrated by quantitative PCR. Susceptibility of human cell lines to productive infection was also demonstrated. Next-generation sequencing and de novo assembly of the viral genome from supernatants from Vero cells yielded a single contig of approximately 130 kb with at least 77 open reading frames (ORFs), predicted microRNAs (miRNAs), and a gammaherpesvirus genomic organization. Phylogenic analysis of the envelope glycoprotein (gB) and DNA polymerase (POLD1) revealed similarity to multiple gammaherpesviruses, including those from as-yet-uncultured viruses of the Rhadinovirus genus that were obtained by deep sequencing of bat tissues. Moreover, the assembled genome revealed ORFs that share little or no homology to known ORFs in EHV-2 but are similar to accessory proteins of other gammaherpesviruses. Some also have striking homology to predicted Myotis bat proteins. Cumulatively, this study provides the first isolation and characterization of a replication-competent bat gammaherpesvirus. IMPORTANCE Bats are of significant interest as reservoirs for zoonotic viral pathogens; however, tools to dissect bat-virus interactions are limited in availability. This study serendipitously identified, in an established bat cell line, a fully replication-competent gammaherpesvirus; determined the complete genome sequence of the virus; and generated a viral

  15. Molecular cloning of complementary DNAs encoding the heavy chain of the human 4F2 cell-surface antigen: a type II membrane glycoprotein involved in normal and neoplastic cell growth

    International Nuclear Information System (INIS)

    Complementary DNA (cDNA) clones encoding the heavy chain of the heterodimeric human membrane glycoprotein 4F2 have been isolated by immunoscreening of a λgt11 expression library. The identity of these clones has been confirmed by hybridization to RNA and DNA prepared from mouse L-cell transfectants, which were produced by whole cell gene transfer and selected for cell-surface expression of the human 4F2 heavy chain. DNA sequence analysis suggest that the 4F2 heavy-chain cDNAs encode an approximately 526-amino acid type II membrane glycoprotein, which is composed of a large C-terminal extracellular domain, a single potential transmembrane region, and a 50-81 amino acid N-terminal intracytoplasmic domain. Southern blotting experiments have shown that the 4F2 heavy-chain cDNAs are derived from a single-copy gene that has been highly conserved during mammalian evolution

  16. Differential effects of bisphosphonates on breast cancer cell lines

    NARCIS (Netherlands)

    Verdijk, R.; Franke, H.R.; Wolbers, F.; Vermes, I.

    2007-01-01

    Bisphosphonates may induce direct anti-tumor effects in breast cancers cells in virtro. In this study, six bisphosphonates were administered to three breast caner cell lines. Cell proliferation was measured by quantification of th expressio of Cyclin D1 mRNA. Apoptosis was determined by flow cytome

  17. Molecular profiling reveals primary mesothelioma cell lines recapitulate human disease.

    Science.gov (United States)

    Chernova, T; Sun, X M; Powley, I R; Galavotti, S; Grosso, S; Murphy, F A; Miles, G J; Cresswell, L; Antonov, A V; Bennett, J; Nakas, A; Dinsdale, D; Cain, K; Bushell, M; Willis, A E; MacFarlane, M

    2016-07-01

    Malignant mesothelioma (MM) is an aggressive, fatal tumor strongly associated with asbestos exposure. There is an urgent need to improve MM patient outcomes and this requires functionally validated pre-clinical models. Mesothelioma-derived cell lines provide an essential and relatively robust tool and remain among the most widely used systems for candidate drug evaluation. Although a number of cell lines are commercially available, a detailed comparison of these commercial lines with freshly derived primary tumor cells to validate their suitability as pre-clinical models is lacking. To address this, patient-derived primary mesothelioma cell lines were established and characterized using complementary multidisciplinary approaches and bioinformatic analysis. Clinical markers of mesothelioma, transcriptional and metabolic profiles, as well as the status of p53 and the tumor suppressor genes CDKN2A and NF2, were examined in primary cell lines and in two widely used commercial lines. Expression of MM-associated markers, as well as the status of CDKN2A, NF2, the 'gatekeeper' in MM development, and their products demonstrated that primary cell lines are more representative of the tumor close to its native state and show a degree of molecular diversity, thus capturing the disease heterogeneity in a patient cohort. Molecular profiling revealed a significantly different transcriptome and marked metabolic shift towards a greater glycolytic phenotype in commercial compared with primary cell lines. Our results highlight that multiple, appropriately characterised, patient-derived tumor cell lines are required to enable concurrent evaluation of molecular profiles versus drug response. Furthermore, application of this approach to other difficult-to-treat tumors would generate improved cellular models for pre-clinical evaluation of novel targeted therapies. PMID:26891694

  18. Mercury specifically induces LINE-1 activity in a human neuroblastoma cell line.

    Science.gov (United States)

    Habibi, Laleh; Shokrgozar, Mohammad Ali; Tabrizi, Mina; Modarressi, Mohammad Hossein; Akrami, Seyed Mohammad

    2014-01-01

    L1 retro-elements comprise 17% of the human genome. Approximately 100 copies of these autonomous mobile elements are active in our DNA and can cause mutations, gene disruptions, and genomic instability. Therefore, human cells control the activities of L1 elements, in order to prevent their deleterious effects through different mechanisms. However, some toxic agents increase the retrotransposition activity of L1 elements in somatic cells. In order to identify specific effects of neurotoxic metals on L1 activity in neuronal cells, we studied the effects of mercury and cobalt on L1-retroelement activity by measuring levels of cellular transcription, protein expression, and genomic retrotransposition in a neuroblastoma cell line compared with the effects in three non-neuronal cell lines. Our results show that mercury increased the expression of L1 RNA, the activity of the L1 5'UTR, and L1 retrotransposition exclusively in the neuroblastoma cell line but not in non-neuronal cell lines. However, cobalt increased the expression of L1 RNA in neuroblastoma cells, HeLa cells, and wild-type human fibroblasts, and also increased the activity of the L1 5'UTR as well as the SV40 promoter in HeLa cells but not in neuroblastoma cells. Exposure to cobalt did not result in increased retrotransposition activity in HeLa cells or neuroblastoma cells. We conclude that non-toxic levels of the neurotoxic agent mercury could influence DNA by increasing L1 activities, specifically in neuronal cells, and may make these cells susceptible to neurodegeneration over time.

  19. Membrane lipidome of an epithelial cell line

    DEFF Research Database (Denmark)

    Sampaio, Julio L; Gerl, Mathias J; Klose, Christian;

    2011-01-01

    Tissue differentiation is an important process that involves major cellular membrane remodeling. We used Madin-Darby canine kidney cells as a model for epithelium formation and investigated the remodeling of the total cell membrane lipidome during the transition from a nonpolarized morphology...

  20. Induction of Cell-Cell Fusion by Ebola Virus Glycoprotein: Low pH Is Not a Trigger.

    Science.gov (United States)

    Markosyan, Ruben M; Miao, Chunhui; Zheng, Yi-Min; Melikyan, Gregory B; Liu, Shan-Lu; Cohen, Fredric S

    2016-01-01

    Ebola virus (EBOV) is a highly pathogenic filovirus that causes hemorrhagic fever in humans and animals. Currently, how EBOV fuses its envelope membrane within an endosomal membrane to cause infection is poorly understood. We successfully measure cell-cell fusion mediated by the EBOV fusion protein, GP, assayed by the transfer of both cytoplasmic and membrane dyes. A small molecule fusion inhibitor, a neutralizing antibody, as well as mutations in EBOV GP known to reduce viral infection, all greatly reduce fusion. By monitoring redistribution of small aqueous dyes between cells and by electrical capacitance measurements, we discovered that EBOV GP-mediated fusion pores do not readily enlarge-a marked difference from the behavior of other viral fusion proteins. EBOV GP must be cleaved by late endosome-resident cathepsins B or L in order to become fusion-competent. Cleavage of cell surface-expressed GP appears to occur in endosomes, as evidenced by the fusion block imposed by cathepsin inhibitors, agents that raise endosomal pH, or an inhibitor of anterograde trafficking. Treating effector cells with a recombinant soluble cathepsin B or thermolysin, which cleaves GP into an active form, increases the extent of fusion, suggesting that a fraction of surface-expressed GP is not cleaved. Whereas the rate of fusion is increased by a brief exposure to acidic pH, fusion does occur at neutral pH. Importantly, the extent of fusion is independent of external pH in experiments in which cathepsin activity is blocked and EBOV GP is cleaved by thermolysin. These results imply that low pH promotes fusion through the well-known pH-dependent activity of cathepsins; fusion induced by cleaved EBOV GP is a process that is fundamentally independent of pH. The cell-cell fusion system has revealed some previously unappreciated features of EBOV entry, which could not be readily elucidated in the context of endosomal entry. PMID:26730950

  1. Efflux of rhodamine from CD56+ cells as a surrogate marker for reversal of P-glycoprotein-mediated drug efflux by PSC 833

    DEFF Research Database (Denmark)

    Robey, R; Bakke, S; Stein, W;

    1999-01-01

    The expression of high levels of P-glycoprotein (Pgp) in circulating mononuclear cells allowed us to use an ex vivo assay as a surrogate measure of Pgp antagonism. Efflux of rhodamine from CD56(+) cells was measured before the start of PSC 833 and at varying times thereafter. Patients receiving PSC...... 833 had decreased rhodamine efflux from their circulating CD56(+) cells. Time course studies showed that following a single oral dose of PSC 833, decreased rhodamine efflux was found in some patients within 15 minutes of treatment. Maximal inhibition was observed at times ranging from 45 minutes to 60...... minutes. A dose-response relationship was shown between the concentration of PSC 833 in the blood and the inhibition of rhodamine efflux, with an apparent plateau of the inhibition of rhodamine efflux at approximately 1,000 ng/mL. The Ki, defined as the concentration required for half-maximal inhibition...

  2. Influence of Disulfide-Stabilized Structure on the Specificity of Helper T-Cell and Antibody Responses to HIV Envelope Glycoprotein gp120▿ †

    Science.gov (United States)

    Mirano-Bascos, Denise; Steede, N. Kalaya; Robinson, James E.; Landry, Samuel J.

    2010-01-01

    CD4+ helper T cells specific for human immunodeficiency virus type 1 (HIV-1) are associated with control of viremia. Nevertheless, vaccines have had limited effectiveness thus far, in part because sequence variability and other structural features of the HIV envelope glycoprotein deflect the immune response. Previous studies indicated that CD4+ T-cell epitope dominance is controlled by antigen three-dimensional structure through its influence on antigen processing and presentation. In this work, three disulfide bonds in the outer domain of gp120 were individually deleted in order to destabilize the local three-dimensional structure and enhance the presentation of nearby weakly immunogenic epitopes. However, upon immunization of groups of BALB/c mice, the CD4+ T-cell response was broadly reduced for all three variants, and distinct epitope profiles emerged. For one variant, antibody titers were sharply increased, and the antibody exhibited significant CD4-blocking activity. PMID:20089653

  3. Pathway-specific differences between tumor cell lines and normal and tumor tissue cells

    Directory of Open Access Journals (Sweden)

    Tozeren Aydin

    2006-11-01

    Full Text Available Abstract Background Cell lines are used in experimental investigation of cancer but their capacity to represent tumor cells has yet to be quantified. The aim of the study was to identify significant alterations in pathway usage in cell lines in comparison with normal and tumor tissue. Methods This study utilized a pathway-specific enrichment analysis of publicly accessible microarray data and quantified the gene expression differences between cell lines, tumor, and normal tissue cells for six different tissue types. KEGG pathways that are significantly different between cell lines and tumors, cell lines and normal tissues and tumor and normal tissue were identified through enrichment tests on gene lists obtained using Significance Analysis of Microarrays (SAM. Results Cellular pathways that were significantly upregulated in cell lines compared to tumor cells and normal cells of the same tissue type included ATP synthesis, cell communication, cell cycle, oxidative phosphorylation, purine, pyrimidine and pyruvate metabolism, and proteasome. Results on metabolic pathways suggested an increase in the velocity nucleotide metabolism and RNA production. Pathways that were downregulated in cell lines compared to tumor and normal tissue included cell communication, cell adhesion molecules (CAMs, and ECM-receptor interaction. Only a fraction of the significantly altered genes in tumor-to-normal comparison had similar expressions in cancer cell lines and tumor cells. These genes were tissue-specific and were distributed sparsely among multiple pathways. Conclusion Significantly altered genes in tumors compared to normal tissue were largely tissue specific. Among these genes downregulation was a major trend. In contrast, cell lines contained large sets of significantly upregulated genes that were common to multiple tissue types. Pathway upregulation in cell lines was most pronounced over metabolic pathways including cell nucleotide metabolism and oxidative

  4. Impact of host cell line adaptation on quasispecies composition and glycosylation of influenza A virus hemagglutinin.

    Directory of Open Access Journals (Sweden)

    Jana Verena Roedig

    Full Text Available The genome of influenza A viruses is constantly changing (genetic drift resulting in small, gradual changes in viral proteins. Alterations within antibody recognition sites of the viral membrane glycoproteins hemagglutinin (HA and neuraminidase (NA result in an antigenetic drift, which requires the seasonal update of human influenza virus vaccines. Generally, virus adaptation is necessary to obtain sufficiently high virus yields in cell culture-derived vaccine manufacturing. In this study detailed HA N-glycosylation pattern analysis was combined with in-depth pyrosequencing analysis of the virus genomic RNA. Forward and backward adaptation from Madin-Darby Canine Kidney (MDCK cells to African green monkey kidney (Vero cells was investigated for two closely related influenza A virus PR/8/34 (H1N1 strains: from the National Institute for Biological Standards and Control (NIBSC or the Robert Koch Institute (RKI. Furthermore, stability of HA N-glycosylation patterns over ten consecutive passages and different harvest time points is demonstrated. Adaptation to Vero cells finally allowed efficient influenza A virus replication in Vero cells. In contrast, during back-adaptation the virus replicated well from the very beginning. HA N-glycosylation patterns were cell line dependent and stabilized fast within one (NIBSC-derived virus or two (RKI-derived virus successive passages during adaptation processes. However, during adaptation new virus variants were detected. These variants carried "rescue" mutations on the genomic level within the HA stem region, which result in amino acid substitutions. These substitutions finally allowed sufficient virus replication in the new host system. According to adaptation pressure the composition of the virus populations varied. In Vero cells a selection for "rescue" variants was characteristic. After back-adaptation to MDCK cells some variants persisted at indifferent frequencies, others slowly diminished and even

  5. Global Conservation of Protein Status between Cell Lines and Xenografts

    Directory of Open Access Journals (Sweden)

    Julian Biau

    2016-08-01

    Full Text Available Common preclinical models for testing anticancer treatment include cultured human tumor cell lines in monolayer, and xenografts derived from these cell lines in immunodeficient mice. Our goal was to determine how similar the xenografts are compared with their original cell line and to determine whether it is possible to predict the stability of a xenograft model beforehand. We studied a selection of 89 protein markers of interest in 14 human cell cultures and respective subcutaneous xenografts using the reverse-phase protein array technology. We specifically focused on proteins and posttranslational modifications involved in DNA repair, PI3K pathway, apoptosis, tyrosine kinase signaling, stress, cell cycle, MAPK/ERK signaling, SAPK/JNK signaling, NFκB signaling, and adhesion/cytoskeleton. Using hierarchical clustering, most cell culture-xenograft pairs cluster together, suggesting a global conservation of protein signature. Particularly, Akt, NFkB, EGFR, and Vimentin showed very stable protein expression and phosphorylation levels highlighting that 4 of 10 pathways were highly correlated whatever the model. Other proteins were heterogeneously conserved depending on the cell line. Finally, cell line models with low Akt pathway activation and low levels of Vimentin gave rise to more reliable xenograft models. These results may be useful for the extrapolation of cell culture experiments to in vivo models in novel targeted drug discovery.

  6. Phenotypes and karyotypes of human malignant mesothelioma cell lines.

    Directory of Open Access Journals (Sweden)

    Vandana Relan

    Full Text Available BACKGROUND: Malignant mesothelioma is an aggressive tumour of serosal surfaces most commonly pleura. Characterised cell lines represent a valuable tool to study the biology of mesothelioma. The aim of this study was to develop and biologically characterise six malignant mesothelioma cell lines to evaluate their potential as models of human malignant mesothelioma. METHODS: Five lines were initiated from pleural biopsies, and one from pleural effusion of patients with histologically proven malignant mesothelioma. Mesothelial origin was assessed by standard morphology, Transmission Electron Microscopy (TEM and immunocytochemistry. Growth characteristics were assayed using population doubling times. Spectral karyotyping was performed to assess chromosomal abnormalities. Authentication of donor specific derivation was undertaken by DNA fingerprinting using a panel of SNPs. RESULTS: Most of cell lines exhibited spindle cell shape, with some retaining stellate shapes. At passage 2 to 6 all lines stained positively for calretinin and cytokeratin 19, and demonstrated capacity for anchorage-independent growth. At passage 4 to 16, doubling times ranged from 30-72 hours, and on spectral karyotyping all lines exhibited numerical chromosomal abnormalities ranging from 41 to 113. Monosomy of chromosomes 8, 14, 22 or 17 was observed in three lines. One line displayed four different karyotypes at passage 8, but only one karyotype at passage 42, and another displayed polyploidy at passage 40 which was not present at early passages. At passages 5-17, TEM showed characteristic features of mesothelioma ultrastructure in all lines including microvilli and tight intercellular junctions. CONCLUSION: These six cell lines exhibit varying cell morphology, a range of doubling times, and show diverse passage-dependent structural chromosomal changes observed in malignant tumours. However they retain characteristic immunocytochemical protein expression profiles of

  7. Strategies for selecting recombinant CHO cell lines for cGMP manufacturing: improving the efficiency of cell line generation.

    Science.gov (United States)

    Porter, Alison J; Racher, Andrew J; Preziosi, Richard; Dickson, Alan J

    2010-01-01

    Transfectants with a wide range of cellular phenotypes are obtained during the process of cell line generation. For the successful manufacture of a therapeutic protein, a means is required to identify a cell line with desirable growth and productivity characteristics from this phenotypically wide-ranging transfectant population. This identification process is on the critical path for first-in-human studies. We have stringently examined a typical selection strategy used to isolate cell lines suitable for cGMP manufacturing. One-hundred and seventy-five transfectants were evaluated as they progressed through the different assessment stages of the selection strategy. High producing cell lines, suitable for cGMP manufacturing, were identified. However, our analyses showed that the frequency of isolation of the highest producing cell lines was low and that ranking positions were not consistent between each assessment stage, suggesting that there is potential to improve upon the strategy. Attempts to increase the frequency of isolation of the 10 highest producing cell lines, by in silico analysis of alternative selection strategies, were unsuccessful. We identified alternative strategies with similar predictive capabilities to the typical selection strategy. One alternate strategy required fewer cell lines to be progressed at the assessment stages but the stochastic nature of the models means that cell line numbers are likely to change between programs. In summary, our studies illuminate the potential for improvement to this and future selection strategies, based around use of assessments that are more informative or that reduce variance, paving the way to improved efficiency of generation of manufacturing cell lines. PMID:20623584

  8. MORPHOMETRIC SUBTYPING FOR A PANEL OF BREAST CANCER CELL LINES

    Energy Technology Data Exchange (ETDEWEB)

    Han, Ju; Chang, Hang; Fontenay, Gerald; Wang, Nicholas J.; Gray, Joe W.; Parvin, Bahram

    2009-05-08

    A panel of cell lines of diverse molecular background offers an improved model system for high-content screening, comparative analysis, and cell systems biology. A computational pipeline has been developed to collect images from cell-based assays, segment individual cells and colonies, represent segmented objects in a multidimensional space, and cluster them for identifying distinct subpopulations. While each segmentation strategy can vary for different imaging assays, representation and subpopulation analysis share a common thread. Application of this pipeline to a library of 41 breast cancer cell lines is demonstrated. These cell lines are grown in 2D and imaged through immunofluorescence microscopy. Subpopulations in this panel are identified and shown to correlate with previous subtyping literature that was derived from transcript data.

  9. Biobanking human embryonic stem cell lines

    DEFF Research Database (Denmark)

    Holm, Søren

    2016-01-01

    Stem cell banks curating and distributing human embryonic stem cells have been established in a number of countries and by a number of private institutions. This paper identifies and critically discusses a number of arguments that are used to justify the importance of such banks in policy...... are curiously absent from the particular stem cell banking policy discourse. This to some extent artificially isolates this discourse from the broader discussions about the flows of reproductive materials and tissues in modern society, and such isolation may lead to the interests of important actors being...

  10. Cold storage and cryopreservation of tick cell lines

    Directory of Open Access Journals (Sweden)

    Lallinger Gertrud

    2010-04-01

    Full Text Available Abstract Background Tick cell lines are now available from fifteen ixodid and argasid species of medical and veterinary importance. However, some tick cell lines can be difficult to cryopreserve, and improved protocols for short- and long-term low temperature storage will greatly enhance their use as tools in tick and tick-borne pathogen research. In the present study, different protocols were evaluated for cold storage and cryopreservation of tick cell lines derived from Rhipicephalus (Boophilus decoloratus, Rhipicephalus (Boophilus microplus, Ixodes ricinus and Ixodes scapularis. For short-term cold storage, cells were kept under refrigeration at 6°C for 15, 30 and 45 days. For cryopreservation in liquid nitrogen, use of a sucrose-phosphate-glutamate freezing buffer (SPG as cryoprotectant was compared with dimethylsulfoxide (DMSO supplemented with sucrose. Cell viability was determined by the trypan blue exclusion test and cell morphology was evaluated in Giemsa-stained cytocentrifuge smears. Results Cold storage at 6°C for up to 30 days was successful in preserving R. (B. microplus, R. (B. decoloratus, I. ricinus and I. scapularis cell lines; lines from the latter three species could be easily re-cultivated after 45 days under refrigeration. While cell lines from all four tick species cryopreserved with 6% DMSO were successfully resuscitated, the R. (B. decoloratus cells did not survive freezing in SPG and of the other three species, only the R. (B. microplus cells resumed growth during the observation period. Conclusions This constitutes the first report on successful short-term refrigeration of cells derived from R. (B. decoloratus, R. (B. microplus, and I. ricinus, and use of SPG as an alternative to DMSO for cryopreservation, thus making an important contribution to more reliable and convenient tick cell culture maintenance.

  11. Magnetic resonance spectroscopy in tumor cell lines research

    International Nuclear Information System (INIS)

    MRS can be used non-invasively to study the several trace metabolites and energy metabolism in vivo. By quantitatively analyzing the compounds changes we could detect abnormal metabolism in tumor and its surrounding tissue, and estimate tumor infiltration in vivo and vitro. In recent years, MRS has been applied in cell line research and is becoming a promising method. In this article we summarized the applications of MRS in cell lines in studying diagnosis, treatment, and tumor mechanisms. (authors)

  12. Reliable in vitro studies require appropriate ovarian cancer cell lines.

    Science.gov (United States)

    Jacob, Francis; Nixdorf, Sheri; Hacker, Neville F; Heinzelmann-Schwarz, Viola A

    2014-01-01

    Ovarian cancer is the fifth most common cause of cancer death in women and the leading cause of death from gynaecological malignancies. Of the 75% women diagnosed with locally advanced or disseminated disease, only 30% will survive five years following treatment. This poor prognosis is due to the following reasons: limited understanding of the tumor origin, unclear initiating events and early developmental stages of ovarian cancer, lack of reliable ovarian cancer-specific biomarkers, and drug resistance in advanced cases. In the past, in vitro studies using cell line models have been an invaluable tool for basic, discovery-driven cancer research. However, numerous issues including misidentification and cross-contamination of cell lines have hindered research efforts. In this study we examined all ovarian cancer cell lines available from cell banks. Hereby, we identified inconsistencies in the reporting, difficulties in the identification of cell origin or clinical data of the donor patients, restricted ethnic and histological type representation, and a lack of tubal and peritoneal cancer cell lines. We recommend that all cell lines should be distributed via official cell banks only with strict guidelines regarding the minimal available information required to improve the quality of ovarian cancer research in future. PMID:24936210

  13. In vitro Rb-1 gene transfer to retinoblastoma cell lines

    International Nuclear Information System (INIS)

    After transfection of Rb-vector to packaging cell line (CRIP) by Ca-P precipitation method, we could select nineteen colonies of G-418 resistant clone by ring cloning. Each colony was transduced to NIH3T3 cells to select the one which produces high titer virus. After NIH3T3 cells transduction, we could get 28 colony counts for the high, 127 for the middle, and 6 for the low viral titer. With the supernatant of the high viral titer colony (CRIPRb 2-5). We transduct retinoblastoma cell lines. 5 figs, 11 refs. (Author)

  14. Thrombin promotes platelet-mediated melanoma cell adhesion to endothelial cells under flow conditions: role of platelet glycoproteins P-selectin and GPIIb-IIIA.

    OpenAIRE

    Dardik, R.; Savion, N; Kaufmann, Y; D. Varon

    1998-01-01

    We investigated the role of platelets in human melanoma cell (line 397) interaction with vascular endothelial cells (ECs) under flow conditions. The ability of the tumour cells to adhere to the EC monolayer was significantly reduced by application of flow at a shear rate of 250 s(-1). A 2.2-fold increase in tumour cell adhesion to ECs under flow was observed upon addition of thrombin receptor agonist peptide (TRAP)-activated platelets but not resting platelets. A similar increase (2.5-fold) i...

  15. Expressional patterns of chaperones in ten human tumor cell lines

    Directory of Open Access Journals (Sweden)

    Slavc Irene

    2004-12-01

    Full Text Available Abstract Background Chaperones (CH play an important role in tumor biology but no systematic work on expressional patterns has been reported so far. The aim of the study was therefore to present an analytical method for the concomitant determination of several CH in human tumor cell lines, to generate expressional patterns in the individual cell lines and to search for tumor and non-tumor cell line specific CH expression. Human tumor cell lines of neuroblastoma, colorectal and adenocarcinoma of the ovary, osteosarcoma, rhabdomyosarcoma, malignant melanoma, lung, cervical and breast cancer, promyelocytic leukaemia were homogenised, proteins were separated on two-dimensional gel electrophoresis with in-gel digestion of proteins and MALDI-TOF/TOF analysis was carried out for the identification of CH. Results A series of CH was identified including the main CH groups as HSP90/HATPas_C, HSP70, Cpn60_TCP1, DnaJ, Thioredoxin, TPR, Pro_isomerase, HSP20, ERP29_C, KE2, Prefoldin, DUF704, BAG, GrpE and DcpS. Conclusions The ten individual tumor cell lines showed different expression patterns, which are important for the design of CH studies in tumor cell lines. The results can serve as a reference map and form the basis of a concomitant determination of CH by a protein chemical rather than an immunochemical method, independent of antibody availability or specificity.

