WorldWideScience

Sample records for cell line glycoproteins

  1. Systemic alteration of cell-surface and secreted glycoprotein expression in malignant breast cancer cell lines

    OpenAIRE

    Timpe, Leslie C; Yen, Roger; Haste, Nicole V; Litsakos-Cheung, Christina; Yen, Ten-Yang; Macher, Bruce A

    2013-01-01

    Breast cancer cell lines express fewer transmembrane and secreted glycoproteins than nonmalignant ones. The objective of these experiments was to characterize the changes in the expression of several hundred glycoproteins quantitatively. Secreted and cell-surface glycoproteins were isolated using a glycoprotein capture protocol and then identified by tandem mass spectrometry. Glycoproteins expressed by a group of cell lines originating from malignant tumors of the breast were compared with th...

  2. Systemic alteration of cell-surface and secreted glycoprotein expression in malignant breast cancer cell lines.

    Science.gov (United States)

    Timpe, Leslie C; Yen, Roger; Haste, Nicole V; Litsakos-Cheung, Christina; Yen, Ten-Yang; Macher, Bruce A

    2013-11-01

    Breast cancer cell lines express fewer transmembrane and secreted glycoproteins than nonmalignant ones. The objective of these experiments was to characterize the changes in the expression of several hundred glycoproteins quantitatively. Secreted and cell-surface glycoproteins were isolated using a glycoprotein capture protocol and then identified by tandem mass spectrometry. Glycoproteins expressed by a group of cell lines originating from malignant tumors of the breast were compared with those expressed by a nonmalignant set. The average number of spectral counts (proportional to relative protein abundance) and the total number of glycopeptides in the malignant samples were reduced to about two-thirds of the level in the nonmalignant samples. Most glycoproteins were expressed at a different level in the malignant samples, with nearly as many increasing as decreasing. The glycoproteins with reduced expression accounted for a larger change in spectral counts, and hence for the net loss of spectral counts in the malignant lines. Similar results were found when the glycoproteins were studied via identified glycosylation sites only, or through identified sites together with non-glycopeptides. The overall reduction is largely due to the loss of integrins, laminins and other proteins that form or interact with the basement membrane.

  3. Dual regulation of P-glycoprotein expression by Trichostatin A in cancer cell lines

    Directory of Open Access Journals (Sweden)

    Balaguer Trinidad

    2012-07-01

    Full Text Available Abstract Background It has been reported that the histone deacetylase inhibitor (iHDAc trichostatin A (TSA induces an increase in MDR1 gene transcription (ABCB1. This result would compromise the use of iHDACs in combination with other cytotoxic agents that are substrates of P-glycoprotein (Pgp. It has also been reported the use of alternative promoters by the ABCB1 gene and the existence of a translational control of Pgp protein. Finally, the ABCB1 gene is located in a genetic locus with the nested gene RUNDC3B in the complementary DNA strand, raising the possibility that RUNDC3B expression could interfere with ABCB1 alternative promoter regulation. Methods A combination of RT-PCR, real time RT-PCR, Western blot and drug accumulation assays by flow cytometry has been used in this study. Results The iHDACs-induced increase in MDR1 mRNA levels is not followed by a subsequent increase in Pgp protein levels or activity in several pancreatic and colon carcinoma cell lines, suggesting a translational control of Pgp in these cell lines. In addition, the MDR1 mRNA produced in these cell lines is shorter in its 5′ end that the Pgp mRNA produced in cell lines expressing Pgp protein. The different size of the Pgp mRNA is due to the use of alternative promoters. We also demonstrate that these promoters are differentially regulated by TSA. The translational blockade of Pgp mRNA in the pancreatic carcinoma cell lines could be related to alterations in the 5′ end of the MDR1 mRNA in the Pgp protein expressing cell lines. In addition, we demonstrate that the ABCB1 nested gene RUNDC3B expression although upregulated by TSA is independent of the ABCB1 alternative promoter used. Conclusions The results show that the increase in MDR1 mRNA expression after iHDACs treatment is clinically irrelevant since this mRNA does not render an active Pgp protein, at least in colon and pancreatic cancer cell lines. Furthermore, we demonstrate that TSA in fact, regulates

  4. Glycoprotein on cell surfaces

    International Nuclear Information System (INIS)

    Muramatsu, T.

    1975-01-01

    There are conjugated polysaccharides in cell membranes and outside of animal cells, and they play important role in the control of cell behavior. In this paper, the studies on the glycoprotein on cell surfaces are reported. It was found that the glycoprotein on cell surfaces have both N-glycoside type and O-glycoside type saccharic chains. Therefore it can be concluded that the basic structure of the saccharic chains in the glycoprotein on cell surfaces is similar to that of blood serum and body fluid. The main glycoprotein in the membranes of red blood corpuscles has been studied most in detail, and it also has both types of saccharic chains. The glycoprotein in liver cell membranes was found to have only the saccharic chains of acid type and to be in different pattern from that in endoplasmic reticula and nuclear membranes, which also has the saccharic chains of neutral type. The structure of the saccharic chains of H-2 antigen, i.e. the peculiar glycoprotein on the surfaces of lymph system cells, has been studied, and it is similar to the saccharic chains of glycoprotein in blood serum. The saccharic chain structures of H-2 antigen and TL antigen are different. TL, H-2 (D), Lna and H-2 (K) are the glycoprotein on cell surfaces, and are independent molecules. The analysis of the saccharic chain patterns on cell surfaces was carried out, and it was shown that the acid type saccharic chains were similar to those of ordinary glycoprotein, because the enzyme of pneumococci hydrolyzed most of the acid type saccharic chains. The change of the saccharic chain patterns of glycoprotein on cell surfaces owing to canceration and multiplication is complex matter. (Kako, I.)

  5. Resistance to paclitaxel in a cisplatin-resistant ovarian cancer cell line is mediated by P-glycoprotein.

    Directory of Open Access Journals (Sweden)

    Britta Stordal

    Full Text Available The IGROVCDDP cisplatin-resistant ovarian cancer cell line is also resistant to paclitaxel and models the resistance phenotype of relapsed ovarian cancer patients after first-line platinum/taxane chemotherapy. A TaqMan low-density array (TLDA was used to characterise the expression of 380 genes associated with chemotherapy resistance in IGROVCDDP cells. Paclitaxel resistance in IGROVCDDP is mediated by gene and protein overexpression of P-glycoprotein and the protein is functionally active. Cisplatin resistance was not reversed by elacridar, confirming that cisplatin is not a P-glycoprotein substrate. Cisplatin resistance in IGROVCDDP is multifactorial and is mediated in part by the glutathione pathway and decreased accumulation of drug. Total cellular glutathione was not increased. However, the enzyme activity of GSR and GGT1 were up-regulated. The cellular localisation of copper transporter CTR1 changed from membrane associated in IGROV-1 to cytoplasmic in IGROVCDDP. This may mediate the previously reported accumulation defect. There was decreased expression of the sodium potassium pump (ATP1A, MRP1 and FBP which all have been previously associated with platinum accumulation defects in platinum-resistant cell lines. Cellular localisation of MRP1 was also altered in IGROVCDDP shifting basolaterally, compared to IGROV-1. BRCA1 was also up-regulated at the gene and protein level. The overexpression of P-glycoprotein in a resistant model developed with cisplatin is unusual. This demonstrates that P-glycoprotein can be up-regulated as a generalised stress response rather than as a specific response to a substrate. Mechanisms characterised in IGROVCDDP cells may be applicable to relapsed ovarian cancer patients treated with frontline platinum/taxane chemotherapy.

  6. Temozolomide Resistance in Glioblastoma Cell Lines: Implication of MGMT, MMR, P-Glycoprotein and CD133 Expression

    Science.gov (United States)

    Prados, Jose; Caba, Octavio; Cabeza, Laura; Berdasco, Maria; Gónzalez, Beatriz; Melguizo, Consolación

    2015-01-01

    Background The use of temozolomide (TMZ) has improved the prognosis for glioblastoma multiforme patients. However, TMZ resistance may be one of the main reasons why treatment fails. Although this resistance has frequently been linked to the expression of O6-methylguanine-DNA methyltransferase (MGMT) it seems that this enzyme is not the only molecular mechanism that may account for the appearance of drug resistance in glioblastoma multiforme patients as the mismatch repair (MMR) complex, P-glycoprotein, and/or the presence of cancer stem cells may also be implicated. Methods Four nervous system tumor cell lines were used to analyze the modulation of MGMT expression and MGMT promoter methylation by TMZ treatment. Furthermore, 5-aza-2’-deoxycytidine was used to demethylate the MGMT promoter and O(6)-benzylguanine to block GMT activity. In addition, MMR complex and P-glycoprotein expression were studied before and after TMZ exposure and correlated with MGMT expression. Finally, the effect of TMZ exposure on CD133 expression was analyzed. Results Our results showed two clearly differentiated groups of tumor cells characterized by low (A172 and LN229) and high (SF268 and SK-N-SH) basal MGMT expression. Interestingly, cell lines with no MGMT expression and low TMZ IC50 showed a high MMR complex expression, whereas cell lines with high MGMT expression and high TMZ IC50 did not express the MMR complex. In addition, modulation of MGMT expression in A172 and LN229 cell lines was accompanied by a significant increase in the TMZ IC50, whereas no differences were observed in SF268 and SK-N-SH cell lines. In contrast, P-glycoprotein and CD133 was found to be unrelated to TMZ resistance in these cell lines. Conclusions These results may be relevant in understanding the phenomenon of TMZ resistance, especially in glioblastoma multiforme patients laking MGMT expression, and may also aid in the design of new therapeutic strategies to improve the efficacy of TMZ in glioblastoma

  7. ENERGY-DEPENDENT PROCESSES INVOLVED IN REDUCED DRUG ACCUMULATION IN MULTIDRUG-RESISTANT HUMAN LUNG-CANCER CELL-LINES WITHOUT P-GLYCOPROTEIN EXPRESSION

    NARCIS (Netherlands)

    VERSANTVOORT, CHM; BROXTERMAN, HJ; PINEDO, HM; DEVRIES, EGE; FELLER, N; KUIPER, CM; LANKELMA, J

    1992-01-01

    Mechanisms contributing to reduced cytotoxic drug accumulation were studied in two multidrug-resistant (MDR) human lung cancer cell lines without P-glycoprotein expression. In these (non-small cell) SW-1573/ 2R120 and (small cell) GLC4/ADR MDR cells, the steady-state accumulation of

  8. Strategies to Suspension Serum-Free Adaptation of Mammalian Cell Lines for Recombinant Glycoprotein Production.

    Science.gov (United States)

    Caron, Angelo Luis; Biaggio, Rafael Tagé; Swiech, Kamilla

    2018-01-01

    Serum-free suspension cultures are preferably required for recombinant protein production due to its readiness in upstream/downstream processing and scale-up, therefore increasing process productivity and competitiveness. This type of culture replaces traditional cell culturing as the presence of animal-derived components may introduce lot-a-lot variability and adventitious pathogens to the process. However, adapting cells to serum-free conditions is challenging, time-consuming, and cell line and medium dependent. In this chapter, we present different approaches that can be used to adapt mammalian cell lines from an anchorage-dependent serum supplemented culture to a suspension serum-free culture.

  9. The inhibitory and combinative mechanism of HZ08 with P-glycoprotein expressed on the membrane of Caco-2 cell line

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yanyan; Hu, Yahui; Feng, Yidong; Kodithuwakku, Nandani Darshika; Fang, Weirong [State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Nanjing 210009 (China); Li, Yunman, E-mail: yunmanlicpu@hotmail.com [State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Nanjing 210009 (China); Huang, Wenlong [Center of Drug Discovery, China Pharmaceutical University, Nanjing 210009 (China)

    2014-01-15

    Recently, the research and development of agents to reverse the phenomenon of multidrug resistance has been an attractive goal as well as a key approach to elevating the clinical survival of cancer patients. Although three generations of P-glycoprotein modulators have been identified, poor clearance and metabolism render these agents too toxic to be used in clinical application. HZ08, which has been under investigation for several years, shows a dramatic reversal effect with low cytotoxicity. For the first time, we aimed to describe the interaction between HZ08 and P-glycoprotein in Caco-2 cell line in which P-glycoprotein is overexpressed naturally. Cytotoxicity and multidrug resistance reversal assays, together with flow cytometry, fluorescence microscopy and siRNA interference as well as Caco-2 monolayer transport model were employed in this study to evaluate the interaction between HZ08 and P-glycoprotein. This study revealed that HZ08 was capable of reversing adriamycin resistance mediated by P-glycoprotein as a result of intracellular enhancement of adriamycin accumulation, which was found to be superior to verapamil. In addition, we confirmed that HZ08 suppressed the transport of Rhodamine123 in the Caco-2 monolayer model but had little effect on P-glycoprotein expression. The transport of HZ08 was diminished by P-glycoprotein inhibitors (verapamil and LY335979) and its accumulation was increased via siRNA targeting MDR1 in Caco-2 cells. Furthermore, considering the binding site of P-glycoprotein, verapamil performed as a competitive inhibitor with HZ08. In conclusion, as a P-glycoprotein substrate, HZ08 inhibited P-glycoprotein activity and may share the same binding site of verapamil to P-glycoprotein. - Highlights: • The cytotoxicity and reversing effect of HZ08 was measured in Caco-2 cell line. • HZ08 inhibited the transport of Rhodamine123 across Caco-2 cell monolayer. • The efflux ratio of HZ08 was dropped when combined with P-glycoprotein

  10. P-Glycoprotein inhibitory activity of lipophilic constituents of Echinacea pallida roots in a human proximal tubular cell line.

    Science.gov (United States)

    Romiti, Nadia; Pellati, Federica; Nieri, Paola; Benvenuti, Stefania; Adinolfi, Barbara; Chieli, Elisabetta

    2008-02-01

    The N-hexane root extracts from Echinacea pallida, Echinacea angustifolia and Echinacea purpurea were evaluated for inhibition of the multidrug transporter P-glycoprotein (Pgp) activity, the product of the ABCB1 gene, involved in cancer multidrug resistance (MDR) and in herb-drug or drug-drug interactions. The biological assay was performed using the human proximal tubule HK-2 cell line that constitutively expresses ABCB1. The N-hexane extracts of all three species reduced the efflux of the Pgp probe calcein-AM from HK-2 cells two-fold in a concentration-dependent manner, and E. pallida was found to be the most active species. For the first time, two polyacetylenes and three polyenes, isolated from the N-hexane extract of E. pallida roots by a bioassay-guided fractionation, were found to be able to reduce Pgp activity. Pentadeca-(8 Z,13 Z)-dien-11-yn-2-one was the most efficient compound, being able to decrease the calcein-AM efflux about three-fold with respect to the control at 30 microg/mL.

  11. Alpha-2 Heremans Schmid Glycoprotein (AHSG) Modulates Signaling Pathways in Head and Neck Squamous Cell Carcinoma Cell Line SQ20B

    International Nuclear Information System (INIS)

    Thompson, Pamela D.; Sakwe, Amos; Koumangoye, Rainelli; Yarbrough, Wendell G.; Ochieng, Josiah; Marshall, Dana R.

    2014-01-01

    This study was performed to identify the potential role of Alpha-2 Heremans Schmid Glycoprotein (AHSG) in Head and Neck Squamous Cell Carcinoma (HNSCC) tumorigenesis using an HNSCC cell line model. HNSCC cell lines are unique among cancer cell lines, in that they produce endogenous AHSG and do not rely, solely, on AHSG derived from serum. To produce our model, we performed a stable transfection to down-regulate AHSG in the HNSCC cell line SQ20B, resulting in three SQ20B sublines, AH50 with 50% AHSG production, AH20 with 20% AHSG production and EV which is the empty vector control expressing wild-type levels of AHSG. Utilizing these sublines, we examined the effect of AHSG depletion on cellular adhesion, proliferation, migration and invasion in a serum-free environment. We demonstrated that sublines EV and AH50 adhered to plastic and laminin significantly faster than the AH20 cell line, supporting the previously reported role of exogenous AHSG in cell adhesion. As for proliferative potential, EV had the greatest amount of proliferation with AH50 proliferation significantly diminished. AH20 cells did not proliferate at all. Depletion of AHSG also diminished cellular migration and invasion. TGF-β was examined to determine whether levels of the TGF-β binding AHSG influenced the effect of TGF-β on cell signaling and proliferation. Whereas higher levels of AHSG blunted TGF-β influenced SMAD and ERK signaling, it did not clearly affect proliferation, suggesting that AHSG influences on adhesion, proliferation, invasion and migration are primarily due to its role in adhesion and cell spreading. The previously reported role of AHSG in potentiating metastasis via protecting MMP-9 from autolysis was also supported in this cell line based model system of endogenous AHSG production in HNSCC. Together, these data show that endogenously produced AHSG in an HNSCC cell line, promotes in vitro cellular properties identified as having a role in tumorigenesis. Highlights: • Head

  12. Alpha-2 Heremans Schmid Glycoprotein (AHSG) Modulates Signaling Pathways in Head and Neck Squamous Cell Carcinoma Cell Line SQ20B

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Pamela D.; Sakwe, Amos [Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN 37208 (United States); Koumangoye, Rainelli [Division of Surgical Oncology and Endocrine Surgery, Vanderbilt University Medical Center, Nashville, TN 37232 (United States); Yarbrough, Wendell G. [Division of Otolaryngology, Departments of Surgery and Pathology and Yale Cancer Center, Yale University, New Haven, CT 06520 (United States); Ochieng, Josiah [Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN 37208 (United States); Marshall, Dana R., E-mail: dmarshall@mmc.edu [Department of Pathology, Anatomy and Cell Biology, Meharry Medical College, Nashville, TN 37208 (United States)

    2014-02-15

    This study was performed to identify the potential role of Alpha-2 Heremans Schmid Glycoprotein (AHSG) in Head and Neck Squamous Cell Carcinoma (HNSCC) tumorigenesis using an HNSCC cell line model. HNSCC cell lines are unique among cancer cell lines, in that they produce endogenous AHSG and do not rely, solely, on AHSG derived from serum. To produce our model, we performed a stable transfection to down-regulate AHSG in the HNSCC cell line SQ20B, resulting in three SQ20B sublines, AH50 with 50% AHSG production, AH20 with 20% AHSG production and EV which is the empty vector control expressing wild-type levels of AHSG. Utilizing these sublines, we examined the effect of AHSG depletion on cellular adhesion, proliferation, migration and invasion in a serum-free environment. We demonstrated that sublines EV and AH50 adhered to plastic and laminin significantly faster than the AH20 cell line, supporting the previously reported role of exogenous AHSG in cell adhesion. As for proliferative potential, EV had the greatest amount of proliferation with AH50 proliferation significantly diminished. AH20 cells did not proliferate at all. Depletion of AHSG also diminished cellular migration and invasion. TGF-β was examined to determine whether levels of the TGF-β binding AHSG influenced the effect of TGF-β on cell signaling and proliferation. Whereas higher levels of AHSG blunted TGF-β influenced SMAD and ERK signaling, it did not clearly affect proliferation, suggesting that AHSG influences on adhesion, proliferation, invasion and migration are primarily due to its role in adhesion and cell spreading. The previously reported role of AHSG in potentiating metastasis via protecting MMP-9 from autolysis was also supported in this cell line based model system of endogenous AHSG production in HNSCC. Together, these data show that endogenously produced AHSG in an HNSCC cell line, promotes in vitro cellular properties identified as having a role in tumorigenesis. Highlights: • Head

  13. Comparison of P-glycoprotein expression in cell lines and xenogragraft sections using I-125 MRK-16 monoclonal antibody (MAB)

    Energy Technology Data Exchange (ETDEWEB)

    Mehta, B.M.; Kostakoglu, L.; Levchenko, A. [Kettering Cancer, New York, NY (United States)] [and others

    1994-05-01

    P-glycoprotein (Pgp) is known to be associated with multidrug resistance (MDR). Quantitation of P-glycoprotein expression may permit appropriate therapy depending on Pgp expression in tumors. The present study was undertaken to evaluate the utility of quantitative autoradiography (QAR) in the quantification of MDR using MRK-16, a murine IgG mAb reactive against Pgp. Balb/c mice were xenografted with colchicine resistant BE(2)C/CHC cells. Animals with established tumors were sacrificed, and 8 {mu}m tumor sections were prepared. Mab MRK-16 was labeled with I-125 (150 {mu}Ci/0.625 nmole) by the iodogen method and subsequently purified by size exclusion chromatography. Consecutive tumor sections were incubated overnight at 4{degrees}C with serial dilutions of I-125 MRK-16. Similarly cell suspensions containing 1 X 10{sup 7} cells per ml were also incubated with serial dilutions. QAR analysis of tissue sections of BE(2)C/CHC tumors growing as xenografts in nude mice, determined the binding affinity (K{sub a}) for MRK-16 to be 1 x 10{sup 9} L/M and the number of binding sites (B{sub max}) to be 137, 700 per cell (222 picomols/g); it compared very well with the K{sub a} value of 5 x 10{sup 8} L/M and the B{sub max} value of 130,000 per cell (217 picomols/g) obtained from binding analysis with cell suspensions.

  14. Down-regulation of P-glycoprotein is associated with resistance to cisplatin and VP-16 in human lung cancer cell lines.

    Science.gov (United States)

    Wang, Jiarui; Wang, Huiling; Zhao, Long; Fan, Sufang; Yang, Zhonghai; Gao, Fei; Chen, Lixia; Xiao, Gary Guishan; Molnár, Joseph; Wang, Qi

    2010-09-01

    To investigate whether down-regulation of P-glycoprotein (P-gp) is correlated to resistance to cisplatin and VP-16 in four histopathological subtype cell lines of lung cancer (SK-MES-1, SPCA-1, NCI-H-460 and NCI-H-446). After pretreatment with or without verapamil, the P-gp expression was examined by means of RT-PCR and immunofluorescence. Cell survival on treatment with cisplatin and VP-16 was determined by MTT assay. The expression of P-gp was clearly inhibited by verapamil in all four cell lines. Following pretreatment with verapamil, NCI-H-446 was more sensitive to cisplatin, while SPCA-1, NCI-H-460 and NCI-H-446 were more sensitive to VP-16 compared to the control. Down-regulation of P-gp is associated with intrinsic resistance to cisplatin in the NCI-H-446 and to VP-16 in SPCA-1, NCI-H-460 and NCI-H-446 cell lines. These findings indicate that down-regulation of P-gp may be helpful for the reversion of drug resistance in some lung cancer cell line subtypes.

  15. Expression of the glycoprotein of viral haemorrhagic septicaemia virus (VHSV) on the surface of the fish cell line RTG-P1 induces type 1 interferon expression in neighbouring cells

    DEFF Research Database (Denmark)

    Acosta, F.; Collet, B.; Lorenzen, Niels

    2006-01-01

    In the present study using a luciferase/Mx promoter reporter system, it was shown that the rainbow trout gonad cell line (RTG-P1), a fibroblastic cell line, produces IFN when transfected with a plasmid encoding the glycoprotein of VHSV but not with plasmid vector alone. Only a small percentage...... of the cells expressed the G protein on the surface membrane as indicated by immunostaining of transfected cells. When transfection was performed in the presence of monoclonal antibodies (Mab) to the glycoprotein, the production of interferon mRNA transcripts was reduced by over 50%. This indicates...... that the surface expression of G protein was the major mechanism of interferon induction and that most of the interferon was being expressed by cells neighbouring the transfected cells. Crown...

  16. IPEC-J2 MDR1, a Novel High-Resistance Cell Line with Functional Expression of Human P-glycoprotein (ABCB1) for Drug Screening Studies

    DEFF Research Database (Denmark)

    Saaby, Lasse; Helms, Hans Christian Cederberg; Brodin, Birger

    2016-01-01

    The P-glycoprotein (P-gp) efflux pump has been shown to affect drug distribution and absorption in various organs and to cause drug resistance in cancer therapy. The aim of this work was to develop a cell line to serve as a screening system for potential substrates of P-gp. This requires a cell...... line with high paracellular tightness, low expression of nonhuman ABC transporters, and high expression of functional human P-gp (ABCB1). The porcine intestinal epithelial cell line, IPEC-J2, was selected as a transfection host, due to its ability to form extremely high-resistance monolayers (>10,000 Ω......·cm(2)) and its low endogenous expression of ABC-type efflux transporters. The IPEC-J2 cells were transfected with a plasmid that contained the sequence of the human MDR1 gene, which encodes P-gp, followed by a selection of successfully transfected cells with geneticin and puromycin. The resulting cell...

  17. Effect of three fatty acids from the leaf extract of Tiliacora triandra on P-glycoprotein function in multidrug-resistant A549RT-eto cell line.

    Science.gov (United States)

    Kaewpiboon, Chutima; Winayanuwattikun, Pakorn; Yongvanich, Tikamporn; Phuwapraisirisan, Preecha; Assavalapsakul, Wanchai

    2014-08-01

    Cancer cells have the ability to develop resistance to chemotherapy drugs, which then leads to a reduced effectiveness and success of the treatment. Multidrug resistance (MDR) involves the resistance in the same cell/tissue to a diverse range of drugs of different structures. One of the characteristics of MDR is an overexpression of P-glycoprotein (P-gp), which causes the efflux of the accumulated drug out of the cell. The MDR human non-small cell lung carcinoma cell line with a high P-gp expression level (A549RT-eto) was used to investigate the bioactive compounds capable of reversing the etoposide resistance in this cell line. The leaves of Tiliacora triandra were sequentially extracted with hexane, dichloromethane, methanol and water. Only the hexane extract reduced the etoposide resistance of the A549RT-eto cell line, and was further fractionated by column chromatography using the TLC-pattern and the restoration of etoposide sensitivity as the selection criteria. The obtained active fraction (F22) was found by nuclear magnetic resonance and gas chromatography-mass spectroscopy analyses to be comprised of a 49.5:19.6:30.9 (w/w/w) mixture of hexadecanoic: octadecanoic acid: (Z)-6-octadecenoic acids. This stoichiometric mixture was recreated using pure fatty acids (MSFA) and gave a similar sensitization to etoposide and enhanced the relative rate of rhodamine-123 accumulation to a similar extent as F22, supporting the action via reducing P-gp activity. In contrast, the fatty acids alone did not show this effect. This is the first report of the biological activity from the leaves of T. triandra as a potential source of a novel chemosensitizer.

  18. CRISPR/Cas9, a new approach to successful knockdown of ABCB1/P-glycoprotein and reversal of chemosensitivity in human epithelial ovarian cancer cell line

    Directory of Open Access Journals (Sweden)

    Leyla Norouzi-Barough

    2018-02-01

    Full Text Available Objective(s: Multidrug resistance (MDR is a major obstacle in the successful chemotherapy of ovarian cancer. Inhibition of P-glycoprotein (P-gp, a member of ATP-binding cassette (ABC transporters, is a well-known strategy to overcome MDR in cancer. The aim of this study was to investigate the efficiency and ability of CRISPR/Cas9 genome editing technology to knockdown ABCB1 gene expression in adriamycin resistant (A2780/ADR ovarian cancer cell line and evaluate the sensitivity changes to doxorubicin. Materials and Methods: Three single-guide RNAs (sgRNAs targeting the fourth and fifth exons of human ABCB1 gene were designed in this study. Expression level of ABCB1 was detected using quantitative real time PCR (qRT-PCR after co-transfection of all three sgRNAs into A2780/ADR cell line and subsequent antibiotic selection. Drug sensitivity to doxorubicin was determined by the 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay. Results: The results showed that CRISPR/Cas9 system could significantly reduce the expression of P-gp. The dramatic decline in ABCB1 gene expression was associated with increased sensitivity of cells transfected with sgRNAs to doxorubicin. Conclusion: Based on the results of this study, it is concluded that the CRISPR-based systems, used in the present study, effectively down-regulated the target gene and acted as an ideal and cost-effective tool for gene editing of A2780/ADR cell line resulting in restoration of nonmalignant phenotype.

  19. Effects of PEMF on a murine osteosarcoma cell line: drug-resistant (P-glycoprotein-positive) and non-resistant cells.

    Science.gov (United States)

    Miyagi, N; Sato, K; Rong, Y; Yamamura, S; Katagiri, H; Kobayashi, K; Iwata, H

    2000-02-01

    After pulsed exposure of Dunn osteosarcoma cells (nonresistant cells) to Adriamycin (ADR) at increasing concentrations and single-cell cloning of surviving cells, ADR-resistant cells were obtained. These resistant cells expressed P-glycoprotein and had resistance more than 10 times that of their nonresistant parent cells. Compared to the nonresistant cells not exposed to pulsing electromagnetic fields (PEMF) in ADR-free medium, their growth rates at ADR concentrations of 0.01 and 0.02 micrograms/ml, which were below IC50, were 83.0% and 61.8%, respectively. On the other hand, in the nonresistant cells exposed to PEMF (repetition frequency, 10 Hz; rise time, 25 microsec, peak magnetic field intensity, 0.4-0.8 mT), the growth rate was 111.9% in ADR-free medium, 95.5% at an ADR concentration of 0.01 micrograms/ml, and 92.2% at an ADR concentration of 0.02 micrograms/ml. This promotion of growth by PEMF is considered to be a result of mobilization of cells in the non-proliferative period of the cell cycle due to exposure to PEMF. However, at ADR concentrations above the IC50, the growth rate tended to decrease in the cells not exposed to PEMF. This may be caused by an increase in cells sensitive to ADR resulting from mobilization of cells in the non-proliferative period to the cell cycle. The growth rate in the resistant cells exposed to PEMF was significantly lower than that in the non-exposed resistant cells at all ADR concentrations, including ADR-free culture (PPEMF promotes the growth of undifferentiated cells but progressively suppresses the growth of more differentiated cells, i.e., PEMF controls cell growth depending on the degree of cell differentiation. This study also shows the potentiality of PEMF as an adjunctive treatment method for malignant tumors. Copyright 2000 Wiley-Liss, Inc.

  20. Jatrophane diterpenoids from the latex of Euphorbia dendroides and their anti-P-glycoprotein activity in human multi-drug resistant cancer cell lines.

    Science.gov (United States)

    Jadranin, Milka; Pešić, Milica; Aljančić, Ivana S; Milosavljević, Slobodan M; Todorović, Nina M; Podolski-Renić, Ana; Banković, Jasna; Tanić, Nikola; Marković, Ivanka; Vajs, Vlatka E; Tešević, Vele V

    2013-02-01

    Thirteen jatrophane diterpenoids (1-10, 13-15), three previously isolated (11, 12, 16) and a known tigliane (17) were isolated from the latex of Euphorbia dendroides. The structures and relative configurations of compounds were elucidated by spectroscopic techniques. The P-glycoprotein (P-gp) inhibiting activities of the representative set of jatrophanes (1-6 and 11-16) have been assessed. Jatrophanes 2 and 5 demonstrated the most powerful inhibition of P-gp, higher than R(+)-verapamil and tariquidar in colorectal multi-drug resistant (MDR) cells (DLD1-TxR). Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Engineered CHO cells for production of diverse, homogeneous glycoproteins

    DEFF Research Database (Denmark)

    Yang, Zhang; Wang, Shengjun; Halim, Adnan

    2015-01-01

    Production of glycoprotein therapeutics in Chinese hamster ovary (CHO) cells is limited by the cells' generic capacity for N-glycosylation, and production of glycoproteins with desirable homogeneous glycoforms remains a challenge. We conducted a comprehensive knockout screen of glycosyltransferase...

  2. Glycoprotein component of plant cell walls

    International Nuclear Information System (INIS)

    Cooper, J.B.; Chen, J.A.; Varner, J.E.

    1984-01-01

    The primary wall surrounding most dicotyledonous plant cells contains a hydroxyproline-rich glycoprotein (HRGP) component named extensin. A small group of glycopeptides solubilized from isolated cell walls by proteolysis contained a repeated pentapeptide glycosylated by tri- and tetraarabinosides linked to hydroxyproline and, by galactose, linked to serine. Recently, two complementary approaches to this problem have provided results which greatly increase the understanding of wall extensin. In this paper the authors describe what is known about the structure of soluble extensin secreted into the walls of the carrot root cells

  3. Pneumocystis carinii major surface glycoprotein induces interleukin-8 and monocyte chemoattractant protein-1 release from a human alveolar epithelial cell line

    DEFF Research Database (Denmark)

    Benfield, T L; Lundgren, Bettina; Shelhamer, J H

    1999-01-01

    (IL-8) and monocyte chemoattractant protein-1 (MCP-1) from an alveolar epithelial cell line (A549). RESULTS: Incubation of A549 cells with MSG in concentrations from 0.4 to 10 microg mL-1 for 24 h caused dose-dependent increases in IL-8 release (3.4-fold above control, P ..., suggesting that MSG stimulates A549 cells in part through carbohydrate moieties. Dexamethasone significantly inhibited MSG-induced IL-8 release in concentrations of 10-6-10-8 mol L-1 compared with control experiments (P

  4. An unusual dependence of human herpesvirus-8 glycoproteins-induced cell-to-cell fusion on heparan sulfate

    International Nuclear Information System (INIS)

    Tiwari, Vaibhav; Darmani, Nissar A.; Thrush, Gerald R.; Shukla, Deepak

    2009-01-01

    Human herpesvirus-8 (HHV-8) is known to interact with cell surface heparan sulfate (HS) for entry into a target cell. Here we investigated the role of HS during HHV-8 glycoproteins-induced cell fusion. Interestingly, the observed fusion demonstrated an unusual dependence on HS as evident from following lines of evidence: (1) a significant reduction in cell-to-cell fusion occurred when target cells were treated with heparinase; (2) in a competition assay, when the effector cells expressing HHV-8 glycoproteins were challenged with soluble HS, cell-to-cell fusion was reduced; and, (3) co-expression of HHV-8 glycoproteins gH-gL on target cells resulted in inhibition of cell surface HS expression. Taken together, our results indicate that cell surface HS can play an additional role during HHV-8 pathogenesis.

  5. Expression of glycoprotein VI in vascular endothelial cells.

    Science.gov (United States)

    Sun, Bing; Tao, Lian; Lin, Shihua; Calingasan, Noel Y; Li, Jess; Tandon, Narendra N; Yoshitake, Masuhiro; Kambayashi, Jun-ichi

    2003-06-01

    Glycoprotein (GP) VI, a collagen receptor, plays a important role in collagen-mediated platelet aggregation and adhesion. To date, GPVI expression has been found only in platelets and megakaryocytes. In the present studies, we have demonstrated that GPVI was also expressed in cultured human umbilical vein endothelial cells (HUVEC) at both transcript and protein levels. Using a GPVI-specific probe, a approximately 6-kb band was detected in HUVEC as well as in platelets and megakaryoblastic cell lines by Northern blotting. Using polyclonal antibodies raised against platelet GPVI peptides, the same size band (57 kDa) was labeled with convulxin (CVX) after immuo-precipitation in both HUVEC and platelet lysates. In addition, a approximately 70-kDa band was also labeled in HUVEC. Surface expression of GPVI in HUVEC was confirmed by flow cytometry with GPVI-specific IgG or by direct labeling with FITC-conjugated CVX. Since HUVEC lack FcRgamma chain that forms complex with GPVI in platelets for signaling process, the function of GPVI in vascular endothelial cells remains to be determined.

  6. Glucocorticoid-regulated and constitutive trafficking of proteolytically processed cell surface-associated glycoproteins in wild type and variant rat hepatoma cells

    International Nuclear Information System (INIS)

    Amacher, S.L.; Goodman, L.J.; Bravo, D.A.; Wong, K.Y.; Goldfine, I.D.; Hawley, D.M.; Firestone, G.L.

    1989-01-01

    Glucocorticoids regulate the trafficking of mouse mammary tumor virus (MMTV) glycoproteins to the cell surface in the rat hepatoma cell line M1.54, but not in the immunoselected sorting variant CR4. To compare the localization of MMTV glycoproteins to another proteolytically processed glycoprotein, both wild type M1.54 cells and variant CR4 cells were transfected with a human insulin receptor (hIR) expression vector, pRSVhIR. The production of cell surface hIR was monitored in dexamethasone-treated and -untreated wild type M1.54 and variant CR4 cells by indirect immunofluorescence, direct plasma membrane immunoprecipitation, and by [125I] insulin binding. In both wild type and variant rat hepatoma cells, hIR were localized at the cell surface in the presence or in the absence of 1 microM dexamethasone. In contrast, the glucocorticoid-regulated trafficking of cell surface MMTV glycoproteins occurred only in wild type M1.54 cells. We conclude that the hIR, which undergoes posttranslational processing reactions similar to MMTV glycoproteins, does not require glucocorticoids to be transported to the plasma membrane and is representative of a subset of cell surface glycoproteins whose trafficking is constitutive in rat hepatoma cells. Thus, MMTV glycoproteins and hIR provide specific cell surface markers to characterize the glucocorticoid-regulated and constitutive sorting pathways

  7. Comparison of western blot analysis and immunocytochemical detection of P-glycoprotein in multidrug resistant cells.

    OpenAIRE

    Friedlander, M L; Bell, D R; Leary, J; Davey, R A

    1989-01-01

    A sensitive immunocytochemical technique was developed to detect a 170,000 dalton cell membrane glycoprotein (P-gp) in cell lines resistant to vincristine and vinblastine with varying degrees of resistance. P-gp was shown very clearly using the C219 monoclonal antibody and immunocytochemical detection with either antialkaline phosphate or peroxidase-antiperoxidase with silver gold intensification. There was good correlation between the results obtained with immunocytochemical detection of P-g...

  8. A novel baculovirus vector for the production of nonfucosylated recombinant glycoproteins in insect cells

    Science.gov (United States)

    Mabashi-Asazuma, Hideaki; Kuo, Chu-Wei; Khoo, Kay-Hooi; Jarvis, Donald L

    2014-01-01

    Glycosylation is an important attribute of baculovirus-insect cell expression systems, but some insect cell lines produce core α1,3-fucosylated N-glycans, which are highly immunogenic and render recombinant glycoproteins unsuitable for human use. To address this problem, we exploited a bacterial enzyme, guanosine-5′-diphospho (GDP)-4-dehydro-6-deoxy-d-mannose reductase (Rmd), which consumes the GDP-l-fucose precursor. We expected this enzyme to block glycoprotein fucosylation by blocking the production of GDP-l-fucose, the donor substrate required for this process. Initially, we engineered two different insect cell lines to constitutively express Rmd and isolated subclones with fucosylation-negative phenotypes. However, we found the fucosylation-negative phenotypes induced by Rmd expression were unstable, indicating that this host cell engineering approach is ineffective in insect systems. Thus, we constructed a baculovirus vector designed to express Rmd immediately after infection and facilitate the insertion of genes encoding any glycoprotein of interest for expression later after infection. We used this vector to produce a daughter encoding rituximab and found, in contrast to an Rmd-negative control, that insect cells infected with this virus produced a nonfucosylated form of this therapeutic antibody. These results indicate that our Rmd+ baculoviral vector can be used to solve the immunogenic core α1,3-fucosylation problem associated with the baculovirus-insect cell system. In conjunction with existing glycoengineered insect cell lines, this vector extends the utility of the baculovirus-insect cell system to include therapeutic glycoprotein production. This new vector also extends the utility of the baculovirus-insect cell system to include the production of recombinant antibodies with enhanced effector functions, due to its ability to block core α1,6-fucosylation. PMID:24362443

  9. Humanizing recombinant glycoproteins from Chinese hamster ovary cells

    DEFF Research Database (Denmark)

    Hansen, Anders Holmgaard; Amann, Thomas; Kol, Stefan

    hamster ovary (CHO) cells are making a very heterogeneous mixture of NGlycans. We speculate that the CHO pattern of N-Glycans would affect half-life and/or efficacy of the glycoprotein in the bloodstream making it unsuitable for human intravenous use, whereas our humanized version would be identical...

  10. Extracellular Matrix Glycoprotein-Derived Synthetic Peptides Differentially Modulate Glioma and Sarcoma Cell Migration.

    Science.gov (United States)

    Brösicke, Nicole; Sallouh, Muhammad; Prior, Lisa-Marie; Job, Albert; Weberskirch, Ralf; Faissner, Andreas

    2015-07-01

    Glycoproteins of the extracellular matrix (ECM) regulate proliferation, migration, and differentiation in numerous cell lineages. ECM functions are initiated by small peptide sequences embedded in large constituents that are recognized by specific cellular receptors. In this study, we have investigated the biological effects of peptides derived from collagen type IV and tenascin-C compared to the well-known RGD peptide originally discovered in fibronectin. The influence of glycoproteins and corresponding peptides on the migration of the glioma cell lines U-251-MG and U-373-MG and the sarcoma line S-117 was studied. When the cell lines were tested in a modified Boyden chamber assay on filters coated with the ECM glycoproteins, glioma cells showed a strong migration response on tenascin-C and the basal lamina constituent collagen IV, in contrast to S-117 cells. In order to identify relevant stimulatory motifs, peptides derived from fibronectin (6NHX-GRGDSF), tenascin-C (TN-C, VSWRAPTA), and collagen type IV (MNYYSNS) were compared, either applied in solution in combination with ECM glycoprotein substrates, in solution in the presence of untreated membranes, or coated on the filters of the Boyden chambers. Using this strategy, we could identify the novel tenascin-C-derived peptide motif VSWRAPTA as a migration stimulus for glioma cells. Furthermore, while kin peptides generally blocked the effects of the respective homologous ECM proteins, unexpected effects were observed in heterologous situations. There, in several cases, addition of soluble peptides strongly boosted the response to the coated ECM proteins. We propose that peptides may synergize or antagonize each other by stimulating different signaling pathways.

  11. Evidence for P-Glycoprotein Involvement in Cell Volume Regulation Using Coulter Sizing in Flow Cytometry

    Directory of Open Access Journals (Sweden)

    Jennifer Pasquier

    2015-06-01

    Full Text Available The regulation of cell volume is an essential function that is coupled to a variety of physiological processes such as receptor recycling, excitability and contraction, cell proliferation, migration, and programmed cell death. Under stress, cells undergo emergency swelling and respond to such a phenomenon with a regulatory volume decrease (RVD where they release cellular ions, and other osmolytes as well as a concomitant loss of water. The link between P-glycoprotein, a transmembrane transporter, and cell volume regulation is controversial, and changes in cells volume are measured using microscopy or electrophysiology. For instance, by using the patch-clamp method, our team demonstrated that chloride currents activated in the RVD were more intense and rapid in a breast cancer cell line overexpressing the P-glycoprotein (P-gp. The Cell Lab Quanta SC is a flow cytometry system that simultaneously measures electronic volume, side scatter and three fluorescent colors; altogether this provides unsurpassed population resolution and accurate cell counting. Therefore, here we propose a novel method to follow cellular volume. By using the Coulter-type channel of the cytometer Cell Lab Quanta SC MPL (multi-platform loading, we demonstrated a role for the P-gp during different osmotic treatments, but also a differential activity of the P-gp through the cell cycle. Altogether, our data strongly suggests a role of P-gp in cell volume regulation.

  12. The long chain α-tocopherol metabolite α-13'-COOH and γ-tocotrienol induce P-glycoprotein expression and activity by activation of the pregnane X receptor in the intestinal cell line LS 180.

    Science.gov (United States)

    Podszun, Maren C; Jakobi, Metta; Birringer, Marc; Weiss, Johanna; Frank, Jan

    2017-03-01

    Members of the vitamin E family or their metabolites may induce the xenobiotic transporter P-glycoprotein (P-gp), which can limit the bioavailability of drugs and phytochemicals. This study aimed to investigate if α- and γ-tocopherol, α- and γ-tocotrienol, the long chain metabolite α-tocopherol-13'-COOH, the short chain metabolites α- and γ-carboxyethylhydroxychromanol and plastochromanol-8 activate the pregnane X receptor (PXR) and thereby modulate P-gp expression and/or activity. P-gp protein expression and activity were studied in LS 180 cells incubated with the respective test compound for 48 h. Furthermore, we determined if the compounds activate PXR in LS 180 cells, as PXR regulates P-gp expression. Neither P-gp protein expression and activity, nor PXR activity were influenced by α-tocopherol, γ-tocopherol and plastochromanol-8. α-Tocotrienol activated PXR in the reporter gene assay but did not induce protein expression or activity of P-gp. γ-Tocotrienol and α-13'-COOH activated PXR and induced protein expression and transporter activity of P-gp. Because the induction of P-gp in the intestine may limit the systemic bioavailability of its substrates, the concurrent intake of drugs and γ-tocotrienol and, if ever applicable, α-13'-COOH should be avoided. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Cell line provenance.

    Science.gov (United States)

    Freshney, R Ian

    2002-07-01

    Cultured cell lines have become an extremely valuable resource, both in academic research and in industrial biotechnology. However, their value is frequently compromised by misidentification and undetected microbial contamination. As detailed elsewhere in this volume, the technology, both simple and sophisticated, is available to remedy the problems of misidentification and contamination, given the will to apply it. Combined with proper records of the origin and history of the cell line, assays for authentication and contamination contribute to the provenance of the cell line. Detailed records should start from the initiation or receipt of the cell line, and should incorporate data on the donor as well as the tissue from which the cell line was derived, should continue with details of maintenance, and include any accidental as well as deliberate deviations from normal maintenance. Records should also contain details of authentication and regular checks for contamination. With this information, preferably stored in a database, and suitable backed up, the provenance of the cell line so created makes the cell line a much more valuable resource, fit for validation in industrial applications and more likely to provide reproducible experimental results when disseminated for research in other laboratories.

  14. A Polymorphism within the Internal Fusion Loop of the Ebola Virus Glycoprotein Modulates Host Cell Entry.

    Science.gov (United States)

    Hoffmann, Markus; Crone, Lisa; Dietzel, Erik; Paijo, Jennifer; González-Hernández, Mariana; Nehlmeier, Inga; Kalinke, Ulrich; Becker, Stephan; Pöhlmann, Stefan

    2017-05-01

    The large scale of the Ebola virus disease (EVD) outbreak in West Africa in 2013-2016 raised the question whether the host cell interactions of the responsible Ebola virus (EBOV) strain differed from those of other ebolaviruses. We previously reported that the glycoprotein (GP) of the virus circulating in West Africa in 2014 (EBOV2014) exhibited reduced ability to mediate entry into two nonhuman primate (NHP)-derived cell lines relative to the GP of EBOV1976. Here, we investigated the molecular determinants underlying the differential entry efficiency. We found that EBOV2014-GP-driven entry into diverse NHP-derived cell lines, as well as human monocyte-derived macrophages and dendritic cells, was reduced compared to EBOV1976-GP, although entry into most human- and all bat-derived cell lines tested was comparable. Moreover, EBOV2014 replication in NHP but not human cells was diminished relative to EBOV1976, suggesting that reduced cell entry translated into reduced viral spread. Mutagenic analysis of EBOV2014-GP and EBOV1976-GP revealed that an amino acid polymorphism in the receptor-binding domain, A82V, modulated entry efficiency in a cell line-independent manner and did not account for the reduced EBOV2014-GP-driven entry into NHP cells. In contrast, polymorphism T544I, located in the internal fusion loop in the GP2 subunit, was found to be responsible for the entry phenotype. These results suggest that position 544 is an important determinant of EBOV infectivity for both NHP and certain human target cells. IMPORTANCE The Ebola virus disease outbreak in West Africa in 2013 entailed more than 10,000 deaths. The scale of the outbreak and its dramatic impact on human health raised the question whether the responsible virus was particularly adept at infecting human cells. Our study shows that an amino acid exchange, A82V, that was acquired during the epidemic and that was not observed in previously circulating viruses, increases viral entry into diverse target cells

  15. Revealing Glycoproteins in the Secretome of MCF-7 Human Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Aik-Aun Tan

    2015-01-01

    Full Text Available Breast cancer is one of the major issues in the field of oncology, reported with a higher prevalence rate in women worldwide. In attempt to reveal the potential biomarkers for breast cancer, the findings of differentially glycosylated haptoglobin and osteonectin in previous study have drawn our attention towards glycoproteins of secretome from the MCF-7 cancer cell line. In the present study, further analyses were performed on the medium of MCF-7 cells by subjecting it to two-dimensional analyses followed by image analysis in contrast to the medium of human mammary epithelial cells (HMEpC as a negative control. Carboxypeptidase A4 (CPA4, alpha-1-antitrypsin (AAT, haptoglobin (HP, and HSC70 were detected in the medium of MCF-7, while only CPA4 and osteonectin (ON were detected in HMEpC medium. In addition, CPA4 was detected as upregulated in the MCF-7 medium. Further analysis by lectin showed that CPA4, AAT, HP, and HSC70 were secreted as N-glycan in the medium of MCF-7, with HP also showing differentially N-glycosylated isoforms. For the HMEpC, only CPA4 was detected as N-glycan. No O-glycan was detected in the medium of HMEpC but MCF-7 expressed O-glycosylated CPA4 and HSC70. All these revealed that glycoproteins could be used as glycan-based biomarkers for the prognosis of breast cancer.

  16. A Cell-Cell Fusion Assay to Assess Arenavirus Envelope Glycoprotein Membrane-Fusion Activity.

    Science.gov (United States)

    York, Joanne; Nunberg, Jack H

    2018-01-01

    For many viruses that enter their target cells through pH-dependent fusion of the viral and endosomal membranes, cell-cell fusion assays can provide an experimental platform for investigating the structure-function relationships that promote envelope glycoprotein membrane-fusion activity. Typically, these assays employ effector cells expressing the recombinant envelope glycoprotein on the cell surface and target cells engineered to quantitatively report fusion with the effector cell. In the protocol described here, Vero cells are transfected with a plasmid encoding the arenavirus envelope glycoprotein complex GPC and infected with the vTF7-3 vaccinia virus expressing the bacteriophage T7 RNA polymerase. These effector cells are mixed with target cells infected with the vCB21R-lacZ vaccinia virus encoding a β-galactosidase reporter under the control of the T7 promoter. Cell-cell fusion is induced upon exposure to low-pH medium (pH 5.0), and the resultant expression of the β-galactosidase reporter is quantitated using a chemiluminescent substrate. We have utilized this robust microplate cell-cell fusion assay extensively to study arenavirus entry and its inhibition by small-molecule fusion inhibitors.

  17. Genetic transfer of non-P-glycoprotein-mediated multidrug resistance (MDR) in somatic cell fusion: dissection of a compound MDR phenotype

    NARCIS (Netherlands)

    Eijdems, E. W.; Borst, P.; Jongsma, A. P.; de Jong, S.; de Vries, E. G.; van Groenigen, M.; Versantvoort, C. H.; Nieuwint, A. W.; Baas, F.

    1992-01-01

    A non-P-glycoprotein-mediated mechanism of multidrug resistance (non-Pgp MDR) has been identified in doxorubicin-selected sublines of the human non-small cell lung carcinoma cell line SW-1573. These sublines are cross-resistant to daunorubicin, VP16-213, Vinca alkaloids, colchicine, gramicidin D,

  18. Genetic transfer of non-P-glycoprotein-mediated multidrug resistance (MDR) in somatic cell fusion : Dissection of a compound MDR phenotype

    NARCIS (Netherlands)

    EIJDEMS, EWHM; BORST, P; JONGSMA, APM; de Jong, Steven; DEVRIES, EGE; VANGROENIGEN, M; VERSANTVOORT, CHM; NIEUWINT, AWM; BAAS, F

    1992-01-01

    A non-P-glycoprotein-mediated mechanism of multidrug resistance (non-Pgp MDR) bas been identified in doxorubicin-selected sublines of the human non-small cell lung carcinoma cell lines SW-1573. These sublines are cross-resistant to daunorubicin, VP16-213, Vinca alkaloids, colchicine, gramicidin D,

  19. Thyroid Hormone and P-Glycoprotein in Tumor Cells

    Directory of Open Access Journals (Sweden)

    Paul J. Davis

    2015-01-01

    Full Text Available P-glycoprotein (P-gp; multidrug resistance pump 1, MDR1; ABCB1 is a plasma membrane efflux pump that when activated in cancer cells exports chemotherapeutic agents. Transcription of the P-gp gene (MDR1 and activity of the P-gp protein are known to be affected by thyroid hormone. A cell surface receptor for thyroid hormone on integrin αvβ3 also binds tetraiodothyroacetic acid (tetrac, a derivative of L-thyroxine (T4 that blocks nongenomic actions of T4 and of 3,5,3′-triiodo-L-thyronine (T3 at αvβ3. Covalently bound to a nanoparticle, tetrac as nanotetrac acts at the integrin to increase intracellular residence time of chemotherapeutic agents such as doxorubicin and etoposide that are substrates of P-gp. This action chemosensitizes cancer cells. In this review, we examine possible molecular mechanisms for the inhibitory effect of nanotetrac on P-gp activity. Mechanisms for consideration include cancer cell acidification via action of tetrac/nanotetrac on the Na+/H+ exchanger (NHE1 and hormone analogue effects on calmodulin-dependent processes and on interactions of P-gp with epidermal growth factor (EGF and osteopontin (OPN, apparently via αvβ3. Intracellular acidification and decreased H+ efflux induced by tetrac/nanotetrac via NHE1 is the most attractive explanation for the actions on P-gp and consequent increase in cancer cell retention of chemotherapeutic agent-ligands of MDR1 protein.

  20. Non-p-glycoprotein-mediated multidrug resistance in detransformed rat cells selected for resistance to methylglyoxal bis(guanylhydrazone).

    Science.gov (United States)

    Weber, J M; Sircar, S; Horvath, J; Dion, P

    1989-11-01

    Three independent variants (G2, G4, G5), resistant to methylglyoxal bis(guanylhydrazone), an anticancer drug, have been isolated by single step selection from an adenovirus-transformed rat brain cell line (1). These variants display selective cross-resistance to several natural product drugs of dissimilar structure and action. Multidrug resistance has recently been shown to be caused by overexpression of the membrane-associated p-glycoprotein, most often caused by amplification of the mdr gene. Several types of experiments were conducted to determine whether the observed drug resistance in our cell lines could be due to changes at the mdr locus. The following results were obtained: (a) the mdr locus was not amplified; (b) transcription of the mdr gene and p-glycoprotein synthesis were not increased; (c) multidrug resistance cell lines, which carry an amplified mdr locus, were not cross-resistant to methylglyoxal bis(guanylhydrazone); (d) verapamil did not reverse the resistance of G cells or mdr cells to methylglyoxal bis(guanylhydrazone), nor that of G cells to vincristine; and (e) methylglyoxal bis(guanylhydrazone) resistance was recessive and depended on a block to drug uptake, as opposed to mdr cells which are dominant and express increased drug efflux. The results obtained suggest that the drug resistance in the G2, G4, and G5 cells was atypical and may be due to a mechanism distinct from that mediated by the mdr locus.

  1. Anti-leukemic activity of bortezomib and carfilzomib on B-cell precursor ALL cell lines.

    Directory of Open Access Journals (Sweden)

    Kazuya Takahashi

    Full Text Available Prognosis of childhood acute lymphoblastic leukemia (ALL has been dramatically improved. However, prognosis of the cases refractory to primary therapy is still poor. Recent phase 2 study on the efficacy of combination chemotherapy with bortezomib (BTZ, a proteasome inhibitor, for refractory childhood ALL demonstrated favorable clinical outcomes. However, septic death was observed in over 10% of patients, indicating the necessity of biomarkers that could predict BTZ sensitivity. We investigated in vitro BTZ sensitivity in a large panel of ALL cell lines that acted as a model system for refractory ALL, and found that Philadelphia chromosome-positive (Ph+ ALL, IKZF1 deletion, and biallelic loss of CDKN2A were associated with favorable response. Even in Ph-negative ALL cell lines, IKZF1 deletion and bilallelic loss of CDKN2A were independently associated with higher BTZ sensitivity. BTZ showed only marginal cross-resistance to four representative chemotherapeutic agents (vincristine, dexamethasone, l-asparaginase, and daunorubicin in B-cell precursor-ALL cell lines. To improve the efficacy and safety of proteasome inhibitor combination chemotherapy, we also analyzed the anti-leukemic activity of carfilzomib (CFZ, a second-generation proteasome inhibitor, as a substitute for BTZ. CFZ showed significantly higher activity than BTZ in the majority of ALL cell lines except for the P-glycoprotein-positive t(17;19 ALL cell lines, and IKZF1 deletion was also associated with a favorable response to CFZ treatment. P-glycoprotein inhibitors effectively restored the sensitivity to CFZ, but not BTZ, in P-glycoprotein-positive t(17;19 ALL cell lines. P-glycoprotein overexpressing ALL cell line showed a CFZ-specific resistance, while knockout of P-glycoprotein by genome editing with a CRISPR/Cas9 system sensitized P-glycoprotein-positive t(17;19 ALL cell line to CFZ. These observations suggested that IKZF1 deletion could be a useful biomarker to predict good

  2. Release of cell coat glycoproteins from the human blood lymphocytes after UV irradiation (254 nm)

    Energy Technology Data Exchange (ETDEWEB)

    Artsishevskaya, R.A.; Mironova, A.P.; Samojlova, K.A. (AN SSSR, Leningrad. Inst. Tsitologii)

    1984-01-01

    Irradiation of the human peripheric blood lymphocytes by UV rays (254 nm) in nonlethal doses is accompanied by the decrease (8-13%) of sorption by them of man's life time of alcyane blue dya which selectively is bound by glycoproteins, glycolipides and acid mucopolysaccharides of cellular surface. As simultaneously the yield from substance cells by some properties similar to glycoproteins is intensified by 9-15%, an assumption is made that from the surface of UV-irradiated lymphocites glycoproteins are disorbed. This effect is discussed in connection with possible primary mechanisms of medical-sanitation effect of UV irradiation.

  3. Radiosensitivity of mesothelioma cell lines

    International Nuclear Information System (INIS)

    Haekkinen, A.M.; Laasonen, A.; Linnainmaa, K.; Mattson, K.; Pyrhoenen, S.

    1996-01-01

    The present study was carried out in order to examine the radiosensitivity of malignant pleural mesothelioma cell lines. Cell kinetics, radiation-induced delay of the cell cycle and DNA ploidy of the cell lines were also determined. For comparison an HeLa and a human foetal fibroblast cell line were simultaneously explored. Six previously cytogenetically and histologically characterized mesothelioma tumor cell lines were applied. A rapid tiazolyl blue microtiter (MTT) assay was used to analyze radiosensitivity and cell kinetics and DNA ploidy of the cultured cells were determined by flow cytometry. The survival fraction after a dose of 2 Gy (SF2), parameters α and β of the linear quadratic model (LQ-model) and mean inactivation dose (D MID ) were also estimated. The DNA index of four cell lines equaled 1.0 and two cell lines equaled 1.5 and 1.6. Different mesothelioma cell lines showed a great variation in radiosensitivity. Mean survival fraction after a radiation dose of 2 Gy (SF2) was 0.60 and ranged from 0.36 to 0.81 and mean α value was 0.26 (range 0.48-0.083). The SF2 of the most sensitive diploid mesothelioma cell line was 0.36: Less than that of the foetal fibroblast cell line (0.49). The survival fractions (0.81 and 0.74) of the two most resistant cell lines, which also were aneuploid, were equal to that of the HeLa cell line (0.78). The α/β ratios of the most sensitive cell lines were almost an order of magnitude greater than those of the two most resistant cell lines. Radiation-induced delay of the most resistant aneuploid cell line was similar to that of HeLa cells but in the most sensitive (diploid cells) there was practically no entry into the G1 phase following the 2 Gy radiation dose during 36 h. (orig.)

  4. Up-regulation of P-glycoprotein expression by catalase via JNK activation in HepG2 cells.

    Science.gov (United States)

    Li, Lin; Xu, Jianfeng; Min, Taishan; Huang, Weida

    2006-01-01

    Overexpression of the MDR1 gene is one of the reasons for multidrug resistance (MDR). Some studies suggested that antioxidants could down-regulate MDR1 expression as a possible cancer treatment. In this report, we try to determine the effects of antioxidants (catalase or N-acetylcysteine [NAC]) on the regulation of intrinsic MDR1 overexpression in HepG2 cells. Adding catalase or N-acetylcysteine to the HepG2 culture led to a significant increase of MDR1 mRNA and P-glycoprotein drug transporter activity. After catalase or NAC treatment, a reduced intracellular reactive oxygen species (ROS) was observed. The JNK inhibitor SP600125 abolished the positive effects of catalase on drug transporter activity in a dose-dependent manner. Furthermore, the up-regulation of P-glycoprotein functions by catalase was only observed in HepG2 cells but not in other cell lines tested (MCF-7, A549, A431). These data suggested that catalase can up-regulate P-glycoprotein expression in HepG2 cells via reducing intracellular ROS, and JNK may mediate this process.

  5. CLO : The cell line ontology

    NARCIS (Netherlands)

    Sarntivijai, Sirarat; Lin, Yu; Xiang, Zuoshuang; Meehan, Terrence F.; Diehl, Alexander D.; Vempati, Uma D.; Schuerer, Stephan C.; Pang, Chao; Malone, James; Parkinson, Helen; Liu, Yue; Takatsuki, Terue; Saijo, Kaoru; Masuya, Hiroshi; Nakamura, Yukio; Brush, Matthew H.; Haendel, Melissa A.; Zheng, Jie; Stoeckert, Christian J.; Peters, Bjoern; Mungall, Christopher J.; Carey, Thomas E.; States, David J.; Athey, Brian D.; He, Yongqun

    2014-01-01

    Background: Cell lines have been widely used in biomedical research. The community-based Cell Line Ontology (CLO) is a member of the OBO Foundry library that covers the domain of cell lines. Since its publication two years ago, significant updates have been made, including new groups joining the CLO

  6. Altered intracellular pH regulation in cells with high levels of P-glycoprotein expression.

    Science.gov (United States)

    Young, Gregory; Reuss, Luis; Altenberg, Guillermo A

    2011-01-01

    P-glycoprotein is an ATP-binding-cassette transporter that pumps many structurally unrelated drugs out of cells through an ATP-dependent mechanism. As a result, multidrug-resistant cells that overexpress P-glycoprotein have reduced intracellular steady-state levels of a variety of chemotherapeutic agents. In addition, increased cytosolic pH has been a frequent finding in multidrug-resistant cells that express P-glycoprotein, and it has been proposed that this consequence of P-glycoprotein expression may contribute to the lower intracellular levels of chemotherapeutic agents. In these studies, we measured intracellular pH and the rate of acid extrusion in response to an acid load in two cells with very different levels of P-glycoprotein expression: V79 parental cells and LZ-8 multidrug resistant cells. Compared to the wild-type V79 cells, LZ-8 cells have a lower intracellular pH and a slower recovery of intracellular pH after an acid load. The data also show that LZ-8 cells have reduced ability to extrude acid, probably due to a decrease in Na(+)/H(+) exchanger activity. The alterations in intracellular pH and acid extrusion in LZ-8 cells are reversed by 24-h exposure to the multidrug-resistance modulator verapamil. The lower intracellular pH in LZ-8 indicates that intracellular alkalinization is not necessary for multidrug resistance. The reversal by verapamil of the decreased acid-extrusion suggests that P-glycoprotein can affect other membrane transport mechanism.

  7. Expression of bovine herpesvirus 1 glycoproteins gI and gIII in transfected murine cells

    International Nuclear Information System (INIS)

    Fitzpatrick, D.R.; Zamb, T.; Parker, M.D.; van Drunen Littel-van den Hurk, S.; Babiuk, L.A.; Lawman, M.J.P.

    1988-01-01

    Genes encoding two of the major glycoproteins of bovine herpesvirus 1 (BHV-1), gI and gIII, were cloned into the eucaryotic expression vectors pRSVcat and pSV2neo and transfected into murine LMTK - cells, and cloned cell lines were established. The relative amounts of gI or gIII expressed from the two vectors were similar. Expression of gI was cell associated and localized predominantly in the perinuclear region, but nuclear and plasma membrane staining was also observed. Expression of gI was additionally associated with cell fusion and the formation of polykaryons and giant cells. Expression of gIII was localized predominantly in the nuclear and plasma membranes. Radioimmunoprecipitation in the presence or absence of tunicamycin revealed that the recombinant glycoproteins were proteolytically processed and glycosylated and had molecular weights similar to those of the forms of gI and gIII expressed in BHV-1 infected bovine cells. However, both recombinant glycoproteins were glycosylated to a lesser extent than were the forms found in BHV-1 infected bovine cells. For gI, a deficiency in N-linked glycosylated of the amino-terminal half of the protein was identified; for gIII, a deficiency in O-linked glycosylation was implicated. The reactivity pattern of a panel of gI- and gIII-specific monoclonal antibodies, including six which recognize conformation-dependent epitopes, was found to be unaffected by the glycosylation differences and was identical for transfected of BHV-1-infected murine cells. Use of the transfected cells as targets in immune-mediated cytotoxicity assays demonstrated the functional recognition of recombinant gI and gIII by murine antibody and cytotoxic T lymphocytes

  8. Radiosensitivity of mesothelioma cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Haekkinen, A.M. [Dept. of Oncology, Univ. Central Hospital, Helsinki (Finland); Laasonen, A. [Dept. of Pathology, Central Hospital of Etelae-Pohjanmaa, Seinaejoki (Finland); Linnainmaa, K. [Dept. of Industrial Hygiene and Toxicology, Inst. of Occupational Health, Helsinki (Finland); Mattson, K. [Dept. Pulmonary Medicine, Univ. Central Hospital, Helsinki (Finland); Pyrhoenen, S. [Dept. of Oncology, Univ. Central Hospital, Helsinki (Finland)

    1996-10-01

    The present study was carried out in order to examine the radiosensitivity of malignant pleural mesothelioma cell lines. Cell kinetics, radiation-induced delay of the cell cycle and DNA ploidy of the cell lines were also determined. For comparison an HeLa and a human foetal fibroblast cell line were simultaneously explored. Six previously cytogenetically and histologically characterized mesothelioma tumor cell lines were applied. A rapid tiazolyl blue microtiter (MTT) assay was used to analyze radiosensitivity and cell kinetics and DNA ploidy of the cultured cells were determined by flow cytometry. The survival fraction after a dose of 2 Gy (SF2), parameters {alpha} and {beta} of the linear quadratic model (LQ-model) and mean inactivation dose (D{sub MID}) were also estimated. The DNA index of four cell lines equaled 1.0 and two cell lines equaled 1.5 and 1.6. Different mesothelioma cell lines showed a great variation in radiosensitivity. Mean survival fraction after a radiation dose of 2 Gy (SF2) was 0.60 and ranged from 0.36 to 0.81 and mean {alpha} value was 0.26 (range 0.48-0.083). The SF2 of the most sensitive diploid mesothelioma cell line was 0.36: Less than that of the foetal fibroblast cell line (0.49). The survival fractions (0.81 and 0.74) of the two most resistant cell lines, which also were aneuploid, were equal to that of the HeLa cell line (0.78). The {alpha}/{beta} ratios of the most sensitive cell lines were almost an order of magnitude greater than those of the two most resistant cell lines. Radiation-induced delay of the most resistant aneuploid cell line was similar to that of HeLa cells but in the most sensitive (diploid cells) there was practically no entry into the G1 phase following the 2 Gy radiation dose during 36 h. (orig.).

  9. Targeting HIV-1 Envelope Glycoprotein Trimers to B Cells by Using APRIL Improves Antibody Responses

    NARCIS (Netherlands)

    Melchers, Mark; Bontjer, Ilja; Tong, Tommy; Chung, Nancy P. Y.; Klasse, Per Johan; Eggink, Dirk; Montefiori, David C.; Gentile, Maurizio; Cerutti, Andrea; Olson, William C.; Berkhout, Ben; Binley, James M.; Moore, John P.; Sanders, Rogier W.

    2012-01-01

    An HIV-1 vaccine remains elusive, in part because various factors limit the quantity and quality of the antibodies raised against the viral envelope glycoprotein complex (Env). We hypothesized that targeting Env vaccines directly to B cells, by fusing them to molecules that bind and activate these

  10. Structure of a Pestivirus Envelope Glycoprotein E2 Clarifies Its Role in Cell Entry

    Directory of Open Access Journals (Sweden)

    Kamel El Omari

    2013-01-01

    Full Text Available Enveloped viruses have developed various adroit mechanisms to invade their host cells. This process requires one or more viral envelope glycoprotein to achieve cell attachment and membrane fusion. Members of the Flaviviridae such as flaviviruses possess only one envelope glycoprotein, E, whereas pestiviruses and hepacivirus encode two glycoproteins, E1 and E2. Although E2 is involved in cell attachment, it has been unclear which protein is responsible for membrane fusion. We report the crystal structures of the homodimeric glycoprotein E2 from the pestivirus bovine viral diarrhea virus 1 (BVDV1 at both neutral and low pH. Unexpectedly, BVDV1 E2 does not have a class II fusion protein fold, and at low pH the N-terminal domain is disordered, similarly to the intermediate postfusion state of E2 from sindbis virus, an alphavirus. Our results suggest that the pestivirus and possibly the hepacivirus fusion machinery are unlike any previously observed.

  11. Structure of a Pestivirus Envelope Glycoprotein E2 Clarifies Its Role in Cell Entry

    Science.gov (United States)

    El Omari, Kamel; Iourin, Oleg; Harlos, Karl; Grimes, Jonathan M.; Stuart, David I.

    2013-01-01

    Summary Enveloped viruses have developed various adroit mechanisms to invade their host cells. This process requires one or more viral envelope glycoprotein to achieve cell attachment and membrane fusion. Members of the Flaviviridae such as flaviviruses possess only one envelope glycoprotein, E, whereas pestiviruses and hepacivirus encode two glycoproteins, E1 and E2. Although E2 is involved in cell attachment, it has been unclear which protein is responsible for membrane fusion. We report the crystal structures of the homodimeric glycoprotein E2 from the pestivirus bovine viral diarrhea virus 1 (BVDV1) at both neutral and low pH. Unexpectedly, BVDV1 E2 does not have a class II fusion protein fold, and at low pH the N-terminal domain is disordered, similarly to the intermediate postfusion state of E2 from sindbis virus, an alphavirus. Our results suggest that the pestivirus and possibly the hepacivirus fusion machinery are unlike any previously observed. PMID:23273918

  12. Induction of P-glycoprotein expression and function in human intestinal epithelial cells (T84).

    Science.gov (United States)

    Haslam, I S; Jones, K; Coleman, T; Simmons, N L

    2008-10-01

    Intestinal induction of Pgp is known to limit the oral availability of certain drug compounds and give rise to detrimental drug-drug interactions. We have investigated the induction of P-glycoprotein (Pgp; MDR1) activity in a human intestinal epithelial cell line (T84) following pre-exposure to a panel of drug compounds, reported to be Pgp substrates, inhibitors or inducers. Human MDR1-transfected MDCKII epithelial monolayers were used to assess Pgp substrate interactions and inhibition of digoxin secretion by the selected drug compounds. The T84 cell line was used to assess induction of Pgp-mediated digoxin secretion following pre-exposure to the same compounds. Changes in gene expression (MDR1, MRP2, PXR and CAR) were determined by quantitative RT-PCR. Net transepithelial digoxin secretion was increased (1.3 fold, n=6, Pfollowing pre-exposure to the PXR activator hyperforin (100nM, 72h), as was MDR1 mRNA expression (3.0 fold, n=4, P<0.05). A number of Pgp substrates (quinidine, amprenavir, irinotecan, topotecan, atorvastatin and erythromycin) induced net digoxin secretion, as did the non-Pgp substrate artemisinin. Various non-Pgp substrates demonstrated inhibition of digoxin secretion (verapamil, mifepristone, clotrimazole, mevastatin, diltiazem and isradipine) but did not induce Pgp-mediated digoxin secretion. Of the compounds that increased Pgp secretion, quinidine, topotecan, atorvastatin and amprenavir pre-exposure also elevated MDR1 mRNA levels, whereas erythromycin, irinotecan and artemisinin displayed no change in transcript levels. This indicates possible post-translational regulation of digoxin secretion. Finally, a strong correlation between drug modulation of MRP2 and PXR mRNA expression levels was evident.

  13. Conglutinin binds the HIV-1 envelope glycoprotein gp 160 and inhibits its interaction with cell membrane CD4

    DEFF Research Database (Denmark)

    Andersen, Ove; Sørensen, A M; Svehag, S E

    1991-01-01

    The highly glycosylated envelope glycoprotein (gp 160) of human immunodeficiency virus (HIV) interacts with the CD4 molecule present on the membrane of CD4+ cells and is involved in the pathobiology of HIV infection. Lectins bind glycoproteins through non-covalent interactions with specific hexose...

  14. The pestivirus Erns glycoprotein interacts with E2 in both infected cells and mature virions

    International Nuclear Information System (INIS)

    Lazar, Catalin; Zitzmann, Nicole; Dwek, Raymond A.; Branza-Nichita, Norica

    2003-01-01

    E rns is a pestivirus envelope glycoprotein indispensable for virus attachment and infection of target cells. Unlike the other two envelope proteins E1 and E2, E rns lacks a transmembrane domain and a vast quantity is secreted into the medium of infected cells. The protein is also present in fractions of pure pestivirus virions, raising the important and intriguing question regarding the mechanism of its attachment to the pestivirus envelope. In this study a direct interaction between E rns and E2 glycoproteins was demonstrated in both pestivirus-infected cells and mature virions. By co- and sequential immunoprecipitation we showed that an E rns -E2 heterodimer is assembled very early after translation of the viral polyprotein and before its processing is completed. Our results suggest that E rns is attached to the pestivirus envelope via a direct interaction with E2 and explain the role of E rns in the initial virus-target cell interaction

  15. Local expression and exocytosis of viral glycoproteins in multinucleated muscle cells

    OpenAIRE

    1992-01-01

    We have analyzed the distribution of enveloped viral infections in multinucleated L6 muscle cells. A temperature-sensitive vesicular stomatitis virus (mutant VSV ts045) was utilized at the nonpermissive temperature (39 degrees C). As expected, the glycoprotein (G protein) of this mutant was restricted to the ER when the multinucleated cells were maintained at 39 degrees C. We demonstrate that this G protein remained localized when the infection was performed at low dose. By 4 h after infectio...

  16. Identification of the Interaction between P-Glycoprotein and Anxa2 in Multidrug-resistant Human Breast Cancer Cells

    International Nuclear Information System (INIS)

    Zhang, Hai-chang; Zhang, Fei; Wu, Bing; Han, Jing-hua; Ji, Wei; Zhou, Yan; Niu, Rui-fang

    2012-01-01

    To explore the interaction of Anxa2 with P-Glycoprotein (P-gp) in the migration and invasion of the multidrug-resistant (MDR) human breast cancer cell line MCF-7/ADR. A pair of short hairpin RNA (shRNA) targeting P-gp was transfected into MCF-7/ADR cells, and monoclonal cell strains were screened. The expression of P-gp was detected by Western blot. Transwell chambers were used to observe the cell migration capacity and invasion ability. The interaction between P-gp and Anxa2 was examined by immunoprecipitation and immunofluorescence confocal microscopy analyses. P-gp expression was significantly knocked down, and there were notable decreasing trends in the migration and invasion capability of MDR breast cancer cells (P<0.05). There was a close interaction between Anxa2 and P-gp. MCF-7/ADR is an MDR human breast cancer cell line with high migration and invasion abilities. The knockdown of P-gp notably impaired the migration and invasion abilities of the tumor cells. The interaction of Anxa2 with P-pg may play an important role in the enhanced invasiveness of MDR human breast cancer cells

  17. 3,3′,4,4′,5-Pentachlorobiphenyl Inhibits Drug Efflux Through P-Glycoprotein in KB-3 Cells Expressing Mutant Human P-Glycoprotein

    Directory of Open Access Journals (Sweden)

    Hiroshi Fujise

    2004-01-01

    Full Text Available The effects on the drug efflux of 3,3′,4,4′,5-pentachlorobiphenyl (PCB-126, the most toxic of all coplanar polychlorinated biphenyls (Co-PCBs, were examined in KB-3 cells expressing human wild-type and mutant P-glycoprotein in which the 61st amino acid was substituted for serine or phenylalanine (KB3-Phe61. In the cells expressing P-glycoproteins, accumulations of vinblastine and colchicine decreased form 85% to 92% and from 62% to 91%, respectively, and the drug tolerances for these chemicals were increased. In KB3-Phe61, the decreases in drug accumulation were inhibited by adding PCB-126 in a way similar to that with cyclosporine A: by adding 1 μM PCB-126, the accumulations of vinblastine and colchicine increased up to 3.3- and 2.3-fold, respectively. It is suggested that PCB-126 decreased the drug efflux by inhibiting the P-glycoprotein in KB3-Phe61. Since there were various P-glycoproteins and many congeners of Co-PCBs, this inhibition has to be considered a new cause of the toxic effects of Co-PCBs.

