WorldWideScience

Sample records for cell line frtl-5

  1. Electric and magnetic fields do not modify the biochemical properties of FRTL-5 cells.

    Science.gov (United States)

    Dimida, A; Ferrarini, E; Agretti, P; De Marco, G; Grasso, L; Martinelli, M; Longo, I; Giulietti, D; Ricci, A; Galimberti, M; Siervo, B; Licitra, G; Francia, F; Pinchera, A; Vitti, P; Tonacchera, M

    2011-03-01

    Electric and magnetic fields (EMF) might be involved in human disease and numerous research and scientific reviews have been conducted to address this question. In particular thyroid structural and functional alterations caused by various forms of non-ionizing radiation have been described. The aim of this study was to analyze the possible effects of EMF on thyroid, in particular we analyzed the effects caused by a GSM (Global System for Mobile Communications) signal (900 MHz) on cultured thyroid cells (FRTL- 5). The experimental setup was designed in order to expose samples to a radiofrequency wave in well-controlled conditions. We used the FRTL-5 cell line, an epithelial monoclonal continuous cell line derived from Fisher rat thyroid tissue growing as monolayer, expressing the TSH receptor and the sodium-iodide symporter (NIS). FRTL-5 were subsequently irradiate for 24, 48, and 96 h with EMF (800-900 MHz, power-frequency of mobile communication systems) and iodide uptake and cAMP production were measured. The irradiation of cells with EMF at 900 Mhz for 24, 48, and 96 h did not influence the level of cAMP production and was not able to modify iodide accumulation in FRTL- 5 cells with respect to basal conditions. In conclusion, EMF do not seem to be able to interfere with the biochemical properties of FRTL-5 cells in vitro.

  2. Lack of a differential radiation response for proliferative and non-proliferative rat thyroid cells (FRTL-5) in vitro

    International Nuclear Information System (INIS)

    Brosing, J.W.; Giese, W.L.; Mulcahy, R.T.

    1989-01-01

    FRTL-5 rat thyroid epithelial cells maintain normal thyroid function and morphology in vitro, exhibit an absolute requirement for thyroid stimulating hormone (TSH) for proliferation and display radiation dose response characteristics indistinguishable from those of rat thyroid epithelial cells in vivo. In TSH-free medium cells remain in a non-proliferative, yet viable, state for prolonged periods of time and respond to TSH re-stimulation by a return to exponential growth. Flow cytometric analysis using two-step acridine orange (AO) staining revealed an accumulation of cells in the G1 phase of the cell cycle accompanied by a pronounced reduction in red fluorescence (indicative of RNA content) in FRTL-5 cells cultured in the absence of TSH. The response of proliferative and non-proliferative FRTL-5 cells to single dose, split dose and fractionated radiation was compared to determine whether proliferative status was an important response determinant. The response of FRTL-5 cells was not influenced by proliferative status at the time of irradiation. Additionally, dose response was not altered by variable (12 hr-8 days) non-proliferative intervals before or after irradiation. As revealed by split dose experiments, the rate and extent of sublethal damage repair was likewise similar for proliferative and non-proliferative cells. Multifraction experiments employing three fractions separated by 6 hr intervals indicate that non-proliferative FRTL-5 cells completely repair sublethal damage between fractions. These results indicate that the radiation response of FRTL-5 cells is not influenced by the proliferative status of the cells prior to or post-irradiation

  3. Effects of transforming growth factor-beta on growth and differentiation of the continuous rat thyroid follicular cell line, FRTL-5

    International Nuclear Information System (INIS)

    Morris, J.C. III; Ranganathan, G.; Hay, I.D.; Nelson, R.E.; Jiang, N.S.

    1988-01-01

    Transforming growth factor-beta (TGF beta) has been shown to influence the growth and differentiation of many widely varied cell types in vitro, including some that are endocrinologically active. We have investigated the previously unknown effects of this unique growth factor in the differentiated rat thyroid follicular cell line FRTL-5. The cells demonstrated specific, high affinity binding of TGF beta, and as with other epithelial cells, the growth of these thyroid follicular cells was potently inhibited by addition of TGF beta to the culture medium. TGF beta caused a significant reduction in TSH-sensitive adenylate cyclase activity in the cells. The addition of (Bu)2cAMP along with the growth factor to cultures partially reversed the characteristic morphological changes seen with TGF beta, but did not reverse the growth inhibition. To further investigate the possible mechanisms of the effects of TGF beta on the cells, we measured the influence of the growth factor on [125I]TSH binding. TGF beta did not compete for specific TSH-binding sites; however, exposure of the cells to TGF beta for 12 or more h resulted in a dose-dependent down-regulation of TSH receptors that was fully reversible. While cellular proliferation was potently inhibited by TGF beta, differentiated function, as manifest by iodine-trapping ability, was stimulated by the growth factor. This stimulation of iodine uptake was independent of, and additive to, the stimulatory effects of TSH. Finally, FRTL-5 cells in serum-free medium and in response to TSH were shown to secrete TGF beta-like activity that competed for [125I]TGF beta in a RRA. These studies suggest that TGF beta may represent an autocrine mechanism of controlling the growth response to TSH in thyroid follicular cells, while allowing the continuance of differentiated function

  4. Estradiol decreases iodide uptake by rat thyroid follicular FRTL-5 cells

    Directory of Open Access Journals (Sweden)

    Furlanetto T.W.

    2001-01-01

    Full Text Available Estradiol has well-known indirect effects on the thyroid. A direct effect of estradiol on thyroid follicular cells, increasing cell growth and reducing the expression of the sodium-iodide symporter gene, has been recently reported. The aim of the present investigation was to study the effect of estradiol on iodide uptake by thyroid follicular cells, using FRTL-5 cells as a model. Estradiol decreased basal iodide uptake by FRTL-5 cells from control levels of 2.490 ± 0.370 to 2.085 ± 0.364 pmol I-/µg DNA at 1 ng/ml (P<0.02, to 1.970 ± 0.302 pmol I-/µg DNA at 10 ng/ml (P<0.003, and to 2.038 ± 0.389 pmol I-/µg DNA at 100 ng/ml (P<0.02. In addition, 4 ng/ml estradiol decreased iodide uptake induced by 0.02 mIU/ml thyrotropin from 8.678 ± 0.408 to 7.312 ± 0.506 pmol I-/µg DNA (P<0.02. A decrease in iodide uptake by thyroid cells caused by estradiol has not been described previously and may have a role in goiter pathogenesis.

  5. Thyrotropin Receptor and Membrane Interactions in FRTL-5 Thyroid Cell Strain in Microgravity

    Science.gov (United States)

    Albi, E.; Ambesi-Impiombato, F. S.; Peverini, M.; Damaskopoulou, E.; Fontanini, E.; Lazzarini, R.; Curcio, F.; Perrella, G.

    2011-01-01

    The aim of this work was to analyze the possible alteration of thyrotropin (TSH) receptors in microgravity, which could explain the absence of thyroid cell proliferation in the space environment. Several forms of the TSH receptor are localized on the plasma membrane associated with caveolae and lipid rafts. The TSH regulates the fluidity of the cell membrane and the presence of its receptors in microdomains that are rich in sphingomyelin and cholesterol. TSH also stimulates cyclic adenosine monophosphate (cAMP) accumulation and cell proliferation. Reported here are the results of an experiment in which the FRTL-5 thyroid cell line was exposed to microgravity during the Texus-44 mission (launched February 7, 2008, from Kiruna, Sweden). When the parabolic flight brought the sounding rocket to an altitude of 264km, the culture media were injected with or without TSH in the different samples, and weightlessness prevailed on board for 6 minutes and 19 seconds. Control experiments were performed, in parallel, in an onboard 1g centrifuge and on the ground in Kiruna laboratory. Cell morphology and function were analyzed. Results show that in microgravity conditions the cells do not respond to TSH treatment and present an irregular shape with condensed chromatin, a modification of the cell membrane with shedding of the TSH receptor in the culture medium, and an increase of sphingomyelin-synthase and Bax proteins. It is possible that real microgravity induces a rearrangement of specific sections of the cell membrane, which act as platforms for molecular receptors, thus influencing thyroid cell function in astronauts during space missions.

  6. Effects of sodium ions on rat thyrocyte (FRTL-5 cells) swelling- and thyrotropin-activated taurine efflux dependent on cAMP and Epac.

    Science.gov (United States)

    Fugelli, Kjell

    2016-03-01

    Cellular osmolyte release is important in preventing water accumulation and swelling. However, the signaling pathways that detect volume increase and activate solute efflux are still not fully understood. We investigated efflux activation of the osmolyte taurine which is actively accumulated in rat thyrocytes (FRTL-5). Efflux of accumulated [(3)H]taurine was stimulated by cellular swelling and thyrotropin (TSH). These effects were significantly diminished in cells having reduced TSH receptor concentrations. Phosphodiesterase inhibitors (IBMX, Rolipram) enhanced both responses. An analog of forskolin (FSK; 7-deacetyl-7-[O-(N-methylpiperazino)-γ-butyryl] dihydrochloride) and an analog of cAMP, specific for activating exchange protein activated directly by cAMP (Epac; 8-(4-chlorophenylthio)-2'-O-methyladenosine-3',5'-cyclic monophosphate, acetoxymethyl ester), significantly stimulated [(3)H]taurine efflux. A cAMP analog specific for activating protein kinase A (PKA; N6-benzoyladenosine-3',5'-cyclic monophosphate, acetoxymethyl ester) had no significant stimulatory effect on [(3)H]taurine efflux rate. The amiloride analog, 5-(N-ethyl-N-isopropyl)-amiloride, which inhibits a TSH-stimulated Na(+)/H(+) exchanger, enhanced (100 %) and ouabain inhibited (50 %) the TSH-stimulated [(3)H]taurine efflux rate. The effect of FSK on efflux was strongly potentiated by Na(+)-free iso-osmotic conditions and by osmolality/cell volume that affected also the db-cAMP-stimulated efflux. The TSH receptors and downstream elements of the signaling pathway comprising adenylyl cyclase, cAMP and Epac appeared to mediate the hormone-induced signal for [(3)H]taurine efflux from FRTL-5 cells. With less evidence, the cell volume/osmolality-induced [(3)H]taurine efflux cascade appeared to share some of the hormone signaling elements and to modulate the hormone signaling pathway at two levels through cellular Na(+).

  7. Ionizing Radiation Deregulates the MicroRNA Expression Profile in Differentiated Thyroid Cells.

    Science.gov (United States)

    Penha, Ricardo Cortez Cardoso; Pellecchia, Simona; Pacelli, Roberto; Pinto, Luis Felipe Ribeiro; Fusco, Alfredo

    2018-03-01

    Ionizing radiation (IR) is a well-known risk factor for papillary thyroid cancer, and it has been reported to deregulate microRNA expression, which is important to thyroid carcinogenesis. Therefore, this study investigated the impact of IR on microRNA expression profile of the normal thyroid cell line (FRTL-5 CL2), as well as its effect on radiosensitivity of thyroid cancer cell lines, especially the human anaplastic thyroid carcinoma cell line (8505c). The global microRNA expression profile of irradiated FRTL-5 CL2 cells (5 Gy X-ray) was characterized, and data were confirmed by quantitative real-time polymerase chain reaction evaluating the expression of rno-miR-10b-5p, rno-miR-33-5p, rno-miR-128-1-5p, rno-miR-199a-3p, rno-miR-296-5p, rno-miR-328a-3p, and rno-miR-541-5p in irradiated cells. The miR-199a-3p and miR-10b-5p targets were validated by quantitative real-time polymerase chain reaction, Western blot, and luciferase target assays. The effects of miR-199a-3p and miR-10b-5p on DNA repair were determined by evaluating the activation of the protein kinases ataxia-telangiectasia mutated, ataxia telangiectasia, and Rad3-related and the serine 39 phosphorylation of variant histone H2AX as an indirect measure of double-strand DNA breaks in irradiated FRTL-5 CL2 cells. The impact of miR-10b-5p on radiosensitivity was analyzed by cell counting and MTT assays in FRTL-5 CL2, Kras-transformed FRTL-5 CL2 (FRTL KiKi), and 8505c cell lines. The results reveal that miR-10b-5p and miR-199a-3p display the most pronounced alterations in expression in irradiated FRTL-5 CL2 cells. Dicer1 and Lin28b were validated as targets of miR-10b-5p and miR-199a-3p, respectively. Functional studies demonstrate that miR-10b-5p increases the growth rate of FRTL-5 CL2 cells, while miR-199a-3p inhibits their proliferation. Moreover, both of these microRNAs negatively affect homologous recombination repair, reducing activated ataxia-telangiectasia mutated and Rad3-related protein levels

  8. Comparison of thyroid stimulating activities measured by cyclic AMP production, those by radioiodine uptake in FRTL-5 cells and TSH-binding inhibitory activities in patients with hyperthyroid and euthyroid Graves' diseases

    International Nuclear Information System (INIS)

    Kasagi, Kanji; Hatabu, Hiroto; Tokuda, Yasutaka; Arai, Keisuke; Iida, Yasuhiro; Konishi, Junji

    1988-01-01

    By using an assay measuring cAMP production in FRTL-5 thyroid cells, thyroid stimulating antibodies (TSab) were detected in all of 15 patients with euthyroid Graves' disease (EG) and of 26 patients with hyperthyroid Graves' disease (HG). There was no signicant difference between TSab activities in Eg and in HG. In an effort to elucidate why EG patients remain euthyroid in spite of having TSab, we investigated the effect of the patient's crude immunoglobulin fractions 125 I uptake in FRTL-5 thyroid cells, one of the indices of stimulation subsequent to cAMP production. The 125 Iuptake stimulation (IUS) activity was positive in 46,7% (7/15) of EG patients and 88.5% (23/26) of HG patients, being significantly lower in the former than in the latter (P 99m Tc thyroid uptake (r = 0.401, P 99m Tc thyroid uptake in comparison to 19 HG patients with a similar range of IUS activities. There was a good correlation between thyroid weight and 99m Tc thyroid uptake (r = 8.827, P 99m Tc and presumably radioiodine in vivo, might be a factor responsible for keeping EG patients euthyroid despite the presence of TSab. (author)

  9. Sphingosine 1-phosphate stimulates hydrogen peroxide generation through activation of phospholipase C-Ca2+ system in FRTL-5 thyroid cells: possible involvement of guanosine triphosphate-binding proteins in the lipid signaling.

    Science.gov (United States)

    Okajima, F; Tomura, H; Sho, K; Kimura, T; Sato, K; Im, D S; Akbar, M; Kondo, Y

    1997-01-01

    Exogenous sphingosine 1-phosphate (S1P) stimulated hydrogen peroxide (H2O2) generation in association with an increase in intracellular Ca2+ concentration in FRTL-5 thyroid cells. S1P also induced inositol phosphate production, reflecting activation of phospholipase C (PLC) in the cells. These three S1P-induced events were inhibited partially by pertussis toxin (PTX) and markedly by U73122, a PLC inhibitor, and were conversely potentiated by N6-(L-2-phenylisopropyl)adenosine, an A1-adenosine receptor agonist. In FRTL-5 cell membranes, S1P also activated PLC in the presence of guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S), but not in its absence. Guanosine 5'-O-(2-thiodiphosphate) inhibited the S1P-induced GTP gamma S-dependent activation of the enzyme. To characterize the signaling pathways, especially receptors and G proteins involved in the S1P-induced responses, cross-desensitization experiments were performed. Under the conditions where homologous desensitization occurred in S1P-, lysophosphatidic acid (LPA)-, and bradykinin-induced induction of Ca2+ mobilization, no detectable cross-desensitization of S1P and bradykinin was observed. This suggests that the primary action of S1P in its activation of the PLC-Ca2+ system was not the activation of G proteins common to S1P and bradykinin, but the activation of a putative S1P receptor. On the other hand, there was a significant cross-desensitization of S1P and LPA; however, a still significant response to S1P (50-80% of the response in the nontreated control cells) was observed depending on the lipid dose employed after a prior LPA challenge. S1P also inhibited cAMP accumulation in a PTX-sensitive manner. We conclude that S1P stimulates H2O2 generation through a PLC-Ca2+ system and also inhibits adenylyl cyclase in FRTL-5 thyroid cells. The S1P-induced responses may be mediated partly through a putative lipid receptor that is coupled to both PTX-sensitive and insensitive G proteins.

  10. The appearance in thyroidectomized mice of immunoglobulins that bind TSH and stimulate FRTL-5 thyrocytes

    International Nuclear Information System (INIS)

    Gafny, M.; Ben-David, C.; Sirkis, N.; Gordon, A.; Gross, J.

    1992-01-01

    The model system chosen was the thyroidectomized mouse, exhibiting an elevated level of endogenous, circulating TSH. Mice were thyroidectomized by 131 I administration. Sera samples were drawn 1 to 14 months later. The following activities were measured in the immunoglobulin (Ig) fractions prepared: (a) TSH binding by elisa techniques, (b) iodide pump activity (as measured by 99m TcO 4 uptake) and (c) increased [ 3 H]thymidine incorporation into the DNA of FRTL-5 cells. TSH binding Igs were detected in 29/98 mice thyroidectomized for 7-14 months. Stimulation of technetium uptake was observed in 59/110 mice and stimulated labeled thymidine uptake in 37/102 mice, beginning eight and nine months after thyroidectomy, respectively. Of the positive animals, 51 showed a single stimulating activity. The incidence and the serum titers of Igs that stimulate technitium uptake increased significantly with time. Indeed, in the group tested 14 months post-thyroidectomy, 75% of the sera were positive for this antibody with a mean titer eightfold higher than the controls. Hybridomas were prepared from the spleen lymphocytes of thyroidectomized mice. Of these, 18 produced 99m TcO 4 uptake stimulating Igs, 12[ 3 H]thymidine-uptake stimulating Igs and 18 TSH binding Igs. Most of the hybridomas secreted Igs with a single bioactivity. One monoclonal antibody was isolated which neutralized the bioactivity of bTSH on FRTL-5 cells. 99m TcO 4 uptake was decreased by 50% and [ 3 H]thymidine uptake was virtually abolished. These results suggest that the hypothyroid mouse can develop anti-TSH antobodies and thyroid-stimulating antiidiotypic antiboides by an autoimmune process. (BN)

  11. Bioassays for TSH Receptor Autoantibodies, from FRTL-5 Cells to TSH Receptor-LH/CG Receptor Chimeras: The Contribution of Leonard D. Kohn.

    Science.gov (United States)

    Giuliani, Cesidio; Saji, Motoyasu; Bucci, Ines; Napolitano, Giorgio

    2016-01-01

    Since the discovery 60 years ago of the "long-acting thyroid stimulator" by Adams and Purves, great progress has been made in the detection of thyroid-stimulating hormone (TSH) receptor (TSHR) autoantibodies (TRAbs) in Graves' disease. Today, commercial assays are available that can detect TRAbs with high accuracy and provide diagnostic and prognostic evaluation of patients with Graves' disease. The present review focuses on the development of TRAbs bioassays, and particularly on the role that Leonard D. Kohn had in this. Indeed, 30 years ago, the Kohn group developed a bioassay based on the use of FRTL-5 cells that was characterized by high reproducibility, feasibility, and diagnostic accuracy. Using this FRTL-5 bioassay, Kohn and his colleagues were the first to develop monoclonal antibodies (moAbs) against the TSHR. Furthermore, they demonstrated the multifaceted functional nature of TRAbs in patients with Graves' disease, with the identification of stimulating and blocking TRAbs, and even antibodies that activated pathways other than cAMP. After the cloning of the TSHR, the Kohn laboratory constructed human TSHR-rat luteinizing hormone/chorionic gonadotropin receptor chimeras. This paved the way to a new bioassay based on the use of non-thyroid cells transfected with the Mc4 chimera. The new Mc4 bioassay is characterized by high diagnostic and prognostic accuracy, greater than for other assays. The availability of a commercial kit based on the Mc4 chimera is spreading the use of this assay worldwide, indicating its benefits for these patients with Graves' disease. This review also describes the main contributions made by other researchers in TSHR molecular biology and TRAbs assay, especially with the development of highly potent moAbs. A comparison of the diagnostic accuracies of the main TRAbs assays, as both immunoassays and bioassays, is also provided.

  12. Fibroblast-mediated in vivo and in vitro growth promotion of tumorigenic rat thyroid carcinoma cells but not normal Fisher rat thyroid follicular cells.

    Science.gov (United States)

    Saitoh, Ohki; Mitsutake, Norisato; Nakayama, Toshiyuki; Nagayama, Yuji

    2009-07-01

    It is known that genetic abnormalities in oncogenes and/or tumor suppressor genes promote carcinogenesis. Numerous recent articles, however, have demonstrated that epithelial-stromal interaction also plays a critical role for initiation and progression of carcinoma cells. Furthermore, ionizing radiation induces alterations in the tissue microenvironments that promote carcinogenesis. There is little or no information on epithelial-stromal interaction in thyroid carcinoma cells. The objective of this study was to determine if epithelial-stromal interaction influenced the growth of thyroid carcinoma cells in vivo and in vitro and to determine if radiation had added or interacting effects. Normal Fisher rat thyroid follicular cells (FRTL5 cells) and tumorigenic rat thyroid carcinoma cells (FRTL-Tc cells) derived from FRTL5 cells were employed. The cells were injected into thyroids or subcutaneously into left flanks of rats alone or in combination with skin-derived fibroblasts. In groups of rats, fibroblasts were irradiated with 0.1 or 4 Gy x-ray 3 days before inoculation. In vitro growth of FRTL-Tc and FRTL-5 cells were evaluated using the fibroblast-conditioned medium and in a co-culture system with fibroblasts. The in vivo experiments demonstrated that FRTL-Tc cells injected intrathyroidally grew faster than those injected subcutaneously, and that admixed fibroblasts enhanced growth of subcutaneous FRTL-Tc tumors, indicating that the intrathyroidal milieu, particularly in the presence of fibroblasts, confer growth-promoting advantage to thyroid carcinoma cells. This in vivo growth-promoting effect of fibroblasts on FRTL-Tc cells was duplicated in the in vitro experiments using the fibroblast-conditioned medium. Thus, our data demonstrate that this effect is mediated by soluble factor(s), is reversible, and is comparable to that of 10% fetal bovine serum. However, normal FRTL5 cells did not respond to the fibroblast-conditioned medium. Furthermore, high- and low

  13. Aspartic cathepsin D degrades the cytosolic cysteine cathepsin inhibitor stefin B in the cells.

    Science.gov (United States)

    Železnik, Tajana Zajc; Kadin, Andrey; Turk, Vito; Dolenc, Iztok

    2015-09-18

    Stefin B is the major general cytosolic protein inhibitor of cysteine cathepsins. Its main function is to protect the organism against the activity of endogenous potentially hazardous proteases accidentally released from lysosomes. In this study, we investigated the possible effect of endosomal/lysosomal aspartic cathepsins D and E on stefin B after membrane permeabilization. Loss of membrane integrity of lysosomes and endosomes was induced by a lysosomotropic agent L-Leucyl-L-leucine methyl ester (Leu-Leu-OMe). The rat thyroid cell line FRTL-5 was selected as a model cell line owing to its high levels of proteases, including cathepsin D and E. Permeabilization of acid vesicles from FRTL-5 cells induced degradation of stefin B. The process was inhibited by pepstatin A, a potent inhibitor of aspartic proteases. However, degradation of stefin B was prevented by siRNA-mediated silencing of cathepsin D expression. In contrast, cathepsin E silencing had no effect on stefin B degradation. These results showed that cathepsin D and not cathepsin E degrades stefin B. It can be concluded that the presence of cathepsin D in the cytosol affects the inhibitory potency of stefin B, thus preventing the regulation of cysteine cathepsin activities in various biological processes. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Cellular response to 5-fluorouracil (5-FU in 5-FU-resistant colon cancer cell lines during treatment and recovery

    Directory of Open Access Journals (Sweden)

    Kravik Katherine L

    2006-05-01

    Full Text Available Abstract Background Treatment of cells with the anti-cancer drug 5-fluorouracil (5-FU causes DNA damage, which in turn affects cell proliferation and survival. Two stable wild-type TP53 5-FU-resistant cell lines, ContinB and ContinD, generated from the HCT116 colon cancer cell line, demonstrate moderate and strong resistance to 5-FU, respectively, markedly-reduced levels of 5-FU-induced apoptosis, and alterations in expression levels of a number of key cell cycle- and apoptosis-regulatory genes as a result of resistance development. The aim of the present study was to determine potential differential responses to 8 and 24-hour 5-FU treatment in these resistant cell lines. We assessed levels of 5-FU uptake into DNA, cell cycle effects and apoptosis induction throughout treatment and recovery periods for each cell line, and alterations in expression levels of DNA damage response-, cell cycle- and apoptosis-regulatory genes in response to short-term drug exposure. Results 5-FU treatment for 24 hours resulted in S phase arrests, p53 accumulation, up-regulation of p53-target genes on DNA damage response (ATF3, GADD34, GADD45A, PCNA, cell cycle-regulatory (CDKN1A, and apoptosis-regulatory pathways (FAS, and apoptosis induction in the parental and resistant cell lines. Levels of 5-FU incorporation into DNA were similar for the cell lines. The pattern of cell cycle progression during recovery demonstrated consistently that the 5-FU-resistant cell lines had the smallest S phase fractions and the largest G2(/M fractions. The strongly 5-FU-resistant ContinD cell line had the smallest S phase arrests, the lowest CDKN1A levels, and the lowest levels of 5-FU-induced apoptosis throughout the treatment and recovery periods, and the fastest recovery of exponential growth (10 days compared to the other two cell lines. The moderately 5-FU-resistant ContinB cell line had comparatively lower apoptotic levels than the parental cells during treatment and recovery

  15. Enhanced iodide sequestration by 3-biphenyl-5,6-dihydroimidazo 2,1-b thiazole in sodium/iodide sym-porter (NIS)-expressing cells

    International Nuclear Information System (INIS)

    Lecat-Guillet, N.; Ambroise, Y.

    2008-01-01

    The ability of the sodium/iodide sym-porter (NIS) to take up iodide has long provided the basis for cyto-reductive gene therapy and cancer treatment with radio-iodide. One of the major limitations of this approach is that radio-iodide retention in NIS-expressing cells is not sufficient for their destruction. We identified and characterized a small organic molecule capable of increasing iodide retention in HEK293 cells permanently transfected with human NIS cDNA (hNIS-HEK293) and in the rat thyroid-derived cell line FRTL-5. In the presence of 3-biphenyl-4'-yl-5,6-dihydroimidazo[2,1-b)thiazole (ISA1), the transmembrane iodide concentration gradient was increased up to 4.5-fold. Our experiments indicate that the imidazo-thiazole derivative acts either by inhibiting anion efflux mechanisms, or by promoting the relocation of iodide into subcellular compartments. This new compound is not only an attractive chemical tool to investigate the mechanisms of iodide flux at the cellular level, but also opens promising perspectives in the treatment of cancer after NIS gene transfer. (authors)

  16. The effect of tanespimycin (17-AAG) on radioiodine accumulation in sodium iodide symporter expressing cells

    International Nuclear Information System (INIS)

    Yu, Kyoung Hyun; Youn, Hyewon; Song, Myung Geun; Lee, Dong Soo; Chung, June Key

    2012-01-01

    The heat shock protein 90 inhibitor, tanespimycin, is an anticancer agent known to increase iodine accumulation in normal and cancerous thyroid cells. Iodine accumulation is regulated by membrane proteins such as sodium iodide sym porter (NIS) and pendrin (PDS), and thus we attempted to characterize the effects of tanespimycin on those genes. Cells were incubated with tanespimycin in order to evaluate 125 I accumulation and efflux ability. Radioiodine uptake and efflux were measured by a gamma counter and normalized by protein amount. RT PCR were performed to measure the level of gene expression. After tanespimycin treatment, 125 uptake was in creased by ∼2.5 fold in FRTL 5, hNIS ARO. and hNIS MDA MB 231 cells, but no changes were detected in the hNIS HeLa cells. Tanespimycin significantly reduced the radioiodine efflux rate only in the FRTL 5 cell. in the FRTL 5 and hNIS ARO cells, PDS mRNA levels were markedly reduced; the only other observed alteration in the levels of NIS mRNA after tanespimtycin treatment was an observed increase in the h hNIS ARO cells. These results indicate that cellular responses against tanespimycin treatment differed between the normal rat thyroid cells and human cancer cells, and the reduction in the 125I efflux rate by tanespimycin in the normal rat thyroid cells might be attributable to reduced PDS gene expression

  17. Cathepsin C and plasma glutamate carboxypeptidase secreted from Fischer rat thyroid cells liberate thyroxin from the N-terminus of thyroglobulin.

    Science.gov (United States)

    Suban, Dejan; Zajc, Tajana; Renko, Miha; Turk, Boris; Turk, Vito; Dolenc, Iztok

    2012-03-01

    The release of a thyroid hormone from thyroglobulin is controlled by a complex regulatory system. We focused on the extracellular action of two lysosomal enzymes, cathepsin C (catC, dipeptidyl peptidase I) and PGCP (lysosomal dipeptidase), on thyroglobulin, and their ability to liberate the hormone thyroxin. Cathepsin C, an exopeptidase, removes dipeptides from the N-terminus of substrates, and PGCP hydrolyses dipeptides to amino acids. In vitro experiments proved that cathepsin C removes up to 12 amino acids from the N-terminus of porcine thyroglobulin, including a dipeptide with thyroxin on position 5. The newly formed N-terminus, Arg-Pro-, was not hydrolysed further by cathepsin C. Cell culture experiments with FRTL-5 cell line showed localization of cathepsin C and PGCP and their secretion into the medium. Secretion of the active cathepsin C from FRTL-5 cells is stimulated by TSH, insulin, and/or somatostatin. The released enzymes liberate thyroxin from porcine thyroglobulin added to media. The hormone liberation can be reduced by synthetic inhibitors of cysteine proteinases and metalloproteinases. Additionally, we show that TSH, insulin, and/or somatostatin induce up-regulation of N-acetylglucosaminyltransferase 1, the enzyme responsible for the initiation of biosynthesis of hybrid and complex N-glycosylation of proteins. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  18. Effects of 5-fluorouracil on biological characteristics and drug resistance mechanisms of liver cancer cell line PLC/RAF/5

    Directory of Open Access Journals (Sweden)

    CHENG Kangwen

    2015-09-01

    Full Text Available ObjectiveTo study the changes in biological characteristics of a liver cancer cell line PLC/RAF/5 after repeated exposure to a chemotherapy drug, 5-fluorouraci (5-FU, and to investigate the relationship between drug-resistant liver cancer cells and liver cancer stem cells. MethodsA low concentration of 5-FU (1 μg/ml was used to treat the human liver cancer cell line PLC/RAF/5 repeatedly to establish the PLC/RAF/5/5-FU cell line. Morphological differences between the two types of cells were observed. The inhibitory effects of different concentrations of 5-FU (0, 0.25, 0.5, 1, 1.5, and 2 μg/ml on the proliferation of the two types of cells were determined using the CCK-8 assay. Apoptosis of the two types of cells after exposure to different concentrations of 5-FU (0.5, 1, and 2 μg/ml for 48 h was analyzed using flow cytometry. The proportions of side population cells in both types of cells were measured using flow cytometry. The colony-forming ability was compared between the two types of cells by the plate colony-forming assay. The expression of Bax, Bcl-2, ABCG2, and FoxM1 proteins in both types of cells was examined by Western blot. Between-group comparison was performed by t test. ResultsThe PLC/RAF/5/5-FU cell line was successfully established using the chemotherapy drug 5-FU. Compared with the PLC/RAF/5 cells, the PLC/RAF/5/5-FU cells had a larger volume, fewer protrusions, a changed shape of a long shuttle, and enhanced refractivity. Moreover, compared with the parent cells, the PLC/RAF/5/5-FU cells had a significantly lower sensitivity to the inhibitory effect of 5-FU on proliferation, a significantly lower proportion of cells at the G0/G1 phase of the cell cycle, significantly higher proportions of cells at the S and G2/M phases, significantly higher resistance to apoptosis, a significantly higher proportion of side population cells, and significantly enhanced proliferation (P<0.05. According to the results of Western blot assay, the

  19. SH-SY5Y human neuroblastoma cell line: in vitro cell model of dopaminergic neurons in Parkinson's disease.

    Science.gov (United States)

    Xie, Hong-rong; Hu, Lin-sen; Li, Guo-yi

    2010-04-20

    To evaluate the human neuroblastoma SH-SY5Y cell line as an in vitro model of dopaminergic (DAergic) neurons for Parkinson's disease (PD) research and to determine the effect of differentiation on this cell model. The data of this review were selected from the original reports and reviews related to SH-SY5Y cells published in Chinese and foreign journals (Pubmed 1973 to 2009). After searching the literature, 60 articles were selected to address this review. The SH-SY5Y cell line has become a popular cell model for PD research because this cell line posses many characteristics of DAergic neurons. For example, these cells express tyrosine hydroxylase and dopamine-beta-hydroxylase, as well as the dopamine transporter. Moreover, this cell line can be differentiated into a functionally mature neuronal phenotype in the presence of various agents. Upon differentiation, SH-SY5Y cells stop proliferating and a constant cell number is subsequently maintained. However, different differentiating agents induce different neuronal phenotypes and biochemical changes. For example, retinoic acid induces differentiation toward a cholinergic neuronal phenotype and increases the susceptibility of SH-SY5Y cells to neurotoxins and neuroprotective agents, whereas treatment with retinoic acid followed by phorbol ester 12-O-tetradecanoylphorbol-13-acetate results in a DAergic neuronal phenotype and decreases the susceptibility of cells to neurotoxins and neuroprotective agents. Some differentiating agents also alter kinetics of 1-methyl-4-phenyl-pyridinium (MPP(+)) uptake, making SH-SY5Y cells more similar to primary mesencephalic neurons. Differentiated and undifferentiated SH-SY5Y cells have been widely used as a cell model of DAergic neurons for PD research. Some differentiating agents afford SH-SY5Y cells with more potential for studying neurotoxicity and neuroprotection and are thus more relevant to experimental PD research.

  20. Modulation of cholinephosphotransferase activity in breast cancer cell lines by Ro5-4864, a peripheral benzodiazepine receptor agonist

    International Nuclear Information System (INIS)

    Akech, Jacqueline; Roy, Somdutta Sinha; Das, Salil K.

    2005-01-01

    Changes in phospholipid and fatty acid profile are hallmarks of cancer progression. Increase in peripheral benzodiazepine receptor expression has been implicated in breast cancer. The benzodiazepine, Ro5-4864, increases cell proliferation in some breast cancer cell lines. Biosynthesis of phosphatidylcholine (PC) has been identified as a marker for cells proliferating at high rates. Cholinephosphotransferase (CPT) is the terminal enzyme for the de novo biosynthesis of PC. We have addressed here whether Ro5-4864 facilitates some cancer causing mechanisms in breast cancer. We report that cell proliferation increases exponentially in aggressive breast cancer cell lines 11-9-1-4 and BT-549 when treated with nanomolar concentrations of Ro5-4864. This increase is seen within 24 h of treatment, consistent with the cell doubling time in these cells. Ro5-4864 also upregulates c-fos expression in breast cancer cell lines 11-9-1-4 and BT-549, while expression in non-tumorigenic cell line MCF-12A was either basal or slightly downregulated. We further examined the expression of the CPT gene in breast cancer (11-9-1-4, BT-549) and non-tumorigenic cell lines (MCF-12A, MCF-12F). We found that the CPT gene is overexpressed in breast cancer cell lines compared to the non-tumorigenic cell lines. Furthermore, the activity of CPT in forming PC is increased in the breast cancer cell lines cultured for 24 h. Additionally, we examined the CPT activity in the presence of nanomolar concentrations of Ro5-4864. Biosynthesis of PC was increased in breast cancer cell lines upon treatment. We therefore propose that Ro5-4864 facilitates PC formation, a process important in membrane biogenesis for proliferating cells

  1. Neurotrophic effects of growth/differentiation factor 5 in a neuronal cell line.

    Science.gov (United States)

    Toulouse, André; Collins, Grace C; Sullivan, Aideen M

    2012-04-01

    The neurotrophin growth/differentiation factor 5 (GDF5) is studied as a potential therapeutic agent for Parkinson's disease as it is believed to play a role in the development and maintenance of the nigrostriatal system. Progress in understanding the effects of GDF5 on dopaminergic neurones has been hindered by the use of mixed cell populations derived from primary cultures or in vivo experiments, making it difficult to differentiate between direct and indirect effects of GDF5 treatment on neurones. In an attempt to establish an useful model to study the direct neuronal influence of GDF5, we have characterised the effects of GDF5 on a human neuronal cell line, SH-SY5Y. Our results show that GDF5 has the capability to promote neuronal but not dopaminergic differentiation. We also show that it promotes neuronal survival in vitro following a 6-hydroxydopamine insult. Our results show that application of GDF5 to SH-SY5Y cultures induces the SMAD pathway which could potentially be implicated in the intracellular transmission of GDF5's neurotrophic effects. Overall, our study shows that the SH-SY5Y neuroblastoma cell line provides an excellent neuronal model to study the neurotrophic effects of GDF5.

  2. [Anti-tumor effect of 5-FU-PLLA-CNTs on human gastric carcinoma cell lines in vitro].

    Science.gov (United States)

    Gu, Jun; Li, Maolan; Wu, Xiangsong; Wu, Wenguang; Zhang, Lin; Ding, Qichen; Yang, Jiahua; Weng, Hao; Ding, Qian; Bao, Runfa; Shu, Yijun; Liu, Yingbin

    2014-04-01

    To prepare cisPLLAtin-loaded polylactic acid/cnts, and to study the anti-tumor effect of 5-FU-PLLA-CNTs on human gastric carcinoma cell lines(MGC803 and MNK45). 5-FU-PLLA-CNTs were prepared with ultrasound emulsification. The morphology of 5-FU-PLLA-CNTs was determined by scanning electron microscope(SEM), and its drug loading and drug release curve in vitro were detected by UV-Vis-NIR spectrophotometer. Cells were divided into experiment, positive control and negative control groups. CCK8 method was used to test the cytotoxic effect of 5-FU-PLLA-CNTs in different concentrations on MGC803 and MNK45 cell proliferation. Flow cytometry was employed to measure the apoptotic rate of MGC803 and MNK45 cells before and after the intervention of 5-FU-PLLA-CNTs. Deep layer film of 5-FU-PLLA-CNTs was successfully established, whose drug-load rate was(4.54±0.43)%, entrapment rate was(21.56±2.36)%. In vitro release test showed release rate within 24 h of 5-FU-PLLA-CNTs was 23.9% in a as lowly increasing manner, and accumulating release rate was 85.3% at day 31. CCk8 experiment revealed, as compared to control group, 5-FU-PLLA-CNTs significantly inhibited the proliferation of two cell lines in dose-dependent and time-dependent manner. The best 5-FU-PLLA-CNTs concentration of inhibition for human gastric cancer cell lines was 1 mg/well. Flow cytometry indicated the apoptotic rate of MGC803 and MNK45 cells in experiment group treated by 1 mg/well 5-FU-PLLA-CNTs significantly increased as compared to negative control group (P0.05). The 5-FU-PLLA-CNTs has good drug sustained-release capacity, and can significantly kill and inhibit the proliferation of MGC803 and MNK45 cell lines.

  3. Inhibitory effect of genistein on PLC/PRF5 hepatocellular carcinoma cell line

    Directory of Open Access Journals (Sweden)

    Mehdi Nikbakht Dastjerdi

    2015-01-01

    Full Text Available Background: Natural compounds including flavonoids like genistein (GE are able to inhibit cell proliferation and induce apoptosis. GE is the main representative of these groups. GE inhibits carcinogenic tumors such as colon, stomach, lung, and pancreas tumors. The aim of the present study was to analyze the apoptotic effect of GE in the hepatocellular carcinoma (HCC PLC/PRF5 cell line. Methods: Cells were treated with various doses of GE (1, 5, 10, 25, 50, 75, and 100 μM/L at different times (24, 48, and 72 h and the MTT assay was commonly used. Furthermore, cells were treated with single dose of GE (25 μM at different times and flow cytometry was performed. Results: GE inhibited the growth of liver cancer cells significantly with a time- and dose-dependent manner. The percentage of living cells in GE treatment groups with a concentration of 25 μM at different times were 53, 48 and 47%, respectively (P < 0.001. Result of flow cytometry demonstrated that GE at a 25 μM concentration induces apoptosis significantly in a time-dependent manner. The percentage of apoptotic cells at different times were 44, 56, and 60%, respectively (P < 0.001. Conclusions: GE can significantly inhibit the growth of HCC cells and plays a significant role in apoptosis of this cell line.

  4. Chemosensitivity and radiosensitivity of small cell lung cancer cell lines studied by a newly developed 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) hybrid assay

    International Nuclear Information System (INIS)

    Hida, T.; Ueda, R.; Takahashi, T.; Watanabe, H.; Kato, T.; Suyama, M.; Sugiura, T.; Ariyoshi, Y.

    1989-01-01

    The 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) hybrid assay was developed by technically combining the human tumor clonogenic assay and the MTT assay to make the most of both assays. This assay was able to estimate the in vitro growth of cultured cell lines and of tumor cells in pleural effusion, suggesting the possibility of its use for assessment of chemosensitivity and radiosensitivity of fresh tumor samples. Multiple cell lines [including morphological and/or phenotypical in vitro converters and cisplatin (CDDP)-resistant lines] were established from three patients with small cell lung cancer at different stages of the disease. Chemosensitivity of these cell lines to four commonly used chemotherapeutic drugs was tested by the MTT hybrid assay. SK1 and SK3 lines were established from Patient S. K. before and after chemotherapy and radiotherapy, respectively. SK3/CDDP, a CDDP-resistant line derived from the SK3 line, was 30-fold more resistant to CDDP [50% inhibiting dose (IC50), 21.5 micrograms/ml] than the SK1 line. In Patient M. O., MOA2/CDDP, a CDDP-resistant line derived from MOA2 (an in vitro converter from the MO line), was 41-fold more resistant to CDDP (IC50, 37 micrograms/ml) than the parent MO line. From Patient T. M., TM1 and TM2 lines were established before and after chemotherapy, respectively. The latter showed 6-fold more resistance to CDDP than the former. Chemosensitivity of these lines to three other drugs, 4-hydroperoxycyclophosphamide, Adriamycin, and etoposide, suggested cross-resistance between CDDP and 4-hydroperoxycyclophosphamide. Radiosensitivity study was also carried out with the MTT hybrid assay. The MOA2 line was more resistant [Do, 3.0 Gy; extrapolation number (n), 4.0] than the parental MO line (Do, 1.6 Gy; n, 2.1). There was no clear difference in radiosensitivity between the cell lines established before and after radiation therapy in Patient S. K

  5. Canonical transient receptor potential channel 2 (TRPC2): old name-new games. Importance in regulating of rat thyroid cell physiology.

    Science.gov (United States)

    Törnquist, Kid; Sukumaran, Pramod; Kemppainen, Kati; Löf, Christoffer; Viitanen, Tero

    2014-11-01

    In addition to the TSH-cyclic AMP signalling pathway, calcium signalling is of crucial importance in thyroid cells. Although the importance of calcium signalling has been thoroughly investigated for several decades, the nature of the calcium channels involved in signalling is unknown. In a recent series of investigations using the well-studied rat thyroid FRTL-5 cell line, we showed that these cells exclusively express the transient receptor potential canonical 2 (TRPC2) channel. Our results suggested that the TRPC2 channel is of significant importance in regulating thyroid cell function. These investigations were the first to show that thyroid cells express a member of the TRPC family of ion channels. In this review, we will describe the importance of the TRPC2 channel in regulating TSH receptor expression, thyroglobulin maturation, intracellular calcium and iodide homeostasis and that the channel also regulates thyroid cell proliferation.

  6. Actin cytoskeleton organization, cell surface modification and invasion rate of 5 glioblastoma cell lines differing in PTEN and p53 status

    International Nuclear Information System (INIS)

    Djuzenova, Cholpon S.; Fiedler, Vanessa; Memmel, Simon; Katzer, Astrid; Hartmann, Susanne; Krohne, Georg; Zimmermann, Heiko; Scholz, Claus-Jürgen; Polat, Bülent; Flentje, Michael

    2015-01-01

    Glioblastoma cells exhibit highly invasive behavior whose mechanisms are not yet fully understood. The present study explores the relationship between the invasion capacity of 5 glioblastoma cell lines differing in p53 and PTEN status, expression of mTOR and several other marker proteins involved in cell invasion, actin cytoskeleton organization and cell morphology. We found that two glioblastoma lines mutated in both p53 and PTEN genes (U373-MG and SNB19) exhibited the highest invasion rates through the Matrigel or collagen matrix. In DK-MG (p53wt/PTENwt) and GaMG (p53mut/PTENwt) cells, F-actin mainly occurred in the numerous stress fibers spanning the cytoplasm, whereas U87-MG (p53wt/PTENmut), U373-MG and SNB19 (both p53mut/PTENmut) cells preferentially expressed F-actin in filopodia and lamellipodia. Scanning electron microscopy confirmed the abundant filopodia and lamellipodia in the PTEN mutated cell lines. Interestingly, the gene profiling analysis revealed two clusters of cell lines, corresponding to the most (U373-MG and SNB19, i.e. p53 and PTEN mutated cells) and less invasive phenotypes. The results of this study might shed new light on the mechanisms of glioblastoma invasion. - Highlights: • We examine 5 glioblastoma lines on the invasion capacity and actin cytoskeleton. • Glioblastoma cell lines mutated in both p53 and PTEN were the most invasive. • Less invasive cells showed much less lamellipodia, but more actin stress fibers. • A mechanism for the differences in tumor cell invasion is proposed

  7. Actin cytoskeleton organization, cell surface modification and invasion rate of 5 glioblastoma cell lines differing in PTEN and p53 status

    Energy Technology Data Exchange (ETDEWEB)

    Djuzenova, Cholpon S., E-mail: djuzenova_t@ukw.de [Department of Radiation Oncology, University Hospital, Josef-Schneider-Strasse 11, D-97080 Würzburg (Germany); Fiedler, Vanessa [Department of Radiation Oncology, University Hospital, Josef-Schneider-Strasse 11, D-97080 Würzburg (Germany); Memmel, Simon [Lehrstuhl für Biotechnologie und Biophysik, Universität Würzburg, Biozentrum Am Hubland, 97070 Würzburg (Germany); Katzer, Astrid; Hartmann, Susanne [Department of Radiation Oncology, University Hospital, Josef-Schneider-Strasse 11, D-97080 Würzburg (Germany); Krohne, Georg [Elektronenmikroskopie, Biozentrum, Universität Würzburg, Am Hubland, 97070 Würzburg (Germany); Zimmermann, Heiko [Hauptabteilung Biophysik and Kryotechnologie, Fraunhofer-Institut für Biomedizinische Technik, Lehrstuhl für Molekulare und Zelluläre Biotechnologie/Nanotechnologie, Universität des Saarlandes, Ensheimer Strasse 48, 66386 St. Ingbert (Germany); Scholz, Claus-Jürgen [Interdisciplinary Center for Clinical Research, University Hospital, Versbacher Strasse 7, 97078 Würzburg (Germany); Polat, Bülent; Flentje, Michael [Department of Radiation Oncology, University Hospital, Josef-Schneider-Strasse 11, D-97080 Würzburg (Germany); and others

    2015-01-15

    Glioblastoma cells exhibit highly invasive behavior whose mechanisms are not yet fully understood. The present study explores the relationship between the invasion capacity of 5 glioblastoma cell lines differing in p53 and PTEN status, expression of mTOR and several other marker proteins involved in cell invasion, actin cytoskeleton organization and cell morphology. We found that two glioblastoma lines mutated in both p53 and PTEN genes (U373-MG and SNB19) exhibited the highest invasion rates through the Matrigel or collagen matrix. In DK-MG (p53wt/PTENwt) and GaMG (p53mut/PTENwt) cells, F-actin mainly occurred in the numerous stress fibers spanning the cytoplasm, whereas U87-MG (p53wt/PTENmut), U373-MG and SNB19 (both p53mut/PTENmut) cells preferentially expressed F-actin in filopodia and lamellipodia. Scanning electron microscopy confirmed the abundant filopodia and lamellipodia in the PTEN mutated cell lines. Interestingly, the gene profiling analysis revealed two clusters of cell lines, corresponding to the most (U373-MG and SNB19, i.e. p53 and PTEN mutated cells) and less invasive phenotypes. The results of this study might shed new light on the mechanisms of glioblastoma invasion. - Highlights: • We examine 5 glioblastoma lines on the invasion capacity and actin cytoskeleton. • Glioblastoma cell lines mutated in both p53 and PTEN were the most invasive. • Less invasive cells showed much less lamellipodia, but more actin stress fibers. • A mechanism for the differences in tumor cell invasion is proposed.

  8. Differentiation of the SH-SY5Y Human Neuroblastoma Cell Line.

    Science.gov (United States)

    Shipley, Mackenzie M; Mangold, Colleen A; Szpara, Moriah L

    2016-02-17

    Having appropriate in vivo and in vitro systems that provide translational models for human disease is an integral aspect of research in neurobiology and the neurosciences. Traditional in vitro experimental models used in neurobiology include primary neuronal cultures from rats and mice, neuroblastoma cell lines including rat B35 and mouse Neuro-2A cells, rat PC12 cells, and short-term slice cultures. While many researchers rely on these models, they lack a human component and observed experimental effects could be exclusive to the respective species and may not occur identically in humans. Additionally, although these cells are neurons, they may have unstable karyotypes, making their use problematic for studies of gene expression and reproducible studies of cell signaling. It is therefore important to develop more consistent models of human neurological disease. The following procedure describes an easy-to-follow, reproducible method to obtain homogenous and viable human neuronal cultures, by differentiating the chromosomally stable human neuroblastoma cell line, SH-SY5Y. This method integrates several previously described methods(1-4) and is based on sequential removal of serum from media. The timeline includes gradual serum-starvation, with introduction of extracellular matrix proteins and neurotrophic factors. This allows neurons to differentiate, while epithelial cells are selected against, resulting in a homogeneous neuronal culture. Representative results demonstrate the successful differentiation of SH-SY5Y neuroblastoma cells from an initial epithelial-like cell phenotype into a more expansive and branched neuronal phenotype. This protocol offers a reliable way to generate homogeneous populations of neuronal cultures that can be used for subsequent biochemical and molecular analyses, which provides researchers with a more accurate translational model of human infection and disease.

  9. Comparative cytotoxicity study of nicotine and cotinine on MRC-5 cell line

    Directory of Open Access Journals (Sweden)

    Ana-Maria Vlasceanu

    2018-04-01

    Full Text Available Nicotine has several health hazards regarding carcinogenic potential. It also imparts increased risk for respiratory, cardiovascular, and gastrointestinal disorders. Several mechanisms have been proposed for the carcinogenic potential, including effects on cell proliferation, inducing oxidative stress, DNA mutation, or inhibition of apoptosis. The cotinine metabolite is generally thought to have effects similar to nicotine in some experimental systems. The purpose of this study was to assess the nicotine and cotinine cytotoxicity on MRC-5 lung fibroblasts. The pulmonary fibroblasts were treated with various concentrations of nicotine or cotinine (in the range 1 µM – 2 mM for 24 or 48 h and analyzed for cell viability by MTT test. The results indicated that high nicotine concentrations (2 mM induced marked cell death (about 50% in MRC-5 cell line. Cotinine showed lower toxicity than nicotine on the MRC-5 cells. In contrast to nicotine treatment, cells treated with cotinine continued to proliferate after the 48h incubation period.

  10. Influence of Spray-dried Hydroxyapatite-5-Fluorouracil Granules on Cell Lines Derived from Tissues of Mesenchymal Origin

    Directory of Open Access Journals (Sweden)

    Tim Scharnweber

    2008-11-01

    Full Text Available In our previous work we described the preparation and characterization of spray dried hydroxyapatite micro granules loaded with 5-fluorouracil (5-FU. These loaded particles are used as a model drug delivery system (DDS. In this study we examined the in vitro response of two cell lines derived from different tissues to 5-FU loaded granules (LG. Both cell lines, either L929 cells of a mouse fibroblast lineage or cells originating from a rat osteosarcoma (ROS 17/2.8 showed a dose dependent decrease in cell proliferation in response to 5-FU-, either dissolved in the culture medium or loaded onto particles. The response of the two cell lines to loaded and nonloaded particles was different. The effect of LG and of a corresponding concentration of free 5-FU was practically the same for the ROS 17/2.8 cells indicating that ROS 17/2.8 cells were not affected by the carrier material. In contrast, L929 cells showed a slight decrease in cell proliferation also in the presence of granules not loaded with 5-FU. This is thought to be attributed to the inhibition of mitogenesis by phosphocitrates, already demonstrated in fibroblasts. In summary, we found that the loaded 5-FU kept its effectivity after the spray drying process and that the response towards the granules varied with cell type. This is the first step towards a tissue specific DDS.

  11. Methylation associated transcriptional repression of ELOVL5 in novel colorectal cancer cell lines.

    Directory of Open Access Journals (Sweden)

    Arnoud Boot

    Full Text Available Genetic and epigenetic alterations mark colorectal cancer (CRC. Global hypomethylation is observed in nearly all CRC, but a distinct subset of CRC show the CpG Island Methylator Phenotype (CIMP. These tumors show DNA hypermethylation of a specific subset of CpG islands, resulting in transcriptional downregulation of nearby genes. Recently we reported the establishment of novel CRC cell lines derived from primary and metastatic CRC tissues. In this study we describe the DNA methylation profiling of these low passage CRC cell lines. We generated global DNA methylation profiles with Infinium HumanMethylation450 BeadChips and analysed them in conjunction with matching gene expression profiles. Multidimensional scaling of the DNA methylation and gene expression datasets showed that BRAF mutated cell lines form a distinct group. In this group we investigated the 706 loci which we have previously identified to be hypermethylated in BRAF mutant CRC. We validated the significant findings in the The Cancer Genome Atlas colon adenocarcinoma dataset. Our analysis identified ELOVL5, FAM127B, MTERF1, ZNF606 to be subject to transcriptional downregulation through DNA hypermethylation in CRC. We further investigated ELOVL5 with qPCR and immunohistochemical staining, validating our results, but did not find a clear relation between ELOVL5 expression and tumor stage or relapse free survival. ELOVL5, FAM127B, MTERF1, ZNF606 are involved in important cellular processes such as apoptosis, lipogenesis and the downstream transcriptional effect of the MAPK-pathway. We have identified a DNA methylation profile regulating key cellular processes in CRC, resulting in a growth advantage to the tumor cells.

  12. Characterization of Camptothecin-induced Genomic Changes in the Camptothecin-resistant T-ALL-derived Cell Line CPT-K5

    DEFF Research Database (Denmark)

    Kjeldsen, Eigil; Nielsen, Christine J F; Roy, Amit

    2018-01-01

    -K5 and its parental cell line. We identified copy number alterations affecting genes important for maintaining genome integrity and reducing CPT-induced DNA damage. We show for the first time that short tandem repeats are targets for TOP1 cleavage, that can be differentially stimulated by CPT.......Acquisition of resistance to topoisomerase I (TOP1)-targeting camptothecin (CPT) derivatives is a major clinical problem. Little is known about the underlying chromosomal and genomic mechanisms. We characterized the CPT-K5 cell line expressing mutant CPT-resistant TOP1 and its parental T......-cell derived acute lymphoblastic leukemia CPT-sensitive RPMI-8402 cell line by karyotyping and molecular genetic methods, including subtractive oligo-based array comparative genomic hybridization (soaCGH) analysis. Karyotyping revealed that CPT-K5 cells had acquired additional structural aberrations...

  13. Preclinical screening for drugs effective against 5-fluorouracil-resistant cells with a murine L5178Y cell line in vitro

    International Nuclear Information System (INIS)

    Hill, B.T.

    1983-01-01

    A subline of L5178Y cells has been established in vitro that exhibits a fiftyfold order of resistance to 5-fluorouracil (FUra) as compared to that of the parent line. The cytotoxic effects of 24-hour exposures to 23 antitumor drugs and to radiation were compared in the two cell lines. Four patterns of response were identified: 1) Only two drugs, mitomycin C and adriamycin, proved significantly more cytotoxic to FUra-resistant cells. 2) Four other drugs--anguidine, 4'-(9-acridinylamino)-methanesulfon-m-anisidide, melphalan, and quelamycin--showed marginal superiority against resistant cells. 3) X-radiation and the majority of drugs tested--including 5-azacytidine, 1,3-bis(2-chloroethyl)-1-nitrosourea, cisplatin, bleomycin, dibromodulcitol, razoxane, hydroxyurea, methotrexate, teniposide, etoposide, and three experimental agents, metoprine, spirogermanium HCl, and ellipticinum--proved equally cytotoxic to both cell lines. 4) Cross-resistance with FUra was exhibited with vincristine, vindesine, pyrazofurin, and indicine-N-oxide. This experimental system provides a simple method of testing agents for activity against FUra-resistant cells before phase 1 clinical studies

  14. Expression and migratory analysis of 5 human uveal melanoma cell lines for CXCL12, CXCL8, CXCL1, and HGF

    Directory of Open Access Journals (Sweden)

    Di Cesare Sebastian

    2007-01-01

    Full Text Available Abstract Background The aim of this study was to characterize the presence and roles of CXCL12, CXCL8, CXCL1, and HGF in five human uveal melanoma cell lines, using different methods, in order to ascertain their significance in this disease. Methods Five human uveal melanoma cell lines (92.1, SP6.5, MKT-BR, OCM-1, and UW-1 of known proliferative, invasive, and metastatic potential were used in this experiment. A migration assay was used in order to assess the responsiveness of each cell line towards the four chosen chemotactic factors. Immunohistochemistry was then performed for all five cell lines (cytospins using antibodies directed toward CXCL1, CXCL8 and their receptors CXCR2 and CXCR1 respectively. Quantitative real-time PCR was then performed on all five cell lines in order to establish the presence of these four chemotactic factors. Results All five human uveal melanoma cell lines migrated towards the four chosen chemotactic factors at a level greater than that of the negative control. Chemokines CXCL1 and CXCL8 resulted in the greatest number of migrating cells in all five of our cell lines. Immunohistochemistry confirmed the expression of CXCL1, CXCL8, and their receptors CXCR2 and CXCR1 in all five of the cell lines. Quantitative real-time PCR results established expression of CXCL8, CXCL1, and HGF in all 5 cell lines tested. CXCL1 and CXCL8 are highly expressed in SP6.5 and UW-1. None of the five cell lines expressed any detectable levels of CXCL12. Conclusion The migratory ability of the 5 human uveal melanoma cell lines was positively influenced by the four chemotactic factors tested, namely CXCL12, CXCL8, CXCL1, and HGF. Self-expression of chemotactic factors CXCL8, CXCL1, and HGF may indicate an autocrine system, which perhaps contributes to the cells' metastatic ability in vivo.

  15. The SH-SY5Y cell line in Parkinson's disease research: a systematic review.

    Science.gov (United States)

    Xicoy, Helena; Wieringa, Bé; Martens, Gerard J M

    2017-01-24

    Parkinson's disease (PD) is a devastating and highly prevalent neurodegenerative disease for which only symptomatic treatment is available. In order to develop a truly effective disease-modifying therapy, improvement of our current understanding of the molecular and cellular mechanisms underlying PD pathogenesis and progression is crucial. For this purpose, standardization of research protocols and disease models is necessary. As human dopaminergic neurons, the cells mainly affected in PD, are difficult to obtain and maintain as primary cells, current PD research is mostly performed with permanently established neuronal cell models, in particular the neuroblastoma SH-SY5Y lineage. This cell line is frequently chosen because of its human origin, catecholaminergic (though not strictly dopaminergic) neuronal properties, and ease of maintenance. However, there is no consensus on many fundamental aspects that are associated with its use, such as the effects of culture media composition and of variations in differentiation protocols. Here we present the outcome of a systematic review of scientific articles that have used SH-SY5Y cells to explore PD. We describe the cell source, culture conditions, differentiation protocols, methods/approaches used to mimic PD and the preclinical validation of the SH-SY5Y findings by employing alternative cellular and animal models. Thus, this overview may help to standardize the use of the SH-SY5Y cell line in PD research and serve as a future user's guide.

  16. Radiosensitivity of mesothelioma cell lines

    International Nuclear Information System (INIS)

    Haekkinen, A.M.; Laasonen, A.; Linnainmaa, K.; Mattson, K.; Pyrhoenen, S.

    1996-01-01

    The present study was carried out in order to examine the radiosensitivity of malignant pleural mesothelioma cell lines. Cell kinetics, radiation-induced delay of the cell cycle and DNA ploidy of the cell lines were also determined. For comparison an HeLa and a human foetal fibroblast cell line were simultaneously explored. Six previously cytogenetically and histologically characterized mesothelioma tumor cell lines were applied. A rapid tiazolyl blue microtiter (MTT) assay was used to analyze radiosensitivity and cell kinetics and DNA ploidy of the cultured cells were determined by flow cytometry. The survival fraction after a dose of 2 Gy (SF2), parameters α and β of the linear quadratic model (LQ-model) and mean inactivation dose (D MID ) were also estimated. The DNA index of four cell lines equaled 1.0 and two cell lines equaled 1.5 and 1.6. Different mesothelioma cell lines showed a great variation in radiosensitivity. Mean survival fraction after a radiation dose of 2 Gy (SF2) was 0.60 and ranged from 0.36 to 0.81 and mean α value was 0.26 (range 0.48-0.083). The SF2 of the most sensitive diploid mesothelioma cell line was 0.36: Less than that of the foetal fibroblast cell line (0.49). The survival fractions (0.81 and 0.74) of the two most resistant cell lines, which also were aneuploid, were equal to that of the HeLa cell line (0.78). The α/β ratios of the most sensitive cell lines were almost an order of magnitude greater than those of the two most resistant cell lines. Radiation-induced delay of the most resistant aneuploid cell line was similar to that of HeLa cells but in the most sensitive (diploid cells) there was practically no entry into the G1 phase following the 2 Gy radiation dose during 36 h. (orig.)

  17. Radiosensitivity of mesothelioma cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Haekkinen, A.M. [Dept. of Oncology, Univ. Central Hospital, Helsinki (Finland); Laasonen, A. [Dept. of Pathology, Central Hospital of Etelae-Pohjanmaa, Seinaejoki (Finland); Linnainmaa, K. [Dept. of Industrial Hygiene and Toxicology, Inst. of Occupational Health, Helsinki (Finland); Mattson, K. [Dept. Pulmonary Medicine, Univ. Central Hospital, Helsinki (Finland); Pyrhoenen, S. [Dept. of Oncology, Univ. Central Hospital, Helsinki (Finland)

    1996-10-01

    The present study was carried out in order to examine the radiosensitivity of malignant pleural mesothelioma cell lines. Cell kinetics, radiation-induced delay of the cell cycle and DNA ploidy of the cell lines were also determined. For comparison an HeLa and a human foetal fibroblast cell line were simultaneously explored. Six previously cytogenetically and histologically characterized mesothelioma tumor cell lines were applied. A rapid tiazolyl blue microtiter (MTT) assay was used to analyze radiosensitivity and cell kinetics and DNA ploidy of the cultured cells were determined by flow cytometry. The survival fraction after a dose of 2 Gy (SF2), parameters {alpha} and {beta} of the linear quadratic model (LQ-model) and mean inactivation dose (D{sub MID}) were also estimated. The DNA index of four cell lines equaled 1.0 and two cell lines equaled 1.5 and 1.6. Different mesothelioma cell lines showed a great variation in radiosensitivity. Mean survival fraction after a radiation dose of 2 Gy (SF2) was 0.60 and ranged from 0.36 to 0.81 and mean {alpha} value was 0.26 (range 0.48-0.083). The SF2 of the most sensitive diploid mesothelioma cell line was 0.36: Less than that of the foetal fibroblast cell line (0.49). The survival fractions (0.81 and 0.74) of the two most resistant cell lines, which also were aneuploid, were equal to that of the HeLa cell line (0.78). The {alpha}/{beta} ratios of the most sensitive cell lines were almost an order of magnitude greater than those of the two most resistant cell lines. Radiation-induced delay of the most resistant aneuploid cell line was similar to that of HeLa cells but in the most sensitive (diploid cells) there was practically no entry into the G1 phase following the 2 Gy radiation dose during 36 h. (orig.).

  18. Nuclear scaffold organization in the X-ray sensitive Chinese hamster mutant cell line, xrs-5

    International Nuclear Information System (INIS)

    Yasui, L.S.; Fink, T.J.; Enrique, A.M.

    1994-01-01

    Nuclear organization was probed in the radiation-sensitive Chinese hamster ovary (CHO) cell line, xrs-5, and compared with parental CHO K1 cells using the resinless section technique and DNase I digestions. The resinless section data showed no gross morphological differences in core filaments from the nuclear scaffolds of unirradiated CHO K1 and xrs-5 cells. However, the nuclear scaffolds of irradiated xrs-5 cells (1 Gy) had significantly increased ground substance. Irradiated and unirradiated CHO K1 cell nuclear scaffolds were morphologically identical. These data suggest that both CHO K1 and xrs-5 cell nuclear scaffolds had internal nuclear scaffolding networks that could provide DNA attachment sites. (author)

  19. In vitro radiosensitization by oxaliplatin and 5-fluorouracil in a human colon cancer cell line

    International Nuclear Information System (INIS)

    Kjellstroem, Johan; Kjellen, Elisabeth; Johnsson, Anders

    2005-01-01

    The current study was designed to compare the radiosensitizing effects of oxaliplatin and 5-fluorouracil (5FU) in a human colon cancer cell line. A human colon cancer cell line (S1) was treated with various doses of oxaliplatin, 5FU, radiation, and combinations thereof. Various clinically used schedules were mimicked. 5FU was either incubated during 1 h ('bolus') or 24 h ('continuous infusion'). When combining oxaliplatin and 5FU, an isobologram analysis revealed synergistic effects, regardless of 5FU schedule. The IC 10 and IC 50 -doses for the drugs where then combined with radiotherapy. With equitoxic drug doses (IC 50 ), radiosensitization was observed in the following order: oxaliplatin>5FU 24 h>5FU 1 h exposure. The degree of potentiation corresponded to approximately 0.8 Gy, 0.7 Gy, and 0.2 Gy, respectively. In this experimental setting, oxaliplatin seemed to be a better radiosensitizer than 5FU, and longer incubation time with 5FU was better than short exposure

  20. SU-F-T-674: In Vitro Study of 5-Aminolevulinic Acid-Mediated Photo Dynamic Therapy in Human Cancer Cell Lines

    Energy Technology Data Exchange (ETDEWEB)

    Cvetkovic, D; Wang, B; Gupta, R; Ma, C [Fox Chase Cancer Center, Philadelphia, PA (United States)

    2016-06-15

    Purpose: Photodynamic therapy (PTD) is a promising cancer treatment modality. 5-sminolevulinic acid (ALA) is a clinically approved photosensitizer. Here we studied the effect of 5-ALA administration with irradiation on several cell lines in vitro. Methods: Human head and neck (FaDu), lung (A549) and prostate (LNCaP) cancer cells (104/well) were seeded overnight in 96-well plates (Figure 1). 5-ALA at a range from 0.1 to 30.0mg/ml was added to confluent cells 3h before irradiation in 100ul of culture medium. 15MV photon beams from a Siemens Artiste linear accelerator were used to deliver 2 Gy dose in one fraction to the cells. Cell viability was evaluated by WST1 assay. The development of orange color was measured 3h after the addition of WST-1 reagent at 450nm on an Envision Multilabel Reader (Figure 2) and directly correlated to cell number. Control, untreated cells were incubated without 5-ALA. The experiment was performed twice for each cell line. Results: The cell viability rates for the head and neck cancer line are shown in Figure 3. FaDu cell viability was reduced significantly to 36.5% (5-ALA) and 18.1% (5-ALA + RT) only at the highest concentration of 5-ALA, 30mg/ml. This effect was observed in neither A549, nor LNCaP cell line. No toxicity was detected at lower 5-ALA concentrations. Conclusion: Application of 5-ALA and subsequent PDT was found to be cytotoxic at the highest dose of the photosensitizer used in the FaDu head and neck cell line, and their effect was synergistic. Further efforts are necessary to study the potential therapeutic effects of 5-ALA PTD in vitro and in vivo. Our results suggest 5-ALA may improve the efficacy of radiotherapy by acting as a radiomediator in head and neck cancer.

  1. Role of the mitochondria in immune-mediated apoptotic death of the human pancreatic β cell line βLox5.

    Directory of Open Access Journals (Sweden)

    Yaíma L Lightfoot

    Full Text Available Mitochondria are indispensable in the life and death of many types of eukaryotic cells. In pancreatic beta cells, mitochondria play an essential role in the secretion of insulin, a hormone that regulates blood glucose levels. Unregulated blood glucose is a hallmark symptom of diabetes. The onset of Type 1 diabetes is preceded by autoimmune-mediated destruction of beta cells. However, the exact role of mitochondria has not been assessed in beta cell death. In this study, we examine the role of mitochondria in both Fas- and proinflammatory cytokine-mediated destruction of the human beta cell line, βLox5. IFNγ primed βLox5 cells for apoptosis by elevating cell surface Fas. Consequently, βLox5 cells were killed by caspase-dependent apoptosis by agonistic activation of Fas, but only after priming with IFNγ. This beta cell line undergoes both apoptotic and necrotic cell death after incubation with the combination of the proinflammatory cytokines IFNγ and TNFα. Additionally, both caspase-dependent and -independent mechanisms that require proper mitochondrial function are involved. Mitochondrial contributions to βLox5 cell death were analyzed using mitochondrial DNA (mtDNA depleted βLox5 cells, or βLox5 ρ(0 cells. βLox5 ρ(0 cells are not sensitive to IFNγ and TNFα killing, indicating a direct role for the mitochondria in cytokine-induced cell death of the parental cell line. However, βLox5 ρ(0 cells are susceptible to Fas killing, implicating caspase-dependent extrinsic apoptotic death is the mechanism by which these human beta cells die after Fas ligation. These data support the hypothesis that immune mediators kill βLox5 cells by both mitochondrial-dependent intrinsic and caspase-dependent extrinsic pathways.

  2. Analysis of the Catecholaminergic Phenotype in Human SH-SY5Y and BE(2-M17 Neuroblastoma Cell Lines upon Differentiation.

    Directory of Open Access Journals (Sweden)

    Roberta Filograna

    Full Text Available Human cell lines are often used to investigate cellular pathways relevant for physiological or pathological processes or to evaluate cell toxicity or protection induced by different compounds, including potential drugs. In this study, we analyzed and compared the differentiating activities of three agents (retinoic acid, staurosporine and 12-O-tetradecanoylphorbol-13-acetate on the human neuroblastoma SH-SY5Y and BE(2-M17 cell lines; the first cell line is largely used in the field of neuroscience, while the second is still poorly characterized. After evaluating their effects in terms of cell proliferation and morphology, we investigated their catecholaminergic properties by assessing the expression profiles of the major genes involved in catecholamine synthesis and storage and the cellular concentrations of the neurotransmitters dopamine and noradrenaline. Our results demonstrate that the two cell lines possess similar abilities to differentiate and acquire a neuron-like morphology. The most evident effects in SH-SY5Y cells were observed in the presence of staurosporine, while in BE(2-M17 cells, retinoic acid induced the strongest effects. Undifferentiated SH-SY5Y and BE(2-M17 cells are characterized by the production of both NA and DA, but their levels are considerably higher in BE(2-M17 cells. Moreover, the NAergic phenotype appears to be more pronounced in SH-SY5Y cells, while BE(2-M17 cells have a more prominent DAergic phenotype. Finally, the catecholamine concentration strongly increases upon differentiation induced by staurosporine in both cell lines. In conclusion, in this work the catecholaminergic phenotype of the human BE(2-M17 cell line upon differentiation was characterized for the first time. Our data suggest that SH-SY5Y and BE(2-M17 represent two alternative cell models for the neuroscience field.