  16. Homodimers of the Antiviral Abacavir as Modulators of P-glycoprotein Transport in Cell Culture: Probing Tether Length

    OpenAIRE

    Namanja, Hilda A.; Emmert, Dana; Hrycyna, Christine A.; Chmielewski, Jean

    2013-01-01

    A major hurdle in permanently eliminating HIV from the body is the persistence of viral reservoirs, including those of the brain. One potential strategy towards eradicating HIV reservoirs of the brain is to block efflux transporters, such as P-glycoprotein (P-gp), that contribute to the limited penetration of antiviral agents across the blood-brain barrier (BBB). Herein, we described a series of dimeric inhibitors of P-gp based on the nucleoside reverse transcriptase inhibitor and P-gp substr...

  17. Neurohypophysial Receptor Gene Expression by Thymic T Cell Subsets and Thymic T Cell Lymphoma Cell Lines

    Directory of Open Access Journals (Sweden)

    I. Hansenne

    2004-01-01

    transcribed in thymic epithelium, while immature T lymphocytes express functional neurohypophysial receptors. Neurohypophysial receptors belong to the G protein-linked seven-transmembrane receptor superfamily and are encoded by four distinct genes, OTR, V1R, V2R and V3R. The objective of this study was to identify the nature of neurohypophysial receptor in thymic T cell subsets purified by immunomagnetic selection, as well as in murine thymic lymphoma cell lines RL12-NP and BW5147. OTR is transcribed in all thymic T cell subsets and T cell lines, while V3R transcription is restricted to CD4+ CD8+ and CD8+ thymic cells. Neither V1R nor V2R transcripts are detected in any kind of T cells. The OTR protein was identified by immunocytochemistry on thymocytes freshly isolated from C57BL/6 mice. In murine fetal thymic organ cultures, a specific OTR antagonist does not modify the percentage of T cell subsets, but increases late T cell apoptosis further evidencing the involvement of OT/OTR signaling in the control of T cell proliferation and survival. According to these data, OTR and V3R are differentially expressed during T cell ontogeny. Moreover, the restriction of OTR transcription to T cell lines derived from thymic lymphomas may be important in the context of T cell leukemia pathogenesis and treatment.

  18. Study of tea polyphenol as a reversal agent for carcinoma cell lines' multidrug resistance (study of TP as a MDR reversal agent)

    Energy Technology Data Exchange (ETDEWEB)

    Zhu Aizhi E-mail: zhuaizhi@263.net; Wang Xiangyun; Guo Zhenquan

    2001-08-01

    The aim of this study was to examine MDR1 expression product P-glycoprotein (Pgp) and study the effect and mechanism of tea polyphenol (TP) in reversion of multidrug resistance (MDR) in carcinoma cell lines. Immunocytochemical method was used for qualitative detection of Pgp. A comparative study of cytotoxicity and multidrug resistance reversion effect was made by MTT assay for tea polyphenol and quinidine in MCF-7 and MCF-7/Adr cell lines. The multidrug resistance reversion effect and mechanism were studied by measuring the uptake of {sup 99m}Tc-tetrofosmin in the carcinoma cell lines. (1) The Pgp overexpression in MCF-7/Adr cells was found to be strong positive, while the Pgp expression of MCF-7 was negative. (2) Although both tea polyphenol and quinidine could not remarkably change the toxicity of adriamycin to MCF-7, they could improve the sensitivity of MCF-7/Adr to adriamycin. The reversion index of tea polyphenol and quinidine was 3 and 10 respectively. (3) The cellular uptake of {sup 99m}Tc-tetrofosmin was remarkably lower in MCF-7/Adr than in MCF-7. The uptake of {sup 99m}Tc-tetrofosmin in MCF-7/Adr exhibited a 4, 13, 16 fold increase in the presence of 200, 400 and 500 {mu}g/ml of tea polyphenol respectively. The uptake of {sup 99m}Tc-tetrofosmin in MCF-7/Adr exhibited only a 4-fold increase in the presence of 200 {mu}M of quinidine. Immunocytochemistry can detect P-glycoprotein expression level qualitatively. Tea polyphenol is not only an anti-tumor agent, but also a multidrug resistant modulator similar to quinidine. The multidrug resistance reversion mechanism of tea polyphenol seems to be its inhibition of the activity of P-glycoprotein. Tea polyphenol has the advantage of very low toxicity in tumor treatment.

  19. Transcription profiles of non-immortalized breast cancer cell lines

    International Nuclear Information System (INIS)

    Searches for differentially expressed genes in tumours have made extensive use of array technology. Most samples have been obtained from tumour biopsies or from established tumour-derived cell lines. Here we compare cultures of non-immortalized breast cancer cells, normal non-immortalized breast cells and immortalized normal and breast cancer cells to identify which elements of a defined set of well-known cancer-related genes are differentially expressed. Cultures of cells from pleural effusions or ascitic fluids from breast cancer patients (MSSMs) were used in addition to commercially-available normal breast epithelial cells (HMECs), established breast cancer cell lines (T-est) and established normal breast cells (N-est). The Atlas Human Cancer 1.2 cDNA expression array was employed. The data obtained were analysed using widely-available statistical and clustering software and further validated through real-time PCR. According to Significance Analysis of Microarray (SAM) and AtlasImage software, 48 genes differed at least 2-fold in adjusted intensities between HMECs and MSSMs (p < 0.01). Some of these genes have already been directly linked with breast cancer, metastasis and malignant progression, whilst others encode receptors linked to signal transduction pathways or are otherwise related to cell proliferation. Fifty genes showed at least a 2.5-fold difference between MSSMs and T-est cells according to AtlasImage, 2-fold according to SAM. Most of these classified as genes related to metabolism and cell communication. The expression profiles of 1176 genes were determined in finite life-span cultures of metastatic breast cancer cells and of normal breast cells. Significant differences were detected between the finite life-span breast cancer cell cultures and the established breast cancer cell lines. These data suggest caution in extrapolating information from established lines for application to clinical cancer research

  20. β-casein nanovehicles for oral delivery of chemotherapeutic drug combinations overcoming P-glycoprotein-mediated multidrug resistance in human gastric cancer cells

    Science.gov (United States)

    Bar-Zeev, Maya; Assaraf, Yehuda G.; Livney, Yoav D.

    2016-01-01

    Multidrug resistance (MDR) is a primary obstacle to curative cancer therapy. We have previously demonstrated that β-casein (β-CN) micelles (β-CM) can serve as nanovehicles for oral delivery and target-activated release of hydrophobic drugs in the stomach. Herein we introduce a novel nanosystem based on β-CM, to orally deliver a synergistic combination of a chemotherapeutic drug (Paclitaxel) and a P-glycoprotein-specific transport inhibitor (Tariquidar) individually encapsulated within β-CM, for overcoming MDR in gastric cancer. Light microscopy, dynamic light scattering and zeta potential analyses revealed solubilization of these drugs by β-CN, suppressing drug crystallization. Spectrophotometry demonstrated high loading capacity and good encapsulation efficiency, whereas spectrofluorometry revealed high affinity of these drugs to β-CN. In vitro cytotoxicity assays exhibited remarkable synergistic efficacy against human MDR gastric carcinoma cells with P-glycoprotein overexpression. Oral delivery of β-CN - based nanovehicles carrying synergistic drug combinations to the stomach constitutes a novel efficacious therapeutic system that may overcome MDR in gastric cancer. PMID:26989076

  1. Establishment of a new cell line (MTT-95 showing basophilic differentiation from the bone marrow of a patient with acute myelogenous leukemia (M7.

    Directory of Open Access Journals (Sweden)

    Mizobuchi N

    1999-04-01

    Full Text Available A new myeloid cell line, MTT-95, was established from the bone marrow of a patient with acute myelogenous leukemia (AML, M7. MTT-95 cells differentiate into mature basophilic cells in culture medium with no chemical component or cytokine. Surface phenotypes were as follows: CD11b 79.3%, CD13 92.4%, CD33 99.8%, CD34 87.9%, CD41a 77.6% and HLA-DR 0.3%. MTT-95 cells were strongly positive for glycoprotein IIb/IIIa by immunohistochemical staining and revealed metachromatic granules. MTT-95 cells seem to possess characteristics of both megakaryocytes and basophils. These findings suggest that MTT-95 cells are basophil progenitors. MTT-95 cells might be useful in the study not only of the biological aspects of basophils, but also of the diversities of AML (M7.

  2. Cell Line Modeling to Study Biomarker Panel in Prostate Cancer

    Science.gov (United States)

    NickKholgh, Bita; Fang, Xiaolan; Winters, Shira M.; Raina, Anvi; Pandya, Komal S.; Gyabaah, Kenneth; Fino, Nora; Balaji, K.C.

    2016-01-01

    BACKGROUND African–American men with prostate cancer (PCa) present with higher-grade and -stage tumors compared to Caucasians. While the disparity may result from multiple factors, a biological basis is often strongly suspected. Currently, few well-characterized experimental model systems are available to study the biological basis of racial disparity in PCa. We report a validated in vitro cell line model system that could be used for the purpose. METHODS We assembled a PCa cell line model that included currently available African–American PCa cell lines and LNCaP (androgen-dependent) and C4-2 (castration-resistant) Caucasian PCa cells. The utility of the cell lines in studying the biological basis of variance in a malignant phenotype was explored using a multiplex biomarker panel consisting of proteins that have been proven to play a role in the progression of PCa. The panel expression was evaluated by Western blot and RT-PCR in cell lines and validated in human PCa tissues by RT-PCR. As proof-of-principle to demonstrate the utility of our model in functional studies, we performed MTS viability assays and molecular studies. RESULTS The dysregulation of the multiplex biomarker panel in primary African–American cell line (E006AA) was similar to metastatic Caucasian cell lines, which would suggest that the cell line model could be used to study an inherent aggressive phenotype in African–American men with PCa. We had previously demonstrated that Protein kinase D1 (PKD1) is a novel kinase that is down regulated in advanced prostate cancer. We established the functional relevance by over expressing PKD1, which resulted in decreased proliferation and epithelial mesenchymal transition (EMT) in PCa cells. Moreover, we established the feasibility of studying the expression of the multiplex biomarker panel in archived human PCa tissue from African–Americans and Caucasians as a prelude to future translational studies. CONCLUSION We have characterized a novel in

  3. Technetium-99m sestamibi uptake in human breast carcinoma cell lines displaying glutathione-associated drug-resistance

    Energy Technology Data Exchange (ETDEWEB)

    Kabasakal, L. [Dept. of Nuclear Medicine and Biochemistry, Medical College of Wisconsin, Milwaukee, WI (United States); Oezker, K. [Dept. of Nuclear Medicine and Biochemistry, Medical College of Wisconsin, Milwaukee, WI (United States); Hayward, M. [Dept. of Nuclear Medicine and Biochemistry, Medical College of Wisconsin, Milwaukee, WI (United States); Akansel, G. [Dept. of Nuclear Medicine and Biochemistry, Medical College of Wisconsin, Milwaukee, WI (United States); Griffith, O. [Dept. of Nuclear Medicine and Biochemistry, Medical College of Wisconsin, Milwaukee, WI (United States); Isitman, A.T. [Dept. of Nuclear Medicine and Biochemistry, Medical College of Wisconsin, Milwaukee, WI (United States); Hellman, R. [Dept. of Nuclear Medicine and Biochemistry, Medical College of Wisconsin, Milwaukee, WI (United States); Collier, D. [Dept. of Nuclear Medicine and Biochemistry, Medical College of Wisconsin, Milwaukee, WI (United States)

    1996-05-01

    An in vitro study was designed to evaluate the uptake of sestamibi (MIBI) in P-glycoprotein (Pgp) and glutathione-associated (GSH) multidrug-resistant (MDR) cell lines. MIBI uptake was studied in various human breast carcinoma cell lines, i.e. in wild-type (MCF7/wt) cells, in adriamycin-resistant (MCF7/adr) cells which express Pgp and in melphalan-resistant (MCF7/mph) cells with increased levels of GSH. The effects of buthiomine sulphoximine (BSO) and verapamil on MIBI uptake were also studied in the MCF7/mph and MCF7/adr cells respectively. The cells were incubated for 1 h with a dose of 0.1 MBq thallium-201 and technetium-99m MIBI. Both BIBI and {sup 201}Tl uptakes were higher for MCF7/mph cells than for the other cells studied. The mean MIBI uptake in MCF7/adr cells was significantly lower than that in MCF7/wt cells (1.9%{+-}0.5% vs 3.1%.0.6%; P<0.01). Verapamil treatment increased the MIBI uptake in MCF7/adr cells (to 2.6%.0.3%; P<0.05). Treatment of MCF7/mph cells with BSO resulted in a significant reduction in GSH content (from 243.2{+-}81.1 nmol/mg protein to 17.6{+-}4.4 nmol/mg protein; P<0.001). However, MIBI uptake in BSO-treated and untreated MCF7/mph cells was similar (4.43%{+-}0.5% and 5.93%{+-}1.7%, respectively; P>0.1). This study suggests that the uptake of MIBI is not diminished by glutathione-associated drug resistance and that MIBI uptake in a tumour sample does not necessarly indicate that a cancer is sensitive to drugs. (orig.)

  4. Solid Oxide Fuel Cell Systems PVL Line

    Energy Technology Data Exchange (ETDEWEB)

    Susan Shearer - Stark State College; Gregory Rush - Rolls-Royce Fuel Cell Systems

    2012-05-01

    In July 2010, Stark State College (SSC), received Grant DE-EE0003229 from the U.S. Department of Energy (DOE), Golden Field Office, for the development of the electrical and control systems, and mechanical commissioning of a unique 20kW scale high-pressure, high temperature, natural gas fueled Stack Block Test System (SBTS). SSC worked closely with subcontractor, Rolls-Royce Fuel Cell Systems (US) Inc. (RRFCS) over a 13 month period to successfully complete the project activities. This system will be utilized by RRFCS for pre-commercial technology development and training of SSC student interns. In the longer term, when RRFCS is producing commercial products, SSC will utilize the equipment for workforce training. In addition to DOE Hydrogen, Fuel Cells, and Infrastructure Technologies program funding, RRFCS internal funds, funds from the state of Ohio, and funding from the DOE Solid State Energy Conversion Alliance (SECA) program have been utilized to design, develop and commission this equipment. Construction of the SBTS (mechanical components) was performed under a Grant from the State of Ohio through Ohio's Third Frontier program (Grant TECH 08-053). This Ohio program supported development of a system that uses natural gas as a fuel. Funding was provided under the Department of Energy (DOE) Solid-state Energy Conversion Alliance (SECA) program for modifications required to test on coal synthesis gas. The subject DOE program provided funding for the electrical build, control system development and mechanical commissioning. Performance testing, which includes electrical commissioning, was subsequently performed under the DOE SECA program. Rolls-Royce Fuel Cell Systems is developing a megawatt-scale solid oxide fuel cell (SOFC) stationary power generation system. This system, based on RRFCS proprietary technology, is fueled with natural gas, and operates at elevated pressure. A critical success factor for development of the full scale system is the capability

  5. Steroid hormone secretion in inflammatory breast cancer cell lines.

    Science.gov (United States)

    Illera, Juan Carlos; Caceres, Sara; Peña, Laura; de Andres, Paloma J; Monsalve, Beatriz; Illera, Maria J; Woodward, Wendy A; Reuben, James M; Silvan, Gema

    2015-12-01

    Inflammatory breast carcinoma (IBC) is a special type of breast cancer with a poor survival rate. Though several IBC cell lines have been established, recently a first IMC cell line was established. The aims of this study were: (1) to validate a highly sensitive, reliable, accurate and direct amplified enzyme immunoassay (EIA) to measure several cell-secreted steroid hormones: progesterone (P4), androstenedione (A4), testosterone (T), 17β-estradiol (E2) and estrone sulfate (SO4E1) in the culture medium. (2) To assess whether hormone production profile by IPC-366 cells validates the IMC model for human IBC. We validated a non-competitive amplified EIA for inflammatory breast cancer cell lines based on the results of accuracy, precision, sensitivity and parallelism. The low detection limits of the technique were: P4=13.2 pg/well, A4=2.3 pg/well, T=11.4 pg/well, E2=1.9 pg/well and SO4E1=4.5 pg/well. Intra- and inter-assay coefficient of variation percentages were 90%. In all hormones studied SUM149 have higher levels (1.4 times, but not significant) than IPC-366, and the correlation index between SUM149 and IPC-366 concentrations were >97%. We can coclude that cells of both cell lines, IPC-366 and SUM149, are capable to produce steroid hormone in culture media. The presented EIA methodology is very valuable for the detection of steroid production in culture media and could be used in hormone regulation studies and therapeutic agents in cell lines of inflammatory and non-inflammatory mammary carcinoma or other cancer cell lines in preclinical studies. PMID:26495931

  6. MOLECULAR AND CYTOGENETIC ANALYSIS OF LUNG TUMOR CELL LINES

    Science.gov (United States)

    We have measured the levels of amplification of oncogenes and tumor marker genes or other genes of interest in nine human lung tumor cell lines in comparison to normal human bronchial epithelial cells or normal blood lymphocytes to test the hypothesis that aberrant amplification ...

  7. Transportation characteristics of nolatrexed in three tumor cell lines

    Institute of Scientific and Technical Information of China (English)

    LI Yi-lei; ZHAO Ai-guo; WU Shu-guang

    2002-01-01

    Objective:To investigate the association of the transportation characteristics of nolatrexed in tumor cells with its drug sensitivity. Methods: The sensitivity of 3 tumor cell lines, C6, SRS82 and LoVo, to nolatrexed were determined by growth inhibition study. After exposure to 20 μmol/L nolatrexed at different time intervals ranging from 0 to 30 min, or to nolatrexed at different concentrations ranging from 0 to 40μmol/L for 10 min, the intracellular drug concentration was measured using high-performance liquid chromatography. Results: C6 was the most sensitive cell line among the three, with sensitivity 6. 8-fold and 13.8-fold those of SRS-82 and LoVo cells respectively. Transportation of nolatrexed in the 3 cell lines were qualitatively similar, which rapidly achieved steady-state within 5 min, and linear relationship between the intracellular and extracellular drug concentration was observed. The intracellular steady-state level achieved in C6 was significantly higher than those in the other two cell lines, the latter having comparable levels. Conclusion: Nolatrexed enters the cell very quickly and different transport capacities are involved in the generation of varied sensitivity to nolatrexed in tumor cells.

  8. Frequency and distribution of Notch mutations in tumor cell lines

    International Nuclear Information System (INIS)

    Deregulated Notch signaling is linked to a variety of tumors and it is therefore important to learn more about the frequency and distribution of Notch mutations in a tumor context. In this report, we use data from the recently developed Cancer Cell Line Encyclopedia to assess the frequency and distribution of Notch mutations in a large panel of cancer cell lines in silico. Our results show that the mutation frequency of Notch receptor and ligand genes is at par with that for established oncogenes and higher than for a set of house-keeping genes. Mutations were found across all four Notch receptor genes, but with notable differences between protein domains, mutations were for example more prevalent in the regions encoding the LNR and PEST domains in the Notch intracellular domain. Furthermore, an in silico estimation of functional impact showed that deleterious mutations cluster to the ligand-binding and the intracellular domains of NOTCH1. For most cell line groups, the mutation frequency of Notch genes is higher than in associated primary tumors. Our results shed new light on the spectrum of Notch mutations after in vitro culturing of tumor cells. The higher mutation frequency in tumor cell lines indicates that Notch mutations are associated with a growth advantage in vitro, and thus may be considered to be driver mutations in a tumor cell line context. The online version of this article (doi:10.1186/s12885-015-1278-x) contains supplementary material, which is available to authorized users

  9. Continuous production of erythropoietin by an established human renal carcinoma cell line: development of the cell line

    Energy Technology Data Exchange (ETDEWEB)

    Sherwood, J.B.; Shouval, D.

    1986-01-01

    Establishment of a stable, transformed human renal carcinoma cell line that produces erythropoietin in vitro and has maintained this function continuously since 1981 and for > 150 passages in monolayer culture was accomplished by transplantation of human renal clear cell carcinoma tissue from a patient with erythrocytosis into an immunosuppressed athymic mouse. In addition to its immunocrossreactivity with native human urinary erythropoietin, the tumor erythropoietin demonstrates biological activity in the in vitro mouse erythroid colony-forming unit assay and in tumor-bearing nude mice. The cloned renal carcinoma cell line has an abnormal human karyotype and has ultrastructural features characteristic of human renal clear cell carcinoma. This cell line provides a reproducible model system for the production of an erythropoietin-like material and for the study of its synthesis and secretion.

  10. Derivation of human embryonic stem cell line Genea019

    Directory of Open Access Journals (Sweden)

    Biljana Dumevska

    2016-03-01

    Full Text Available The Genea019 human embryonic stem cell line was derived from a donated, fully commercially consented ART blastocyst, through ICM outgrowth on inactivated feeders. The line showed pluripotent cell morphology and genomic analysis verified a 46, XX karyotype, female Allele pattern and unaffected Htt CAG repeat length, compared to HD affected sibling Genea020. Pluripotency of Genea019 was demonstrated with 75% of cells expressing Nanog, 89% Oct4, 48% Tra1-60 and 85% SSEA4, a Pluritest Pluripotency score of 22.97, Novelty score of 1.42, tri-lineage teratoma formation and Alkaline Phosphatase activity. The cell line was negative for Mycoplasma and any visible contamination.

  11. Characterization of beta2-glycoprotein I-dependent and -independent "antiphospholipid" antibodies from lupus-prone NZW/BXSB F1 hybrid male mice.

    Science.gov (United States)

    Thiagarajan, P; Le, A; Shapiro, S S

    1997-10-01

    Male (NZW x BXSB)F1 (W/BF1) mice develop a systemic lupus-like syndrome characterized by thrombocytopenia, coronary vascular disease, nephritis, and anticardiolipin antibodies. Three stable hybridoma cell lines secreting monoclonal anticardiolipin antibodies were developed from these mice by fusing their splenic lymphocytes with nonsecreting myeloma cell line, NS-1. Monoclonal antibody A1.17 reacted with cardiolipin in a beta2-Glycoprotein I-dependent manner. The epitope for this antibody consisted of beta2-glycoprotein I bound to cardiolipin or immobilized on plastic plates. Other anionic phospholipid-binding proteins, such as prothrombin or annexin V, had no significant effect in the reactivity of these antibodies. The specificity is similar to the autoimmune anticardiolipin antibodies described in patients with systemic lupus erythematosus and other infectious diseases. In contrast, monoclonal antibodies A1.72 and A1.84 reacted with cardiolipin in the absence of beta2-glycoprotein I. Beta2-glycoprotein I, either in the fluid phase or bound to cardiolipin, inhibited the binding of these antibodies. The specificity of the latter two antibodies was similar to that described in patients with syphilis and allied disorders. Both types of antibodies had lupus anticoagulant properties. Thus lupus-prone male (NZW x BXSB)F1 (W/BF1) mice develop both beta2-glycoprotein I-dependent and beta2-glycoprotein I-independent anticardiolipin antibodies.

  12. Glycoengineering of Human Cell Lines Using Zinc Finger Nuclease Gene Targeting

    DEFF Research Database (Denmark)

    Steentoft, Catharina; Bennett, Eric Paul; Clausen, Henrik

    2013-01-01

    Lectin affinity chromatography is a powerful technique for isolation of glycoproteins carrying a specific glycan structure of interest. However, the enormous diversity of glycans present on the cell surface, as well as on individual proteins, makes it difficult to isolate an entire glycoproteome ...

  13. Establishment, immortalisation and characterisation of pteropid bat cell lines.

    Directory of Open Access Journals (Sweden)

    Gary Crameri

    Full Text Available BACKGROUND: Bats are the suspected natural reservoir hosts for a number of new and emerging zoonotic viruses including Nipah virus, Hendra virus, severe acute respiratory syndrome coronavirus and Ebola virus. Since the discovery of SARS-like coronaviruses in Chinese horseshoe bats, attempts to isolate a SL-CoV from bats have failed and attempts to isolate other bat-borne viruses in various mammalian cell lines have been similarly unsuccessful. New stable bat cell lines are needed to help with these investigations and as tools to assist in the study of bat immunology and virus-host interactions. METHODOLOGY/FINDINGS: Black flying foxes (Pteropus alecto were captured from the wild and transported live to the laboratory for primary cell culture preparation using a variety of different methods and culture media. Primary cells were successfully cultured from 20 different organs. Cell immortalisation can occur spontaneously, however we used a retroviral system to immortalise cells via the transfer and stable production of the Simian virus 40 Large T antigen and the human telomerase reverse transcriptase protein. Initial infection experiments with both cloned and uncloned cell lines using Hendra and Nipah viruses demonstrated varying degrees of infection efficiency between the different cell lines, although it was possible to infect cells in all tissue types. CONCLUSIONS/SIGNIFICANCE: The approaches developed and optimised in this study should be applicable to bats of other species. We are in the process of generating further cell lines from a number of different bat species using the methodology established in this study.

  14. Monoclonal antibodies against the human leukemia cell line K 562.

    Science.gov (United States)

    Böttger, V; Hering, S; Jantscheff, P; Micheel, B

    1985-01-01

    Three monoclonal antibodies raised against K 562, a cell line originally established from a patient with chronic myeloid leukemia (CML) in terminal blast crisis, were selected according to their distinct reaction pattern. Whereas two antibodies (ZIK-C1-A/C5 and ZIK-C1-A/H5 also designated C and H) recognized antigens, present on K 562 cells and other immature and mature hematopoietic cells (cell lines and normal blood and bone marrow cells), antibody ZIK-C1-A/D9 also designated Y showed an exclusive binding to K 562 cells. The results obtained (here and in the following paper) indicate, that antibody ZIK-C1-A/D9 defines an early differentiation antigen of hematopoiesis or a leukemia-associated antigen.

  15. Comparative Metabolic Flux Profiling of Melanoma Cell Lines

    Science.gov (United States)

    Scott, David A.; Richardson, Adam D.; Filipp, Fabian V.; Knutzen, Christine A.; Chiang, Gary G.; Ronai, Ze'ev A.; Osterman, Andrei L.; Smith, Jeffrey W.