  18. P-glycoprotein is expressed and causes resistance to chemotherapy in EBV-positive T-cell lymphoproliferative diseases

    International Nuclear Information System (INIS)

    Yoshimori, Mayumi; Takada, Honami; Imadome, Ken-Ichi; Kurata, Morito; Yamamoto, Kouhei; Koyama, Takatoshi; Shimizu, Norio; Fujiwara, Shigeyoshi; Miura, Osamu; Arai, Ayako

    2015-01-01

    Epstein–Barr virus-positive T-cell lymphoproliferative diseases (EBV-T-LPDs) are rare lymphomas with poor prognosis. Although chemotherapeutic strategies such as CHOP have been often selected, they have exhibited only limited efficacy. To clarify the mechanism of chemoresistance, we examined P-glycoprotein (P-gp) expression. P-gp acts as an energy-dependent efflux pump that excretes drugs from the cytoplasm, resulting in low-intracellular drug concentrations and poor sensitivity to chemotherapy. We examined P-gp expression in EBV-positive cells by immunohistochemistry staining in three patients of EBV-T-LPDs and the expression was detected in all patients. We also examined mdr1 mRNA expression by reverse-transcriptase polymerase-chain reaction (RT-PCR) in EBV-positive tumor cells from these patients and additional three patients. The expression was detected in all examined patients. In five EBV-T-LPDs patients, P-gp function was detected by Rhodamine-123 efflux assay in these cells. The efflux was inhibited by treatment with a P-gp inhibitor, cyclosporine A (CsA). We also examined and detected P-gp expression in EBV-positive T-cell lines SNT8 and SNT16 established from EBV-T-LPDs patients, by RT-PCR and western blotting. The function was also detected by Rhodamine-123 efflux in these cell lines. Inhibition and knock down of P-gp by CsA and siRNA, respectively, enhanced etoposide- and doxorubicin-induced cell death in the EBV-positive T-cell lines. Finally, we infected the T-cell line MOLT4 with EBV, and found that mdr1 mRNA expression and Rhodamine 123 efflux were upregulated after infection. These results indicated that enhanced P-gp expression contributed to the chemoresistance of EBV-T-LPDs

  19. Isolation and characterization of an HIV-1 envelope glycoprotein-specific B-cell from an immortalized human naïve B-cell library.

    Science.gov (United States)

    Sun, Zehua; Lu, Shiqiang; Yang, Zheng; Li, Jingjing; Zhang, Meiyun

    2017-04-01

    With the recent development of single B-cell cloning techniques, an increasing number of human immunodeficiency virus type 1 (HIV-1)-specific broadly neutralizing antibodies have been isolated since 2009. However, knowledge regarding HIV-1-specific B cells in vivo is limited. In this study, an HIV-1-specific B-cell line was established using healthy PBMC donors by the highly efficient Epstein-Barr virus transformation method to generate immortalized human naïve B-cell libraries. The enrichment of HIV-1 envelope-specific B cells was observed after four rounds of cell panning with the HIV-1 envelope glycoprotein. An HIV-1 envelope-specific stable B-cell line (LCL-P4) was generated. Although this cell line acquired a lymphoblastic phenotype, no expression was observed for activation-induced cytidine deaminase, an enzyme responsible for initiating somatic hypermutation and class switch recombination in B cells. This study describes a method that enables fast isolation of HIV-1-specific B cells, and this approach may extend to isolating other B-cell-specific antigens for further experiments.

  20. Thyroid cell lines in research on goitrogenesis.

    Science.gov (United States)

    Gerber, H; Peter, H J; Asmis, L; Studer, H

    1991-12-01

    Thyroid cell lines have contributed a lot to the understanding of goitrogenesis. The cell lines mostly used in thyroid research are briefly discussed, namely the rat thyroid cell lines FRTL and FRTL-5, the porcine thyroid cell lines PORTHOS and ARTHOS, The sheep thyroid cell lines OVNIS 5H and 6H, the cat thyroid cell lines PETCAT 1 to 4 and ROMCAT, and the human thyroid cell lines FTC-133 and HTh 74. Chinese hamster ovary (CHO) cells and COS-7 cells, stably transfected with TSH receptor cDNA and expressing a functional TSH receptor, are discussed as examples for non-thyroidal cells, transfected with thyroid genes.

  1. Expression of variable viruses as herpes simplex glycoprotein D and varicella zoster gE glycoprotein using a novel plasmid based expression system in insect cell

    Directory of Open Access Journals (Sweden)

    A.M. Al-Sulaiman

    2017-11-01

    Full Text Available Several prokaryotic and eukaryotic expression systems have been used for in vitro production of viruses’ proteins. However eukaryotic expression system was always the first choice for production of proteins that undergo post-translational modification such as glycosylation. Recombinant baculoviruses have been widely used as safe vectors to express heterologous genes in the culture of insect cells, but the manipulation involved in creating, titrating, and amplifying viral stocks make it time consuming and laborious. Therefore, to facilitate rapid expression in insect cell, a plasmid based expression system was used to express herpes simplex type 1 glycoprotein D (HSV-1 gD and varicella zoster glycoprotein E (VZV gE. Recombinant plasmids were generated, transfected into insect cells (SF9, and both glycoproteins were expressed 48 h post-infection. A protein with approximately molecular weight of 64-kDa and 98-kDa for HSV-1 gD and VZV gE respectively was expressed and confirmed by SDS. Proteins were detected in insect cells cytoplasm and outer membrane by immunofluorescence. The antigenicity and immunoreactivity of each protein were confirmed by immunoblot and ELISA. Results suggest that this system can be an alternative to the traditional baculovirus expression for small scale expression system in insect cells.

  2. Humoral immune response to the entire human immunodeficiency virus envelope glycoprotein made in insect cells

    Energy Technology Data Exchange (ETDEWEB)

    Rusche, J.R.; Lynn, D.L.; Robert-Guroff, M.; Langlois, A.J.; Lyerly, H.K.; Carson, H.; Krohn, K.; Ranki, A.; Gallo, R.C.; Bolognesi, D.P.; Putney, S.D.

    1987-10-01

    The human immunodeficiency virus envelope gene was expressed in insect cells by using a Baculovirus expression vector. The protein has an apparent molecular mass of 160 kDa, appears on the surface of infected insect cells, and does not appear to be cleaved to glycoproteins gp120 and gp41. Goats immunized with the 160-kDa protein have high titers of antibody that neutralizes virus infection as measured by viral gene expression or cell cytolysis. In addition, immune sera can block fusion of human immunodeficiency virus-infected cells in culture. Both neutralization and fusion-blocking activities are bound to and eluted from immobilized gp120.

  3. Analysis of glycoprotein-derived oligosaccharides in glycoproteins detected on two-dimensional gel by capillary electrophoresis using on-line concentration method.

    Science.gov (United States)

    Kamoda, Satoru; Nakanishi, Yasuharu; Kinoshita, Mitsuhiro; Ishikawa, Rika; Kakehi, Kazuaki

    2006-02-17

    Capillary electrophoresis (CE) is an effective tool to analyze carbohydrate mixture derived from glycoproteins with high resolution. However, CE has a disadvantage that a few nanoliters of a sample solution are injected to a narrow capillary. Therefore, we have to prepare a sample solution of high concentration for CE analysis. In the present study, we applied head column field-amplified sample stacking method to the analysis of N-linked oligosaccharides derived from glycoprotein separated by two-dimensional gel electrophoresis. Model studies demonstrated that we achieved 60-360 times concentration effect on the analysis of carbohydrate chains labeled with 3-aminobenzoic acid (3-AA). The method was applied to the analysis of N-linked oligosaccharides from glycoproteins separated and detected on PAGE gel. Heterogeneity of alpha1-acid glycoprotein (AGP), i.e. glycoforms, was examined by 2D-PAGE and N-linked oligosaccharides were released by in-gel digestion with PNGase F. The released oligosaccharides were derivatized with 3-AA and analyzed by CE. The results showed that glycoforms having lower pI values contained a larger amount of tetra- and tri-antennary oligosaccharides. In contrast, glycoforms having higher pI values contained bi-antennary oligosaccharides abundantly. The result clearly indicated that the spot of a glycoprotein glycoform detected by Coomassie brilliant blue staining on 2D-PAGE gel is sufficient for quantitative profiling of oligosaccharides.

  4. Conglutinin binds the HIV-1 envelope glycoprotein gp 160 and inhibits its interaction with cell membrane CD4

    DEFF Research Database (Denmark)

    Andersen, Ove; Sørensen, A M; Svehag, S E

    1991-01-01

    The highly glycosylated envelope glycoprotein (gp 160) of human immunodeficiency virus (HIV) interacts with the CD4 molecule present on the membrane of CD4+ cells and is involved in the pathobiology of HIV infection. Lectins bind glycoproteins through non-covalent interactions with specific hexose...... of the binding of rgp160 to the CD4 receptor on CEM 13 cells, as demonstrated by FACS analyses. These results indicate that conglutinin may inhibit the infection with HIV-1 through its interaction with the viral envelope glycoprotein....

  5. Cyclophosphamide metabolite inducing apoptosis in RLS mouse lymphosarcoma cells is a substrate for P-glycoprotein.

    Science.gov (United States)

    Patutina, O A; Mironova, N L; Logashenko, E B; Popova, N A; Nikolin, V P; Vasil'ev, G V; Kaledin, V I; Zenkova, M A; Vlasov, V V

    2012-01-01

    RLS lymphosarcoma characterized by enhanced expression of mdr1a and mdr1b genes encoding P-glycoprotein is insensitive to low doses of cyclophosphamide, but is susceptible to its high doses approximating the maximum tolerated doses. Induction of apoptotic death of RLS cells by high doses of cyclophosphamide was demonstrated by cytofluorometry and electrophoresis. Experiments on RLS(40) tumor cells derived from RLS lymphosarcoma and characterized by more intensive expression of mdr1a/1b genes showed that the therapeutic effects of cyclophosphamide increased under conditions of simultaneous suppression of these genes by specific small interfering RNA (siRNA). These findings suggest that active cyclophosphamide metabolite can be a substrate for P-glycoprotein.

  6. An effect of glycoprotein IIb/IIIa inhibitors on the kinetics of red blood cells aggregation.

    Science.gov (United States)

    Sokolova, Irina A; Muravyov, Alexei V; Khokhlova, Maria D; Rikova, Sofya Yu; Lyubin, Evgeny V; Gafarova, Marina A; Skryabina, Maria N; Fedyanin, Angrey A; Kryukova, Darya V; Shahnazarov, Alexander A

    2014-01-01

    The reversible aggregation of red blood cells (RBCs) continues to be of the basic science and clinical interest. Recently it has been reported about a specific binding between fibrinogen and unknown erythrocyte glycoprotein receptors. The aim of this study was to investigate whether the red blood cell aggregation (RBCA) include the cell-cell interaction using the membrane receptors that bind such ligands as fibrinogen or fibronectin. To test this hypothesis the RBCs were incubated with monafram - the drug of the monoclonal antibodies against glycoprotein (GP) IIb/IIIa, with the GPIIb-IIIa receptor antagonist tirofiban, epifibatide and with the fibrinogen inhibiting peptide. It has been found that the RBC incubation with monafram resulted in a marked RBCA decrease mainly in persons with high level of aggregation. Another research session has shown that RBC incubation with fibronectin was accompanied by a significant RBCA rise. The monafram addition to red cell incubation medium resulted in a significant RBCA lowering. The cell incubation with tirofiban and epifibatide issued in RBCA decrease. The similar results were obtained when RBCs were incubated with the fibrinogen inhibiting peptide. Although monafram, tirofiban, eptifibatide and the fibrinogen inhibiting peptide were related to fibrinogen function they didn't inhibit RBCA completely. Therefore, under moderate and low red blood cell aggregation the cell binding is probably related to nonspecific mode. It seems evident that the specific and nonspecific modes of red blood cell aggregate formation could co-exist. Additional theoretical and experimental investigations in this area are needed.

  7. [Hydroxyproline: Rich glycoproteins of the plant and cell wall

    Energy Technology Data Exchange (ETDEWEB)

    Varner, J.E.

    1993-01-01

    Since xylem tissue includes the main cell types which are lignified, we are interested in gene expression of glycine-rich proteins and proline-rich proteins, and other proteins which are involved in secondary cell wall thickening during xylogenesis. Since the main feature of xylogenesis is the deposition of additional wall components, study of the mechanism of xylogenesis will greatly advance our knowledge of the synthesis and assembly of wall macromolecules. We are using the in vitro xylogenesis system from isolated Zinnia mesophyll cells to isolate genes which are specifically expressed during xylogenesis. We have used subtractive hybridization methods to isolate a number of cDNA clones for differentially regulated genes from the cells after hormonal induction. So far, we have partially characterized 18 different cDNA clones from 239 positive clones. These differentially regulated genes can be divided into three sets according to the characteristics of gene expression in the induction medium and the control medium. The first set is induced in both the induction medium and the control medium without hormones. The second set is induced mainly in the induction medium and in the control medium with the addition of NAA alone. Two of thesegenes are exclusively induced by auxin. The third set of genes is induced mainly in the induction medium. Since these genes are not induced by either auxin or cytokinin alone, they may be directly involved in the process of xylogenesis. Our experiments on the localization of H[sub 2]O[sub 2] production reinforce the earlier ideas of others that H[sub 2]O[sub 2] is involved in normal lignification.

  8. Characterization of a human ovarian carcinoma cell line: UCI 101.

    Science.gov (United States)

    Fuchtner, C; Emma, D A; Manetta, A; Gamboa, G; Bernstein, R; Liao, S Y

    1993-02-01

    A new epithelial ovarian carcinoma cell line (UCI 101) has been established from the ascitic fluids and solid tumor of a patient with progressive papillary adenocarcinoma of the ovary shown previously to be refractory to combination chemotherapy consisting of cyclophosphamide, Adriamycin, and cisplatin as well as single-agent chemotherapy of taxol and high-dose cisplatin. The UCI 101 cell line grows well with an in vitro doubling time of 24 hr. The cell line expresses the B 72.3 (Tag 72), CA125, MH99 (ESA), and E29 (EMA) cell surface antigens and AE1/AE3 cytokeratins. This cell line overexpresses (as determined by immunocytochemistry) both p-glycoprotein and the epidermal growth factor receptor. The in vitro drug response to single agents including Adriamycin, cisplatin, dequalinium chloride, etoposide, 5-fluorouracil, taxol, and tumor necrosis factor was examined. Intraperitoneal transplantation of the cells into athymic mice resulted in foci of tumor on all peritoneal surfaces including the viscera and diaphragm ultimately leading to solid bulky disease with massive production of ascites. High levels of CA125 (> 500 units/ml) were detected in the serum of tumor-bearing mice. Cytogenetic analysis of cultured cells shows several marker chromosomes containing deletions, duplications, and translocations. Cytologic and histologic evaluation of the xenograft revealed morphological characteristics identical to those of the original tumor.

  9. Consequences of cell-to-cell P-glycoprotein transfer on acquired multidrug resistance in breast cancer: a cell population dynamics model

    Directory of Open Access Journals (Sweden)

    Webb Glenn

    2011-01-01

    Full Text Available Abstract Background Cancer is a proliferation disease affecting a genetically unstable cell population, in which molecular alterations can be somatically inherited by genetic, epigenetic or extragenetic transmission processes, leading to a cooperation of neoplastic cells within tumoural tissue. The efflux protein P-glycoprotein (P-gp is overexpressed in many cancer cells and has known capacity to confer multidrug resistance to cytotoxic therapies. Recently, cell-to-cell P-gp transfers have been shown. Herein, we combine experimental evidence and a mathematical model to examine the consequences of an intercellular P-gp trafficking in the extragenetic transfer of multidrug resistance from resistant to sensitive cell subpopulations. Methodology and Principal Findings We report cell-to-cell transfers of functional P-gp in co-cultures of a P-gp overexpressing human breast cancer MCF-7 cell variant, selected for its resistance towards doxorubicin, with the parental sensitive cell line. We found that P-gp as well as efflux activity distribution are progressively reorganized over time in co-cultures analyzed by flow cytometry. A mathematical model based on a Boltzmann type integro-partial differential equation structured by a continuum variable corresponding to P-gp activity describes the cell populations in co-culture. The mathematical model elucidates the population elements in the experimental data, specifically, the initial proportions, the proliferative growth rates, and the transfer rates of P-gp in the sensitive and resistant subpopulations. Conclusions We confirmed cell-to-cell transfer of functional P-gp. The transfer process depends on the gradient of P-gp expression in the donor-recipient cell interactions, as they evolve over time. Extragenetically acquired drug resistance is an additional aptitude of neoplastic cells which has implications in the diagnostic value of P-gp expression and in the design of chemotherapy regimens. Reviewers This

  10. Using titer and titer normalized to confluence are complementary strategies for obtaining Chinese hamster ovary cell lines with high volumetric productivity of etanercept

    DEFF Research Database (Denmark)

    Pristovšek, Nuša; Hansen, Henning Gram; Sergeeva, Daria

    2018-01-01

    The selection of clonally-derived Chinese hamster ovary (CHO) cell lines with the highest production rate of recombinant glycoproteins remains a big challenge during early stages of cell line development. Different strategies using either product titer or product titer normalized to cell number...

  11. [Incorporation of glycoproteins of the Aujeszky's disease virus ( Suid herpesvirus 1) into artificial liposome membranes and their interaction with cells].

    Science.gov (United States)

    Vrublevskaia, V V; Vinokurov, M G; Kholodkov, O A; Kornev, A N; Morenkov, O S

    2004-01-01

    The purpose of the case study was to investigate the interplay between liposomes, containing the in-built glycoproteins of the Aujeszky disease virus (ADV, Suid herpesvirus 1) with plasmatic membranes of sensitive cells. The conditions of reconstructing the ADV glycoproteins into artificial-liposome membranes were optimized. The above liposomes (virosomes), 40 x 200 nm, were impermeable to univalent ions, which confirmed the virosome membranes were intact. The gE and gB glycoproteins (90-98% of them) were located, inside the liposome membrane with the outwards orientation of their ecto-domain fragments. Virosomes were binding with cells in the dose-dependent mode. The purified ADV virions, the ADV gB glycoproteins and heparin inhibited such binding process of virosomes with cells, which denoted the specificity of their interaction with cells. An effective internalization of cell-binding virosomes was observed at 37 degrees C. The conclusion is that the ADV glycoproteins, constructed into the liposome membranes, simulate adequately enough the viral receptor structures and that the thus obtained virosomes could be used to investigate the interplay between alpha-herpes viruses and cells.

  12. Profiling of Concanavalin A-Binding Glycoproteins in Human Hepatic Stellate Cells Activated with Transforming Growth Factor-β1

    Directory of Open Access Journals (Sweden)

    Yannan Qin

    2014-11-01

    Full Text Available Glycoproteins play important roles in maintaining normal cell functions depending on their glycosylations. Our previous study indicated that the abundance of glycoproteins recognized by concanavalin A (ConA was increased in human hepatic stellate cells (HSCs following activation by transforming growth factor-β1 (TGF-β1; however, little is known about the ConA-binding glycoproteins (CBGs of HSCs. In this study, we employed a targeted glycoproteomics approach using lectin-magnetic particle conjugate-based liquid chromatography-tandem mass spectrometry to compare CBG profiles between LX-2 HSCs with and without activation by TGF-β1, with the aim of discovering novel CBGs and determining their possible roles in activated HSCs. A total of 54 and 77 proteins were identified in the quiescent and activated LX-2 cells, respectively. Of the proteins identified, 14.3% were glycoproteins and 73.3% were novel potential glycoproteins. Molecules involved in protein processing in the endoplasmic reticulum (e.g., calreticulin and calcium signaling (e.g., 1-phosphatidylinositol-4,5-bisphosphate phosphodiesterase β-2 [PLCB2] were specifically identified in activated LX-2 cells. Additionally, PLCB2 expression was upregulated in the cytoplasm of the activated LX-2 cells, as well as in the hepatocytes and sinusoidal cells of liver cirrhosis tissues. In conclusion, the results of this study may aid future investigations to find new molecular mechanisms involved in HSC activation and antifibrotic therapeutic targets.

  13. Enhanced production and isotope enrichment of recombinant glycoproteins produced in cultured mammalian cells

    Energy Technology Data Exchange (ETDEWEB)

    Skelton, David; Goodyear, Abbey [Florida State University, Department of Chemistry and Biochemistry (United States); Ni, DaQun; Walton, Wendy J.; Rolle, Myron; Hare, Joan T. [Florida State University, Institute of Molecular Biophysics (United States); Logan, Timothy M., E-mail: tlogan@fsu.ed [Florida State University, Department of Chemistry and Biochemistry (United States)

    2010-10-15

    NMR studies of post-translationally modified proteins are complicated by the lack of an efficient method to produce isotope enriched recombinant proteins in cultured mammalian cells. We show that reducing the glucose concentration and substituting glutamate for glutamine in serum-free medium increased cell viability while simultaneously increasing recombinant protein yield and the enrichment of non-essential amino acids compared to culture in unmodified, serum-free medium. Adding dichloroacetate, a pyruvate dehydrogenase kinase inhibitor, further improves cell viability, recombinant protein yield, and isotope enrichment. We demonstrate the method by producing partially enriched recombinant Thy1 glycoprotein from Lec1 Chinese hamster ovary (CHO) cells using U-{sup 13}C-glucose and {sup 15}N-glutamate as labeled precursors. This study suggests that uniformly {sup 15}N,{sup 13}C-labeled recombinant proteins may be produced in cultured mammalian cells starting from a mixture of labeled essential amino acids, glucose, and glutamate.

  14. eEF-2 Phosphorylation Down-Regulates P-Glycoprotein Over-Expression in Rat Brain Microvessel Endothelial Cells.

    Directory of Open Access Journals (Sweden)

    Xing Hua Tang

    Full Text Available We investigated whether glutamate, NMDA receptors, and eukaryote elongation factor-2 kinase (eEF-2K/eEF-2 regulate P-glycoprotein expression, and the effects of the eEF-2K inhibitor NH125 on the expression of P-glycoprotein in rat brain microvessel endothelial cells (RBMECs.Cortex was obtained from newborn Wistar rat brains. After surface vessels and meninges were removed, the pellet containing microvessels was resuspended and incubated at 37°C in culture medium. Cell viability was assessed by the MTT assay. RBMECs were identified by immunohistochemistry with anti-vWF. P-glycoprotein, phospho-eEF-2, and eEF-2 expression were determined by western blot analysis. Mdr1a gene expression was analyzed by RT-PCR.Mdr1a mRNA, P-glycoprotein and phospho-eEF-2 expression increased in L-glutamate stimulated RBMECs. P-glycoprotein and phospho-eEF-2 expression were down-regulated after NH125 treatment in L-glutamate stimulated RBMECs.eEF-2K/eEF-2 should have played an important role in the regulation of P-glycoprotein expression in RBMECs. eEF-2K inhibitor NH125 could serve as an efficacious anti-multidrug resistant agent.

  15. IRES-mediated translation of membrane proteins and glycoproteins in eukaryotic cell-free systems.

    Directory of Open Access Journals (Sweden)

    Andreas K Brödel

    Full Text Available Internal ribosome entry site (IRES elements found in the 5' untranslated region of mRNAs enable translation initiation in a cap-independent manner, thereby representing an alternative to cap-dependent translation in cell-free protein expression systems. However, IRES function is largely species-dependent so their utility in cell-free systems from different species is rather limited. A promising approach to overcome these limitations would be the use of IRESs that are able to recruit components of the translation initiation apparatus from diverse origins. Here, we present a solution to this technical problem and describe the ability of a number of viral IRESs to direct efficient protein expression in different eukaryotic cell-free expression systems. The IRES from the intergenic region (IGR of the Cricket paralysis virus (CrPV genome was shown to function efficiently in four different cell-free systems based on lysates derived from cultured Sf21, CHO and K562 cells as well as wheat germ. Our results suggest that the CrPV IGR IRES-based expression vector is universally applicable for a broad range of eukaryotic cell lysates. Sf21, CHO and K562 cell-free expression systems are particularly promising platforms for the production of glycoproteins and membrane proteins since they contain endogenous microsomes that facilitate the incorporation of membrane-spanning proteins and the formation of post-translational modifications. We demonstrate the use of the CrPV IGR IRES-based expression vector for the enhanced synthesis of various target proteins including the glycoprotein erythropoietin and the membrane proteins heparin-binding EGF-like growth factor receptor as well as epidermal growth factor receptor in the above mentioned eukaryotic cell-free systems. CrPV IGR IRES-mediated translation will facilitate the development of novel eukaryotic cell-free expression platforms as well as the high-yield synthesis of desired proteins in already established

  16. IRES-Mediated Translation of Membrane Proteins and Glycoproteins in Eukaryotic Cell-Free Systems

    Science.gov (United States)

    Brödel, Andreas K.; Sonnabend, Andrei; Roberts, Lisa O.; Stech, Marlitt; Wüstenhagen, Doreen A.; Kubick, Stefan

    2013-01-01

    Internal ribosome entry site (IRES) elements found in the 5′ untranslated region of mRNAs enable translation initiation in a cap-independent manner, thereby representing an alternative to cap-dependent translation in cell-free protein expression systems. However, IRES function is largely species-dependent so their utility in cell-free systems from different species is rather limited. A promising approach to overcome these limitations would be the use of IRESs that are able to recruit components of the translation initiation apparatus from diverse origins. Here, we present a solution to this technical problem and describe the ability of a number of viral IRESs to direct efficient protein expression in different eukaryotic cell-free expression systems. The IRES from the intergenic region (IGR) of the Cricket paralysis virus (CrPV) genome was shown to function efficiently in four different cell-free systems based on lysates derived from cultured Sf21, CHO and K562 cells as well as wheat germ. Our results suggest that the CrPV IGR IRES-based expression vector is universally applicable for a broad range of eukaryotic cell lysates. Sf21, CHO and K562 cell-free expression systems are particularly promising platforms for the production of glycoproteins and membrane proteins since they contain endogenous microsomes that facilitate the incorporation of membrane-spanning proteins and the formation of post-translational modifications. We demonstrate the use of the CrPV IGR IRES-based expression vector for the enhanced synthesis of various target proteins including the glycoprotein erythropoietin and the membrane proteins heparin-binding EGF-like growth factor receptor as well as epidermal growth factor receptor in the above mentioned eukaryotic cell-free systems. CrPV IGR IRES-mediated translation will facilitate the development of novel eukaryotic cell-free expression platforms as well as the high-yield synthesis of desired proteins in already established systems. PMID

  17. IRES-mediated translation of membrane proteins and glycoproteins in eukaryotic cell-free systems.

    Science.gov (United States)

    Brödel, Andreas K; Sonnabend, Andrei; Roberts, Lisa O; Stech, Marlitt; Wüstenhagen, Doreen A; Kubick, Stefan

    2013-01-01

    Internal ribosome entry site (IRES) elements found in the 5' untranslated region of mRNAs enable translation initiation in a cap-independent manner, thereby representing an alternative to cap-dependent translation in cell-free protein expression systems. However, IRES function is largely species-dependent so their utility in cell-free systems from different species is rather limited. A promising approach to overcome these limitations would be the use of IRESs that are able to recruit components of the translation initiation apparatus from diverse origins. Here, we present a solution to this technical problem and describe the ability of a number of viral IRESs to direct efficient protein expression in different eukaryotic cell-free expression systems. The IRES from the intergenic region (IGR) of the Cricket paralysis virus (CrPV) genome was shown to function efficiently in four different cell-free systems based on lysates derived from cultured Sf21, CHO and K562 cells as well as wheat germ. Our results suggest that the CrPV IGR IRES-based expression vector is universally applicable for a broad range of eukaryotic cell lysates. Sf21, CHO and K562 cell-free expression systems are particularly promising platforms for the production of glycoproteins and membrane proteins since they contain endogenous microsomes that facilitate the incorporation of membrane-spanning proteins and the formation of post-translational modifications. We demonstrate the use of the CrPV IGR IRES-based expression vector for the enhanced synthesis of various target proteins including the glycoprotein erythropoietin and the membrane proteins heparin-binding EGF-like growth factor receptor as well as epidermal growth factor receptor in the above mentioned eukaryotic cell-free systems. CrPV IGR IRES-mediated translation will facilitate the development of novel eukaryotic cell-free expression platforms as well as the high-yield synthesis of desired proteins in already established systems.

  18. Recombinant pestivirus E2 glycoproteins prevent viral attachment to permissive and non permissive cells with different efficiency.

    Science.gov (United States)

    Asfor, A S; Wakeley, P R; Drew, T W; Paton, D J

    2014-08-30

    Bovine viral diarrhoea virus (BVDV) is an economically important animal pathogen, which like other pestiviruses has similar molecular biological features to hepaciviruses, including human Hepatitis C virus. The pestivirus E2 glycoproteins are the major target for virus-neutralising antibodies, as well as playing a role in receptor binding and host range restriction. In this study, recombinant E2 glycoproteins (rE2) derived from three different pestivirus species were examined for their inhibitory effects on pestivirus infectivity in cell culture. Histidine-tagged rE2 glycoproteins of BVDV type 2 strain 178003, BVDV type 1 strain Oregon C24V and CSFV strain Alfort 187 were produced in Spodoptera frugiperda insect cells and purified under native conditions. The ability of rE2 glycoprotein to inhibit the infection of permissive cells by both homologous and heterologous virus was compared, revealing that the inhibitory effects of rE2 glycoproteins correlated with the predicted similarity of the E2 structures in the recombinant protein and the test virus. This result suggests that the sequence and structure of E2 are likely to be involved in the host specificity of pestiviruses at their point of uptake into cells. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Contribution of tumor endothelial cells to drug resistance: anti-angiogenic tyrosine kinase inhibitors act as p-glycoprotein antagonists.

    Science.gov (United States)

    Bani, MariaRosa; Decio, Alessandra; Giavazzi, Raffaella; Ghilardi, Carmen

    2017-05-01

    Tumor endothelial cells (TEC) differ from the normal counterpart, in both gene expression and functionality. TEC may acquire drug resistance, a characteristic that is maintained in vitro. There is evidence that TEC are more resistant to chemotherapeutic drugs, substrates of ATP-binding cassette (ABC) transporters. TEC express p-glycoprotein (encoded by ABCB1), while no difference in other ABC transporters was revealed compared to normal endothelia. A class of tyrosine kinase inhibitors (TKI), used as angiostatic compounds, interferes with the ATPase activity of p-glycoprotein, thus impairing its functionality. The exposure of ovarian adenocarcinoma TEC to the TKIs sunitinib or sorafenib was found to abrogate resistance (proliferation and motility) to doxorubicin and paclitaxel in vitro, increasing intracellular drug accumulation. A similar effect has been reported by the p-glycoprotein inhibitor verapamil. No beneficial effect was observed in combination with cytotoxic drugs that are not p-glycoprotein substrates. The current paper reviews the mechanisms of TEC chemoresistance and shows the role of p-glycoprotein in mediating such resistance. Inhibition of p-glycoprotein by anti-angiogenic TKI might contribute to the beneficial effect of these small molecules, when combined with chemotherapy, in counteracting acquired drug resistance.

  20. Human hepatocellular carcinoma cell lines exhibit multidrug resistance unrelated to MRD1 gene expression.

    Science.gov (United States)

    Shen, D W; Lu, Y G; Chin, K V; Pastan, I; Gottesman, M M

    1991-03-01

    Multidrug resistance of human cancer cells may result from expression of P-glycoprotein, the product of the MRD1 gene, acting as an energy-dependent drug efflux pump. However, direct evidence that expression of the MDR1 gene contributes to the multidrug resistance of human liver carcinomas has not been established. In this study, we tested five cell lines derived from human hepatocellular carcinomas for sensitivity to a variety of drugs used widely as anticancer agents; these included vinblastine, doxorubicin, actinomycin D, mitomycin C, 5-fluorouracil, 6-mercaptopurine, melphalan, methotrexate, cis-platinum and etoposide (VP-16). All five hepatoma cell lines were resistant at different levels to these chemicals compared to human KB cells. Although it has been demonstrated that resistance to vinblastine, colchicine, doxorubicin and actinomycin D in human multidrug-resistant cells is associated with overexpression of P-glycoprotein, very little expression of P-glycoprotein was found in these human hepatoma cells. Neither verapamil nor quinidine, inhibitors of the drug efflux pump, were able to overcome multidrug resistance in hepatoma cells. These results indicate that the multidrug resistance phenotype in human hepatocellular carcinoma cells cannot be attributed to expression of the MDR1 gene, but that novel mechanisms may account for the resistance of these cancer cells.

  1. Genetically Intact but Functionally Impaired HIV-1 Env Glycoproteins in the T-Cell Reservoir.

    Science.gov (United States)

    de Verneuil, Anne; Migraine, Julie; Mammano, Fabrizio; Molina, Jean-Michel; Gallien, Sébastien; Mouquet, Hugo; Hance, Allan J; Clavel, François; Dutrieux, Jacques

    2018-02-15

    HIV-infected subjects under antiretroviral treatment (ART) harbor a persistent viral reservoir in resting CD4 + T cells, which accounts for the resurgence of HIV replication after ART interruption. A large majority of HIV reservoir genomes are genetically defective, but even among intact proviruses few seem able to generate infectious virus. To understand this phenomenon, we examined the function and expression of HIV envelope glycoproteins reactivated from the reservoir of four HIV-infected subjects under suppressive ART. We studied full-length genetically intact env sequences from both replicative viruses and cell-associated mRNAs. We found that these Env proteins varied extensively in fusogenicity and infectivity, with strongest functional defects found in Envs from cell-associated mRNAs. Env functional impairments were essentially explained by defects in Env protein expression. Our results support the idea that defects in HIV Env expression, preventing cytopathic or immune HIV clearance, contribute to the persistence of the HIV T-cell reservoir in vivo IMPORTANCE In most individuals, evolution of HIV infection is efficiently controlled on the long-term by combination antiviral therapies. These treatments, however, fail to eradicate HIV from the infected subjects, a failure that results both in resurgence of virus replication and in resumption of HIV pathogenicity when the treatment is stopped. HIV resurgence, in these instances, is widely assumed to emerge from a reservoir of silent virus integrated in the genomes of a small number of T lymphocytes. The silent HIV reservoir is mostly composed of heavily deleted or mutated HIV DNA. Moreover, among the seemingly intact remaining HIV, only very few are actually able to efficiently propagate in tissue culture. In this study, we find that intact HIV in the reservoir often carry strong defects in their capacity to promote fusion to neighboring cells and infection of target cells, a defect related to the function and

  2. Ebola virus glycoprotein-mediated anoikis of primary human cardiac microvascular endothelial cells

    International Nuclear Information System (INIS)

    Ray, Ratna B.; Basu, Arnab; Steele, Robert; Beyene, Aster; McHowat, Jane; Meyer, Keith; Ghosh, Asish K.; Ray, Ranjit

    2004-01-01

    Ebola virus glycoprotein (EGP) has been implicated for the induction of cytotoxicity and injury in vascular cells. On the other hand, EGP has also been suggested to induce massive cell rounding and detachment from the plastic surface by downregulating cell adhesion molecules without causing cytotoxicity. In this study, we have examined the cytotoxic role of EGP in primary endothelial cells by transduction with a replication-deficient recombinant adenovirus expressing EGP (Ad-EGP). Primary human cardiac microvascular endothelial cells (HCMECs) transduced with Ad-EGP displayed loss of cell adhesion from the plastic surface followed by cell death. Transfer of conditioned medium from EGP-transduced HCMEC into naive cells did not induce loss of adhesion or cell death, suggesting that EGP needs to be expressed intracellularly to exert its cytotoxic effect. Subsequent studies suggested that HCMEC death occurred through apoptosis. Results from this study shed light on the EGP-induced anoikis in primary human cardiac endothelial cells, which may have significant pathological consequences

  3. 116 kDa glycoprotein isolated from Ulmus davidiana Nakai (UDN) inhibits glucose/glucose oxidase (G/GO)-induced apoptosis in BNL CL.2 cells.

    Science.gov (United States)

    Ko, Jeong-Hyeon; Lee, Sei-Jung; Lim, Kye-Taek

    2005-09-14

    Ulmus davidiana Nakai (UDN) has been used in folk medicine for its anti-inflammatory activity. In the present study, we investigated the antiapoptotic effect of UDN glycoprotein in glucose/glucose oxidase (G/GO)-induced BNL CL.2 cells. To evaluate the antiapoptotic effect of UDN glycoprotein, experiments were carried out using Western blot analysis for nuclear factor-kappa B (NF-kappaB), caspase-3, and poly(ADP-ribose) polymerase (PARP). We also examined nitric oxide (NO) production and nuclear staining. When BNL CL.2 cells were treated with G/GO (50 mU/ml), viability of the cells was 54.1%. However, the number of living cells after the addition of UDN glycoprotein in the presence of G/GO increased. UDN glycoprotein protected from cell damage caused by G/GO. Interestingly, UDN glycoprotein decreased NF-kappaB activation and stimulated NO production in G/GO-induced BNL CL.2 cells. In apoptotic parameters, UDN glycoprotein inhibited activations of caspase-3 and PARP cleavage in G/GO-induced BNL CL.2 cells. The results of nuclear staining indicated that UDN glycoprotein (50 microg/ml) has a protective ability from apoptotic cell death caused G/GO (50 mU/ml). In conclusion, UDN glycoprotein has a protective effect on apoptosis induced by G/GO through the inhibition of NF-kappaB, caspase-3, and PARP activity, and the stimulation of NO production in BNL CL.2 cells.

  4. Role of Conserved Oligomeric Golgi Complex in the Abnormalities of Glycoprotein Processing in Breast Cancer Cells

    National Research Council Canada - National Science Library

    Zolov, Sergey N

    2006-01-01

    ...: protein glycosylation and its sorting. For analysis of COG complex function we utilized RNA interference assay to knockdown COG3p subunit of COG complex in normal and breast cancer cells and other tumor cell lines...

  5. Studies on N-linked glycoprotein synthesis in differentiating muscle cells

    International Nuclear Information System (INIS)

    Miller, K.R.

    1986-01-01

    All N-linked glycoproteins share a common pathway with respect to the acquisition of their oligosaccharide chains. Isolated membranes from undifferentiated (UND) and differentiated (DIF) C 2 cells, which have the capability of differentiating from mononucleated myoblasts to contracting myotubes, were utilized to examine dolichol-linked oligosaccharide synthesis. A characterization of the glycosyltransferases involved in the early stages of lipid-linked oligosaccaride synthesis revealed that while UND cells demonstrated a greater ability to synthesize Dol-PP-GN/sub (1-2), Dol-P-Man, and Dol-P-Glc than did DIF cells, the presence of exogenous Dol-P plus detergent either reversed or equalized product formation. The ability to synthesize the larger dolichol-oligosaccharides was demonstrated both in whole cells and in isolated membranes from UND and DIF cells. Pulse-chase experiments, using [ 3 H]-glucosamine to metabolically label the N-acetylglucosamine residues demonstrated the precursor-product relationship between the dolichol-oligosaccharide intermediates in whole cell studies. DIF cells appear to be more efficient than UND cells for extending the smaller oligosaccharide intermediates to the tetradecasaccharide which would be transferred to protein. Membranes isolated from cells metabolically labeled with [ 3 H]-mannose were subject to pronase digestion, and the resulting glycopeptide analyzed by serial lectin affinity chromatography

  6. Effects of P-Glycoprotein and Its Inhibitors on Apoptosis in K562 Cells

    Directory of Open Access Journals (Sweden)

    Yaqiong Zu

    2014-08-01

    Full Text Available P-glycoprotein (P-gp is a major factor in multidrug resistance (MDR which is a serious obstacle in chemotherapy. P-gp has also been implicated in causing apoptosis of tumor cells, which was shown to be another important mechanism of MDR recently. To study the influence of P-gp in tumor cell apoptosis, K562/A cells (P-gp+ and K562/S cells (P-gp− were subjected to doxorubicin (Dox, serum withdrawal, or independent co-incubation with multiple P-gp inhibitors, including valspodar (PSC833, verapamil (Ver and H108 to induce apoptosis. Apoptosis was simultaneously detected by apoptotic rate, cell cycle by flow cytometry and cysteine aspartic acid-specific protease 3 (caspase 3 activity by immunoassay. Cytotoxicity and apoptosis induced by PSC833 were evaluated through an MTT method and apoptosis rate, and cell cycle combined with caspase 3 activity, respectively. The results show that K562/A cells are more resistant to apoptosis and cell cycle arrest than K562/S cells after treatment with Dox or serum deprivation. The apoptosis of K562/A cells increased after co-incubation with each of the inhibitors of P-gp. P-gp inhibitors also enhanced cell cycle arrest in K562/A cell. PSC833 most strikingly decreased viability and led to apoptosis and S phase arrest of cell cycle in K562/A cells. Our study demonstrates that P-gp inhibits the apoptosis of tumor cells in addition to participating in the efflux of intracellular chemotherapy drugs. The results of the caspase 3 activity assay also suggest that the role of P-gp in apoptosis avoidance is caspase-related.

  7. CXCR4 mediated chemotaxis is regulated by 5T4 oncofetal glycoprotein in mouse embryonic cells.

    Directory of Open Access Journals (Sweden)

    Thomas D Southgate

    2010-04-01

    Full Text Available 5T4 oncofetal molecules are highly expressed during development and upregulated in cancer while showing only low levels in some adult tissues. Upregulation of 5T4 expression is a marker of loss of pluripotency in the early differentiation of embryonic stem (ES cells and forms an integrated component of an epithelial-mesenchymal transition, a process important during embryonic development and metastatic spread of epithelial tumors. Investigation of the transcriptional changes in early ES differentiation showed upregulation of CXCL12 and down-regulation of a cell surface protease, CD26, which cleaves this chemokine. CXCL12 binds to the widely expressed CXCR4 and regulates key aspects of development, stem cell motility and tumour metastasis to tissues with high levels of CXCL12. We show that the 5T4 glycoprotein is required for optimal functional cell surface expression of the chemokine receptor CXCR4 and CXCL12 mediated chemotaxis in differentiating murine embryonic stem cells and embryo fibroblasts (MEF. Cell surface expression of 5T4 and CXCR4 molecules is co-localized in differentiating ES cells and MEF. By contrast, differentiating ES and MEF derived from 5T4 knockout (KO mice show only intracellular CXCR4 expression but infection with adenovirus encoding mouse 5T4 restores CXCL12 chemotaxis and surface co-localization with 5T4 molecules. A series of chimeric constructs with interchanged domains of 5T4 and the glycoprotein CD44 were used to map the 5T4 sequences relevant for CXCR4 membrane expression and function in 5T4KO MEF. These data identified the 5T4 transmembrane domain as sufficient and necessary to enable CXCR4 cell surface expression and chemotaxis. Furthermore, some monoclonal antibodies against m5T4 can inhibit CXCL12 chemotaxis of differentiating ES cells and MEF which is not mediated by simple antigenic modulation. Collectively, these data support a molecular interaction of 5T4 and CXCR4 occurring at the cell surface which

  8. Ferulic acid reverses ABCB1-mediated paclitaxel resistance in MDR cell lines.

    Science.gov (United States)

    Muthusamy, Ganesan; Balupillai, Agilan; Ramasamy, Karthikeyan; Shanmugam, Mohana; Gunaseelan, Srithar; Mary, Beaulah; Prasad, N Rajendra

    2016-09-05

    Multidrug resistance (MDR) remains a major obstacle in cancer chemotherapy. The use of the dietary phytochemicals as chemosensitizing agents to enhance the efficacy of conventional cytostatic drugs has recently gained the attention as a plausible approach for overcoming the drug resistance. The aim of this study was to investigate whether a naturally occurring diet-based phenolic acid, ferulic acid, could sensitize paclitaxel efficacy in ABCB1 overexpressing (P-glycoprotein) colchicine selected KB Ch(R)8-5 cell line. In vitro drug efflux assays demonstrated that ferulic acid inhibits P-glycoprotein transport function in drug resistant KB Ch(R)8-5 cell lines. However, ferulic acid significantly downregulates ABCB1 expression in a concentration dependent manner. Cytotoxicity assay reveals that ferulic acid decreased paclitaxel resistance in KBCh(R)8-5 and HEK293/ABCB1 cells, which indicates its chemosensitizing potential. Clonogenic cell survival assay and apoptotic morphological staining further confirm the chemosensitizing potential of ferulic acid in drug resistant KB Ch(R)8-5 cell lines. Ferulic acid treatment enhances paclitaxel mediated cell cycle arrest and upregulates paclitaxel-induced apoptotic signaling in KB resistant cells. Hence, it has been concluded that downregulation of ABCB1 and subsequent induction of paclitaxel-mediated cell cycle arrest and apoptotic signaling may be the cause for the chemosensitizing potential of ferulic acid in P-gp overexpressing cell lines. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. The glycoprotein-hormones activin A and inhibin A interfere with dendritic cell maturation

    Directory of Open Access Journals (Sweden)

    Reichardt Holger M

    2008-05-01

    Full Text Available Abstract Background Pregnancy represents an exclusive situation in which the immune and the endocrine system cooperate to prevent rejection of the embryo by the maternal immune system. While immature dendritic cells (iDC in the early pregnancy decidua presumably contribute to the establishment of peripheral tolerance, glycoprotein-hormones of the transforming growth factor beta (TGF-beta family including activin A (ActA and inhibin A (InA are candidates that could direct the differentiation of DCs into a tolerance-inducing phenotype. Methods To test this hypothesis we generated iDCs from peripheral-blood-monocytes and exposed them to TGF-beta1, ActA, as well as InA and Dexamethasone (Dex as controls. Results Both glycoprotein-hormones prevented up-regulation of HLA-DR during cytokine-induced DC maturation similar to Dex but did not influence the expression of CD 40, CD 83 and CD 86. Visualization of the F-actin cytoskeleton confirmed that the DCs retained a partially immature phenotype under these conditions. The T-cell stimulatory capacity of DCs was reduced after ActA and InA exposure while the secretion of cytokines and chemokines was unaffected. Conclusion These findings suggest that ActA and InA interfere with selected aspects of DC maturation and may thereby help preventing activation of allogenic T-cells by the embryo. Thus, we have identified two novel members of the TGF-beta superfamily that could promote the generation of tolerance-inducing DCs.

  10. Mapping of surface glycoproteins of Trypanosoma cruzi by two-dimensional electrophoresis. A correlation with the cell invasion capacity.

    Science.gov (United States)

    Andrews, N W; Katzin, A M; Colli, W

    1984-05-02

    The cell-surface iodinatable proteins of Trypanosoma cruzi have been analyzed by two-dimensional polyacrylamide gel electrophoresis under equilibrium conditions. Antigenic polypeptides were characterized after immunoprecipitation and glycoproteins were identified by means of lectin-affinity chromatography. Two glycoproteins, with affinity for concanavalin A, were found to be common to both infective (trypomastigote) and non-infective (epimastigote) forms: protein 1 (90 kDa, pI 5.5-6.5) and protein 2 (80 kDa, pI 5.3-6.3). In epimastigotes a specific concanavalin-A-binding surface glycoprotein (70 kDa, pI 5.5) was identified. Trypomastigote forms, on the other hand, presented several specific iodinatable surface components: glycoproteins 3(85 kDa, pI 5.5), 4 (85 kDa, pI 5.0), 6 (100 kDa, pI 6.5), 7 (120 kDa, pI 6.3), 8 (68 kDa, pI 6.7) and several minor high-molecular-mass acid proteins, all containing glucose and/or mannose, and glycoprotein 5 (85 kDa, pI 6.3-7.5), containing N-acetyl-D-glucosamine (Tc-85). Proteins 1, 2 and 5 were the only ones which gave clear evidence of charge heterogeneity. Most of the surface proteins of trypomastigote forms, the exception being proteins 3, 4 and 8, were removed by treatment with trypsin. This proteolytic treatment results in 90% inhibition of the in vitro vertebrate-cell-invasion capacity of the parasites. Upon reincubation in culture medium for 4 h, the trypsin-removed glycoproteins are again detected, an observation that correlates well with the recovery of the cell-penetration capacity observed in the same period.

  11. Adenovirus vector infection of non-small-cell lung cancer cells is a trigger for multi-drug resistance mediated by P-glycoprotein

    International Nuclear Information System (INIS)

    Tomono, Takumi; Kajita, Masahiro; Yano, Kentaro; Ogihara, Takuo

    2016-01-01

    P-glycoprotein (P-gp) is an ATP-binding cassette protein involved in cancer multi-drug resistance (MDR). It has been reported that infection with some bacteria and viruses induces changes in the activities of various drug-metabolizing enzymes and transporters, including P-gp. Although human adenoviruses (Ad) cause the common cold, the effect of Ad infection on MDR in cancer has not been established. In this study, we investigated whether Ad infection is a cause of MDR in A549, H441 and HCC827 non-small-cell lung cancer (NSCLC) cell lines, using an Ad vector system. We found that Ad vector infection of NSCLC cell lines induced P-gp mRNA expression, and the extent of induction was dependent on the number of Ad vector virus particles and the infection time. Heat-treated Ad vector, which is not infectious, did not alter P-gp mRNA expression. Uptake experiments with doxorubicin (DOX), a P-gp substrate, revealed that DOX accumulation was significantly decreased in Ad vector-infected A549 cells. The decrease of DOX uptake was blocked by verapamil, a P-gp inhibitor. Our results indicated that Ad vector infection of NSCLC cells caused MDR mediated by P-gp overexpression. The Ad vector genome sequence is similar to that of human Ad, and therefore human Ad infection of lung cancer patients may lead to chemoresistance in the clinical environment. -- Highlights: •Adenovirus vector infection induced P-gp mRNA expression in three NSCLC cell lines. •Adenovirus vector infection enhanced P-gp-mediated doxorubicin efflux from the cells. •The increase of P-gp was not mediated by nuclear receptors (PXR, CAR) or COX-2.

  12. Adenovirus vector infection of non-small-cell lung cancer cells is a trigger for multi-drug resistance mediated by P-glycoprotein

    Energy Technology Data Exchange (ETDEWEB)

    Tomono, Takumi [Laboratory of Clinical Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Takasaki University of Health and Welfare, 60 Nakaorui-machi, Takasaki-shi, Gunma 370-0033 (Japan); Kajita, Masahiro [Laboratory of Molecular Pharmaceutics and Technology, Faculty of Pharmacy, Takasaki University of Health and Welfare, 60 Nakaorui-machi, Takasaki-shi, Gunma 370-0033 (Japan); Yano, Kentaro [Laboratory of Biopharmaceutics, Faculty of Pharmacy, Takasaki University of Health and Welfare, 60 Nakaorui-machi, Takasaki-shi, Gunma 370-0033 (Japan); Ogihara, Takuo, E-mail: togihara@takasaki-u.ac.jp [Laboratory of Clinical Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Takasaki University of Health and Welfare, 60 Nakaorui-machi, Takasaki-shi, Gunma 370-0033 (Japan)

    2016-08-05

    P-glycoprotein (P-gp) is an ATP-binding cassette protein involved in cancer multi-drug resistance (MDR). It has been reported that infection with some bacteria and viruses induces changes in the activities of various drug-metabolizing enzymes and transporters, including P-gp. Although human adenoviruses (Ad) cause the common cold, the effect of Ad infection on MDR in cancer has not been established. In this study, we investigated whether Ad infection is a cause of MDR in A549, H441 and HCC827 non-small-cell lung cancer (NSCLC) cell lines, using an Ad vector system. We found that Ad vector infection of NSCLC cell lines induced P-gp mRNA expression, and the extent of induction was dependent on the number of Ad vector virus particles and the infection time. Heat-treated Ad vector, which is not infectious, did not alter P-gp mRNA expression. Uptake experiments with doxorubicin (DOX), a P-gp substrate, revealed that DOX accumulation was significantly decreased in Ad vector-infected A549 cells. The decrease of DOX uptake was blocked by verapamil, a P-gp inhibitor. Our results indicated that Ad vector infection of NSCLC cells caused MDR mediated by P-gp overexpression. The Ad vector genome sequence is similar to that of human Ad, and therefore human Ad infection of lung cancer patients may lead to chemoresistance in the clinical environment. -- Highlights: •Adenovirus vector infection induced P-gp mRNA expression in three NSCLC cell lines. •Adenovirus vector infection enhanced P-gp-mediated doxorubicin efflux from the cells. •The increase of P-gp was not mediated by nuclear receptors (PXR, CAR) or COX-2.

  13. Plant glycoprotein modulates the expression of interleukin-1beta via inhibition of MAP kinase in HMC-1 cells.

    Science.gov (United States)

    Oh, Phil-Sun; Lim, Kye-Taek

    2008-08-01

    Dioscorea batatas Decne (DBD) is used to heal various disorders of the kidney and lungs as an herbal agent in Korea. The purpose of the present study was to determine whether the DBD glycoprotein regulates the inflammatory reaction stimulated by phorbol-12-myristate 13-acetate plus calcium ionophore A23187 (PMACI) in human mast cells (HMC-1). The results indicate that DBD glycoprotein decreased gene expression of interleukin (IL)-1beta and cyclooxygenase (COX)-2 in PMACI-stimulated HMC-1 cells through blocking of phosphorylation of p44/42 mitogen-activated protein kinase (MAPK) and p38 MAPK and DNA binding activities of nuclear factor (NF)-kappaB and activator protein (AP)-1. The production of intracellular reactive oxygen species (ROS) and nitric oxide (NO) is gradually reduced by concentration-dependent DBD glycoprotein treatment in PMACI-stimulated HMC-1 cells. Hence, we propose the hypothesis that DBD glycoprotein can serve as a potent anti-inflammatory agent in the treatment of inflammatory allergic diseases through inhibition of inflammation-related signal transduction in mast cell activation.

  14. P-glycoprotein epitope mapping. I. Identification of a linear human-specific epitope in the fourth loop of the P-glycoprotein extracellular domain by MM4.17 murine monoclonal antibody to human multi-drug-resistant cells.

    Science.gov (United States)

    Cianfriglia, M; Willingham, M C; Tombesi, M; Scagliotti, G V; Frasca, G; Chersi, A

    1994-01-02

    A new murine monoclonal antibody (MAb), MM4.17, to human multi-drug-resistant (MDR) cells was found to be reactive in an ELISA with a synthetic 16-amino acid peptide selected from the fourth loop of the P-glycoprotein extracellular domain. Immunohistochemistry indicated that this MAb reacted in human tissues in the same pattern as that previously found with other human-specific MAbs to P-glycoprotein. For a precise definition of the MM4.17 epitope, a peptide library consisting of overlapping 4- to 10-mer residues covering the entire P-glycoprotein-fragment was synthesized on polyethylene pins and tested for MAb binding. The results of this ELISA demonstrated that the MM4.17 epitope is constituted by the continuous-linear TRIDDPET amino-acid sequence (residues 750-757 of the human MDRI-P-glycoprotein). The MAb MM4.17 recognizes only the human MDRI-P-glycoprotein isoform, and excess TRIDDPET peptide blocks the binding of the MAb to MDR variants of CEM cells. These results demonstrate that the amino-acid sequence TRIDDPET from the human MDRI gene represents the first continuous-linear epitope identified in the P-glycoprotein extracellular domain.

  15. The Glycoproteins of All Filovirus Species Use the Same Host Factors for Entry into Bat and Human Cells but Entry Efficiency Is Species Dependent.

    Directory of Open Access Journals (Sweden)

    Markus Hoffmann

    Full Text Available Ebola and marburgviruses, members of the family Filoviridae, can cause severe hemorrhagic fever in humans. The ongoing Ebola virus (EBOV disease epidemic in Western Africa claimed more than 11,300 lives and was associated with secondary cases outside Africa, demonstrating that filoviruses pose a global health threat. Bats constitute an important natural reservoir of filoviruses, including viruses of the recently identified Cuevavirus genus within the Filoviridae family. However, the interactions of filoviruses with bat cells are incompletely understood. Here, we investigated whether filoviruses employ different strategies to enter human and bat cells. For this, we examined host cell entry driven by glycoproteins (GP from all filovirus species into cell lines of human and fruit bat origin. We show that all GPs were able to mediate entry into human and most fruit bat cell lines with roughly comparable efficiency. In contrast, the efficiency of entry into the cell line EidNi/41 derived from a straw-colored fruit bat varied markedly between the GPs of different filovirus species. Furthermore, inhibition studies demonstrated that filoviruses employ the same host cell factors for entry into human, non-human primate and fruit bat cell lines, including cysteine proteases, two pore channels and NPC1 (Niemann-Pick C1 molecule. Finally, processing of GP by furin and the presence of the mucin-like domain in GP were dispensable for entry into both human and bat cell lines. Collectively, these results show that filoviruses rely on the same host cell factors for entry into human and fruit bat cells, although the efficiency of the usage of these factors might differ between filovirus species.

  16. Glycoprotein B cleavage is important for murid herpesvirus 4 to infect myeloid cells.

    Science.gov (United States)

    Glauser, Daniel L; Milho, Ricardo; Frederico, Bruno; May, Janet S; Kratz, Anne-Sophie; Gillet, Laurent; Stevenson, Philip G

    2013-10-01

    Glycoprotein B (gB) is a conserved herpesvirus virion component implicated in membrane fusion. As with many-but not all-herpesviruses, the gB of murid herpesvirus 4 (MuHV-4) is cleaved into disulfide-linked subunits, apparently by furin. Preventing gB cleavage for some herpesviruses causes minor infection deficits in vitro, but what the cleavage contributes to host colonization has been unclear. To address this, we mutated the furin cleavage site (R-R-K-R) of the MuHV-4 gB. Abolishing gB cleavage did not affect its expression levels, glycosylation, or antigenic conformation. In vitro, mutant viruses entered fibroblasts and epithelial cells normally but had a significant entry deficit in myeloid cells such as macrophages and bone marrow-derived dendritic cells. The deficit in myeloid cells was not due to reduced virion binding or endocytosis, suggesting that gB cleavage promotes infection at a postendocytic entry step, presumably viral membrane fusion. In vivo, viruses lacking gB cleavage showed reduced lytic spread in the lungs. Alveolar epithelial cell infection was normal, but alveolar macrophage infection was significantly reduced. Normal long-term latency in lymphoid tissue was established nonetheless.

  17. Overcoming of P-glycoprotein mediated vincristine resistance of L1210/VCR mouse leukemic cells could be induced by pentoxifylline but not by theophylline and caffeine

    International Nuclear Information System (INIS)

    Stefankova, Z.; Barancik, M.; Breier, A.

    1996-01-01

    Effects of xanthine derivatives (pentoxifylline (PTX), caffeine, theophylline, 1-methyl-3-isobutylxanthine) on P-glycoprotein mediated vincristine resistance of L1210/VCR mouse leukemic cell sub-line were studied. From the applied xanthines only PTX was found to reverse the vincristine resistance of the above cells. Moreover, only PTX, but not other xanthine, increased the accumulation of [ 3 H]vincristine by L1210/VCR cells. Thus it may be concluded that PTX-induced reversal of vincristine (VCR) resistance could not be explained from the point of known pharmacological effects of PTX that are common for other xanthines such as inhibition of phosphodiesterase activity, calcium mobilizing effect, inhibition of tumor necrosis factor α (TNF), etc. (author)

  18. Follicle stimulating hormone receptor in mesenchymal stem cells integrates effects of glycoprotein reproductive hormones.

    Science.gov (United States)

    Tourkova, Irina L; Witt, Michelle R; Li, La; Larrouture, Quitterie; Liu, Li; Luo, Jianhua; Robinson, Lisa J; Blair, Harry C

    2015-01-01

    Previously we reported that follicle stimulating hormone (FSH) affects bone degradation in human cells and in follicle stimulating hormone receptor (FSH-R) null mice. Here we describe a FSH-R knockout bone-formation phenotype. We used mesenchymal stem cells (MSCs), osteoblast precursors that express FSH-R, to determine whether FSH regulates bone formation. FSH stimulates MSC cell adhesion 1-3 h and proliferation at 24 h after addition. On the basis of phylogenetic and clinical precedents, we also examined effects of pregnant levels of human chorionic gonadotropin (hCG) on MSCs. We found effects similar to those of FSH, and RNAi knockdown of FSH-R abrogated both FSH and hCG effects on MSCs. In contrast to effects on MSCs, neither FSH nor hCG had significant effects on osteoblast maturation. Also in MSCs, short-term treatment by FSH and hCG altered signaling pathways for proliferation, including Erk1/2 phosphorylation. Our results show augmentation of MSC proliferation by either FSH at menopausal levels or hCG at normal pregnant levels. We conclude that FSH-R participates in regulation of MSC precursor pools in response to either FSH or hCG, integrating the effects of these two glycoprotein hormones. © 2014 New York Academy of Sciences.

  19. Gastrointestinal Hormone Cholecystokinin Increases P-Glycoprotein Membrane Localization and Transport Activity in Caco-2 Cells.

    Science.gov (United States)

    Yano, Kentaro; Shimizu, Saori; Tomono, Takumi; Ogihara, Takuo

    2017-09-01

    It was reported that stimulation of taste receptor type 2 member 38 by a bitter substance, phenylthiocarbamide (PTC), increased P-glycoprotein (P-gp) mRNA level and transport activity via release of the gastrointestinal hormone cholecystokinin-8 (CCK-8) at 9 h. Therefore, we hypothesized that CCK-8 and PTC might also regulate P-gp activity more rapidly via a different mechanism. As a result, we found that the pretreatment of human colon adenocarcinoma (Caco-2) cells with 10-mM PTC significantly decreased the intracellular accumulation of P-gp substrate rhodamine 123 (Rho123) compared with the control after 90-min incubation. Moreover, CCK-8 treatments significantly reduced the accumulation of Rho123 within 30 min, compared with the control. On the other hand, when Caco-2 cells were pretreated with PTC, the efflux ratio of Rho123 was significantly increased compared with control. The efflux ratio of Rho123 in CCK-8 treatment cells was also significantly increased compared with control. Furthermore, CCK-8 increased the phosphorylation of the scaffold proteins ezrin, radixin, and moesin, which regulate translocation of P-gp to the plasma membrane. Therefore, our results indicate that PTC induced release of CCK-8, which in turn induced the phosphorylation of ezrin, radixin, and moesin proteins, leading to upregulation of P-gp transport activity via increased membrane localization of P-gp. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  20. HIV-1 Env Glycoprotein Phenotype along with Immune Activation Determines CD4 T Cell Loss in HIV Patients.

    Science.gov (United States)

    Joshi, Anjali; Sedano, Melina; Beauchamp, Bethany; Punke, Erin B; Mulla, Zuber D; Meza, Armando; Alozie, Ogechika K; Mukherjee, Debabrata; Garg, Himanshu

    2016-02-15

    The mechanism behind the selective depletion of CD4(+) cells in HIV infections remains undetermined. Although HIV selectively infects CD4(+) cells, the relatively few infected cells in vivo cannot account for the extent of CD4(+) T cell depletion, suggesting indirect or bystander mechanisms. The role of virus replication, Env glycoprotein phenotype, and immune activation (IA) in this bystander phenomenon remains controversial. Using samples derived from HIV-infected patients, we demonstrate that, although IA in both CD4(+) and CD8(+) subsets correlates with CD4 decline, apoptosis in CD4(+) and not CD8(+) cells is associated with disease progression. Because HIV-1 Env glycoprotein has been implicated in bystander apoptosis, we cloned full-length Envs from plasma of viremic patients and tested their apoptosis-inducing potential (AIP). Interestingly, AIP of HIV-1 Env glycoproteins were found to correlate inversely with CD4:CD8 ratios, suggesting a role of Env phenotype in disease progression. In vitro mitogenic stimulation of PBMCs resulted in upregulation of IA markers but failed to alter the CD4:CD8 ratio. However, coculture of normal PBMCs with Env-expressing cells resulted in selective CD4 loss that was significantly enhanced by IA. Our study demonstrates that AIP of HIV-1 Env and IA collectively determine CD4 loss in HIV infection. Copyright © 2016 by The American Association of Immunologists, Inc.

  1. Fraction against Human Cancer Cell Lines

    African Journals Online (AJOL)

    kidney carcinoma cell lines of hamsters (BSR). [11]. While, in another article, A. sieberia unrefined extract exhibited dose dependent antiproliferative activity against several cancer cell lines (human bladder carcinoma RT112, human laryngeal carcinoma and human myelogenous leukaemia K562), with IC50. = 81.59, 59.05 ...

  2. Difference in membrane repair capacity between cancer cell lines and a normal cell line

    DEFF Research Database (Denmark)

    Frandsen, Stine Krog; McNeil, Anna K.; Novak, Ivana

    2016-01-01

    repair was investigated by disrupting the plasma membrane using laser followed by monitoring fluorescent dye entry over time in seven cancer cell lines, an immortalized cell line, and a normal primary cell line. The kinetics of repair in living cells can be directly recorded using this technique......, providing a sensitive index of repair capacity. The normal primary cell line of all tested cell lines exhibited the slowest rate of dye entry after laser disruption and lowest level of dye uptake. Significantly, more rapid dye uptake and a higher total level of dye uptake occurred in six of the seven tested...

  3. Cell Surface Glycoprotein of Reactive Stromal Fibroblasts as a Potential Antibody Target in Human Epithelial Cancers

    Science.gov (United States)

    Garin-Chesa, Pilar; Old, Lloyd J.; Rettig, Wolfgang J.

    1990-09-01

    The F19 antigen is a cell surface glycoprotein (M_r, 95,000) of human sarcomas and proliferating, cultured fibroblasts that is absent from resting fibroblasts in normal adult tissues. Normal and malignant epithelial cells are also F19^-. The present immunohistochemical study describes induction of F19 in the reactive mesenchyme of epithelial tumors. F19^+ fibroblasts were found in primary and metastatic carcinomas, including colorectal (18 of 18 cases studied), breast (14/14), ovarian (21/21), bladder (9/10), and lung carcinomas (13/13). In contrast, the stroma of benign colorectal adenomas, fibrocystic disease and fibroadenomas of breast, benign prostate hyperplasia, in situ bladder carcinomas, and benign ovarian tumors showed no or only moderate numbers of F19^+ fibroblasts. Analysis of dermal incision wounds revealed that F19 is strongly induced during scar formation. Comparison of F19 with the extracellular matrix protein tenascin, a putative marker of tumor mesenchyme, showed a cellular staining pattern for F19 vs. the extracellular matrix pattern for tenascin and widespread expression of tenascin in F19^- normal tissues and benign tumors. Our results suggest that the F19^+ phenotype correlates with specialized fibroblast functions in wound healing and malignant tumor growth. Because of its abundance in tumor mesenchyme, F19 may serve as a target for antibodies labeled with radioisotopes or toxic agents, or inflammatogenic antibodies, in carcinoma patients.

  4. Varicella-Zoster Virus glycoprotein expression differentially induces the unfolded protein response in infected cells.

    Directory of Open Access Journals (Sweden)

    John Earl Carpenter

    2014-07-01

    Full Text Available Varicella-zoster virus (VZV is a human herpesvirus that spreads to children as varicella or chicken pox. The virus then establishes latency in the nervous system and re-emerges, typically decades later, as zoster or shingles. We have reported previously that VZV induces autophagy in infected cells as well as exhibiting evidence of the Unfolded Protein Response (UPR: XBP1 splicing, a greatly expanded Endoplasmic Reticulum (ER and CHOP expression. Herein we report the results of a UPR specific PCR array that measures the levels of mRNA of 84 different components of the UPR in VZV infected cells as compared to tunicamycin treated cells as a positive control and uninfected, untreated cells as a negative control. Tunicamycin is a mixture of chemicals that inhibits N-linked glycosylation in the ER with resultant protein misfolding and the UPR. We found that VZV differentially induces the UPR when compared to tunicamycin treatment. For example, tunicamycin treatment moderately increased (8 fold roughly half of the array elements while downregulating only three (one ERAD and two FOLD components. VZV infection on the other hand upregulated 33 components including a little described stress sensor CREB-H (64 fold as well as ER membrane components INSIG and gp78, which modulate cholesterol synthesis while downregulating over 20 components mostly associated with ERAD and FOLD. We hypothesize that this expression pattern is associated with an expanding ER with downregulation of active degradation by ERAD and apoptosis as the cell attempts to handle abundant viral glycoprotein synthesis.

  5. Dysregulated Glycoprotein B-Mediated Cell-Cell Fusion Disrupts Varicella-Zoster Virus and Host Gene Transcription during Infection.

    Science.gov (United States)

    Oliver, Stefan L; Yang, Edward; Arvin, Ann M

    2017-01-01

    The highly conserved herpesvirus glycoprotein complex gB/gH-gL mediates membrane fusion during virion entry and cell-cell fusion. Varicella-zoster virus (VZV) characteristically forms multinucleated cells, or syncytia, during the infection of human tissues, but little is known about this process. The cytoplasmic domain of VZV gB (gBcyt) has been implicated in cell-cell fusion regulation because a gB[Y881F] substitution causes hyperfusion. gBcyt regulation is necessary for VZV pathogenesis, as the hyperfusogenic mutant gB[Y881F] is severely attenuated in human skin xenografts. In this study, gBcyt-regulated fusion was investigated by comparing melanoma cells infected with wild-type-like VZV or hyperfusogenic mutants. The gB[Y881F] mutant exhibited dramatically accelerated syncytium formation in melanoma cells caused by fusion of infected cells with many uninfected cells, increased cytoskeleton reorganization, and rapid displacement of nuclei to dense central structures compared to pOka using live-cell confocal microscopy. VZV and human transcriptomes were concurrently investigated using whole transcriptome sequencing (RNA-seq) to identify viral and cellular responses induced when gBcyt regulation was disrupted by the gB[Y881F] substitution. The expression of four vital VZV genes, ORF61 and the genes for glycoproteins gC, gE, and gI, was significantly reduced at 36 h postinfection for the hyperfusogenic mutants. Importantly, hierarchical clustering demonstrated an association of differential gene expression with dysregulated gBcyt-mediated fusion. A subset of Ras GTPase genes linked to membrane remodeling were upregulated in cells infected with the hyperfusogenic mutants. These data implicate gBcyt in the regulation of gB fusion function that, if unmodulated, triggers cellular processes leading to hyperfusion that attenuates VZV infection. The highly infectious, human-restricted pathogen varicella-zoster virus (VZV) causes chickenpox and shingles. Postherpetic

  6. The human rhabdomyosarcoma cell line TE671--Towards an innovative production platform for glycosylated biopharmaceuticals.

    Science.gov (United States)

    Rosenlöcher, Julia; Weilandt, Constanze; Sandig, Grit; Reinke, Stefan O; Blanchard, Véronique; Hinderlich, Stephan

    2015-11-01

    The market of therapeutic glycoproteins (including coagulation factors, antibodies, cytokines and hormones) is one of the profitable, fast-growing and challenging sectors of the biopharmaceutical industry. Although mammalian cell culture is still expensive and technically complex, the ability to produce desired post-translational modifications, in particular glycosylation, is a major issue. Glycans can influence ligand binding, serum half-life as well as biological activity or product immunogenicity. Aiming to establish a novel production platform for recombinant glycoproteins, the human TE671 cell line was investigated. Since the initial analysis of cell membrane proteins showed a promising glycosylation of TE671 cells for biotechnological purposes, we focused on the recombinant expression of two model glycoproteins of therapeutical relevance. The optimization of the cell transfection procedure and serum-free expression succeeded for the human serine protease inhibitor alpha-1-antitrypsin (A1AT) and the hematopoietic cytokine granulocyte-macrophage colony-stimulating factor (GM-CSF). N-glycan analyses of both purified proteins by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry provided first fundamental insights into the TE671 glycosylation potential. Besides protein specific pattern, strong distinctions - in particular for N-glycan fucosylation and sialylation - were observed depending on the medium conditions of the respective TE671 cell cultivations. The cell line's ability to synthesize complex and highly sialylated N-glycan structures has been shown. Our results demonstrate the TE671 cell line as a serious alternative to other existing human expression systems. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Biophysical Profiling of Tumor Cell Lines

    Directory of Open Access Journals (Sweden)

    Frederick Coffman

    2011-01-01

    Full Text Available Despite significant differences in genetic profiles, cancer cells share common phenotypic properties, including membrane-associated changes that facilitate invasion and metastasis. The Corning Epic® optical biosensor was used to monitor dynamic mass rearrangements within and proximal to the cell membrane in tumor cell lines derived from cancers of the colon, bone, cervix, lung and breast. Data was collected in real time and required no exogenously added signaling moiety (signal-free technology. Cell lines displayed unique profiles over the time-courses: the time-courses all displayed initial signal increases to maximal values, but the rate of increase to those maxima and the value of those maxima were distinct for each cell line. The rate of decline following the maxima also differed among cell lines. There were correlations between the signal maxima and the observed metastatic behavior of the cells in xenograft experiments; for most cell types the cells that were more highly metastatic in mice had lower time-course maxima values, however the reverse was seen in breast cancer cells. The unique profiles of these cell lines and the correlation of at least one profile characteristic with metastatic behavior demonstrate the potential utility of biophysical tumor cell profiling in the study of cancer biology.

  8. Establishment of cell lines with rat spermatogonial stem cell characteristics

    NARCIS (Netherlands)

    van Pelt, Ans M. M.; Roepers-Gajadien, Hermien L.; Gademan, Iris S.; Creemers, Laura B.; de Rooij, Dirk G.; van Dissel-Emiliani, Federica M. F.

    2002-01-01

    Spermatogonial cell lines were established by transfecting a mixed population of purified rat A(s) (stem cells), A(pr) and A(al) spermatogonia with SV40 large T antigen. Two cell lines were characterized and found to express Hsp90alpha and oct-4, specific markers for germ cells and A spermatogonia,

  9. Biosynthesis of ascites sialoglycoprotein-1, the major O-linked glycoprotein of 13762 rat mammary adenocarcinoma ascites cells

    International Nuclear Information System (INIS)

    Spielman, J.

    1987-01-01

    The present studies were undertaken to determine the timing of the major events in biosynthesis, and to characterize the contributions of chain initiation and elongation in maturation of the glycoprotein. Initiation of the earliest O-linked chains was detected by analysis of conversion of 3 H-thr to 3 H 2-aminobutyrate following mild alkaline borohydride elimination of O-linked sugars from peanut lectin-precipitated ASGP-1. Initiation was detected within 5 min of translation; amino sugar analysis of GlcNH 2 -labeled, trypsinized cells also showed that GalNAc was added as late as 5 min prior to arrival of ASGP-1 at the cell surface. Thus initiation occurs throughout biosynthesis. Maturation of the glycoprotein from a lightly-glycosylated immature form to the heavily-glycosylated mature from involved both continued initiation of new chains and chain elongation, and occurred with a half-time of about 30 min. Analysis of labeled ASGP-1 released from the cell surface by trypsinization showed that although some newly-synthesized ASGP-1 reached the cell surface within 70-80 min of protein synthesis, the half-time for appearance of mature glycoprotein was in excess of 4 hr, indicating that most molecules reside in an intracellular compartment(s) for a considerable time

  10. Histochemical analysis of glycoproteins in the secretory cells in the gill epithelium of a catfish, Rita rita (Siluriformes, Bagridae).

    Science.gov (United States)

    Kumari, Usha; Yashpal, Madhu; Mittal, Swati; Mittal, Ajay Kumar

    2009-08-01

    Glycoproteins (GPs) were visualised histochemically in the secretory cells - the mucous goblet cells (the type A and the type B), the serous goblet cells, the club cells and the epithelial cells in the gill epithelium of Rita rita. The type A mucous goblet cells, the type B mucous goblet cells and the epithelial cells elaborate GPs with oxidizable vicinal diols and GPs with sialic acid residue without O-acyl substitution. In addition, GPs with O-sulphate esters are elaborated by the type A and GPs with O-acyl sugars by the type B mucous goblet cells. GPs are absent in the serous goblet cells and are with oxidizable vicinal diols in low moieties in the club cells. The analysis of the results elucidates interesting differences in the composition and concentration of GPs in the mucus elaborated by the epithelium of the gill arches and the gill rakers; and the gill filaments and the secondary lamellae indicating the potential importance of the glycoproteins at these locations. GPs elaborated on the surfaces of the gill arches and the gill rakers could be associated to assist in feeding activities and on the surfaces of the gill filaments and the secondary lamellae in the respiratory activity.