  3. Analysis of the Catecholaminergic Phenotype in Human SH-SY5Y and BE(2)-M17 Neuroblastoma Cell Lines upon Differentiation.

    Science.gov (United States)

    Filograna, Roberta; Civiero, Laura; Ferrari, Vanni; Codolo, Gaia; Greggio, Elisa; Bubacco, Luigi; Beltramini, Mariano; Bisaglia, Marco

    2015-01-01

    Human cell lines are often used to investigate cellular pathways relevant for physiological or pathological processes or to evaluate cell toxicity or protection induced by different compounds, including potential drugs. In this study, we analyzed and compared the differentiating activities of three agents (retinoic acid, staurosporine and 12-O-tetradecanoylphorbol-13-acetate) on the human neuroblastoma SH-SY5Y and BE(2)-M17 cell lines; the first cell line is largely used in the field of neuroscience, while the second is still poorly characterized. After evaluating their effects in terms of cell proliferation and morphology, we investigated their catecholaminergic properties by assessing the expression profiles of the major genes involved in catecholamine synthesis and storage and the cellular concentrations of the neurotransmitters dopamine and noradrenaline. Our results demonstrate that the two cell lines possess similar abilities to differentiate and acquire a neuron-like morphology. The most evident effects in SH-SY5Y cells were observed in the presence of staurosporine, while in BE(2)-M17 cells, retinoic acid induced the strongest effects. Undifferentiated SH-SY5Y and BE(2)-M17 cells are characterized by the production of both NA and DA, but their levels are considerably higher in BE(2)-M17 cells. Moreover, the NAergic phenotype appears to be more pronounced in SH-SY5Y cells, while BE(2)-M17 cells have a more prominent DAergic phenotype. Finally, the catecholamine concentration strongly increases upon differentiation induced by staurosporine in both cell lines. In conclusion, in this work the catecholaminergic phenotype of the human BE(2)-M17 cell line upon differentiation was characterized for the first time. Our data suggest that SH-SY5Y and BE(2)-M17 represent two alternative cell models for the neuroscience field.

  4. Response of thyroid follicular cells to accelerated iron ions

    International Nuclear Information System (INIS)

    Green, L.M.; Bianski, B.M.

    2003-01-01

    Full text: Suspension cultures of early and later passages thyroid follicular fisher rat thyroid cells (FRTL-5) were exposed to iron ions delivered over a dose range of 0-3 Gy and their comparative biological responses measured. Early passage FRTL-5 cultures are slow-growing, connexin32 competent whereas, later passage cultures are relatively rapidly growing and connexin32 defective. The iron-irradiated cells had sustained levels of incorporated dUTP into 3' strand breaks, reflecting DNA damage. There were no significant differences between early and later passage cultures except at 0.5 and 1 Gy, 48-hours (p 0.05). The presence of consistently medium-larger micronuclei was evidence that severe damage was introduced by exposure to iron ions. The levels of apoptosis were not linear with dose, nor was there a marked difference with time. In all cases the 3 Gy levels were less than or equal to the levels measured at 0.5 Gy. When survival characteristics were compared the most significant difference between early and later passage cultures were in the a-components of the survival curves (0.60 Gy -1 for early and 0.71 Gy-1 for the later passage cultures, p<0.014). When cell cycle phase redistribution was measured, both the early and later passage cultures displayed a significant shift toward G2 (p<0.001). In conclusion, these findings suggest that neither the presence of gap junctions, nor the differences in growth rate translated to significant differences in the biological response of thyroid follicles to iron ions

  5. Effect of ionizing radiation in combination with 5-flurouracil on cell cycle uncoupling of EL-4 cell line

    International Nuclear Information System (INIS)

    Liu Yang; Sun Yanhong; Zhang Xuan; Gong Shouliang; Zhang Wei; Li Song

    2009-01-01

    Objective: To observe the dose-and time-effect of ionizing radiation in combination with 5-flurouracil(5-FU) on the cell cycle uncoupling of EL-4 cell line. Methods: EL-4 cells were collected after irradiation with 0,1.0,2.0 and 4.0 Gy X-irradiation and treatment with 5-FU(0.001,0.010,0.100 and 1.000 mg·L -1 ) for 0,4,8,16,24 and 48 h.The regularity in the polyloid cells was analyzed by flow cytometry(FCM) following staining cells with propidium iodide(PI). Results: As compared with sham-irradiation group,the percentage of diploid EL-4 cells increased significantly at 8-24 h and returned to normal level at 48 h after irradiation with 2.0 Gy X-rays(P -1 group, the percentage of diploid cells decreased obviously at 16-48 h after treatment with 0.100 mg·L -1 5-FU(P -1 group, the percentage of diploid cells decreased significantly 16 h after treatment with different doses 5-FU(P -1 ; the percentage of octoploid cells increased significantly after treatment with 0.010 and 0.100 mg·L -1 5-Fu(P -1 5-FU. (authors)

  6. Radiation sensitivity of Merkel cell carcinoma cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Leonard, J.H.; Ramsay, J.R.; Birrell, G.W. [Queensland Institute of Medical Research (Australia)] [and others

    1995-07-30

    Merkel cell carcinoma (MCC), being a small cell carcinoma, would be expected to be sensitive to radiation. Clinical analysis of patients at our center, especially those with macroscopic disease, would suggest the response is quite variable. We have recently established a number of MCC cell lines from patients prior to radiotherapy, and for the first time are in a position to determine their sensitivity under controlled conditions. Some of the MCC lines grew as suspension cultures and could not be single cell cloned; therefore, it was not possible to use clonogenic survival for all cell lines. A tetrazolium based (MTT) assay was used for these lines, to estimate cell growth after {gamma} irradiation. Control experiments were conducted on lymphoblastoid cell lines (LCL) and the adherent MCC line, MCC13, to demonstrate that the two assays were comparable under the conditions used. We have examined cell lines from MCC, small cell lung cancer (SCLC), malignant melanomas, Epstein Barr virus (EBV) transformed lymphocytes (LCL), and skin fibroblasts for their sensitivity to {gamma} irradiation using both clonogenic cell survival and MTT assays. The results show that the tumor cell lines have a range of sensitivities, with melanoma being more resistant (surviving fraction at 2 Gy (SF2) 0.57 and 0.56) than the small cell carcinoma lines, MCC (SF2 range 0.21-0.45, mean SF2 0.30, n = 8) and SCLC (SF2 0.31). Fibroblasts were the most sensitive (SF2 0.13-0.20, mean 0.16, n = 5). The MTT assay, when compared to clonogenic assay for the MCC13 adherent line and the LCL, gave comparable results under the conditions used. Both assays gave a range of SF2 values for the MCC cell lines, suggesting that these cancers would give a heterogeneous response in vivo. The results with the two derivative clones of MCC14 (SF2 for MCC14/1 0.38, MCC14/2 0.45) would further suggest that some of them may develop resistance during clonogenic evolution. 25 refs., 3 figs., 1 tab.

  7. Radiation sensitivity of Merkell cell carcinoma cell lines

    International Nuclear Information System (INIS)

    Leonard, J. Helen; Ramsay, Jonathan R.; Kearsley, John H.; Birrell, Geoff W.

    1995-01-01

    Purpose: Merkel cell carcinoma (MCC), being a small cell carcinoma, would be expected to be sensitive to radiation. Clinical analysis of patients at our center, especially those with macroscopic disease, would suggest the response is quite variable. We have recently established a number of MCC cell lines from patients prior to radiotherapy, and for the first time are in a position to determine their sensitivity under controlled conditions. Methods and Materials: Some of the MCC lines grew as suspension cultures and could not be single cell cloned; therefore, it was not possible to use clonogenic survival for all cell lines. A tetrazolium based (MTT) assay was used for these lines, to estimate cell growth after γ irradiation. Control experiments were conducted on lymphoblastoid cell lines (LCL) and the adherent MCC line, MCC13, to demonstrate that the two assays were comparable under the conditions used. Results: We have examined cell lines from MCC, small cell lung cancer (SCLC), malignant melanomas, Epstein Barr virus (EBV) transformed lymphocytes (LCL), and skin fibroblasts for their sensitivity to γ irradiation using both clonogenic cell survival and MTT assays. The results show that the tumor cell lines have a range of sensitivities, with melanoma being more resistant (surviving fraction at 2 Gy (SF2) 0.57 and 0.56) than the small cell carcinoma lines, MCC (SF2 range 0.21-0.45, mean SF2 0.30, n = 8) and SCLC (SF2 0.31). Fibroblasts were the most sensitive (SF2 0.13-0.20, mean 0.16, n = 5). The MTT assay, when compared to clonogenic assay for the MCC13 adherent line and the LCL, gave comparable results under the conditions used. Conclusion: Both assays gave a range of SF2 values for the MCC cell lines, suggesting that these cancers would give a heterogeneous response in vivo. The results with the two derivative clones of MCC14 (SF2 for MCC14/1 0.38, MCC14/2 0.45) would further suggest that some of them may develop resistance during clonogenic evolution

  8. LRP5 Signaling in Osteosarcomagenesis: a Cautionary Tale of Translation from Cell Lines to Tumors

    Directory of Open Access Journals (Sweden)

    Logan Horne

    2016-10-01

    Full Text Available Previous reports document expression of low-density lipoprotein receptor-related protein 5 (LRP5 in osteosarcoma (OS tissue. Expression of this Wnt receptor correlated with metastatic disease and poor disease-free survival. Forced expression of dominant-negative LRP5 (dnLRP5, which lacks the membrane binding domain of the native protein and therefore functions as a soluble receptor-sponge for Wnt ligands, reduced in vitro cellular invasion and in vivo xenograft tumor growth for osteosarcoma cell lines. Here, we use a genetically engineered mouse model of osteosarcomagenesis with and without expression of dnLRP5 to assess to what degree tumorigenesis is affected and whether Wnt/β-catenin signaling is circumvented or maintained. Each cohort of mice developed osteosarcoma at a similar ultimate prevalence, but after a slightly increased latency in those also expressing dnLRP5. On histology, there was no difference between groups, despite previous reports that the dnLRP5 osteosarcoma cells specifically undergo a mesenchymal-to-epithelial transition in vitro. Finally, immunohistochemistry showed the presence of cytosolic and nuclear β-catenin and nuclear Cyclin D1, markers consistent with preserved Wnt/β-catenin signaling despite constitutive blockade of the cell surface receipt of Wnt signaling ligand. These data suggest that canonical Wnt signaling plays a role in OS progression and that while blockade of singular nodes in signaling pathways can have dramatic effects on individual cell lines, real tumors readily evade such focused attacks.

  9. Study of the 6-n-propyl-2 thiouracil (PTU) as radioprotector in the thyroid cancer

    International Nuclear Information System (INIS)

    Perona, Marina; Dagrosa, Maria A.; Pisarev, Mario A.; Juvenal, Guillelrmo J.

    2007-01-01

    Full text: Introduction: Many epidemiological studies have demonstrated that exposition to high doses of external radiation increases the frequency of thyroid neoplasia, particularly during childhood and adolescence. The use of thyroid radioprotectors would be convenient to avoid tumorigenic effects in the thyroid gland when irradiation in the neck area is the only possible therapy. Objectives: To study the possible radioprotector effect of the antithyroid drug 6-n-propyl-2 thiouracil (PTU). Normal thyroid cells (FRTL-5 rat thyroid cell line) and pathologic thyroid cells (human anaplastic thyroid carcinoma cell line ARO) were cultured. The same were irradiated with a Co-60 source (1Gy/min) with a dose range between 1 and 8 Gy, in presence and in absence of PTU (1mM). Afterwards post irradiation damage was assessed through the culture formation assay using the survival fraction as effect indicator. Results: the survival fraction increase over control of both cell lines for each doses. The relation PTU vs. Control was: 2,3 and 2,7 for ARO cells and FRTL-5 respectively. The radioprotector effect of PTU is similar in both cases: if it is added 24 hs before or immediately after irradiation. As long as it has been demonstrated that the increase of tissue radioresistance can be induced through the stimulation of the cyclic AMP (cAMP) pathway, the levels of the second messenger were measured after the incubation of the cell lines during 5, 24, 48 and 72 hours with different concentrations of PTU (0; 0,1 mM; 1 mM and 2 mM). The PTU augmented the intracellular and extracellular cAPM levels in each treatment. After 24 hours a peak was observed in the extracellular levels incubated with PTU 1 mM of 36,97 ± 6,37 (fmol/μg prot) vs. Control 16,67 ± 3,92 (fmol/μg prot). The radioprotector effect was mimicked by the cAMP . Conclusion: The PTU exerts a radioprotector effect by stimulating the cAMP pathway [es

  10. The combination effect of sodium butyrate and 5-Aza-2'-deoxycytidine on radiosensitivity in RKO colorectal cancer and MCF-7 breast cancer cell lines

    Directory of Open Access Journals (Sweden)

    Oh Seong

    2009-05-01

    Full Text Available Abstract Background The overall level of chromatin compaction is an important mechanism of radiosensitivity, and modification of DNA methylation and histone deacetylation may increase radiosensitivity by altering chromatin compaction. In this study, we investigated the effect of a demethylating agent, a histone deacetylase(HDAC inhibitor, and the two agents combined on radiosensitivity in human colon and breast cancer cell lines. Methods In this study, we used RKO colorectal cancer cell line and MCF-7 breast cancer cell lines and normal colon cell lines. On each of the cell lines, we used three different agents: the HDAC inhibitor sodium butyrate(SB, the demethylating agent 5-Aza-2'-deoxycytidine(5-aza-DC, and radiation. We then estimated the percentage of the cell survival using the XTT method and experimented to determine if there was an augmentation in the therapeutic effect by using different combinations of the two or three of the treatment methods. Results After treatment of each cell lines with 5-aza-DC, SB and 6 grays of radiation, we observed that the survival fraction was lower after the treatment with 5-aza-DC or SB than with radiation alone in RKO and MCF-7 cell lines(p Conclusion In conclusion, 5-aza-DC and SB can enhance radiosensitivity in both MCF-7 and RKO cell lines. The combination effect of a demethylating agent and an HDAC inhibitor is more effective than that of single agent treatment in both breast and colon cancer cell lines.

  11. Presenilin-1 mutations alter K+ currents in the human neuroblastoma cell line, SH-SY5Y

    DEFF Research Database (Denmark)

    Plant, Leigh D; Boyle, John P; Thomas, Natasha M

    2002-01-01

    Mutations in presenilin 1 (PS1) are the major cause of autosomal dominant Alzheimer's disease. We have measured the voltage-gated K+ current in the human neuroblastoma cell line SH-SY5Y using whole-cell patch-clamp. When cells were stably transfected to over-express PS1, no change in K+ current...

  12. Altered characteristics of cancer stem/initiating cells in a breast cancer cell line treated with persistent 5-FU chemotherapy

    OpenAIRE

    LÜ, XINQUAN; DENG, QING; LI, HUIXIANG; SUO, ZHENHE

    2011-01-01

    Drug resistance of cancer stem/initiating cells has been considered to be one of the main reasons for tumor relapse. However, knowledge concerning the changes in stem/ initiating cells during chemotherapy is limited. In the present study, the breast cancer cell line MDA-MB-468 was cultured with 5-fluorouracil and serially passaged. Six cell generations were collected. Semi-quantitative RT-PCR and flow cytometric techniques were used to evaluate the protein and mRNA expression of stem/initiati...

  13. The expression and role of serotonin receptor 5HTR2A in canine osteoblasts and an osteosarcoma cell line.

    Science.gov (United States)

    Bracha, Shay; Viall, Austin; Goodall, Cheri; Stang, Bernadette; Ruaux, Craig; Seguin, Bernard; Chappell, Patrick E

    2013-12-12

    The significance of the serotonergic system in bone physiology and, more specifically, the importance of the five hydroxytryptamine receptor 2A (5HTR2A) in normal osteoblast proliferation have been previously described; however the role of serotonin in osteosarcoma remains unclear. Particularly, the expression and function of 5HTR2A in canine osteosarcoma has not yet been studied, thus we sought to determine if this indoleamine modulates cellular proliferation in vitro. Using real time quantitative reverse transcription PCR and immunoblot analyses, we explored receptor expression and signaling differences between non-neoplastic canine osteoblasts (CnOb) and an osteosarcoma cell line (COS). To elucidate specific serotonergic signaling pathways triggered by 5HTR2A, we performed immunoblots for ERK and CREB. Finally, we compared cell viability and the induction of apoptosis in the presence 5HTR2A agonists and antagonists. 5HTR2A was overexpressed in the malignant cell line in comparison to normal cells. In CnOb cells, ERK phosphorylation (ERK-P) decreased in response to both serotonin and a specific 5HTR2A antagonist, ritanserin. In contrast, ERK-P abundance increased in COS cells following either treatment. While endogenous CREB was undetectable in CnOb, CREB was observed constitutively in COS, with expression and exhibited increased CREB phosphorylation following escalating concentrations of ritanserin. To determine the influence of 5HTR2A signaling on cell viability we challenged cells with ritanserin and serotonin. Our findings confirmed that serotonin treatment promoted cell viability in malignant cells but not in normal osteoblasts. Conversely, ritanserin reduced cell viability in both the normal and osteosarcoma cells. Further, ritanserin induced apoptosis in COS at the same concentrations associated with decreased cell viability. These findings confirm the existence of a functional 5HTR2A in a canine osteosarcoma cell line. Results indicate that intracellular

  14. Characterization of ectonucleotidases in human medulloblastoma cell lines: ecto-5'NT/CD73 in metastasis as potential prognostic factor.

    Directory of Open Access Journals (Sweden)

    Angélica Regina Cappellari

    Full Text Available Medulloblastoma (MB is the most common malignant brain tumor in children and occurs mainly in the cerebellum. Important intracellular signaling molecules, such those present in the Sonic Hedgehog and Wnt pathways, are involved in its development and can also be employed to determine tumor grade and prognosis. Ectonucleotidases, particularly ecto-5'NT/CD73, are important enzymes in the malignant process of different tumor types regulating extracellular ATP and adenosine levels. Here, we investigated the activity of ectonucleotidases in three malignant human cell lines: Daoy and ONS76, being representative of primary MB, and the D283 cell line, derived from a metastatic MB. All cell lines secreted ATP into the extracellular medium while hydrolyze poorly this nucleotide, which is in agreement with the low expression and activity of pyrophosphate/phosphodiesterase, NTPDases and alkaline phosphatase. The analysis of AMP hydrolysis showed that Daoy and ONS76 completely hydrolyzed AMP, with parallel adenosine production (Daoy and inosine accumulation (ONS76. On the other hand, D283 cell line did not hydrolyze AMP. Moreover, primary MB tumor cells, Daoy and ONS76 express the ecto-5'NT/CD73 while D283 representative of a metastatic tumor, revealed poor expression of this enzyme, while the ecto-adenosine deaminase showed higher expression in D283 compared to Daoy and ONS76 cells. Nuclear beta-catenin has been suggested as a marker for MB prognosis. Further it can promotes expression of ecto-5'NT/CD73 and suppression of adenosine deaminase. It was observed that Daoy and ONS76 showed greater nuclear beta-catenin immunoreactivity than D283, which presented mainly cytoplasmic immunoreactivity. In summary, the absence of ecto-5'NT/CD73 in the D283 cell line, a metastatic MB phenotype, suggests that high expression levels of this ectonucleotidase could be correlated with a poor prognosis in patients with MB.

  15. Zinc oxide nanoparticles and SH-SY5Y cell line

    Science.gov (United States)

    Zheng, Jinghui

    The Arctic and sub-arctic regions are impacted by the growth of the global nanotechnology industry. Nanomaterials have unique chemical and physical properties that may lead to toxicological effects that interfere with normal cellular metabolism. Zinc oxide nanoparticles (ZnO NPs) are now very common and widely used in daily life. In industry, ZnO NPs are used to protect different materials from damage caused by UV exposure. The scientific literature suggests that ZnO NPs can have negative impacts on both living organisms and plants. However, there is a paucity of research on the mechanisms by which ZnO NPs may affect the neuronal cells. This study investigates how ZnO NPs interact with the neuroblastoma cell line SH-SY5Y. Using transmission electron microscopy, we observed that the ZnO NPs form 36 nm particles on average, and increase the level of vascular endothelial growth factor (VEGF) in extracellular fluid, as measured by an enzyme-linked immunosorbent assay (ELISA). Moreover, ZnO NPs, in presence of tumor necrosis factor-alpha (TNF-alpha), can also decrease the level of extracellular VEGF compared with TNF-alpha treatment alone. These findings suggest the basis for more studies on understanding the mechanism by which ZnO NPs impact cytokine signaling. Another direction is using ELISA technology to observe the interactions of NPs with different cell types such as neuronal stem cells.

  16. Difference in membrane repair capacity between cancer cell lines and a normal cell line

    DEFF Research Database (Denmark)

    Frandsen, Stine Krog; McNeil, Anna K.; Novak, Ivana

    2016-01-01

    repair was investigated by disrupting the plasma membrane using laser followed by monitoring fluorescent dye entry over time in seven cancer cell lines, an immortalized cell line, and a normal primary cell line. The kinetics of repair in living cells can be directly recorded using this technique...... cancer cell lines (p immortalized cell line (p

  17. Derivation and characterization of a pig embryonic stem cell-derived exocrine pancreatic cell line

    Science.gov (United States)

    The establishment and initial characterization of a pig embryonic stem cell-derived pancreatic cell line, PICM-31, and a colony-cloned derivative cell line, PICM-31A, is described. The cell lines were propagated for several months at split ratios of 1:3 or 1:5 at each passage on STO feeder cells af...

  18. Resveratrol has anti-thyroid effects both in vitro and in vivo.

    Science.gov (United States)

    Giuliani, Cesidio; Iezzi, Manuela; Ciolli, Laura; Hysi, Alba; Bucci, Ines; Di Santo, Serena; Rossi, Cosmo; Zucchelli, Mirco; Napolitano, Giorgio

    2017-09-01

    Resveratrol is a natural polyphenol with antioxidant, anti-inflammatory, and antiproliferative properties. We have shown previously that resveratrol decreases sodium/iodide symporter expression and iodide uptake in thyrocytes, both in vitro and in vivo. In the present study, we further investigated the effects of resveratrol, with evaluation of the expression of additional thyroid-specific genes in the FRTL-5 rat thyroid cell line: thyroglobulin, thyroid peroxidase, TSH receptor, Nkx2-1, Foxe1 and Pax8. We observed decreased expression of these genes in FRTL-5 cells treated with 10 μM resveratrol. The effects of resveratrol was further evaluated in vivo using Sprague-Dawley rats treated with resveratrol 25 mg/kg body weight intraperitoneally, for 60 days. No clinical signs of hypothyroidism were seen, although the treated rats showed significant increase in thyroid size. Serum TSH and thyroid hormone levels were in the normal range, with significantly higher TSH seen in resveratrol-treated rats, compared with control rats. Histological and immunohistochemical analyses confirmed increased proliferative activity in the thyroid from resveratrol-treated rats. These data suggest that resveratrol acts as a thyroid disruptor and a goitrogen, which indicates the need for caution as a supplement and for therapeutic uses. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Clonogenic cell line survival of a human liver cancer cell line SMMC-7721 after carbon ion irradiation with different LET

    International Nuclear Information System (INIS)

    Lei Suwen; Su Xu; Wang Jifang; Li Wenjian

    2003-01-01

    Objective: To investigate the survival fraction of a human liver cancer cell line SMMC-7721 following irradiation with carbon ions with different LET. Methods: cells of the human liver cancer cell line SMMC-7721 were irradiated with carbon ions (LET=30 and 70 keV/μm). The survival fraction was determined with clonogenic assay after 9 days incubation in a 5% CO 2 incubator at 37 degree C. Results: When the survival fractions of 70 keV/μm were D s = 0.1 and D s=0.01 absorption dose were 2.94 and 5.88 Gy respectively, and those of 30 keV/μm were 4.00 and 8.00 Gy respectively. Conclusion: For the SMMC-7721 cell line, 70 keV/μm is more effective for cell killing than 30 keV/μm

  20. Specific pesticide-dependent increases in α-synuclein levels in human neuroblastoma (SH-SY5Y) and melanoma (SK-MEL-2) cell lines.

    Science.gov (United States)

    Chorfa, Areski; Bétemps, Dominique; Morignat, Eric; Lazizzera, Corinne; Hogeveen, Kevin; Andrieu, Thibault; Baron, Thierry

    2013-06-01

    Epidemiological studies indicate a role of genetic and environmental factors in Parkinson's disease involving alterations of the neuronal α-synuclein (α-syn) protein. In particular, a relationship between Parkinson's disease and occupational exposure to pesticides has been repeatedly suggested. Our objective was to precisely assess changes in α-syn levels in human neuroblastoma (SH-SY5Y) and melanoma (SK-MEL-2) cell lines following acute exposure to pesticides (rotenone, paraquat, maneb, and glyphosate) using Western blot and flow cytometry. These human cell lines express α-syn endogenously, and overexpression of α-syn (wild type or mutated A53T) can be obtained following recombinant adenoviral transduction. We found that endogenous α-syn levels in the SH-SY5Y neuroblastoma cell line were markedly increased by paraquat, and to a lesser extent by rotenone and maneb, but not by glyphosate. Rotenone also clearly increased endogenous α-syn levels in the SK-MEL-2 melanoma cell line. In the SH-SY5Y cell line, similar differences were observed in the α-syn adenovirus-transduced cells, with a higher increase of the A53T mutated protein. Paraquat markedly increased α-syn in the SK-MEL-2 adenovirus-transduced cell line, similarly for the wild-type or A53T proteins. The observed differences in the propensities of pesticides to increase α-syn levels are in agreement with numerous reports that indicate a potential role of exposure to certain pesticides in the development of Parkinson's disease. Our data support the hypothesis that pesticides can trigger some molecular events involved in this disease and also in malignant melanoma that consistently shows a significant but still unexplained association with Parkinson's disease.

  1. Casein gene expression in mouse mammary epithelial cell lines: Dependence upon extracellular matrix and cell type

    International Nuclear Information System (INIS)

    Medina, D.; Oborn, C.J.; Li, M.L.; Bissell, M.J.

    1987-01-01

    The COMMA-D mammary cell line exhibits mammary-specific functional differentiation under appropriate conditions in cell culture. The cytologically heterogeneous COMMA-D parental line and the clonal lines DB-1, TA-5, and FA-1 derived from the COMMA-D parent were examined for similar properties of functional differentiation. In monolayer cell culture, the cell lines DB-1, TA-5, FA-1, and MA-4 were examined for expression of mammary-specific and epithelial-specific proteins by an indirect immunofluorescence assay. The clonal cell lines were relatively homogeneous in their respective staining properties and seemed to represent three subpopulations found in the heterogeneous parental COMMA-D lines. None of the four clonal lines appeared to represent myoepithelial cells. The cell lines were examined for expression of β-casein mRNA in the presence or absence of prolactin. The inducibility of β-casein in the COMMA-D cell line was further enhanced by a reconstituted basement membrane preparation enriched in laminin, collagen IV, and proteoglycans. These results support the hypothesis that the functional response of inducible mammary cell populations is a result of interaction among hormones, multiple extracellular matrix components, and specific cell types

  2. Cell fusion induced by ionizing radiation in various cell lines

    International Nuclear Information System (INIS)

    Khair, M.B.

    1994-07-01

    Cell fusion induced by ionizing radiation has been studied in rat's hepatocytes in vivo and in different cell lines in vitro. These cell lines were: Hela cells, V-79 fibroblasts, human and rat lymphocytes. For irradiation, 0.85 MeV fission neutrons and 14 MeV fast neutrons were used. Cell analyses were performed by fluorescent dyes using immunofluorescent microscope and flow cytometre. Our results in vivo showed that, regardless the dose-rate, a dose of 1 Gy approximately was enough to induce a significant level of cell fusion depending on neutron energy and the age of rats. The level of cell fusion was also significant in Hela cells at a dose of 0.5 Gy. Similar effect, but to a lesser extent, was observed in V-79 cells. Whereas, in lymphocytes insignificant cell fusion was noticed. The varying levels of cell-fusion in different cell lines could be attributed to the type of cells and mutual contact between cells. Furthermore irradiation did not show any influence on cell division ability in both hepatocytes and Hela cells and that fused cells were also able to divide forming a new generation of cells. (author). 36 refs., 8 figs., 10 tabs

  3. [HSP90 inhibitor 17-AAG plays an important role in JAK3/STAT5 signaling pathways in HTLV-1 infection cell line HUT-102].

    Science.gov (United States)

    Yang, Q Q; Tan, H; Fu, Z P; Ma, Q; Song, J L

    2017-08-14

    Objective: To analyze whether heat-shock protein 90 (HSP90) be involved in a permanently abnormal activated JAK/STAT signaling in ATL cells in vitro. Methods: The effect of 17-AAG on proliferation of ATL cell lines HUT-102 was assessed using CCK8 at different time points. Cell apoptosis was measured by flow cytometry. The specific proteins HSP90, STAT5, p-STAT5 and JAK3 were detected by Western blotting. Results: Overexpression of HSP90 in HUT-102 cell lines was disclosed ( P AAG led to reduced cell proliferation, but there was no significant change in terms of cell proliferation when the concentration of 17-AAG between 2 000-8 000 nmol/L ( P >0.05) . 17-AAG induced cell apoptosis in different time-points and concentrations. 17-AAG don't affect the expression of JAK3 gene. Conclusion: This study indicated that JAK3 as HSP90 client protein was aberrantly activated in HTLV-1-infected T-cell lines, leading to constitutive activation of p-STAT5 in JAK/STAT signal pathway, which demonstrated that HSP90-inhibitors 17-AAG inhibited the growth of HTLV-1-infected T-cell lines by reducing cell proliferation and inducing cell apoptosis.

  4. HIV-1 replication in cell lines harboring INI1/hSNF5 mutations

    Directory of Open Access Journals (Sweden)

    Wu Xuhong

    2006-08-01

    Full Text Available Abstract Background INI1/hSNF5 is a cellular protein that directly interacts with HIV-1 integrase (IN. It is specifically incorporated into HIV-1 virions. A dominant negative mutant derived from INI1 inhibits HIV-1 replication. Recent studies indicate that INI1 is associated with pre-integration and reverse transcription complexes that are formed upon viral entry into the target cells. INI1 also is a tumor suppressor, biallelically deleted/mutated in malignant rhabdoid tumors. We have utilized cell lines derived from the rhabdoid tumors, MON and STA-WT1, that harbor either null or truncating mutations of INI1 respectively, to assess the effect of INI1 on HIV-1 replication. Results We found that while HIV-1 virions produced in 293T cells efficiently transduced MON and STA-WT1 cells, HIV-1 particle production was severely reduced in both of these cells. Reintroduction of INI1 into MON and STA-WT1 significantly enhanced the particle production in both cell lines. HIV-1 particles produced in MON cells were reduced for infectivity, while those produced in STA-WT1 were not. Further analysis indicated the presence of INI1 in those virions produced from STA-WT1 but not from those produced from MON cells. HIV-1 produced in MON cells were defective for synthesis of early and late reverse transcription products in the target cells. Furthermore, virions produced in MON cells were defective for exogenous reverse transcriptase activity carried out using exogenous template, primer and substrate. Conclusion Our results suggest that INI1-deficient cells exhibit reduced particle production that can be partly enhanced by re-introduction of INI1. Infectivity of HIV-1 produced in some but not all INI1 defective cells, is affected and this defect may correlate to the lack of INI1 and/or some other proteins in these virions. The block in early events of virion produced from MON cells appears to be at the stage of reverse transcription. These studies suggest that

  5. HIV-1 replication in cell lines harboring INI1/hSNF5 mutations.

    Science.gov (United States)

    Sorin, Masha; Yung, Eric; Wu, Xuhong; Kalpana, Ganjam V

    2006-08-31

    INI1/hSNF5 is a cellular protein that directly interacts with HIV-1 integrase (IN). It is specifically incorporated into HIV-1 virions. A dominant negative mutant derived from INI1 inhibits HIV-1 replication. Recent studies indicate that INI1 is associated with pre-integration and reverse transcription complexes that are formed upon viral entry into the target cells. INI1 also is a tumor suppressor, biallelically deleted/mutated in malignant rhabdoid tumors. We have utilized cell lines derived from the rhabdoid tumors, MON and STA-WT1, that harbor either null or truncating mutations of INI1 respectively, to assess the effect of INI1 on HIV-1 replication. We found that while HIV-1 virions produced in 293T cells efficiently transduced MON and STA-WT1 cells, HIV-1 particle production was severely reduced in both of these cells. Reintroduction of INI1 into MON and STA-WT1 significantly enhanced the particle production in both cell lines. HIV-1 particles produced in MON cells were reduced for infectivity, while those produced in STA-WT1 were not. Further analysis indicated the presence of INI1 in those virions produced from STA-WT1 but not from those produced from MON cells. HIV-1 produced in MON cells were defective for synthesis of early and late reverse transcription products in the target cells. Furthermore, virions produced in MON cells were defective for exogenous reverse transcriptase activity carried out using exogenous template, primer and substrate. Our results suggest that INI1-deficient cells exhibit reduced particle production that can be partly enhanced by re-introduction of INI1. Infectivity of HIV-1 produced in some but not all INI1 defective cells, is affected and this defect may correlate to the lack of INI1 and/or some other proteins in these virions. The block in early events of virion produced from MON cells appears to be at the stage of reverse transcription. These studies suggest that presence of INI1 or some other host factor in virions and

  6. Comparison of the effect of interferon on two human hepatoma cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Crespi, M; Schoub, B D; Lyons, S F; Chiu, M N [University of the Witwatersrand, Johannesburg (South Africa). Dept. of Virology

    1985-06-01

    Two human hepatoma cell lines, the PLC/PRF/5 and the Mahlavu cells, which differ in their production of the hepatitis B surface antigen (HBsAg), responded differently to interferon (IFN). After IFN treatment both cell lines were able to inhibit Sindbis virus replication. Oligo A synthetase (E enzyme) could be activated in the PLC/PRF/5 cells although they were not sensitive to exogenous 2 - 5 oligoadenylic acid (2 - 5 A). In contrast, the Mahlavu cells were sensitive to exogenous 2 - 5 A, but unable to activate the E enzyme. Both cell lines were unable to stimulate phosphorylation of the exogenous initiator factor eIF-2.

  7. Gefitinib upregulates death receptor 5 expression to mediate rmhTRAIL-induced apoptosis in Gefitinib-sensitive NSCLC cell line

    Directory of Open Access Journals (Sweden)

    Yan D

    2015-07-01

    Full Text Available Dong Yan,1,2 Yang Ge,1 Haiteng Deng,3 Wenming Chen,4 Guangyu An1 1Department of Oncology, Beijing Chao-yang Hospital, Capital Medical University, Beijing, People’s Republic of China; 2Translational Molecular pathology, M.D Anderson Cancer Center, Houston, TX, USA; 3School of Sciences, Tsinghua University, 4Department of Hematology, Beijing Chao-yang Hospital, Capital Medical University, Beijing, People’s Republic of China Background: Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL triggers apoptosis in tumor cells, but when used alone, it is not effective in the treatment of TRAIL-resistant tumors. Some studies have shown that gefitinib interacts with recombinant mutant human TRAIL (rmhTRAIL to induce high levels of apoptosis in gefitinib-responsive bladder cancer cell lines; however, the molecular mechanisms underlying the anticancer effects are not fully understood. Several reports have shown that the death receptor 5 (DR5 plays an important role in sensitizing cancer cells to apoptosis induced by TRAIL. Therefore, we investigated the effects of the combination of drugs and the expression of the DR5 to analyze the growth of a gefitinib-responsive non-small cell lung cancer cell line PC9, which was treated with rmhTRAIL and gefitinib individually or in combination.Methods: Human PC9 non-small cell lung cancer cells harboring an epidermal growth factor receptor mutation were used as a model for the identification of the therapeutic effects of gefitinib alone or in combination with rmhTRAIL, and cytotoxicity was assessed by MTT assays. Cell cycle and apoptosis were investigated using flow cytometry. Moreover, the effects of drugs on DR5, BAX, FLIP, and cleaved-caspase3 proteins expressions were analyzed using Western blot analyses. Finally, quantitative polymerase chain reaction analysis was carried out to assess whether rmhTRAIL and gefitinib modulate the expression of genes related to drug activity.Results: Gefitinib and rmh

  8. ABCC5, ERCC2, XPA and XRCC1 transcript abundance levels correlate with cisplatin chemoresistance in non-small cell lung cancer cell lines

    Directory of Open Access Journals (Sweden)

    Khuder Sadik A

    2005-05-01

    Full Text Available Abstract Background Although 40–50% of non-small cell lung cancer (NSCLC tumors respond to cisplatin chemotherapy, there currently is no way to prospectively identify potential responders. The purpose of this study was to determine whether transcript abundance (TA levels of twelve selected DNA repair or multi-drug resistance genes (LIG1, ERCC2, ERCC3, DDIT3, ABCC1, ABCC4, ABCC5, ABCC10, GTF2H2, XPA, XPC and XRCC1 were associated with cisplatin chemoresistance and could therefore contribute to the development of a predictive marker. Standardized RT (StaRT-PCR, was employed to assess these genes in a set of NSCLC cell lines with a previously published range of sensitivity to cisplatin. Data were obtained in the form of target gene molecules relative to 106 β-actin (ACTB molecules. To cancel the effect of ACTB variation among the different cell lines individual gene expression values were incorporated into ratios of one gene to another. Each two-gene ratio was compared as a single variable to chemoresistance for each of eight NSCLC cell lines using multiple regression. In an effort to validate these results, six additional lines then were evaluated. Results Following validation, single variable models best correlated with chemoresistance (p ERCC2/XPC, ABCC5/GTF2H2, ERCC2/GTF2H2, XPA/XPC and XRCC1/XPC. All single variable models were examined hierarchically to achieve two variable models. The two variable model with the highest correlation was (ABCC5/GTF2H2, ERCC2/GTF2H2 with an R2 value of 0.96 (p Conclusion These results provide markers suitable for assessment of small fine needle aspirate biopsies in an effort to prospectively identify cisplatin resistant tumors.

  9. Assessment of citalopram and escitalopram on neuroblastoma cell lines: Cell toxicity and gene modulation

    Science.gov (United States)

    Sakka, Laurent; Delétage, Nathalie; Chalus, Maryse; Aissouni, Youssef; Sylvain-Vidal, Valérie; Gobron, Stéphane; Coll, Guillaume

    2017-01-01

    Selective serotonin reuptake inhibitors (SSRI) are common antidepressants which cytotoxicity has been assessed in cancers notably colorectal carcinomas and glioma cell lines. We assessed and compared the cytotoxicity of 2 SSRI, citalopram and escitalopram, on neuroblastoma cell lines. The study was performed on 2 non-MYCN amplified cell lines (rat B104 and human SH-SY5Y) and 2 human MYCN amplified cell lines (IMR32 and Kelly). Citalopram and escitalopram showed concentration-dependent cytotoxicity on all cell lines. Citalopram was more cytotoxic than escitalopram. IMR32 was the most sensitive cell line. The absence of toxicity on human primary Schwann cells demonstrated the safety of both molecules for myelin. The mechanisms of cytotoxicity were explored using gene-expression profiles and quantitative real-time PCR (qPCR). Citalopram modulated 1 502 genes and escitalopram 1 164 genes with a fold change ≥ 2. 1 021 genes were modulated by both citalopram and escitalopram; 481 genes were regulated only by citalopram while 143 genes were regulated only by escitalopram. Citalopram modulated 69 pathways (KEGG) and escitalopram 42. Ten pathways were differently modulated by citalopram and escitalopram. Citalopram drastically decreased the expression of MYBL2, BIRC5 and BARD1 poor prognosis factors of neuroblastoma with fold-changes of -107 (pescitalopram. PMID:28467792

  10. Assessment of citalopram and escitalopram on neuroblastoma cell lines. Cell toxicity and gene modulation.

    Science.gov (United States)

    Sakka, Laurent; Delétage, Nathalie; Chalus, Maryse; Aissouni, Youssef; Sylvain-Vidal, Valérie; Gobron, Stéphane; Coll, Guillaume

    2017-06-27

    Selective serotonin reuptake inhibitors (SSRI) are common antidepressants which cytotoxicity has been assessed in cancers notably colorectal carcinomas and glioma cell lines. We assessed and compared the cytotoxicity of 2 SSRI, citalopram and escitalopram, on neuroblastoma cell lines. The study was performed on 2 non-MYCN amplified cell lines (rat B104 and human SH-SY5Y) and 2 human MYCN amplified cell lines (IMR32 and Kelly). Citalopram and escitalopram showed concentration-dependent cytotoxicity on all cell lines. Citalopram was more cytotoxic than escitalopram. IMR32 was the most sensitive cell line. The absence of toxicity on human primary Schwann cells demonstrated the safety of both molecules for myelin. The mechanisms of cytotoxicity were explored using gene-expression profiles and quantitative real-time PCR (qPCR). Citalopram modulated 1 502 genes and escitalopram 1 164 genes with a fold change ≥ 2. 1 021 genes were modulated by both citalopram and escitalopram; 481 genes were regulated only by citalopram while 143 genes were regulated only by escitalopram. Citalopram modulated 69 pathways (KEGG) and escitalopram 42. Ten pathways were differently modulated by citalopram and escitalopram. Citalopram drastically decreased the expression of MYBL2, BIRC5 and BARD1 poor prognosis factors of neuroblastoma with fold-changes of -107 (pescitalopram.

  11. Generation of a human immunodeficiency virus type 1 chronically infected monkey B cell line expressing low levels of endogenous TRIM5alpha.

    Science.gov (United States)

    Ridolfi, Barbara; Catone, Stefania; Sgarbanti, Marco; Sernicola, Leonardo; Battistini, Angela; Parolin, Cristina; Titti, Fausto; Borsetti, Alessandra

    2009-12-01

    Several innate cellular antiviral factors exist in mammalian cells that prevent the replication of retroviruses. Among them, the tripartite motif protein (TRIM)5alpha has been shown to block human immunodeficiency virus type 1 (HIV-1) infection in several types of Old World monkey cells. Here we report a novel HIV-1 chronically infected monkey B cell line, F6/HIV-1, characterized by very low levels of TRIM5alpha expression that allows HIV-1 to overcome the restriction. Virus produced by F6/HIV-1 cells fails to infect monkey cells but retains the ability to infect human peripheral blood mononuclear cells (PBMCs) and T cell lines, although with a reduced infectivity compared to the input virus. Ultrastructural analyses revealed the presence of budding virions at the F6/HIV-1 cells plasma membrane characterized by a typical conical core shell. To our knowledge F6/HIV-1 is the first monkey cell line chronically infected by HIV-1 and able to release infectious particles thus representing a useful tool to gain further insights into the molecular mechanisms of HIV-1 pathogenesis.

  12. Cell lines authentication and mycoplasma detection as minimun quality control of cell lines in biobanking.

    Science.gov (United States)

    Corral-Vázquez, C; Aguilar-Quesada, R; Catalina, P; Lucena-Aguilar, G; Ligero, G; Miranda, B; Carrillo-Ávila, J A

    2017-06-01

    Establishment of continuous cell lines from human normal and tumor tissues is an extended and useful methodology for molecular characterization of cancer pathophysiology and drug development in research laboratories. The exchange of these cell lines between different labs is a common practice that can compromise assays reliability due to contamination with microorganism such as mycoplasma or cells from different flasks that compromise experiment reproducibility and reliability. Great proportions of cell lines are contaminated with mycoplasma and/or are replaced by cells derived for a different origin during processing or distribution process. The scientific community has underestimated this problem and thousand of research experiment has been done with cell lines that are incorrectly identified and wrong scientific conclusions have been published. Regular contamination and authentication tests are necessary in order to avoid negative consequences of widespread misidentified and contaminated cell lines. Cell banks generate, store and distribute cell lines for research, being mandatory a consistent and continuous quality program. Methods implementation for guaranteeing both, the absence of mycoplasma and authentication in the supplied cell lines, has been performed in the Andalusian Health System Biobank. Specifically, precise results were obtained using real time PCR detection for mycoplasma and 10 STRs identification by capillary electrophoresis for cell line authentication. Advantages and disadvantages of these protocols are discussed.

  13. Title of paper: the induction of P-53 independent programmed cell death (apoptosis) with ionizing radiation and 5-fluorouracil (5-FU) in the HT-29 human colon carcinoma cell line

    International Nuclear Information System (INIS)

    Blackstock, A. Wm.; Gill, Misha; Hess, Suzanne M.; Fisher, Robert W.; Leadon, Steven A.; Tepper, Joel E.

    1996-01-01

    Purpose/Objective: The role of programmed cell death (apoptosis) as a cellular response to cancer therapy such as radiation or chemotherapy is the subject of much study, and manipulation of the apoptotic response in tumor cells may be valuable in the treatment of a variety of cancers. Both p53 dependent and independent apoptotic pathways have been identified; p53 is mutated in at least 50 % of human cancers and a majority of radiation resistant tumors contain p53 mutations. This study is designed to examine the induction of programmed cell death in a human colon carcinoma cell line that possesses two mutated p53 alleles. Ionizing radiation alone, or in combination with the chemotherapeutic drug 5-fluorouracil (5-FU), were used to elicit the apoptotic response. This study will focus on whether these treatments can induce a significant apoptotic response in cells that have mutated p53 alleles. Materials and Methods: HT-29 cells were assessed for clonogenic survival after being plated at a variety of densities, and treated with single graded doses of radiation (0, 1, 2, 4, 6, 8, 10 Gy) either alone or immediately prior to a 24 hour exposure to 5-FU (2 ug/ml). The extent of radiation and 5-FU-induced apoptosis was determined in the HT-29 cell line after single doses of 0, 2, 5, and 10 Gy either alone or immediately prior to a 24 hour incubation in 5-FU (2 ug/ml). Three separate assays were used to evaluate the apoptotic response. Cells undergoing apoptosis undergo gross morphological changes including a condensation of chromatin, membrane blebbing, and an eventual release of membrane bound cytoplasmic fragments. Hematoxylin and eosin staining were used to visualize some of these morphological changes. Another characteristic of the apoptotic response is the activation of an endonuclease that cleaves DNA into specific fragments. Accordingly, an ELISA cell death assay (Boehringer Mannheim, Indianapolis IN) was used to quantitate cytoplasmic histone-associated DNA

  14. Investigation of the selenium metabolism in cancer cell lines

    DEFF Research Database (Denmark)

    Lunøe, Kristoffer; Gabel-Jensen, Charlotte; Stürup, Stefan

    2011-01-01

    The aim of this work was to compare different selenium species for their ability to induce cell death in different cancer cell lines, while investigating the underlying chemistry by speciation analysis. A prostate cancer cell line (PC-3), a colon cancer cell line (HT-29) and a leukaemia cell line...... (Jurkat E6-1) were incubated with five selenium compounds representing inorganic as well as organic Se compounds in different oxidation states. Selenomethionine (SeMet), Se-methylselenocysteine (MeSeCys), methylseleninic acid (MeSeA), selenite and selenate in the concentration range 5-100 mu M were...... incubated with cells for 24 h and the induction of cell death was measured using flow cytometry. The amounts of total selenium in cell medium, cell lysate and the insoluble fractions was determined by ICP-MS. Speciation analysis of cellular fractions was performed by reversed phase, anion exchange and size...

  15. Synergistic inhibitory effects of curcumin and 5-fluorouracil on the growth of the human colon cancer cell line HT-29.

    Science.gov (United States)

    Du, Boyu; Jiang, Liping; Xia, Quan; Zhong, Laifu

    2006-01-01

    The synergistic effect of combination treatment with COX-2 inhibitors and chemotherapy may be another promising therapy regimen in the future treatment of colorectal cancer. Curcumin, a major yellow pigment in turmeric which is used widely all over the world, inhibits the growth of human colon cancer cell line HT-29 significantly and specifically inhibits the expression of COX-2 protein. However, the worldwide exposure of populations to curcumin raised the question of whether this agent would enhance or inhibit the effects of chemotherapy. In this report, we evaluated the growth-inhibitory effect of curcumin and a traditional chemotherapy agent, 5-FU, against the proliferation of a human colon cancer cell line (HT-29). The combination effect was quantitatively determined using the method of median-effect principle and the combination index. The inhibition of COX-2 expression after treatment with the curcumin-5-FU combination was also evaluated by Western blot analysis. The IC(50) value in the HT-29 cells for curcumin was 15.9 +/- 1.96 microM and for 5-FU it was 17.3 +/- 1.85 microM. When curcumin and 5-FU were used concurrently, synergistic inhibition of growth was quantitatively demonstrated. The level of COX-2 protein expression was reduced almost 6-fold after the combination treatment. Our results demonstrate synergism between curcumin and 5-FU at higher doses against the human colon cancer cell line HT-29. This synergism was associated with the decreased expression of COX-2 protein. Copyright 2006 S. Karger AG, Basel.

  16. Induction of apoptosis by opium in some tumor cell lines.

    Science.gov (United States)

    Khaleghi, M; Farsinejad, A; Dabiri, S; Asadikaram, G

    2016-09-30

    The current study is aimed at investigation of the opium effects on the apoptosis of different cell lines in culture medium and compares such effects with one another. The study is carried out on over 8 cell lines (AA8, AGS, Hela, HepG2, MCF7, N2a, PC12, WEHI). A 2.86 x 10-4 g/ml opium concentration was prepared and added to the culture medium of the cell lines for 48 hours. Cytotoxicity was tested by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay. The apoptotic effect of opium on the cell lines was analyzed by Annexin-PI test. Opium with concentration of 2.86 x 10-4 g/ml in 48 hours significantly induces apoptosis in certain cell lines (i.e. AA8, N2a, WEHI), apoptosis and necrosis in some others (i.e. Hela, HepG2, MCF7, and PC12), and also solely necrosis in the AGS cell line. One could infer that the usage of opium with different levels in different tissues leads to certain disorders in some tissues and may have therapeutic effects under distinctive conditions (i.e. unchecked growth of cells) as confirmed by the results.

  17. Anti-mitotic potential of 7-diethylamino-3(2′-benzoxazolyl)-coumarin in 5-fluorouracil-resistant human gastric cancer cell line SNU620/5-FU

    International Nuclear Information System (INIS)

    Kim, Nam Hyun; Kim, Su-Nam; Oh, Joa Sub; Lee, Seokjoon; Kim, Yong Kee

    2012-01-01

    Highlights: ► DBC exerts antiproliferative potential against 5FU-resistant human gastric cancer cells. ► This effect is mediated by destabilization of microtubules and subsequent mitotic arrest. ► DBC enhances apoptosis via caspase activation and downregulation of antiapoptotic genes. -- Abstract: In this study, we investigate an anti-mitotic potential of the novel synthetic coumarin-based compound, 7-diethylamino-3(2′-benzoxazolyl)-coumarin, in 5-fluorouracil-resistant human gastric cancer cell line SNU-620-5FU and its parental cell SNU-620. It exerts the anti-proliferative effects with similar potencies against both cancer cells, which is mediated by destabilization of microtubules and subsequent mitotic arrest. Furthermore, this compound enhances caspase-dependent apoptotic cell death via decreased expression of anti-apoptotic genes. Taken together, our data strongly support anti-mitotic potential of 7-diethylamino-3(2′-benzoxazolyl)-coumarin against drug-resistant cancer cells which will prompt us to further develop as a novel microtubule inhibitor for drug-resistant cancer chemotherapy.

  18. Cell Line Data Base: structure and recent improvements towards molecular authentication of human cell lines.

    Science.gov (United States)

    Romano, Paolo; Manniello, Assunta; Aresu, Ottavia; Armento, Massimiliano; Cesaro, Michela; Parodi, Barbara

    2009-01-01

    The Cell Line Data Base (CLDB) is a well-known reference information source on human and animal cell lines including information on more than 6000 cell lines. Main biological features are coded according to controlled vocabularies derived from international lists and taxonomies. HyperCLDB (http://bioinformatics.istge.it/hypercldb/) is a hypertext version of CLDB that improves data accessibility by also allowing information retrieval through web spiders. Access to HyperCLDB is provided through indexes of biological characteristics and navigation in the hypertext is granted by many internal links. HyperCLDB also includes links to external resources. Recently, an interest was raised for a reference nomenclature for cell lines and CLDB was seen as an authoritative system. Furthermore, to overcome the cell line misidentification problem, molecular authentication methods, such as fingerprinting, single-locus short tandem repeat (STR) profile and single nucleotide polymorphisms validation, were proposed. Since this data is distributed, a reference portal on authentication of human cell lines is needed. We present here the architecture and contents of CLDB, its recent enhancements and perspectives. We also present a new related database, the Cell Line Integrated Molecular Authentication (CLIMA) database (http://bioinformatics.istge.it/clima/), that allows to link authentication data to actual cell lines.

  19. Multidrug resistance and retroviral transduction potential in human small cell lung cancer cell lines

    DEFF Research Database (Denmark)

    Theilade, M D; Gram, G J; Jensen, P B

    1999-01-01

    Multidrug resistance (MDR) remains a major problem in the successful treatment of small cell lung cancer (SCLC). New treatment strategies are needed, such as gene therapy specifically targeting the MDR cells in the tumor. Retroviral LacZ gene-containing vectors that were either pseudotyped...... for the gibbon ape leukemia virus (GALV-1) receptor or had specificity for the amphotropic murine leukemia virus (MLV-A) receptor were used for transduction of five SCLC cell lines differing by a range of MDR mechanisms. Transduction efficiencies in these cell lines were compared by calculating the percentage...... of blue colonies after X-Gal staining of the cells grown in soft agar. All examined SCLC cell lines were transducible with either vector. Transduction efficiencies varied from 5.7% to 33.5% independent of the presence of MDR. These results indicate that MDR does not severely impair transduction of SCLC...

  20. Peptidomic analysis of human cell lines

    Science.gov (United States)

    Gelman, Julia S.; Sironi, Juan; Castro, Leandro M.; Ferro, Emer S.; Fricker, Lloyd D.

    2011-01-01

    Peptides have been proposed to function in intracellular signaling within the cytosol. Although cytosolic peptides are considered to be highly unstable, a large number of peptides have been detected in mouse brain and other biological samples. In the present study, we evaluated the peptidome of three diverse cell lines: SH-SY5Y, MCF7, and HEK293 cells. A comparison of the peptidomes revealed considerable overlap in the identity of the peptides found in each cell line. The majority of the observed peptides are not derived from the most abundant or least stable proteins in the cell, and approximately half of the cellular peptides correspond to the N- or C- termini of the precursor proteins. Cleavage site analysis revealed a preference for hydrophobic residues in the P1 position. Quantitative peptidomic analysis indicated that the levels of most cellular peptides are not altered in response to elevated intracellular calcium, suggesting that calpain is not responsible for their production. The similarity of the peptidomes of the three cell lines and the lack of correlation with the predicted cellular degradome implies the selective formation or retention of these peptides, consistent with the hypothesis that they are functional in the cells. PMID:21204522

  1. CLO : The cell line ontology

    NARCIS (Netherlands)

    Sarntivijai, Sirarat; Lin, Yu; Xiang, Zuoshuang; Meehan, Terrence F.; Diehl, Alexander D.; Vempati, Uma D.; Schuerer, Stephan C.; Pang, Chao; Malone, James; Parkinson, Helen; Liu, Yue; Takatsuki, Terue; Saijo, Kaoru; Masuya, Hiroshi; Nakamura, Yukio; Brush, Matthew H.; Haendel, Melissa A.; Zheng, Jie; Stoeckert, Christian J.; Peters, Bjoern; Mungall, Christopher J.; Carey, Thomas E.; States, David J.; Athey, Brian D.; He, Yongqun

    2014-01-01

    Background: Cell lines have been widely used in biomedical research. The community-based Cell Line Ontology (CLO) is a member of the OBO Foundry library that covers the domain of cell lines. Since its publication two years ago, significant updates have been made, including new groups joining the CLO

  2. Modulation of Cyclins, p53 and Mitogen-Activated Protein Kinases Signaling in Breast Cancer Cell Lines by 4-(3,4,5-Trimethoxyphenoxybenzoic Acid

    Directory of Open Access Journals (Sweden)

    Kuan-Han Lee

    2014-01-01

    Full Text Available Despite the advances in cancer therapy and early detection, breast cancer remains a leading cause of cancer-related deaths among females worldwide. The aim of the current study was to investigate the antitumor activity of a novel compound, 4-(3,4,5-trimethoxyphenoxybenzoic acid (TMPBA and its mechanism of action, in breast cancer. Results indicated the relatively high sensitivity of human breast cancer cell-7 and MDA-468 cells towards TMPBA with IC50 values of 5.9 and 7.9 µM, respectively compared to hepatocarcinoma cell line Huh-7, hepatocarcinoma cell line HepG2, and cervical cancer cell line Hela cells. Mechanistically, TMPBA induced apoptotic cell death in MCF-7 cells as indicated by 4',6-diamidino-2-phenylindole (DAPI nuclear staining, cell cycle analysis and the activation of caspase-3. Western blot analysis revealed the ability of TMPBA to target pathways mediated by mitogen-activated protein (MAP kinases, 5' adenosine monophosphate-activated protein kinase (AMPK, and p53, of which the concerted action underlined its antitumor efficacy. In addition, TMPBA induced alteration of cyclin proteins’ expression and consequently modulated the cell cycle. Taken together, the current study underscores evidence that TMPBA induces apoptosis in breast cancer cells via the modulation of cyclins and p53 expression as well as the modulation of AMPK and mitogen-activated protein kinases (MAPK signaling. These findings support TMPBA’s clinical promise as a potential candidate for breast cancer therapy.

  3. In vitro invasion of small-cell lung cancer cell lines correlates with expression of epidermal growth factor receptor

    DEFF Research Database (Denmark)

    Damstrup, L; Rude Voldborg, B; Spang-Thomsen, M

    1998-01-01

    receptor (EGFR) in a panel of 21 small-cell lung cancer (SCLC) cell lines. We have previously reported that ten of these cell lines expressed EGFR protein detected by radioreceptor and affinity labelling assays. In 11 small-cell lung cancer (SCLC) cell lines, EGFR mRNA was detected by Northern blot...... analysis. In vitro invasion in a Boyden chamber assay was found in all EGFR-positive cell lines, whereas no invasion was detected in the EGFR-negative cell lines. Quantification of the in vitro invasion in 12 selected SCLC cell lines demonstrated that, in the EGFR-positive cell lines, between 5% and 16......-PCR). However, in vitro invasive SCLC cell lines could not be distinguished from non-invasive cell lines based on the expression pattern of these molecules. In six SCLC cell lines, in vitro invasion was also determined in the presence of the EGFR-neutralizing monoclonal antibody mAb528. The addition...

  4. Characteristics of bovine inner cell mass-derived cell lines and their fate in chimeric conceptuses.

    Science.gov (United States)

    Furusawa, Tadashi; Ohkoshi, Katsuhiro; Kimura, Koji; Matsuyama, Shuichi; Akagi, Satoshi; Kaneda, Masahiro; Ikeda, Mitsumi; Hosoe, Misa; Kizaki, Keiichiro; Tokunaga, Tomoyuki

    2013-08-01

    Bovine embryonic stem (ES) cells have the potential to provide significant benefits in a range of agricultural and biomedical applications. Here, we employed a combination of conventional methods using glycogen synthase kinase 3 and mitogen-activated protein kinase inhibitors to establish ES cell lines from in vitro fertilization (IVF) and somatic cell nuclear transfer (SCNT) bovine embryos. Five male cell lines were established from IVF embryos, and two female and three male cell lines from SCNT blastocysts; we named these lines bovine ES cell-like cells (bESLCs). The lines exhibited dome-shaped colonies, stained positively for alkaline phosphatase, and expressed pluripotent stem cell markers such as POU5F1, SOX2, and SSEA-1. The expression levels of these markers, especially for NANOG, varied among the cell lines. A DNA methylation assay showed the POU5F1 promoter region was hypomethylated compared to fibroblast cells. An in vitro differentiation assay showed that endoderm and ectoderm marker genes, but not mesoderm markers, were upregulated in differentiating bESLCs. To examine bESLCs in later embryonic stages, we created 22 chimeric blastocysts with a male bESLC line carrying a GFP marker gene and transferred these to a recipient cow. Four chimeric embryos were subsequently retrieved on Day 13 and retransferred to two recipient cows. One living fetus was obtained at Day 62. GFP signals were not identified in fetal cells by fluorescence microscopy; however, genomic PCR analysis detected the GFP gene in major organs. Clusters of GFP-positive cells were observed in amniotic membranes, suggesting that bESLCs can be categorized as a novel type of ICM-derived cells that can potentially differentiate into epiblast and hypoblast lineages.

  5. Authentication of M14 melanoma cell line proves misidentification of MDA‐MB‐435 breast cancer cell line

    Science.gov (United States)

    Korch, Christopher; Hall, Erin M.; Dirks, Wilhelm G.; Ewing, Margaret; Faries, Mark; Varella‐Garcia, Marileila; Robinson, Steven; Storts, Douglas; Turner, Jacqueline A.; Wang, Ying; Burnett, Edward C.; Healy, Lyn; Kniss, Douglas; Neve, Richard M.; Nims, Raymond W.; Reid, Yvonne A.; Robinson, William A.

    2017-01-01

    A variety of analytical approaches have indicated that melanoma cell line UCLA‐SO‐M14 (M14) and breast carcinoma cell line MDA‐MB‐435 originate from a common donor. This indicates that at some point in the past, one of these cell lines became misidentified, meaning that it ceased to correspond to the reported donor and instead became falsely identified (through cross‐contamination or other means) as a cell line from a different donor. Initial studies concluded that MDA‐MB‐435 was the misidentified cell line and M14 was the authentic cell line, although contradictory evidence has been published, resulting in further confusion. To address this question, we obtained early samples of the melanoma cell line (M14), a lymphoblastoid cell line from the same donor (ML14), and donor serum preserved at the originator's institution. M14 samples were cryopreserved in December 1975, before MDA‐MB‐435 cells were established in culture. Through a series of molecular characterizations, including short tandem repeat (STR) profiling and cytogenetic analysis, we demonstrated that later samples of M14 and MDA‐MB‐435 correspond to samples of M14 frozen in 1975, to the lymphoblastoid cell line ML14, and to the melanoma donor's STR profile, sex and blood type. This work demonstrates conclusively that M14 is the authentic cell line and MDA‐MB‐435 is misidentified. With clear provenance information and authentication testing of early samples, it is possible to resolve debates regarding the origins of problematic cell lines that are widely used in cancer research. PMID:28940260

  6. Single-dose and fractionated irradiation of four human lung cancer cell lines in vitro

    International Nuclear Information System (INIS)

    Brodin, O.; Lennartsson, L.; Nilsson, S.

    1991-01-01

    Four established human lung cancer cell lines were exposed to single-dose irradiation. The survival curves of 2 small cell lung carcinomas (SCLC) were characterized by a limited capacity for repair with small and moderate shoulders with extrapolation numbers (n) of 1.05 and 1.60 respectively. Two non-small cell lung carcinoma (NSCLC) cell lines, one squamous cell (SQCLC) and one large cell (LCLC) had large shoulders with n-values of 73 and 15 respectively. The radiosensitivity when measured as D 0 did not, however, differ as much from cell line to cell line, with values from 1.22 to 1.65. The surviving fraction after 2 Gy (SF2) was 0.24 and 0.42 respectively in the SCLC cell lines and 0.90 and 0.88 respectively in the NSCLC cell lines. Fractionated irradiation delivered according to 3 different schedules was also investigated. All the schedules delivered a total dose of 10 Gy in 5 days and were applied in 1, 2 and 5 Gy dose fractions respectively. Survival followed the pattern found after single-dose irradiation; it was lowest in the SCLC cell line with the lowest SF and highest in the two NSCLC cell lines. In the SCLC cell lines all schedules were approximately equally efficient. In the LCLC and in the SQCLC cell lines, the 5 Gy schedule killed more cells than the 1 and 2 Gy schedules. The results indicate that the size of the shoulder of the survival curve is essential when choosing the most tumoricidal fractionation schedule. (orig.)

  7. Identification of a novel rhabdovirus in Spodoptera frugiperda cell lines.

    Science.gov (United States)

    Ma, Hailun; Galvin, Teresa A; Glasner, Dustin R; Shaheduzzaman, Syed; Khan, Arifa S

    2014-06-01

    The Sf9 cell line, derived from Spodoptera frugiperda, is used as a cell substrate for biological products, and no viruses have been reported in this cell line after extensive testing. We used degenerate PCR assays and massively parallel sequencing (MPS) to identify a novel RNA virus belonging to the order Mononegavirales in Sf9 cells. Sequence analysis of the assembled virus genome showed the presence of five open reading frames (ORFs) corresponding to the genes for the N, P, M, G, and L proteins in other rhabdoviruses and an unknown ORF of 111 amino acids located between the G- and L-protein genes. BLAST searches indicated that the S. frugiperda rhabdovirus (Sf-rhabdovirus) was related in a limited region of the L-protein gene to Taastrup virus, a newly discovered member of the Mononegavirales from a leafhopper (Hemiptera), and also to plant rhabdoviruses, particularly in the genus Cytorhabdovirus. Phylogenetic analysis of sequences in the L-protein gene indicated that Sf-rhabdovirus is a novel virus that branched with Taastrup virus. Rhabdovirus morphology was confirmed by transmission electron microscopy of filtered supernatant samples from Sf9 cells. Infectivity studies indicated potential transient infection by Sf-rhabdovirus in other insect cell lines, but there was no evidence of entry or virus replication in human cell lines. Sf-rhabdovirus sequences were also found in the Sf21 parental cell line of Sf9 cells but not in other insect cell lines, such as BT1-TN-5B1-4 (Tn5; High Five) cells and Schneider's Drosophila line 2 [D.Mel.(2); SL2] cells, indicating a species-specific infection. The results indicate that conventional methods may be complemented by state-of-the-art technologies with extensive bioinformatics analysis for identification of novel viruses. The Spodoptera frugiperda Sf9 cell line is used as a cell substrate for the development and manufacture of biological products. Extensive testing has not previously identified any viruses in this cell

  8. In vitro Rb-1 gene transfer to retinoblastoma cell lines

    International Nuclear Information System (INIS)

    Choi, Sang Wook; Ham, Yong Hoh; Kim, Mee Heui

    1994-04-01

    After transfection of Rb-vector to packaging cell line (CRIP) by Ca-P precipitation method, we could select nineteen colonies of G-418 resistant clone by ring cloning. Each colony was transduced to NIH3T3 cells to select the one which produces high titer virus. After NIH3T3 cells transduction, we could get 28 colony counts for the high, 127 for the middle, and 6 for the low viral titer. With the supernatant of the high viral titer colony (CRIPRb 2-5). We transduct retinoblastoma cell lines. 5 figs, 11 refs. (Author)

  9. The antiproliferative effect of acridone alkaloids on several cancer cell lines.

    Science.gov (United States)

    Kawaii, S; Tomono, Y; Katase, E; Ogawa, K; Yano, M; Takemura, Y; Ju-ichi, M; Ito, C; Furukawa, H

    1999-04-01

    Fifteen acridone alkaloids were examined for their antiproliferative activity toward monolayers and suspension of several types of cancer and normal human cell lines. As a result, atalaphyllidine (9), 5-hydroxy-N-methylseverifoline (11), atalaphyllinine (12), and des-N-methylnoracronycine (13) showed potent antiproliferative activity against tumor cell lines, whereas they have weak cytotoxicity on normal human cell lines. The structure-activity relationship established from the results revealed that a secondary amine, hydroxyl groups at C-1 and C-5, and a prenyl group at C-2 played an important role for antiproliferative activities of the tetracyclic acridones.

  10. Study of the 6-n-propyl-2 thiouracil (PTU) as radioprotector in the thyroid cancer; Estudio del 6 propil-2 tiouracilo (PTU) como radioprotector en el tratamiento del cancer de tiroides

    Energy Technology Data Exchange (ETDEWEB)

    Perona, Marina; Dagrosa, Maria A; Pisarev, Mario A; Juvenal, Guillelrmo J [Comision Nacional de Energia Atomica, General San Martin (Argentina). Dept. de Radiogiologia; Pagotto, R; Pignataro, O [Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Buenos Aires (Argentina). Instituto de Biologia y Medicina Experimental; Casal, M [Instituto Nacional de Oncologia ' Angel H. Roffo' , Buenos Aires (Argentina)

    2007-07-01

    Full text: Introduction: Many epidemiological studies have demonstrated that exposition to high doses of external radiation increases the frequency of thyroid neoplasia, particularly during childhood and adolescence. The use of thyroid radioprotectors would be convenient to avoid tumorigenic effects in the thyroid gland when irradiation in the neck area is the only possible therapy. Objectives: To study the possible radioprotector effect of the antithyroid drug 6-n-propyl-2 thiouracil (PTU). Normal thyroid cells (FRTL-5 rat thyroid cell line) and pathologic thyroid cells (human anaplastic thyroid carcinoma cell line ARO) were cultured. The same were irradiated with a Co-60 source (1Gy/min) with a dose range between 1 and 8 Gy, in presence and in absence of PTU (1mM). Afterwards post irradiation damage was assessed through the culture formation assay using the survival fraction as effect indicator. Results: the survival fraction increase over control of both cell lines for each doses. The relation PTU vs. Control was: 2,3 and 2,7 for ARO cells and FRTL-5 respectively. The radioprotector effect of PTU is similar in both cases: if it is added 24 hs before or immediately after irradiation. As long as it has been demonstrated that the increase of tissue radioresistance can be induced through the stimulation of the cyclic AMP (cAMP) pathway, the levels of the second messenger were measured after the incubation of the cell lines during 5, 24, 48 and 72 hours with different concentrations of PTU (0; 0,1 mM; 1 mM and 2 mM). The PTU augmented the intracellular and extracellular cAPM levels in each treatment. After 24 hours a peak was observed in the extracellular levels incubated with PTU 1 mM of 36,97 {+-} 6,37 (fmol/{mu}g prot) vs. Control 16,67 {+-} 3,92 (fmol/{mu}g prot). The radioprotector effect was mimicked by the cAMP . Conclusion: The PTU exerts a radioprotector effect by stimulating the cAMP pathway. [Spanish] Texto completo: Introduccion: Numerosos estudios

  11. Antiproliferative effect of Tualang honey on oral squamous cell carcinoma and osteosarcoma cell lines

    Directory of Open Access Journals (Sweden)

    Ismail Noorliza M

    2010-09-01

    Full Text Available Abstract Background The treatment of oral squamous cell carcinomas (OSCC and human osteosarcoma (HOS includes surgery and/or radiotherapy which often lead to reduced quality of life. This study was aimed to study the antiproliferative activity of local honey (Tualang on OSCC and HOS cell lines. Methods Several concentrations of Tualang honey (1% - 20% were applied on OSCC and HOS cell lines for 3, 6, 12, 24, 48 and 72 hours. Morphological characteristics were observed under light and fluorescent microscope. Cell viability was assessed using MTT assay and the optical density for absorbance values in each experiment was measured at 570 nm by an ELISA reader. Detection of cellular apoptosis was done using the Annexin V-FITC Apoptosis Detection Kit. Results Morphological appearance showed apoptotic cellular changes like becoming rounded, reduction in cell number, blebbed membrane and apoptotic nuclear changes like nuclear shrinkage, chromatin condensation and fragmented nucleus on OSCC and HOS cell lines. Cell viability assay showed a time and dose-dependent inhibitory effect of honey on both cell lines. The 50% inhibitory concentration (IC50 for OSCC and HOS cell lines was found to be 4% and 3.5% respectively. The maximum inhibition of cell growth of ≥80% was obtained at 15% for both cell lines. Early apoptosis was evident by flow cytometry where percentage of early apoptotic cells increased in dose and time dependent manner. Conclusion Tualang honey showed antiproliferative effect on OSCC and HOS cell lines by inducing early apoptosis.