    2011-01-01

    Metabolic rewiring is an established hallmark of cancer, but the details of this rewiring at a systems level are not well characterized. Here we acquire this insight in a melanoma cell line panel by tracking metabolic flux using isotopically labeled nutrients. Metabolic profiling and flux balance analysis were used to compare normal melanocytes to melanoma cell lines in both normoxic and hypoxic conditions. All melanoma cells exhibited the Warburg phenomenon; they used more glucose and produced more lactate than melanocytes. Other changes were observed in melanoma cells that are not described by the Warburg phenomenon. Hypoxic conditions increased fermentation of glucose to lactate in both melanocytes and melanoma cells (the Pasteur effect). However, metabolism was not strictly glycolytic, as the tricarboxylic acid (TCA) cycle was functional in all melanoma lines, even under hypoxia. Furthermore, glutamine was also a key nutrient providing a substantial anaplerotic contribution to the TCA cycle. In the WM35 melanoma line glutamine was metabolized in the “reverse” (reductive) direction in the TCA cycle, particularly under hypoxia. This reverse flux allowed the melanoma cells to synthesize fatty acids from glutamine while glucose was primarily converted to lactate. Altogether, this study, which is the first comprehensive comparative analysis of metabolism in melanoma cells, provides a foundation for targeting metabolism for therapeutic benefit in melanoma. PMID:21998308

  16. Skin Biopsy and Patient-Specific Stem Cell Lines

    Science.gov (United States)

    Li, Yao; Nguyen, Huy V.; Tsang, Stephen H.

    2016-01-01

    The generation of patient-specific induced pluripotent stem (iPS) cells permits the development of next-generation patient-specific systems biology models reflecting personalized genomics profiles to better understand pathophysiology. In this chapter, we describe how to create a patient-specific iPS cell line. There are three major steps: (1) performing a skin biopsy procedure on the patient; (2) extracting human fibroblast cells from the skin biopsy tissue; and (3) reprogramming patient-specific fibroblast cells into the pluripotent stem cell stage. PMID:26141312

  17. A novel function of RING finger protein 10 in transcriptional regulation of the myelin-associated glycoprotein gene and myelin formation in Schwann cells.

    Directory of Open Access Journals (Sweden)

    Shinya Hoshikawa

    Full Text Available Myelin-associated glycoprotein (MAG has been detected in Schwann cells prior to the onset of myelination, suggesting its functions in the initiation of myelination. However, transcriptional regulatory mechanisms of MAG remain to be elucidated. Here, we analyzed the promoter of the MAG gene by using luciferase reporter systems in the primary rat Schwann cells. We identified a novel cis-acting element located 160 bp upstream from the MAG transcription initiation site. Using the identified cis-element as a bait, we performed yeast one-hybrid screening and isolated a cDNA encoding a RNF10 as a putative trans-acting protein. When overexpressed in Schwann cells, RNF10 enhanced the activity of the MAG promoter. When RNF10 expression in Schwann cells was knocked down by siRNA, endogenous MAG mRNA and protein expression decreased. Furthermore, we evaluated myelin synthesis using Schwann cell-DRG neuron cocultures. When Schwann cells were infected with retrovirus expressing RNF10 siRNA, myelin formation was inhibited. These data suggest that RNF10 regulates MAG expression and is required for myelin formation.

  18. Multidrug resistance P-glycoprotein dampens SR-BI cholesteryl ester uptake from high density lipoproteins in human leukemia cells.

    Science.gov (United States)

    Spolitu, Stefano; Uda, Sabrina; Deligia, Stefania; Frau, Alessandra; Collu, Maria; Angius, Fabrizio; Batetta, Barbara

    2016-01-01

    Tumor cells are characterised by a high content of cholesterol esters (CEs), while tumor-bearing patients show low levels of high-density lipoproteins (HDLs). The origin and significance of high CE levels in cancer cell biology has not been completely clarified. Recent evidence that lymphoblastic cells selectively acquire exogenous CE from HDL via the scavenger receptor SR-BI has drawn attention to the additional membrane proteins involved in this pathway. P-glycopotein-MDR1 (P-gp) is a product of the MDR1 gene and confers resistance to antitumor drugs. Its possible role in plasma membrane cholesterol trafficking and CE metabolism has been suggested. In the present study this aspect was investigated in a lymphoblastic cell line selected for MDR1 resistance. CEM were made resistant by stepwise exposure to low (LR) and high (HR) doses of vincristine (VCR). P-gp activity ((3)H-vinblastine), CE content, CE and triglycerides (TG) synthesis ((14)C-oleate), neutral lipids and Dil-HDL uptake (fluorescence), SR-BI, ABCA1 and P-gp protein expression (western blotting) were determined. To better evaluate the relationship between CE metabolism and P-gp activity, the ACAT inhibitor Sandoz-58035 and the P-gp inhibitors progesterone, cyclosporine and verapamil were used. CE content and synthesis were similar in the parental and resistant cells. However, in the latter population, SR-BI protein expression increased, whereas CE-HDL uptake decreased. These changes correlated with the degree of VCR-resistance. As well as reverting MDR1-resistance, the inhibitors of P-gp activity induced the CE-HDL/SR-BI pathway by reactivating membrane cholesterol trafficking. Indeed, CE-HDL uptake, SRBI expression and CE content increased, whereas there was a decrease in cholesterol esterification. These results demonstrated that P-gp overexpression impairs anticancer drug uptake as well as the SR-BI mediated selective CE-HDL uptake. This suggests that these membrane proteins act in an opposite

  19. Inhibition of spring viraemia of carp virus replication in an Epithelioma papulosum cyprini cell line by RNAi.

    Science.gov (United States)

    Gotesman, M; Soliman, H; Besch, R; El-Matbouli, M

    2015-02-01

    Spring viraemia of carp virus (SVCV) is an aetiological agent of a serious disease affecting carp farms in Europe and is a member of the Rhabdoviridae family of viruses. The genome of SVCV codes for five proteins: nucleoprotein (N), phosphoprotein (P), matrix protein (M), glycoprotein (G) and RNA-dependent RNA polymerase (L). RNA-mediated interference (RNAi) by small interfering RNAs (siRNAs) is a powerful tool to inhibit gene transcription and is used to study genes important for viral replication. In previous studies regarding another member of Rhabdoviridae, siRNA inhibition of the rabies virus nucleoprotein gene provided in vitro and in vivo protection against rabies. In this study, synthetic siRNA molecules were designed to target SVCV-N and SVCV-P transcripts to inhibit SVCV replication and were tested in an epithelioma papulosum cyprini (EPC) cell line. Inhibition of gene transcription was measured by real-time quantitative reverse-transcription PCR (RT-qPCR). The efficacy of using siRNA for inhibition of viral replication was analysed by RT-qPCR measurement of a reporter gene (glycoprotein) expression and by virus endpoint titration. Inhibition of nucleoprotein and phosphoprotein gene expression by siRNA reduced SVCV replication. However, use of tandem siRNAs that target phosphoprotein and nucleoprotein worked best at reducing SVCV replication.

  20. Complex formation of platelet thrombospondin with histidine-rich glycoprotein.

    OpenAIRE

    Leung, L L; Nachman, R L; Harpel, P C

    1984-01-01

    Thrombospondin and histidine-rich glycoprotein are two proteins with diverse biological activities which have been associated with human platelets and other cell systems. Using an enzyme-linked immunosorbent assay, we have demonstrated that purified human platelet thrombospondin formed a complex with purified human plasma histidine-rich glycoprotein. The formation of the thrombospondin-histidine-rich glycoprotein complex was specific, concentration dependent, and saturable. Significant bindin...

  1. Human cell lines: A promising alternative for recombinant FIX production.

    Science.gov (United States)

    de Sousa Bomfim, Aline; Cristina Corrêa de Freitas, Marcela; Picanço-Castro, Virgínia; de Abreu Soares Neto, Mário; Swiech, Kamilla; Tadeu Covas, Dimas; Maria de Sousa Russo, Elisa

    2016-05-01

    Factor IX (FIX) is a vitamin K-dependent protein, and it has become a valuable pharmaceutical in the Hemophilia B treatment. We evaluated the potential of recombinant human FIX (rhFIX) expression in 293T and SK-Hep-1 human cell lines. SK-Hep-1-FIX cells produced higher levels of biologically active protein. The growth profile of 293T-FIX cells was not influenced by lentiviral integration number into the cellular genome. SK-Hep-1-FIX cells showed a significantly lower growth rate than SK-Hep-1 cells. γ-carboxylation process is significant to FIX biological activity, thus we performed a expression analysis of genes involved in this process. The 293T gene expression suggests that this cell line could efficiently carboxylate FIX, however only 28% of the total secreted protein is active. SK-Hep-1 cells did not express high amounts of VKORC1 and carboxylase, but this cell line secreted large amounts of active protein. Enrichment of culture medium with Ca(+2) and Mg(+2) ions did not affect positively rhFIX expression in SK-Hep-1 cells. In 293T cells, the addition of 0.5 mM Ca(+2) and 1 mM Mg(+2) resulted in higher rhFIX concentration. SK-Hep-1 cell line proved to be very effective in rhFIX production, and it can be used as a novel biotechnological platform for the production of recombinant proteins.

  2. Human cell lines: A promising alternative for recombinant FIX production.

    Science.gov (United States)

    de Sousa Bomfim, Aline; Cristina Corrêa de Freitas, Marcela; Picanço-Castro, Virgínia; de Abreu Soares Neto, Mário; Swiech, Kamilla; Tadeu Covas, Dimas; Maria de Sousa Russo, Elisa

    2016-05-01

    Factor IX (FIX) is a vitamin K-dependent protein, and it has become a valuable pharmaceutical in the Hemophilia B treatment. We evaluated the potential of recombinant human FIX (rhFIX) expression in 293T and SK-Hep-1 human cell lines. SK-Hep-1-FIX cells produced higher levels of biologically active protein. The growth profile of 293T-FIX cells was not influenced by lentiviral integration number into the cellular genome. SK-Hep-1-FIX cells showed a significantly lower growth rate than SK-Hep-1 cells. γ-carboxylation process is significant to FIX biological activity, thus we performed a expression analysis of genes involved in this process. The 293T gene expression suggests that this cell line could efficiently carboxylate FIX, however only 28% of the total secreted protein is active. SK-Hep-1 cells did not express high amounts of VKORC1 and carboxylase, but this cell line secreted large amounts of active protein. Enrichment of culture medium with Ca(+2) and Mg(+2) ions did not affect positively rhFIX expression in SK-Hep-1 cells. In 293T cells, the addition of 0.5 mM Ca(+2) and 1 mM Mg(+2) resulted in higher rhFIX concentration. SK-Hep-1 cell line proved to be very effective in rhFIX production, and it can be used as a novel biotechnological platform for the production of recombinant proteins. PMID:26802680

  3. Molecular cloning and mammalian expression of human beta 2-glycoprotein I cDNA

    DEFF Research Database (Denmark)

    Kristensen, Torsten; Schousboe, Inger; Boel, Espen;

    1991-01-01

    Human β2-glycoprotein (β2gpI) cDNA was isolated from a liver cDNA library and sequenced. The cDNA encoded a 19-residue hydrophobic signal peptide followed by the mature β2gpI of 326 amino acid residues. In liver and in the hepatoma cell line HepG2 there are two mRNA species of about 1.4 and 4.3 k...

  4. An Open Receptor-Binding Cavity of Hemagglutinin-Esterase-Fusion Glycoprotein from Newly-Identified Influenza D Virus: Basis for Its Broad Cell Tropism.

    Science.gov (United States)

    Song, Hao; Qi, Jianxun; Khedri, Zahra; Diaz, Sandra; Yu, Hai; Chen, Xi; Varki, Ajit; Shi, Yi; Gao, George F

    2016-01-01

    Influenza viruses cause seasonal flu each year and pandemics or epidemic sporadically, posing a major threat to public health. Recently, a new influenza D virus (IDV) was isolated from pigs and cattle. Here, we reveal that the IDV utilizes 9-O-acetylated sialic acids as its receptor for virus entry. Then, we determined the crystal structures of hemagglutinin-esterase-fusion glycoprotein (HEF) of IDV both in its free form and in complex with the receptor and enzymatic substrate analogs. The IDV HEF shows an extremely similar structural fold as the human-infecting influenza C virus (ICV) HEF. However, IDV HEF has an open receptor-binding cavity to accommodate diverse extended glycan moieties. This structural difference provides an explanation for the phenomenon that the IDV has a broad cell tropism. As IDV HEF is structurally and functionally similar to ICV HEF, our findings highlight the potential threat of the virus to public health. PMID:26816272

  5. An Open Receptor-Binding Cavity of Hemagglutinin-Esterase-Fusion Glycoprotein from Newly-Identified Influenza D Virus: Basis for Its Broad Cell Tropism.

    Directory of Open Access Journals (Sweden)

    Hao Song

    2016-01-01

    Full Text Available Influenza viruses cause seasonal flu each year and pandemics or epidemic sporadically, posing a major threat to public health. Recently, a new influenza D virus (IDV was isolated from pigs and cattle. Here, we reveal that the IDV utilizes 9-O-acetylated sialic acids as its receptor for virus entry. Then, we determined the crystal structures of hemagglutinin-esterase-fusion glycoprotein (HEF of IDV both in its free form and in complex with the receptor and enzymatic substrate analogs. The IDV HEF shows an extremely similar structural fold as the human-infecting influenza C virus (ICV HEF. However, IDV HEF has an open receptor-binding cavity to accommodate diverse extended glycan moieties. This structural difference provides an explanation for the phenomenon that the IDV has a broad cell tropism. As IDV HEF is structurally and functionally similar to ICV HEF, our findings highlight the potential threat of the virus to public health.

  6. Mutational analysis of the hepatitis C virus E1 glycoprotein in retroviral pseudoparticles and cell-culture-derived H77/JFH1 chimeric infectious virus particles

    DEFF Research Database (Denmark)

    Russell, R S; Kawaguchi, K; Meunier, J-C;

    2009-01-01

    Cell entry by enveloped viruses is mediated by viral glycoproteins, and generally involves a short hydrophobic peptide (fusion peptide) that inserts into the cellular membrane. An internal hydrophobic domain within E1 (aa262-290) of hepatitis C virus (HCV) may function as a fusion peptide...... incorporation into pseudoparticles and normal CD81-binding, and therefore might affect viral fusion. One mutant (S283P) consistently displayed two- to threefold higher infectivity than did wild-type. Three mutations that decreased HCVpp infectivity also reduced levels of HCVcc infectious virus production....... However, the S283P mutation had a different effect in the two systems as it did not increase production of infectious HCVcc. This comprehensive mutational analysis of the putative HCV fusion peptide provides insight into the role of E1 in its interaction with E2 and in HCV entry....

  7. Interaction of mouse hepatitis virus (MHV) spike glycoprotein with receptor glycoprotein MHVR is required for infection with an MHV strain that expresses the hemagglutinin-esterase glycoprotein

    NARCIS (Netherlands)

    Gagneten, S; Gout, O; Dubois-Dalcq, M; Rottier, P; Rossen, J; Holmes, K V

    1995-01-01

    In addition to the spike (S) glycoprotein that binds to carcinoembryonic antigen-related receptors on the host cell membrane, some strains of mouse coronavirus (mouse hepatitis virus [MHV]) express a hemagglutinin esterase (HE) glycoprotein with hemagglutinating and acetylesterase activity. Virions

  8. Characterization and endocytic internalization of Epith-2 cell surface glycoprotein during the epithelial-to-mesenchymal transition in sea urchin embryos

    Directory of Open Access Journals (Sweden)

    Norio eWakayama

    2013-08-01

    Full Text Available The epithelial cells of the sea urchin Hemicentrotus pulcherrimus embryo express an Epith-2, uncharacterized glycoprotein, on the lateral surface. Here, we describe internalization of Epith-2 during mesenchyme formation through the epithelial-to-mesenchymal transition (EMT. Epith-2 was first expressed on the entire egg surface soon after fertilization and on the blastomeres until the 4-cell stage, but was localized to the lateral surface of epithelial cells at and after the 16-cell stage throughout the later developmental period. However, primary (PMC and secondary mesenchyme cells (SMC that ingress by EMT lost Epith-2 from their cell surface by endocytosis during dissociation from the epithelium, which was associated with the appearance of cytoplasmic Epith-2 dots. The cytoplasmic Epith-2 retained a similar relative molecular mass to that of the cell surface immediately after ingression through the early period of the spreading to single cells. Then, Epith-2 was completely lost from the cytoplasm. Tyrosine residues of Epith-2 were phosphorylated. The endocytic retraction of Epith-2 was inhibited by herbimycin A (HA, a protein tyrosine kinase (PTK inhibitor, and suramin, a growth factor receptor (GFR inhibitor, suggesting the involvement of the GFR/PTK (GP signaling pathway. These two GP inhibitors also inhibited PMC and SMC spreading to individual cells after ingression, but the dissociation of PMC and SMC from the epithelium was not inhibited. In suramin-treated embryos, dissociated mesenchyme cells migrated partially by retaining their epithelial morphology. In HA-treated embryos, no mesenchyme cells migrated. Thus, the EMT occurs in relation to internalization of Epith-2 from presumptive PMC and SMC.

  9. Analysis of LINE-1 expression in human pluripotent cells.

    Science.gov (United States)

    Muñoz-Lopez, Martin; Garcia-Cañadas, Marta; Macia, Angela; Morell, Santiago; Garcia-Perez, Jose L

    2012-01-01

    Half of the human genome is composed of repeated DNA, and some types are mobile within our genome (transposons and retrotransposons). Despite their abundance, only a small fraction of them are currently active in our genome (Long Interspersed Element-1 (LINE-1), Alu, and SVA elements). LINE-1 or L1 elements are a family of active non-LTR retrotransposons, the ongoing mobilization of which still impacts our genome. As selfish DNA elements, L1 activity is more prominent in early human development, where new insertions would be transmitted to the progeny. Here, we describe the conventional methods aimed to determine the expression level of LINE-1 elements in pluripotent human cells.

  10. Comparison of repair capability of four human tumor cell lines

    International Nuclear Information System (INIS)

    A fast and reliable method for assessment of repair capacity of cells based on the restoration of transcription of the gene for the green fluorescent protein carried by a plasmid vector is presented. Repair capacity of the cells counted under fluorescent microscope 24 hours following transcription. This approach has been applied to compare the rates of repair of different types of DNA lesions in four human tumor cell lines. The analysis of the obtained results show that there are considerable differences in the repair capacity of the different cell lines towards the different types of lesions. It should be noted that the difference in repair capacity of the host cells are better evident when plasmids with lower rather that higher number of lesions per unit length of plasmid DNA are used. This is probably because the egfp genes with fewer lesions can be fully repaired while egfp genes with more lesions remain inactive even after some of the lesions have been repaired

  11. Establishment of cell suspension line of Populus tomentosa Carr

    Institute of Scientific and Technical Information of China (English)

    YAO Na; ZHANG Zhi-yi; AN Xin-min; YANG Kai

    2008-01-01

    Leaves of fine Populus tomentosa genotype TC152 were used as explants to establish cell suspension lines. The effects of plant growth regulators on callus induction and establishment of cell suspension lines were studied. The callus induction rate was the highest on a MS solid medium supplemented with 1.0 mg·L-1 2,4-D. A cell suspension line could be obtained by inoculating calli which were not subeultured into a MS liquid medium supplemented with 1.5 mg·L-1 2,4-D. The best subculture medium was MS+ 0.8 mg·L-1 2,4-D + 30 g·L-1 sucrose with a subculture cycle of seven days.

  12. Dipeptidyl peptidase IV in two human glioma cell lines

    Directory of Open Access Journals (Sweden)

    A Sedo

    2009-12-01

    Full Text Available There is growing evidence that dipeptidyl peptidase IV [DPP-IV, EC 3.4.14.5] takes part in the metabolism of biologically active peptides participating in the regulation of growth and transformation of glial cells. However, the knowledge on the DPP-IV expression in human glial and glioma cells is still very limited. In this study, using histochemical and biochemical techniques, the DPP-IV activity was demonstrated in two commercially available human glioma cell lines of different transformation degree, as represented by U373 astrocytoma (Grade III and U87 glioblastoma multiforme (Grade IV lines. Higher total activity of the enzyme, as well as its preferential localisation in the plasma membrane, was observed in U87 cells. Compared to U373 population, U87 cells were morphologically more pleiomorphic, they were cycling at lower rate and expressing less Glial Fibrillary Acidic Protein. The data revealed positive correlation between the degree of transformation of cells and activity of DPP-IV. Great difference in expression of this enzyme, together with the phenotypic differences of cells, makes these lines a suitable standard model for further 57 studies of function of this enzyme in human glioma cells.

  13. Antiproliferative effect of Tualang honey on oral squamous cell carcinoma and osteosarcoma cell lines

    Directory of Open Access Journals (Sweden)

    Ismail Noorliza M

    2010-09-01

    Full Text Available Abstract Background The treatment of oral squamous cell carcinomas (OSCC and human osteosarcoma (HOS includes surgery and/or radiotherapy which often lead to reduced quality of life. This study was aimed to study the antiproliferative activity of local honey (Tualang on OSCC and HOS cell lines. Methods Several concentrations of Tualang honey (1% - 20% were applied on OSCC and HOS cell lines for 3, 6, 12, 24, 48 and 72 hours. Morphological characteristics were observed under light and fluorescent microscope. Cell viability was assessed using MTT assay and the optical density for absorbance values in each experiment was measured at 570 nm by an ELISA reader. Detection of cellular apoptosis was done using the Annexin V-FITC Apoptosis Detection Kit. Results Morphological appearance showed apoptotic cellular changes like becoming rounded, reduction in cell number, blebbed membrane and apoptotic nuclear changes like nuclear shrinkage, chromatin condensation and fragmented nucleus on OSCC and HOS cell lines. Cell viability assay showed a time and dose-dependent inhibitory effect of honey on both cell lines. The 50% inhibitory concentration (IC50 for OSCC and HOS cell lines was found to be 4% and 3.5% respectively. The maximum inhibition of cell growth of ≥80% was obtained at 15% for both cell lines. Early apoptosis was evident by flow cytometry where percentage of early apoptotic cells increased in dose and time dependent manner. Conclusion Tualang honey showed antiproliferative effect on OSCC and HOS cell lines by inducing early apoptosis.

  14. Simultaneous measurement of natural killer cell cytotoxicity against each of three different target cell lines.

    Science.gov (United States)

    Blomberg, K

    1994-02-10

    A time-resolved fluorometric assay for the simultaneous measurement of natural killer cell activity against three different lanthanide diethylenetriaminopentaacetate (LaDTPA) labelled target cell lines is described. The target cell line K-562 was labelled with SmDTPA, the cell line Molt with TbDTPA and the cell line Raji with EuDTPA. After co-incubation of the three target cell lines with effector cells the fluorescence of the lanthanides released from the lysed target cells was measured in an enhancer solution in which they formed highly fluorescent complexes. It was possible to differentiate the specific release from the three target cell lines because the emission lines of the europium, samarium and terbium complexes formed in the enhancer solution are well separated from each other. The autofluorescence from culture media supplemented with serum was avoided by the use of time-resolved fluorometry. The results show that applying fluorometry based on the combination of spectral and temporal resolution to natural killer cell assays, makes possible the simultaneous determination of lysis in up to three target cell lines in complex culture medium. PMID:8308301

  15. Oral bioavailability of glyphosate: studies using two intestinal cell lines.

    Science.gov (United States)

    Vasiluk, Luba; Pinto, Linda J; Moore, Margo M

    2005-01-01

    Glyphosate is a commonly used nonselective herbicide that inhibits plant growth through interference with the production of essential aromatic amino acids. In vivo studies in mammals with radiolabeled glyphosate have shown that 34% of radioactivity was associated with intestinal tissue 2 h after oral administration. The aim of our research was to investigate the transport, binding, and toxicity of glyphosate to the cultured human intestinal epithelial cell line, Caco-2, and the rat small intestinal crypt-derived cell line, ileum epithelial cells-18 (IEC-18). An in vitro analysis of the transport kinetics of [14C]-glyphosate showed that 4 h after exposure, approximately 8% of radiolabeled glyphosate moved through the Caco-2 monolayer in a dose-dependent manner. Binding of glyphosate to cells was saturable and approximately 4 x 10(11) binding sites/cell were estimated from bound [14C]. Exposure of Caco-2 cells to > or =10 mg/ml glyphosate reduced transmembrane electrical resistance (TEER) by 82 to 96% and increased permeability to [3H]-mannitol, indicating that paracellular permeability increased in glyphosate-treated cells. At 10-mg/ml glyphosate, both IEC-18 and Caco-2 cells showed disruption in the actin cytoskeleton. In Caco-2 cells, significant lactate dehydrogenase leakage was observed when cells were exposed to 15 mg/ml of glyphosate. These data indicate that at doses >10 mg/ml, glyphosate significantly disrupts the barrier properties of cultured intestinal cells.

  16. Derivation of a Homozygous Human Androgenetic Embryonic Stem Cell Line.

    Science.gov (United States)

    Ding, Chenhui; Huang, Sunxing; Qi, Quan; Fu, Rui; Zhu, Wanwan; Cai, Bing; Hong, Pingping; Liu, Zhengxin; Gu, Tiantian; Zeng, Yanhong; Wang, Jing; Xu, Yanwen; Zhao, Xiaoyang; Zhou, Qi; Zhou, Canquan

    2015-10-01

    Human embryonic stem cells (hESCs) have long been considered as a promising source for cell replacement therapy. However, one major obstacle for the use of these cells is immune compatibility. Histocompatible human parthenogenetic ESCs have been reported as a new method for generating human leukocyte antigen (HLA)-matched hESCs. To further investigate the possibility of obtaining histocompatible stem cells from uniparental embryos, we tried to produce androgenetic haploid human embryos by injecting a single spermatozoon into enucleated human oocyte, and establish human androgenetic embryonic stem (hAGES) cell lines from androgenetic embryos. In the present study, a diploid hAGES cell line has been established, which exhibits typical features of human ESCs, including the expression of pluripotency markers, having differentiation potential in vitro and in vivo, and stable propagation in an undifferentiated state (>P40). Bisulfite sequencing of the H19, Snrpn, Meg3, and Kv imprinting control regions suggested that hAGES cells maintained to a certain extent a sperm methylation pattern. Genome-wide single nucleotide polymorphism, short tandem repeat, and HLA analyses revealed that the hAGES cell genome was highly homozygous. These results suggest that hAGES cells from spermatozoon could serve as a useful tool for studying the mechanisms underlying genomic imprinting in humans. It might also be used as a potential resource for cell replacement therapy as parthenogenetic stem cells.