  11. Glycoprotein (116 kD) isolated from Ulmus davidiana Nakai protects from injury of 12-O-tetradecanoylphorbol 13-acetate (TPA)-treated BNL CL.2 cells.

    Science.gov (United States)

    Oh, Phil-Sun; Lee, Sei-Jung; Lim, Kye-Taek

    2006-01-01

    Ulmus davidiana Nakai (UDN) has been used for a long time to cure inflammation in oriental medicine. To evaluate the cytoprotective effects of the UDN glycoprotein, we measured cytotoxicity, the level of intracellular reactive oxygen species (ROS), activity of nuclear factor-kappaB (NF-kappaB), nitric oxide (NO) production, and thiobarbituric acid-reactive substances (TBARS) formation in 12-O-tetradecanoylphorbol 13-acetate (TPA)-treated BNL CL.2 cells. In TPA-treated BNL CL.2 cells, the results showed that UDN glycoprotein has dose-dependent blocking activities against TPA-induced cytotoxicity and NF-kappaB activation. In cytotoxic-related events, UDN glycoprotein (200 microg/ml) has an inhibitory effect on intracellular ROS production, NO production, and TBARS formation, without any toxic effects in the BNL CL.2 cells. These results suggest that UDN glycoprotein has cytoprotective abilities against TPA-induced oxidative cell injury.

  12. Different Modalities of Intercellular Membrane Exchanges Mediate Cell-to-cell P-glycoprotein Transfers in MCF-7 Breast Cancer Cells*

    Science.gov (United States)

    Pasquier, Jennifer; Galas, Ludovic; Boulangé-Lecomte, Céline; Rioult, Damien; Bultelle, Florence; Magal, Pierre; Webb, Glenn; Le Foll, Frank

    2012-01-01

    Multi-drug resistance (MDR) is a phenomenon by which tumor cells exhibit resistance to a variety of chemically unrelated chemotherapeutic drugs. The classical form of multidrug resistance is connected to overexpression of membrane P-glycoprotein (P-gp), which acts as an energy dependent drug efflux pump. P-glycoprotein expression is known to be controlled by genetic and epigenetic mechanisms. Until now processes of P-gp gene up-regulation and resistant cell selection were considered sufficient to explain the emergence of MDR phenotype within a cell population. Recently, however, “non-genetic” acquisitions of MDR by cell-to-cell P-gp transfers have been pointed out. In the present study we show that intercellular transfers of functional P-gp occur by two different but complementary modalities through donor-recipient cells interactions in the absence of drug selection pressure. P-glycoprotein and drug efflux activity transfers were followed over 7 days by confocal microscopy and flow cytometry in drug-sensitive parental MCF-7 breast cancer cells co-cultured with P-gp overexpressing resistant variants. An early process of remote transfer was established based on the release and binding of P-gp-containing microparticles. Microparticle-mediated transfers were detected after only 4 h of incubation. We also identify an alternative mode of transfer by contact, consisting of cell-to-cell P-gp trafficking by tunneling nanotubes bridging neighboring cells. Our findings supply new mechanistic evidences for the extragenetic emergence of MDR in cancer cells and indicate that new treatment strategies designed to overcome MDR may include inhibition of both microparticles and Tunneling nanotube-mediated intercellular P-gp transfers. PMID:22228759

  13. Anti-beta2 glycoprotein I antibodies cause inflammation and recruit dendritic cells in platelet clearance.

    Science.gov (United States)

    Bondanza, A; Manfredi, A A; Zimmermann, V S; Iannacone, M; Tincani, A; Balestrieri, G; Sabbadini, M G; Querini, P R

    2001-11-01

    Scavenger phagocytes are mostly responsible for the in vivo clearance of activated or senescent platelets. In contrast to other particulate substrates, the phagocytosis of platelets does not incite proinflammatory responses in vivo. This study assessed the contribution of macrophages and dendritic cells (DCs) to the clearance of activated platelets. Furthermore, we verified whether antibodies against the beta2 Glycoprotein I (beta2GPI), which bind to activated platelets, influence the phenomenon. DCs did not per se intemalise activated platelets. In contrast, macrophages efficiently phagocytosed platelets. In agreement with the uneventful nature of the clearance of platelets in vivo, phagocytosing macrophages did not release IL-1beta, TNF-alpha, or IL-10, beta2GPI bound to activated platelets and was required for their recognition by anti-beta2GPI antibodies. DCs internalised platelets opsonised by anti-beta2GPI antibodies. The phagocytosis of opsonised platelets determined the release of TNF-alpha and IL-1beta by DCs and macrophages. Phagocytosing macrophages, but not DCs, secreted the antiinflammatory cytokine IL-10. We conclude that anti-beta2GPI antibodies cause inflammation during platelet clearance and shuttle platelet antigens to antigen presenting DCs.

  14. Effects of histamine and activators of the cyclic AMP system on protein synthesis in and release of high molecular weight glycoproteins from isolated gastric non-parietal cells.

    OpenAIRE

    Heim, H. K.; Oestmann, A.; Sewing, K. F.

    1991-01-01

    1. Glycoprotein and protein synthesis in and release from pig isolated, enriched gastric mucous cells were measured by the incorporation of N-acetyl-[14C]-D-glucosamine and [3H]-L-leucine, respectively, into cellular and released acid precipitable material. 2. Histamine and activators of the adenosine 3':5'-cyclic monophosphate (cyclic AMP) system maximally stimulated total protein and glycoprotein synthesis in and release from the cells at concentrations of histamine (10 microM), forskolin (...

  15. Receptor-Targeted Nipah Virus Glycoproteins Improve Cell-Type Selective Gene Delivery and Reveal a Preference for Membrane-Proximal Cell Attachment.

    Directory of Open Access Journals (Sweden)

    Ruben R Bender

    2016-06-01

    Full Text Available Receptor-targeted lentiviral vectors (LVs can be an effective tool for selective transfer of genes into distinct cell types of choice. Moreover, they can be used to determine the molecular properties that cell surface proteins must fulfill to act as receptors for viral glycoproteins. Here we show that LVs pseudotyped with receptor-targeted Nipah virus (NiV glycoproteins effectively enter into cells when they use cell surface proteins as receptors that bring them closely enough to the cell membrane (less than 100 Å distance. Then, they were flexible in receptor usage as demonstrated by successful targeting of EpCAM, CD20, and CD8, and as selective as LVs pseudotyped with receptor-targeted measles virus (MV glycoproteins, the current standard for cell-type specific gene delivery. Remarkably, NiV-LVs could be produced at up to two orders of magnitude higher titers compared to their MV-based counterparts and were at least 10,000-fold less effectively neutralized than MV glycoprotein pseudotyped LVs by pooled human intravenous immunoglobulin. An important finding for NiV-LVs targeted to Her2/neu was an about 100-fold higher gene transfer activity when particles were targeted to membrane-proximal regions as compared to particles binding to a more membrane-distal epitope. Likewise, the low gene transfer activity mediated by NiV-LV particles bound to the membrane distal domains of CD117 or the glutamate receptor subunit 4 (GluA4 was substantially enhanced by reducing receptor size to below 100 Å. Overall, the data suggest that the NiV glycoproteins are optimally suited for cell-type specific gene delivery with LVs and, in addition, for the first time define which parts of a cell surface protein should be targeted to achieve optimal gene transfer rates with receptor-targeted LVs.

  16. Monocytic Cell Activation by Nonendotoxic Glycoprotein from Prevotella intermedia ATCC 25611 Is Mediated by Toll-Like Receptor 2

    Science.gov (United States)

    Sugawara, Shunji; Yang, Shuhua; Iki, Koichi; Hatakeyama, Junko; Tamai, Riyoko; Takeuchi, Osamu; Akashi, Sachiko; Espevik, Terje; Akira, Shizuo; Takada, Haruhiko

    2001-01-01

    Lipopolysaccharide (LPS) preparations from gram-negative black-pigmented bacteria such as Porphyromonas gingivalis and Prevotella intermedia activate cells from non-LPS-responsive C3H/HeJ mice, but it is still unclear whether this activity is due to the unique structure of LPS or to a minor component(s) responsible for the activity in the preparation. A nonendotoxic glycoprotein with bioactivity against cells from C3H/HeJ mice was purified from a hot phenol-water extract of P. intermedia ATCC 25611 and designated Prevotella glycoprotein (PGP). Treatment of human monocytic THP-1 cells with 22-oxyacalcitriol (OCT) induced maturation and marked expression of CD14 on the cells, but the cells constitutively expressed Toll-like receptor 2 (TLR2) and TLR4 on the cells irrespective of the treatment. PGP induced a high level of interleukin-8 production at doses of 100 ng/ml and higher in OCT-treated THP-1 cells compared with Salmonella LPS, and the production was significantly inhibited by anti-CD14 and anti-TLR2 but not anti-TLR4 antibodies. Consistent with this, TLR2-deficient murine macrophages did not respond to PGP. It was also shown that PGP activity on the THP-1 cells was LPS-binding protein dependent and was inhibited by a synthetic lipid A precursor IVA. These results indicate that PGP activates monocytic cells in a CD14- and TLR2-dependent manner. PMID:11447173

  17. BHD Tumor Cell Line and Renal Cell Carcinoma Line | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    Scientists at the National Cancer Institute  have developed a novel renal cell carcinoma (RCC) cell line designated UOK257, which was derived from the surgical kidney tissue of a patient with hereditary Birt-Hogg-Dube''''(BHD) syndrome and companion cell line UOK257-2 in which FLCN expression has been restored by lentivirus infection. The NCI Urologic Oncology Branch seeks parties interested in licensing or collaborative research to co-develop, evaluate, or commercialize kidney cancer tumor cell lines.

  18. Characterisation and Manipulation of Docetaxel Resistant Prostate Cancer Cell Lines

    LENUS (Irish Health Repository)

    O'Neill, Amanda J

    2011-10-07

    Abstract Background There is no effective treatment strategy for advanced castration-resistant prostate cancer. Although Docetaxel (Taxotere®) represents the most active chemotherapeutic agent it only gives a modest survival advantage with most patients eventually progressing because of inherent or acquired drug resistance. The aims of this study were to further investigate the mechanisms of resistance to Docetaxel. Three Docetaxel resistant sub-lines were generated and confirmed to be resistant to the apoptotic and anti-proliferative effects of increasing concentrations of Docetaxel. Results The resistant DU-145 R and 22RV1 R had expression of P-glycoprotein and its inhibition with Elacridar partially and totally reversed the resistant phenotype in the two cell lines respectively, which was not seen in the PC-3 resistant sublines. Resistance was also not mediated in the PC-3 cells by cellular senescence or autophagy but multiple changes in pro- and anti-apoptotic genes and proteins were demonstrated. Even though there were lower basal levels of NF-κB activity in the PC-3 D12 cells compared to the Parental PC-3, docetaxel induced higher NF-κB activity and IκB phosphorylation at 3 and 6 hours with only minor changes in the DU-145 cells. Inhibition of NF-κB with the BAY 11-7082 inhibitor reversed the resistance to Docetaxel. Conclusion This study confirms that multiple mechanisms contribute to Docetaxel resistance and the central transcription factor NF-κB plays an immensely important role in determining docetaxel-resistance which may represent an appropriate therapeutic target.

  19. Inhibitory Effects of Neochamaejasmin B on P-Glycoprotein in MDCK-hMDR1 Cells and Molecular Docking of NCB Binding in P-Glycoprotein

    Directory of Open Access Journals (Sweden)

    Lanying Pan

    2015-02-01

    Full Text Available Stellera chamaejasme L. (Thymelaeaceae is widely distributed in Mongolia, Tibet and the northern parts of China. Its roots are commonly used as “Langdu”, which is embodied in the Pharmacopoeia of the P.R. China (2010 as a toxic Traditional Chinese Medicine. It is claimed to have antivirus, antitumor and antibacterial properties in China and other Asian countries. Studies were carried out to characterize the inhibition of neochamaejasmin B (NCB on P-glycoprotein (P-gp, ABCB1, MDR1. Rhodamine-123 (R-123 transport and accumulation studies were performed in MDCK-hMDR1 cells. ABCB1 (MDR1 mRNA gene expression and P-gp protein expression were analyzed. Binding selectivity studies based on molecular docking were explored. R-123 transport and accumulation studies in MDCK-hMDR1 cells indicated that NCB inhibited the P-gp-mediated efflux in a concentration-dependent manner. RT-PCR and Western blot demonstrated that the P-gp expression was suppressed by NCB. To investigate the inhibition type of NCB on P-gp, Ki and Ki’ values were determined by double-reciprocal plots in R-123 accumulation studies. Since Ki was greater than Ki’, the inhibition of NCB on P-gp was likely a mixed type of competitive and non-competitive inhibition. The results were confirmed by molecular docking in our current work. The docking data indicated that NCB had higher affinity to P-gp than to Lig1 ((S-5,7-dihydroxy-2-(4-hydroxyphenylchroman-4-one.

  20. Establishment and characterization of an adherent pure epithelial cell line derived from the bovine oviduct.

    Science.gov (United States)

    Schoen, J; Bondzio, A; Topp, K; Einspanier, R

    2008-03-15

    The oviduct in vivo has to perform various tasks: maturation and transport of the gametes, milieu preparation for fertilization and embryonic development, and transport of the embryo. The complex arrangement of endocrine and paracrine signals being exchanged between the early embryo and the inner cell layers of the oviduct is barely understood. Therefore, a reproducible, well-characterized oviduct epithelial cell line as well as an optimized transfection protocol for DNA vectors and siRNA for this cell line has been established. A bovine oviduct primary cell culture system has been optimized using a selection medium permitting the survival of only epithelial cells. From this we established an adherent bovine oviduct pure epithelial cell line (aBOPEC-1). This cell line maintains some important characteristics of the primary cells such as the expression of estrogen receptors and p450 aromatase but it lacks some characteristics due to the selection and dedifferentiation processes (cilia, expression of progesterone receptor and oviduct specific glycoprotein-1). Optimization of the transfection protocols finally revealed a suitable DNA-transfection procedure yielding transfection efficiencies of over 50%. Additionally, siRNA transfection efficiency reached more than 90%. This new cell line builds an essential basis especially for future functional studies in the oviduct epithelium using distinct knock down experiments.

  1. Inhibitory effect of glycoprotein isolated from Cudrania tricuspidata bureau on expression of inflammation-related cytokine in bisphenol A-treated HMC-1 cells.

    Science.gov (United States)

    Shim, Jae-Uoong; Lim, Kye-Taek

    2009-08-01

    Cudrania tricuspidata is one of the most omnipresent traditional herbal drugs for anti-inflammation and anti-tumor. The purpose of the present study was to determine whether the CTB glycoprotein regulates the inflammatory reaction stimulated by bisphenol A (BPA) in human mast cells (HMC-1). Thus, we investigated that CTB glycoprotein inhibits the degranulation of histamine, expression of extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK), as a mitogen activated protein (MAP) kinase, nuclear transcription factors involving nuclear factor (NF)-kappaB and Activator protein (AP)-1, cyclooxygenase (COX)-2. The results indicated that CTB glycoprotein decreased gene expression of cytokines of IL-4, IFN-gamma, interleukin (IL)-1beta and cyclooxygenase (COX)-2 in BPA-stimulated HMC-1 cells. Hence, we speculate that CTB glycoprotein can use as a potent anti-inflammatory agent for inflammatory allergic diseases.

  2. Ebolavirus is internalized into host cells via macropinocytosis in a viral glycoprotein-dependent manner.

    Directory of Open Access Journals (Sweden)

    Asuka Nanbo

    2010-09-01

    Full Text Available Ebolavirus (EBOV is an enveloped, single-stranded, negative-sense RNA virus that causes severe hemorrhagic fever with mortality rates of up to 90% in humans and nonhuman primates. Previous studies suggest roles for clathrin- or caveolae-mediated endocytosis in EBOV entry; however, ebolavirus virions are long, filamentous particles that are larger than the plasma membrane invaginations that characterize clathrin- or caveolae-mediated endocytosis. The mechanism of EBOV entry remains, therefore, poorly understood. To better understand Ebolavirus entry, we carried out internalization studies with fluorescently labeled, biologically contained Ebolavirus and Ebolavirus-like particles (Ebola VLPs, both of which resemble authentic Ebolavirus in their morphology. We examined the mechanism of Ebolavirus internalization by real-time analysis of these fluorescently labeled Ebolavirus particles and found that their internalization was independent of clathrin- or caveolae-mediated endocytosis, but that they co-localized with sorting nexin (SNX 5, a marker of macropinocytosis-specific endosomes (macropinosomes. Moreover, the internalization of Ebolavirus virions accelerated the uptake of a macropinocytosis-specific cargo, was associated with plasma membrane ruffling, and was dependent on cellular GTPases and kinases involved in macropinocytosis. A pseudotyped vesicular stomatitis virus possessing the Ebolavirus glycoprotein (GP also co-localized with SNX5 and its internalization and infectivity were affected by macropinocytosis inhibitors. Taken together, our data suggest that Ebolavirus is internalized into cells by stimulating macropinocytosis in a GP-dependent manner. These findings provide new insights into the lifecycle of Ebolavirus and may aid in the development of therapeutics for Ebolavirus infection.

  3. Ebolavirus is internalized into host cells via macropinocytosis in a viral glycoprotein-dependent manner.

    Science.gov (United States)

    Nanbo, Asuka; Imai, Masaki; Watanabe, Shinji; Noda, Takeshi; Takahashi, Kei; Neumann, Gabriele; Halfmann, Peter; Kawaoka, Yoshihiro

    2010-09-23

    Ebolavirus (EBOV) is an enveloped, single-stranded, negative-sense RNA virus that causes severe hemorrhagic fever with mortality rates of up to 90% in humans and nonhuman primates. Previous studies suggest roles for clathrin- or caveolae-mediated endocytosis in EBOV entry; however, ebolavirus virions are long, filamentous particles that are larger than the plasma membrane invaginations that characterize clathrin- or caveolae-mediated endocytosis. The mechanism of EBOV entry remains, therefore, poorly understood. To better understand Ebolavirus entry, we carried out internalization studies with fluorescently labeled, biologically contained Ebolavirus and Ebolavirus-like particles (Ebola VLPs), both of which resemble authentic Ebolavirus in their morphology. We examined the mechanism of Ebolavirus internalization by real-time analysis of these fluorescently labeled Ebolavirus particles and found that their internalization was independent of clathrin- or caveolae-mediated endocytosis, but that they co-localized with sorting nexin (SNX) 5, a marker of macropinocytosis-specific endosomes (macropinosomes). Moreover, the internalization of Ebolavirus virions accelerated the uptake of a macropinocytosis-specific cargo, was associated with plasma membrane ruffling, and was dependent on cellular GTPases and kinases involved in macropinocytosis. A pseudotyped vesicular stomatitis virus possessing the Ebolavirus glycoprotein (GP) also co-localized with SNX5 and its internalization and infectivity were affected by macropinocytosis inhibitors. Taken together, our data suggest that Ebolavirus is internalized into cells by stimulating macropinocytosis in a GP-dependent manner. These findings provide new insights into the lifecycle of Ebolavirus and may aid in the development of therapeutics for Ebolavirus infection.

  4. A Carbohydrate Moiety of Secreted Stage-Specific Glycoprotein 4 Participates in Host Cell Invasion by Trypanosoma cruzi Extracellular Amastigotes

    Directory of Open Access Journals (Sweden)

    Pilar T. V. Florentino

    2018-04-01

    Full Text Available Trypanosoma cruzi is the etiologic agent of Chagas’ disease. It is known that amastigotes derived from trypomastigotes in the extracellular milieu are infective in vitro and in vivo. Extracellular amastigotes (EAs have a stage-specific surface antigen called Ssp-4, a GPI-anchored glycoprotein that is secreted by the parasites. By immunoprecipitation with the Ssp-4-specific monoclonal antibodies (mAb 2C2 and 1D9, we isolated the glycoprotein from EAs. By mass spectrometry, we identified the core protein of Ssp-4 and evaluated mRNA expression and the presence of Ssp-4 carbohydrate epitopes recognized by mAb1D9. We demonstrated that the carbohydrate epitope recognized by mAb1D9 could promote host cell invasion by EAs. Although infectious EAs express lower amounts of Ssp-4 compared with less-infectious EAs (at the mRNA and protein levels, it is the glycosylation of Ssp-4 (identified by mAb1D9 staining only in infectious strains and recognized by galectin-3 on host cells that is the determinant of EA invasion of host cells. Furthermore, Ssp-4 is secreted by EAs, either free or associated with parasite vesicles, and can participate in host-cell interactions. The results presented here describe the possible role of a carbohydrate moiety of T. cruzi surface glycoproteins in host cell invasion by EA forms, highlighting the potential of these moieties as therapeutic and vaccine targets for the treatment of Chagas’ disease.

  5. Genomic characterisation of acral melanoma cell lines.

    Science.gov (United States)

    Furney, Simon J; Turajlic, Samra; Fenwick, Kerry; Lambros, Maryou B; MacKay, Alan; Ricken, Gerda; Mitsopoulos, Costas; Kozarewa, Iwanka; Hakas, Jarle; Zvelebil, Marketa; Lord, Christopher J; Ashworth, Alan; Reis-Filho, Jorge S; Herlyn, Meenhard; Murata, Hiroshi; Marais, Richard

    2012-07-01

    Acral melanoma is a rare melanoma subtype with distinct epidemiological, clinical and genetic features. To determine if acral melanoma cell lines are representative of this melanoma subtype, six lines were analysed by whole-exome sequencing and array comparative genomic hybridisation. We demonstrate that the cell lines display a mutation rate that is comparable to that of published primary and metastatic acral melanomas and observe a mutational signature suggestive of UV-induced mutagenesis in two of the cell lines. Mutations were identified in oncogenes and tumour suppressors previously linked to melanoma including BRAF, NRAS, KIT, PTEN and TP53, in cancer genes not previously linked to melanoma and in genes linked to DNA repair such as BRCA1 and BRCA2. Our findings provide strong circumstantial evidence to suggest that acral melanoma cell lines and acral tumours share genetic features in common and that these cells are therefore valuable tools to investigate the biology of this aggressive melanoma subtype. Data are available at: http://rock.icr.ac.uk/collaborations/Furney_et_al_2012/. © 2012 John Wiley & Sons A/S.

  6. Glycoprotein nonmetastatic melanoma protein b, a melanocytic cell marker, is a melanosome-specific and proteolytically released protein

    Science.gov (United States)

    Hoashi, Toshihiko; Sato, Shinichi; Yamaguchi, Yuji; Passeron, Thierry; Tamaki, Kunihiko; Hearing, Vincent J.

    2010-01-01

    Melanosomes are organelles specialized for the production of melanin pigment and are specifically produced by melanocytic cells. More than 150 pigmentation-related genes have been identified, including glycoprotein nonmetastatic melanoma protein b (GPNMB). A recent proteomics analysis revealed that GPNMB is localized in melanosomes, and GPNMB is a membrane-bound glycoprotein that shows high homology with a well-known melanosomal structural protein, Pmel17/gp100. In this study, we show that GPNMB is expressed in melanocytes of normal human skin, as well as in human melanoma cells. GPNMB is heavily glycosylated and is enriched in mature (stage III and IV) melanosomes in contrast to MART-1 and Pmel17, which are abundant in early (stage I and II) melanosomes. MART-1 and Pmel17 play critical roles in the maturation of early melanosomes; thus, we speculate that GPNMB might be important in the functions of late melanosomes, possibly their transport and/or transfer to keratinocytes. We also demonstrate that a secreted form of GPNMB is released by ectodomain shedding from the largely Golgi-modified form of GPNMB and that the PKC and Ca2+ intracellular signaling pathways regulate that shedding. We conclude that GPNMB is a melanosomal protein that is released by proteolytic ectodomain shedding and might be a useful and specific histological marker of melanocytic cells.—Hoashi, T., Sato, S., Yamaguchi, Y., Passeron, T., Tamaki, K., Hearing, V. J. Glycoprotein nonmetastatic melanoma protein b, a melanocytic cell marker, is a melanosome-specific and proteolytically released protein. PMID:20056711

  7. Metronidazole affects breast cancer cell lines.

    Science.gov (United States)

    Sadowska, A; Prokopiuk, S; Miltyk, W; Surażyński, A; Konończuk, J; Sawicka, D; Car, H

    2013-01-01

    The aim of our study was to evaluate the impact of metronidazole (MTZ) on cytotoxicity and DNA synthesis in MCF-7 (estrogen receptor positive) and MDA-MB-231 (estrogen receptor negative) breast cancer cell lines. Toxicity of MTZ was determined by MTT test. MCF-7 and MDA-MB-231 cells were incubated with metronidazole used in different concentrations for 24, 48 and 72 hours. The effect of MTZ on DNA synthesis was measured as [3H]-thymidine incorporation. We showed that MTZ in concentration 250 μg/ml significantly increases the growth of MCF-7 cell lines after 24 hours of incubation, but it reduces cell viability in concentrations 1 and 10 μg/ml 72 hours after the drug application. Significant increase of MDA-MB-231 cell viability was obtained in MTZ concentration of 250 μg/ml after 24 and 72 hours. The increase of [3H]-thymidine incorporation in MCF-7 cell line treated with MTZ in concentration 250 μg/ml was statistically significant after 24 hours. Great suppression of cell proliferation was obtained in MDA-MB-231 breast cell line after application of the following concentrations of MTZ: 0.1 μg/ml (after 24 hours) and 0.1, 10, 50, 250 μg/ml (after 72h). We found that metronidazole exerts different dose- and time- dependent effects on human breast cancer cell lines characterized by presence or absence of estrogen receptors. We suggest that these discrepancies may be influenced by the estrogen signaling.

  8. Glycoprotein 130 receptor signaling mediates α-cell dysfunction in a rodent model of type 2 diabetes

    DEFF Research Database (Denmark)

    Chow, Samuel Z; Speck, Madeleine; Yoganathan, Piriya

    2014-01-01

    knockout (αgp130KO) mice showed no differences in glycemic control, α-cell function, or α-cell mass. However, when subjected to streptozotocin plus high-fat diet to induce islet inflammation and pathophysiology modeling type 2 diabetes, αgp130KO mice had reduced fasting glycemia, improved glucose tolerance......Dysregulated glucagon secretion accompanies islet inflammation in type 2 diabetes. We recently discovered that interleukin (IL)-6 stimulates glucagon secretion from human and rodent islets. IL-6 family cytokines require the glycoprotein 130 (gp130) receptor to signal. In this study, we elucidated...... the effects of α-cell gp130 receptor signaling on glycemic control in type 2 diabetes. IL-6 family cytokines were elevated in islets in rodent models of this disease. gp130 receptor activation increased STAT3 phosphorylation in primary α-cells and stimulated glucagon secretion. Pancreatic α-cell gp130...

  9. Human adenovirus 52 uses sialic acid-containing glycoproteins and the coxsackie and adenovirus receptor for binding to target cells.

    Science.gov (United States)

    Lenman, Annasara; Liaci, A Manuel; Liu, Yan; Årdahl, Carin; Rajan, Anandi; Nilsson, Emma; Bradford, Will; Kaeshammer, Lisa; Jones, Morris S; Frängsmyr, Lars; Feizi, Ten; Stehle, Thilo; Arnberg, Niklas

    2015-02-01

    Most adenoviruses attach to host cells by means of the protruding fiber protein that binds to host cells via the coxsackievirus and adenovirus receptor (CAR) protein. Human adenovirus type 52 (HAdV-52) is one of only three gastroenteritis-causing HAdVs that are equipped with two different fiber proteins, one long and one short. Here we show, by means of virion-cell binding and infection experiments, that HAdV-52 can also attach to host cells via CAR, but most of the binding depends on sialylated glycoproteins. Glycan microarray, flow cytometry, surface plasmon resonance and ELISA analyses reveal that the terminal knob domain of the long fiber (52LFK) binds to CAR, and the knob domain of the short fiber (52SFK) binds to sialylated glycoproteins. X-ray crystallographic analysis of 52SFK in complex with 2-O-methylated sialic acid combined with functional studies of knob mutants revealed a new sialic acid binding site compared to other, known adenovirus:glycan interactions. Our findings shed light on adenovirus biology and may help to improve targeting of adenovirus-based vectors for gene therapy.

  10. Human adenovirus 52 uses sialic acid-containing glycoproteins and the coxsackie and adenovirus receptor for binding to target cells.

    Directory of Open Access Journals (Sweden)

    Annasara Lenman

    2015-02-01

    Full Text Available Most adenoviruses attach to host cells by means of the protruding fiber protein that binds to host cells via the coxsackievirus and adenovirus receptor (CAR protein. Human adenovirus type 52 (HAdV-52 is one of only three gastroenteritis-causing HAdVs that are equipped with two different fiber proteins, one long and one short. Here we show, by means of virion-cell binding and infection experiments, that HAdV-52 can also attach to host cells via CAR, but most of the binding depends on sialylated glycoproteins. Glycan microarray, flow cytometry, surface plasmon resonance and ELISA analyses reveal that the terminal knob domain of the long fiber (52LFK binds to CAR, and the knob domain of the short fiber (52SFK binds to sialylated glycoproteins. X-ray crystallographic analysis of 52SFK in complex with 2-O-methylated sialic acid combined with functional studies of knob mutants revealed a new sialic acid binding site compared to other, known adenovirus:glycan interactions. Our findings shed light on adenovirus biology and may help to improve targeting of adenovirus-based vectors for gene therapy.

  11. Cell Line Data Base: structure and recent improvements towards molecular authentication of human cell lines.

    Science.gov (United States)

    Romano, Paolo; Manniello, Assunta; Aresu, Ottavia; Armento, Massimiliano; Cesaro, Michela; Parodi, Barbara

    2009-01-01

    The Cell Line Data Base (CLDB) is a well-known reference information source on human and animal cell lines including information on more than 6000 cell lines. Main biological features are coded according to controlled vocabularies derived from international lists and taxonomies. HyperCLDB (http://bioinformatics.istge.it/hypercldb/) is a hypertext version of CLDB that improves data accessibility by also allowing information retrieval through web spiders. Access to HyperCLDB is provided through indexes of biological characteristics and navigation in the hypertext is granted by many internal links. HyperCLDB also includes links to external resources. Recently, an interest was raised for a reference nomenclature for cell lines and CLDB was seen as an authoritative system. Furthermore, to overcome the cell line misidentification problem, molecular authentication methods, such as fingerprinting, single-locus short tandem repeat (STR) profile and single nucleotide polymorphisms validation, were proposed. Since this data is distributed, a reference portal on authentication of human cell lines is needed. We present here the architecture and contents of CLDB, its recent enhancements and perspectives. We also present a new related database, the Cell Line Integrated Molecular Authentication (CLIMA) database (http://bioinformatics.istge.it/clima/), that allows to link authentication data to actual cell lines.

  12. Therapeutic implications of an enriched cancer stem-like cell population in a human osteosarcoma cell line

    Directory of Open Access Journals (Sweden)

    Martins-Neves Sara R

    2012-04-01

    Full Text Available Abstract Background Osteosarcoma is a bone-forming tumor of mesenchymal origin that presents a clinical pattern that is consistent with the cancer stem cell model. Cells with stem-like properties (CSCs have been identified in several tumors and hypothesized as the responsible for the relative resistance to therapy and tumor relapses. In this study, we aimed to identify and characterize CSCs populations in a human osteosarcoma cell line and to explore their role in the responsiveness to conventional therapies. Methods CSCs were isolated from the human MNNG/HOS cell line using the sphere formation assay and characterized in terms of self-renewal, mesenchymal stem cell properties, expression of pluripotency markers and ABC transporters, metabolic activity and tumorigenicity. Cell's sensitivity to conventional chemotherapeutic agents and to irradiation was analyzed and related with cell cycle-induced alterations and apoptosis. Results The isolated CSCs were found to possess self-renewal and multipotential differentiation capabilities, express markers of pluripotent embryonic stem cells Oct4 and Nanog and the ABC transporters P-glycoprotein and BCRP, exhibit low metabolic activity and induce tumors in athymic mice. Compared with parental MNNG/HOS cells, CSCs were relatively more resistant to both chemotherapy and irradiation. None of the treatments have induced significant cell-cycle alterations and apoptosis in CSCs. Conclusions MNNG/HOS osteosarcoma cells contain a stem-like cell population relatively resistant to conventional chemotherapeutic agents and irradiation. This resistant phenotype appears to be related with some stem features, namely the high expression of the drug efflux transporters P-glycoprotein and BCRP and their quiescent nature, which may provide a biological basis for resistance to therapy and recurrence commonly observed in osteosarcoma.

  13. Subcloning of ovarian cancer cell lines.

    Science.gov (United States)

    Grunt, T W

    2001-01-01

    Cellular heterogeneity of malignant tissues is a well-known phenomenon (1). Intralineal/intraclonal diversity may be explained in part by proposing the concept of a hierarchically ordered, differentiating and self-renewing stem cell system for transformed cell populations (2). However, in many solid tumors, the stem cells are not easily accessible to phenotypic identification. In the past, density gradient centrifugation was successfully used to separate cells from tumors and from cell lines into distinct subpopulations (3-5). Using Percoll density gradients, we isolated undifferentiated clonogenic tumor stem-cell fractions from HOC-7 human ovarian adenocarcinoma cells. In addition, we also identified a low-density cell subpopulation formed by large, vacuolated, slowly growing, adenoid differentiated cells with very low clonogenic activity (6-11). Further characterization of these cell fractions in terms of stability of the isolated phenotypes is essential for the assessment of their biological significance. Subcloning of the isolated cell fractions by limiting dilution culture (12) followed by long-term culture yielded three permanent monoclonal sublines, which reveal a stable adenoid differentiated phenotype, and three subclones representing undifferentiated, clonogenic tumor stem cells (13). These data demonstrate that the isolated phenotypes represent distinct cell entities reflecting specific stages of ovarian surface epithelial cell differentiation.

  14. Dynamics of synthetic activity of RNA and glycoproteins in epithel cells of endometrium in heifers after ovulation

    International Nuclear Information System (INIS)

    Pivko, J.; Grafenau, P.; Uhrin, V.; Kopecny, V.

    1998-01-01

    Synchronized heifers (n=9) of Black Pied HF breed were slaughtered on 3rd, 6th and 9th day of sexual cycle (first day of estrus = 0). Excisions from basal part (A) and functional part (B) of uteri were taken immediately after killing and were processed for autoradiographic analyses. The samples of endometrium were incubated for 20 minutes in isotonic medium with 100 micro Ci uridine (5 -3H) additive with specific activity 740 GBq/mM (UVVVR Prague) to study the RNA synthesis. The endometrium samples were incubated for 60 minutes, and 240 minutes in isotonic medium with 100 micro Ci L-(6-3 H) fucose with specific activity 0.55-1.1 TBqImM (Amersham Int., G.B.) for autoradiographic analysis of the glycoprotein synthesis. The samples were fixed, dehydrated and embedded in Epon 812 after the incubation. The prepared cuts were covered with photographic emulsion and stored in dark box in a refrigerator at 5øC. They were developed in the developer ORWO D 19, stained with methylene blue and examined through the light microscope after one month exposition. We found out by the autoradiographic analysis that the activity of RNA synthesis in cells of the surface epithel is of rising tendency from 3rd to 9th day. The intensity of RNA synthesis does not change in the functional zone during the early lutheal phase, it rises in the basal layer on 6th day, but on 9th day it is the same as on 3rd day. The autoradiographical analysis showed that the activity of RNA synthesis in cells of the surface epithel is of rising tendency from 3rd to 9th day The intensity of RNA synthesis in functional zone does not change during the early lutheal phase, it rises in the basal layer on 6th day, but on 9th day it is the same as on 3rd day. The glycoproteins are synthetised mainly by the Golgi apparatus in supranuclear sphere in the cells of surface epithel and in glandular cells. The glycoproteins were not observed in apical regions of cells on 3rd day of cycle, however, they are intensively

  15. Study of the role of the covalently linked cell wall protein (Ccw14p) and yeast glycoprotein (Ygp1p) within biofilm formation in a flor yeast strain.

    Science.gov (United States)

    Moreno-García, J; Coi, A L; Zara, G; García-Martínez, T; Mauricio, J C; Budroni, M

    2018-03-01

    Flor yeasts are Saccharomyces cerevisiae strains noted by their ability to create a type of biofilm in the air-liquid interface of some wines, known as 'flor' or 'velum', for which certain proteins play an essential role. Following a proteomic study of a flor yeast strain, we deleted the CCW14 (covalently linked cell wall protein) and YGP1 (yeast glycoprotein) genes-codifying for two cell surface glycoproteins-in a haploid flor yeast strain and we reported that both influence the weight of the biofilm as well as cell adherence (CCW14).

  16. Analysis of glycoprotein E-selectin ligANDs on human and mouse marrow cells enriched for hematopoietic stem/progenitor cells

    KAUST Repository

    Merzaban, Jasmeen S.

    2011-06-09

    Although well recognized that expression of E-selectin on marrow microvessels mediates osteotropism of hematopoietic stem/progenitor cells (HSPCs), our knowledge regarding the cognate E-selectin ligand(s) on HSPCs is incomplete. Flow cytometry using E-selectin-Ig chimera (E-Ig) shows that human marrow cells enriched for HSPCs (CD34+ cells) display greater E-selectin binding than those obtained from mouse (lin-/Sca-1+/c-kit+ [LSK] cells). To define the relevant glycoprotein E-selectin ligands, lysates from human CD34+ and KG1a cells and from mouse LSK cells were immunoprecipitated using E-Ig and resolved byWestern blot using E-Ig. In both human and mouse cells, E-selectin ligand reactivity was observed at ∼ 120- to 130-kDa region, which contained two E-selectin ligands, the P-selectin glycoprotein ligand- 1 glycoform "CLA," and CD43. Human, but not mouse, cells displayed a prominent ∼ 100-kDa band, exclusively comprising the CD44 glycoform "HCELL."E-Ig reactivity was most prominent on CLA in mouse cells and on HCELL in human cells. To further assess HCELL\\'s contribution to E-selectin adherence, complementary studies were performed to silence (via CD44 siRNA) or enforce its expression (via exoglycosylation). Under physiologic shear conditions, CD44/HCELL-silenced human cells showed striking decreases (> 50%) in E-selectin binding. Conversely, enforced HCELL expression of LSK cells profoundly increased E-selectin adherence, yielding > 3-fold more marrow homing in vivo. These data define the key glycoprotein E-selectin ligands of human and mouse HSPCs, unveiling critical species-intrinsic differences in both the identity and activity of these structures. © 2011 by The American Society of Hematology.

  17. (Asteraceae) Fraction against Human Cancer Cell Lines

    African Journals Online (AJOL)

    Purpose: To investigate the anti-proliferative and apoptotic activity of crude and dichloromethane fraction of A. sieberi against seven cancer cell lines (Colo20, HCT116, DLD, MCF7, Jurkat, HepG2 and L929). Methods: A. sieberi was extracted with methanol and further purification was carried out using liquidliquid extraction ...

  18. Breast cancer cell lines: friend or foe?

    International Nuclear Information System (INIS)

    Burdall, Sarah E; Hanby, Andrew M; Lansdown, Mark RJ; Speirs, Valerie

    2003-01-01

    The majority of breast cancer research is conducted using established breast cancer cell lines as in vitro models. An alternative is to use cultures established from primary breast tumours. Here, we discuss the pros and cons of using both of these models in translational breast cancer research

  19. Natural lignans from Arctium lappa modulate P-glycoprotein efflux function in multidrug resistant cancer cells.

    Science.gov (United States)

    Su, Shan; Cheng, Xinlai; Wink, Michael

    2015-02-15

    Arctium lappa is a well-known traditional medicinal plant in China (TCM) and Europe that has been used for thousands of years to treat arthritis, baldness or cancer. The plant produces lignans as secondary metabolites which have a wide range of bioactivities. Yet, their ability to reverse multidrug resistance (MDR) in cancer cells has not been explored. In this study, we isolated six lignans from A. lappa seeds, namely arctigenin, matairesinol, arctiin, (iso)lappaol A, lappaol C, and lappaol F. The MDR reversal potential of the isolated lignans and the underlying mechanism of action were studied using two MDR cancer cell lines, CaCo2 and CEM/ADR 5000 which overexpress P-gp and other ABC transporters. In two-drug combinations of lignans with the cytotoxic doxorubicin, all lignans exhibited synergistic effects in CaCo2 cells and matairesinol, arctiin, lappaol C and lappaol F display synergistic activity in CEM/ADR 5000 cells. Additionally, in three-drug combinations of lignans with the saponin digitonin and doxorubicin MDR reversal activity was even stronger enhanced. The lignans can increase the retention of the P-gp substrate rhodamine 123 in CEM/ADR 5000 cells, indicating that lignans can inhibit the activity of P-gp. Our study provides a first insight into the potential chemosensitizing activity of a series of natural lignans, which might be candidates for developing novel adjuvant anticancer agents. Copyright © 2015 Elsevier GmbH. All rights reserved.

  20. Microfilament association of ASGP-2, the concanavalin A-binding glycoprotein of the cell-surface sialomucin complex of 13762 rat mammary ascites tumor cells

    Energy Technology Data Exchange (ETDEWEB)

    Vanderpuye, L.A.; Carraway, C.A.C.; Carraway, K.L. (Univ. of Miami School of Medicine, FL (USA))

    1988-10-01

    Microfilament-associated proteins and membrane-microfilament interactions are being investigated in microvilli isolated from 13762 rat mammary ascites tumor cells. Phalloidin shift analyses on velocity sedimentation gradients of Triton X-100 extracts of ({sup 3}H)-glucosamine-labeled microvilli identified a 120-kDa cell-surface glycoprotein associated with the microvillar microfilament core. The identification was verified by concanavalin A (Con A) blots of one- and two-dimensional (2D) electrophoresis gels of sedimented microfilament cores. By 2D-electrophoresis and lectin analyses the 120-kDa protein appeared to be a fraction of ASGP-2, the major Con A-binding glycoprotein of the sialomucin complex of the 13762 cells. This identity was confirmed by immunoblot analyses using immunoblot-purified anti-ASGP-2 from anti-membrane serum prepared against microvillar membranes. Proteolysis of the microvilli with subtilisin or trypsin resulted in an increase in the amount of ASGP-2 associated with the microfilament cores. Proteolysis of isolated microvillar membranes, which contain actin but not microfilaments, also increased the association of ASGP-2 with a Triton-insoluble, actin-containing membrane fraction. Since the Triton-insoluble membrane residue is enriched in actin-containing transmembrane complex, which contains a different glycoprotein, the authors suggest that the ASGP-2 is binding indirectly via this complex to the microfilament core in the intact microvilli.

  1. Evidence that muscle cells do not express the histidine-rich glycoprotein associated with AMP deaminase but can internalise the plasma protein

    Directory of Open Access Journals (Sweden)

    A.R.M. Sabbatini

    2011-02-01

    Full Text Available Histidine-rich glycoprotein (HRG is synthesized by liver and is present at relatively high concentration in the plasma of vertebrates. We have previously described the association of a HRG-like molecule to purified rabbit skeletal muscle AMP deaminase (AMPD. We also provided the first evidence for the presence of a HRG-like protein in human skeletal muscle where a positive correlation between HRG content and total determined AMPD activity has been shown. In the present paper we investigate the origin of skeletal muscle HRG. The screening of a human skeletal muscle cDNA expression library using an anti-HRG antibody failed to reveal any positive clone. The RT-PCR analysis, performed on human skeletal muscle RNA as well as on RNA from the rhabdomyosarcoma (RD cell line, failed to show any mRNA specific for the plasma HRG or for the putative muscle variant. When the RD cells were incubated with human plasma HRG, a time-dependent increase of the HRG immunoreactivity was detected both at the plasma membrane level and intracellularly. The internalisation of HRG was inhibited by the addition of heparin. The above data strongly suggest that skeletal muscle cells do not synthesize the muscle variant of HRG but instead can actively internalise it from plasma.

  2. Palmitoylation of the cysteine-rich endodomain of the SARS-coronavirus spike glycoprotein is important for spike-mediated cell fusion

    International Nuclear Information System (INIS)

    Petit, Chad M.; Chouljenko, Vladimir N.; Iyer, Arun; Colgrove, Robin; Farzan, Michael; Knipe, David M.; Kousoulas, K.G.

    2007-01-01

    The SARS-coronavirus (SARS-CoV) is the etiological agent of the severe acute respiratory syndrome (SARS). The SARS-CoV spike (S) glycoprotein mediates membrane fusion events during virus entry and virus-induced cell-to-cell fusion. The cytoplasmic portion of the S glycoprotein contains four cysteine-rich amino acid clusters. Individual cysteine clusters were altered via cysteine-to-alanine amino acid replacement and the modified S glycoproteins were tested for their transport to cell-surfaces and ability to cause cell fusion in transient transfection assays. Mutagenesis of the cysteine cluster I, located immediately proximal to the predicted transmembrane, domain did not appreciably reduce cell-surface expression, although S-mediated cell fusion was reduced by more than 50% in comparison to the wild-type S. Similarly, mutagenesis of the cysteine cluster II located adjacent to cluster I reduced S-mediated cell fusion by more than 60% compared to the wild-type S, while cell-surface expression was reduced by less than 20%. Mutagenesis of cysteine clusters III and IV did not appreciably affect S cell-surface expression or S-mediated cell fusion. The wild-type S was palmitoylated as evidenced by the efficient incorporation of 3 H-palmitic acid in wild-type S molecules. S glycoprotein palmitoylation was significantly reduced for mutant glycoproteins having cluster I and II cysteine changes, but was largely unaffected for cysteine cluster III and IV mutants. These results show that the S cytoplasmic domain is palmitoylated and that palmitoylation of the membrane proximal cysteine clusters I and II may be important for S-mediated cell fusion

  3. Demonstration of immunochemical identity between the nerve growth factor-inducible large external (NILE) glycoprotein and the cell adhesion molecule L1

    DEFF Research Database (Denmark)

    Bock, E; Richter-Landsberg, C; Faissner, A

    1985-01-01

    -treated rat PC12 pheochromocytoma cells yielded comigrating bands by SDS-PAGE. NILE antibodies reacted with immunopurified L1 antigen, but not with N-CAM and other L2 epitope-bearing glycoproteins from adult mouse brain. Finally, by sequential immunoprecipitation from detergent extracts of [35S......The nerve growth factor-inducible large external (NILE) glycoprotein and the neural cell adhesion molecule L1 were shown to be immunochemically identical. Immunoprecipitation with L1 and NILE antibodies of [3H]fucose-labeled material from culture supernatants and detergent extracts of NGF...

  4. P-Glycoprotein/MDR1 regulates pokemon gene transcription through p53 expression in human breast cancer cells.

    Science.gov (United States)

    He, Shengnan; Liu, Feng; Xie, Zhenhua; Zu, Xuyu; Xu, Wei; Jiang, Yuyang

    2010-08-27

    P-glycoprotein (Pgp), encoded by the multidrug resistance 1 (MDR1) gene, is an efflux transporter and plays an important role in pharmacokinetics. In this study, we demonstrated that the pokemon promoter activity, the pokemon mRNA and protein expression can be significantly inhibited by Pgp. Chromatin immunoprecipitation assay showed that Pgp can bind the pokemon prompter to repress pokemon transcription activity. Furthermore, Pgp regulated pokemon transcription activity through expression of p53 as seen by use of p53 siRNA transfected MCF-7 cells or p53 mutated MDA-MB-231 cells. Moreover, p53 was detected to bind with Pgp in vivo using immunoprecipitation assay. Taken together, we conclude that Pgp can regulate the expression of pokemon through the presence of p53, suggesting that Pgp is a potent regulator and may offer an effective novel target for cancer therapy.

  5. P-Glycoprotein/MDR1 Regulates Pokemon Gene Transcription Through p53 Expression in Human Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Wei Xu

    2010-08-01

    Full Text Available P-glycoprotein (Pgp, encoded by the multidrug resistance 1 (MDR1 gene, is an efflux transporter and plays an important role in pharmacokinetics. In this study, we demonstrated that the pokemon promoter activity, the pokemon mRNA and protein expression can be significantly inhibited by Pgp. Chromatin immunoprecipitation assay showed that Pgp can bind the pokemon prompter to repress pokemon transcription activity. Furthermore, Pgp regulated pokemon transcription activity through expression of p53 as seen by use of p53 siRNA transfected MCF-7 cells or p53 mutated MDA-MB-231 cells. Moreover, p53 was detected to bind with Pgp in vivo using immunoprecipitation assay. Taken together, we conclude that Pgp can regulate the expression of pokemon through the presence of p53, suggesting that Pgp is a potent regulator and may offer an effective novel target for cancer therapy.

  6. Diffusion of myelin oligodendrocyte glycoprotein in living OLN-93 cells investigated by raster-scanning image correlation spectroscopy (RICS).

    Science.gov (United States)

    Gielen, Ellen; Smisdom, Nick; De Clercq, Ben; Vandeven, Martin; Gijsbers, Rik; Debyser, Zeger; Rigo, Jean-Michel; Hofkens, Johan; Engelborghs, Yves; Ameloot, Marcel

    2008-09-01

    Many membrane proteins and lipids are partially confined in substructures ranging from tens of nanometers to micrometers in size. Evidence for heterogeneities in the membrane of oligodendrocytes, i.e. the myelin-producing cells of the central nervous system, is almost exclusively based on detergent methods. However, as application of detergents can alter the membrane phase behaviour, it is important to investigate membrane heterogeneities in living cells. Here, we report on the first investigations of the diffusion behavior of the myelin-specific protein MOG (myelin oligodendrocyte glycoprotein) in OLN-93 as studied by the recently developed RICS (raster-scanning image correlation spectroscopy) technique. We implemented RICS on a standard confocal laser-scanning microscope with one-photon excitation and analog detection. Measurements on FITC-dextran were used to evaluate the performance of the system and the data analysis procedure.

  7. Artificial Formation and Tuning of Glycoprotein Networks on Live Cell Membranes: A Single-Molecule Tracking Study.

    Science.gov (United States)

    Möckl, Leonhard; Lindhorst, Thisbe K; Bräuchle, Christoph

    2016-03-16

    We present a method to artificially induce network formation of membrane glycoproteins and show the precise tuning of their interconnection on living cells. For this, membrane glycans are first metabolically labeled with azido sugars and then tagged with biotin by copper-free click chemistry. Finally, these biotin-tagged membrane proteins are interconnected with streptavidin (SA) to form an artificial protein network in analogy to a lectin-induced lattice. The degree of network formation can be controlled by the concentration of SA, its valency, and the concentration of biotin on membrane proteins. This was verified by investigation of the spatiotemporal dynamics of the SA-protein networks employing single-molecule tracking. It was also proven that this network formation strongly influences the biologically relevant process of endocytosis as it is known from natural lattices on the cell surface. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Suspension culture process of MethA tumor cell for the production of heat-shock protein glycoprotein 96: process optimization in spinner flasks.

    Science.gov (United States)

    Tang, Ya-Jie; Li, Hong-Mei; Hamel, Jean-François P

    2007-01-01

    Heat-shock proteins (HSPs) act like "chaperones", making sure that the cell's proteins are in the right shape and in the right place at the right time. Heat-shock protein glycoprotein 96 (gp96) is a member of the HSP90 protein family, which chaperones a number of molecules in protein folding and transportation. Heat-shock protein gp96 serves as a natural adjuvant for chaperoning antigenic peptides into the immune surveillance pathways. Currently, heat-shock protein gp96 was only isolated from murine and human tissues and cell lines. An animal cell suspension culture process for the production of heat-shock protein gp96 by MethA tumor cell was developed for the first time in spinner flasks. Effects of culture medium and condition were studied to enhance the MethA tumor cell density and the production and productivity of heat-shock protein gp96. Initial glucose concentration had a significant effect on the heat-shock protein gp96 accumulation, and an initial glucose level of 7.0 g/L was desirable for MethA tumor cell growth and heat-shock protein gp96 production and productivity. Cultures at an initial glutamine concentration of 3 and 6 mM were nutritionally limited by glutamine. At an initial glutamine concentration of 6 mM, the maximal viable cell density of 19.90 x 10(5) cells/mL and the maximal heat-shock protein gp96 production of 4.95 mg/L was obtained. The initial concentration of RPMI 1640 and serum greatly affected the MethA tumor cell culture process. Specifically cultures with lower initial concentration of RPMI 1640 resulted in lower viable cell density and lower heat-shock protein gp96 production. At an initial serum concentration of 8%, the maximal viable cell density of 19.18 x 10(5) cells/mL and the maximal heat-shock protein gp96 production of 5.67 mg/L was obtained. The spin rate significantly affected the cell culture process in spinner flasks, and a spin rate of 150 rpm was desirable for MethA tumor cell growth and heat-shock protein gp96

  9. Cellular radiosensitivity of small-cell lung cancer cell lines

    DEFF Research Database (Denmark)

    Krarup, M; Poulsen, H S; Spang-Thomsen, M

    1997-01-01

    PURPOSE: The objective of this study was to determine the radiobiological characteristics of a panel of small-cell lung cancer (SCLC) cell lines by use of a clonogenic assay. In addition, we tested whether comparable results could be obtained by employing a growth extrapolation method based...

  10. Cellular radiosensitivity of small-cell lung cancer cell lines

    DEFF Research Database (Denmark)

    Krarup, M; Poulsen, H S; Spang-Thomsen, M

    1997-01-01

    PURPOSE: The objective of this study was to determine the radiobiological characteristics of a panel of small-cell lung cancer (SCLC) cell lines by use of a clonogenic assay. In addition, we tested whether comparable results could be obtained by employing a growth extrapolation method based...... on the construction of continuous exponential growth curves. METHODS AND MATERIALS: Fifteen SCLC cell lines were studied, applying a slightly modified clonogenic assay and a growth extrapolation method. A dose-survival curve was obtained for each experiment and used for calculating several survival parameters...... to calculate the surviving fraction after 2-Gy irradiation (SF2). RESULTS: In our investigation, the extrapolation method proved to be inappropriate for the study of in vitro cellular radiosensitivity due to lack of reproducibility. The results obtained by the clonogenic assay showed that the cell lines...

  11. C-fos upregulates P-glycoprotein, contributing to the development of multidrug resistance in HEp-2 laryngeal cancer cells with VCR-induced resistance.

    Science.gov (United States)

    Li, Guodong; Hu, Xiaoling; Sun, Lu; Li, Xin; Li, Jianfeng; Li, Tongli; Zhang, Xiaohui

    2018-01-01

    Laryngeal cancer tends to have a very poor prognosis due to the unsatisfactory efficacy of chemotherapy for this cancer. Multidrug resistance (MDR) is the main cause of chemotherapy failure. The proto-oncogene c-fos has been shown to be involved in the development of MDR in several tumor types, but few studies have evaluated the relationship between c-fos and MDR in laryngeal cancer. We investigated the role of c-fos in MDR development in laryngeal cancer cells (cell line: human epithelial type 2, HEp-2) using the chemotherapeutic vincristine (VCR). HEp-2/VCR drug resistance was established by selection against an increasing drug concentration gradient. The expressions of c-fos and multidrug resistance 1 (mdr1) were measured using qPCR and western blot. C-fos overexpression or knockdown was performed in various cells. The intracellular rhodamine-123 (Rh-123) accumulation assay was used to detect the transport capacity of P-glycoprotein (P-gp, which is encoded by the mdr1 gene). HEp-2 cells with VCR-induced resistance (HEp-2/VCR cells) were not only resistant to VCR but also evolved cross-resistance to other chemotherapeutic drugs. The expressions of the c-fos and mdr1genes were significantly higher in the HEp-2/VCR cells than in control cells. C-fos overexpression in HEp-2 cells (c-fos WT) resulted in increased P-gp expression and increased the IC 50 for 5-FU. C-fos knockdown in the HEp-2/VCR cells (c-fos shRNA) resulted in decreased P-gp expression and decreased IC 50 for 5-FU. An intracellular Rh-123 accumulation assay showed that the mean intracellular fluorescence intensity (MFI) was lower in the HEp-2/VCR cells than in HEp-2 cells. C-fos WT cells also showed lower MFI. By contrast, c-fos shRNA cells exhibited a higher MFI than the control group. C-fos increased the expression of P-gp and mdr1 in the HEp-2/VCR cells, and enhanced the efflux function of the cells, thereby contributing to the development of MDR.

  12. Identification of the Abundant Hydroxyproline-Rich Glycoproteins in the Root Walls of Wild-Type Arabidopsis, an ext3 Mutant Line, and Its Phenotypic Revertant

    Directory of Open Access Journals (Sweden)

    Yuning Chen

    2015-01-01

    Full Text Available Extensins are members of the cell wall hydroxyproline-rich glycoprotein (HRGP superfamily that form covalently cross-linked networks in primary cell walls. A knockout mutation in EXT3 (AT1G21310, the gene coding EXTENSIN 3 (EXT3 in Arabidopsis Landsberg erecta resulted in a lethal phenotype, although about 20% of the knockout plants have an apparently normal phenotype (ANP. In this study the root cell wall HRGP components of wild-type, ANP and the ext3 mutant seedlings were characterized by peptide fractionation of trypsin digested anhydrous hydrogen fluoride deglycosylated wall residues and by sequencing using LC-MS/MS. Several HRGPs, including EXT3, were identified in the wild-type root walls but not in walls of the ANP and lethal mutant. Indeed the ANP walls and walls of mutants displaying the lethal phenotype possessed HRGPs, but the profiles suggest that changes in the amount and perhaps type may account for the corresponding phenotypes.

  13. Multidrug resistance in tumour cells: characterisation of the multidrug resistant cell line K562-Lucena 1

    Directory of Open Access Journals (Sweden)

    VIVIAN M. RUMJANEK

    2001-03-01

    Full Text Available Multidrug resistance to chemotherapy is a major obstacle in the treatment of cancer patients. The best characterised mechanism responsible for multidrug resistance involves the expression of the MDR-1 gene product, P-glycoprotein. However, the resistance process is multifactorial. Studies of multidrug resistance mechanisms have relied on the analysis of cancer cell lines that have been selected and present cross-reactivity to a broad range of anticancer agents. This work characterises a multidrug resistant cell line, originally selected for resistance to the Vinca alkaloid vincristine and derived from the human erythroleukaemia cell K562. This cell line, named Lucena 1, overexpresses P-glycoprotein and have its resistance reversed by the chemosensitisers verapamil, trifluoperazine and cyclosporins A, D and G. Furthermore, we demonstrated that methylene blue was capable of partially reversing the resistance in this cell line. On the contrary, the use of 5-fluorouracil increased the resistance of Lucena 1. In addition to chemotherapics, Lucena 1 cells were resistant to ultraviolet A radiation and hydrogen peroxide and failed to mobilise intracellular calcium when thapsigargin was used. Changes in the cytoskeleton of this cell line were also observed.A resistência a múltiplos fármacos é o principal obstáculo no tratamento de pacientes com câncer. O mecanismo responsável pela resistência múltipla mais bem caracterizado envolve a expressão do produto do gene MDR-1, a glicoproteína P. Entretanto, o processo de resistência tem fatores múltiplos. Estudos de mecanismos de resistência m��ltipla a fármacos têm dependido da análise de linhagens celulares tumorais que foram selecionadas e apresentam reatividade cruzada a uma ampla faixa de agentes anti-tumorais. Este trabalho caracteriza uma linhagem celular com múltipla resistência a fármacos, selecionada originalmente pela resistência ao alcalóide de Vinca vincristina e derivado

  14. Probing the O-glycoproteome of Gastric Cancer Cell Lines for Biomarker Discovery

    DEFF Research Database (Denmark)

    Vieira Campos, Diana Alexandra; Freitas, Daniela; Gomes, Joana

    2015-01-01

    Circulating O-glycoproteins shed from cancer cells represent important serum biomarkers for diagnostic and prognostic purposes. We have recently shown that selective detection of cancer-associated aberrant glycoforms of circulating O-glycoprotein biomarkers can increase specificity of cancer biom...

  15. Induced pluripotent stem cell lines derived from human somatic cells.

    Science.gov (United States)

    Yu, Junying; Vodyanik, Maxim A; Smuga-Otto, Kim; Antosiewicz-Bourget, Jessica; Frane, Jennifer L; Tian, Shulan; Nie, Jeff; Jonsdottir, Gudrun A; Ruotti, Victor; Stewart, Ron; Slukvin, Igor I; Thomson, James A

    2007-12-21

    Somatic cell nuclear transfer allows trans-acting factors present in the mammalian oocyte to reprogram somatic cell nuclei to an undifferentiated state. We show that four factors (OCT4, SOX2, NANOG, and LIN28) are sufficient to reprogram human somatic cells to pluripotent stem cells that exhibit the essential characteristics of embryonic stem (ES) cells. These induced pluripotent human stem cells have normal karyotypes, express telomerase activity, express cell surface markers and genes that characterize human ES cells, and maintain the developmental potential to differentiate into advanced derivatives of all three primary germ layers. Such induced pluripotent human cell lines should be useful in the production of new disease models and in drug development, as well as for applications in transplantation medicine, once technical limitations (for example, mutation through viral integration) are eliminated.

  16. Reversal of resistance by GF120918 in cell lines expressing the ABC half-transporter, MXR

    DEFF Research Database (Denmark)

    de Bruin, M; Miyake, K; Litman, Thomas

    1999-01-01

    The emergence of several newly identified members of the ABC transporter family has necessitated the development of antagonists that are able to inhibit more than one transporter. We assessed the ability of the chemosensitizer GF120918 to function as a multispecific antagonist using cytotoxicity...... assays, rhodamine and calcein efflux assays, and confocal microscopy in cell lines expressing different multidrug resistance transporters. At a concentration of 1 microM in cytotoxicity assays, GF120918 was able to sensitize both S1-B1-20, a subline expressing P-glycoprotein (Pgp), and S1-M1......-80, a subline expressing a newly identified mitoxantrone transporter, MXR. GF120918 was ineffective in sensitizing MRP-overexpressing MCF-7 VP-16 cells to etoposide as determined by cytotoxicity studies. In flow cytometry experiments, rhodamine 123 efflux in S1-B1-20 cells was decreased at GF120918...

  17. Susceptibility testing of fish cell lines for virus isolation

    DEFF Research Database (Denmark)

    Ariel, Ellen; Skall, Helle Frank; Olesen, Niels Jørgen

    2009-01-01

    compare susceptibility between cell lines and between lineages within a laboratory and between laboratories (Inter-laboratory Proficiency Test). The objective being that the most sensitive cell line and lineages are routinely selected for diagnostic purposes.In comparing cell lines, we simulated "non......-cell-culture-adapted" virus by propagating the virus in heterologous cell lines to the one tested. A stock of test virus was produced and stored at - 80 °C and tests were conducted biannually. This procedure becomes complicated when several cell lines are in use and does not account for variation among lineages. In comparing...... cell lineages, we increased the number of isolates of each virus, propagated stocks in a given cell line and tested all lineages of that line in use in the laboratory. Testing of relative cell line susceptibility between laboratories is carried out annually via the Inter-laboratory Proficiency Test...

  18. The nectin-1α transmembrane domain, but not the cytoplasmic tail, influences cell fusion induced by HSV-1 glycoproteins

    International Nuclear Information System (INIS)

    Subramanian, Ravi P.; Dunn, Jennifer E.; Geraghty, Robert J.

    2005-01-01

    Nectin-1 is a receptor for herpes simplex virus (HSV), a member of the immunoglobulin superfamily, and a cellular adhesion molecule. To study domains of nectin-1α involved in cell fusion, we measured the ability of nectin-1α/nectin-2α chimeras, nectin-1α/CD4 chimeras, and transmembrane domain and cytoplasmic tail mutants of nectin-1α to promote cell fusion induced by HSV-1 glycoproteins. Our results demonstrate that only chimeras and mutants containing the entire V-like domain and a link to the plasma membrane conferred cell-fusion activity. The transmembrane domain and cytoplasmic tail of nectin-1 were not required for any viral receptor or cell adhesion function tested. Cellular cytoplasmic factors that bind to the nectin-1α cytoplasmic tail, therefore, did not influence virus entry or cell fusion. Interestingly, the efficiency of cell fusion was reduced when membrane-spanning domains of nectin-1α and gD were replaced by glycosylphosphatidylinositol tethers, indicating that transmembrane domains may play a modulatory role in the gD/nectin-1α interaction in fusion

  19. P-glycoprotein increases the efflux of the androgen dihydrotestosterone and reduces androgen responsive gene activity in prostate tumor cells.

    Science.gov (United States)

    Fedoruk, Matthew N; Giménez-Bonafé, Pepita; Guns, Emma S; Mayer, Lawrence D; Nelson, Colleen C

    2004-04-01

    P-glycoprotein (P-gp) is commonly associated with multi-drug resistance (MDR) in cancer cells and the efflux of a broad spectrum of chemicals from the cell, including many chemotherapeutics and certain steroid hormones. The impact of P-gp and mechanisms involved in androgen transport and cellular accumulation within normal and malignant prostate cells remains unclear. Following incubation of LNCaP, PC-3, HeLa, and HeLa FLAG-androgen receptor (AR) cells with (3)H-dihydrotestosterone (DHT) alone and in combination with P-gp inhibitors, PSC-833 and verapamil, we examined the cellular accumulation and efflux of androgens, as well as gene transcriptional response. Our data reveal that the cellular transport and accumulation of DHT is dependent on the expression of functional AR and modulated by P-gp. P-gp over-expression by both transient transfection and aspirin treatment in LNCaP cells showed decreased intracellular DHT accumulation, further suggesting DHT efflux is P-gp regulated. Androgen responsiveness may be modulated by P-gp in prostate cancer cells. The biological consequences of increased P-gp expression are decreased androgen accumulation and a corresponding decrease in androgen-regulated transcriptional activity and PSA gene expression. Copyright 2004 Wiley-Liss, Inc.

  20. The value of flow cytometric analysis of platelet glycoprotein expression of CD34+ cells measured under conditions that prevent P-selectin-mediated binding of platelets

    NARCIS (Netherlands)

    Dercksen, M. W.; Weimar, I. S.; Richel, D. J.; Breton-Gorius, J.; Vainchenker, W.; Slaper-Cortenbach, C. M.; Pinedo, H. M.; von dem Borne, A. E.; Gerritsen, W. R.; van der Schoot, C. E.

    1995-01-01

    In the present study, we show by adhesion assays and ultrastructural studies that platelets can bind to CD34+ cells from human blood and bone marrow and that this interaction interferes with the accurate detection of endogenously expressed platelet glycoproteins (GPs). The interaction between these

  1. T-CELL RESPONSES TO SYNTHETIC PEPTIDES OF HERPES-SIMPLEX VIRUS TYPE-1 GLYCOPROTEIN-D IN NATURALLY INFECTED INDIVIDUALS

    NARCIS (Netherlands)

    DAMHOF, RA; DRIJFHOUT, JW; SCHEFFER, AJ; WILTERDINK, JB; WELLING, GW; WELLINGWESTER, S

    1993-01-01

    To locate T cell determinants of glycoprotein D (gD) of herpes simplex virus type 1 (HSV-1), proliferation assays of lymphocytes obtained from 10 healthy HSV-seropositive individuals were performed using 34 overlapping gD peptides as antigens. Despite large differences between individual responses

  2. Demonstration of immunochemical identity between the nerve growth factor-inducible large external (NILE) glycoprotein and the cell adhesion molecule L1

    DEFF Research Database (Denmark)

    Bock, E; Richter-Landsberg, C; Faissner, A

    1985-01-01

    The nerve growth factor-inducible large external (NILE) glycoprotein and the neural cell adhesion molecule L1 were shown to be immunochemically identical. Immunoprecipitation with L1 and NILE antibodies of [3H]fucose-labeled material from culture supernatants and detergent extracts of NGF-treated...

  3. Comparative uptake of Tc-99m sestamibi and Tc-99m tetrofosmin in cancer cells and tissue expressing P-Glycoprotein or multidrug resistance associated protein

    International Nuclear Information System (INIS)

    Cho, Jung Ah; Lee, Jae Tae; Yoo, Jung Ah

    2005-01-01

    99m Tc-sestamibi(MIBI) and 99m Tc-tetrofosmin have been used as substrates for P-glycoprotein (Pgp) and multidrug resistance associated protein (MRP), which are closely associated with multidrug resistance of the tumors. To understand different handling of radiotracers in cancer cell lines expressing Pgp and MRP, we compared cellular uptakes of 99m Tc-MIBI and 99m Tc-tetrofosmin. The effects of cyclosporin A (CsA), well-known multidrug resistant reversing agent, on the uptake of both tracers were also compared. HCT15/CL02 human colorectal cancer cells for Pgp expressing cells, and human non-small cell lung cancer A549 cells for MRP expressing cells, were used for in vitro and in vivo studies. RT-PCR, western blot analysis and immunohistochemistry were used for detection of Pgp and MRP. MDR-reversal effect with CsA was evaluated at different drug concentrations after incubation with MIBI or tetrofosmin. Radioactivities of supernatant and pellet were measured with gamma well counter. Tumoral uptake of the tracers were measured from tumor bearing nude mice treated with or without CsA. RT-PCR, western blot analysis of the cells and immunochemical staining revealed selective expression of Pgp and MRP for HCT15/CL02 and A549 cells, respectively. There were no significant difference in cellular uptakes of both tracers in HCT15/CL02 cells, but MIBI uptake was slightly higher than that of tetrofosmin in A549 cells. Co-incubation with CsA resulted in a increase in cellular uptakes of MIBI and tetrofosmin. Uptake of MIBI or tetrofosmin in HCT15/CL02 cells was increased by 10-and 2.4-fold, and by 7.5 and 6.3-fold in A549 cells, respectively. Percentage increase of MIBI was higher than that of tetrofosmin with CsA for both cells (ρ < 0.05). In vivo biodistribution study showed that MIBI (114% at 10 min, 257% at 60 min, 396% at 24C min) and tetrofosmin uptake (110% at 10 min, 205% at 60 min, 410% at 240 min) were progressively increased by the time, up to 240 min with CsA. But

  4. Comparative uptake of Tc-99m sestamibi and Tc-99m tetrofosmin in cancer cells and tissue expressing P-Glycoprotein or multidrug resistance associated protein

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jung Ah; Lee, Jae Tae; Yoo, Jung Ah [School of Medicine, Kyungpook National University, Daegu (Korea, Republic of)] (and others)

    2005-02-15

    {sup 99m}Tc-sestamibi(MIBI) and {sup 99m}Tc-tetrofosmin have been used as substrates for P-glycoprotein (Pgp) and multidrug resistance associated protein (MRP), which are closely associated with multidrug resistance of the tumors. To understand different handling of radiotracers in cancer cell lines expressing Pgp and MRP, we compared cellular uptakes of {sup 99m}Tc-MIBI and {sup 99m}Tc-tetrofosmin. The effects of cyclosporin A (CsA), well-known multidrug resistant reversing agent, on the uptake of both tracers were also compared. HCT15/CL02 human colorectal cancer cells for Pgp expressing cells, and human non-small cell lung cancer A549 cells for MRP expressing cells, were used for in vitro and in vivo studies. RT-PCR, western blot analysis and immunohistochemistry were used for detection of Pgp and MRP. MDR-reversal effect with CsA was evaluated at different drug concentrations after incubation with MIBI or tetrofosmin. Radioactivities of supernatant and pellet were measured with gamma well counter. Tumoral uptake of the tracers were measured from tumor bearing nude mice treated with or without CsA. RT-PCR, western blot analysis of the cells and immunochemical staining revealed selective expression of Pgp and MRP for HCT15/CL02 and A549 cells, respectively. There were no significant difference in cellular uptakes of both tracers in HCT15/CL02 cells, but MIBI uptake was slightly higher than that of tetrofosmin in A549 cells. Co-incubation with CsA resulted in a increase in cellular uptakes of MIBI and tetrofosmin. Uptake of MIBI or tetrofosmin in HCT15/CL02 cells was increased by 10-and 2.4-fold, and by 7.5 and 6.3-fold in A549 cells, respectively. Percentage increase of MIBI was higher than that of tetrofosmin with CsA for both cells ({rho} < 0.05). In vivo biodistribution study showed that MIBI (114% at 10 min, 257% at 60 min, 396% at 24C min) and tetrofosmin uptake (110% at 10 min, 205% at 60 min, 410% at 240 min) were progressively increased by the time, up to

  5. Characterization of the glycosylation profiles of Alzheimer's beta -secretase protein Asp-2 expressed in a variety of cell lines.

    Science.gov (United States)

    Charlwood, J; Dingwall, C; Matico, R; Hussain, I; Johanson, K; Moore, S; Powell, D J; Skehel, J M; Ratcliffe, S; Clarke, B; Trill, J; Sweitzer, S; Camilleri, P

    2001-05-18

    Amyloid 39-42 beta -peptides are the main components of amyloid plaques found in the brain of Alzheimer's disease patients. Amyloid 39-42 beta-peptide is formed from amyloid precursor protein by the sequential action of beta- and gamma-secretases. Asp-2 is a transmembrane aspartic protease expressed in the brain, shown to have beta-secretase activity. Mature Asp-2 has four N-glycosylation sites. In this report we have characterized the carbohydrate structures in this glycoprotein expressed in three different cell lines, namely Chinese hamster ovary, CV-1 origin of SV40, and baculovirus-infected SF9 cells. Biantennary and triantennary oligosaccharides of the "complex" type were released from glycoprotein expressed in the mammalian cells, whereas mannose-rich glycans were identified from glycoprotein synthesized in the baculovirus-infected cells. Site-directed mutagenesis of the asparagine residues at amino acid positions 153, 172, 223, and 354 demonstrate that the protease activity of Asp-2 is dependent on its glycosylation.

  6. Engineered cell lines for fish health research.

    Science.gov (United States)

    Collet, Bertrand; Collins, Catherine; Lester, Katherine

    2018-03-01

    As fish farming continues to increase worldwide, the related research areas of fish disease and immunology are also expanding, aided by the revolution in access to genomic information and molecular technology. The genomes of most fish species of economic importance are now available and annotation based on sequence homology with characterised genomes is underway. However, while useful, functional homology is more difficult to determine, there being a lack of widely distributed and well characterised reagents such as monoclonal antibodies, traditionally used in mammalian studies, to help with confirming functions and cellular interactions of fish molecules. In this context, fish cell lines and the possibility of their genetic engineering offer good prospects for studying functional genomics with respect to fish diseases. In this review, we will give an overview of available permanently genetically engineered fish cell lines, as cell-based reporter systems or platforms for expression of endogenous immune or pathogen genes, to investigate interactions and function. The advantages of such systems and the technical challenge for their development will be discussed. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  7. Huh-7 cell line as an alternative cultural model for the production of human like erythropoietin (EPO

    Directory of Open Access Journals (Sweden)

    Kausar Humera

    2011-11-01

    Full Text Available Abstract Background and Aims Erythropoietin (EPO is a glycoprotein hormone which is required to regulate the production of red blood cells. Deficiency of EPO is known to cause anemia in chronically infected renal patients and they require regular blood transfusion. Availability of recombinant EPO has eliminated the need for blood transfusion and now it is extensively used for the treatment of anemia. Glycosylation of erythropoietin is essential for its secretion, stability, protein conformation and biological activity. However, maintenance of human like glycosylation pattern during manufacturing of EPO is a major challenge in biotechnology. Currently, Chinese hamster ovary (CHO cell line is used for the commercial production of erythropoietin but this cell line does not maintain glycosylation resembling human system. With the trend to eliminate non-human constituent from biopharmaceutical products, as a preliminary approach, we have investigated the potential of human hepatoma cell line (Huh-7 to produce recombinant EPO. Materials and methods Initially, the secretory signal and Kozak sequences was added before the EPO mature protein sequence using overlap extension PCR technique. PCR-amplified cDNA fragments of EPO was inserted into mammalian expression vector under the control of the cytomegalovirus (CMV promoter and transiently expressed in CHO and Huh-7 cell lines. After RT-PCR analysis, ELISA and Western blotting was performed to verify the immunochemical properties of secreted EPO. Results Addition of secretory signal and Kozak sequence facilitated the extra-cellular secretion and enhanced the expression of EPO protein. Significant expression (P Conclusion Huh-7 cell line has a great potential to produce glycosylated EPO, suggesting the use of this cell line to produce glycoproteins of the therapeutic importance resembling to the natural human system.