  12. Malignant hematopoietic cell lines: in vitro models for the study of natural killer cell leukemia-lymphoma.

    Science.gov (United States)

    Drexler, H G; Matsuo, Y

    2000-05-01

    Malignancies involving natural killer (NK) cells are rare disorders. The complexity of NK cell-involving disorders has only recently been appreciated. Modern classifications discern immature (precursor) from mature NK cell leukemias-lymphomas. Continuous NK leukemia-lymphoma cell lines represent important model systems to study these neoplasms. While there are a number of putative NK cell lines which are, however, either not characterized, not immortalized, non-malignant, non-NK, or plain false cell lines, six bona fide malignant NK cell lines have been established and are sufficiently well characterized: HANK1, KHYG-1, NK-92, NKL, NK-YS and YT. Except for YT which was derived from a not further defined acute lymphoblastic lymphoma, these cell lines were established from patients with various NK cell malignancies. Five of the six cell lines are constitutively interleukin-2-dependent. Their immunoprofile is remarkably similar: CD1-, CD2+, surface CD3 (but cytoplasmic CD3epsilon+), CD4-, CD5-, CD7+, CD8-, CD16-, CD56+, CD57-, TCRalphabeta-, TCRgammadelta-, negative for B cell and myelomonocytic markers. The immunoglobulin heavy chain and T cell receptor genes are all in germline configuration. All six lines show complex chromosomal alterations, with both numerical and structural aberrations, attesting to their malignant and monoclonal nature. Functionally, these cells which contain azurophilic granules in their cytoplasm are nearly universally positive in NK activity assays. Three of five cell lines are Epstein-Barr virus-positive (type II latency). The composite data on these six cell lines allow for the operational definition of a typical malignant NK cell line profile. NK leukemia-lymphoma cell lines will prove invaluable for studies of normal and malignant NK cell biology.

  13. Isolation of two chloroethylnitrosourea-sensitive Chinese hamster cell lines

    International Nuclear Information System (INIS)

    Hata, H.; Numata, M.; Tohda, H.; Yasui, A.; Oikawa, A.

    1991-01-01

    1-[(4-Amino-2-methylpyrimidin-5-yl)methyl]-3-(2-chloroethyl)-3- nitrosourea hydrochloride (ACNU), a cancer chemotherapeutic bifunctional alkylating agent, causes chloroethylation of DNA and subsequent DNA strand cross-linking through an ethylene bridge. We isolated and characterized two ACNU-sensitive mutants from mutagenized Chinese hamster ovary cells and found them to be new drug-sensitive recessive Chinese hamster mutants. Both mutants were sensitive to various monofunctional alkylating agents in a way similar to that of the parental cell lines CHO9. One mutant (UVS1) was cross-sensitive to UV and complemented the UV sensitivity of all Chinese hamster cell lines of 7 established complementation groups. Since UV-induced unscheduled DNA synthesis was very low, a new locus related to excision repair is thought to be defective in this cell line. Another ACNU-sensitive mutant, CNU1, was slightly more sensitive to UV than the parent cell line. CNU1 was cross-sensitive to 1-(2-chloroethyl)-3-cyclohexyl-1-nitrosourea and slightly more sensitive to mitomycin C. No increased accumulation of ACNU and a low level of UV-induced unscheduled DNA synthesis in this cell as compared with the parental cell line suggest that there is abnormality in a repair response of this mutant cell to some types of DNA cross-links

  14. Radiation-induced apoptosis and cell cycle checkpoints in human colorectal tumour cell lines

    International Nuclear Information System (INIS)

    Playle, L.C.

    2001-03-01

    The p53 tumour suppressor gene is mutated in 75% of colorectal carcinomas and is critical for DNA damage-induced G1 cell cycle arrest. Data presented in this thesis demonstrate that after treatment with Ionizing Radiation (IR), colorectal tumour cell lines with mutant p53 are unable to arrest at G1 and undergo cell cycle arrest at G2. The staurosporine derivative, UCN-01, was shown to abrogate the IR-induced G2 checkpoint in colorectal tumour cell lines. Furthermore, in some cell lines, abrogation of the G2 checkpoint was associated with radiosensitisation. Data presented in this study demonstrate that 2 out of 5 cell lines with mutant p53 were sensitised to IR by UCN-01. In order to determine whether radiosensitisation correlated with lack of functional p53, transfected derivatives of an adenoma-derived cell line were studied, in which endogenous wild type p53 was disrupted by expression of a dominant negative p53 mutant protein (and with a vector control). In both these cell lines UCN-01 abrogated the G2 arrest however this was not associated with radiosensitisation, indicating that radiosensitisation is a cell type-specific phenomenon. Although 2 colorectal carcinoma cell lines, with mutant p53, were sensitised to IR by UCN-01, the mechanisms of p53-independent IR-induced apoptosis in the colon are essentially unknown. The mitogen-activated protein kinase (MAPK) pathways (that is the JNK, p38 and ERK pathways) have been implicated in apoptosis in a range of cell systems and in IR-induced apoptosis in some cell types. Data presented in this study show that, although the MAPKs can be activated by the known activator anisomycin, there is no evidence of a role for MAPKs in IR-induced apoptosis in colorectal tumour cell lines, regardless of p53 status. In summary, some colorectal tumour cell lines with mutant p53 can be sensitised to IR-induced cell death by G2 checkpoint abrogation and this may be an important treatment strategy, however mechanisms of IR-induced p53

  15. Establishment and characterization of rat portal myofibroblast cell lines.

    Directory of Open Access Journals (Sweden)

    Michel Fausther

    Full Text Available The major sources of scar-forming myofibroblasts during liver fibrosis are activated hepatic stellate cells (HSC and portal fibroblasts (PF. In contrast to well-characterized HSC, PF remain understudied and poorly defined. This is largely due to the facts that isolation of rodent PF for functional studies is technically challenging and that PF cell lines had not been established. To address this, we have generated two polyclonal portal myofibroblast cell lines, RGF and RGF-N2. RGF and RGF-N2 were established from primary PF isolated from adult rat livers that underwent culture activation and subsequent SV40-mediated immortalization. Specifically, Ntpdase2/Cd39l1-sorted primary PF were used to generate the RGF-N2 cell line. Both cell lines were functionally characterized by RT-PCR, immunofluorescence, immunoblot and bromodeoxyuridine-based proliferation assay. First, immortalized RGF and RGF-N2 cells are positive for phenotypic myofibroblast markers alpha smooth muscle actin, type I collagen alpha-1, tissue inhibitor of metalloproteinases-1, PF-specific markers elastin, type XV collagen alpha-1 and Ntpdase2/Cd39l1, and mesenchymal cell marker ecto-5'-nucleotidase/Cd73, while negative for HSC-specific markers desmin and lecithin retinol acyltransferase. Second, both RGF and RGF-N2 cell lines are readily transfectable using standard methods. Finally, RGF and RGF-N2 cells attenuate the growth of Mz-ChA-1 cholangiocarcinoma cells in co-culture, as previously demonstrated for primary PF. Immortalized rat portal myofibroblast RGF and RGF-N2 cell lines express typical markers of activated PF-derived myofibroblasts, are suitable for DNA transfection, and can effectively inhibit cholangiocyte proliferation. Both RGF and RGF-N2 cell lines represent novel in vitro cellular models for the functional studies of portal (myofibroblasts and their contribution to the progression of liver fibrosis.

  16. Cell lines derived from the squash bug, Anasa tristis (Coreidae: Hemiptera).

    Science.gov (United States)

    Goodman, Cynthia L; Ringbauer, Joseph A; Li, Yao-Fa; Lincoln, Tamra Reall; Stanley, David

    2017-05-01

    The squash bug, Anasa tristis, is a pest of cucurbits that exerts direct damage on crops and is a vector of plant pathogens. We established cell lines from this insect to serve as tools for basic biology, including virology and immunology, as well as applied studies, such as insecticide development programs. We initiated 15 cell cultures, using nine media or combinations of media. The media yielding the best results were a modification of Kimura's medium and a combination of two commercially available cell culture media (EX-CELL 420 and L15). We designated the two cell lines as BCIRL-AtE-CLG11 and BCIRL-AtE-CLG15. From the AtE-CLG15 line, we isolated two sub-lines, A and B. Of these, the most consistently replicating line was AtE-CLG15A. We determined the doubling time of this line (190 h) and its mean cell diameter (14.5 ± 0.7 μm). We characterized the AtE-CLG15A line using DAF-PCR. The BCIRL-AtE-CLG15A cell line is now available for researchers world-wide.

  17. Additive effects of 5-Aza-2'-deoxycytidine and irradiation on clonogenic survival of human medulloblastoma cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Patties, Ina; Jahns, Jutta; Kortmann, Rolf-Dieter; Glasow, Annegret [Dept. of Radiotherapy and Radiooncology, Universitaetsklinikum Leipzig AoeR (Germany); Hildebrandt, Guido [Dept. of Radiotherapy and Radiooncology, Universitaetsklinikum Leipzig AoeR (Germany); Dept. of Radiotherapy, Univ. of Rostock (Germany)

    2009-05-15

    Background and purpose: in recent years, epigenetic modulators were introduced into tumor therapy. Here, the authors investigated the antitumor effect of 5-aza-2'-deoxycytidine-(5-aza-dC-)induced demethylation combined with irradiation on human medulloblastoma (MB) cells, which form the most common malignant brain tumor in children. Material and methods: three MB cell lines were treated with 5-aza-dC in a low-dose (0.1 {mu}M, 6 days) or high-dose (3/5 {mu}M, 3 days) setting and irradiated with 2, 4, 6, or 8 Gy single dose on an X-ray unit. Methylation status and mRNA expression of three candidate genes were analyzed by methylation-specific PCR (polymerase chain reaction) and quantitative real-time RT-PCR. Cell survival and mortality were determined by trypan blue exclusion test. Proliferation was analyzed by BrdU incorporation assay, and long-term cell survival was assessed by clonogenic assay. Results: 5-aza-dC treatment resulted in partial promoter demethylation and increased expression of hypermethylated candidate genes. A significant decrease of vital cell count, proliferation inhibition and increase of mortality was observed in 5-aza-dC-treated as well as in irradiated MB cells, whereby combination of both treatments led to additive effects. Although high-dose 5-aza-dC treatment was more effective in terms of demethylation, clonogenic assay revealed no differences between high- and low-dose settings indicating no relevance of 5-aza-dC-induced demethylation for decreased cell survival. MB cells pretreated with 5-aza-dC showed significantly lower plating efficiencies than untreated cells at all irradiation doses investigated. Analysis of surviving curves in irradiated MB cells, however, revealed no significant differences of {alpha}-, {beta}-values and 2-Gy surviving fraction with or without 5-aza-dC treatment. Conclusion: 5-aza-dC did not enhance radiation sensitivity of MB cells but significantly reduced the clonogenicity versus irradiation alone, which

  18. Sphere-forming cell subpopulations with cancer stem cell properties in human hepatoma cell lines

    Directory of Open Access Journals (Sweden)

    Chen Lei

    2011-06-01

    Full Text Available Abstract Background Cancer stem cells (CSCs are regarded as the cause of tumor formation and recurrence. The isolation and identification of CSCs could help to develop novel therapeutic strategies specifically targeting CSCs. Methods Human hepatoma cell lines were plated in stem cell conditioned culture system allowed for sphere forming. To evaluate the stemness characteristics of spheres, the self-renewal, proliferation, chemoresistance, tumorigenicity of the PLC/PRF/5 sphere-forming cells, and the expression levels of stem cell related proteins in the PLC/PRF/5 sphere-forming cells were assessed, comparing with the parental cells. The stem cell RT-PCR array was performed to further explore the biological properties of liver CSCs. Results The PLC/PRF/5, MHCC97H and HepG2 cells could form clonal nonadherent 3-D spheres and be serially passaged. The PLC/PRF/5 sphere-forming cells possessed a key criteria that define CSCs: persistent self-renewal, extensive proliferation, drug resistance, overexpression of liver CSCs related proteins (Oct3/4, OV6, EpCAM, CD133 and CD44. Even 500 sphere-forming cells were able to form tumors in NOD/SCID mice, and the tumor initiating capability was not decreased when spheres were passaged. Besides, downstream proteins DTX1 and Ep300 of the CSL (CBF1 in humans, Suppressor of hairless in Drosophila and LAG1 in C. elegans -independent Notch signaling pathway were highly expressed in the spheres, and a gamma-secretase inhibitor MRK003 could significantly inhibit the sphere formation ability. Conclusions Nonadherent tumor spheres from hepatoma cell lines cultured in stem cell conditioned medium possess liver CSC properties, and the CSL-independent Notch signaling pathway may play a role in liver CSCs.

  19. Antiproliferative activity of flavonoids on several cancer cell lines.

    Science.gov (United States)

    Kawaii, S; Tomono, Y; Katase, E; Ogawa, K; Yano, M

    1999-05-01

    Twenty-seven Citrus flavonoids were examined for their antiproliferative activities against several tumor and normal human cell lines. As a result, 7 flavonoids were judged to be active against the tumor cell lines, while they had weak antiproliferative activity against the normal human cell lines. The rank order of potency was luteolin, natsudaidain, quercetin, tangeretin, eriodictyol, nobiletin, and 3,3',4',5,6,7,8-heptamethoxyflavone. The structure-activity relationship established from comparison among these flavones and flavanones showed that the ortho-catechol moiety in ring B and a C2-C3 double bond were important for the antiproliferative activity. As to polymethoxylated flavones, C-3 hydroxyl and C-8 methoxyl groups were essential for high activity.

  20. Expression of the epidermal growth factor receptor in human small cell lung cancer cell lines

    DEFF Research Database (Denmark)

    Damstrup, L; Rygaard, K; Spang-Thomsen, M

    1992-01-01

    of EGF receptor mRNA in all 10 cell lines that were found to be EGF receptor-positive and in one cell line that was found to be EGF receptor-negative in the radioreceptor assay and affinity labeling. Our results provide, for the first time, evidence that a large proportion of a broad panel of small cell......Epidermal growth factor (EGF) receptor expression was evaluated in a panel of 21 small cell lung cancer cell lines with radioreceptor assay, affinity labeling, and Northern blotting. We found high-affinity receptors to be expressed in 10 cell lines. Scatchard analysis of the binding data...... demonstrated that the cells bound between 3 and 52 fmol/mg protein with a KD ranging from 0.5 x 10(-10) to 2.7 x 10(-10) M. EGF binding to the receptor was confirmed by affinity-labeling EGF to the EGF receptor. The cross-linked complex had a M(r) of 170,000-180,000. Northern blotting showed the expression...

  1. [The effect of arotinolol on the thyroid function and the autonomic nerve systems].

    Science.gov (United States)

    Fukasawa, N; Iitaka, M; Kitahama, S; Miura, S; Sakurai, S; Kawakami, Y; Ishii, J

    1993-01-20

    beta-blockers have been accepted as a reasonable adjunct therapy for the treatment of hyperthyroidism. They lessen the sympathetic symptoms such as tachycardia and finger tremor. On the other hand, many studies have demonstrated a decrease in 3, 3', 5-triiodothyronine (T3) during treatment with beta-blockers (especially propranolol). The purpose of this study is to clarify the effect of arotinolol (alpha 1, beta-blocker) on the thyroid functions and autonomic nerve systems (ANS) of patients with Graves' disease. Arotinolol 20mg a day p.o. was given to untreated patients with Graves' disease (n = 16) for 2 weeks. Blood sampling and the ANS function-tests were done before and after the treatment. In addition, the in vitro effects of arotinolol on the cAMP production and the radioactive iodine uptake (RAIU) using rat thyroid cell line FRTL5 were evaluated to examine the direct influence on thyroid cells. Arotinolol improved hyperthyroid symptoms including tachycardia, but had no effect on ANS function-tests. It is of interest that not only T3 but also T4 decreased after the arotinolol treatment. We therefore suspected the direct suppressive effects of arotinolol on the thyroid. There were, however, no in vitro inhibitory effects on the cAMP production and the RAIU in TSH-stimulated FRTL5 cells. The reason why serum T4 levels in patients with untreated Graves' disease have decreased after the treatment of arotinolol could not be clarified. In conclusion, arotinolol is a very useful drug for the initial therapy of patients with Graves' disease to reduce the serum thyroid hormone levels and symptoms of hyperthyroidism when combined with antithyroid drugs.

  2. Cytotoxicity and Bioactivity of Calcium Silicate Cements Combined with Niobium Oxide in Different Cell Lines.

    Science.gov (United States)

    Mestieri, Leticia Boldrin; Gomes-Cornélio, Ana Lívia; Rodrigues, Elisandra Márcia; Faria, Gisele; Guerreiro-Tanomaru, Juliane Maria; Tanomaru-Filho, Mário

    2017-01-01

    The aim of this study was to evaluate the cytotoxicity and bioactivity of calcium silicate-based cements combined with niobium oxide (Nb2O5) micro and nanoparticles, comparing the response in different cell lines. This evaluation used four cell lines: two primary cultures (human dental pulp cells - hDPCs and human dental follicle cells - hDFCs) and two immortalized cultures (human osteoblast-like cells - Saos-2 and mouse periodontal ligament cells - mPDL). The tested materials were: White Portland Cement (PC), mineral trioxide aggregate (MTA), white Portland cement combined with microparticles (PC/Nb2O5µ) or nanoparticles (PC/Nb2O5n) of niobium oxide (Nb2O5). Cytotoxicity was evaluated by the methylthiazolyldiphenyl-tetrazolium bromide (MTT) and trypan blue exclusion assays and bioactivity by alkaline phosphatase (ALP) enzyme activity. Results were analyzed by ANOVA and Tukey test (a=0.05). PC/Nb2O5n presented similar or higher cell viability than PC/Nb2O5µ in all cell lines. Moreover, the materials presented similar or higher cell viability than MTA. Saos-2 exhibited high ALP activity, highlighting PC/Nb2O5µ material at 7 days of exposure. In conclusion, calcium silicate cements combined with micro and nanoparticles of Nb2O5 presented cytocompatibility and bioactivity, demonstrating the potential of Nb2O5 as an alternative radiopacifier agent for these cements. The different cell lines had similar response to cytotoxicity evaluation of calcium silicate cements. However, bioactivity was more accurately detected in human osteoblast-like cell line, Saos-2.

  3. Entrainment of Breast Cell Lines Results in Rhythmic Fluctuations of MicroRNAs

    Directory of Open Access Journals (Sweden)

    Rafael Chacolla-Huaringa

    2017-07-01

    Full Text Available Circadian rhythms are essential for temporal (~24 h regulation of molecular processes in diverse species. Dysregulation of circadian gene expression has been implicated in the pathogenesis of various disorders, including hypertension, diabetes, depression, and cancer. Recently, microRNAs (miRNAs have been identified as critical modulators of gene expression post-transcriptionally, and perhaps involved in circadian clock architecture or their output functions. The aim of the present study is to explore the temporal expression of miRNAs among entrained breast cell lines. For this purpose, we evaluated the temporal (28 h expression of 2006 miRNAs in MCF-10A, MCF-7, and MDA-MB-231 cells using microarrays after serum shock entrainment. We noted hundreds of miRNAs that exhibit rhythmic fluctuations in each breast cell line, and some of them across two or three cell lines. Afterwards, we validated the rhythmic profiles exhibited by miR-141-5p, miR-1225-5p, miR-17-5p, miR-222-5p, miR-769-3p, and miR-548ay-3p in the above cell lines, as well as in ZR-7530 and HCC-1954 using RT-qPCR. Our results show that serum shock entrainment in breast cells lines induces rhythmic fluctuations of distinct sets of miRNAs, which have the potential to be related to endogenous circadian clock, but extensive investigation is required to elucidate that connection.

  4. Chemo-sensitivity in a panel of B-cell precursor acute lymphoblastic leukemia cell lines, YCUB series, derived from children.

    Science.gov (United States)

    Goto, Hiroaki; Naruto, Takuya; Tanoshima, Reo; Kato, Hiromi; Yokosuka, Tomoko; Yanagimachi, Masakatsu; Fujii, Hisaki; Yokota, Shumpei; Komine, Hiromi

    2009-10-01

    Sensitivity to 10 anticancer drugs was evaluated in 6 childhood B-cell precursor acute lymphoblastic leukemia (BCP-ALL) cell lines. Authenticity of newly established cell lines was confirmed by genomic fingerprinting. The line YCUB-5R established at relapse was more resistant to 4-hydroperoxy-cyclophosphamide, cytarabine, L-asparaginase, topotecan, fludarabine, and etoposide than YCUB-5 from the same patient at diagnosis. Of the drugs tested, etoposide and SN-38 (irinotecan) showed highest efficacy in the panel, with 50% growth inhibition at 0.22-1.8 microg/ml and 0.57-3.6 ng/ml, respectively. This cell line panel offers an in vitro model for the development of new therapies for childhood BCP-ALL.

  5. Comparison of thermoradiosensitization in two human melanoma cell lines and one fibroblast cell line by concurrent mild hyperthermia and low-dose-rate irradiation

    International Nuclear Information System (INIS)

    Raaphorst, G.P.; Bussey, A.; Heller, D.P.; Ng, C.E.

    1994-01-01

    Two human melanoma cell lines, one radioresistant (Sk-MEL-3) and one radiosensitive (HT-144), and a normal human fibroblast line (AG1522) were evaluated for thermoradiosensitization of low-dose-rate irradiation by concurrent mild hyperthermia (39-41 degrees C). None of the cell lines expressed chronic thermotolerance during heating at 39-41 degrees C. The SK-MEL-3 cells were the most heat sensitive, while AG1522 and HT-144 cells had the same sensitivity at 39 and 40 degrees C but HT-144 cells were more sensitive at 41 degrees C. All cell lines expressed thermal enhancement of radiosensitivity with heating during irradiation which increased with heating temperature. The SK-MEL-3 cells, which were the most resistant to radiation and demonstrated the greatest repair of sublethal damage (SLD) during low-dose-rate irradiation, had the greatest thermal enhancement of radiosensitivity, while the HT144 cells, which were the most sensitive and expressed little repair of SLD during low-dose-rate irradiation, had the smallest thermal enhancement of radiosensitivity. These data show that concurrent mild hyperthermia during low-dose-rate irradiation may be most efficacious in radiation-resistant tumor cells which express resistance through an enhanced capacity for repair of SLD. 24 refs., 5 figs., 1 tab

  6. Multidrug resistance and retroviral transduction potential in human small cell lung cancer cell lines

    DEFF Research Database (Denmark)

    Theilade, M D; Gram, G J; Jensen, P B

    1999-01-01

    of blue colonies after X-Gal staining of the cells grown in soft agar. All examined SCLC cell lines were transducible with either vector. Transduction efficiencies varied from 5.7% to 33.5% independent of the presence of MDR. These results indicate that MDR does not severely impair transduction of SCLC...

  7. Tuft (caveolated) cells in two human colon carcinoma cell lines.

    OpenAIRE

    Barkla, D. H.; Whitehead, R. H.; Foster, H.; Tutton, P. J.

    1988-01-01

    The presence of an unusual cell type in two human colon carcinoma cell lines is reported. The cells show the same morphology as "tuft" (caveolated) cells present in normal gastrointestinal epithelium. Tuft cells were seen in cell line LIM 1863 growing in vitro and in human colon carcinoma cell line LIM 2210 growing as subcutaneous solid tumour xenografts in nude mice. Characteristic morphologic features of tuft cells included a wide base, narrow apex and a tuft of long microvilli projecting f...

  8. Lauric Acid Stimulates Ketone Body Production in the KT-5 Astrocyte Cell Line.

    Science.gov (United States)

    Nonaka, Yudai; Takagi, Tetsuo; Inai, Makoto; Nishimura, Shuhei; Urashima, Shogo; Honda, Kazumitsu; Aoyama, Toshiaki; Terada, Shin

    2016-08-01

    Coconut oil has recently attracted considerable attention as a potential Alzheimer's disease therapy because it contains large amounts of medium-chain fatty acids (MCFAs) and its consumption is thought to stimulate hepatic ketogenesis, supplying an alternative energy source for brains with impaired glucose metabolism. In this study, we first reevaluated the responses of plasma ketone bodies to oral administration of coconut oil to rats. We found that the coconut oil-induced increase in plasma ketone body concentration was negligible and did not significantly differ from that observed after high-oleic sunflower oil administration. In contrast, the administration of coconut oil substantially increased the plasma free fatty acid concentration and lauric acid content, which is the major MCFA in coconut oil. Next, to elucidate whether lauric acid can activate ketogenesis in astrocytes with the capacity to generate ketone bodies from fatty acids, we treated the KT-5 astrocyte cell line with 50 and 100 μM lauric acid for 4 h. The lauric acid treatments increased the total ketone body concentration in the cell culture supernatant to a greater extent than oleic acid, suggesting that lauric acid can directly and potently activate ketogenesis in KT-5 astrocytes. These results suggest that coconut oil intake may improve brain health by directly activating ketogenesis in astrocytes and thereby by providing fuel to neighboring neurons.

  9. Combined 5-FU and ChoKα inhibitors as a new alternative therapy of colorectal cancer: evidence in human tumor-derived cell lines and mouse xenografts.

    Directory of Open Access Journals (Sweden)

    Ana de la Cueva

    Full Text Available Colorectal cancer (CRC is the third major cause of cancer related deaths in the world. 5-fluorouracil (5-FU is widely used for the treatment of colorectal cancer but as a single-agent renders low response rates. Choline kinase alpha (ChoKα, an enzyme that plays a role in cell proliferation and transformation, has been reported overexpressed in many different tumors, including colorectal tumors. ChoKα inhibitors have recently entered clinical trials as a novel antitumor strategy.ChoKα specific inhibitors, MN58b and TCD-717, have demonstrated a potent antitumoral activity both in vitro and in vivo against several tumor-derived cell line xenografts including CRC-derived cell lines. The effect of ChoKα inhibitors in combination with 5-FU as a new alternative for the treatment of colon tumors has been investigated both in vitro in CRC-tumour derived cell lines, and in vivo in mouse xenografts models. The effects on thymidilate synthase (TS and thymidine kinase (TK1 levels, two enzymes known to play an essential role in the mechanism of action of 5-FU, were analyzed by western blotting and quantitative PCR analysis. The combination of 5-FU with ChoKα inhibitors resulted in a synergistic effect in vitro in three different human colon cancer cell lines, and in vivo against human colon xenografts in nude mice. ChoKα inhibitors modulate the expression levels of TS and TK1 through inhibition of E2F production, providing a rational for its mechanism of action.Our data suggest that both drugs in combination display a synergistic antitumoral effect due to ChoKα inhibitors-driven modulation of the metabolization of 5-FU. The clinical relevance of these findings is strongly supported since TCD-717 has recently entered Phase I clinical trials against solid tumors.

  10. Relationships among cell survival, O6-alkylguanine-DNA alkyltransferase activity, and reactivation of methylated adenovirus 5 and herpes simplex virus type 1 in human melanoma cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Maynard, K.; Parsons, P.G.; Cerny, T.; Margison, G.P. (Queensland Institute of Medical Research, Herston (Australia))

    1989-09-01

    O6-Alkylguanine-DNA alkyltransferase (ATase) activity and host cell reactivation (HCR) of 5-(3-methyl-1-triazeno)imidazole-4-carboxamide (MTIC)-methylated viruses were compared in human melanoma cell lines that were sensitive or resistant to killing by the antitumor DNA-methylating agent MTIC. Enhanced HCR of adenovirus 5 (defined as the Mer+ phenotype) generally showed a semiquantitative correlation with the natural or induced resistance of the host cells to the toxic effects of MTIC and to the level of ATase activity. However, one MTIC-resistant cell line was found (MM170) which had a low level of ATase and intermediate HCR of adenovirus. The HCR of herpes simplex virus type 1 (HSV-1) was enhanced in the Mer+ cells that had natural resistance to MTIC compared with Mer- cells. On the other hand, HCR of HSV-1 in Mer+ cells with induced resistance to MTIC was similar to that in Mer- cells. Neither adenovirus 5 nor HSV-1 infection induced ATase activity in Mer- cells. This indicates that resistance to the toxic effects of methylating agents is not invariably associated with high levels of ATase activity in human melanoma cells. Furthermore, while induction of the Mer+ phenotype from Mer- cells was usually accompanied by the recovery of ATase activity, induced Mer+ cells had less proficient repair than natural Mer+ cells, as judged quantitatively by slightly lower cellular resistance and qualitatively by deficient HCR response for HSV-1. These results suggest that the Mer- and induced Mer+ cells lack an ATase-independent DNA repair mechanism. No differences in MTIC-induced DNA repair synthesis or strand breaks were found between the Mer-, natural Mer+, and induced Mer+ phenotypes. However, UV-induced DNA repair synthesis was higher in the natural Mer+ than in the Mer- or induced Mer+ cells, both of which had increased cellular sensitivity to the antimetabolites methotrexate and hydroxyurea.

  11. Relationships among cell survival, O6-alkylguanine-DNA alkyltransferase activity, and reactivation of methylated adenovirus 5 and herpes simplex virus type 1 in human melanoma cell lines

    International Nuclear Information System (INIS)

    Maynard, K.; Parsons, P.G.; Cerny, T.; Margison, G.P.

    1989-01-01

    O6-Alkylguanine-DNA alkyltransferase (ATase) activity and host cell reactivation (HCR) of 5-(3-methyl-1-triazeno)imidazole-4-carboxamide (MTIC)-methylated viruses were compared in human melanoma cell lines that were sensitive or resistant to killing by the antitumor DNA-methylating agent MTIC. Enhanced HCR of adenovirus 5 (defined as the Mer+ phenotype) generally showed a semiquantitative correlation with the natural or induced resistance of the host cells to the toxic effects of MTIC and to the level of ATase activity. However, one MTIC-resistant cell line was found (MM170) which had a low level of ATase and intermediate HCR of adenovirus. The HCR of herpes simplex virus type 1 (HSV-1) was enhanced in the Mer+ cells that had natural resistance to MTIC compared with Mer- cells. On the other hand, HCR of HSV-1 in Mer+ cells with induced resistance to MTIC was similar to that in Mer- cells. Neither adenovirus 5 nor HSV-1 infection induced ATase activity in Mer- cells. This indicates that resistance to the toxic effects of methylating agents is not invariably associated with high levels of ATase activity in human melanoma cells. Furthermore, while induction of the Mer+ phenotype from Mer- cells was usually accompanied by the recovery of ATase activity, induced Mer+ cells had less proficient repair than natural Mer+ cells, as judged quantitatively by slightly lower cellular resistance and qualitatively by deficient HCR response for HSV-1. These results suggest that the Mer- and induced Mer+ cells lack an ATase-independent DNA repair mechanism. No differences in MTIC-induced DNA repair synthesis or strand breaks were found between the Mer-, natural Mer+, and induced Mer+ phenotypes. However, UV-induced DNA repair synthesis was higher in the natural Mer+ than in the Mer- or induced Mer+ cells, both of which had increased cellular sensitivity to the antimetabolites methotrexate and hydroxyurea

  12. Studies for the application of Boron neutron capture therapy (BNCT) to the treatment of differentiated thyroid cancer (CDT)

    International Nuclear Information System (INIS)

    Carpano, Marina; Thomasz, Lisa; Perona, Marina; Juvenal, Guillermo J.; Pisarev, Mario; Dagrosa, Maria A.; Nievas, Susana I.; Pozzi, Emiliano; Thorp, Silvia

    2009-01-01

    Boron neutron capture therapy (BNCT) is a high linear energy transfer (LET) radiotherapy for cancer, which it is based on the nuclear reaction that occurs when boron-10 that it is a non radioactive isotope of the natural elemental boron, is irradiated with low energy thermal neutrons to produce an alpha particle and a nucleus of lithium-7. Both particles have a range smaller than the diameter of a cell causing cell tumor death without significant damage to the surrounding normal tissues. In previous studies we have shown that BNCT can be a possibility for the treatment of undifferentiated thyroid cancer (UTC). However, more than 80 % of patients with thyroid neoplasm present differentiated carcinoma (CDT). These carcinomas are treated by surgery followed by therapy with 131 I and mostly these forms are well controlled. But in some patients recurrence of the tumor is observed. BNCT can be an alternative for these patients in who the tumor lost the capacity to concentrate iodide. The aim of these studies was to evaluate the possibility of treating differentiated thyroid cancer by BNCT. Materials and Methods: The human cell lines of follicular (WRO) and papillary carcinomas (TPC-1) were grown in RPMI and modified DMEM medium respectively. Both supplemented with 10 % of SFB. The cell line of thyroid rat, FRTL-5, used as control normal, was cultured in DMEM/F12. The uptakes of 125 I and p-borophenylalanine BPA (6.93mM) were studied. The intracellular boron concentration was measured by inductively coupled plasma optical emission spectroscopy (ICP-OES) at 2 hr post incubation. The NIH strain of male nude mice, aged 6 to 8 weeks and weighing 20 to 25 g were implanted (s.c) in the back right flank with different concentrations of tumor cells. The size of the tumors was measured with a caliper twice or three times a week and the volume was calculated according the following formulae: A 2 x B/2 (were A is the width and B is the length). To evaluate the BPA uptake, animals

  13. Assessing the survival of MRC5 and a549 cell lines upon exposure to pyruvic Acid, sodium citrate and sodium bicarbonate - biomed 2013.

    Science.gov (United States)

    Farah, Ibrahim O; Lewis, Veshell L; Ayensu, Wellington K; Cameron, Joseph A

    2013-01-01

    Lung cancer is among the most prevalent and deadly cancers in United States. In general, cancer cells are known to exhibit higher rates of glycolysis in comparison to normal cells. In attempting to exploit this unique cancer-dependent ATP generation phenomenon, it was our hypothesis that upon exposure to organic inhibitors of glycolysis, cancer cells would not survive normally and that their growth and viability would be vastly decreased; essential glycolytic ATP production will be exhausted to the point of collapsing energy utilization. Furthermore, we hypothesize that no negative effect would be seen with exposures to organic inhibitors for normal lung cells. The human lung fibroblast MRC-5 and the human A549 alveolar epithelial cell lines were used as in vitro models of normal lung and lung cancers respectively. Using standard methods, both cell lines were maintained and exposed to pyruvic acid, sodium citrate and sodium bicarbonate reagents at concentration levels ranging from 31.3-2,000 µg/ml in 96 well plates in quadruplets and experiments repeated at least three times using MTT, and cell counting (T4 Cellometer) assays as well as phase-contrast photo-imaging for parallel morphological displays of any changes in the course of their vitality and metabolic activities. Our results indicate that exposure of both cell lines to these organics resulted in concentration dependent cell destruction/cell survival depending on the cell line exposed. Pyruvic acid, sodium citrate and sodium bicarbonate showed statistically significant (pcancer biotherapeutics.

  14. Comparison of protein patterns of xrs-5, a radiosensitive Chinese hamster ovary cell line, and CHO-K1, its radioresistant parent, using two-dimensional gel-electrophoresis

    International Nuclear Information System (INIS)

    Kramer, J.M.

    1991-01-01

    X-ray sensitive strains of Chinese hamster ovary cell lines have been used to analyze radiation repair mechanisms. One cell line, xrs-5, has been shown to be very sensitive to ionizing radiation and radical forming chemical mutagens. This sensitivity is thought to be a result a mutation in the DNA double strand break (DSB) repair mechanism, and its characterization has been a goal of several repair mechanism studies. Using two-dimensional gel electrophoresis, we have detected a protein (MW approximately 55KD) in the DNA/Nuclear Matrix (nucleoid) cell fraction of CHO-Kl cells that is absent in the nucleoid fraction of xrs-5. This protein is present, however, in both CHO-Kl and xrs-5 whole cell protein maps. To determine whether the 55KD protein is responsible for the radiosensitive and defective DSB repair phenotype of xrs-5 cells, studies are now underway to analyze revertants of xrs-5 that are proficient in DSB repair. Furthermore, an effort to sequence the protein in question is planned. 23 refs., 2 figs

  15. Derivation and Osmotolerance Characterization of Three Immortalized Tilapia (Oreochromis mossambicus) Cell Lines

    Science.gov (United States)

    Gardell, Alison M.; Qin, Qin; Rice, Robert H.; Li, Johnathan; Kültz, Dietmar

    2014-01-01

    Fish cell cultures are becoming more widely used models for investigating molecular mechanisms of physiological response to environmental challenge. In this study, we derived two immortalized Mozambique tilapia (Oreochromis mossambicus) cell lines from brain (OmB) and lip epithelium (OmL), and compared them to a previously immortalized bulbus arteriosus (TmB) cell line. The OmB and OmL cell lines were generated without or with Rho-associated kinase (ROCK) inhibitor/3T3 feeder layer supplementation. Although both approaches were successful, ROCK inhibitor/feeder layer supplementation was found to offer the advantages of selecting for epithelial-like cell type and decreasing time to immortalization. After immortalization (≥ passage 5), we characterized the proteomes of the newly derived cell lines (OmB and OmL) using LCMS and identified several unique cell markers for each line. Subsequently, osmotolerance for each of the three cell lines following acute exposure to elevated sodium chloride was evaluated. The acute maximum osmotolerance of these tilapia cell lines (>700 mOsm/kg) was markedly higher than that of any other known vertebrate cell line, but was significantly higher in the epithelial-like OmL cell line. To validate the physiological relevance of these tilapia cell lines, we quantified the effects of acute hyperosmotic challenge (450 mOsm/kg and 700 mOsm/kg) on the transcriptional regulation of two enzymes involved in biosynthesis of the compatible organic osmolyte, myo-inositol. Both enzymes were found to be robustly upregulated in all three tilapia cell lines. Therefore, the newly established tilapia cells lines represent valuable tools for studying molecular mechanisms involved in the osmotic stress response of euryhaline fish. PMID:24797371

  16. A NEW CELL CLONE DERIVED FROM TRICHOPLUSIA NI TN5B1-4 CELLS

    Institute of Scientific and Technical Information of China (English)

    Jian-xiaoTian; Chang-youLi; Gui-lingZheng; Guo-xunLi; PingWang; Granados

    2004-01-01

    The characteristics of a cultured cell line do not always remain stable and may change upon continuous passage. Most continuous cell lines, even after cloning, possess several genotypes that are constantly changing. There are numerous selective and adaptive culture processes, in addition to genetic instability, that may improve phenotypic change in cell growth, virus susceptibility, gene expression, and production of virus. Similar detrimental effects of long term passaging of insect cells have also been reported for continuous cell lines, for example, Tn5B 1-4 cells, which are the most widely used for the baculovirus expression vector system (BEVS), provide superior production of recombinant proteins,however, this high productivity may be more evident in low passage cells. In this paper, we describe the isolation of a cell clone, Tn5B-40, from low passage Tn5B 1-4 cells. The growth characteristics,productions of virus, and high level of recombinant protein productions were determined. The results showed the susceptibility of both clone and Tn5B 1-4 cells to wild-type AcNPV was approximately the same rate with over 95% of infection; when the cloned cells were infected with recombinant baculoviruses expressing β-galactosidase and secreted alkaline phosphatase (SEAP), expression of the recombinant proteins from the cloned cells exceeded that from the parental Tn5B 1-4 cells.

  17. A novel cell growth-promoting factor identified in a B cell leukemia cell line, BALL-1

    International Nuclear Information System (INIS)

    Dao, T.; Holan, V.; Minowada, J.

    1993-01-01

    A novel leukemia cell growth-promoting activity has been identified in the culture supernatant from a human B cell leukemia cell line, BALL-1. The supernatant from unstimulated cultures of the BALL-1 cells significantly promoted the growth of 16 out of 24 leukemia/lymphoma cell lines of different lineages (T, B and non-lymphoid) in a minimal concentration of fetal bovine serum (FBS), and 5 out of 12 cases of fresh leukemia cells in FBS-free medium. The growth-promoting sieve filtration and dialysis. The MW of the factor was less than 10 kDa. The growth-promoting activity was heat and acid stable and resistant to trypsin treatment. The factor isolated from the BALL-1 supernatant was distinct from known polypeptide growth factors with MW below 10 kDa, such as epidermal growth factor, transforming growth factor α, insulin-like growth factor I (IGF-I), IGF-II and insulin, as determine by specific antibodies and by cell-growth-promoting tests. The factor is the BALL-1 supernatant did not promote the proliferation of normal human fresh peripheral blood lymphocytes or mouse fibroblast cell line, BALB/C 3T3. In addition to the BALL-1 supernatant, a similar growth-promoting activity was found in the culture supernatant from 13 of 17 leukemia/lymphoma cell lines tested. The activity in these culture supernatant promoted the growth of leukemia/lymphoma cell lines in autocrine and/or paracrine fashions. These observations suggest that the low MW cell growth-promoting activity found in the BALL-1 culture supernatant is mediated by a novel factor which may be responsible for the clonal expansion of particular leukemic clones. (author)

  18. Effect of graphene oxide on undifferentiated and retinoic acid-differentiated SH-SY5Y cells line

    Science.gov (United States)

    Lv, Min; Zhang, Yujie; Liang, Le; Wei, Min; Hu, Wenbing; Li, Xiaoming; Huang, Qing

    2012-06-01

    Graphene oxide (GO), has created an unprecedented opportunity for development and application in biology, due to its abundant functional groups and well water solubility. Recently, the potential toxicity of GO in the environment and in humans has garnered more and more attention. In this paper, we systematically studied the cytotoxicity of GO nanosheets via examining the effect of GO on the morphology, viability and differentiation of a human neuroblastoma SH-SY5Y cell line, which was an ideal model used to study neuronal disease in vitro. The results suggested that GO had no obvious cytotoxicity at low concentration (cells exhibited dose- and time-dependent decreases at high concentration (>=80 μg mL-1). Moreover, GO did not induce apoptosis. Very interestingly, GO significantly enhanced the differentiation of SH-SY5Y induced-retinoic acid (RA) by evaluating neurite length and the expression of neuronal marker MAP2. These data provide a promising application for neurodegenerative diseases.

  19. Characterization of a Merkel Cell Polyomavirus-Positive Merkel Cell Carcinoma Cell Line CVG-1.

    Science.gov (United States)

    Velásquez, Celestino; Amako, Yutaka; Harold, Alexis; Toptan, Tuna; Chang, Yuan; Shuda, Masahiro

    2018-01-01

    Merkel cell polyomavirus (MCV) plays a causal role in ∼80% of Merkel cell carcinomas (MCC). MCV is clonally integrated into the MCC tumor genome, which results in persistent expression of large T (LT) and small T (sT) antigen oncoproteins encoded by the early locus. In MCV-positive MCC tumors, LT is truncated by premature stop codons or deletions that lead to loss of the C-terminal origin binding (OBD) and helicase domains important for replication. The N-terminal Rb binding domain remains intact. MCV-positive cell lines derived from MCC explants have been valuable tools to study the molecular mechanism of MCV-induced Merkel cell carcinogenesis. Although all cell lines have integrated MCV and express truncated LT antigens, the molecular sizes of the LT proteins differ between cell lines. The copy number of integrated viral genome also varies across cell lines, leading to significantly different levels of viral protein expression. Nevertheless, these cell lines share phenotypic similarities in cell morphology, growth characteristics, and neuroendocrine marker expression. Several low-passage MCV-positive MCC cell lines have been established since the identification of MCV. We describe a new MCV-positive MCV cell line, CVG-1, with features distinct from previously reported cell lines. CVG-1 tumor cells grow in more discohesive clusters in loose round cell suspension, and individual cells show dramatic size heterogeneity. It is the first cell line to encode an MCV sT polymorphism resulting in a unique leucine (L) to proline (P) substitution mutation at amino acid 144. CVG-1 possesses a LT truncation pattern near identical to that of MKL-1 cells differing by the last two C-terminal amino acids and also shows an LT protein expression level similar to MKL-1. Viral T antigen knockdown reveals that, like other MCV-positive MCC cell lines, CVG-1 requires T antigen expression for cell proliferation.

  20. The Cellosaurus, a Cell-Line Knowledge Resource

    Science.gov (United States)

    Bairoch, Amos

    2018-01-01

    The Cellosaurus is a knowledge resource on cell lines. It aims to describe all cell lines used in biomedical research. Its scope encompasses both vertebrates and invertebrates. Currently, information for >100,000 cell lines is provided. For each cell line, it provides a wealth of information, cross-references, and literature citations. The Cellosaurus is available on the ExPASy server (https://web.expasy.org/cellosaurus/) and can be downloaded in a variety of formats. Among its many uses, the Cellosaurus is a key resource to help researchers identify potentially contaminated/misidentified cell lines, thus contributing to improving the quality of research in the life sciences. PMID:29805321

  1. Tumourigenic canine osteosarcoma cell lines associated with frizzled-6 up-regulation and enhanced side population cell frequency.

    Science.gov (United States)

    de Sá Rodrigues, L C; Holmes, K E; Thompson, V; Newton, M A; Stein, T J

    2017-03-01

    An increased serum alkaline phosphatase concentration is known to be associated with a negative prognosis in canine and human osteosarcoma. To expand upon previous studies regarding the biological relevance of increased serum alkaline phosphatase as a negative prognostic factor, xenogeneic heterotopic transplants were performed using six canine primary osteosarcoma cell lines generated from patients with differing serum alkaline phosphatase concentrations (three normal and three increased). Three of the six cell lines were capable of generating tumours and tumour formation was independent of the serum alkaline phosphatase status of the cell line. Microarray analysis identified 379 genes as being differentially expressed between the tumourigenic and non-tumourigenic cell lines. Frizzled-6 was upregulated to the greatest extent (7.78-fold) in tumourigenic cell lines compared with non-tumourigenic cell lines. Frizzled-6, a co-receptor for Wnt ligands has been associated with enhanced tumour-initiating cells and poor prognosis for other tumours. The increased expression of frizzled-6 was confirmed by quantitative reverse transcription polymerase chain reaction (QPCR) and Western blot analysis. Additionally, the tumourigenic cell lines also had an increase in the percentage of side population cells compared with non-tumourigenic cell lines (5.89% versus 1.58%, respectively). There were no differences in tumourigenicity, frizzled-6 or percentage of side population cells noted between osteosarcoma cell lines generated from patients of differing serum alkaline phosphatase concentration. However, to our knowledge this is the first study to identified frizzled-6 as a possible marker of osteosarcoma cell populations with enhanced tumourigenicity and side population cells. Future work will focus on defining the role of frizzled-6 in osteosarcoma tumourigenesis and tumour-initiating cells. © 2015 John Wiley & Sons Ltd.

  2. A developmentally plastic adult mouse kidney cell line spontaneously generates multiple adult kidney structures

    Energy Technology Data Exchange (ETDEWEB)

    Webb, Carol F., E-mail: carol-webb@omrf.org [Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK (United States); Immunobiology and Cancer Research, Oklahoma Medical Research Foundation, Oklahoma City, OK (United States); Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK (United States); Ratliff, Michelle L., E-mail: michelle-ratliff@omrf.org [Immunobiology and Cancer Research, Oklahoma Medical Research Foundation, Oklahoma City, OK (United States); Powell, Rebecca, E-mail: rebeccapowell@gmail.com [Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK (United States); Wirsig-Wiechmann, Celeste R., E-mail: celeste-wirsig@ouhsc.edu [Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK (United States); Lakiza, Olga, E-mail: olga-lakiza@ouhsc.edu [Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK (United States); Obara, Tomoko, E-mail: tomoko-obara@ouhsc.edu [Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK (United States)

    2015-08-07

    Despite exciting new possibilities for regenerative therapy posed by the ability to induce pluripotent stem cells, recapitulation of three-dimensional kidneys for repair or replacement has not been possible. ARID3a-deficient mouse tissues generated multipotent, developmentally plastic cells. Therefore, we assessed the adult mouse ARID3a−/− kidney cell line, KKPS5, which expresses renal progenitor surface markers as an alternative cell source for modeling kidney development. Remarkably, these cells spontaneously developed into multicellular nephron-like structures in vitro, and engrafted into immunocompromised medaka mesonephros, where they formed mouse nephron structures. These data implicate KKPS5 cells as a new model system for studying kidney development. - Highlights: • An ARID3a-deficient mouse kidney cell line expresses multiple progenitor markers. • This cell line spontaneously forms multiple nephron-like structures in vitro. • This cell line formed mouse kidney structures in immunocompromised medaka fish kidneys. • Our data identify a novel model system for studying kidney development.

  3. A developmentally plastic adult mouse kidney cell line spontaneously generates multiple adult kidney structures

    International Nuclear Information System (INIS)

    Webb, Carol F.; Ratliff, Michelle L.; Powell, Rebecca; Wirsig-Wiechmann, Celeste R.; Lakiza, Olga; Obara, Tomoko

    2015-01-01

    Despite exciting new possibilities for regenerative therapy posed by the ability to induce pluripotent stem cells, recapitulation of three-dimensional kidneys for repair or replacement has not been possible. ARID3a-deficient mouse tissues generated multipotent, developmentally plastic cells. Therefore, we assessed the adult mouse ARID3a−/− kidney cell line, KKPS5, which expresses renal progenitor surface markers as an alternative cell source for modeling kidney development. Remarkably, these cells spontaneously developed into multicellular nephron-like structures in vitro, and engrafted into immunocompromised medaka mesonephros, where they formed mouse nephron structures. These data implicate KKPS5 cells as a new model system for studying kidney development. - Highlights: • An ARID3a-deficient mouse kidney cell line expresses multiple progenitor markers. • This cell line spontaneously forms multiple nephron-like structures in vitro. • This cell line formed mouse kidney structures in immunocompromised medaka fish kidneys. • Our data identify a novel model system for studying kidney development

  4. Dipeptidyl peptidase IV in two human glioma cell lines

    Directory of Open Access Journals (Sweden)

    A Sedo

    2009-12-01

    Full Text Available There is growing evidence that dipeptidyl peptidase IV [DPP-IV, EC 3.4.14.5] takes part in the metabolism of biologically active peptides participating in the regulation of growth and transformation of glial cells. However, the knowledge on the DPP-IV expression in human glial and glioma cells is still very limited. In this study, using histochemical and biochemical techniques, the DPP-IV activity was demonstrated in two commercially available human glioma cell lines of different transformation degree, as represented by U373 astrocytoma (Grade III and U87 glioblastoma multiforme (Grade IV lines. Higher total activity of the enzyme, as well as its preferential localisation in the plasma membrane, was observed in U87 cells. Compared to U373 population, U87 cells were morphologically more pleiomorphic, they were cycling at lower rate and expressing less Glial Fibrillary Acidic Protein. The data revealed positive correlation between the degree of transformation of cells and activity of DPP-IV. Great difference in expression of this enzyme, together with the phenotypic differences of cells, makes these lines a suitable standard model for further 57 studies of function of this enzyme in human glioma cells.

  5. De-phosphorylation of TRα-1 by p44/42 MAPK inhibition enhances T3-mediated GLUT5 gene expression in the intestinal cell line Caco-2 cells

    International Nuclear Information System (INIS)

    Mochizuki, Kazuki; Sakaguchi, Naomi; Takabe, Satsuki; Goda, Toshinao

    2007-01-01

    Thyroid hormone and p44/42 MAPK inactivation are important in intestinal differentiation. We demonstrated not only that treatment with p44/42 MAPK inhibitor U0126 in intestinal cell line Caco-2 cells reduced the phosphorylation of serine and threonine residues of TRα-1, but also that T 3 and U0126 synergistically induced GLUT5 gene expression. EMSA demonstrated that the binding activity of TRα-1-RXR heterodimer on GLUT5-TRE in nuclear proteins of Caco-2 cells was synergistically enhanced by co-incubation in vitro with T 3 and CIAP, which strongly de-phosphorylates proteins. ChIP and transfection assays revealed that co-treatment of T 3 and U0126 induces TRα-1-RXR binding to GLUT5-TRE on the human GLUT5 enhancer region, and recruitment of the transcriptional complex in cells. These results suggest that inactivation of p44/42 MAPK enhances T 3 -induced GLUT5 gene expression in Caco-2 cells through increasing TRα-1 transactivity and binding activity to the GLUT5-TRE, probably due to de-phosphorylation of TRα-1

  6. The assay of thyrotropin receptor antibodies with human TSH/LH-CG chimeric receptor expressed on chinese hamster ovary cells

    International Nuclear Information System (INIS)

    Yi, Ka Hee; Kim, Chang Min

    1996-12-01

    TSH/LH-CG chimera cDNA is transfected to CHO-K1 cell to obtain the chimeric receptor expressed on the cell surface. The optimal conditions for TSAb and TSBAb measurements are determined using chimeric receptors and under these conditions activity of TSAb and TSBAb in the sera of the Graves' patients. The results obtained are compared to those of TSAb assays using FRTL5 cells CHO-TSHR cells which have wild type human TSH receptor. The transfection procedure of chimeric receptor gene to CHO-K1 cells are on going. The optimal conditions for TSAb and TSBAb measurement using chimeric receptor will be determined after success of transfection procedure. If this study is successfully completed, not only the heterogeneity of Graves. IgG but also pathogenesis of Graves' disease will be elucidated. (author). 25 refs

  7. The assay of thyrotropin receptor antibodies with human TSH/LH-CG chimeric receptor expressed on chinese hamster ovary cells

    Energy Technology Data Exchange (ETDEWEB)

    Yi, Ka Hee; Kim, Chang Min [Korea Cancer Center Hospital, Seoul (Korea, Republic of)

    1996-12-01

    TSH/LH-CG chimera cDNA is transfected to CHO-K1 cell to obtain the chimeric receptor expressed on the cell surface. The optimal conditions for TSAb and TSBAb measurements are determined using chimeric receptors and under these conditions activity of TSAb and TSBAb in the sera of the Graves` patients. The results obtained are compared to those of TSAb assays using FRTL5 cells CHO-TSHR cells which have wild type human TSH receptor. The transfection procedure of chimeric receptor gene to CHO-K1 cells are on going. The optimal conditions for TSAb and TSBAb measurement using chimeric receptor will be determined after success of transfection procedure. If this study is successfully completed, not only the heterogeneity of Graves. IgG but also pathogenesis of Graves` disease will be elucidated. (author). 25 refs.

  8. Development of buffalo (Bubalus bubalis embryonic stem cell lines from somatic cell nuclear transferred blastocysts

    Directory of Open Access Journals (Sweden)

    Syed Mohmad Shah

    2015-11-01

    Full Text Available We developed buffalo embryonic stem cell lines from somatic cell nuclear transfer derived blastocysts, produced by hand-guided cloning technique. The inner cell mass of the blastocyst was cut mechanically using a Microblade and cultured onto feeder cells in buffalo embryonic stem (ES cell culture medium at 38 °C in a 5% CO2 incubator. The stem cell colonies were characterized for alkaline phosphatase activity, karyotype, pluripotency and self-renewal markers like OCT4, NANOG, SOX2, c-Myc, FOXD3, SSEA-1, SSEA-4, TRA-1-60, TRA-1-81 and CD90. The cell lines also possessed the capability to differentiate across all the three germ layers under spontaneous differentiation conditions.

  9. An experimental study on the low-dose radiosensitivity of tumor cell lines

    International Nuclear Information System (INIS)

    Kim, Min Sook; Koh, Kwang Joon

    1994-01-01

    The purpose of this study was to aid in the radiation therapy of head and neck cancer patients. For this study, radiation survival curves were generated for B16, MG-63 and YAC-1 cell lines using semiautomated MTT assay and Dye Exclusion Assay. Irradiation of 2, 4, 6, 8, 10 Gy were delivered at room temperature at a dose rate of 210.2 cGy/min using 60 COγ-ray irradiator ALDORADO 8. The viable cells were determined for each radiation dose and compared to control values. The obtained results were as follows: 1. The was significantly different absorbance at 10 Gy on B16 cell line in MTT assay (P<0.05). 2. There was significantly different absorbance at 4, 6, 8, 10 Gy on MG-63 cell line in MTT assay (P<0.05). 3. YAC-1 cell line was more sensitive than B16 or MG-63 cell line to all doses of radiation (P<0.05). 4. There was significantly different absorbance among all tumor cell lines except between B16 and MG-63 cell line at 2 Gy in MTT assay (P<0.05). 5. Good correlation was obtained between MTT assay and DEA (P<0.05). The efficient of correlation of B16, MG-63 and YAC-1 cell line was 0.845-0.824 and 0.906, respectively.

  10. Preservation of high glycolytic phenotype by establishing new acute lymphoblastic leukemia cell lines at physiologic oxygen concentration

    Energy Technology Data Exchange (ETDEWEB)

    Sheard, Michael A., E-mail: msheard@chla.usc.edu [Developmental Therapeutics Program, USC-CHLA Institute for Pediatric Clinical Research, Division of Hematology-Oncology, Children' s Hospital Los Angeles, 4650 Sunset Blvd., Los Angeles, CA 90027 (United States); Ghent, Matthew V., E-mail: mattghent@gmail.com [Department of Pathology, Keck School of Medicine, University of Southern California, Health Sciences Campus, Los Angeles, CA 90089 (United States); Cabral, Daniel J., E-mail: dcabral14@gmail.com [Cancer Center and Departments of Cell Biology & Biochemistry, Pharmacology & Neuroscience, Internal Medicine and Pediatrics, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430 (United States); Lee, Joanne C., E-mail: joannebarnhart@gmail.com [Cancer Center and Departments of Cell Biology & Biochemistry, Pharmacology & Neuroscience, Internal Medicine and Pediatrics, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430 (United States); Khankaldyyan, Vazgen, E-mail: khangaldian@yahoo.com [Developmental Therapeutics Program, USC-CHLA Institute for Pediatric Clinical Research, Division of Hematology-Oncology, Children' s Hospital Los Angeles, 4650 Sunset Blvd., Los Angeles, CA 90027 (United States); Ji, Lingyun, E-mail: lingyun.ji@med.usc.edu [Developmental Therapeutics Program, USC-CHLA Institute for Pediatric Clinical Research, Division of Hematology-Oncology, Children' s Hospital Los Angeles, 4650 Sunset Blvd., Los Angeles, CA 90027 (United States); Wu, Samuel Q., E-mail: swu@chla.usc.edu [Medical Genetics, Children' s Hospital Los Angeles, 4650 Sunset Blvd., Los Angeles, CA 90027 (United States); Kang, Min H., E-mail: min.kang@ttuhsc.edu [Cancer Center and Departments of Cell Biology & Biochemistry, Pharmacology & Neuroscience, Internal Medicine and Pediatrics, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430 (United States); and others

    2015-05-15

    Cancer cells typically exhibit increased glycolysis and decreased mitochondrial oxidative phosphorylation, and they continue to exhibit some elevation in glycolysis even under aerobic conditions. However, it is unclear whether cancer cell lines employ a high level of glycolysis comparable to that of the original cancers from which they were derived, even if their culture conditions are changed to physiologically relevant oxygen concentrations. From three childhood acute lymphoblastic leukemia (ALL) patients we established three new pairs of cell lines in both atmospheric (20%) and physiologic (bone marrow level, 5%) oxygen concentrations. Cell lines established in 20% oxygen exhibited lower proliferation, survival, expression of glycolysis genes, glucose consumption, and lactate production. Interestingly, the effects of oxygen concentration used during cell line initiation were only partially reversible when established cell cultures were switched from one oxygen concentration to another for eight weeks. These observations indicate that ALL cell lines established at atmospheric oxygen concentration can exhibit relatively low levels of glycolysis and these levels are semi-permanent, suggesting that physiologic oxygen concentrations may be needed from the time of cell line initiation to preserve the high level of glycolysis commonly exhibited by leukemias in vivo. - Highlights: • Establishing new ALL cell lines in 5% oxygen resulted in higher glycolytic expression and function. • Establishing new ALL cell lines in 5% oxygen resulted in higher proliferation and lower cell death. • The divergent metabolic phenotypes selected in 5% and 20% oxygen are semi-permanent.

  11. Preservation of high glycolytic phenotype by establishing new acute lymphoblastic leukemia cell lines at physiologic oxygen concentration

    International Nuclear Information System (INIS)

    Sheard, Michael A.; Ghent, Matthew V.; Cabral, Daniel J.; Lee, Joanne C.; Khankaldyyan, Vazgen; Ji, Lingyun; Wu, Samuel Q.; Kang, Min H.

    2015-01-01

    Cancer cells typically exhibit increased glycolysis and decreased mitochondrial oxidative phosphorylation, and they continue to exhibit some elevation in glycolysis even under aerobic conditions. However, it is unclear whether cancer cell lines employ a high level of glycolysis comparable to that of the original cancers from which they were derived, even if their culture conditions are changed to physiologically relevant oxygen concentrations. From three childhood acute lymphoblastic leukemia (ALL) patients we established three new pairs of cell lines in both atmospheric (20%) and physiologic (bone marrow level, 5%) oxygen concentrations. Cell lines established in 20% oxygen exhibited lower proliferation, survival, expression of glycolysis genes, glucose consumption, and lactate production. Interestingly, the effects of oxygen concentration used during cell line initiation were only partially reversible when established cell cultures were switched from one oxygen concentration to another for eight weeks. These observations indicate that ALL cell lines established at atmospheric oxygen concentration can exhibit relatively low levels of glycolysis and these levels are semi-permanent, suggesting that physiologic oxygen concentrations may be needed from the time of cell line initiation to preserve the high level of glycolysis commonly exhibited by leukemias in vivo. - Highlights: • Establishing new ALL cell lines in 5% oxygen resulted in higher glycolytic expression and function. • Establishing new ALL cell lines in 5% oxygen resulted in higher proliferation and lower cell death. • The divergent metabolic phenotypes selected in 5% and 20% oxygen are semi-permanent

  12. Isolation of a primate embryonic stem cell line.

    OpenAIRE

    Thomson, J A; Kalishman, J; Golos, T G; Durning, M; Harris, C P; Becker, R A; Hearn, J P

    1995-01-01

    Embryonic stem cells have the ability to remain undifferentiated and proliferate indefinitely in vitro while maintaining the potential to differentiate into derivatives of all three embryonic germ layers. Here we report the derivation of a cloned cell line (R278.5) from a rhesus monkey blastocyst that remains undifferentiated in continuous passage for > 1 year, maintains a normal XY karyotype, and expresses the cell surface markers (alkaline phosphatase, stage-specific embryonic antigen 3, st...

  13. A human beta cell line with drug inducible excision of immortalizing transgenes

    Science.gov (United States)

    Benazra, Marion; Lecomte, Marie-José; Colace, Claire; Müller, Andreas; Machado, Cécile; Pechberty, Severine; Bricout-Neveu, Emilie; Grenier-Godard, Maud; Solimena, Michele; Scharfmann, Raphaël; Czernichow, Paul; Ravassard, Philippe

    2015-01-01

    Objectives Access to immortalized human pancreatic beta cell lines that are phenotypically close to genuine adult beta cells, represent a major tool to better understand human beta cell physiology and develop new therapeutics for Diabetes. Here we derived a new conditionally immortalized human beta cell line, EndoC-βH3 in which immortalizing transgene can be efficiently removed by simple addition of tamoxifen. Methods We used lentiviral mediated gene transfer to stably integrate a tamoxifen inducible form of CRE (CRE-ERT2) into the recently developed conditionally immortalized EndoC βH2 line. The resulting EndoC-βH3 line was characterized before and after tamoxifen treatment for cell proliferation, insulin content and insulin secretion. Results We showed that EndoC-βH3 expressing CRE-ERT2 can be massively amplified in culture. We established an optimized tamoxifen treatment to efficiently excise the immortalizing transgenes resulting in proliferation arrest. In addition, insulin expression raised by 12 fold and insulin content increased by 23 fold reaching 2 μg of insulin per million cells. Such massive increase was accompanied by enhanced insulin secretion upon glucose stimulation. We further observed that tamoxifen treated cells maintained a stable function for 5 weeks in culture. Conclusions EndoC βH3 cell line represents a powerful tool that allows, using a simple and efficient procedure, the massive production of functional non-proliferative human beta cells. Such cells are close to genuine human beta cells and maintain a stable phenotype for 5 weeks in culture. PMID:26909308

  14. Long-term persistence of acquired resistance to 5-fluorouracil in the colon cancer cell line SW620

    Energy Technology Data Exchange (ETDEWEB)

    Tentes, I.K., E-mail: itentes@med.duth.gr [Department of Biochemistry, Medical School, Democritus University of Thrace, 6th km Alexandroupolis-Komotini (Dragana), 68100 Alexandroupolis (Greece); Schmidt, W.M. [Center for Anatomy and Cell Biology, Waehringer Strasse 13, 1090 Vienna (Austria); Krupitza, G. [Institute of Clinical Pathology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna (Austria); Steger, G.G.; Mikulits, W. [Department of Medicine I, Medical University of Vienna, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna (Austria); Kortsaris, A. [Department of Biochemistry, Medical School, Democritus University of Thrace, 6th km Alexandroupolis-Komotini (Dragana), 68100 Alexandroupolis (Greece); Mader, R.M. [Department of Medicine I, Medical University of Vienna, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna (Austria)

    2010-11-15

    Treatment resistance to antineoplastic drugs represents a major clinical problem. Here, we investigated the long-term stability of acquired resistance to 5-fluorouracil (FU) in an in vitro colon cancer model, using four sub-clones characterised by increasing FU-resistance derived from the cell line SW620. The resistance phenotype was preserved after FU withdrawal for 15 weeks ({approx} 100 cell divisions) independent of the established level of drug resistance and of epigenetic silencing. Remarkably, resistant clones tolerated serum deprivation, adopted a CD133{sup +} CD44{sup -} phenotype, and further exhibited loss of membrane-bound E-cadherin together with predominant nuclear {beta}-catenin localisation. Thus, we provide evidence for a long-term memory of acquired drug resistance, driven by multiple cellular strategies (epithelial-mesenchymal transition and selective propagation of CD133{sup +} cells). These resistance phenomena, in turn, accentuate the malignant phenotype.

  15. Cell lines radiosensitization of thyroid cancer by histone deacetylase inhibitors

    International Nuclear Information System (INIS)

    Perona, M; Dagrosa, M A; Rossich, L; Casal, M; Pisarev, M A; Thomasz, L; Juvenal G J

    2012-01-01

    Introduction: Thyroid cancer is the most common endocrine neoplasia. Surgical resection and radioactive iodine is an effective treatment for well-differentiated tumors. Histone deacetylase inhibitors (HDAC-I) are agents that cause hyperacetylation of histone proteins and as a consequence remodeling of chromatin structure. They can induce growth arrest, differentiation and apoptotic cell death in different tumor cells. The use of HDAC-I agents could be of utility to enhance the response to external radiation therapy of those thyroid cancers that are refractory to most conventional therapeutic treatments. Objective: To study the effect of HDAC-I as radiosensitizers for the treatment of thyroid cancer and their ability to induce differentiation of thyroid cancer cells. Materials and methods: The human thyroid follicular (WRO) and papillary (TPC-1) carcinoma cell lines were seeded and incubated with increasing doses (0, 0.3, 0.5, 1 and 1.5 mM) of the HDAC-I sodium butirate (NaB) and valproic acid (VA) to evaluate cell proliferation and iodide uptake. Cells were irradiated with a 60 Co γ-ray source (1 ± 5% Gy/min) and postirradiation survival was quantified with the colony formation assay. Survival fraction at 2 Gy (SF2) was calculated for each cell line. Cell cycle and cell death were evaluated at a dose of 3 Gy. Iodide uptake, PCR analysis and transient transfection studies were performed. Results: Cell proliferation was not significantly suppressed after 24 hours of incubation with both drugs at all assayed doses. Iodide uptake was not modified after incubation with HDAC-I of both cell lines. SF2 was reduced from 68 ± 1.6 % in the control WRO cells to 42 ± 3.8 % (P<0.001) in NaB-treated cells. In TPC-1 SF2 was reduced from 32 ± 1.1 % in the control cells to 24 ± 0.8 % (P<0.01). In VA-treated cells SF2 was reduced from 69 ± 0.02 % in control WRO cells to 56 ± 0.01 % (P<0.01) and from 31 ± 2 % in control TPC-1 cells to 11 ± 1 % (P<0.01). There was an arrest

  16. New model for gastroenteropancreatic large-cell neuroendocrine carcinoma: establishment of two clinically relevant cell lines.

    Directory of Open Access Journals (Sweden)

    Andreas Krieg

    Full Text Available Recently, a novel WHO-classification has been introduced that divided gastroenteropancreatic neuroendocrine neoplasms (GEP-NEN according to their proliferation index into G1- or G2-neuroendocrine tumors (NET and poorly differentiated small-cell or large-cell G3-neuroendocrine carcinomas (NEC. Our knowledge on primary NECs of the GEP-system is limited due to the rarity of these tumors and chemotherapeutic concepts of highly aggressive NEC do not provide convincing results. The aim of this study was to establish a reliable cell line model for NEC that could be helpful in identifying novel druggable molecular targets. Cell lines were established from liver (NEC-DUE1 or lymph node metastases (NEC-DUE2 from large cell NECs of the gastroesophageal junction and the large intestine, respectively. Morphological characteristics and expression of neuroendocrine markers were extensively analyzed. Chromosomal aberrations were mapped by array comparative genomic hybridization and DNA profiling was analyzed by DNA fingerprinting. In vitro and in vivo tumorigenicity was evaluated and the sensitivity against chemotherapeutic agents assessed. Both cell lines exhibited typical morphological and molecular features of large cell NEC. In vitro and in vivo experiments demonstrated that both cell lines retained their malignant properties. Whereas NEC-DUE1 and -DUE2 were resistant to chemotherapeutic drugs such as cisplatin, etoposide and oxaliplatin, a high sensitivity to 5-fluorouracil was observed for the NEC-DUE1 cell line. Taken together, we established and characterized the first GEP large-cell NEC cell lines that might serve as a helpful tool not only to understand the biology of these tumors, but also to establish novel targeted therapies in a preclinical setup.

  17. Cell Line Derived 5-FU and Irinotecan Drug-Sensitivity Profiles Evaluated in Adjuvant Colon Cancer Trial Data

    DEFF Research Database (Denmark)

    Buhl, Ida Kappel; Gerster, Sarah; Delorenzi, Mauro

    2016-01-01

    patients who benefitted from the addition of irinotecan to 5-FU, we used gene expression profiles based on cell lines and clinical tumor material. These profiles were applied to expression data obtained from pretreatment formalin fixed paraffin embedded (FFPE) tumor tissue from 636 stage III colon cancer...... patients enrolled in the PETACC-3 prospective randomized clinical trial. A 5-FU profile developed similarly was assessed by comparing the PETACC-3 cohort with a cohort of 359 stage II colon cancer patients who underwent surgery but received no adjuvant therapy. RESULTS: There was no statistically...... to identify colon cancer patients who may benefit from 5-FU, however, any biomarker predicting benefit for adjuvant 5-FU must be rigorously evaluated in independent cohorts. Given differences between the two study cohorts, the present results should be further validated....

  18. 5-Fluorouracil-induced apoptosis in cultured oral cancer cells.

    Science.gov (United States)

    Tong, D; Poot, M; Hu, D; Oda, D

    2000-03-01

    Chemotherapy is commonly used to treat advanced oral squamous cell carcinoma (SCC) and is known to kill cancer cells through apoptosis. Our hypothesis states that 5-fluorouracil (5FU) also kills cultured oral epithelial cells through programmed cell death or apoptosis. Cultured oral cancer cells were exposed to an optimum dose of 20 mg/ml of 5FU. Cells were analyzed for changes in cell cycle distribution and induction of cell death including apoptosis. Normal control, human papilloma virus-immortalized (PP), ATCC SCC cell line (CA1) and two primary oral SCC cell lines (CA3 and -4) were studied. Inhibition of apoptosis by a pan-caspase inhibitor was used. SYTO 11 flow cytometry showed increased apoptosis in all 5FU-treated cell cultures compared to untreated controls. The results show biological variation in apoptotic response. CA1 had the lowest apoptotic rate of the cancer cell lines at 1.5%. Next lowest was CA3, followed by CA4 and PP. In addition, alteration in the G1 and S phase fractions were found. Untreated CA1 showed 28% G1, 53% S compared to 43% G1, and 40% S of treated. We investigated the pathway of apoptosis using the pan-caspase inhibitor IDN-1529 by methylthiazolyl diphenyl tetrazolium bromide (MTT) colorimetric analysis. Results showed mild inhibition of cell death when cells were incubated with 50 microM IDN-1529 for 24 h. This suggests a probable caspase-dependent apoptotic pathway. In conclusion, our data suggest that 5FU induces oral cancer cell death through apoptosis and that biological variation exists between normal and cancer cells and between different types of cancer cells themselves. Our data indicate that cultures of a useful in vitro model for chemosensitivity assays are possible. Our results also suggest a caspase-dependent pathway for chemocytotoxicity in oral SCC.