  17. Characterization of cloned cells from an immortalized fetal pulmonary type II cell line

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, R.F.; Waide, J.J.; Lechner, J.F.

    1995-12-01

    A cultured cell line that maintained expression of pulmonary type II cell markers of differentiation would be advantageous to generate a large number of homogenous cells in which to study the biochemical functions of type II cells. Type II epithelial cells are the source of pulmonary surfactant and a cell of origin for pulmonary adenomas. Last year our laboratory reported the induction of expression of two phenotypic markers of pulmonary type II cells (alkaline phosphatase activity and surfactant lipid synthesis) in cultured fetal rat lung epithelial (FRLE) cells, a spontaneously immortalized cell line of fetal rat lung type II cell origin. Subsequently, the induction of the ability to synthesize surfactant lipid became difficult to repeat. We hypothesized that the cell line was heterogenuous and some cells were more like type II cells than others. The purpose of this study was to test this hypothesis and to obtain a cultured cell line with type II cell phenotypic markers by cloning several FRLE cells and characterizing them for phenotypic markers of type II cells (alkaline phosphatase activity and presence of surfactant lipids). Thirty cloned cell lines were analyzed for induced alkaline phosphatase activity (on x-axis) and for percent of phospholipids that were disaturated (i.e., surfactant).

  18. Investigation of imatinib loaded surface decorated biodegradable nanocarriers against glioblastoma cell lines: Intracellular uptake and cytotoxicity studies.

    Science.gov (United States)

    Khan, Abrar M; Ahmad, Farhan Jalees; Panda, Amulya K; Talegaonkar, Sushama

    2016-06-30

    Overexpression of P-glycoprotein (P-gp) efflux transporter in glioma cells thwarts the build-up of therapeutic concentration of drugs usually resulting into poor therapeutic outcome. To surmount aforesaid challenge, Imatinib (IMM) loaded Poly-lactide-co-glycolic acid nanoparticles (IMM-PLGA-NPs) were developed and optimized by Box Behnken Design as a new treatment stratagem in malignant glioma. Optimized NPs were functionalized with Pluronic(®) P84, P-gp inhibitor (IMM-PLGA-P84-NPs) which showed size, PDI, zeta potential, drug loading, 182.63±13.56nm, 0.196±0.021, -15.2±1.49mV, 40.63±2.04μg/mg, respectively. Intracellular uptake study conducted on A172, U251MG and C6 glioma cells demonstrated significantly high uptake of IMM through NPs when compared with IMM solution (IMM-S), p<0.001. IMM-PLGA-P84-NPs showed better uptake in P-gp expressing cell line (U251MG and C6) while uncoated NPs showed higher uptake in non-P-gp expressing cell line (A-172). Cytotoxicity studies demonstrated significantly low IC50 for both IMM-PLGA-NPs and IMM-PLGA-P84-NPs when compared with IC50 of IMM-S. IMM-PLGA-P84-NPs showed a significantly low IC50 against P-gp overexpressing cell lines when compared with IC50 of IMM-PLGA-NPs. In contrary, IMM-PLGA-NPs showed lower IC50 against non P-gp expressing cell line. This study demonstrated the feasibility of targeting surface decorated NPs to multidrug resistant gliomas. However, to address its clinical utility extensive in vivo studies are required. PMID:27154254

  19. Alloreactive cloned T cell lines. I. Interactions between cloned amplifier and cytolytic T cell lines

    OpenAIRE

    1980-01-01

    Several T cell clones have been derived by limiting dilution of secondary mixed leukocyte culture cells stimulated by H-2- and M locus (Mls)-disparate spleen cells. When examined for the expression of cytolytic activity and the ability to proliferate, these cell clones can be classified into two major categories. One type of cell is noncytolytic; when cultured with irradiated spleen cells, such clones proliferate in response to Mls determinants. Some, but not all, of these clones express Lyt-...

  20. P-selectin glycoprotein ligand-1 forms dimeric interactions with E-selectin but monomeric interactions with L-selectin on cell surfaces.

    Directory of Open Access Journals (Sweden)

    Yan Zhang

    Full Text Available Interactions of selectins with cell surface glycoconjugates mediate the first step of the adhesion and signaling cascade that recruits circulating leukocytes to sites of infection or injury. P-selectin dimerizes on the surface of endothelial cells and forms dimeric bonds with P-selectin glycoprotein ligand-1 (PSGL-1, a homodimeric sialomucin on leukocytes. It is not known whether leukocyte L-selectin or endothelial cell E-selectin are monomeric or oligomeric. Here we used the micropipette technique to analyze two-dimensional binding of monomeric or dimeric L- and E-selectin with monomeric or dimeric PSGL-1. Adhesion frequency analysis demonstrated that E-selectin on human aortic endothelial cells supported dimeric interactions with dimeric PSGL-1 and monomeric interactions with monomeric PSGL-1. In contrast, L-selectin on human neutrophils supported monomeric interactions with dimeric or monomeric PSGL-1. Our work provides a new method to analyze oligomeric cross-junctional molecular binding at the interface of two interacting cells.

  1. LINEing germ and embryonic stem cells' silencing of retrotransposons.

    Science.gov (United States)

    Ishiuchi, Takashi; Torres-Padilla, Maria-Elena

    2014-07-01

    Almost half of our genome is occupied by transposable elements. Although most of them are inactive, one type of non-long terminal repeat (LTR) retrotransposon, long interspersed nuclear element 1 (LINE1), is capable of retrotransposition. Two studies in this issue, Pezic and colleagues (pp. 1410-1428) and Castro-Diaz and colleagues (pp. 1397-1409), provide novel insight into the regulation of LINE1s in human embryonic stem cells and mouse germ cells and shed new light on the conservation of complex mechanisms to ensure silencing of transposable elements in mammals.

  2. High functional P-glycoprotein activity is more often present in T-cell acute lymphoblastic leukaemic cells in adults than in children

    NARCIS (Netherlands)

    Plasschaert, SLA; Vellenga, E; De Bont, ESJM; van der Kolk, D.M.; Veerman, AJP; Sluiter, WJ; Daenen, SMG; De Vries, EGE; Kamps, WA

    2003-01-01

    There is a distinct difference in prognosis between childhood versus adult acute lymphoblastic leukaemia (ALL). To define whether multidrug resistance (MDR) genes might contribute to this distinction, the expression and functional activity of P-glycoprotein (P-gp) and MDR associated proteins (MRP) w

  3. Cellular and Phenotypic Characterization of Canine Osteosarcoma Cell Lines

    Directory of Open Access Journals (Sweden)

    Marie E. Legare, Jamie Bush, Amanda K. Ashley, Taka Kato, William H. Hanneman

    2011-01-01

    Full Text Available Canine and human osteosarcoma (OSA have many similarities, with the majority of reported cases occurring in the appendicular skeleton, gender predominance noted, high rate of metastasis at the time of presentation, and a lack of known etiology for this devastating disease. Due to poor understanding of the molecular mechanisms underlying OSA, we have characterized seven different OSA canine cell lines: Abrams, D17, Grey, Hughes, Ingles, Jarques, and Marisco and compared them to U2, a human OSA cell line, for the following parameters: morphology, growth, contact inhibition, migrational tendencies, alkaline phosphatase staining, heterologous tumor growth, double-strand DNA breaks, and oxidative damage. All results demonstrated the positive characteristics of the Abrams cell line for use in future studies of OSA. Of particular interest, the robust growth of a subcutaneous tumor and rapid pulmonary metastasis of the Abrams cell line in an immunocompromised mouse shows incredible potential for the future use of Abrams as a canine OSA model. Further investigations utilizing a canine cell model of OSA, such as Abrams, will be invaluable to understanding the molecular events underlying OSA, pharmaceutical inhibition of metastasis, and eventual prevention of this devastating disease.

  4. Neem leaf glycoprotein promotes dual generation of central and effector memory CD8(+) T cells against sarcoma antigen vaccine to induce protective anti-tumor immunity.

    Science.gov (United States)

    Ghosh, Sarbari; Sarkar, Madhurima; Ghosh, Tithi; Guha, Ipsita; Bhuniya, Avishek; Saha, Akata; Dasgupta, Shayani; Barik, Subhasis; Bose, Anamika; Baral, Rathindranath

    2016-03-01

    We have previously shown that Neem Leaf Glycoprotein (NLGP) mediates sustained tumor protection by activating host immune response. Now we report that adjuvant help from NLGP predominantly generates CD44(+)CD62L(high)CCR7(high) central memory (TCM; in lymph node) and CD44(+)CD62L(low)CCR7(low) effector memory (TEM; in spleen) CD8(+) T cells of Swiss mice after vaccination with sarcoma antigen (SarAg). Generated TCM and TEM participated either to replenish memory cell pool for sustained disease free states or in rapid tumor eradication respectively. TCM generated after SarAg+NLGP vaccination underwent significant proliferation and IL-2 secretion following SarAg re-stimulation. Furthermore, SarAg+NLGP vaccination helps in greater survival of the memory precursor effector cells at the peak of the effector response and their maintenance as mature memory cells, in comparison to single modality treatment. Such response is corroborated with the reduced phosphorylation of FOXO in the cytosol and increased KLF2 in the nucleus associated with enhanced CD62L, CCR7 expression of lymph node-resident CD8(+) T cells. However, spleen-resident CD8(+) T memory cells show superior efficacy for immediate memory-to-effector cell conversion. The data support in all aspects that SarAg+NLGP demonstrate superiority than SarAg vaccination alone that benefits the host by rapid effector functions whenever required, whereas, central-memory cells are thought to replenish the memory cell pool for ultimate sustained disease free survival till 60 days following post-vaccination tumor inoculation.

  5. Reversal of P-glycoprotein-mediated multidrug resistance in human hepatoma cells by hedyotiscone A, a compound isolated from Hedyotis corymbosa.

    Science.gov (United States)

    Yue, Grace Gar-Lee; Kin-Ming Lee, Julia; Cheng, Ling; Chung-Lap Chan, Ben; Jiang, Lei; Fung, Kwok-Pui; Leung, Ping-Chung; Bik-San Lau, Clara

    2012-06-01

    Multidrug resistance is a major problem in hepatocellular carcinoma. Hedyotiscone A, a compound isolated from Chinese herbal medicine Hedyotis corymbosa (HC, family Rubiaceae), was used as the chemical marker to distinguish between HC and an anticancer herb Hedyotis diffusa (HD) in our previous study. The present study aimed to investigate whether HA exhibited antiproliferative activities in multidrug-resistant hepatocellular carcinoma cells R-HepG2 and the parental cells HepG2 using MTT assay and [(3)H]-thymidine incorporation assay. Our results showed that HA could significantly inhibit cell proliferation in R-HepG2 and HepG2 (IC(50) = 43.7 and 56.3 µg/mL, respectively), but not in normal human liver cells WRL-68 (IC(50) > 100 µg/mL) cells, suggesting its selective cytotoxic effects. Besides, HA induced apoptosis in R-HepG2 cells, as confirmed by annexin-V & propidium iodide staining, and DNA fragmentation assay. The caspase cascade was activated as shown by a significant increase of cleaved caspases-3, -7 and -9 in HA-treated R-HepG2 cells. The activities and protein expression of P-glycoprotein as well as mRNA expression of MDR1 were also decreased in HA-treated R-HepG2 cells. Our study demonstrated for the first time the antiproliferative activities of hedyotiscone A in multidrug-resistant R-HepG2 cells. The findings revealed the potential of this compound in treating multidrug-resistant tumor. PMID:22352391

  6. Influence of colchicine and vinblastine on the intracellular migration of secretory and membrane glycoproteins: III. Inhibition of intracellular migration of membrane glycoproteins in rat intestinal columnar cells and hepatocytes as visualized by light and electron-microscope radioautography after 3H-fucose injection

    International Nuclear Information System (INIS)

    In the present work, the effects of these drugs on migration of membrane glycoproteins have been examined at the ultrastructural level in duodenal villous columnar cells and hepatocytes. Young (40 gm) rats were given a single intravenous injection of colchicine (4.0 mg) or vinblastine (2.0 mg). At 10 min after colchicine and 30 min after vinblastine administration, the rats were injected with 3H-fucose. Control rats received 3H-fucose only. All rats were sacrificed 90 min after 3H-fucose injection and their tissues processed for radioautography. In duodenal villous columnar cells, 3H-fucose labeling of the apical plasma membrane was reduced by 51% after colchicine and by 67% after vinblastine treatment; but there was little change in labeling of the lateral plasma membrane. Labeling of the Golgi apparatus increased. This suggests that labeled glycoproteins destined for the apical plasma membrane were inhibited from leaving the Golgi region, while migration to the lateral plasma membrane was not impaired. In hepatocytes, labeling of the sinusoidal plasma membrane was reduced by 83% after colchicine and by 85% after vinblastine treatment. Labeling of the lateral plasma membrane also decreased, although not so dramatically. Labeling of the Golgi apparatus and neighboring secretory vesicles increased. This indicates that the drugs inhibited migration of membrane glycoproteins from the Golgi region to the various portions of the plasma membrane. Accumulation of secretory vesicles at the sinusoidal front suggests that exocytosis may also have been partially inhibited. In both cell types, microtubules almost completely disappeared after drug treatment. Microtubules may, therefore, be necessary for intracellular transport of membrane glycoproteins, although the possibility of a direct action of these drugs on Golgi or plasma membranes must also be considered

  7. Osmotic stress affects functional properties of human melanoma cell lines

    CERN Document Server

    La Porta, Caterina A M; Pasini, Maria; Laurson, Lasse; Alava, Mikko J; Zapperi, Stefano; Amar, Martine Ben

    2015-01-01

    Understanding the role of microenvironment in cancer growth and metastasis is a key issue for cancer research. Here, we study the effect of osmotic pressure on the functional properties of primary and metastatic melanoma cell lines. In particular, we experimentally quantify individual cell motility and transmigration capability. We then perform a circular scratch assay to study how a cancer cell front invades an empty space. Our results show that primary melanoma cells are sensitive to a low osmotic pressure, while metastatic cells are less. To better understand the experimental results, we introduce and study a continuous model for the dynamics of a cell layer and a stochastic discrete model for cell proliferation and diffusion. The two models capture essential features of the experimental results and allow to make predictions for a wide range of experimentally measurable parameters.

  8. Changes of Tc-99m sestamibi uptake in P-glycoprotein expressing leukaemia cells treated in vivo with antisense oligodeoxynucleotide complementary to mdr1 mRNA

    International Nuclear Information System (INIS)

    We examined the feasibility of Tc-99m sestamibi to monitor changes of mRNA expression of MDRl/P-glycoprotein (Pgp) following antisense oligodeoxynucleotide (AS-ODN) treatment in vivo. Three days after the intraperitoneal inoculation of murine leukaemia P388/R cells expressing MDR1/P-gp in CDFI mice, 15-mer phosphorothioate ASODN to the initiation codon of mouse mdr1 mRNA was administered intraperitoneally at 10 mg/kg daily for 3 or 4 days. Cells collected from ascites were suspended in medium for Tc-99m sestamibi uptake studies. To know the duration of antisense effects, cells were harvested 2 days later after the 3-day treatment. AS-ODN treatment increased Tc-99m sestamibi uptake. Effects of 3-day treatment and 4-day treatment were the same. Treatment effects were not detected when uptake was observed 2 days after 3-day treatment. Based on the results it was concluded that in vivo treatment with AS-ODN specific to the coding portion of mdr1 mRNA increased Tc-99m sestamibi uptake in leukaemia cells possessing MDR function. (author)

  9. Rack1 Mediates the Interaction of P-Glycoprotein with Anxa2 and Regulates Migration and Invasion of Multidrug-Resistant Breast Cancer Cells

    Science.gov (United States)

    Yang, Yi; Wu, Na; Wang, Zhiyong; Zhang, Fei; Tian, Ran; Ji, Wei; Ren, Xiubao; Niu, Ruifang

    2016-01-01

    The emergence of multidrug resistance is always associated with more rapid tumor recurrence and metastasis. P-glycoprotein (P-gp), which is a well-known multidrug-efflux transporter, confers enhanced invasion ability in drug-resistant cells. Previous studies have shown that P-gp probably exerts its tumor-promoting function via protein-protein interaction. These interactions were implicated in the activation of intracellular signal transduction. We previously showed that P-gp binds to Anxa2 and promotes the invasiveness of multidrug-resistant (MDR) breast cancer cells through regulation of Anxa2 phosphorylation. However, the accurate mechanism remains unclear. In the present study, a co-immunoprecipitation coupled with liquid chromatography tandem mass spectrometry-based interactomic approach was performed to screen P-gp binding proteins. We identified Rack1 as a novel P-gp binding protein. Knockdown of Rack1 significantly inhibited proliferation and invasion of MDR cancer cells. Mechanistic studies demonstrated that Rack1 functioned as a scaffold protein that mediated the binding of P-gp to Anxa2 and Src. We showed that Rack1 regulated P-gp activity, which was necessary for adriamycin-induced P-gp-mediated phosphorylation of Anxa2 and Erk1/2. Overall, the findings in this study augment novel insights to the understanding of the mechanism employed by P-gp for promoting migration and invasion of MDR cancer cells. PMID:27754360

  10. Cell membrane fatty acid composition differs between normal and malignant cell lines.

    Science.gov (United States)

    Meng, Xialong; Riordan, Neil H; Riordan, Hugh D; Mikirova, Nina; Jackson, James; González, Michael J; Miranda-Massari, Jorge R; Mora, Edna; Trinidad Castillo, Waleska

    2004-06-01

    Twenty-eight fatty acids (C8:0 to C24:l n-9) were measured by gas chromatography in four normal cell lines (C3H / 10T1 / 2, CCD-18Co, CCD-25SK and CCD-37Lu) and seven cancer cell lines (C-41, Caov-3, LS-180, PC-3, SK-MEL-28, SK-MES-1 and U-87 MG). Results show differences in the content and proportions of fatty acids when comparing cancer cell lines with their normal counterparts. Cancer cell lines showed lower C20: 4 n-6, C24:1 n-9, polyunsaturated fatty acids (PUFA's) and ratios of C20:4 n-6 to C20:5 n-3 and C16:0 to C18:1 n-9 and stearic to oleic (SA/OA) than their normal counterparts. All cancer cell lines had SA/OA ratios lower than 7.0 while normal cell lines had ratios greater than 0.7 (p<0.05). In addition, the ratios of total saturated fatty acids (SFA) to PUFA'S and the concentration of C18:1 n-9, C18:2 n-6, C20:5 n-3 were higher in cancer cell lines as compared to normal cell lines. A positive correlation was detected between C16:0 and longer SFA'S (r = +0.511, p<0.05) in normal cell lines whereas a negative correlation (r=0.608, p<0.05) was obtained for malignant cell lines. Moreover, cancerous cell lines exhibited a particular desaturation defect and an abnormal incorporation of C18:2 n-6 and C20-4 n-6 fatty acids. PMID:15377057

  11. UOK 268 Cell Line for Hereditary Leiomyomatosis and Renal Cell Carcinoma | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    The National Cancer Institute’s Urologic Oncology Branch seeks parties to co-develop the UOK 262 immortalized cell line as research tool to study aggressive hereditary leiomyomatosis and renal cell carcinoma (HLRCC)-associated recurring kidney cancer.

  12. Development and characterization of multidrug resistant human hepatocarcinoma cell line in nude mice

    Institute of Scientific and Technical Information of China (English)

    Bao-Jin Zhai; Ze-Yong Shao; Chun-Liang Zhao; Kai Hu; Feng Wu

    2006-01-01

    AIM: To establish a multidrug resistant (MDR) cell subline from the human hepatocarcinoma cell line (HepG2)in nude mice.METHODS: HepG2 cell cultures were incubated with increasing concentrations of adriamycin (ADM) to develop an ADM-resistant cell subline (HepG2/ADM) with crossresistance to other chemotherapeutic agents. Twenty male athymic BALB/c-nu/nu mice were randomized into HepG2/nude and HepG2/ADM/nude groups (10 in each group). A cell suspension (either HepG2 or HepG2/ADM)was injected subcutaneously into mice in each group.Tumor growth was recorded, and animals were sacrificed 4-5 wk after cell implantation. Tumors were prepared for histology, and viable tumor was dispersed into a single-cell suspension. The IC50 values for a number of chemotherapeutic agents were determined by 2, 3-bis(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide inner salt (MTT) assay. Rhodamine-123retention/efflux and the level of resistance-associated proteins were determined by flow cytometry. The mRNA expression of mdr1, mrp and Irp genes was detected using reverse transcriptase polymerase chain reaction (RT-PCR) in HepG2/nude and HepG2/ADM/nude groups.RESULTS: The appearances of HepG2/nude cells were slightly different from those of HepG2/ADM/nude cells.Similar tumor growth curves were determined in both groups. A cross-resistance to ADM, vincristine, cisplatin and 5-fiuorouracil was seen in HepG2/ADM/nude group.The levels of P-glycoprotein and multidrug resistanceassociated proteins were significantly increased. The mRNA expression levels of mdr1, mrp and Irp were higher in HepG2/ADM/nude cells.CONCLUSION: ADM-resistant HepG2 subline in nude mice has a cross resistance to chemotherapeutic drugs.Tt may be used as an in vivo model to investigate the mechanisms of MDR, and explore the targeted approaches to overcoming MDR.

  13. Adhesion of Actinobacillus actinomycetemcomitans to a human oral cell line.

    OpenAIRE

    Mintz, K. P.; Fives-Taylor, P M

    1994-01-01

    Two quantitative, rapid assays were developed to study the adhesion of Actinobacillus actinomycetemcomitans, an oral bacterium associated with periodontal disease, to human epithelial cells. The human oral carcinoma cell line KB was grown in microtiter plates, and adherent bacteria were detected by an enzyme-linked immunosorbent assay with purified anti-A. actinomycetemcomitans serum and horseradish peroxidase-conjugated secondary antibody or [3H]thymidine-labeled bacteria. Adhesion was found...

  14. Cysteine modified polyaniline films improve biocompatibility for two cell lines

    International Nuclear Information System (INIS)

    This work focuses on one of the most exciting application areas of conjugated conducting polymers, which is cell culture and tissue engineering. To improve the biocompatibility of conducting polymers we present an easy method that involves the modification of the polymer backbone using L-cysteine. In this publication, we show the synthesis of polyaniline (PANI) films supported onto Polyethylene terephthalate (PET) films, and modified using cysteine (PANI-Cys) in order to generate a biocompatible substrate for cell culture. The PANI-Cys films are characterized by Fourier Transform infrared and UV–visible spectroscopy. The changes in the hydrophilicity of the polymer films after and before the modification were tested using contact angle measurements. After modification the contact angle changes from 86° ± 1 to 90° ± 1, suggesting a more hydrophylic surface. The adhesion properties of LM2 and HaCaT cell lines on the surface of PANI-Cys films in comparison with tissue culture plastic (TCP) are studied. The PANI-Cys film shows better biocompatibility than PANI film for both cell lines. The cell morphologies on the TCP and PANI-Cys film were examined by florescence and Atomic Force Microscopy (AFM). Microscopic observations show normal cellular behavior when PANI-Cys is used as a substrate of both cell lines (HaCaT and LM2) as when they are cultured on TCP. The ability of these PANI-Cys films to support cell attachment and growth indicates their potential use as biocompatible surfaces and in tissue engineering. - Highlights: • A new surface PANI-Cys was produced on films of polyethylene terephthalate. • The relationship between surface characteristics and biocompatibility is analyzed. • The PANI-Cys film presents good biocompatibility for two cell lines

  15. Cysteine modified polyaniline films improve biocompatibility for two cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Yslas, Edith I., E-mail: eyslas@exa.unrc.edu.ar [Departamento de Biología Molecular, Universidad Nacional de Río Cuarto, Agencia Postal Nro3, X580BYA Río Cuarto (Argentina); Cavallo, Pablo; Acevedo, Diego F.; Barbero, César A. [Departamento de Química, Universidad Nacional de Río Cuarto, Agencia Postal Nro3, X580BYA Río Cuarto (Argentina); Rivarola, Viviana A. [Departamento de Biología Molecular, Universidad Nacional de Río Cuarto, Agencia Postal Nro3, X580BYA Río Cuarto (Argentina)

    2015-06-01

    This work focuses on one of the most exciting application areas of conjugated conducting polymers, which is cell culture and tissue engineering. To improve the biocompatibility of conducting polymers we present an easy method that involves the modification of the polymer backbone using L-cysteine. In this publication, we show the synthesis of polyaniline (PANI) films supported onto Polyethylene terephthalate (PET) films, and modified using cysteine (PANI-Cys) in order to generate a biocompatible substrate for cell culture. The PANI-Cys films are characterized by Fourier Transform infrared and UV–visible spectroscopy. The changes in the hydrophilicity of the polymer films after and before the modification were tested using contact angle measurements. After modification the contact angle changes from 86° ± 1 to 90° ± 1, suggesting a more hydrophylic surface. The adhesion properties of LM2 and HaCaT cell lines on the surface of PANI-Cys films in comparison with tissue culture plastic (TCP) are studied. The PANI-Cys film shows better biocompatibility than PANI film for both cell lines. The cell morphologies on the TCP and PANI-Cys film were examined by florescence and Atomic Force Microscopy (AFM). Microscopic observations show normal cellular behavior when PANI-Cys is used as a substrate of both cell lines (HaCaT and LM2) as when they are cultured on TCP. The ability of these PANI-Cys films to support cell attachment and growth indicates their potential use as biocompatible surfaces and in tissue engineering. - Highlights: • A new surface PANI-Cys was produced on films of polyethylene terephthalate. • The relationship between surface characteristics and biocompatibility is analyzed. • The PANI-Cys film presents good biocompatibility for two cell lines.

  16. 2-DE analysis of breast cancer cell lines 1833 and 4175 with distinct metastatic organ-specific potentials: comparison with parental cell line MDA-MB-231.