  8. Multiple kinase pathways involved in the different de novo sensitivity of pancreatic cancer cell lines to 17-AAG.

    Science.gov (United States)

    Liu, Heping; Zhang, Ti; Chen, Rong; McConkey, David J; Ward, John F; Curley, Steven A

    2012-07-01

    17-Allylamino-17-demethoxygeldanamycin (17-AAG) specifically targets heat shock protein (HSP)90 and inhibits its chaperoning functions for multiple kinases involved in cancer cell growth and survival. To select responsive patients, the molecular mechanisms underlying the sensitivity of cancer cells to 17-AAG must be elucidated. We used cytotoxicity assays and Western blotting to explore the effects of 17-AAG and sorafenib on cell survival and expression of multiple kinases in the pancreatic cancer cell lines AsPC-1 and Panc-1. Gene cloning and transfection, siRNA silencing, and immunohistochemistry were used to evaluate the effects of mutant p53 protein on 17-AAG sensitivity. AsPC-1 and Panc-1 responded differently to 17-AAG, with half maximal inhibitory concentration (IC(50)) values of 0.12 and 3.18 μM, respectively. Comparable expression of HSP90, HSP70, and HSP27 was induced by 17-AAG in AsPC-1 and Panc-1 cells. P-glycoprotein and mutant p53 did not affect 17-AAG sensitivity in these cell lines. Multiple kinases are more sensitive to HSP90 inhibition in AsPC-1 than in Panc-1 cells. After 17-AAG treatment, p-Bad (S112) decreased in AsPC-1 cells and increased in Panc-1 cells. Sorafenib markedly increased p-Akt, p-ERK1/2, p-GSK-3β, and p-S6 in both cell lines. Accordingly, 17-AAG and sorafenib acted antagonistically in AsPC-1 and Panc-1 cells, except at high concentrations in AsPC-1 cells. Differential inhibition of multiple kinases is responsible for the different de novo sensitivity of AsPC-1 and Panc-1 cells to HSP90 inhibition. P-glycoprotein and mutant p53 protein did not play a role in the sensitivity of pancreatic cancer cells to 17-AAG. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Radiosensitivity of Human Melanoma Cell Lines

    Energy Technology Data Exchange (ETDEWEB)

    Bergoc, R. M.; Medina, V.; Cricco, G.; Mohamed, N.; Martin, G.; Nunez, M.; Croci, M.; Crescenti, E. J.; Rivera, E. S.

    2004-07-01

    Cutaneous melanoma is a skin cancer resulting from the malign transformation of skin-pigment cells, the melanocytes. The radiotherapy, alone or in combination with other treatment, is an important therapy for this disease. the objective of this paper was to determine in vitro the radiosensitivity of two human melanoma cell lines with different metastatic capability: WM35 and MI/15, and to study the effect of drugs on radiobiological parameters. The Survival Curves were adjusted to the mathematical Linear-quadratic model using GrapsPad Prism software. Cells were seeded in RPMI medium (3000-3500 cells/flask), in triplicate and irradiated 24 h later. The irradiation was performed using an IBL 437C H Type equipment (189 TBq, 7.7 Gy/min) calibrated with a TLD 700 dosimeter. The range of Doses covered from 0 to 10 Gy and the colonies formed were counted at day 7th post-irradiation. Results obtained were: for WM35, {alpha}=0.37{+-}0.07 Gy''-1 and {beta}=0.06{+-}0.02 Gy''-2, for M1/15m {alpha}=0.47{+-}0.03 Gy''-1 and {beta}=0.06{+-}0.01 Gy''-2. The {alpha}/{beta} values WM35: {alpha}/{beta} values WM35: {alpha}/{beta}=6.07 Gy and M1/15: {alpha}/{beta}{sub 7}.33 Gy were similar, independently of their metastatic capabillity and indicate that both lines exhibit high radioresistance. Microscopic observation of irradiated cells showed multinuclear cells with few morphologic changes non-compatible with apoptosis. By means of specific fluorescent dyes and flow cytometry analysis we determined the intracellular levels of the radicals superoxide and hydrogen peroxide and their modulation in response to ionizing radiation. The results showed a marked decreased in H{sub 2}O{sub 2} intracellular levels with a simultaneous increase in superoxide that will be part of a mechanism responsible for induction of cell radioresistance. This response triggered by irradiated cells could not be abrogated by different treatments like histamine or the

  10. Histone signature of metanephric mesenchyme cell lines.

    Science.gov (United States)

    McLaughlin, Nathan; Yao, Xiao; Li, Yuwen; Saifudeen, Zubaida; El-Dahr, Samir S

    2013-09-01

    The metanephric mesenchyme (MM) gives rise to nephrons, the filtering units of the mature kidney. The MM is composed of uninduced (Six2(high)/Lhx1(low)) and induced (Wnt-stimulated, Six2(low)/Lhx1(high)) cells. The global epigenetic state of MM cells is unknown, partly due to technical difficulty in isolating sufficient numbers of homogenous cell populations. We therefore took advantage of two mouse clonal cell lines representing the uninduced (mK3) and induced (mK4) metanephric mesenchyme (based on gene expression profiles and ability to induce branching of ureteric bud). ChIP-Seq revealed that whereas H3K4me3 active region "peaks" are enriched in metabolic genes, H3K27me3 peaks decorate mesenchyme and epithelial cell fate commitment genes. In uninduced mK3 cells, promoters of "stemness" genes (e.g., Six2, Osr1) are enriched with H3K4me3 peaks; these are lost in induced mK4 cells. ChIP-qPCR confirmed this finding and further demonstrated that G9a/H3K9me2 occupy the promoter region of Six2 in induced cells, consistent with the inactive state of transcription. Conversely, genes that mark the induced epithelialized state (e.g., Lhx1, Pax8), transition from a non-permissive to an active chromatin signature in mK3 vs. mK4 cells, respectively. Importantly, stimulation of Wnt signaling in uninduced mK3 cells provokes an active chromatin state (high H3K4me3, low H3K27me3), recruitment of β-catenin, and loss of pre-bound histone methyltransferase Ezh2 in silent induced genes followed by activation of transcription. We conclude that the chromatin signature of uninduced and induced cells correlates strongly with their gene expression states, suggesting a role of chromatin-based mechanisms in MM cell fate.

  11. Expression of the chitinase family glycoprotein YKL-40 in undifferentiated, differentiated and trans-differentiated mesenchymal stem cells.

    Directory of Open Access Journals (Sweden)

    Daniel J Hoover

    Full Text Available The glycoprotein YKL-40 (CHI3L1 is a secreted chitinase family protein that induces angiogenesis, cell survival, and cell proliferation, and plays roles in tissue remodeling and immune regulation. It is expressed primarily in cells of mesenchymal origin, is overexpressed in numerous aggressive carcinomas and sarcomas, but is rarely expressed in normal ectodermal tissues. Bone marrow-derived mesenchymal stem cells (MSCs can be induced to differentiate into various mesenchymal tissues and trans-differentiate into some non-mesenchymal cell types. Since YKL-40 has been used as a mesenchymal marker, we followed YKL-40 expression as undifferentiated MSCs were induced to differentiate into bone, cartilage, and neural phenotypes. Undifferentiated MSCs contain significant levels of YKL-40 mRNA but do not synthesize detectable levels of YKL-40 protein. MSCs induced to differentiate into chondrocytes and osteocytes soon began to express and secrete YKL-40 protein, as do ex vivo cultured chondrocytes and primary osteocytes. In contrast, MSCs induced to trans-differentiate into neurons did not synthesize YKL-40 protein, consistent with the general absence of YKL-40 protein in normal CNS parenchyma. However, these trans-differentiated neurons retained significant levels of YKL-40 mRNA, suggesting the mechanisms which prevented YKL-40 translation in undifferentiated MSCs remained in place, and that these trans-differentiated neurons differ in at least this way from neurons derived from neuronal stem cells. Utilization of a differentiation protocol containing β-mercaptoethanol resulted in cells that expressed significant amounts of intracellular YKL-40 protein that was not secreted, which is not seen in normal cells. Thus the synthesis of YKL-40 protein is a marker for MSC differentiation into mature mesenchymal phenotypes, and the presence of untranslated YKL-40 mRNA in non-mesenchymal cells derived from MSCs reflects differences between differentiated and

  12. Menadione inhibits MIBG uptake in two neuroendocrine cell lines

    NARCIS (Netherlands)

    Cornelissen, J.; Tytgat, G. A.; van den Brug, M.; van Kuilenburg, A. B.; Voûte, P. A.; van Gennip, A. H.

    1997-01-01

    In this paper we report on our studies of the effect of menadione on the uptake of MIBG in the neuroendocrine cell lines PC12 and SK-N-SH. Menadione inhibits the uptake of MIBG in both cell lines in a dose-dependent manner. Inhibition of MIBG uptake is most pronounced in the PC12 cell line.

  13. 77 FR 5489 - Identification of Human Cell Lines Project

    Science.gov (United States)

    2012-02-03

    ... selection of this technology over other possible candidates for this project include: (i) The ability to... cell line, whether the cell line is misidentified, cross- contaminated, or genetically unstable... database. Submission Process: Submitters should contact Margaret Kline with a list of proposed cell lines...

  14. Mutations in the feline immunodeficiency virus envelope glycoprotein confer resistance to a dominant-negative fragment of Tsg101 by enhancing infectivity and cell-to-cell virus transmission.

    Science.gov (United States)

    Luttge, Benjamin G; Panchal, Prashant; Puri, Vinita; Checkley, Mary Ann; Freed, Eric O

    2014-04-01

    The Pro-Ser-Ala-Pro (PSAP) motif in the p2 domain of feline immunodeficiency virus (FIV) Gag is required for efficient virus release, virus replication, and Gag binding to the ubiquitin-E2-variant (UEV) domain of Tsg101. As a result of this direct interaction, expression of an N-terminal fragment of Tsg101 containing the UEV domain (referred to as TSG-5') inhibits FIV release. In these respects, the FIV p2(Gag) PSAP motif is analogous to the PTAP motif of HIV-1 p6(Gag). To evaluate the feasibility of a late domain-targeted inhibition of virus replication, we created an enriched Crandell-Rees feline kidney (CRFK) cell line (T5'(hi)) that stably expresses high levels of TSG-5'. Here we show that mutations in either the V3 loop or the second heptad repeat (HR2) domain of the FIV envelope glycoprotein (Env) rescue FIV replication in T5'(hi) cells without increasing FIV release efficiency. TSG-5'-resistance mutations in Env enhance virion infectivity and the cell-cell spread of FIV when diffusion is limited using a semi-solid growth medium. These findings show that mutations in functional domains of Env confer TSG-5'-resistance, which we propose enhances specific infectivity and the cell-cell transmission of virus to counteract inefficient virus release. This article is part of a Special Issue entitled: Viral Membrane Proteins-Channels for Cellular Networking. © 2013.

  15. Comparison of herpes simplex (HSV) proteins synthesized in Vero, HEP-2 and human megakaryocyte-like cell lines

    International Nuclear Information System (INIS)

    Soslau, G.; Pastorino, M.B.; Morgan, D.A.; Brodsky, I.; Howett, M.K.

    1986-01-01

    The natural human host blood cell capable of supporting herpes virus replication has yet to be defined. They found that a recently cultured human megakaryocyte-like (Meg) cell line can support HSV 1 and 2 replication as demonstrated by growth inhibition, CPE, virus production and HSV DNA synthesis. The HSV proteins synthesized and post-translationally modified in Vero and HEp-2 infected cells were compared to the protein species produced in the infected Meg cell since differences may influence antigenic properties and host range. Host cell protein synthesis was greatly reduced in all three cell lines within hours post infection (pi). However, maximum viral protein synthesis occurs between 4 and 24 hrs pi with the Meg cells as compared to 24-48 hrs pi with the other cell lines. The immunoprecipitated 35 S-methionine labeled HSV protein gel patterns for each infected cell line are qualitatively and quantitatively very different from each other. Dramatic differences were also observed when infected cells were labeled with 32 P-ATP (in vitro method) or 32 Pi (in vivo method). Finally, analysis of 3 H-mannose labeled HSV glycoproteins demonstrates that the post-translational modifications of these proteins are significantly altered in the Meg cell as compared to the Vero and HEp-2 cells

  16. CD150 is a member of a family of genes that encode glycoproteins on the surface of hematopoietic cells.

    Science.gov (United States)

    Wang, N; Morra, M; Wu, C; Gullo, C; Howie, D; Coyle, T; Engel, P; Terhorst, C

    2001-07-01

    Human CD150 (SLAM) is a glycoprotein expressed on the surface of T, B, natural killer, and dendritic cells. The extracellular domain of CD150 is the receptor for measles virus and CD150 acts as a co-activator on T and B cells. We characterized the mouse and human CD150 genes, each of which comprises seven exons spanning approximately 32 kb. Mouse CD150 mRNA was detected in T cells and in most thymocyte subsets, except CD4-8- cells. Surprisingly, the CD4-8- thymocytes of CD3gammadeltanull mice, but not of Ragnull or severe combined immunodeficiency mice, expressed CD150. Whereas high levels of CD150 were found in Th1 cells, only small amounts were detectable in Th2 cells. CD150 expression was up-regulated upon in vitro activation of mouse T cells by anti-CD3. The complete mouse CD150 gene is highly homologous to its human orthologue in terms of nucleotide sequences and intron/exon organization. The human genomic sequences indicate that all isoforms detected so far have arisen from alternative splicing events. As judged by fluorescence in situ hybridization, mouse CD150 mapped to Chromosome (Chr) 1, band 1H2.2-2.3, and human CD150 was found on Chr 1q22. Human and mouse CD150 share sequence homologies with six other genes, five of which - CD84, CD229 (Ly-9), CD244 (2B4), CD48, and 19A - are localized in a 250-kb segment in close proximity to the human gene. Their location and their sequence similarities strongly suggest that the CD150 family of cell surface receptors arose via successive duplications of a common ancestral gene.

  17. Overlapping phenotypes of multidrug resistance among panels of human cancer-cell lines.

    Science.gov (United States)

    Izquierdo, M A; Shoemaker, R H; Flens, M J; Scheffer, G L; Wu, L; Prather, T R; Scheper, R J

    1996-01-17

    In addition to P-glycoprotein (Pgp), 2 proteins related to multidrug resistance (MDR) have recently been described. The Multidrug-Resistance-associated protein (MRP) is one of the ATP-binding-cassette (ABC) transporters. The Lung-Resistance Protein (LRP) is the major component of human vaults, which are newly described cellular organelles and thought to mediate intracellular transport processes. Using immunocytochemical methods, we have examined the expression of MRP and LRP among panels of human cancer-cell lines not selected for drug resistance which have been previously characterized for expression of Pgp, and in vitro response to a variety of anti-cancer drugs. Expression of MRP and LRP was observed in 47/55 (87%) and 46/59 (78%) cell lines, respectively. Statistically significant correlations were observed between expression of each of these 3 proteins and in vitro sensitivity to at least one drug classically associated with MDR. LRP showed the greatest individual predictive value, which also applied to several non-classical MDR drugs. Co-expression of 2-3 MDR-related proteins was observed in 64% of the lines and was, in general, associated with high relative levels of drug resistance. Previously identified "classic" MDR lines as well as "pan-resistant" lines concurrently expressed all 3 MDR-related proteins. Some highly drug-resistant cell lines without detectable MDRI/Pgp were found to express relatively high levels of MRP and LRP. The high prevalence of MRP and LRP expression observed in this large set of cell lines, which have not been subjected to laboratory drug selection, suggests that MDR mechanisms associated with these proteins may be widespread in human malignancies. Moreover, the overlapping of these more recently recognized MDR phenotypes with Pgp-type MDR results in a complex phenotype, the understanding of which may be of importance in the development of new drugs and design of clinical treatment protocols, particularly those seeking to employ

  18. Reversal of P-glycoprotein-mediated multidrug resistance is induced by saikosaponin D in breast cancer MCF-7/adriamycin cells.

    Science.gov (United States)

    Li, Chun; Guan, Xingang; Xue, Haogang; Wang, Peng; Wang, Manli; Gai, Xiaodong

    2017-07-01

    Multidrug resistance (MDR) cells over expressing P-glycoprotein (P-gp) encoded by the MDR1 gene is major obstacles for successful cancer chemotherapy. P-gp could extrude anti-cancer drugs out of cancer cells and decrease effective intracellular drug concentrations. MDR reversal agents for P-gp can restore the sensitivity of MDR cells to such drugs. Saikosaponin D (SSd), one of the major triterpenoid saponins derived from Bupleurum chinense DC (BCDC), has been shown to possess anti-inflammatory, anti-infectious and anti-tumor properties. The aim of the present study was to investigate the reversal effect of SSd on MDR in MCF-7/adriamycin (ADR) human breast cancer cells and investigate the underlying mechanisms of SSd. The results demonstrated that SSd inhibited the proliferation of MCF-7/ADR and MCF-7 cells in a dose-dependent manner. Moreover, SSd increased the cytotoxicity of ADR on MCF-7/ADR cells and the resistance fold of SSd treatment was demonstrated to be significantly higher when compared with that of the group without SSd treatment. Additionally, the effects of the drug combination showed that SSd and ADR combination were synergistic. Accumulation and efflux studies with the P-gp substrate, rhodamine 123 (Rh123), demonstrated that SSd restored Rh123 accumulation and inhibited P-gp-mediated drug efflux. Importantly, we found that SSd could enhance the sensitivity of MCF-7/ADR cells towards ADR by down-regulating MDR1 and P-gp expression. In conclusion, the results of the present study indicated that SSd may represent a potent reversal agent for P-gp-mediated MDR in breast cancer therapy. Copyright © 2017 Elsevier GmbH. All rights reserved.

  19. Modulation of P-glycoprotein-mediated multidrug resistance in K562 leukemic cells by indole-3-carbinol

    International Nuclear Information System (INIS)

    Arora, Annu; Seth, Kavita; Kalra, Neetu; Shukla, Yogeshwer

    2005-01-01

    Resistance to chemotherapeutic drugs is one of the major problems in the treatment of cancer. P-glycoprotein (P-gp) encoded by the mdr gene is a highly conserved protein, acts as a multidrug transporter, and has a major role in multiple drug resistance (MDR). Targeting of P-gp by naturally occurring compounds is an effective strategy to overcome MDR. Indole-3-carbinol (I3C), a glucosinolates present in cruciferous vegetables, is a promising chemopreventive agent as it is reported to possess antimutagenic, antitumorigenic, and antiestrogenic properties in experimental studies. In the present investigation, the potential of I3C to modulate P-gp expression was evaluated in vinblastine (VBL)-resistant K562 human leukemic cells. The resistant K562 cells (K562/R10) were found to be cross-resistant to vincristine (VCR), doxorubicin (DXR), and other antineoplastic agents. I3C at a nontoxic dose (10 x 10 -3 M) enhanced the cytotoxic effects of VBL time dependently in VBL-resistant human leukemia (K562/R10) cells but had no effect on parent-sensitive cells (K562/S). The Western blot analysis of K 562/R 10 cells showed that I3C downregulates the induced levels of P-gp in resistant cells near to normal levels. The quantitation of immunocytochemically stained K562/R10 cells showed 24%, 48%, and 80% decrease in the levels of P-gp by I3C for 24, 48, and 72 h of incubation. The above features thus indicate that I3C could be used as a novel modulator of P-gp-mediated multidrug resistance in vitro and may be effective as a dietary adjuvant in the treatment of MDR cancers

  20. Purification of Recombinant Ebola Virus Glycoprotein and VP40 from a Human Cell Line

    Science.gov (United States)

    2017-01-01

    determined using the Beer – Lambert Law and measuring the absorbance of the proteins at 280 nm. The theoretical extinction coefficient of each protein was...1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law , no person shall be subject to any...GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR( S ) Cole, Stephanie; Blum, Steven; Miklos, Aleksandr; Maciel, Jorge (Excet); Funk; Vanessa

  1. Host cell recognition by the henipaviruses: Crystal structures of the Nipah G attachment glycoprotein and its complex with ephrin-B3

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Kai; Rajashankar, Kanagalaghatta R.; Chan, Yee-Peng; Himanen, Juha P.; Broder, Christopher C.; Nikolov, Dimitar B. (USUHS); (Cornell); (MSKCC)

    2008-07-28

    Nipah virus (NiV) and Hendra virus are the type species of the highly pathogenic paramyxovirus genus Henipavirus, which can cause severe respiratory disease and fatal encephalitis infections in humans, with case fatality rates approaching 75%. NiV contains two envelope glycoproteins, the receptor-binding G glycoprotein (NiV-G) that facilitates attachment to host cells and the fusion (F) glycoprotein that mediates membrane merger. The henipavirus G glycoproteins lack both hemagglutinating and neuraminidase activities and, instead, engage the highly conserved ephrin-B2 and ephrin-B3 cell surface proteins as their entry receptors. Here, we report the crystal structures of the NiV-G both in its receptor-unbound state and in complex with ephrin-B3, providing, to our knowledge, the first view of a paramyxovirus attachment complex in which a cellular protein is used as the virus receptor. Complex formation generates an extensive protein-protein interface around a protruding ephrin loop, which is inserted in the central cavity of the NiV-G {beta}-propeller. Analysis of the structural data reveals the molecular basis for the highly specific interactions of the henipavirus G glycoproteins with only two members (ephrin-B2 and ephrin-B3) of the very large ephrin family and suggests how they mediate in a unique fashion both cell attachment and the initiation of membrane fusion during the virus infection processes. The structures further suggest that the NiV-G/ephrin interactions can be effectively targeted to disrupt viral entry and provide the foundation for structure-based antiviral drug design.

  2. Herpes Simplex Virus 1 Glycoprotein M and the Membrane-Associated Protein UL11 Are Required for Virus-Induced Cell Fusion and Efficient Virus Entry

    Science.gov (United States)

    Kim, In-Joong; Chouljenko, Vladimir N.; Walker, Jason D.

    2013-01-01

    Herpes simplex virus 1 (HSV-1) facilitates virus entry into cells and cell-to-cell spread by mediating fusion of the viral envelope with cellular membranes and fusion of adjacent cellular membranes. Although virus strains isolated from herpetic lesions cause limited cell fusion in cell culture, clinical herpetic lesions typically contain large syncytia, underscoring the importance of cell-to-cell fusion in virus spread in infected tissues. Certain mutations in glycoprotein B (gB), gK, UL20, and other viral genes drastically enhance virus-induced cell fusion in vitro and in vivo. Recent work has suggested that gB is the sole fusogenic glycoprotein, regulated by interactions with the viral glycoproteins gD, gH/gL, and gK, membrane protein UL20, and cellular receptors. Recombinant viruses were constructed to abolish either gM or UL11 expression in the presence of strong syncytial mutations in either gB or gK. Virus-induced cell fusion caused by deletion of the carboxyl-terminal 28 amino acids of gB or the dominant syncytial mutation in gK (Ala to Val at amino acid 40) was drastically reduced in the absence of gM. Similarly, syncytial mutations in either gB or gK did not cause cell fusion in the absence of UL11. Neither the gM nor UL11 gene deletion substantially affected gB, gC, gD, gE, and gH glycoprotein synthesis and expression on infected cell surfaces. Two-way immunoprecipitation experiments revealed that the membrane protein UL20, which is found as a protein complex with gK, interacted with gM while gM did not interact with other viral glycoproteins. Viruses produced in the absence of gM or UL11 entered into cells more slowly than their parental wild-type virus strain. Collectively, these results indicate that gM and UL11 are required for efficient membrane fusion events during virus entry and virus spread. PMID:23678175

  3. Cellular radiosensitivity of small-cell lung cancer cell lines

    International Nuclear Information System (INIS)

    Krarup, Marianne; Poulsen, Hans Skovgaard; Spang-Thomsen, Mogens

    1997-01-01

    Purpose: The objective of this study was to determine the radiobiological characteristics of a panel of small-cell lung cancer (SCLC) cell lines by use of a clonogenic assay. In addition, we tested whether comparable results could be obtained by employing a growth extrapolation method based on the construction of continuous exponential growth curves. Methods and Materials: Fifteen SCLC cell lines were studied, applying a slightly modified clonogenic assay and a growth extrapolation method. A dose-survival curve was obtained for each experiment and used for calculating several survival parameters. The multitarget single hit model was applied to calculate the cellular radiosensitivity (D 0 ), the capacity for sublethal damage repair (D q ), and the extrapolation number (n). Values for α and β were determined from best-fit curves according to the linear-quadratic model and these values were applied to calculate the surviving fraction after 2-Gy irradiation (SF 2 ). Results: In our investigation, the extrapolation method proved to be inappropriate for the study of in vitro cellular radiosensitivity due to lack of reproducibility. The results obtained by the clonogenic assay showed that the cell lines studied were radiobiologically heterogeneous with no discrete features of the examined parameters including the repair capacity. Conclusion: The results indicate that SCLC tumors per se are not generally candidates for hyperfractionated radiotherapy

  4. pH-Responsive therapeutic solid lipid nanoparticles for reducing P-glycoprotein-mediated drug efflux of multidrug resistant cancer cells

    Directory of Open Access Journals (Sweden)

    Chen HH

    2015-08-01

    enhanced passive tumor accumulation due to the loose intercellular junctions of endothelial cells lining inside blood vessels at tumor site, and the lack of lymphatic drainage. The growth of MCF-7/MDR xenografted tumor on Balb/c nude mice was inhibited to ~400 mm3 in volume as compared with the free DOX treatment group, 1,140 mm3, and the group treated with 1,2 distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol] solid lipid nanoparticles, 820 mm3. Analysis of the body weight of nude mice and the histology of organs and tumor after the administration of DOX-loaded SLNs show that the SLNs have no observable side effects. These results indicate that the C-PEG-SLN is a promising platform for the delivery of therapeutic agents for MDR cancer chemotherapy. Keywords: pH-responsive, solid lipid nanoparticles, multidrug resistance, permeability glycoprotein

  5. CD133 expression is not selective for tumor initiating or radioresistant cell populations in the CRC line HCT-116

    International Nuclear Information System (INIS)

    Seidel, Claudia; Dietrich, Antje; Wondrak, Marit; Kunz-Schughart, Leoni A.; Grade, Marian; Ried, Thomas

    2009-01-01

    The hypothesis of certain subpopulations of cancer cells with stem-cell like characteristics that might be responsible for treatment resistance and recurrence of disease is still challenging and under quite controversial discussion. In most studies, surrogate cell surface antigens such as the 92-110 kDa transmembrane glycoprotein CD133 (human Prominin-1) were labeled to isolate particular small cancer cell populations for studying their tumorigenic potential. In colorectal carcinomas (CRC) for example, a small CD133 positive (CD133 + ) cell population has recently been described to be enriched for tumor-initiating/cancer stem cells (TIC/CSC) as compared to the CD133 negative (CD133) population. Furthermore, it was documented that the CD133 + subpopulation could exclusively be maintained in culture as spheres under serum-free conditions. Addition of serum resulted in cell differentiation, growth in 2-D and downregulation of CD133 expression. This would imply that established colorectal cancer (CRC) cell lines that have been grown under adherent, serum-supplemented conditions for years should be devoid of CD133 + cells and TIC/CSC, respectively, which seems contradictory to the finding that many CRC lines produce tumors in nude mice models. In order to gain insight into this paradox, we studied the expression of CD133 in numerous established CRC lines under standard culture conditions and chose one particular cell line based on its expression pattern to study the behavior of CD133 + / CD133 - subpopulations

  6. pH-Responsive therapeutic solid lipid nanoparticles for reducing P-glycoprotein-mediated drug efflux of multidrug resistant cancer cells.

    Science.gov (United States)

    Chen, Hsin-Hung; Huang, Wen-Chia; Chiang, Wen-Hsuan; Liu, Te-I; Shen, Ming-Yin; Hsu, Yuan-Hung; Lin, Sung-Chyr; Chiu, Hsin-Cheng

    2015-01-01

    In this study, a novel pH-responsive cholesterol-PEG adduct-coated solid lipid nanoparticles (C-PEG-SLNs) carrying doxorubicin (DOX) capable of overcoming multidrug resistance (MDR) breast cancer cells is presented. The DOX-loaded SLNs have a mean hydrodynamic diameter of ~100 nm and a low polydispersity index (under 0.20) with a high drug-loading efficiency ranging from 80.8% to 90.6%. The in vitro drug release profiles show that the DOX-loaded SLNs exhibit a pH-controlled drug release behavior with the maximum and minimum unloading percentages of 63.4% at pH 4.7 and 25.2% at pH 7.4, respectively. The DOX-loaded C-PEG-SLNs displayed a superior ability in inhibiting the proliferation of MCF-7/MDR cells. At a DOX concentration of 80 μM, the cell viabilities treated with C-PEG-SLNs were approximately one-third of the group treated with free DOX. The inhibition activity of C-PEG-SLNs could be attributed to the transport of C-PEG to cell membrane, leading to the change of the composition of the cell membrane and thus the inhibition of permeability glycoprotein activity. This hypothesis is supported by the confocal images showing the accumulation of DOX in the nuclei of cancer cells and the localization of C-PEG on the cell membranes. The results of in vivo study further demonstrated that the DOX delivered by the SLNs accumulates predominantly in tumor via enhanced permeability and retention effect, the enhanced passive tumor accumulation due to the loose intercellular junctions of endothelial cells lining inside blood vessels at tumor site, and the lack of lymphatic drainage. The growth of MCF-7/MDR xenografted tumor on Balb/c nude mice was inhibited to ~400 mm(3) in volume as compared with the free DOX treatment group, 1,140 mm(3), and the group treated with 1,2 distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)] solid lipid nanoparticles, 820 mm(3). Analysis of the body weight of nude mice and the histology of organs and tumor after the

  7. In vitro radiosensitivity of human leukemia cell lines

    International Nuclear Information System (INIS)

    Weichselbaum, R.R.; Greenberger, J.S.; Schmidt, A.; Karpas, A.; Moloney, W.C.; Little, J.B.

    1981-01-01

    The in vitro radiobiologic survival values (anti n, D 0 ) of four tumor lines derived from human hematopoietic tumors were studied. These cell lines were HL60 promyelocytic leukemia; K562 erythroleukemia; 45 acute lymphocytic leukemia; and 176 acute monomyelogenous leukemia. More cell lines must be examined before the exact relationship between in vitro radiosensitivity and clinical radiocurability is firmly established

  8. P-glycoprotein Mediates Ceritinib Resistance in Anaplastic Lymphoma Kinase-rearranged Non-small Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Ryohei Katayama

    2016-01-01

    Full Text Available The anaplastic lymphoma kinase (ALK fusion oncogene is observed in 3%–5% of non-small cell lung cancer (NSCLC. Crizotinib and ceritinib, a next-generation ALK tyrosine kinase inhibitor (TKI active against crizotinib-refractory patients, are clinically available for the treatment of ALK-rearranged NSCLC patients, and multiple next-generation ALK-TKIs are currently under clinical evaluation. These ALK-TKIs exhibit robust clinical activity in ALK-rearranged NSCLC patients; however, the emergence of ALK-TKI resistance restricts the therapeutic effect. To date, various secondary mutations or bypass pathway activation-mediated resistance have been identified, but large parts of the resistance mechanism are yet to be identified. Here, we report the discovery of p-glycoprotein (P-gp/ABCB1 overexpression as a ceritinib resistance mechanism in ALK-rearranged NSCLC patients. P-gp exported ceritinib and its overexpression conferred ceritinib and crizotinib resistance, but not to PF-06463922 or alectinib, which are next-generation ALK inhibitors. Knockdown of ABCB1 or P-gp inhibitors sensitizes the patient-derived cancer cells to ceritinib, in vitro and in vivo. P-gp overexpression was identified in three out of 11 cases with in ALK-rearranged crizotinib or ceritinib resistant NSCLC patients. Our study suggests that alectinib, PF-06463922, or P-gp inhibitor with ceritinib could overcome the ceritinib or crizotinib resistance mediated by P-gp overexpression.

  9. Stability of the glycoprotein gene of avian metapneumovirus (Canada goose isolate 15a/01) after serial passages in cell cultures.

    Science.gov (United States)

    Chockalingam, Ashok K; Chander, Yogesh; Halvorson, David A; Goyal, Sagar M

    2010-06-01

    The glycoprotein (G) gene sequences of avian metapneumovirus (aMPV) subtypes A, B, C, and D are variable in size and number of nucleotides. The G gene of early U.S. turkey isolates of aMPV-C have been reported to be 1798 nucleotides (nt) (585 aa) in length, whereas the G genes of more recent turkey isolates have been reported to be 783 nucleotides. In some studies, the G gene of aMPV-C turkey isolates was found to be truncated to a smaller G gene of 783 nt (261 aa) upon serial passages in Vero cells. This is believed to be due to the deletion of 1015 nt near the end of the open reading frame. The purpose of this study was to determine variation, if any, in the G gene of an aMPV-C isolated from a wild bird (Canada goose [Branta canadensis]) following serial passages in Vero cells. No size variation was observed for up to 50 passages, except for a few amino acid changes in the extracellular domain at the 50th passage level. The G gene of this wild bird isolate appears to be unique from subtype C metapneumoviruses of turkeys.

  10. The Role of Turmerones on Curcumin Transportation and P-Glycoprotein Activities in Intestinal Caco-2 Cells

    Science.gov (United States)

    Yue, Grace G.L.; Cheng, Sau-Wan; Yu, Hua; Xu, Zi-Sheng; Lee, Julia K.M.; Hon, Po-Ming; Lee, Mavis Y.H.; Kennelly, Edward J.; Deng, Gary; Yeung, Simon K.; Cassileth, Barrie R.; Fung, Kwok-Pui; Leung, Ping-Chung

    2012-01-01

    Abstract The rhizome of Curcuma longa (turmeric) is often used in Asia as a spice and as a medicine. Its most well-studied component, curcumin, has been shown to exhibit poor bioavailability in animal studies and clinical trials. We hypothesized that the presence of lipophilic components (e.g., turmerones) in turmeric extract would affect the absorption of curcumin. The effects of turmerones on curcumin transport were evaluated in human intestinal epithelial Caco-2 cells. The roles of turmerones on P-glycoprotein (P-gp) activities and mRNA expression were also evaluated. Results showed that in the presence of α- and aromatic turmerones, the amount of curcumin transported into the Caco-2 cells in 2 hours was significantly increased. α-Turmerone and verapamil (a P-gp inhibitor) significantly inhibited the efflux of rhodamine-123 and digoxin (i.e., inhibited the activity of P-gp). It is interesting that aromatic turmerone significantly increased the rhodamine-123 efflux and P-gp (MDR1 gene) mRNA expression levels. The effects of α- and aromatic turmerones on curcumin transport as well as P-gp activities were shown here for the first time. The presence of turmerones did affect the absorption of curcumin in vitro. These findings suggest the potential use of turmeric extract (including curcumin and turmerones), rather than curcumin alone, for treating diseases. PMID:22181075

  11. Respiratory syncytial virus fusion glycoprotein expressed in insect cells form protein nanoparticles that induce protective immunity in cotton rats.

    Directory of Open Access Journals (Sweden)

    Gale Smith

    Full Text Available Respiratory Syncytial Virus (RSV is an important viral agent causing severe respiratory tract disease in infants and children as well as in the elderly and immunocompromised individuals. The lack of a safe and effective RSV vaccine represents a major unmet medical need. RSV fusion (F surface glycoprotein was modified and cloned into a baculovirus vector for efficient expression in Sf9 insect cells. Recombinant RSV F was glycosylated and cleaved into covalently linked F2 and F1 polypeptides that formed homotrimers. RSV F extracted and purified from insect cell membranes assembled into 40 nm protein nanoparticles composed of multiple RSV F oligomers arranged in the form of rosettes. The immunogenicity and protective efficacy of purified RSV F nanoparticles was compared to live and formalin inactivated RSV in cotton rats. Immunized animals induced neutralizing serum antibodies, inhibited virus replication in the lungs, and had no signs of disease enhancement in the respiratory track of challenged animals. RSV F nanoparticles also induced IgG competitive for binding of palivizumab neutralizing monoclonal antibody to RSV F antigenic site II. Antibodies to this epitope are known to protect against RSV when passively administered in high risk infants. Together these data provide a rational for continued development a recombinant RSV F nanoparticle vaccine candidate.

  12. Analysis of renal cancer cell lines from two major resources enables genomics-guided cell line selection

    Science.gov (United States)

    Sinha, Rileen; Winer, Andrew G.; Chevinsky, Michael; Jakubowski, Christopher; Chen, Ying-Bei; Dong, Yiyu; Tickoo, Satish K.; Reuter, Victor E.; Russo, Paul; Coleman, Jonathan A.; Sander, Chris; Hsieh, James J.; Hakimi, A. Ari

    2017-05-01

    The utility of cancer cell lines is affected by the similarity to endogenous tumour cells. Here we compare genomic data from 65 kidney-derived cell lines from the Cancer Cell Line Encyclopedia and the COSMIC Cell Lines Project to three renal cancer subtypes from The Cancer Genome Atlas: clear cell renal cell carcinoma (ccRCC, also known as kidney renal clear cell carcinoma), papillary (pRCC, also known as kidney papillary) and chromophobe (chRCC, also known as kidney chromophobe) renal cell carcinoma. Clustering copy number alterations shows that most cell lines resemble ccRCC, a few (including some often used as models of ccRCC) resemble pRCC, and none resemble chRCC. Human ccRCC tumours clustering with cell lines display clinical and genomic features of more aggressive disease, suggesting that cell lines best represent aggressive tumours. We stratify mutations and copy number alterations for important kidney cancer genes by the consistency between databases, and classify cell lines into established gene expression-based indolent and aggressive subtypes. Our results could aid investigators in analysing appropriate renal cancer cell lines.

  13. Resistance mechanisms in three human small cell lung cancer cell lines established from one patient during clinical follow-up

    International Nuclear Information System (INIS)

    de Vries, E.G.; Meijer, C.; Timmer-Bosscha, H.; Berendsen, H.H.; de Leij, L.; Scheper, R.J.; Mulder, N.H.

    1989-01-01

    Mechanisms for resistance were studied in three classic type, human small cell lung cancer cell lines, GLC14, GLC16, and GLC19, that were established from one patient during clinical follow-up. Clinically the tumor changed from sensitive (GLC14) to completely resistant to (chemo)therapy (GLC19) during this period. The stain with JSB-1 antibody, detecting the Mr 170,000 multidrug resistance associated glycoprotein, was most pronounced in GLC16 and absent in GLC19. Intracellular Adriamycin (Adr) concentrations were decreased in GLC16 and GLC19 versus GLC14. Glutathione levels were 12.9, 15.5, and 16.6 micrograms/mg protein; total sulfhydryl groups were 36.5, 45.7, and 48.8 micrograms/mg protein; and glutathione S-transferase activity was 13, 29, and 43 nmol I-chloro-2,4-dinitrobenzene/min/mg protein for GLC14, GLC16, and GLC19, respectively. Incubation with DL-buthionine-S,R-sulfoximine increased Adr and cisplatin induced cytotoxicity, whereas X-ray induced cytotoxicity remained the same. Catalase activity increased from 0.88 to 1.73 to 3.83 mumol H 2 O 2 /min/mg protein in, respectively, GLC14, GLC16, and GLC19. Compared to GLC14 and GLC16, Adr induced a higher amount of DNA strand breaks in GLC19. In none of the three cell lines could Adr induced DNA strand breaks be repaired. X-ray induced a comparable amount of DNA strand breaks in all three cell lines but all cell lines were capable of repairing the X-ray induced DNA strand breaks within 90 min. It is concluded that a number of different mechanisms are operative and that some but not all of the observed changes in mechanisms for drug resistance in these lines correlate with the clinical data

  14. Protective effect of Porphyra yezoensis glycoprotein on D-galactosamine‑induced cytotoxicity in Hepa 1c1c7 cells.

    Science.gov (United States)

    Choi, Jeong-Wook; Kim, Young-Min; Park, Su-Jin; Kim, In-Hye; Nam, Taek-Jeong

    2015-05-01

    The present study aimed to examine the signaling pathways and enzyme activity associated with the protective effect of Porphyra yezoensis glycoprotein (PYGP) on D‑galactosamine (D‑GaIN)‑induced cytotoxicity in Hepa 1c1c7 cells. D‑GaIN is commonly used to induce hepatic injury models in vivo as well as in vitro. PYGP was extracted from Porphyra yezoensis, a red algae distributed along the coasts of Republic of Korea, China and Japan. In the present study, Hepa 1c1c7 cells were pre‑treated with PYGP (20 and 40 µg/ml) for 24 h and then the media was replaced with D‑GaIN (20 mM) and PYGP (20 and 40 µg/ml). The results demonstrated that D‑GaIN induced Hepa 1c1c7 cell death and pretreatment with PYGP was found to attenuate D‑GaIN toxicity. In addition, D‑GaIN decreased the antioxidant activity and increased lipid peroxidation processes; however, pre‑treatment with PYGP reduced the generation of lipid peroxidation products, such as thiobarbituric acid reactive substances, as well as increased the activity of antioxidant enzymes, including superoxide dismutase, catalase and glutathione‑s‑transferase (GST). PYGP was shown to suppress the overexpression of extracellular signal‑regulated kinase, c‑jun N‑terminal kinase and p38 mitogen‑activated protein kinase (MAPK) phosphorylation induced by D‑GaIN. Furthermore, PYGP increased the protein expression of nuclear factor erythroid 2‑related factor 2 (Nrf2), quinine oxidoreductase 1, GST and heme oxygenase 1 protein expression. These results suggested that PYGP had cytoprotective effects against D‑GaIN‑induced cell damage, which may be associated with MAPKs and the Nrf2 signaling pathway.

  15. Up-Regulation of the Lymphatic Marker Podoplanin, a Mucin-Type Transmembrane Glycoprotein, in Human Squamous Cell Carcinomas and Germ Cell Tumors

    Science.gov (United States)

    Schacht, Vivien; Dadras, Soheil S.; Johnson, Louise A.; Jackson, David G.; Hong, Young-Kwon; Detmar, Michael

    2005-01-01

    The mucin-type glycoprotein podoplanin is specifically expressed by lymphatic but not blood vascular endothelial cells in culture and in tumor-associated lymphangiogenesis, and podoplanin deficiency results in congenital lymphedema and impaired lymphatic vascular patterning. However, research into the biological importance of podoplanin has been hampered by the lack of a generally available antibody against the human protein, and its expression in normal tissues and in human malignancies has remained unclear. We generated a human podoplanin-Fc fusion protein and found that the commercially available mouse monoclonal antibody D2-40 specifically recognized human podoplanin, as assessed by enzyme-linked immunosorbent assay and Western blot analyses. We found that, in addition to lymphatic endothelium, podoplanin was also expressed by peritoneal mesothelial cells, osteocytes, glandular myoepithelial cells, ependymal cells, and by stromal reticular cells and follicular dendritic cells of lymphoid organs. These findings were confirmed in normal mouse tissues with anti-podoplanin antibody 8.1.1. Podoplanin was also strongly expressed by granulosa cells in normal ovarian follicles, and by ovarian dysgerminomas and granulosa cell tumors. Although podoplanin was primarily absent from normal human epidermis, its expression was strongly induced in 22 of 28 squamous cell carcinomas studied. These findings suggest a potential role of podoplanin in tumor progression, and they also identify the first commercially available antibody for the specific staining of a defined lymphatic marker in archival human tissue sections, thereby enabling more widespread studies of tumor lymphangiogenesis in human cancers. PMID:15743802

  16. Saikosaponin A, an active glycoside from Radix bupleuri, reverses P-glycoprotein-mediated multidrug resistance in MCF-7/ADR cells and HepG2/ADM cells.

    Science.gov (United States)

    Ye, Rui-Ping; Chen, Zhen-Dong

    2017-02-01

    1. The expression and function of P-glycoprotein (P-gp) is associated with the phenotype of multidrug resistance (MDR). Saikosaponin A (SSA) is a triterpenoid saponin isolated from Radix Bupleuri. This study was mainly designed to understand effects of SSA on MDR in MCF-7/ADR and HepG2/ADM cells. 2. MDR reversal was examined as the alteration of cytotoxic drugs IC50 in resistant cells in the presence of SSA by MTT assay, and was compared with the non-resistant cells. Apoptosis and uptake of P-gp substrates in the tumor cells were detected by flow cytometry. Western blot was performed to assay the expression of P-gp. 3. Our results demonstrate SSA could increase the chemosensitivity of P-gp overexpressing HepG2/ADM and MCF-7/ADR cells to doxorubicin (DOX), vincristine (VCR) and paclitaxel. SSA promoted apoptosis of MCF-7/ADR cells in the presence of DOX. Moreover, it could also increase the retention of P-gp substrates DOX and rhodamine 123 in MCF-7/ADR cells, and decrease digoxin efflux ratio in Caco-2 cell monolayer. Finally, a mechanistic study showed that SSA reduced P-gp expression without affecting hydrolytic activity of P-gp. 4. In conclusion, our findings suggest that SSA could be further developed for sensitizing resistant cancer cells and used as an adjuvant therapy together with anticancer drugs to improve their therapeutic efficacies.

  17. Characterisation of non-P-glycoprotein multidrug-resistant Ehrlich ascites tumour cells selected for resistance to mitoxantrone

    DEFF Research Database (Denmark)

    Nielsen, D; Eriksen, J; Maare, C

    2000-01-01

    . The efflux of daunorubicin from preloaded EHR2/MITOX cells was significantly increased. EHR2/MITOX microsomes had a significant basal unstimulated ATPase activity. The apparent K(i) value for vanadate inhibition of the ATPase activity in EHR2/MITOX microsomes was not significantly different from the K......An Ehrlich ascites tumour cell line (EHR2) was selected in vivo for resistance to mitoxantrone (MITOX). The resistant cell line (EHR2/MITOX) was 6123-, 33-, and 30-fold-resistant to mitoxantrone, daunorubicin, and etoposide, respectively, but retained sensitivity to vincristine. The resistant cells...... was reduced to one-third in EHR2/MITOX relative to EHR2 cells, whereas topoisomerase IIbeta was present in EHR2 but could not be detected in EHR2/MITOX. In the resistant subline, net accumulation of MITOX (120 min) and daunorubicin (60 min) was reduced by 43% and 27%, respectively, as compared with EHR2...

  18. Chromatin status and transcription factor binding to gonadotropin promoters in gonadotrope cell lines.

    Science.gov (United States)

    Xie, Huimin; Hoffmann, Hanne M; Iyer, Anita K; Brayman, Melissa J; Ngo, Cindy; Sunshine, Mary Jean; Mellon, Pamela L

    2017-10-24

    Proper expression of key reproductive hormones from gonadotrope cells of the pituitary is required for pubertal onset and reproduction. To further our understanding of the molecular events taking place during embryonic development, leading to expression of the glycoproteins luteinizing hormone (LH) and follicle-stimulating hormone (FSH), we characterized chromatin structure changes, imparted mainly by histone modifications, in model gonadotrope cell lines. We evaluated chromatin status and gene expression profiles by chromatin immunoprecipitation assays, DNase sensitivity assay, and RNA sequencing in three developmentally staged gonadotrope cell lines, αT1-1 (progenitor, expressing Cga), αT3-1 (immature, expressing Cga and Gnrhr), and LβT2 (mature, expressing Cga, Gnrhr, Lhb, and Fshb), to assess changes in chromatin status and transcription factor access of gonadotrope-specific genes. We found the common mRNA α-subunit of LH and FSH, called Cga, to have an open chromatin conformation in all three cell lines. In contrast, chromatin status of Gnrhr is open only in αT3-1 and LβT2 cells. Lhb begins to open in LβT2 cells and was further opened by activin treatment. Histone H3 modifications associated with active chromatin were high on Gnrhr in αT3-1 and LβT2, and Lhb in LβT2 cells, while H3 modifications associated with repressed chromatin were low on Gnrhr, Lhb, and Fshb in LβT2 cells. Finally, chromatin status correlates with the progressive access of LHX3 to Cga and Gnrhr, followed by PITX1 binding to the Lhb promoter. Our data show the gonadotrope-specific genes Cga, Gnrhr, Lhb, and Fshb are not only controlled by developmental transcription factors, but also by epigenetic mechanisms that include the modulation of chromatin structure, and histone modifications.

  19. MODERATE CYTOTOXICITY OF PROANTHOCYANIDINS TO HUMAN TUMOR-CELL LINES

    NARCIS (Netherlands)

    KOLODZIEJ, H; HABERLAND, C; WOERDENBAG, HJ; KONINGS, AWT

    In the present study the cytotoxicity of 16 proanthocyanidins was evaluated in GLC(4), a human small cell lung carcinoma cell line, and in COLO 320, a human colorectal cancer cell line, using the microculture tetrazolium (MTT) assay. With IC50 values ranging from 18 to >200 mu m following continuous

  20. Elucidation of chemosensitization effect of acridones in cancer cell lines: Combined pharmacophore modeling, 3D QSAR, and molecular dynamics studies.

    Science.gov (United States)

    Gade, Deepak Reddy; Makkapati, Amareswararao; Yarlagadda, Rajesh Babu; Peters, Godefridus J; Sastry, B S; Rajendra Prasad, V V S

    2018-02-24

    Overexpression of P-glycoprotein (P-gp) leads to the emergence of multidrug resistance (MDR) in cancer treatment. Acridones have the potential to reverse MDR and sensitize cells. In the present study, we aimed to elucidate the chemosensitization potential of acridones by employing various molecular modelling techniques. Pharmacophore modeling was performed for the dataset of chemosensitizing acridones earlier proved for cytotoxic activity against MCF7 breast cancer cell line. Gaussian-based QSAR studies also performed to predict the favored and disfavored region of the acridone molecules. Molecular dynamics simulations were performed for compound 10 and human P-glycoprotein (obtained from Homology modeling). An efficient pharmacophore containing 2 hydrogen bond acceptors and 3 aromatic rings (AARRR.14) was identified. NCI 2012 chemical database was screened against AARRR.14 CPH and identified 25 best-fit molecules. Potential regions of the compound were identified through Field (Gaussian) based QSAR. Regression analysis of atom-based QSAR resulted in r 2 of 0.95 and q 2 of 0.72, whereas, regression analysis of field-based QSAR resulted in r 2 of 0.92 and q 2 of 0.87 along with r 2 cv as 0.71. The fate of the acridone molecule (compound 10) in the P-glycoprotein environment is analyzed through analyzing the conformational changes occurring during the molecular dynamics simulations. Combined data of different in silico techniques provided basis for deeper understanding of structural and mechanistic insights of interaction phenomenon of acridones with P-glycoprotein and also as strategic basis for designing more potent molecules for anti-cancer and multidrug resistance reversal activities. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Recombinant N-Domain of Pregnancy-Specific Glycoprotein from E. coli Cells: Analysis of the Spectrum of Polyclonal Antibodies.

    Science.gov (United States)

    Prokopenko, P G; Shkoporov, A N; Petrenko, O Yu; Efimov, B A; Negrebetskii, V V; Terent'ev, A A

    2015-11-01

    We studied antibody spectrum in antisera to IgG-like recombinant N-domain of pregnancyspecific glycoprotein-1 (rPSG-N) from E. coli cells. In three experimental series, the fraction of IgG antibodies from anti-rPSG-N sera was immobilized on 3 immunoadsorbents: by polymerization with glutaraldehyde, on glutaraldehyde activated biogel P-300, and on commercial CNBr-activated 4B sepharose. Retroplacental serum was incubated with immobilized antibodies to rPSG1-N, protein was eluted and tested in the precipitation test in standard test systems with PSG1, IgG, and human serum albumin. Three proteins were eluted from all 3 immunoadsorbents: PSG1, IgG, and human serum albumin, which demonstrated the spectrum of antibodies to 3 proteins present also in natural serum PSG1 complex. The proportions of PSG1 and IgG obtained in these experiments were similar to those in natural serum PSG1 complex, while the level of human serum albumin was significantly higher in natural PSG1 complex. Thus, we failed to obtain PSG1 monoprotein free from IgG and human serum albumin. Antigenic mosaicism of the polypeptide chain of IgG-like rPSG1-N relative to the antigenic polyvalence of the complex of three proteins present in bioactive preparation of natural serum PSG1 was discussed.

  2. Characterisation of non-P-glycoprotein multidrug-resistant Ehrlich ascites tumour cells selected for resistance to mitoxantrone

    DEFF Research Database (Denmark)

    Nielsen, D; Eriksen, J; Maare, C

    2000-01-01

    An Ehrlich ascites tumour cell line (EHR2) was selected in vivo for resistance to mitoxantrone (MITOX). The resistant cell line (EHR2/MITOX) was 6123-, 33-, and 30-fold-resistant to mitoxantrone, daunorubicin, and etoposide, respectively, but retained sensitivity to vincristine. The resistant cel...... to be associated with: 1) a quantitative reduction in topoisomerase IIalpha and beta protein; 2) reduced drug accumulation, probably as a result of increased expression of a novel transport protein with ATPase activity; and 3) increased expression of MRP mRNA....

  3. Induction of apoptosis and reversal of permeability glycoprotein-mediated multidrug resistance of MCF-7/ADM by ginsenoside Rh2

    Science.gov (United States)

    Zhang, Hui; Gong, Jian; Zhang, Huilai; Kong, Di

    2015-01-01

    Multidrug resistance is a phenomenon that cancer cells develop a cross-resistant phenotype against several unrelated drugs, and permeability glycoprotein derived from the overexpression of multidrug resistance gene 1 has been taken as the most significant cause of multidrug resistance. In the present study, ginsenoside Rh2 was used to reverse permeability glycoprotein-mediated multidrug resistance of MCF-7/ADM cell line. Effects of ginsenoside Rh2 on the apoptotic process and caspase-3 activity of MCF-7 and MCF-7/ADM cell lines were determined using flow cytometry and microplate reader. Methyl thiazolyl tetrazolium test was conducted to assess the IC50 values of ginsenoside Rh2 and adriamycin on MCF-7 and MCF-7/ADM cultures; Rhodamin 123 assay was used to assess the retention of permeability glycoprotein after ginsenoside Rh2 treatment; flow cytometry and real time polymerase chain reaction were used to determine the expression levels of permeability glycoprotein and multidrug resistance gene 1 in drug-resistant cells and their parental cells after exposure to ginsenoside Rh2. The results showed that ginsenoside Rh2, except for inducing apoptosis, had the ability to reverse multidrug resistance in MCF-7/ADM cell line without changing the expression levels of permeability glycoprotein and multidrug resistance gene 1. Our findings provided some valuable information for the application of ginsenoside Rh2 in cancer therapy, especially for multidrug resistance reversal in clinic. PMID:26191135

  4. Expression of MIF and CD74 in leukemic cell lines: correlation to DR expression destiny.

    Science.gov (United States)

    Georgouli, Mirella; Papadimitriou, Lina; Glymenaki, Maria; Patsaki, Valia; Athanassakis, Irene

    2016-06-01

    Invariant chain (Ii) or CD74 is a non-polymorphic glycoprotein, which apart from its role as a chaperone dedicated to MHCII molecules, is known to be a high-affinity receptor for macrophage migration inhibitory factor (MIF). The present study aimed to define the roles of CD74 and MIF in the immune surveillance escape process. Towards this direction, the cell lines HL-60, Raji, K562 and primary pre-B leukemic cells were examined for expression and secretion of MIF. Flow cytometry analysis detected high levels of MIF and intracellular/membrane CD74 expression in all leukemic cells tested, while MIF secretion was shown to be inversely proportional to intracellular HLA-DR (DR) expression. In the MHCII-negative cells, IFN-γ increased MIF expression and induced its secretion in HL-60 and K562 cells, respectively. In K562 cells, CD74 (Iip33Iip35) was shown to co-precipitate with HLA-DOβ (DOβ), inhibiting thus MIF or DR binding. Induced expression of DOα in K562 (DOα-DOβ+) cells in different transfection combinations decreased MIF expression and secretion, while increasing surface DR expression. Thus, MIF could indeed be part of the antigen presentation process.

  5. Modeling Adenovirus Latency in Human Lymphocyte Cell Lines ▿ †

    OpenAIRE

    Zhang, Yange; Huang, Wen; Ornelles, David A.; Gooding, Linda R.

    2010-01-01

    Species C adenovirus establishes a latent infection in lymphocytes of the tonsils and adenoids. To understand how this lytic virus is maintained in these cells, four human lymphocytic cell lines that support the entire virus life cycle were examined. The T-cell line Jurkat ceased proliferation and died shortly after virus infection. BJAB, Ramos (B cells), and KE37 (T cells) continued to divide at nearly normal rates while replicating the virus genome. Viral genome numbers peaked and then decl...

  6. Developmental modulation of a glial cell-associated glycoprotein, 5B12, in an insect, Acheta domesticus.

    Science.gov (United States)

    Meyer, M R; Brunner, P; Edwards, J S

    1988-11-01

    The expression of an insect (Acheta domesticus) adult glial cell-specific antigen, 5B12 undergoes major changes during development. The 5B12 antigen is detected as early as 20-25% of embryonic development, when immunoreactivity is distributed throughout the periphery, present at the luminal surface of epithelial cells which compose developing limb buds, sensory appendages, and the body cavity. The antigen is also localized on the cell surface of neural elements within commissural tracts in the embryonic CNS. 5B12 is secreted extracellularly in the periphery, where it is associated with the embryonic basal lamina in developing cercal sensory appendages. Luminal surface expression is transient, and disappears by 95% of embryonic development. As development proceeds, 5B12 distribution becomes more restricted, so that in the adult the antigen is predominantly associated with specific glial elements within the nervous system where it occurs as a specialized component of the extracellular matrix. The 5B12 antigen is also associated with discrete central and peripheral fiber tracts. Antigen 5B12 is present in whole embryos and in the adult CNS as a Mr 185-kDa glycoprotein. Distinct carbohydrate moieties with chondroitin sulfate-like properties are situated on the 5B12 epitope. Thus the glia-associated 5B12 macromolecule has the characteristics of a small proteoglycan. Based upon features of its distribution, pattern of spatiotemporal expression, and biochemical properties, it is speculated that 5B12 participates in events related sequentially to the development and the function of the insect nervous system.

  7. Screening for the P-Glycoprotein Inhibitory Pump Activity of Plant ...

    African Journals Online (AJOL)

    6G as the fluorescent probe and reserpine, a known inhibitor of P-glycoprotein pump, was used as a reference drug. The results revealed that out of the 45 plant extracts tested, 3 .... line and it was first obtained from the pleural effkion of a female cancer patient. MCF-7 resistant (MCF-7R) cells may be obtained by incubating ...

  8. Analysis of the impact of extracellular acidity on the expression and activity of P-glycoprotein and on the P-glycoprotein-mediated cytotoxicity of daunorubicin in cancer cell by microfluidic chip technology.

    Science.gov (United States)

    Li, Yuan; Xiang, Jiao; Zhang, Sha-sha; Liu, Bei-zhong; Gong, Fang; Peng, Ming-qing

    2015-02-01

    To explore the impact of extracellular acidic environment on the expression and activity of P-glycoprotein (P-gp) and on the P-gp-mediated cytotoxicity of daunomycin in cancer cells by using microfluidic chip technology. The A549 cells cultured on a microfluidic chip were divided into experiment group and control group. The experiment group was exposed to an acidic cell culture medium (pH 6.6), while the control group was treated with a neutral cell culture medium (pH 7.4). The expression of P-gp was detected by cell immunofluorescense analysis and the activity of P-gp was evaluated by Rhodamine 123 efflux experiment. Meanwhile, the cytotoxicity of daunomycin was analyzed by cell live/dead fluorescence staining method. Microfluidic chip designed in this study could provide a suitable microenvironment for the growth of A549 cells and the A549 cells reached the confluence of 90% after inoculation for 72 h. Treatment of the acidic cell culture media on A549 cells did not make a significant difference on the expression level of P-gp. However, the activity of P-gp was significantly enhancement and peaked at 6 h after treatment with acidic cell culture media. Meanwhile, the cytotoxicity of daunomycin reduced significantly after treatment with acidic cell culture medium for 6 h,and a reversal effect was obtained when synergy with verapamil. Microfluidic chip technology can shorten the analysis time and reduce the reagent consumption. It can be used as a new technology platform for understanding the mechanisms of multi-drug resistance and for screening highly efficient multi-drug resistance reversal agents.

  9. Isolation of a Wheat Cell Line with Altered Membrane Properties

    Science.gov (United States)

    Erdei, László; Vigh, László; Dudits, Dénes

    1982-01-01

    A spontaneous dimethylsulfoxide (DMSO)-tolerant cell line was isolated from a cell culture of wheat (Triticum monococcum L.). The tolerant cells were able to grow in the presence of 4% DMSO. Cells formed from protoplasts of the tolerant line required DMSO for division in culture medium of high osmotic value. Fatty acid composition and the molar ratio of phospholipids/sterols suggest a more ordered membrane structure in the tolerant line. Accordingly, a lower K+ influx rate was detected in the tolerant cells in comparison with the original line. These characteristics were maintained after 6 months' cultivation of the cells in DMSO-free growth medium. This suggested that genetic changes could be responsible for differences between the two cell lines. PMID:16662251

  10. Investigation of the selenium metabolism in cancer cell lines

    DEFF Research Database (Denmark)

    Lunøe, Kristoffer; Gabel-Jensen, Charlotte; Stürup, Stefan

    2011-01-01

    incubated with cells for 24 h and the induction of cell death was measured using flow cytometry. The amounts of total selenium in cell medium, cell lysate and the insoluble fractions was determined by ICP-MS. Speciation analysis of cellular fractions was performed by reversed phase, anion exchange and size......The aim of this work was to compare different selenium species for their ability to induce cell death in different cancer cell lines, while investigating the underlying chemistry by speciation analysis. A prostate cancer cell line (PC-3), a colon cancer cell line (HT-29) and a leukaemia cell line...... (Jurkat E6-1) were incubated with five selenium compounds representing inorganic as well as organic Se compounds in different oxidation states. Selenomethionine (SeMet), Se-methylselenocysteine (MeSeCys), methylseleninic acid (MeSeA), selenite and selenate in the concentration range 5-100 mu M were...

  11. Host Cell Virus Entry Mediated by Australian Bat Lyssavirus Envelope G glycoprotein

    Science.gov (United States)

    2013-10-24

    intracellular vesicular trafficking pathways as physiological ligands and membrane components, such as hormones , growth factors, and plasma membrane factors...been a cause of considerable concern to wildlife, veterinary , and health-care workers. There are two genetically distinct variants of ABLV, one which...entry. It was surprising that the 293F cells, which are a derivative of HEK293 cells that have been adapted for growth in serum-free medium as

  12. The pursuit of ES cell lines of domesticated ungulates

    Science.gov (United States)

    In contrast to differentiated cells, embryonic stem cells (ESC) maintain an undifferentiated state, have the ability to self-renew, and exhibit pluripotency, i.e., they can give rise to most if not all somatic cell types and to the germ cells, egg and sperm. These characteristics make ES cell lines...

  13. VOLIN and KJON-Two novel hyperdiploid myeloma cell lines.

    Science.gov (United States)

    Våtsveen, Thea Kristin; Børset, Magne; Dikic, Aida; Tian, Erming; Micci, Francesca; Lid, Ana H B; Meza-Zepeda, Leonardo A; Coward, Eivind; Waage, Anders; Sundan, Anders; Kuehl, W Michael; Holien, Toril

    2016-11-01

    Multiple myeloma can be divided into two distinct genetic subgroups: hyperdiploid (HRD) or nonhyperdiploid (NHRD) myeloma. Myeloma cell lines are important tools to study myeloma cell biology and are commonly used for preclinical screening and testing of new drugs. With few exceptions human myeloma cell lines are derived from NHRD patients, even though about half of the patients have HRD myeloma. Thus, there is a need for cell lines of HRD origin to enable more representative preclinical studies. Here, we present two novel myeloma cell lines, VOLIN and KJON. Both of them were derived from patients with HRD disease and shared the same genotype as their corresponding primary tumors. The cell lines' chromosomal content, genetic aberrations, gene expression, immunophenotype as well as some of their growth characteristics are described. Neither of the cell lines was found to harbor immunoglobulin heavy chain translocations. The VOLIN cell line was established from a bone marrow aspirate and KJON from peripheral blood. We propose that these unique cell lines may be used as tools to increase our understanding of myeloma cell biology. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  14. Direct interaction between verapamil and doxorubicin causes the lack of reversal effect of verapamil on P-glycoprotein mediated resistance to doxorubicin in vitro using L1210/VCR cells

    International Nuclear Information System (INIS)

    Breier, A.; Drobna, Z.; Barancik, M.

    1998-01-01

    Mouse leukemic cell sub-line L 1210/VCR exerts expressive multidrug resistance (MDR) that is mediated by P-glycoprotein. Cells originally adapted to vincristine are also extremely resistant to doxorubicin. Resistance to both vincristine and doxorubicin is connected with depression of drug uptake. While resistance of L 121 O cells to vincristine could be reversed by verapamil as chemo-sensitizer, resistance of cells to doxorubicin was insensitive to verapamil. Action of verapamil (well-known inhibitor of PGP activity) on multidrug resistance was often used as evidence that MDR is mediated by PGP. From this point it may be possible that the resistance of L1210/VCR cells to vincristine is mediated by PGP and the resistance to doxorubicin is mediated by other PGP-independent system. Another and more probable explanation of different effect of verapamil on resistance of L1210/VCR cells to vincristine and doxorubicin may be deduced from the following fact: Using UV spectroscopy we found that doxorubicin dissolved in water buffered medium interacts effectively with verapamil. This interaction may be responsible for the decrease of concentration of both drugs in free effective form and consequently for higher survival of cells. In contrast to doxorubicin vincristine does not give any interaction with verapamil that is measurable by UV spectroscopy and resistance of L1210/VCR cells to vincristine may be fully reversed by verapamil. (authors)

  15. Molecular Characterization of the Interactions between Vascular Selectins and Glycoprotein Ligands on Human Hematopoietic Stem/Progenitor Cells

    KAUST Repository

    Abusamra, Dina

    2016-12-01

    The human bone marrow vasculature constitutively expresses both E-selectin and P-selectin where they interact with the cell-surface glycan moiety, sialyl Lewis x, on circulating hematopoietic stem/progenitor cells (HSPCs) to mediate the essential tethering/rolling step. Although several E-selectin glycoprotein ligands (E-selLs) have been identified, the importance of each E-selL on human HSPCs is debatable and requires additional methodologies to advance their specific involvement. The first objective was to fill the knowledge gap in the in vitro characterization of the mechanisms used by selectins to mediate the initial step in the HSPCs homing by developing a real time immunoprecipitation-based assay on a surface plasmon resonance chip. This novel assay bypass the difficulties of purifying ligands, enables the use of natively glycosylated forms of selectin ligands from any model cell of interest and study its binding affinities under flow. We provide the first comprehensive quantitative binding kinetics of two well-documented ligands, CD44 and PSGL-1, with E-selectin. Both ligands bind monomeric E-selectin transiently with fast on- and off-rates while they bind dimeric E-selectin with remarkably slow on- and off-rates with the on-rate, but not the off-rate, is dependent on salt concentration. Thus, suggest a mechanism through which monomeric selectins mediate initial fast-on and -off binding to capture the circulating cells out of shear-flow; subsequently, tight binding by dimeric/oligomeric selectins is enabled to slow rolling significantly. The second objective is to fully identify and characterize E/P-selectin ligand candidates expressed on CD34+ HSPCs which cause enhanced migration after intravenous transplantation compared to their CD34- counterparts. CD34 is widely recognized marker of human HSPCs but its natural ligand and function on these cells remain elusive. Proteomics identified CD34 as an E-selL candidate on human HSPCs, whose binding to E

  16. Antigenic properties of the human immunodeficiency virus envelope glycoprotein gp120 on virions bound to target cells.

    Directory of Open Access Journals (Sweden)

    Meron Mengistu

    2015-03-01

    Full Text Available The HIV-1 envelope glycoprotein, gp120, undergoes multiple molecular interactions and structural rearrangements during the course of host cell attachment and viral entry, which are being increasingly defined at the atomic level using isolated proteins. In comparison, antigenic markers of these dynamic changes are essentially unknown for single HIV-1 particles bound to target cells. Such markers should indicate how neutralizing and/or non-neutralizing antibodies might interdict infection by either blocking infection or sensitizing host cells for elimination by Fc-mediated effector function. Here we address this deficit by imaging fluorescently labeled CCR5-tropic HIV-1 pseudoviruses using confocal and superresolution microscopy to track the exposure of neutralizing and non-neutralizing epitopes as they appear on single HIV-1 particles bound to target cells. Epitope exposure was followed under conditions permissive or non-permissive for viral entry to delimit changes associated with virion binding from those associated with post-attachment events. We find that a previously unexpected array of gp120 epitopes is exposed rapidly upon target cell binding. This array comprises both neutralizing and non-neutralizing epitopes, the latter being hidden on free virions yet capable of serving as potent targets for Fc-mediated effector function. Under non-permissive conditions for viral entry, both neutralizing and non-neutralizing epitope exposures were relatively static over time for the majority of bound virions. Under entry-permissive conditions, epitope exposure patterns changed over time on subsets of virions that exhibited concurrent variations in virion contents. These studies reveal that bound virions are distinguished by a broad array of both neutralizing and non-neutralizing gp120 epitopes that potentially sensitize a freshly engaged target cell for destruction by Fc-mediated effector function and/or for direct neutralization at a post-binding step

  17. NMR detection and characterization of sialylated glycoproteins and cell surface polysaccharides

    Energy Technology Data Exchange (ETDEWEB)

    Barb, Adam W. [University of Georgia, Complex Carbohydrate Research Center (United States); Freedberg, Daron I.; Battistel, Marcos D. [Center for Biologics Evaluation and Research, Food and Drug Administration, Laboratory of Bacterial Polysaccharides (United States); Prestegard, James H., E-mail: jpresteg@ccrc.uga.edu [University of Georgia, Complex Carbohydrate Research Center (United States)

    2011-09-15

    Few solution NMR pulse sequences exist that are explicitly designed to characterize carbohydrates (glycans). This is despite the essential role carbohydrate motifs play in cell-cell communication, microbial pathogenesis, autoimmune disease progression and cancer metastasis, and despite that fact that glycans, often shed to extra-cellular fluids, can be diagnostic of disease. Here we present a suite of two dimensional coherence experiments to measure three different correlations (H3-C2, H3-C1, and C1-C2) on sialic acids, a group of nine-carbon carbohydrates found on eukaryotic cell surfaces that often play a key role in disease processes. The chemical shifts of the H3, C2, and C1 nuclei of sialic acids are sensitive to carbohydrate linkage, linkage conformation, and ionization state of the C1 carboxylate. The experiments reported include rigorous filter elements to enable detection and characterization of isotopically labeled sialic acids with high sensitivity in living cells and crude isolates with minimal interference from unwanted signals arising from the {approx}1% {sup 13}C-natural abundance of cellular metabolites. Application is illustrated with detection of sialic acids on living cells, in unpurified mixtures, and at the terminus of the N-glycan on the 55 kDa immunoglobulin G Fc.

  18. P-glycoprotein-mediated resistance to chemotherapy in cancer cells: using recombinant cytosolic domains to establish structure-function relationships

    Directory of Open Access Journals (Sweden)

    Di Pietro A.

    1999-01-01

    Full Text Available Resistance to chemotherapy in cancer cells is mainly mediated by overexpression of P-glycoprotein (Pgp, a plasma membrane ATP-binding cassette (ABC transporter which extrudes cytotoxic drugs at the expense of ATP hydrolysis. Pgp consists of two homologous halves each containing a transmembrane domain and a cytosolic nucleotide-binding domain (NBD which contains two consensus Walker motifs, A and B, involved in ATP binding and hydrolysis. The protein also contains an S signature characteristic of ABC transporters. The molecular mechanism of Pgp-mediated drug transport is not known. Since the transporter has an extraordinarily broad substrate specificity, its cellular function has been described as a "hydrophobic vacuum cleaner". The limited knowledge about the mechanism of Pgp, partly due to the lack of a high-resolution structure, is well reflected in the failure to efficiently inhibit its activity in cancer cells and thus to reverse multidrug resistance (MDR. In contrast to the difficulties encountered when studying the full-length Pgp, the recombinant NBDs can be obtained in large amounts as soluble proteins. The biochemical and biophysical characterization of recombinant NBDs is shown here to provide a suitable alternative route to establish structure-function relationships. NBDs were shown to bind ATP and analogues as well as potent modulators of MDR, such as hydrophobic steroids, at a region close to the ATP site. Interestingly, flavonoids also bind to NBDs with high affinity. Their binding site partly overlaps both the ATP-binding site and the steroid-interacting region. Therefore flavonoids constitute a new promising class of bifunctional modulators of Pgp.

  19. Identification of continuous human B-cell epitopes in the envelope glycoprotein of dengue virus type 3 (DENV-3).

    Science.gov (United States)

    da Silva, Andréa N M Rangel; Nascimento, Eduardo J M; Cordeiro, Marli Tenório; Gil, Laura H V G; Abath, Frederico G C; Montenegro, Silvia M L; Marques, Ernesto T A

    2009-10-13

    Dengue virus infection is a growing global public health concern in tropical and subtropical regions of the world. Dengue vaccine development has been hampered by concerns that cross-reactive immunological memory elicited by a candidate vaccine could increase the risk of development of more severe clinical forms. One possible strategy to reduce risks associated with a dengue vaccine is the development of a vaccine composed of selected critical epitopes of each of the serotypes. Synthetic peptides were used to identify B-cell epitopes in the envelope (E) glycoprotein of dengue virus type 3 (DENV-3). Eleven linear, immunodominant epitopes distributed in five regions at amino acid (aa) positions: 51-65, 71-90, 131-170, 196-210 and 246-260 were identified by employing an enzyme- linked immunosorbent assay (ELISA), using a pool of human sera from dengue type 3 infected individuals. Peptides 11 (aa51-65), 27 and 28 (aa131-150) also reacted with dengue 1 (DENV-1) and dengue 2 (DENV-2) patient sera as analyzed through the ROC curves generated for each peptide by ELISA and might have serotype specific diagnostic potential. Mice immunized against each one of the five immunogenic regions showed epitopes 51-65, 131-170, 196-210 and 246-260 elicited the highest antibody response and epitopes131-170, 196-210 and 246-260, elicited IFN-gamma production and T CD4+ cell response, as evaluated by ELISA and ELISPOT assays respectively. Our study identified several useful immunodominant IgG-specific epitopes on the envelope of DENV-3. They are important tools for understanding the mechanisms involved in antibody dependent enhancement and immunity. If proven protective and safe, in conjunction with others well-documented epitopes, they might be included into a candidate epitope-based vaccine.

  20. Histochemical characterization of glycoproteins present in jejunal and colonic goblet cells of pigs on different diets. A biopsy study using chemical methods and peroxidase-labelled lectins.

    Science.gov (United States)

    Moré, J; Fioramonti, J; Bénazet, F; Buéno, L

    1987-01-01

    We examined the glycoprotein composition of intestinal goblet cells in jejunal and colonic biopsies obtained from pigs on different diets. Paraffin sections were stained both chemically and with the following horseradish-peroxidase conjugated lectins: Canavalia ensiformis (Con-A), Limulus polyphemus (LPA), Lotus tetragonolobus (LTA), Arachis hypogaea (PNA), Ricinus communis (RCA1), Glycine max (SBA) and Triticum vulgaris (WGA). Using chemical staining procedures, only small quantitative differences were noted between the two organs. With respect to lectin staining, the mucus of the jejunum was characterized by the absence of Con-A binding sites, and colonic mucus consistently exhibited an absence of SBA affinity. After dietary modifications, O-acetyl sialic acid reactivity was lowered in the jejunum but was enhanced in the colon. In the jejunum, the glycoproteins became neuraminidase susceptible, whereas the colon became characterized by the absence of neutral mucins. The affinity for the tested lectins after the different diets was variable, but the most striking effects were observed after the fibreless diet (milk alone). Our data suggest the existence of marked regional variations in goblet-cell mucus and indicate significant differences between the glycoprotein components of the jejunal and colonic mucosa. Furthermore, the biosynthesis of mucins in both regions was altered by even only short-term feeding modifications.

  1. NMR detection and characterization of sialylated glycoproteins and cell surface polysaccharides

    International Nuclear Information System (INIS)

    Barb, Adam W.; Freedberg, Darón I.; Battistel, Marcos D.; Prestegard, James H.