  19. Comparison of the anti-cancer effect of Disulfiram and 5-Aza-CdR on pancreatic cancer cell line PANC-1.

    Science.gov (United States)

    Dastjerdi, Mehdi Nikbakht; Babazadeh, Zahra; Salehi, Mansour; Hashemibeni, Batool; Kazemi, Mohammad

    2014-01-01

    Pancreatic cancer has poor prognosis by surgical and chemotherapy when it is diagnosed, so other anti-cancerous assistant therapeutic drugs are suggested e.g. epigenetic reversal of tumor-suppressor genes on promoter hypermethylation. 5-Aza-CdR is a nucleoside analog of DNMTi but it has long-term cytotoxicity effects. This study compares the anticancer effect of 5-Aza-CdR and Disulfiram potencies on PANC-1 cell line and up-regulation of p21. PANC-1 cell line was cultured in DMEM high glucose and treated by 5-Aza-CdR with 5 and 10 μM concentration for four days and 13 μM DSF (Diulfiram) for 24 hours. MS-PCR and RT-PCR were carried out to detect the methylation pattern and estimate the mRNA expression of RASSF1A and p21 in PANC-1. MS-PCR demonstrated partial unmethylation after treatment with 5-Aza-CdR while there was no unmethylated band after DSF treatment. RT-PCR showed significant differences between re-expression of RASSF1A before and after treatment with 10 μM 5-Aza-CdR (P 0.05). The significant correlation was observed between RASSF1A re-expression and p21 up-regulation before and after treatment with 10 μM 5-Aza-CdR (P 0.05), while p21 up-regulation was significantly higher after DSF treatment (P PANC-1. DSF showed no epigenetic reversion while it affected p21 up-regulation.

  20. Purinergic receptors and calcium signalling in human pancreatic duct cell lines

    DEFF Research Database (Denmark)

    Hansen, Mette R; Krabbe, Simon; Novak, Ivana

    2008-01-01

    pancreatic duct cell lines PANC-1 and CFPAC-1. Expression of P2 receptors was examined using RT-PCR and immunocytochemistry. Both cell lines, and also Capan-1 cells, express RNA transcripts for the following receptors: P2Y1, P2Y2, P2Y4, P2Y6, P2Y11-14 and P2X1, P2X2, P2X4, P2X5, P2X6 and P2X7. Using Fura-2...... and single-cell imaging we tested effects of various nucleotide analogues on intracellular Ca(2+) signals in PANC-1 and CFPAC-1 cells. The cell lines responded to all nucleotides with the following efficiency: UTP >or= ATP = ATPgammaS > BzATP. ATP, UTP and ATPgammaS elicited oscillatory responses. Bz...

  1. Monitoring cell line identity in collections of human induced pluripotent stem cells

    Directory of Open Access Journals (Sweden)

    Raquel Sarafian

    2018-04-01

    Full Text Available The ability to reprogram somatic cells into induced pluripotent stem cells (hiPSCs has led to the generation of large collections of cell lines from thousands of individuals with specific phenotypes, many of which will be shared among different research groups as invaluable tools for biomedical research. As hiPSC-based research involves extensive culture of many cell lines, the issue periodic cell line identification is particularly important to ensure that cell line identity remains accurate. Here we analyzed the different commercially available genotyping methods considering ease of in-house genotyping, cost and informativeness, and applied one of them in our workflow for hiPSC generation. We show that the chosen STR method was able to establish a unique DNA profile for each of the 35 individuals/hiPSC lines at the examined sites, as well as identify two discrepancies resulting from inadvertently exchanged samples. Our results highlight the importance of hiPSC line genotyping by an in-house method that allows periodic cell line identification and demonstrate that STR is a useful approach to supplement less frequent karyotyping and epigenetic evaluations. Keywords: Induced pluripotent stem cells, Genotyping, Cell line identification, Short tandem repeats, Quality control

  2. RBE of neutrons for induction of cell reproductive death and chromosome aberrations in three cell lines

    International Nuclear Information System (INIS)

    Zoetelief, J.; Kuijpers, W.C.; Baten-Wittwer, A.; Barendsen, G.W.

    1983-01-01

    The authors have compared the RBE values for induction of dicentrics and centric rings with those for cell inactivation and with the mean or effective quality factors (Q) recommended for radiation protection. The induction of cell reproductive death and chromosome aberrations has been investigated in plateau phase cultures of established lines of a rat rhabdomyosarcoma, a rat ureter carcinoma and Chinese hamster cells for single doses of 300 kV X-rays and 0.5, 4.2 and 15 MeV neutrons. The different cell lines show considerable variations in sensitivity and the RBE values obtained are presented in tabular form. The mean RBE values for the rat rhabdomyosarcoma cells are lower than those for the other two relatively resistant cell lines. Those for the Chinese hamster cells extrapolated to levels according to low doses of X-rays are in good agreement with the quoted Q values. (Auth./C.F.)

  3. Evaluation of different continuous cell lines in the isolation of mumps virus by the shell vial method from clinical samples

    Science.gov (United States)

    Reina, J; Ballesteros, F; Mari, M; Munar, M

    2001-01-01

    Aims—To compare prospectively the efficacy of the Vero, LLC-MK2, MDCK, Hep-2, and MRC-5 cell lines in the isolation of the mumps virus from clinical samples by means of the shell vial method. Methods—During an epidemic outbreak of parotiditis 48 clinical samples (saliva swabs and CSF) were studied. Two vials of the Vero, LLC-MK2, MDCK, MRC-5, and Hep-2 cell lines were inoculated with 0.2 ml of the samples by the shell vial assay. The vials were incubated at 36°C for two and five days. The vials were then fixed with acetone at -20°C for 10 minutes and stained by a monoclonal antibody against mumps virus by means of an indirect immunofluorescence assay. Results—The mumps virus was isolated from 36 samples. The Vero and LLC-MK2 cell lines showed a 100% isolation capacity, MDCK showed 77.7%, MRC-5 showed 44.4%, and Hep-2 showed 22.2%. The Vero and LLC-MK2 lines were significantly different to the other cell lines (p 5 infectious foci) were 94.4% for Vero, 97.2% for LLC-MK2, 5.5% for MDCK, 5.5% for Hep-2, and 0% for MRC-5. Conclusions—The Vero and LLC-MK2 cell lines are equally efficient at two and five days incubation for the isolation of the mumps virus from clinical samples, and the use of the shell vial method considerably shortens the time of aetiological diagnosis with higher specificity. Key Words: mumps virus • Vero cell line • LLC-MK2 cell line • MDCK cell line • Hep-2 cell line • MRC-5 cell line • isolation • shell vial PMID:11729211

  4. Radiobiological studies with a series of human cell lines of varying glutathione content

    International Nuclear Information System (INIS)

    Astor, M.B.

    1984-01-01

    Radiation responses of a series of four human fibroblast lines obtained from a family affected with 5-oxoprolinuria were determined. Cell suspensions were irradiated under hypoxic conditions and the oxygen enhancement ratio was determined for each cell line. Results are compared with previous studies

  5. Matrigel Basement Membrane Matrix influences expression of microRNAs in cancer cell lines

    International Nuclear Information System (INIS)

    Price, Karina J.; Tsykin, Anna; Giles, Keith M.; Sladic, Rosemary T.; Epis, Michael R.; Ganss, Ruth; Goodall, Gregory J.; Leedman, Peter J.

    2012-01-01

    Highlights: ► Matrigel alters cancer cell line miRNA expression relative to culture on plastic. ► Many identified Matrigel-regulated miRNAs are implicated in cancer. ► miR-1290, -210, -32 and -29b represent a Matrigel-induced miRNA signature. ► miR-32 down-regulates Integrin alpha 5 (ITGA5) mRNA. -- Abstract: Matrigel is a medium rich in extracellular matrix (ECM) components used for three-dimensional cell culture and is known to alter cellular phenotypes and gene expression. microRNAs (miRNAs) are small, non-coding RNAs that regulate gene expression and have roles in cancer. While miRNA profiles of numerous cell lines cultured on plastic have been reported, the influence of Matrigel-based culture on cancer cell miRNA expression is largely unknown. This study investigated the influence of Matrigel on the expression of miRNAs that might facilitate ECM-associated cancer cell growth. We performed miRNA profiling by microarray using two colon cancer cell lines (SW480 and SW620), identifying significant differential expression of miRNAs between cells cultured in Matrigel and on plastic. Many of these miRNAs have previously been implicated in cancer-related processes. A common Matrigel-induced miRNA signature comprised of up-regulated miR-1290 and miR-210 and down-regulated miR-29b and miR-32 was identified using RT-qPCR across five epithelial cancer cell lines (SW480, SW620, HT-29, A549 and MDA-MB-231). Experimental modulation of these miRNAs altered expression of their known target mRNAs involved in cell adhesion, proliferation and invasion, in colon cancer cell lines. Furthermore, ITGA5 was identified as a novel putative target of miR-32 that may facilitate cancer cell interactions with the ECM. We propose that culture of cancer cell lines in Matrigel more accurately recapitulates miRNA expression and function in cancer than culture on plastic and thus is a valuable approach to the in vitro study of miRNAs.

  6. Establishment of cell lines with rat spermatogonial stem cell characteristics

    NARCIS (Netherlands)

    van Pelt, Ans M. M.; Roepers-Gajadien, Hermien L.; Gademan, Iris S.; Creemers, Laura B.; de Rooij, Dirk G.; van Dissel-Emiliani, Federica M. F.

    2002-01-01

    Spermatogonial cell lines were established by transfecting a mixed population of purified rat A(s) (stem cells), A(pr) and A(al) spermatogonia with SV40 large T antigen. Two cell lines were characterized and found to express Hsp90alpha and oct-4, specific markers for germ cells and A spermatogonia,

  7. Nuclear donor cell lines considerably influence cloning efficiency and the incidence of large offspring syndrome in bovine somatic cell nuclear transfer.

    Science.gov (United States)

    Liu, J; Wang, Y; Su, J; Luo, Y; Quan, F; Zhang, Y

    2013-08-01

    Total five ear skin fibroblast lines (named F1, F2, F3, F4 and F5) from different newborn Holstein cows have been used as nuclear donor cells for producing cloned cows by somatic cell nuclear transfer (SCNT). The effects of these cell lines on both in vitro and in vivo developmental rates of cloned embryos, post-natal survivability and incidence of large offspring syndrome (LOS) were examined in this study. We found that the different cell lines possessed the same capacity to support pre-implantation development of cloned embryos, the cleavage and blastocyst formation rates ranged from 80.2 ± 0.9 to 84.5 ± 2.5% and 28.5 ± 0.9 to 33.3 ± 1.4%, respectively. However, their capacities to support the in vivo development of SCNT embryos showed significant differences (p cloning efficiency was significantly higher in group F5 than those in group F1, F2, F3 and F4 (9.3% vs 4.1%, 1.2%, 2.0% and 5.0%, respectively, p cloned offspring from cell line F1, F2, F3 and F4 showed LOS and gestation length delay, while all cloned offspring from F5 showed normal birthweight and gestation length. We concluded that the nuclear donor cell lines have significant impact on the in vivo development of cloned embryos and the incidence of LOS in cloned calves. © 2013 Blackwell Verlag GmbH.

  8. Comparison of steroid receptors from the androgen responsive DDT1 cell line and the nonresponsive HVP cell line.

    Science.gov (United States)

    Norris, J S; Kohler, P O

    1978-01-01

    Two hamster cell lines have been isolated from androgen target tissue. The DDT1 cells derived from ductus deferens tissue exhibit a growth response to androgens, while the HVP cells derived from ventral prostate are androgen unresponsive. Both cell lines contain androgen receptors, that are similar when compared by kinetic methods, sedimentation velocity, chromatographic procedures or nuclear translocation ability. The forms of the high salt extracted nuclear receptors are indistinguishable chromatographically. Therefore, we postulate that the lesion preventing androgen induced growth in the HVP cell line is subseqent to nuclear translocation of the steroid receptor complex.

  9. In vitro and in vivo characteristics of a human colon cancer cell line, SNU-C5N, expressing sodium-iodide symporter

    International Nuclear Information System (INIS)

    Min, Jung-Jun; Chung, June-Key; Jin Lee, Yong; Hoon Shin, Jae; Seok Yeo, Jeong; Min Jeong, Jae; Bom, Dong Soo Leea Hee-Seung; Chul Lee, Myung

    2002-01-01

    Rat NIS (rNIS) genes were transfected into a human colon cancer cell line (SNU-C5) by lipofection. The transfected cells (SNU-C5N) exhibited an increase 125 I uptake to a level 10 times higher than the untransfected SNU-C5 cells. The addition of 300 μM DIDS, an anion channel blocker, to the culture media led to a 2.35 times increase of 125 I uptake in the cells. For the first 10 minutes, up to 70% of the cellular radioactivity was released into the medium. In the biodistribution study using SNU-C5N-xenografted mice, the %ID/g of the SNU-C5N tumors at 1, 3, 6, and 12 h after the 125 I injection were 4.43%, 1.09%, 1.05%, and 0.05%, respectively, which were significantly higher than those for the SNU-C5 tumors (P<0.05). In tumor imaging, the SNU-C5N-xenografted tumor was clearly visible. In this study, NIS lipofection is efficient for triggering significant iodide uptake by a nonthyroidal tumor. However, for an increased therapeutic effect, the key issue is iodide retention in the target tissue

  10. In vitro and in vivo characteristics of a human colon cancer cell line, SNU-C5N, expressing sodium-iodide symporter

    Energy Technology Data Exchange (ETDEWEB)

    Min, Jung-Jun; Chung, June-Key E-mail: jkchung@plaza.snu.ac.kr; Jin Lee, Yong; Hoon Shin, Jae; Seok Yeo, Jeong; Min Jeong, Jae; Bom, Dong Soo Leea Hee-Seung; Chul Lee, Myung

    2002-07-01

    Rat NIS (rNIS) genes were transfected into a human colon cancer cell line (SNU-C5) by lipofection. The transfected cells (SNU-C5N) exhibited an increase {sup 125}I uptake to a level 10 times higher than the untransfected SNU-C5 cells. The addition of 300 {mu}M DIDS, an anion channel blocker, to the culture media led to a 2.35 times increase of {sup 125}I uptake in the cells. For the first 10 minutes, up to 70% of the cellular radioactivity was released into the medium. In the biodistribution study using SNU-C5N-xenografted mice, the %ID/g of the SNU-C5N tumors at 1, 3, 6, and 12 h after the {sup 125}I injection were 4.43%, 1.09%, 1.05%, and 0.05%, respectively, which were significantly higher than those for the SNU-C5 tumors (P<0.05). In tumor imaging, the SNU-C5N-xenografted tumor was clearly visible. In this study, NIS lipofection is efficient for triggering significant iodide uptake by a nonthyroidal tumor. However, for an increased therapeutic effect, the key issue is iodide retention in the target tissue.

  11. Cytotoxicity effect of Zataria multiflora Boiss. on two human colon carcinoma cell lines

    Directory of Open Access Journals (Sweden)

    F. Sharififar

    2017-10-01

    Full Text Available Background and objectives: Natural products are one of the major sources for investigations of novel medicines. Zataria multiflora Boiss (ZM has shown pharmacological activities especially in gastrointestinal tract; however, there are limited studies about its cytotoxicity effects. In this study, the effect of Zataria multiflora was examined on two colon cancer cell lines (SW-48 and HT-29. Methods: Hydro-alcoholic extract of ZM and its fractions including chloroform, petroleum ether and methanol extract were prepared by warm maceration method. Different concentrations were prepared and examined on SW-48 and HT-29 cell lines using 2-(4, 5-dimethylthiazol-2-yl 2, 5-diphenyltetrazolium bromide (MTT assay. Results: The results of the present study have shown the cytotoxic effect of some fractions of ZM. The most considerable cytotoxic effect was shown against HT-29 cell line. Also, total ZM extract and the petroleum ether fraction demonstrated cytotoxic effects with IC50 values of 44.22 and 33.42 µg/ml on SW-48 and HT-29 cell lines, respectively. Conclusion: Zataria multiflora was cytotoxic to against colon cancer cell lines HT-29 and SW-48.

  12. Identification of genes associated with cisplatin resistance in human oral squamous cell carcinoma cell line

    International Nuclear Information System (INIS)

    Zhang, Ping; Zhang, Zhiyuan; Zhou, Xiaojian; Qiu, Weiliu; Chen, Fangan; Chen, Wantao

    2006-01-01

    Cisplatin is widely used for chemotherapy of head and neck squamous cell carcinoma. However, details of the molecular mechanism responsible for cisplatin resistance are still unclear. The aim of this study was to identify the expression of genes related to cisplatin resistance in oral squamous cell carcinoma cells. A cisplatin-resistant cell line, Tca/cisplatin, was established from a cisplatin-sensitive cell line, Tca8113, which was derived from moderately-differentiated tongue squamous cell carcinoma. Global gene expression in this resistant cell line and its sensitive parent cell line was analyzed using Affymetrix HG-U95Av2 microarrays. Candidate genes involved in DNA repair, the MAP pathway and cell cycle regulation were chosen to validate the microarray analysis results. Cell cycle distribution and apoptosis following cisplatin exposure were also investigated. Cisplatin resistance in Tca/cisplatin cells was stable for two years in cisplatin-free culture medium. The IC50 for cisplatin in Tca/cisplatin was 6.5-fold higher than that in Tca8113. Microarray analysis identified 38 genes that were up-regulated and 25 that were down-regulated in this cell line. Some were novel candidates, while others are involved in well-characterized mechanisms that could be relevant to cisplatin resistance, such as RECQL for DNA repair and MAP2K6 in the MAP pathway; all the genes were further validated by Real-time PCR. The cell cycle-regulated genes CCND1 and CCND3 were involved in cisplatin resistance; 24-hour exposure to 10 μM cisplatin induced a marked S phase block in Tca/cisplatin cells but not in Tca8113 cells. The Tca8113 cell line and its stable drug-resistant variant Tca/cisplatin provided a useful model for identifying candidate genes responsible for the mechanism of cisplatin resistance in oral squamous cell carcinoma. Our data provide a useful basis for screening candidate targets for early diagnosis and further intervention in cisplatin resistance

  13. Identification of genes associated with cisplatin resistance in human oral squamous cell carcinoma cell line

    Directory of Open Access Journals (Sweden)

    Zhang Ping

    2006-09-01

    Full Text Available Abstract Background Cisplatin is widely used for chemotherapy of head and neck squamous cell carcinoma. However, details of the molecular mechanism responsible for cisplatin resistance are still unclear. The aim of this study was to identify the expression of genes related to cisplatin resistance in oral squamous cell carcinoma cells. Methods A cisplatin-resistant cell line, Tca/cisplatin, was established from a cisplatin-sensitive cell line, Tca8113, which was derived from moderately-differentiated tongue squamous cell carcinoma. Global gene expression in this resistant cell line and its sensitive parent cell line was analyzed using Affymetrix HG-U95Av2 microarrays. Candidate genes involved in DNA repair, the MAP pathway and cell cycle regulation were chosen to validate the microarray analysis results. Cell cycle distribution and apoptosis following cisplatin exposure were also investigated. Results Cisplatin resistance in Tca/cisplatin cells was stable for two years in cisplatin-free culture medium. The IC50 for cisplatin in Tca/cisplatin was 6.5-fold higher than that in Tca8113. Microarray analysis identified 38 genes that were up-regulated and 25 that were down-regulated in this cell line. Some were novel candidates, while others are involved in well-characterized mechanisms that could be relevant to cisplatin resistance, such as RECQL for DNA repair and MAP2K6 in the MAP pathway; all the genes were further validated by Real-time PCR. The cell cycle-regulated genes CCND1 and CCND3 were involved in cisplatin resistance; 24-hour exposure to 10 μM cisplatin induced a marked S phase block in Tca/cisplatin cells but not in Tca8113 cells. Conclusion The Tca8113 cell line and its stable drug-resistant variant Tca/cisplatin provided a useful model for identifying candidate genes responsible for the mechanism of cisplatin resistance in oral squamous cell carcinoma. Our data provide a useful basis for screening candidate targets for early diagnosis

  14. Toxicity of bovicin HC5 against mammalian cell lines and the role of cholesterol in bacteriocin activity.

    Science.gov (United States)

    Paiva, Aline Dias; de Oliveira, Michelle Dias; de Paula, Sérgio Oliveira; Baracat-Pereira, Maria Cristina; Breukink, Eefjan; Mantovani, Hilário Cuquetto

    2012-11-01

    Bacteriocins are ribosomally synthesized antimicrobial peptides produced by Bacteria and some Archaea. The assessment of the toxic potential of antimicrobial peptides is important in order to apply these peptides on an industrial scale. The aim of the present study was to investigate the in vitro cytotoxic and haemolytic potential of bovicin HC5, as well as to determine whether cholesterol influences bacteriocin activity on model membranes. Nisin, for which the mechanism of action is well described, was used as a reference peptide in our assays. The viability of three distinct eukaryotic cell lines treated with bovicin HC5 or nisin was analysed by using the MTT assay and cellular morphological changes were determined by light microscopy. The haemolytic potential was evaluated by using the haemoglobin liberation assay and the role of cholesterol on bacteriocin activity was examined by using model membranes composed of DOPC (1,2-dioleoyl-sn-glycero-3-phosphocholine) and DPoPC (1,2-dipalmitoyl-sn-glycero-3-phosphocholine). The IC(50) of bovicin HC5 and nisin against Vero cells was 65.42 and 13.48 µM, respectively. When the MTT assay was performed with MCF-7 and HepG2 cells, the IC(50) obtained for bovicin HC5 was 279.39 and 289.30 µM, respectively, while for nisin these values were 105.46 and 112.25 µM. The haemolytic activity of bovicin HC5 against eukaryotic cells was always lower than that determined for nisin. The presence of cholesterol did not influence the activity of either bacteriocin on DOPC model membranes, but nisin showed reduced carboxyfluorescein leakage in DPoPC membranes containing cholesterol. In conclusion, bovicin HC5 only exerted cytotoxic effects at concentrations that were greater than the concentration needed for its biological activity, and the presence of cholesterol did not affect its interaction with model membranes.

  15. In vitro radiation and chemotherapy sensitivity of established cell lines of human small cell lung cancer and its large cell morphological variants

    International Nuclear Information System (INIS)

    Carney, D.N.; Mitchell, J.B.; Kinsella, T.J.

    1983-01-01

    The in vitro response to radiation and chemotherapeutic drugs of cell lines established from 7 patients with small cell (SC) lung cancer were tested using a soft agarose clonogenic assay. Five cell lines retained the typical morphological and biochemical amine precursor uptake decarboxylation characteristics of SC, while two cell lines had undergone ''transformation'' to large cell (LC) morphological variants with loss of amine precursor uptake decarboxylation cell characteristics of SC. The radiation survival curves for the SC lines were characterized by D0 values ranging from 51 to 140 rads and extrapolation values (n) ranging from 1.0 to 3.3. While the D0 values of the radiation survival curves of the LC variants were similar (91 and 80 rads), the extrapolation values were 5.6 and 11.1 In vitro chemosensitivity testing of the cell lines revealed an excellent correlation between prior treatment status of the patient and in vitro sensitivity or resistance. No correlation was observed between in vitro chemosensitivity and radiation response. These data suggest that transformation of SC to LC with loss of amine precursor uptake and decarboxylation characteristics is associated with a marked increase in radiation resistance (n) in vitro. The observation of a 2- to 5-fold increase in survival of the LC compared to the SC lines following 200 rads suggests that the use of larger daily radiation fractions and/or radiation-sensitizing drugs might lead to a significantly greater clinical response in patients with LC morphology. This clinical approach may have a major impact on patient response and survival

  16. Pathway-specific differences between tumor cell lines and normal and tumor tissue cells

    Directory of Open Access Journals (Sweden)

    Tozeren Aydin

    2006-11-01

    Full Text Available Abstract Background Cell lines are used in experimental investigation of cancer but their capacity to represent tumor cells has yet to be quantified. The aim of the study was to identify significant alterations in pathway usage in cell lines in comparison with normal and tumor tissue. Methods This study utilized a pathway-specific enrichment analysis of publicly accessible microarray data and quantified the gene expression differences between cell lines, tumor, and normal tissue cells for six different tissue types. KEGG pathways that are significantly different between cell lines and tumors, cell lines and normal tissues and tumor and normal tissue were identified through enrichment tests on gene lists obtained using Significance Analysis of Microarrays (SAM. Results Cellular pathways that were significantly upregulated in cell lines compared to tumor cells and normal cells of the same tissue type included ATP synthesis, cell communication, cell cycle, oxidative phosphorylation, purine, pyrimidine and pyruvate metabolism, and proteasome. Results on metabolic pathways suggested an increase in the velocity nucleotide metabolism and RNA production. Pathways that were downregulated in cell lines compared to tumor and normal tissue included cell communication, cell adhesion molecules (CAMs, and ECM-receptor interaction. Only a fraction of the significantly altered genes in tumor-to-normal comparison had similar expressions in cancer cell lines and tumor cells. These genes were tissue-specific and were distributed sparsely among multiple pathways. Conclusion Significantly altered genes in tumors compared to normal tissue were largely tissue specific. Among these genes downregulation was a major trend. In contrast, cell lines contained large sets of significantly upregulated genes that were common to multiple tissue types. Pathway upregulation in cell lines was most pronounced over metabolic pathways including cell nucleotide metabolism and oxidative

  17. Characterization of stem-like cells in a new astroblastoma cell line

    Energy Technology Data Exchange (ETDEWEB)

    Coban, Esra Aydemir; Kasikci, Ezgi [Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, Istanbul (Turkey); Karatas, Omer Faruk [Molecular Biology and Genetics Department, Erzurum Technical University, Erzurum (Turkey); Suakar, Oznur; Kuskucu, Aysegul [Department of Medical Genetics, Yeditepe University Medical School and Yeditepe University Hospital, Istanbul (Turkey); Altunbek, Mine [Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, Istanbul (Turkey); Türe, Uğur [Department of Neurosurgery, Yeditepe University School of Medicine, Istanbul (Turkey); Sahin, Fikrettin [Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, Istanbul (Turkey); Bayrak, Omer Faruk, E-mail: ofbayrak@yeditepe.edu.tr [Department of Medical Genetics, Yeditepe University Medical School and Yeditepe University Hospital, Istanbul (Turkey)

    2017-03-15

    Cell lines established from tumors are the most commonly used models in cancer research, and their use in recent years has enabled a greater understanding of the biology of cancer and the means to develop effective treatment strategies. Astroblastomas are uncommon neuroepithelial tumors of glial origin, predominantly affecting young people, mainly teenagers and children, predominantly females. To date, only a single study has reported that astroblastomas contain a large number of neural stem-like cells, which had only a partial proliferation capacity and differentiation. Our objective was to establish an astroblastoma cell line to investigate the presence of astroblastic cells and cancer stem-like cells. The migratory and invasion abilities of the cells were quantified with invasion and migration assays and compared to a glioblastoma cell line. The presence of stem cells was detected with surface-marker analysis by using flow cytometry, and measuring the differentiation ability with a differentiation assay and the self-renewal capacity with a sphere-forming assay. These characteristics may determine whether this novel cell line is a model for astroblastomas that may have stem-cell characteristics. With this novel cell line, scientists can investigate the molecular pathways underlying astroblastomas and develop new therapeutic strategies for patients with these tumors. - Highlights: • An establishment of a novel astroblastoma cell line was proposed. • The presence of astroblastic cells and cancer stem-like cells was investigated. • The molecular pathways underlying astroblastomas may be investigated. • New therapeutic strategies for patients with astroblastoma may be developed.

  18. Methylation Status of miR-182 Promoter in Lung Cancer Cell Lines

    Directory of Open Access Journals (Sweden)

    Yongwen LI

    2015-05-01

    Full Text Available Background and objective It has been proven that the abnormal expression of miR-182 was related to the occurrence and development of tumors. The aim of this study is to explore the relationship between the methylation of miR-182 promoter and its expression in lung cancer cell lines. Methods Real-time quantitative PCR and methylation-specific PCR were used to detect the expression level of miR-182 and its promoter methylation status in five lung cancer cell lines (A549, L9981, NL9980, 95C and 95D. DNA sequencing was used to confirm the methylation results. Results The level of miR-182 expression significantly differs among these lung cancer cell lines. The highly metastatic human lung cancer cell lines, namely, A549 and L9981, demonstrate a relatively lower expression level of miR-182 compared with the lowly metastatic human lung cancer cell line 95C. Methylation-specific PCR and DNA sequencing assay results indicate that these lung cancer cell lines present different levels of miR-182 promoter methylation, and the highest methylation level is observed in A549 cells. Furthermore, the expression of miR-182 in these cell lines significantly increases when treated with 10 μM 5’-Aza-dC. Conclusion DNA methylation occurs in the miR-182 promoter region in lung cancer cell lines. This methylation can regulate the expression level of miR-182. Further study must be conducted to explore the function of miR-182 promoter methylation in lung cancer occurrence and development.

  19. A Comparison between the Cytotoxicity Induced by Gossypol in Two Testicular Cell Lines

    Directory of Open Access Journals (Sweden)

    Neda MahdinezhadGorji

    2014-12-01

    Full Text Available Background: Gossypol is a yellow toxic pigment from the cottonseed that can cause acute or chronic toxicity in humans and animals by affecting the testicular tissues. Nowadays cottonseed is used as food supplement for ruminants specially the sheep. In this study, two different stem cell lines of testicular tissue including GC1-spg (mouse testis and SFTF-PI43 (sheep testis cells were used to evaluation of gossypol cytotoxicity. Methods: The GC-1spg and the SFTF_PI43 cells were cultured in RPMI-1640 supplemented with fetal bovine serum (10% and antibiotic (penicillin 105/ml, streptomycin100μg/ml, and then 5×104 cells/well were seeded in 24 well plates. Cultured cells were exposed to four different concentrations of gossypol (1.25, 2.5, 5 and 10μM. After 24 h incubation, cells viability test was performed using Trypan Blue dye exclusion and MTT assay. The Thiobarbituric Acid Reacting Substances (TBARS and Ferric Reducing Activity Potential (FRAP assays was performed on media. Result: In high concentrations (over than 2.5μM, Gossypol showed cytotoxic effects on cells. The IC50 for gossypol (using MTT assays on SFTF-PI43 and GC-1spg cell lines was 2.2 μM and 3.2 μM, respectively. While the results for FRAP assay did not show any significant differences between the test and control groups, significantly higher lipid peroxidation was observed in SFTF-PI43 cells that were treated with higher doses of gossypol (10μM. Conclusion: In this research, we found that gossypol has cytotoxic effects on both examined testicular cell lines and increased lipid peroxidation, which is a probable mechanism of its toxicity on cell lines.

  20. The genome of the Hi5 germ cell line from Trichoplusia ni, an agricultural pest and novel model for small RNA biology.

    Science.gov (United States)

    Fu, Yu; Yang, Yujing; Zhang, Han; Farley, Gwen; Wang, Junling; Quarles, Kaycee A; Weng, Zhiping; Zamore, Phillip D

    2018-01-29

    We report a draft assembly of the genome of Hi5 cells from the lepidopteran insect pest, Trichoplusia ni , assigning 90.6% of bases to one of 28 chromosomes and predicting 14,037 protein-coding genes. Chemoreception and detoxification gene families reveal T. ni -specific gene expansions that may explain its widespread distribution and rapid adaptation to insecticides. Transcriptome and small RNA data from thorax, ovary, testis, and the germline-derived Hi5 cell line show distinct expression profiles for 295 microRNA- and >393 piRNA-producing loci, as well as 39 genes encoding small RNA pathway proteins. Nearly all of the W chromosome is devoted to piRNA production, and T. ni siRNAs are not 2´- O -methylated. To enable use of Hi5 cells as a model system, we have established genome editing and single-cell cloning protocols. The T. ni genome provides insights into pest control and allows Hi5 cells to become a new tool for studying small RNAs ex vivo. © 2018, Fu et al.

  1. High molecular weight hyaluronic acid increases the differentiation potential of the murine chondrocytic ATDC5 cell line.

    Science.gov (United States)

    Sato, Eiichi; Ando, Takashi; Ichikawa, Jiro; Okita, Genki; Sato, Nobutaka; Wako, Masanori; Ohba, Tetsuro; Ochiai, Satoshi; Hagino, Tetsuo; Jacobson, Richard; Haro, Hirotaka

    2014-12-01

    Osteoarthritis (OA) is a group of common, chronic, and painful inflammatory joint diseases. One important finding in OA patients is a remarkable decrease in the molecular weight of hyaluronic acid (HA) in the synovial fluid of affected joints. Therapeutic HA is available to patients in most parts of the world as a viscosupplementation product for the treatment of OA. Previous clinical reports show that high molecular weight HA (HMWHA) more effectively relieves pain than low molecular weight HA (LMWHA). However, the mechanism behind this finding remains unclear. In this study, we investigated whether a LMWHA (Low-0.9 MDa) and two types of HMWHA (High-1.9 MDa and 6 MDa) differentially affected chondroregulatory action. We tested this using ATDC5 cell, a murine chondrocytic cell line widely used in culture systems to study chondrogenic differentiation. We found that HMWHA, especially hylan G-F 20 (High-6 MDa), significantly induced aggrecan and proteoglycan accumulation, nodule formation, and mRNA expression of chondrogenic differentiation markers in a time- and dose-dependent manner. In addition, we showed that HMWHA prevented TNF-α induced inhibition of chondrogenic differentiation, with no effect on cell proliferation or viability. These results reveal that HMWHA significantly promotes chondrogenic differentiation of ATDC5 cells in vitro, and suggest that HMWHA plays a significant chondroregulatory role in vivo. © 2014 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  2. Effects of atmospheric pressure cold plasma on human hepatocarcinoma cell and its 5-fluorouracil resistant cell line

    Energy Technology Data Exchange (ETDEWEB)

    Yang, H.; Gan, L.; Yang, X., E-mail: luxinpei@hotmail.com, E-mail: yangxl@mail.hust.edu.cn [College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Lu, R. [School Hospital of Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Xian, Y.; Lu, X., E-mail: luxinpei@hotmail.com, E-mail: yangxl@mail.hust.edu.cn [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China)

    2015-12-15

    Atmospheric pressure cold plasma showed selective killing efficiency on cancer cells in vitro and in vivo, which makes plasma a potential option for cancer therapy. However, the plasma effects on chemotherapeutic drugs-resistant cells are rarely to be found. In this paper, the effects of plasma on human hepatocellular carcinoma Bel7402 cells and 5-fluorouracil (5-FU) resistant Bel7402/5FU cells were intensively investigated. The results showed that plasma induced superior toxicity to Bel7402 cells compared with Bel7402/5FU cells. Incubation with plasma-treated medium for 20 s induced more than 85% death rate in Bel7402 cells, while the same death ratio was achieved when Bel7402/5FU cells were treated for as long as 300 s. The hydrogen peroxide in the medium played a leading role in the cytotoxicity effects. Further studies implicated that when the treatment time was shorter than 60 s, the depolarization of mitochondrial membrane potential and apoptosis occurred through the intracellular reactive oxygen species accumulation in Bel7402 cells. Molecular analysis showed an increase in the transcription factor activity for AP-1, NF-kB, and p53 in Bel7402 cells. No obvious damage could be detected in plasma-treated Bel7402/5FU cells due to the strong intracellular reactive oxygen stress scavenger system.

  3. Effects of atmospheric pressure cold plasma on human hepatocarcinoma cell and its 5-fluorouracil resistant cell line

    Science.gov (United States)

    Yang, H.; Lu, R.; Xian, Y.; Gan, L.; Lu, X.; Yang, X.

    2015-12-01

    Atmospheric pressure cold plasma showed selective killing efficiency on cancer cells in vitro and in vivo, which makes plasma a potential option for cancer therapy. However, the plasma effects on chemotherapeutic drugs-resistant cells are rarely to be found. In this paper, the effects of plasma on human hepatocellular carcinoma Bel7402 cells and 5-fluorouracil (5-FU) resistant Bel7402/5FU cells were intensively investigated. The results showed that plasma induced superior toxicity to Bel7402 cells compared with Bel7402/5FU cells. Incubation with plasma-treated medium for 20 s induced more than 85% death rate in Bel7402 cells, while the same death ratio was achieved when Bel7402/5FU cells were treated for as long as 300 s. The hydrogen peroxide in the medium played a leading role in the cytotoxicity effects. Further studies implicated that when the treatment time was shorter than 60 s, the depolarization of mitochondrial membrane potential and apoptosis occurred through the intracellular reactive oxygen species accumulation in Bel7402 cells. Molecular analysis showed an increase in the transcription factor activity for AP-1, NF-кB, and p53 in Bel7402 cells. No obvious damage could be detected in plasma-treated Bel7402/5FU cells due to the strong intracellular reactive oxygen stress scavenger system.

  4. Purification of bovine thyroid-stimulating hormone by a monoclonal antibody

    International Nuclear Information System (INIS)

    Lock, A.J.; van Denderen, J.; Aarden, L.A.

    1988-01-01

    A monoclonal antibody directed against bovine TSH was obtained by hybridoma technology. This antibody was specific for TSH and did not react with bovine LH and FSH. Affinity chromatography of crude TSH was performed on anti-TSH Sepharose. Bovine TSH was purified in a single step to near homogeneity by this technique, as shown by cation exchange chromatography and sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the purified TSH. The biological activity of the hormone was not affected during the purification, as determined by [ 3 H]thymidine incorporation of the TSH-dependent FRTL5 cell line. The results indicate that affinity purification of TSH by means of a monoclonal antibody is a simple one-step procedure for the production of biologically active, highly purified TSH

  5. The 5-lipoxygenase inhibitor tepoxalin induces oxidative damage and altered PTEN status prior to apoptosis in canine osteosarcoma cell lines.

    Science.gov (United States)

    Loftus, J P; Cavatorta, D; Bushey, J J; Levine, C B; Sevier, C S; Wakshlag, J J

    2016-06-01

    The 5-lipoxygenase (5-LOX) inhibitor tepoxalin has been shown to slow canine osteosarcoma (OSA) tumour xenografts growth, yet the mechanisms are poorly elucidated. Further examination of tepoxalin in canine OSA cell lines shows that tepoxalin treated cells undergo apoptosis through caspase-3 activation and annexin staining. Interestingly, apoptosis is superseded by an increase in reactive oxygen species (ROS), as measured by activation of dihydrorhodamine 123 and mitosox. This increase in ROS appears to be related to the 5-LOX inhibitor regardless of cellular 5-LOX status, and was not observed after treatment with the tepoxalin metabolite RWJ20142. Additionally, 5-LOX inhibition by tepoxalin appears to increase phosphatase and tensin (PTEN) homolog activity by preventing its alkylation or oxidation. PTEN modification or inhibition allows phosphoinositide-3 (PI3) kinase activity thereby heightening activation of protein kinase B (AKT) phosphorylation. Our data suggest that off target oxidation and LOX inhibition play roles in the apoptotic response. © 2014 John Wiley & Sons Ltd.

  6. Comparison of mammalian and fish cell line cytotoxicity: impact of endpoint and exposure duration

    International Nuclear Information System (INIS)

    Guelden, Michael; Moerchel, Sabine; Seibert, Hasso

    2005-01-01

    Comparisons of acute toxic concentrations of chemicals to fish in vivo and cytotoxic concentrations to fish cell lines in vitro reveal rather good correlations of the toxic potencies in vitro and in vivo, but a clearly lower sensitivity of the fish cells. To examine whether the low sensitivity is specific for fish cells, cytotoxic potencies of reference chemicals from the Multicenter Evaluation of In Vitro Cytotoxicity program (MEIC) reported for the fish cell lines R1 and RTG-2 were compared with those obtained with the mouse Balb/c 3T3 cell line. Cytotoxic potencies (EC 50 values) for MEIC reference chemicals were determined with exponentially growing Balb/c 3T3 cells using three different test protocols. To assess both endpoints, cell proliferation and cell survival, EC 50 values were measured for the decrease in final cell protein after 24 and 72 h of exposure and for the reduction of cell protein increase during 24 h of exposure. EC 50 values obtained with the fish cell lines R1 and RTG-2 using cell survival as endpoint were taken from the MEIC data base. The comparison of cytotoxic potencies shows that, in general, the fish cell lines and the mammalian cell line are almost equally sensitive towards the cytotoxic action of chemicals. The mammalian cell line assay, however, becomes considerably more sensitive, by factors of 3.4-8.5, than the fish cell line assays, if cell growth instead of cell survival is used as endpoint. It is concluded, that cell proliferation might be a better endpoint than cell survival and that mammalian cell lines might be suited to assess fish acute toxicity

  7. Tissue- and Cell-Specific Cytokinin Activity in Populus × canescens Monitored by ARR5::GUS Reporter Lines in Summer and Winter.

    Science.gov (United States)

    Paul, Shanty; Wildhagen, Henning; Janz, Dennis; Teichmann, Thomas; Hänsch, Robert; Polle, Andrea

    2016-01-01

    Cytokinins play an important role in vascular development. But knowledge on the cellular localization of this growth hormone in the stem and other organs of woody plants is lacking. The main focus of this study was to investigate the occurrence and cellular localization of active cytokinins in leaves, roots, and along the stem of Populus × canescens and to find out how the pattern is changed between summer and winter. An ARR5::GUS reporter construct was used to monitor distribution of active cytokinins in different tissues of transgenic poplar lines. Three transgenic lines tested under outdoor conditions showed no influence of ARR5::GUS reporter construct on the growth performance compared with the wild-type, but one line lost the reporter activity. ARR5::GUS activity indicated changes in the tissue- and cell type-specific pattern of cytokinin activity during dormancy compared with the growth phase. ARR5::GUS activity, which was present in the root tips in the growing season, disappeared in winter. In the stem apex ground tissue, ARR5::GUS activity was higher in winter than in summer. Immature leaves from tissue-culture grown plants showed inducible ARR5::GUS activity. Leaf primordia in summer showed ARR5::GUS activity, but not the expanded leaves of outdoor plants or leaf primordia in winter. In stem cross sections, the most prominent ARR5::GUS activity was detected in the cortex region and in the rays of bark in summer and in winter. In the cambial zone the ARR5::GUS activity was more pronounced in the dormant than in growth phase. The pith and the ray cells adjacent to the vessels also displayed ARR5::GUS activity. In silico analyses of the tissue-specific expression patterns of the whole PtRR type-A family of poplar showed that PtRR10, the closest ortholog to the Arabidopsis ARR5 gene, was usually the most highly expressed gene in all tissues. In conclusion, gene expression and tissue-localization indicate high activity of cytokinins not only in summer, but

  8. Cytotoxic activity of kenaf (Hibiscus cannabinus L.) seed extract and oil against human cancer cell lines

    Science.gov (United States)

    Wong, Yu Hua; Tan, Wai Yan; Tan, Chin Ping; Long, Kamariah; Nyam, Kar Lin

    2014-01-01

    Objective To examine the cytotoxic properties of both the kenaf (Hibiscus cannabinus L.) seed extract and kenaf seed oil on human cervical cancer, human breast cancer, human colon cancer and human lung cancer cell lines. Methods The in vitro cytotoxic activity of the kenaf (Hibiscus cannabinus L.) seed extract and kenaf seed oil on human cancer cell lines was evaluated by using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and sulforhodamine B assays. Cell morphological changes were observed by using an inverted light microscope. Results The kenaf seed extract (KSE) exhibited a lower IC50 than kenaf seed oil (KSO) in all of the cancer cell lines. Morphological alterations in the cell lines after KSE and KSO treatment were observed. KSE and KSO possessed effective cytotoxic activities against all the cell lines been selected. Conclusions KSE and KSO could be potential sources of natural anti-cancer agents. Further investigations on using kenaf seeds for anti-proliferative properties are warranted. PMID:25183141

  9. Feeder-cell-independent culture of the pig-embryonic-stem-cell-derived exocrine pancreatic cell line, PICM-31

    Science.gov (United States)

    The adaptation to feeder-independent growth of a pig embryonic stem cell-derived pancreatic cell line is described. The parental PICM-31 cell line, previously characterized as an exocrine pancreas cell line, was colony-cloned two times in succession resulting in the subclonal cell line, PICM-31A1. P...

  10. Characterization of the camel skin cell line Dubca.

    Science.gov (United States)

    Klopries, M; Wernery, U; Kaaden, O R

    1995-01-01

    A skin fibroblast cell culture was established from a 2-month-old dromedary foetus. The cells were transformed by infection with SV40 and cloned in soft agar. The established cell line is now designated Dubca cells (Dubai camel) and has been in permanent culture for 95 passages. The cell culture was examined morphologically, chromosome preparations made and DNA fingerprinting performed by hybridization with the oligonucleotide probe (GTG)5. SV40 large T antigen was detected by western blotting. The viral host range was determined by infection with viruses of different families. Camelpox virus (CaPV) bovine herpesvirus-1 (BHV-1), vesicular stomatitis virus (VSV) and border disease virus (BDV) could be propagated in these cells.

  11. Application of DNA fingerprints for cell-line individualization.

    Science.gov (United States)

    Gilbert, D A; Reid, Y A; Gail, M H; Pee, D; White, C; Hay, R J; O'Brien, S J

    1990-09-01

    DNA fingerprints of 46 human cell lines were derived using minisatellite probes for hypervariable genetic loci. The incidence of 121 HaeIII DNA fragments among 33 cell lines derived from unrelated individuals was used to estimate allelic and genotypic frequencies for each fragment and for composite individual DNA fingerprints. We present a quantitative estimate of the extent of genetic difference between individuals, an estimate based on the percentage of restriction fragments at which they differ. The average percent difference (APD) among pairwise combinations from the population of 33 unrelated cell lines was 76.9%, compared with the APD in band sharing among cell lines derived from the same individual (less than or equal to 1.2%). Included in this survey were nine additional cell lines previously implicated as HeLa cell derivatives, and these lines were clearly confirmed as such by DNA fingerprints (APD less than or equal to 0.6%). On the basis of fragment frequencies in the tested cell line population, a simple genetic model was developed to estimate the frequencies of each DNA fingerprint in the population. The median incidence was 2.9 X 10(-17), and the range was 2.4 X 10(-21) to 6.6 X 10(-15). This value approximates the probability that a second cell line selected at random from unrelated individuals will match a given DNA fingerprint. Related calculations address the chance that any two DNA fingerprints would be identical among a large group of cell lines. This estimate is still very slight; for example, the chance of two or more common DNA fingerprints among 1 million distinct individuals is less than .001. The procedure provides a straightforward, easily interpreted, and statistically robust method for identification and individualization of human cells.

  12. Transformation and Tumorigenicity Testing of Simian Cell Lines and Evaluation of Poliovirus Replication.

    Directory of Open Access Journals (Sweden)

    Silvia Dotti

    Full Text Available The key role of cell cultures in different scientific fields is worldwide recognized, both as in vitro research models alternative to laboratory animals and substrates for biological production. However, many safety concerns rise from the use of animal/human cell lines that may be tumorigenic, leading to potential adverse contaminations in cell-derived biologicals. In order to evaluate the suitability of 13 different cell lines for Poliovirus vaccine production, safety and quality, in vitro/in vivo tumorigenicity and Poliovirus propagation properties were evaluated. Our results revealed that non-human primate cell lines CYNOM-K1, FRhK-4, 4MBr-5 and 4647 are free of tumorigenic features and represent highly susceptible substrates for attenuated Sabin Poliovirus strains. In particular, FRhK-4 and 4647 cell lines are characterized by a higher in vitro replication, resulting indicated for the use in large-scale production field.

  13. Radiation induced expression of survivin in Ewing sarcoma cell-lines

    International Nuclear Information System (INIS)

    Sheikh-Mounessi, F.; Willich, N.; Greve, B.

    2009-01-01

    Full text: Introduction: Survivin belongs to the Inhibitor of Apoptosis Protein Family (IAP), is a protein of 16.5 kD and active as a homodimer. It is overexpressed in nearly all human tumors and has a vital function in cell division and apoptotic processes. Beside its role as a relevant prognostic and predictive factor it was described to be a molecular target to improve effectiveness of radiotherapy. We investigated the radiation induced survivin expression in Ewing sarcoma cell-lines. Methods: Ewing sarcoma cells were either irradiated with 10 Gy X-ray and harvested at different time points (0, 2, 4, 6, 10 and 24 h) or irradiated with different doses (0, 2, 5 and 10 Gy) and harvested 24 h later. Protein and mRNA expression was analysed by Westernblot or Real-Time PCR. Results: Directly after irradiation with 10 Gy X-ray survivin mRNA expression was increased in relation to the reference GAPDH. Protein expression was increased in a time dependent manner and reached a maximum after 24h. Three of four investigated cell-lines showed a significant dose dependent increase of survivin protein concentration 24h after irradiation. The same three cell-lines showed a LD50 of >30 Gy. The line with the lowest dose dependent survivin induction was investigated to be most radiosensitive (LD50 = 24 Gy). Discussion: Ewing sarcoma is a childhood tumor with relatively poor prognosis. This tumor often shows significant therapeutic resistance to chemo- and/or radiotherapy. It would be of high interest to find new therapeutic approaches for its treatment. We found a remarkable overexpression of survivin in untreated Ewing sarcoma and a time and dose dependent increase of survivin protein concentration after irradiation with X-ray. The cell-line with the lowest survivin induction showed the highest radiosensitivity. In conclusion, our results show that survivin is an inducible radioresistance factor in Ewing sarcoma. This may open new therapeutic options to treat this aggressive

  14. Effect of selected insecticides on SF9 insect cell line

    International Nuclear Information System (INIS)

    Saleh, M.; Rahmo, A.; Hajjar, J.

    2013-01-01

    The toxic effect of three insecticides: dimethoate (organophosphate insecticide), acetamiprid (neonicotinoid insecticide) and deltamethrin (pyrethroid insecticide) were evaluated in vitro on cultured Sf9 cell line. Cell growth inhibition was measured by the 3- (4,5- dimethylthiazol - 2-yl) - 2,5 - diphenyl tetrazolium bromide (MTT) assay. Regression Analysis was used to estimate the 20% inhibition of cells growth (IC 20). The IC 20 values obtained for deltamethrin, acetamipridand dimethoate were: 46.8, 61.6 and 68.9 μM, respectively. The proportion of phagocytic cells was positively correlated with the applied concentrations of the insecticides. (author)

  15. Natural killer cells for immunotherapy – Advantages of cell lines over blood NK cells

    Directory of Open Access Journals (Sweden)

    Hans eKlingemann

    2016-03-01

    Full Text Available Natural killer cells are potent cytotoxic effector cells for cancer therapy and potentially for severe viral infections. However, there are technical challenges to obtain sufficient numbers of functionally active NK cells form a patient’s blood since they represent only 10% of the lymphocytes. Especially, cancer patients are known to have dysfunctional NK cells. The alternative is to obtain cells from a healthy donor, which requires depletion of the allogeneic T-cells. Establishing cell lines from donor blood NK cells have not been successful, in contrast to blood NK cells obtained from patients with a clonal NK cell lymphoma. Those cells can be expanded in culture in the presence of IL-2. However, except for the NK-92 cell line none of the other six known cell lines has consistent and reproducibly high anti-tumor cytotoxicity, nor can they be easily genetically manipulated to recognize specific tumor antigens or to augment monoclonal antibody activity through ADCC. NK-92 is also the only cell line product that has been widely given to patients with advanced cancer with demonstrated efficiency and minimal side effects.

  16. Adaptive response to ionizing radiation induced by low doses of gamma rays in human cell lines

    International Nuclear Information System (INIS)

    Seong, Jinsil; Chang, Ok Suh; Gwi, Eon Kim

    1995-01-01

    Purpose: The aim of this study was to investigate whether the adaptive response could be induced in human lymphoblastoid cell lines and human tumor cell lines. The time necessary for the expression of the adaptive response was also investigated. Materials and Methods: Three lymphoblastoid cell lines from ataxia telangiectasia (AT) homozygote (GM 1526), AT heterozygote (GM 3382), and normal individual (3402p) and two hepatoma cell lines, Hep G2 and Hep 3B, were used in this study. Experiments were carried out by delivering 0.01 Gy followed by 0.5 Gy of gamma radiation to the exponentially growing cells. The time necessary for the expression of the adaptive response was determined by varying the time interval between the two doses from 1 to 72 h. In some experiments, 3-aminobenzamide, a potent inhibitor of poly (ADP-ribose) polymerase, was added immediately after the 0.5 Gy exposure. The cultures were fixed 30 min (for the G 2 chromatid) and 6 h (for the S chromatid) after the 0.5 Gy exposure. Metaphase chromosome assay was carried out to score chromatid breaks as an end point. Results: A prior exposure to 0.01 Gy of gamma rays significantly reduced the number of chromatid breaks induced by subsequent higher doses (0.5 Gy) in all the tested cell lines. The magnitude of the adaptive response was similar among the cell lines despite their different radiosensitivities. In the G 2 chromatids, the adaptive response was observed both at short-time intervals, as early as 1 h, and at long-time intervals. In the S chromatids, however, the adaptive response was shown only at long-time intervals. When 3-aminobenzamide was added after the 0.5 Gy, the adaptive responses were abolished in all the experimental groups. Conclusion: The adaptive response was observed in human lymphoblastoid cell lines and hepatoma cell lines. The magnitude of the adaptive response did not seem to be related to the radiosensitivity of the cells. The elimination of the adaptive response with 3

  17. Susceptibility testing of fish cell lines for virus isolation

    DEFF Research Database (Denmark)

    Ariel, Ellen; Skall, Helle Frank; Olesen, Niels Jørgen

    2009-01-01

    and laboratories, but also between lineages of the same cell line. To minimise the occurrence of false negatives in a cell culture based surveillance system, we have investigated methods, to select cell lineages that are relatively superior in their susceptibility to a panel of virus isolates. The procedures...... cell lineages, we increased the number of isolates of each virus, propagated stocks in a given cell line and tested all lineages of that line in use in the laboratory. Testing of relative cell line susceptibility between laboratories is carried out annually via the Inter-laboratory Proficiency Test...... sensitivity for surveillance purposes within a cell line and between laboratories.In terms of economic and practical considerations as well as attempting to approach a realistic test system, we suggest the optimal procedure for susceptibility testing of fish cell lines for virus isolation to be a combination...

  18. The sandfly Lutzomyia longipalpis LL5 embryonic cell line has active Toll and Imd pathways and shows immune responses to bacteria, yeast and Leishmania.

    Science.gov (United States)

    Tinoco-Nunes, Bruno; Telleria, Erich Loza; da Silva-Neves, Monique; Marques, Christiane; Azevedo-Brito, Daisy Aline; Pitaluga, André Nóbrega; Traub-Csekö, Yara Maria

    2016-04-20

    Lutzomyia longipalpis is the main vector of visceral leishmaniasis in Latin America. Sandfly immune responses are poorly understood. In previous work we showed that these vector insects respond to bacterial infections by modulating a defensin gene expression and activate the Imd pathway in response to Leishmania infection. Aspects of innate immune pathways in insects (including mosquito vectors of human diseases) have been revealed by studying insect cell lines, and we have previously demonstrated antiviral responses in the L. longipalpis embryonic cell line LL5. The expression patterns of antimicrobial peptides (AMPs) and transcription factors were evaluated after silencing the repressors of the Toll pathway (cactus) and Imd pathway (caspar). AMPs and transcription factor expression patterns were also evaluated after challenge with heat-killed bacteria, heat-killed yeast, or live Leishmania. These studies showed that LL5 cells have active Toll and Imd pathways, since they displayed an increased expression of AMP genes following silencing of the repressors cactus and caspar, respectively. These pathways were also activated by challenges with bacteria, yeast and Leishmania infantum chagasi. We demonstrated that L. longipalpis LL5 embryonic cells respond to immune stimuli and are therefore a good model to study the immunological pathways of this important vector of leishmaniasis.

  19. Characterization of a receptor for interleukin-5 on human eosinophils and the myeloid leukemia line HL-60

    International Nuclear Information System (INIS)

    Ingley, E.; Young, I.G.

    1991-01-01

    Interleukin-5 (IL-5) promotes the growth and differentiation of human eosinophils and may regulate the selective eosinophilia and eosinophil activation seen in certain diseases. Radiolabeled recombinant human IL-5 (hIL-5) was used to characterize the IL-5 receptor present on normal human eosinophils and on the myeloid leukemia line HL-60, which can be induced to differentiate into eosinophilic cells. Binding studies with eosinophils and HL-60 cells grown under alkaline conditions demonstrated similar high-affinity binding sites for hIL-5 on both cell types with kd values of approximately 400 pmol/L. The binding observed was specific in that it was not inhibited by hIL-3, human granulocyte-macrophage colony-stimulating factor, or hIL-2. Binding studies with a number of other human cell lines, including a B-lymphoma line, and with lymphocyte and neutrophil preparations were also performed, but IL-5 receptors were not detectable on these cells. The number of hIL-5 receptors on HL-60 cells could be correlated with its propensity to differentiate towards an eosinophilic cell type. Expression of hIL-5 receptors on HL-60 cells was upregulated by butyric acid under alkaline conditions, downregulated by hIL-3, virtually eliminated by dimethyl sulfoxide and hIL-5, while hIL-2 had no detectable effect. One major 125I-hIL-5-crosslinked complex of 75 to 85 Kd in Mr was detected on HL-60 cells using crosslinking agents giving a molecular mass of 55 to 60 Kd for the hIL-5 receptor itself. Studies using cellular autoradiography showed that IL-5 receptors were evenly distributed on eosinophils but that receptor distribution on HL-60 cells was noticeably heterogeneous. Eosinophils were the only cells in slides prepared from peripheral blood that had detectable levels of IL-5 receptors in agreement with the specific action of IL-5 on the human eosinophil lineage

  20. Differential expression of the ufo/axl oncogene in human leukemia-lymphoma cell lines.

    Science.gov (United States)

    Challier, C; Uphoff, C C; Janssen, J W; Drexler, H G

    1996-05-01

    The ufo protein (also termed axl) is a member of a new family of receptor tyrosine kinases and is encoded by a transforming gene that was initially isolated from primary human myeloid leukemia cells by DNA-mediated transformation of NIH/3T3 cells. The ligand, Gas6, a protein S-related molecule lacking any known function yet, has recently been identified. We report the expression pattern of ufo mRNA in a panel of 76 human continuous leukemia-lymphoma cell lines. The gene was not expressed in cell lines derived from lymphoid malignancies (n=28), but transcription was seen in 3/11 myeloid, 0/6 monocytic, 9/13 erythroid and 11/18 megakaryocytic cell lines. Several cell lines were treated with phorbol ester leading to significant upregulation of the ufo message in constitutively positive cells. An apparent ufo mRNA overexpression was not found in any of the positive leukemia cell lines, but was identified in the drug-resistant subclones of the cervix carcinoma cell line HeLa. Southern blot analysis of restriction enzyme-digested genomic DNA did not provide evidence for gene amplification, but the HeLa subclones showed banding patterns suggestive of gene rearrangement. Two main ufo mRNA bands of 3.2 and 5.0 kb were identified; no differences in the half-lives (t1/2 = 2.5 h) of these two mRNA species could be identified. In summary, ufo, representing a novel type of receptor tyrosine kinase, is expressed solely in myeloid and erythro-megakaryocytic leukemias but not in lymphoid malignancies. These and previous data suggest an involvement of the ufo receptor tyrosine kinase in normal and malignant myelopoiesis; however, its exact role, if any, and mode of operation in leukemogenesis remains to be determined.

  1. Establishment and cell cycle distribution pattern of a radioresistant subline from human lung cancer D6 cell line

    International Nuclear Information System (INIS)

    Wei Qichun; Zheng Shu

    2003-01-01

    Objective: To establish a radioresistant cell subline from a human D6 lung cancer cell line and investigate the mechanism of radioresistance. Methods: D6 human NSCLC cells were exposed to X-rays generated by a linear accelerator(650 cGy per fraction). After a total exposure dose of 5200 cGy, a monoclone was obtained. The radiosensitivity and cell cycle distribution of this clone, together with its parent D6 cells, were measured by clonogenic assay and flow cytometry. Results: The new clone, namely D 6 -R subline, had a higher D 0 (D 0 =2.08 Gy) and a broader initial shoulder(Dq=1.64 Gy, N=2.20) than those of the parent D6 cell line (D 0 =1.84 Gy, Dq=0.34 Gy, N=1.20), being 1.65-fold increase in radioresistance as regards to the SF 2 . The D6-R subline also showed higher percentage of cells in S phase(53.4% vs 37.8%), but lower percentages in G 1 (44.1% vs 57.2%) and G 2 /M(2.5% vs 5%) phases. Conclusion: The new subline D6-R is more radioresistant as compare to its parent D6 cell line, and has a different cell cycle distribution

  2. Effects of hypoxia on human cancer cell line chemosensitivity

    Science.gov (United States)

    2013-01-01

    Background Environment inside even a small tumor is characterized by total (anoxia) or partial oxygen deprivation, (hypoxia). It has been shown that radiotherapy and some conventional chemotherapies may be less effective in hypoxia, and therefore it is important to investigate how different drugs act in different microenvironments. In this study we perform a large screening of the effects of 19 clinically used or experimental chemotherapeutic drugs on five different cell lines in conditions of normoxia, hypoxia and anoxia. Methods A panel of 19 commercially available drugs: 5-fluorouracil, acriflavine, bortezomib, cisplatin, digitoxin, digoxin, docetaxel, doxorubicin, etoposide, gemcitabine, irinotecan, melphalan, mitomycin c, rapamycin, sorafenib, thalidomide, tirapazamine, topotecan and vincristine were tested for cytotoxic activity on the cancer cell lines A2780 (ovarian), ACHN (renal), MCF-7 (breast), H69 (SCLC) and U-937 (lymphoma). Parallel aliquots of the cells were grown at different oxygen pressures and after 72 hours of drug exposure viability was measured with the fluorometric microculture cytotoxicity assay (FMCA). Results Sorafenib, irinotecan and docetaxel were in general more effective in an oxygenated environment, while cisplatin, mitomycin c and tirapazamine were more effective in a low oxygen environment. Surprisingly, hypoxia in H69 and MCF-7 cells mostly rendered higher drug sensitivity. In contrast ACHN appeared more sensitive to hypoxia, giving slower proliferating cells, and consequently, was more resistant to most drugs. Conclusions A panel of standard cytotoxic agents was tested against five different human cancer cell lines cultivated at normoxic, hypoxic and anoxic conditions. Results show that impaired chemosensitivity is not universal, in contrast different cell lines behave different and some drugs appear even less effective in normoxia than hypoxia. PMID:23829203

  3. Establishment of a novel feline leukemia virus (FeLV)-negative B-cell cell line from a cat with B-cell lymphoma.

    Science.gov (United States)

    Mochizuki, Hiroyuki; Takahashi, Masashi; Nishigaki, Kazuo; Ide, Tetsuya; Goto-Koshino, Yuko; Watanabe, Shinya; Sato, Hirofumi; Sato, Masahiko; Kotera, Yukiko; Fujino, Yasuhito; Ohno, Koichi; Uchida, Kazuyuki; Tsujimoto, Hajime

    2011-04-15

    We established a novel feline B-cell line, MS4, from the neoplastic pleural effusion of a cat with cutaneous B-cell lymphoma. Immunophenotype staining of the MS4 cells was positive for CD20, CD79α, and IgA and negative for CD3, CD4, CD5, CD8α, CD18, CD21, CD22, IgM, IgG, Ig light chain, and MHC class II. PCR analysis for immunoglobulin heavy chain gene rearrangements revealed a monoclonal rearrangement, whereas no clonal rearrangement of the T-cell receptor γ gene was detected. Southern blotting with an exogenous feline leukemia virus (FeLV) U3 probe revealed no integration of exogenous FeLV provirus. The MS4 cell line is the first FeLV-negative feline B-cell lymphoma cell line, and may be used to investigate the pathogenesis of spontaneously occurring feline lymphoma and the development of new therapies. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. 3-Bromopyruvate induces necrotic cell death in sensitive melanoma cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Qin, J.-Z.; Xin, H. [Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University of Chicago Medical Center (United States); Nickoloff, B.J., E-mail: bnickol@lumc.edu [Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University of Chicago Medical Center (United States)

    2010-05-28

    Clinicians successfully utilize high uptake of radiolabeled glucose via PET scanning to localize metastases in melanoma patients. To take advantage of this altered metabolome, 3-bromopyruvate (BrPA) was used to overcome the notorious resistance of melanoma to cell death. Using four melanoma cell lines, BrPA triggered caspase independent necrosis in two lines, whilst the other two lines were resistant to killing. Mechanistically, sensitive cells differed from resistant cells by; constitutively lower levels of glutathione, reduction of glutathione by BrPA only in sensitive cells; increased superoxide anion reactive oxygen species, loss of outer mitochondrial membrane permeability, and rapid ATP depletion. Sensitive cell killing was blocked by N-acetylcysteine or glutathione. When glutathione levels were reduced in resistant cell lines, they became sensitive to killing by BrPA. Taken together, these results identify a metabolic-based Achilles' heel in melanoma cells to be exploited by use of BrPA. Future pre-clinical and clinical trials are warranted to translate these results into improved patient care for individuals suffering from metastatic melanoma.

  5. 3-Bromopyruvate induces necrotic cell death in sensitive melanoma cell lines.

    Science.gov (United States)

    Qin, J-Z; Xin, H; Nickoloff, B J

    2010-05-28

    Clinicians successfully utilize high uptake of radiolabeled glucose via PET scanning to localize metastases in melanoma patients. To take advantage of this altered metabolome, 3-bromopyruvate (BrPA) was used to overcome the notorious resistance of melanoma to cell death. Using four melanoma cell lines, BrPA triggered caspase independent necrosis in two lines, whilst the other two lines were resistant to killing. Mechanistically, sensitive cells differed from resistant cells by; constitutively lower levels of glutathione, reduction of glutathione by BrPA only in sensitive cells; increased superoxide anion reactive oxygen species, loss of outer mitochondrial membrane permeability, and rapid ATP depletion. Sensitive cell killing was blocked by N-acetylcysteine or glutathione. When glutathione levels were reduced in resistant cell lines, they became sensitive to killing by BrPA. Taken together, these results identify a metabolic-based Achilles' heel in melanoma cells to be exploited by use of BrPA. Future pre-clinical and clinical trials are warranted to translate these results into improved patient care for individuals suffering from metastatic melanoma. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  6. 3-Bromopyruvate induces necrotic cell death in sensitive melanoma cell lines

    International Nuclear Information System (INIS)

    Qin, J.-Z.; Xin, H.; Nickoloff, B.J.

    2010-01-01

    Clinicians successfully utilize high uptake of radiolabeled glucose via PET scanning to localize metastases in melanoma patients. To take advantage of this altered metabolome, 3-bromopyruvate (BrPA) was used to overcome the notorious resistance of melanoma to cell death. Using four melanoma cell lines, BrPA triggered caspase independent necrosis in two lines, whilst the other two lines were resistant to killing. Mechanistically, sensitive cells differed from resistant cells by; constitutively lower levels of glutathione, reduction of glutathione by BrPA only in sensitive cells; increased superoxide anion reactive oxygen species, loss of outer mitochondrial membrane permeability, and rapid ATP depletion. Sensitive cell killing was blocked by N-acetylcysteine or glutathione. When glutathione levels were reduced in resistant cell lines, they became sensitive to killing by BrPA. Taken together, these results identify a metabolic-based Achilles' heel in melanoma cells to be exploited by use of BrPA. Future pre-clinical and clinical trials are warranted to translate these results into improved patient care for individuals suffering from metastatic melanoma.

  7. Expression of p53-regulated proteins in human cultured lymphoblastoid TSCE5 and WTK1 cell lines during spaceflight

    International Nuclear Information System (INIS)

    Takahashi, Akihisa; Suzuki, Hiromi; Shimazu, Toru; Omori, Katsunori; Ishioka, Noriaki; Ohnishi, Takeo; Seki, Masaya; Hashizume, Toko

    2012-01-01

    The aim of this study was to determine the biological effects of space radiations, microgravity, and the interaction of them on the expression of p53-regulated proteins. Space experiments were performed with two human cultured lymphoblastoid cell lines: one line (TSCE5) bears a wild-type p53 gene status, and another line (WTK1) bears a mutated p53 gene status. Under 1 gravity or microgravity conditions, the cells were grown in the cell biology experimental facility (CBEF) of the International Space Station for 8 days without experiencing the stress during launching and landing because the cells were frozen during these periods. Ground control samples were simultaneously cultured for 8 days in the CBEF on the ground for 8 days. After spaceflight, protein expression was analyzed using a Panorama TM Ab MicroArray protein chips. It was found that p53-dependent up-regulated proteins in response to space radiations and space environment were MeCP2 (methyl CpG binding protein 2), and Notch1 (Notch homolog 1), respectively. On the other hand, p53-dependent down-regulated proteins were TGF-β, TWEAKR (tumor necrosis factor-like weak inducer of apoptosis receptor), phosho-Pyk2 (Proline-rich tyrosine kinase 2), and 14-3-3θ/τ which were affected by microgravity, and DR4 (death receptor 4), PRMT1 (protein arginine methyltransferase 1) and ROCK-2 (Rho-associated, coiled-coil containing protein kinase 2) in response to space radiations. ROCK-2 was also suppressed in response to the space environment. The data provides the p53-dependent regulated proteins by exposure to space radiations and/or microgravity during spaceflight. Our expression data revealed proteins that might help to advance the basic space radiation biology. (author)

  8. Tuft (caveolated) cells in two human colon carcinoma cell lines.

    Science.gov (United States)

    Barkla, D H; Whitehead, R H; Foster, H; Tutton, P J

    1988-09-01

    The presence of an unusual cell type in two human colon carcinoma cell lines is reported. The cells show the same morphology as "tuft" (caveolated) cells present in normal gastrointestinal epithelium. Tuft cells were seen in cell line LIM 1863 growing in vitro and in human colon carcinoma cell line LIM 2210 growing as subcutaneous solid tumour xenografts in nude mice. Characteristic morphologic features of tuft cells included a wide base, narrow apex and a tuft of long microvilli projecting from the apical surface. The microvilli are attached by a core of long microfilaments passing deep into the apical cytoplasm. Between the microvilli are parallel arrays of vesicles (caveoli) containing flocculent material. Two different but not mutually exclusive explanations for the presence of tuft cells are proposed. The first explanation is that tuft cells came from the resected tumour and have survived by mitotic division during subsequent passages. The second explanation suggests that tuft cells are the progeny of undifferentiated tumour cells. Descriptions of tuft cells in colon carcinomas are uncommon and possible reasons for this are presented. The morphology of tuft cells is consistent with that of a highly differentiated cell specialised for absorption, and these new models provide an opportunity to further investigate the structure and function of tuft cells.