    Science.gov (United States)

    Selicharova, Irena; Sanda, Miloslav; Mladkova, Jana; Ohri, Sujata Saraswat; Vashishta, Aruna; Fusek, Martin; Jiracek, Jiri; Vetvicka, Vaclav

    2008-05-01

    Human MDA-MB-231 derived breast cancer cell lines 1833 and 4175 have different metastatic potentials in terms of their tissue tropisms and aggressiveness. Cell line 1833 is specifically metastatic to the bone. The highly aggressive cell line 4175 is specific to the lung. We performed 2-DE analysis of the cell lines. We found 16 significantly changed protein spots, 14 protein spots were identified. Expression of cathepsin D, triosephosphate isomerase, phosphoglycerate kinase 1, heme binding protein 1 and annexin 2 could be correlated with the in vitro aggressiveness of the respective cell lines. Interstitial collagenase and dimethylargininase 2 were exclusive to the cell line 1833 and might contribute to its bone specificity. Serpin B9, cathepsin B chain b, galectin 3 and HSP 27 were changed in the lung specific cell line 4175. The possible contribution of identified proteins to differences in metastatic behavior of the cell lines is discussed. PMID:18425382

  17. Establishment and applications of male germ cell and Sertoli cell lines.

    Science.gov (United States)

    Wang, Hong; Wen, Liping; Yuan, Qingqing; Sun, Min; Niu, Minghui; He, Zuping

    2016-08-01

    Within the seminiferous tubules there are two major cell types, namely male germ cells and Sertoli cells. Recent studies have demonstrated that male germ cells and Sertoli cells can have significant applications in treating male infertility and other diseases. However, primary male germ cells are hard to proliferate in vitro and the number of spermatogonial stem cells is scarce. Therefore, methods that promote the expansion of these cell populations are essential for their use from the bench to the bed side. Notably, a number of cell lines for rodent spermatogonia, spermatocytes and Sertoli cells have been developed, and significantly we have successfully established a human spermatogonial stem cell line with an unlimited proliferation potential and no tumor formation. This newly developed cell line could provide an abundant source of cells for uncovering molecular mechanisms underlying human spermatogenesis and for their utilization in the field of reproductive and regenerative medicine. In this review, we discuss the methods for establishing spermatogonial, spermatocyte and Sertoli cell lines using various kinds of approaches, including spontaneity, transgenic animals with oncogenes, simian virus 40 (SV40) large T antigen, the gene coding for a temperature-sensitive mutant of p53, telomerase reverse gene (Tert), and the specific promoter-based selection strategy. We further highlight the essential applications of these cell lines in basic research and translation medicine. PMID:27069011

  18. 76 FR 16609 - Proposed Information Collection; Comment Request; Identification of Human Cell Lines Project

    Science.gov (United States)

    2011-03-24

    ...; Identification of Human Cell Lines Project AGENCY: National Institute of Standards and Technology (NIST...) profiling up to 1500 human cell line samples as part of the Identification of Human Cell Lines Project. All... for Biotechnology Information (NCBI) and will be used to differentiate among cell lines, as...

  19. Silicon Carbide Tiles for Sidewall Lining in Aluminium Electrolysis Cells

    Institute of Scientific and Technical Information of China (English)

    RUANBo; ZHAOJunguo; 等

    1999-01-01

    The paper introduces the nitride bonded silicon carbide used for sidewall lining in aluminium eletrolysis cells ,including technical process,main properties and application results.Comparison tests on various physical properties of silicon carbide products made by LIRR and other producers worldwide have also been conducted in an independent laboratory.

  20. Third-line chemotherapy for small cell lung cancer

    NARCIS (Netherlands)

    de Jong, WK; ten Hacken, NHT; Groen, HJM

    2006-01-01

    Efficacy of third-line chemotherapy treatment for small cell lung cancer (SCLC) is unknown. We present our experience with third-tine chemotherapy for recurrent SCLC. Between January 1996 and July 2004 all. consecutive patients treated for SCLC were retrospectively studied. We recorded patient chara

  1. RADIATION-INDUCED APOPTOSIS OF TWO NASOPHARANGEAL CARCINOMA CELL LINES

    Institute of Scientific and Technical Information of China (English)

    WANG Feng-wei; LIANG Ke; YIN Wei-bo; SHEN Yu; SHENG Xiu-gui

    1999-01-01

    Objective: To study apoptosis induced by radiation in two nasopharyngeal carcinoma (NPC) cell lines, CNE and CNE-2. Methods: Hoechst 33342 staining, immunohistochemical staining, RT-PCR, DNA dot blotting and Southern blotting were used to identify apoptosis.Results: A single dose of X-irradiation resulted in apoptosis, the apoptotic index (AI) was time- and dosedependent. Different apoptotic responses existed in the two cell lines. Immunohistochemical staining showed that bcl-2 protein was strongly positive in CNE but negative in CNE-2. However, RT-PCR revealed p53mRNA in CNE-2 but not in CNE. P53 and bcl-2 genes were both present in the two cell lines as shown by DNA blotting, but the 2.8 kb fragment of the p53 gene was much lower than the 5.6 kb fragment on CNE which was clearly shown in Southern hybridization, suggestive of partial deletion of p53 gene in CNE. Conclusion:Apoptotic response to radiation is different in two NPC cell lines. CNE is more radioresistant than CNE-2.Overexpression of bcl-2 protein and partial deletion of p53 gene may explain their difference in radiosensitivity.

  2. Cryopreservation of specialized chicken lines using cultured primordial germ cells.

    Science.gov (United States)

    Nandi, S; Whyte, J; Taylor, L; Sherman, A; Nair, V; Kaiser, P; McGrew, M J

    2016-08-01

    Biosecurity and sustainability in poultry production requires reliable germplasm conservation. Germplasm conservation in poultry is more challenging in comparison to other livestock species. Embryo cryopreservation is not feasible for egg-laying animals, and chicken semen conservation has variable success for different chicken breeds. A potential solution is the cryopreservation of the committed diploid stem cell precursors to the gametes, the primordial germ cells ( PGCS: ). Primordial germ cells are the lineage-restricted cells found at early embryonic stages in birds and form the sperm and eggs. We demonstrate here, using flocks of partially inbred, lower-fertility, major histocompatibility complex- ( MHC-: ) restricted lines of chicken, that we can easily derive and cryopreserve a sufficient number of independent lines of male and female PGCs that would be sufficient to reconstitute a poultry breed. We demonstrate that germ-line transmission can be attained from these PGCs using a commercial layer line of chickens as a surrogate host. This research is a major step in developing and demonstrating that cryopreserved PGCs could be used for the biobanking of specialized flocks of birds used in research settings. The prospective application of this technology to poultry production will further increase sustainability to meet current and future production needs. PMID:27099306

  3. DIVERSITY OF ARSENIC METABOLISM IN CULTURED HUMAN CANCER CELL LINES

    Science.gov (United States)

    Diversity of arsenic metabolism in cultured human cancer cell lines. Arsenic has been known to cause a variety of malignancies in human. Pentavalent As (As 5+) is reduced to trivalent As (As3+) which is further methylated by arsenic methyltransferase(s) to monomethylarson...

  4. Sphere-forming cell subpopulations with cancer stem cell properties in human hepatoma cell lines

    Directory of Open Access Journals (Sweden)

    Chen Lei

    2011-06-01

    Full Text Available Abstract Background Cancer stem cells (CSCs are regarded as the cause of tumor formation and recurrence. The isolation and identification of CSCs could help to develop novel therapeutic strategies specifically targeting CSCs. Methods Human hepatoma cell lines were plated in stem cell conditioned culture system allowed for sphere forming. To evaluate the stemness characteristics of spheres, the self-renewal, proliferation, chemoresistance, tumorigenicity of the PLC/PRF/5 sphere-forming cells, and the expression levels of stem cell related proteins in the PLC/PRF/5 sphere-forming cells were assessed, comparing with the parental cells. The stem cell RT-PCR array was performed to further explore the biological properties of liver CSCs. Results The PLC/PRF/5, MHCC97H and HepG2 cells could form clonal nonadherent 3-D spheres and be serially passaged. The PLC/PRF/5 sphere-forming cells possessed a key criteria that define CSCs: persistent self-renewal, extensive proliferation, drug resistance, overexpression of liver CSCs related proteins (Oct3/4, OV6, EpCAM, CD133 and CD44. Even 500 sphere-forming cells were able to form tumors in NOD/SCID mice, and the tumor initiating capability was not decreased when spheres were passaged. Besides, downstream proteins DTX1 and Ep300 of the CSL (CBF1 in humans, Suppressor of hairless in Drosophila and LAG1 in C. elegans -independent Notch signaling pathway were highly expressed in the spheres, and a gamma-secretase inhibitor MRK003 could significantly inhibit the sphere formation ability. Conclusions Nonadherent tumor spheres from hepatoma cell lines cultured in stem cell conditioned medium possess liver CSC properties, and the CSL-independent Notch signaling pathway may play a role in liver CSCs.

  5. Choosing the right chondrocyte cell line: Focus on nitric oxide.

    Science.gov (United States)

    Santoro, Anna; Conde, Javier; Scotece, Morena; Abella, Vanessa; López, Verónica; Pino, Jesús; Gómez, Rodolfo; Gómez-Reino, Juan Jesús; Gualillo, Oreste

    2015-12-01

    Nitric oxide (NO) has been considered a catabolic factor that contributes to OA pathology by inducing chondrocytes apoptosis, matrix metalloproteinases synthesis, and pro-inflammatory cytokines expression. Thus, the research on NO regulation in chondrocytes represents a relevant field which needs to be explored in depth. However, to date, only the murine ATDC-5 cell line and primary chondrocytes are well-established cells to study NO production in cartilage tissues. The goal of this study is to determine whether two commonly used human chondrocytic cell lines: SW-1353 and T/C-28a2 cell lines are good models to examine lipopolysaccharide and/or pro-inflammatory cytokine-driven NO release and iNOS expression. To this aim, we carefully examined NO production and iNOS protein expression in human T/C-28a2 and SW-1353 chondrocytes stimulated with LPS and interleukin (IL)-1 alone or in combination. We also use ATDC-5 cells as a positive control for NO production. NO accumulation has been determined by colorimetric Griess reaction, whereas NOS type II expression was determined by Western Blot analysis. Our results clearly demonstrated that neither human T/C-28a2 nor SW-1353 chondrocytes showed a detectable increase in NO production or iNOS expression after bacterial endotoxin or cytokines challenge with IL-1. Our study demonstrated that T/C-28a2 and SW-1353 human cell lines are not suitable for studying NO release and iNOS expression confirming that ATDC5 and human primary cultured chondrocytes are the best in vitro cell system to study the actions derived from this mediator. PMID:26016689

  6. THP-1 cell line: an in vitro cell model for immune-modulation approach : Review

    NARCIS (Netherlands)

    Chanput, W.; Mes, J.J.; Wichers, H.J.

    2014-01-01

    THP-1 is a human leukemia monocytic cell line, which has been extensively used to study monocyte/macrophage functions, mechanisms, signaling pathways, and nutrient and drug transport. This cell line has become a common model to estimate modulation of monocyte and macrophage activities. This review a

  7. Human Embryonic St me Cell Lines fromthe Chinese Population and Differentiation to Liver and Muscle Cell Types

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    We have established 6 hES cell lines from IVF surplus blastocysts. Characterization of these lines have shown that 4 of the 6 lines meet all of the criterion (Science) for hES cell lines and 2 of them display most characteristics of hES cells but do not form teratoma. In order to produce hES cell lines without using mouse feeders, we have produced a hES cell line using feeders derived from hES cells themselves, and showed that hES-derived feeders are capable of supporting the derivation of new hES cell line...

  8. Correction of defective protein kinesis of human P-glycoprotein mutants by substrates and modulators.

    Science.gov (United States)

    Loo, T W; Clarke, D M

    1997-01-10

    There is growing evidence that abnormal protein folding or trafficking (protein kinesis) leads to diseases. We have used P-glycoprotein as a model protein to develop strategies to overcome defects in protein kinesis. Misprocessed mutants of the human P-glycoprotein are retained in the endoplasmic reticulum as core-glycosylated biosynthetic intermediates and rapidly degraded. Synthesis of the mutant proteins in the presence of drug substrates or modulators such as capsaicin, cyclosporin, vinblastine, or verapamil, however, resulted in the appearance of a fully glycosylated and functional protein at the cell surface. These effects were dose-dependent and occurred within a few hours after the addition of substrate. The ability to facilitate processing of the misfolded mutants appeared to be independent of the cell lines used and location of the mutation. P-glycoproteins with mutations in transmembrane segments, extracellular or cytoplasmic loops, the nucleotide-binding domains, or the linker region were processed to the fully mature form in the presence of these substrates. These drug substrates or modulators acted as specific chemical chaperones for P-glycoprotein because they were ineffective on the deltaF508 mutant of cystic fibrosis transmembrane conductance regulator. Therefore, one possible strategy to prevent protein misfolding is to carry out synthesis in the presence of specific substrates or modulators of the protein.

  9. Simultaneous measurement of NK cell cytotoxicity against two target cell lines labelled with fluorescent lanthanide chelates.

    Science.gov (United States)

    Lövgren, J; Blomberg, K

    1994-07-12

    We describe a cytotoxicity assay which permits the simultaneous measurement of natural killer cell activity against two different cell lines. The target cell lines are labelled either with a fluorescent europium chelate or with a fluorescent terbium chelate and cell death is quantified by measuring the chelate release. K-562, Molt4 and Daudi cell lines have been used as targets. The release of the two chelates from the target cells can be detected with the help of time resolved fluorometry. As the measurements are made after background fluorescence has decayed no additional steps are needed to correct for the background from the medium. The assay procedure used for measurement of cytotoxicity against two target cell lines is very similar to the widely used 51Cr release assay. PMID:8034979

  10. P-glycoprotein silencing with siRNA delivered by DOPE-modified PEI overcomes doxorubicin resistance in breast cancer cells

    Science.gov (United States)

    Navarro, Gemma; Sawant, Rupa R; Biswas, Swati; Essex, Sean; Tros de Ilarduya, Conchita; Torchilin, Vladimir P

    2012-01-01

    Aims Multidrug resistance (MDR) mediated by overexpression of drug efflux transporters such as P-glycoprotein (P-gp), is a major problem, limiting successful chemotherapy of breast cancer. The use of siRNA to inhibit P-gp expression in MDR tumors is an attractive strategy to improve the effectiveness of anticancer drugs. Method We have synthesized a novel conjugate between a phospholipid (dioleoylphosphatidylethanolamine) and polyethylenimine (PEI) for siRNA delivery, for the purpose of silencing P-gp to overcome doxorubicin resistance in MCF-7 human breast cancer cells. Results The dioleoylphosphatidylethanolamine-PEI conjugate enhanced the transfection efficacy of low-molecular-weight PEI, which was otherwise totally ineffective. In addition, the polyethylene glycol/lipid coating of the new complexes gave rise to small micelle-like nanoparticles with improved biocompatibility properties. Both coated and noncoated formulations delivered P-gp-specific siRNA to MDR cells. Discussion The combination of doxorubicin and P-gp silencing formulations led to a twofold increase of doxorubicin uptake and a significant improvement of the therapeutic effect of doxorubicin in resistant cells. PMID:22191778

  11. Every Single Cell Clones from Cancer Cell Lines Growing Tumors In Vivo May Not Invalidate the Cancer Stem Cell Concept

    OpenAIRE

    Li, Fengzhi

    2009-01-01

    We present the result of our research on the tumorigenic ability of single cell clones isolated from an aggressive murine breast cancer cell line in a matched allografting mouse model. Tumor formation is basically dependent on the cell numbers injected per location. We argue that in vivo tumor formation from single cell clones, isolated in vitro from cancer cell lines, may not provide conclusive evidence to disprove the cancer stem cell (CSC) theory without additional data.

  12. Effect of 8-Chloroadenosine on Undifferentiatied HL-60 Cell Line

    Institute of Scientific and Technical Information of China (English)

    CUIJing-rong; HUIYu; XIANGYou-qing; ZHANGLi-he

    2003-01-01

    Aim To study the effect of 8-chloroadenosine (8-CA)on undifferentiatied HL-60 cell line. Methods The IC50 of cancer cell proliferation was determined using a microculture plate reader at 570 nm (MTT) and 540 nm (SRB).Morphology of HL-60 cells was observed under a scanning electron microscope and a transmission electron microscope. The differentiation of HL-60 cells was examined by nitro blue tetrazolium reduction (NBT) and acid phosphatase assay. The cycle of HL-60 cells was analyzed by flow cytometry. Results 8-CA inhibited proliferation of eight human cancer cell lines.The IC50 ranked in the following order; KB (0.05 μmol·L-1 ) < HL-60 (0.25 μmol·L-1) < Bel-7402 (0.56μmol·L-1 )< MCF-7 (0.65μmol·L-1) < HCT (0.79 μmol·L-1) < HeLa (0.89μmol·L-1) < BGC-823 ( 1.149μmol·L-1) cell surface shortened, and the shape of HL-60 cells nuclei changed to kidney-shaped, horse shoe-shaped and bilob ated after treatment with 8-CA. Meanwhile, 8-CA promoted NBT reduction and increased activity of acid phosphatase in HL-60 ceils in a time and concentration-dependent manner. Flow cytometry analysis indicated that 8-CA induced an appreciable increase of the cell population in G1 phase with a marked reduction in S phase. Conclusion 8-CA can induce differentiation of HL-60 cells and block the cells at G1 phase, thus inhibiting proliferation of HL-60 cells.

  13. N-alkylated isatins evade P-gp mediated efflux and retain potency in MDR cancer cell lines.

    Science.gov (United States)

    Vine, Kara L; Belfiore, Lisa; Jones, Luke; Locke, Julie M; Wade, Samantha; Minaei, Elahe; Ranson, Marie

    2016-01-01

    The search for novel anticancer therapeutics with the ability to overcome multi-drug resistance (MDR) mechanisms is of high priority. A class of molecules that show potential in overcoming MDR are the N-alkylated isatins. In particular 5,7-dibromo-N-alkylisatins are potent microtubule destabilizing agents that act to depolymerize microtubules, induce apoptosis and inhibit primary tumor growth in vivo. In this study we evaluated the ability of four dibrominated N-alkylisatin derivatives and the parent compound, 5,7-dibromoisatin, to circumvent MDR. All of the isatin-based compounds examined retained potency against the MDR cell lines; U937VbR and MES-SA/Dx5 and displayed bioequivalent dose-dependent cytotoxicity to that of the parental control cell lines. We show that one mechanism by which the isatin-based compounds overcome MDR is by circumventing P-glycoprotein (P-gp) mediated drug efflux. Thus, as the isatin-based compounds are not susceptible to extrusion from P-gp overexpressing tumor cells, they represent a promising alternative strategy as a stand-alone or combination therapy for treating MDR cancer. PMID:27441242

  14. Mitochondrial DNA sequence analysis of two mouse hepatocarcinoma cell lines

    Institute of Scientific and Technical Information of China (English)

    Ji-Gang Dai; Xia Lei; Jia-Xin Min; Guo-Qiang Zhang; Hong Wei

    2005-01-01

    AIM: To study genetic difference of mitochondrial DNA (mtDNA)between two hepatocarcinoma cell lines (Hca-F and Hca-P)with diverse metastatic characteristics and the relationship between mtDNA changes in cancer cells and their oncogenic phenotype.METHODS: Mitochondrial DNA D-loop, tRNAMet+Glu+Ile and ND3gene fragments from the hepatocarcinoma cell lines with 1100, 1126 and 534 bp in length respectively were analysed by PCR amplification and restriction fragment length polymorphism techniques. The D-loop 3' end sequence of the hepatocarcinoma cell lines was determined by sequencing.RESULTS: No amplification fragment length polymorphism and restriction fragment length polymorphism were observed in tRNAMet+Glu+Ile,ND3 and D-loop of mitochondrial DNA of the hepatocarcinoma cells. Sequence differences between Hca-F and Hca-P were found in mtDNA D-loop.CONCLUSION: Deletion mutations of mitochondrial DNA restriction fragment may not play a significant role in carcinogenesis. Genetic difference of mtDNA D-loop between Hca-F and Hca-P, which may reflect the environmental and genetic influences during tumor progression, could be linked to their tumorigenic phenotypes.

  15. Growth inhibition by tyrosine kinase inhibitors in mesothelioma cell lines.

    Science.gov (United States)

    Nutt, Joyce E; O'Toole, Kieran; Gonzalez, David; Lunec, John

    2009-06-01

    Clinical outcome following chemotherapy for malignant pleural mesothelioma is poor and improvements are needed. This preclinical study investigates the effect of five tyrosine kinase inhibitors (PTK787, ZD6474, ZD1839, SU6668 and SU11248) on the growth of three mesothelioma cell lines (NCI H226, NCI H28 and MSTO 211H), the presence of growth factor receptors and inhibition of their downstream signalling pathways. GI50 values were determined: ZD6474 and SU11248, mainly VEGFR2 inhibitors, gave the lowest GI50 across all cell lines (3.5-6.9 microM) whereas ZD1839 gave a GI50 in this range only in H28 cells. All cell lines were positive for EGFR, but only H226 cells were positive for VEGFR2 by Western blotting. ZD6474 and ZD1839 inhibited EGF-induced phosphorylation of EGFR, AKT and ERK, whereas VEGF-induced phosphorylation of VEGFR2 was completely inhibited with 0.1 microM SU11248. VEGFR2 was detected in tumour samples by immunohistochemistry. VEGFR2 tyrosine kinase inhibitors warrant further investigation in mesothelioma. PMID:19318229

  16. Cytotoxic studies of paclitaxel (Taxol) in human tumour cell lines.

    OpenAIRE

    Liebmann, J. E.; Cook, J. A.; Lipschultz, C.; Teague, D.; Fisher, J; Mitchell, J B

    1993-01-01

    The cytotoxicity of paclitaxel against eight human tumour cell lines has been studied with in vitro clonogenic assays. The fraction of surviving cells fell sharply after exposure for 24 h to paclitaxel concentrations ranging from 2 to 20 nM; the paclitaxel IC50 was found to range between 2.5 and 7.5 nM. Increasing the paclitaxel concentration above 50 nM, however, resulted in no additional cytotoxicity after a 24 h drug exposure. Cells incubated in very high concentrations of paclitaxel (10,0...

  17. Expression of particulate-form of Japanese encephalitis virus envelope protein in a stably transfected Drosophila cell line

    Directory of Open Access Journals (Sweden)

    Zhang Li

    2007-02-01

    Full Text Available Abstract Background Japanese encephalitis virus (JEV, a member of the family Flaviviridae, is an important mosquito-borne human pathogen. Its envelope glycoprotein (E is the major determinant of the pathogenicity and host immune responses. In the present study, we explored the feasibility of producing recombinant JEV E protein in the virus-free Drosophila expression system. Results The coding sequence for the signal sequence of premembrane and E protein was cloned into the Drosophila expression vector pAc5.1/V5-His. A Drosophila cell line S2 was cotransfected with this construct as well as a plasmid providing hygromycin B resistance. A cell line expressing the JEV E protein was selected by immunofluoresence, confocal microscopy, and western blot analysis using three different monoclonal antibodies directed against JEV E protein. This cell line was stable in the yield of JEV E protein during two months in vitro maintenance in the presence of hygromycin B. The results showed that the recombinant E protein had an expected molecular weight of about 50 kilodalton, was immunoreactive with all three monoclonal antibodies, and found in both the cytoplasm and culture supernatant. Sucrose gradient ultracentrifugation analysis revealed that the secreted E protein product was in a particulate form. It migrated to the sucrose fraction with a density of 1.13 g/ml. Balb/c mice immunised with the sucrose fraction containing the E protein particles developed specific antibodies. These data show that functioning JEV E protein was expressed in the stable S2 cell line. Conclusion The Drosophila expression system is a more convenient, cheaper and safer approach to the production of vaccine candidates and diagnostic reagents for JEV.

  18. Plasmids and packaging cell lines for use in phage display

    Science.gov (United States)

    Bradbury, Andrew M.

    2012-07-24

    The invention relates to a novel phagemid display system for packaging phagemid DNA into phagemid particles which completely avoids the use of helper phage. The system of the invention incorporates the use of bacterial packaging cell lines which have been transformed with helper plasmids containing all required phage proteins but not the packaging signals. The absence of packaging signals in these helper plasmids prevents their DNA from being packaged in the bacterial cell, which provides a number of significant advantages over the use of both standard and modified helper phage. Packaged phagemids expressing a protein or peptide of interest, in fusion with a phage coat protein such as g3p, are generated simply by transfecting phagemid into the packaging cell line.

  19. Cytotoxic effect of Plantago spp. on cancer cell lines.

    Science.gov (United States)

    Gálvez, Marina; Martín-Cordero, Carmen; López-Lázaro, Miguel; Cortés, Felipe; Ayuso, María Jesús

    2003-10-01

    Methanolic extracts from seven Plantago species used in traditional medicine for the treatment of cancer, were evaluated for cytotoxic activity against three human cancer cell lines recommended by the National Cancer Institute (NCI, USA). The results showed that Plantago species exhibited cytotoxic activity, showing a certain degree of selectivity against the tested cells in culture. Since the flavonoids are able to strongly inhibit the proliferation of human cancer cell lines, we have identified luteolin-7-O-beta-glucoside as major flavonoid present in most of the Plantago species. Also, we have evaluated this compound and its aglycon, luteolin, for their cytotoxic and DNA topoisomerase I poisons activities. These results could justify the traditional use of the Plantago species and topoisomerase-mediated DNA damage might be a possible mechanism by which flavonoids of Plantago exert their cytotoxicity potential. PMID:12963131

  20. The Glycoprotein and the Matrix Protein of Rabies Virus Affect Pathogenicity by Regulating Viral Replication and Facilitating Cell-to-Cell Spread▿

    OpenAIRE

    Pulmanausahakul, Rojjanaporn; Li, Jianwei; Schnell, Matthias J.; Dietzschold, Bernhard

    2007-01-01

    While the glycoprotein (G) of rabies virus (RV) is known to play a predominant role in the pathogenesis of rabies, the function of the RV matrix protein (M) in RV pathogenicity is not completely clear. To further investigate the roles of these proteins in viral pathogenicity, we constructed chimeric recombinant viruses by exchanging the G and M genes of the attenuated SN strain with those of the highly pathogenic SB strain. Infection of mice with these chimeric viruses revealed a significant ...