    2011-01-01

    Few solution NMR pulse sequences exist that are explicitly designed to characterize carbohydrates (glycans). This is despite the essential role carbohydrate motifs play in cell–cell communication, microbial pathogenesis, autoimmune disease progression and cancer metastasis, and despite that fact that glycans, often shed to extra-cellular fluids, can be diagnostic of disease. Here we present a suite of two dimensional coherence experiments to measure three different correlations (H3–C2, H3–C1, and C1–C2) on sialic acids, a group of nine-carbon carbohydrates found on eukaryotic cell surfaces that often play a key role in disease processes. The chemical shifts of the H3, C2, and C1 nuclei of sialic acids are sensitive to carbohydrate linkage, linkage conformation, and ionization state of the C1 carboxylate. The experiments reported include rigorous filter elements to enable detection and characterization of isotopically labeled sialic acids with high sensitivity in living cells and crude isolates with minimal interference from unwanted signals arising from the ∼1% 13 C-natural abundance of cellular metabolites. Application is illustrated with detection of sialic acids on living cells, in unpurified mixtures, and at the terminus of the N-glycan on the 55 kDa immunoglobulin G Fc.

  2. Expression of CD44 on two lines of transplantable melanoma cells--relationship with cytokine secretion and tumor progression.

    Directory of Open Access Journals (Sweden)

    Sławomir Wójcik

    2004-03-01

    Full Text Available In the present work it was investigated if a spontaneous alteration of the native melanotic transplantable melanoma form into amelanotic form, connected with the tumor progression, is accompanied by changes of CD44 surface glycoprotein expression. We also tried to find out if there exists any correlation between changes in CD44 expression and IL-6, TNF-alpha, and IL-10 secretion. Cells of two hamster transplantable melanoma lines: melanotic and amelanotic were used. The levels of TNF-alpha, IL-6, IL-10 in supernatants were determined by the ELISA test. For the detection of CD44 expression by flow cytometry, isolated melanoma cells were stained with the rat anti-mouse CD44 monoclonal antibody. The stained cells were also examined using a fluorescence microscope and a confocal microscopy system. The obtained results indicate that a spontaneous alteration of the native melanotic form into amelanotic form and the associated tumor progression was accompanied by a decrease in CD44 glycoprotein expression on the cell surface and a decrease in IL-6, TNF-alpha and especially IL-10 secretion by amelanotic melanoma cells. Our observations suggest a relationship between CD44 expression and locally secreted cytokines in the course of transplantable melanoma progression.

  3. Mechanism Underlying the Reversal of Drug Resistance in P-Glycoprotein-Expressing Leukemia Cells by Pinoresinol and the Study of a Derivative

    Directory of Open Access Journals (Sweden)

    María C. Carpinella

    2017-04-01

    Full Text Available P-glycoprotein (P-gp is a membrane protein associated with multidrug resistance (MDR due to its key role in mediating the traffic of chemotherapeutic drugs outside cancer cells, leading to a cellular response that hinders efforts toward successful therapy. With the aim of finding agents that circumvent the MDR phenotype mediated by P-gp, 15 compounds isolated from native and naturalized plants of Argentina were screened. Among these, the non-cytotoxic lignan (± pinoresinol successfully restored sensitivity to doxorubicin from 7 μM in the P-gp overexpressed human myelogenous leukemia cells, Lucena 1. This resistance-reversing effect was confirmed by competitively increasing the intracellular doxorubicin accumulation and by significantly inhibiting the efflux of doxorubicin and, to a lesser extent, that of rhodamine 123. The activity obtained was similar to that observed with verapamil. No such results were observed in the sensitive parental K562 cell line. To gain deeper insight into the mode of action of pinoresinol, its effect on P-gp function and expression was examined. The docking simulations indicated that the lignan bound to P-gp at the apex of the V-shaped transmembrane cavity, involving transmembrane helices 4, 5, and 6, and partially overlapped the binding region of tariquidar, which was used as a positive control. These results would shed some light on the nature of its interaction with P-gp at molecular level and merit further mechanistic and kinetic studies. In addition, it showed a maximum 29% activation of ATP hydrolysis and antagonized verapamil-stimulated ATPase activity with an IC50 of 20.9 μM. On the other hand, pinoresinol decreased the presence of P-gp in the cell surface. Derivatives of pinoresinol with improved activity were identified by docking studies. The most promising one, the non-cytotoxic 1-acetoxypinoresinol, caused a reversion of doxorubicin resistance from 0.11 μM and thus higher activity than the lead

  4. Authentication of M14 melanoma cell line proves misidentification of MDA-MB-435 breast cancer cell line.

    Science.gov (United States)

    Korch, Christopher; Hall, Erin M; Dirks, Wilhelm G; Ewing, Margaret; Faries, Mark; Varella-Garcia, Marileila; Robinson, Steven; Storts, Douglas; Turner, Jacqueline A; Wang, Ying; Burnett, Edward C; Healy, Lyn; Kniss, Douglas; Neve, Richard M; Nims, Raymond W; Reid, Yvonne A; Robinson, William A; Capes-Davis, Amanda

    2018-02-01

    A variety of analytical approaches have indicated that melanoma cell line UCLA-SO-M14 (M14) and breast carcinoma cell line MDA-MB-435 originate from a common donor. This indicates that at some point in the past, one of these cell lines became misidentified, meaning that it ceased to correspond to the reported donor and instead became falsely identified (through cross-contamination or other means) as a cell line from a different donor. Initial studies concluded that MDA-MB-435 was the misidentified cell line and M14 was the authentic cell line, although contradictory evidence has been published, resulting in further confusion. To address this question, we obtained early samples of the melanoma cell line (M14), a lymphoblastoid cell line from the same donor (ML14), and donor serum preserved at the originator's institution. M14 samples were cryopreserved in December 1975, before MDA-MB-435 cells were established in culture. Through a series of molecular characterizations, including short tandem repeat (STR) profiling and cytogenetic analysis, we demonstrated that later samples of M14 and MDA-MB-435 correspond to samples of M14 frozen in 1975, to the lymphoblastoid cell line ML14, and to the melanoma donor's STR profile, sex and blood type. This work demonstrates conclusively that M14 is the authentic cell line and MDA-MB-435 is misidentified. With clear provenance information and authentication testing of early samples, it is possible to resolve debates regarding the origins of problematic cell lines that are widely used in cancer research. © 2017 The Authors International Journal of Cancer published by John Wiley & Sons Ltd on behalf of UICC.

  5. Authentication of M14 melanoma cell line proves misidentification of MDA‐MB‐435 breast cancer cell line

    Science.gov (United States)

    Korch, Christopher; Hall, Erin M.; Dirks, Wilhelm G.; Ewing, Margaret; Faries, Mark; Varella‐Garcia, Marileila; Robinson, Steven; Storts, Douglas; Turner, Jacqueline A.; Wang, Ying; Burnett, Edward C.; Healy, Lyn; Kniss, Douglas; Neve, Richard M.; Nims, Raymond W.; Reid, Yvonne A.; Robinson, William A.

    2017-01-01

    A variety of analytical approaches have indicated that melanoma cell line UCLA‐SO‐M14 (M14) and breast carcinoma cell line MDA‐MB‐435 originate from a common donor. This indicates that at some point in the past, one of these cell lines became misidentified, meaning that it ceased to correspond to the reported donor and instead became falsely identified (through cross‐contamination or other means) as a cell line from a different donor. Initial studies concluded that MDA‐MB‐435 was the misidentified cell line and M14 was the authentic cell line, although contradictory evidence has been published, resulting in further confusion. To address this question, we obtained early samples of the melanoma cell line (M14), a lymphoblastoid cell line from the same donor (ML14), and donor serum preserved at the originator's institution. M14 samples were cryopreserved in December 1975, before MDA‐MB‐435 cells were established in culture. Through a series of molecular characterizations, including short tandem repeat (STR) profiling and cytogenetic analysis, we demonstrated that later samples of M14 and MDA‐MB‐435 correspond to samples of M14 frozen in 1975, to the lymphoblastoid cell line ML14, and to the melanoma donor's STR profile, sex and blood type. This work demonstrates conclusively that M14 is the authentic cell line and MDA‐MB‐435 is misidentified. With clear provenance information and authentication testing of early samples, it is possible to resolve debates regarding the origins of problematic cell lines that are widely used in cancer research. PMID:28940260

  6. [Hydroxyproline: Rich glycoproteins of the plant and cell wall]. Annual technical progress report, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Varner, J.E.

    1993-06-01

    Since xylem tissue includes the main cell types which are lignified, we are interested in gene expression of glycine-rich proteins and proline-rich proteins, and other proteins which are involved in secondary cell wall thickening during xylogenesis. Since the main feature of xylogenesis is the deposition of additional wall components, study of the mechanism of xylogenesis will greatly advance our knowledge of the synthesis and assembly of wall macromolecules. We are using the in vitro xylogenesis system from isolated Zinnia mesophyll cells to isolate genes which are specifically expressed during xylogenesis. We have used subtractive hybridization methods to isolate a number of cDNA clones for differentially regulated genes from the cells after hormonal induction. So far, we have partially characterized 18 different cDNA clones from 239 positive clones. These differentially regulated genes can be divided into three sets according to the characteristics of gene expression in the induction medium and the control medium. The first set is induced in both the induction medium and the control medium without hormones. The second set is induced mainly in the induction medium and in the control medium with the addition of NAA alone. Two of thesegenes are exclusively induced by auxin. The third set of genes is induced mainly in the induction medium. Since these genes are not induced by either auxin or cytokinin alone, they may be directly involved in the process of xylogenesis. Our experiments on the localization of H{sub 2}O{sub 2} production reinforce the earlier ideas of others that H{sub 2}O{sub 2} is involved in normal lignification.

  7. An Analysis of Trafficking Receptors Shows that CD44 and P-Selectin Glycoprotein Ligand-1 Collectively Control the Migration of Activated Human T-Cells

    KAUST Repository

    Ali, Amal J.

    2017-05-03

    Selectins guide the traffic of activated T-cells through the blood stream by mediating their tethering and rolling onto inflamed endothelium, in this way acting as beacons to help navigate them to sites of inflammation. Here, we present a comprehensive analysis of E-selectin ligands expressed on activated human T-cells. We identified several novel glycoproteins that function as E-selectin ligands. Specifically, we compared the role of P-selectin glycoprotein ligand-1 (PSGL-1) and CD43, known E-selectin ligands, to CD44, a ligand that has not previously been characterized as an E-selectin ligand on activated human T-cells. We showed that CD44 acts as a functional E-selectin ligand when expressed on both CD4+ and CD8+ T-cells. Moreover, the CD44 protein carries a binding epitope identifying it as hematopoietic cell E- and/or L-selectin ligand (HCELL). Furthermore, by knocking down these ligands individually or together in primary activated human T-cells, we demonstrated that CD44/HCELL, and not CD43, cooperates with PSGL-1 as a major E-selectin ligand. Additionally, we demonstrated the relevance of our findings to chronic autoimmune disease, by showing that CD44/HCELL and PSGL-1, but not CD43, from T-cells isolated from psoriasis patients, bind E-selectin.

  8. Derivation of the human embryonic stem cell line RCM1

    Directory of Open Access Journals (Sweden)

    P.A. De Sousa

    2016-03-01

    Full Text Available The human embryonic stem cell line RCM-1 was derived from a failed to fertilise egg undergoing parthenogenetic stimulation. The cell line shows normal pluripotency marker expression and differentiation to three germ layers in vitro and in vivo. It has a normal 46XX female karyotype and microsatellite PCR identity, HLA and blood group typing data is available.

  9. Expression of multidrug resistance gene and P-glycoprotein in nasopharyngealcarcinoma cells after irradiation

    International Nuclear Information System (INIS)

    Wang Ruoyu; Wang Hui; Fan Kai; Lv Shen

    2007-01-01

    Objective: To mimick a clinical fractionated protocol of exposure to X-radiation in vitro in order to investigate the changes in the function of MDR1 and P-gp in nasopharyngeal carcinoma (NPC) CNE cell before and after irradiation to determine the sequential order of radiotherapy and chemotherapy or the time of chemotherapy after radiotherapy in the treatment of NPC. Methods: Exponentially growing CNE cells were treated with fractionated X-radiation with total dose of 10 Gy (2 Gy per day for 5 days consecutively) in vitro. The expression of MDR1 gene was examined in CNE cells before irradiation and on days 4,8,13,17 and 21 after irradiation by RT-PCR, and its protein P-gp were detected by immunocytochemistry. The function of multidrug resistance protein P-gp was examined by MTT method. Results: Expression of MDR1 gene was below the level of detection before irradiation. Irradiation induced an overexpression of MDR1 gene on day 4, expression of MDR1 was decreased from day 8 to day 21. The overall expression of MDR1 was significantly more than that before irradiation (P<0.05) Expression of P-gp was below the level of detection before irradiation, which demonstrated that irradiation induced an overexpression of P-gp. This overexpression was increased from day 8 to day 21. The overpression of MDR1 gene was maintained dining a short period, however, the emergence of overpression of protein P-gp was later than that of MDR1 gene. Resistance index was 1 for both pre-irradiation and on day 8, and up to 8,10,11.2 on days 13, 17 and 21, respectively. The change of resistance index was accordant with the condition of overexpression of P-gp . Conclusions: Expression of P-gp in nasopharyngeal carcinoma (NPC) CNE cell was below the level of detection before irradiation. Irradiation can induce an overexpression of MDR1 gene and its protein P-gp in CNE cells. The overexpression of MDR1 gene and its protein P-gp lasted a long term. (authors)

  10. Beryllium-stimulated apoptosis in macrophage cell lines.

    Science.gov (United States)

    Sawyer, R T; Fadok, V A; Kittle, L A; Maier, L A; Newman, L S

    2000-08-21

    In vitro stimulation of bronchoalveolar lavage cells from patients with chronic beryllium disease (CBD) induces the production of TNF-alpha. We tested the hypothesis that beryllium (Be)-stimulated TNF-alpha might induce apoptosis in mouse and human macrophage cell lines. These cell lines were selected because they produce a range of Be-stimulated TNF-alpha. The mouse macrophage cell line H36.12j produces high levels of Be-stimulated TNF-alpha. The mouse macrophage cell line P388D.1 produces low, constitutive, levels of TNF-alpha and does not up-regulate Be-stimulated TNF-alpha production. The DEOHS-1 human CBD macrophage cell line does not produce constitutive or Be-stimulated TNF-alpha. Apoptosis was determined by microscopic observation of propidium iodide stained fragmented nuclei in unstimulated and BeSO(4)-stimulated macrophage cell lines. BeSO(4) induced apoptosis in all macrophage cell lines tested. Beryllium-stimulated apoptosis was dose-responsive and maximal after 24 h of exposure to 100 microM BeSO(4). In contrast, unstimulated and Al(2)(SO(4))(3)-stimulated macrophage cell lines did not undergo apoptosis. The general caspase inhibitor BD-fmk inhibited Be-stimulated macrophage cell line apoptosis at concentrations above 50 microM. Our data show that Be-stimulated macrophage cell line apoptosis was caspase-dependent and not solely dependent on Be-stimulated TNF-alpha levels. We speculate that the release of Be-antigen from apoptotic macrophages may serve to re-introduce Be material back into the lung microenvironment, make it available for uptake by new macrophages, and thereby amplify Be-stimulated cytokine production, promoting ongoing inflammation and granuloma maintenance in CBD.

  11. A Herpes Simplex Virus Type 2 Deleted for Glycoprotein D Enables Dendritic Cells to Activate CD4+ and CD8+ T Cells

    Directory of Open Access Journals (Sweden)

    Angello R. Retamal-Díaz

    2017-08-01

    Full Text Available Herpes simplex virus type 2 (HSV-2 is highly prevalent in the human population producing significant morbidity, mainly because of the generation of genital ulcers and neonatal encephalitis. Additionally, HSV-2 infection significantly increases the susceptibility of the host to acquire HIV and promotes the shedding of the latter in the coinfected. Despite numerous efforts to create a vaccine against HSV-2, no licensed vaccines are currently available. A long-standing strategy, based on few viral glycoproteins combined with adjuvants, recently displayed poor results in a Phase III clinical study fueling exploration on the development of mutant HSV viruses that are attenuated in vivo and elicit protective adaptive immune components, such as antiviral antibodies and T cells. Importantly, such specialized antiviral immune components are likely induced and modulated by dendritic cells, professional antigen presenting cells that process viral antigens and present them to T cells. However, HSV interferes with several functions of DCs and ultimately induces their death. Here, we propose that for an attenuated mutant virus to confer protective immunity against HSV in vivo based on adaptive immune components, such virus should also be attenuated in dendritic cells to promote a robust and effective antiviral response. We provide a background framework for this idea, considerations, as well as the means to assess this hypothesis. Addressing this hypothesis may provide valuable insights for the development of novel, safe, and effective vaccines against herpes simplex viruses.

  12. Technetium-99m sestamibi uptake in human breast carcinoma cell lines displaying glutathione-associated drug-resistance

    International Nuclear Information System (INIS)

    Kabasakal, L.; Oezker, K.; Hayward, M.; Akansel, G.; Griffith, O.; Isitman, A.T.; Hellman, R.; Collier, D.

    1996-01-01

    An in vitro study was designed to evaluate the uptake of sestamibi (MIBI) in P-glycoprotein (Pgp) and glutathione-associated (GSH) multidrug-resistant (MDR) cell lines. MIBI uptake was studied in various human breast carcinoma cell lines, i.e. in wild-type (MCF7/wt) cells, in adriamycin-resistant (MCF7/adr) cells which express Pgp and in melphalan-resistant (MCF7/mph) cells with increased levels of GSH. The effects of buthiomine sulphoximine (BSO) and verapamil on MIBI uptake were also studied in the MCF7/mph and MCF7/adr cells respectively. The cells were incubated for 1 h with a dose of 0.1 MBq thallium-201 and technetium-99m MIBI. Both BIBI and 201 Tl uptakes were higher for MCF7/mph cells than for the other cells studied. The mean MIBI uptake in MCF7/adr cells was significantly lower than that in MCF7/wt cells (1.9%±0.5% vs 3.1%.0.6%; P 0.1). This study suggests that the uptake of MIBI is not diminished by glutathione-associated drug resistance and that MIBI uptake in a tumour sample does not necessarly indicate that a cancer is sensitive to drugs. (orig.)

  13. Secretion of hepatitis C virus envelope glycoproteins depends on assembly of apolipoprotein B positive lipoproteins.

    Directory of Open Access Journals (Sweden)

    Vinca Icard

    Full Text Available The density of circulating hepatitis C virus (HCV particles in the blood of chronically infected patients is very heterogeneous. The very low density of some particles has been attributed to an association of the virus with apolipoprotein B (apoB positive and triglyceride rich lipoproteins (TRL likely resulting in hybrid lipoproteins known as lipo-viro-particles (LVP containing the viral envelope glycoproteins E1 and E2, capsid and viral RNA. The specific infectivity of these particles has been shown to be higher than the infectivity of particles of higher density. The nature of the association of HCV particles with lipoproteins remains elusive and the role of apolipoproteins in the synthesis and assembly of the viral particles is unknown. The human intestinal Caco-2 cell line differentiates in vitro into polarized and apoB secreting cells during asymmetric culture on porous filters. By using this cell culture system, cells stably expressing E1 and E2 secreted the glycoproteins into the basal culture medium after one week of differentiation concomitantly with TRL secretion. Secreted glycoproteins were only detected in apoB containing density fractions. The E1-E2 and apoB containing particles were unique complexes bearing the envelope glycoproteins at their surface since apoB could be co-immunoprecipitated with E2-specific antibodies. Envelope protein secretion was reduced by inhibiting the lipidation of apoB with an inhibitor of the microsomal triglyceride transfer protein. HCV glycoproteins were similarly secreted in association with TRL from the human liver cell line HepG2 but not by Huh-7 and Huh-7.5 hepatoma cells that proved deficient for lipoprotein assembly. These data indicate that HCV envelope glycoproteins have the intrinsic capacity to utilize apoB synthesis and lipoprotein assembly machinery even in the absence of the other HCV proteins. A model for LVP assembly is proposed.

  14. The glycoprotein of measles virus

    International Nuclear Information System (INIS)

    Anttonen, O.; Jokinen, M.; Salmi, A.; Vainionpaeae, R.; Gahmberg, C.G.

    1980-01-01

    Measles virus was propagated in VERO cells and purified from the culture supernatants by two successive tartrate-density-gradient centrifugations. Surface carbohydrates were labelled both in vitro and in vivo with 3 H after treatment with galactose oxidase/NaB 3 H 4 or with [ 3 H]glucosamine. The major labelled glycoprotein in measles virions had a mol.wt. of 79000. After labelling with periodate/NaB 3 H 4 , which would result in specific labelling of sialic acid residues, the 79000-mol.wt. glycoprotein was very weakly labelled. This suggested that there is no or a very low amount of sialic acid in the virions. Further analysis of the glycoprotein showed that galactose is the terminal carbohydrate unit in the oligosaccharide, and the molecular weight of the glycopeptide obtained after Pronase digestion is about 3000. The oligosaccharide is attached to the polypeptide through an alkali-stable bond, indicating a N-glycosidic asparagine linkage. (author)

  15. EMA: a developmentally regulated cell-surface glycoprotein of CNS neurons that is concentrated at the leading edge of growth cones.

    Science.gov (United States)

    Baumrind, N L; Parkinson, D; Wayne, D B; Heuser, J E; Pearlman, A L

    1992-08-01

    To identify cell-surface molecules that mediate interactions between neurons and their environment during neural development, we used monoclonal antibody techniques to define a developmentally regulated antigen in the central nervous system of the mouse. The antibody we produced (2A1) immunolabels cells throughout the central nervous system; we analyzed its distribution in the developing cerebral cortex, where it is expressed on cells very soon after they complete mitosis and leave the periventricular proliferative zone. Expression continues into adult life. The antibody also labels the epithelium of the choroid plexus and the renal proximal tubules, but does not label neurons of the peripheral nervous system in the dorsal root ganglia. In dissociated cell culture of embryonic cerebral cortex, 2A1 labels the surface of neurons but not glia. Immunolabeling of neurons in tissue culture is particularly prominent on the edge of growth cones, including filopodia and the leading edge of lamellipodia, when observed with either immunofluorescence or freeze-etch immunoelectron microscopy. Immunopurification with 2A1 of a CHAPS-extracted membrane preparation from brains of neonatal mice produces a broad (32-36 kD) electrophoretic band and a less prominent 70 kD band that are sensitive to N-glycosidase but not endoglycosidase H. Thus the 2A1 antibody recognizes a developmentally regulated, neuronal cell surface glycoprotein (or glycoproteins) with complex N-linked oligosaccharide side chains. We have termed the glycoprotein antigen EMA because of its prominence on the edge membrane of growth cones. EMA is similar to the M6 antigen (Lagenaur et al: J. Neurobiol. 23:71-88, 1992) in apparent molecular weight, distribution in tissue sections, and immunoreactivity on Western blots, suggesting that the two antigens are similar or identical. Expression of EMA is a very early manifestation of neuronal differentiation; its distribution on growth cones suggests a role in mediating the

  16. Expression of peanut agglutinin-binding mucin-type glycoprotein in human esophageal squamous cell carcinoma as a marker

    Directory of Open Access Journals (Sweden)

    Balakrishnan Ramathilakam

    2003-11-01

    Full Text Available Abstract Background The TF (Thomson – Friedenreich blood group antigen behaves as an onco-foetal carcinoma-associated antigen, showing increased expression in malignancies and its detection and quantification can be used in serologic diagnosis mainly in adenocarcinomas. This study was undertaken to analyze the sera and tissue level detectable mucin-type glycoprotein (TF-antigen by Peanut agglutinin (PNA and its diagnostic index in serum as well tissues of human esophageal squamous cell carcinoma as marker. Results We examined 100 patients for serological analysis by Enzyme Linked Lectin Assay (ELISA and demonstrated a sensitivity of 87.5%, specificity of 90% and a positive predictive value of 95%. The immuno-histochemical localization of TF antigen by Fluorescence Antigen Technique (FAT in 25 specimens of normal esophageal squamous epithelium specimens and 92 specimens with different grades of, allowed a quicker and more precise identification of its increased expression and this did not correlate with gender and tumor size. There was a positive correlation between membrane bound TF antigen expression with different histological progression, from well differentiated to poorly differentiated, determined by PNA binding. Specimens showed morphological changes and a pronounced increase in PNA binding in Golgi apparatus, secretory granules of the cytosol of well differentiated and an increased cell membrane labeling in moderately and poorly differentiated, when compared with ESCC and normal tissues. Conclusion The authors propose that the expression of TF-antigen in human may play an important role during tumorigenesis establishing it as a chemically well-defined carcinoma-associated antigen. Identification of the circulating TF-antigen as a reactive form and as a cryptic form in the healthy individuals, using PNA-ELLA and Immunohistochemical analysis of TF antigen by FAT is positively correlated with the different histological grades as a simple

  17. The glycoprotein and the matrix protein of rabies virus affect pathogenicity by regulating viral replication and facilitating cell-to-cell spread.

    Science.gov (United States)

    Pulmanausahakul, Rojjanaporn; Li, Jianwei; Schnell, Matthias J; Dietzschold, Bernhard

    2008-03-01

    While the glycoprotein (G) of rabies virus (RV) is known to play a predominant role in the pathogenesis of rabies, the function of the RV matrix protein (M) in RV pathogenicity is not completely clear. To further investigate the roles of these proteins in viral pathogenicity, we constructed chimeric recombinant viruses by exchanging the G and M genes of the attenuated SN strain with those of the highly pathogenic SB strain. Infection of mice with these chimeric viruses revealed a significant increase in the pathogenicity of the SN strain bearing the RV G from the pathogenic SB strain. Moreover, the pathogenicity was further increased when both G and M from SB were introduced into SN. Interestingly, the replacement of the G or M gene or both in SN by the corresponding genes of SB was associated with a significant decrease in the rate of viral replication and viral RNA synthesis. In addition, a chimeric SN virus bearing both the M and G genes from SB exhibited more efficient cell-to-cell spread than a chimeric SN virus in which only the G gene was replaced. Together, these data indicate that both G and M play an important role in RV pathogenesis by regulating virus replication and facilitating cell-to-cell spread.

  18. The Glycoprotein and the Matrix Protein of Rabies Virus Affect Pathogenicity by Regulating Viral Replication and Facilitating Cell-to-Cell Spread▿

    Science.gov (United States)

    Pulmanausahakul, Rojjanaporn; Li, Jianwei; Schnell, Matthias J.; Dietzschold, Bernhard

    2008-01-01

    While the glycoprotein (G) of rabies virus (RV) is known to play a predominant role in the pathogenesis of rabies, the function of the RV matrix protein (M) in RV pathogenicity is not completely clear. To further investigate the roles of these proteins in viral pathogenicity, we constructed chimeric recombinant viruses by exchanging the G and M genes of the attenuated SN strain with those of the highly pathogenic SB strain. Infection of mice with these chimeric viruses revealed a significant increase in the pathogenicity of the SN strain bearing the RV G from the pathogenic SB strain. Moreover, the pathogenicity was further increased when both G and M from SB were introduced into SN. Interestingly, the replacement of the G or M gene or both in SN by the corresponding genes of SB was associated with a significant decrease in the rate of viral replication and viral RNA synthesis. In addition, a chimeric SN virus bearing both the M and G genes from SB exhibited more efficient cell-to-cell spread than a chimeric SN virus in which only the G gene was replaced. Together, these data indicate that both G and M play an important role in RV pathogenesis by regulating virus replication and facilitating cell-to-cell spread. PMID:18094173

  19. Susceptibility of various cell lines to Neospora caninum tachyzoites cultivation

    Directory of Open Access Journals (Sweden)

    Khordadmehr, M.,

    2014-05-01

    Full Text Available Neospora caninum is a coccidian protozoan parasite which is a major cause of bovine abortions and neonatal mortality in cattle, sheep, goat and horse. Occasionally, cultured cells are used for isolation and multiplication of the agent in vitro with several purposes. In this study the tachyzoite yields of N. caninum were compared in various cell cultures as the host cell lines. Among the cell cultures tested, two presented good susceptibility to the agent: cell lines Vero and MA-104. SW742 and TLI (in vitro suspension culture of lymphoid cells infected with Theileria lestoquardi showed moderate sensitivity. No viable tachyzoite were detected in the culture of MDCK and McCoy cell lines. These results demonstrate that MA-104 and SW742 cells present adequate susceptibility to N. caninum compared to Vero cells, which have been largely used to multiply the parasite in vitro. Moreover, these have easy manipulation, fast multiplication and relatively low nutritional requirements. In addition, the result of this study showed that TLI cell line as a suspension cell culture is susceptible to Nc-1 tachyzoites infection and could be used as an alternative host cell line for tachyzoites culture in vitro studies.

  20. Natural killer cells for immunotherapy – Advantages of cell lines over blood NK cells

    Directory of Open Access Journals (Sweden)

    Hans eKlingemann

    2016-03-01

    Full Text Available Natural killer cells are potent cytotoxic effector cells for cancer therapy and potentially for severe viral infections. However, there are technical challenges to obtain sufficient numbers of functionally active NK cells form a patient’s blood since they represent only 10% of the lymphocytes. Especially, cancer patients are known to have dysfunctional NK cells. The alternative is to obtain cells from a healthy donor, which requires depletion of the allogeneic T-cells. Establishing cell lines from donor blood NK cells have not been successful, in contrast to blood NK cells obtained from patients with a clonal NK cell lymphoma. Those cells can be expanded in culture in the presence of IL-2. However, except for the NK-92 cell line none of the other six known cell lines has consistent and reproducibly high anti-tumor cytotoxicity, nor can they be easily genetically manipulated to recognize specific tumor antigens or to augment monoclonal antibody activity through ADCC. NK-92 is also the only cell line product that has been widely given to patients with advanced cancer with demonstrated efficiency and minimal side effects.

  1. Cloning and Stable Expression of cDNA Coding For Platelet Endothelial Cell Adhesion Molecule -1 (PECAM-1, CD31 in NIH-3T3 Cell Line

    Directory of Open Access Journals (Sweden)

    Hamed Salehi-Lalemarzi

    2015-06-01

    Full Text Available Purpose: PECAM-1 (CD31 is a glycoprotein expressed on endothelial and bone marrow precursor cells. It plays important roles in angiogenesis, maintenance and integration of the cytoskeleton and direction of leukocytes to the site of inflammation. We aimed to clone the cDNA coding for human CD31 from KG1a for further subcloning and expression in NIH- 3T3 mouse cell line. Methods: CD31 cDNA was cloned from KG1a cell line after total RNA extraction and cDNA synthesis. Pfu DNA polymerase-amplified specific band was ligated to pGEMT-easy vector and sub-cloned in pCMV6-Neo expression vector. After transfection of NIH-3T3 cells using 3 μg of recombinant construct and 6 μl of JetPEI transfection reagent, stable expression was obtained by selection of cells by G418 antibiotic and confirmed by surface flow cytometry. Results: 2235 bp specific band was aligned completely to human CD31 reference sequence in NCBI database. Transient and stable expression of human CD31 on transfected NIH-3T3 mouse fibroblast cells was achieved (23% and 96%, respectively as shown by flow cytometry. Conclusion: Due to murine origin of NIH-3T3 cell line, CD31-expressing NIH-3T3 cells could be useful as immunogen in production of diagnostic monoclonal antibodies against human CD31, with no need for purification of recombinant proteins.

  2. A single mutation in the E2 glycoprotein important for neurovirulence influences binding of Sindbis virus to neuroblastoma cells

    NARCIS (Netherlands)

    Lee, PY; Knight, R; Smit, JM; Wilschut, J; Griffin, DE

    The amino acid at position 55 of the E2 glycoprotein (E2(55)) of Sindbis virus (SV) is a critical determinant of SV neurovirulence in mice. Recombinant virus strain TE (E2(55) = histidine) differs only at this position from virus strain 633 (E2(55) = glutamine), yet TE is considerably more

  3. The H2 receptor antagonist nizatidine is a P-glycoprotein substrate: characterization of its intestinal epithelial cell efflux transport.

    Science.gov (United States)

    Dahan, Arik; Sabit, Hairat; Amidon, Gordon L

    2009-06-01

    The aim of this study was to elucidate the intestinal epithelial cell efflux transport processes that are involved in the intestinal transport of the H(2) receptor antagonist nizatidine. The intestinal epithelial efflux transport mechanisms of nizatidine were investigated and characterized across Caco-2 cell monolayers, in the concentration range 0.05-10 mM in both apical-basolateral (AP-BL) and BL-AP directions, and the transport constants of P-glycoprotein (P-gp) efflux activity were calculated. The concentration-dependent effects of various P-gp (verapamil, quinidine, erythromycin, ketoconazole, and cyclosporine A), multidrug resistant-associated protein 2 (MRP2; MK-571, probenecid, indomethacin, and p-aminohipuric acid), and breast cancer resistance protein (BCRP; Fumitremorgin C) inhibitors on nizatidine bidirectional transport were examined. Nizatidine exhibited 7.7-fold higher BL-AP than AP-BL Caco-2 permeability, indicative of net mucosal secretion. All P-gp inhibitors investigated displayed concentration-dependent inhibition on nizatidine secretion in both directions. The IC(50) of verapamil on nizatidine P-gp secretion was 1.2 x 10(-2) mM. In the absence of inhibitors, nizatidine displayed concentration-dependent secretion, with one saturable (J(max) = 5.7 x 10(-3) nmol cm(-2) s(-1) and K(m) = 2.2 mM) and one nonsaturable component (K(d) = 7 x 10(-4) microL cm(-2) s(-1)). Under complete P-gp inhibition, nizatidine exhibited linear secretory flux, with a slope similar to the nonsaturable component. V(max) and K(m) estimated for nizatidine P-gp-mediated secretion were 4 x 10(-3) nmol cm(-2) s(-1) and 1.2 mM, respectively. No effect was obtained with the MRP2 or the BCRP inhibitors. Being a drug commonly used in pediatrics, adults, and elderly, nizatidine susceptibility to efflux transport by P-gp revealed in this paper may be of significance in its absorption, distribution, and clearance, as well as possible drug-drug interactions.

  4. Celastraceae sesquiterpenes as a new class of modulators that bind specifically to human P-glycoprotein and reverse cellular multidrug resistance.

    Science.gov (United States)

    Muñoz-Martínez, Francisco; Lu, Peihua; Cortés-Selva, Fernando; Pérez-Victoria, José María; Jiménez, Ignacio A; Ravelo, Angel G; Sharom, Frances J; Gamarro, Francisco; Castanys, Santiago

    2004-10-01

    Overexpression of ABCB1 (MDR1) P-glycoprotein, a multidrug efflux pump, is one mechanism by which tumor cells may develop multidrug resistance (MDR), preventing the successful chemotherapeutic treatment of cancer. Sesquiterpenes from Celastraceae family are natural compounds shown previously to reverse MDR in several human cancer cell lines and Leishmania strains. However, their molecular mechanism of reversion has not been characterized. In the present work, we have studied the ability of 28 dihydro-beta-agarofuran sesquiterpenes to reverse the P-glycoprotein-dependent MDR phenotype and elucidated their molecular mechanism of action. Cytotoxicity assays using human MDR1-transfected NIH-3T3 cells allowed us to select the most potent sesquiterpenes reversing the in vitro resistance to daunomycin and vinblastine. Flow cytometry experiments showed that the above active compounds specifically inhibited drug transport activity of P-glycoprotein in a saturable, concentration-dependent manner (K(i) down to 0.24 +/- 0.01 micromol/L) but not that of ABCC1 (multidrug resistance protein 1; MRP1), ABCC2 (MRP2), and ABCG2 (breast cancer resistance protein; BCRP) transporters. Moreover, sesquiterpenes inhibited at submicromolar concentrations the P-glycoprotein-mediated transport of [(3)H]colchicine and tetramethylrosamine in plasma membrane from CH(R)B30 cells and P-glycoprotein-enriched proteoliposomes, supporting that P-glycoprotein is their molecular target. Photoaffinity labeling in plasma membrane and fluorescence spectroscopy experiments with purified protein suggested that sesquiterpenes interact with transmembrane domains of P-glycoprotein. Finally, sesquiterpenes modulated P-glycoprotein ATPase-activity in a biphasic, concentration-dependent manner: they stimulated at very low concentrations but inhibited ATPase activity as noncompetitive inhibitors at higher concentrations. Sesquiterpenes from Celastraceae are promising P-glycoprotein modulators with potential

  5. Radiation sensitivity of human lung cancer cell lines

    International Nuclear Information System (INIS)

    Carmichael, J.; Degraff, W.G.; Gamson, J.; Russo, G.; Mitchell, J.B.; Gazdar, A.F.; Minna, J.D.; Levitt, M.L.

    1989-01-01

    X-Ray survival curves were determined using a panel of 17 human lung cancer cell lines, with emphasis on non-small cell lung cancer (NSCLC). In contrast to classic small cell lung cancer (SCLC) cell lines, NSCLC cell lines were generally less sensitive to radiation as evidenced by higher radiation survival curve extrapolation numbers, surviving fraction values following a 2Gy dose (SF2) and the mean inactivation dose values (D) values. The spectrum of in vitro radiation responses observed was similar to that expected in clinical practice, although mesothelioma was unexpectedly sensitive in vitro. Differences in radiosensitivity were best distinguished by comparison of SF2 values. Some NSCLC lines were relatively sensitive, and in view of this demonstrable variability in radiation sensitivity, the SF2 value may be useful for in vitro predictive assay testing of clinical specimens. (author)

  6. Establishment and characterization of rat portal myofibroblast cell lines.

    Directory of Open Access Journals (Sweden)

    Michel Fausther

    Full Text Available The major sources of scar-forming myofibroblasts during liver fibrosis are activated hepatic stellate cells (HSC and portal fibroblasts (PF. In contrast to well-characterized HSC, PF remain understudied and poorly defined. This is largely due to the facts that isolation of rodent PF for functional studies is technically challenging and that PF cell lines had not been established. To address this, we have generated two polyclonal portal myofibroblast cell lines, RGF and RGF-N2. RGF and RGF-N2 were established from primary PF isolated from adult rat livers that underwent culture activation and subsequent SV40-mediated immortalization. Specifically, Ntpdase2/Cd39l1-sorted primary PF were used to generate the RGF-N2 cell line. Both cell lines were functionally characterized by RT-PCR, immunofluorescence, immunoblot and bromodeoxyuridine-based proliferation assay. First, immortalized RGF and RGF-N2 cells are positive for phenotypic myofibroblast markers alpha smooth muscle actin, type I collagen alpha-1, tissue inhibitor of metalloproteinases-1, PF-specific markers elastin, type XV collagen alpha-1 and Ntpdase2/Cd39l1, and mesenchymal cell marker ecto-5'-nucleotidase/Cd73, while negative for HSC-specific markers desmin and lecithin retinol acyltransferase. Second, both RGF and RGF-N2 cell lines are readily transfectable using standard methods. Finally, RGF and RGF-N2 cells attenuate the growth of Mz-ChA-1 cholangiocarcinoma cells in co-culture, as previously demonstrated for primary PF. Immortalized rat portal myofibroblast RGF and RGF-N2 cell lines express typical markers of activated PF-derived myofibroblasts, are suitable for DNA transfection, and can effectively inhibit cholangiocyte proliferation. Both RGF and RGF-N2 cell lines represent novel in vitro cellular models for the functional studies of portal (myofibroblasts and their contribution to the progression of liver fibrosis.

  7. McCoy cell line as a possible model containing CD4+ receptors for the study of HIV-1 replication

    Directory of Open Access Journals (Sweden)

    Nogueira Yeda L.

    2003-01-01

    Full Text Available Several studies have recently shown the use of recombinant rabies virus as potential vector-viral vaccine for HIV-1. The sequence homology between gp 120 and rabies virus glycoprotein has been reported. The McCoy cell line has therefore been used to show CD4+ or CD4+ like receptors. Samples of HIV-1 were isolated, when plasma of HIV-1 positive patients was inoculated in the McCoy cell line. The virus infection was then studied during successive virus passages. The proteins released in the extra cellular medium were checked for protein activity, by exposure to SDS Electrophoresis and blotting to nitro-cellulose filter, then reacting with sera of HIV positive and negative patients. Successive passages were performed, and showed viral replication, membrane permeabilization, the syncytium formation, and the cellular lysis (cytopathic effect. Flow cytometry analysis shows clear evidence that CD4+ receptors are present in this cell line, which enhances the likelihood of easy isolation and replication of HIV. The results observed allow the use of this cell line as a possible model for isolating HIV, as well as for carrying out studies of the dynamics of viral infection in several situations, including exposure to drugs in pharmacological studies, and possibly studies and analyses of the immune response in vaccine therapies.

  8. UCI-VULV-1, a vulvar squamous carcinoma cell line.

    Science.gov (United States)

    Carpenter, P M; Gamboa-Vujicic, G; Mascarello, J T; Wilczynski, S; Bhaumik, M; Dorion, G; Manetta, A

    1995-05-01

    Squamous carcinoma of the vulva (SCV) is an uncommon neoplasm of uncertain etiology. There is evidence that there are two subgroups of SCV, one associated with human papilloma virus (HPV) and a second HPV-negative group. The UCI-VULV-1 cell line, obtained from a lymph node metastasis of an SCV, grows with a population doubling time of approximately 60 hr. The saturation density is 10(5) cells/cm2. The cell line does not exhibit anchorage independence and is weakly tumorigenic. The cells range in appearance from an abundant spindle cell to a less common larger, flat cell. All of the cells are immunoreactive for high-molecular-weight keratin, but only the flat cells, which form squamous pearls in vivo, are immunoreactive for low-molecular-weight keratin. The cell line expresses epidermal growth factor (EGF), transforming growth factor-alpha, the EGF receptor, and p53 protein. Polymerase chain reaction revealed no HPV DNA within the cells. Early passage cells exhibited karyotypic heterogeneity with few similarities to previous described SCV karyotypes. The cells display sensitivity to cis-platinum in concentrations toxic to many ovarian and cervical carcinoma lines. UCI-VULV-1 may be helpful for studying the properties of the HPV-negative form of SCV.

  9. Differential effects of bisphosphonates on breast cancer cell lines

    NARCIS (Netherlands)

    Verdijk, R.; Franke, H.R.; Wolbers, F.; Vermes, I.

    2007-01-01

    Bisphosphonates may induce direct anti-tumor effects in breast cancers cells in virtro. In this study, six bisphosphonates were administered to three breast caner cell lines. Cell proliferation was measured by quantification of th expressio of Cyclin D1 mRNA. Apoptosis was determined by flow

  10. A stromal myoid cell line provokes thymic erythropoiesis between ...

    African Journals Online (AJOL)

    Background: The thymus provides an optimal cellular and humoral microenvironment for cell line committed differentiation of haematopoietic stem cells. The immigration process requires the secretion of at least one peptide called thymotaxine by cells of the reticulo-epithelial (RE) network of the thymic stromal cellular ...

  11. Cytotoxicity against MCF-7 breast cancer cell line and interaction ...

    African Journals Online (AJOL)

    N6-furfuryladenine (kinetin) is a cytokinin growth factor with several biological effects observed in human cells and fruit flies. Kinetin exists naturally in the DNA of almost all organisms tested so far, including human cells and various plants. The cytotoxicity effect of kinetin on MCF-7 breast cancer cell lines was measured by ...

  12. Susceptibilities of medaka (Oryzias latipes cell lines to a betanodavirus

    Directory of Open Access Journals (Sweden)

    Adachi Kei

    2010-07-01

    Full Text Available Abstract Background Betanodaviruses, members of the family Nodaviridae, have bipartite, positive-sense RNA genomes and are the causal agents of viral nervous necrosis in many marine fish species. Recently, the viruses were shown to infect a few freshwater fish species including a model fish medaka (Oryzias latipes. Although virological study using cultured medaka cells would provide a lot of insight into virus-fish interactions in molecular aspects, no such cells have yet been tested for virus susceptibility. Results We tested ten medaka cell lines for susceptibilities to redspotted grouper nervous necrosis virus (RGNNV. Although the viral coat protein was detected in all the cell lines inoculated, the levels of cytopathic effect development and viral propagation were quite different among the cell lines. Those levels were especially high in OLHNI-1 and OLHNI-2 cells, but were extremely low in OLME-104 cells. Some cell lines entered into antiviral state after RGNNV infections probably because of inducing an antiviral system. This is the first report to examine the susceptibilities of cultured medaka cells against a virus. Conclusion OLHNI-1 and OLHNI-2 cells are candidates of new standard cells for betanodavirus study because of their high susceptibilities to the virus and their several advantages as model fish cells.

  13. Establishment and characterization of a chicken mononuclear cell line.

    Science.gov (United States)

    Qureshi, M A; Miller, L; Lillehoj, H S; Ficken, M D

    1990-11-01

    A new chicken mononuclear cell line (MQ-NCSU) has been established. The starting material used to initiate this cell line was a transformed spleen from a female Dekalb XL chicken which had been experimentally challenged with the JM/102W strain of the Marek's disease virus. After homogenization, a single cell suspension of splenic cells was cultured using L.M. Hahn medium supplemented with 10 microM 2-mercaptoethanol. Under these culture conditions, a rapidly proliferating cell was observed and then expanded after performing limiting dilution cultures. These cells were moderately adherent and phagocytic for sheep red blood cells and Salmonella typhimurium. When tested against a panel of monoclonal antibodies (mAb) using the flow cytometry, MQ-NCSU cells stained readily with anti-chicken monocyte specific (K-1) mAb but did not stain with mAb detecting T-helper, T-cytotoxic/suppressor, and NK cells. MQ-NCSU cells expressed very high levels of Ia antigens and transferrin receptors. In addition, cell-free supernatant obtained from MQ-NCSU culture contained a factor which exhibited cytolytic activity against tumor cell targets. Based on their cultural, morphological, and functional characteristics and mAb reactivity profile, we conclude that MQ-NCSU cell line represents a malignantly-transformed cell which shares features characteristic of cells of the mononuclear phagocyte lineage.

  14. Isolation and Characterization of a Novel Gammaherpesvirus from a Microbat Cell Line.

    Science.gov (United States)

    Shabman, Reed S; Shrivastava, Susmita; Tsibane, Tshidi; Attie, Oliver; Jayaprakash, Anitha; Mire, Chad E; Dilley, Kari E; Puri, Vinita; Stockwell, Timothy B; Geisbert, Thomas W; Sachidanandam, Ravi; Basler, Christopher F

    2016-01-01

    While employing deep sequencing and de novo assembly to characterize the mRNA transcript profile of a cell line derived from the microbat Myotis velifer incautus, we serendipitously identified mRNAs encoding proteins with a high level of identity to herpesviruses. A majority were closely related to proteins of equine herpesvirus 2 (EHV-2), a horse gammaherpesvirus. We demonstrated by electron microscopy the presence of herpesvirus-like particles in the microbat cells. Passage of supernatants from microbat cells to Vero cells resulted in syncytium formation, and expression of viral genes and amplification of viral DNA were demonstrated by quantitative PCR. Susceptibility of human cell lines to productive infection was also demonstrated. Next-generation sequencing and de novo assembly of the viral genome from supernatants from Vero cells yielded a single contig of approximately 130 kb with at least 77 open reading frames (ORFs), predicted microRNAs (miRNAs), and a gammaherpesvirus genomic organization. Phylogenic analysis of the envelope glycoprotein (gB) and DNA polymerase (POLD1) revealed similarity to multiple gammaherpesviruses, including those from as-yet-uncultured viruses of the Rhadinovirus genus that were obtained by deep sequencing of bat tissues. Moreover, the assembled genome revealed ORFs that share little or no homology to known ORFs in EHV-2 but are similar to accessory proteins of other gammaherpesviruses. Some also have striking homology to predicted Myotis bat proteins. Cumulatively, this study provides the first isolation and characterization of a replication-competent bat gammaherpesvirus. IMPORTANCE Bats are of significant interest as reservoirs for zoonotic viral pathogens; however, tools to dissect bat-virus interactions are limited in availability. This study serendipitously identified, in an established bat cell line, a fully replication-competent gammaherpesvirus; determined the complete genome sequence of the virus; and generated a viral

  15. Global Conservation of Protein Status between Cell Lines and Xenografts

    Directory of Open Access Journals (Sweden)

    Julian Biau

    2016-08-01

    Full Text Available Common preclinical models for testing anticancer treatment include cultured human tumor cell lines in monolayer, and xenografts derived from these cell lines in immunodeficient mice. Our goal was to determine how similar the xenografts are compared with their original cell line and to determine whether it is possible to predict the stability of a xenograft model beforehand. We studied a selection of 89 protein markers of interest in 14 human cell cultures and respective subcutaneous xenografts using the reverse-phase protein array technology. We specifically focused on proteins and posttranslational modifications involved in DNA repair, PI3K pathway, apoptosis, tyrosine kinase signaling, stress, cell cycle, MAPK/ERK signaling, SAPK/JNK signaling, NFκB signaling, and adhesion/cytoskeleton. Using hierarchical clustering, most cell culture-xenograft pairs cluster together, suggesting a global conservation of protein signature. Particularly, Akt, NFkB, EGFR, and Vimentin showed very stable protein expression and phosphorylation levels highlighting that 4 of 10 pathways were highly correlated whatever the model. Other proteins were heterogeneously conserved depending on the cell line. Finally, cell line models with low Akt pathway activation and low levels of Vimentin gave rise to more reliable xenograft models. These results may be useful for the extrapolation of cell culture experiments to in vivo models in novel targeted drug discovery.

  16. Pathway-specific differences between tumor cell lines and normal and tumor tissue cells

    Directory of Open Access Journals (Sweden)

    Tozeren Aydin

    2006-11-01

    Full Text Available Abstract Background Cell lines are used in experimental investigation of cancer but their capacity to represent tumor cells has yet to be quantified. The aim of the study was to identify significant alterations in pathway usage in cell lines in comparison with normal and tumor tissue. Methods This study utilized a pathway-specific enrichment analysis of publicly accessible microarray data and quantified the gene expression differences between cell lines, tumor, and normal tissue cells for six different tissue types. KEGG pathways that are significantly different between cell lines and tumors, cell lines and normal tissues and tumor and normal tissue were identified through enrichment tests on gene lists obtained using Significance Analysis of Microarrays (SAM. Results Cellular pathways that were significantly upregulated in cell lines compared to tumor cells and normal cells of the same tissue type included ATP synthesis, cell communication, cell cycle, oxidative phosphorylation, purine, pyrimidine and pyruvate metabolism, and proteasome. Results on metabolic pathways suggested an increase in the velocity nucleotide metabolism and RNA production. Pathways that were downregulated in cell lines compared to tumor and normal tissue included cell communication, cell adhesion molecules (CAMs, and ECM-receptor interaction. Only a fraction of the significantly altered genes in tumor-to-normal comparison had similar expressions in cancer cell lines and tumor cells. These genes were tissue-specific and were distributed sparsely among multiple pathways. Conclusion Significantly altered genes in tumors compared to normal tissue were largely tissue specific. Among these genes downregulation was a major trend. In contrast, cell lines contained large sets of significantly upregulated genes that were common to multiple tissue types. Pathway upregulation in cell lines was most pronounced over metabolic pathways including cell nucleotide metabolism and oxidative

  17. Induction of apoptosis by opium in some tumor cell lines.

    Science.gov (United States)

    Khaleghi, M; Farsinejad, A; Dabiri, S; Asadikaram, G

    2016-09-30

    The current study is aimed at investigation of the opium effects on the apoptosis of different cell lines in culture medium and compares such effects with one another. The study is carried out on over 8 cell lines (AA8, AGS, Hela, HepG2, MCF7, N2a, PC12, WEHI). A 2.86 x 10-4 g/ml opium concentration was prepared and added to the culture medium of the cell lines for 48 hours. Cytotoxicity was tested by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay. The apoptotic effect of opium on the cell lines was analyzed by Annexin-PI test. Opium with concentration of 2.86 x 10-4 g/ml in 48 hours significantly induces apoptosis in certain cell lines (i.e. AA8, N2a, WEHI), apoptosis and necrosis in some others (i.e. Hela, HepG2, MCF7, and PC12), and also solely necrosis in the AGS cell line. One could infer that the usage of opium with different levels in different tissues leads to certain disorders in some tissues and may have therapeutic effects under distinctive conditions (i.e. unchecked growth of cells) as confirmed by the results.

  18. Fish cell lines as a tool in aquatic toxicology.

    Science.gov (United States)

    Segner, H

    1998-01-01

    In aquatic toxicology, cytotoxicity tests using continuous fish cell lines have been suggested as a tool for (1) screening or toxicity ranking of anthropogenic chemicals, compound mixtures and environmental samples, (2) establishment of structure-activity relationships, and (3) replacement or supplementation of in vivo animal tests. Due to the small sample volumes necessary for cytotoxicity tests, they appear to be particularly suited for use in chemical fractionation studies. The present contribution reviews the existing literature on cytotoxicity studies with fish cells and considers the influence of cell line and cytotoxicity endpoint selection on the test results. Furthermore, in vitro/in vivo correlations between fish cell lines and intact fish are discussed. During recent years, fish cell lines have been increasingly used for purposes beyond their meanwhile established role for cytotoxicity measurements. They have been successfully introduced for detection of genotoxic effects, and cell lines are now applied for investigations on toxic mechanisms and on biomarkers such as cytochrome P4501A. The development of recombinant fish cell lines may further support their role as a bioanalytical tool in environmental diagnostics.

  19. HIF-1α inhibition reverses multidrug resistance in colon cancer cells via downregulation of MDR1/P-glycoprotein.

    Directory of Open Access Journals (Sweden)

    Jianfang Chen

    Full Text Available Multidrug resistance (MDR is one of the major reasons chemotherapy-based treatments fail. Hypoxia is generally associated with tumor chemoresistance. However, the correlation between the heterodimeric hypoxia-inducible factor-1 (HIF-1 and the multidrug resistance (MDR1 gene/transporter P-glycoprotein (P-gp remains unclear. This study aims to explore the molecular mechanisms of reversing colon cancer MDR by focusing on the target gene HIF-1α.A chemotherapeutic sensitivity assay was used to observe the efficiency of MDR reversal in LoVo multicellular spheroids (MCS. The apoptotic level induced by different drugs was examined by flow cytometry (FCM. Binding of HIF-1α to the MDR1 gene promoter was evaluated by Chromatin immunoprecipitation (ChIP. The relationship between HIF-1α/P-gp expression and sensitivity to chemotherapy was analyzed.The sensitivity of LoVo MCS to all four chemotherapy drugs was decreased to varying degrees under hypoxic conditions. After silencing the HIF-1α gene, the sensitivities of LoVo MCS to all four chemotherapy drugs were restored. The apoptotic levels that all the drugs induced were all decreased to various extents in the hypoxic group. After silencing HIF-1α, the apoptosis level induced by all four chemotherapy drugs increased. The expression of HIF-1α and P-gp was significantly enhanced in LoVo MCS after treatment with hypoxia. Inhibiting HIF-1α significantly decreased the expression of MDR1/P-gp mRNA or protein in both the LoVo monolayers and LoVo MCS. The ChIP assay showed that HIF-1α was bound to the MDR1 gene promoter. Advanced colon carcinoma patients with expression of both HIF-1α and P-gp were more resistant to chemotherapy than that with non expression.HIF-1α inhibition reverses multidrug resistance in colon cancer cells via downregulation of MDR1/P-gp. The expression of HIF-1α and MDR1/P-gp can be used as a predictive marker for chemotherapy resistance in colon cancer.

  20. Lining cells on normal human vertebral bone surfaces

    International Nuclear Information System (INIS)

    Henning, C.B.; Lloyd, E.L.

    1982-01-01

    Thoracic vertebrae from two individuals with no bone disease were studied with the electron microscope to determine cell morphology in relation to bone mineral. The work was undertaken to determine if cell morphology or spatial relationships between the bone lining cells and bone mineral could account for the relative infrequency of bone tumors which arise at this site following radium intake, when compared with other sites, such as the head of the femur. Cells lining the vertebral mineral were found to be generally rounded in appearance with varied numbers of cytoplasmic granules, and they appeared to have a high density per unit of surface area. These features contrasted with the single layer of flattened cells characteristic of the bone lining cells of the femur. A tentative discussion of the reasons for the relative infrequency of tumors in the vertebrae following radium acquisition is presented

  1. MORPHOMETRIC SUBTYPING FOR A PANEL OF BREAST CANCER CELL LINES

    Energy Technology Data Exchange (ETDEWEB)

    Han, Ju; Chang, Hang; Fontenay, Gerald; Wang, Nicholas J.; Gray, Joe W.; Parvin, Bahram

    2009-05-08

    A panel of cell lines of diverse molecular background offers an improved model system for high-content screening, comparative analysis, and cell systems biology. A computational pipeline has been developed to collect images from cell-based assays, segment individual cells and colonies, represent segmented objects in a multidimensional space, and cluster them for identifying distinct subpopulations. While each segmentation strategy can vary for different imaging assays, representation and subpopulation analysis share a common thread. Application of this pipeline to a library of 41 breast cancer cell lines is demonstrated. These cell lines are grown in 2D and imaged through immunofluorescence microscopy. Subpopulations in this panel are identified and shown to correlate with previous subtyping literature that was derived from transcript data.

  2. DNA fingerprinting of the NCI-60 cell line panel.

    Science.gov (United States)

    Lorenzi, Philip L; Reinhold, William C; Varma, Sudhir; Hutchinson, Amy A; Pommier, Yves; Chanock, Stephen J; Weinstein, John N

    2009-04-01

    The National Cancer Institute's NCI-60 cell line panel, the most extensively characterized set of cells in existence and a public resource, is frequently used as a screening tool for drug discovery. Because many laboratories around the world rely on data from the NCI-60 cells, confirmation of their genetic identities represents an essential step in validating results from them. Given the consequences of cell line contamination or misidentification, quality control measures should routinely include DNA fingerprinting. We have, therefore, used standard DNA microsatellite short tandem repeats to profile the NCI-60, and the resulting DNA fingerprints are provided here as a reference. Consistent with previous reports, the fingerprints suggest that several NCI-60 lines have common origins: the melanoma lines MDA-MB-435, MDA-N, and M14; the central nervous system lines U251 and SNB-19; the ovarian lines OVCAR-8 and OVCAR-8/ADR (also called NCI/ADR); and the prostate lines DU-145, DU-145 (ATCC), and RC0.1. Those lines also show that the ability to connect two fingerprints to the same origin is not affected by stable transfection or by the development of multidrug resistance. As expected, DNA fingerprints were not able to distinguish different tissues-of-origin. The fingerprints serve principally as a barcodes.

  3. Characterization of newly established colorectal cancer cell lines ...

    Indian Academy of Sciences (India)

    Unknown

    2000-12-19

    Gastroenterology Service,. Department of Medicine, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021, USA. Abstract. We have established a series of 20 colorectal cancer cell lines and performed ...

  4. P-glycoprotein epitope mapping. II. The murine monoclonal antibody MM6.15 to human multidrug-resistant cells binds with three distinct loops in the MDR1-P-glycoprotein extracellular domain.

    Science.gov (United States)

    Cianfriglia, M; Romagnoli, G; Tombesi, M; Poloni, F; Falasca, G; Di Modugno, F; Castagna, M; Chersi, A

    1995-03-29

    A new murine monoclonal antibody (MAb), MM6.15, to human MDR1 P-glycoprotein was found to be reactive in ELISA with synthetic peptides selected from the predicted sequences of the first, fourth and sixth extracellular loop of MDR1-P-glycoprotein. In order to precisely define the MM6.15-binding site, a peptide library of overlapping 5- to 9-mer residues covering the entire sixth extracellular loop of both human and rodent class-1 P-glycoproteins was synthesized on polyethylene pins and tested for MAb binding. The results of this ELISA demonstrated that the MAb MM6.15 reacts only with human synthetic peptides and that the critical component of the MAb recognition is made up of the amino-acid sequence LVAHKL (residues 963-968 of the MDR1-P-glycoprotein) with histidine (H), lysine (K) and possibly leucine (L), key residues of this immunogenic domain.

  5. SATB1 regulates SPARC expression in K562 cell line through binding to a specific sequence in the third intron

    International Nuclear Information System (INIS)

    Li, K.; Cai, R.; Dai, B.B.; Zhang, X.Q.; Wang, H.J.; Ge, S.F.; Xu, W.R.; Lu, J.

    2007-01-01

    Special AT-rich binding protein 1 (SATB1), a cell type-specific nuclear matrix attachment region (MAR) DNA-binding protein, tethers to a specific DNA sequence and regulates gene expression through chromatin remodeling and HDAC (histone deacetylase complex) recruitment. In this study, a SATB1 eukaryotic expression plasmid was transfected into the human erythroleukemia K562 cell line and individual clones that stably over-expressed the SATB1 protein were isolated. Microarray analysis revealed that hundreds of genes were either up- or down-regulated in the SATB1 over-expressing K562 cell lines. One of these was the extra-cellular matrix glycoprotein, SPARC (human secreted protein acidic and rich in cysteine). siRNA knock-down of SATB1 also reduced SPARC expression, which was consistent with elevated SPARC levels in the SATB1 over-expressing cell line. Bioinformatics software Mat-inspector showed that a 17 bp DNA sequence in the third intron of SPARC possessed a high potential for SATB1 binding; a finding confirmed by Chromatin immunoprecipitation (ChIP) with anti-SATB1 antibody. Our results show for the first time that forced-expression of SATB1 in K562 cells triggers SPARC up-regulation by binding to a 17 bp DNA sequence in the third intron

  6. Isolation of two chloroethylnitrosourea-sensitive Chinese hamster cell lines

    International Nuclear Information System (INIS)

    Hata, H.; Numata, M.; Tohda, H.; Yasui, A.; Oikawa, A.

    1991-01-01

    1-[(4-Amino-2-methylpyrimidin-5-yl)methyl]-3-(2-chloroethyl)-3- nitrosourea hydrochloride (ACNU), a cancer chemotherapeutic bifunctional alkylating agent, causes chloroethylation of DNA and subsequent DNA strand cross-linking through an ethylene bridge. We isolated and characterized two ACNU-sensitive mutants from mutagenized Chinese hamster ovary cells and found them to be new drug-sensitive recessive Chinese hamster mutants. Both mutants were sensitive to various monofunctional alkylating agents in a way similar to that of the parental cell lines CHO9. One mutant (UVS1) was cross-sensitive to UV and complemented the UV sensitivity of all Chinese hamster cell lines of 7 established complementation groups. Since UV-induced unscheduled DNA synthesis was very low, a new locus related to excision repair is thought to be defective in this cell line. Another ACNU-sensitive mutant, CNU1, was slightly more sensitive to UV than the parent cell line. CNU1 was cross-sensitive to 1-(2-chloroethyl)-3-cyclohexyl-1-nitrosourea and slightly more sensitive to mitomycin C. No increased accumulation of ACNU and a low level of UV-induced unscheduled DNA synthesis in this cell as compared with the parental cell line suggest that there is abnormality in a repair response of this mutant cell to some types of DNA cross-links

  7. In vitro Rb-1 gene transfer to retinoblastoma cell lines

    International Nuclear Information System (INIS)

    Choi, Sang Wook; Ham, Yong Hoh; Kim, Mee Heui

    1994-04-01

    After transfection of Rb-vector to packaging cell line (CRIP) by Ca-P precipitation method, we could select nineteen colonies of G-418 resistant clone by ring cloning. Each colony was transduced to NIH3T3 cells to select the one which produces high titer virus. After NIH3T3 cells transduction, we could get 28 colony counts for the high, 127 for the middle, and 6 for the low viral titer. With the supernatant of the high viral titer colony (CRIPRb 2-5). We transduct retinoblastoma cell lines. 5 figs, 11 refs. (Author)

  8. Tetrandrine potentiates the glucocorticoid pharmacodynamics via inhibiting P-glycoprotein and mitogen-activated protein kinase in mitogen-activated human peripheral blood mononuclear cells.

    Science.gov (United States)

    Xu, Wencheng; Meng, Kehan; Tu, Yuanchao; Tanaka, Sachiko; Onda, Kenji; Sugiyama, Kentaro; Hirano, Toshihiko; Yamada, Haruki

    2017-07-15

    Glucocorticoids play significant roles in treatments of inflammatory and autoimmune diseases. Some patients show a poor or absent response even to high doses of glucocorticoids. The purpose of this study was to explore whether tetrandrine combined with glucocorticoids could be a new treatment strategy to resolve glucocorticoids resistance. Information on glucocorticoids sensitivity was usually obtained through mitogen-activated human peripheral blood mononuclear cells in cell culture procedures. Thus, human peripheral blood mononuclear cells was chosen as a model to study the immunosuppressive effect of methylprednisolone combined with tetrandrine, including the possible action mechanisms. Tetrandrine decreased the IC 50 value of methylprednisolone significantly, but it showed little toxic effect on the concanavalin A-activated human peripheral blood mononuclear cells. Both tetrandrine and methylprednisolone inhibited the secretion of pro-inflammatory cytokines TNFα and IL-6 significantly and the combination showed stronger inhibitory ability. Tetrandrine and/or methylprednisolone did not increase the percentage of CD4 + CD25 + Foxp3 + regulatory T cells in CD4 + T cells. However tetrandrine with or without methylprednisolone significantly inhibited the function of drug efflux pump P-glycoprotein 170 of CD4 + , CD8 + T cells and lymphocytes. Tetrandrine tended to suppress the phosphorylation of mitogen-activated protein kinase and this effect was potentiated by methylprednisolone. These tetrandrine effects were suggested to be beneficial for improving the immunosuppressive efficacy of glucocorticoids. Glucocorticoids combined with tetrandrine could be a new therapeutic approach to resolve glucocorticoids-resistance possibly via inhibiting the function of P-glycoprotein and blocking mitogen-activated protein kinase signaling pathway from but not affecting on CD4 + CD25 + Foxp3 + regulatory cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Annotating Human P-Glycoprotein Bioassay Data.

    Science.gov (United States)

    Zdrazil, Barbara; Pinto, Marta; Vasanthanathan, Poongavanam; Williams, Antony J; Balderud, Linda Zander; Engkvist, Ola; Chichester, Christine; Hersey, Anne; Overington, John P; Ecker, Gerhard F

    2012-08-01

    Huge amounts of small compound bioactivity data have been entering the public domain as a consequence of open innovation initiatives. It is now the time to carefully analyse existing bioassay data and give it a systematic structure. Our study aims to annotate prominent in vitro assays used for the determination of bioactivities of human P-glycoprotein inhibitors and substrates as they are represented in the ChEMBL and TP-search open source databases. Furthermore, the ability of data, determined in different assays, to be combined with each other is explored. As a result of this study, it is suggested that for inhibitors of human P-glycoprotein it is possible to combine data coming from the same assay type, if the cell lines used are also identical and the fluorescent or radiolabeled substrate have overlapping binding sites. In addition, it demonstrates that there is a need for larger chemical diverse datasets that have been measured in a panel of different assays. This would certainly alleviate the search for other inter-correlations between bioactivity data yielded by different assay setups.

  10. Assessment of cancer cell line representativeness using microarrays for Merkel cell carcinoma.

    Science.gov (United States)

    Daily, Kenneth; Coxon, Amy; Williams, Jonathan S; Lee, Chyi-Chia R; Coit, Daniel G; Busam, Klaus J; Brownell, Isaac

    2015-04-01

    When using cell lines to study cancer, phenotypic similarity to the original tumor is paramount. Yet, little has been done to characterize how closely Merkel cell carcinoma (MCC) cell lines model native tumors. To determine their similarity to MCC tumor samples, we characterized MCC cell lines via gene expression microarrays. Using whole transcriptome gene expression signatures and a computational bioinformatic approach, we identified significant differences between variant cell lines (UISO, MCC13, and MCC26) and fresh frozen MCC tumors. Conversely, the classic WaGa and Mkl-1 cell lines more closely represented the global transcriptome of MCC tumors. When compared with publicly available cancer lines, WaGa and Mkl-1 cells were similar to other neuroendocrine tumors, but the variant cell lines were not. WaGa and Mkl-1 cells grown as xenografts in mice had histological and immunophenotypical features consistent with MCC, whereas UISO xenograft tumors were atypical for MCC. Spectral karyotyping and short tandem repeat analysis of the UISO cells matched the original cell line's description, ruling out contamination. Our results validate the use of transcriptome analysis to assess the cancer cell line representativeness and indicate that UISO, MCC13, and MCC26 cell lines are not representative of MCC tumors, whereas WaGa and Mkl-1 more closely model MCC.

  11. Establishment of cell lines from adult T-cell leukemia cells dependent on negatively charged polymers.

    Science.gov (United States)

    Kagami, Yoshitoyo; Uchiyama, Susumu; Kato, Harumi; Okada, Yasutaka; Seto, Masao; Kinoshita, Tomohiro

    2017-07-05

    Growing adult T-cell leukemia/lymphoma (ATLL) cells in vitro is difficult. Here, we examined the effects of static electricity in the culture medium on the proliferation of ATLL cells. Six out of 10 ATLL cells did not proliferate in vitro and thus had to be cultured in a medium containing negatively charged polymers. In the presence of poly-γ-glutamic acid (PGA) or chondroitin sulfate (CDR), cell lines (HKOX3-PGA, HKOX3-CDR) were established from the same single ATLL case using interleukin (IL)-2, IL-4, and feeder cells expressing OX40L (OX40L + HK). Dextran sulfate inhibited growth in both HKOX3 cell lines. Both PGA and OX40L + HK were indispensable for HKOX3-PGA growth, but HKOX3-CDR could proliferate in the presence of CDR or OX40L + HK alone. Thus, the specific action of each negatively charged polymer promoted the growth of specific ATLL cells in vitro.

  12. Antitumor Activity of Propolis on Differantiated Cancer Cell Lines

    OpenAIRE

    , Neşe Ersöz Gülçelik, Dilara Zeybek, Fige

    2012-01-01

    Propolis is a natural bee product with several pharmacological activities. Nowadays, it is also investigated for its antitumor properties. There are contraversies on the antitumor activity of propolis, not all tumour cells seem to respond to propolis treatment. The aim of our study is to evaluate the activity of propolis on differantiated thyroid cancer cell lines. Tyripan blue test and MTT assay were performed to evaluate the cell viability of B-CPAP cells after propolis treatment and compar...

  13. Drug/Cell-line Browser: interactive canvas visualization of cancer drug/cell-line viability assay datasets.

    Science.gov (United States)

    Duan, Qiaonan; Wang, Zichen; Fernandez, Nicolas F; Rouillard, Andrew D; Tan, Christopher M; Benes, Cyril H; Ma'ayan, Avi

    2014-11-15

    Recently, several high profile studies collected cell viability data from panels of cancer cell lines treated with many drugs applied at different concentrations. Such drug sensitivity data for cancer cell lines provide suggestive treatments for different types and subtypes of cancer. Visualization of these datasets can reveal patterns that may not be obvious by examining the data without such efforts. Here we introduce Drug/Cell-line Browser (DCB), an online interactive HTML5 data visualization tool for interacting with three of the recently published datasets of cancer cell lines/drug-viability studies. DCB uses clustering and canvas visualization of the drugs and the cell lines, as well as a bar graph that summarizes drug effectiveness for the tissue of origin or the cancer subtypes for single or multiple drugs. DCB can help in understanding drug response patterns and prioritizing drug/cancer cell line interactions by tissue of origin or cancer subtype. DCB is an open source Web-based tool that is freely available at: http://www.maayanlab.net/LINCS/DCB CONTACT: avi.maayan@mssm.edu Supplementary data are available at Bioinformatics online. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  14. Effect of failures and repairs on multiple cell production lines

    Energy Technology Data Exchange (ETDEWEB)

    Legato, P.; Bobbio, A.; Roberti, L.

    1989-01-01

    This paper examines a production line composed of multiple stages, or cells, which are passed in sequential order to arrive to the final product. Two possible coordination disciplines are considered, namely: the classical tandem arrangement of sequential working centers with input buffer and the kanban scheme, considered the Japanese shop floor realization of the Just-In-Time (JIT) manifacturing approach. The production line is modelled and analysed by means of Stochastic Petri Nets (SPN). Finally an analysis is made of the possibility that the working cells can incur failure/repair cycles perturbing the production flow of the line and thus reduce performance indices.

  15. Neurohypophysial Receptor Gene Expression by Thymic T Cell Subsets and Thymic T Cell Lymphoma Cell Lines

    Directory of Open Access Journals (Sweden)

    I. Hansenne

    2004-01-01

    transcribed in thymic epithelium, while immature T lymphocytes express functional neurohypophysial receptors. Neurohypophysial receptors belong to the G protein-linked seven-transmembrane receptor superfamily and are encoded by four distinct genes, OTR, V1R, V2R and V3R. The objective of this study was to identify the nature of neurohypophysial receptor in thymic T cell subsets purified by immunomagnetic selection, as well as in murine thymic lymphoma cell lines RL12-NP and BW5147. OTR is transcribed in all thymic T cell subsets and T cell lines, while V3R transcription is restricted to CD4+ CD8+ and CD8+ thymic cells. Neither V1R nor V2R transcripts are detected in any kind of T cells. The OTR protein was identified by immunocytochemistry on thymocytes freshly isolated from C57BL/6 mice. In murine fetal thymic organ cultures, a specific OTR antagonist does not modify the percentage of T cell subsets, but increases late T cell apoptosis further evidencing the involvement of OT/OTR signaling in the control of T cell proliferation and survival. According to these data, OTR and V3R are differentially expressed during T cell ontogeny. Moreover, the restriction of OTR transcription to T cell lines derived from thymic lymphomas may be important in the context of T cell leukemia pathogenesis and treatment.

  16. P-Glycoprotein-Activity Measurements in Multidrug Resistant Cell Lines: Single-Cell versus Single-Well Population Fluorescence Methods

    Directory of Open Access Journals (Sweden)

    Jennifer Pasquier

    2013-01-01

    Full Text Available Background. P-gp expression has been linked to the efflux of chemotherapeutic drugs in human cancers leading to multidrug resistance. Fluorescence techniques have been widely applied to measure the P-gp activity. In this paper, there is a comparison between the advantages of two fluorescence approaches of commonly available and affordable instruments: the microplate reader (MPR and the flow cytometer to detect the P-gp efflux activity using calcein-AM. Results. The selectivity, sensibility, and reproducibility of the two methods have been defined. Our results showed that the MPR is more powerful for the detection of small inhibition, whereas the flow cytometry method is more reliable at higher concentrations of the inhibitors. We showed that to determine precisely the inhibition efficacy the flow cytometry is better; hence, to get the correct Emax and EC50 values, we cannot only rely on the MPR. Conclusion. Both techniques can potentially be used extensively in the pharmaceutical industry for high-throughput drug screening and in biology laboratories for academic research, monitoring the P-gp efflux in specific assays.

  17. Evaluation of some medicinal plants effect on Rhodamine 123 accumulation and efflux in Caco-2 cell line by flowcytometry

    Directory of Open Access Journals (Sweden)

    S.N. Sadati Lamardi*

    2017-11-01

    Full Text Available Background and objectives: In review of traditional Persian medicine (TPM literature concerning multi drug therapy, a group of medicinal plants that are called "convoy drugs", agents which penetrate fast into whole or specific part of the body and accelerate delivery of drugs into specific target has been mentioned. In this study, the inhibitory effect of the aqueous extracts of some selected medicinal plants on P-glycoprotein (P-gp was assessed in order to determine the possibility of herb-drug interactions. Methods: P-gp inhibitory effect of aqueous extracts (250 µg/mL from some medicinal plants and verapamile (5 µg/mL was measured using flow cytometry by Rhodamine 123 (Rh123 in Caco2 cell line. Inhibition percent of each sample (% was compared with a control group (Caco-2 cell with Rh 123. Results: According to the results pennyroyal, aniseed (p

  18. Induction of Cell-Cell Fusion by Ebola Virus Glycoprotein: Low pH Is Not a Trigger.

    Directory of Open Access Journals (Sweden)

    Ruben M Markosyan

    2016-01-01

    Full Text Available Ebola virus (EBOV is a highly pathogenic filovirus that causes hemorrhagic fever in humans and animals. Currently, how EBOV fuses its envelope membrane within an endosomal membrane to cause infection is poorly understood. We successfully measure cell-cell fusion mediated by the EBOV fusion protein, GP, assayed by the transfer of both cytoplasmic and membrane dyes. A small molecule fusion inhibitor, a neutralizing antibody, as well as mutations in EBOV GP known to reduce viral infection, all greatly reduce fusion. By monitoring redistribution of small aqueous dyes between cells and by electrical capacitance measurements, we discovered that EBOV GP-mediated fusion pores do not readily enlarge-a marked difference from the behavior of other viral fusion proteins. EBOV GP must be cleaved by late endosome-resident cathepsins B or L in order to become fusion-competent. Cleavage of cell surface-expressed GP appears to occur in endosomes, as evidenced by the fusion block imposed by cathepsin inhibitors, agents that raise endosomal pH, or an inhibitor of anterograde trafficking. Treating effector cells with a recombinant soluble cathepsin B or thermolysin, which cleaves GP into an active form, increases the extent of fusion, suggesting that a fraction of surface-expressed GP is not cleaved. Whereas the rate of fusion is increased by a brief exposure to acidic pH, fusion does occur at neutral pH. Importantly, the extent of fusion is independent of external pH in experiments in which cathepsin activity is blocked and EBOV GP is cleaved by thermolysin. These results imply that low pH promotes fusion through the well-known pH-dependent activity of cathepsins; fusion induced by cleaved EBOV GP is a process that is fundamentally independent of pH. The cell-cell fusion system has revealed some previously unappreciated features of EBOV entry, which could not be readily elucidated in the context of endosomal entry.