  9. Preliminary study on proteomic technique in radiobiological characteristics in nasopharyngeal carcinoma cell line

    International Nuclear Information System (INIS)

    Wang Hui; Yi Xuping; Hu Bingqiang; Zeng Liang; Liu Yisong; Liang Songping

    2007-01-01

    Objective: To examine the variation of protein expression in nasopharyngeal carcinoma cell lines with different biological characteristics and to identify the radiobiological associated proteins. Methods: Biological characteristics of 5-8F and 6-10B were compared by flow cytometry assay after irradiation. The total proteins of 5-8F and 6-10B were separated by immobilized pH gradient(IPG) IEF-SDS two-dimensional gel eleetrophoresis technique. The differentially expressed proteins were cut from the gel and digested into peptides for MALDI-TOF MS and the Q-TOF mass spectrometric analysis. Identification of protein was made through searching in protein sequence database. Protein expressions were examined by western blot and immunohistochemistry method. Results: Nine most differentially expressed proteins between 5-8F cell and 6-10B cell were identified, p73 and CK19 expression examined by western blot were conformal with that by proteomic method, p73 expression in 5-8F cell was higher than in 6-10B cell. CK19 expression in 6- 10B cell was higher than in 5-8F cell. Conclusion: Differentially expression of proteins exist in nasopharyngeal carcinoma cell lines with different biological characteristics. These proteins may be associated with cell radiobiological characteristic with the p73 as a potential biomarker. (authors)

  10. Graphene Oxide Nanoribbons Induce Autophagic Vacuoles in Neuroblastoma Cell Lines

    Directory of Open Access Journals (Sweden)

    Emanuela Mari

    2016-11-01

    Full Text Available Since graphene nanoparticles are attracting increasing interest in relation to medical applications, it is important to understand their potential effects on humans. In the present study, we prepared graphene oxide (GO nanoribbons by oxidative unzipping of single-wall carbon nanotubes (SWCNTs and analyzed their toxicity in two human neuroblastoma cell lines. Neuroblastoma is the most common solid neoplasia in children. The hallmark of these tumors is the high number of different clinical variables, ranging from highly metastatic, rapid progression and resistance to therapy to spontaneous regression or change into benign ganglioneuromas. Patients with neuroblastoma are grouped into different risk groups that are characterized by different prognosis and different clinical behavior. Relapse and mortality in high risk patients is very high in spite of new advances in chemotherapy. Cell lines, obtained from neuroblastomas have different genotypic and phenotypic features. The cell lines SK-N-BE(2 and SH-SY5Y have different genetic mutations and tumorigenicity. Cells were exposed to low doses of GO for different times in order to investigate whether GO was a good vehicle for biological molecules delivering individualized therapy. Cytotoxicity in both cell lines was studied by measuring cellular oxidative stress (ROS, mitochondria membrane potential, expression of lysosomial proteins and cell growth. GO uptake and cytoplasmic distribution of particles were studied by Transmission Electron Microscopy (TEM for up to 72 h. The results show that GO at low concentrations increased ROS production and induced autophagy in both neuroblastoma cell lines within a few hours of exposure, events that, however, are not followed by growth arrest or death. For this reason, we suggest that the GO nanoparticle can be used for therapeutic delivery to the brain tissue with minimal effects on healthy cells.

  11. Human metastatic melanoma cell lines express high levels of growth hormone receptor and respond to GH treatment

    DEFF Research Database (Denmark)

    Sustarsic, Elahu G; Junnila, Riia K; Kopchick, John J.

    2013-01-01

    cell lines tested. Further analysis revealed GH-induced activation of STAT5 and mTOR in a cell line dependent manner. In conclusion, we have identified cell lines and cancer types that are ideal to study the role of GH and PRL in cancer, yet have been largely overlooked. Furthermore, we found...

  12. Ag85A-specific CD4+ T cell lines derived after boosting BCG-vaccinated cattle with Ad5-85A possess both mycobacterial growth inhibition and anti-inflammatory properties.

    Science.gov (United States)

    Metcalfe, Hannah J; Biffar, Lucia; Steinbach, Sabine; Guzman, Efrain; Connelley, Tim; Morrison, Ivan; Vordermeier, H Martin; Villarreal-Ramos, Bernardo

    2018-05-11

    There is a need to improve the efficacy of the BCG vaccine against human and bovine tuberculosis. Previous data showed that boosting bacilli Calmette-Guerin (BCG)-vaccinated cattle with a recombinant attenuated human type 5 adenovirally vectored subunit vaccine (Ad5-85A) increased BCG protection and was associated with increased frequency of Ag85A-specific CD4 + T cells post-boosting. Here, the capacity of Ag85A-specific CD4 + T cell lines - derived before and after viral boosting - to interact with BCG-infected macrophages was evaluated. No difference before and after boosting was found in the capacity of these Ag85A-specific CD4 + T cell lines to restrict mycobacterial growth, but the secretion of IL-10 in vitro post-boost increased significantly. Furthermore, cell lines derived post-boost had no statistically significant difference in the secretion of pro-inflammatory cytokines (IL-1β, IL-12, IFNγ or TNFα) compared to pre-boost lines. In conclusion, the protection associated with the increased number of Ag85A-specific CD4 + T cells restricting mycobacterial growth may be associated with anti-inflammatory properties to limit immune-pathology. Copyright © 2018 Department for Environment Food and Rural Affairs. Published by Elsevier Ltd.. All rights reserved.

  13. Endogenous superoxide dismutase and catalase activities and radiation resistance in mouse cell lines

    International Nuclear Information System (INIS)

    Davy, C.A.; Tesfay, Z.; Jones, J.; Rosenberg, R.C.; McCarthy, C.; Ostrand-Rosenberg, S.

    1988-01-01

    The relationship between the endogenous cytoplasmic levels of the enzymes superoxide dismutase and catalase and the inhibition of cell proliferation by γ-radiation has been studied in 11 mouse cell lines. The resistance of these mouse cell lines to radiation was found to vary by over 25-fold. No correlation was found between the cytoplasmic level of CuZn-superoxide dismutase or catalase and the resistance to radiation as measured by extrapolation number (EN), quasi-threshold dose (Dsub(q)), or Dsub(o). None of the cell lines had detectable cytoplasmic Mn-superoxide dismutase. The apparent Ksub(i) of potassium cyanide for mouse CuZn-superoxide dismutase was determined (Ksub(i) = 6.5 μmol dm -3 ). (author)

  14. γ-radiation induces cellular sensitivity and aberrant methylation in human tumor cell lines.

    Science.gov (United States)

    Kumar, Ashok; Rai, Padmalatha S; Upadhya, Raghavendra; Vishwanatha; Prasada, K Shama; Rao, B S Satish; Satyamoorthy, Kapettu

    2011-11-01

    Ionizing radiation induces cellular damage through both direct and indirect mechanisms, which may include effects from epigenetic changes. The purpose of this study was to determine the effect of ionizing radiation on DNA methylation patterns that may be associated with altered gene expression. Sixteen human tumor cell lines originating from various cancers were initially tested for radiation sensitivity by irradiating them with γ-radiation in vitro and subsequently, radiation sensitive and resistant cell lines were treated with different doses of a demethylating agent, 5-Aza-2'-Deoxycytidine (5-aza-dC) and a chromatin modifier, Trichostatin-A (TSA). Survival of these cell lines was measured using 3-(4, 5-Dimethylthiazol- 2-yl)-2, 5-diphenyltetrazolium (MTT) and clonogenic assays. The effect of radiation on global DNA methylation was measured using reverse phase high performance liquid chromatography (RP-HPLC). The transcription response of methylated gene promoters, from cyclin-dependent kinase inhibitor 2A (p16(INK4a)) and ataxia telangiectasia mutated (ATM) genes, to radiation was measured using a luciferase reporter assay. γ-radiation resistant (SiHa and MDAMB453) and sensitive (SaOS2 and WM115) tumor cell lines were examined for the relationship between radiation sensitivity and DNA methylation. Treatment of cells with 5-aza-dC and TSA prior to irradiation enhanced DNA strand breaks, G2/M phase arrest, apoptosis and cell death. Exposure to γ-radiation led to global demethylation in a time-dependent manner in tumor cells in relation to resistance and sensitivity to radiation with concomitant activation of p16(INK4a) and ATM gene promoters. These results provide important information on alterations in DNA methylation as one of the determinants of radiation effects, which may be associated with altered gene expression. Our results may help in delineating the mechanisms of radiation resistance in tumor cells, which can influence diagnosis, prognosis and

  15. Role of novel anticancer drug Roscovitine on enhancing radiosensitivity in carcinoma cell lines

    International Nuclear Information System (INIS)

    Mohamed, H.M.S.

    2009-01-01

    The present study was conducted to evaluate the radiosensitization effect of Roscovitine (cyclin dependent kinase inhibitor) in carcinoma cell lines. Three cell lines are used (HepG2 liver carcinoma cell line, U251 brain carcinoma cell line, H460 Lung carcinoma cell line) in this study .cells were treated with Roscovitine in different concentrations ranging from 0.1μM to 100 μM before exposure to radiation doses ranging from 0.5 Gy to 20 Gy according to each experiment. The cell viability by MTT assay, The cell cycle analysis by flow cytometry and DNA fragmentation repair mechanism by diphenylamine were measured after Roscovitine treatment with or without radiation to explore the sensitization effect of Roscovitine. The present study conclude that Roscovitine a good candidate as radiosensitizer for modifying the ionizing radiation (IR) response in cancer cells, beside its cyclin dependent kinase inhibitor function, roscovitine can generate DNA Double strand Breaks and cooperate to enhance IR induce DNA damages . Roscovitine is currently in clinical trials, although our findings suggest that the combination of Roscovitine with IR appears to be a very promising especially for liver, brain and lung cancer treatment, further investigation is needed to evaluate the therapeutic index before tested in clinical trial

  16. Role of novel anticancer drug Roscovitine on enhancing radiosensitivity in carcinoma cell lines

    International Nuclear Information System (INIS)

    Noaman, E.; Sayed, H.M.; Medhat, A.M.; Morcos, N.Y.S.

    2010-01-01

    The present study was conducted to evaluate the radiosensitization effect of Roscovitine (cyclin dependent kinase inhibitor) in carcinoma cell lines. Three cell lines are used liver carcinoma cell line (HepG2), brain carcinoma cell line (U251), Lung carcinoma cell line (H460) in this study cells were treated with Roscovitine in different concentrations ranging from 0.1 ?M to 100 ?M before exposure to radiation doses ranging from 0.5 Gy to 20 Gy according to each experiment. The cell viability by MTT assay, the cell cycle analysis by flow cytometry and DNA fragmentation repair mechanism by diphenylamine were measured after Roscovitine treatment with or without radiation exposure to explore the sensitization effect of Roscovitine. The present study conclude that Roscovitine a good candidate as radiosensitizer for modifying the ionizing radiation (IR) response in cancer cells, beside its cyclin dependent kinase inhibitor function, Roscovitine can generate DNA Double strand Breaks and cooperate to enhance IR induce DNA damages. Roscovitine is currently in clinical trials, although our findings suggest that the combination of Roscovitine with IR appears to be a very promising especially for liver, brain and lung cancer treatment, further investigation is needed to evaluate the therapeutic index before tested in clinical trials

  17. Expression of caspase-3 gene in apoptotic HL-60 cell and different human tumor cell lines

    International Nuclear Information System (INIS)

    Li Xiaoming; Song Tianbao

    1999-01-01

    Objective: To research the expression of caspase-3 gene in the apoptotic and the control HL-60 cells and in the different human tumor cell lines. Methods: Caspase-3 mRNA in the control and γ-radiation-induced apoptotic HL-60 cells, and in the 6 types of human tumor cell lines, was analysed by Northern blot. Results: The caspase-3 gene transcript was more highly expressed in leukemia cells HL-60, CEM, K562 and neuroblastoma SH-SY5Y than in cervical adenocarcinoma HeLa and breast carcinoma MCF7, and more highly in the radiation-induced apoptotic HL-60 than in the control HL-60 cells. Conclusion: The high level of expression of caspase-3 may aid the efforts to understand the tumor cell sensitivity to radiation, apoptosis and its inherent ability to survive

  18. Molecular Cytogenetic Characterization Identified the Murine B-Cell Lymphoma Cell Line A-20 as a Model for Sporadic Burkitt's Lymphoma.

    Science.gov (United States)

    Guja, Karolina; Liehr, Thomas; Rincic, Martina; Kosyakova, Nadezda; Hussein Azawi, Shaymaa S

    2017-11-01

    Here, we report the first molecular cytogenetic characterization of the BALB/cAnN mouse derived B-cell non-Hodgkin lymphoma (B-cell NHL) cell lines A-20. Even though previously used as a model for testing of, for example, dexametason, up to present, no data in the genetic properties of A-20 were available. The present study closed this gap and provides evidence that A-20 is a model for B-cell NHL subgroup sporadic Burkitt's lymphoma. C-myc oncogene is involved in a translocation and copy number alterations as gain of murine 14q material could be observed. Interestingly, the cell line showed the karyotype 39,X,-X or -Y,t(2;15)(qE5;qD2),del(6)(qB3qC3),del(9)(qA3qA4),dup(14)(qE1qE4) in ~95% of the cells, being exceptionally stable for cell lines being established 38 years ago. Still, ~5% of the cells showed polyploidization followed by chromothripsis. It remains to be determined if this can be observed also in other cell lines, just has not been reported yet, and/or if it is a unique feature of A-20. Overall, finally here, the necessary genetic data to identify A-20 as a model for human sporadic Burkitt's lymphoma are provided.

  19. Characterization of cloned cells from an immortalized fetal pulmonary type II cell line

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, R.F.; Waide, J.J.; Lechner, J.F.

    1995-12-01

    A cultured cell line that maintained expression of pulmonary type II cell markers of differentiation would be advantageous to generate a large number of homogenous cells in which to study the biochemical functions of type II cells. Type II epithelial cells are the source of pulmonary surfactant and a cell of origin for pulmonary adenomas. Last year our laboratory reported the induction of expression of two phenotypic markers of pulmonary type II cells (alkaline phosphatase activity and surfactant lipid synthesis) in cultured fetal rat lung epithelial (FRLE) cells, a spontaneously immortalized cell line of fetal rat lung type II cell origin. Subsequently, the induction of the ability to synthesize surfactant lipid became difficult to repeat. We hypothesized that the cell line was heterogenuous and some cells were more like type II cells than others. The purpose of this study was to test this hypothesis and to obtain a cultured cell line with type II cell phenotypic markers by cloning several FRLE cells and characterizing them for phenotypic markers of type II cells (alkaline phosphatase activity and presence of surfactant lipids). Thirty cloned cell lines were analyzed for induced alkaline phosphatase activity (on x-axis) and for percent of phospholipids that were disaturated (i.e., surfactant).

  20. Change of cell cycle arrest of tumor cell lines after 60Co γ-irradiation

    International Nuclear Information System (INIS)

    Tang Yi; Liu Wenli; Zhou Jianfeng; Gao Qinglei; Wu Jianhong

    2003-01-01

    Objective: To observe the cell cycle arrest changes in peripheral blood mononuclear cells (PBMNCs) of normal persons and several kinds of tumor cell lines after 60 Co γ-irradiation. Methods: PBMNCs of normal persons, HL-60, K562, SiHA and 113 tumor cell lines were irradiated with 60 Co γ-rays at the absorbed doses of 6, 10,15 Gy. Cell cycles changes were checked 6, 12, 24, 48 and 60 h after the irradiation. Results: A stasis state was observed in normal person PBMNCs, 95 percents of which were in G 1 phase, and they still remained stasis after the irradiation. Except the 113 cell line manifesting G 1 phase arrest, all other tumor cell lines showed G 2 /M phase arrest after irradiation. The radiation sensitivity of HL-60 was higher than that of SiHA cell line. Conclusion: Different cell lines have different cell cycle arrest reaction to radiation and their radiation sensitivity are also different

  1. Two distinct affinity binding sites for IL-1 on human cell lines

    International Nuclear Information System (INIS)

    Bensimon, C.; Wakasugi, N.; Tagaya, Y.; Takakura, K.; Yodoi, J.; Tursz, T.; Wakasugi, H.

    1989-01-01

    We used two human cell lines, NK-like YT-C3 and an EBV-containing B cell line, 3B6, as models to study the receptor(s) for IL-1. Two distinct types of saturable binding sites were found on both cell lines at 37 degrees C. Between 1 pM and 100 pM of 125I-IL-1-alpha concentration, saturable binding sites were detected on the YT-C3 cells with a K of 4 x 10(-11) M. The K found for the IL-1-alpha binding sites on 3B6 cells was 7.5 x 10(-11) M. An additional binding curve was detected above 100 pM on YT-C3 cells with a K of 7 x 10(-9) M and on 3B6 cells with a K of 5 x 10(-9) M. Scatchard plot analysis revealed 600 sites/cell with high affinity binding and 7000 sites/cell with low affinity for YT-C3 cells and 300 sites/cell with high affinity binding and 6000 sites/cell with low affinity for 3B6 cells. At 37 degrees C, the internalization of 125I-labeled IL-1 occurred via both high and low affinity IL-1R on both YT-C3 and 3B6 cells, whereas the rates of internalization for high affinity binding sites on YT-C3 cells were predominant in comparison to that of low affinity binding sites. In chemical cross-linking studies of 125 I-IL-1-alpha to 3B6 and YT-C3 cells, two protein bands were immunoprecipitated with Mr around 85 to 90 kDa leading to an estimation of the Mr of the IL-1R around 68 to 72 kDa. In similar experiments, the Mr found for the IL-1R expressed on the murine T cell line EL4 was slightly higher (around 80 kDa). Whether these distinct affinity binding sites are shared by a single molecule or by various chains remains to be elucidated

  2. Dihydrochalcone Compounds Isolated from Crabapple Leaves Showed Anticancer Effects on Human Cancer Cell Lines

    Directory of Open Access Journals (Sweden)

    Xiaoxiao Qin

    2015-11-01

    Full Text Available Seven dihydrochalcone compounds were isolated from the leaves of Malus crabapples, cv. “Radiant”, and their chemical structures were elucidated by UV, IR, ESI-MS, 1H-NMR and 13C-NMR analyses. These compounds, which include trilobatin (A1, phloretin (A2, 3-hydroxyphloretin (A3, phloretin rutinoside (A4, phlorizin (A5, 6′′-O-coumaroyl-4′-O-glucopyranosylphloretin (A6, and 3′′′-methoxy-6′′-O-feruloy-4′-O-glucopyranosyl-phloretin (A7, all belong to the phloretin class and its derivatives. Compounds A6 and A7 are two new rare dihydrochalcone compounds. The results of a MTT cancer cell growth inhibition assay demonstrated that phloretin and these derivatives showed significant positive anticancer activities against several human cancer cell lines, including the A549 human lung cancer cell line, Bel 7402 liver cancer cell line, HepG2 human ileocecal cancer cell line, and HT-29 human colon cancer cell line. A7 had significant effects on all cancer cell lines, suggesting potential applications for phloretin and its derivatives. Adding a methoxyl group to phloretin dramatically increases phloretin’s anticancer activity.

  3. Characterization of a Madin-Darby canine kidney cell line stably expressing TRPV5.

    NARCIS (Netherlands)

    Dekker, E. den; Schoeber, J.P.H.; Topala, C.N.; Graaf, S.F.J. van de; Hoenderop, J.G.J.; Bindels, R.J.M.

    2005-01-01

    To provide a cell model for studying specifically the regulation of Ca2+ entry by the epithelial calcium channel transient receptor potential-vanilloid-5 (TRPV5), green fluorescent protein (GFP)-tagged TRPV5 was expressed stably in Madin-Darby canine kidney type I (MDCK) cells. The localization of

  4. N-acetylaspartate (NAA) induces neuronal differentiation of SH-SY5Y neuroblastoma cell line and sensitizes it to chemotherapeutic agents.

    Science.gov (United States)

    Mazzoccoli, Carmela; Ruggieri, Vitalba; Tataranni, Tiziana; Agriesti, Francesca; Laurenzana, Ilaria; Fratello, Angelo; Capitanio, Nazzareno; Piccoli, Claudia

    2016-05-03

    Neuroblastoma is the most commonly extra-cranial solid tumor of childhood frequently diagnosed. The nervous system-specific metabolite N-acetylaspartate (NAA) is synthesized from aspartate and acetyl-CoA in neurons, it is among the most abundant metabolites present in the central nervous system (CNS) and appears to be involved in many CNS disorders. The functional significance of the high NAA concentration in the brain remains uncertain, but it confers to NAA a unique clinical significance exploited in magnetic resonance spectroscopy. In the current study, we show that treatment of SH-SY5Y neuroblastoma-derived cell line with sub-cytotoxic physiological concentrations of NAA inhibits cell growth. This effect is partly due to enhanced apoptosis, shown by decrease of the anti-apoptotic factors survivin and Bcl-xL, and partly to arrest of the cell-cycle progression, linked to enhanced expression of the cyclin-inhibitors p53, p21Cip1/Waf1 and p27Kip1. Moreover, NAA-treated SH-SY5Y cells exhibited morphological changes accompanied with increase of the neurogenic markers TH and MAP2 and down-regulation of the pluripotency markers OCT4 and CXCR4/CD184. Finally, NAA-pre-treated SH-SY5Y cells resulted more sensitive to the cytotoxic effect of the chemotherapeutic drugs Cisplatin and 5-fluorouracil.To our knowledge, this is the first study demonstrating the neuronal differentiating effects of NAA in neuroblastoma cells. NAA may be a potential preconditioning or adjuvant compound in chemotherapeutic treatment.

  5. Sensitivity to ionizing radiation and chemotherapeutic agents in gemcitabine-resistant human tumor cell lines

    International Nuclear Information System (INIS)

    Bree, Chris van; Kreder, Natasja Castro; Loves, Willem J.P.; Franken, Nicolaas A.P.; Peters, Godefridus J.; Haveman, Jaap

    2002-01-01

    Purpose: To determine cross-resistance to anti-tumor treatments in 2',2'difluorodeoxycytidine (dFdC, gemcitabine)-resistant human tumor cells. Methods and Materials: Human lung carcinoma cells SW-1573 (SWp) were made resistant to dFdC (SWg). Sensitivity to cisplatin (cDDP), paclitaxel, 5-fluorouracil (5-FU), methotrexate (MTX), cytarabine (ara-C), and dFdC was measured by a proliferation assay. Radiosensitivity and radioenhancement by dFdC of this cell panel and the human ovarian carcinoma cell line A2780 and its dFdC-resistant variant AG6000 were determined by clonogenic assay. Bivariate flowcytometry was performed to study cell cycle changes. Results: In the SWg, a complete deoxycytidine kinase (dCK) deficiency was found on mRNA and protein level. This was accompanied by a 10-fold decrease in dCK activity which resulted in the >1000-fold resistance to dFdC. Sensitivity to other anti-tumor drugs was not altered, except for ara-C (>100-fold resistance). Radiosensitivity was not altered in the dFdC-resistant cell lines SWg and AG6000. High concentrations (50-100 μM dFdC) induced radioenhancement in the dFdC-resistant cell lines similar to the radioenhancement obtained at lower concentrations (10 nM dFdC) in the parental lines. An early S-phase arrest was found in all cell lines after dFdC treatment where radioenhancement was achieved. Conclusions: In the dFdC-resistant lung tumor cell line SWg, the deficiency in dCK is related to the resistance to dFdC and ara-C. No cross-resistance was observed to other anti-tumor drugs used for the treatment in lung cancer. Sensitivity to ionizing radiation was not altered in two different dFdC-resistant cell lines. Resistance to dFdC does not eliminate the ability of dFdC to sensitize cells to radiation

  6. DNA fragmentation and apoptosis induced by safranal in human prostate cancer cell line

    Directory of Open Access Journals (Sweden)

    Saeed Samarghandian

    2013-01-01

    Full Text Available Objectives: Apoptosis, an important mechanism that contributes to cell growth reduction, is reported to be induced by Crocus sativus (Saffron in different cancer types. However, limited effort has been made to correlate these effects to the active ingredients of saffron. The present study was designed to elucidate cytotoxic and apoptosis induction by safranal, the major coloring compound in saffron, in a human prostate cancer cell line (PC-3. Materials and Methods: PC-3 and human fetal lung fibroblast (MRC-5 cells were cultured and exposed to safranal (5, 10, 15, and 20 μg/ml. The 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay was performed to assess cytotoxicity. DNA fragmentation was assessed by gel electrophoresis. Cells were incubated with different concentrations of safranal, and cell morphologic changes and apoptosis were determined by the normal inverted microscope, Annexin V, and propidium iodide, followed by flow cytometric analysis, respectively. Results: MTT assay revealed a remarkable and concentration-dependent cytotoxic effect of safranal on PC-3 cells in comparison with non-malignant cell line. The morphologic alterations of the cells confirmed the MTT results. The IC 50 values against PC-3 cells were found to be 13.0 ΁ 0.07 and 6.4 ΁ 0.09 μg/ml at 48 and 72 h, respectively. Safranal induced an early and late apoptosis in the flow cytometry histogram of treated cells, indicating apoptosis is involved in this toxicity. DNA analysis revealed typical ladders as early as 48 and 72 h after treatment, indicative of apoptosis. Conclusions: Our preclinical study demonstrated a prostate cancer cell line to be highly sensitive to safranal-mediated growth inhibition and apoptotic cell death. Although the molecular mechanisms of safranal action are not clearly understood, it appears to have potential as a therapeutic agent.

  7. Establishment of clinically relevant radioresistant cell lines and their characteristics

    International Nuclear Information System (INIS)

    Fukumoto, Manabu; Kuwahara, Yoshikazu; Suzuki, Masatoshi

    2014-01-01

    Although radiotherapy is one of the major therapeutic modalities for eradicating malignant tumors, the existence of radioresistant cells remains one of the most critical obstacles. Standard radiotherapy consists of fractionated radiation (FR) of 2-Gy X-rays once a day, 5 days a week, over 60 Gy in total. To understand the characteristics of radioresistant cells and to develop more effective radiotherapy, we have established novel radioresistant cell lines by long-term (> 5 years) exposure to moderate doses of fractionated X-rays. While all the parental human cancer cells ceased, their radioresistant derivatives continue to proliferate with daily exposure to 2-Gy FR for more than 30 days. We have coined those cells as 'clinically relevant radioresistant' (CRR) cells. Transplanted tumors into nude mice were also CRR, indicating that CRR cell lines are powerful tools to improve cancer radiotherapy. We have shown that the suppression of autophagic cell death but not apoptosis was mainly involved in cellular radioresistance. An inhibitor of the mTOR pathway which enhances autophagy was effective to overcome CRR tumors induced in nude mice. But the underlined mechanism was not through the inhibition of autophagy. Guanine nucleotide-binding protein 1 (GBP1) over expression was necessary for maintaining the CRR phenotype, but radioresistant cells were not necessarily cancer stem cells (CSCs). Targeting GBP1 positive cancer cells may be a more efficient method in conquering cancer than targeting CSCs. Slight but significant radioresistance was acquired by 0.5 Gy/12 hrs of long-term FR exposures to parental cells for more than 31 days in accordance with cyclinD1 over expression. This acquired radioresistance (ARR) was stably maintained in the tumor cells even on 31 days after the cessation of 0.5-Gy FR. Present observations give a mechanistic insight for ARR of tumor cells through long-term FR exposure, and provide novel therapeutic targets for radiosensitization

  8. Survey of Differentially Methylated Promoters in Prostate Cancer Cell Lines

    Directory of Open Access Journals (Sweden)

    Yipeng Wang

    2005-08-01

    Full Text Available DNA methylation, copy number in the genomes of three immortalized prostate epithelial, five cancer cell lines (LNCaP, PC3, PC3M, PC3M-Pro4, PC3MLN4 were compared using a microarray-based technique. Genomic DNA is cut with a methylation-sensitive enzyme Hpall, followed by linker ligation, polymerase chain reaction (PCR amplification, labeling, hybridization to an array of promoter sequences. Only those parts of the genomic DNA that have unmethylated restriction sites within a few hundred base pairs generate PCR products detectable on an array. Of 2732 promoter sequences on a test array, 504 (18.5% showed differential hybridization between immortalized prostate epithelial, cancer cell lines. Among candidate hypermethylated genes in cancer-derived lines, there were eight (CD44, CDKN1A, ESR1, PLAU, RARB, SFN, TNFRSF6, TSPY previously observed in prostate cancer, 13 previously known methylation targets in other cancers (ARHI, bcl-2, BRCA1, CDKN2C, GADD45A, MTAP, PGR, SLC26A4, SPARC, SYK, TJP2, UCHL1, WIT-1. The majority of genes that appear to be both differentially methylated, differentially regulated between prostate epithelial, cancer cell lines are novel methylation targets, including PAK6, RAD50, TLX3, PIR51, MAP2K5, INSR, FBN1, GG2-1, representing a rich new source of candidate genes used to study the role of DNA methylation in prostate tumors.

  9. Spontaneous pyrogen production by mouse histiocytic and myelomonocytic tumor cell lines in vitro.

    Science.gov (United States)

    Bodel, P

    1978-05-01

    Tumor-associated fever occurs commonly in acute leukemias and lymphomas. We investigated the capacity for in vitro production of pyrogen by three mouse histiocytic lymphoma cell lines (J-774, PU5-1.8, p 388 D1), one myelomonoyctic line (WEHI-3), and tow lymphoma-derived lines, RAW-8 and R-8. Pyrogen was released spontaneously into the culture medium during growth by all cell lines with macrophage or myeloid characteristics including lysozyme production; R-8 cells, of presumed B-lymphocyte origin, did not produce pyrogen. When injected into mice, the pyrogens gave fever curves typical of endogenous pyrogen, were inactived by heating to 56 degrees C and by pronase digestion, and appeared to be secreted continuously by viable cells. Two pyrogenic molecular species produced by H-774 cells were identified by Sephadex filtration, one of mol wt approximately equal to 30,000, and the other greater than or equal to 60,000. By contrast, three carcinoma cell lines of human origin and SV-40 3T3 mouse fibroblasts did not produce pyrogen in vitro. These results suggest that some malignant cells derived from phagocytic cells of bone marrow origin retain their capacity for pyrogen production, and may spontaneously secrete pyrogen during growth.

  10. CCR5 Disruption in Induced Pluripotent Stem Cells Using CRISPR/Cas9 Provides Selective Resistance of Immune Cells to CCR5-tropic HIV-1 Virus.

    Science.gov (United States)

    Kang, HyunJun; Minder, Petra; Park, Mi Ae; Mesquitta, Walatta-Tseyon; Torbett, Bruce E; Slukvin, Igor I

    2015-12-15

    The chemokine (C-C motif) receptor 5 (CCR5) serves as an HIV-1 co-receptor and is essential for cell infection with CCR5-tropic viruses. Loss of functional receptor protects against HIV infection. Here, we report the successful targeting of CCR5 in GFP-marked human induced pluripotent stem cells (iPSCs) using CRISPR/Cas9 with single and dual guide RNAs (gRNAs). Following CRISPER/Cas9-mediated gene editing using a single gRNA, 12.5% of cell colonies demonstrated CCR5 editing, of which 22.2% showed biallelic editing as determined by a Surveyor nuclease assay and direct sequencing. The use of dual gRNAs significantly increased the efficacy of CCR5 editing to 27% with a biallelic gene alteration frequency of 41%. To ensure the homogeneity of gene editing within cells, we used single cell sorting to establish clonal iPSC lines. Single cell-derived iPSC lines with homozygous CCR5 mutations displayed the typical characteristics of pluripotent stem cells and differentiated efficiently into hematopoietic cells, including macrophages. Although macrophages from both wild-type and CCR5-edited iPSCs supported CXCR4-tropic virus replication, macrophages from CCR5-edited iPSCs were uniquely resistant to CCR5-tropic virus challenge. This study demonstrates the feasibility of applying iPSC technology for the study of the role of CCR5 in HIV infection in vitro, and generation of HIV-resistant cells for potential therapeutic applications.

  11. Hypoxic cell turnover in different solid tumor lines

    International Nuclear Information System (INIS)

    Ljungkvist, Anna S.E.; Bussink, Johan; Kaanders, Johannes H.A.M.; Rijken, Paulus F.J.W.; Begg, Adrian C.; Raleigh, James A.; Kogel, Albert J. van der

    2005-01-01

    Purpose: Most solid tumors contain hypoxic cells, and the amount of tumor hypoxia has been shown to have a negative impact on the outcome of radiotherapy. The efficacy of combined modality treatments depends both on the sequence and timing of the treatments. Hypoxic cell turnover in tumors may be important for optimal scheduling of combined modality treatments, especially when hypoxic cell targeting is involved. Methods and Materials: Previously we have shown that a double bioreductive hypoxic marker assay could be used to detect changes of tumor hypoxia in relation to the tumor vasculature after carbogen and hydralazine treatments. This assay was used in the current study to establish the turnover rate of hypoxic cells in three different tumor models. The first hypoxic marker, pimonidazole, was administered at variable times before tumor harvest, and the second hypoxic marker, CCI-103F, was injected at a fixed time before harvest. Hypoxic cell turnover was defined as loss of pimonidazole (first marker) relative to CCI-103F (second marker). Results: The half-life of hypoxic cell turnover was 17 h in the murine C38 colon carcinoma line, 23 h and 49 h in the human xenograft lines MEC82 and SCCNij3, respectively. Within 24 h, loss of pimonidazole-stained areas in C38 and MEC82 occurred concurrent with the appearance of pimonidazole positive cell debris in necrotic regions. In C38 and MEC82, most of the hypoxic cells had disappeared after 48 h, whereas in SCCNij3, viable cells that had been labeled with pimonidazole were still observed after 5 days. Conclusions: The present study demonstrates that the double hypoxia marker assay can be used to study changes in both the proportion of hypoxic tumor cells and their lifespan at the same time. The present study shows that large differences in hypoxic cell turnover rates may exist among tumor lines, with half-lives ranging from 17-49 h

  12. Differential Radiosensitizing Potential of Temozolomide in MGMT Promoter Methylated Glioblastoma Multiforme Cell Lines

    International Nuclear Information System (INIS)

    Nifterik, Krista A. van; Berg, Jaap van den; Stalpers, Lukas J.A.; Lafleur, M. Vincent M.; Leenstra, Sieger; Slotman, Ben J.; Hulsebos, Theo J.M.; Sminia, Peter

    2007-01-01

    Purpose: To investigate the radiosensitizing potential of temozolomide (TMZ) for human glioblastoma multiforme (GBM) cell lines using single-dose and fractionated γ-irradiation. Methods and Materials: Three genetically characterized human GBM cell lines (AMC-3046, VU-109, and VU-122) were exposed to various single (0-6 Gy) and daily fractionated doses (2 Gy per fraction) of γ-irradiation. Repeated TMZ doses were given before and concurrent with irradiation treatment. Immediately plated clonogenic cell-survival curves were determined for both the single-dose and the fractionated irradiation experiments. To establish the net effect of clonogenic cell survival and cell proliferation, growth curves were determined, expressed as the number of surviving cells. Results: All three cell lines showed MGMT promoter methylation, lacked MGMT protein expression, and were sensitive to TMZ. The isotoxic TMZ concentrations used were in a clinically feasible range of 10 μmol/L (AMC-3046), 3 μmol/L (VU-109), and 2.5 μmol/L (VU-122). Temozolomide was able to radiosensitize two cell lines (AMC 3046 and VU-122) using single-dose irradiation. A reduction in the number of surviving cells after treatment with the combination of TMZ and fractionated irradiation was seen in all three cell lines, but only AMC 3046 showed a radiosensitizing effect. Conclusions: This study on TMZ-sensitive GBM cell lines shows that TMZ can act as a radiosensitizer and is at least additive to γ-irradiation. Enhancement of the radiation response by TMZ seems to be independent of the epigenetically silenced MGMT gene

  13. Biosynthesis of 10 kDa and 7.5 kDa insulin-like growth factor II in a human rhabdomyosarcoma cell line

    DEFF Research Database (Denmark)

    Nielsen, F C; Haselbacher, G; Christiansen, Jan

    1993-01-01

    In the present study we have analysed the expression of insulin-like growth factor II (IGF-II) in the human rhabdomyosarcoma cell line IN157.IN157 cells express high levels of three IGF-II mRNAs of 6.0 kb, 4.8 kb and 4.2 kb. In contrast, normal skeletal muscle expresses a negligible amount of IGF......-II mRNA. Two forms of IGF-II with molecular masses of 7.5 kDa and 10 kDa, corresponding to the mature IGF-II and IGF-II with a C-terminal extension of 21 amino acids (IGF-IIE21), were secreted into the culture medium at amounts of 17 ng/ml (2.3 nM) and 15 ng/ml (1.5 nM), respectively. IN157 cells also......-II and IGF-IIE21 with Kd values of 0.5 nM and 2 nM, respectively, and IGF-I with about 500 times lower affinity. IGF-II and IGF-IIE21 stimulated DNA synthesis via the IGF-I receptor, whereas the IGF-II/Man 6-P receptor mediated their rapid internalization and inactivation. During culture of IN157 cells about...

  14. Characterization and drug resistance patterns of Ewing's sarcoma family tumor cell lines.

    Directory of Open Access Journals (Sweden)

    William A May

    Full Text Available Despite intensive treatment with chemotherapy, radiotherapy and surgery, over 70% of patients with metastatic Ewing's Sarcoma Family of Tumors (EFT will die of their disease. We hypothesize that properly characterized laboratory models reflecting the drug resistance of clinical tumors will facilitate the application of new therapeutic agents to EFT. To determine resistance patterns, we studied newly established EFT cell lines derived from different points in therapy: two established at diagnosis (CHLA-9, CHLA-32, two after chemotherapy and progressive disease (CHLA-10, CHLA-25, and two at relapse after myeloablative therapy and autologous bone marrow transplantation (post-ABMT (CHLA-258, COG-E-352. The new lines were compared to widely studied EFT lines TC-71, TC-32, SK-N-MC, and A-673. These lines were extensively characterized with regard to identity (short tandem repeat (STR analysis, p53, p16/14 status, and EWS/ETS breakpoint and target gene expression profile. The DIMSCAN cytotoxicity assay was used to assess in vitro drug sensitivity to standard chemotherapy agents. No association was found between drug resistance and the expression of EWS/ETS regulated genes in the EFT cell lines. No consistent association was observed between drug sensitivity and p53 functionality or between drug sensitivity and p16/14 functionality across the cell lines. Exposure to chemotherapy prior to cell line initiation correlated with drug resistance of EFT cell lines in 5/8 tested agents at clinically achievable concentrations (CAC or the lower tested concentration (LTC: (cyclophosphamide (as 4-HC and doxorubicin at CAC, etoposide, irinotecan (as SN-38 and melphalan at LTC; P<0.1 for one agent, and P<0.05 for four agents. This panel of well-characterized drug-sensitive and drug-resistant cell lines will facilitate in vitro preclinical testing of new agents for EFT.

  15. Absence of annexin I expression in B-cell non-Hodgkin's lymphomas and cell lines

    Directory of Open Access Journals (Sweden)

    Gopalakrishnan Velliyur K

    2004-03-01

    Full Text Available Abstract Background Annexin I, one of the 20 members of the annexin family of calcium and phospholipid-binding proteins, has been implicated in diverse biological processes including signal transduction, mediation of apoptosis and immunosuppression. Previous studies have shown increased annexin I expression in pancreatic and breast cancers, while it is absent in prostate and esophageal cancers. Results Data presented here show that annexin I mRNA and protein are undetectable in 10 out of 12 B-cell lymphoma cell lines examined. Southern blot analysis indicates that the annexin I gene is intact in B-cell lymphoma cell lines. Aberrant methylation was examined as a cause for lack of annexin I expression by treating cells 5-Aza-2-deoxycytidine. Reexpression of annexin I was observed after prolonged treatment with the demethylating agent indicating methylation may be one of the mechanisms of annexin I silencing. Treatment of Raji and OMA-BL-1 cells with lipopolysaccharide, an inflammation inducer, and with hydrogen peroxide, a promoter of oxidative stress, also failed to induce annexin I expression. Annexin I expression was examined in primary lymphoma tissues by immunohistochemistry and presence of annexin I in a subset of normal B-cells and absence of annexin I expression in the lymphoma tissues were observed. These results show that annexin I is expressed in normal B-cells, and its expression is lost in all primary B-cell lymphomas and 10 of 12 B-cell lymphoma cell lines. Conclusions Our results suggest that, similar to prostate and esophageal cancers, annexin I may be an endogenous suppressor of cancer development, and loss of annexin I may contribute to B-cell lymphoma development.

  16. Glucocorticoid effect on melphalan cytotoxicity, cell-cycle position, cell size, and [3H]uridine incorporation in one of three human melanoma cell lines

    International Nuclear Information System (INIS)

    Benckhuijsen, C.; Osman, A.M.; Hillebrand, M.J.; Smets, L.A.

    1987-01-01

    Three human melanoma cell lines of known content of specific glucocorticoid-binding sites were studied for colony formation after a microM dose of glucocorticoid combined with melphalan. In one of the three cell lines, M-5A, subcloned from M-5 (formerly designated RPMI 8322), the effect of combined treatment was markedly increased compared to that of melphalan even if the glucocorticoid was applied for 1 h only, 10 h before the melphalan. Semilogarithmic dose-effect plots for a reduction of final plating efficiency by glucocorticoid were curvilinear, according to a receptor-mediated process. The effects of glucocorticoid, melphalan, and their combination were linearized by bilogarithmic median-effect plotting which allowed the quantitation of a synergism which was more marked in case of glucocorticoid pretreatment, for 1 or 24 h, than on simultaneous exposure. According to sequential DNA per cell cytophotometry, melphalan abolished in M-5A a glucocorticoid-induced arrest in the G1 phase of the cell cycle. The cytotoxic synergism correlated with an apparent stimulation by glucocorticoid of the rate of acid-insoluble incorporation of [ 3 H]uridine and [ 14 C]leucine and an increase in cell size and protein content in M-5A cells but not in the other two cell lines. The way in which glucocorticoids induce an enhanced susceptibility to melphalan is not clear. Our results appear compatible with a hypothesis that chromatin in a transcriptionally activated state is more vulnerable to cytotoxic attack by an alkylating agent than under average conditions

  17. Polymer encapsulated dopaminergic cell lines as "alternative neural grafts".

    Science.gov (United States)

    Jaeger, C B; Greene, L A; Tresco, P A; Winn, S R; Aebischer, P

    1990-01-01

    Our preliminary findings (Jaeger et al., 1988; Aebischer et al., 1989; Tresco et al., 1989) and the studies in progress show that encapsulated dopaminergic cell lines survive enclosure within a semi-permeable membrane. The encapsulated cells remained viable for extended time periods when maintained in vitro. Moreover, encapsulated PC12 and T28 cells have the potential to survive following their implantation into the forebrain of rats. Cell lines are essentially "immortal" because they continue to divide indefinitely. This property allows perpetual "self-renewal" of a given cell population. However, the capacity of continuous uncontrolled cell division may also lead to tumor formation. This in fact is the case for unencapsulated PC12 cell implants placed into the brain of young Sprague Dawley rats (Jaeger, 1985). Cell line encapsulation has the potential to prevent tumor growth (Jaeger et al., 1988). Survival for 6 months in vitro suggests that encapsulation does not preclude long-term maintenance of an homogeneous cell line like PC12 cells. The presence of mitotic figures in the capsules further supports the likelihood of propagation and self renewal of the encapsulated population. Another significant property of cell lines is that they consist of a single, genetically homogeneous cell type. They do not require specific synaptic interactions for their survival. In the case of PC12 and T28 lines, the cells synthesize and release neurotransmitters. Our data show that PC12 and T28 cells continue to release dopamine spontaneously and to express specific transmitters and enzymes following encapsulation. Thus, cell lines such as these may constitute relatively simple "neural implants" exerting their function via humoral release.(ABSTRACT TRUNCATED AT 250 WORDS)

  18. Proteomics of a new esophageal cancer cell line established from Persian patient.

    Science.gov (United States)

    Moghanibashi, Mehdi; Jazii, Ferdous Rastgar; Soheili, Zahra-Soheila; Zare, Maryam; Karkhane, Aliasghar; Parivar, Kazem; Mohamadynejad, Parisa

    2012-05-25

    Although the highest incidence of esophageal squamous cell carcinoma (ESCC) has repeatedly been reported from Persia (Iran), nevertheless the so far proteomic published reports were limited to one study on tissue specimens. Here we report the proteome of a newly established cell line from Persian ESCC patients and compare it with the normal primary cell proteome. Among polypeptides, whose expression was different in cell line sixteen polypeptides were identified by MALDI/TOF/TOF spectrometry. S100-A8 protein, annexin A1, annexin A2, regulatory subunit of calpain, subunit alpha type-3 of proteasome and glutamate dehydrogenase 1 were proteins down-regulated in cell line while peroxiredoxin-5, non-muscle myosin light polypeptide 6, keratin 1, annexin A4, keratin 8, tropomyosin 3, stress-induced-phosphoprotein 1 and albumin were found to be subject of up-regulation in cell line compared to the primary normal cells. The proteomic results were further verified by western blotting and RT-PCR on annexin A1 and keratin 8. In addition, among the aforementioned proteins, glutamate dehydrogenase 1, regulatory subunit of calpain, subunit alpha of type-3 proteasome and annexin A4 are proteins whose deregulation in ESCC is reported for the first time by this study. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Discovery of HeLa Cell Contamination in HES Cells: Call for Cell Line Authentication in Reproductive Biology Research.

    Science.gov (United States)

    Kniss, Douglas A; Summerfield, Taryn L

    2014-08-01

    Continuous cell lines are used frequently in reproductive biology research to study problems in early pregnancy events and parturition. It has been recognized for 50 years that many mammalian cell lines contain inter- or intraspecies contaminations with other cells. However, most investigators do not routinely test their culture systems for cross-contamination. The most frequent contributor to cross-contamination of cell lines is the HeLa cell isolated from an aggressive cervical adenocarcinoma. We report on the discovery of HeLa cell contamination of the human endometrial epithelial cell line HES isolated in our laboratory. Short tandem repeat analysis of 9 unique genetic loci demonstrated molecular identity between HES and HeLa cells. In addition, we verified that WISH cells, isolated originally from human amnion epithelium, were also contaminated with HeLa cells. Inasmuch as our laboratory did not culture HeLa cells at the time of HES cell derivations, the source of contamination was the WISH cell line. These data highlight the need for continued diligence in authenticating cell lines used in reproductive biology research. © The Author(s) 2014.

  20. A Sclerostin super-producer cell line derived from the human cell line SaOS-2: a new tool for the study of the molecular mechanisms driving Sclerostin expression.

    Science.gov (United States)

    Pérez-Campo, Flor M; Sañudo, Carolina; Delgado-Calle, Jesús; Arozamena, Jana; Zarrabeitia, María T; Riancho, José A

    2014-08-01

    Sclerostin, the product of the SOST gene, is a key regulator of bone homeostasis. Sclerostin interferes with the Wnt signalling pathway and, therefore, has a negative effect on bone formation. Although the importance of sclerostin in bone homeostasis is well established, many aspects of its biology are still unknown. Due to its restricted pattern of expression, in vitro studies of SOST gene regulation are technically challenging. Furthermore, a more profound investigation of the molecular mechanism controlling sclerostin expression has been hampered by the lack of a good human in vitro model. Here, we describe two cell lines derived from the human osteosarcoma cell line SaOS-2 that produce elevated levels of sclerostin. Analysis of the super-producer cell lines showed that sclerostin levels were still reduced in response to parathyroid hormone treatment or in response to mechanical loading, indicating that these regulatory mechanisms were not affected in the presented cell lines. In addition, we did not find differences between the promoter or ECR5 sequences of our clones and the SaOS-2 parental line. However, the methylation of the proximal CpG island located at the SOST promoter was lower in the super-producer clones, in agreement with a higher level of SOST transcription. Although the underlying biological causes of the elevated levels of sclerostin production in this cell line are not yet clear, we believe that it could be an extremely useful tool to study the molecular mechanisms driving sclerostin expression in humans.

  1. THP-1 cell line: an in vitro cell model for immune modulation approach.

    Science.gov (United States)

    Chanput, Wasaporn; Mes, Jurriaan J; Wichers, Harry J

    2014-11-01

    THP-1 is a human leukemia monocytic cell line, which has been extensively used to study monocyte/macrophage functions, mechanisms, signaling pathways, and nutrient and drug transport. This cell line has become a common model to estimate modulation of monocyte and macrophage activities. This review attempts to summarize and discuss recent publications related to the THP-1 cell model. An overview on the biological similarities and dissimilarities between the THP-1 cell line and human peripheral blood mononuclear cell (PBMC) derived-monocytes and macrophages, as well as the advantages and disadvantages of the use of THP-1 cell line, is included. The review summarizes different published co-cultivation studies of THP-1 cells with other cell types, for instance, intestinal cells, adipocytes, T-lymphocytes, platelets, and vascular smooth muscle cells, which can be an option to study cell-cell interaction in vitro and can be an approach to better mimic in vivo conditions. Macrophage polarization is a relatively new topic which gains interest for which the THP-1 cell line also may be relevant. Besides that an overview of newly released commercial THP-1 engineered-reporter cells and THP-1 inflammasome test-cells is also given. Evaluation of recent papers leads to the conclusion that the THP-1 cell line has unique characteristics as a model to investigate/estimate immune-modulating effects of compounds in both activated and resting conditions of the cells. Although the THP-1 response can hint to potential responses that might occur ex vivo or in vivo, these should be, however, validated by in vivo studies to draw more definite conclusions. Copyright © 2013. Published by Elsevier B.V.

  2. 5-Fluorouracil modulation of radiosensitivity in cultured human carcinoma cells

    International Nuclear Information System (INIS)

    Smalley, S.R.; Kimler, B.F.; Evans, R.G.

    1991-01-01

    We evaluated conventional pulse exposure versus continuous exposure models of 5-fluorouracil (5-FU) radiosensitization in HT-29 (human colon adenocarcinoma) and DU-145 (human prostate cancer adenocarcinoma) cell lines. Cell survival following treatment with drug and/or radiation was determined by colony formation assays. Radiation was delivered either by itself, approximately midway through a 1-hr exposure to 5-FU (10 micrograms/ml), or at various times following initiation of exposure to 5-FU (0.5 microgram/ml) present throughout the entire period of incubation. Drug concentrations were selected to approximate those achieved in vivo in humans. HT-29 cells showed a plating efficiency of 87% and similar cytotoxicity (survival reduced to 0.57-0.71) for all 5-FU conditions. The Do's of the radiation survival curves were not different for 1 hr of 5-FU exposure versus radiation alone. However, continuous exposure conditions demonstrated statistically significantly different Do's from radiation alone and pulse 5-FU exposure. DU-145 cells displayed a plating efficiency of 17% and cytotoxicities of 0.10-0.91 for the 5-FU conditions. DU-145 cells showed different radiation 5-FU interactions: 5-FU produced statistically significant changes in Do well as the differences between cell lines insofar as their radiosensitization by 5-FU underscore the caution required in extrapolating these radiobiologic models to the clinical setting

  3. Differential biological effects of iodoacetate in mammalian cell lines; radio sensitization and radio protection

    International Nuclear Information System (INIS)

    Yadav, Usha; Anjaria, K.B.; Desai, Utkarsha N.; Chaurasia, Rajesh K.; Shirsath, K.B.; Bhat, Nagesh N.; Balakrishnan, Sreedevi; Sapra, B.K.; Nairy, Rajesha

    2014-01-01

    There are several studies where it has been shown that Iodoacetate (IA) possesses in vivo anti-tumor activity. The fact that it is a model glycolytic inhibitor makes it more interesting. As seen in recent trends, glycolytic inhibitors are emerging as new strategy for cancer therapeutic research taking advantage of glycolytic phenotype of cancerous tissues. IA has been reported to have radioprotective effects in yeast cells and human lymphocytes. Biological effects of IA in response to radiation in mammalian cell lines are not well documented. We screened IA for cytotoxicity using clonogenic assay at different concentrations ranging from 0.1 to 2.5 μg/ml using three different mammalian cell lines; A-549 (human lung carcinoma cell line), MCF-7 (human mammary cancer cell line) and a noncancerous CHO (Chinese hamster ovary cell line). For studying radioprotective/radio sensitizing efficacy, cells were exposed to 4 Gy of 60 Co-γ radiation using a teletherapy source at a dose rate of 1 Gy/min, following which IA post-treatment was carried out. Clonogenic and micronucleus assay were performed to assess radioprotection/sensitization. The results indicated that IA was highly cytotoxic in cancerous cell lines A-549 (IC 50 =1.25 μg/ml) and MCF-7 (IC 50 = 1.9 μg/ml). In contrast, it was totally non-toxic in non-cancerous cell line, viz. CHO, in the same concentration range. In addition, IA exhibited radio protective effect in CHO cell line, whereas in other two cancer cell lines, viz. A-549 and MCF-7, radio sensitizing effect was seen as judged by induction of cell killing and micronuclei. In conclusion, lA, a model glycolytic inhibitor, was found to be selectively cytotoxic in cancer cells as compared to normal cells. Further, it reduced radiation induced damage (micronuclei and cell killing) in normal cells but increased it in cancer cells indicating its potential use in cancer therapy. (author)

  4. Differential heat shock response of primary human cell cultures and established cell lines

    DEFF Research Database (Denmark)

    Richter, W W; Issinger, O G

    1986-01-01

    degrees C treatment, whereas in immortalized cell lines usually 90% of the cells were found in suspension. Enhanced expression of the major heat shock protein (hsp 70) was found in all heat-treated cells. In contrast to the primary cell cultures, established and transformed cell lines synthesized...

  5. Radiation response of haematopoietic cell lines of human origin

    International Nuclear Information System (INIS)

    Lehnert, S.; Rybka, W.B.; Suissa, S.; Giambattisto, D.

    1986-01-01

    Six human haematopoietic cell lines, five of leukaemic origin, including cells with myeloid, lymphoid and undifferentiated phenotype have been studied with respect to radiation response. The intrinsic radio-sensitivity of the cells varied widely, the D 0 s ranging from 0.53 to 1.39 Gy. Five of the cell lines showed some capacity to accumulate sublethal damage; in three of these, enhanced survival was demonstrated in split-dose experiments. One cell line (HL-60) was anomalous in that although little accumulation of sublethal damage was demonstrable, survival was enhanced by fractionation of the dose. Five of the six cell lines studied were of leukaemic origin. The results support the belief that, in contrast to the almost constant radiosensitivity of normal haematopoietic cell progenitors, leukaemic cell progenitors may show a wide range of radiosensitivities. (author)

  6. Human rhabdomyosarcoma cell lines for rhabdomyosarcoma research: Utility and pitfalls

    Directory of Open Access Journals (Sweden)

    Ashley R.P. Hinson

    2013-07-01

    Full Text Available Rhabdomyosarcoma (RMS is the most common soft tissue sarcoma of childhood and adolescence. Despite intergroup clinical trials conducted in Europe and North America, outcomes for high risk patients with this disease have not significantly improved in the last several decades, and survival of metastatic or relapsed disease remains extremely poor. Accrual into new clinical trials is slow and difficult, so in vitro cell line research and in vivo xenograft models present an attractive alternative for preclinical research for this cancer type. Currently, 30 commonly used human RMS cell lines exist, with differing origins, karyotypes, histologies, and methods of validation. Selecting an appropriate cell line for RMS research has important implications for outcomes. There are also potential pitfalls in using certain cell lines including contamination with murine stromal cells, cross-contamination between cell lines, discordance between the cell line and its associated original tumor, imposter cell lines, and nomenclature errors that result in the circulation of two or more presumed unique cell lines that are actually from the same origin. These pitfalls can be avoided by testing for species-specific isoenzymes, microarray analysis, assays for subtype-specific fusion products, and short tandem repeat analysis.

  7. Human Rhabdomyosarcoma Cell Lines for Rhabdomyosarcoma Research: Utility and Pitfalls

    Science.gov (United States)

    Hinson, Ashley R. P.; Jones, Rosanne; Crose, Lisa E. S.; Belyea, Brian C.; Barr, Frederic G.; Linardic, Corinne M.

    2013-01-01

    Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma of childhood and adolescence. Despite intergroup clinical trials conducted in Europe and North America, outcomes for high risk patients with this disease have not significantly improved in the last several decades, and survival of metastatic or relapsed disease remains extremely poor. Accrual into new clinical trials is slow and difficult, so in vitro cell-line research and in vivo xenograft models present an attractive alternative for preclinical research for this cancer type. Currently, 30 commonly used human RMS cell lines exist, with differing origins, karyotypes, histologies, and methods of validation. Selecting an appropriate cell line for RMS research has important implications for outcomes. There are also potential pitfalls in using certain cell lines including contamination with murine stromal cells, cross-contamination between cell lines, discordance between the cell line and its associated original tumor, imposter cell lines, and nomenclature errors that result in the circulation of two or more presumed unique cell lines that are actually from the same origin. These pitfalls can be avoided by testing for species-specific isoenzymes, microarray analysis, assays for subtype-specific fusion products, and short tandem repeat analysis. PMID:23882450

  8. Radiation sensitivity of human lung cancer cell lines

    International Nuclear Information System (INIS)

    Carmichael, J.; Degraff, W.G.; Gamson, J.; Russo, G.; Mitchell, J.B.; Gazdar, A.F.; Minna, J.D.; Levitt, M.L.

    1989-01-01

    X-Ray survival curves were determined using a panel of 17 human lung cancer cell lines, with emphasis on non-small cell lung cancer (NSCLC). In contrast to classic small cell lung cancer (SCLC) cell lines, NSCLC cell lines were generally less sensitive to radiation as evidenced by higher radiation survival curve extrapolation numbers, surviving fraction values following a 2Gy dose (SF2) and the mean inactivation dose values (D) values. The spectrum of in vitro radiation responses observed was similar to that expected in clinical practice, although mesothelioma was unexpectedly sensitive in vitro. Differences in radiosensitivity were best distinguished by comparison of SF2 values. Some NSCLC lines were relatively sensitive, and in view of this demonstrable variability in radiation sensitivity, the SF2 value may be useful for in vitro predictive assay testing of clinical specimens. (author)

  9. Generation of genome-modified Drosophila cell lines using SwAP.

    Science.gov (United States)

    Franz, Alexandra; Brunner, Erich; Basler, Konrad

    2017-10-02

    The ease of generating genetically modified animals and cell lines has been markedly increased by the recent development of the versatile CRISPR/Cas9 tool. However, while the isolation of isogenic cell populations is usually straightforward for mammalian cell lines, the generation of clonal Drosophila cell lines has remained a longstanding challenge, hampered by the difficulty of getting Drosophila cells to grow at low densities. Here, we describe a highly efficient workflow to generate clonal Cas9-engineered Drosophila cell lines using a combination of cell pools, limiting dilution in conditioned medium and PCR with allele-specific primers, enabling the efficient selection of a clonal cell line with a suitable mutation profile. We validate the protocol by documenting the isolation, selection and verification of eight independently Cas9-edited armadillo mutant Drosophila cell lines. Our method provides a powerful and simple workflow that improves the utility of Drosophila cells for genetic studies with CRISPR/Cas9.

  10. Establishment and characterization of a unique 1 microm diameter liver-derived progenitor cell line.

    Science.gov (United States)

    Aravalli, Rajagopal N; Behnan Sahin, M; Cressman, Erik N K; Steer, Clifford J

    2010-01-01

    Liver-derived progenitor cells (LDPCs) are recently identified novel stem/progenitor cells from healthy, unmanipulated adult rat livers. They are distinct from other known liver stem/progenitor cells such as the oval cells. In this study, we have generated a LDPC cell line RA1 by overexpressing the simian virus 40 (SV40) large T antigen (TAg) in primary LDPCs. This cell line was propagated continuously for 55 passages in culture, after which it became senescent. Interestingly, following transformation with SV40 TAg, LDPCs decreased in size significantly and the propagating cells measured 1 microm in diameter. RA1 cells proliferated in vitro with a doubling time of 5-7 days, and expressed cell surface markers of LDPCs. In this report, we describe the characterization of this novel progenitor cell line that might serve as a valuable model to study liver cell functions and stem cell origin of liver cancers. Copyright 2009 Elsevier Inc. All rights reserved.

  11. Experimental tumor growth of canine osteosarcoma cell line on chick embryo chorioallantoic membrane (in vivo studies).

    Science.gov (United States)

    Walewska, Magdalena; Dolka, Izabella; Małek, Anna; Wojtalewicz, Anna; Wojtkowska, Agata; Żbikowski, Artur; Lechowski, Roman; Zabielska-Koczywąs, Katarzyna

    2017-05-12

    The chick embryo chorioallantoic membrane (CAM) model is extensively used in human medicine in preclinical oncological studies. The CAM model has several advantages: low cost, simple experimental approach, time saving and following "3R principles". Research has shown that the human osteosarcoma cell lines U2OS, MMNG-HOS, and SAOS can form tumors on the CAM. In veterinary medicine, this has been described only for feline fibrosarcomas, feline mammary carcinomas and canine osteosarcomas. However, in case of canine osteosarcomas, it has been shown that only non-adherent osteosarcoma stem cells isolated from KTOSA5 and CSKOS cell lines have the ability to form microtumors on the CAM after an incubation period of 5 days, in contrast to adherent KTOSA5 and CSKOS cells. In the presented study, we have proven that the commercial adherent canine osteosarcoma cell line (D-17) can form vascularized tumors on the CAM after the incubation period of 10 days.

  12. Epigenetic alterations differ in phenotypically distinct human neuroblastoma cell lines

    International Nuclear Information System (INIS)

    Yang, Qiwei; Tian, Yufeng; Ostler, Kelly R; Chlenski, Alexandre; Guerrero, Lisa J; Salwen, Helen R; Godley, Lucy A; Cohn, Susan L

    2010-01-01

    Epigenetic aberrations and a CpG island methylator phenotype have been shown to be associated with poor outcomes in children with neuroblastoma (NB). Seven cancer related genes (THBS-1, CASP8, HIN-1, TIG-1, BLU, SPARC, and HIC-1) that have been shown to have epigenetic changes in adult cancers and play important roles in the regulation of angiogenesis, tumor growth, and apoptosis were analyzed to investigate the role epigenetic alterations play in determining NB phenotype. Two NB cell lines (tumorigenic LA1-55n and non-tumorigenic LA1-5s) that differ in their ability to form colonies in soft agar and tumors in nude mice were used. Quantitative RNA expression analyses were performed on seven genes in LA1-5s, LA1-55n and 5-Aza-dC treated LA1-55n NB cell lines. The methylation status around THBS-1, HIN-1, TIG-1 and CASP8 promoters was examined using methylation specific PCR. Chromatin immunoprecipitation assay was used to examine histone modifications along the THBS-1 promoter. Luciferase assay was used to determine THBS-1 promoter activity. Cell proliferation assay was used to examine the effect of 5-Aza-dC on NB cell growth. The soft agar assay was used to determine the tumorigenicity. Promoter methylation values for THBS-1, HIN-1, TIG-1, and CASP8 were higher in LA1-55n cells compared to LA1-5s cells. Consistent with the promoter methylation status, lower levels of gene expression were detected in the LA1-55n cells. Histone marks associated with repressive chromatin states (H3K9Me3, H3K27Me3, and H3K4Me3) were identified in the THBS-1 promoter region in the LA1-55n cells, but not the LA1-5s cells. In contrast, the three histone codes associated with an active chromatin state (acetyl H3, acetyl H4, and H3K4Me3) were present in the THBS-1 promoter region in LA1-5s cells, but not the LA1-55n cells, suggesting that an accessible chromatin structure is important for THBS-1 expression. We also show that 5-Aza-dC treatment of LA1-55n cells alters the DNA methylation

  13. The transcriptional diversity of 25 Drosophila cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Cherbas, Lucy [Indiana Univ., Bloomington, IN (United States); Willingham, Aarron [Affymetrix Inc., Santa Clara, CA (United States); Zhang, Dayu [Indiana Univ., Bloomington, IN (United States); Yang, Li [University of Connecticut Health Center, Farmington, Connecticut (United States); Zou, Yi [Indiana Univ., Bloomington, IN (United States); Eads, Brian D. [Indiana Univ., Bloomington, IN (United States); Carlson, Joseph W. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Landolin, Jane M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Kapranov, Philipp [Affymetrix Inc., Santa Clara, CA (United States); Dumais, Jacqueline [Affymetrix Inc., Santa Clara, CA (United States); Samsonova, Anastasia [Harvard Medical School, Boston, MA (United States); Choi, Jeong-Hyeon [Indiana Univ., Bloomington, IN (United States); Roberts, Johnny [Indiana Univ., Bloomington, IN (United States); Davis, Carrie A. [Cold Spring Harbor Laboratory, Cold Spring Harbor, New York (United States); Tang, Haixu [Indiana Univ., Bloomington, IN (United States); van Baren, Marijke J. [Washington Univ., St. Louis, MO (United States); Ghosh, Srinka [Affymetrix Inc., Santa Clara, CA (United States); Dobin, Alexander [Cold Spring Harbor Laboratory, Cold Spring Harbor, New York (United States); Bell, Kim [Cold Spring Harbor Laboratory, Cold Spring Harbor, New York (United States); Lin, Wei [Cold Spring Harbor Laboratory, Cold Spring Harbor, New York (United States); Langton, Laura [Washington Univ., St. Louis, MO (United States); Duff, Michael O. [University of Connecticut Health Center, Farmington, Connecticut (United States); Tenney, Aaron E. [Washington Univ., St. Louis, MO (United States); Zaleski, Chris [Cold Spring Harbor Laboratory, Cold Spring Harbor, New York (United States); Brent, Michael R. [Washington Univ., St. Louis, MO (United States); Hoskins, Roger A. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Kaufman, Thomas C. [Indiana University, Bloomington, Indiana (United States); Andrews, Justen [Indiana University, Bloomington, Indiana (United States); Graveley, Brenton R. [University of Connecticut Health Center, Farmington, Connecticut (United States); Perrimon, Norbert [Harvard Medical School, Boston, MA (United States); Howard Hughes Medical Institute, Boston, MA (United States); Celniker, Susan E. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Gingeras, Thomas R. [Affymetrix Inc., Santa Clara, CA (United States); Cold Spring Harbor Laboratory, Cold Spring Harbor, New York (United States); Cherbas, Peter [Indiana Univ., Bloomington, IN (United States)

    2010-12-22

    Drosophila melanogaster cell lines are important resources for cell biologists. In this article, we catalog the expression of exons, genes, and unannotated transcriptional signals for 25 lines. Unannotated transcription is substantial (typically 19% of euchromatic signal). Conservatively, we identify 1405 novel transcribed regions; 684 of these appear to be new exons of neighboring, often distant, genes. Sixty-four percent of genes are expressed detectably in at least one line, but only 21% are detected in all lines. Each cell line expresses, on average, 5885 genes, including a common set of 3109. Expression levels vary over several orders of magnitude. Major signaling pathways are well represented: most differentiation pathways are ‘‘off’’ and survival/growth pathways ‘‘on.’’ Roughly 50% of the genes expressed by each line are not part of the common set, and these show considerable individuality. Thirty-one percent are expressed at a higher level in at least one cell line than in any single developmental stage, suggesting that each line is enriched for genes characteristic of small sets of cells. Most remarkable is that imaginal disc-derived lines can generally be assigned, on the basis of expression, to small territories within developing discs. These mappings reveal unexpected stability of even fine-grained spatial determination. No two cell lines show identical transcription factor expression. We conclude that each line has retained features of an individual founder cell superimposed on a common ‘‘cell line‘‘ gene expression pattern. We report the transcriptional profiles of 25 Drosophila melanogaster cell lines, principally by whole-genome tiling microarray analysis of total RNA, carried out as part of the modENCODE project. The data produced in this study add to our knowledge of the cell lines and of the Drosophila transcriptome in several ways. We summarize the expression of previously annotated genes in each of the 25

  14. Characteristics of replication and radiation response of Aedes Albopictus cell line in vitro

    International Nuclear Information System (INIS)

    Lee, C.K.

    1974-01-01

    The radiosensitivity of the line of Aedes albopictus cells was investigated by scoring x-ray-induced chromosome aberrations as a function of dose and of time after irradiation as well as the modification by dose fractionation. In order to obtain these data, a series of studies, e.g., karyotype, cell life cycle, radiation- induced mitotic delay, and frequency and type of spontaneous aberrations, were carried out. Cells from this line had three pairs of chromosomes as a stem line chromosome number. The morphology of the chromosomes is metacentric. Somatic pairing between homologous chromosomes was observed as a common event and there was a high frequency of achromatic gaps on the chromosomes. These observations are in good agreement with those made in other laboratories. The generation time of A. albopictus cell line was approximately 32 hours, in which G 1 , S, and G 2 phases were 2 1 / 2 , 24 and 5 1 / 2 hours respectively. This generation time is in agreement with the population doubling time observed in our cell growth studies. By contrast, in most mammalian cells, G 1 usually is the longest phase and S is comparatively short. Dose fractionation studies indicated that A. albopictus cells in culture may have a faster chromosome repair system than mammalian and other cell systems. This may, at least in part; explain the difference in radiosensitivity between A. albopictus cell line and other cell systems. (Diss. Abstr.)

  15. In vitro culture of various species of microsporidia causing keratitis: Evaluation of three immortalized cell lines

    Directory of Open Access Journals (Sweden)

    Joseph J

    2009-01-01

    Full Text Available Being intracellular parasites, microsporidia can only be propagated in cell culture systems. This study evaluated three cell lines to determine the most suitable host-parasite In vitro system. Confluent monolayers of vero, SIRC, and HeLa cell lines, grown in 24-well tissue culture plates, were inoculated with varying concentrations (1 x 10 4 to 1 x 10 8 spores/mL of Vittaforma corneae, Encephalitozoon hellem, Encephalitozoon cuniculi, and Encephalitozoon intestinalis spores. Growth was compared quantitatively at weekly intervals. Encephalitozoon species showed the highest amount of growth when cultured in vero cell line, while there was no significant difference in their growth in SIRC and HeLa cell lines. In comparison, V. corneae showed the highest growth in SIRC cells, followed by vero cells. The analytical sensitivity was found to be 1 x 10 4 spores/mL for vero cell line compared to 1 x 10 5 spores/mL for SIRC cell line and 1 x 10 7 spores/mL for HeLa cell line. HeLa cells also showed rapid disruption of cells, and the spores could not be easily distinguished from cell debris. This is the first report of the comparison of vero, SIRC, and HeLa for the propagation of microsporidial spores. Vero cell line was found to be more sensitive than SIRC and HeLa cells, and we believe that the inclusion of vero cell line in the routine culture protocols of ocular parasitology laboratories would result in a significant increase in the diagnostic yield.

  16. Menadione inhibits MIBG uptake in two neuroendocrine cell lines

    NARCIS (Netherlands)

    Cornelissen, J.; Tytgat, G. A.; van den Brug, M.; van Kuilenburg, A. B.; Voûte, P. A.; van Gennip, A. H.

    1997-01-01

    In this paper we report on our studies of the effect of menadione on the uptake of MIBG in the neuroendocrine cell lines PC12 and SK-N-SH. Menadione inhibits the uptake of MIBG in both cell lines in a dose-dependent manner. Inhibition of MIBG uptake is most pronounced in the PC12 cell line.

  17. Schwann cell-mediated delivery of glial cell line-derived neurotrophic factor restores erectile function after cavernous nerve injury.