  1. Survey of Differentially Methylated Promoters in Prostate Cancer Cell Lines

    Directory of Open Access Journals (Sweden)

    Yipeng Wang

    2005-08-01

    Full Text Available DNA methylation, copy number in the genomes of three immortalized prostate epithelial, five cancer cell lines (LNCaP, PC3, PC3M, PC3M-Pro4, PC3MLN4 were compared using a microarray-based technique. Genomic DNA is cut with a methylation-sensitive enzyme Hpall, followed by linker ligation, polymerase chain reaction (PCR amplification, labeling, hybridization to an array of promoter sequences. Only those parts of the genomic DNA that have unmethylated restriction sites within a few hundred base pairs generate PCR products detectable on an array. Of 2732 promoter sequences on a test array, 504 (18.5% showed differential hybridization between immortalized prostate epithelial, cancer cell lines. Among candidate hypermethylated genes in cancer-derived lines, there were eight (CD44, CDKN1A, ESR1, PLAU, RARB, SFN, TNFRSF6, TSPY previously observed in prostate cancer, 13 previously known methylation targets in other cancers (ARHI, bcl-2, BRCA1, CDKN2C, GADD45A, MTAP, PGR, SLC26A4, SPARC, SYK, TJP2, UCHL1, WIT-1. The majority of genes that appear to be both differentially methylated, differentially regulated between prostate epithelial, cancer cell lines are novel methylation targets, including PAK6, RAD50, TLX3, PIR51, MAP2K5, INSR, FBN1, GG2-1, representing a rich new source of candidate genes used to study the role of DNA methylation in prostate tumors.

  2. The genomic landscape of epithelioid sarcoma cell lines and tumours.

    Science.gov (United States)

    Jamshidi, Farzad; Bashashati, Ali; Shumansky, Karey; Dickson, Brendan; Gokgoz, Nalan; Wunder, Jay S; Andrulis, Irene L; Lazar, Alexander J; Shah, Sohrab P; Huntsman, David G; Nielsen, Torsten O

    2016-01-01

    We carried out whole genome and transcriptome sequencing on four tumour/normal pairs of epithelioid sarcoma. These index cases were supplemented with whole transcriptome sequencing of three additional tumours and three cell lines. Unlike rhabdoid tumour (the other major group of SMARCB1-negative cancers), epithelioid sarcoma shows a complex genome with a higher mutational rate, comparable to that of ovarian carcinoma. Despite this mutational burden, SMARCB1 mutations remain the most frequently recurring event and are probably critical drivers of tumour formation. Several cases show heterozygous SMARCB1 mutations without inactivation of the second allele, and we explore this further in vitro. Finding CDKN2A deletions in our discovery cohort, we evaluated CDKN2A protein expression in a tissue microarray. Six out of 16 cases had lost CDKN2A in greater than or equal to 90% of cells, while the remaining cases had retained the protein. Expression analysis of epithelioid sarcoma cell lines by transcriptome sequencing shows a unique profile that does not cluster with any particular tissue type or with other SWI/SNF-aberrant lines. Evaluation of the levels of members of the SWI/SNF complex other than SMARCB1 revealed that these proteins are expressed as part of a residual complex, similarly to previously studied rhabdoid tumour lines. This residual SWI/SNF is susceptible to synthetic lethality and may therefore indicate a therapeutic opportunity. PMID:26365879

  3. Correlation between Twist expression and multidrug resistance of breast cancer cell lines

    Institute of Scientific and Technical Information of China (English)

    Yue-Xi Wang; Xiao-Mei Chen; Jun Yan; Zhi-Ping Li

    2016-01-01

    Objective:To study the correlation between Twist expression and multidrug resistance of breast cancer cell lines. Methods:Human breast cancer cell lines MCF-7, cisplatin-resistant human breast cancer cell lines MCF-7/DDP, doxorubicin-resistant human breast cancer cell lines MCF-7/Adr and taxol-resistant human breast cancer cell lines MCF/PTX were cultured, Twist in human breast cancer cell lines MCF-7 was overexpressed and treated with doxorubicin, and then cell viability and expression levels of EMT marker molecules and related signaling pathway molecules were detected. Results:mRNA contents and protein contents of Twist in drug-resistant breast cancer cell lines MCF-7/DDP, MCF-7/Adr and MCF/PTX were higher than those in MCF-7 cell lines;after doxorubicin treatment, inhibitory rates of cell viability in MCF-7 cell lines were higher than those in MCF-7/Adr and MCF-7/Twist cell lines;E-cadherin expression levels in MCF-7/Adr cell lines and MCF-7/Twist cell lines were lower than those in MCF-7 cell lines, and mRNA contents and protein contents of N-cadherin, Vimentin, TGF-β, Smad, Wnt,β-catenin, TNF-αand NF-kB were higher than those in MCF-7 cell lines. Conclusion:Increased expression of Twist is associated with the occurrence of drug resistance in breast cancer cells.

  4. Characterization of a transformed rat retinal ganglion cell line.

    Science.gov (United States)

    Krishnamoorthy, R R; Agarwal, P; Prasanna, G; Vopat, K; Lambert, W; Sheedlo, H J; Pang, I H; Shade, D; Wordinger, R J; Yorio, T; Clark, A F; Agarwal, N

    2001-01-31

    The purpose of the present study was to establish a rat retinal ganglion cell line by transformation of rat retinal cells. For this investigation, retinal cells were isolated from postnatal day 1 (PN1) rats and transformed with the psi2 E1A virus. In order to isolate retinal ganglion cells (RGC), single cell clones were chosen at random from the transformed cells. Expression of Thy-1 (a marker for RGC), glial fibrillary acidic protein (GFAP, a positive marker for Muller cells), HPC-1/syntaxin (a marker for amacrine cells), 8A1 (a marker for horizontal and ganglion cells) and neurotrophins was studied using reverse transcriptase-polymerase chain reaction (RT-PCR), immunoblotting and immunocytochemistry. One of the retinal cell clones, designated RGC-5, was positive for Thy-1, Brn-3C, Neuritin, NMDA receptor, GABA-B receptor, and synaptophysin expression and negative for GFAP, HPC-1, and 8A1, suggesting that it represented a putative RGC clone. The results of RT-PCR analysis were confirmed by immunocytochemistry for Thy-1 and GFAP. Upon further characterization by immunoblotting, the RGC-5 clone was positive for Thy-1, negative for GFAP, 8A1 and syntaxin. RGC 5 cells were also positive for the expression of neurotrophins and their cognate receptors. To establish the physiological relevance of RGC-5, the effects of serum/trophic factor deprivation and glutamate toxicity were analyzed to determine if these cells would undergo apoptosis. The protective effects of neurotrophins on RGC-5 after serum deprivation was also investigated. Apoptosis was studied by terminal deoxynucleotidyl transferase-mediated fluoresceinated dUTP nick end labeling (TUNEL). Serum deprivation resulted in apoptosis and supplementation with both BDNF and NT-4 in the growth media, protected the RGC-5 cells from undergoing apoptosis. On differentiation with succinyl concanavalin A (sConA), RGC-5 cells became sensitive to glutamate toxicity, which could be reversed by inclusion of ciplizone (MK801

  5. Are there any differences in uptake of Tc-99m MIBI and tetrofosmin between cancer cells expressing P-glycoprotein and MDR-related protein?

    Energy Technology Data Exchange (ETDEWEB)

    Seo, J. H.; Yoo, J. A.; Seo, M. R.; Bae, J. H.; Jeong, S. Y.; Ahn, B. C.; Lee, K. B.; Lee, J [Kyungpook National University Hospital, Daegu (Korea, Republic of)

    2004-07-01

    Uptake of Tc-99m MIBI and Tc-99m tetrofosmin(TF) in two multidrug resistance cells, human colon cancer HCT/CLO2 cells expressing P-glycoprotein(Pgp) and non-small cell lung cancer A549 cells showing multidrug-resistance related protein(MRP) in vivo. RT-PCR Western blot analysis and immunohistochemistry(IHC) were used to detect Pgp and MRP. Cellular uptake of MIBI and TF was measured with single cell suspension of HCR/CLO2 and 549 cells. Cells were inoculated in flanks of 24 nude mice. Group 1 (Gr1) and Gr3 mice were injected with only MIBI or TF, and Gr2 and Gr4 mice were treated with cyclosporin A(CsA) before injection of MIBI or TF. Mice were sacrificed at 10, 60 and 240-min after tracer injection. Radioactivities of organs and tumors were measured. 549 cells expressed MRPr1 protein detected by Western blot and IHC staining of tumor tissue at cell membrane but not Pgp, A549/CLO2 was vice versa. Cellular uptake and % increases with CsA were higher for MIBI than TF for both cells in vitro. Animal studies showed that MIBI and TF uptake were progressively increased by time in both Pgp(+) HCT/CLO2 tumor and MRP(+) A549 cells in both Gr1 and Gr3. There were no significant differences in tumoral uptake of MIBI and TF between Grl and Gr3 for both cells except higher MIBI uptake in Pgp cells at 60-min. % increases of MIBI (111% at 10 min, 220% at 60 min, 426% at 240 min) and TF uptake (186% at 10 min 579% at 60 min, 390% at 240 min) were progressively increased with time up to 240-min with CsA % increases of MIBI (114% at 10 min, 257% at 60 min 396% at 240 min) and TF uptake (110% at 10 min, 205% at 60 min, 410% at 240 min) were similar with those in HCT/CLO2 tumor. There were no differences in MIBI and TF uptake between Pgp and MRP tumors. Although MIBI showed better MDR reversal effect of modulator CsA than TF in vitro, there were no differences for both tumors in vivo. MIBI and TF are suitable tracers for imaging Pgp and MRP-mediated drug resistance in cancers.

  6. MAC-1 Glycoprotein Family mediates adherence of neutrophils to endothelial cells stimulated by leukotriene B4 and platelet activating factor

    International Nuclear Information System (INIS)

    The process of neutrophil (N) adhesion to and migration through endothelium (EC), an early event in the induction of the acute inflammatory response, has been attributed to the generation of extravascular chemoattractant peptides and lipids. Although both leukotriene B4 (LTB4) and platelet activating factor (PAF) enhance N adherence to EC, the mechanisms involved in this interaction are still not completely understood. Since the MAC-1 Glycoprotein (GP) Family has recently been shown to be required for a variety of adherence-dependent functions of stimulated N, the authors questioned whether these adherence-associated GP might be involved in N adherence to EC stimulated by LTB4 or PAF. Using a microtiter adherence assay with 111In labeled N, they assessed the ability of N from patients with MAC-1, LFA-1 Deficiency to adhere to monolayers of human omental microvascular or umbilical vein EC as well as to serum-coated plastic. Patient N exhibited markedly diminished adherence in response to LTB4 or PAF compared to normal controls. LTB4 and PAF enhanced expression of the MAC-1 GP Family on the surface of normal N as determined by flow cytofluorimetry using a monoclonal antibody (TS1/18) to the GP common beta subunit. In addition TS1/18 (20 μg/ml) completely inhibited N adherence stimulated by either LTB4 (10-8M) or PAF(10-11M). Thus, the MAC-1 GP Family appears to be important in chemotactic factor regulation of N adherence to EC

  7. Melatonin and Doxorubicin synergistically induce cell apoptosis in human hepatoma cell lines

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    AIM:To investigate whether Melatonin has synergistic effects with Doxorubicin in the growth-inhibition and apoptosis-induction of human hepatoma cell lines HepG2 and Bel-7402.METHODS:The synergism of Melatonin and Doxorubicin inhibited the cell growth and induced cell apoptosis in human hepatoma cell lines HepG2 and Bel-7402.Cell viability was analyzed by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide(MTT)assay.Cell apoptosis was evaluated using TUNEL method and flow cytometry.Apoptosis-r...

  8. Feeder-independent continuous culture of the PICM-19 pig liver stem cell line

    Science.gov (United States)

    The PICM-19 pig liver stem cell line is a bipotent cell line, i.e., capable of forming either bile ductules or hepatocyte monolayers in vitro, that was derived from the primary culture of pig embryonic stem cells. The cell line has been strictly feeder-dependent in that cell replication morphology,...

  9. Regulation of osteoprotegerin expression by Notch signaling in human oral squamous cell carcinoma cell line

    Institute of Scientific and Technical Information of China (English)

    Jeeranan Manokawinchoke; Thanaphum Osathanon; Prasit Pavasant

    2016-01-01

    Objective: To investigate the influence of Notch signaling on osteoprotegerin (OPG) expression in a human oral squamous cell carcinoma cell line. Methods: Activation of Notch signaling was performed by seeding cells on Jagged1 immobilized surfaces. In other experiments, a γ-secretase inhibitor was added to the culture medium to inhibit intracellular Notch signaling. OPG mRNA and protein were determined by real-time PCR and ELISA, respectively. Finally, publicly available microarray database analysis was performed using connection up- or down-regulation expression analysis of microarrays software. Results: Jagged1-treatment of HSC-4 cells enhanced HES1 and HEY1 mRNA expres-sion, confirming the intracellular activation of Notch signaling. OPG mRNA and protein levels were significantly suppressed upon Jagged1 treatment. Correspondingly, HSC-4 cells treated with a γ-secretase inhibitor resulted in a significant reduction of HES1 and HEY1 mRNA levels, and a marked increase in OPG protein expression was observed. These results implied that Notch signaling regulated OPG expression in HSC-4 cells. However, Jagged1 did not alter OPG expression in another human oral squamous cell carcinoma cell line (HSC-5) or a human head and neck squamous cell carcinoma cell line (HN22). Conclusions: Notch signaling regulated OPG expression in an HSC-4 cell line and this mechanism could be cell line specific.

  10. Absence of C-type virus production in human leukemic B cell, T cell and null cell lines.

    Directory of Open Access Journals (Sweden)

    Ogura,Hajime

    1978-06-01

    Full Text Available Electron microscope observation of cultured human leukemic B cell, T cell and null cell lines and reverse transcriptase assay of the culture supernatants were all negative for the presence of C-type virus. Bat cell line, which propagates primate C-type viruses well, was cocultivated with the human leukemic cell lines, in the hope of amplification of virus if present. Three weeks after mixed culture, the culture supernatants were again examined for reverse transcriptase activity and the cells were tested for syncytia formation by cocultivation with rat XC, human KC and RSb cell lines. All these tests, except for the positive control using a simian sarcoma virus, were negative, suggesting that no C-type was produced from these human leukemic cell lines.

  11. Cytolytic replication of echoviruses in colon cancer cell lines

    Directory of Open Access Journals (Sweden)

    Gullberg Maria

    2011-10-01

    Full Text Available Abstract Background Colorectal cancer is one of the most common cancers in the world, killing nearly 50% of patients afflicted. Though progress is being made within surgery and other complementary treatments, there is still need for new and more effective treatments. Oncolytic virotherapy, meaning that a cancer is cured by viral infection, is a promising field for finding new and improved treatments. We have investigated the oncolytic potential of several low-pathogenic echoviruses with rare clinical occurrence. Echoviruses are members of the enterovirus genus within the family Picornaviridae. Methods Six colon cancer cell lines (CaCo-2, HT29, LoVo, SW480, SW620 and T84 were infected by the human enterovirus B species echovirus 12, 15, 17, 26 and 29, and cytopathic effects as well as viral replication efficacy were investigated. Infectivity was also tested in spheroids grown from HT29 cells. Results Echovirus 12, 17, 26 and 29 replicated efficiently in almost all cell lines and were considered highly cytolytic. The infectivity of these four viruses was further evaluated in artificial tumors (spheroids, where it was found that echovirus 12, 17 and 26 easily infected the spheroids. Conclusions We have found that echovirus 12, 17 and 26 have potential as oncolytic agents against colon cancer, by comparing the cytolytic capacity of five low-pathogenic echoviruses in six colon cancer cell lines and in artificial tumors.

  12. Derivation of human embryonic stem cell lines from parthenogenetic blastocysts

    Institute of Scientific and Technical Information of China (English)

    Qingyun Mai; Yang Yu; Tao Li; Liu Wang; Mei-jue Chen; Shu-zhen Huang; Canquan Zhou; Qi Zhou

    2007-01-01

    Parthenogenesis is one of the main, and most useful, methods to derive embryonic stem cells (ESCs), which may be an important source of histocompatible cells and tissues for cell therapy. Here we describe the derivation and characterization of two ESC lines (hPES-1 and hPES-2) from in vitro developed blastocysts following parthenogenetic activation of human oocytes. Typical ESC morphology was seen, and the expression of ESC markers was as expected for alkaline phosphatase, octamer-binding transcription factor 4, stage-specific embryonic antigen 3, stage-specific embryonic antigen 4, TRA-1-60, and TRA-1-81, and there was absence of expression of negative markers such as stage-specific embryonic antigen 1. Expression of genes specific for different embryonic germ layers was detected from the embryoid bodies (EBs) of both hESC lines, suggesting their differentiation potential in vitro. However, in vivo, only hPES-1 formed teratoma consisting of all three embryonic germ layers (hPES-2 did not). Interestingly, after continuous proliferation for more than 100 passages, hPES-1 cells still maintained a normal 46 XX karyotype; hPES-2 displayed abnormalities such as chromosome translocation after long term passages. Short Tandem Repeat (STR) results demonstrated that the hPES lines were genetic matches with the egg donors, and gene imprinting data confirmed the parthenogenetic origin of these ES cells. Genome-wide SNP analysis showed a pattern typical of parthenogenesis. All of these results demonstrated the feasibility to isolate and establish human parthenogenetic ESC lines, which provides an important tool for studying epigenetic effects in ESCs as well as for future therapeutic interventions in a clinical setting.

  13. Synthesis and characterization of rabies virus glycoprotein-tagged amphiphilic cyclodextrins for siRNA delivery in human glioblastoma cells: in vitro analysis.

    Science.gov (United States)

    Gooding, Matt; Malhotra, Meenakshi; McCarthy, David J; Godinho, Bruno M D C; Cryan, John F; Darcy, Raphael; O'Driscoll, Caitriona M

    2015-04-25

    In man brain cancer is an aggressive, malignant form of tumour, it is highly infiltrative in nature, is associated with cellular heterogeneity and affects cerebral hemispheres of the brain. Current drug therapies are inadequate and an unmet clinical need exists to develop new improved therapeutics. The ability to silence genes associated with disease progression by using short interfering RNA (siRNA) presents the potential to develop safe and effective therapies. In this work, in order to protect the siRNA from degradation, promote cell specific uptake and enhance gene silencing efficiency, a PEGylated cyclodextrin (CD)-based nanoparticle, tagged with a CNS-targeting peptide derived from the rabies virus glycoprotein (RVG) was formulated and characterized. The modified cyclodextrin derivatives were synthesized and co-formulated to form nanoparticles containing siRNA which were analysed for size, surface charge, stability, cellular uptake and gene-knockdown in brain cancer cells. The results identified an optimised co-formulation prototype at a molar ratio of 1:1.5:0.5 (cationic cyclodextrin:PEGylated cyclodextrin:RVG-tagged PEGylated cyclodextrin) with a size of 281 ± 39.72 nm, a surface charge of 26.73 ± 3 mV, with efficient cellular uptake and a 27% gene-knockdown ability. This CD-based formulation represents a potential nanocomplex for systemic delivery of siRNA targeting brain cancer. PMID:25703259

  14. Absence of cytotoxic antibody to human immunodeficiency virus-infected cells in humans and its induction in animals after infection or immunization with purified envelope glycoprotein gp120

    International Nuclear Information System (INIS)

    The presence of antibody-dependent complement-mediated cytotoxicity (ACC) was assessed in humans and chimpanzees, which are capable of infection with human immunodeficiency virus isolate HTLV-IIIb, and examined in the goat after immunization with the major viral glycoprotein (gp120) of HTLV-IIIb. In infected humans no antibody mediating ACC was observed regardless of the status of disease. Even healthy individuals with high-titer, broadly reactive, neutralizing antibodies has no ACC. In contrast, chimpanzees infected with HTLV-IIIb, from whom virus could be isolated, not only had neutralizing antibody but also antibodies broadly reactive in ACC, even against distantly related human immunodeficiency virus isolates, as well as against their own reisolated virus. In the goat, the gp120 of HTLV-IIIb induced a highly type-specific response as measured by both ACC and flow cytofluorometry of live infected H9 cells. Normal human cells were not subject to ACC by animal anti-HTLV-III gp120-specific sera. Induction of ACC and neutralizing antibody were closely correlated in the animal experimental models but not in humans. The presence of ACC in gp120-inoculated goats and HTLV-III-infected chimpanzees represent a qualitative difference that may be important in the quest for the elicitation of a protective immunity in humans

  15. Apoptosis in Raji cell line induced by influenza A virus

    Institute of Scientific and Technical Information of China (English)

    李虹; 肖丽英; 李华林; 李婉宜; 蒋中华; 张林; 李明远

    2003-01-01

    Objective To study the apoptotic effects of influenza A virus on the Raji cell line. Methods Cultured Raji cells were infected with influenza A virus at a multiplicity of infection (m.o.i) of 20 and the effects of apoptosis were detected at different time points post infection using the following methods: electron microscope, DNA agarose gel electrophoresis, PI stained flow cytometry (FCM) and Annexin-V FITC/PI stained FCM.Results Raji cells infected with influenza A virus showed changes of morphology apoptotis, DNA agarose electrophoresis also demonstrated a ladder-like pattern of DNA fragments in a time-dependent manner. PI stained FCM showed "apoptosis peak" and FITC/PI stained FCM showed apoptotic cells. Quantitative analysis indicated that the percentage of apoptotic Raji cells increased after infection, and cycloheximide (CHX), an eukaryotic transcription inhibitor, could effectively inhibit the apoptotic effects of influenza A virus in vitro.Conclusions Influenza A virus can induce apoptosis in Raji cell line suggesting that it may lead to a potential method for tumor therapy.

  16. Temozolomide Resistance in Glioblastoma Cell Lines: Implication of MGMT, MMR, P-Glycoprotein and CD133 Expression

    OpenAIRE

    Gloria Perazzoli; Jose Prados; Raul Ortiz; Octavio Caba; Laura Cabeza; Maria Berdasco; Beatriz Gónzalez; Consolación Melguizo

    2015-01-01

    Background The use of temozolomide (TMZ) has improved the prognosis for glioblastoma multiforme patients. However, TMZ resistance may be one of the main reasons why treatment fails. Although this resistance has frequently been linked to the expression of O6-methylguanine-DNA methyltransferase (MGMT) it seems that this enzyme is not the only molecular mechanism that may account for the appearance of drug resistance in glioblastoma multiforme patients as the mismatch repair (MMR) complex, P-gly...

  17. Establishment and characterization of primary lung cancer cell lines from Chinese population

    Institute of Scientific and Technical Information of China (English)

    Chao ZHENG; Yi-hua SUN; Xiao-lei YE; Hai-quan CHEN; Hong-bin JI

    2011-01-01

    Aim: To establish and characterize primary lung cancer cell lines from Chinese population.Methods: Lung cancer specimens or pleural effusions were collected from Chinese lung cancer patients and cultured in vitro with ACL4 medium (for non-small cell lung carcinomas (NSCLC)) or HITES medium (for small cell lung carcinomas (SCLC)) supplemented with 5%FBS. All cell lines were maintained in culture for more than 25 passages. Most of these cell lines were further analyzed for oncogenic mutations, karyotype, cell growth kinetics, and tumorigenicity in nude mice.Results: Eight primary cell lines from Chinese lung cancer patients were established and characterized, including seven NSCLC cell lines and one SCLC cell line. Five NSCLC cell lines were found to harbor epidermal growth factor receptor (EGFR) kinase domain mutations.Conclusion: These well-characterized primary lung cancer cell lines from Chinese population provide a unique platform for future studies of the ethnic differences in lung cancer biology and drug response.

  18. Designing of promiscuous inhibitors against pancreatic cancer cell lines

    Science.gov (United States)

    Kumar, Rahul; Chaudhary, Kumardeep; Singla, Deepak; Gautam, Ankur; Raghava, Gajendra P. S.

    2014-04-01

    Pancreatic cancer remains the most devastating disease with worst prognosis. There is a pressing need to accelerate the drug discovery process to identify new effective drug candidates against pancreatic cancer. We have developed QSAR models for predicting promiscuous inhibitors using the pharmacological data. Our models achieved maximum Pearson correlation coefficient of 0.86, when evaluated on 10-fold cross-validation. Our models have also successfully validated the drug-to-oncogene relationship and further we used these models to screen FDA approved drugs and tested them in vitro. We have integrated these models in a webserver named as DiPCell, which will be useful for screening and designing novel promiscuous drug molecules. We have also identified the most and least effective drugs for pancreatic cancer cell lines. On the other side, we have identified resistant pancreatic cancer cell lines, which need investigative scanner on them to put light on resistant mechanism in pancreatic cancer.

  19. Cell line profiling to improve monoclonal antibody production.

    Science.gov (United States)

    Kang, Sohye; Ren, Da; Xiao, Gang; Daris, Kristi; Buck, Lynette; Enyenihi, Atim A; Zubarev, Roman; Bondarenko, Pavel V; Deshpande, Rohini

    2014-04-01

    Mammalian cell culture performance is influenced by both intrinsic (genetic) and extrinsic (media and process) factors. In this study, intrinsic capacity of various monoclonal antibody-producing Chinese Hamster Ovary (CHO) cell lines was compared by exposing them to the same culture condition. Microarray-based transcriptomics and LC-MS/MS shotgun proteomics technologies were utilized to obtain expression landscape of different cell lines. Specific transcripts and proteins correlating with productivity, growth rate and cell size have been identified. The proteomics analysis results showed a strong correlation between the intracellular protein expression levels of the recombinant DHFR and productivity. In contrast, neither the light chain nor the heavy chain of the recombinant monoclonal antibody showed correlation to productivity. Other top ranked proteins which demonstrated positive correlation to productivity included the adaptor protein complex subunits AP3D1and AP2B2, DNA repair protein DDB1 and the ER translocation complex component, SRPR. The subunits of molecular chaperone T-complex protein 1 and the regulator of mitochondrial one-carbon metabolism MTHFD2 showed negative correlation to productivity. The transcriptomics analysis has identified the regulators of calcium signaling, Tmem20 and Rcan1, as the top ranked genes displaying positive and negative correlation to productivity, respectively. For the second part of the study, the principal component analysis (PCA) was generated to view the underlying global structure of the expression data. A clear division and expression polarity was observed between the two distinct clusters of cell lines, independent of link to productivity or any other traits examined. The primary component of the PCA generated from either transcriptomics or proteomics data displayed a strong correlation to cell size and doubling time, while none of the main principal components showed correlation to productivity. Our findings suggest

  20. RBE of neutrons for induction of cell reproductive death and chromosome aberrations in three cell lines

    International Nuclear Information System (INIS)

    The authors have compared the RBE values for induction of dicentrics and centric rings with those for cell inactivation and with the mean or effective quality factors (Q) recommended for radiation protection. The induction of cell reproductive death and chromosome aberrations has been investigated in plateau phase cultures of established lines of a rat rhabdomyosarcoma, a rat ureter carcinoma and Chinese hamster cells for single doses of 300 kV X-rays and 0.5, 4.2 and 15 MeV neutrons. The different cell lines show considerable variations in sensitivity and the RBE values obtained are presented in tabular form. The mean RBE values for the rat rhabdomyosarcoma cells are lower than those for the other two relatively resistant cell lines. Those for the Chinese hamster cells extrapolated to levels according to low doses of X-rays are in good agreement with the quoted Q values. (Auth./C.F.)