  19. Vesicular stomatitis virus expressing a chimeric Sindbis glycoprotein containing an Fc antibody binding domain targets to Her2/neu overexpressing breast cancer cells

    International Nuclear Information System (INIS)

    Bergman, Ira; Whitaker-Dowling, Patricia; Gao Yanhua; Griffin, Judith A.; Watkins, Simon C.

    2003-01-01

    Vesicular stomatitis virus (VSV) is a candidate for development for cancer therapy. It is an oncolytic virus that is safe in humans. Recombinant virus can be made directly from plasmid components. We attempted to create a virus that targeted specifically to breast cancer cells. Nonreplicating and replicating pseudotype VSV were created whose only surface glycoprotein (gp) was a Sindbis gp, called Sindbis-ZZ, modified to severely reduce its native binding function and to contain the Fc-binding domain of Staphylococcus aureus protein A. When titered on Her2/neu overexpressing SKBR3 human breast cancer cells, pseudotype VSV coated with Sindbis-ZZ had 5 /ml. This work demonstrates the ability to easily create, directly from plasmid components, an oncolytic replicating VSV with a restricted host cell range

  20. Membrane lipidome of an epithelial cell line

    DEFF Research Database (Denmark)

    Sampaio, Julio L; Gerl, Mathias J; Klose, Christian

    2011-01-01

    Tissue differentiation is an important process that involves major cellular membrane remodeling. We used Madin-Darby canine kidney cells as a model for epithelium formation and investigated the remodeling of the total cell membrane lipidome during the transition from a nonpolarized morphology...... to an epithelial morphology and vice versa. To achieve this, we developed a shotgun-based lipidomics workflow that enabled the absolute quantification of mammalian membrane lipidomes with minimal sample processing from low sample amounts. Epithelial morphogenesis was accompanied by a major shift from sphingomyelin...... to glycosphingolipid, together with an increase in plasmalogen, phosphatidylethanolamine, and cholesterol content, whereas the opposite changes took place during an epithelial-to-mesenchymal transition. Moreover, during polarization, the sphingolipids became longer, more saturated, and more hydroxylated as required...

  1. Solid Oxide Fuel Cell Systems PVL Line

    International Nuclear Information System (INIS)

    Shearer, Susan; Rush, Gregory

    2012-01-01

    In July 2010, Stark State College (SSC), received Grant DE-EE0003229 from the U.S. Department of Energy (DOE), Golden Field Office, for the development of the electrical and control systems, and mechanical commissioning of a unique 20kW scale high-pressure, high temperature, natural gas fueled Stack Block Test System (SBTS). SSC worked closely with subcontractor, Rolls-Royce Fuel Cell Systems (US) Inc. (RRFCS) over a 13 month period to successfully complete the project activities. This system will be utilized by RRFCS for pre-commercial technology development and training of SSC student interns. In the longer term, when RRFCS is producing commercial products, SSC will utilize the equipment for workforce training. In addition to DOE Hydrogen, Fuel Cells, and Infrastructure Technologies program funding, RRFCS internal funds, funds from the state of Ohio, and funding from the DOE Solid State Energy Conversion Alliance (SECA) program have been utilized to design, develop and commission this equipment. Construction of the SBTS (mechanical components) was performed under a Grant from the State of Ohio through Ohio's Third Frontier program (Grant TECH 08-053). This Ohio program supported development of a system that uses natural gas as a fuel. Funding was provided under the Department of Energy (DOE) Solid-state Energy Conversion Alliance (SECA) program for modifications required to test on coal synthesis gas. The subject DOE program provided funding for the electrical build, control system development and mechanical commissioning. Performance testing, which includes electrical commissioning, was subsequently performed under the DOE SECA program. Rolls-Royce Fuel Cell Systems is developing a megawatt-scale solid oxide fuel cell (SOFC) stationary power generation system. This system, based on RRFCS proprietary technology, is fueled with natural gas, and operates at elevated pressure. A critical success factor for development of the full scale system is the capability to

  2. Novel human multiple myeloma cell line UHKT-893

    Czech Academy of Sciences Publication Activity Database

    Uherková, L.; Vančurová, I.; Vyhlídalová, I.; Pleschnerová, M.; Špička, I.; Mihalová, R.; Březinová, J.; Hodný, Zdeněk; Čermáková, K.; Polanská, V.; Marinov, I.; Jedelský, P.L.; Kuželová, K.; Stöckbauer, P.

    2013-01-01

    Roč. 37, č. 3 (2013), s. 320-326 ISSN 0145-2126 Institutional support: RVO:68378050 Keywords : human myeloma cell line * human multiple myeloma * plasma cell * IL-6 dependence * immunoglobulin * free light chain Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.692, year: 2013

  3. a stromal myoid cell line provokes thymic erythropoiesis between

    African Journals Online (AJOL)

    hi-tech

    81 No. 2 February 2004. A STROMAL MYOID CELL LINE PROVOKES THYMIC ERYTHROPOIESIS BETWEEN 16TH TO 20TH WEEKS OF INTRAUTERINE LIFE ... proliferation and differentiation in different stages of development: the stromal myoid cells. Design: ... human myasthenia gravis (MG) has been suggested(3).

  4. Frequency and distribution of Notch mutations in tumor cell lines

    International Nuclear Information System (INIS)

    Mutvei, Anders Peter; Fredlund, Erik; Lendahl, Urban

    2015-01-01

    Deregulated Notch signaling is linked to a variety of tumors and it is therefore important to learn more about the frequency and distribution of Notch mutations in a tumor context. In this report, we use data from the recently developed Cancer Cell Line Encyclopedia to assess the frequency and distribution of Notch mutations in a large panel of cancer cell lines in silico. Our results show that the mutation frequency of Notch receptor and ligand genes is at par with that for established oncogenes and higher than for a set of house-keeping genes. Mutations were found across all four Notch receptor genes, but with notable differences between protein domains, mutations were for example more prevalent in the regions encoding the LNR and PEST domains in the Notch intracellular domain. Furthermore, an in silico estimation of functional impact showed that deleterious mutations cluster to the ligand-binding and the intracellular domains of NOTCH1. For most cell line groups, the mutation frequency of Notch genes is higher than in associated primary tumors. Our results shed new light on the spectrum of Notch mutations after in vitro culturing of tumor cells. The higher mutation frequency in tumor cell lines indicates that Notch mutations are associated with a growth advantage in vitro, and thus may be considered to be driver mutations in a tumor cell line context. The online version of this article (doi:10.1186/s12885-015-1278-x) contains supplementary material, which is available to authorized users

  5. Study of tea polyphenol as a reversal agent for carcinoma cell lines' multidrug resistance (study of TP as a MDR reversal agent)

    International Nuclear Information System (INIS)

    Zhu Aizhi; Wang Xiangyun; Guo Zhenquan

    2001-01-01

    The aim of this study was to examine MDR1 expression product P-glycoprotein (Pgp) and study the effect and mechanism of tea polyphenol (TP) in reversion of multidrug resistance (MDR) in carcinoma cell lines. Immunocytochemical method was used for qualitative detection of Pgp. A comparative study of cytotoxicity and multidrug resistance reversion effect was made by MTT assay for tea polyphenol and quinidine in MCF-7 and MCF-7/Adr cell lines. The multidrug resistance reversion effect and mechanism were studied by measuring the uptake of 99m Tc-tetrofosmin in the carcinoma cell lines. (1) The Pgp overexpression in MCF-7/Adr cells was found to be strong positive, while the Pgp expression of MCF-7 was negative. (2) Although both tea polyphenol and quinidine could not remarkably change the toxicity of adriamycin to MCF-7, they could improve the sensitivity of MCF-7/Adr to adriamycin. The reversion index of tea polyphenol and quinidine was 3 and 10 respectively. (3) The cellular uptake of 99m Tc-tetrofosmin was remarkably lower in MCF-7/Adr than in MCF-7. The uptake of 99m Tc-tetrofosmin in MCF-7/Adr exhibited a 4, 13, 16 fold increase in the presence of 200, 400 and 500 μg/ml of tea polyphenol respectively. The uptake of 99m Tc-tetrofosmin in MCF-7/Adr exhibited only a 4-fold increase in the presence of 200 μM of quinidine. Immunocytochemistry can detect P-glycoprotein expression level qualitatively. Tea polyphenol is not only an anti-tumor agent, but also a multidrug resistant modulator similar to quinidine. The multidrug resistance reversion mechanism of tea polyphenol seems to be its inhibition of the activity of P-glycoprotein. Tea polyphenol has the advantage of very low toxicity in tumor treatment

  6. Clonogenic cell line survival of a human liver cancer cell line SMMC-7721 after carbon ion irradiation with different LET

    International Nuclear Information System (INIS)

    Lei Suwen; Su Xu; Wang Jifang; Li Wenjian

    2003-01-01

    Objective: To investigate the survival fraction of a human liver cancer cell line SMMC-7721 following irradiation with carbon ions with different LET. Methods: cells of the human liver cancer cell line SMMC-7721 were irradiated with carbon ions (LET=30 and 70 keV/μm). The survival fraction was determined with clonogenic assay after 9 days incubation in a 5% CO 2 incubator at 37 degree C. Results: When the survival fractions of 70 keV/μm were D s = 0.1 and D s=0.01 absorption dose were 2.94 and 5.88 Gy respectively, and those of 30 keV/μm were 4.00 and 8.00 Gy respectively. Conclusion: For the SMMC-7721 cell line, 70 keV/μm is more effective for cell killing than 30 keV/μm

  7. MSLN gene silencing has an anti-malignant effect on cell lines overexpressing mesothelin deriving from malignant pleural mesothelioma.

    Directory of Open Access Journals (Sweden)

    Ombretta Melaiu

    Full Text Available Genes involved in the carcinogenetic mechanisms underlying malignant pleural mesothelioma (MPM are still poorly characterized. So far, mesothelin (MSLN has aroused the most interest. It encodes for a membrane glycoprotein, frequently over-expressed in various malignancies such as MPM, and ovarian and pancreatic cancers. It has been proposed as a diagnostic and immunotherapeutic target with promising results. However, an alternative therapeutic approach seems to rise, whereby synthetic molecules, such as antisense oligonucleotides, could be used to inhibit MSLN activity. To date, such a gene-level inhibition has been attempted in two studies only, both on pancreatic and ovarian carcinoma cell lines, with the use of silencing RNA approaches. With regard to MPM, only one cell line (H2373 has been employed to study the effects of MSLN depletion. Indeed, the knowledge on the role of MSLN in MPM needs expanding. Accordingly, we investigated the expression of MSLN in a panel of three MPM cell lines, i.e., NCI-H28, Mero-14, and IstMes2; one non-MPM cell line was used as reference (Met5A. MSLN knock-down experiments on MSLN-overexpressing cells were also performed through silencing RNA (siRNA to verify whether previous findings could be generalized to a different set of cell cultures. In agreement with previous studies, transient MSLN-silencing caused decreased proliferation rate and reduced invasive capacity and sphere formation in MSLN-overexpressing Mero-14 cells. Moreover, MSLN-siRNA combined with cisplatin, triggered a marked increase in apoptosis and a decrease in proliferation as compared to cells treated with each agent alone, thereby suggesting a sensitizing effect of siRNA towards cisplatin. In summary, our findings confirm that MSLN should be considered a key molecular target for novel gene-based targeted therapies of cancer.

  8. Guidelines for the use of cell lines in biomedical research.

    Science.gov (United States)

    Geraghty, R J; Capes-Davis, A; Davis, J M; Downward, J; Freshney, R I; Knezevic, I; Lovell-Badge, R; Masters, J R W; Meredith, J; Stacey, G N; Thraves, P; Vias, M

    2014-09-09

    Cell-line misidentification and contamination with microorganisms, such as mycoplasma, together with instability, both genetic and phenotypic, are among the problems that continue to affect cell culture. Many of these problems are avoidable with the necessary foresight, and these Guidelines have been prepared to provide those new to the field and others engaged in teaching and instruction with the information necessary to increase their awareness of the problems and to enable them to deal with them effectively. The Guidelines cover areas such as development, acquisition, authentication, cryopreservation, transfer of cell lines between laboratories, microbial contamination, characterisation, instability and misidentification. Advice is also given on complying with current legal and ethical requirements when deriving cell lines from human and animal tissues, the selection and maintenance of equipment and how to deal with problems that may arise.

  9. Guidelines for the use of cell lines in biomedical research

    Science.gov (United States)

    Geraghty, R J; Capes-Davis, A; Davis, J M; Downward, J; Freshney, R I; Knezevic, I; Lovell-Badge, R; Masters, J R W; Meredith, J; Stacey, G N; Thraves, P; Vias, M

    2014-01-01

    Cell-line misidentification and contamination with microorganisms, such as mycoplasma, together with instability, both genetic and phenotypic, are among the problems that continue to affect cell culture. Many of these problems are avoidable with the necessary foresight, and these Guidelines have been prepared to provide those new to the field and others engaged in teaching and instruction with the information necessary to increase their awareness of the problems and to enable them to deal with them effectively. The Guidelines cover areas such as development, acquisition, authentication, cryopreservation, transfer of cell lines between laboratories, microbial contamination, characterisation, instability and misidentification. Advice is also given on complying with current legal and ethical requirements when deriving cell lines from human and animal tissues, the selection and maintenance of equipment and how to deal with problems that may arise. PMID:25117809

  10. Establishment of mesenchymal cell line derived from human developing odontoma.

    Science.gov (United States)

    Hatano, H; Kudo, Y; Ogawa, I; Shimasue, H; Shigeishi, H; Ohta, K; Higashikawa, K; Takechi, M; Takata, T; Kamata, N

    2012-11-01

    An odontoma, which shows proliferating odontogenic epithelium and mesenchymal tissue, is one of the most common odontogenic tumors encountered. These are commonly found in tooth-bearing regions, although the etiology remains unknown. There are no previous reports of an established line of immortalized human odontoma cells. Using odontoma fragments obtained from a girl treated at our department, we established an immortalized human odontoma cell line and investigated cell morphology, dynamic proliferation, the presence of contamination, and karyotype. Moreover, cell characterization was examined using osteogenic and odontogenic markers. We successfully established a mesenchymal odontoma cell (mOd cells). The cells were found to be fibroblastic and had a high level of telomerase activity. Cell growth was confirmed after more than 200 population doublings without significant growth retardation. mOd cells expressed mRNA for differentiation markers, including collagen type I (COLI), alkaline phosphatase, bone sialoprotein, osteopontin, osteocalcin, cementum-derived protein (CP-23), dentin sialophosphoprotein (DSPP), and distal-less homeobox 3 (DLX3), as well as bone morphogenetic proteins (BMPs). In addition, they showed a high level of calcified nodule formation activity in vitro. We successfully established a cell line that may be useful for investigating the mechanisms of normal odontogenesis as well as characteristics of odontoma tumors. © 2012 John Wiley & Sons A/S.

  11. Ectopic expression of target genes may represent an inherent limitation of RT-PCR assays used for micrometastasis detection : Studies on the epithelial glycoprotein gene EGP-2

    NARCIS (Netherlands)

    deGraaf, H; Maelandsmo, GM; Ruud, P; Forus, A; Oyjord, T; Fodstad, O; Hovig, E

    1997-01-01

    Our objective was to develop and study the feasibility of a quantitative, nested reverse-transcription polymerase chain reaction (RT-PCR) assay for detection of micrometastatic, epithelial tumor cells using the epithelial glycoprotein EGP-2 gene as a target, Several carcinoma cell lines and

  12. Isolation of Oct4-expressing extraembryonic endoderm precursor cell lines.

    Directory of Open Access Journals (Sweden)

    Bisrat G Debeb

    Full Text Available BACKGROUND: The extraembryonic endoderm (ExEn defines the yolk sac, a set of membranes that provide essential support for mammalian embryos. Recent findings suggest that the committed ExEn precursor is present already in the embryonic Inner Cell Mass (ICM as a group of cells that intermingles with the closely related epiblast precursor. All ICM cells contain Oct4, a key transcription factor that is first expressed at the morula stage. In vitro, the epiblast precursor is most closely represented by the well-characterized embryonic stem (ES cell lines that maintain the expression of Oct4, but analogous ExEn precursor cell lines are not known and it is unclear if they would express Oct4. METHODOLOGY/PRINCIPAL FINDINGS: Here we report the isolation and characterization of permanently proliferating Oct4-expressing rat cell lines ("XEN-P cell lines", which closely resemble the ExEn precursor. We isolated the XEN-P cell lines from blastocysts and characterized them by plating and gene expression assays as well as by injection into embryos. Like ES cells, the XEN-P cells express Oct4 and SSEA1 at high levels and their growth is stimulated by leukemia inhibitory factor, but instead of the epiblast determinant Nanog, they express the ExEn determinants Gata6 and Gata4. Further, they lack markers characteristic of the more differentiated primitive/visceral and parietal ExEn stages, but exclusively differentiate into these stages in vitro and contribute to them in vivo. CONCLUSIONS/SIGNIFICANCE: Our findings (i suggest strongly that the ExEn precursor is a self-renewable entity, (ii indicate that active Oct4 gene expression (transcription plus translation is part of its molecular identity, and (iii provide an in vitro model of early ExEn differentiation.

  13. Establishment, immortalisation and characterisation of pteropid bat cell lines.

    Directory of Open Access Journals (Sweden)

    Gary Crameri

    Full Text Available BACKGROUND: Bats are the suspected natural reservoir hosts for a number of new and emerging zoonotic viruses including Nipah virus, Hendra virus, severe acute respiratory syndrome coronavirus and Ebola virus. Since the discovery of SARS-like coronaviruses in Chinese horseshoe bats, attempts to isolate a SL-CoV from bats have failed and attempts to isolate other bat-borne viruses in various mammalian cell lines have been similarly unsuccessful. New stable bat cell lines are needed to help with these investigations and as tools to assist in the study of bat immunology and virus-host interactions. METHODOLOGY/FINDINGS: Black flying foxes (Pteropus alecto were captured from the wild and transported live to the laboratory for primary cell culture preparation using a variety of different methods and culture media. Primary cells were successfully cultured from 20 different organs. Cell immortalisation can occur spontaneously, however we used a retroviral system to immortalise cells via the transfer and stable production of the Simian virus 40 Large T antigen and the human telomerase reverse transcriptase protein. Initial infection experiments with both cloned and uncloned cell lines using Hendra and Nipah viruses demonstrated varying degrees of infection efficiency between the different cell lines, although it was possible to infect cells in all tissue types. CONCLUSIONS/SIGNIFICANCE: The approaches developed and optimised in this study should be applicable to bats of other species. We are in the process of generating further cell lines from a number of different bat species using the methodology established in this study.

  14. Non-targeted radiation effects in vertebrate cell lines

    Science.gov (United States)

    Ryan, Lorna

    Radiation effects, such as bystander effects, hyper radiosensitivity/induced radioresistance (HRS/IRR) and adaptive response that are not related to direct DNA damage are now accepted. However the inter-relationship between them and the possible impact on the scientific basis for radiation protection are highly controversial. This thesis attempts to elucidate the mechanisms of some of these well known but little understood effects. Each paper examines some aspect of bystander effects, adaptive responses and HRS/IRR in an effort to understand how they vary with cell type, dose and time of exposure to single or multiple doses. All the effects involve non-linear dose effect curves and are mainly evident following low doses. Overall findings of the thesis include (1) A clear difference was observed between radioresistant, tumorigenic cell lines with mutant p53 gene expression, and radiosensitive, more normal, cell lines with wild type p53. In general death inducing bystander responses are induced in normal cell populations exposed to low doses of radiation while survival inducing IRR and adaptive responses are seen in the radioresistant tumorigenic cell lines. (2) A cohort of fish cell lines which demonstrated survival promoting bystander effects, also did not show a protective adaptive responses. (3) Adaptive responses traditionally occur when a large challenge dose is given 4--6hrs following low (10--100mGy) priming doses but this thesis shows that for the epithelial cell lines tested, the size of the priming dose (range 0.1--2Gy) does not appear to alter the size of the recovery response. Additionally increased survival could be detected in some cases when the challenge dose was given within one hour of the priming dose. The overall conclusion is that cell lines induce either a bystander response or a protective/adaptive response depending on genetic background and other factors. Care is needed in the interpretation of data generated from only one or two cell lines

  15. Herpes simplex viruses lacking glycoprotein D are unable to inhibit virus penetration: quantitative evidence for virus-specific cell surface receptors

    International Nuclear Information System (INIS)

    Johnson, D.C.; Ligas, M.W.

    1988-01-01

    Herpes simplex virus (HSV) glycoprotein D (gD) plays an essential role in the entry of virus into cells. HSV mutants unable to express gD were constructed. The mutants can be propagated on VD60 cells, which supply the viruses with gD; however, virus particles lacking gD were produced in mutant-infected Vero cells. Virus particles with or without gD adsorbed to a large number of sites on the cell surface; however, virions lacking gD did not enter cells. Cells pretreated with UV-inactivated virions containing gD were resistant to infection with HSV type 1 (HSV-1) and HSV-2. In contrast, cell pretreated with UV-inactivated virions lacking gD could be infected with HSV-1 and HSV-2. If infectious HSV-1 was added prior to UV-inactivated virus particles containing gD, the infectious virus entered cells and replicated. Therefore, virus particles containing gD appear to block specific cell surface receptors which are very limited in number. Particles lacking gD are presumably unable to interact with these receptors, suggesting that gD is an essential receptor-binding polypeptide

  16. SENSORY HAIR CELL REGENERATION IN THE ZEBRAFISH LATERAL LINE

    Science.gov (United States)

    Lush, Mark E.; Piotrowski, Tatjana

    2014-01-01

    Damage or destruction of sensory hair cells in the inner ear leads to hearing or balance deficits that can be debilitating, especially in older adults. Unfortunately, the damage is permanent, as regeneration of the inner ear sensory epithelia does not occur in mammals. Zebrafish and other non-mammalian vertebrates have the remarkable ability to regenerate sensory hair cells and understanding the molecular and cellular basis for this regenerative ability will hopefully aid us in designing therapies to induce regeneration in mammals. Zebrafish not only possess hair cells in the ear but also in the sensory lateral line system. Hair cells in both organs are functionally analogous to hair cells in the inner ear of mammals. The lateral line is a mechanosensory system found in most aquatic vertebrates that detects water motion and aids in predator avoidance, prey capture, schooling and mating. Although hair cell regeneration occurs in both the ear and lateral line, most research to date has focused on the lateral line due to its relatively simple structure and accessibility. Here we review the recent discoveries made during the characterization of hair cell regeneration in zebrafish. PMID:25045019

  17. Nestin expression in the cell lines derived from glioblastoma multiforme

    International Nuclear Information System (INIS)

    Veselska, Renata; Kuglik, Petr; Cejpek, Pavel; Svachova, Hana; Neradil, Jakub; Loja, Tomas; Relichova, Jirina

    2006-01-01

    Nestin is a protein belonging to class VI of intermediate filaments that is produced in stem/progenitor cells in the mammalian CNS during development and is consecutively replaced by other intermediate filament proteins (neurofilaments, GFAP). Down-regulated nestin may be re-expressed in the adult organism under certain pathological conditions (brain injury, ischemia, inflammation, neoplastic transformation). Our work focused on a detailed study of the nestin cytoskeleton in cell lines derived from glioblastoma multiforme, because re-expression of nestin together with down-regulation of GFAP has been previously reported in this type of brain tumor. Two cell lines were derived from the tumor tissue of patients treated for glioblastoma multiforme. Nestin and other cytoskeletal proteins were visualized using imunocytochemical methods: indirect immunofluorescence and immunogold-labelling. Using epifluorescence and confocal microscopy, we described the morphology of nestin-positive intermediate filaments in glioblastoma cells of both primary cultures and the derived cell lines, as well as the reorganization of nestin during mitosis. Our most important result came through transmission electron microscopy and provided clear evidence that nestin is present in the cell nucleus. Detailed information concerning the pattern of the nestin cytoskeleton in glioblastoma cell lines and especially the demonstration of nestin in the nucleus represent an important background for further studies of nestin re-expression in relationship to tumor malignancy and invasive potential

  18. Pluronic polyols in human lymphocyte cell line cultures.

    Science.gov (United States)

    Mizrahi, A

    1975-01-01

    Pluronic polyols markedly improved the growth of two human lymphocyte cell lines when added to the growth medium in concentrations of 0.05 to 0.1%. The results of the current studies suggest that, in addition to the protective effect of polyols against mechanical damage of mammalian cells in submerged cultures, the pluronic compounds may also, by lowering surface tension, facilitate transport of metabolites into cells and thus increase the growth rate. PMID:1063740

  19. Allergy-related cytokines (IL-4 and TNF-α) are induced by Di(2-ethylhexyl) phthalate and attenuated by plant-originated glycoprotein (75 kDa) in HMC-1 cells.

    Science.gov (United States)

    Lee, Jin; Oh, Phil-Sun; Lim, Kye-Taek

    2011-08-01

    Phthalate esters as plasticizers have been widespread in the environment and may be associated with development of allergic diseases such as asthma and atopic dermatitis. In this study, we demonstrated that the CTB glycoprotein attenuates allergic reactions caused by di(2-ethylhexyl) phthalate (DEHP) in human mast cells (HMC-1). This experiment evaluated degranulation of histamine and β-hexosaminidase as well as activities of protein kinase C (PKC), stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK), activator protein (AP)-1 and interleukin (IL)-4 and tumor necrosis factor (TNF)-α using immunoblotting and reverse transcription-polymerase chain reaction (RT-PCR). Our results revealed that the CTB glycoprotein in the presence of DEHP inhibits degranulation of mast cell, translocation of PKC from cytosol to membrane, and phosphorylation of SAPK/JNK in HMC -1 cells. We also found that the CTB glycoprotein (100 μg mL(-1) ) has suppressive effects on transcriptional activation of AP-1, and on the expression of IL-4 and TNF-α in DEHP-treated HMC-1 cells. We suggest that the CTB glycoprotein inhibits degranulation of mast cells and expressions of cytokines in HMC-1 cells. Copyright © 2010 Wiley Periodicals, Inc.

  20. Human squamous cell carcinoma. Establishment and characterization of new permanent cell lines.

    Science.gov (United States)

    Krause, C J; Carey, T E; Ott, R W; Hurbis, C; McClatchey, K D; Regezi, J A

    1981-11-01

    Squamous cell carcinoma is the most common of human cancers, and yet because it is poorly represented by cultured cell lines, little is known about the characteristic cell biology and the cell-surface antigenic phenotypes of such tumors. To develop a continuously available source of squamous cell carcinoma for repeated and reproducible serologic analysis and for better understanding of its biologic characteristics, tissue culture methods and nude mice were used to establish new cell lines of squamous carcinoma. Special media, serum supplements from several sources, and methods of handling fresh tissue specimens were all examined as a means of improving the survival of tumor cell lines. Several new cell lines were established. Features characteristic of a squamous cell origin, eg, microvilli, desmosomes, tonofilaments, and the squamous cell differentiation antigen (pemphigus antigen), were found. The clinical course of disease in individual donor patients has been examined.

  1. The human megakaryocytic cell line UT-7/TPO expresses functional platelet agonist signals mediated through GPVI and thromboxane receptor.

    Science.gov (United States)

    Kawaguchi, Tatsuya; Hashimoto, Ryuji; Yokota, Hiroshi

    2010-09-01

    We have demonstrated that a unique megakaryocytic cell line UT-7/TPO could respond to one of the primary platelet signals through GP (glycoprotein) VI and a secondary signal of the AA (arachidonic acid) cascade. Unlike other megakaryocytic cell lines, UT-7/TPO was found to express GPVI and its associate signal molecule of FcRgamma (Fc receptor gamma chain). When UT-7/TPO was stimulated with the GPVI agonist convulxin, the [Ca2+]i (intracellular Ca2+) was elevated in a convulxin concentration-dependent manner, and [Ca2+]i elevation was blocked by pretreatment with the Src family kinase inhibitor PP2 and the phospholipase inhibitor U73122. These results strongly indicate that endogenously expressed GPVI signal molecules are functional in UT-7/TPO. Concerning the AA cascade, the expression of COX (cyclooxygenase)-1 and TX (thromboxane) synthase was observed, and this cell line was able to produce TX by exogenous AA, followed by [Ca2+]i elevation mediated through the TX receptor. It is worth noting that convulxin stimulation did not cause TX generation, even through the GPVI pathway and the AA cascade are functional in this cell line. As there are many reports that convulxin-stimulated platelets failed to produce TX, it is suggested that UT-7/TPO has the same property as the platelets in regards to convulxin stimulation. Thus, UT-7/TPO is useful for the observation of both the GPVI pathway and AA cascade without requiring either the induction of differentiation or GPVI transfection. Furthermore, this cell line provides a new tool for research on platelet activation signals.

  2. Distinct metabolic responses of an ovarian cancer stem cell line.

    Science.gov (United States)

    Vermeersch, Kathleen A; Wang, Lijuan; McDonald, John F; Styczynski, Mark P

    2014-12-18

    Cancer metabolism is emerging as an important focus area in cancer research. However, the in vitro cell culture conditions under which much cellular metabolism research is performed differ drastically from in vivo tumor conditions, which are characterized by variations in the levels of oxygen, nutrients like glucose, and other molecules like chemotherapeutics. Moreover, it is important to know how the diverse cell types in a tumor, including cancer stem cells that are believed to be a major cause of cancer recurrence, respond to these variations. Here, in vitro environmental perturbations designed to mimic different aspects of the in vivo environment were used to characterize how an ovarian cancer cell line and its derived, isogenic cancer stem cells metabolically respond to environmental cues. Mass spectrometry was used to profile metabolite levels in response to in vitro environmental perturbations. Docetaxel, the chemotherapeutic used for this experiment, caused significant metabolic changes in amino acid and carbohydrate metabolism in ovarian cancer cells, but had virtually no metabolic effect on isogenic ovarian cancer stem cells. Glucose deprivation, hypoxia, and the combination thereof altered ovarian cancer cell and cancer stem cell metabolism to varying extents for the two cell types. Hypoxia had a much larger effect on ovarian cancer cell metabolism, while glucose deprivation had a greater effect on ovarian cancer stem cell metabolism. Core metabolites and pathways affected by these perturbations were identified, along with pathways that were unique to cell types or perturbations. The metabolic responses of an ovarian cancer cell line and its derived isogenic cancer stem cells differ greatly under most conditions, suggesting that these two cell types may behave quite differently in an in vivo tumor microenvironment. While cancer metabolism and cancer stem cells are each promising potential therapeutic targets, such varied behaviors in vivo would need to

  3. Modeling adenovirus latency in human lymphocyte cell lines.

    Science.gov (United States)

    Zhang, Yange; Huang, Wen; Ornelles, David A; Gooding, Linda R

    2010-09-01

    Species C adenovirus establishes a latent infection in lymphocytes of the tonsils and adenoids. To understand how this lytic virus is maintained in these cells, four human lymphocytic cell lines that support the entire virus life cycle were examined. The T-cell line Jurkat ceased proliferation and died shortly after virus infection. BJAB, Ramos (B cells), and KE37 (T cells) continued to divide at nearly normal rates while replicating the virus genome. Viral genome numbers peaked and then declined in BJAB cells below one genome per cell at 130 to 150 days postinfection. Ramos and KE37 cells maintained the virus genome at over 100 copies per cell over a comparable period of time. BJAB cells maintained the viral DNA as a monomeric episome. All three persistently infected cells lost expression of the cell surface coxsackie and adenovirus receptor (CAR) within 24 h postinfection, and CAR expression remained low for at least 340 days postinfection. CAR loss proceeded via a two-stage process. First, an initial loss of cell surface staining for CAR required virus late gene expression and a CAR-binding fiber protein even while CAR protein and mRNA levels remained high. Second, CAR mRNA disappeared at around 30 days postinfection and remained low even after virus DNA was lost from the cells. At late times postinfection (day 180), BJAB cells could not be reinfected with adenovirus, even when CAR was reintroduced to the cells via retroviral transduction, suggesting that the expression of multiple genes had been stably altered in these cells following infection.

  4. Differential heat shock response of primary human cell cultures and established cell lines

    DEFF Research Database (Denmark)

    Richter, W W; Issinger, O G

    1986-01-01

    degrees C treatment, whereas in immortalized cell lines usually 90% of the cells were found in suspension. Enhanced expression of the major heat shock protein (hsp 70) was found in all heat-treated cells. In contrast to the primary cell cultures, established and transformed cell lines synthesized...... a protein with an apparent molecular mass of 70 kDa and an isoelectric pH of 7.0 as early as 3 h after the initial hyperthermal treatment....

  5. Dipeptidyl peptidase IV in two human glioma cell lines

    Directory of Open Access Journals (Sweden)

    A Sedo

    2009-12-01

    Full Text Available There is growing evidence that dipeptidyl peptidase IV [DPP-IV, EC 3.4.14.5] takes part in the metabolism of biologically active peptides participating in the regulation of growth and transformation of glial cells. However, the knowledge on the DPP-IV expression in human glial and glioma cells is still very limited. In this study, using histochemical and biochemical techniques, the DPP-IV activity was demonstrated in two commercially available human glioma cell lines of different transformation degree, as represented by U373 astrocytoma (Grade III and U87 glioblastoma multiforme (Grade IV lines. Higher total activity of the enzyme, as well as its preferential localisation in the plasma membrane, was observed in U87 cells. Compared to U373 population, U87 cells were morphologically more pleiomorphic, they were cycling at lower rate and expressing less Glial Fibrillary Acidic Protein. The data revealed positive correlation between the degree of transformation of cells and activity of DPP-IV. Great difference in expression of this enzyme, together with the phenotypic differences of cells, makes these lines a suitable standard model for further 57 studies of function of this enzyme in human glioma cells.

  6. Effect of Predatory Bacteria on Human Cell Lines.

    Directory of Open Access Journals (Sweden)

    Shilpi Gupta

    Full Text Available Predatory bacteria are Gram-negative bacteria that prey on other Gram-negative bacteria and have been considered as potential therapeutic agents against multi-drug resistant pathogens. In vivo animal models have demonstrated that predatory bacteria are non-toxic and non-immunogenic in rodents. In order to consider the use of predatory bacteria as live antibiotics, it is important to investigate their effect on human cells. The aim of this study was to determine the effect of Bdellovibrio bacteriovorus strains 109J and HD100, and Micavibrio aeruginosavorus strain ARL-13 on cell viability and inflammatory responses of five human cell lines, representative of clinically relevant tissues. We found that the predators were not cytotoxic to any of the human cell lines tested. Microscopic imaging showed no signs of cell detachment, as compared to predator-free cells. In comparison to an E. coli control, exposure to higher concentrations of the predators did not trigger a significant elevation of pro-inflammatory cytokines in four of the five human cell lines tested. Our work underlines the non-pathogenic attributes of predatory bacteria on human cells and highlights their potential use as live antibiotics against human pathogens.

  7. Pheochromocytoma cell lines from heterozygous neurofibromatosis knockout mice.

    Science.gov (United States)

    Powers, J F; Evinger, M J; Tsokas, P; Bedri, S; Alroy, J; Shahsavari, M; Tischler, A S

    2000-12-01

    Transplantable tumors and cell lines have been developed from pheochromocytomas arising in mice with a heterozygous knockout mutation of the neurofibromatosis gene, Nf1. Nf1 encodes a ras-GTPase-activating protein, neurofibromin, and mouse pheochromocytoma (MPC) cells in primary cultures typically show extensive spontaneous neuronal differentiation that may result from the loss of the remaining wild-type allele and defective regulation of ras signaling. However, all MPC cell lines express neurofibromin, suggesting that preservation of the wild-type allele may be required to permit the propagation of MPC cells in vitro. MPC lines differ from PC12 cells in that they express both endogenous phenylethanolamine N-methyltransferase (PNMT) and full-length PNMT reporter constructs. PNMT expression is increased by dexamethasone and by cell-cell contact in suspension cultures. Mouse pheochromocytomas are a new tool for studying genes and signaling pathways that regulate cell growth and differentiation in adrenal medullary neoplasms and are a unique model for studying the regulation of PNMT expression.

  8. Graphene Oxide Nanoribbons Induce Autophagic Vacuoles in Neuroblastoma Cell Lines

    Directory of Open Access Journals (Sweden)

    Emanuela Mari

    2016-11-01

    Full Text Available Since graphene nanoparticles are attracting increasing interest in relation to medical applications, it is important to understand their potential effects on humans. In the present study, we prepared graphene oxide (GO nanoribbons by oxidative unzipping of single-wall carbon nanotubes (SWCNTs and analyzed their toxicity in two human neuroblastoma cell lines. Neuroblastoma is the most common solid neoplasia in children. The hallmark of these tumors is the high number of different clinical variables, ranging from highly metastatic, rapid progression and resistance to therapy to spontaneous regression or change into benign ganglioneuromas. Patients with neuroblastoma are grouped into different risk groups that are characterized by different prognosis and different clinical behavior. Relapse and mortality in high risk patients is very high in spite of new advances in chemotherapy. Cell lines, obtained from neuroblastomas have different genotypic and phenotypic features. The cell lines SK-N-BE(2 and SH-SY5Y have different genetic mutations and tumorigenicity. Cells were exposed to low doses of GO for different times in order to investigate whether GO was a good vehicle for biological molecules delivering individualized therapy. Cytotoxicity in both cell lines was studied by measuring cellular oxidative stress (ROS, mitochondria membrane potential, expression of lysosomial proteins and cell growth. GO uptake and cytoplasmic distribution of particles were studied by Transmission Electron Microscopy (TEM for up to 72 h. The results show that GO at low concentrations increased ROS production and induced autophagy in both neuroblastoma cell lines within a few hours of exposure, events that, however, are not followed by growth arrest or death. For this reason, we suggest that the GO nanoparticle can be used for therapeutic delivery to the brain tissue with minimal effects on healthy cells.

  9. Antiproliferative effect of Tualang honey on oral squamous cell carcinoma and osteosarcoma cell lines

    Directory of Open Access Journals (Sweden)

    Ismail Noorliza M

    2010-09-01

    Full Text Available Abstract Background The treatment of oral squamous cell carcinomas (OSCC and human osteosarcoma (HOS includes surgery and/or radiotherapy which often lead to reduced quality of life. This study was aimed to study the antiproliferative activity of local honey (Tualang on OSCC and HOS cell lines. Methods Several concentrations of Tualang honey (1% - 20% were applied on OSCC and HOS cell lines for 3, 6, 12, 24, 48 and 72 hours. Morphological characteristics were observed under light and fluorescent microscope. Cell viability was assessed using MTT assay and the optical density for absorbance values in each experiment was measured at 570 nm by an ELISA reader. Detection of cellular apoptosis was done using the Annexin V-FITC Apoptosis Detection Kit. Results Morphological appearance showed apoptotic cellular changes like becoming rounded, reduction in cell number, blebbed membrane and apoptotic nuclear changes like nuclear shrinkage, chromatin condensation and fragmented nucleus on OSCC and HOS cell lines. Cell viability assay showed a time and dose-dependent inhibitory effect of honey on both cell lines. The 50% inhibitory concentration (IC50 for OSCC and HOS cell lines was found to be 4% and 3.5% respectively. The maximum inhibition of cell growth of ≥80% was obtained at 15% for both cell lines. Early apoptosis was evident by flow cytometry where percentage of early apoptotic cells increased in dose and time dependent manner. Conclusion Tualang honey showed antiproliferative effect on OSCC and HOS cell lines by inducing early apoptosis.

  10. Characterization of cloned cells from an immortalized fetal pulmonary type II cell line

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, R.F.; Waide, J.J.; Lechner, J.F.

    1995-12-01

    A cultured cell line that maintained expression of pulmonary type II cell markers of differentiation would be advantageous to generate a large number of homogenous cells in which to study the biochemical functions of type II cells. Type II epithelial cells are the source of pulmonary surfactant and a cell of origin for pulmonary adenomas. Last year our laboratory reported the induction of expression of two phenotypic markers of pulmonary type II cells (alkaline phosphatase activity and surfactant lipid synthesis) in cultured fetal rat lung epithelial (FRLE) cells, a spontaneously immortalized cell line of fetal rat lung type II cell origin. Subsequently, the induction of the ability to synthesize surfactant lipid became difficult to repeat. We hypothesized that the cell line was heterogenuous and some cells were more like type II cells than others. The purpose of this study was to test this hypothesis and to obtain a cultured cell line with type II cell phenotypic markers by cloning several FRLE cells and characterizing them for phenotypic markers of type II cells (alkaline phosphatase activity and presence of surfactant lipids). Thirty cloned cell lines were analyzed for induced alkaline phosphatase activity (on x-axis) and for percent of phospholipids that were disaturated (i.e., surfactant).

  11. Expression of the epidermal growth factor receptor in human small cell lung cancer cell lines

    DEFF Research Database (Denmark)

    Damstrup, L; Rygaard, K; Spang-Thomsen, M

    1992-01-01

    Epidermal growth factor (EGF) receptor expression was evaluated in a panel of 21 small cell lung cancer cell lines with radioreceptor assay, affinity labeling, and Northern blotting. We found high-affinity receptors to be expressed in 10 cell lines. Scatchard analysis of the binding data...... lung cancer cell lines express the EGF receptor....... of EGF receptor mRNA in all 10 cell lines that were found to be EGF receptor-positive and in one cell line that was found to be EGF receptor-negative in the radioreceptor assay and affinity labeling. Our results provide, for the first time, evidence that a large proportion of a broad panel of small cell...

  12. Native immunogold labeling of cell surface proteins and viral glycoproteins for cryo-electron microscopy and cryo-electron tomography applications.

    Science.gov (United States)

    Yi, Hong; Strauss, Joshua D; Ke, Zunlong; Alonas, Eric; Dillard, Rebecca S; Hampton, Cheri M; Lamb, Kristen M; Hammonds, Jason E; Santangelo, Philip J; Spearman, Paul W; Wright, Elizabeth R

    2015-10-01

    Numerous methods have been developed for immunogold labeling of thick, cryo-preserved biological specimens. However, most of the methods are permutations of chemical fixation and sample sectioning, which select and isolate the immunolabeled region of interest. We describe a method for combining immunogold labeling with cryo-electron microscopy (cryo-EM) and cryo-electron tomography (cryo-ET) of the surface proteins of intact mammalian cells or the surface glycoproteins of assembling and budding viruses in the context of virus-infected mammalian cells cultured on EM grids. In this method, the cells were maintained in culture media at physiologically relevant temperatures while sequentially incubated with the primary and secondary antibodies. Subsequently, the immunogold-labeled specimens were vitrified and observed under cryo-conditions in the transmission electron microscope. Cryo-EM and cryo-ET examination of the immunogold-labeled cells revealed the association of immunogold particles with the target antigens. Additionally, the cellular structure was unaltered by pre-immunolabeling chemical fixation and retained well-preserved plasma membranes, cytoskeletal elements, and macromolecular complexes. We think this technique will be of interest to cell biologists for cryo-EM and conventional studies of native cells and pathogen-infected cells. © The Author(s) 2015.

  13. TKTL1 expression in human malign and benign cell lines.

    Science.gov (United States)

    Kämmerer, Ulrike; Gires, Olivier; Pfetzer, Nadja; Wiegering, Armin; Klement, Rainer Johannes; Otto, Christoph

    2015-06-10

    Overexpression of transketolase-like 1 protein TKTL1 in cancer cells has been reported to correlate with enhanced glycolysis and lactic acid production. Furthermore, enhanced TKTL1 expression was put into context with resistance to chemotherapy and ionizing radiation. Here, a panel of human malign and benign cells, which cover a broad range of chemotherapy and radiation resistance as well as reliance on glucose metabolism, was analyzed in vitro for TKTL1 expression. 17 malign and three benign cell lines were characterized according to their expression of TKTL1 on the protein level with three commercially available anti-TKTL1 antibodies utilizing immunohistochemistry and Western blot, as well as on mRNA level with three published primer pairs for RT-qPCR. Furthermore, sensitivities to paclitaxel, cisplatin and ionizing radiation were assessed in cell survival assays. Glucose consumption and lactate production were quantified as surrogates for the "Warburg effect". Considerable amounts of tktl1 mRNA and TKTL1 protein were detected only upon stable transfection of the human embryonic kidney cell line HEK293 with an expression plasmid for human TKTL1. Beyond that, weak expression of endogenous tktl1 mRNA was measured in the cell lines JAR and U251. Western blot analysis of JAR and U251 cells did not detect TKTL1 at the expected size of 65 kDa with all three antibodies specific for TKTL1 protein and immunohistochemical staining was observed with antibody JFC12T10 only. All other cell lines tested here revealed expression of tktl1 mRNA below detection limits and were negative for TKTL1 protein. However, in all cell lines including TKTL1-negative HEK293-control cells, antibody JFC12T10 detected multiple proteins with different molecular weights. Importantly, JAR and U251 did neither demonstrate an outstanding production of lactic acid nor increased resistance against chemotherapeutics or to ionizing radiation, respectively. Using RT-qPCR and three different antibodies we

  14. TKTL1 expression in human malign and benign cell lines

    International Nuclear Information System (INIS)

    Kämmerer, Ulrike; Gires, Olivier; Pfetzer, Nadja; Wiegering, Armin; Klement, Rainer Johannes; Otto, Christoph

    2015-01-01

    Overexpression of transketolase-like 1 protein TKTL1 in cancer cells has been reported to correlate with enhanced glycolysis and lactic acid production. Furthermore, enhanced TKTL1 expression was put into context with resistance to chemotherapy and ionizing radiation. Here, a panel of human malign and benign cells, which cover a broad range of chemotherapy and radiation resistance as well as reliance on glucose metabolism, was analyzed in vitro for TKTL1 expression. 17 malign and three benign cell lines were characterized according to their expression of TKTL1 on the protein level with three commercially available anti-TKTL1 antibodies utilizing immunohistochemistry and Western blot, as well as on mRNA level with three published primer pairs for RT-qPCR. Furthermore, sensitivities to paclitaxel, cisplatin and ionizing radiation were assessed in cell survival assays. Glucose consumption and lactate production were quantified as surrogates for the “Warburg effect”. Considerable amounts of tktl1 mRNA and TKTL1 protein were detected only upon stable transfection of the human embryonic kidney cell line HEK293 with an expression plasmid for human TKTL1. Beyond that, weak expression of endogenous tktl1 mRNA was measured in the cell lines JAR and U251. Western blot analysis of JAR and U251 cells did not detect TKTL1 at the expected size of 65 kDa with all three antibodies specific for TKTL1 protein and immunohistochemical staining was observed with antibody JFC12T10 only. All other cell lines tested here revealed expression of tktl1 mRNA below detection limits and were negative for TKTL1 protein. However, in all cell lines including TKTL1-negative HEK293-control cells, antibody JFC12T10 detected multiple proteins with different molecular weights. Importantly, JAR and U251 did neither demonstrate an outstanding production of lactic acid nor increased resistance against chemotherapeutics or to ionizing radiation, respectively. Using RT-qPCR and three different antibodies

  15. Maslinic acid inhibits proliferation of renal cell carcinoma cell lines and suppresses angiogenesis of endothelial cells

    Directory of Open Access Journals (Sweden)

    Parth Thakor

    2017-03-01

    Full Text Available Despite the introduction of many novel therapeutics in clinical practice, metastatic renal cell carcinoma (RCC remains a treatment-re-sistant cancer. As red and processed meat are considered risk factors for RCC, and a vegetable-rich diet is thought to reduce this risk, research into plant-based therapeutics may provide valuable complementary or alternative therapeutics for the management of RCC. Herein, we present the antiproliferative and antiangiogenic effects of maslinic acid, which occurs naturally in edible plants, particularly in olive fruits, and also in a variety of medicinal plants. Human RCC cell lines (ACHN, Caki-1, and SN12K1, endothelial cells (human umbilical vein endothelial cell line [HUVEC], and primary cultures of kidney proximal tubular epithelial cells (PTEC were treated with maslinic acid. Maslinic acid was relatively less toxic to PTEC when compared with RCC under similar experimental conditions. In RCC cell lines, maslinic acid induced a significant reduction in proliferation, proliferating cell nuclear antigen, and colony formation. In HUVEC, maslinic acid induced a significant reduction in capillary tube formation in vitro and vascular endothelial growth factor. This study provides a rationale for incorporating a maslinic acid–rich diet either to reduce the risk of developing kidney cancer or as an adjunct to existing antiangiogenic therapy to improve efficacy.

  16. Characterization of stem-like cells in a new astroblastoma cell line

    Energy Technology Data Exchange (ETDEWEB)

    Coban, Esra Aydemir; Kasikci, Ezgi [Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, Istanbul (Turkey); Karatas, Omer Faruk [Molecular Biology and Genetics Department, Erzurum Technical University, Erzurum (Turkey); Suakar, Oznur; Kuskucu, Aysegul [Department of Medical Genetics, Yeditepe University Medical School and Yeditepe University Hospital, Istanbul (Turkey); Altunbek, Mine [Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, Istanbul (Turkey); Türe, Uğur [Department of Neurosurgery, Yeditepe University School of Medicine, Istanbul (Turkey); Sahin, Fikrettin [Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, Istanbul (Turkey); Bayrak, Omer Faruk, E-mail: ofbayrak@yeditepe.edu.tr [Department of Medical Genetics, Yeditepe University Medical School and Yeditepe University Hospital, Istanbul (Turkey)

    2017-03-15

    Cell lines established from tumors are the most commonly used models in cancer research, and their use in recent years has enabled a greater understanding of the biology of cancer and the means to develop effective treatment strategies. Astroblastomas are uncommon neuroepithelial tumors of glial origin, predominantly affecting young people, mainly teenagers and children, predominantly females. To date, only a single study has reported that astroblastomas contain a large number of neural stem-like cells, which had only a partial proliferation capacity and differentiation. Our objective was to establish an astroblastoma cell line to investigate the presence of astroblastic cells and cancer stem-like cells. The migratory and invasion abilities of the cells were quantified with invasion and migration assays and compared to a glioblastoma cell line. The presence of stem cells was detected with surface-marker analysis by using flow cytometry, and measuring the differentiation ability with a differentiation assay and the self-renewal capacity with a sphere-forming assay. These characteristics may determine whether this novel cell line is a model for astroblastomas that may have stem-cell characteristics. With this novel cell line, scientists can investigate the molecular pathways underlying astroblastomas and develop new therapeutic strategies for patients with these tumors. - Highlights: • An establishment of a novel astroblastoma cell line was proposed. • The presence of astroblastic cells and cancer stem-like cells was investigated. • The molecular pathways underlying astroblastomas may be investigated. • New therapeutic strategies for patients with astroblastoma may be developed.

  17. In vitro invasion of small-cell lung cancer cell lines correlates with expression of epidermal growth factor receptor

    DEFF Research Database (Denmark)

    Damstrup, L; Rude Voldborg, B; Spang-Thomsen, M

    1998-01-01

    receptor (EGFR) in a panel of 21 small-cell lung cancer (SCLC) cell lines. We have previously reported that ten of these cell lines expressed EGFR protein detected by radioreceptor and affinity labelling assays. In 11 small-cell lung cancer (SCLC) cell lines, EGFR mRNA was detected by Northern blot...... analysis. In vitro invasion in a Boyden chamber assay was found in all EGFR-positive cell lines, whereas no invasion was detected in the EGFR-negative cell lines. Quantification of the in vitro invasion in 12 selected SCLC cell lines demonstrated that, in the EGFR-positive cell lines, between 5% and 16......-PCR). However, in vitro invasive SCLC cell lines could not be distinguished from non-invasive cell lines based on the expression pattern of these molecules. In six SCLC cell lines, in vitro invasion was also determined in the presence of the EGFR-neutralizing monoclonal antibody mAb528. The addition...

  18. Changes in Chromosome Counts and Patterns in CHO Cell Lines upon Generation of Recombinant Cell Lines and Subcloning.

    Science.gov (United States)

    Vcelar, Sabine; Melcher, Michael; Auer, Norbert; Hrdina, Astrid; Puklowski, Anja; Leisch, Friedrich; Jadhav, Vaibhav; Wenger, Till; Baumann, Martina; Borth, Nicole

    2018-03-01

    Chinese hamster ovary (CHO) cells are the number one production system for therapeutic proteins. A pre-requirement for their use in industrial production of biopharmaceuticals is to be clonal, thus originating from a single cell in order to be phenotypically and genomically identical. In the present study it was evaluated whether standard procedures, such as the generation of a recombinant cell line in combination with selection for a specific and stable phenotype (expression of the recombinant product) or subcloning have any impact on karyotype stability or homogeneity in CHO cells. Analyses used were the distribution of chromosome counts per cell as well as chromosome painting to identify specific karyotype patterns within a population. Results indicate that subclones both of the host and the recombinant cell line are of comparable heterogeneity and (in)stability as the original pool. In contrast, the rigorous selection for a stably expressing phenotype generated cell lines with fewer variation and more stable karyotypes, both at the level of the sorted pool and derivative subclones. We conclude that the process of subcloning itself does not contribute to an improved karyotypic homogeneity of a population, while the selection for a specific cell property inherently can provide evolutionary pressure that may lead to improved chromosomal stability as well as to a more homogenous population. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Effects of nonsteroidal anti-inflammatory drugs on the expression and function of P-glycoprotein/MDR1 in Caco-2 cells.

    Science.gov (United States)

    Takara, Kohji; Hayashi, Ryuhei; Kokufu, Misato; Yamamoto, Kazuhiro; Kitada, Noriaki; Ohnishi, Noriaki; Yokoyama, Teruyoshi

    2009-01-01

    The aim of this study was to examine the effects of 16 kinds of nonsteroidal anti-inflammatory drugs (NSAIDs) on P-glycoprotein/MDR1 in Caco-2 cells as an intestinal epithelial cell model. Cells were treated with NSAIDs for 24 hours, and then, the expression of MDR1 mRNA was evaluated by reverse-transcriptase polymerase chain reaction. The function of MDR1 in cells pretreated with NSAIDs for 48 hours was evaluated by measuring the cellular amount of rhodamine123, which is a substrate of MDR1. The expression of MDR1 mRNA was increased by diclofenac, fenbufen, indomethacin, and nimesulide and the tended to be increased by meloxicam, mepirizole, and sulindac. However, pretreatment for 48 hours with diclofenac, indomethacin, or nimesulide, but not fenbufen, resulted in a significant increase in the amount of rhodamine123 accumulated. Although NSAIDs without effects on the expression of MDR1 mRNA altered the accumulation of rhodamine123 significantly, the efflux of rhodamine123 from cells was unchanged. In conclusion, the expression of MDR1 mRNA in Caco-2 cells was demonstrated to be increased by treatment with some NSAIDs, although the transport function of MDR1 was unchanged. These findings imply that the NSAIDs did not cause the drug interaction via MDR1 induction.

  20. Derivation of Ethnically Diverse Human Induced Pluripotent Stem Cell Lines.

    Science.gov (United States)

    Chang, Eun Ah; Tomov, Martin L; Suhr, Steven T; Luo, Jiesi; Olmsted, Zachary T; Paluh, Janet L; Cibelli, Jose

    2015-10-20

    The human genome with all its ethnic variations contributes to differences in human development, aging, disease, repair, and response to medical treatments and is an exciting area of research and clinical study. The availability of well-characterized ethnically diverse stem cell lines is limited and has not kept pace with other advances in stem cell research. Here we derived xenofree ethnically diverse-human induced pluripotent stem cell (ED-iPSC) lines from fibroblasts obtained from individuals of African American, Hispanic-Latino, Asian, and Caucasian ethnic origin and have characterized the lines under a uniform platform for comparative analysis. Derived ED-iPSC lines are low passage number and evaluated in vivo by teratoma formation and in vitro by high throughput microarray analysis of EB formation and early differentiation for tri-lineage commitment to endoderm, ectoderm and mesoderm. These new xenofree ED-iPSC lines represent a well-characterized valuable resource with potential for use in future research in drug discovery or clinical investigations.

  1. Dipeptidyl peptidase IV in two human glioma cell lines

    Czech Academy of Sciences Publication Activity Database

    Šedo, A.; Malík, Radek; Drbal, K.; Lisá, Věra; Vlašicová, K.; Mareš, Vladislav

    2000-01-01

    Roč. 44, č. 1 (2000), s. 57-63 ISSN 1121-760X Grant - others:GA UK(XC) 58/1999/C; GA UK(XC) 206019-2 Institutional research plan: CEZ:AV0Z5011922 Keywords : dipeptidyl peptidase IV * glioma cell lines * cell proliferation and differentiation Subject RIV: FH - Neurology Impact factor: 1.039, year: 2000

  2. Cysteine modified polyaniline films improve biocompatibility for two cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Yslas, Edith I., E-mail: eyslas@exa.unrc.edu.ar [Departamento de Biología Molecular, Universidad Nacional de Río Cuarto, Agencia Postal Nro3, X580BYA Río Cuarto (Argentina); Cavallo, Pablo; Acevedo, Diego F.; Barbero, César A. [Departamento de Química, Universidad Nacional de Río Cuarto, Agencia Postal Nro3, X580BYA Río Cuarto (Argentina); Rivarola, Viviana A. [Departamento de Biología Molecular, Universidad Nacional de Río Cuarto, Agencia Postal Nro3, X580BYA Río Cuarto (Argentina)

    2015-06-01

    This work focuses on one of the most exciting application areas of conjugated conducting polymers, which is cell culture and tissue engineering. To improve the biocompatibility of conducting polymers we present an easy method that involves the modification of the polymer backbone using L-cysteine. In this publication, we show the synthesis of polyaniline (PANI) films supported onto Polyethylene terephthalate (PET) films, and modified using cysteine (PANI-Cys) in order to generate a biocompatible substrate for cell culture. The PANI-Cys films are characterized by Fourier Transform infrared and UV–visible spectroscopy. The changes in the hydrophilicity of the polymer films after and before the modification were tested using contact angle measurements. After modification the contact angle changes from 86° ± 1 to 90° ± 1, suggesting a more hydrophylic surface. The adhesion properties of LM2 and HaCaT cell lines on the surface of PANI-Cys films in comparison with tissue culture plastic (TCP) are studied. The PANI-Cys film shows better biocompatibility than PANI film for both cell lines. The cell morphologies on the TCP and PANI-Cys film were examined by florescence and Atomic Force Microscopy (AFM). Microscopic observations show normal cellular behavior when PANI-Cys is used as a substrate of both cell lines (HaCaT and LM2) as when they are cultured on TCP. The ability of these PANI-Cys films to support cell attachment and growth indicates their potential use as biocompatible surfaces and in tissue engineering. - Highlights: • A new surface PANI-Cys was produced on films of polyethylene terephthalate. • The relationship between surface characteristics and biocompatibility is analyzed. • The PANI-Cys film presents good biocompatibility for two cell lines.

  3. Establishment of clinically relevant radioresistant cell lines and their characteristics

    International Nuclear Information System (INIS)

    Fukumoto, Manabu; Kuwahara, Yoshikazu; Suzuki, Masatoshi

    2014-01-01

    Although radiotherapy is one of the major therapeutic modalities for eradicating malignant tumors, the existence of radioresistant cells remains one of the most critical obstacles. Standard radiotherapy consists of fractionated radiation (FR) of 2-Gy X-rays once a day, 5 days a week, over 60 Gy in total. To understand the characteristics of radioresistant cells and to develop more effective radiotherapy, we have established novel radioresistant cell lines by long-term (> 5 years) exposure to moderate doses of fractionated X-rays. While all the parental human cancer cells ceased, their radioresistant derivatives continue to proliferate with daily exposure to 2-Gy FR for more than 30 days. We have coined those cells as 'clinically relevant radioresistant' (CRR) cells. Transplanted tumors into nude mice were also CRR, indicating that CRR cell lines are powerful tools to improve cancer radiotherapy. We have shown that the suppression of autophagic cell death but not apoptosis was mainly involved in cellular radioresistance. An inhibitor of the mTOR pathway which enhances autophagy was effective to overcome CRR tumors induced in nude mice. But the underlined mechanism was not through the inhibition of autophagy. Guanine nucleotide-binding protein 1 (GBP1) over expression was necessary for maintaining the CRR phenotype, but radioresistant cells were not necessarily cancer stem cells (CSCs). Targeting GBP1 positive cancer cells may be a more efficient method in conquering cancer than targeting CSCs. Slight but significant radioresistance was acquired by 0.5 Gy/12 hrs of long-term FR exposures to parental cells for more than 31 days in accordance with cyclinD1 over expression. This acquired radioresistance (ARR) was stably maintained in the tumor cells even on 31 days after the cessation of 0.5-Gy FR. Present observations give a mechanistic insight for ARR of tumor cells through long-term FR exposure, and provide novel therapeutic targets for radiosensitization

  4. Myelinating cocultures of rodent stem cell line-derived neurons and immortalized Schwann cells.

    Science.gov (United States)

    Ishii, Tomohiro; Kawakami, Emiko; Endo, Kentaro; Misawa, Hidemi; Watabe, Kazuhiko

    2017-10-01

    Myelination is one of the most remarkable biological events in the neuron-glia interactions for the development of the mammalian nervous system. To elucidate molecular mechanisms of cell-to-cell interactions in myelin synthesis in vitro, establishment of the myelinating system in cocultures of continuous neuronal and glial cell lines are desirable. In the present study, we performed co-culture experiments using rat neural stem cell-derived neurons or mouse embryonic stem (ES) cell-derived motoneurons with immortalized rat IFRS1 Schwann cells to establish myelinating cultures between these cell lines. Differentiated neurons derived from an adult rat neural stem cell line 1464R or motoneurons derived from a mouse ES cell line NCH4.3, were mixed with IFRS1 Schwann cells, plated, and maintained in serum-free F12 medium with B27 supplement, ascorbic acid, and glial cell line-derived neurotrophic factor. Myelin formation was demonstrated by electron microscopy at 4 weeks in cocultures of 1464R-derived neurons or NCH4.3-derived motoneurons with IFRS1 Schwann cells. These in vitro coculture systems utilizing the rodent stable stem and Schwann cell lines can be useful in studies of peripheral nerve development and regeneration. © 2017 Japanese Society of Neuropathology.

  5. CellMinerHCC: a microarray-based expression database for hepatocellular carcinoma cell lines.

    Science.gov (United States)

    Staib, Frank; Krupp, Markus; Maass, Thorsten; Itzel, Timo; Weinmann, Arndt; Lee, Ju-Seog; Schmidt, Bertil; Müller, Martina; Thorgeirsson, Snorri S; Galle, Peter R; Teufel, Andreas

    2014-04-01

    Therapeutic options for hepatocellular carcinoma (HCC) still remain limited. Development of gene targeted therapies is a promising option. A better understanding of the underlying molecular biology is gained in in vitro experiments. However, even with targeted manipulation of gene expression varying treatment responses were observed in diverse HCC cell lines. Therefore, information on gene expression profiles of various HCC cell lines may be crucial to experimental designs. To generate a publicly available database containing microarray expression profiles of diverse HCC cell lines. Microarray data were analyzed using an individually scripted R program package. Data were stored in a PostgreSQL database with a PHP written web interface. Evaluation and comparison of individual cell line expression profiles are supported via public web interface. This database allows evaluation of gene expression profiles of 18 HCC cell lines and comparison of differential gene expression between multiple cell lines. Analysis of commonly regulated genes for signaling pathway enrichment and interactions demonstrates a liver tumor phenotype with enrichment of major cancer related KEGG signatures like 'cancer' and 'inflammatory response'. Further molecular associations of strong scientific interest, e.g. 'lipid metabolism', were also identified. We have generated CellMinerHCC (http://www.medicalgenomics.org/cellminerhcc), a publicly available database containing gene expression data of 18 HCC cell lines. This database will aid in the design of in vitro experiments in HCC research, because the genetic specificities of various HCC cell lines will be considered. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Cell lines radiosensitization of thyroid cancer by histone deacetylase inhibitors

    International Nuclear Information System (INIS)

    Perona, M; Dagrosa, M A; Rossich, L; Casal, M; Pisarev, M A; Thomasz, L; Juvenal G J

    2012-01-01

    Introduction: Thyroid cancer is the most common endocrine neoplasia. Surgical resection and radioactive iodine is an effective treatment for well-differentiated tumors. Histone deacetylase inhibitors (HDAC-I) are agents that cause hyperacetylation of histone proteins and as a consequence remodeling of chromatin structure. They can induce growth arrest, differentiation and apoptotic cell death in different tumor cells. The use of HDAC-I agents could be of utility to enhance the response to external radiation therapy of those thyroid cancers that are refractory to most conventional therapeutic treatments. Objective: To study the effect of HDAC-I as radiosensitizers for the treatment of thyroid cancer and their ability to induce differentiation of thyroid cancer cells. Materials and methods: The human thyroid follicular (WRO) and papillary (TPC-1) carcinoma cell lines were seeded and incubated with increasing doses (0, 0.3, 0.5, 1 and 1.5 mM) of the HDAC-I sodium butirate (NaB) and valproic acid (VA) to evaluate cell proliferation and iodide uptake. Cells were irradiated with a 60 Co γ-ray source (1 ± 5% Gy/min) and postirradiation survival was quantified with the colony formation assay. Survival fraction at 2 Gy (SF2) was calculated for each cell line. Cell cycle and cell death were evaluated at a dose of 3 Gy. Iodide uptake, PCR analysis and transient transfection studies were performed. Results: Cell proliferation was not significantly suppressed after 24 hours of incubation with both drugs at all assayed doses. Iodide uptake was not modified after incubation with HDAC-I of both cell lines. SF2 was reduced from 68 ± 1.6 % in the control WRO cells to 42 ± 3.8 % (P<0.001) in NaB-treated cells. In TPC-1 SF2 was reduced from 32 ± 1.1 % in the control cells to 24 ± 0.8 % (P<0.01). In VA-treated cells SF2 was reduced from 69 ± 0.02 % in control WRO cells to 56 ± 0.01 % (P<0.01) and from 31 ± 2 % in control TPC-1 cells to 11 ± 1 % (P<0.01). There was an arrest

  7. Detection of immunotoxicity using T-cell based cytokine reporter cell lines ('Cell Chip')

    International Nuclear Information System (INIS)

    Ringerike, Tove; Ulleraas, Erik; Voelker, Rene; Verlaan, Bert; Eikeset, Aase; Trzaska, Dominika; Adamczewska, Violetta; Olszewski, Maciej; Walczak-Drzewiecka, Aurelia; Arkusz, Joanna; Loveren, Henk van; Nilsson, Gunnar; Lovik, Martinus; Dastych, Jaroslaw; Vandebriel, Rob J.

    2005-01-01

    Safety assessment of chemicals and drugs is an important regulatory issue. The evaluation of potential adverse effects of compounds on the immune system depends today on animal experiments. An increasing demand, however, exists for in vitro alternatives. Cytokine measurement is a promising tool to evaluate chemical exposure effects on the immune system. Fortunately, this type of measurement can be performed in conjunction with in vitro exposure models. We have taken these considerations as the starting point to develop an in vitro method to efficiently screen compounds for potential immunotoxicity. The T-cell lymphoma cell line EL-4 was transfected with the regulatory sequences of interleukin (IL)-2, IL-4, IL-10, interferon (IFN)-γ or actin fused to the gene for enhanced green fluorescent protein (EGFP) in either a stabile or a destabilised form. Consequently, changes in fluorescence intensity represent changes in cytokine expression with one cell line per cytokine. We used this prototype 'Cell Chip' to test, by means of flow cytometry, the immunomodulatory potential of 13 substances and were able to detect changes in cytokine expression in 12 cases (successful for cyclosporine, rapamycin, pentamidine, thalidomide, bis(tri-n-butyltin)oxide, house dust mite allergen (Der p I), 1-chloro-2,4-dinitrobenzene, benzocaine, tolylene 2,4-diisocyanate, potassium tetrachloroplatinate, sodium dodecyl sulphate and mercuric chloride; unsuccessful for penicillin G). In conclusion, this approach seems promising for in vitro screening for potential immunotoxicity, especially when additional cell lines besides T-cells are included

  8. DNA methylation and sensitivity to antimetabolites in cancer cell lines.

    Science.gov (United States)

    Sasaki, Shin; Kobunai, Takashi; Kitayama, Joji; Nagawa, Hirokazu

    2008-02-01

    The prediction of the cellular direction of metabolic pathways toward either DNA synthesis or DNA methylation is crucial for determining the susceptibility of cancers to anti-metabolites such as fluorouracil (5-FU). We genotyped the methylenetetrahydrofolate reductase (MTHFR) gene in NCI-60 cancer cell lines, and identified the methylation status of 24 tumor suppressor genes using methylation-specific multiplex ligation-dependent probe amplification. The susceptibility of the cancer cell lines to seven antimetabolites was then determined. Cells homozygous for CC at MTHFR-A1298C were significantly more sensitive to cyclocytidine, cytarabine (AraC) and floxuridine than those with AA or AC (p=0.0215, p=0.0166, and p=0.0323, respectively), and carried more methylated tumor suppressor genes (p=0.0313). Among the 12 tumor suppressor genes which were methylated in >25% of cancer cell lines, the methylation status of TIMP3, APC and IGSF4 significantly correlated with sensitivity to pyrimidine synthesis inhibitors. In particular, cells with methylated TIMP3 had reduced mRNA levels and were significantly more sensitive to aphidicolin-glycinate, AraC and 5-FU than cells with unmethylated TIMP3. We speculate that MTHFR-A1298C homozygous CC might direct the methylation rather than the synthesis of DNA, and result in the methylation of several tumor suppressor genes such as TIMP3. These genes could be useful biological markers for predicting the efficacy of antimetabolites.

  9. The identification of new genes related to cisplatin resistance in ovarian adenocarcinoma cell line A2780

    International Nuclear Information System (INIS)

    Solar, P.; Fedorocko, P.; Sytkowski, A.; Hodorova, I.

    2006-01-01

    Ovarian cancer cells are usually sensitive to platinum-based chemotherapy, such as cisplatin (CDDP), initially but typically become resistant to the drug over time. The phenomenon of clinical drug resistance represents a serious problem for successful disease treatment, and the molecular mechanism(s) are not fully understood. In search of novel mechanisms that may lead to the development of CDDP chemoresistance we have applied subtractive hybridization based on the PCR-select cDNA subtraction. In current study we have used subtractive hybridization to identify differentially-expressed genes in CDDP resistant CP70 and C200 cells versus CDDP-sensitive A2780 human ovarian adenocarcinoma cells. We have analyzed 256 randomly selected clones. Subtraction efficiency was determined by dot blot and DNA sequencing. Confirmation of differentially expressed cDNAs was done by virtual northern blot analysis, and 17 genes that were differentially expressed in both CDDP resistant cell lines versus CDDP sensitive A2780 cells were identified. The expression of 10 of these genes was undetectable or detected with low expression in sensitive A2780 cells in comparison to resistant ones. These genes included ARHGDIB, RANBP2, ASPH, PRTFDC1, SSX2IP, MBNL1, DNAJC15, MMP10, TCTE1L and one unidentified sequence. Additional 7 genes that were more highly expressed in resistant CP70 and C200 vs. A2780 cells included ANXA2, USP8, HSPCA, TRA1, CNAP1, ATP2B1 and COX2. Interestingly, multi-drug resistance associated p-glycoprotein (p170) was not detected by the western blot in CDDP resistant CP70 and C200 cells. Our identified genes are involved in diverse processes, such as stress response, chromatin condensation, protection from protein degradation, invasiveness of cells, alterations of Ca 2+ homeostasis and others which may contribute to CDDP resistance of ovarian adenocarcinoma cells. Further characterization of these genes and gene products should yield important insights into the biology of

  10. Molecular cloning and mammalian expression of human beta 2-glycoprotein I cDNA

    DEFF Research Database (Denmark)

    Kristensen, Torsten; Schousboe, Inger; Boel, Espen

    1991-01-01

    Human β2-glycoprotein (β2gpI) cDNA was isolated from a liver cDNA library and sequenced. The cDNA encoded a 19-residue hydrophobic signal peptide followed by the mature β2gpI of 326 amino acid residues. In liver and in the hepatoma cell line HepG2 there are two mRNA species of about 1.4 and 4.3 kb...

  11. Cryopreservation of specialized chicken lines using cultured primordial germ cells.

    Science.gov (United States)

    Nandi, S; Whyte, J; Taylor, L; Sherman, A; Nair, V; Kaiser, P; McGrew, M J

    2016-08-01

    Biosecurity and sustainability in poultry production requires reliable germplasm conservation. Germplasm conservation in poultry is more challenging in comparison to other livestock species. Embryo cryopreservation is not feasible for egg-laying animals, and chicken semen conservation has variable success for different chicken breeds. A potential solution is the cryopreservation of the committed diploid stem cell precursors to the gametes, the primordial germ cells ( PGCS: ). Primordial germ cells are the lineage-restricted cells found at early embryonic stages in birds and form the sperm and eggs. We demonstrate here, using flocks of partially inbred, lower-fertility, major histocompatibility complex- ( MHC-: ) restricted lines of chicken, that we can easily derive and cryopreserve a sufficient number of independent lines of male and female PGCs that would be sufficient to reconstitute a poultry breed. We demonstrate that germ-line transmission can be attained from these PGCs using a commercial layer line of chickens as a surrogate host. This research is a major step in developing and demonstrating that cryopreserved PGCs could be used for the biobanking of specialized flocks of birds used in research settings. The prospective application of this technology to poultry production will further increase sustainability to meet current and future production needs. © The Author 2016. Published by Oxford University Press on behalf of Poultry Science Association.

  12. Antibacterial and anti-breast cancer cell line activities of ...

    African Journals Online (AJOL)

    Purpose: To evaluate the activity of extracts of Sanghuangporus sp.1 fungus against pathogenic bacteria and a breast cancer cell line. Methods: The wild fruiting body and mycelium of Sanghuangporus sp.1 were extracted with water and ethanol by ultrasonication extraction. The activity of the extracts against pathogenic ...

  13. Characterization of newly established colorectal cancer cell lines

    Indian Academy of Sciences (India)

    We have established a series of 20 colorectal cancer cell lines and performed cytogenetic and RFLP analyses to show that the recurrent genetic abnormalities of chromosomes 1, 5, 17 and 18 associated with multistep tumorigenesis in colorectal cancer, and frequently detected as recurrent abnormalities in primary tumours, ...

  14. Apoptosis induction of epifriedelinol on human cervical cancer cell line

    African Journals Online (AJOL)

    Background: Present investigation evaluates the antitumor activity of epifriedelinol for the management of cervical cancer by inducing process of apoptosis. Methods: Human Cervical Cancer Cell Line, C33A and HeLa were selected for study and treated with epifriedelinol at a concentration of (50-1000 μg/ml). Cytotoxicity of ...

  15. Characterization of newly established colorectal cancer cell lines ...

    Indian Academy of Sciences (India)

    We have established a series of 20 colorectal cancer cell lines and performed cytogenetic and RFLP analyses to show that the recurrent genetic abnormalities of chromosomes 1, 5, 17 and 18 associated with multistep tumorigenesis in colorectal cancer, and frequently detected as recurrent abnormalities in primary tumours, ...