    Science.gov (United States)

    May, Florian; Buchner, Alexander; Schlenker, Boris; Gratzke, Christian; Arndt, Christian; Stief, Christian; Weidner, Norbert; Matiasek, Kaspar

    2013-03-01

    To evaluate the time-course of functional recovery after cavernous nerve injury using glial cell line-derived neurotrophic factor-transduced Schwann cell-seeded silicon tubes. Sections of the cavernous nerves were excised bilaterally (5 mm), followed by immediate bilateral surgical repair. A total of 20 study nerves per group were reconstructed by interposition of empty silicon tubes and silicon tubes seeded with either glial cell line-derived neurotrophic factor-overexpressing or green fluorescent protein-expressing Schwann cells. Control groups were either sham-operated or received bilateral nerve transection without nerve reconstruction. Erectile function was evaluated by relaparotomy, electrical nerve stimulation and intracavernous pressure recording after 2, 4, 6, 8 and 10 weeks. The animals underwent re-exploration only once, and were killed afterwards. The nerve grafts were investigated for the maturation state of regenerating nerve fibers and the fascular composition. Recovery of erectile function took at least 4 weeks in the current model. Glial cell line-derived neurotrophic factor-transduced Schwann cell grafts restored erectile function better than green fluorescent protein-transduced controls and unseeded conduits. Glial cell line-derived neurotrophic factor-transduced grafts promoted an intact erectile response (4/4) at 4, 6, 8 and 10 weeks that was overall significantly superior to negative controls (P cell line-derived neurotrophic factor-transduced grafts compared with negative controls (P = 0.018) and unseeded tubes (P = 0.034). Return of function was associated with the electron microscopic evidence of preganglionic myelinated nerve fibers and postganglionic unmyelinated axons. Schwann cell-mediated delivery of glial cell line-derived neurotrophic factor presents a viable approach for the treatment of erectile dysfunction after cavernous nerve injury. © 2013 The Japanese Urological Association.

  18. The Human NADPH Oxidase, Nox4, Regulates Cytoskeletal Organization in Two Cancer Cell Lines, HepG2 and SH-SY5Y

    Directory of Open Access Journals (Sweden)

    Simon Auer

    2017-05-01

    Full Text Available NADPH oxidases of human cells are not only functional in defense against invading microorganisms and for oxidative reactions needed for specialized biosynthetic pathways but also during the past few years have been established as signaling modules. It has been shown that human Nox4 is expressed in most somatic cell types and produces hydrogen peroxide, which signals to remodel the actin cytoskeleton. This correlates well with the function of Yno1, the only NADPH oxidase of yeast cells. Using two established tumor cell lines, which are derived from hepatic and neuroblastoma tumors, respectively, we are showing here that in both tumor models Nox4 is expressed in the ER (like the yeast NADPH oxidase, where according to published literature, it produces hydrogen peroxide. Reducing this biochemical activity by downregulating Nox4 transcription leads to loss of F-actin stress fibers. This phenotype is reversible by adding hydrogen peroxide to the cells. The effect of the Nox4 silencer RNA is specific for this gene as it does not influence the expression of Nox2. In the case of the SH-SY5Y neuronal cell line, Nox4 inhibition leads to loss of cell mobility as measured in scratch assays. We propose that inhibition of Nox4 (which is known to be strongly expressed in many tumors could be studied as a new target for cancer treatment, in particular for inhibition of metastasis.

  19. DNA double strand break repair in a radioresistant cell line

    International Nuclear Information System (INIS)

    Koval, T.M.; Kazmar, E.R.

    1987-01-01

    TN-368 lepidopteran insect cells are on the order of 100 times more resistant to the lethal effects of ionizing radiation than cultured mammalian cells. DNA double strand breaks (DSB) are believed by many to be the critical molecular lesion leading to cell death. The authors therefore measured the rejoining of DSB in TN-368 and V79 Chinese hamster cells. Cells were irradiated on ice with /sup 137/Cs γ rays at a dose rate of 2.5 Gy/min, incubated for various periods of time, and assayed for DNA DSB using the method of neutral elution. The kinetics of DSB rejoining following a dose of 90.2 Gy are similar for both cell lines. Approximately 80% of the DSB are rejoined in both lines by 1 hr postirradiation. However, no further rejoining occurs in the TN-368 cells through at least 6 hr postirradiation, whereas 90% of the DSB are rejoined in the V79 cells by 2 hr postirradiation. Other studies (from 22.6 to 226 Gy) demonstrate that the amount of rejoining of DSB varies inversely with dose for the V79 cells but remains constant for the TN-368 cells. These findings do not support the hypothesis that unrejoined DNA DSB represent the major lesion resulting in cell death

  20. Isolation of a novel chronic lymphocytic leukemic (CLL) cell line and development of an in vivo mouse model of CLL.

    Science.gov (United States)

    Kellner, Joshua; Wierda, William; Shpall, Elizabeth; Keating, Michael; McNiece, Ian

    2016-01-01

    Leukemic cell lines have become important tools for studies of disease providing a monoclonal cell population that can be extensively expanded in vitro while preserving leukemic cellular characteristics. However, studies of chronic lymphocytic leukemia (CLL) have been impeded in part by the lack of continuous human cell lines. CLL cells have a high spontaneous apoptosis rate in vitro and exhibit minimal proliferation in xenograft models. Therefore, there is a need for development of primary CLL cell lines and we describe the isolation of such a line from the bone marrow of a CLL patient (17p deletion and TP53 mutation) which has been in long term culture for more than 12 months with continuous proliferation. The CLL cell line (termed MDA-BM5) which was generated in vitro with continuous co-culture on autologous stromal cells is CD19+CD5+ and shows an identical pattern of somatic hypermutation as determined in the patient's bone marrow (BM), confirming the origin of the cells from the original CLL clone. MDA-BM5 cells were readily transplantable in NOD/SCID gamma null mice (NSG) with disease developing in the BM, liver and spleen. BM cells from quaternary serial transplantation in NSG mice demonstrated the presence of CD19+CD5+ cells with Ig restricted to lambda which is consistent with the original patient cells. These studies describe a new CLL cell line from a patient with del(17p) that provides a unique model for in vitro and in vivo studies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Cell-type-specific responses of RT4 neural cell lines to dibutyryl-cAMP: branch determination versus maturation

    International Nuclear Information System (INIS)

    Droms, K.; Sueoka, N.

    1987-01-01

    This report describes the induction of cell-type-specific maturation, by dibutyryl-cAMP and testololactone, of neuronal and glial properties in a family of cell lines derived from a rat peripheral neurotumor, RT4. This maturation allows further understanding of the process of determination because of the close lineage relationship between the cell types of the RT4 family. The RT4 family is characterized by the spontaneous conversion of one of the cell types, RT4-AC (stem-cell type), to any of three derivative cell types, RT4-B, RT4-D, or RT4-E, with a frequency of about 10(-5). The RT4-AC cells express some properties characteristic of both neuronal and glial cells. Of these neural properties expressed by RT4-AC cells, only the neuronal properties are expressed by the RT4-B and RT4-E cells, and only the glial properties are expressed by the RT4-D cells. This in vitro cell-type conversion of RT4-AC to three derivative cell types is a branch point for the coordinate regulation of several properties and seems to resemble determination in vivo. In our standard culture conditions, several other neuronal and glial properties are not expressed by these cell types. However, addition of dibutyryl-cAMP induces expression of additional properties, in a cell-type-specific manner: formation of long cellular processes in the RT4-B8 and RT4-E5 cell lines and expression of high-affinity uptake of gamma-aminobutyric acid, by a glial-cell-specific mechanism, in the RT4-D6-2 cell line. These new properties are maximally expressed 2-3 days after addition of dibutyryl-cAMP

  2. O-naphthoquinone isolated from Capraria biflora L. induces selective cytotoxicity in tumor cell lines.

    Science.gov (United States)

    de S Wisintainer, G G N; Scola, G; Moura, S; Lemos, T L G; Pessoa, C; de Moraes, M O; Souza, L G S; Roesch-Ely, M; Henriques, J A P

    2015-12-21

    Biflorin is an o-naphthoquinone isolated from the roots of the plant Capraria biflora L. (Scrophulariaceae). In this study, the cytotoxic effects of biflorin were verified, and late apoptosis was detected in various cancer cell lines by in situ analysis. The cytotoxicity was further evaluated exclusively for 48 h of treatment in different tumor and non-tumor cell lines (Hep-2, HeLa, HT-29, A-375, and A-549, and HEK-293, respectively). The results indicated that biflorin induced selective cytotoxicity in tumor cells. HeLa cells were more susceptible to biflorin, followed by HT-29, A-549, A-375, and Hep-2 at all concentrations (range 5-50 μg/mL), and the highest half-maximal inhibitory concentration IC50 (56.01 ± 1.17 μg/mL) was observed in HEK-293 cells. Late apoptotic/necrotic events, observed by in situ immunostaining with Annexin V, varied with each cell line; an increase in late apoptotic events was observed corresponding to the increase in biflorin dosage. Hep-2 cells showed a greater percentage of late apoptotic events among the tumor cell lines when treated with higher concentrations of biflorin (69.63 ± 2.28%). The non-tumor HEK-293 line showed greater resistance to late apoptotic events, as well as a lower level of cytotoxicity (77.69 ± 6.68%) than the tested tumor lines. The data presented indicate that biflorin showed an important, possibly selective, cytotoxicity against tumor cell lines, thereby revealing a promising novel substance with potential anticancer activity for tumor therapy.

  3. Radiation could induce p53-independent and cell cycle - unrelated apoptosis in 5-fluorouracil radiosensitized head and neck carcinoma cells

    International Nuclear Information System (INIS)

    Didelot, C.; Mirjolet, J.F.; Barberi-Heyob, M.; Ramacci, C.; Merlin, J.L.

    2002-01-01

    The effect of chemoresistance induction in radio sensitivity and cellular behavior after irradiation remains misunderstood. This study was designed to understand the relationship between radiation-induced cell cycle arrest, apoptosis, and radiosensitivity in KB cell line and KB3 subline selected after 5-fluorouracil (5FU) exposure. Exposure of KB cells to 5FU led to an increase in radiosensitivity. G 2 /M cell cycle arrest was observed in the two cell lines after irradiation. The radioresistant KB cell line reached the maximum arrest two hours before KB3. The cellular exit from this arrest was found to be related to the wild type p53 protein expression induction. After irradiation, only KB3 cell line underwent apoptosis. This apoptosis induction seemed to be independent of G 2 /M arrest exit, which was carried out later. The difference in radiosensitivity between KB and KB3 subline may result therefore from both a difference in apoptosis induction and a difference in G 2 /M arrest maximum duration. Moreover, 5FU exposure has led to an increase in constitutive p53 protein expression, which may be associated with an increase in basal apoptosis cell fraction. Given the existing correlation between radiosensitivity and the percentage of basal apoptosis. the constitutive p53 protein expression may be related to intrinsic radiosensitivity in our cellular model. (author)

  4. Establishment and characterization of a unique 1 μm diameter liver-derived progenitor cell line

    International Nuclear Information System (INIS)

    Aravalli, Rajagopal N.; Behnan Sahin, M.; Cressman, Erik N.K.; Steer, Clifford J.

    2010-01-01

    Liver-derived progenitor cells (LDPCs) are recently identified novel stem/progenitor cells from healthy, unmanipulated adult rat livers. They are distinct from other known liver stem/progenitor cells such as the oval cells. In this study, we have generated a LDPC cell line RA1 by overexpressing the simian virus 40 (SV40) large T antigen (TAg) in primary LDPCs. This cell line was propagated continuously for 55 passages in culture, after which it became senescent. Interestingly, following transformation with SV40 TAg, LDPCs decreased in size significantly and the propagating cells measured 1 μm in diameter. RA1 cells proliferated in vitro with a doubling time of 5-7 days, and expressed cell surface markers of LDPCs. In this report, we describe the characterization of this novel progenitor cell line that might serve as a valuable model to study liver cell functions and stem cell origin of liver cancers.

  5. Establishment and characterization of a unique 1 {mu}m diameter liver-derived progenitor cell line

    Energy Technology Data Exchange (ETDEWEB)

    Aravalli, Rajagopal N., E-mail: arava001@umn.edu [Department of Radiology, University of Minnesota Medical School, Minneapolis, MN 55455 (United States); Behnan Sahin, M. [Department of Medicine, University of Minnesota Medical School, Minneapolis, MN 55455 (United States); Cressman, Erik N.K. [Department of Radiology, University of Minnesota Medical School, Minneapolis, MN 55455 (United States); Steer, Clifford J., E-mail: steer001@umn.edu [Department of Medicine, University of Minnesota Medical School, Minneapolis, MN 55455 (United States); Department of Genetics, Cell Biology, and Development, University of Minnesota Medical School, Minneapolis, MN 55455 (United States)

    2010-01-01

    Liver-derived progenitor cells (LDPCs) are recently identified novel stem/progenitor cells from healthy, unmanipulated adult rat livers. They are distinct from other known liver stem/progenitor cells such as the oval cells. In this study, we have generated a LDPC cell line RA1 by overexpressing the simian virus 40 (SV40) large T antigen (TAg) in primary LDPCs. This cell line was propagated continuously for 55 passages in culture, after which it became senescent. Interestingly, following transformation with SV40 TAg, LDPCs decreased in size significantly and the propagating cells measured 1 {mu}m in diameter. RA1 cells proliferated in vitro with a doubling time of 5-7 days, and expressed cell surface markers of LDPCs. In this report, we describe the characterization of this novel progenitor cell line that might serve as a valuable model to study liver cell functions and stem cell origin of liver cancers.

  6. Cytotoxic and Apoptogenic Effects of Cyanidin-3-Glucoside on the Glioblastoma Cell Line.

    Science.gov (United States)

    Hosseini, Masoumeh Mansoubi; Karimi, Aliasghar; Behroozaghdam, Mitra; Javidi, Mohammad Amin; Ghiasvand, Saeedeh; Bereimipour, Ahmad; Aryan, Hoda; Nassiri, Farbod; Jangholi, Ehsan

    2017-12-01

    Glioblastoma multiforme (GBM) is the most prevalent and aggressive primary cerebral tumor. The median survival time is 15 months despite maximum treatment because the tumor is resistant to most therapeutic modalities. Several studies have indicated chemopreventive and chemotherapeutic activity of cyanidin-3-glucoside (C3G) as an anthocyanin component. We aimed to illustrate the cytotoxic and apoptogenic effects of C3G in the U87 cell line (human GBM cell line). Cytotoxic activity was evaluated using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide tetrazolium assay after treatment with C3G at different concentrations in the U87 cell line. Cisplatin was used as a positive control for 24 and 48 hours. The percentage of apoptotic cells was determined using an Annexin V/propidium iodide assay, and the expression of bax, bcl2, and p53 genes was assessed using real-time polymerase chain reaction. Treatment of U87 cells with 40 μg/mL of C3G resulted in 32% apoptotic cells after 24 hours. To further confirm that C3G treatment induced apoptosis in U87 cells, RNA expression of bax, bcl2, and p53 genes was investigated after treatment. Real-time polymerase chain reaction indicated that the expression of bax and p53 increased, whereas the expression of bcl2 decreased. C3G had an apoptogenic effect in the GBM cell line. New information regarding the therapeutic effects of C3G in GBM could ultimately lead to the production of new drugs. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Inhibition of iron uptake is responsible for differential sensitivity to V-ATPase inhibitors in several cancer cell lines.

    Directory of Open Access Journals (Sweden)

    Sarah Straud

    2010-07-01

    Full Text Available Many cell lines derived from tumors as well as transformed cell lines are far more sensitive to V-ATPase inhibitors than normal counterparts. The molecular mechanisms underlying these differences in sensitivity are not known. Using global gene expression data, we show that the most sensitive responses to HeLa cells to low doses of V-ATPase inhibitors involve genes responsive to decreasing intracellular iron or decreasing cholesterol and that sensitivity to iron uptake is an important determinant of V-ATPase sensitivity in several cancer cell lines. One of the most sensitive cell lines, melanoma derived SK-Mel-5, over-expresses the iron efflux transporter ferroportin and has decreased expression of proteins involved in iron uptake, suggesting that it actively suppresses cytoplasmic iron. SK-Mel-5 cells have increased production of reactive oxygen species and may be seeking to limit additional production of ROS by iron.

  8. Assessment of estradiol-induced gene regulation and proliferation in an immortalized mouse immature Sertoli cell line.

    Science.gov (United States)

    Kumar, Narender; Srivastava, Swati; Burek, Malgorzata; Förster, Carola Y; Roy, Partha

    2016-03-01

    The number of Sertoli cells during proliferative phase determines the fate of the germ cells in male reproductive system. A well-characterized cell line may help in better understanding of Sertoli cell biology. Hence, the present study assessed estradiol signaling in a mouse immature Sertoli cell line (MSC-1) as an alternative model in place of primary culture of Sertoli cells. In this study, we used MSC-1 cell line, derived from 10-day old mice. The cell cycle parameters were assessed, and the expression and regulation of Sertoli cell-specific secretory genes (ABP; androgen-binding protein) and tight junction genes (claudin-5, occludin, and vimentin) in response to estradiol was studied. The results obtained suggested the presence of both estrogen receptors (ERα and ERβ) in MSC-1 cells. In vitro scratch assay and cell-cycle analysis suggested the proliferative effects of estradiol in both time- and dose-dependent manner. The gene expression profiles of ABP, claudin-5, and occludin showed biphasic regulation at low and high doses of estradiol. Analysis of signaling pathways suggested the activation of extracellular signal-regulated kinase (ERK) pathway with significantly increased pERK/ERK ratio (p<0.05). The results also suggested down regulation in the expression of mir-17 family members (mir-17, mir-20b, and mir-106a) (p<0.05). Considering the limited number of Sertoli cell lines and long-term survival inability of primary culture of Sertoli cells, MSC-1 cells could be a potential cell line for understanding the mechanisms of various cellular events in Sertoli cells. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. 9-β-arabinofuranosyladenine preferentially sensitizes radioresistant squamous cell carcinoma cell lines to x-rays

    International Nuclear Information System (INIS)

    Heaton, D.

    1992-06-01

    The effect of 9-β-arabinofuranosyladenine (ara-A) on sensitivity to the deleterious effects of x-rays was studied in six squamous cell carcinoma cell lines. Three lines were relatively radioresistant, having D 0 values of 2.31 to 2.89 Gy, and the other three lines were relatively radiosensitive, having D 0 values of between 1.07 and 1.45 Gy. Ara-A (50 or 500 μM) was added to cultures 30 min prior to irradiation and removed 30 min after irradiation, and sensitivity was measured in terms of cell survival. The radiosensitizing effect of ara-A was very dependent on the inherent radiosensitivity of the tumor cell line. Fifty micromolar concentrations of ara-A sensitized only the two most radioresistant lines, SCC-12B.2 and JSQ-3. Five hundred micromolar concentrations of ara-A sensitized the more sensitive cell lines, SQ-20B and SQ-9G, but failed to have any effect on the radiation response of the two most sensitive cell lines, SQ-38 and SCC-61. Concentrations of ara-A as low as 10 μM were equally efficient in inhibiting DNA synthesis in all six cell lines. These results suggest that the target for the radiosensitizing effect of ara-A is probably related to the factor controlling the inherent radiosensitivity of human tumor cells. Therefore, ara-A might be useful in overcoming radiation resistance in vivo

  10. 9-{beta}-arabinofuranosyladenine preferentially sensitizes radioresistant squamous cell carcinoma cell lines to x-rays

    Energy Technology Data Exchange (ETDEWEB)

    Heaton, D. [Rush Univ. Medical Center, Chicago, IL (United States). Therapeutic Radiology; Mustafi, R. [Chicago Univ., IL (United States). Dept. of Radiation and Cellular Oncology; Schwartz, J.L. [Chicago Univ., IL (United States). Dept. of Radiation and Cellular Oncology]|[Argonne National Lab., IL (United States)

    1992-06-01

    The effect of 9-{beta}-arabinofuranosyladenine (ara-A) on sensitivity to the deleterious effects of x-rays was studied in six squamous cell carcinoma cell lines. Three lines were relatively radioresistant, having D{sub 0} values of 2.31 to 2.89 Gy, and the other three lines were relatively radiosensitive, having D{sub 0} values of between 1.07 and 1.45 Gy. Ara-A (50 or 500 {mu}M) was added to cultures 30 min prior to irradiation and removed 30 min after irradiation, and sensitivity was measured in terms of cell survival. The radiosensitizing effect of ara-A was very dependent on the inherent radiosensitivity of the tumor cell line. Fifty micromolar concentrations of ara-A sensitized only the two most radioresistant lines, SCC-12B.2 and JSQ-3. Five hundred micromolar concentrations of ara-A sensitized the more sensitive cell lines, SQ-20B and SQ-9G, but failed to have any effect on the radiation response of the two most sensitive cell lines, SQ-38 and SCC-61. Concentrations of ara-A as low as 10 {mu}M were equally efficient in inhibiting DNA synthesis in all six cell lines. These results suggest that the target for the radiosensitizing effect of ara-A is probably related to the factor controlling the inherent radiosensitivity of human tumor cells. Therefore, ara-A might be useful in overcoming radiation resistance in vivo.

  11. Berberine diminishes side population and down-regulates stem cell-associated genes in the pancreatic cancer cell lines PANC-1 and MIA PaCa-2.

    Science.gov (United States)

    Park, S H; Sung, J H; Chung, N

    2014-09-01

    Cancer stem cells play an important role in metastasis and the relapse of drug resistant cancers. Side-population (SP) cells are capable of effluxing Hoechst 33342 dye and are referred to as cancer stem cells. We investigated the effect of berberine on pancreatic cancer stem cells of PANC-1 and MIA PaCa-2. For both cell lines, the proportions of SP cells in the presence of berberine were investigated and compared to the proportions in the presence of gemcitabine, a standard pancreatic anti-cancer drug. The proportions of SP cells in the PANC-1 and MIA PaCa-2 cell lines were about 9 and PANC-1 decreased to 5.7 ± 2.0 and 6.8 ± 0.8%, respectively, which compares to the control proportion of (9.7 ± 1.7). After berberine and gemcitabine treatment of PANC-1, of the four stem cell-associated genes (SOX2, POU5F1, NANOG, and NOTCH1), all but NOTCH1 were down-regulated. Unfortunately, the effect of berberine and gemcitabine treatments on MIA PaCa-2 SP cells could not be clearly observed because SP cells represented only a very small proportion of MIA PaCa-2 cells. However, SOX2, POU5F1, and NANOG genes were shown to be effectively down-regulated in the MIA PaCa-2 cell line as a whole. Taken together, these results indicate that berberine is as effective at targeting pancreatic cancer cell lines as gemcitabine. Therefore, we believe that POU5F1, SOX2, and NANOG can serve as potential markers, and berberine may be an effective anti-cancer agent when targeting human pancreatic cancer cells and/or their cancer stem cells.

  12. In vitro culture of human osteosarcoma cell lines: a comparison of functional characteristics for cell lines cultured in medium without and with fetal calf serum.

    Science.gov (United States)

    Bruserud, Oystein; Tronstad, Karl Johan; Berge, Rolf

    2005-06-01

    Experimental in vitro models including well-characterised cell lines can be used to identify possible new therapeutic targets for the treatment of osteosarcoma. Culture media including inactivated serum is often recommended for in vitro culture of osteosarcoma cells, but the serum component then represents a nonstandardised parameter including a wide range of unidentified mediators. To improve the standardisation we have investigated whether serum-free culture media can be used in experimental in vitro studies of osteosarcoma cell lines. The seven osteosarcoma cell lines Cal72, SJSA-1, Saos-2, SK-ES-1, U2OS, 143.98.2, and KHOS-32IH were cultured in vitro in various serum-free media and media supplemented with 10% heat-inactivated fetal calf serum (FCS). Although proliferation often was relatively low in serum-free media (X-vivo 10, X-vivo 15, X-vivo 20, Stem Span SFEM), some cell lines (Cal72, KHOS-32IH, Saos-2) showed proliferation comparable with the recommended FCS-containing media even when using serum-free conditions. The optimal serum-free medium then varied between cell lines. We also compared 6 different FCS-containing media (including Stem Span with 10% FCS) and the optimal FCS-containing medium varied between cell lines. However, all cell lines proliferated well in Stem Span with FCS, and this medium was regarded as optimal for four of the lines. FCS could not be replaced by fatty acids or low density lipoprotein when testing the Stem Span medium. The release of a wide range of soluble mediators showed only minor differences when using serum-free and FCS-containing media (including Stem Span with and without FCS), and serum-free Stem Span could also be used for in vitro studies of mitogen-stimulated T cell activation in the presence of accessory osteosarcoma cells. The use of Stem Span with 10% FCS allowed the release of a wide range of chemokines by osteosarcoma cell lines (Cal72, SJSA-1), and the chemokine release profile was very similar to the

  13. Cell Line Controls for the Genotyping of a Spectrum of Human Single Nucleotide Polymorphisms in the Clinical Laboratory.

    Science.gov (United States)

    Kimbacher, Christine; Paar, Christian; Freystetter, Andrea; Berg, Joerg

    2018-05-01

    Genotyping for clinically important single nucleotide polymorphisms (SNPs) is performed by many clinical routine laboratories. To support testing, quality controls and reference materials are needed. Those may be derived from residual patient samples, left over samples of external quality assurance schemes, plasmid DNA or DNA from cell lines. DNAs from cell lines are commutable and available in large amounts. DNA from 38 cell lines were examined for suitability as controls in 11 SNP assays that are frequently used in a clinical routine laboratory: FV (1691G>A), FII (20210G>A), PAI-1 4G/5G polymorphism, MTHFR (677C>T, 1298A>C), HFE (H63D, S65C, C282Y), APOE (E2, E3, E4), LPH (-13910C>T), UGT1A1 (*28, *36, *37), TPMT (*2, *3A, *3B, *3C), VKORC1 (-1639G>A, 1173C>T), CYP2C9 (*2, *3, *5). Genotyping was performed by real-time PCR with melting curve analysis and confirmed by bi-directional sequencing. We find an almost complete spectrum of genotypic constellations within these 38 cell lines. About 12 cell lines appear sufficient as genotypic controls for the 11 SNP assays by covering almost all of the genotypes. However, hetero- and homozygous genotypes for FII and the alleles TPMT*2, UGT1A1*37 and CYP2C9*5 were not detected in any of the cell lines. DNA from most of the examined cell lines appear suitable as quality controls for these SNP assays in the laboratory routine, as to the implementation of those assays or to prepare samples for quality assurance schemes. Our study may serve as a pilot to further characterize these cell lines to arrive at the status of reference materials.

  14. Differential effects of arsenic trioxide on chemosensitization in human hepatic tumor and stellate cell lines

    International Nuclear Information System (INIS)

    Rangwala, Fatima; Williams, Kevin P; Smith, Ginger R; Thomas, Zainab; Allensworth, Jennifer L; Lyerly, H Kim; Diehl, Anna Mae; Morse, Michael A; Devi, Gayathri R

    2012-01-01

    Crosstalk between malignant hepatocytes and the surrounding peritumoral stroma is a key modulator of hepatocarcinogenesis and therapeutic resistance. To examine the chemotherapy resistance of these two cellular compartments in vitro, we evaluated a well-established hepatic tumor cell line, HepG2, and an adult hepatic stellate cell line, LX2. The aim was to compare the chemosensitization potential of arsenic trioxide (ATO) in combination with sorafenib or fluorouracil (5-FU), in both hepatic tumor cells and stromal cells. Cytotoxicity of ATO, 5-FU, and sorafenib, alone and in combination against HepG2 cells and LX2 cells was measured by an automated high throughput cell-based proliferation assay. Changes in survival and apoptotic signaling pathways were analyzed by flow cytometry and western blot. Gene expression of the 5-FU metabolic enzyme, thymidylate synthase, was analyzed by real time PCR. Both HepG2 and LX2 cell lines were susceptible to single agent sorafenib and ATO at 24 hr (ATO IC 50 : 5.3 μM in LX2; 32.7 μM in HepG2; Sorafenib IC 50 : 11.8 μM in LX2; 9.9 μM in HepG2). In contrast, 5-FU cytotoxicity required higher concentrations and prolonged (48–72 hr) drug exposure. Concurrent ATO and 5-FU treatment of HepG2 cells was synergistic, leading to increased cytotoxicity due in part to modulation of thymidylate synthase levels by ATO. Concurrent ATO and sorafenib treatment showed a trend towards increased HepG2 cytotoxicity, possibly due to a significant decrease in MAPK activation in comparison to treatment with ATO alone. ATO differentially sensitizes hepatic tumor cells and adult hepatic stellate cells to 5-FU and sorafenib. Given the importance of both of these cell types in hepatocarcinogenesis, these data have implications for the rational development of anti-cancer therapy combinations for the treatment of hepatocellular carcinoma (HCC)

  15. Differential effects of arsenic trioxide on chemosensitization in human hepatic tumor and stellate cell lines

    Directory of Open Access Journals (Sweden)

    Rangwala Fatima

    2012-09-01

    Full Text Available Abstract Background Crosstalk between malignant hepatocytes and the surrounding peritumoral stroma is a key modulator of hepatocarcinogenesis and therapeutic resistance. To examine the chemotherapy resistance of these two cellular compartments in vitro, we evaluated a well-established hepatic tumor cell line, HepG2, and an adult hepatic stellate cell line, LX2. The aim was to compare the chemosensitization potential of arsenic trioxide (ATO in combination with sorafenib or fluorouracil (5-FU, in both hepatic tumor cells and stromal cells. Methods Cytotoxicity of ATO, 5-FU, and sorafenib, alone and in combination against HepG2 cells and LX2 cells was measured by an automated high throughput cell-based proliferation assay. Changes in survival and apoptotic signaling pathways were analyzed by flow cytometry and western blot. Gene expression of the 5-FU metabolic enzyme, thymidylate synthase, was analyzed by real time PCR. Results Both HepG2 and LX2 cell lines were susceptible to single agent sorafenib and ATO at 24 hr (ATO IC50: 5.3 μM in LX2; 32.7 μM in HepG2; Sorafenib IC50: 11.8 μM in LX2; 9.9 μM in HepG2. In contrast, 5-FU cytotoxicity required higher concentrations and prolonged (48–72 hr drug exposure. Concurrent ATO and 5-FU treatment of HepG2 cells was synergistic, leading to increased cytotoxicity due in part to modulation of thymidylate synthase levels by ATO. Concurrent ATO and sorafenib treatment showed a trend towards increased HepG2 cytotoxicity, possibly due to a significant decrease in MAPK activation in comparison to treatment with ATO alone. Conclusions ATO differentially sensitizes hepatic tumor cells and adult hepatic stellate cells to 5-FU and sorafenib. Given the importance of both of these cell types in hepatocarcinogenesis, these data have implications for the rational development of anti-cancer therapy combinations for the treatment of hepatocellular carcinoma (HCC.

  16. The antiproliferative effect of coumarins on several cancer cell lines.

    Science.gov (United States)

    Kawaii, S; Tomono, Y; Ogawa, K; Sugiura, M; Yano, M; Yoshizawa, Y

    2001-01-01

    Twenty-one coumarins were examined for their antiproliferative activity towards several cancer cell lines, namely lung carcinoma (A549), melanin pigment producing mouse melanoma (B16 melanoma 4A5), human T-cell leukemia (CCRF-HSB-2), and human gastric cancer, lymph node metastasized (TGBC11TKB). The structure-activity relationship established from the results revealed that the 6,7-dihydroxy moiety had an important role for their antiproliferative activity. Analysis of cell cycle distribution indicated that esculetin-treated cells accumulated in the G1 (at 400 microM) or in S phase (at 100 microM).

  17. Neuronal differentiation and long-term culture of the human neuroblastoma line SH-SY5Y.

    Science.gov (United States)

    Constantinescu, R; Constantinescu, A T; Reichmann, H; Janetzky, B

    2007-01-01

    Parkinson's disease (PD) is the second most prevalent neurodegenerative disorder in industrialized countries. Present cell culture models for PD rely on either primary cells or immortal cell lines, neither of which allow for long-term experiments on a constant population, a crucial requisite for a realistic model of slowly progressing neurodegenerative diseases. We differentiated SH-SY5Y human dopaminergic neuroblastoma cells to a neuronal-like state in a perfusion culture system using a combination of retinoic acid and mitotic inhibitors. The cells could be cultivated for two months without the need for passage. We show, by various means, that the differentiated cells exhibit, at the molecular level, many neuronal properties not characteristic to the starting line. This approach opens the possibility to develop chronic models, in which the effect of perturbations and putative counteracting strategies can be monitored over long periods of time in a quasi-stable cell population.

  18. Effects of cholera toxin on human colon carcinoma cell lines.

    Science.gov (United States)

    Barkla, D H; Whitehead, R H; Hayward, I P

    1992-10-01

    This study reports on changes in morphology and membrane transport in 5 human colon carcinoma cell lines treated with cholera toxin (CT). Three of the cell lines that grew as monolayers (LIM 1215, LIM 1899, LIM 2099) and 1 that grew as floating clumps (LIM 2408) did not show morphological changes after CT treatment. However, cell line LIM 1863 that grows as floating "crypt-like" organoids showed rapid and distinctive changes in morphology and membrane transport after CT treatment. At 1 and 6 hrs after CT treatment, light and transmission electron microscopy revealed rapid dilatation of the central lumen of organoids and the appearance of 2 populations of apical vesicular inclusions. The first population was unusual in being non-membrane bound and limited by fuzzy filamentous material. The second population was membrane bound. Scanning electron microscopy at 1-6 hr after CT treatment showed swelling and loss of surface microvilli on some, but not all, cells. At 24 hr after CT treatment the majority of organoids showed evidence of fluid accumulation and small apical vesicles coalesced to form large single vacuoles that obliterated normal cell morphology. By 48 hr, continued swelling produced extreme attenuation of the plasma membrane with cells taking on an "endothelial cell-like" appearance. The response to CT was dose-dependent. Uptake studies using 86Rubidium and blocking studies using ouabain and amiloride indicated that CT is acting on the Na+/K+ ATPase membrane pump to cause the increased fluid uptake by LIM 1863 cells. This study is the first to report specific morphological changes in intestine-derived cells in response to CT.(ABSTRACT TRUNCATED AT 250 WORDS)

  19. Establishment of the first humpback whale fibroblast cell lines and their application in chemical risk assessment

    International Nuclear Information System (INIS)

    Burkard, Michael; Whitworth, Deanne; Schirmer, Kristin; Nash, Susan Bengtson

    2015-01-01

    Highlights: • We established and characterised the first humpback whale fibroblast cell lines. • Cell lines have a stable karyotype with 2n = 44. • Exposure to p,p′-DDE resulted in a concentration-dependent loss of cell viability. • p,p′-DDE sensitivity differed considerably from human fibroblasts. • Exposure to a whale blubber extract showed higher sensitivity than to p,p′-DDE alone. - Abstract: This paper reports the first successful derivation and characterization of humpback whale fibroblast cell lines. Primary fibroblasts were isolated from the dermal connective tissue of skin biopsies, cultured at 37 °C and 5% CO_2 in the standard mammalian medium DMEM/F12 supplemented with 10% fetal bovine serum (FBS). Of nine initial biopsies, two cell lines were established from two different animals and designated HuWa1 and HuWa2. The cells have a stable karyotype with 2n = 44, which has commonly been observed in other baleen whale species. Cells were verified as being fibroblasts based on their spindle-shaped morphology, adherence to plastic and positive immunoreaction to vimentin. Population doubling time was determined to be ∼41 h and cells were successfully cryopreserved and thawed. To date, HuWa1 cells have been propagated 30 times. Cells proliferate at the tested temperatures, 30, 33.5 and 37 °C, but show the highest rate of proliferation at 37 °C. Short-term exposure to para,para′-dichlorodiphenyldichloroethylene (p,p′-DDE), a priority compound accumulating in southern hemisphere humpback whales, resulted in a concentration-dependent loss of cell viability. The effective concentration which caused a 50% reduction in HuWa1 cell viability (EC_5_0 value) was approximately six times greater than the EC_5_0 value for the same chemical measured with human dermal fibroblasts. HuWa1 exposed to a natural, p,p′-DDE-containing, chemical mixture extracted from whale blubber showed distinctively higher sensitivity than to p,p′-DDE alone. Thus, we

  20. Notch1 is a 5-fluorouracil resistant and poor survival marker in human esophagus squamous cell carcinomas.

    Directory of Open Access Journals (Sweden)

    Jian Liu

    Full Text Available Notch signaling involves the processes that govern cell proliferation, cell fate decision, cell differentiation and stem cell maintenance. Due to its fundamental role in stem cells, it has been speculated during the recent years that Notch family may have critical functions in cancer stem cells or cancer cells with a stem cell phenotype, therefore playing an important role in the process of oncogenesis. In this study, expression of Notch family in KYSE70, KYSE140 and KYSE450 squamous esophageal cancer cell lines and virus transformed squamous esophageal epithelial cell line Het-1A was examined by quantitative RT-PCR. Compared to the Het-1A cells, higher levels of Nocth1 and Notch3 expression in the cancer cell lines were identified. Due to the finding that NOTCH3 mainly mediates squamous cell differentiation, NOTCH1 expression was further studied in these cell lines. By Western blot analyses, the KYSE70 cell line which derived from a poorly differentiated tumor highly expressed Notch1, and the Notch1 expression in this cell line was hypoxia inducible, while the KYSE450 cell line which derived from a well differentiated tumor was always negative for Notch1, even in hypoxia. Additional studies demonstrated that the KYSE70 cell line was more 5-FU resistant than the KYSE450 cell line and such 5-FU resistance is correlated to Notch1 expression verified by Notch1 knockdown experiments. In clinical samples, Notch1 protein expression was detected in the basal cells of human esophagus epithelia, and its expression in squamous cell carcinomas was significantly associated with higher pathological grade and shorter overall survival. We conclude that Notch1 expression is associated with cell aggressiveness and 5-FU drug resistance in human esophageal squamous cell carcinoma cell lines in vitro and is significantly associated with a poor survival in human esophageal squamous cell carcinomas.

  1. Perillyl alcohol-mediated inhibition of lung cancer cell line proliferation: potential mechanisms for its chemotherapeutic effects

    International Nuclear Information System (INIS)

    Xu Mian; Floyd, Heather S.; Greth, Suzanne M.; Chang, W.-C. L.; Lohman, Kurt; Stoyanova, Radka; Kucera, Gregory L.; Kute, Tim E.; Willingham, Mark C.; Miller, Mark Steven

    2004-01-01

    Perillyl alcohol (POH) is currently being tested in clinical trials as an anticancer agent, though its mechanism of action has not been definitively established. We treated two human lung cancer cell lines, H322 and H838, with POH to determine its antitumor properties. A sulforhodamine B (SRB) cell proliferation assay was used to determine the effects of POH after 1 and 5 days of treatment with 0.25, 0.5, 0.75, 1.0, and 1.5 mM POH. After 1 day of treatment, little difference could be seen between the lowest and highest concentrations of POH. However, after 5 days, both cell lines showed a dose-dependent decrease in cell proliferation that ranged from 15% to 83%. A clonogenic assay confirmed these results - while there was no significant effect of POH after 1 day of exposure, a dose-dependent decrease in colony formation, ranging from 15% to 100%, was seen after 5 days of treatment. Time-lapse video microscopy revealed that apoptotic cells were evident within 24-48 h of treatment with 1.5 mM POH. The appearance of apoptotic cells was preceded by increased caspase-3 activity and cleavage of poly (ADP-ribose) polymerase (PARP) as POH activated caspase-3 activity 3-6-fold. Nuclear staining with 4',6-diamidino-2-phenylindole (DAPI) confirmed the classical characteristics of apoptosis in POH-treated cells. DNA microarray expression analysis was performed following 8 and 24 (H322) or 8 and 48 (H838) h of treatment with 1.5 mM POH. While a large number of genes were up- or downregulated in the two cell lines at various times after POH treatment, the levels of expression of only eight genes were up- or down-related in both cell lines at both of the time points examined. The significance of these genes as potential mediators of POH action is still uncertain, but the limited number of commonly up- or downregulated genes detected by microarray expression analysis suggests that POH may mediate its effects via posttranscriptional mechanisms. Our results suggest that POH may have

  2. Lining cells on normal human vertebral bone surfaces

    International Nuclear Information System (INIS)

    Henning, C.B.; Lloyd, E.L.

    1982-01-01

    Thoracic vertebrae from two individuals with no bone disease were studied with the electron microscope to determine cell morphology in relation to bone mineral. The work was undertaken to determine if cell morphology or spatial relationships between the bone lining cells and bone mineral could account for the relative infrequency of bone tumors which arise at this site following radium intake, when compared with other sites, such as the head of the femur. Cells lining the vertebral mineral were found to be generally rounded in appearance with varied numbers of cytoplasmic granules, and they appeared to have a high density per unit of surface area. These features contrasted with the single layer of flattened cells characteristic of the bone lining cells of the femur. A tentative discussion of the reasons for the relative infrequency of tumors in the vertebrae following radium acquisition is presented

  3. Ion channels in a skeletal muscle cell line from a Duchenne muscular dystrophy patient.

    Science.gov (United States)

    Caviedes, R; Caviedes, P; Liberona, J L; Jaimovich, E

    1994-09-01

    A cell line (RCDMD), derived from a muscle biopsy taken from a 7-year-old patient with Duchenne muscular dystrophy (DMD), was established in vitro using conditioned media from the UCHT1 thyroid cell line as described elsewhere (Biochim Biophys Acta 1992; 1134:247-255). Unlike other cell lines established by the same procedure, RCDMD cells were highly refractory to transformation and the resulting cell line grew slowly with a doubling time of approximately 72 h. Further, cells continue to grow after more than 20 doublings and 15 passages. Some of the characteristics of the cell line include lack of reaction with antidystrophin antibodies and the presence of receptors for the dihydropyridine PN200-110 (Kd) = 0.3 +/- 0.05 nmol/L and Bmax = 1.06 +/- 0.03 pmol/mg protein) and for alpha-bungarotoxin (Kd = 1.02 +/- 0.17 nmol/L and Bmax = 4.2 +/- 0.37 pmol/mg protein). Patch clamped cells in the voltage clamp configuration lack ion currents when growing in complete medium with high serum, but they can be induced to differentiate by serum deprivation and addition of hormones and trace elements. After 5 days in differentiating medium, noninactivating, delayed rectifier potassium currents are seen. At day 12, A-type, inactivating potassium currents as well as transient inward currents are seen. In conditions in which sodium and potassium currents are absent, a very fast activating and fast inactivating calcium current was evident. The cell line offers the possibility of studying cellular mechanisms in the pathophysiology of DMD.

  4. Genomic instability of osteosarcoma cell lines in culture: impact on the prediction of metastasis relevant genes.

    Directory of Open Access Journals (Sweden)

    Roman Muff

    Full Text Available Osteosarcoma is a rare but highly malignant cancer of the bone. As a consequence, the number of established cell lines used for experimental in vitro and in vivo osteosarcoma research is limited and the value of these cell lines relies on their stability during culture. Here we investigated the stability in gene expression by microarray analysis and array genomic hybridization of three low metastatic cell lines and derivatives thereof with increased metastatic potential using cells of different passages.The osteosarcoma cell lines showed altered gene expression during in vitro culture, and it was more pronounced in two metastatic cell lines compared to the respective parental cells. Chromosomal instability contributed in part to the altered gene expression in SAOS and LM5 cells with low and high metastatic potential. To identify metastasis-relevant genes in a background of passage-dependent altered gene expression, genes involved in "Pathways in cancer" that were consistently regulated under all passage comparisons were evaluated. Genes belonging to "Hedgehog signaling pathway" and "Wnt signaling pathway" were significantly up-regulated, and IHH, WNT10B and TCF7 were found up-regulated in all three metastatic compared to the parental cell lines.Considerable instability during culture in terms of gene expression and chromosomal aberrations was observed in osteosarcoma cell lines. The use of cells from different passages and a search for genes consistently regulated in early and late passages allows the analysis of metastasis-relevant genes despite the observed instability in gene expression in osteosarcoma cell lines during culture.

  5. Genomic instability of osteosarcoma cell lines in culture: impact on the prediction of metastasis relevant genes.

    Science.gov (United States)

    Muff, Roman; Rath, Prisni; Ram Kumar, Ram Mohan; Husmann, Knut; Born, Walter; Baudis, Michael; Fuchs, Bruno

    2015-01-01

    Osteosarcoma is a rare but highly malignant cancer of the bone. As a consequence, the number of established cell lines used for experimental in vitro and in vivo osteosarcoma research is limited and the value of these cell lines relies on their stability during culture. Here we investigated the stability in gene expression by microarray analysis and array genomic hybridization of three low metastatic cell lines and derivatives thereof with increased metastatic potential using cells of different passages. The osteosarcoma cell lines showed altered gene expression during in vitro culture, and it was more pronounced in two metastatic cell lines compared to the respective parental cells. Chromosomal instability contributed in part to the altered gene expression in SAOS and LM5 cells with low and high metastatic potential. To identify metastasis-relevant genes in a background of passage-dependent altered gene expression, genes involved in "Pathways in cancer" that were consistently regulated under all passage comparisons were evaluated. Genes belonging to "Hedgehog signaling pathway" and "Wnt signaling pathway" were significantly up-regulated, and IHH, WNT10B and TCF7 were found up-regulated in all three metastatic compared to the parental cell lines. Considerable instability during culture in terms of gene expression and chromosomal aberrations was observed in osteosarcoma cell lines. The use of cells from different passages and a search for genes consistently regulated in early and late passages allows the analysis of metastasis-relevant genes despite the observed instability in gene expression in osteosarcoma cell lines during culture.

  6. Susceptibility of various cell lines to Neospora caninum tachyzoites cultivation

    Directory of Open Access Journals (Sweden)

    Khordadmehr, M.,

    2014-05-01

    Full Text Available Neospora caninum is a coccidian protozoan parasite which is a major cause of bovine abortions and neonatal mortality in cattle, sheep, goat and horse. Occasionally, cultured cells are used for isolation and multiplication of the agent in vitro with several purposes. In this study the tachyzoite yields of N. caninum were compared in various cell cultures as the host cell lines. Among the cell cultures tested, two presented good susceptibility to the agent: cell lines Vero and MA-104. SW742 and TLI (in vitro suspension culture of lymphoid cells infected with Theileria lestoquardi showed moderate sensitivity. No viable tachyzoite were detected in the culture of MDCK and McCoy cell lines. These results demonstrate that MA-104 and SW742 cells present adequate susceptibility to N. caninum compared to Vero cells, which have been largely used to multiply the parasite in vitro. Moreover, these have easy manipulation, fast multiplication and relatively low nutritional requirements. In addition, the result of this study showed that TLI cell line as a suspension cell culture is susceptible to Nc-1 tachyzoites infection and could be used as an alternative host cell line for tachyzoites culture in vitro studies.

  7. Heat stress-induced loss of eukaryotic initiation factor 5A (eIF-5A) in a human pancreatic cancer cell line, MIA PaCa-2, analyzed by two-dimensional gel electrophoresis.

    Science.gov (United States)

    Takeuchi, Kana; Nakamura, Kazuyuki; Fujimoto, Masanori; Kaino, Seiji; Kondoh, Satoshi; Okita, Kiwamu

    2002-02-01

    Alterations of intracellular proteins during the process of heat stress-induced cell death of a human pancreatic cancer cell line, MIA PaCa-2, were investigated using two-dimensional gel electrophoresis (2-DE), agarose gel electrophoresis, and cell biology techniques. Incubation of MIA PaCa-2 at 45 degrees C for 30 min decreased the cell growth rate and cell viability without causing chromosomal DNA fragmentation. Incubation at 51 degrees C for 30 min suppressed cell growth and again led to death without DNA fragmentation. The cell death was associated with the loss of an intracellular protein of M(r) 17,500 and pI 5.2 on 2-DE gel. This protein was determined to be eukaryotic initiation factor SA (eIF-5A) by microsequencing of the N-terminal region of peptide fragments obtained by cyanogen bromide treatment of the protein blotted onto a polyvinylidene difluoride (PVDF) membrane. The sequences detected were QXSALRKNGFVVLKGRP and STSKTGXHGHAKVHLVGID, which were homologous with the sequence of eIF-5A from Gln 20 to Pro 36 and from Ser 43 to Asp 61, respectively. Furthermore, the result of sequencing suggested that the protein was an active form of hypusinated eIF-5A, because Lys 46 could be detected but not Lys 49, which is the site for hypusination. These results suggest that loss of the active form of eIF-5A is an important factor in the irreversible process of heat stress-induced death of MIA PaCa-2 cells.

  8. Analysis of CTCL cell lines reveals important differences between mycosis fungoides/Sézary syndrome vs. HTLV-1+ leukemic cell lines

    DEFF Research Database (Denmark)

    Netchiporouk, Elena; Gantchev, Jennifer; Tsang, Matthew

    2017-01-01

    HTLV-1 is estimated to affect ~20 million people worldwide and in ~5% of carriers it produces Adult T-Cell Leukemia/Lymphoma (ATLL), which can often masquerade and present with classic erythematous pruritic patches and plaques that are typically seen in Mycosis Fungoides (MF) and Sézary Syndrome...... (SS), the most recognized variants of Cutaneous T-Cell Lymphomas (CTCL). For many years the role of HTLV- 1 in the pathogenesis of MF/SS has been hotly debated. In this study we analyzed CTCL vs. HTLV-1+ leukemic cells. We performed G-banding/spectral karyotyping, extensive gene expression analysis......, TP53 sequencing in the 11 patient-derived HTLV- 1+ (MJ and Hut102) vs. HTLV-1- (Myla, Mac2a, PB2B, HH, H9, Hut78, SZ4, Sez4 and SeAx) CTCL cell lines. We further tested drug sensitivities to commonly used CTCL therapies and studied the ability of these cells to produce subcutaneous xenograft tumors...

  9. Establishment and partial characterization of a cell line from burbot Lota lota maculosa: susceptibility to IHNV, IPNV and VHSV.

    Science.gov (United States)

    Polinski, Mark P; Drennan, John D; Batts, William N; Ireland, Susan C; Cain, Kenneth D

    2010-05-18

    This study describes the development and partial characterization of a continuous fibroblastic-like cell line (BEF-1) developed from late stage embryos of North American burbot Lota lota maculosa. This cell line has been maintained for over 5 yr and 100 passages in vitro. Cells were cultured using Eagle's minimum essential medium with Earle's salts (MEM) supplemented with GlutaMAX, and 10% fetal bovine serum (FBS), pH 7.4. The addition of penicillin-streptomycin-neomycin (PSN) antibiotic mixture (0.05, 0.05, 0.1 mg m(-1), respectively) did not negatively influence cell replication; however, the antimycotic FungizoneTM (2.5 microg m(-1), amphotericin B) caused cell rounding and resulted in a severe decrease in cell proliferation. Optimal incubation temperature has been observed between 15 and 23 degrees C, and at these temperatures cultures are routinely passed using standard trypsinization methods every 5 to 7 d at a split ratio of 1:3 or 1:4. The cell line was susceptible to isolates of the M and U North American genotypes of infectious hematopoietic necrosis virus (IHNV), and to isolates of genotypes I, IVa, and IVb of viral hemorrhagic septicemia virus (VHSV). In contrast, the cell line was refractory to infection by 2 North American isolates of infectious pancreatic necrosis virus (IPNV) from serotypes A1 and A9. This cell line provides a new laboratory tool, will allow further investigation into viral diseases of burbot and possibly other species, and is the first immortalized cell line reported from a species in the Gadidae (cod) family.

  10. Establishment and partial characterization of a cell line from burbot Lota lota maculosa: susceptibility to IHNV, IPNV and VHSV.

    Science.gov (United States)

    Batts, William N.; Polinski, Mark P.; Drennan, John D.; Ireland, Susan C.; Cain, Kenneth D.

    2010-01-01

    This study describes the development and partial characterization of a continuous fibroblastic-like cell line (BEF-1) developed from late stage embryos of North American burbot Lota lota maculosa. This cell line has been maintained for over 5 yr and 100 passages in vitro. Cells were cultured using Eagle’s minimum essential medium with Earle’s salts (MEM) supplemented with GlutaMAX™, and 10% fetal bovine serum (FBS), pH 7.4. The addition of penicillin-streptomycin-neomycin (PSN) antibiotic mixture (0.05, 0.05, 0.1 mg ml–1, respectively) did not negatively influence cell replication; however, the antimycotic Fungizone™ (2.5 µg ml–1, amphotericin B) caused cell rounding and resulted in a severe decrease in cell proliferation. Optimal incubation temperature has been observed between 15 and 23°C, and at these temperatures cultures are routinely passed using standard trypsinization methods every 5 to 7 d at a split ratio of 1:3 or 1:4. The cell line was susceptible to isolates of the M and U North American genotypes of infectious hematopoietic necrosis virus (IHNV), and to isolates of genotypes I, IVa, and IVb of viral hemorrhagic septicemia virus (VHSV). In contrast, the cell line was refractory to infection by 2 North American isolates of infectious pancreatic necrosis virus (IPNV) from serotypes A1 and A9. This cell line provides a new laboratory tool, will allow further investigation into viral diseases of burbot and possibly other species, and is the first immortalized cell line reported from a species in the Gadidae (cod) family.

  11. Radiation protective effect of hypoxia-inducible factor-1α (HIF-1α) on human oral squamous cell carcinoma cell lines

    International Nuclear Information System (INIS)

    Hosokawa, Y.; Okumura, K.; Terashima, S.; Sakakura, Y.

    2012-01-01

    We examined the effects of 5-Gy radiation on the expression of hypoxia-inducible factor-1α (HIF-1α) and the radiosensitivity of five human oral squamous cell carcinoma (OSCC) cell lines (SAS, Ca9-22, TT, BSC-OF and IS-FOM). In all of the cell lines, HIF-1α was expressed in mRNA, and radiation had no influence on gene transcription. The number of apoptotic cells increased 72 h after irradiation in cell lines SAS, Ca9-22 and TT cells, indicating low transcriptional levels of HIF-1α, and the levels of non-cleaved caspase-3, an executioner of apoptosis, and non-cleaved poly (adenosine diphosphate-ribose) polymerase (PARP), a marker of DNA damage early in apoptosis, decreased simultaneously. Conversely, radiation failed to induce apoptosis or to decrease expression of non-cleaved caspase-3 and PARP in cell-lines BSC-OF and IS-FOM cells that expressed high levels of HIF-1α. BSC-OF and IS-FOM cells exhibited high migratory capacity. When CoCl 2 was present in the medium, HIF-1α expression increased along with the survival of Ca9-22 cells after radiation exposure. These results suggest that OSCC cells expressing high levels of HIF-1α are resistant to radiation. HIF-1α can be used to control the short term radiosensitivity of cells. (authors)

  12. Molecular characterization of breast cancer cell lines through multiple omic approaches.

    Science.gov (United States)

    Smith, Shari E; Mellor, Paul; Ward, Alison K; Kendall, Stephanie; McDonald, Megan; Vizeacoumar, Frederick S; Vizeacoumar, Franco J; Napper, Scott; Anderson, Deborah H

    2017-06-05

    Breast cancer cell lines are frequently used as model systems to study the cellular properties and biology of breast cancer. Our objective was to characterize a large, commonly employed panel of breast cancer cell lines obtained from the American Type Culture Collection (ATCC 30-4500 K) to enable researchers to make more informed decisions in selecting cell lines for specific studies. Information about these cell lines was obtained from a wide variety of sources. In addition, new information about cellular pathways that are activated within each cell line was generated. We determined key protein expression data using immunoblot analyses. In addition, two analyses on serum-starved cells were carried out to identify cellular proteins and pathways that are activated in these cells. These analyses were performed using a commercial PathScan array and a novel and more extensive phosphopeptide-based kinome analysis that queries 1290 phosphorylation events in major signaling pathways. Data about this panel of breast cancer cell lines was also accessed from several online sources, compiled and summarized for the following areas: molecular classification, mRNA expression, mutational status of key proteins and other possible cancer-associated mutations, and the tumorigenic and metastatic capacity in mouse xenograft models of breast cancer. The cell lines that were characterized included 10 estrogen receptor (ER)-positive, 12 human epidermal growth factor receptor 2 (HER2)-amplified and 18 triple negative breast cancer cell lines, in addition to 4 non-tumorigenic breast cell lines. Within each subtype, there was significant genetic heterogeneity that could impact both the selection of model cell lines and the interpretation of the results obtained. To capture the net activation of key signaling pathways as a result of these mutational combinations, profiled pathway activation status was examined. This provided further clarity for which cell lines were particularly deregulated

  13. Irradiation specifically sensitises solid tumour cell lines to TRAIL mediated apoptosis

    International Nuclear Information System (INIS)

    Marini, Patrizia; Schmid, Angelika; Jendrossek, Verena; Faltin, Heidrun; Daniel, Peter T; Budach, Wilfried; Belka, Claus

    2005-01-01

    TRAIL (tumor necrosis factor related apoptosis inducing ligand) is an apoptosis inducing ligand with high specificity for malignant cell systems. Combined treatment modalities using TRAIL and cytotoxic drugs revealed highly additive effects in different tumour cell lines. Little is known about the efficacy and underlying mechanistic effects of a combined therapy using TRAIL and ionising radiation in solid tumour cell systems. Additionally, little is known about the effect of TRAIL combined with radiation on normal tissues. Tumour cell systems derived from breast- (MDA MB231), lung- (NCI H460) colorectal- (Colo 205, HCT-15) and head and neck cancer (FaDu, SCC-4) were treated with a combination of TRAIL and irradiation using two different time schedules. Normal tissue cultures from breast, prostate, renal and bronchial epithelia, small muscle cells, endothelial cells, hepatocytes and fibroblasts were tested accordingly. Apoptosis was determined by fluorescence microscopy and western blot determination of PARP processing. Upregulation of death receptors was quantified by flow cytometry. The combined treatment of TRAIL with irradiation strongly increased apoptosis induction in all treated tumour cell lines compared to treatment with TRAIL or irradiation alone. The synergistic effect was most prominent after sequential application of TRAIL after irradiation. Upregulation of TRAIL receptor DR5 after irradiation was observed in four of six tumour cell lines but did not correlate to tumour cell sensitisation to TRAIL. TRAIL did not show toxicity in normal tissue cell systems. In addition, pre-irradiation did not sensitise all nine tested human normal tissue cell cultures to TRAIL. Based on the in vitro data, TRAIL represents a very promising candidate for combination with radiotherapy. Sequential application of ionising radiation followed by TRAIL is associated with an synergistic induction of cell death in a large panel of solid tumour cell lines. However, TRAIL receptor

  14. On quadrisecant lines of threefolds in P^5

    Directory of Open Access Journals (Sweden)

    Emilia Mezzetti

    2000-09-01

    Full Text Available We study smooth threefolds of P^5 whose quadrisecant lines don't fill up the space. We give a complete classification of those threefolds X whose only quadrisecant lines are the lines contained in X . Then we prove that, if X admits "true" quadrisecant lines, but they don't fill up P^5 , then either X is contained in a cubic hypersurface, or it contains a family of dimension at least two of plane curves of degree at least four.

  15. Cancer-initiating cells derived from established cervical cell lines exhibit stem-cell markers and increased radioresistance

    International Nuclear Information System (INIS)

    López, Jacqueline; Poitevin, Adela; Mendoza-Martínez, Veverly; Pérez-Plasencia, Carlos; García-Carrancá, Alejandro

    2012-01-01

    Cancer-initiating cells (CICs) are proposed to be responsible for the generation of metastasis and resistance to therapy. Accumulating evidences indicates CICs are found among different human cancers and cell lines derived from them. Few studies address the characteristics of CICs in cervical cancer. We identify biological features of CICs from four of the best-know human cell lines from uterine cervix tumors. (HeLa, SiHa, Ca Ski, C-4 I). Cells were cultured as spheres under stem-cell conditions. Flow cytometry was used to detect expression of CD34, CD49f and CD133 antigens and Hoechst 33342 staining to identify side population (SP). Magnetic and fluorescence-activated cell sorting was applied to enrich and purify populations used to evaluate tumorigenicity in nude mice. cDNA microarray analysis and in vitro radioresistance assay were carried out under standard conditions. CICs, enriched as spheroids, were capable to generate reproducible tumor phenotypes in nu-nu mice and serial propagation. Injection of 1 × 10 3 dissociated spheroid cells induced tumors in the majority of animals, whereas injection of 1 × 10 5 monolayer cells remained nontumorigenic. Sphere-derived CICs expressed CD49f surface marker. Gene profiling analysis of HeLa and SiHa spheroid cells showed up-regulation of CICs markers characteristic of the female reproductive system. Importantly, epithelial to mesenchymal (EMT) transition-associated markers were found highly expressed in spheroid cells. More importantly, gene expression analysis indicated that genes required for radioresistance were also up-regulated, including components of the double-strand break (DSB) DNA repair machinery and the metabolism of reactive oxygen species (ROS). Dose-dependent radiation assay indicated indeed that CICs-enriched populations exhibit an increased resistance to ionizing radiation (IR). We characterized a self-renewing subpopulation of CICs found among four well known human cancer-derived cell lines (HeLa, Si

  16. Intercellular Uptake of Technetium-99m Pertechnetate by Different Types of Cell Lines

    International Nuclear Information System (INIS)

    Safri Zainal Abidin; Raizulnasuha Abdul Rashid; Muhammad Afiq Khairil Anuar; Wan Nordiana A Abd Rahman

    2015-01-01

    The purpose of this study is to determine the technetium-99m pertechnetate ( 99m TcO 4 ) intercellular uptake by different types of cell lines. HeLa, human fetal osteoblast (hFOB), glial and glioma cell lines grown in 6-wells culture plates were incubated with 99m TcO 4 of activity of 200, 400, 600, 800 and 1000 μCi for 30 minutes at 37 degree Celsius and 5 % CO 2 humidified atmosphere. After incubation, the cells were washed 3 times with phosphate buffer saline to remove the extracellular traces of 99m TcO 4 . Measurement of the intercellular 99m TcO 4 into the cells was calculated. The intercellular uptake of 99m TcO 4 was found to be inversely correlate to the radioactivity. HHeLa cell shows the highest uptake followed by hFOB, glial and glioma cell lines. Comparison of uptake between normal and cancer cells present indistinguishable results. The findings of this study suggest that the intercellular uptake of 99m TcO 4 is highly dependent on the type of cells despite no significant different of uptake was found between normal and cancer cell lines. The level of radioactivity is also an important determinant factor that influence the uptake of 99m TcO 4 into the cell. The study will be the first precedent toward understanding the cellular characteristics and pharmacokinetic of non-invasive imaging tracer for future molecular imaging and therapy. (author)

  17. Cell kinetics of differentiation of Na+-dependent hexose transport in a cultured renal epithelial cell line

    International Nuclear Information System (INIS)

    Cook, J.S.; Weiss, E.R.

    1985-01-01

    Fully differentiated cells of the renal proximal tubule have the capability of taking up hexoses across their apical borders by transport coupled to the Na + -electrochemical gradient. This property is also found in postconfluent cultures of the cloned cell line LLC-PK 1 , a morphologically polarized line of renal cells. Postconfluent cells develop the Na + -dependent capacity to transport hexoses at their apical surface. This function is not observable during the growth phase of the cultures. To analyze the developmental process at the cellular level a method has been derived to separate transporting cells, expressing the differentiated function, from nontransporting cells. The method is based on the swelling of the cells accompanying the uptake of the nonmetabolizable glucose analog alpha methylglucoside. The swollen cells have a lower buoyant density than the undifferentiated cells and may be separated from them on density gradients. Analysis of the distribution of cells on such gradients shows that after the cells reach confluence the undifferentiated subpopulation is recruited onto the differentiation pathway with a rate constant of 0.2 per day, that 5 to 7 days are required for a cell to traverse this pathway to the fully differentiated state, and that once the maximum uptake capacity is achieved the cells do not develop further

  18. Establishment and conventional cytogenetic characterization of three gastric cancer cell lines.

    Science.gov (United States)

    Leal, Mariana Ferreira; Martins do Nascimento, José Luiz; da Silva, Carla Elvira Araújo; Vita Lamarão, Maria Fernanda; Calcagno, Danielle Queiroz; Khayat, André Salim; Assumpção, Paulo Pimentel; Cabral, Isabel Rosa; de Arruda Cardoso Smith, Marília; Burbano, Rommel Rodríguez

    2009-11-01

    Gastric cancer is the fourth most frequent type of cancer and the second most frequent cause of cancer mortality worldwide. Only a modest number of gastric carcinoma cell lines have been isolated thus far. Here we describe the establishment and cytogenetic characterization of three new gastric cancer cell lines obtained from primary gastric adenocarcinoma (ACP02 and ACP03) and cancerous ascitic fluid (AGP01) of individuals from northern Brazil. ACP02, ACP03, and AGP01 cell lines are presently in the 60th passage. The cell lines grew in a disorganized single layer with some agglomerations and heterogeneous divisions (bipolar and multipolar). All cell lines exhibited a composite karyotype with several clonal chromosome alterations. Trisomy 8 was the most frequent alteration. Chromosome 8 aneusomy was confirmed by fluorescence in situ hybridization. All cell lines also exhibited trisomy 7 and deletion of chromosome arm 17p. These results suggest that, although frequent chromosome alterations are commonly observed due to culture process, the ACP02, ACP03, and AGP01 cell lines and primary gastric cancer from individuals of northern Brazil share genetic alterations, supporting use of these cell lines as a model of gastric carcinogenesis in this population.

  19. DNA fingerprinting of the NCI-60 cell line panel.

    Science.gov (United States)

    Lorenzi, Philip L; Reinhold, William C; Varma, Sudhir; Hutchinson, Amy A; Pommier, Yves; Chanock, Stephen J; Weinstein, John N

    2009-04-01

    The National Cancer Institute's NCI-60 cell line panel, the most extensively characterized set of cells in existence and a public resource, is frequently used as a screening tool for drug discovery. Because many laboratories around the world rely on data from the NCI-60 cells, confirmation of their genetic identities represents an essential step in validating results from them. Given the consequences of cell line contamination or misidentification, quality control measures should routinely include DNA fingerprinting. We have, therefore, used standard DNA microsatellite short tandem repeats to profile the NCI-60, and the resulting DNA fingerprints are provided here as a reference. Consistent with previous reports, the fingerprints suggest that several NCI-60 lines have common origins: the melanoma lines MDA-MB-435, MDA-N, and M14; the central nervous system lines U251 and SNB-19; the ovarian lines OVCAR-8 and OVCAR-8/ADR (also called NCI/ADR); and the prostate lines DU-145, DU-145 (ATCC), and RC0.1. Those lines also show that the ability to connect two fingerprints to the same origin is not affected by stable transfection or by the development of multidrug resistance. As expected, DNA fingerprints were not able to distinguish different tissues-of-origin. The fingerprints serve principally as a barcodes.

  20. In vitro studies of Rickettsia-host cell interactions: Confocal laser scanning microscopy of Rickettsia helvetica-infected eukaryotic cell lines.

    Science.gov (United States)

    Speck, Stephanie; Kern, Tanja; Aistleitner, Karin; Dilcher, Meik; Dobler, Gerhard; Essbauer, Sandra

    2018-02-01

    Rickettsia (R.) helvetica is the most prevalent rickettsia found in Ixodes ricinus ticks in Germany. Several studies reported antibodies against R. helvetica up to 12.5% in humans investigated, however, fulminant clinical cases are rare indicating a rather low pathogenicity compared to other rickettsiae. We investigated growth characteristics of R. helvetica isolate AS819 in two different eukaryotic cell lines with focus on ultra-structural changes of host cells during infection determined by confocal laser scanning microscopy. Further investigations included partially sequencing of rickA, sca4 and sca2 genes, which have been reported to encode proteins involved in cell-to-cell spread and virulence in some rickettsiae. R. helvetica grew constantly but slowly in both cell lines used. Confocal laser scanning microscopy revealed that the dissemination of R. helvetica AS819 in both cell lines was rather mediated by cell break-down and bacterial release than cell-to-cell spread. The cytoskeleton of both investigated eukaryotic cell lines was not altered. R. helvetica possesses rickA, but its expression is not sufficient to promote actin-based motility as demonstrated by confocal laser scanning microscopy. Hypothetical Sca2 and Sca4 proteins were deduced from nucleotide gene sequences but the predicted amino acid sequences were disrupted or truncated compared to other rickettsiae most likely resulting in non-functional proteins. Taken together, these results might give a first hint to the underlying causes of the reduced virulence and pathogenicity of R. helvetica.

  1. Peroxisomal abnormalities in the immortalized human hepatocyte (IHH) cell line.

    Science.gov (United States)

    Klouwer, Femke C C; Koster, Janet; Ferdinandusse, Sacha; Waterham, Hans R

    2017-04-01

    The immortalized human hepatocyte (IHH) cell line is increasingly used for studies related to liver metabolism, including hepatic glucose, lipid, lipoprotein and triglyceride metabolism, and the effect of therapeutic interventions. To determine whether the IHH cell line is a good model to investigate hepatic peroxisomal metabolism, we measured several peroxisomal parameters in IHH cells and, for comparison, HepG2 cells and primary skin fibroblasts. This revealed a marked plasmalogen deficiency and a deficient fatty acid α-oxidation in the IHH cells, due to a defect of PEX7, a cytosolic receptor protein required for peroxisomal import of a subset of peroxisomal proteins. These abnormalities have consequences for the lipid homeostasis of these cells and thus should be taken into account for the interpretation of data previously generated by using this cell line and when considering using this cell line for future research.

  2. Enhanced detection and study of murine norovirus-1 using a more efficient microglial cell line

    Directory of Open Access Journals (Sweden)

    Lu Yuanan

    2009-11-01

    Full Text Available Abstract Background Human Noroviruses are the predominant cause of non-bacterial gastroenteritis worldwide. To facilitate prevention and control, a norovirus isolated from mice can provide a model to understand human noroviruses. To establish optimal viral infectivity conditions for murine noroviruses, several cell lines of hematopoietic lineage, including murine BV-2, RAW 264.7, and TIB, as well as human CHME-5, were tested comparatively for their sensitivity to murine norovirus-1. Results Except for CHME-5, all three murine-derived cell lines were susceptible to MNV infection. Viral infection of these cells was confirmed by RT-PCR. Using both viral plaque and replication assays, BV-2 and RAW 264.7 cells were determined to have comparable sensitivities to MNV-1 infection. Comparisons of cell growth characteristics, general laboratory handling and potential in-field applications suggest the use of BV-2 to be more advantageous. Conclusion Results obtained from these studies demonstrate that an immortalized microglial cell line can support MNV-1 replication and provides a more efficient method to detect and study murine noroviruses, facilitating future investigations using MNV-1 as a model to study, detect, and control Human Norovirus.

  3. Cellular radiosensitivity of small-cell lung cancer cell lines

    DEFF Research Database (Denmark)

    Krarup, M; Poulsen, H S; Spang-Thomsen, M

    1997-01-01

    PURPOSE: The objective of this study was to determine the radiobiological characteristics of a panel of small-cell lung cancer (SCLC) cell lines by use of a clonogenic assay. In addition, we tested whether comparable results could be obtained by employing a growth extrapolation method based...

  4. A preliminary investigation into the extent of increased radioresistance or hyper-radiosensitivity in cells of hamster cell lines known to be deficient in DNA repair

    International Nuclear Information System (INIS)

    Skov, K.; Marples, B.; Matthews, J.B.; Zhou, H.; Joiner, M.C.