  1. Effect of histone deacetylase inhibitor on proliferation of biliary tract cancer cell lines

    Institute of Scientific and Technical Information of China (English)

    Li-Ning Xu; Xin Wang; Sheng-Quan Zou

    2008-01-01

    AIM: To explore the effect of histone deacetylase inhibitor, trichostatin A (TSA) on the growth of biliary tract cancer cell lines (gallbladder carcinoma cell line and cholangiocarcinoma cell line) in v/vo and in vitro,and to investigate the perspective of histone deacetylase inhibitor in its clinical application.METHODS: The survival rates of gallbladder carcinoma cell line (Mz-ChA-I cell line) and cholangiocarcinoma cell lines (QBC939, KMBC and OZ cell lines) treated with various doses of TSA were detected by methylthiazoy tetrazolium (MTT) assay.A nude mouse model of transplanted gallbladder carcinoma (Mz-ChA-I cell line)was successfully established, and changes in the growth of transplanted tumor after treated with TSAwere measured.RESULTS: TSA could inhibit the proliferation of gallbladder carcinoma cell line (Mz-ChA-I cell line) and cholangiocarcinoma cell lines (QBC939, KMBC and OZ cell lines) in a dose-dependent manner.After the nude mouse model of transplanted gallbladder carcinoma (Mz-ChA-I cell line) was successfully established, the growth of cancer was inhibited in the model, after treated with TSA.CONCLUSION: TSA can inhibit the growth of cholangiocarcinoma and gallbladder carcinoma cell lines in vitro and in vivo.

  2. UV light blocks EGFR signalling in human cancer cell lines

    DEFF Research Database (Denmark)

    Olsen, BB; Neves-Petersen, M T; Klitgaard, S;

    2007-01-01

    antibodies. There was a threshold level, below which the receptor could not be blocked. In addition, illumination caused the cells to upregulate the cyclin-dependent kinase inhibitor p21WAF1, irrespective of the p53 status. Since the EGF receptor is often overexpressed in cancers and other proliferative skin......UV light excites aromatic residues, causing these to disrupt nearby disulphide bridges. The EGF receptor is rich in aromatic residues near the disulphide bridges. Herein we show that laser-pulsed UV illumination of two different skin-derived cancer cell lines i.e. Cal-39 and A431, which both...

  3. Off-line test of the KISS gas cell

    Energy Technology Data Exchange (ETDEWEB)

    Hirayama, Yoshikazu, E-mail: yoshikazu.hirayama@kek.jp [Institute of Particle and Nuclear Studies (IPNS), High Energy Accelerator Research Organization (KEK), Ibaraki 305-0801 (Japan); Watanabe, Yutaka; Imai, Nobuaki; Ishiyama, Hironobu; Jeong, Sun-Chan; Miyatake, Hiroari; Oyaizu, Michihiro [Institute of Particle and Nuclear Studies (IPNS), High Energy Accelerator Research Organization (KEK), Ibaraki 305-0801 (Japan); Kim, Yung Hee [Seoul National University, Seoul 151 742 (Korea, Republic of); Mukai, Momo [Tsukuba University, Ibaraki 305 0006 (Japan); Matsuo, Yukari; Sonoda, Tetsu; Wada, Michiharu [Nishina Center for Accelerator-Based Science, RIKEN, Wako, Saitama 351 0198 (Japan); Huyse, Mark; Kudryavtsev, Yuri; Van Duppen, Piet [Instituut voor Kern-en Stralingsfysica, KU Leuven, B-3001 Leuven (Belgium)

    2013-12-15

    Highlights: • Construction of the KEK Isotope Separation System (KISS) at RIKEN. • Ionization scheme of an iron. • Measurement of transport time profile in a gas cell. -- Abstract: The KEK Isotope Separation System (KISS) has been constructed at RIKEN to study the β-decay properties of neutron-rich isotopes with neutron numbers around N = 126 for application to astrophysics. A key component of KISS is a gas cell filled with argon gas at a pressure of 50 kPa to stop and collect the unstable nuclei, where the isotopes of interest will be selectively ionized using laser resonance ionization. We have performed off-line tests to study the basic properties of the gas cell and of KISS using nickel and iron filaments placed in the gas cell.

  4. In vitro chemosensitivity of head and neck cancer cell lines

    Directory of Open Access Journals (Sweden)

    Schuler PJ

    2010-08-01

    Full Text Available Abstract Background Systemic treatment of head and neck squamous cell carcinoma (HNSCC includes a variety of antineoplastic drugs. However, drug-resistance interferes with the effectiveness of chemotherapy. Preclinical testing models are needed in order to develop approaches to overcome chemoresistance. Methods Ten human cell lines were obtained from HNSCC, including one with experimentally-induced cisplatin resistance. Inhibition of cell growth by seven chemotherapeutic agents (cisplatin, carboplatin, 5- fluorouracil, methotrexate, bleomycin, vincristin, and paclitaxel was measured using metabolic MTT-uptake assay and correlated to clinically-achievable plasma concentrations. Results All drugs inhibited cell growth in a concentration-dependent manner with an IC50 comparable to that achievable in vivo. However, response curves for methotrexate were unsatisfactory and for paclitaxel, the solubilizer cremophor EL was toxic. Cross-resistance was observed between cisplatin and carboplatin. Conclusion Chemosensitivity of HNSCC cell lines can be determined using the MTT-uptake assay. For DNA-interfering cytostatics and vinca alkaloids this is a simple and reproducible procedure. Determined in vitro chemosensitivity serves as a baseline for further experimental approaches aiming to modulate chemoresistance in HNSCC with potential clinical significance.

  5. Propranolol induced chromosomal aberrations in Chinese hamster ovary cell line

    Directory of Open Access Journals (Sweden)

    Mozhgan Sedigh-Ardekani

    2013-03-01

    Full Text Available Propranolol (PL, a non-selective beta-blocker, is a cardiovascular drug widely used to treat hypertension. The present study was concerned with assessing the cytogenetic effects of this drug on Chinese hamster ovary (CHO cell line. MTT assay was then carried out to determine the cytotoxicity index (IC50 of the drug. The IC50 value of PL was 0.43±0.02 mM. To investigate the clastogenic effects of the drug, chromatid and chromosome breaks and polyploidy in metaphases were analyzed. CHO cells were exposed to different concentrations of the drug (0.1, 0.2, 0.3, 0.4 mM for 24 hours. Considering that PL has liver metabolism, experiments were carried out in the presence and absence of the metabolic activation system (S9 mix. Mitomycin-C and sodium arsenite were used as positive controls. It was observed that in cells treated with different PL concentrations as 0.1, 0.2 and 0.3 mM, the frequency of chromatid and chromosome breaks as well as polyploidy increased when compared with untreated CHO cells. The addition of S9 mix significantly decreased the chromatid breaks, chromosome breaks and polyploidy compared to the treatment of PL alone. It is concluded that, PL causes chromatid and chromosome aberrations in CHO cell line and the metabolic activation system (S9 mix, playing an important role in drug cytotoxicity reduction.

  6. Pseudoislet of hybrid cellular spheroids from commercial cell lines.

    Science.gov (United States)

    Jo, Y H; Nam, B M; Kim, B Y; Nemeno, J G; Lee, S; Yeo, J E; Yang, W; Park, S H; Kim, Y S; Lee, J I

    2013-10-01

    Investigators conducting diabetes-related research have focused on islet transplantation as a radical therapy for type 1 diabetes mellitus. Pancreatic islet isolation, an essential process, is a very demanding work because of the proteolytic enzymes, species, treatment time, and individual difference. Replacement of primary isolated pancreatic islets must be carried out continuously for various in vitro tests, making primary isolated islets a useful tool for cell transplantation research. Hence, we sought to develop pseudoislets from commercial pancreas-derived cell lines. In this study, we used RIN-5F and RIN-m cells, which secrete insulin, somatostatin, or glucagon. To manufacture hybrid cellular spheroids, the cells were cultured under hanging drop plate and nonadhesive plate methods. We observed that hybrid cellular pseudoislets exhibited an oval shape, with sizes ranging from 590 to 1200 μm. Their morphology was similar to naïve islets. Cell line pseudoislets secreted and expressed insulin, glucagon, and somatostatin, as confirmed by reverse transcriptase polymerase chain reaction, enzyme-linked immunosorbent assay, and immunohistochemistry analyses. Thus, the current artificially manufactured biomimetic pseudoislets resembled pancreatic islets of the endocrine system, appearing as cellular aggregates that secreted insulin, glucagon, and somatostatin. Enhanced immunoisolation techniques may lead to the development of new islet sources for pancreatic transplantation through this pseudoislet strategy.

  7. Impairment of cell cycle progression by aflatoxin B1 in human cell lines.

    Science.gov (United States)

    Ricordy, R; Gensabella, G; Cacci, E; Augusti-Tocco, G

    2002-05-01

    Aflatoxin B1 is a mycotoxin produced by Aspergillus flavus and Aspergillus parasiticum, which may be present as a food contaminant. It is known to cause acute toxic effects and act as a carcinogenic agent. The carcinogenic action has been related to its ability to form unstable adducts with DNA, which represent possible mutagenic sites. On the other hand, the primary cellular target responsible for its toxic action has not yet been clearly identified. Previous data suggested a possible correlation between cell proliferation and responsiveness to aflatoxin toxicity. These observations led us to investigate the effect of the toxin on cell cycle progression of three human cell lines (HepG2, SK-N-MC and SK-N-SH derived from liver and nervous tissue tumours); they were shown to display different responses to toxin exposure and have different growth kinetics. We performed analysis of the cell cycle, DNA synthesis and expression of p21 and p53 in the presence and absence of the toxin in all cell lines exposed. The results of cell cycle cytofluorometric analysis show significant alterations of cell cycle progression as a result of toxin treatment. In all cell lines exposure to a 24 h toxin treatment causes a dose-dependent accumulation in S phase, however, the ability to recover from impairment to traverse S phase varies in the cell lines under study. SK-N-MC cells appear more prone to resume DNA synthesis when the toxin is removed, while the other two cell lines maintain a significant inhibition of DNA synthesis, as indicated by cytofluorimetry and [(3)H]dTR incorporation. The level of p53 and p21 expression in the three cell lines was examined by western blot analysis and significant differences were detected. The ready resumption of DNA synthesis displayed by SK-N-MC cells could possibly be related to the absence of p53 control of cell cycle progression.

  8. Responding to hypoxia: lessons from a model cell line.

    Science.gov (United States)

    Seta, K A; Spicer, Z; Yuan, Y; Lu, G; Millhorn, D E

    2002-08-20

    Mammalian cells require a constant supply of oxygen to maintain adequate energy production, which is essential for maintaining normal function and for ensuring cell survival. Sustained hypoxia can result in cell death. It is, therefore, not surprising that sophisticated mechanisms have evolved that allow cells to adapt to hypoxia. "Oxygen-sensing" is a special phenotype that functions to detect changes in oxygen tension and to transduce this signal into organ system functions that enhance the delivery of oxygen to tissue in various organisms. Oxygen-sensing cells can be segregated into two distinct cell types: those that functionally depolarize (excitable) and those that do not functionally depolarize (nonexcitable) in response to reduced oxygen. Theoretically, excitable cells have all the same signaling capabilities as the nonexcitable cells, but the nonexcitable cells cannot have all the signaling capabilities as excitable cells. A number of signaling pathways have been identified that regulate gene expression during hypoxia. These include the Ca2+-calmodulin pathway, the 3'-5' adenosine monophosphate (cAMP)-protein kinase A (PKA) pathway, the p42 and p44 mitogen-activated protein kinase [(MAPK); also known as the extracellular signal-related kinase (ERK) for ERK1 and ERK2] pathway, the stress-activated protein kinase (SAPK; also known as p38 kinase) pathway, and the phosphatidylinositol 3-kinase (PI3K)-Akt pathway. In this review, we describe hypoxia-induced signaling in the model O2-sensing rat pheochromocytoma (PC12) cell line, the current level of understanding of the major signaling events that are activated by reduced O2, and how these signaling events lead to altered gene expression in both excitable and nonexcitable oxygen-sensing cells. PMID:12189251

  9. Boldine: a potential new antiproliferative drug against glioma cell lines.

    Science.gov (United States)

    Gerhardt, Daniéli; Horn, Ana Paula; Gaelzer, Mariana Maier; Frozza, Rudimar Luiz; Delgado-Cañedo, Andrés; Pelegrini, Alessandra Luiza; Henriques, Amélia T; Lenz, Guido; Salbego, Christianne

    2009-12-01

    Malignant gliomas are the most common and devastating primary tumors of the central nervous system. Currently no efficient treatment is available. This study evaluated the effect and underlying mechanisms of boldine, an aporphine alkaloid of Peumus boldus, on glioma proliferation and cell death. Boldine decreased the cell number of U138-MG, U87-MG and C6 glioma lines at concentrations of 80, 250 and 500 muM. We observed that cell death caused by boldine was cell-type specific and dose-dependent. Exposure to boldine for 24 h did not activate key mediators of apoptosis. However, it induced alterations in the cell cycle suggesting a G(2)/M arrest in U138-MG cells. Boldine had no toxic effect on non-tumor cells when used at the same concentrations as those used on tumor cells. Based on these results, we speculate that boldine may be a promising compound for evaluation as an anti-cancer agent. PMID:19050827

  10. Preparation of cell lines for single-cell analysis of transcriptional activation dynamics.

    Science.gov (United States)

    Rafalska-Metcalf, Ilona U; Janicki, Susan M

    2013-01-01

    Imaging molecularly defined regions of chromatin in single living cells during transcriptional activation has the potential to provide new insight into gene regulatory mechanisms. Here, we describe a method for isolating cell lines with multi-copy arrays of reporter transgenes, which can be used for real-time high-resolution imaging of transcriptional activation dynamics in single cells.

  11. Establishment and characterization of feeder-cell-dependent bovine fetal liver cell lines

    Science.gov (United States)

    The establishment and initial characterization of bovine fetal liver cell lines is described. Bovine fetal hepatocytes were cultured from the liver of a 34-day bovine fetus by physical disruption of the liver tissue. Released liver cells and clumps of cells were plated on STO feeder layers and wer...

  12. Drug-induced trafficking of p-glycoprotein in human brain capillary endothelial cells as demonstrated by exposure to mitomycin C.

    Science.gov (United States)

    Noack, Andreas; Noack, Sandra; Hoffmann, Andrea; Maalouf, Katia; Buettner, Manuela; Couraud, Pierre-Olivier; Romero, Ignacio A; Weksler, Babette; Alms, Dana; Römermann, Kerstin; Naim, Hassan Y; Löscher, Wolfgang

    2014-01-01

    P-glycoprotein (Pgp; ABCB1/MDR1) is a major efflux transporter at the blood-brain barrier (BBB), restricting the penetration of various compounds. In other tissues, trafficking of Pgp from subcellular stores to the cell surface has been demonstrated and may constitute a rapid way of the cell to respond to toxic compounds by functional membrane insertion of the transporter. It is not known whether drug-induced Pgp trafficking also occurs in brain capillary endothelial cells that form the BBB. In this study, trafficking of Pgp was investigated in human brain capillary endothelial cells (hCMEC/D3) that were stably transfected with a doxycycline-inducible MDR1-EGFP fusion plasmid. In the presence of doxycycline, these cells exhibited a 15-fold increase in Pgp-EGFP fusion protein expression, which was associated with an increased efflux of the Pgp substrate rhodamine 123 (Rho123). The chemotherapeutic agent mitomycin C (MMC) was used to study drug-induced trafficking of Pgp. Confocal fluorescence microscopy of single hCMEC/D3-MDR1-EGFP cells revealed that Pgp redistribution from intracellular pools to the cell surface occurred within 2 h of MMC exposure. Pgp-EGFP exhibited a punctuate pattern at the cell surface compatible with concentrated regions of the fusion protein in membrane microdomains, i.e., lipid rafts, which was confirmed by Western blot analysis of biotinylated cell surface proteins in Lubrol-resistant membranes. MMC exposure also increased the functionality of Pgp as assessed in three functional assays with Pgp substrates (Rho123, eFluxx-ID Gold, calcein-AM). However, this increase occurred with some delay after the increased Pgp expression and coincided with the release of Pgp from the Lubrol-resistant membrane complexes. Disrupting rafts by depleting the membrane of cholesterol increased the functionality of Pgp. Our data present the first direct evidence of drug-induced Pgp trafficking at the human BBB and indicate that Pgp has to be released from lipid

  13. Rift Valley Fever Virus Incorporates the 78 kDa Glycoprotein into Virions Matured in Mosquito C6/36 Cells

    OpenAIRE

    Weingartl, Hana M.; Zhang, Shunzhen; Marszal, Peter; McGreevy, Alan; Burton, Lynn; Wilson, William C.

    2014-01-01

    Rift Valley fever virus (RVFV), genus Phlebovirus, family Bunyaviridae is a zoonotic arthropod-borne virus able to transition between distant host species, causing potentially severe disease in humans and ruminants. Viral proteins are encoded by three genomic segments, with the medium M segment coding for four proteins: nonstructural NSm protein, two glycoproteins Gn and Gc and large 78 kDa glycoprotein (LGp) of unknown function. Goat anti-RVFV polyclonal antibody and mouse monoclonal antibod...

  14. Expression of cadherin and NCAM in human small cell lung cancer cell lines and xenografts

    DEFF Research Database (Denmark)

    Rygaard, K; Møller, C; Bock, E;

    1992-01-01

    Tumour cell adhesion, detachment and aggregation seem to play an important part in tumour invasion and metastasis, and numerous cell adhesion molecules are expressed by tumour cells. Several families of cell-cell adhesion molecules have been described, of which two groups are particularly well...... characterised, the cadherin family and the Ig superfamily member, neural cell adhesion molecule (NCAM). We investigated expression of these two adhesion molecule families in small cell lung cancer (SCLC) cell lines and xenografts by immunoblotting. Nineteen tumours established from 15 patients with SCLC were...... embryonic development, which may play a role in connection with tumour invasion and metastasis, was found in 14/18 NCAM expressing SCLC tumours. Individual tumours grown as cell lines and as nude mouse xenografts showed no qualitative differences in cadherin or NCAM expression....

  15. Murine Pregnancy-Specific Glycoprotein 23 Induces the Proangiogenic Factors Transforming-Growth Factor Beta 1 and Vascular Endothelial Growth Factor A in Cell Types Involved in Vascular Remodeling in Pregnancy1

    OpenAIRE

    Wu, Julie A.; Johnson, Briana L.; Chen, Yongqing; Ha, Cam T.; Dveksler, Gabriela S.

    2008-01-01

    Haemochorial placentation is a unique physiological process in which the fetal trophoblast cells remodel the maternal decidual spiral arteries to establish the fetoplacental blood supply. Pregnancy-specific glycoproteins (PSGs) are members of the carcinoembryonic antigen family. PSGs are produced by the placenta of rodents and primates and are secreted into the bloodstream. PSG23 is one of 17 members of the murine PSG family (designated PSG16 to PSG32). Previous studies determined that PSGs h...

  16. Fluorouracil Selectively Enriches Stem-like Leukemic Cells in a Leukemic Cell Line

    Directory of Open Access Journals (Sweden)

    Ling Zhang, Song Yang, Yu-Juan He, Hui-Yuan Shao, Li Wang, Hui Chen, Yu-Jie Gao, Feng-Xian Qing, Xian-Chun Chen, Liu-Yang Zhao, Shi Tan

    2010-01-01

    Full Text Available Recent studies have reported that cancer stem cells (CSCs could be isolated from solid cancer cell lines, in which the purity of CSCs was higher than that from tumor tissues. Separation of CSCs from leukemic cell lines was rarely reported. In this study, CD34+CD38- stem-like cell subsets in human KG-1a leukemic cell line were enriched by cytotoxic agent 5-fluorouracil (5-FU. After 4 days incubation of KG-1a cell line with 5-FU (50 μg/ml, the CD34+CD38- subpopulation of cell lines was enriched more than 10 times. The enriched cells had proliferate potential in vitro, low level of RNA transcription and Hoechst 33342 dye efflux ability, accompanied by high expression of ATP-binding cassette transporter protein ABCG2. Our findings suggest that treatment with 5-FU offers an easy method to isolate leukemic stem-like subpopulation. It can facilitate studies of leukemic stem cell biology and the development of new therapeutic strategies.

  17. Effects of Genistein on Cell Cycle and Apoptosis of Two Murine Melanoma Cell Lines

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The effects of genistein on several tumor cell lines were investigated to study the effects of genistein on cell growth, cell cycle, and apoptosis of two murine melanoma cell lines, B16 and K1735M2. These two closely related murine melanoma cell lines, however, have different responses to the genistein treatment. Genistein inhibits the growth of both the B16 and K1735M2 cell lines and arrests the growth at the G2/M phase. After treatment with 60 μmol/L genistein for 72 h, apoptosis and caspase activities were detected in B16 cells, while such effects were not found in K1735M2. Further tests showed that after genistein treatment the protein content and mRNA levels of p53 increased in B16, but remained the same in K1735M2. The protein content and mRNA levels of p21WAF1/CIP1 increased in both cell lines after treatment.The results show that genistein might induce apoptosis in B16 cells by damaging the DNA, inhibiting topoisomerase Ⅱ, increasing p53 expression, releasing cytochrome c from the mitochondria, and activating the caspases which will lead to apoptosis.

  18. Establishment of a novel human medulloblastoma cell line characterized by highly aggressive stem-like cells.

    Science.gov (United States)

    Silva, Patrícia Benites Gonçalves da; Rodini, Carolina Oliveira; Kaid, Carolini; Nakahata, Adriana Miti; Pereira, Márcia Cristina Leite; Matushita, Hamilton; Costa, Silvia Souza da; Okamoto, Oswaldo Keith

    2016-08-01

    Medulloblastoma is a highly aggressive brain tumor and one of the leading causes of morbidity and mortality related to childhood cancer. These tumors display differential ability to metastasize and respond to treatment, which reflects their high degree of heterogeneity at the genetic and molecular levels. Such heterogeneity of medulloblastoma brings an additional challenge to the understanding of its physiopathology and impacts the development of new therapeutic strategies. This translational effort has been the focus of most pre-clinical studies which invariably employ experimental models using human tumor cell lines. Nonetheless, compared to other cancers, relatively few cell lines of human medulloblastoma are available in central repositories, partly due to the rarity of these tumors and to the intrinsic difficulties in establishing continuous cell lines from pediatric brain tumors. Here, we report the establishment of a new human medulloblastoma cell line which, in comparison with the commonly used and well-established cell line Daoy, is characterized by enhanced proliferation and invasion capabilities, stem cell properties, increased chemoresistance, tumorigenicity in an orthotopic metastatic model, replication of original medulloblastoma behavior in vivo, strong chromosome structural instability and deregulation of genes involved in neural development. These features are advantageous for designing biologically relevant experimental models in clinically oriented studies, making this novel cell line, named USP-13-Med, instrumental for the study of medulloblastoma biology and treatment. PMID:26358937

  19. Immune Response Induced by an Immunodominant 60 kDa Glycoprotein of the Cell Wall of Sporothrix schenckii in Two Mice Strains with Experimental Sporotrichosis.

    Science.gov (United States)

    Alba-Fierro, Carlos A; Pérez-Torres, Armando; Toriello, Conchita; Pulido-Camarillo, Evelyn; López-Romero, Everardo; Romo-Lozano, Yolanda; Gutiérrez-Sánchez, Gerardo; Ruiz-Baca, Estela

    2016-01-01

    Cell wall (CW) components of fungus Sporothrix schenckii are the major inductors antigens of immune responses. The immunodominant 60 kDa glycoprotein (gp60) has been shown to be associated with the virulence of this fungus but its role in experimental sporotrichosis is unknown. In this work, the immunological effects of CW-purified gp60 were investigated in a model of experimental subcutaneous sporotrichosis in normal and gp60-preimmunized C57BL/6 and BALB/c mice strains which were then infected with S. schenckii conidia. Results showed that both mice strains use different cytokine profiles in order to fight S. schenckii infection; C57BL/6 mice seem to use a Th17 response while BALB/c mice tend to depend on a Th1 profile. Preimmunization with gp60 showed a downregulatory effect on the immune response since cytokines levels were diminished in both strains. There were no significant differences in the magnitude of dorsoplantar inflammation between gp60-preimmunized and nonimmunized mice of both strains. However, skin lesions due to the infection in gp60-preimmunized mice were more severe in BALB/c than in C57BL/6 mice, suggesting that the antigen exerts a higher downregulatory effect on the Th1 response.

  20. Immune Response Induced by an Immunodominant 60 kDa Glycoprotein of the Cell Wall of Sporothrix schenckii in Two Mice Strains with Experimental Sporotrichosis

    Directory of Open Access Journals (Sweden)

    Carlos A. Alba-Fierro

    2016-01-01

    Full Text Available Cell wall (CW components of fungus Sporothrix schenckii are the major inductors antigens of immune responses. The immunodominant 60 kDa glycoprotein (gp60 has been shown to be associated with the virulence of this fungus but its role in experimental sporotrichosis is unknown. In this work, the immunological effects of CW-purified gp60 were investigated in a model of experimental subcutaneous sporotrichosis in normal and gp60-preimmunized C57BL/6 and BALB/c mice strains which were then infected with S. schenckii conidia. Results showed that both mice strains use different cytokine profiles in order to fight S. schenckii infection; C57BL/6 mice seem to use a Th17 response while BALB/c mice tend to depend on a Th1 profile. Preimmunization with gp60 showed a downregulatory effect on the immune response since cytokines levels were diminished in both strains. There were no significant differences in the magnitude of dorsoplantar inflammation between gp60-preimmunized and nonimmunized mice of both strains. However, skin lesions due to the infection in gp60-preimmunized mice were more severe in BALB/c than in C57BL/6 mice, suggesting that the antigen exerts a higher downregulatory effect on the Th1 response.

  1. Safety and efficacy of an E2 glycoprotein subunit vaccine produced in mammalian cells to prevent experimental infection with bovine viral diarrhoea virus in cattle.