  16. Characterization and endocytic internalization of Epith-2 cell surface glycoprotein during the epithelial-to-mesenchymal transition in sea urchin embryos

    Directory of Open Access Journals (Sweden)

    Norio eWakayama

    2013-08-01

    Full Text Available The epithelial cells of the sea urchin Hemicentrotus pulcherrimus embryo express an Epith-2, uncharacterized glycoprotein, on the lateral surface. Here, we describe internalization of Epith-2 during mesenchyme formation through the epithelial-to-mesenchymal transition (EMT. Epith-2 was first expressed on the entire egg surface soon after fertilization and on the blastomeres until the 4-cell stage, but was localized to the lateral surface of epithelial cells at and after the 16-cell stage throughout the later developmental period. However, primary (PMC and secondary mesenchyme cells (SMC that ingress by EMT lost Epith-2 from their cell surface by endocytosis during dissociation from the epithelium, which was associated with the appearance of cytoplasmic Epith-2 dots. The cytoplasmic Epith-2 retained a similar relative molecular mass to that of the cell surface immediately after ingression through the early period of the spreading to single cells. Then, Epith-2 was completely lost from the cytoplasm. Tyrosine residues of Epith-2 were phosphorylated. The endocytic retraction of Epith-2 was inhibited by herbimycin A (HA, a protein tyrosine kinase (PTK inhibitor, and suramin, a growth factor receptor (GFR inhibitor, suggesting the involvement of the GFR/PTK (GP signaling pathway. These two GP inhibitors also inhibited PMC and SMC spreading to individual cells after ingression, but the dissociation of PMC and SMC from the epithelium was not inhibited. In suramin-treated embryos, dissociated mesenchyme cells migrated partially by retaining their epithelial morphology. In HA-treated embryos, no mesenchyme cells migrated. Thus, the EMT occurs in relation to internalization of Epith-2 from presumptive PMC and SMC.

  17. AAVS1-Targeted Plasmid Integration in AAV Producer Cell Lines.

    Science.gov (United States)

    Luo, Yuxia; Frederick, Amy; Martin, John M; Scaria, Abraham; Cheng, Seng H; Armentano, Donna; Wadsworth, Samuel C; Vincent, Karen A

    2017-06-01

    Adeno-associated virus (AAV) producer cell lines are created via transfection of HeLaS3 cells with a single plasmid containing three components (the vector sequence, the AAV rep and cap genes, and a selectable marker gene). As this plasmid contains both the cis (Rep binding sites) and trans (Rep protein encoded by the rep gene) elements required for site-specific integration, it was predicted that plasmid integration might occur within the AAVS1 locus on human chromosome 19 (chr19). The objective of this study was to investigate whether integration in AAVS1 might be correlated with vector yield. Plasmid integration sites within several independent cell lines were assessed via Southern, fluorescence in situ hybridization (FISH) and PCR analyses. In the Southern analyses, the presence of fragments detected by both rep- and AAVS1-specific probes suggested that for several mid- and high-producing lines, plasmid DNA had integrated into the AAVS1 locus. Analysis with puroR and AAVS1-specific probes suggested that integration in AAVS1 was a more widespread phenomenon. High-producing AAV2-secreted alkaline phosphatase (SEAP) lines (masterwell 82 [MW82] and MW278) were evaluated via FISH using probes specific for the plasmid, AAVS1, and a chr19 marker. FISH analysis detected two plasmid integration sites in MW278 (neither in AAVS1), while a total of three sites were identified in MW82 (two in AAVS1). An inverse PCR assay confirmed integration within AAVS1 for several mid- and high-producing lines. In summary, the FISH, Southern, and PCR data provide evidence of site-specific integration of the plasmid within AAVS1 in several AAV producer cell lines. The data also suggest that integration in AAVS1 is a general phenomenon that is not necessarily restricted to high producers. The results also suggest that plasmid integration within the AAVS1 locus is not an absolute requirement for a high vector yield.

  18. Sphere-forming cell subpopulations with cancer stem cell properties in human hepatoma cell lines

    Directory of Open Access Journals (Sweden)

    Chen Lei

    2011-06-01

    Full Text Available Abstract Background Cancer stem cells (CSCs are regarded as the cause of tumor formation and recurrence. The isolation and identification of CSCs could help to develop novel therapeutic strategies specifically targeting CSCs. Methods Human hepatoma cell lines were plated in stem cell conditioned culture system allowed for sphere forming. To evaluate the stemness characteristics of spheres, the self-renewal, proliferation, chemoresistance, tumorigenicity of the PLC/PRF/5 sphere-forming cells, and the expression levels of stem cell related proteins in the PLC/PRF/5 sphere-forming cells were assessed, comparing with the parental cells. The stem cell RT-PCR array was performed to further explore the biological properties of liver CSCs. Results The PLC/PRF/5, MHCC97H and HepG2 cells could form clonal nonadherent 3-D spheres and be serially passaged. The PLC/PRF/5 sphere-forming cells possessed a key criteria that define CSCs: persistent self-renewal, extensive proliferation, drug resistance, overexpression of liver CSCs related proteins (Oct3/4, OV6, EpCAM, CD133 and CD44. Even 500 sphere-forming cells were able to form tumors in NOD/SCID mice, and the tumor initiating capability was not decreased when spheres were passaged. Besides, downstream proteins DTX1 and Ep300 of the CSL (CBF1 in humans, Suppressor of hairless in Drosophila and LAG1 in C. elegans -independent Notch signaling pathway were highly expressed in the spheres, and a gamma-secretase inhibitor MRK003 could significantly inhibit the sphere formation ability. Conclusions Nonadherent tumor spheres from hepatoma cell lines cultured in stem cell conditioned medium possess liver CSC properties, and the CSL-independent Notch signaling pathway may play a role in liver CSCs.

  19. Mining the O-glycoproteome using zinc-finger nuclease-glycoengineered SimpleCell lines

    DEFF Research Database (Denmark)

    Steentoft, Catharina; Vakhrushev, Sergey Y; Vester-Christensen, Malene B

    2011-01-01

    -glycopeptides from total cell lysates using lectin chromatography and nanoflow liquid chromatography-mass spectrometry (nLC-MS/MS) with electron transfer dissociation fragmentation. We identified >100 O-glycoproteins with >350 O-glycan sites (the great majority previously unidentified), including a GalNAc O......-glycan linkage to a tyrosine residue. The SimpleCell method should facilitate analyses of important functions of protein glycosylation. The strategy is also applicable to other O-glycoproteomes....

  20. Effects of hypoxia on human cancer cell line chemosensitivity

    Science.gov (United States)

    2013-01-01

    Background Environment inside even a small tumor is characterized by total (anoxia) or partial oxygen deprivation, (hypoxia). It has been shown that radiotherapy and some conventional chemotherapies may be less effective in hypoxia, and therefore it is important to investigate how different drugs act in different microenvironments. In this study we perform a large screening of the effects of 19 clinically used or experimental chemotherapeutic drugs on five different cell lines in conditions of normoxia, hypoxia and anoxia. Methods A panel of 19 commercially available drugs: 5-fluorouracil, acriflavine, bortezomib, cisplatin, digitoxin, digoxin, docetaxel, doxorubicin, etoposide, gemcitabine, irinotecan, melphalan, mitomycin c, rapamycin, sorafenib, thalidomide, tirapazamine, topotecan and vincristine were tested for cytotoxic activity on the cancer cell lines A2780 (ovarian), ACHN (renal), MCF-7 (breast), H69 (SCLC) and U-937 (lymphoma). Parallel aliquots of the cells were grown at different oxygen pressures and after 72 hours of drug exposure viability was measured with the fluorometric microculture cytotoxicity assay (FMCA). Results Sorafenib, irinotecan and docetaxel were in general more effective in an oxygenated environment, while cisplatin, mitomycin c and tirapazamine were more effective in a low oxygen environment. Surprisingly, hypoxia in H69 and MCF-7 cells mostly rendered higher drug sensitivity. In contrast ACHN appeared more sensitive to hypoxia, giving slower proliferating cells, and consequently, was more resistant to most drugs. Conclusions A panel of standard cytotoxic agents was tested against five different human cancer cell lines cultivated at normoxic, hypoxic and anoxic conditions. Results show that impaired chemosensitivity is not universal, in contrast different cell lines behave different and some drugs appear even less effective in normoxia than hypoxia. PMID:23829203

  1. Crude subcellular fractionation of cultured mammalian cell lines

    Directory of Open Access Journals (Sweden)

    Holden Paul

    2009-12-01

    Full Text Available Abstract Background The expression and study of recombinant proteins in mammalian culture systems can be complicated during the cell lysis procedure by contaminating proteins from cellular compartments distinct from those within which the protein of interest resides and also by solubility issues that may arise from the use of a single lysis buffer. Partial subcellular fractionation using buffers of increasing stringency, rather than whole cell lysis is one way in which to avoid or reduce this contamination and ensure complete recovery of the target protein. Currently published protocols involve time consuming centrifugation steps which may require expensive equipment and commercially available kits can be prohibitively expensive when handling large or multiple samples. Findings We have established a protocol to sequentially extract proteins from cultured mammalian cells in fractions enriched for cytosolic, membrane bound organellar, nuclear and insoluble proteins. All of the buffers used can be made inexpensively and easily and the protocol requires no costly equipment. While the method was optimized for a specific cell type, we demonstrate that the protocol can be applied to a variety of commonly used cell lines and anticipate that it can be applied to any cell line via simple optimization of the primary extraction step. Conclusion We describe a protocol for the crude subcellular fractionation of cultured mammalian cells that is both straightforward and cost effective and may facilitate the more accurate study of recombinant proteins and the generation of purer preparations of said proteins from cell extracts.

  2. Glucocorticoid inhibition of cellular proliferation in rat hepatoma cell lines

    International Nuclear Information System (INIS)

    Cook, P.W.

    1987-01-01

    Glucocorticoids were shown to inhibit the growth rate of Fu5 rat hepatoma cells cultured in the presence or absence of serum and thus, induced a more stringent dependence on serum for growth in this cell line. Fu5 cells, made quiescent at low cell density by continuous exposure to glucocorticoid in the absence of serum, were induced with serum and insulin, which subsequently caused a rapid reinitiation of cellular proliferation. Analysis of total RNA isolated from hormone treated Fu5 cells undergoing serum/insulin induction of DNA synthesis revealed a sequential expression of cellular proto-oncogene products in the absence of any immediate changes in intracellular Ca ++ levels. Introduction of functional glucocorticoid receptor genes into both classes of dexamethasone resistant variants restored glucocorticoid responsiveness and suppression of cell growth. The BDS1 rat hepatoma cell line, an Fu5 derived subclone hypersensitive to the antiprofliferation effects of glucocorticoid, was observed to externalize a glucocorticoid suppressible mitogen (GSM) activity capable of mimicking EGF and insulin induced stimulation of [ 3 H]thymidine incorporation into serum starved, competant Balb/c 3T3 cells

  3. ANTIPSYCHOTICS REVERSE P-GLYCOPROTEIN-MEDIATED DOXORUBICIN RESISTANCE IN HUMAN UTERINE SARCOMA MES-SA/Dx5 CELLS: A NOVEL APPROACH TO CANCER CHEMOTHERAPY.

    Science.gov (United States)

    Angelini, A; Ciofani, G; Conti, P

    2015-01-01

    Multidrug resistance (MDR) mediated by P-glycoprotein (Pgp) remains one of the major obstacles to effective cancer chemotherapy. Several chemosensitizers have been used in vivo and in vitro to reverse MDR but have exhibited several unwanted side effects. Antipsychotics are often administered to treat psychiatric disorders such as delirium, anxiety and sleep disorders in cancer patients during chemotherapy. The present in vitro study, examined the effects of two common antipsychotic compounds, haloperidol and risperidone, and a natural compound such as theobromine on reversing MDR Pgp-mediated, to evaluate their potential use as chemosensitizing agents. The human doxorubicin (doxo) resistant uterine sarcoma cells (MES-SA/Dx5) that overexpress Pgp (100-fold), were treated with the antipsychotic alone (1, 10 and 20 μM) or in combination with different concentrations of doxo (2, 4 and 8 μM). The accumulation and cytotoxicity of doxo (MTT assay) and cellular GSH content (GSH assay) in comparison with verapamil, a well-known Pgp inhibitor, used as reference molecule were examined. It was found that the three compounds significantly enhanced the intracellular accumulation of doxo in resistant cancer cells, when compared with cells receiving doxo alone (p 30%) in resistant cells, when compared to untreated control cells (ptheobromine showed to be an effective Pgp inhibitor with the lowest toxicity.

  4. Neem leaf glycoprotein generates superior tumor specific central memory CD8+T cells than cyclophosphamide that averts post-surgery solid sarcoma recurrence.

    Science.gov (United States)

    Ghosh, Sarbari; Sarkar, Madhurima; Ghosh, Tithi; Guha, Ipsita; Bhuniya, Avishek; Saha, Akata; Dasgupta, Shayani; Barik, Subhasis; Bose, Anamika; Baral, Rathindranath

    2017-08-03

    The success of cancer vaccines is limited as most of them induce corrupted CD8 + T cell memory populations. We reported earlier that a natural immunomodulator, neem leaf glycoprotein (NLGP), therapeutically restricts tumor growth in a CD8 + T cell-dependent manner. Here, our objective is to study whether memory CD8 + T cell population is generated in sarcoma hosts after therapeutic NLGP treatment and their role in prevention of post-surgery tumor recurrence, in comparison to the immunostimulatory metronomic cyclophosphamide (CTX) treatment. We found that therapeutic NLGP and CTX treatment generates central memory CD8 + T (TCM) cells with characteristic CD44 + CD62L high CCR7 high IL-2 high phenotypes. But these TCM cells are functionally impaired to prevent re-appearance of tumors along with compromised proliferative, IL-2 secretive and cytotoxic status. This might be due to the presence of tumor load, even a small one in the host, which serves as a persistent source of tumor antigens thereby corrupting the TCM cells so generated. Surgical removal of the persisting tumors from the host restored the functional characteristics of memory CD8 + T cells, preventing tumor recurrence after surgery till end of the experiment. Moreover, we observed that generation of superior TCM cells in NLGP treated surgically removed tumor hosts is related to the activation of Wnt signalling in memory CD8 + T cells with concomitant inhibition of GSK-3β and stabilisation of β-catenin, which ultimately activates transcription of Wnt target genes, like, eomesodermin, a signature molecule of CD8 + TCM cells. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Differences in radiosensitivity between three HER2 overexpressing cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Steffen, Ann-Charlott; Tolmachev, Vladimir; Stenerloew, Bo [Uppsala University, Unit of Biomedical Radiation Sciences, Department of Oncology, Radiology and Clinical Immunology, Rudbeck Laboratory, Uppsala (Sweden); Goestring, Lovisa [Affibody AB, Bromma (Sweden); Palm, Stig [Sahlgrenska Academy at Goeteborg University, Department of Radiation Physics, Goeteborg (Sweden); Carlsson, Joergen [Uppsala University, Unit of Biomedical Radiation Sciences, Department of Oncology, Radiology and Clinical Immunology, Rudbeck Laboratory, Uppsala (Sweden); Rudbeck Laboratory, Biomedical Radiation Sciences, Uppsala (Sweden)

    2008-06-15

    HER2 is a potential target for radionuclide therapy, especially when HER2 overexpressing breast cancer cells are resistant to Herceptin {sup registered} treatment. Therefore, it is of interest to analyse whether HER2 overexpressing tumour cells have different inherent radiosensitivity. The radiosensitivity of three often used HER2 overexpressing cell lines, SKOV-3, SKBR-3 and BT-474, was analysed. The cells were exposed to conventional photon irradiation, low linear energy transfer (LET), to characterise their inherent radiosensitivity. The analysis was made with clonogenic survival and growth extrapolation assays. The cells were also exposed to alpha particles, high LET, from {sup 211}At decays using the HER2-binding affibody molecule {sup 211}At-(Z{sub HER2:4}){sub 2} as targeting agent. Assays for studies of internalisation of the affibody molecule were applied. SKOV-3 cells were most radioresistant, SKBR-3 cells were intermediate and BT-474 cells were most sensitive as measured with the clonogenic and growth extrapolation assays after photon irradiation. The HER2 dependent cellular uptake of {sup 211}At was qualitatively similar for all three cell lines. However, the sensitivity to the alpha particles from {sup 211}At differed; SKOV-3 was most resistant, SKBR-3 intermediate and BT-474 most sensitive. These differences were unexpected because it is assumed that all types of cells should have similar sensitivity to high-LET radiation. The sensitivity to alpha particle exposure correlated with internalisation of the affibody molecule and with size of the cell nucleus. There can be differences in radiosensitivity, which, if they also exist between patient breast cancer cells, are important to consider for both conventional radiotherapy and for HER2-targeted radionuclide therapy. (orig.)

  6. Radiosensitization of colorectal carcinoma cell lines by histone deacetylase inhibition

    International Nuclear Information System (INIS)

    Flatmark, Kjersti; Nome, Ragnhild V; Folkvord, Sigurd; Bratland, Åse; Rasmussen, Heidi; Ellefsen, Mali Strand; Fodstad, Øystein; Ree, Anne Hansen

    2006-01-01

    The tumor response to preoperative radiotherapy of locally advanced rectal cancer varies greatly, warranting the use of experimental models to assay the efficacy of molecular targeting agents in rectal cancer radiosensitization. Histone deacetylase (HDAC) inhibitors, agents that cause hyperacetylation of histone proteins and thereby remodeling of chromatin structure, may override cell cycle checkpoint responses to DNA damage and amplify radiation-induced tumor cell death. Human colorectal carcinoma cell lines were exposed to ionizing radiation and HDAC inhibitors, and cell cycle profiles and regulatory factors, as well as clonogenicity, were analyzed. In addition to G 2 /M phase arrest following irradiation, the cell lines displayed cell cycle responses typical for either intact or defective p53 function (the presence or absence, respectively, of radiation-induced expression of the cell cycle inhibitor p21 and subsequent accumulation of G 1 phase cells). In contrast, histone acetylation was associated with complete depletion of the G 1 population of cells with functional p53 but accumulation of both G 1 and G 2 /M populations of cells with defective p53. The cellular phenotypes upon HDAC inhibition were consistent with the observed repression of Polo-like kinase-1, a regulatory G 2 /M phase kinase. Following pre-treatment with HDAC inhibitors currently undergoing clinical investigation, the inhibitory effect of ionizing radiation on clonogenicity was significantly amplified. In these experimental models, HDAC inhibition sensitized the tumor cells to ionizing radiation, which is in accordance with the concept of increased probability of tumor cell death when chromatin structure is modified

  7. Differences in radiosensitivity between three HER2 overexpressing cell lines

    International Nuclear Information System (INIS)

    Steffen, Ann-Charlott; Tolmachev, Vladimir; Stenerloew, Bo; Goestring, Lovisa; Palm, Stig; Carlsson, Joergen

    2008-01-01

    HER2 is a potential target for radionuclide therapy, especially when HER2 overexpressing breast cancer cells are resistant to Herceptin registered treatment. Therefore, it is of interest to analyse whether HER2 overexpressing tumour cells have different inherent radiosensitivity. The radiosensitivity of three often used HER2 overexpressing cell lines, SKOV-3, SKBR-3 and BT-474, was analysed. The cells were exposed to conventional photon irradiation, low linear energy transfer (LET), to characterise their inherent radiosensitivity. The analysis was made with clonogenic survival and growth extrapolation assays. The cells were also exposed to alpha particles, high LET, from 211 At decays using the HER2-binding affibody molecule 211 At-(Z HER2:4 ) 2 as targeting agent. Assays for studies of internalisation of the affibody molecule were applied. SKOV-3 cells were most radioresistant, SKBR-3 cells were intermediate and BT-474 cells were most sensitive as measured with the clonogenic and growth extrapolation assays after photon irradiation. The HER2 dependent cellular uptake of 211 At was qualitatively similar for all three cell lines. However, the sensitivity to the alpha particles from 211 At differed; SKOV-3 was most resistant, SKBR-3 intermediate and BT-474 most sensitive. These differences were unexpected because it is assumed that all types of cells should have similar sensitivity to high-LET radiation. The sensitivity to alpha particle exposure correlated with internalisation of the affibody molecule and with size of the cell nucleus. There can be differences in radiosensitivity, which, if they also exist between patient breast cancer cells, are important to consider for both conventional radiotherapy and for HER2-targeted radionuclide therapy. (orig.)

  8. Plasmids and packaging cell lines for use in phage display

    Science.gov (United States)

    Bradbury, Andrew M.

    2012-07-24

    The invention relates to a novel phagemid display system for packaging phagemid DNA into phagemid particles which completely avoids the use of helper phage. The system of the invention incorporates the use of bacterial packaging cell lines which have been transformed with helper plasmids containing all required phage proteins but not the packaging signals. The absence of packaging signals in these helper plasmids prevents their DNA from being packaged in the bacterial cell, which provides a number of significant advantages over the use of both standard and modified helper phage. Packaged phagemids expressing a protein or peptide of interest, in fusion with a phage coat protein such as g3p, are generated simply by transfecting phagemid into the packaging cell line.

  9. Subcloning of three osteoblastic cell lines with distinct differentiation phenotypes from the mouse osteoblastic cell line KS-4.

    Science.gov (United States)

    Yamashita, T; Ishii, H; Shimoda, K; Sampath, T K; Katagiri, T; Wada, M; Osawa, T; Suda, T

    1996-11-01

    Three distinct osteoblastic cell lines (KS418, KS460, and KS483) were subcloned from the mouse osteoblastic KS-4 cells, which possessed the abilities not only to differentiate into mature osteoblasts, but also to support osteoclast differentiation in coculture with spleen cells. The order of the magnitude of the basal alkaline phosphatase (ALP) activity was KS483 > KS418 > KS460. KS483 cells were also more differentiated than KS418 and KS460 in terms of ALP activity and osteocalcin production, when cultured in growth medium containing 10% fetal bovine serum. In long-term culture, KS418 and KS483 apparently differentiated into mature osteoblasts and formed calcified nodules without addition of beta-glycerophosphate. Electron microscopic analysis demonstrated that calcification occurring in the nodules was initiated in the matrix vesicles as observed in bone formation in vivo. Nodule formation and mineral deposition occurred simultaneously in the presence of beta-glycerophosphate, but the former always preceded the latter without addition of beta-glycerophosphate. In contrast, KS460 cells did not show time-dependent increases of ALP activity, type I collagen expression and osteocalcin production, which were induced by treatment with recombinant osteogenic protein-1 (OP-1). The three cell lines similarly supported osteoclast differentiation in coculture with spleen cells in response to 1,25-dihydroxyvitamin D3. These results indicate that the three cell lines subcloned from the original KS-4 cells represent phenotypically distinct osteoblasts during osteoblast differentiation, but are equipped similarly with the capacity to support osteoclast differentiation. The subcloned cells of the KS-4 series may provide useful systems in which to study osteoblast differentiation and function.

  10. Neem leaf glycoprotein promotes dual generation of central and effector memory CD8(+) T cells against sarcoma antigen vaccine to induce protective anti-tumor immunity.

    Science.gov (United States)

    Ghosh, Sarbari; Sarkar, Madhurima; Ghosh, Tithi; Guha, Ipsita; Bhuniya, Avishek; Saha, Akata; Dasgupta, Shayani; Barik, Subhasis; Bose, Anamika; Baral, Rathindranath

    2016-03-01

    We have previously shown that Neem Leaf Glycoprotein (NLGP) mediates sustained tumor protection by activating host immune response. Now we report that adjuvant help from NLGP predominantly generates CD44(+)CD62L(high)CCR7(high) central memory (TCM; in lymph node) and CD44(+)CD62L(low)CCR7(low) effector memory (TEM; in spleen) CD8(+) T cells of Swiss mice after vaccination with sarcoma antigen (SarAg). Generated TCM and TEM participated either to replenish memory cell pool for sustained disease free states or in rapid tumor eradication respectively. TCM generated after SarAg+NLGP vaccination underwent significant proliferation and IL-2 secretion following SarAg re-stimulation. Furthermore, SarAg+NLGP vaccination helps in greater survival of the memory precursor effector cells at the peak of the effector response and their maintenance as mature memory cells, in comparison to single modality treatment. Such response is corroborated with the reduced phosphorylation of FOXO in the cytosol and increased KLF2 in the nucleus associated with enhanced CD62L, CCR7 expression of lymph node-resident CD8(+) T cells. However, spleen-resident CD8(+) T memory cells show superior efficacy for immediate memory-to-effector cell conversion. The data support in all aspects that SarAg+NLGP demonstrate superiority than SarAg vaccination alone that benefits the host by rapid effector functions whenever required, whereas, central-memory cells are thought to replenish the memory cell pool for ultimate sustained disease free survival till 60 days following post-vaccination tumor inoculation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Cytotoxicity evaluation of silica nanoparticles using fish cell lines.

    Science.gov (United States)

    Vo, Nguyen T K; Bufalino, Mary R; Hartlen, Kurtis D; Kitaev, Vladimir; Lee, Lucy E J

    2014-01-01

    Nanoparticles (NPs) have extensive industrial, biotechnological, and biomedical/pharmaceutical applications, leading to concerns over health risks to humans and biota. Among various types of nanoparticles, silica nanoparticles (SiO2 NPs) have become popular as nanostructuring, drug delivery, and optical imaging agents. SiO2 NPs are highly stable and could bioaccumulate in the environment. Although toxicity studies of SiO2 NPs to human and mammalian cells have been reported, their effects on aquatic biota, especially fish, have not been significantly studied. Twelve adherent fish cell lines derived from six species (rainbow trout, fathead minnow, zebrafish, goldfish, haddock, and American eel) were used to comparatively evaluate viability of cells by measuring metabolic impairment using Alamar Blue. Toxicity of SiO2 NPs appeared to be size-, time-, temperature-, and dose-dependent as well as tissue-specific. However, dosages greater than 100 μg/mL were needed to achieve 24 h EC50 values (effective concentrations needed to reduce cell viability by 50%). Smaller SiO2 NPs (16 nm) were relatively more toxic than larger sized ones (24 and 44 nm) and external lining epithelial tissue (skin, gills)-derived cells were more sensitive than cells derived from internal tissues (liver, brain, intestine, gonads) or embryos. Higher EC50 values were achieved when toxicity assessment was performed at higher incubation temperatures. These findings are in overall agreement with similar human and mouse cell studies reported to date. Thus, fish cell lines could be valuable for screening emerging contaminants in aquatic environments including NPs through rapid high-throughput cytotoxicity bioassays.

  12. Stoichiometry of monoclonal antibody neutralization of T-cell line-adapted human immunodeficiency virus type 1

    DEFF Research Database (Denmark)

    Schønning, Kristian; Lund, O; Lund, O S

    1999-01-01

    In order to study the stoichiometry of monoclonal antibody (MAb) neutralization of T-cell line-adapted human immunodeficiency virus type 1 (HIV-1) in antibody excess and under equilibrium conditions, we exploited the ability of HIV-1 to generate mixed oligomers when different env genes are coexpr......In order to study the stoichiometry of monoclonal antibody (MAb) neutralization of T-cell line-adapted human immunodeficiency virus type 1 (HIV-1) in antibody excess and under equilibrium conditions, we exploited the ability of HIV-1 to generate mixed oligomers when different env genes...... are coexpressed. By the coexpression of Env glycoproteins that either can or cannot bind a neutralizing MAb in an env transcomplementation assay, virions were generated in which the proportion of MAb binding sites could be regulated. As the proportion of MAb binding sites in Env chimeric virus increased, MAb...... neutralization gradually increased. Virus neutralization by virion aggregation was minimal, as MAb binding to HIV-1 Env did not interfere with an AMLV Env-mediated infection by HIV-1(AMLV/HIV-1) pseudotypes of CD4(-) HEK293 cells. MAb neutralization of chimeric virions could be described as a third...

  13. Multidrug resistance and retroviral transduction potential in human small cell lung cancer cell lines

    DEFF Research Database (Denmark)

    Theilade, M D; Gram, G J; Jensen, P B

    1999-01-01

    for the gibbon ape leukemia virus (GALV-1) receptor or had specificity for the amphotropic murine leukemia virus (MLV-A) receptor were used for transduction of five SCLC cell lines differing by a range of MDR mechanisms. Transduction efficiencies in these cell lines were compared by calculating the percentage...... of blue colonies after X-Gal staining of the cells grown in soft agar. All examined SCLC cell lines were transducible with either vector. Transduction efficiencies varied from 5.7% to 33.5% independent of the presence of MDR. These results indicate that MDR does not severely impair transduction of SCLC...

  14. Change of cell cycle arrest of tumor cell lines after 60Co γ-irradiation

    International Nuclear Information System (INIS)

    Tang Yi; Liu Wenli; Zhou Jianfeng; Gao Qinglei; Wu Jianhong

    2003-01-01

    Objective: To observe the cell cycle arrest changes in peripheral blood mononuclear cells (PBMNCs) of normal persons and several kinds of tumor cell lines after 60 Co γ-irradiation. Methods: PBMNCs of normal persons, HL-60, K562, SiHA and 113 tumor cell lines were irradiated with 60 Co γ-rays at the absorbed doses of 6, 10,15 Gy. Cell cycles changes were checked 6, 12, 24, 48 and 60 h after the irradiation. Results: A stasis state was observed in normal person PBMNCs, 95 percents of which were in G 1 phase, and they still remained stasis after the irradiation. Except the 113 cell line manifesting G 1 phase arrest, all other tumor cell lines showed G 2 /M phase arrest after irradiation. The radiation sensitivity of HL-60 was higher than that of SiHA cell line. Conclusion: Different cell lines have different cell cycle arrest reaction to radiation and their radiation sensitivity are also different

  15. A new method for detection of tumor driver-dependent changes of protein sialylation in a colon cancer cell line reveals nectin-3 as TGFBR2 target.

    Science.gov (United States)

    Lee, Jennifer; Warnken, Uwe; Schnölzer, Martina; Gebert, Johannes; Kopitz, Jürgen

    2015-10-01

    Protein-linked glycans play key roles in cell differentiation, cell-cell interactions, cell growth, adhesion and immune response. Aberrant glycosylation is a characteristic feature of tumor cells and is involved in tumor growth, escape from apoptosis, metastasis formation, and resistance to therapy. It can serve as cancer biomarker and treatment target. To enable comprehensive screening for the impact of tumor driving mutations in colorectal cancer cells we present a method for specific analysis of tumor driver-induced glycome changes. The strategy is based on a combination of three technologies, that is recombinase-mediated cassette exchange (RMCE), Click-It chemistry and mass spectrometry. The new method is exemplified by the analysis of the impact of inactivating mutations of the TGF-ß-receptor type II (TGFBR2) on sialic acid incorporation into protein-linked glycans of the colon cancer cell line HCT116. Overall, 70 proteins were found to show de novo sialic acid incorporation exclusively upon TGFBR2 expression whereas 7 proteins lost sialylation upon TGFBR2 reconstitution. Validation of detected candidate glycoproteins is demonstrated with the cell surface glycoprotein nectin-3 known to be involved in metastasis, invasion and prognosis of various cancers. Altogether, our new approach can help to systematically puzzle out the influence of tumor-specific mutations in a major signaling pathway, as exemplified by the TGFBR2 tumor suppressor, on the tumor glycome. It facilitates the identification of glycan-based tumor markers that could be used for diagnostic and therapeutic applications. In principle the outlined strategy can be adapted to any cancer cell line, tumor driver mutation and several glycan-building blocks. © 2015 The Protein Society.

  16. In vitro evaluation of new anticancer drugs, exemplified by vinorelbine, using the fluorometric microculture cytotoxicity assay on human tumor cell lines and patient biopsy cells.

    Science.gov (United States)

    Fridborg, H; Nygren, P; Dhar, S; Csoka, K; Kristensen, J; Larsson, R

    1996-09-01

    The feasibility of combined studies on a cell-line panel and primary cultures of patient tumor cells in the preclinical evaluation of new anticancer drugs was evaluated in a study of the activity and cross-resistance pattern in vitro of the new semi-synthetic vinca alkaloid vinorelbine (Vrb). The activity of Vrb was investigated in ten cell lines representing different resistance mechanisms and in a total of 256 fresh human tumor samples, using the fluorometric microculture cytotoxicity assay (FMCA). Resistance to Vrb in the cell lines was associated with expression of the multidrug resistance-mediating P-glycoprotein and the multidrug resistance-associated protein (MRP) and by a recently described tubulin-associated mechanism, while the cell lines with topoisomerase II- and glutathion-associated resistance did not show decreased sensitivity to the drug. Cross-resistance to vincristine (Vcr) and other tubulin-active agents was high in cell lines as well as in patient cells. As with most commonly used anti-cancer drugs, Vrb was more active in hematological than in solid tumor samples. Among the solid tumors investigated, the highest in vitro response rates were observed in ovarian cancer (27%), sarcoma (25%), non-small cell lung cancer (21%) and bladder cancer (20%), while no response was observed in renal or colorectal cancer. Compared to Vcr, Vrb appeared to be slightly more active in solid tumors and slightly less active in hematological tumors. The results show that although Vrb displays a high degree of cross-resistance to Vcr and other tubulin-active drugs, some difference in the activity spectrum could be detected and that the drug is sensitive to multiple mechanisms of resistance. The results also suggest that leukemias, ovarian cancer, sarcoma and bladder cancer are possible further targets for Vrb. The combination of studies on a cell-line panel and patient tumor cells from a broad spectrum of diagnoses to evaluate a new drug seems feasible and may give

  17. MicroRNA profiling of cisplatin-resistant oral squamous cell carcinoma cell lines enriched with cancer-stem-cell-like and epithelial-mesenchymal transition-type features

    Science.gov (United States)

    Ghosh, Ruma Dey; Ghuwalewala, Sangeeta; Das, Pijush; Mandloi, Sapan; Alam, Sk Kayum; Chakraborty, Jayanta; Sarkar, Sajal; Chakrabarti, Saikat; Panda, Chinmoy Kumar; Roychoudhury, Susanta

    2016-01-01

    Oral cancer is of major public health problem in India. Current investigation was aimed to identify the specific deregulated miRNAs which are responsible for development of resistance phenotype through regulating their resistance related target gene expression in oral squamous cell carcinoma (OSCC). Cisplatin-resistant OSCC cell lines were developed from their parental human OSCC cell lines and subsequently characterised. The resistant cells exhibited enhanced proliferative, clonogenic capacity with significant up-regulation of P-glycoprotein (ABCB1), c-Myc, survivin, β-catenin and a putative cancer-stem-like signature with increased expression of CD44, whereas the loss of E-cadherin signifies induced EMT phenotype. A comparative analysis of miRNA expression profiling in parental and cisplatin-resistant OSCC cell lines for a selected sets (deregulated miRNAs in head and neck cancer) revealed resistance specific signature. Moreover, we observed similar expression pattern for these resistance specific signature miRNAs in neoadjuvant chemotherapy treated and recurrent tumours compared to those with newly diagnosed primary tumours in patients with OSCC. All these results revealed that these miRNAs play an important role in the development of cisplatin-resistance mainly through modulating cancer stem-cell-like and EMT-type properties in OSCC. PMID:27045798

  18. Sensitivity of breast cancer cell lines to recombinant thiaminase I.

    Science.gov (United States)

    Liu, Shuqian; Monks, Noel R; Hanes, Jeremiah W; Begley, Tadhg P; Yu, Hui; Moscow, Jeffrey A

    2010-05-01

    We have previously shown that the expression of the thiamine transporter THTR2 is decreased sevenfold in breast cancer, which may leave breast cancer cells vulnerable to acute thiamine starvation. This concept was supported by the observation that MDA231 breast cancer xenografts demonstrated growth inhibition in mice fed a thiamine-free diet. We purified recombinant Bacillus thiaminolyticus thiaminase I enzyme, which digests thiamine, to study acute thiamine starvation in breast cancer. Thiaminase I enzyme was cytotoxic in six breast cancer cell lines with IC(50)s ranging from 0.012 to 0.022 U/ml. The growth inhibitory effects of the combination of thiaminase I with either doxorubicin or paclitaxel were also examined. Over a wide range of drug concentrations, thiaminase 1 was consistently synergistic or additive with doxorubicin and paclitaxel in MCF-7, ZR75, HS578T and T47D cell lines, with most combinations having a calculated combination index (CI) of less than 0.8, indicating synergy. Although thiaminase I exposure did not stimulate the energy-sensing signaling kinases AKT, AMPK and GSK-3beta in MCF-7, ZR75, HS578T and T47D cell lines, thiaminase I exposure did stimulate expression of the ER stress response protein GRP78. In summary, thiaminase I is cytotoxic in breast cancer cell lines and triggers the unfolded protein response. These findings suggest that THTR2 down-regulation in breast tumors may present a nutritional vulnerability that could be exploited by thiaminase I enzyme therapy.

  19. Caffeine markedly sensitizes human mesothelioma cell lines to pemetrexed

    Science.gov (United States)

    Min, Sang Hee; Goldman, I. David; Zhao, Rongbao

    2013-01-01

    Pemetrexed is a new generation antifolate approved for the treatment of mesothelioma and non-small cell lung cancer. Caffeine is known to augment radiation or chemotherapeutic drug-induced cell killing. The current study addresses the impact of caffeine on the activity of pemetrexed in mesothelioma cell lines. Caffeine enhanced pemetrexed activity in all four mesothelioma cell lines tested (H2052, H2373, H28 and MSTO-211H). Caffeine sensitized H2052 cells in a dose- and schedule-dependent manner, and was associated with a markedly decreased clonogenic survival. Caffeine sensitization occurred only in cells subjected to pulse, but not continuous, exposure to pemetrexed. Similar pemetrexed sensitization was also observed with the clinically better tolerated caffeine analog, theobromine. Pemetrexed sensitization by caffeine was associated with an increase in pemetrexed-induced phosphorylation of ataxia-telangiectasia-mutated (ATM) and Chk1. These data indicate that caffeine and its analog, theobromine, may be a useful approach to enhance pemetrexed-based chemotherapy. PMID:17594092

  20. Expression of TNF-alpha and IL-6 in HMC-1 cells treated with bisphenol A is attenuated by plant-originating glycoprotein (75 kDa) by blocking p38 MAPK.

    Science.gov (United States)

    Lee, Jin; Lim, Kye-Taek

    2010-07-01

    Bisphenol A (BPA) is known as an estrogen-mimic environmental hormone which has the ability to indirectly stimulate the production of allergic inflammation-related cytokines. Cudrania tricuspidata Bureau (CTB) has been used in Korean folk medicine for a long time. In order to determine the inhibitory effect of a glycoprotein (CTB glycoprotein, 75 kDa) isolated from CTB fruits on the activities of allergic inflammation-related cytokines (TNF-alpha and IL-6) caused by BPA, we evaluated the activities of protein kinase C (PKC), p38 mitogen-activated protein kinase (p38 MAPK), nuclear factor (NF)-kappaB, and inflammation-related cytokine (TNF-alpha and IL-6) in the BPA-induced HMC-1 cells using immunoblot analysis and RT-PCR. The results obtained from this study revealed that CTB glycoprotein (100 microg/ml) inhibits the translocation of PKC from cytosol to the membrane, the phosphorylation of p38 MAPK, the activation of NF-kappaB, and the expression levels of TNF-alpha and IL-6. Taken together, the results in this study suggest that CTB glycoprotein inhibits the expression of allergic inflammation-related cytokines (TNF-alpha and IL-6) by blocking NF-kappaB and p38 kinase in BPA-induced HMC-1 cells.

  1. Human periodontal ligament stem cells suppress T-cell proliferation via down-regulation of non-classical major histocompatibility complex-like glycoprotein CD1b on dendritic cells.

    Science.gov (United States)

    Shin, C; Kim, M; Han, J-A; Choi, B; Hwang, D; Do, Y; Yun, J-H

    2017-02-01

    Periodontal ligament stem cells (PDLSCs) from the periodontal ligament tissue were recently identified as mesenchymal stem cells (MSCs). The capabilities of PDLSCs in periodontal tissue or bone regeneration have been reported, but their immunomodulatory role in T-cell immune responses via dendritic cells (DCs), known as the most potent antigen-presenting cell, has not been studied. The aim of this study is to understand the immunological function of homogeneous human STRO-1 + CD146 + PDLSCs in DC-mediated T-cell immune responses to modulate the periodontal disease process. We utilized highly purified (> 95%) human STRO-1 + CD146 + PDLSCs and human bone marrow mesenchymal stem cells (BMSCs). Each stem cell was co-cultured with human monocyte-derived DCs in the presence of lipopolysaccharide isolated from Porphyromonas gingivalis, a major pathogenic bacterium responsible for periodontal disease, in vitro to examine the immunological effect of each stem cell on DCs and DC-mediated T-cell proliferation. We discovered that STRO-1 + CD146 + PDLSCs, as well as BMSCs, significantly decreased the level of non-classical major histocompatibility complex glycoprotein CD1b on DCs, resulting in defective T-cell proliferation, whereas most human leukocyte antigens and the co-stimulatory molecules CD80 and CD86 in/on DCs were not significantly affected by the presence of BMSCs or STRO-1 + CD146 + PDLSCs. This study unveiled an immunomodulatory role of STRO-1 + CD146 + PDLSCs in negatively regulating DC-mediated T-cell immune responses, demonstrating their potential to be utilized in promising new stem cell therapies. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Monitoring cell line identity in collections of human induced pluripotent stem cells.

    Science.gov (United States)

    Sarafian, Raquel; Morato-Marques, Mariana; Borsoi, Juliana; Pereira, Lygia Veiga

    2018-01-31

    The ability to reprogram somatic cells into induced pluripotent stem cells (hiPSCs) has led to the generation of large collections of cell lines from thousands of individuals with specific phenotypes, many of which will be shared among different research groups as invaluable tools for biomedical research. As hiPSC-based research involves extensive culture of many cell lines, the issue periodic cell line identification is particularly important to ensure that cell line identity remains accurate. Here we analyzed the different commercially available genotyping methods considering ease of in-house genotyping, cost and informativeness, and applied one of them in our workflow for hiPSC generation. We show that the chosen STR method was able to establish a unique DNA profile for each of the 35 individuals/hiPSC lines at the examined sites, as well as identify two discrepancies resulting from inadvertently exchanged samples. Our results highlight the importance of hiPSC line genotyping by an in-house method that allows periodic cell line identification and demonstrate that STR is a useful approach to supplement less frequent karyotyping and epigenetic evaluations. Copyright © 2018. Published by Elsevier B.V.

  3. P-glycoprotein attenuates DNA repair activity in multidrug-resistant cells by acting through the Cbp-Csk-Src cascade.

    Science.gov (United States)

    Lin, Li-Fang; Wu, Ming-Hsi; Pidugu, Vijaya Kumar; Ho, I-Ching; Su, Tsann-Long; Lee, Te-Chang

    2017-07-11

    Recent studies have demonstrated that P-glycoprotein (P-gp) expression impairs DNA interstrand cross-linking agent-induced DNA repair efficiency in multidrug-resistant (MDR) cells. To date, the detailed molecular mechanisms underlying how P-gp interferes with Src activation and subsequent DNA repair activity remain unclear. In this study, we determined that the C-terminal Src kinase-binding protein (Cbp) signaling pathway involved in the negative control of Src activation is enhanced in MDR cells. We also demonstrated that cells that ectopically express P-gp exhibit reduced activation of DNA damage response regulators, such as ATM, Chk2, Braca1 and Nbs1 and hence attenuated DNA double-strand break repair capacity and become more susceptible than vector control cells to DNA interstrand cross-linking (ICL) agents. Moreover, we demonstrated that P-gp can not only interact with Cbp and Src but also enhance the formation of inhibitory C-terminal Src kinase (Csk)-Cbp complexes that reduce phosphorylation of the Src activation residue Y416 and increase phosphorylation of the Src negative regulatory residue Y527. Notably, suppression of Cbp expression in MDR cells restores cisplatin-induced Src activation, improves DNA repair capacity, and increases resistance to ICL agents. Ectopic expression of Cbp attenuates cisplatin-induced Src activation and increases the susceptibility of cells to ICL agents. Together, the current results indicate that P-gp inhibits DNA repair activity by modulating Src activation via Cbp-Csk-Src cascade. These results suggest that DNA ICL agents are likely to have therapeutic potential against MDR cells with P-gp-overexpression.

  4. Designing of promiscuous inhibitors against pancreatic cancer cell lines

    Science.gov (United States)

    Kumar, Rahul; Chaudhary, Kumardeep; Singla, Deepak; Gautam, Ankur; Raghava, Gajendra P. S.

    2014-04-01

    Pancreatic cancer remains the most devastating disease with worst prognosis. There is a pressing need to accelerate the drug discovery process to identify new effective drug candidates against pancreatic cancer. We have developed QSAR models for predicting promiscuous inhibitors using the pharmacological data. Our models achieved maximum Pearson correlation coefficient of 0.86, when evaluated on 10-fold cross-validation. Our models have also successfully validated the drug-to-oncogene relationship and further we used these models to screen FDA approved drugs and tested them in vitro. We have integrated these models in a webserver named as DiPCell, which will be useful for screening and designing novel promiscuous drug molecules. We have also identified the most and least effective drugs for pancreatic cancer cell lines. On the other side, we have identified resistant pancreatic cancer cell lines, which need investigative scanner on them to put light on resistant mechanism in pancreatic cancer.

  5. Co-expression of foreign proteins tethered to HIV-1 envelope glycoprotein on the cell surface by introducing an intervening second membrane-spanning domain.

    Directory of Open Access Journals (Sweden)

    Hongyun Wang

    Full Text Available The envelope glycoprotein (Env of human immunodeficiency virus type I (HIV-1 mediates membrane fusion. To analyze the mechanism of HIV-1 Env-mediated membrane fusion, it is desirable to determine the expression level of Env on the cell surface. However, the quantification of Env by immunological staining is often hampered by the diversity of HIV-1 Env and limited availability of universal antibodies that recognize different Envs with equal efficiency. To overcome this problem, here we linked a tag protein called HaloTag at the C-terminus of HIV-1 Env. To relocate HaloTag to the cell surface, we introduced a second membrane-spanning domain (MSD between Env and HaloTag. The MSD of transmembrane protease serine 11D, a type II transmembrane protein, successfully relocated HaloTag to the cell surface. The surface level of Env can be estimated indirectly by staining HaloTag with a specific membrane-impermeable fluorescent ligand. This tagging did not compromise the fusogenicity of Env drastically. Furthermore, fusogenicity of Env was preserved even after the labeling with the ligands. We have also found that an additional foreign peptide or protein such as C34 or neutralizing single-chain variable fragment (scFv can be linked to the C-terminus of the HaloTag protein. Using these constructs, we were able to determine the required length of C34 and critical residues of neutralizing scFv for blocking membrane fusion, respectively.

  6. HCMV Infection of Human Trophoblast Progenitor Cells of the Placenta Is Neutralized by a Human Monoclonal Antibody to Glycoprotein B and Not by Antibodies to the Pentamer Complex

    Directory of Open Access Journals (Sweden)

    Martin Zydek

    2014-03-01

    Full Text Available Human cytomegalovirus (HCMV is the major viral cause of congenital infection and birth defects. Primary maternal infection often results in virus transmission, and symptomatic babies can have permanent neurological deficiencies and deafness. Congenital infection can also lead to intrauterine growth restriction, a defect in placental transport. HCMV replicates in primary cytotrophoblasts (CTBs, the specialized cells of the placenta, and inhibits differentiation/invasion. Human trophoblast progenitor cells (TBPCs give rise to the mature cell types of the chorionic villi, CTBs and multi-nucleated syncytiotrophoblasts (STBs. Here we report that TBPCs are fully permissive for pathogenic and attenuated HCMV strains. Studies with a mutant virus lacking a functional pentamer complex (gH/gL/pUL128-131A showed that virion entry into TBPCs is independent of the pentamer. In addition, infection is blocked by a potent human neutralizing monoclonal antibody (mAb, TRL345, reactive with glycoprotein B (gB, but not mAbs to the pentamer proteins pUL130/pUL131A. Functional studies revealed that neutralization of infection preserved the capacity of TBPCs to differentiate and assemble into trophospheres composed of CTBs and STBs in vitro. Our results indicate that mAbs to gB protect trophoblast progenitors of the placenta and could be included in antibody treatments developed to suppress congenital infection and prevent disease.

  7. Protein and Glycoprotein Patterns Related to Morphogenesis in Mammillaria gracillis Pfeiff. Tissue Culture

    Directory of Open Access Journals (Sweden)

    Biljana Balen

    2002-01-01

    Full Text Available As plants with Crassulacean Acid Metabolism (CAM, cacti are highly affected by artificial environmental conditions in tissue culture. Plants of Mammillaria gracillis Pfeiff. (Cactaceae propagated in vitro produced callus spontaneously. This habituated callus regenerated normal and hyperhydric shoots without the addition of growth regulators. In order to compare habituated callus with the tumorous one, cactus cells were transformed with two strains of Agrobacterium tumefaciens: the wild strain B6S3 (tumour line TW and the rooty mutant GV3101 (tumour line TR. Gene expression in cactus plants, habituated callus, regenerated shoots and two tumour lines was analysed at the level of cellular and extracellular protein and glycoprotein profiles. Proteins were separated by SDS-polyacrylamide gel electrophoresis and 2-D PAGE electrophoresis and silver stained. Concavalin A-peroxidase staining detected glycoproteins with D-manose in their glycan component on protein blots. Developmentally specific protein patterns of Mammillaria gracillis tissue lines were detected. The 2-D PAGE electrophoresis revealed some tissue specific protein groups. The cellular glycoprotein of 42 kDa detected by ConA was highly expressed in undifferentiated tissues (habituated callus, TW and TR tumours and in hyperhydric regenerants. Tumours produced extracellular proteins of 33, 23 and 22 kDa. The N glycosylation of cellular and extracellular proteins was related to specific developmental stage of cactus tissue.

  8. Embryonic liver cells and permanent lines as models for hepatocyte and bile duct cell differentiation.

    Science.gov (United States)

    Strick-Marchand, Hélène; Weiss, Mary C

    2003-01-01

    Analysis of liver cells during development is facilitated by the possibility of complementing in vivo analysis with experiments on cultured cells. In this review, we discuss results from several laboratories concerning bipotential hepatic stem cells from mouse (HBC-3, H-CFU-C, MMH and BMEL), rat (rhe14321) and primate (IPFLS) embryos. Several groups have used fluorescence-activated cell sorting to identify clonogenic bipotential cells; others have derived bipotential cell lines by plating liver cell suspensions and cloning. The bipotential cells, which probably originate from hepatoblasts, can differentiate as hepatocytes or bile duct cells, and undergo morphogenesis in culture. Disparities in differentiation can be explained by distinct medium compositions, extracellular matrix coated culture surfaces, and gene expression detection methods. Potential applications of these cell lines are discussed.

  9. Production platforms for biotherapeutic glycoproteins. Occurrence, impact, and challenges of non-human sialylation.

    Science.gov (United States)

    Ghaderi, Darius; Zhang, Mai; Hurtado-Ziola, Nancy; Varki, Ajit

    2012-01-01

    One of the fastest growing fields in the pharmaceutical industry is the market for therapeutic glycoproteins. Today, these molecules play a major role in the treatment of various diseases, and include several protein classes, i.e., clotting factors, hormones, cytokines, antisera, enzymes, enzyme inhibitors, Ig-Fc-Fusion proteins, and monoclonal antibodies. Optimal glycosylation is critical for therapeutic glycoproteins, as glycans can influence their yield, immunogenicity and efficacy, which impact the costs and success of such treatments. While several mammalian cell expression systems currently used can produce therapeutic glycoproteins that are mostly decorated with human-like glycans, they can differ from human glycans by presenting two structures at the terminal and therefore most exposed position. First, natural human N-glycans are lacking the terminal Gal 1-3Gal (alpha-Gal) modification; and second, they do not contain the non-human sialic acid N-glycolylneuraminic acid (Neu5Gc). All humans spontaneously express antibodies against both of these glycan structures, risking increased immunogenicity of biotherapeutics carrying such non-human glycan epitopes. However, in striking contrast to the alpha-Gal epitope, exogenous Neu5Gc can be metabolically incorporated into human cells and presented on expressed glycoproteins in several possible epitopes. Recent work has demonstrated that this non-human sialic acid is found in widely varying amounts on biotherapeutic glycoproteins approved for treatment of various medical conditions. Neu5Gc on glycans of these medical agents likely originates from the production process involving the non-human mammalian cell lines and/or the addition of animal-derived tissue culture supplements. Further studies are needed to fully understand the impact of Neu5Gc in biotherapeutic agents. Similar concerns apply to human cells prepared for allo- or auto-transplantation, that have been grown in animal-derived tissue culture supplements.

  10. Ammonia transport in the kidney by Rhesus glycoproteins

    Science.gov (United States)

    Verlander, Jill W.

    2014-01-01

    Renal ammonia metabolism is a fundamental element of acid-base homeostasis, comprising a major component of both basal and physiologically altered renal net acid excretion. Over the past several years, a fundamental change in our understanding of the mechanisms of renal epithelial cell ammonia transport has occurred, replacing the previous model which was based upon diffusion equilibrium for NH3 and trapping of NH4+ with a new model in which specific and regulated transport of both NH3 and NH4+ across renal epithelial cell membranes via specific membrane proteins is required for normal ammonia metabolism. A major advance has been the recognition that members of a recently recognized transporter family, the Rhesus glycoprotein family, mediate critical roles in renal and extrarenal ammonia transport. The erythroid-specific Rhesus glycoprotein, Rh A Glycoprotein (Rhag), was the first Rhesus glycoprotein recognized as an ammonia-specific transporter. Subsequently, the nonerythroid Rh glycoproteins, Rh B Glycoprotein (Rhbg) and Rh C Glycoprotein (Rhcg), were cloned and identified as ammonia transporters. They are expressed in specific cell populations and membrane domains in distal renal epithelial cells, where they facilitate ammonia secretion. In this review, we discuss the distribution of Rhbg and Rhcg in the kidney, the regulation of their expression and activity in physiological disturbances, the effects of genetic deletion on renal ammonia metabolism, and the molecular mechanisms of Rh glycoprotein-mediated ammonia transport. PMID:24647713

  11. Bioinformatics Analysis of Envelope Glycoprotein E epitopes of ...

    African Journals Online (AJOL)

    The E glycoprotein of dengue virus is responsible for the viral binding to the receptor. The crystal structure of envelope glycoprotein has already been determined. However, where the well-defined Bcell and T-cell epitopes are located is still a question. Because of the large variations among the four dengue genotypes, it is ...

  12. Off-line test of the KISS gas cell

    Energy Technology Data Exchange (ETDEWEB)

    Hirayama, Yoshikazu, E-mail: yoshikazu.hirayama@kek.jp [Institute of Particle and Nuclear Studies (IPNS), High Energy Accelerator Research Organization (KEK), Ibaraki 305-0801 (Japan); Watanabe, Yutaka; Imai, Nobuaki; Ishiyama, Hironobu; Jeong, Sun-Chan; Miyatake, Hiroari; Oyaizu, Michihiro [Institute of Particle and Nuclear Studies (IPNS), High Energy Accelerator Research Organization (KEK), Ibaraki 305-0801 (Japan); Kim, Yung Hee [Seoul National University, Seoul 151 742 (Korea, Republic of); Mukai, Momo [Tsukuba University, Ibaraki 305 0006 (Japan); Matsuo, Yukari; Sonoda, Tetsu; Wada, Michiharu [Nishina Center for Accelerator-Based Science, RIKEN, Wako, Saitama 351 0198 (Japan); Huyse, Mark; Kudryavtsev, Yuri; Van Duppen, Piet [Instituut voor Kern-en Stralingsfysica, KU Leuven, B-3001 Leuven (Belgium)

    2013-12-15

    Highlights: • Construction of the KEK Isotope Separation System (KISS) at RIKEN. • Ionization scheme of an iron. • Measurement of transport time profile in a gas cell. -- Abstract: The KEK Isotope Separation System (KISS) has been constructed at RIKEN to study the β-decay properties of neutron-rich isotopes with neutron numbers around N = 126 for application to astrophysics. A key component of KISS is a gas cell filled with argon gas at a pressure of 50 kPa to stop and collect the unstable nuclei, where the isotopes of interest will be selectively ionized using laser resonance ionization. We have performed off-line tests to study the basic properties of the gas cell and of KISS using nickel and iron filaments placed in the gas cell.

  13. Destabilization of Akt Promotes the Death of Myeloma Cell Lines

    Directory of Open Access Journals (Sweden)

    Yanan Zhang

    2014-01-01

    Full Text Available Constitutive activation of Akt is believed to be an oncogenic signal in multiple myeloma and is associated with poor patient prognosis and resistance to available treatment. The stability of Akt proteins is regulated by phosphorylating the highly conserved turn motif (TM of these proteins and the chaperone protein HSP90. In this study we investigate the antitumor effects of inhibiting mTORC2 plus HSP90 in myeloma cell lines. We show that chronic exposure of cells to rapamycin can inhibit mTORC2 pathway, and AKT will be destabilized by administration of the HSP90 inhibitor 17-allylamino-geldanamycin (17-AAG. Finally, we show that the rapamycin synergizes with 17-AAG and inhibits myeloma cells growth and promotes cell death to a greater extent than either drug alone. Our studies provide a clinical rationale of use mTOR inhibitors and chaperone protein inhibitors in combination regimens for the treatment of human blood cancers.

  14. RBE of neutrons for induction of cell reproductive death and chromosome aberrations in three cell lines

    International Nuclear Information System (INIS)

    Zoetelief, J.; Kuijpers, W.C.; Baten-Wittwer, A.; Barendsen, G.W.

    1983-01-01

    The authors have compared the RBE values for induction of dicentrics and centric rings with those for cell inactivation and with the mean or effective quality factors (Q) recommended for radiation protection. The induction of cell reproductive death and chromosome aberrations has been investigated in plateau phase cultures of established lines of a rat rhabdomyosarcoma, a rat ureter carcinoma and Chinese hamster cells for single doses of 300 kV X-rays and 0.5, 4.2 and 15 MeV neutrons. The different cell lines show considerable variations in sensitivity and the RBE values obtained are presented in tabular form. The mean RBE values for the rat rhabdomyosarcoma cells are lower than those for the other two relatively resistant cell lines. Those for the Chinese hamster cells extrapolated to levels according to low doses of X-rays are in good agreement with the quoted Q values. (Auth./C.F.)

  15. Establishment of human cell lines showing circadian rhythms of bioluminescence.

    Science.gov (United States)

    Yoshikawa, Aki; Shimada, Hiroko; Numazawa, Kahori; Sasaki, Tsukasa; Ikeda, Masaaki; Kawashima, Minae; Kato, Nobumasa; Tokunaga, Katsushi; Ebisawa, Takashi

    2008-11-28

    We have established human retinal pigment epithelial cell lines stably expressing the luciferase gene, driven by the human Bmal1 promoter, to obtain human-derived cells that show circadian rhythms of bioluminescence after dexamethasone treatment. The average circadian period of bioluminescence for the obtained clones was 24.07+/-0.48 h. Lithium (10 mM) in the medium significantly lengthened the circadian period of bioluminescence, which is consistent with previous reports, while 2 mM or 5 mM lithium had no effect. This is the first report on the establishment of human-derived cell lines that proliferate infinitely and show circadian rhythms of bioluminescence, and also the first to investigate the effects of low-dose lithium on the circadian rhythms of human-derived cells in vitro. The established cells will be useful for various in vitro studies of human circadian rhythms and for the development of new therapies for human disorders related to circadian rhythm disturbances.

  16. Proteomics of cancer cell lines resistant to microtubule-stabilizing agents

    DEFF Research Database (Denmark)

    Albrethsen, Jakob; Angeletti, Ruth H; Horwitz, Susan Band

    2014-01-01

    was compared with two drug-resistant daughter cell lines, an EpoB-resistant cell line (EpoB8) and an ixabepilone-resistant cell line (Ixab80). All 2D DIGE results were validated by Western blot analyses. A variety of cytoskeletal and cytoskeleton-associated proteins were differentially expressed in drug......Despite the clinical success of microtubule-interacting agents (MIA), a significant challenge for oncologists is the inability to predict the response of individual patients with cancer to these drugs. In the present study, six cell lines were compared by 2D DIGE proteomics to investigate cellular...... resistance to the class of MIAs known as microtubule-stabilizing agents (MSA). The human lung cancer cell line A549 was compared with two drug-resistant daughter cell lines, a taxol-resistant cell line (AT12) and an epothilone B (EpoB)-resistant cell line (EpoB40). The ovarian cancer cell line Hey...

  17. The Glycoprotein and the Matrix Protein of Rabies Virus Affect Pathogenicity by Regulating Viral Replication and Facilitating Cell-to-Cell Spread▿

    OpenAIRE

    Pulmanausahakul, Rojjanaporn; Li, Jianwei; Schnell, Matthias J.; Dietzschold, Bernhard

    2007-01-01

    While the glycoprotein (G) of rabies virus (RV) is known to play a predominant role in the pathogenesis of rabies, the function of the RV matrix protein (M) in RV pathogenicity is not completely clear. To further investigate the roles of these proteins in viral pathogenicity, we constructed chimeric recombinant viruses by exchanging the G and M genes of the attenuated SN strain with those of the highly pathogenic SB strain. Infection of mice with these chimeric viruses revealed a significant ...

  18. Effect of pO2 on antitumor drug cytotoxicity on MDR and non-MDR variants selected from the LoVo metastatic colon carcinoma cell line.

    Science.gov (United States)

    Lelong-Rebel, Isabelle; Brisson, Christine; Fabre, Michel; Bergerat, Jean-Pierre; Rebel, Gérard

    2008-01-01

    Two chemosensitive cell lines, LoVo-fusoid (LoVo-f) and LoVo-small cells (LoVo-sc) were derived from the original LoVo cell line. These two variants and the multidrug-resistant (MDR) cell line LoVo-Dox were screened for various properties. In non-permeabilized cells, only LoVo-sc showed mucin-2 staining whereas labelling was positive in all permeabilized cell lines. As shown by electron microscopy screening and by relative resistance to trypsin detachment, only LoVo-sc cells showed strong mucus secretion. All three cell lines displayed strong staining for P-glycoprotein (P-gp), multidrug resistance-associated protein (MRP) and lung-resistance-related protein (LRP) in different locations according to the drug resistance state. The three cell lines showed intracellular labelling of LRP and MRP. The sensitive cells showed P-gp in a large perinuclear ring and in the cytoplasm, but little (LoVo-sc cells) or no staining (LoVo-f cells) was shown at the plasma membrane level. For the Lovo-Dox cells, P-gp was located in the plasma membrane, in cellular anchorages and in the cytoplasm as well. Cell resistance against antineoplastic agents often results from mobilization of various factors, the modulation of which is linked to the culture conditions. As most of the protocols utilize cells growing in (air + 5-10% CO2) atmosphere e.g. 20% O2, balance of the respective participants in the MDR multi-modal mechanism may not be representative of the in vivo situation and may lead to erratic pharmacological response. Indeed, cells within solid tumours were exposed to low pO2, most of them being under hypoxic condition (0.1-5% O2). In the absence of anticancer drugs, all LoVo cell lines grew notably faster at 20% O2 than at 5% O2. Moreover, respective sensitivities of both non-MDR variants to doxorubicin were altered according the pO2. Whatever the pO2 was, virtually none of the antioxidants tested affected the cytotoxic activity of doxorubicin for the three cell lines. By contrast

  19. Cell-line dependent effects of hypoxia prior to irradiation in squamous cell carcinoma lines

    Directory of Open Access Journals (Sweden)

    Franziska Hauth

    2017-08-01

    Conclusion: We herein report a key role of ATM in the cellular fitness of cells exposed to prolonged moderate hypoxia prior to irradiation. While DNA damage response post-irradiation seem to be mainly driven by non-homologous end joining repair pathway in these conditions, our data suggest an important role for ATM kinase in hypoxia-driven modification of radiation response.

  20. A Single Amino Acid Change in the Marburg Virus Glycoprotein Arises during Serial Cell Culture Passages and Attenuates the Virus in a Macaque Model of Disease.

    Science.gov (United States)

    Alfson, Kendra J; Avena, Laura E; Delgado, Jenny; Beadles, Michael W; Patterson, Jean L; Carrion, Ricardo; Griffiths, Anthony

    2018-01-01

    Marburg virus (MARV) causes disease with high case fatality rates, and there are no approved vaccines or therapies. Licensing of MARV countermeasures will likely require approval via the FDA's Animal Efficacy Rule, which requires well-characterized animal models that recapitulate human disease. This includes selection of the virus used for exposure and ensuring that it retains the properties of the original isolate. The consequences of amplification of MARV for challenge studies are unknown. Here, we serially passaged and characterized MARV through 13 passes from the original isolate. Surprisingly, the viral genome was very stable, except for a single nucleotide change that resulted in an amino acid substitution in the hydrophobic region of the signal peptide of the glycoprotein (GP). The particle/PFU ratio also decreased following passages, suggesting a role for the amino acid in viral infectivity. To determine if amplification introduces a phenotype in an animal model, cynomolgus macaques were exposed to either 100 or 0.01 PFU of low- and high-passage-number MARV. All animals succumbed when exposed to 100 PFU of either passage 3 or 13 viruses, although animals exposed to the high-passage-number virus survived longer. However, none of the passage 13 MARV-exposed animals succumbed to 0.01-PFU exposure compared to 75% of passage 3-exposed animals. This is consistent with other filovirus studies that show some particles that are unable to yield a plaque in cell culture can cause lethal disease in vivo . These results have important consequences for the design of experiments that investigate MARV pathogenesis and that test the efficacy of MARV countermeasures. IMPORTANCE Marburg virus (MARV) causes disease with a high case fatality rate, and there are no approved vaccines or therapies. Serial amplification of viruses in cell culture often results in accumulation of mutations, but the effect of such cell culture passage on MARV is unclear. Serial passages of MARV

  1. Differential CCR4 Expression And Function in Cutaneous T-Cell Lymphoma Cell Lines

    Directory of Open Access Journals (Sweden)

    Chieh-Shan Wu

    2008-11-01

    Full Text Available Cutaneous T cell lymphoma (CTCL is a clonal epidermotropic malignancy of memory T cells primarily involving the skin. However, the mechanisms governing migration of CTCL cells have not been fully clarified. It has been shown that certain chemokine receptors are upregulated in CTCL cells, but it remains unanswered whether these chemokine receptors play a critical role in the migration dynamics of CTCL. Using cell lines originally derived from patients with different subtypes of CTCL, we have shown higher CCR4 expression in the line derived from the mycosis fungoides (MJ, compared with the line derived from Sézary syndrome (Hut78. In specific responses to CCL22 (a CCR4 ligand treatments, MJ cells showed significant chemotactic migration, enhanced activation and adhesion of certain integrins (CD49d and CD29 in vitro, while the control cells (Hut78, CD4+CD45RO+ memory T cells, and Jurkat cells did not. Furthermore, compared with Hut78 cells, MJ cells manifested significantly more transendothelial migration in responses to treatments with either CCL22 or conditioned medium from dendritic cells in vitro. These results provide further dynamic evidence, in line with the multistep cascade paradigm for leukocyte transendothelial migration, to support a critical role for CCR4 in CTCL migration.

  2. Discovery of HeLa Cell Contamination in HES Cells: Call for Cell Line Authentication in Reproductive Biology Research.

    Science.gov (United States)

    Kniss, Douglas A; Summerfield, Taryn L

    2014-08-01

    Continuous cell lines are used frequently in reproductive biology research to study problems in early pregnancy events and parturition. It has been recognized for 50 years that many mammalian cell lines contain inter- or intraspecies contaminations with other cells. However, most investigators do not routinely test their culture systems for cross-contamination. The most frequent contributor to cross-contamination of cell lines is the HeLa cell isolated from an aggressive cervical adenocarcinoma. We report on the discovery of HeLa cell contamination of the human endometrial epithelial cell line HES isolated in our laboratory. Short tandem repeat analysis of 9 unique genetic loci demonstrated molecular identity between HES and HeLa cells. In addition, we verified that WISH cells, isolated originally from human amnion epithelium, were also contaminated with HeLa cells. Inasmuch as our laboratory did not culture HeLa cells at the time of HES cell derivations, the source of contamination was the WISH cell line. These data highlight the need for continued diligence in authenticating cell lines used in reproductive biology research. © The Author(s) 2014.

  3. Expression of cadherin and NCAM in human small cell lung cancer cell lines and xenografts

    DEFF Research Database (Denmark)

    Rygaard, K; Møller, C; Bock, E

    1992-01-01

    characterised, the cadherin family and the Ig superfamily member, neural cell adhesion molecule (NCAM). We investigated expression of these two adhesion molecule families in small cell lung cancer (SCLC) cell lines and xenografts by immunoblotting. Nineteen tumours established from 15 patients with SCLC were......Tumour cell adhesion, detachment and aggregation seem to play an important part in tumour invasion and metastasis, and numerous cell adhesion molecules are expressed by tumour cells. Several families of cell-cell adhesion molecules have been described, of which two groups are particularly well...... embryonic development, which may play a role in connection with tumour invasion and metastasis, was found in 14/18 NCAM expressing SCLC tumours. Individual tumours grown as cell lines and as nude mouse xenografts showed no qualitative differences in cadherin or NCAM expression....

  4. Ability of polymer-bound P-glycoprotein inhibitor ritonavir to overcome multidrug resistance in various resistant neuroblastoma cell lines

    Czech Academy of Sciences Publication Activity Database

    Koziolová, Eva; Chytil, Petr; Etrych, Tomáš; Janoušková, Olga

    2017-01-01

    Roč. 28, č. 10 (2017), s. 1126-1130 ISSN 0959-4973 R&D Projects: GA MŠk(CZ) LO1507 Institutional support: RVO:61389013 Keywords : drug-delivery polymers * multidrug resistance * N-(2-hydroxypropyl) methacrylamide Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science Impact factor: 2.320, year: 2016

  5. The Role of the MHV Receptor and Related Glycoproteins in Murine Hepatitis Virus Infection of Murine Cell Lines

    Science.gov (United States)

    1995-04-13

    Christine Cardellichio, Gabriela Dveksler, David Wessner, Chuck Scanga, Robin Levis and others in Dr. Holmes’ lab for their discussion, assistance... Sassone -Corsi, C. Kedinger and P. Charnbon . 1980. Promoter sequences of eukary otic protein-coding genes. Science. 109 : 1406-1414 . Cournoyer, D., N

  6. Assessment of citalopram and escitalopram on neuroblastoma cell lines: Cell toxicity and gene modulation

    Science.gov (United States)

    Sakka, Laurent; Delétage, Nathalie; Chalus, Maryse; Aissouni, Youssef; Sylvain-Vidal, Valérie; Gobron, Stéphane; Coll, Guillaume

    2017-01-01

    Selective serotonin reuptake inhibitors (SSRI) are common antidepressants which cytotoxicity has been assessed in cancers notably colorectal carcinomas and glioma cell lines. We assessed and compared the cytotoxicity of 2 SSRI, citalopram and escitalopram, on neuroblastoma cell lines. The study was performed on 2 non-MYCN amplified cell lines (rat B104 and human SH-SY5Y) and 2 human MYCN amplified cell lines (IMR32 and Kelly). Citalopram and escitalopram showed concentration-dependent cytotoxicity on all cell lines. Citalopram was more cytotoxic than escitalopram. IMR32 was the most sensitive cell line. The absence of toxicity on human primary Schwann cells demonstrated the safety of both molecules for myelin. The mechanisms of cytotoxicity were explored using gene-expression profiles and quantitative real-time PCR (qPCR). Citalopram modulated 1 502 genes and escitalopram 1 164 genes with a fold change ≥ 2. 1 021 genes were modulated by both citalopram and escitalopram; 481 genes were regulated only by citalopram while 143 genes were regulated only by escitalopram. Citalopram modulated 69 pathways (KEGG) and escitalopram 42. Ten pathways were differently modulated by citalopram and escitalopram. Citalopram drastically decreased the expression of MYBL2, BIRC5 and BARD1 poor prognosis factors of neuroblastoma with fold-changes of -107 (pescitalopram. PMID:28467792

  7. Assessment of citalopram and escitalopram on neuroblastoma cell lines. Cell toxicity and gene modulation.

    Science.gov (United States)

    Sakka, Laurent; Delétage, Nathalie; Chalus, Maryse; Aissouni, Youssef; Sylvain-Vidal, Valérie; Gobron, Stéphane; Coll, Guillaume

    2017-06-27

    Selective serotonin reuptake inhibitors (SSRI) are common antidepressants which cytotoxicity has been assessed in cancers notably colorectal carcinomas and glioma cell lines. We assessed and compared the cytotoxicity of 2 SSRI, citalopram and escitalopram, on neuroblastoma cell lines. The study was performed on 2 non-MYCN amplified cell lines (rat B104 and human SH-SY5Y) and 2 human MYCN amplified cell lines (IMR32 and Kelly). Citalopram and escitalopram showed concentration-dependent cytotoxicity on all cell lines. Citalopram was more cytotoxic than escitalopram. IMR32 was the most sensitive cell line. The absence of toxicity on human primary Schwann cells demonstrated the safety of both molecules for myelin. The mechanisms of cytotoxicity were explored using gene-expression profiles and quantitative real-time PCR (qPCR). Citalopram modulated 1 502 genes and escitalopram 1 164 genes with a fold change ≥ 2. 1 021 genes were modulated by both citalopram and escitalopram; 481 genes were regulated only by citalopram while 143 genes were regulated only by escitalopram. Citalopram modulated 69 pathways (KEGG) and escitalopram 42. Ten pathways were differently modulated by citalopram and escitalopram. Citalopram drastically decreased the expression of MYBL2, BIRC5 and BARD1 poor prognosis factors of neuroblastoma with fold-changes of -107 (pescitalopram.

  8. Establishment of a novel human medulloblastoma cell line characterized by highly aggressive stem-like cells.

    Science.gov (United States)

    Silva, Patrícia Benites Gonçalves da; Rodini, Carolina Oliveira; Kaid, Carolini; Nakahata, Adriana Miti; Pereira, Márcia Cristina Leite; Matushita, Hamilton; Costa, Silvia Souza da; Okamoto, Oswaldo Keith

    2016-08-01

    Medulloblastoma is a highly aggressive brain tumor and one of the leading causes of morbidity and mortality related to childhood cancer. These tumors display differential ability to metastasize and respond to treatment, which reflects their high degree of heterogeneity at the genetic and molecular levels. Such heterogeneity of medulloblastoma brings an additional challenge to the understanding of its physiopathology and impacts the development of new therapeutic strategies. This translational effort has been the focus of most pre-clinical studies which invariably employ experimental models using human tumor cell lines. Nonetheless, compared to other cancers, relatively few cell lines of human medulloblastoma are available in central repositories, partly due to the rarity of these tumors and to the intrinsic difficulties in establishing continuous cell lines from pediatric brain tumors. Here, we report the establishment of a new human medulloblastoma cell line which, in comparison with the commonly used and well-established cell line Daoy, is characterized by enhanced proliferation and invasion capabilities, stem cell properties, increased chemoresistance, tumorigenicity in an orthotopic metastatic model, replication of original medulloblastoma behavior in vivo, strong chromosome structural instability and deregulation of genes involved in neural development. These features are advantageous for designing biologically relevant experimental models in clinically oriented studies, making this novel cell line, named USP-13-Med, instrumental for the study of medulloblastoma biology and treatment.

  9. Hypoxia induces adipogenic differentitation of myoblastic cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Itoigawa, Yoshiaki [Tohoku University School of Medicine, Sendai (Japan); Juntendo University School of Medicine, Tokyo (Japan); Kishimoto, Koshi N., E-mail: kishimoto@med.tohoku.ac.jp [Tohoku University School of Medicine, Sendai (Japan); Okuno, Hiroshi; Sano, Hirotaka [Tohoku University School of Medicine, Sendai (Japan); Kaneko, Kazuo [Juntendo University School of Medicine, Tokyo (Japan); Itoi, Eiji [Tohoku University School of Medicine, Sendai (Japan)

    2010-09-03

    Research highlights: {yields} C2C12 and G8 myogenic cell lines treated by hypoxia differentiate into adipocytes. {yields} The expression of C/EBP{beta}, {alpha} and PPAR{gamma} were increased under hypoxia. {yields} Myogenic differentiation of C2C12 was inhibited under hypoxia. -- Abstract: Muscle atrophy usually accompanies fat accumulation in the muscle. In such atrophic conditions as back muscles of kyphotic spine and the rotator cuff muscles with torn tendons, blood flow might be diminished. It is known that hypoxia causes trans-differentiation of mesenchymal stem cells derived from bone marrow into adipocytes. However, it has not been elucidated yet if hypoxia turned myoblasts into adipocytes. We investigated adipogenesis in C2C12 and G8 murine myogenic cell line treated by hypoxia. Cells were also treated with the cocktail of insulin, dexamethasone and IBMX (MDI), which has been known to inhibit Wnt signaling and promote adipogenesis. Adipogenic differentiation was seen in both hypoxia and MDI. Adipogenic marker gene expression was assessed in C2C12. CCAAT/enhancer-binding protein (C/EBP) {beta}, {alpha} and peroxisome proliferator activating receptor (PPAR) {gamma} were increased by both hypoxia and MDI. The expression profile of Wnt10b was different between hypoxia and MDI. The mechanism for adipogenesis of myoblasts in hypoxia might be regulated by different mechanism than the modification of Wnt signaling.