    1994-01-01

    The response to low doses of X rays was assessed in cells of three hamster cell lines which are defective in DNA repair and was compared with their parental lines. Cells of the V79-derived double-strand break repair-deficient line XR-V15B showed no radioresistance in the 0.5-Gy range compared with the V79B wild type, but instead showed an exponential response. Cells of the single-strand break repair-deficient line EM9 showed hyper-radiosensitivity and exhibited increased radioresistance. Most interestingly, cells of the UV-20 cell line appeared to respond exponentially, as a continuation of the hyper-radiosensitive portion of the curve, with no evidence of increased radioresistance. This line is defective in an incision step of excision repair and is sensitive to crosslinking agents. Further studies are warranted to address the possible role of single- and double-strand break repair and excision repair in hyper-radiosensitivity and increased radioresistance. 24 refs., 4 figs

  5. Sterol regulatory element-binding proteins are regulators of the sodium/iodide symporter in mammary epithelial cells.

    Science.gov (United States)

    Wen, G; Pachner, L I; Gessner, D K; Eder, K; Ringseis, R

    2016-11-01

    The sodium/iodide symporter (NIS), which is essential for iodide concentration in the thyroid, is reported to be transcriptionally regulated by sterol regulatory element-binding proteins (SREBP) in rat FRTL-5 thyrocytes. The SREBP are strongly activated after parturition and throughout lactation in the mammary gland of cattle and are important for mammary epithelial cell synthesis of milk lipids. In this study, we tested the hypothesis that the NIS gene is regulated also by SREBP in mammary epithelial cells, in which NIS is functionally expressed during lactation. Regulation of NIS expression and iodide uptake was investigated by means of inhibition, silencing, and overexpression of SREBP and by reporter gene and DNA-binding assays. As a mammary epithelial cell model, the human MCF-7 cell line, a breast adenocarcinoma cell line, which shows inducible expression of NIS by all-trans retinoic acid (ATRA), and unlike bovine mammary epithelial cells, is widely used to investigate the regulation of mammary gland NIS and NIS-specific iodide uptake, was used. Inhibition of SREBP maturation by treatment with 25-hydroxycholesterol (5 µM) for 48h reduced ATRA (1 µM)-induced mRNA concentration of NIS and iodide uptake in MCF-7 cells by approximately 20%. Knockdown of SREBP-1c and SREBP-2 by RNA interference decreased the mRNA and protein concentration of NIS by 30 to 50% 48h after initiating knockdown, whereas overexpression of nuclear SREBP (nSREBP)-1c and nSREBP-2 increased the expression of NIS in MCF-7 cells by 45 to 60%, respectively, 48h after initiating overexpression. Reporter gene experiments with varying length of NIS promoter reporter constructs revealed that the NIS 5'-flanking region is activated by nSREBP-1c and nSREBP-2 approximately 1.5- and 4.5-fold, respectively, and activation involves a SREBP-binding motif (SRE) at -38 relative to the transcription start site of the NIS gene. Gel shift assays using oligonucleotides spanning either the wild-type or the

  6. Detecção da citotoxicidade de materiais biocompatíveis nas linhagens celulares MRC-5, HeLa e RC-IAL MRC-5, HeLa and RC-IAL cell lines sensitivity for detection of cytotoxicity of biocompatible materials

    Directory of Open Access Journals (Sweden)

    Aurea S. Cruz

    1992-04-01

    Full Text Available A sensibilidade de uma linhagem celular diplóide e duas heteroplóides, para a detecção de citotoxicidade através do método de difusão em camada de ágar sobre culturas celulares, foi avaliada experimentalmente com solução de ácido ascórbico em diferentes concentrações e, na prática, frente a 562 amostras de 21 diferentes materiais industriais enviados para análise na Seção de Culturas Celulares do Instituto Adolfo Lutz. A linhagem celular heteroplóide designada RC-IAL apresentou, em relação às linhagens MRC-5 e HeLa, maior sensibilidade porque revelou a presença de efeito citotóxico nas menores concentrações utilizadas (10 e 25 ug/ml do ácido ascórbico e apresentou maior diâmetro do halo citotóxico em 15 amostras e igual diâmetro em 16 das 43 amostras (7,6% que resultaram positivas. Nas 43 amostras positivas, a linhagem MRC-5 não revelou citotoxicidade em 3 amostras de espuma e 1 de resina acrílica. O polivinilcloreto (PVC e o polietileno, raramente revelaram positividade, enquanto plástico, algodão e resinas acrílicas revelaram citotoxicidade ao redor de 5%. Em vista dos resultados é discutida a proposta da utilização da linhagem RC-IAL e HeLa para a continuidade das futuras análises solicitadas ao Instituto Adolfo LutzThe sensitivity of diploid and heteroploid cell lines for detection of cytotoxicity using the agar diffusion method on cell culture, was tested with ascorbic acid solution of different concentrations. A total of 562 samples of 21 various materials were tested. The heteroploid cell line, RC-IAL, showed in relation to the MRC-5 and HeLa cell lines, greater sensitivity because it showed the presence of cytotoxic effect with the lowest concentration used (10 and 25ug/ml of ascorbic acid and showed greater diameter of cytotoxic halo in 15 samples and equal diameter in 16 of the 43 positive samples (7.6%. Out of 43 positive samples, the MRC-5 line did not show cytotoxicity in 3 sponge samples and

  7. A human osteosarcoma cell line expressing herpes simplex type-1 thymidine kinase: studies with radiolabeled (E)-5-(2-iodovinyl)-2'-fluoro-2'-deoxyuridine

    International Nuclear Information System (INIS)

    Morin, Kevin W.; Duan Weili; Knaus, Edward E.; McEwan, Alexander J.B.; Wiebe, Leonard I.

    2005-01-01

    Introduction: (E)-5-(2-Iodovinyl)-2'-fluoro-2'-deoxyuridine (IVFRU) is a pyrimidine nucleoside analogue that accumulates selectively in murine cells expressing herpes simplex type-1 thymidine kinase (HSV-1 TK). The uptake of [ 125 I]IVFRU in human 143B osteosarcoma cells transduced with a retroviral vector bearing the HSV-1 TK gene (143B-LTK cells) is now reported. Methods: HSV-1 TK gene expression in 143B-LTK cells was confirmed by Western blotting and reverse transcriptase (RT)-PCR. Cell and subcellular uptake of [ 125 I]IVFRU was determined in cell culture, and whole body biodistribution after intravenous injection of [ 125 I]IVFRU was determined using nude mice bearing implanted 143B or 143B-LTK tumors. Results: Although IVFRU was less toxic to the human cell line expressing HSV-1 TK (143B-LTK) than ganciclovir, both IVFRU and ganciclovir were not toxic to the cell line not expressing HSV-1 TK (143B). When cells were exposed to [ 125 I]IVFRU in vitro, only the 143B-LTK cells accumulated radioactivity. The acid-soluble fraction from 143B-LTK cell lysates contained 8-fold greater activity than the acid-insoluble fraction after an 8-h exposure to [ 125 I]IVFRU. Biodistribution of [ 125 I]IVFRU in nude mice bearing subcutaneous 143B and 143B-LTK tumors revealed widespread distribution of the nucleoside in vivo but with specific localization in 143B-LTK tumors. Conclusion: The underlying biochemical process of metabolic entrapment of IVFRU in human osteosarcoma cells expressing HSV-1 TK is responsible for selective localization in these cells. The differences in subcellular distribution into the nucleic acid fraction, and in cytotoxicity, reflect the importance of cell type and lineage as determinants of the performance of gene imaging radiopharmaceuticals

  8. Genome-wide methylation analysis identifies genes silenced in non-seminoma cell lines.

    Science.gov (United States)

    Noor, Dzul Azri Mohamed; Jeyapalan, Jennie N; Alhazmi, Safiah; Carr, Matthew; Squibb, Benjamin; Wallace, Claire; Tan, Christopher; Cusack, Martin; Hughes, Jaime; Reader, Tom; Shipley, Janet; Sheer, Denise; Scotting, Paul J

    2016-01-01

    Silencing of genes by DNA methylation is a common phenomenon in many types of cancer. However, the genome-wide effect of DNA methylation on gene expression has been analysed in relatively few cancers. Germ cell tumours (GCTs) are a complex group of malignancies. They are unique in developing from a pluripotent progenitor cell. Previous analyses have suggested that non-seminomas exhibit much higher levels of DNA methylation than seminomas. The genomic targets that are methylated, the extent to which this results in gene silencing and the identity of the silenced genes most likely to play a role in the tumours' biology have not yet been established. In this study, genome-wide methylation and expression analysis of GCT cell lines was combined with gene expression data from primary tumours to address this question. Genome methylation was analysed using the Illumina infinium HumanMethylome450 bead chip system and gene expression was analysed using Affymetrix GeneChip Human Genome U133 Plus 2.0 arrays. Regulation by methylation was confirmed by demethylation using 5-aza-2-deoxycytidine and reverse transcription-quantitative PCR. Large differences in the level of methylation of the CpG islands of individual genes between tumour cell lines correlated well with differential gene expression. Treatment of non-seminoma cells with 5-aza-2-deoxycytidine verified that methylation of all genes tested played a role in their silencing in yolk sac tumour cells and many of these genes were also differentially expressed in primary tumours. Genes silenced by methylation in the various GCT cell lines were identified. Several pluripotency-associated genes were identified as a major functional group of silenced genes.

  9. Improving the efficiency of CHO cell line generation using glutamine synthetase gene knockout cells.

    Science.gov (United States)

    Fan, Lianchun; Kadura, Ibrahim; Krebs, Lara E; Hatfield, Christopher C; Shaw, Margaret M; Frye, Christopher C

    2012-04-01

    Although Chinese hamster ovary (CHO) cells, with their unique characteristics, have become a major workhorse for the manufacture of therapeutic recombinant proteins, one of the major challenges in CHO cell line generation (CLG) is how to efficiently identify those rare, high-producing clones among a large population of low- and non-productive clones. It is not unusual that several hundred individual clones need to be screened for the identification of a commercial clonal cell line with acceptable productivity and growth profile making the cell line appropriate for commercial application. This inefficiency makes the process of CLG both time consuming and laborious. Currently, there are two main CHO expression systems, dihydrofolate reductase (DHFR)-based methotrexate (MTX) selection and glutamine synthetase (GS)-based methionine sulfoximine (MSX) selection, that have been in wide industrial use. Since selection of recombinant cell lines in the GS-CHO system is based on the balance between the expression of the GS gene introduced by the expression plasmid and the addition of the GS inhibitor, L-MSX, the expression of GS from the endogenous GS gene in parental CHOK1SV cells will likely interfere with the selection process. To study endogenous GS expression's potential impact on selection efficiency, GS-knockout CHOK1SV cell lines were generated using the zinc finger nuclease (ZFN) technology designed to specifically target the endogenous CHO GS gene. The high efficiency (∼2%) of bi-allelic modification on the CHO GS gene supports the unique advantages of the ZFN technology, especially in CHO cells. GS enzyme function disruption was confirmed by the observation of glutamine-dependent growth of all GS-knockout cell lines. Full evaluation of the GS-knockout cell lines in a standard industrial cell culture process was performed. Bulk culture productivity improved two- to three-fold through the use of GS-knockout cells as parent cells. The selection stringency was

  10. Effects of γ-radiation on cell growth, cell cycle and promoter methylation of 22 cell cycle genes in the 1321NI astrocytoma cell line.

    Science.gov (United States)

    Alghamian, Yaman; Abou Alchamat, Ghalia; Murad, Hossam; Madania, Ammar

    2017-09-01

    DNA damage caused by radiation initiates biological responses affecting cell fate. DNA methylation regulates gene expression and modulates DNA damage pathways. Alterations in the methylation profiles of cell cycle regulating genes may control cell response to radiation. In this study we investigated the effect of ionizing radiation on the methylation levels of 22 cell cycle regulating genes in correlation with gene expression in 1321NI astrocytoma cell line. 1321NI cells were irradiated with 2, 5 or 10Gy doses then analyzed after 24, 48 and 72h for cell viability using MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliu bromide) assay. Flow cytometry were used to study the effect of 10Gy irradiation on cell cycle. EpiTect Methyl II PCR Array was used to identify differentially methylated genes in irradiated cells. Changes in gene expression was determined by qPCR. Azacytidine treatment was used to determine whether DNA methylation affectes gene expression. Our results showed that irradiation decreased cell viability and caused cell cycle arrest at G2/M. Out of 22 genes tested, only CCNF and RAD9A showed some increase in DNA methylation (3.59% and 3.62%, respectively) after 10Gy irradiation, and this increase coincided with downregulation of both genes (by 4 and 2 fold, respectively). with azacytidine confirmed that expression of CCNF and RAD9A genes was regulated by methylation. 1321NI cell line is highly radioresistant and that irradiation of these cells with a 10Gy dose increases DNA methylation of CCNF and RAD9A genes. This dose down-regulates these genes, favoring G2/M arrest. Copyright © 2017 Medical University of Bialystok. Published by Elsevier B.V. All rights reserved.

  11. Development of an in vitro skin sensitization test using human cell lines; human Cell Line Activation Test (h-CLAT). II. An inter-laboratory study of the h-CLAT.

    Science.gov (United States)

    Sakaguchi, H; Ashikaga, T; Miyazawa, M; Yoshida, Y; Ito, Y; Yoneyama, K; Hirota, M; Itagaki, H; Toyoda, H; Suzuki, H

    2006-08-01

    Recent regulatory changes have placed a major emphasis on in vitro safety testing and alternative models. In regard to skin sensitization tests, dendritic cells (DCs) derived from human peripheral blood have been considered in the development of new in vitro alternatives. Human cell lines have been also reported recently. In our previous study, we suggested that measuring CD86 and/or CD54 expression on THP-1 cells (human monocytic leukemia cell line) could be used as an in vitro skin sensitization method. An inter-laboratory study among two laboratories was undertaken in Japan in order to further develop an in vitro skin sensitization model. In the present study, we used two human cell lines: THP-1 and U-937 (human histiocytic lymphoma cell line). First we optimized our test protocol (refer to the related paper entitled "optimization of the h-CLAT protocol" within this journal) and then we did an inter-laboratory validation with nine chemicals using the optimized protocol. We measured the expression of CD86 and CD54 on the above cells using flow cytometry after a 24h and 48h exposure to six known allergens (e.g., DNCB, pPD, NiSO(4)) and three non-allergens (e.g., SLS, tween 80). For the sample test concentration, four doses (0.1x, 0.5x, 1x, and 2x of the 50% inhibitory concentration (IC(50))) were evaluated. IC(50) was calculated using MTT assay. We found that allergens/non-allergens were better predicted using THP-1 cells compared to U-937 cells following a 24 h and a 48 h exposure. We also found that the 24h treatment time tended to have a better accuracy than the 48 h treatment time for THP-1 cells. Expression of CD86 and CD54 were good predictive markers for THP-1 cells, but for U-937 cells, expression of CD86 was a better predictor than CD54, at the 24h and the 48 h treatment time. The accuracy also improved when both markers (CD86 and CD54) were used as compared with a single marker for THP-1 cells. Both laboratories gave a good prediction of allergen

  12. Cytotoxic Effects of Fascaplysin against Small Cell Lung Cancer Cell Lines

    Science.gov (United States)

    Hamilton, Gerhard

    2014-01-01

    Fascaplysin, the natural product of a marine sponge, exhibits anticancer activity against a broad range of tumor cells, presumably through interaction with DNA, and/or as a highly selective cyclin-dependent kinase 4 (CDK4) inhibitor. In this study, cytotoxic activity of fascaplysin against a panel of small cell lung cancer (SCLC) cell lines and putative synergism with chemotherapeutics was investigated. SCLC responds to first-line chemotherapy with platinum-based drugs/etoposide, but relapses early with topotecan remaining as the single approved therapeutic agent. Fascaplysin was found to show high cytotoxicity against SCLC cells and to induce cell cycle arrest in G1/0 at lower and S-phase at higher concentrations, respectively. The compound generated reactive oxygen species (ROS) and induced apoptotic cell death in the chemoresistant NCI-H417 SCLC cell line. Furthermore, fascaplysin revealed marked synergism with the topoisomerase I-directed camptothecin and 10-hydroxy-camptothecin. The Poly(ADP-ribose)-Polymerase 1 (PARP1) inhibitor BYK 204165 antagonized the cytotoxic activity of fascaplysin, pointing to the involvement of DNA repair in response to the anticancer activity of the drug. In conclusion, fascaplysin seems to be suitable for treatment of SCLC, based on high cytotoxic activity through multiple routes of action, affecting topoisomerase I, integrity of DNA and generation of ROS. PMID:24608973

  13. MODERATE CYTOTOXICITY OF PROANTHOCYANIDINS TO HUMAN TUMOR-CELL LINES

    NARCIS (Netherlands)

    KOLODZIEJ, H; HABERLAND, C; WOERDENBAG, HJ; KONINGS, AWT

    In the present study the cytotoxicity of 16 proanthocyanidins was evaluated in GLC(4), a human small cell lung carcinoma cell line, and in COLO 320, a human colorectal cancer cell line, using the microculture tetrazolium (MTT) assay. With IC50 values ranging from 18 to >200 mu m following continuous

  14. Anti-leukemic activity of bortezomib and carfilzomib on B-cell precursor ALL cell lines.

    Directory of Open Access Journals (Sweden)

    Kazuya Takahashi

    Full Text Available Prognosis of childhood acute lymphoblastic leukemia (ALL has been dramatically improved. However, prognosis of the cases refractory to primary therapy is still poor. Recent phase 2 study on the efficacy of combination chemotherapy with bortezomib (BTZ, a proteasome inhibitor, for refractory childhood ALL demonstrated favorable clinical outcomes. However, septic death was observed in over 10% of patients, indicating the necessity of biomarkers that could predict BTZ sensitivity. We investigated in vitro BTZ sensitivity in a large panel of ALL cell lines that acted as a model system for refractory ALL, and found that Philadelphia chromosome-positive (Ph+ ALL, IKZF1 deletion, and biallelic loss of CDKN2A were associated with favorable response. Even in Ph-negative ALL cell lines, IKZF1 deletion and bilallelic loss of CDKN2A were independently associated with higher BTZ sensitivity. BTZ showed only marginal cross-resistance to four representative chemotherapeutic agents (vincristine, dexamethasone, l-asparaginase, and daunorubicin in B-cell precursor-ALL cell lines. To improve the efficacy and safety of proteasome inhibitor combination chemotherapy, we also analyzed the anti-leukemic activity of carfilzomib (CFZ, a second-generation proteasome inhibitor, as a substitute for BTZ. CFZ showed significantly higher activity than BTZ in the majority of ALL cell lines except for the P-glycoprotein-positive t(17;19 ALL cell lines, and IKZF1 deletion was also associated with a favorable response to CFZ treatment. P-glycoprotein inhibitors effectively restored the sensitivity to CFZ, but not BTZ, in P-glycoprotein-positive t(17;19 ALL cell lines. P-glycoprotein overexpressing ALL cell line showed a CFZ-specific resistance, while knockout of P-glycoprotein by genome editing with a CRISPR/Cas9 system sensitized P-glycoprotein-positive t(17;19 ALL cell line to CFZ. These observations suggested that IKZF1 deletion could be a useful biomarker to predict good

  15. Cellular radiosensitivity of small-cell lung cancer cell lines

    International Nuclear Information System (INIS)

    Krarup, Marianne; Poulsen, Hans Skovgaard; Spang-Thomsen, Mogens

    1997-01-01

    Purpose: The objective of this study was to determine the radiobiological characteristics of a panel of small-cell lung cancer (SCLC) cell lines by use of a clonogenic assay. In addition, we tested whether comparable results could be obtained by employing a growth extrapolation method based on the construction of continuous exponential growth curves. Methods and Materials: Fifteen SCLC cell lines were studied, applying a slightly modified clonogenic assay and a growth extrapolation method. A dose-survival curve was obtained for each experiment and used for calculating several survival parameters. The multitarget single hit model was applied to calculate the cellular radiosensitivity (D 0 ), the capacity for sublethal damage repair (D q ), and the extrapolation number (n). Values for α and β were determined from best-fit curves according to the linear-quadratic model and these values were applied to calculate the surviving fraction after 2-Gy irradiation (SF 2 ). Results: In our investigation, the extrapolation method proved to be inappropriate for the study of in vitro cellular radiosensitivity due to lack of reproducibility. The results obtained by the clonogenic assay showed that the cell lines studied were radiobiologically heterogeneous with no discrete features of the examined parameters including the repair capacity. Conclusion: The results indicate that SCLC tumors per se are not generally candidates for hyperfractionated radiotherapy

  16. Less initial rejoining of X-ray-induced DNA double-strand breaks in cells of a small cell (U-1285) compared to a large cell (U-1810) lung carcinoma cell line

    International Nuclear Information System (INIS)

    Cedervall, B.; Sirzea, F.; Brodin, O.; Lewensohn, R.

    1994-01-01

    Cells of a small cell lung carcinoma cell line, U-1285, and an undifferentiated large cell lung carcinoma cell line, U-1810, differ in radiosensitivity in parallel to the clinical radiosensitivity of the kind of tumors from which they are derived. The surviving fraction at 2 Gy (SF2) was 0.25 that of U-1285 cells and 0.88 that of U-1810 cells. We investigated the induction of DNA double-strand breaks (DSBs) by X rays and DSB rejoining in these cell lines. To estimate the number of DSBs we used a model adapted for pulsed-field gel electrophoresis (PFGE). The induction levels were of the same magnitude. These levels of induction do not correlate with radiosensitivity as measured by cell survival assays. Rejoining of DSBs after doses in the range of 0.50 Gy was followed for 0,15,30,60 and 120 min. We found a difference in the velocity of repair during the first hour after irradiation which is parallel to the differences in radiosensitivity. Thus U-1810 cells exhibit a fast component of repair, with about half of the DSBs being rejoined during the first 15 min, whereas U-1285 cells lack such a fast component, with only about 5% of the DSBs being rejoined after the same time. In addition there was a numerical albeit not statistical difference at 120 min, with more residual DSBs in the U-1285 cells compared to the U-1810 cells. 36 refs., 5 figs

  17. Fraction against Human Cancer Cell Lines

    African Journals Online (AJOL)

    fraction of A. sieberi against seven cancer cell lines (Colo20, HCT116, DLD, MCF7, Jurkat, HepG2 and ... The morphology of the HepG2 cell nucleus was investigated by Hoechst 33342, ..... Gong F, Liang Y, Xie P, Chau F. Information theory.

  18. Chromosomal imbalances in four new uterine cervix carcinoma derived cell lines

    International Nuclear Information System (INIS)

    Hidalgo, Alfredo; Monroy, Alberto; Arana, Rosa Ma; Taja, Lucía; Vázquez, Guelaguetza; Salcedo, Mauricio

    2003-01-01

    Uterine cervix carcinoma is the second most common female malignancy worldwide and a major health problem in Mexico, representing the primary cause of death among the Mexican female population. High risk human papillomavirus (HPV) infection is considered to be the most important risk factor for the development of this tumor and cervical carcinoma derived cell lines are very useful models for the study of viral carcinogenesis. Comparative Genomic Hybridization (CGH) experiments have detected a specific pattern of chromosomal imbalances during cervical cancer progression, indicating chromosomal regions that might contain genes that are important for cervical transformation. We performed HPV detection and CGH analysis in order to initiate the genomic characterization of four recently established cervical carcinoma derived cell lines from Mexican patients. All the cell lines were HPV18 positive. The most prevalent imbalances in the cell lines were gains in chromosomes 1q23-q32, 3q11.2-q13.1, 3q22-q26.1, 5p15.1-p11.2, this alteration present as a high copy number amplification in three of the cell lines, 7p15-p13, 7q21, 7q31, 11q21, and 12q12, and losses in 2q35-qter, 4p16, 6q26-qter, 9q34 and 19q13.2-qter. Analysis of our present findings and previously reported data suggest that gains at 1q31-q32 and 7p13-p14, as well as losses at 6q26-q27 are alterations that might be unique for HPV18 positive cases. These chromosomal regions, as well as regions with high copy number amplifications, coincide with known fragile sites and known HPV integration sites. The general pattern of chromosomal imbalances detected in the cells resembled that found in invasive cervical tumors, suggesting that the cells represent good models for the study of cervical carcinoma

  19. Effects of cell culture conditions on antibody N-linked glycosylation--what affects high mannose 5 glycoform.

    Science.gov (United States)

    Pacis, Efren; Yu, Marcella; Autsen, Jennifer; Bayer, Robert; Li, Feng

    2011-10-01

    The glycosylation profile of therapeutic antibodies is routinely analyzed throughout development to monitor the impact of process parameters and to ensure consistency, efficacy, and safety for clinical and commercial batches of therapeutic products. In this study, unusually high levels of the mannose-5 (Man5) glycoform were observed during the early development of a therapeutic antibody produced from a Chinese hamster ovary (CHO) cell line, model cell line A. Follow up studies indicated that the antibody Man5 level was increased throughout the course of cell culture production as a result of increasing cell culture medium osmolality levels and extending culture duration. With model cell line A, Man5 glycosylation increased more than twofold from 12% to 28% in the fed-batch process through a combination of high basal and feed media osmolality and increased run duration. The osmolality and culture duration effects were also observed for four other CHO antibody producing cell lines by adding NaCl in both basal and feed media and extending the culture duration of the cell culture process. Moreover, reduction of Man5 level from model cell line A was achieved by supplementing MnCl2 at appropriate concentrations. To further understand the role of glycosyltransferases in Man5 level, N-acetylglucosaminyltransferase I GnT-I mRNA levels at different osmolality conditions were measured. It has been hypothesized that specific enzyme activity in the glycosylation pathway could have been altered in this fed-batch process. Copyright © 2011 Wiley Periodicals, Inc.

  20. Preservation of high glycolytic phenotype by establishing new acute lymphoblastic leukemia cell lines at physiologic oxygen concentration.

    Science.gov (United States)

    Sheard, Michael A; Ghent, Matthew V; Cabral, Daniel J; Lee, Joanne C; Khankaldyyan, Vazgen; Ji, Lingyun; Wu, Samuel Q; Kang, Min H; Sposto, Richard; Asgharzadeh, Shahab; Reynolds, C Patrick

    2015-05-15

    Cancer cells typically exhibit increased glycolysis and decreased mitochondrial oxidative phosphorylation, and they continue to exhibit some elevation in glycolysis even under aerobic conditions. However, it is unclear whether cancer cell lines employ a high level of glycolysis comparable to that of the original cancers from which they were derived, even if their culture conditions are changed to physiologically relevant oxygen concentrations. From three childhood acute lymphoblastic leukemia (ALL) patients we established three new pairs of cell lines in both atmospheric (20%) and physiologic (bone marrow level, 5%) oxygen concentrations. Cell lines established in 20% oxygen exhibited lower proliferation, survival, expression of glycolysis genes, glucose consumption, and lactate production. Interestingly, the effects of oxygen concentration used during cell line initiation were only partially reversible when established cell cultures were switched from one oxygen concentration to another for eight weeks. These observations indicate that ALL cell lines established at atmospheric oxygen concentration can exhibit relatively low levels of glycolysis and these levels are semi-permanent, suggesting that physiologic oxygen concentrations may be needed from the time of cell line initiation to preserve the high level of glycolysis commonly exhibited by leukemias in vivo. Copyright © 2015. Published by Elsevier Inc.

  1. Influence of p53 and bcl-2 on chemosensitivity in benign and malignant prostatic cell lines.

    Science.gov (United States)

    Serafin, Antonio M; Bohm, Lothar

    2005-01-01

    The administration of cancer chemotherapeutic agents results in an increase in the apoptotic cells in the tumor: therefore, it has been assumed that anticancer drugs exhibit their cytotoxic effects via apoptotic signaling pathways. Characteristics that confer sensitivity to drug-induced apoptosis are, a functional p53 protein and expression of the apoptosis-promoting protein, bax. The role of p53 and bax/bcl-2 in drug-induced apoptosis was assessed in six prostate cell lines, 1532T, 1535T, 1542T, 1542N, BPH-1 and LNCaP using TD(50) concentrations of etoposide, vinblastine and estramustine. Cell death was monitored morphologically by fluorescent microscopy, and by flow cytometry (Annexin-V assay). Apoptotic morphology was rather low and ranged from 0.1% to 12.1%, 3.0% to 6.0% and 0.1% to 8.5% for etoposide, estramustine and vinblastine, respectively. Annexin-V binding and flow cytometry indicated apoptotic propensities of 0% to 4%, 0% to 3% and 0% to 5%, respectively. The percentage of cells responding to drug-induced apoptosis was, on average, higher in the tumor cell lines than in the normal cell lines, but showed no correlation with p53 status. The percentage of cells showing necrosis, assessed by Annexin binding and Propidium Iodide permeability in aqueous medium, tended to be much higher, and was found to be at the level of 5% to 30%. Immunoblotting demonstrated that bax and bcl-2 proteins were expressed at a basal level in all cell lines, but did not increase after exposure to TD(50) doses of the three drugs. The ratio of bax and bcl-2, measured by laser scanning densitometry, was not altered by the drug-induced DNA damage. The results suggest that apoptosis is not a major mechanism of drug-induced cell death in prostate cell lines and appears to be independent of p53 status and bax/bcl-2 expression.

  2. CYTOTOXICITY OF FLAVONOIDS AND SESQUITERPENE LACTONES FROM ARNICA SPECIES AGAINST THE GLC(4) AND THE COLO-320 CELL-LINES

    NARCIS (Netherlands)

    WOERDENBAG, HJ; MERFORT, [No Value; PASSREITER, CM; SCHMIDT, TJ; WILLUHN, G; VANUDEN, W; PRAS, N; KAMPINGA, HH; KONINGS, AWT

    1994-01-01

    The cytotoxicity of 21 flavonoids and 5 sesquiterpene lactones, as present in Arnica species, was studied in GLC(4), a human small cell lung carcinoma cell line, and in COLO 320, a human colorectal cancer cell line, using the microculture tetrazolium (MTT) assay. Following continuous incubation,

  3. Derivation of the human embryonic stem cell line RCe012-A (RC-8

    Directory of Open Access Journals (Sweden)

    P.A. De Sousa

    2016-03-01

    Full Text Available The human embryonic stem cell line RCe012-A (RC-8 was derived from a frozen and thawed day 5 embryo cultivated to the blastocyst stage. The embryo was voluntarily donated as unsuitable and surplus to fertility requirements following ethics committee approved informed consent under licence from the UK Human Fertilisation and Embryology Authority. The cell line shows normal pluripotency marker expression and differentiation to the three germ layers in vitro. It has a normal 46XX female karyotype and microsatellite PCR identity, HLA and blood group typing data is available.

  4. Effects of treatment with Maraviroc a CCR5 inhibitor on a human hepatic stellate cell line.

    Science.gov (United States)

    Coppola, Nicola; Perna, Angelica; Lucariello, Angela; Martini, Salvatore; Macera, Margherita; Carleo, Maria A; Guerra, Germano; Esposito, Vincenzo; De Luca, Antonio

    2018-08-01

    After an acute liver damage, tissue regeneration repairs lesions with degradation of deposed fibrotic material, while mechanisms of tissue restoration are persistently activated following several repeated injuries, inducing deposition of extracellular matrix. (ECM). Factors responsible for ECM remodeling have been identified in a pathway involving a family of zinc-dependent enzyme matrix metalloproteinases (MMPs), together with tissue inhibitor of metalloproteinases (TIMPs). Recent experimental models suggested a role of CCR5 receptor in the genesis of liver fibrosis. Drawing from these background we decided to evaluate the effects of the treatment with the CCR5 inhibitor Maraviroc on LX-2, a human hepatic stellate cell line (HSC). Treatment with Maraviroc resulted in a block in S phase of LX-2 cells with increased expression levels of cyclin D1 and p21 while the expression of p53 was reduced. Treatment with Maraviroc was also able to block the accumulation of fibrillar collagens and extracellular matrix proteins (ECM), as demonstrated by the decrease of specific markers as Collagen type I, α-SMA, and TGF-β1. In addition we observed a down regulation of both metalloproteins (MMP-2, MMP-9), used for the degradation of the extracellular matrix and their inhibitors (TIMP-1, TIMP-2). The identification of a compound that may modulate the dynamic of liver fibrosis could be crucial in all chronic liver diseases. Maraviroc could play an important role because, in addition to its own anti-HIV activity, it could reduce the release of pro-inflammatory citokynes implicated in liver fibrogenesis. © 2018 Wiley Periodicals, Inc.

  5. Bifenthrin activates homotypic aggregation in human T-cell lines.

    Science.gov (United States)

    Hoffman, Nataly; Tran, Van; Daniyan, Anthony; Ojugbele, Olutosin; Pryor, Stephen C; Bonventre, Josephine A; Flynn, Katherine; Weeks, Benjamin S

    2006-03-01

    Here, we addressed the concern that, despite the lack of overt toxicity, exposure to low levels of the common household pyrethroid pesticide, bifenthrin, could cause harm to the immune system. To do this, we measure the effect of bifenthrin on phytohemagglutinin (PHA) activation of homotypic aggregation in human T-cell lines. The human CD4+ H9, and Jurkat cell lines and the human promonocyte U937 cell line, were exposed to varying concentrations of bifenthrin. Cell viability was determined using the AlmarBlue Toxicity Assay. Concentrations of bifenthrin which did not reduce cell viability were determined and these concentrations were tested for the effect of bifenthrin on PHA-mediated homotypic aggregation. Blocking antibodies to ICAM and LFA-1 were used to disrupt aggregation and a nonspecific IgG was used as a control. Bifenthrin was found to be nontoxic at concentrations ranging from 10(-4) to 10(-13) M. Bifenthrin did not inhibit PHA induced cell aggregation in all cell lines tested. However, at 10(-4) M, bifenthrin to form aggregates stimulated homotypic aggregation in the H9 and Jurkat T-cell lines. The bifenthrin-induced aggregate formation, like that seen with PHA, was blocked by treating the cells with antibodies to either LFA-1 or ICAM. The results here show that bifenthrin activates T-cell function by stimulating ICAM/LFA-1 mediated homotypic aggregation. This data suggests that exposure to bifenthrin, even at "acceptable" limits, can increase the risk for and frequency of inflammatory responses and diseases such as asthma.

  6. Establishment, immortalisation and characterisation of pteropid bat cell lines.

    Directory of Open Access Journals (Sweden)

    Gary Crameri

    Full Text Available BACKGROUND: Bats are the suspected natural reservoir hosts for a number of new and emerging zoonotic viruses including Nipah virus, Hendra virus, severe acute respiratory syndrome coronavirus and Ebola virus. Since the discovery of SARS-like coronaviruses in Chinese horseshoe bats, attempts to isolate a SL-CoV from bats have failed and attempts to isolate other bat-borne viruses in various mammalian cell lines have been similarly unsuccessful. New stable bat cell lines are needed to help with these investigations and as tools to assist in the study of bat immunology and virus-host interactions. METHODOLOGY/FINDINGS: Black flying foxes (Pteropus alecto were captured from the wild and transported live to the laboratory for primary cell culture preparation using a variety of different methods and culture media. Primary cells were successfully cultured from 20 different organs. Cell immortalisation can occur spontaneously, however we used a retroviral system to immortalise cells via the transfer and stable production of the Simian virus 40 Large T antigen and the human telomerase reverse transcriptase protein. Initial infection experiments with both cloned and uncloned cell lines using Hendra and Nipah viruses demonstrated varying degrees of infection efficiency between the different cell lines, although it was possible to infect cells in all tissue types. CONCLUSIONS/SIGNIFICANCE: The approaches developed and optimised in this study should be applicable to bats of other species. We are in the process of generating further cell lines from a number of different bat species using the methodology established in this study.

  7. Andrographolide radiosensitizes human esophageal cancer cell line ECA109 to radiation in vitro.

    Science.gov (United States)

    Wang, Z-M; Kang, Y-H; Yang, X; Wang, J-F; Zhang, Q; Yang, B-X; Zhao, K-L; Xu, L-P; Yang, L-P; Ma, J-X; Huang, G-H; Cai, J; Sun, X-C

    2016-01-01

    To explore the radiosensitivity of andrographolide on esophageal cancer cell line ECA109. The inhibition effects of andrographolide were measured using 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium (MTT) assay. Clonogenic survival assay was used to evaluate the effects of andrographolide on the radiosensitivity of esophageal cancer cells. Immunofluorescence was employed to examine Bax expression. The changes in cell cycle distribution and apoptosis were assayed using flow cytometry. The expression of NF-κb/Cleaved-Caspase3/Bax/Bcl-2 was measured using Western blot analysis. DNA damage was detected via γ-H2AX foci counting. With a clear dose and time effects, andrographolide was found to inhibit the proliferation of esophageal cell line ECA109. The results of the clonogenic survival assay show that andrographolide could markedly enhance radiosensitivity (P Andrographolide caused a dose-dependent increase in Cleaved-Caspase3/Bax protein expression and a decrease in Bcl-2/NF-κb expression. Apoptosis in andrographolide-treated ECA-109 increased significantly compared with the apoptosis in the simple drug and radiation combined with drug groups (P andrographolide combined with radiation group increased the number of DNA double chain breaks. Andrographolide can increase the radiosensitivity of esophageal cell line ECA109. This result may be associated with the decrease in the NF-κb level and the induced apoptosis of esophageal cancer cells. © 2014 International Society for Diseases of the Esophagus.

  8. Incorrect strain information for mouse cell lines: sequential influence of misidentification on sublines.

    Science.gov (United States)

    Uchio-Yamada, Kozue; Kasai, Fumio; Ozawa, Midori; Kohara, Arihiro

    2017-03-01

    Misidentification or cross-contamination of cell lines can cause serious issues. Human cell lines have been authenticated by short tandem repeat profiling; however, mouse cell lines have not been adequately assessed. In this study, mouse cell lines registered with the JCRB cell bank were examined by simple sequence length polymorphism (SSLP) analysis to identify their strains. Based on comparisons with 7 major inbred strains, our results revealed their strains in 80 of 90 cell lines. However, 12 of the 80 cell lines (15%) were found to differ from registered information. Of them, 4 cell lines originated from the same mouse, which had been generated through mating between two different inbred strains. The genotype of the mouse sample had not been examined after the backcross, leading to strain misidentification in those cell lines. Although 8 other cell lines had been established as sublines of a BALB/c cell line, their SSLP profiles are similar to a Swiss cell line. This affects differences in genotypes between inbred and outbred strains. Because the use of inbred samples and interbreeding between strains are not involved in human materials, our results suggest that the cause and influence of misidentification in mouse cell lines are different from those in human.

  9. Neurotrophic effects of growth/differentiation factor 5 in a neuronal cell line

    OpenAIRE

    Toulouse, André; Collins, Grace C.; Sullivan, Aideen M.

    2012-01-01

    The neurotrophin growth/differentiation factor 5 (GDF5) is studied as a potential therapeutic agent for Parkinson's disease as it is believed to play a role in the development and maintenance of the nigrostriatal system. Progress in understanding the effects of GDF5 on dopaminergic neurones has been hindered by the use of mixed cell populations derived from primary cultures or in vivo experiments, making it difficult to differentiate between direct and indirect effects of GDF5 treatment on ne...

  10. USC-HN2, a new model cell line for recurrent oral cavity squamous cell carcinoma with immunosuppressive characteristics.

    Science.gov (United States)

    Russell, Sarah M; Lechner, Melissa G; Gong, Lucy; Megiel, Carolina; Liebertz, Daniel J; Masood, Rizwan; Correa, Adrian J; Han, Jing; Puri, Raj K; Sinha, Uttam K; Epstein, Alan L

    2011-09-01

    Head and neck squamous cell carcinomas (HNSCC) are common and aggressive tumors that have not seen an improvement in survival rates in decades. These tumors are believed to evade the immune system through a variety of mechanisms and are therefore highly immune modulatory. In order to elucidate their interaction with the immune system and develop new therapies targeting immune escape, new pre-clinical models are needed. A novel human cell line, USC-HN2, was established from a patient biopsy specimen of invasive, recurrent buccal HNSCC and characterized by morphology, heterotransplantation, cytogenetics, phenotype, gene expression, and immune modulation studies and compared to a similar HNSCC cell line; SCCL-MT1. Characterization studies confirmed the HNSCC origin of USC-HN2 and demonstrated a phenotype similar to the original tumor and typical of aggressive oral cavity HNSCC (EGFR(+)CD44v6(+)FABP5(+)Keratin(+) and HPV(-)). Gene and protein expression studies revealed USC-HN2 to have highly immune-modulatory cytokine production (IL-1β, IL-6, IL-8, GM-CSF, and VEGF) and strong regulatory T and myeloid derived suppressor cell (MDSC) induction capacity in vitro. Of note, both USC-HN2 and SCCL-MT1 were found to have a more robust cytokine profile and MDSC induction capacity when compared to seven previously established HNSCC cell lines. Additionally, microarray gene expression profiling of both cell lines demonstrate up-regulation of antigen presenting genes. Because USC-HN2 is therefore highly immunogenic, it also induces strong immune suppression to evade immunologic destruction. Based upon these results, both cell lines provide an excellent model for the development of new suppressor cell-targeted immunotherapies. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Protection against {sup 131}I-induced Double Strand DNA Breaks in Thyroid Cells

    Energy Technology Data Exchange (ETDEWEB)

    Hershman, J.M.; Okunyan, A.; Cannon, S.; Hogen, V. [Endocrinology, UCLA-VA, Los Angeles (United States); Rivina, Y. [Radiation Biology, UCLA, Los Angeles (United States)

    2012-07-01

    Radioiodine-131 (I{sup 131}) released from nuclear reactor accidents has dramatically increased the incidence of papillary thyroid cancer in exposed individuals, especially young children. The accepted measure for prevention of radiation-induced thyroid cancer is potassium iodide tablets that contain 100 mg iodide taken daily to block thyroid uptake of I{sup 131}. The deposition of ionizing radiation in cells results in double-strand DNA breaks (DSB) at fragile sites, and this early event can generate oncogenic rearrangements that eventually cause the cancer. We have developed a thyroid cell model to quantify the mitogenic effect of I{sup 131}. I{sup 131} causes double strand DNA breaks in FRTL-5 cells detected by 53BP1 or gamma H2AX and had no effect on cells that do not transport iodide. Perchlorate, iodide, and thiocyanate protect against DSB induced by I{sup 131}. Preincubation with the anion or radioprotective compounds prevents DSB; delayed addition of the anion is much less effective. These data provide a basis for studies of radioprotection against DSB induced by I{sup 131} in animals in order to refine the prevention of thyroid cancer resulting from nuclear fallout

  12. Cell line name recognition in support of the identification of synthetic lethality in cancer from text

    Science.gov (United States)

    Kaewphan, Suwisa; Van Landeghem, Sofie; Ohta, Tomoko; Van de Peer, Yves; Ginter, Filip; Pyysalo, Sampo

    2016-01-01

    Motivation: The recognition and normalization of cell line names in text is an important task in biomedical text mining research, facilitating for instance the identification of synthetically lethal genes from the literature. While several tools have previously been developed to address cell line recognition, it is unclear whether available systems can perform sufficiently well in realistic and broad-coverage applications such as extracting synthetically lethal genes from the cancer literature. In this study, we revisit the cell line name recognition task, evaluating both available systems and newly introduced methods on various resources to obtain a reliable tagger not tied to any specific subdomain. In support of this task, we introduce two text collections manually annotated for cell line names: the broad-coverage corpus Gellus and CLL, a focused target domain corpus. Results: We find that the best performance is achieved using NERsuite, a machine learning system based on Conditional Random Fields, trained on the Gellus corpus and supported with a dictionary of cell line names. The system achieves an F-score of 88.46% on the test set of Gellus and 85.98% on the independently annotated CLL corpus. It was further applied at large scale to 24 302 102 unannotated articles, resulting in the identification of 5 181 342 cell line mentions, normalized to 11 755 unique cell line database identifiers. Availability and implementation: The manually annotated datasets, the cell line dictionary, derived corpora, NERsuite models and the results of the large-scale run on unannotated texts are available under open licenses at http://turkunlp.github.io/Cell-line-recognition/. Contact: sukaew@utu.fi PMID:26428294

  13. Characterization of three human cell line models for high-throughput neuronal cytotoxicity screening.

    Science.gov (United States)

    Tong, Zhi-Bin; Hogberg, Helena; Kuo, David; Sakamuru, Srilatha; Xia, Menghang; Smirnova, Lena; Hartung, Thomas; Gerhold, David

    2017-02-01

    More than 75 000 man-made chemicals contaminate the environment; many of these have not been tested for toxicities. These chemicals demand quantitative high-throughput screening assays to assess them for causative roles in neurotoxicities, including Parkinson's disease and other neurodegenerative disorders. To facilitate high throughput screening for cytotoxicity to neurons, three human neuronal cellular models were compared: SH-SY5Y neuroblastoma cells, LUHMES conditionally-immortalized dopaminergic neurons, and Neural Stem Cells (NSC) derived from human fetal brain. These three cell lines were evaluated for rapidity and degree of differentiation, and sensitivity to 32 known or candidate neurotoxicants. First, expression of neural differentiation genes was assayed during a 7-day differentiation period. Of the three cell lines, LUHMES showed the highest gene expression of neuronal markers after differentiation. Both in the undifferentiated state and after 7 days of neuronal differentiation, LUHMES cells exhibited greater cytotoxic sensitivity to most of 32 suspected or known neurotoxicants than SH-SY5Y or NSCs. LUHMES cells were also unique in being more susceptible to several compounds in the differentiating state than in the undifferentiated state; including known neurotoxicants colchicine, methyl-mercury (II), and vincristine. Gene expression results suggest that differentiating LUHMES cells may be susceptible to apoptosis because they express low levels of anti-apoptotic genes BCL2 and BIRC5/survivin, whereas SH-SY5Y cells may be resistant to apoptosis because they express high levels of BCL2, BIRC5/survivin, and BIRC3 genes. Thus, LUHMES cells exhibited favorable characteristics for neuro-cytotoxicity screening: rapid differentiation into neurons that exhibit high level expression neuronal marker genes, and marked sensitivity of LUHMES cells to known neurotoxicants. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  14. Cytotoxic Activity of Selected Iranian Traditional Medicinal Plants on Colon, Colorectal and Breast Cancer Cell Lines

    Directory of Open Access Journals (Sweden)

    Leila Mohammad Taghizadeh Kashani

    2014-11-01

    Full Text Available Background: Many natural products from plants have been recognized to exert anticancer activity. In this study, ethanolic extracts of selected medicinal herbs from Iranian flora including Alyssum homolocarpum Fisch. (from seeds, Urtica dioica L. (from aerial parts, Cichorium intybus L. (from roots and Solanum nigrum L. (from fruits, were evaluated for their cytotoxic effect on different cell lines.Methods: Cytotoxic effect of these extracts was studied on three different cancer cell lines; colon carcinoma (HT-29, colorectal adenocarcinoma (Caco-2 and breast ductal carcinoma (T47D. In addition, Swiss mouse embryo fibroblasts (NIH 3T3 were used as normal nonmalignant cells. MTT assay (3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide was utilized for calculating the cytotoxicity of extracts on cell lines.Results: Results showed the potent cytotoxic activity of U. dioica ethanolic extract against T47D cell line with IC50 value of 46.14±4.55 µg/ml. Other extracts showed poor activity with IC50>100 µg/ml.Conclusions: Cytotoxic activity recorded in the present study revealed high potential antiproliferative activity of U. dioica ethanolic extract against T47D cell line. The real IC50 values of this extract may be considerably lower than the IC50 measured in our study if its pharmacological active compounds become pure. The results emphasize the importance of studies on U. dioica ethanolic extract to characterize potential components as cytotoxic natural medicines.

  15. Micro-Topographies Promote Late Chondrogenic Differentiation Markers in the ATDC5 Cell Line.

    Science.gov (United States)

    Le, Bach Q; Vasilevich, Aliaksei; Vermeulen, Steven; Hulshof, Frits; Stamatialis, Dimitrios F; van Blitterswijk, Clemens A; de Boer, Jan

    2017-05-01

    Chemical and mechanical cues are well-established influencers of in vitro chondrogenic differentiation of ATDC5 cells. Here, we investigate the role of topographical cues in this differentiation process, a study not been explored before. Previously, using a library of surface micro-topographies we found some distinct patterns that induced alkaline phosphatase (ALP) production in human mesenchymal stromal cells. ALP is also a marker for hypertrophy, the end stage of chondrogenic differentiation preceding bone formation. Thus, we hypothesized that these patterns could influence end-stage chondrogenic differentiation of ATDC5 cells. In this study, we randomly selected seven topographies among the ALP influencing hits. Cells grown on these surfaces displayed varying nuclear shape and actin filament structure. When stimulated with insulin-transferrin-selenium (ITS) medium, nodule formation occurred and in some cases showed alignment to the topographical patterns. Gene expression analysis of cells growing on topographical surfaces in the presence of ITS medium revealed a downregulation of early markers and upregulation of late markers of chondrogenic differentiation compared to cells grown on a flat surface. In conclusion, we demonstrated that surface topography in addition to other cues can promote hypertrophic differentiation suitable for bone tissue engineering.

  16. Derivation and characterization of the NYSCFe003-A human embryonic stem cell line

    Directory of Open Access Journals (Sweden)

    Ana Sevilla

    2017-12-01

    Full Text Available The human embryonic stem cell line NYSCFe003-A was derived from a day 5 to day 6 blastocyst in feeder-free and antibiotic free conditions. The blastocyst was voluntarily donated for research as surplus after in vitro fertilization treatment following informed consent. The NYSCFe003-A line expresses all the pluripotency markers and has the potential to differentiate into all three germ layers in vitro. The line presents normal karyotype and is mycoplasma free.

  17. Human metastatic melanoma cell lines express high levels of growth hormone receptor and respond to GH treatment

    Energy Technology Data Exchange (ETDEWEB)

    Sustarsic, Elahu G. [Edison Biotechnology Institute, 1 Watertower Drive, Athens, OH (United States); Department of Biological Sciences, Ohio University, Athens, OH (United States); Junnila, Riia K. [Edison Biotechnology Institute, 1 Watertower Drive, Athens, OH (United States); Kopchick, John J., E-mail: kopchick@ohio.edu [Edison Biotechnology Institute, 1 Watertower Drive, Athens, OH (United States); Department of Biological Sciences, Ohio University, Athens, OH (United States); Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH (United States)

    2013-11-08

    Highlights: •Most cancer types of the NCI60 have sub-sets of cell lines with high GHR expression. •GHR is highly expressed in melanoma cell lines. •GHR is elevated in advanced stage IV metastatic tumors vs. stage III. •GH treatment of metastatic melanoma cell lines alters growth and cell signaling. -- Abstract: Accumulating evidence implicates the growth hormone receptor (GHR) in carcinogenesis. While multiple studies show evidence for expression of growth hormone (GH) and GHR mRNA in human cancer tissue, there is a lack of quantification and only a few cancer types have been investigated. The National Cancer Institute’s NCI60 panel includes 60 cancer cell lines from nine types of human cancer: breast, CNS, colon, leukemia, melanoma, non-small cell lung, ovarian, prostate and renal. We utilized this panel to quantify expression of GHR, GH, prolactin receptor (PRLR) and prolactin (PRL) mRNA with real-time RT qPCR. Both GHR and PRLR show a broad range of expression within and among most cancer types. Strikingly, GHR expression is nearly 50-fold higher in melanoma than in the panel as a whole. Analysis of human metastatic melanoma biopsies confirmed GHR gene expression in melanoma tissue. In these human biopsies, the level of GHR mRNA is elevated in advanced stage IV tumor samples compared to stage III. Due to the novel finding of high GHR in melanoma, we examined the effect of GH treatment on three NCI60 melanoma lines (MDA-MB-435, UACC-62 and SK-MEL-5). GH increased proliferation in two out of three cell lines tested. Further analysis revealed GH-induced activation of STAT5 and mTOR in a cell line dependent manner. In conclusion, we have identified cell lines and cancer types that are ideal to study the role of GH and PRL in cancer, yet have been largely overlooked. Furthermore, we found that human metastatic melanoma tumors express GHR and cell lines possess active GHRs that can modulate multiple signaling pathways and alter cell proliferation. Based on

  18. LET effects on normal and radiosensitive cell lines

    International Nuclear Information System (INIS)

    Geard, C.R.; Travisano, M.

    1986-01-01

    Charged particles in the track segment mode were produced by the RARAF Van de Graaff accelerator and used to irradiate two CHO cell lines, a radiosensitive hypermutable line EM9 and its normal parent AA8. Asynchronous cells were irradiated attached to 6 micrometer thick Mylar with protons, deuterons and helium-3 particles at LETs ranging from 10 to 150 keV per micrometer. A 50 kVp x-ray tube integrated into the track segment facility provided a low LET comparison. Following irradiation cells were monitored for clonogenicity, and in a separate series of experiments frequencies of sister chromatid exchanges. Up to 9 experiments were carried out at each LET, with a total of 8 radiations of different LETs being compared. The optimally effective LET for cell survival was between 80 and 120 keV per micrometer, with the 150 keV per micrometer particles indicating energy wastage. The differential between the normal and radiosensitive cell lines was maintained at all LETs

  19. Microculture-based chemosensitivity testing: a feasibility study comparing freshly explanted human melanoma cells with human melanoma cell lines.

    Science.gov (United States)

    Marshall, E S; Finlay, G J; Matthews, J H; Shaw, J H; Nixon, J; Baguley, B C

    1992-03-04

    The culture of cancer cells has many applications in chemosensitivity testing and new drug development. Our goal was to adapt simple semiautomated microculture methods for testing the chemosensitivity of melanoma cells freshly recovered from patients' tumors. Cells were cultured on a substrate of agarose and exposed continuously to cytotoxic drugs, the effects of which were measured by determining the uptake of [3H]thymidine 4-7 days later. Immunocytochemical staining of cells cultured with 5-bromo-2'-deoxyuridine demonstrated that tumor cells were responsible for the measured thymidine incorporation. The effects of cytotoxic drugs were calculated as logarithmic 50% inhibitory concentrations and expressed as divergences from the mean in a log-mean graph. The inhibitory effects of amsacrine, etoposide, doxorubicin, cisplatin, mitomycin C, and fluorouracil were tested. Tumors differed widely in their sensitivity to these drugs, although sensitivity to the three topoisomerase-II-directed agents was highly correlated. Cells from two non-neoplastic hematopoietic progenitor cell lines (FT and 32D) showed chemosensitivity patterns distinct from those in the melanoma cells, indicating tissue selectivity. Two established melanoma cell lines, MM-96 and FME, were tested under the same conditions and showed sensitivity typical of at least some fresh specimens. These results support the validity of melanoma cell lines as models of freshly resected melanoma cells. If successfully applied to other tumor types, such semiautomated approaches could find wide application in routine hospital laboratories for the chemosensitivity testing of patients' tumor cells.

  20. Radiation of different human melanoma cell lines increased expression of RHOB. Level of this tumor suppressor gene in different cell lines

    International Nuclear Information System (INIS)

    Notcovich, C.; Molinari, B.; Duran, H.; Delgado González, D.; Sánchez Crespo, R.

    2013-01-01

    Previous results of our group show that a correlation exists between intrinsic radiosensitivity of human melanoma cells and cell death by apoptosis. RhoB is a small GTPase that regulates cytoskeletal organization. Besides, is related to the process of apoptosis in cells exposed to DNA damage as radiation. Also, RhoB levels decrease in a wide variety of tumors with the tumor stage, being considered a tumor suppressor gene due to its antiproliferative and proapoptotic effect. The aim of this study was to analyze the expression of RhoB in different human melanoma cell lines in relation to melanocytes, and evaluate the effect of gamma radiation on the expression of RhoB. We used the A375, SB2 and Meljcell lines, and the derived from melanocytes Pig1. It was found for all three tumor lines RhoB expression levels significantly lower than those of Pig1 (p <0.05), as assessed by semiquantitative RT-PCR . When tumor cells were irradiated to a dose of 2Gyinduction was observed at 3 hours RhoB irradiation. RhoB expression increased in all lines relative to non-irradiated control, showing a greater induction ( p< 0.05) for the more radiosensitive line SB2, consistent with apoptosis in response to radiation. The results allow for the first time in melanoma demonstrate that RhoB, as well as in other tumor types, has a lower expression in tumor cells than their normal counterparts. Moreover, induction in the expression of RhoB in irradiated cells may be associated with the process of radiation-induced apoptosis. The modulation of RhoB could be a new tool to sensitize radioresistant melanoma. (author)

  1. Radiosensitivity evaluation of Human tumor cell lines by single cell gel electrophoresis

    International Nuclear Information System (INIS)

    Zhang Yipei; Cao Jia; Wang Yan; Du Liqing; Li Jin; Wang Qin; Fan Feiyue; Liu Qiang

    2011-01-01

    Objective: To explore the feasibility of determining radiosensitivity of human tumor cell lines in vitro using single cell gel electrophoresis (SCGE). Methods: Three human tumor cell lines were selected in this study, HepG 2 , EC-9706 and MCF-7. The surviving fraction (SF) and DNA damage were detected by MTT assay, nested PCR technique and comet assay respectively. Results: MTT assay: The SF of HepG 2 and EC-9706 after irradiated by 2, 4 and 8 Gy was lower significantly than that of MCF-7, which showed that the radiosensitivity of HepG 2 and EC-9706 was higher than that of MCF-7. But there was no statistical difference of SF between HepG 2 and EC-9706. SCGE: The difference of radiosensitivity among these three tumor cell lines was significant after 8 Gy γ-ray irradiation. Conclusion: The multi-utilization of many biological parameter is hopeful to evaluate the radiosensitivity of tumor cells more objectively and exactly. (authors)

  2. CMTM5 exhibits tumor suppressor activity through promoter methylation in oral squamous cell carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Heyu [Central Laboratory, Peking University School of Stomatology, Beijing (China); Nan, Xu [Center for Human Disease Genomics, Department of Immunology, Key Laboratory of Medical Immunology, Ministry of Health, School of Basic Medical Sciences, Peking University, Beijing (China); Li, Xuefen [Central Laboratory, Peking University School of Stomatology, Beijing (China); Chen, Yan; Zhang, Jianyun [Department of Oral Pathology, Peking University School of Stomatology, Beijing (China); Sun, Lisha [Central Laboratory, Peking University School of Stomatology, Beijing (China); Han, Wenlin [Center for Human Disease Genomics, Department of Immunology, Key Laboratory of Medical Immunology, Ministry of Health, School of Basic Medical Sciences, Peking University, Beijing (China); Li, Tiejun, E-mail: litiejun22@vip.sina.com [Department of Oral Pathology, Peking University School of Stomatology, Beijing (China)

    2014-05-02

    Highlights: • Down-regulation of CMTM5 expression in OSCC tissues was found. • The promoter methylation status of CMTM5 was measured. • CMTM5-v1 inhibited cell proliferation and migration and induced apoptosis. • CMTM5 might act as a putative tumor suppressor gene in OSCC. - Abstract: Oral squamous cell carcinoma (OSCC) is one of the most common types of malignancies in the head and neck region. CKLF-like MARVEL transmembrane domain-containing member 5 (CMTM5) has been recently implicated as a tumor suppressor gene in several cancer types. Herein, we examined the expression and function of CMTM5 in oral squamous cell carcinoma. CMTM5 was down-regulated in oral squamous cell lines and tumor samples from patients with promoter methylation. Treatment with the demethylating agent 5-aza-2′-deoxycytidine restored CMTM5 expression. In the OSCC cell lines CAL27 and GNM, the ectopic expression of CMTM5-v1 strongly inhibited cell proliferation and migration and induced apoptosis. In addition, CMTM5-v1 inhibited tumor formation in vivo. Therefore, CMTM5 might act as a putative tumor suppressor gene through promoter methylation in oral squamous cell carcinoma.

  3. CMTM5 exhibits tumor suppressor activity through promoter methylation in oral squamous cell carcinoma

    International Nuclear Information System (INIS)

    Zhang, Heyu; Nan, Xu; Li, Xuefen; Chen, Yan; Zhang, Jianyun; Sun, Lisha; Han, Wenlin; Li, Tiejun

    2014-01-01

    Highlights: • Down-regulation of CMTM5 expression in OSCC tissues was found. • The promoter methylation status of CMTM5 was measured. • CMTM5-v1 inhibited cell proliferation and migration and induced apoptosis. • CMTM5 might act as a putative tumor suppressor gene in OSCC. - Abstract: Oral squamous cell carcinoma (OSCC) is one of the most common types of malignancies in the head and neck region. CKLF-like MARVEL transmembrane domain-containing member 5 (CMTM5) has been recently implicated as a tumor suppressor gene in several cancer types. Herein, we examined the expression and function of CMTM5 in oral squamous cell carcinoma. CMTM5 was down-regulated in oral squamous cell lines and tumor samples from patients with promoter methylation. Treatment with the demethylating agent 5-aza-2′-deoxycytidine restored CMTM5 expression. In the OSCC cell lines CAL27 and GNM, the ectopic expression of CMTM5-v1 strongly inhibited cell proliferation and migration and induced apoptosis. In addition, CMTM5-v1 inhibited tumor formation in vivo. Therefore, CMTM5 might act as a putative tumor suppressor gene through promoter methylation in oral squamous cell carcinoma

  4. Sensory hair cell regeneration in the zebrafish lateral line.

    Science.gov (United States)

    Lush, Mark E; Piotrowski, Tatjana

    2014-10-01

    Damage or destruction of sensory hair cells in the inner ear leads to hearing or balance deficits that can be debilitating, especially in older adults. Unfortunately, the damage is permanent, as regeneration of the inner ear sensory epithelia does not occur in mammals. Zebrafish and other non-mammalian vertebrates have the remarkable ability to regenerate sensory hair cells and understanding the molecular and cellular basis for this regenerative ability will hopefully aid us in designing therapies to induce regeneration in mammals. Zebrafish not only possess hair cells in the ear but also in the sensory lateral line system. Hair cells in both organs are functionally analogous to hair cells in the inner ear of mammals. The lateral line is a mechanosensory system found in most aquatic vertebrates that detects water motion and aids in predator avoidance, prey capture, schooling, and mating. Although hair cell regeneration occurs in both the ear and lateral line, most research to date has focused on the lateral line due to its relatively simple structure and accessibility. Here we review the recent discoveries made during the characterization of hair cell regeneration in zebrafish. Copyright © 2014 Wiley Periodicals, Inc.

  5. SENSORY HAIR CELL REGENERATION IN THE ZEBRAFISH LATERAL LINE

    Science.gov (United States)

    Lush, Mark E.; Piotrowski, Tatjana

    2014-01-01

    Damage or destruction of sensory hair cells in the inner ear leads to hearing or balance deficits that can be debilitating, especially in older adults. Unfortunately, the damage is permanent, as regeneration of the inner ear sensory epithelia does not occur in mammals. Zebrafish and other non-mammalian vertebrates have the remarkable ability to regenerate sensory hair cells and understanding the molecular and cellular basis for this regenerative ability will hopefully aid us in designing therapies to induce regeneration in mammals. Zebrafish not only possess hair cells in the ear but also in the sensory lateral line system. Hair cells in both organs are functionally analogous to hair cells in the inner ear of mammals. The lateral line is a mechanosensory system found in most aquatic vertebrates that detects water motion and aids in predator avoidance, prey capture, schooling and mating. Although hair cell regeneration occurs in both the ear and lateral line, most research to date has focused on the lateral line due to its relatively simple structure and accessibility. Here we review the recent discoveries made during the characterization of hair cell regeneration in zebrafish. PMID:25045019

  6. Neuroblastoma cell lines contain pluripotent tumor initiating cells that are susceptible to a targeted oncolytic virus.

    Directory of Open Access Journals (Sweden)

    Yonatan Y Mahller

    Full Text Available Although disease remission can frequently be achieved for patients with neuroblastoma, relapse is common. The cancer stem cell theory suggests that rare tumorigenic cells, resistant to conventional therapy, are responsible for relapse. If true for neuroblastoma, improved cure rates may only be achieved via identification and therapeutic targeting of the neuroblastoma tumor initiating cell. Based on cues from normal stem cells, evidence for tumor populating progenitor cells has been found in a variety of cancers.Four of eight human neuroblastoma cell lines formed tumorspheres in neural stem cell media, and all contained some cells that expressed neurogenic stem cell markers including CD133, ABCG2, and nestin. Three lines tested could be induced into multi-lineage differentiation. LA-N-5 spheres were further studied and showed a verapamil-sensitive side population, relative resistance to doxorubicin, and CD133+ cells showed increased sphere formation and tumorigenicity. Oncolytic viruses, engineered to be clinically safe by genetic mutation, are emerging as next generation anticancer therapeutics. Because oncolytic viruses circumvent typical drug-resistance mechanisms, they may represent an effective therapy for chemotherapy-resistant tumor initiating cells. A Nestin-targeted oncolytic herpes simplex virus efficiently replicated within and killed neuroblastoma tumor initiating cells preventing their ability to form tumors in athymic nude mice.These results suggest that human neuroblastoma contains tumor initiating cells that may be effectively targeted by an oncolytic virus.

  7. Expression of myc family oncoproteins in small-cell lung-cancer cell lines and xenografts

    DEFF Research Database (Denmark)

    Rygaard, K; Vindeløv, L L; Spang-Thomsen, M

    1993-01-01

    A number of genes have altered activity in small-cell lung cancer (SCLC), but especially genes of the myc family (c-myc, L-myc and N-myc) are expressed at high levels in SCLC. Most studies have explored expression at the mRNA level, whereas studies of myc family oncoprotein expression are sparse....... WE examined the expression of myc proto-oncogenes at the mRNA and protein level in 23 cell lines or xenografts. In the cell lines, the doubling time and the cell-cycle distribution, as determined by flow-cytometric DNA analysis, were examined to establish whether the level of myc......-myc. In general, the level of expression of c-myc and N-myc was similar at the mRNA and the protein level. Expression of c-myc was positively correlated with the proliferative index (sum of S and G2+M phases) of cell lines, but not with the population doubling time. In general, L-myc-expressing cell lines had...

  8. Fluoroorotic acid-selected Nicotiana plumbaginifolia cell lines with a stable thymine starvation phenotype have lost the thymine-regulated transcriptional program.

    Science.gov (United States)

    Santoso, D; Thornburg, R

    2000-08-01

    We have selected 143 independent Nicotiana plumbaginifolia cell lines that survive in the presence of 5-fluoroorotic acid. These lines show several diverse phenotypes. The majority of these cell lines showed reduced levels of UMP synthase. However, one particular phenotype, which represents 14% of the total independent lines (20 cell lines), showed an unexpected, high level of UMP synthase and was therefore analyzed in detail. The selected cell lines showed no differences with wild-type cells with respect to uptake of orotic acid, affinity of UMP synthase for its substrates, or UMP synthase gene-copy number. Alternative detoxification mechanisms were also excluded. The elevated enzyme activity was correlated with elevated UMP synthase protein levels as well as elevated UMP synthase mRNA levels. In contrast to wild-type cell lines, the fluoroorotic acid-selected cell lines did not respond to thymine or to other biochemicals that affect thymine levels. In addition, there was also a concomitant up-regulation of aspartate transcarbamoylase, however, dihydroorotase and dihydroorotate dehydrogenase are not up-regulated in these cell lines.

  9. GHGKHKNK Octapeptide (P-5m Inhibits Metastasis of HCCLM3 Cell Lines via Regulation of MMP-2 Expression in in Vitro and in Vivo Studies

    Directory of Open Access Journals (Sweden)

    Xun Zhu

    2012-02-01

    Full Text Available P-5m, an octapeptide derived from domain 5 of HKa, was initially found to inhibit the invasion and migration of melanoma cells. The high metastatic potential of melanoma cells was prevented by the HGK motif in the P-5m peptide in vitro and in an experimental lung metastasis model, suggesting that P-5m may play an important role in the regulation of tumor metastasis. The aim of this study was to measure the effect of P-5m on tumor metastasis of human hepatocarcinoma cell line (HCCLM3 in vitro and in vivo in a nude mouse model of hepatocellular carcinoma (HCC, and detect the mechanisms involved in P-5m-induced anti-metastasis. By gelatin zymography, matrix metallo-proteinases 2 (MMP-2 activity in HCCLM3 was dramatically diminished by P-5m peptide. In addition, the migration and metastasis of HCCLM3 cells was also inhibited by the peptide in vitro. In an orthotopic model of HCC in nude mice, P-5m treatment effectively reduced the lung metastasis as well as the expression of MMP-2 in the tumor tissues. Overall, these observations indicate an important role for P-5m peptide in HCC invasion and metastasis, at least partially through modulation MMP-2 expression. These data suggests that P-5m may have therapeutic potential in metastatic human hepatocarcinoma.

  10. Three new chondrosarcoma cell lines: one grade III conventional central chondrosarcoma and two dedifferentiated chondrosarcomas of bone

    International Nuclear Information System (INIS)

    Oosterwijk, Jolieke G van; Bovée, Judith VMG; Jong, Danielle de; Ruler, Maayke AJH van; Hogendoorn, Pancras CW; Dijkstra, PD Sander; Rijswijk, Carla SP van; Machado, Isidro; Llombart-Bosch, Antonio; Szuhai, Karoly

    2012-01-01

    Chondrosarcoma is the second most common primary sarcoma of bone. High-grade conventional chondrosarcoma and dedifferentiated chondrosarcoma have a poor outcome. In pre-clinical research aiming at the identification of novel treatment targets, the need for representative cell lines and model systems is high, but availability is scarce. We developed and characterized three cell lines, derived from conventional grade III chondrosarcoma (L835), and dedifferentiated chondrosarcoma (L2975 and L3252) of bone. Proliferation and migration were studied and we used COBRA-FISH and array-CGH for karyotyping and genotyping. Immunohistochemistry for p16 and p53 was performed as well as TP53 and IDH mutation analysis. Cells were injected into nude mice to establish their tumorigenic potential. We show that the three cell lines have distinct migrative properties, L2975 had the highest migration rate and showed tumorigenic potential in mice. All cell lines showed chromosomal rearrangements with complex karyotypes and genotypic aberrations were conserved throughout late passaging of the cell lines. All cell lines showed loss of CDKN2A, while TP53 was wild type for exons 5–8. L835 has an IDH1 R132C mutation, L2975 an IDH2 R172W mutation and L3252 is IDH wild type. Based on the stable culturing properties of these cell lines and their genotypic profile resembling the original tumors, these cell lines should provide useful functional models to further characterize chondrosarcoma and to evaluate new treatment strategies

  11. Recombinant protein production from stable mammalian cell lines and pools.

    Science.gov (United States)

    Hacker, David L; Balasubramanian, Sowmya

    2016-06-01

    We highlight recent developments for the production of recombinant proteins from suspension-adapted mammalian cell lines. We discuss the generation of stable cell lines using transposons and lentivirus vectors (non-targeted transgene integration) and site-specific recombinases (targeted transgene integration). Each of these methods results in the generation of cell lines with protein yields that are generally superior to those achievable through classical plasmid transfection that depends on the integration of the transfected DNA by non-homologous DNA end-joining. This is the main reason why these techniques can also be used for the generation of stable cell pools, heterogenous populations of recombinant cells generated by gene delivery and genetic selection without resorting to single cell cloning. This allows the time line from gene transfer to protein production to be reduced. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Cytotoxic Effects of Fascaplysin against Small Cell Lung Cancer Cell Lines

    Directory of Open Access Journals (Sweden)

    Gerhard Hamilton

    2014-03-01

    Full Text Available Fascaplysin, the natural product of a marine sponge, exhibits anticancer activity against a broad range of tumor cells, presumably through interaction with DNA, and/or as a highly selective cyclin-dependent kinase 4 (CDK4 inhibitor. In this study, cytotoxic activity of fascaplysin against a panel of small cell lung cancer (SCLC cell lines and putative synergism with chemotherapeutics was investigated. SCLC responds to first-line chemotherapy with platinum-based drugs/etoposide, but relapses early with topotecan remaining as the single approved therapeutic agent. Fascaplysin was found to show high cytotoxicity against SCLC cells and to induce cell cycle arrest in G1/0 at lower and S-phase at higher concentrations, respectively. The compound generated reactive oxygen species (ROS and induced apoptotic cell death in the chemoresistant NCI-H417 SCLC cell line. Furthermore, fascaplysin revealed marked synergism with the topoisomerase I-directed camptothecin and 10-hydroxy-camptothecin. The Poly(ADP-ribose-Polymerase 1 (PARP1 inhibitor BYK 204165 antagonized the cytotoxic activity of fascaplysin, pointing to the involvement of DNA repair in response to the anticancer activity of the drug. In conclusion, fascaplysin seems to be suitable for treatment of SCLC, based on high cytotoxic activity through multiple routes of action, affecting topoisomerase I, integrity of DNA and generation of ROS.