    Science.gov (United States)

    Pecora, Andrea; Aguirreburualde, María Sol Pérez; Aguirreburualde, Alejandra; Leunda, Maria Rosa; Odeon, Anselmo; Chiavenna, Sebastián; Bochoeyer, Diego; Spitteler, Marcelo; Filippi, Jorge L; Dus Santos, Maria J; Levy, Susana M; Wigdorovitz, Andrés

    2012-09-01

    Bovine viral diarrhea (BVD) infection caused by bovine viral diarrhea virus (BVDV), a Pestivirus of the Flaviviridae family, is an important cause of morbidity, mortality and economical losses in cattle worldwide. E2 protein is the major glycoprotein of BVDV envelope and the main target for neutralising antibodies (NAbs). Different studies on protection against BVDV infection have focused on E2, supporting its putative use in subunit vaccines. A truncated version of type 1a BVDV E2 (tE2) expressed in mammalian cells was used to formulate an experimental oleous monovalent vaccine. Immunogenicity was studied through immunisation of guinea pigs and followed by trials in cattle. Calves of 8-12 months were vaccinated, twice with a 4 week interval, with either a tE2 subunit vaccine (n = 8), a whole virus inactivated vaccine (n = 8) or left untreated as negative control group (n = 8). Four weeks after the last immunisation the animals were experimentally challenged intranasally with a non-cythopathic BVDV strain. Following challenge, BVDV was isolated from all unvaccinated animals, while 6 out of 8 animals vaccinated with tE2 showed complete virological protection indicating that the tE2 vaccine presented a similar performance to a satisfactory whole virus inactivated vaccine.

  2. Immune Response Induced by an Immunodominant 60 kDa Glycoprotein of the Cell Wall of Sporothrix schenckii in Two Mice Strains with Experimental Sporotrichosis.

    Science.gov (United States)

    Alba-Fierro, Carlos A; Pérez-Torres, Armando; Toriello, Conchita; Pulido-Camarillo, Evelyn; López-Romero, Everardo; Romo-Lozano, Yolanda; Gutiérrez-Sánchez, Gerardo; Ruiz-Baca, Estela

    2016-01-01

    Cell wall (CW) components of fungus Sporothrix schenckii are the major inductors antigens of immune responses. The immunodominant 60 kDa glycoprotein (gp60) has been shown to be associated with the virulence of this fungus but its role in experimental sporotrichosis is unknown. In this work, the immunological effects of CW-purified gp60 were investigated in a model of experimental subcutaneous sporotrichosis in normal and gp60-preimmunized C57BL/6 and BALB/c mice strains which were then infected with S. schenckii conidia. Results showed that both mice strains use different cytokine profiles in order to fight S. schenckii infection; C57BL/6 mice seem to use a Th17 response while BALB/c mice tend to depend on a Th1 profile. Preimmunization with gp60 showed a downregulatory effect on the immune response since cytokines levels were diminished in both strains. There were no significant differences in the magnitude of dorsoplantar inflammation between gp60-preimmunized and nonimmunized mice of both strains. However, skin lesions due to the infection in gp60-preimmunized mice were more severe in BALB/c than in C57BL/6 mice, suggesting that the antigen exerts a higher downregulatory effect on the Th1 response. PMID:27051673

  3. TARGETING OF DRUGS TO VARIOUS BLOOD-CELL TYPES USING (NEO-)GLYCOPROTEINS, ANTIBODIES AND OTHER PROTEIN CARRIERS

    NARCIS (Netherlands)

    MOLEMA, G; MEIJER, DKF

    1994-01-01

    The current problems in controlling severe viral infections of blood cells such as in AIDS as well as the lack of effective and safe pharmacotherapeutic measures for such diseases have renewed interest in the options of targeting of drugs and genes to various blood cell types. The design and develop

  4. Multidrug resistance and retroviral transduction potential in human small cell lung cancer cell lines

    DEFF Research Database (Denmark)

    Theilade, M D; Gram, G J; Jensen, P B;

    1999-01-01

    blue colonies after X-Gal staining of the cells grown in soft agar. All examined SCLC cell lines were transducible with either vector. Transduction efficiencies varied from 5.7% to 33.5% independent of the presence of MDR. These results indicate that MDR does not severely impair transduction of SCLC......Multidrug resistance (MDR) remains a major problem in the successful treatment of small cell lung cancer (SCLC). New treatment strategies are needed, such as gene therapy specifically targeting the MDR cells in the tumor. Retroviral LacZ gene-containing vectors that were either pseudotyped for the...... gibbon ape leukemia virus (GALV-1) receptor or had specificity for the amphotropic murine leukemia virus (MLV-A) receptor were used for transduction of five SCLC cell lines differing by a range of MDR mechanisms. Transduction efficiencies in these cell lines were compared by calculating the percentage of...

  5. Multidrug resistance and retroviral transduction potential in human small cell lung cancer cell lines

    DEFF Research Database (Denmark)

    Theilade, M D; Gram, G J; Jensen, P B;

    1999-01-01

    Multidrug resistance (MDR) remains a major problem in the successful treatment of small cell lung cancer (SCLC). New treatment strategies are needed, such as gene therapy specifically targeting the MDR cells in the tumor. Retroviral LacZ gene-containing vectors that were either pseudotyped...... for the gibbon ape leukemia virus (GALV-1) receptor or had specificity for the amphotropic murine leukemia virus (MLV-A) receptor were used for transduction of five SCLC cell lines differing by a range of MDR mechanisms. Transduction efficiencies in these cell lines were compared by calculating the percentage...... of blue colonies after X-Gal staining of the cells grown in soft agar. All examined SCLC cell lines were transducible with either vector. Transduction efficiencies varied from 5.7% to 33.5% independent of the presence of MDR. These results indicate that MDR does not severely impair transduction of SCLC...

  6. The comparison of glycosphingolipids isolated from an epithelial ovarian cancer cell line and a nontumorigenic epithelial ovarian cell line using MALDI-MS and MALDI-MS/MS.

    Science.gov (United States)

    Rajanayake, Krishani K; Taylor, William R; Isailovic, Dragan

    2016-08-01

    Glycosphingolipids (GSLs) are important biomolecules, which are linked to many diseases such as GSL storage disorders and cancer. Consequently, the expression of GSLs may be altered in ovarian cancer cell lines in comparison to apparently healthy cell lines. Here, differential expressions of GSLs in an epithelial ovarian cancer cell line SKOV3 and a nontumorigenic epithelial ovarian cell line T29 were studied using matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS) and MALDI-MS/MS. The isolation of GSLs from SKOV3 and T29 cell lines was carried out using Folch partition. GSLs were successfully detected by MALDI-MS, and structurally assigned by a comparison of their MALDI-MS/MS fragmentation patterns with MS/MS data found in SimLipid database. Additionally, LIPID MAPS was used to assign GSL ion masses in MALDI-MS spectra. Seventeen neutral GSLs were identified in Folch partition lower (chloroform/methanol) phases originating from both cell lines, while five globo series neutral GSLs were identified only in the Folch partition lower phase of SKOV3 cell line. Several different sialylated GSLs were detected in Folch partition upper (water/methanol) phases of SKOV3 and T29 cell lines. Overall, this study demonstrates the alteration and increased glycosylation of GSLs in an epithelial ovarian cancer cell line in comparison to a nontumorigenic epithelial ovarian cell line. PMID:27267063

  7. Chromosome abnormalities in Japanese Burkitt lymphoma cell lines.

    Directory of Open Access Journals (Sweden)

    Hamasaki,Kazuhide

    1982-02-01

    Full Text Available Six established Japanese Burkitt lymphoma (BL cell lines including one case with null cell type were studied by chromosomal banding techniques. The modal chromosome number was diploid or nearly diploid in five cases and hyperdiploid in one case. The marker chromosome 14q+ was observed in four of the six cases; the origin of the extra band was a chromosome 8 in three including the null cell case but could not be identified in the other. The two cases lacking the 14q+ marker had variant translocations involving the long arm of chromosome 8, one of which carried a translocation, t(8;22 (q24;q13 and the other a translocation, t(2;8 (p12;q24. Although structural and/or numerical aberrations were found in all six cell lines, chromosome 8 was the one most consistently involved. This frequent involvement of chromosome 8 in aberrations; therefore, may be an important event in the development of BL rather than the presence of a 14q+ marker chromosome.

  8. Hypoxia induces adipogenic differentitation of myoblastic cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Itoigawa, Yoshiaki [Tohoku University School of Medicine, Sendai (Japan); Juntendo University School of Medicine, Tokyo (Japan); Kishimoto, Koshi N., E-mail: kishimoto@med.tohoku.ac.jp [Tohoku University School of Medicine, Sendai (Japan); Okuno, Hiroshi; Sano, Hirotaka [Tohoku University School of Medicine, Sendai (Japan); Kaneko, Kazuo [Juntendo University School of Medicine, Tokyo (Japan); Itoi, Eiji [Tohoku University School of Medicine, Sendai (Japan)

    2010-09-03

    Research highlights: {yields} C2C12 and G8 myogenic cell lines treated by hypoxia differentiate into adipocytes. {yields} The expression of C/EBP{beta}, {alpha} and PPAR{gamma} were increased under hypoxia. {yields} Myogenic differentiation of C2C12 was inhibited under hypoxia. -- Abstract: Muscle atrophy usually accompanies fat accumulation in the muscle. In such atrophic conditions as back muscles of kyphotic spine and the rotator cuff muscles with torn tendons, blood flow might be diminished. It is known that hypoxia causes trans-differentiation of mesenchymal stem cells derived from bone marrow into adipocytes. However, it has not been elucidated yet if hypoxia turned myoblasts into adipocytes. We investigated adipogenesis in C2C12 and G8 murine myogenic cell line treated by hypoxia. Cells were also treated with the cocktail of insulin, dexamethasone and IBMX (MDI), which has been known to inhibit Wnt signaling and promote adipogenesis. Adipogenic differentiation was seen in both hypoxia and MDI. Adipogenic marker gene expression was assessed in C2C12. CCAAT/enhancer-binding protein (C/EBP) {beta}, {alpha} and peroxisome proliferator activating receptor (PPAR) {gamma} were increased by both hypoxia and MDI. The expression profile of Wnt10b was different between hypoxia and MDI. The mechanism for adipogenesis of myoblasts in hypoxia might be regulated by different mechanism than the modification of Wnt signaling.

  9. Cloned goats (Gapra hircus) from foetal fibroblast cell lines

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Mammalian cloning has been one of the most active research topics in the world.Cloning with in vitro culured foetal fibroblast cells,in comparison with embryonic cells,can be used not only to theoretically study the embryonic or cellular development and differentiation in mammals,but also to utilize the unlimited fibroblast cells to produce large numbers of clonings.The preliminary results are as follows:(i) The division and development of the cloned embryos with embryonic donor cells and goat foetal fibroblast donor cells were 55%,77% and 35%,31%,respectively.There is no significant statistical difference between them.(ii) These studies result in the birth of two cloned goats derived from two 30-day foetal fibroblast cell lines,which are the first cloned mammals from somatic cells in China.This project has established a technological data base for the furture research on adult mammalian somatic cloning and nucleocytoplasmic interactions in animal development,and a novel technique for the cloning of animals with a high-level expression of transgene(s).

  10. Characterization of cell lines stably transfected with rubella virus replicons

    Energy Technology Data Exchange (ETDEWEB)

    Tzeng, Wen-Pin; Xu, Jie [Department of Biology, Georgia State University, P.O. Box 4010, Atlanta GA 30302-4010 (United States); Frey, Teryl K., E-mail: tfrey@gsu.edu [Department of Biology, Georgia State University, P.O. Box 4010, Atlanta GA 30302-4010 (United States)

    2012-07-20

    Rubella virus (RUBV) replicons expressing a drug resistance gene and a gene of interest were used to select cell lines uniformly harboring the replicon. Replicons expressing GFP and a virus capsid protein GFP fusion (C-GFP) were compared. Vero or BHK cells transfected with either replicon survived drug selection and grew into a monolayer. However, survival was {approx}9-fold greater following transfection with the C-GFP-replicon than with the GFP-expressing replicon and while the C-GFP-replicon cells grew similarly to non-transfected cells, the GFP-replicon cells grew slower. Neither was due to the ability of the CP to enhance RNA synthesis but survival during drug selection was correlated with the ability of CP to inhibit apoptosis. Additionally, C-GFP-replicon cells were not cured of the replicon in the absence of drug selection. Interferon-alpha suppressed replicon RNA and protein synthesis, but did not cure the cells, explaining in part the ability of RUBV to establish persistent infections.

  11. CD3 receptor modulation in Jurkat leukemic cell line.

    Directory of Open Access Journals (Sweden)

    Jacek M Witkowski

    2004-03-01

    Full Text Available CD3 antigen is a crucial molecule in T cell signal transduction. Although its expression on cell surface is constitutive, dynamic regulation of TCR-CD3 level is probably the most important mechanism allowing T cells to calibrate their response to different levels of stimuli. In our study we examined the role of two main T cell signal transduction pathways in controlling the surface level of CD3 antigen, one based on protein kinase C activity and the other dependent on calcineurin. As an experimental model we used three clones derived from Jurkat cell line, expressing different levels of CD3 antigen surface expression: CD3(low (217.6, CD3+(217.9 or CD3(low (217.7. The cells were stimulated with PMA or ionomycin, acting directly on PKC and calcineurin, respectively. Prior to the stimulation cells were incubated with PKC inhibitor--chelerythrine or calcineurin blocker--cyclosporine A. Changes in CD3 surface expression were measured by flow cytometry. Only PMA and chelerythrine were able to change CD3 expression suggesting important involvement of PKC in the regulation of its expression. To confirm these findings, PKC activity was estimated in Jurkat clones. Our data demonstrated that Jurkat clones with different CD3 expression showed also different PKC activities, so we conclude that PKC-dependent pathway is the main way of controlling CD3 level on Jurkat clones.

  12. LINE-1 induces hTERT and ensures telomere maintenance in tumour cell lines.

    Science.gov (United States)

    Aschacher, T; Wolf, B; Enzmann, F; Kienzl, P; Messner, B; Sampl, S; Svoboda, M; Mechtcheriakova, D; Holzmann, K; Bergmann, M

    2016-01-01

    A hallmark of cancer cells is an activated telomere maintenance mechanism, which allows prolonged survival of the malignant cells. In more than 80% of tumours, telomeres are elongated by the enzyme telomerase, which adds de novo telomere repeats to the ends of chromosomes. Cancer cells are also characterized by expression of active LINE-1 elements (L1s, long interspersed nuclear elements-1). L1 elements are abundant retrotransposons in the eukaryotic genome that are primarily known for facilitating aberrant recombination. Using L1-knockdown (KD), we show for the first time that L1 is critical for telomere maintenance in telomerase-positive tumour cells. The reduced length of telomeres in the L1-KD-treated cells correlated with an increased rate of telomere dysfunction foci, a reduced expression of shelterin proteins and an increased rate of anaphase bridges. The decreased telomere length was associated with a decreased telomerase activity and decreased telomerase mRNA level; the latter was increased upon L1 overexpression. L1-KD also led to a decrease in mRNA and protein expression of cMyc and KLF-4, two main transcription factors of telomerase and altered mRNA levels of other stem-cell-associated proteins such as CD44 and hMyb, as well as a corresponding reduced growth of spheroids. The KD of KLF-4 or cMyc decreased the level of L1-ORF1 mRNA, suggesting a specific reciprocal regulation with L1. Thus, our findings contribute to the understanding of L1 as a pathogenicity factor in cancer cells. As L1 is only expressed in pathophysiological conditions, L1 now appears to be target in the rational treatment of telomerase-positive cancer.

  13. Molecular signatures in response to Isoliquiritigenin in lymphoblastoid cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae-Eun; Hong, Eun-Jung; Nam, Hye-Young [National Biobank of Korea, Center for Genome Science, Korea National Institute of Health, Korea Centers for Disease Control and Prevention (Korea, Republic of); Hwang, Meeyul [Research Center for Biomedical Resource of Oriental Medicine, Daegu Haany University (Korea, Republic of); Kim, Ji-Hyun [National Biobank of Korea, Center for Genome Science, Korea National Institute of Health, Korea Centers for Disease Control and Prevention (Korea, Republic of); Han, Bok-Ghee, E-mail: bokghee@nih.go.kr [National Biobank of Korea, Center for Genome Science, Korea National Institute of Health, Korea Centers for Disease Control and Prevention (Korea, Republic of); Jeon, Jae-Pil, E-mail: jpjeon@cdc.go.kr [National Biobank of Korea, Center for Genome Science, Korea National Institute of Health, Korea Centers for Disease Control and Prevention (Korea, Republic of)

    2012-10-19

    Highlights: Black-Right-Pointing-Pointer We identified the inhibitory effect of ISL on cell proliferation of LCLs. Black-Right-Pointing-Pointer We found ISL-induced genes and miRNAs through microarray approach. Black-Right-Pointing-Pointer ISL-treated LCLs represented gene expression changes in cell cycle and p53 pathway. Black-Right-Pointing-Pointer We revealed 12 putative mRNA-miRNA functional pairs associated with ISL effect. -- Abstract: Isoliquiritigenin (ISL) has been known to induce cell cycle arrest and apoptosis of various cancer cells. However, genetic factors regulating ISL effects remain unclear. The aim of this study was to identify the molecular signatures involved in ISL-induced cell death of EBV-transformed lymphoblastoid cell lines (LCLs) using microarray analyses. For gene expression and microRNA (miRNA) microarray experiments, each of 12 LCL strains was independently treated with ISL or DMSO as a vehicle control for a day prior to total RNA extraction. ISL treatment inhibited cell proliferation of LCLs in a dose-dependent manner. Microarray analysis showed that ISL-treated LCLs represented gene expression changes in cell cycle and p53 signaling pathway, having a potential as regulators in LCL survival and sensitivity to ISL-induced cytotoxicity. In addition, 36 miRNAs including five miRNAs with unknown functions were differentially expressed in ISL-treated LCLs. The integrative analysis of miRNA and gene expression profiles revealed 12 putative mRNA-miRNA functional pairs. Among them, miR-1207-5p and miR-575 were negatively correlated with p53 pathway- and cell cycle-associated genes, respectively. In conclusion, our study suggests that miRNAs play an important role in ISL-induced cytotoxicity in LCLs by targeting signaling pathways including p53 pathway and cell cycle.

  14. Integrative proteomic profiling of ovarian cancer cell lines reveals precursor cell associated proteins and functional status

    Science.gov (United States)

    Coscia, F.; Watters, K. M.; Curtis, M.; Eckert, M. A.; Chiang, C. Y.; Tyanova, S.; Montag, A.; Lastra, R. R.; Lengyel, E.; Mann, M.

    2016-01-01

    A cell line representative of human high-grade serous ovarian cancer (HGSOC) should not only resemble its tumour of origin at the molecular level, but also demonstrate functional utility in pre-clinical investigations. Here, we report the integrated proteomic analysis of 26 ovarian cancer cell lines, HGSOC tumours, immortalized ovarian surface epithelial cells and fallopian tube epithelial cells via a single-run mass spectrometric workflow. The in-depth quantification of >10,000 proteins results in three distinct cell line categories: epithelial (group I), clear cell (group II) and mesenchymal (group III). We identify a 67-protein cell line signature, which separates our entire proteomic data set, as well as a confirmatory publicly available CPTAC/TCGA tumour proteome data set, into a predominantly epithelial and mesenchymal HGSOC tumour cluster. This proteomics-based epithelial/mesenchymal stratification of cell lines and human tumours indicates a possible origin of HGSOC either from the fallopian tube or from the ovarian surface epithelium. PMID:27561551

  15. Creation and characterization of a cell-death reporter cell line for hepatitis C virus infection

    Science.gov (United States)

    Chen, Zhilei; Simeon, Rudo; Chockalingam, Karuppiah; Rice, Charles M.

    2010-01-01

    The present study describes the creation and characterization of a hepatoma cell line, n4mBid, that supports all stages of the hepatitis C virus (HCV) life cycle and strongly reports HCV infection by a cell-death phenotype. The n4mBid cell line is derived from the highly HCV-permissive Huh-7.5 hepatoma cell line and contains a modified Bid protein (mBid) that is cleaved and activated by the HCV serine protease NS3-4A. N4mBid exhibited a 10–20 fold difference in cell viability between the HCV-infected and mock-infected states, while the parental Huh-7.5 cells showed <2 fold difference under the same conditions. The pronounced difference in n4mBid cell viability between the HCV- and mock-infected states in a 96-well plate format points to its usefulness in cell survival-based high-throughput screens for anti-HCV molecules. The degree of cell death was found to be proportional to the intracellular load of HCV. HCV-low n4mBid cells, expressing an anti-HCV short hairpin RNA, showed a significant growth advantage over naïve cells and could be rapidly enriched after HCV infection, suggesting the possibility of using n4mBid cells for the cell survival-based selection of genetic anti-HCV factors. PMID:20188762

  16. Characterization of hybrids between bovine (MDBK) and mouse (L-cell) cell lines.

    Science.gov (United States)

    Chinchar, V G; Floyd, A D; Chinchar, G D; Taylor, M W

    1979-02-01

    Hypoxanthine-guanine phosphoribosyltransferase (HGPRT)-deficient mutants of a bovine kidney cell line (MDBK) were selected following mutagenesis with ethylmethane sulfonate or ICR-170G. MDBK mutants were hybridized to thymidine kinase-deficient L cells and selected in HAT medium. Parental and hybrid cells were characterized for isozyme patterns of lactic dehydrogenase malate dehydrogenase, glucose-6-phosphate dehydrogenase, and glutamate oxalate transaminase. Chromosomes of MDBK can be distinguished from mouse L cells by configuration and by fluorescent staining with Hoechst 33-258 stain. Hybrid cells contained both MDBK and L-cell chromosomes and had elevated DNA content. MDBK cells are normally restrictive for mengovirus replication. Both permissive and restrictive hybrids were found. Our data indicate that there was preferential loss of MDBK chromosomes in the hybrid cell lines.

  17. Internalization of cystatin C in human cell lines.

    Science.gov (United States)

    Ekström, Ulf; Wallin, Hanna; Lorenzo, Julia; Holmqvist, Bo; Abrahamson, Magnus; Avilés, Francesc X

    2008-09-01

    Altered protease activity is considered important for tumour invasion and metastasis, processes in which the cysteine proteases cathepsin B and L are involved. Their natural inhibitor cystatin C is a secreted protein, suggesting that it functions to control extracellular protease activity. Because cystatins added to cell cultures can inhibit polio, herpes simplex and coronavirus replication, which are intracellular processes, the internalization and intracellular regulation of cysteine proteases by cystatin C should be considered. The extension, mechanism and biological importance of this hypothetical process are unknown. We investigated whether internalization of cystatin C occurs in a set of human cell lines. Demonstrated by flow cytometry and confocal microscopy, A-431, MCF-7, MDA-MB-453, MDA-MB-468 and Capan-1 cells internalized fluorophore-conjugated cystatin C when exposed to physiological concentrations (1 microm). During cystatin C incubation, intracellular cystatin C increased after 5 min and accumulated for at least 6 h, reaching four to six times the baseline level. Western blotting showed that the internalized inhibitor was not degraded. It was functionally intact and extracts of cells exposed to cystatin C showed a higher capacity to inhibit papain and cathepsin B than control cells (decrease in enzyme activity of 34% and 37%, respectively). The uptake of labelled cystatin C was inhibited by unlabelled inhibitor, suggesting a specific pathway for the internalization. We conclude that the cysteine protease inhibitor cystatin C is internalized in significant quantities in various cancer cell lines. This is a potentially important physiological phenomenon not previously described for this group of inhibitors.

  18. TIM-1 glycoprotein binds the adhesion receptor P-selectin and mediates T cell trafficking during inflammation and autoimmunity.

    Science.gov (United States)

    Angiari, Stefano; Donnarumma, Tiziano; Rossi, Barbara; Dusi, Silvia; Pietronigro, Enrica; Zenaro, Elena; Della Bianca, Vittorina; Toffali, Lara; Piacentino, Gennj; Budui, Simona; Rennert, Paul; Xiao, Sheng; Laudanna, Carlo; Casasnovas, Jose M; Kuchroo, Vijay K; Constantin, Gabriela

    2014-04-17

    Selectins play a central role in leukocyte trafficking by mediating tethering and rolling on vascular surfaces. Here we have reported that T cell immunoglobulin and mucin domain 1 (TIM-1) is a P-selectin ligand. We have shown that human and murine TIM-1 binds to P-selectin, and that TIM-1 mediates tethering and rolling of T helper 1 (Th1) and Th17, but not Th2 and regulatory T cells on P-selectin. Th1 and Th17 cells lacking the TIM-1 mucin domain showed reduced rolling in thrombin-activated mesenteric venules and inflamed brain microcirculation. Inhibition of TIM-1 had no effect on naive T cell homing, but it reduced T cell recruitment in a skin hypersensitivity model and blocked experimental autoimmune encephalomyelitis. Uniquely, the TIM-1 immunoglobulin variable domain was also required for P-selectin binding. Our data demonstrate that TIM-1 is a major P-selectin ligand with a specialized role in T cell trafficking during inflammatory responses and the induction of autoimmune disease.

  19. New model for gastroenteropancreatic large-cell neuroendocrine carcinoma: establishment of two clinically relevant cell lines.

    Directory of Open Access Journals (Sweden)

    Andreas Krieg

    Full Text Available Recently, a novel WHO-classification has been introduced that divided gastroenteropancreatic neuroendocrine neoplasms (GEP-NEN according to their proliferation index into G1- or G2-neuroendocrine tumors (NET and poorly differentiated small-cell or large-cell G3-neuroendocrine carcinomas (NEC. Our knowledge on primary NECs of the GEP-system is limited due to the rarity of these tumors and chemotherapeutic concepts of highly aggressive NEC do not provide convincing results. The aim of this study was to establish a reliable cell line model for NEC that could be helpful in identifying novel druggable molecular targets. Cell lines were established from liver (NEC-DUE1 or lymph node metastases (NEC-DUE2 from large cell NECs of the gastroesophageal junction and the large intestine, respectively. Morphological characteristics and expression of neuroendocrine markers were extensively analyzed. Chromosomal aberrations were mapped by array comparative genomic hybridization and DNA profiling was analyzed by DNA fingerprinting. In vitro and in vivo tumorigenicity was evaluated and the sensitivity against chemotherapeutic agents assessed. Both cell lines exhibited typical morphological and molecular features of large cell NEC. In vitr