  10. CD3 receptor modulation in Jurkat leukemic cell line.

    Directory of Open Access Journals (Sweden)

    Jacek M Witkowski

    2004-03-01

    Full Text Available CD3 antigen is a crucial molecule in T cell signal transduction. Although its expression on cell surface is constitutive, dynamic regulation of TCR-CD3 level is probably the most important mechanism allowing T cells to calibrate their response to different levels of stimuli. In our study we examined the role of two main T cell signal transduction pathways in controlling the surface level of CD3 antigen, one based on protein kinase C activity and the other dependent on calcineurin. As an experimental model we used three clones derived from Jurkat cell line, expressing different levels of CD3 antigen surface expression: CD3(low (217.6, CD3+(217.9 or CD3(low (217.7. The cells were stimulated with PMA or ionomycin, acting directly on PKC and calcineurin, respectively. Prior to the stimulation cells were incubated with PKC inhibitor--chelerythrine or calcineurin blocker--cyclosporine A. Changes in CD3 surface expression were measured by flow cytometry. Only PMA and chelerythrine were able to change CD3 expression suggesting important involvement of PKC in the regulation of its expression. To confirm these findings, PKC activity was estimated in Jurkat clones. Our data demonstrated that Jurkat clones with different CD3 expression showed also different PKC activities, so we conclude that PKC-dependent pathway is the main way of controlling CD3 level on Jurkat clones.

  11. Characterization of cell lines stably transfected with rubella virus replicons

    International Nuclear Information System (INIS)

    Tzeng, Wen-Pin; Xu, Jie; Frey, Teryl K.

    2012-01-01

    Rubella virus (RUBV) replicons expressing a drug resistance gene and a gene of interest were used to select cell lines uniformly harboring the replicon. Replicons expressing GFP and a virus capsid protein GFP fusion (C-GFP) were compared. Vero or BHK cells transfected with either replicon survived drug selection and grew into a monolayer. However, survival was ∼9-fold greater following transfection with the C-GFP-replicon than with the GFP-expressing replicon and while the C-GFP-replicon cells grew similarly to non-transfected cells, the GFP-replicon cells grew slower. Neither was due to the ability of the CP to enhance RNA synthesis but survival during drug selection was correlated with the ability of CP to inhibit apoptosis. Additionally, C-GFP-replicon cells were not cured of the replicon in the absence of drug selection. Interferon-alpha suppressed replicon RNA and protein synthesis, but did not cure the cells, explaining in part the ability of RUBV to establish persistent infections.

  12. Characterization of cell lines stably transfected with rubella virus replicons

    Energy Technology Data Exchange (ETDEWEB)

    Tzeng, Wen-Pin; Xu, Jie [Department of Biology, Georgia State University, P.O. Box 4010, Atlanta GA 30302-4010 (United States); Frey, Teryl K., E-mail: tfrey@gsu.edu [Department of Biology, Georgia State University, P.O. Box 4010, Atlanta GA 30302-4010 (United States)

    2012-07-20

    Rubella virus (RUBV) replicons expressing a drug resistance gene and a gene of interest were used to select cell lines uniformly harboring the replicon. Replicons expressing GFP and a virus capsid protein GFP fusion (C-GFP) were compared. Vero or BHK cells transfected with either replicon survived drug selection and grew into a monolayer. However, survival was {approx}9-fold greater following transfection with the C-GFP-replicon than with the GFP-expressing replicon and while the C-GFP-replicon cells grew similarly to non-transfected cells, the GFP-replicon cells grew slower. Neither was due to the ability of the CP to enhance RNA synthesis but survival during drug selection was correlated with the ability of CP to inhibit apoptosis. Additionally, C-GFP-replicon cells were not cured of the replicon in the absence of drug selection. Interferon-alpha suppressed replicon RNA and protein synthesis, but did not cure the cells, explaining in part the ability of RUBV to establish persistent infections.

  13. Multidrug resistance and retroviral transduction potential in human small cell lung cancer cell lines

    DEFF Research Database (Denmark)

    Theilade, M D; Gram, G J; Jensen, P B

    1999-01-01

    Multidrug resistance (MDR) remains a major problem in the successful treatment of small cell lung cancer (SCLC). New treatment strategies are needed, such as gene therapy specifically targeting the MDR cells in the tumor. Retroviral LacZ gene-containing vectors that were either pseudotyped...... for the gibbon ape leukemia virus (GALV-1) receptor or had specificity for the amphotropic murine leukemia virus (MLV-A) receptor were used for transduction of five SCLC cell lines differing by a range of MDR mechanisms. Transduction efficiencies in these cell lines were compared by calculating the percentage...... of blue colonies after X-Gal staining of the cells grown in soft agar. All examined SCLC cell lines were transducible with either vector. Transduction efficiencies varied from 5.7% to 33.5% independent of the presence of MDR. These results indicate that MDR does not severely impair transduction of SCLC...

  14. Absence of cytotoxic antibody to human immunodeficiency virus-infected cells in humans and its induction in animals after infection or immunization with purified envelope glycoprotein gp120

    International Nuclear Information System (INIS)

    Nara, P.L.; Robey, W.G.; Gonda, M.A.; Carter, S.G.; Fischinger, P.J.

    1987-01-01

    The presence of antibody-dependent complement-mediated cytotoxicity (ACC) was assessed in humans and chimpanzees, which are capable of infection with human immunodeficiency virus isolate HTLV-IIIb, and examined in the goat after immunization with the major viral glycoprotein (gp120) of HTLV-IIIb. In infected humans no antibody mediating ACC was observed regardless of the status of disease. Even healthy individuals with high-titer, broadly reactive, neutralizing antibodies has no ACC. In contrast, chimpanzees infected with HTLV-IIIb, from whom virus could be isolated, not only had neutralizing antibody but also antibodies broadly reactive in ACC, even against distantly related human immunodeficiency virus isolates, as well as against their own reisolated virus. In the goat, the gp120 of HTLV-IIIb induced a highly type-specific response as measured by both ACC and flow cytofluorometry of live infected H9 cells. Normal human cells were not subject to ACC by animal anti-HTLV-III gp120-specific sera. Induction of ACC and neutralizing antibody were closely correlated in the animal experimental models but not in humans. The presence of ACC in gp120-inoculated goats and HTLV-III-infected chimpanzees represent a qualitative difference that may be important in the quest for the elicitation of a protective immunity in humans

  15. Absence of cytotoxic antibody to human immunodeficiency virus-infected cells in humans and its induction in animals after infection or immunization with purified envelope glycoprotein gp120

    Energy Technology Data Exchange (ETDEWEB)

    Nara, P.L.; Robey, W.G.; Gonda, M.A.; Carter, S.G.; Fischinger, P.J.

    1987-06-01

    The presence of antibody-dependent complement-mediated cytotoxicity (ACC) was assessed in humans and chimpanzees, which are capable of infection with human immunodeficiency virus isolate HTLV-IIIb, and examined in the goat after immunization with the major viral glycoprotein (gp120) of HTLV-IIIb. In infected humans no antibody mediating ACC was observed regardless of the status of disease. Even healthy individuals with high-titer, broadly reactive, neutralizing antibodies has no ACC. In contrast, chimpanzees infected with HTLV-IIIb, from whom virus could be isolated, not only had neutralizing antibody but also antibodies broadly reactive in ACC, even against distantly related human immunodeficiency virus isolates, as well as against their own reisolated virus. In the goat, the gp120 of HTLV-IIIb induced a highly type-specific response as measured by both ACC and flow cytofluorometry of live infected H9 cells. Normal human cells were not subject to ACC by animal anti-HTLV-III gp120-specific sera. Induction of ACC and neutralizing antibody were closely correlated in the animal experimental models but not in humans. The presence of ACC in gp120-inoculated goats and HTLV-III-infected chimpanzees represent a qualitative difference that may be important in the quest for the elicitation of a protective immunity in humans.

  16. Production of tag-free recombinant fusion protein encompassing promiscuous T cell epitope of tetanus toxoid and dog zona pellucida glycoprotein-3 for contraceptive vaccine development.

    Science.gov (United States)

    Gupta, Neha; Shrestha, Abhinav; Panda, Amulya Kumar; Gupta, Satish Kumar

    2013-07-01

    Affinity tags can interfere in various physicochemical properties and immunogenicity of the recombinant proteins. In the present study, tag-free recombinant fusion protein encompassing promiscuous T cell epitope of tetanus toxoid [TT; amino acid (aa) residues 830-844] followed by dilysine linker and dog zona pellucida glycoprotein-3 (ZP3; aa residues 23-348) (TT-KK-ZP3) was expressed in Escherichia coli. The recombinant protein, expressed as inclusion bodies (IBs), was purified by isolation of IBs, processed to remove host cell proteins, followed by solubilization and refolding. A specific 39 kDa protein including ZP3 was identified by SDS-PAGE. CD spectra showed the presence of α-helices and β-sheets, and fluorescent spectroscopy revealed emission maxima of 265 A.U. at 339 nm for refolded protein and showed red shift in the presence of 6 M guanidine hydrochloride. Immunization of inbred FvB/J female mice with purified recombinant TT-KK-ZP3 (25 μg/animal) led to generation of high antibody titers against the recombinant protein. The antibodies reacted specifically with ZP matrix surrounding mouse oocytes. Immunized mice showed significant reduction in fertility as compared to the control group. The studies described herein provide a simple method to produce and purify tag-free recombinant protein for the development of a contraceptive vaccine.

  17. Radiation-induced apoptosis and cell cycle checkpoints in human colorectal tumour cell lines

    International Nuclear Information System (INIS)

    Playle, L.C.

    2001-03-01

    The p53 tumour suppressor gene is mutated in 75% of colorectal carcinomas and is critical for DNA damage-induced G1 cell cycle arrest. Data presented in this thesis demonstrate that after treatment with Ionizing Radiation (IR), colorectal tumour cell lines with mutant p53 are unable to arrest at G1 and undergo cell cycle arrest at G2. The staurosporine derivative, UCN-01, was shown to abrogate the IR-induced G2 checkpoint in colorectal tumour cell lines. Furthermore, in some cell lines, abrogation of the G2 checkpoint was associated with radiosensitisation. Data presented in this study demonstrate that 2 out of 5 cell lines with mutant p53 were sensitised to IR by UCN-01. In order to determine whether radiosensitisation correlated with lack of functional p53, transfected derivatives of an adenoma-derived cell line were studied, in which endogenous wild type p53 was disrupted by expression of a dominant negative p53 mutant protein (and with a vector control). In both these cell lines UCN-01 abrogated the G2 arrest however this was not associated with radiosensitisation, indicating that radiosensitisation is a cell type-specific phenomenon. Although 2 colorectal carcinoma cell lines, with mutant p53, were sensitised to IR by UCN-01, the mechanisms of p53-independent IR-induced apoptosis in the colon are essentially unknown. The mitogen-activated protein kinase (MAPK) pathways (that is the JNK, p38 and ERK pathways) have been implicated in apoptosis in a range of cell systems and in IR-induced apoptosis in some cell types. Data presented in this study show that, although the MAPKs can be activated by the known activator anisomycin, there is no evidence of a role for MAPKs in IR-induced apoptosis in colorectal tumour cell lines, regardless of p53 status. In summary, some colorectal tumour cell lines with mutant p53 can be sensitised to IR-induced cell death by G2 checkpoint abrogation and this may be an important treatment strategy, however mechanisms of IR-induced p53

  18. Transcriptional signature of accessory cells in the lateral line, using the Tnk1bp1:EGFP transgenic zebrafish line.

    Science.gov (United States)

    Behra, Martine; Gallardo, Viviana E; Bradsher, John; Torrado, Aranza; Elkahloun, Abdel; Idol, Jennifer; Sheehy, Jessica; Zonies, Seth; Xu, Lisha; Shaw, Kenna M; Satou, Chie; Higashijima, Shin-ichi; Weinstein, Brant M; Burgess, Shawn M

    2012-01-24

    Because of the structural and molecular similarities between the two systems, the lateral line, a fish and amphibian specific sensory organ, has been widely used in zebrafish as a model to study the development/biology of neuroepithelia of the inner ear. Both organs have hair cells, which are the mechanoreceptor cells, and supporting cells providing other functions to the epithelium. In most vertebrates (excluding mammals), supporting cells comprise a pool of progenitors that replace damaged or dead hair cells. However, the lack of regenerative capacity in mammals is the single leading cause for acquired hearing disorders in humans. In an effort to understand the regenerative process of hair cells in fish, we characterized and cloned an egfp transgenic stable fish line that trapped tnks1bp1, a highly conserved gene that has been implicated in the maintenance of telomeres' length. We then used this Tg(tnks1bp1:EGFP) line in a FACsorting strategy combined with microarrays to identify new molecular markers for supporting cells. We present a Tg(tnks1bp1:EGFP) stable transgenic line, which we used to establish a transcriptional profile of supporting cells in the zebrafish lateral line. Therefore we are providing a new set of markers specific for supporting cells as well as candidates for functional analysis of this important cell type. This will prove to be a valuable tool for the study of regeneration in the lateral line of zebrafish in particular and for regeneration of neuroepithelia in general.

  19. Molecular signatures in response to Isoliquiritigenin in lymphoblastoid cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae-Eun; Hong, Eun-Jung; Nam, Hye-Young [National Biobank of Korea, Center for Genome Science, Korea National Institute of Health, Korea Centers for Disease Control and Prevention (Korea, Republic of); Hwang, Meeyul [Research Center for Biomedical Resource of Oriental Medicine, Daegu Haany University (Korea, Republic of); Kim, Ji-Hyun [National Biobank of Korea, Center for Genome Science, Korea National Institute of Health, Korea Centers for Disease Control and Prevention (Korea, Republic of); Han, Bok-Ghee, E-mail: bokghee@nih.go.kr [National Biobank of Korea, Center for Genome Science, Korea National Institute of Health, Korea Centers for Disease Control and Prevention (Korea, Republic of); Jeon, Jae-Pil, E-mail: jpjeon@cdc.go.kr [National Biobank of Korea, Center for Genome Science, Korea National Institute of Health, Korea Centers for Disease Control and Prevention (Korea, Republic of)

    2012-10-19

    Highlights: Black-Right-Pointing-Pointer We identified the inhibitory effect of ISL on cell proliferation of LCLs. Black-Right-Pointing-Pointer We found ISL-induced genes and miRNAs through microarray approach. Black-Right-Pointing-Pointer ISL-treated LCLs represented gene expression changes in cell cycle and p53 pathway. Black-Right-Pointing-Pointer We revealed 12 putative mRNA-miRNA functional pairs associated with ISL effect. -- Abstract: Isoliquiritigenin (ISL) has been known to induce cell cycle arrest and apoptosis of various cancer cells. However, genetic factors regulating ISL effects remain unclear. The aim of this study was to identify the molecular signatures involved in ISL-induced cell death of EBV-transformed lymphoblastoid cell lines (LCLs) using microarray analyses. For gene expression and microRNA (miRNA) microarray experiments, each of 12 LCL strains was independently treated with ISL or DMSO as a vehicle control for a day prior to total RNA extraction. ISL treatment inhibited cell proliferation of LCLs in a dose-dependent manner. Microarray analysis showed that ISL-treated LCLs represented gene expression changes in cell cycle and p53 signaling pathway, having a potential as regulators in LCL survival and sensitivity to ISL-induced cytotoxicity. In addition, 36 miRNAs including five miRNAs with unknown functions were differentially expressed in ISL-treated LCLs. The integrative analysis of miRNA and gene expression profiles revealed 12 putative mRNA-miRNA functional pairs. Among them, miR-1207-5p and miR-575 were negatively correlated with p53 pathway- and cell cycle-associated genes, respectively. In conclusion, our study suggests that miRNAs play an important role in ISL-induced cytotoxicity in LCLs by targeting signaling pathways including p53 pathway and cell cycle.

  20. UV light blocks EGFR signalling in human cancer cell lines

    DEFF Research Database (Denmark)

    Olsen, BB; Neves-Petersen, M T; Klitgaard, S

    2007-01-01

    UV light excites aromatic residues, causing these to disrupt nearby disulphide bridges. The EGF receptor is rich in aromatic residues near the disulphide bridges. Herein we show that laser-pulsed UV illumination of two different skin-derived cancer cell lines i.e. Cal-39 and A431, which both...... antibodies. There was a threshold level, below which the receptor could not be blocked. In addition, illumination caused the cells to upregulate the cyclin-dependent kinase inhibitor p21WAF1, irrespective of the p53 status. Since the EGF receptor is often overexpressed in cancers and other proliferative skin...... disorders, it might be possible to significantly reduce the proliferative potential of these cells making them good targets for laser-pulsed UV light treatment....

  1. Internalization of cystatin C in human cell lines.

    Science.gov (United States)

    Ekström, Ulf; Wallin, Hanna; Lorenzo, Julia; Holmqvist, Bo; Abrahamson, Magnus; Avilés, Francesc X

    2008-09-01

    Altered protease activity is considered important for tumour invasion and metastasis, processes in which the cysteine proteases cathepsin B and L are involved. Their natural inhibitor cystatin C is a secreted protein, suggesting that it functions to control extracellular protease activity. Because cystatins added to cell cultures can inhibit polio, herpes simplex and coronavirus replication, which are intracellular processes, the internalization and intracellular regulation of cysteine proteases by cystatin C should be considered. The extension, mechanism and biological importance of this hypothetical process are unknown. We investigated whether internalization of cystatin C occurs in a set of human cell lines. Demonstrated by flow cytometry and confocal microscopy, A-431, MCF-7, MDA-MB-453, MDA-MB-468 and Capan-1 cells internalized fluorophore-conjugated cystatin C when exposed to physiological concentrations (1 microm). During cystatin C incubation, intracellular cystatin C increased after 5 min and accumulated for at least 6 h, reaching four to six times the baseline level. Western blotting showed that the internalized inhibitor was not degraded. It was functionally intact and extracts of cells exposed to cystatin C showed a higher capacity to inhibit papain and cathepsin B than control cells (decrease in enzyme activity of 34% and 37%, respectively). The uptake of labelled cystatin C was inhibited by unlabelled inhibitor, suggesting a specific pathway for the internalization. We conclude that the cysteine protease inhibitor cystatin C is internalized in significant quantities in various cancer cell lines. This is a potentially important physiological phenomenon not previously described for this group of inhibitors.

  2. Expression of cadherin and NCAM in human small cell lung cancer cell lines and xenografts

    DEFF Research Database (Denmark)

    Rygaard, K; Møller, C; Bock, E

    1992-01-01

    characterised, the cadherin family and the Ig superfamily member, neural cell adhesion molecule (NCAM). We investigated expression of these two adhesion molecule families in small cell lung cancer (SCLC) cell lines and xenografts by immunoblotting. Nineteen tumours established from 15 patients with SCLC were...... embryonic development, which may play a role in connection with tumour invasion and metastasis, was found in 14/18 NCAM expressing SCLC tumours. Individual tumours grown as cell lines and as nude mouse xenografts showed no qualitative differences in cadherin or NCAM expression....

  3. Detection of circulating tumour cells on mRNA levels with established breast cancer cell lines.

    Science.gov (United States)

    Zebisch, Michael; Kölbl, Alexandra C; Andergassen, Ulrich; Hutter, Stephan; Neugebauer, Julia; Engelstädter, Verena; Günthner-Biller, Maria; Jeschke, Udo; Friese, Klaus; Rack, Brigitte

    2013-03-01

    Circulating tumour cells were detected and quantified by real-time polymerase chain reaction (PCR) in peripheral blood, based on the fact that the expression of certain genes is upregulated in tumour tissues in comparison to surrounding blood cells. Calibration curves showing gene expression as functions of the number of tumour cells within a blood sample were prepared. Blood samples were therefore spiked with cells of breast cancer cell lines, RNA was extracted, transcribed to complementary DNA (cDNA) and used in real-time PCR reaction on the Cytokeratins (CK) 8, 18 and 19. Calibration curves were generated by Microsoft™ Excel®. Relative quantification curves of gene expression in different breast cancer cell lines showed no unitary tendencies. The oscillations in the relative quantification curves of gene expression suggested an occurrence of immunological effects, leading to an apparent agglutination of added tumour cells together with the blood cells of the sample. Thus, strategies to obtain evaluable results should be considered.

  4. Mechanisms of cell sensitization to alpha radioimmunotherapy by doxorubicin or paclitaxel in multiple myeloma cell lines.

    Science.gov (United States)

    Supiot, Stephane; Gouard, Sebastien; Charrier, Josiane; Apostolidis, Christos; Chatal, Jean-Francois; Barbet, Jacques; Davodeau, François; Cherel, Michel

    2005-10-01

    The purpose of this study was to analyze different mechanisms (cell cycle synchronization, DNA damage, and apoptosis) that might underlie potential synergy between chemotherapy (paclitaxel or doxorubicin) and radioimmunotherapy with alpha radionuclides. Three multiple myeloma cell lines (LP1, RMI 8226, and U266) were treated with 213Bi-radiolabeled B-B4, a monoclonal antibody that recognizes syndecan-1 (CD138) 24 hours after paclitaxel (1 nmol/L) or doxorubicin (10 nmol/L) treatment. Cell survival was assessed using a clonogenic survival assay. Cell cycle modifications were assessed by propidium iodide staining and DNA strand breaks by the comet assay. Level of apoptosis was determined by Apo 2.7 staining. Radiation enhancement ratio showed that paclitaxel and doxorubicin were synergistic with alpha radioimmunotherapy. After a 24-hour incubation, paclitaxel and doxorubicin arrested all cell lines in the G2-M phase of the cell cycle. Doxorubicin combined with alpha radioimmunotherapy increased tail DNA in the RPMI 8226 cell line but not the LP1 or U266 cell lines compared with doxorubicin alone or alpha radioimmunotherapy alone. Neither doxorubicin nor paclitaxel combined with alpha radioimmunotherapy increased the level of apoptosis induced by either drug alone or alpha radioimmunotherapy alone. Both cell cycle arrest in the G2-M phase and an increase in DNA double-strand breaks could lead to radiosensitization of cells by doxorubicin or paclitaxel, but apoptosis would not be involved in radiosensitization mechanisms.

  5. Herpes Simplex Virus Membrane Proteins gE/gI and US9 Act Cooperatively To Promote Transport of Capsids and Glycoproteins from Neuron Cell Bodies into Initial Axon Segments

    Science.gov (United States)

    Howard, Paul W.; Howard, Tiffani L.

    2013-01-01

    Herpes simplex virus (HSV) and other alphaherpesviruses must move from sites of latency in ganglia to peripheral epithelial cells. How HSV navigates in neuronal axons is not well understood. Two HSV membrane proteins, gE/gI and US9, are key to understanding the processes by which viral glycoproteins, unenveloped capsids, and enveloped virions are transported toward axon tips. Whether gE/gI and US9 function to promote the loading of viral proteins onto microtubule motors in neuron cell bodies or to tether viral proteins onto microtubule motors within axons is not clear. One impediment to understanding how HSV gE/gI and US9 function in axonal transport relates to observations that gE−, gI−, or US9− mutants are not absolutely blocked in axonal transport. Mutants are significantly reduced in numbers of capsids and glycoproteins in distal axons, but there are less extensive effects in proximal axons. We constructed HSV recombinants lacking both gE and US9 that transported no detectable capsids and glycoproteins to distal axons and failed to spread from axon tips to adjacent cells. Live-cell imaging of a gE−/US9− double mutant that expressed fluorescent capsids and gB demonstrated >90% diminished capsids and gB in medial axons and no evidence for decreased rates of transport, stalling, or increased retrograde transport. Instead, capsids, gB, and enveloped virions failed to enter proximal axons. We concluded that gE/gI and US9 function in neuron cell bodies, in a cooperative fashion, to promote the loading of HSV capsids and vesicles containing glycoproteins and enveloped virions onto microtubule motors or their transport into proximal axons. PMID:23077321

  6. Regulation of glycoprotein synthesis in yeast by mating pheromones

    International Nuclear Information System (INIS)

    Tanner, W.

    1984-01-01

    In Saccharomyces cerevisiae, glycosylated proteins amount to less than 2% of the cell protein. Two intensively studied examples of yeast glycoproteins are the external cell wall - associated invertase and the vacuolar carboxypeptidase Y. Recently, it was shown that the mating pheromone, alpha factor, specifically and strongly inhibits the synthesis of N-glycosylated proteins in haploid a cells, whereas O-glycosylated proteins are not affected. In this paper, the pathways of glycoprotein biosynthesis are summarized briefly, and evidence is presented that mating pheomones have a regulatory function in glycoprotein synthesis

  7. Functional somatostatin receptors on a rat pancreatic acinar cell line

    International Nuclear Information System (INIS)

    Viguerie, N.; Tahiri-Jouti, N.; Esteve, J.P.; Clerc, P.; Logsdon, C.; Svoboda, M.; Susini, C.; Vaysse, N.; Ribet, A.

    1988-01-01

    Somatostatin receptors from a rat pancreatic acinar cell line, AR4-2J, were characterized biochemically, structurally, and functionally. Binding of 125 I-[Tyr 11 ]Somatostatin to AR4-2J cells was saturable, exhibiting a single class of high-affinity binding sites with a maximal binding capacity of 258 ± 20 fmol/10 6 cells. Somatostatin receptor structure was analyzed by covalently cross-linking 125 I-[Tyr 11 ]somatostatin to its plasma membrane receptors. Gel electrophoresis and autoradiography of cross-linked proteins revealed a peptide containing the somatostatin receptor. Somatostatin inhibited vasoactive intestinal peptide (VIP)-stimulated adenosine 3',5'-cyclic monophosphate (cAMP) formation in a dose-dependent manner. The concentration of somatostatin that caused half-maximal inhibition of cAMP formation was close to the receptor affinity for somatostatin. Pertussis toxin pretreatment of AR4-2J cells prevented somatostatin inhibition of VIP-stimulated cAMP formation as well as somatostatin binding. The authors conclude that AR4-2J cells exhibit functional somatostatin receptors that retain both specificity and affinity of the pancreatic acinar cell somatostatin receptors and act via the pertussis toxin-sensitive guanine nucleotide-binding protein N i to inhibit adenylate cyclase

  8. New model for gastroenteropancreatic large-cell neuroendocrine carcinoma: establishment of two clinically relevant cell lines.

    Directory of Open Access Journals (Sweden)

    Andreas Krieg

    Full Text Available Recently, a novel WHO-classification has been introduced that divided gastroenteropancreatic neuroendocrine neoplasms (GEP-NEN according to their proliferation index into G1- or G2-neuroendocrine tumors (NET and poorly differentiated small-cell or large-cell G3-neuroendocrine carcinomas (NEC. Our knowledge on primary NECs of the GEP-system is limited due to the rarity of these tumors and chemotherapeutic concepts of highly aggressive NEC do not provide convincing results. The aim of this study was to establish a reliable cell line model for NEC that could be helpful in identifying novel druggable molecular targets. Cell lines were established from liver (NEC-DUE1 or lymph node metastases (NEC-DUE2 from large cell NECs of the gastroesophageal junction and the large intestine, respectively. Morphological characteristics and expression of neuroendocrine markers were extensively analyzed. Chromosomal aberrations were mapped by array comparative genomic hybridization and DNA profiling was analyzed by DNA fingerprinting. In vitro and in vivo tumorigenicity was evaluated and the sensitivity against chemotherapeutic agents assessed. Both cell lines exhibited typical morphological and molecular features of large cell NEC. In vitro and in vivo experiments demonstrated that both cell lines retained their malignant properties. Whereas NEC-DUE1 and -DUE2 were resistant to chemotherapeutic drugs such as cisplatin, etoposide and oxaliplatin, a high sensitivity to 5-fluorouracil was observed for the NEC-DUE1 cell line. Taken together, we established and characterized the first GEP large-cell NEC cell lines that might serve as a helpful tool not only to understand the biology of these tumors, but also to establish novel targeted therapies in a preclinical setup.

  9. Phenotypic and Functional Characterization of Herpes Simplex Virus Glycoprotein B Epitope-Specific Effector and Memory CD8+ T Cells from Symptomatic and Asymptomatic Individuals with Ocular Herpes

    Science.gov (United States)

    Khan, Arif A.; Srivastava, Ruchi; Spencer, Doran; Garg, Sumit; Fremgen, Daniel; Vahed, Hawa; Lopes, Patricia P.; Pham, Thanh T.; Hewett, Charlie; Kuang, Jasmine; Ong, Nicolas; Huang, Lei; Scarfone, Vanessa M.; Nesburn, Anthony B.

    2015-01-01

    ABSTRACT Herpes simplex virus 1 (HSV-1) glycoprotein B (gB)-specific CD8+ T cells protect mice from herpes infection and disease. However, whether and which HSV-1 gB-specific CD8+ T cells play a key role in the “natural” protection seen in HSV-1-seropositive healthy asymptomatic (ASYMP) individuals (who have never had clinical herpes disease) remain to be determined. In this study, we have dissected the phenotypes and the functions of HSV-1 gB-specific CD8+ T cells from HLA-A*02:01 positive, HSV-1 seropositive ASYMP and symptomatic (SYMP) individuals (with a history of numerous episodes of recurrent ocular herpes disease). We found the following. (i) Healthy ASYMP individuals maintained a significantly higher proportion of differentiated HSV-1 gB-specific effector memory CD8+ T cells (TEM cells) (CD45RAlow CCR7low CD44high CD62Llow). In contrast, SYMP patients had frequent less-differentiated central memory CD8+ T cells (TCM cells) (CD45RAlow CCR7high CD44low CD62Lhigh). (ii) ASYMP individuals had significantly higher proportions of multifunctional effector CD8+ T cells which responded mainly to gB342–350 and gB561–569 “ASYMP” epitopes, and simultaneously produced IFN-γ, CD107a/b, granzyme B, and perforin. In contrast, effector CD8+ T cells from SYMP individuals were mostly monofunctional and were directed mainly against nonoverlapping gB17–25 and gB183–191 “SYMP” epitopes. (iii) Immunization of an HLA-A*02:01 transgenic mouse model of ocular herpes with “ASYMP” CD8+ TEM cell epitopes, but not with “SYMP” CD8+ TCM cell epitopes, induced a strong CD8+ T cell-dependent protective immunity against ocular herpes infection and disease. Our findings provide insights into the role of HSV-specific CD8+ TEM cells in protection against herpes and should be considered in the development of an effective vaccine. IMPORTANCE A significantly higher proportion of differentiated and multifunctional HSV-1 gB-specific effector memory CD8+ T cells (TEM

  10. Characterization of the novel Sezary lymphoma cell line BKP1.

    Science.gov (United States)

    Boudjarane, John; Essaydi, Arnaud; Farnault, Laure; Popovici, Cornel; Lafage-Pochitaloff, Marina; Beaufils, Nathalie; Berda-Haddad, Yaël; Lacroix, Romaric; Nicolino-Brunet, Corinne; Le Treut, Thérèse; Zattara, Hélène; Gabert, Jean; Kahn-Perlès, Brigitte; Costello, Régis

    2015-01-01

    Cutaneous T-cell lymphomas (CTCL) are a heterogeneous group of lymphomas primarily involving the skin. The most common types are mycosis fungoides (MF) and Sezary Syndrome (SS). We report a novel long-term fast-growing SS line termed BKP1 that was characterized by flow cytometry (FC), conventional and molecular cytogenetic [FISH/multi-FISH together with array comparative genomic hybridization (aCGH)]. FC immunophenotype of the BKP1 is CD2+CD5+CD3+CD4+CD8-CD7-CD25-CD26-CD30-CD158k+. The TCRγ characterization of BKP1 by PCR identified a clonal rearrangement. The conventional cytogenetic and Multi-FISH analysis showed complex chromosomal rearrangements. aCGH analysis highlighted the loss of genes involved in cell cycle control, in immune response (HLA, complement complex) and DNA damage repair mechanisms. The BKP1 is another lymphoma cell line thoroughly characterized that can be a valuable tool for both basic and applied research such as identification of deregulated genes and/or pathways and screening for new antilymphoma drugs. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Establishment of immortalized human erythroid progenitor cell lines able to produce enucleated red blood cells.

    Directory of Open Access Journals (Sweden)

    Ryo Kurita

    Full Text Available Transfusion of red blood cells (RBCs is a standard and indispensable therapy in current clinical practice. In vitro production of RBCs offers a potential means to overcome a shortage of transfusable RBCs in some clinical situations and also to provide a source of cells free from possible infection or contamination by microorganisms. Thus, in vitro production of RBCs may become a standard procedure in the future. We previously reported the successful establishment of immortalized mouse erythroid progenitor cell lines that were able to produce mature RBCs very efficiently. Here, we have developed a reliable protocol for establishing immortalized human erythroid progenitor cell lines that are able to produce enucleated RBCs. These immortalized cell lines produce functional hemoglobin and express erythroid-specific markers, and these markers are upregulated following induction of differentiation in vitro. Most importantly, these immortalized cell lines all produce enucleated RBCs after induction of differentiation in vitro, although the efficiency of producing enucleated RBCs remains to be improved further. To the best of our knowledge, this is the first demonstration of the feasibility of using immortalized human erythroid progenitor cell lines as an ex vivo source for production of enucleated RBCs.

  12. Phage Display Breast Carcinoma cDNA Libraries: Isolation of Clones Which Specifically Bind to Membrane Glycoproteins, Mucins, and Endothelial Cell Surface

    National Research Council Canada - National Science Library

    Yamamoto, Fumiichiro

    2000-01-01

    .... Using blood- group H-expressing glycoprotein fraction as bait, we observed enrichment of phage clones expressing sequences from galectin-3, a lectin with an affinity with the blood-group substance...

  13. Sourcing human embryos for embryonic stem cell lines: Problems & perspectives

    Directory of Open Access Journals (Sweden)

    Rajvi H Mehta

    2014-01-01

    Full Text Available The ability to successfully derive human embryonic stem cells (hESC lines from human embryos following in vitro fertilization (IVF opened up a plethora of potential applications of this technique. These cell lines could have been successfully used to increase our understanding of human developmental biology, transplantation medicine and the emerging science of regenerative medicine. The main source for human embryos has been ′discarded′ or ′spare′ fresh or frozen human embryos following IVF. It is a common practice to stimulate the ovaries of women undergoing any of the assisted reproductive technologies (ART and retrieve multiple oocytes which subsequently lead to multiple embryos. Of these, only two or maximum of three embryos are transferred while the rest are cryopreserved as per the decision of the couple. In case a couple does not desire to ′cryopreserve′ their embryos then all the embryos remaining following embryo transfer can be considered ′spare′ or if a couple is no longer in need of the ′cryopreserved′ embryos then these also can be considered as ′spare′. But, the question raised by the ethicists is, "what about ′slightly′ over-stimulating a woman to get a few extra eggs and embryos? The decision becomes more difficult when it comes to ′discarded′ embryos. As of today, the quality of the embryos is primarily assessed based on morphology and the rate of development mainly judged by single point assessment. Despite many criteria described in the literature, the quality assessment is purely subjective. The question that arises is on the decision of ′discarding′ embryos. What would be the criteria for discarding embryos and the potential ′use′ of ESC derived from the ′abnormal appearing′ embryos? This paper discusses some of the newer methods to procure embryos for the derivation of embryonic stem cell lines which will respect the ethical concerns but still provide the source material.

  14. Sourcing human embryos for embryonic stem cell lines: problems & perspectives.

    Science.gov (United States)

    Mehta, Rajvi H

    2014-11-01

    The ability to successfully derive human embryonic stem cells (hESC) lines from human embryos following in vitro fertilization (IVF) opened up a plethora of potential applications of this technique. These cell lines could have been successfully used to increase our understanding of human developmental biology, transplantation medicine and the emerging science of regenerative medicine. The main source for human embryos has been 'discarded' or 'spare' fresh or frozen human embryos following IVF. It is a common practice to stimulate the ovaries of women undergoing any of the assisted reproductive technologies (ART) and retrieve multiple oocytes which subsequently lead to multiple embryos. Of these, only two or maximum of three embryos are transferred while the rest are cryopreserved as per the decision of the couple. in case a couple does not desire to 'cryopreserve' their embryos then all the embryos remaining following embryo transfer can be considered 'spare' or if a couple is no longer in need of the 'cryopreserved' embryos then these also can be considered as 'spare'. But, the question raised by the ethicists is, "what about 'slightly' over-stimulating a woman to get a few extra eggs and embryos? The decision becomes more difficult when it comes to 'discarded' embryos. As of today, the quality of the embryos is primarily assessed based on morphology and the rate of development mainly judged by single point assessment. Despite many criteria described in the literature, the quality assessment is purely subjective. The question that arises is on the decision of 'discarding' embryos. What would be the criteria for discarding embryos and the potential 'use' of ESC derived from the 'abnormal appearing' embryos? This paper discusses some of the newer methods to procure embryos for the derivation of embryonic stem cell lines which will respect the ethical concerns but still provide the source material.

  15. HIV-1 Envelope Glycoprotein Biosynthesis, Trafficking, and Incorporation

    Science.gov (United States)

    Checkley, Mary Ann; Luttge, Benjamin G.; Freed, Eric O.

    2011-01-01

    The HIV-1 envelope (Env) glycoproteins play an essential role in the virus replication cycle by mediating the fusion between viral and cellular membranes during the entry process. The Env glycoproteins are synthesized as a polyprotein precursor, gp160, that is cleaved by cellular proteases to the mature surface glycoprotein gp120 and the transmembrane glycoprotein gp41. During virus assembly the gp120/gp41 complex is incorporated as heterotrimeric spikes into the lipid bilayer of nascent virions. These gp120/gp41 complexes then initiate the infection process by binding receptor and co-receptor on the surface of target cells. Much is currently known about the HIV-1 Env glycoprotein trafficking pathway and the structure of gp120 and the extracellular domain of gp41. However, the mechanism by which the Env glycoprotein complex is incorporated into virus particles remains incompletely understood. Genetic data support a major role for the cytoplasmic tail of gp41 and the matrix domain of Gag in Env glycoprotein incorporation. Still to be defined are the identities of host cell factors that may promote Env incorporation, and the role of specific membrane microdomains in this process. Here we review our current understanding of HIV-1 Env glycoprotein trafficking and incorporation into virions. PMID:21762802

  16. ECHINACEA SANGUINEA AND ECHINACEA PALLIDA EXTRACTS STIMULATE GLUCURONIDATION AND BASOLATERAL TRANSFER OF BAUER ALKAMIDES 8 AND 10 AND KETONE 24 AND INHIBIT P-GLYCOPROTEIN TRANSPORTER IN CACO-2 CELLS

    OpenAIRE

    Qiang, Zhiyi; Hauck, Cathy; McCoy, Joe-Ann; Widrlechner, Mark P.; Reddy, Manju B.; Murphy, Patricia A.; Hendrich, Suzanne

    2013-01-01

    The use of Echinacea as a medicinal herb is prominent in the United States, and many studies have assessed the effectiveness of Echinacea as an immunomodulator. We hypothesized that Bauer alkamides 8, 10 and 11 and ketone 24 were absorbed similarly either as pure compounds or from Echinacea sanguinea and Echinacea pallida ethanol extracts, and that these Echinacea extracts could inhibit P-glycoprotein transporter (P-gp) in Caco-2 human intestinal epithelial cells. Using HPLC analysis, the per...

  17. Development of buffalo (Bubalus bubalis embryonic stem cell lines from somatic cell nuclear transferred blastocysts

    Directory of Open Access Journals (Sweden)

    Syed Mohmad Shah

    2015-11-01

    Full Text Available We developed buffalo embryonic stem cell lines from somatic cell nuclear transfer derived blastocysts, produced by hand-guided cloning technique. The inner cell mass of the blastocyst was cut mechanically using a Microblade and cultured onto feeder cells in buffalo embryonic stem (ES cell culture medium at 38 °C in a 5% CO2 incubator. The stem cell colonies were characterized for alkaline phosphatase activity, karyotype, pluripotency and self-renewal markers like OCT4, NANOG, SOX2, c-Myc, FOXD3, SSEA-1, SSEA-4, TRA-1-60, TRA-1-81 and CD90. The cell lines also possessed the capability to differentiate across all the three germ layers under spontaneous differentiation conditions.

  18. The Ebola virus glycoprotein mediates entry via a non-classical dynamin-dependent macropinocytic pathway

    International Nuclear Information System (INIS)

    Mulherkar, Nirupama; Raaben, Matthijs; Torre, Juan Carlos de la; Whelan, Sean P.; Chandran, Kartik

    2011-01-01

    Ebola virus (EBOV) has been reported to enter cultured cell lines via a dynamin-2-independent macropinocytic pathway or clathrin-mediated endocytosis. The route(s) of productive EBOV internalization into physiologically relevant cell types remain unexplored, and viral-host requirements for this process are incompletely understood. Here, we use electron microscopy and complementary chemical and genetic approaches to demonstrate that the viral glycoprotein, GP, induces macropinocytic uptake of viral particles into cells. GP's highly-glycosylated mucin domain is dispensable for virus-induced macropinocytosis, arguing that interactions between other sequences in GP and the host cell surface are responsible. Unexpectedly, we also found a requirement for the large GTPase dynamin-2, which is proposed to be dispensable for several types of macropinocytosis. Our results provide evidence that EBOV uses an atypical dynamin-dependent macropinocytosis-like entry pathway to enter Vero cells, adherent human peripheral blood-derived monocytes, and a mouse dendritic cell line.

  19. Characterization of UV radiation sensitive frog cell lines

    International Nuclear Information System (INIS)

    Smith-Stein, A.C.

    1983-01-01

    Twenty-one subclones of nine frog cell isolates were tested for sensitivity to a panel of DNA damaging agents. Two clones were identified which had a greater than wild type level of sensitivity to UV radiation but had a wild type level of sensitivity to the other agents. These clones were the haploid RRP602-7 and the diploid RRP802-1. RRP802-1 was found to be unstable with respect to UV sensitivity. The line was cloned in order to isolate stable sensitive and wild type derivatives. RRP802-1-16, a UV sensitive clone and RRP802-1-13, a clone with a wild type level of sensitivity to UV radiation, were isolated. The UV radiation sensitivity of RRP602-7, RRP802-1 and RRP802-1-16 did not correlate with cell size, cell shape, cell cycle distribution or ploidy. The cell cycle distribution after UV irradiation, the rate of DNA synthesis after UV-irradiation, the DNA polymerase α activity and the sister chromatid exchange frequency were all measured in RRP602-7, RRP802-1 and RRP802-1-16 in order to examine the DNA repair capacity. The presence of DNA repair pathways was examined directly in RRP602-7, RRP802-1 and RRP802-1-16. All were found to be proficient in photo-reactivation repair and postreplication repair of UV elicited DNA damage

  20. Immune Response Induced by an Immunodominant 60 kDa Glycoprotein of the Cell Wall of Sporothrix schenckii in Two Mice Strains with Experimental Sporotrichosis.

    Science.gov (United States)

    Alba-Fierro, Carlos A; Pérez-Torres, Armando; Toriello, Conchita; Pulido-Camarillo, Evelyn; López-Romero, Everardo; Romo-Lozano, Yolanda; Gutiérrez-Sánchez, Gerardo; Ruiz-Baca, Estela

    2016-01-01

    Cell wall (CW) components of fungus Sporothrix schenckii are the major inductors antigens of immune responses. The immunodominant 60 kDa glycoprotein (gp60) has been shown to be associated with the virulence of this fungus but its role in experimental sporotrichosis is unknown. In this work, the immunological effects of CW-purified gp60 were investigated in a model of experimental subcutaneous sporotrichosis in normal and gp60-preimmunized C57BL/6 and BALB/c mice strains which were then infected with S. schenckii conidia. Results showed that both mice strains use different cytokine profiles in order to fight S. schenckii infection; C57BL/6 mice seem to use a Th17 response while BALB/c mice tend to depend on a Th1 profile. Preimmunization with gp60 showed a downregulatory effect on the immune response since cytokines levels were diminished in both strains. There were no significant differences in the magnitude of dorsoplantar inflammation between gp60-preimmunized and nonimmunized mice of both strains. However, skin lesions due to the infection in gp60-preimmunized mice were more severe in BALB/c than in C57BL/6 mice, suggesting that the antigen exerts a higher downregulatory effect on the Th1 response.

  1. Immune Response Induced by an Immunodominant 60 kDa Glycoprotein of the Cell Wall of Sporothrix schenckii in Two Mice Strains with Experimental Sporotrichosis

    Directory of Open Access Journals (Sweden)

    Carlos A. Alba-Fierro

    2016-01-01

    Full Text Available Cell wall (CW components of fungus Sporothrix schenckii are the major inductors antigens of immune responses. The immunodominant 60 kDa glycoprotein (gp60 has been shown to be associated with the virulence of this fungus but its role in experimental sporotrichosis is unknown. In this work, the immunological effects of CW-purified gp60 were investigated in a model of experimental subcutaneous sporotrichosis in normal and gp60-preimmunized C57BL/6 and BALB/c mice strains which were then infected with S. schenckii conidia. Results showed that both mice strains use different cytokine profiles in order to fight S. schenckii infection; C57BL/6 mice seem to use a Th17 response while BALB/c mice tend to depend on a Th1 profile. Preimmunization with gp60 showed a downregulatory effect on the immune response since cytokines levels were diminished in both strains. There were no significant differences in the magnitude of dorsoplantar inflammation between gp60-preimmunized and nonimmunized mice of both strains. However, skin lesions due to the infection in gp60-preimmunized mice were more severe in BALB/c than in C57BL/6 mice, suggesting that the antigen exerts a higher downregulatory effect on the Th1 response.

  2. HIV-1 envelope glycoprotein

    Science.gov (United States)

    Caulfield, Michael; Cupo, Albert; Dean, Hansi; Hoffenberg, Simon; King, C. Richter; Klasse, P. J.; Marozsan, Andre; Moore, John P.; Sanders, Rogier W.; Ward, Andrew; Wilson, Ian; Julien, Jean-Philippe

    2017-08-22

    The present application relates to novel HIV-1 envelope glycoproteins, which may be utilized as HIV-1 vaccine immunogens, and antigens for crystallization, electron microscopy and other biophysical, biochemical and immunological studies for the identification of broad neutralizing antibodies. The present invention encompasses the preparation and purification of immunogenic compositions, which are formulated into the vaccines of the present invention.

  3. Glycoprotein and proteoglycan techniques

    International Nuclear Information System (INIS)

    Beeley, J.G.

    1985-01-01

    The aim of this book is to describe techniques which can be used to answer some of the basic questions about glycosylated proteins. Methods are discussed for isolation, compositional analysis, and for determination of the primary structure of carbohydrate units and the nature of protein-carbohydrate linkages of glycoproteins and proteoglycans. High resolution NMR is considered, as well as radioactive labelling techniques. (Auth.)

  4. The envelope glycoprotein of human endogenous retrovirus type W uses a divergent family of amino acid transporters/cell surface receptors.

    Science.gov (United States)

    Lavillette, Dimitri; Marin, Mariana; Ruggieri, Alessia; Mallet, François; Cosset, François-Loïc; Kabat, David

    2002-07-01

    The human endogenous retrovirus type W (HERV-W) family includes proviruses with intact protein-coding regions that appear to be under selection pressure, suggesting that some HERV-W proviruses may remain active in higher primates. The envelope glycoprotein (Env) encoded by HERV-W is highly fusogenic, is naturally expressed in human placental syncytiatrophoblasts, and has been reported to function as a superantigen in lymphocyte cultures. Recent evidence suggested that HERV-W Env can mediate syncytium formation by interacting with the human sodium-dependent neutral amino acid transporter type 2 (hASCT2; gene name, SLC1A5) (J.-L. Blond, D. Lavillette, V. Cheynet, O. Bouton, G. Oriol, S. Chapel-Fernandez, B. Mandrand, F. Mallet, and F.-L. Cosset, J. Virol. 74:3321-3329, 2000) and that it can pseudotype human immunodeficiency virus cores (D. S. An, Y. Xie, and I. S. Y. Chen, J. Virol. 75:3488-3489, 2001). By using cell-cell fusion and pseudotype virion infection assays, we found that HERV-W Env efficiently uses both hASCT2 and the related transporter hASCT1 (gene name, SLC1A4) as receptors. In addition, although HERV-W Env mediates only slight syncytium formation or infection of mouse cells, it utilizes the mouse transporters mASCT1 and mASCT2 when their sites for N-linked glycosylation are eliminated by mutagenesis. Consistent with their role as a battlefield in host-virus coevolution, the viral recognition regions in ASCT1 and ASCT2 of humans and mice are highly divergent compared with other regions of these proteins, and their ratios of nonsynonymous to synonymous nucleotide sequence changes are extremely large. The recognition of ASCT1 and ASCT2 despite this divergence of their sequences strongly suggests that the use of both receptors has been highly advantageous for survival and evolution of the HERV-W family of retroviruses.

  5. Oleanolic and maslinic acid sensitize soft tissue sarcoma cells to doxorubicin by inhibiting the multidrug resistance protein MRP-1, but not P-glycoprotein.

    Science.gov (United States)

    Villar, Victor Hugo; Vögler, Oliver; Barceló, Francisca; Gómez-Florit, Manuel; Martínez-Serra, Jordi; Obrador-Hevia, Antònia; Martín-Broto, Javier; Ruiz-Gutiérrez, Valentina; Alemany, Regina

    2014-04-01

    The pentacyclic triterpenes oleanolic acid (OLA) and maslinic acid (MLA) are natural compounds present in many plants and dietary products consumed in the Mediterranean diet (e.g., pomace and virgin olive oils). Several nutraceutical activities have been attributed to OLA and MLA, whose antitumoral effects have been extensively evaluated in human adenocarcinomas, but little is known regarding their effectiveness in soft tissue sarcomas (STS). We assessed efficacy and molecular mechanisms involved in the antiproliferative effects of OLA and MLA as single agents or in combination with doxorubicin (DXR) in human synovial sarcoma SW982 and leiomyosarcoma SK-UT-1 cells. As single compound, MLA (10-100 μM) was more potent than OLA, inhibiting the growth of SW982 and SK-UT-1 cells by 70.3 ± 1.11% and 68.8 ± 1.52% at 80 μM, respectively. Importantly, OLA (80 μM) or MLA (30 μM) enhanced the antitumoral effect of DXR (0.5-10 μM) by up to 2.3-fold. On the molecular level, efflux activity of the multidrug resistance protein MRP-1, but not of the P-glycoprotein, was inhibited. Most probably as a consequence, DXR accumulated in these cells. Kinetic studies showed that OLA behaved as a competitive inhibitor of substrate-mediated MRP-1 transport, whereas MLA acted as a non-competitive one. Moreover, none of both triterpenes induced a compensatory increase in MRP-1 expression. In summary, OLA or MLA sensitized cellular models of STS to DXR and selectively inhibited MRP-1 activity, but not its expression, leading to a higher antitumoral effect possibly relevant for clinical treatment. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. In-depth analysis of secretome and N-glycosecretome of human hepatocellular carcinoma metastatic cell lines shed light on metastasis correlated proteins.

    Science.gov (United States)

    Li, Xianyu; Jiang, Jing; Zhao, Xinyuan; Zhao, Yan; Cao, Qichen; Zhao, Qing; Han, Huanhuan; Wang, Jifeng; Yu, Zixiang; Peng, Bo; Ying, Wantao; Qian, Xiaohong

    2016-04-19

    Cancer cell metastasis is a major cause of cancer fatality. But the underlying molecular mechanisms remain incompletely understood, which results in the lack of efficient diagnosis, therapy and prevention approaches. Here, we report a systematic study on the secretory proteins (secretome) and secretory N-glycoproteins (N-glycosecretome) of four human hepatocellular carcinoma (HCC) cell lines with different metastatic potential, to explore the molecular mechanism of metastasis and supply the clues for effective measurement of diagnosis and therapy. Totally, 6242 unique gene products (GPs) and 1637 unique N-glycosites from 635 GPs were confidently identified. About 4000 GPs on average were quantified in each of the cell lines, 1156 of which show differential expression (pproteins were secretory proteins and proteins correlated to cell movement were significantly activated with the increasing of metastatic potential of the cell lines. Twenty-three GPs increased both in the secretome and the N-glycosecretome were chosen as candidates and verified by western blot analysis, and 10 of them were chosen for immunohistochemistry (IHC) analysis. The cumulative survival rates of the patients with candidate (FAT1, DKK3) suggested that these proteins might be used as biomarkers for HCC diagnosis. In addition, a comparative analysis with the published core human plasma database (1754 GPs) revealed that there were 182 proteins not presented in the human plasma database but identified by our studies, some of which were selected and verified successfully by western blotting in human plasma.

  7. Identification of genes associated with cisplatin resistance in human oral squamous cell carcinoma cell line

    Directory of Open Access Journals (Sweden)

    Zhang Ping

    2006-09-01

    Full Text Available Abstract Background Cisplatin is widely used for chemotherapy of head and neck squamous cell carcinoma. However, details of the molecular mechanism responsible for cisplatin resistance are still unclear. The aim of this study was to identify the expression of genes related to cisplatin resistance in oral squamous cell carcinoma cells. Methods A cisplatin-resistant cell line, Tca/cisplatin, was established from a cisplatin-sensitive cell line, Tca8113, which was derived from moderately-differentiated tongue squamous cell carcinoma. Global gene expression in this resistant cell line and its sensitive parent cell line was analyzed using Affymetrix HG-U95Av2 microarrays. Candidate genes involved in DNA repair, the MAP pathway and cell cycle regulation were chosen to validate the microarray analysis results. Cell cycle distribution and apoptosis following cisplatin exposure were also investigated. Results Cisplatin resistance in Tca/cisplatin cells was stable for two years in cisplatin-free culture medium. The IC50 for cisplatin in Tca/cisplatin was 6.5-fold higher than that in Tca8113. Microarray analysis identified 38 genes that were up-regulated and 25 that were down-regulated in this cell line. Some were novel candidates, while others are involved in well-characterized mechanisms that could be relevant to cisplatin resistance, such as RECQL for DNA repair and MAP2K6 in the MAP pathway; all the genes were further validated by Real-time PCR. The cell cycle-regulated genes CCND1 and CCND3 were involved in cisplatin resistance; 24-hour exposure to 10 μM cisplatin induced a marked S phase block in Tca/cisplatin cells but not in Tca8113 cells. Conclusion The Tca8113 cell line and its stable drug-resistant variant Tca/cisplatin provided a useful model for identifying candidate genes responsible for the mechanism of cisplatin resistance in oral squamous cell carcinoma. Our data provide a useful basis for screening candidate targets for early diagnosis

  8. Identification of genes associated with cisplatin resistance in human oral squamous cell carcinoma cell line

    International Nuclear Information System (INIS)

    Zhang, Ping; Zhang, Zhiyuan; Zhou, Xiaojian; Qiu, Weiliu; Chen, Fangan; Chen, Wantao

    2006-01-01

    Cisplatin is widely used for chemotherapy of head and neck squamous cell carcinoma. However, details of the molecular mechanism responsible for cisplatin resistance are still unclear. The aim of this study was to identify the expression of genes related to cisplatin resistance in oral squamous cell carcinoma cells. A cisplatin-resistant cell line, Tca/cisplatin, was established from a cisplatin-sensitive cell line, Tca8113, which was derived from moderately-differentiated tongue squamous cell carcinoma. Global gene expression in this resistant cell line and its sensitive parent cell line was analyzed using Affymetrix HG-U95Av2 microarrays. Candidate genes involved in DNA repair, the MAP pathway and cell cycle regulation were chosen to validate the microarray analysis results. Cell cycle distribution and apoptosis following cisplatin exposure were also investigated. Cisplatin resistance in Tca/cisplatin cells was stable for two years in cisplatin-free culture medium. The IC50 for cisplatin in Tca/cisplatin was 6.5-fold higher than that in Tca8113. Microarray analysis identified 38 genes that were up-regulated and 25 that were down-regulated in this cell line. Some were novel candidates, while others are involved in well-characterized mechanisms that could be relevant to cisplatin resistance, such as RECQL for DNA repair and MAP2K6 in the MAP pathway; all the genes were further validated by Real-time PCR. The cell cycle-regulated genes CCND1 and CCND3 were involved in cisplatin resistance; 24-hour exposure to 10 μM cisplatin induced a marked S phase block in Tca/cisplatin cells but not in Tca8113 cells. The Tca8113 cell line and its stable drug-resistant variant Tca/cisplatin provided a useful model for identifying candidate genes responsible for the mechanism of cisplatin resistance in oral squamous cell carcinoma. Our data provide a useful basis for screening candidate targets for early diagnosis and further intervention in cisplatin resistance

  9. Doxycycline alters metabolism and proliferation of human cell lines.

    Directory of Open Access Journals (Sweden)

    Ethan Ahler

    Full Text Available The tetracycline antibiotics are widely used in biomedical research as mediators of inducible gene expression systems. Despite many known effects of tetracyclines on mammalian cells-including inhibition of the mitochondrial ribosome-there have been few reports on potential off-target effects at concentrations commonly used in inducible systems. Here, we report that in human cell lines, commonly used concentrations of doxycycline change gene expression patterns and concomitantly shift metabolism towards a more glycolytic phenotype, evidenced by increased lactate secretion and reduced oxygen consumption. We also show that these concentrations are sufficient to slow proliferation. These findings suggest that researchers using doxycycline in inducible expression systems should design appropriate controls to account for potential confounding effects of the drug on cellular metabolism.

  10. [Expression of human Jagged-1 protein on eukaryotic cells and establishment of stable transfectant cell line].

    Science.gov (United States)

    Gan, Zhi-Hua; Chen, Yu; Yan, Hua; Wang, Kan-Kan

    2010-08-01

    Jagged-1 protein is one of the ligands belonging to Notch signaling pathway. Notch signaling pathway is one of the major signaling pathways mediated by contact between cells and plays an important role to regulate the process of proliferation and differentiation of hematopoietic cells in the hematopoietic microenvironment. To study the biological effect after the combination of receptor and ligand in Notch signaling pathway and the mechanism of Notch signaling pathway in bone marrow stromal cells mediated-drug resistance, a NIH-3T3 cell line over-expressing Jagged-1 protein was constructed for further research purposes. A full coding region of Jagged-1 gene was cloned and inserted into eukaryotic expression plasmid to construct pEGFP-IRES2-Jagged-1 eukaryotic expression vector, then transfected into NIH-3T3 cell line, a mammalian cells. As a result Western blot analysis confirmed that the transfectant NIH-3T3 cells highly expressed Jagged-1 protein and flow cytometry analysis confirmed that the NIH-3T3-pEGFP-IRES2-Jagged-1 cell line over-expressed Jagged-1 protein was monoclonal after screened by selective medium and limiting dilution analysis. It is concluded that the pEGFP-IRES2-Jagged-1 eukaryotic expression vector and a stable transfectant monoclonal NIH-3T3 cell line are successfully established. The construction of the stable transfectant monoclonal NIH-3T3 cell line which overexpressed Jagged-1 protein, provides the conditions to further study the mechanism of the bone marrow stromal cell-mediated drug resistance and to discover the new drug targets.

  11. A vertically integrated dynamic RAM-cell: Buried bit line memory cell with floating transfer layer

    NARCIS (Netherlands)

    Mouthaan, A.J.; Vertregt, Maarten

    1986-01-01

    A charge injection device has been realized in which charge can be injected on to an MOS-capacitor from a buried layer via an isolated transfer layer. The cell is positioned vertically between word and bit line. LOCOS (local oxidation) is used to isolate the cells and (deep) ion implantation to

  12. Role of free radicals in an adriamycin-resistant human small cell lung cancer cell line

    NARCIS (Netherlands)

    Meijer, C.; Mulder, N H; Timmer-Bosscha, H; Zijlstra, J G; de Vries, E G

    1987-01-01

    In two Adriamycin (Adr) resistant sublines (GLC4-Adr1 and GLC4-Adr2) of a human small cell lung carcinoma cell line, GLC4, cross-resistance for radiation was found. GLC4-Adr1 has an acquired Adr resistance factor of 44 after culturing without Adr for 20 days and GLC4-Adr2, the same subline cultured

  13. Multidrug resistance and retroviral transduction potential in human small cell lung cancer cell lines

    DEFF Research Database (Denmark)

    Theilade, M D; Gram, G J; Jensen, P B

    1999-01-01

    of blue colonies after X-Gal staining of the cells grown in soft agar. All examined SCLC cell lines were transducible with either vector. Transduction efficiencies varied from 5.7% to 33.5% independent of the presence of MDR. These results indicate that MDR does not severely impair transduction of SCLC...

  14. 3-Bromopyruvate induces necrotic cell death in sensitive melanoma cell lines

    International Nuclear Information System (INIS)

    Qin, J.-Z.; Xin, H.; Nickoloff, B.J.

    2010-01-01

    Clinicians successfully utilize high uptake of radiolabeled glucose via PET scanning to localize metastases in melanoma patients. To take advantage of this altered metabolome, 3-bromopyruvate (BrPA) was used to overcome the notorious resistance of melanoma to cell death. Using four melanoma cell lines, BrPA triggered caspase independent necrosis in two lines, whilst the other two lines were resistant to killing. Mechanistically, sensitive cells differed from resistant cells by; constitutively lower levels of glutathione, reduction of glutathione by BrPA only in sensitive cells; increased superoxide anion reactive oxygen species, loss of outer mitochondrial membrane permeability, and rapid ATP depletion. Sensitive cell killing was blocked by N-acetylcysteine or glutathione. When glutathione levels were reduced in resistant cell lines, they became sensitive to killing by BrPA. Taken together, these results identify a metabolic-based Achilles' heel in melanoma cells to be exploited by use of BrPA. Future pre-clinical and clinical trials are warranted to translate these results into improved patient care for individuals suffering from metastatic melanoma.

  15. In vitro evaluation of a new nitrosourea, TCNU, against human small cell lung cancer cell lines

    DEFF Research Database (Denmark)

    Roed, H; Vindeløv, L L; Spang-Thomsen, M

    1987-01-01

    The cytotoxic activity of a new nitrosourea, TCNU, was compared with that of BCNU in five human small cell lung cancer cell lines in vitro. TCNU was found to be equivalent or inferior to BCNU when compared on a microgram to microgram basis. If the potential of in vitro phase II trials for selection...

  16. Cloning of partial cDNA encoding differentiation and tumor-associated mucin glycoproteins expressed by human mammary epithelium

    Energy Technology Data Exchange (ETDEWEB)

    Gender, S.J.; Burchell, J.M.; Duhig, T.; Lamport, D.; White, R.; Parker, M.; Taylor-Papadimitriou, J.

    1987-09-01

    Human mammary epithelial cells secrete and express on their cell surfaces complex mucin glycoproteins that are developmentally regulated, tumor-associated, and highly immunogenic. Studies using monoclonal antibodies directed to these glycoproteins suggest that their molecular structures can vary with differentiation stages in the normal gland and in malignancy. To analyze the molecular nature of these glycoproteins, milk mucin was affinity-purifed and deglycosylated with hydrogen fluoride, yielding bands at 68 and 72 kDa on silver-stained gels. Polyclonal and monoclonal antibodies to the stripped core protein were developed and used to screen a lambdagt11 expression library of cDNA made from mRNA of the mammary tumor cell line MCF-7. Seven crossreacting clones were isolated, with inserts 0.1-1.8 kilobases long. RNA blot analysis, using as a probe the 1.8-kilobase insert subcloned in plasmid pUC8 (pMUC10), revealed transcripts of 4.7 and 6.4 kilobases in MCF-7 and T47D mammary tumor cells, whereas normal mammary epithelial cells from pooled milks have additional transcripts. The expression of mRNA correlates with antigen expression as determined by binding of two previously characterized anti-mucin monoclonal antibodies (HMFG-1 and HMFG-2) to seven cell lines. Restriction enzyme analysis detected a restriction fragment length polymorphism when human genomic DNA was digested with EcoRI or HinfI.

  17. Epigenetic alterations differ in phenotypically distinct human neuroblastoma cell lines

    International Nuclear Information System (INIS)

    Yang, Qiwei; Tian, Yufeng; Ostler, Kelly R; Chlenski, Alexandre; Guerrero, Lisa J; Salwen, Helen R; Godley, Lucy A; Cohn, Susan L

    2010-01-01

    Epigenetic aberrations and a CpG island methylator phenotype have been shown to be associated with poor outcomes in children with neuroblastoma (NB). Seven cancer related genes (THBS-1, CASP8, HIN-1, TIG-1, BLU, SPARC, and HIC-1) that have been shown to have epigenetic changes in adult cancers and play important roles in the regulation of angiogenesis, tumor growth, and apoptosis were analyzed to investigate the role epigenetic alterations play in determining NB phenotype. Two NB cell lines (tumorigenic LA1-55n and non-tumorigenic LA1-5s) that differ in their ability to form colonies in soft agar and tumors in nude mice were used. Quantitative RNA expression analyses were performed on seven genes in LA1-5s, LA1-55n and 5-Aza-dC treated LA1-55n NB cell lines. The methylation status around THBS-1, HIN-1, TIG-1 and CASP8 promoters was examined using methylation specific PCR. Chromatin immunoprecipitation assay was used to examine histone modifications along the THBS-1 promoter. Luciferase assay was used to determine THBS-1 promoter activity. Cell proliferation assay was used to examine the effect of 5-Aza-dC on NB cell growth. The soft agar assay was used to determine the tumorigenicity. Promoter methylation values for THBS-1, HIN-1, TIG-1, and CASP8 were higher in LA1-55n cells compared to LA1-5s cells. Consistent with the promoter methylation status, lower levels of gene expression were detected in the LA1-55n cells. Histone marks associated with repressive chromatin states (H3K9Me3, H3K27Me3, and H3K4Me3) were identified in the THBS-1 promoter region in the LA1-55n cells, but not the LA1-5s cells. In contrast, the three histone codes associated with an active chromatin state (acetyl H3, acetyl H4, and H3K4Me3) were present in the THBS-1 promoter region in LA1-5s cells, but not the LA1-55n cells, suggesting that an accessible chromatin structure is important for THBS-1 expression. We also show that 5-Aza-dC treatment of LA1-55n cells alters the DNA methylation

  18. Dentin sialophosphoprotein (DSPP gene-silencing inhibits key tumorigenic activities in human oral cancer cell line, OSC2.

    Directory of Open Access Journals (Sweden)

    Rajeshree Joshi

    2010-11-01

    Full Text Available We determined recently that dentin sialophosphoprotein (DSPP, a member of the SIBLING (Small integrin-binding ligand N-linked glycoproteins family of phosphoglycoproteins, is highly upregulated in human oral squamous cell carcinomas (OSCCs where upregulation is associated with tumor aggressiveness. To investigate the effects of DSPP-silencing on the tumorigenic profiles of the oral cancer cell line, OSC2, short-hairpin RNA (shRNA interference was employed to silence DSPP in OSC2 cells.Multiple regions of DSPP transcript were targeted for shRNA interference using hDSP-shRNA lentiviral particles designed to silence DSPP gene expression. Control shRNA plasmid encoding a scrambled sequence incapable of degrading any known cellular mRNA was used for negative control. Following puromycin selection of stable lines of DSSP-silenced OSC2 cells, phenotypic hallmarks of oral carcinogenesis were assayed by western blot and RT-PCR analyses, MTT (cell-viability, colony-formation, modified Boyden-Chamber (migration and invasion, and flow cytometry (cell-cycle and apoptosis analyses. DSPP-silenced OSC2 cells showed altered cell morphology, reduced viability, decreased colony-formation ability, decreased migration and invasion, G0/G1 cell-cycle arrest, and increased tumor cell sensitivity to cisplatin-induced apoptosis. Furthermore, MMP-2, MMP-3, MMP-9, VEGF, Ki-67, p53, and EGFR were down-regulated. There was a direct correlation between the degree of DSPP-silencing and MMP suppression, as indicated by least squares regression: MMP-2 {(y = 0.850x, p<0.001 (y = 1.156x, p<0.001}, MMP-3 {(y = 0.994x, p<0.001 (y = 1.324x, p = 0.004}, and MMP-9 {(y = 1.248x, p = 0.005, y = 0.809, p = 0.013}.DSPP-silencing in OSC2 cell decreased salient hallmarks of oral tumorigenesis and provides the first functional evidence of a potential key role for DSPP in oral cancer biology. The down-regulation of MMP-2, MMP-3, MMP-9, p53 and VEGF in DSPP

  19. Cell cycle dependency of 67gallium uptake and cytotoxicity in human cell lines of hematological malignancies.

    Science.gov (United States)

    Van Leeuwen-Stok, E A; Jonkhoff, A R; Visser-Platier, A W; Dräger, L M; Teule, G J; Huijgens, P C; Schuurhuis, G J

    1998-11-01

    67Gallium (67Ga) is a radionuclide which accumulates in hematological malignancies and is used for diagnostic imaging. We investigated in this in vitro study the cell cycle dependency of cellular uptake and cytotoxicity of 67Ga. Cell cycle synchronization of cells was achieved by counterflow centrifugal elutriation and the use of cytostatic drugs. The human lymphoma cell lines U-937 and U-715 were used and in elutriation experiments we also used the leukemic cell line HL-60. The transferrin receptor (CD71) expression, 67Ga uptake and cell proliferation inhibition were the parameters measured. We also studied cytotoxicity in various schedules for combination of 67Ga and drugs and the residual proliferative capacity was measured. The CD71 expression in the three cell lines increased from 106-177% on S phase cells and from 118-233% on G2M cells, as compared to the G0/G1 cell fraction. The 67Ga uptake varied from 108-127% for S cells and 128-139% for G2M cells. The drugs chosen induced cell cycle phase accumulation in S and/or G2M phase during preincubation. 67Ga preincubation induced accumulation in the G2M phase. Almost all combinations of 67Ga and drugs resulted in a non-interactive effect, except for methotrexate which resulted in an antagonistic effect. No preferential effect of any of the incubation schemes was seen. CD71 expression and 67Ga uptake were increased in S and G2M cells. Combination of 67Ga with drugs which arrest cells in these cell cycle phases did not result in a change in cytotoxicity. However, these results implicate that 67Ga and the cytostatic drugs tested except for methotrexate might be used together or sequentially in therapy.

  20. Global Proteome Analysis of the NCI-60 Cell Line Panel

    Directory of Open Access Journals (Sweden)

    Amin Moghaddas Gholami

    2013-08-01

    Full Text Available The NCI-60 cell line collection is a very widely used panel for the study of cellular mechanisms of cancer in general and in vitro drug action in particular. It is a model system for the tissue types and genetic diversity of human cancers and has been extensively molecularly characterized. Here, we present a quantitative proteome and kinome profile of the NCI-60 panel covering, in total, 10,350 proteins (including 375 protein kinases and including a core cancer proteome of 5,578 proteins that were consistently quantified across all tissue types. Bioinformatic analysis revealed strong cell line clusters according to tissue type and disclosed hundreds of differentially regulated proteins representing potential biomarkers for numerous tumor properties. Integration with public transcriptome data showed considerable similarity between mRNA and protein expression. Modeling of proteome and drug-response profiles for 108 FDA-approved drugs identified known and potential protein markers for drug sensitivity and resistance. To enable community access to this unique resource, we incorporated it into a public database for comparative and integrative analysis (http://wzw.tum.de/proteomics/nci60.

  1. T3 glycoprotein is functional although structurally distinct on human T-cell receptor gamma T lymphocytes.

    OpenAIRE

    Krangel, M S; Bierer, B E; Devlin, P; Clabby, M; Strominger, J L; McLean, J; Brenner, M B

    1987-01-01

    The T-cell receptor (TCR) gamma gene product occurs in association with T3 (CD3) polypeptides on the surface of human T lymphocytes. TCR gamma lymphocytes express arrays of T3 polypeptides distinct from those typically observed on TCR alpha beta lymphocytes. This report demonstrates that identical T3 gamma, delta, and epsilon polypeptides are synthesized by TCR gamma lymphocytes and TCR alpha beta lymphocytes. However, the processing of T3 delta oligosaccharides is distinct in the two cell ty...

  2. Growth inhibitory activity of Ankaferd hemostat on primary melanoma cells and cell lines

    Directory of Open Access Journals (Sweden)

    Seyhan Turk

    2017-02-01

    Full Text Available Objective: Ankaferd hemostat is the first topical hemostatic agent about the red blood cell–fibrinogen relations tested in the clinical trials. Ankaferd hemostat consists of standardized plant extracts including Alpinia officinarum, Glycyrrhiza glabra, Thymus vulgaris, Urtica dioica, and Vitis vinifera. The aim of this study was to determine the effect of Ankaferd hemostat on viability of melanoma cell lines. Methods: Dissimilar melanoma cell lines and primary cells were used in this study. These cells were treated with different concentrations of Ankaferd hemostat to assess the impact of different dosages of the drug. All cells treated with different concentrations were incubated for different time intervals. After the data had been obtained, one-tailed T-test was used to determine whether the Ankaferd hemostat would have any significant inhibitory impact on cell growth. Results: We demonstrated in this study that cells treated with Ankaferd hemostat showed a significant decrease in cell viability compared to control groups. The cells showed different resistances against Ankaferd hemostat which depended on the dosage applied and the time treated cells had been incubated. We also demonstrated an inverse relationship between the concentration of the drug and the incubation time on one hand and the viability of the cells on the other hand, that is, increasing the concentration of the drug and the incubation time had a negative impact on cell viability. Conclusion: The findings in our study contribute to our knowledge about the anticancer impact of Ankaferd hemostat on different melanoma cells.

  3. Neuroblastoma cell lines contain pluripotent tumor initiating cells that are susceptible to a targeted oncolytic virus.

    Directory of Open Access Journals (Sweden)

    Yonatan Y Mahller

    Full Text Available Although disease remission can frequently be achieved for patients with neuroblastoma, relapse is common. The cancer stem cell theory suggests that rare tumorigenic cells, resistant to conventional therapy, are responsible for relapse. If true for neuroblastoma, improved cure rates may only be achieved via identification and therapeutic targeting of the neuroblastoma tumor initiating cell. Based on cues from normal stem cells, evidence for tumor populating progenitor cells has been found in a variety of cancers.Four of eight human neuroblastoma cell lines formed tumorspheres in neural stem cell media, and all contained some cells that expressed neurogenic stem cell markers including CD133, ABCG2, and nestin. Three lines tested could be induced into multi-lineage differentiation. LA-N-5 spheres were further studied and showed a verapamil-sensitive side population, relative resistance to doxorubicin, and CD133+ cells showed increased sphere formation and tumorigenicity. Oncolytic viruses, engineered to be clinically safe by genetic mutation, are emerging as next generation anticancer therapeutics. Because oncolytic viruses circumvent typical drug-resistance mechanisms, they may represent an effective therapy for chemotherapy-resistant tumor initiating cells. A Nestin-targeted oncolytic herpes simplex virus efficiently replicated within and killed neuroblastoma tumor initiating cells preventing their ability to form tumors in athymic nude mice.These results suggest that human neuroblastoma contains tumor initiating cells that may be effectively targeted by an oncolytic virus.

  4. Generation of genome-modified Drosophila cell lines using SwAP.

    Science.gov (United States)

    Franz, Alexandra; Brunner, Erich; Basler, Konrad

    2017-10-02

    The ease of generating genetically modified animals and cell lines has been markedly increased by the recent development of the versatile CRISPR/Cas9 tool. However, while the isolation of isogenic cell populations is usually straightforward for mammalian cell lines, the generation of clonal Drosophila cell lines has remained a longstanding challenge, hampered by the difficulty of getting Drosophila cells to grow at low densities. Here, we describe a highly efficient workflow to generate clonal Cas9-engineered Drosophila cell lines using a combination of cell pools, limiting dilution in conditioned medium and PCR with allele-specific primers, enabling the efficient selection of a clonal cell line with a suitable mutation profile. We validate the protocol by documenting the isolation, selection and verification of eight independently Cas9-edited armadillo mutant Drosophila cell lines. Our method provides a powerful and simple workflow that improves the utility of Drosophila cells for genetic studies with CRISPR/Cas9.