  13. Electrophysiological Characteristics of Embryonic Stem Cell-Derived Cardiomyocytes are Cell Line-Dependent

    Directory of Open Access Journals (Sweden)

    Tobias Hannes

    2015-01-01

    Full Text Available Background: Modelling of cardiac development, physiology and pharmacology by differentiation of embryonic stem cells (ESCs requires comparability of cardiac differentiation between different ESC lines. To investigate whether the outcome of cardiac differentiation is consistent between different ESC lines, we compared electrophysiological properties of ESC-derived cardiomyocytes (ESC-CMs of different murine ESC lines. Methods: Two wild-type (D3 and R1 and two transgenic ESC lines (D3/aPIG44 and CGR8/AMPIGX-7 were differentiated under identical culture conditions. The transgenic cell lines expressed enhanced green fluorescent protein (eGFP and puromycin-N-acetyltransferase under control of the cardiac specific α-myosin heavy chain (αMHC promoter. Action potentials (APs were recorded using sharp electrodes and multielectrode arrays in beating clusters of ESC-CMs. Results: Spontaneous AP frequency and AP duration (APD as well as maximal upstroke velocity differed markedly between unpurified CMs of the four ESC lines. APD heterogeneity was negligible in D3/aPIG44, moderate in D3 and R1 and extensive in CGR8/AMPIGX-7. Interspike intervals calculated from long-term recordings showed a high degree of variability within and between recordings in CGR8/AMPIGX-7, but not in D3/aPIG44. Purification of the αMHC+ population by puromycin treatment posed only minor changes to APD in D3/aPIG44, but significantly shortened APD in CGR8/AMPIGX-7. Conclusion: Electrophysiological properties of ESC-CMs are strongly cell line-dependent and can be influenced by purification of cardiomyocytes by antibiotic selection. Thus, conclusions on cardiac development, physiology and pharmacology derived from single stem cell lines have to be interpreted carefully.

  14. Expression pattern of matrix metalloproteinases in human gynecological cancer cell lines

    International Nuclear Information System (INIS)

    Schröpfer, Andrea; Kammerer, Ulrike; Kapp, Michaela; Dietl, Johannes; Feix, Sonja; Anacker, Jelena

    2010-01-01

    Matrix metalloproteinases (MMPs) are involved in the degradation of protein components of the extracellular matrix and thus play an important role in tumor invasion and metastasis. Their expression is related to the progression of gynecological cancers (e.g. endometrial, cervical or ovarian carcinoma). In this study we investigated the expression pattern of the 23 MMPs, currently known in humans, in different gynecological cancer cell lines. In total, cell lines from three endometrium carcinomas (Ishikawa, HEC-1-A, AN3 CA), three cervical carcinomas (HeLa, Caski, SiHa), three chorioncarcinomas (JEG, JAR, BeWo), two ovarian cancers (BG-1, OAW-42) and one teratocarcinoma (PA-1) were examined. The expression of MMPs was analyzed by RT-PCR, Western blot and gelatin zymography. We demonstrated that the cell lines examined can constitutively express a wide variety of MMPs on mRNA and protein level. While MMP-2, -11, -14 and -24 were widely expressed, no expression was seen for MMP-12, -16, -20, -25, -26, -27 in any of the cell lines. A broad range of 16 MMPs could be found in the PA1 cells and thus this cell line could be used as a positive control for general MMP experiments. While the three cervical cancer cell lines expressed 10-14 different MMPs, the median expression in endometrial and choriocarcinoma cells was 7 different enzymes. The two investigated ovarian cancer cell lines showed a distinctive difference in the number of expressed MMPs (2 vs. 10). Ishikawa, Caski, OAW-42 and BeWo cell lines could be the best choice for all future experiments on MMP regulation and their role in endometrial, cervical, ovarian or choriocarcinoma development, whereas the teratocarcinoma cell line PA1 could be used as a positive control for general MMP experiments

  15. Development of a chemically defined platform fed-batch culture media for monoclonal antibody-producing CHO cell lines with optimized choline content.

    Science.gov (United States)

    Kuwae, Shinobu; Miyakawa, Ichiko; Doi, Tomohiro

    2018-01-11

    A chemically defined platform basal medium and feed media were developed using a single Chinese hamster ovary (CHO) cell line that produces a monoclonal antibody (mAb). Cell line A, which showed a peak viable cell density of 5.9 × 10 6  cells/mL and a final mAb titer of 0.5 g/L in batch culture, was selected for the platform media development. Stoichiometrically balanced feed media were developed using glucose as an indicator of cell metabolism to determine the feed rates of all other nutrients. A fed-batch culture of cell line A using the platform fed-batch medium yielded a 6.4 g/L mAb titer, which was 12-fold higher than that of the batch culture. To examine the applicability of the platform basal medium and feed media, three other cell lines (A16, B, and C) that produce mAbs were cultured using the platform fed-batch medium, and they yielded mAb titers of 8.4, 3.3, and 6.2 g/L, respectively. The peak viable cell densities of the three cell lines ranged from 1.3 × 10 7 to 1.8 × 10 7  cells/mL. These results show that the nutritionally balanced fed-batch medium and feeds worked well for other cell lines. During the medium development, we found that choline limitation caused a lower cell viability, a lower mAb titer, a higher mAb aggregate content, and a higher mannose-5 content. The optimal choline chloride to glucose ratio for the CHO cell fed-batch culture was determined. Our platform basal medium and feed media will shorten the medium-development time for mAb-producing cell lines.

  16. Cell line development for biomanufacturing processes: recent advances and an outlook.

    Science.gov (United States)

    Le, Huong; Vishwanathan, Nandita; Jacob, Nitya M; Gadgil, Mugdha; Hu, Wei-Shou

    2015-08-01

    At the core of a biomanufacturing process for recombinant proteins is the production cell line. It influences the productivity and product quality. Its characteristics also dictate process development, as the process is optimized to complement the producing cell to achieve the target productivity and quality. Advances in the past decade, from vector design to cell line screening, have greatly expanded our capability to attain producing cell lines with certain desired traits. Increasing availability of genomic and transcriptomic resources for industrially important cell lines coupled with advances in genome editing technology have opened new avenues for cell line development. These developments are poised to help biosimilar manufacturing, which requires targeting pre-defined product quality attributes, e.g., glycoform, to match the innovator's range. This review summarizes recent advances and discusses future possibilities in this area.

  17. Quantitative proteomics identifies central players in erlotinib resistance of the non-small cell lung cancer cell line HCC827

    DEFF Research Database (Denmark)

    Jacobsen, Kirstine; Lund, Rikke Raaen; Beck, Hans Christian

    Background: Erlotinib (Tarceva®, Roche) has significantly changed the treatment of non-small cell lung cancer (NSCLC) as 70% of patients show significant tumor regression when treated. However, all patients relapse due to development of acquired resistance, which in 43-50% of cases are caused...... by a secondary mutation (T790M) in EGFR. Importantly, a majority of resistance cases are still unexplained. Our aim is to identify novel resistance mechanisms in erlotinib-resistant subclones of the NSCLC cell line HCC827. Materials & Methods: We established 3 erlotinib-resistant subclones (resistant to 10, 20...... or other EGFR or KRAS mutations, potentiating the identification of novel resistance mechanisms. We identified 2875 cytoplasmic proteins present in all 4 cell lines. Of these 87, 56 and 23 are upregulated >1.5 fold; and 117, 72 and 32 are downregulated >1.5 fold, respectively, in the 3 resistant clones...

  18. Trichloroethylene toxicity in a human hepatoma cell line

    Energy Technology Data Exchange (ETDEWEB)

    Thevenin, E.; McMillian, J. [Medical Univ. of Charleston South Carolina, SC (United States)

    1994-12-31

    The experiments conducted in this study were designed to determine the usefullness of hepatocyte cultures and a human hepatoma cell line as model systems for assessing human susceptibility to hepatocellular carcinoma due to exposure to trichloroethylene. The results from these studies will then be analyzed to determine if human cell lines can be used to conduct future experiments of this nature.

  19. Inter-laboratory comparison of cell lines for susceptibility to three viruses: VHSV, IHNV and IPNV

    DEFF Research Database (Denmark)

    Lorenzen, Ellen; Carstensen, Bendix; Olesen, Niels Jørgen

    1999-01-01

    Eleven European National Reference Laboratories participated in an inter-laboratory comparison of the susceptibility of 5 selected cell lines to 3 fish pathogenic viruses. The test included viral hemorrhagic septicaemia virus (VHSV), infectious hematopoietic necrosis virus (IHNV) and infectious...... pancreatic necrosis Virus (IPNV), and the cell lines derived from bluegill fry (BF-2), chinook salmon embryo (CHSE-214), epithelioma papulosum cyprini (EPC), fathead minnow (FHM) and rainbow trout gonad (RTG-2). The results showed that for isolation of VHSV, BF-2 and RTG-2 cells performed equally well...

  20. Irradiation effect on the apoptosis induction in the human cancer cell lines and the gingival fibroblast

    International Nuclear Information System (INIS)

    Park, Mu Soon; Lee, Sam Sun; Choi, Soon Chul; Park, Tae Won; You, Dong Soo

    1998-01-01

    The radiation-induced apoptosis was studied for two human cancer cell lines (KB cells, RPMI 2650 cells) and the human gingival fibroblast cell line (HGF-1 cells). The single irradiation of 2, 10, 20 Gy was done with 241.5 cGy/min dose rate using the 137 Cs MK cell irradiator. The cell were stained with propidium iodide and examined under the fluoro-microscope and assayed with the flow cytometry a day after irradiation. Also, the LDH assay was done to determine the amount of necrotic cells. The obtained results were as follows : 1. On the fluoro-microscope, many fragmented nuclei were detected in the KB, RPMI 2650, and HGF-1 cells after irradiation. 2. On the DNA content histogram obtained from the flow cytometry, the percentages of the pre-G1 peak of the control and 2, 10 and 20 Gy irradiation group were 4.5, 55.0, 52.3, and 66.6% on KB cells, 2.7, 3.3, 31.8, and 32.6% on RPMI 2650 cells and 2.8, 21.8, 30.4, and 40.2% on HGF-1 cells respectively. 3. The number of G1-stage cells was abruptly decreased after 2 Gy irradiation on KB cells and 10 Gy irradiation on RPMI 2650 cells, But there was a slight decrease without regard to irradiation dose on HGF-1 cells. 4. There was no significantly different absorbance in extracellular LDH assay along the experimental cell lines

  1. Enterovirus Species B Bias of RD Cell Line and Its Influence on Enterovirus Diversity Landscape.

    Science.gov (United States)

    Faleye, Temitope Oluwasegun Cephas; Adeniji, Johnson Adekunle

    2015-12-01

    Despite its widespread use in poliovirus isolation, studies show that most RD cell line isolates are species B enteroviruses (EB), it was therefore employed to further catalogue the EB diversity in two different regions of Nigeria. Concentrates of 18 environmental samples were inoculated into RD cell line. Isolates were subjected to PCR assays to detect enteroviruses, species C and B members and partial VP1 gene which was subsequently sequenced and used for identification and phylogenetic analysis. Isolates were further passaged in L20B cell line to detect polioviruses. Sixty-eight isolates were recovered from the 18 concentrates, all of which were positive for the enterovirus 5'-UTR screen. Thirteen of the 68 isolates were positive for the species C screen and replicated in L20B cell line, eleven of which also contained species B enteroviruses. Some of the mixed isolates were successfully typed, but as species B members. In all, isolates recovered in this study were identified as CVB5, E6, E7, E11, E13, E19, E20, E33, EVB75 and WPV3, while some could not be typed. Alongside the ten different enterovirus serotypes confirmed, results of this study document for the first time in Nigeria, EVB75. It showed the EB bias of RD cell line might indicate something much more fundamental in its biology. Finally, the finding of WPV3 in a region considered low risk for poliovirus emphasizes the need to expand poliovirus environmental surveillance to enable early detection of poliovirus silent circulation before occurrence of clinical manifestations.

  2. 2-DE analysis of breast cancer cell lines 1833 and 4175 with distinct metastatic organ-specific potentials: Comparison with parental cell line MDA-MB-231

    Czech Academy of Sciences Publication Activity Database

    Selicharová, Irena; Šanda, Miloslav; Mládková, Jana; Ohri, S. S.; Vashishta, A.; Fusek, M.; Jiráček, Jiří; Vetvicka, V.

    2008-01-01

    Roč. 19, č. 5 (2008), s. 1237-1244 ISSN 1021-335X R&D Projects: GA MZd NR8323 Grant - others:NIH(US) ROI CAA082159-03 Institutional research plan: CEZ:AV0Z40550506 Keywords : breast cancer * cell line * 2-DE * organ-specific metastases Subject RIV: CE - Biochemistry Impact factor: 1.524, year: 2008

  3. Antagonism of serotonin receptor 1B decreases viability and promotes apoptosis in the COS canine osteosarcoma cell line.

    Science.gov (United States)

    Viall, A K; Goodall, C P; Stang, B; Marley, K; Chappell, P E; Bracha, S

    2016-06-01

    Serotonin receptor 1B (5HTR1B) traditionally exhibits anti-proliferative activity in osteoblasts. We examined the expression and function of 5HTR1B in the COS canine osteosarcoma cell line and normal canine osteoblasts. Equal levels of 5HTR1B gene and protein expression were found between normal and malignant osteoblasts. Treatment with serotonin enhanced viability of osteosarcoma cells but not normal osteoblasts. Challenge with the 5HTR1B agonist anpirtoline caused no change in cell viability. Rather incubation with the specific receptor antagonist SB224289 caused reduction in osteoblast viability, with this effect more substantial in osteosarcoma cells. Investigation of this inhibitory activity showed 5HTR1B antagonism induces apoptosis in malignant cells. Evaluation of phosphorylated levels of CREB and ERK, transcriptional regulators associated with serotonin receptor signalling in osteoblasts, revealed aberrant 5HTR1B signalling in COS. Our results confirm the presence of 5HTR1B in a canine osteosarcoma cell line and highlight this receptor as a possible novel therapeutic target. © 2014 John Wiley & Sons Ltd.

  4. Specific receptors for epidermal growth factor in human bone tumour cells and its effect on synthesis of prostaglandin E2 by cultured osteosarcoma cell line

    International Nuclear Information System (INIS)

    Hirata, Y.; Uchihashi, M.; Nakashima, H.; Fujita, T.; Matsukura, S.; Matsui, K.

    1984-01-01

    Using tumour cell lines derived from human bone tumours, specific binding sites for epidermal growth factor (EGF), a potent growth stimulator in many tissues, and its effect on synthesis of prostaglandin (PG) E 2 , a potent bone-resorbing factor, by cultured osteosarcoma cell line were studied. Three tumour cell lines, one osteosarcoma (HOSO) and two giant cell tumours of the bone (G-1 and G-2), all possessed specific binding sites for 125 I-labelled EGF: the apparent dissociation constant was approximately 4-10 x 10 -10 M and the maximal binding capacity was 50 000-80 000 sites/cell. EGF had no mitogenic effect in these cell lines. However, these cell lines did not have specific binding sites for 125 I-labelled parathyroid hormone (PTH) or calcitonin. HOSO line produced and secreted PGE 2 into medium, while no significant amount of PGE 2 was demonstrated in G-1 or G-2 line. EGF significantly stimulated PGE 2 production in HOSO line in a dose-dependent manner (0.5-50 ng/ml); its stimulatory effect was completely abolished by indomethacin, an inhibitor of PG biosynthesis. Exogenous PGE 1 significantly stimulated cyclic AMP formation in HOSO line, whereas PGFsub(2α) PTH, calcitonin, or EGF had no effect. None of these calcium-regulating hormones affected cyclic AMP generation in either G-1 of G-2 line. These data indicate that human bone tumour cells have specific EGF receptors unrelated to cell growth, and suggest that EGF may be involved in bone resorption through a PGE 2 -mediated process in human osseous tissues. (author)

  5. Generation, isolation, and maintenance of rodent mast cells and mast cell lines

    DEFF Research Database (Denmark)

    Jensen, Bettina M; Swindle, Emily J; Iwaki, Shoko

    2006-01-01

    Antigen-mediated mast cell activation, with subsequent mediator release, is a major initiator of the inflammatory allergic response associated with such conditions as asthma. A comprehensive understanding of the principles involved in this process therefore is key to the development of novel...... therapies for the treatment of these disease states. In vitro models of mast cell function have allowed significant progress to be made in the recognition of the fundamental principles of mast cell activation via the high-affinity IgE receptor (FcvarepsilonRI) and, more recently, other receptors expressed...... on mast cells. In addition to human mast cells, the major cell culture systems employed to investigate these responses are rat and mouse peritoneal mast cells, mouse bone-marrow-derived mast cells, the rat basophilic leukemia cell line RBL-2H3, and the mouse MC/9 mast cell line. In this unit, we describe...

  6. Single-cell printing to form three-dimensional lines of olfactory ensheathing cells

    International Nuclear Information System (INIS)

    Othon, Christina M; Ringeisen, Bradley R; Wu Xingjia; Anders, Juanita J

    2008-01-01

    Biological laser printing (BioLP(TM)) is a unique tool capable of printing high resolution two- and three-dimensional patterns of living mammalian cells, with greater than 95% viability. These results have been extended to primary cultured olfactory ensheathing cells (OECs), harvested from adult Sprague-Dawley rats. OECs have been found to provide stimulating environments for neurite outgrowth in spinal cord injury models. BioLP is unique in that small load volumes (∼μLs) are required to achieve printing, enabling low numbers of OECs to be harvested, concentrated and printed. BioLP was used to form several 8 mm lines of OECs throughout a multilayer hydrogel scaffold. The line width was as low as 20 μm, with most lines comprising aligned single cells. Fluorescent confocal microscopy was used to determine the functionality of the printed OECs, to monitor interactions between printed OECs, and to determine the extent of cell migration throughout the 3D scaffold. High-resolution printing of low cell count, harvested OECs is an important advancement for in vitro study of cell interactions and functionality. In addition, these cell-printed scaffolds may provide an alternative for spinal cord repair studies, as the single-cell patterns formed here are on relevant size scales for neurite outgrowth

  7. O6-alkylguanine-DNA-alkyltransferase activity and nitrosourea sensitivity in human cancer cell lines.

    OpenAIRE

    Walker, M. C.; Masters, J. R.; Margison, G. P.

    1992-01-01

    The DNA repair enzyme, O6-alkylguanine-DNA-alkyltransferase (ATase), is thought to be the principal mechanism controlling resistance to nitrosoureas and related alkylating agents. We compared the sensitivities of five human testis and five bladder tumour cell lines to two nitrosoureas (N-nitroso-N-methylurea (MNU) and mitozolomide) with cellular levels of ATase. Enzyme levels ranged from 3 to 206 fmol mg-1 protein (0.1 x 10(4) to 5.1 x 10(4) molecules/cell) in the testis lines and from 11 to ...

  8. A fluorescence assay for measuring acetylcholinesterase activity in rat blood and a human neuroblastoma cell line (SH-SY5Y).

    Science.gov (United States)

    Santillo, Michael F; Liu, Yitong

    2015-01-01

    Acetylcholinesterase (AChE) is an enzyme responsible for metabolism of the neurotransmitter acetylcholine, and inhibition of AChE can have therapeutic applications (e.g., drugs for Alzheimer's disease) or neurotoxic consequences (e.g., pesticides). A common absorbance-based AChE activity assay that uses 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB) can have limited sensitivity and be prone to interference. Therefore, an alternative assay was developed, in which AChE activity was determined by measuring fluorescence of resorufin produced from coupled enzyme reactions involving acetylcholine and Amplex Red (10-acetyl-3,7-dihydroxyphenoxazine). The Amplex Red assay was used for two separate applications. First, AChE activity was measured in rat whole blood, which is a biomarker for exposure to AChE inhibitor pesticides. Activity was quantified from a 10(5)-fold dilution of whole blood, and there was a linear correlation between Amplex Red and DTNB assays. For the second application, Amplex Red assay was used to measure AChE inhibition potency in a human neuroblastoma cell line (SH-SY5Y), which is important for assessing pharmacological and toxicological potential of AChE inhibitors including drugs, phytochemicals, and pesticides. Five known reversible inhibitors were evaluated (IC50, 7-225 nM), along with irreversible inhibitors chlorpyrifos-oxon (ki=1.01 nM(-1)h(-1)) and paraoxon (ki=0.16 nM(-1)h(-1)). Lastly, in addition to inhibition, AChE reactivation was measured in SH-SY5Y cells incubated with pralidoxime chloride (2-PAM). The Amplex Red assay is a sensitive, specific, and reliable fluorescence method for measuring AChE activity in both rat whole blood and cultured SH-SY5Y cells. Published by Elsevier Inc.

  9. Transfection of wild type ADVP53 gene into human brain tumor cell lines has a radiosensitizing effect independent of apoptosis

    International Nuclear Information System (INIS)

    Geng, L.; Walter, S; Vaughan, A.T.M.

    1997-01-01

    Purpose: Despite attempts with a variety of therapeutic approaches there has been little impact on the survival of patients with Glioblastoma multiforme, with median survivals reported of approximately 12 months. In this study a replication restricted adenovirus vector is used to transfer the wild type p53 gene into two cell lines derived from a human astrocytoma U87MG or glioblastoma T98G, to determine its ability to act as a radiosensitizer in conjunction with conventional radiotherapy. Methods: An adenovirus vector containing the human wild type p53 (Advp53) gene was used in addition to a control vector containing the β-galactosidase (Advγgal) reporter gene. To achieve cellular incorporation both vectors were incubated with cells for 30 minutes - washed and returned to culture. The successful incorporation of each vector was determined by either a p53 assay using either a western blotting or flow cytometry techniques, or specific staining for β-galactosidase activity. The presence of each vector was assayed until the constructs were eliminated from the cell. To determine the effects of these vectors on cell survival sufficient vector was added to produce a measurable reduction in clonogenic survival and this value was used in subsequent irradiation experiments. To determine the ability of wild type p53 to induce apoptosis the cells were examined from 1 to 5 days after irradiation by H and E staining for the characteristic morphology indicating an apoptotic process. Results: Both the Advp53 and Advβgal vectors were successfully incorporated into each cell line. Expression of each gene was reduced to approximately half by 5 days and virtually eliminated by 15 days after transfection in both lines. At the doses used the wild type Advp53 adenovirus was toxic to both cell lines giving surviving fractions between 39-74%. When this toxicity was taken into account the presence of the Advp53 gene had a radiosensitizing effect in each cell line. To determine the

  10. Androgen responsiveness of the new human endometrial cancer cell line MFE-296.

    Science.gov (United States)

    Hackenberg, R; Beck, S; Filmer, A; Hushmand Nia, A; Kunzmann, R; Koch, M; Slater, E P; Schulz, K D

    1994-04-01

    MFE-296 endometrial cancer cells express androgen receptors in vitro. These cells, which are tumorigenic in nude mice, are derived from a moderately differentiated human endometrial adenocarcinoma. They express vimentin and the cytokeratins 7, 8, 18, and 19. Karyotyping revealed near-tetraploidy for most of the cells. No marker chromosomes were observed. DNA analyses confirmed the genetic identity of the cell line and the patient from whom the cell line was derived. Proliferation of MFE-296 cells was inhibited by the progestin R5020 and the androgen dihydrotestosterone (DHT). The inhibition of proliferation by DHT was antagonized by the antiandrogen Casodex, demonstrating the involvement of the androgen receptor. Androgen binding was determined at 22,000 binding sites per cell using a whole-cell assay (KD = 0.05 nM) and 30 fmol/mg protein with the dextran charcoal method; 7 fmol/mg protein of progesterone receptors were found, whereas estrogen receptors were below 5 fmol/mg protein. The androgen receptor was functionally intact, as demonstrated by transfection experiments with a reporter-gene construct, containing an androgen-responsive element. In MFE-296 cells the content of the androgen receptor was up-regulated by its own ligand.

  11. Experimental infection of Leishmania (L. chagasi in a cell line derived from Lutzomyia longipalpis (Diptera:Psychodidae

    Directory of Open Access Journals (Sweden)

    Felio J Bello

    2005-10-01

    Full Text Available The present work describes the in vitro infection of a cell line Lulo, derived from Lutzomyia longipalpis embryonic tissue, by Leishmania chagasi promastigotes. This infection process is compared with a parallel one developed using the J774 cell line. The L. chagasi MH/CO/84/CI-044B strain was used for experimental infection in two cell lines. The cells were seeded on glass coverslips in 24-well plates to reach a final number of 2 x 10(5 cells/well. Parasites were added to the adhered Lulo and J774 cells in a 10:1 ratio and were incubated at 28 and 37ºC respectively. After 2, 4, 6, 8, and 10 days post-infection, the cells were extensively washed with PBS, fixed with methanol, and stained with Giemsa. The number of internalized parasites was determined by counting at least 400 cultured cells on each coverslip. The results showed continuous interaction between L. chagasi promastigotes with the cell lines. Some ultrastructural characteristics of the amastigote forms were observed using transmission electron microscopy. The highest percentage of infection in Lulo cells was registered on day 6 post-infection (29.6% and on day 4 in the J774 cells (51%. This work shows similarities and differences in the L. chagasi experimental infection process in the two cell lines. However, Lulo cells emerge as a new model to study the life-cycle of this parasite.

  12. Evaluation of the neurotoxic/neuroprotective role of organoselenides using differentiated human neuroblastoma SH-SY5Y cell line challenged with 6-hydroxydopamine.

    Science.gov (United States)

    Lopes, Fernanda Martins; Londero, Giovana Ferreira; de Medeiros, Liana Marengo; da Motta, Leonardo Lisbôa; Behr, Guilherme Antônio; de Oliveira, Valeska Aguiar; Ibrahim, Mohammad; Moreira, José Cláudio Fonseca; Porciúncula, Lisiane de Oliveira; da Rocha, João Batista Teixeira; Klamt, Fábio

    2012-08-01

    It is well established that oxidative stress plays a major role in several neurodegenerative conditions, like Parkinson disease (PD). Hence, there is an enormous effort for the development of new antioxidants compounds with therapeutic potential for the management of PD, such as synthetic organoselenides molecules. In this study, we selected between nine different synthetic organoselenides the most eligible ones for further neuroprotection assays, using the differentiated human neuroblastoma SH-SY5Y cell line as in vitro model. Neuronal differentiation of exponentially growing human neuroblastoma SH-SY5Y cells was triggered by cultivating cells with DMEM/F12 medium with 1% of fetal bovine serum (FBS) with the combination of 10 μM retinoic acid for 7 days. Differentiated cells were further incubated with different concentrations of nine organoselenides (0.1, 0.3, 3, 10, and 30 μM) for 24 h and cell viability, neurites densities and the immunocontent of neuronal markers were evaluated. Peroxyl radical scavenging potential of each compound was determined with TRAP assay. Three organoselenides tested presented low cytotoxicity and high antioxidant properties. Pre-treatment of cells with those compounds for 24 h lead to a significantly neuroprotection against 6-hydroxydopamine (6-OHDA) toxicity, which were directly related to their antioxidant properties. Neuroprotective activity of all three organoselenides was compared to diphenyl diselenide (PhSe)₂, the simplest of the diaryl diselenides tested. Our results demonstrate that differentiated human SH-SY5Y cells are suitable cellular model to evaluate neuroprotective/neurotoxic role of compounds, and support further evaluation of selected organoselenium molecules as potential pharmacological and therapeutic drugs in the treatment of PD.

  13. Homozygous deletion and expression of PTEN and DMBT1 in human primary neuroblastoma and cell lines.

    Science.gov (United States)

    Muñoz, Jorge; Lázcoz, Paula; Inda, María Mar; Nistal, Manuel; Pestaña, Angel; Encío, Ignacio J; Castresana, Javier S

    2004-05-01

    Neuroblastoma is the most common pediatric solid tumor. Although many allelic imbalances have been described, a bona fide tumor suppressor gene for this disease has not been found yet. In our study, we analyzed 2 genes, PTEN and DMBT1, mapping 10q23.31 and 10q25.3-26.1, respectively, which have been found frequently altered in other kinds of neoplasms. We screened both genes for homozygous deletions in 45 primary neuroblastic tumors and 12 neuroblastoma cell lines. Expression of these genes in cell lines was assessed by RT-PCR analysis. We could detect 2 of 41 (5%) primary tumors harboring PTEN homozygous deletions. Three of 41 (7%) primary tumors and 2 of 12 cell lines presented homozygous losses at the g14 STS on the DMBT1 locus. All cell lines analyzed expressed PTEN, but lack of DMBT1 mRNA expression was detected in 2 of them. We tried to see whether epigenetic mechanisms, such as aberrant promoter hypermethylation, had any role in DMBT1 silencing. The 2 cell lines lacking DMBT1 expression were treated with 5-aza-2'-deoxycytidine; DMBT1 expression was restored in only one of them (MC-IXC). From our work, we can conclude that PTEN and DMBT1 seem to contribute to the development of a small fraction of neuroblastomas, and that promoter hypermethylation might have a role in DMBT1 gene silencing. Copyright 2004 Wiley-Liss, Inc.

  14. Global Conservation of Protein Status between Cell Lines and Xenografts

    Directory of Open Access Journals (Sweden)

    Julian Biau

    2016-08-01

    Full Text Available Common preclinical models for testing anticancer treatment include cultured human tumor cell lines in monolayer, and xenografts derived from these cell lines in immunodeficient mice. Our goal was to determine how similar the xenografts are compared with their original cell line and to determine whether it is possible to predict the stability of a xenograft model beforehand. We studied a selection of 89 protein markers of interest in 14 human cell cultures and respective subcutaneous xenografts using the reverse-phase protein array technology. We specifically focused on proteins and posttranslational modifications involved in DNA repair, PI3K pathway, apoptosis, tyrosine kinase signaling, stress, cell cycle, MAPK/ERK signaling, SAPK/JNK signaling, NFκB signaling, and adhesion/cytoskeleton. Using hierarchical clustering, most cell culture-xenograft pairs cluster together, suggesting a global conservation of protein signature. Particularly, Akt, NFkB, EGFR, and Vimentin showed very stable protein expression and phosphorylation levels highlighting that 4 of 10 pathways were highly correlated whatever the model. Other proteins were heterogeneously conserved depending on the cell line. Finally, cell line models with low Akt pathway activation and low levels of Vimentin gave rise to more reliable xenograft models. These results may be useful for the extrapolation of cell culture experiments to in vivo models in novel targeted drug discovery.

  15. Differential repair of platinum-DNA adducts in human bladder and testicular tumor continuous cell lines

    International Nuclear Information System (INIS)

    Bedford, P.; Fichtinger-Schepman, A.M.; Shellard, S.A.; Walker, M.C.; Masters, J.R.; Hill, B.T.

    1988-01-01

    The formation and removal of four platinum-DNA adducts were immunochemically quantitated in cultured cells derived from a human bladder carcinoma cell line (RT112) and from two lines derived from germ cell tumors of the testis (833K and SUSA), following exposure in vitro to 16.7 microM (5 micrograms/ml) cisplatin. RT112 cells were least sensitive to the drug and were proficient in the repair of all four adducts, whereas SUSA cells, which were 5-fold more sensitive, were deficient in the repair of DNA-DNA intrastrand cross-links in the sequences pApG and pGpG. Despite expressing a similar sensitivity to SUSA cells, 833K cells were proficient in the repair of all four adducts, although less so than the RT112 bladder tumor cells. In addition, SUSA cells were unable to repair DNA-DNA interstrand cross-links whereas 50-85% of these lesions were removed in RT112 and 833K cells 24 h following drug exposure. It is possible that the inability of SuSa cells to repair platinated DNA may account for their hypersensitivity to cisplatin

  16. [Effects of ezrin silencing on pancreatic cancer cell line Panc-1].

    Science.gov (United States)

    Meng, Yun-xiao; Yu, Shuang-ni; Lu, Zhao-hui; Chen, Jie

    2012-12-01

    To explore the effects of ezrin silencing on pancreatic cancer cell line Panc-1. Pancreatic cancer cell line Panc-1 was transfected with ezrin silencing plasmid. The proliferation and the cell cycle status were determined by CCK-8 assay and flow cytometry analysis, respectively. Cellular membrane protrusions/microvilli formation were visualized by scanning election microscopy. Colony formation assay was used to determine the cell anchor-independent growth ability in vitro. Trans-filter migration and invasion assays were performed with 8 µm pore inserts in a 24-well BioCoat chamber with/without Matrigel. Ezrin silencing decreased cellular protrusions/microvilli formation, anchorage-independent growth, cell migration and invasion, but had no effects on cell proliferation in vitro and cell cycle, in pancreatic cancer cell line Panc-1. Ezrin expression affects the cellular protrusions/microvilli formation, anchorage-independent growth, cell migration and invasion in pancreatic cancer cell line Panc-1.

  17. Dual regulation of P-glycoprotein expression by Trichostatin A in cancer cell lines

    Directory of Open Access Journals (Sweden)

    Balaguer Trinidad

    2012-07-01

    Full Text Available Abstract Background It has been reported that the histone deacetylase inhibitor (iHDAc trichostatin A (TSA induces an increase in MDR1 gene transcription (ABCB1. This result would compromise the use of iHDACs in combination with other cytotoxic agents that are substrates of P-glycoprotein (Pgp. It has also been reported the use of alternative promoters by the ABCB1 gene and the existence of a translational control of Pgp protein. Finally, the ABCB1 gene is located in a genetic locus with the nested gene RUNDC3B in the complementary DNA strand, raising the possibility that RUNDC3B expression could interfere with ABCB1 alternative promoter regulation. Methods A combination of RT-PCR, real time RT-PCR, Western blot and drug accumulation assays by flow cytometry has been used in this study. Results The iHDACs-induced increase in MDR1 mRNA levels is not followed by a subsequent increase in Pgp protein levels or activity in several pancreatic and colon carcinoma cell lines, suggesting a translational control of Pgp in these cell lines. In addition, the MDR1 mRNA produced in these cell lines is shorter in its 5′ end that the Pgp mRNA produced in cell lines expressing Pgp protein. The different size of the Pgp mRNA is due to the use of alternative promoters. We also demonstrate that these promoters are differentially regulated by TSA. The translational blockade of Pgp mRNA in the pancreatic carcinoma cell lines could be related to alterations in the 5′ end of the MDR1 mRNA in the Pgp protein expressing cell lines. In addition, we demonstrate that the ABCB1 nested gene RUNDC3B expression although upregulated by TSA is independent of the ABCB1 alternative promoter used. Conclusions The results show that the increase in MDR1 mRNA expression after iHDACs treatment is clinically irrelevant since this mRNA does not render an active Pgp protein, at least in colon and pancreatic cancer cell lines. Furthermore, we demonstrate that TSA in fact, regulates

  18. Evaluation of the radioinduced damage, repair capacity and cell death on human tumorigenic (T-47D and MCF-7) and nontumorigenic (MCF-10) cell lines of breast

    International Nuclear Information System (INIS)

    Valdoge, Flavia Gomes Silva

    2008-01-01

    Breast cancer is one of the most common malignancies that account women, representing about one in three of all female neoplasm. Approximately, 90% of cases are considered sporadic, attributed to somatic events and about 10% have a family history and this only 4 - 5 % is due to hereditary factors. In the clinic, ionizing radiation is a major tool utilized in the control of tumour growth, besides surgery and chemotherapy. There is, however, little information concerning cellular response to the action of ionizing radiation in the target cells, i.e., cell lines originating from breast cancer. The present study proposed to analyze the radiosensitivity of the human tumorigenic (T-47D and MCF-7) and non tumorigenic (MCF-10) cell lines, originating from breast and submitted to various doses (0.5 to 30 Gy) of 60 Co rays (0.72 - 1.50 Gy/min). For this purpose, DNA radioinduced damage, repair capacity and cell death were utilized as parameters of radiosensitivity by micronucleus, single cell gel electrophoresis (Comet assay) and cell viability techniques. The data obtained showed that tumorigenic cell lines were more radiosensitive than non tumorigenic breast cells in all assays here utilized. The T-47D cell line was presenting the highest amount of radioinduced damage, a more accelerated proliferation rate and a higher rate of cell death. The three cell lines presented a relatively efficient repair capacity, since one hour after the irradiation all of them showed a considerable reduction of radioinduced damage. The techniques employed showed to be secure, sensitive and reproducible, allowing to quantify and evaluate DNA damage, repair capacity and cell death in the three human breast cell lines. (author)

  19. Establishment of immortalized human erythroid progenitor cell lines able to produce enucleated red blood cells.

    Directory of Open Access Journals (Sweden)

    Ryo Kurita

    Full Text Available Transfusion of red blood cells (RBCs is a standard and indispensable therapy in current clinical practice. In vitro production of RBCs offers a potential means to overcome a shortage of transfusable RBCs in some clinical situations and also to provide a source of cells free from possible infection or contamination by microorganisms. Thus, in vitro production of RBCs may become a standard procedure in the future. We previously reported the successful establishment of immortalized mouse erythroid progenitor cell lines that were able to produce mature RBCs very efficiently. Here, we have developed a reliable protocol for establishing immortalized human erythroid progenitor cell lines that are able to produce enucleated RBCs. These immortalized cell lines produce functional hemoglobin and express erythroid-specific markers, and these markers are upregulated following induction of differentiation in vitro. Most importantly, these immortalized cell lines all produce enucleated RBCs after induction of differentiation in vitro, although the efficiency of producing enucleated RBCs remains to be improved further. To the best of our knowledge, this is the first demonstration of the feasibility of using immortalized human erythroid progenitor cell lines as an ex vivo source for production of enucleated RBCs.

  20. A novel splice variant of supervillin, SV5, promotes carcinoma cell proliferation and cell migration

    International Nuclear Information System (INIS)

    Chen, Xueran; Yang, Haoran; Zhang, Shangrong; Wang, Zhen; Ye, Fang; Liang, Chaozhao; Wang, Hongzhi; Fang, Zhiyou

    2017-01-01

    Supervillin is an actin-associated protein that regulates actin dynamics by interacting with Myosin II, F-actin, and Cortactin to promote cell contractility and cell motility. Two splicing variants of human Supervillin (SV1 and SV4) have been reported in non-muscle cells; SV1 lacks 3 exons present in the larger isoform SV4. SV2, also called archvillin, is present in striated muscle; SV3, also called smooth muscle archvillin or SmAV, was cloned from smooth muscle. In the present study, we identify a novel splicing variant of Supervillin (SV5). SV5 contains a new splicing pattern. In the mouse tissues and cell lines examined, SV5 was predominantly expressed in skeletal and cardiac muscles and in proliferating cells, but was virtually undetectable in most normal tissues. Using RNAi and rescue experiments, we show here that SV5 displays altered functional properties in cancer cells, and regulates cell proliferation and cell migration.

  1. Derivation of novel genetically diverse human embryonic stem cell lines.

    Science.gov (United States)

    Stefanova, Valentina T; Grifo, James A; Hansis, Christoph

    2012-06-10

    Human embryonic stem cells (hESCs) have the potential to revolutionize many biomedical fields ranging from basic research to disease modeling, regenerative medicine, drug discovery, and toxicity testing. A multitude of hESC lines have been derived worldwide since the first 5 lines by Thomson et al. 13 years ago, but many of these are poorly characterized, unavailable, or do not represent desired traits, thus making them unsuitable for application purposes. In order to provide the scientific community with better options, we have derived 12 new hESC lines at New York University from discarded genetically normal and abnormal embryos using the latest techniques. We examined the genetic status of the NYUES lines in detail as well as their molecular and cellular features and DNA fingerprinting profile. Furthermore, we differentiated our hESCs into the tissues most affected by a specific condition or into clinically desired cell types. To our knowledge, a number of characteristics of our hESCs have not been previously reported, for example, mutation for alpha thalassemia X-linked mental retardation syndrome, linkage to conditions with a genetic component such as asthma or poor sperm morphology, and novel combinations of ethnic backgrounds. Importantly, all of our undifferentiated euploid female lines tested to date did not show X chromosome inactivation, believed to result in superior potency. We continue to derive new hESC lines and add them to the NIH registry and other registries. This should facilitate the use of our hESCs and lead to advancements for patient-benefitting applications.

  2. Incorrect strain information for mouse cell lines: sequential influence of misidentification on sublines

    OpenAIRE

    Uchio-Yamada, Kozue; Kasai, Fumio; Ozawa, Midori; Kohara, Arihiro

    2016-01-01

    Misidentification or cross-contamination of cell lines can cause serious issues. Human cell lines have been authenticated by short tandem repeat profiling; however, mouse cell lines have not been adequately assessed. In this study, mouse cell lines registered with the JCRB cell bank were examined by simple sequence length polymorphism (SSLP) analysis to identify their strains. Based on comparisons with 7 major inbred strains, our results revealed their strains in 80 of 90 cell lines. However,...

  3. Three new chondrosarcoma cell lines: one grade III conventional central chondrosarcoma and two dedifferentiated chondrosarcomas of bone

    Science.gov (United States)

    2012-01-01

    Background Chondrosarcoma is the second most common primary sarcoma of bone. High-grade conventional chondrosarcoma and dedifferentiated chondrosarcoma have a poor outcome. In pre-clinical research aiming at the identification of novel treatment targets, the need for representative cell lines and model systems is high, but availability is scarce. Methods We developed and characterized three cell lines, derived from conventional grade III chondrosarcoma (L835), and dedifferentiated chondrosarcoma (L2975 and L3252) of bone. Proliferation and migration were studied and we used COBRA-FISH and array-CGH for karyotyping and genotyping. Immunohistochemistry for p16 and p53 was performed as well as TP53 and IDH mutation analysis. Cells were injected into nude mice to establish their tumorigenic potential. Results We show that the three cell lines have distinct migrative properties, L2975 had the highest migration rate and showed tumorigenic potential in mice. All cell lines showed chromosomal rearrangements with complex karyotypes and genotypic aberrations were conserved throughout late passaging of the cell lines. All cell lines showed loss of CDKN2A, while TP53 was wild type for exons 5–8. L835 has an IDH1 R132C mutation, L2975 an IDH2 R172W mutation and L3252 is IDH wild type. Conclusions Based on the stable culturing properties of these cell lines and their genotypic profile resembling the original tumors, these cell lines should provide useful functional models to further characterize chondrosarcoma and to evaluate new treatment strategies. PMID:22928481

  4. Detection of immunotoxicity using T-cell based cytokine reporter cell lines ('Cell Chip')

    International Nuclear Information System (INIS)

    Ringerike, Tove; Ulleraas, Erik; Voelker, Rene; Verlaan, Bert; Eikeset, Aase; Trzaska, Dominika; Adamczewska, Violetta; Olszewski, Maciej; Walczak-Drzewiecka, Aurelia; Arkusz, Joanna; Loveren, Henk van; Nilsson, Gunnar; Lovik, Martinus; Dastych, Jaroslaw; Vandebriel, Rob J.

    2005-01-01

    Safety assessment of chemicals and drugs is an important regulatory issue. The evaluation of potential adverse effects of compounds on the immune system depends today on animal experiments. An increasing demand, however, exists for in vitro alternatives. Cytokine measurement is a promising tool to evaluate chemical exposure effects on the immune system. Fortunately, this type of measurement can be performed in conjunction with in vitro exposure models. We have taken these considerations as the starting point to develop an in vitro method to efficiently screen compounds for potential immunotoxicity. The T-cell lymphoma cell line EL-4 was transfected with the regulatory sequences of interleukin (IL)-2, IL-4, IL-10, interferon (IFN)-γ or actin fused to the gene for enhanced green fluorescent protein (EGFP) in either a stabile or a destabilised form. Consequently, changes in fluorescence intensity represent changes in cytokine expression with one cell line per cytokine. We used this prototype 'Cell Chip' to test, by means of flow cytometry, the immunomodulatory potential of 13 substances and were able to detect changes in cytokine expression in 12 cases (successful for cyclosporine, rapamycin, pentamidine, thalidomide, bis(tri-n-butyltin)oxide, house dust mite allergen (Der p I), 1-chloro-2,4-dinitrobenzene, benzocaine, tolylene 2,4-diisocyanate, potassium tetrachloroplatinate, sodium dodecyl sulphate and mercuric chloride; unsuccessful for penicillin G). In conclusion, this approach seems promising for in vitro screening for potential immunotoxicity, especially when additional cell lines besides T-cells are included

  5. Effect of capping agents on the cytotoxicity of silver nanoparticles in human normal and cancer skin cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Netchareonsirisuk, Ponsawan [Chulalongkorn University, Program in Biotechnology, Faculty of Science (Thailand); Puthong, Songchan [Chulalongkorn University, Antibody Production Research Unit, Institute of Biotechnology and Genetic Engineering (Thailand); Dubas, Stephan [Chulalongkorn University, Petroleum and Petrochemical College (Thailand); Palaga, Tanapat [Chulalongkorn University, Department of Microbiology, Faculty of Science (Thailand); Komolpis, Kittinan, E-mail: kittinan.k@chula.ac.th [Chulalongkorn University, Antibody Production Research Unit, Institute of Biotechnology and Genetic Engineering (Thailand)

    2016-11-15

    Silver nanoparticles (AgNPs) are among the most widely used nanomaterials in medical and consumer products. However, safety in the uses of AgNPs is still controversial. The toxicity of AgNPs toward various cell types has been reported to depend on the surface properties of the nanoparticles. In this study, the effect of AgNPs with the average size of 5–15 nm on the viability of the CCD-986SK human normal skin fibroblast cell line and A375 human malignant melanoma cell line was evaluated. Comparative toxicity studies, based on MTT assay, were performed by using either sodium alginate or poly (4-styrenesulfonic acid-co-maleic acid) sodium salt (PSSMA) as capping agent in the nanoparticle preparation. The cytotoxicity tests revealed that AgNO{sub 3} alone was highly toxic to both cell types while both alginate and PSSMA alone were not toxic. AgNPs capped with alginate were selectively toxic to the cancer cell line but not to the normal cell line while AgNPs capped with PSSMA were toxic to both cancer and normal cell lines. Judging from the 50 % inhibition concentration (IC{sub 50}), it was found that the cancer cell line was more sensitive to AgNPs than the normal cell line. Study on the mode of cell death by annexin V and propidium iodide staining revealed that AgNPs induced more apoptotic cell death (84–90 %) than necrosis (8–12 %) in the skin cancer cell line. These results suggest that the toxicity of AgNPs depended on the type of capping agent and the type of cell line.

  6. Establishment and characterization of a novel osteosarcoma cell line: CHOS.

    Science.gov (United States)

    Liu, Yunlu; Feng, Xiaobo; Zhang, Yukun; Jiang, Hongyan; Cai, Xianyi; Yan, Xinxin; Huang, Zengfa; Mo, Fengbo; Yang, Wen; Yang, Cao; Yang, Shuhua; Liu, Xianzhe

    2016-12-01

    Osteosarcoma has a well-recognized bimodal distribution, with the first peak in adolescence and another in the elderly age-group. The elderly patients have different clinical features and a poorer prognosis as compared to adolescents. To better understand the biological features of osteosarcoma in the elderly population, we established a new human osteosarcoma cell line from a 58-year-old man with primary chondroblastic osteosarcoma. After 6 months of continuous culture in vitro for over 50 passages, an immortalized cell line CHOS was established. The cell line was well-characterized by cytogenetic, biomarker, functional, and histological analyses. The CHOS cells exhibited a spindle-shaped morphology and a doubling time of 36 h. Cytogenetic analysis of CHOS cells revealed the loss of chromosome Y and the gain of chromosome 12. Quantitative real-time polymerase chain reaction (RT-PCR), Western blotting and/or immunofluorescence revealed the expression of chondroblastic, mesenchymal and tumor metastasis markers in the CHOS cells. Compared with the osteosarcoma cell line, the CHOS cells were found to be more sensitive to cisplatin and doxorubicin, but were resistant to methotrexate. The cell line was highly tumorigenic and maintained the histological characteristics and invasive nature of the original tumor. Furthermore, on immunohistochemical analysis, the xenografts and metastases were found to co-express collagen II, aggrecan, vimentin and S100A4 that resembled the original tumor cells. Our results indicate, the potential of CHOS cell line to serve as a useful tool for further studies on the molecular biology of osteosarcoma, especially in the elderly patients. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:2116-2125, 2016. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  7. Ochratoxin A: induction of (oxidative) DNA damage, cytotoxicity and apoptosis in mammalian cell lines and primary cells

    International Nuclear Information System (INIS)

    Kamp, Hennicke G.; Eisenbrand, Gerhard; Schlatter, Josef; Wuerth, Kirsten; Janzowski, Christine

    2005-01-01

    Ochratoxin A (OTA) is a nephrotoxic/-carcinogenic mycotoxin, produced by several Aspergillus- and Penicillium-strains. Humans are exposed to OTA via food contamination, a causal relationship of OTA to human endemic Balkan nephropathy is still under debate. Since DNA-adducts of OTA or its metabolites could not be identified unambiguously, its carcinogenic effectiveness might be related to secondary effects, such as oxidative cell damage or cell proliferation. In this study, OTA mediated induction of (oxidative) DNA damage, cytotoxicity (necrosis, growth inhibition, apoptosis) and modulation of glutathione were investigated in cell lines (V79, CV-1) and primary rat kidney cells. After 24 h incubation, viability of V79 cells was strongly decreased by OTA concentrations >2.5 μmol/L, whereas CV-1 cells were clearly less sensitive. Strong growth inhibition occurred in both cell lines (IC 50 ∼2 μmol/L). Apoptosis, detected with an immunochemical test and with flow cytometry, was induced by >1 μmol/L OTA. Oxidative DNA damage, detected by comet assay after additional treatment with repair enzymes, was induced in all cell systems already at five-fold lower concentrations. Glutathione in CV-1 cells was depleted after 1 h incubation (>100 μmol/L). In contrast, an increase was measured after 24 h incubation (>0.5 μmol/L). In conclusion, OTA induces oxidative DNA damage at low, not yet cytotoxic concentrations. Oxidative DNA damage might initiate cell transformation eventually in connection with proliferative response following cytotoxic cell death. Both events might represent pivotal factors in the chain of cellular events leading into nephro-carcinogenicity of OTA

  8. Comparative performance of fetal goat tongue cell line ZZ-R 127 and fetal porcine kidney cell line LFBK-αvβ6 for Foot-and-mouth disease virus isolation.

    Science.gov (United States)

    Fukai, Katsuhiko; Morioka, Kazuki; Yamada, Manabu; Nishi, Tatsuya; Yoshida, Kazuo; Kitano, Rie; Yamazoe, Reiko; Kanno, Toru

    2015-07-01

    The fetal goat tongue cell line ZZ-R 127 and the fetal porcine kidney cell line LFBK-α(v)β(6) have been reported to have high sensitivity to various Foot-and-mouth disease virus (FMDV) strains. The suitability of ZZ-R 127 cells for FMDV isolation not only from epithelial suspensions but also from other clinical samples has already been confirmed in a previous study. However, to our knowledge, the suitability of LFBK-α(v)β(6) cells has not been evaluated using clinical samples other than epithelial materials. In addition, both cell lines have never been compared, in terms of use for FMDV isolation, under the same conditions. Therefore, in the current study, the virus isolation rates of both cell lines were compared using clinical samples collected from animals infected experimentally with FMDV. Viruses were successfully isolated from clinical samples other than epithelial suspensions for both cell lines. The virus isolation rates for the 2 cell lines were not significantly different. The Cohen kappa coefficients between the virus isolation results for both cell lines were significantly high. Taken together, these results confirmed the suitability of LFBK-α(v)β(6) cells for FMDV isolation from clinical samples other than epithelial suspensions. The levels of susceptibility of both cell lines to FMDV isolation were also confirmed to be almost the same. © 2015 The Author(s).

  9. Establishment of a novel human medulloblastoma cell line characterized by highly aggressive stem-like cells.

    Science.gov (United States)

    Silva, Patrícia Benites Gonçalves da; Rodini, Carolina Oliveira; Kaid, Carolini; Nakahata, Adriana Miti; Pereira, Márcia Cristina Leite; Matushita, Hamilton; Costa, Silvia Souza da; Okamoto, Oswaldo Keith

    2016-08-01

    Medulloblastoma is a highly aggressive brain tumor and one of the leading causes of morbidity and mortality related to childhood cancer. These tumors display differential ability to metastasize and respond to treatment, which reflects their high degree of heterogeneity at the genetic and molecular levels. Such heterogeneity of medulloblastoma brings an additional challenge to the understanding of its physiopathology and impacts the development of new therapeutic strategies. This translational effort has been the focus of most pre-clinical studies which invariably employ experimental models using human tumor cell lines. Nonetheless, compared to other cancers, relatively few cell lines of human medulloblastoma are available in central repositories, partly due to the rarity of these tumors and to the intrinsic difficulties in establishing continuous cell lines from pediatric brain tumors. Here, we report the establishment of a new human medulloblastoma cell line which, in comparison with the commonly used and well-established cell line Daoy, is characterized by enhanced proliferation and invasion capabilities, stem cell properties, increased chemoresistance, tumorigenicity in an orthotopic metastatic model, replication of original medulloblastoma behavior in vivo, strong chromosome structural instability and deregulation of genes involved in neural development. These features are advantageous for designing biologically relevant experimental models in clinically oriented studies, making this novel cell line, named USP-13-Med, instrumental for the study of medulloblastoma biology and treatment.

  10. Mouse DRG Cell Line with Properties of Nociceptors.

    Science.gov (United States)

    Doran, Ciara; Chetrit, Jonathan; Holley, Matthew C; Grundy, David; Nassar, Mohammed A

    2015-01-01

    In vitro cell lines from DRG neurons aid drug discovery because they can be used for early stage, high-throughput screens for drugs targeting pain pathways, with minimal dependence on animals. We have established a conditionally immortal DRG cell line from the Immortomouse. Using immunocytochemistry, RT-PCR and calcium microfluorimetry, we demonstrate that the cell line MED17.11 expresses markers of cells committed to the sensory neuron lineage. Within a few hours under differentiating conditions, MED17.11 cells extend processes and following seven days of differentiation, express markers of more mature DRG neurons, such as NaV1.7 and Piezo2. However, at least at this time-point, the nociceptive marker NaV1.8 is not expressed, but the cells respond to compounds known to excite nociceptors, including the TRPV1 agonist capsaicin, the purinergic receptor agonist ATP and the voltage gated sodium channel agonist, veratridine. Robust calcium transients are observed in the presence of the inflammatory mediators bradykinin, histamine and norepinephrine. MED17.11 cells have the potential to replace or reduce the use of primary DRG culture in sensory, pain and developmental research by providing a simple model to study acute nociception, neurite outgrowth and the developmental specification of DRG neurons.

  11. Gene expression analysis of cell death induction by Taurolidine in different malignant cell lines

    International Nuclear Information System (INIS)

    Chromik, Ansgar M; Weyhe, Dirk; Mittelkötter, Ulrich; Uhl, Waldemar; Hahn, Stephan A; Daigeler, Adrien; Flier, Annegret; Bulut, Daniel; May, Christina; Harati, Kamran; Roschinsky, Jan; Sülberg, Dominique

    2010-01-01

    The anti-infective agent Taurolidine (TRD) has been shown to have cell death inducing properties, but the mechanism of its action is largely unknown. The aim of this study was to identify potential common target genes modulated at the transcriptional level following TRD treatment in tumour cell lines originating from different cancer types. Five different malignant cell lines (HT29, Chang Liver, HT1080, AsPC-1 and BxPC-3) were incubated with TRD (100 μM, 250 μM and 1000 μM). Proliferation after 8 h and cell viability after 24 h were analyzed by BrdU assay and FACS analysis, respectively. Gene expression analyses were carried out using the Agilent -microarray platform to indentify genes which displayed conjoint regulation following the addition of TRD in all cell lines. Candidate genes were subjected to Ingenuity Pathways Analysis and selected genes were validated by qRT-PCR and Western Blot. TRD 250 μM caused a significant inhibition of proliferation as well as apoptotic cell death in all cell lines. Among cell death associated genes with the strongest regulation in gene expression, we identified pro-apoptotic transcription factors (EGR1, ATF3) as well as genes involved in the ER stress response (PPP1R15A), in ubiquitination (TRAF6) and mitochondrial apoptotic pathways (PMAIP1). This is the first conjoint analysis of potential target genes of TRD which was performed simultaneously in different malignant cell lines. The results indicate that TRD might be involved in different signal transduction pathways leading to apoptosis

  12. Down-regulation of HSP40 gene family following OCT4B1 suppression in human tumor cell lines

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Mirzaei

    2016-02-01

    Full Text Available Objective(s: The OCT4B1, as one of OCT4 variants, is expressed in cancer cell lines and tissues more than other variants and plays an important role in apoptosis and stress (heat shock protein pathways. The present study was designed to determine the effects of OCT4B1 silencing on expressional profile of HSP40 gene family expression in three different human tumor cell lines. Materials and Methods: The OCT4B1 expression was suppressed by specific siRNA transfection in AGS (gastric adenocarcinoma, 5637 (bladder tumor and U-87MG (brain tumor cell lines employing Lipofectamine reagent. Real-time PCR array technique was employed for RNA qualification. The fold changes were calculated using RT2 Profiler PCR array data analysis software version 3.5. Results: Our results indicated that fifteen genes (from 36 studied genes were down-regulated and two genes (DNAJC11 and DNAJC5B were up-regulated in all three studied tumor cell lines by approximately more than two folds. The result of other studied genes (19 genes showed different expressional pattern (up or down-expression based on tumor cell lines. Conclusion: According to the findings of the present study, we may suggest that there is a direct correlation between OCT4B1 expression in tumor cell lines (and tissues and HSP40 family gene expressions to escape from apoptosis and cancer expansion.

  13. Cytotoxicity and analysis of apoptosis gene expression in colon cancer cell line treated with cell extract of Lactobacillus casei as indigenous probiotic bacterium

    Directory of Open Access Journals (Sweden)

    Amir Mirzaie

    2017-03-01

    Full Text Available Background and aim: Nowadays, the probiotic bacteria such as lactobacilli are known as prevention factor for various disease especially cancer. The aim of this study was to investigate the cytotoxic effect of Lactobacillus casei PTCC 1608 cell extract as probiotic bacteria on colon cancer cell line (HT29 and analysis of Bax and Bcl2 apoptosis gene expression. Methods: In this experimental study, the cell extract of heat killed L. casei was prepared in 0.01, 0.1, 1, 10, 100 and 1000 µg/ml concentration and subsequently, the cytotoxicity of various cell extracts on HT29 and HEC293 cell lines were evaluated in 24 hours using MTT assay. Moreover, the Bax and Bcl2 apoptosis gene expression level in HT29 cell line was analyzed using Real Time PCR. The apoptotic effects of cell extract was determined using Flow-cytometry technique. Finally, the collected data were statistically analyzed using one-way anal­ysis of variance with the SPSS/18 software. Results: The results of MTT test show that cell extracts of L. casei is able to reduce the survival rate of HT29 cell line to 0.95±0.44, 73.45±0.21, 51.49±0.87, 39.5±0.45 and 19.7±0.55. In addition to, the Real Time PCR results indicated the expression level of Bax and Bcl2 was increased and decreased respectively, in HT29 cell line (2.76 ± 0.54 (P<0.05, 0.21 ± 0.43 (P< 0.05 in 24 h. Moreover, the flow cytometry results indicated the 35.62 % apoptosis in HT29 cell line treated with IC50 value. Conclusion: The results show that the cell extract of L. casei PTCC 1608 could induced the apoptosis in HT29 cell line and it had low toxicity on HEC293 cell line. Therefore, it seems that L. casei has potential uses as probiotic for pharmaceutical applications including prevention and treatment of colon cancer.

  14. Assessment of cytotoxicity of Portulaca oleracea Linn. against human colon adenocarcinoma and vero cell line

    Science.gov (United States)

    Mali, Prashant Y.

    2015-01-01

    Background: Portulaca oleracea Linn. (Portulacaceae) is commonly known as purslane in English. In traditional system it is used to cure diarrhea, dysentery, leprosy, ulcers, asthma, and piles, reduce small tumors and inflammations. Aim: To assess cytotoxic potential of chloroform extract of P. oleracea whole plant against human colon adenocarcinoma (HCT-15) and normal (Vero) cell line. Materials and Methods: Characterization of chloroform extract of P. oleracea by Fourier transform infrared (FTIR) spectroscopy was performed. Cytotoxicity (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide) assay was used for assessment of cytotoxic potential of chloroform extract of P. oleracea. The concentrations of 1000–0.05 μg/ml were used in the experiment. Doxorubicin was considered as standard reference drug. Results: FTIR spectrum showed the peak at 1019.52 and 1396.21 center. The 50% cell growth inhibition (IC50) of chloroform extract of P. oleracea and doxorubicin was 1132.02 μg/ml and 460.13 μg/ml against human colon adenocarcinoma and 767.60 μg/ml and 2392.71 μg/ml against Vero cell line, respectively. Conclusion: Chloroform extract of P. oleracea whole plant was less efficient or does not have cytotoxic activity against human colon adenocarcinoma cell line. It was not safe to normal Vero cell line. But, there is a need to isolate, identify, and confirm the phytoconstituents present in extract by sophisticated analytical techniques. PMID:27833374

  15. DNA excision repair in cell extracts from human cell lines exhibiting hypersensitivity to DNA-damaging agents

    International Nuclear Information System (INIS)

    Hansson, J.; Keyse, S.M.; Lindahl, T.; Wood, R.D.

    1991-01-01

    Whole cell extracts from human lymphoid cell lines can perform in vitro DNA repair synthesis in plasmids damaged by agents including UV or cis-diamminedichloroplatinum(II) (cis-DDP). Extracts from xeroderma pigmentosum (XP) cells are defective in repair synthesis. We have now studied in vitro DNA repair synthesis using extracts from lymphoblastoid cell lines representing four human hereditary syndromes with increased sensitivity to DNA-damaging agents. Extracts of cell lines from individuals with the sunlight-sensitive disorders dysplastic nevus syndrome or Cockayne's syndrome (complementation groups A and B) showed normal DNA repair synthesis in plasmids with UV photoproducts. This is consistent with in vivo measurements of the overall DNA repair capacity in such cell lines. A number of extracts were prepared from two cell lines representing the variant form of XP (XP-V). Half of the extracts prepared showed normal levels of in vitro DNA repair synthesis in plasmids containing UV lesions, but the remainder of the extracts from the same cell lines showed deficient repair synthesis, suggesting the possibility of an unusually labile excision repair protein in XP-V. Fanconi's anemia (FA) cells show cellular hypersensitivity to cross-linking agents including cis-DDP. Extracts from cell lines belonging to two different complementation groups of FA showed normal DNA repair synthesis in plasmids containing cis-DDP or UV adducts. Thus, there does not appear to be an overall excision repair defect in FA, but the data do not exclude a defect in the repair of interstrand DNA cross-links

  16. Fluoroorotic Acid-Selected Nicotiana plumbaginifolia Cell Lines with a Stable Thymine Starvation Phenotype Have Lost the Thymine-Regulated Transcriptional Program1

    Science.gov (United States)

    Santoso, Djoko; Thornburg, Robert

    2000-01-01

    We have selected 143 independent Nicotiana plumbaginifolia cell lines that survive in the presence of 5-fluoroorotic acid. These lines show several diverse phenotypes. The majority of these cell lines showed reduced levels of UMP synthase. However, one particular phenotype, which represents 14% of the total independent lines (20 cell lines), showed an unexpected, high level of UMP synthase and was therefore analyzed in detail. The selected cell lines showed no differences with wild-type cells with respect to uptake of orotic acid, affinity of UMP synthase for its substrates, or UMP synthase gene-copy number. Alternative detoxification mechanisms were also excluded. The elevated enzyme activity was correlated with elevated UMP synthase protein levels as well as elevated UMP synthase mRNA levels. In contrast to wild-type cell lines, the fluoroorotic acid-selected cell lines did not respond to thymine or to other biochemicals that affect thymine levels. In addition, there was also a concomitant up-regulation of aspartate transcarbamoylase, however, dihydroorotase and dihydroorotate dehydrogenase are not up-regulated in these cell lines. PMID:10938367

  17. RUNX3 is involved in caspase-3-dependent apoptosis induced by a combination of 5-aza-CdR and TSA in leukaemia cell lines.

    Science.gov (United States)

    Zhai, Feng-Xian; Liu, Xiang-Fu; Fan, Rui-Fang; Long, Zi-Jie; Fang, Zhi-Gang; Lu, Ying; Zheng, Yong-Jiang; Lin, Dong-Jun

    2012-03-01

    Epigenetic therapy has had a significant impact on the management of haematologic malignancies. The aim of this study was to assess whether 5-aza-CdR and TSA inhibit the growth of leukaemia cells and induce caspase-3-dependent apoptosis by upregulating RUNX3 expression. K562 and Reh cells were treated with 5-aza-CdR, TSA or both compounds. RT-PCR and Western blot analyses were used to examine the expression of RUNX3 at the mRNA and protein levels, respectively. Immunofluorescence microscopy was used to detect the cellular location of RUNX3. Additionally, after K562 cells were transfected with RUNX3, apoptosis and proliferation were studied using Annexin V staining and MTT assays. The expression of RUNX3 in leukaemia cell lines was markedly less than that in the controls. Demethylating drug 5-aza-CdR could induce RUNX3 expression, but the combination of TSA and 5-aza-CdR had a greater effect than did treatment with a single compound. The combination of 5-aza-CdR and TSA induced the translocation of RUNX3 from the cytoplasm into the nucleus. TSA enhanced apoptosis induced by 5-aza-CdR, and Annexin V and Hoechst 33258 staining showed that the combination induced apoptosis but not necrosis. Furthermore, apoptosis was dependent on the caspase-3 pathway. RUNX3 overexpression in K562 cells led to growth inhibition and apoptosis and potentiated the effects of 5-aza-CdR induction. RUNX3 plays an important role in leukaemia cellular functions, and the induction of RUNX3-mediated effects may contribute to the therapeutic value of combination TSA and 5-aza-CdR treatment.

  18. Radiation response of mouse lymphoid and myeloid cell lines. Pt. 1

    International Nuclear Information System (INIS)

    Radford, I.R.

    1994-01-01

    The sensitivity of 10 mouse lymphoid or myeloid cell lines to γ-ray- and DNA-associated 125 I-decay-induced clonogenic cell killing have been compared with their rate of loss of viability (membrane integrity) and with their putative cell type of origin. The increased sensitivity of haematopoietic cell lines to killing by DNA dsb may be related to their mode of death (apoptosis versus necrosis). Mode of cell death may thus be an important factor in determining the 'inherent radiosensitivity' of normal cells/tissues. Haematopoietic cell lines that undergo rapid interphase apoptotic death showed extreme sensitivity to DNA dsb. (author)

  19. 17-AAG and Apoptosis, Autophagy, and Mitophagy in Canine Osteosarcoma Cell Lines.

    Science.gov (United States)

    Massimini, M; Palmieri, C; De Maria, R; Romanucci, M; Malatesta, D; De Martinis, M; Maniscalco, L; Ciccarelli, A; Ginaldi, L; Buracco, P; Bongiovanni, L; Della Salda, L

    2017-05-01

    Canine osteosarcoma is highly resistant to current chemotherapy; thus, clarifying the mechanisms of tumor cell resistance to treatments is an urgent need. We tested the geldanamycin derivative 17-AAG (17-allylamino-17-demethoxygeldanamycin) prototype of Hsp90 (heat shock protein 90) inhibitors in 2 canine osteosarcoma cell lines, D22 and D17, derived from primary and metastatic tumors, respectively. With the aim to understand the interplay between cell death, autophagy, and mitophagy, in light of the dual effect of autophagy in regulating cancer cell viability and death, D22 and D17 cells were treated with different concentrations of 17-AAG (0.5 μM, 1 μM) for 24 and 48 hours. 17-AAG-induced apoptosis, necrosis, autophagy, and mitophagy were assessed by transmission electron microscopy, flow cytometry, and immunofluorescence. A simultaneous increase in apoptosis, autophagy, and mitophagy was observed only in the D22 cell line, while D17 cells showed low levels of apoptotic cell death. These results reveal differential cell response to drug-induced stress depending on tumor cell type. Therefore, pharmacological treatments based on proapoptotic chemotherapy in association with autophagy regulators would benefit from a predictive in vitro screening of the target cell type.

  20. Pancreatic Transdifferentiation and Glucose-Regulated Production of Human Insulin in the H4IIE Rat Liver Cell Line

    Directory of Open Access Journals (Sweden)

    Binhai Ren

    2016-04-01

    Full Text Available Due to the limitations of current treatment regimes, gene therapy is a promising strategy being explored to correct blood glucose concentrations in diabetic patients. In the current study, we used a retroviral vector to deliver either the human insulin gene alone, the rat NeuroD1 gene alone, or the human insulin gene and rat NeuroD1 genes together, to the rat liver cell line, H4IIE, to determine if storage of insulin and pancreatic transdifferentiation occurred. Stable clones were selected and expanded into cell lines: H4IIEins (insulin gene alone, H4IIE/ND (NeuroD1 gene alone, and H4IIEins/ND (insulin and NeuroD1 genes. The H4IIEins cells did not store insulin; however, H4IIE/ND and H4IIEins/ND cells stored 65.5 ± 5.6 and 1475.4 ± 171.8 pmol/insulin/5 × 106 cells, respectively. Additionally, several β cell transcription factors and pancreatic hormones were expressed in both H4IIE/ND and H4IIEins/ND cells. Electron microscopy revealed insulin storage vesicles in the H4IIE/ND and H4IIEins/ND cell lines. Regulated secretion of insulin to glucose (0–20 mmol/L was seen in the H4IIEins/ND cell line. The H4IIEins/ND cells were transplanted into diabetic immunoincompetent mice, resulting in normalization of blood glucose. This data shows that the expression of NeuroD1 and insulin in liver cells may be a useful strategy for inducing islet neogenesis and reversing diabetes.

  1. Modelling cell population growth with applications to cancer therapy in human tumour cell lines.

    Science.gov (United States)

    Basse, Britta; Baguley, Bruce C; Marshall, Elaine S; Wake, Graeme C; Wall, David J N

    2004-01-01

    In this paper we present an overview of the work undertaken to model a population of cells and the effects of cancer therapy. We began with a theoretical one compartment size structured cell population model and investigated its asymptotic steady size distributions (SSDs) (On a cell growth model for plankton, MMB JIMA 21 (2004) 49). However these size distributions are not similar to the DNA (size) distributions obtained experimentally via the flow cytometric analysis of human tumour cell lines (data obtained from the Auckland Cancer Society Research Centre, New Zealand). In our one compartment model, size was a generic term, but in order to obtain realistic steady size distributions we chose size to be DNA content and devised a multi-compartment mathematical model for the cell division cycle where each compartment corresponds to a distinct phase of the cell cycle (J. Math. Biol. 47 (2003) 295). We then incorporated another compartment describing the possible induction of apoptosis (cell death) from mitosis phase (Modelling cell death in human tumour cell lines exposed to anticancer drug paclitaxel, J. Math. Biol. 2004, in press). This enabled us to compare our model to flow cytometric data of a melanoma cell line where the anticancer drug, paclitaxel, had been added. The model gives a dynamic picture of the effects of paclitaxel on the cell cycle. We hope to use the model to describe the effects of other cancer therapies on a number of different cell lines. Copyright 2004 Elsevier Ltd.

  2. Cationic Phosphorus Dendrimer Enhances Photodynamic Activity of Rose Bengal against Basal Cell Carcinoma Cell Lines.

    Science.gov (United States)

    Dabrzalska, Monika; Janaszewska, Anna; Zablocka, Maria; Mignani, Serge; Majoral, Jean Pierre; Klajnert-Maculewicz, Barbara

    2017-05-01

    In the last couple of decades, photodynamic therapy emerged as a useful tool in the treatment of basal cell carcinoma. However, it still meets limitations due to unfavorable properties of photosensitizers such as poor solubility or lack of selectivity. Dendrimers, polymers widely studied in biomedical field, may play a role as photosensitizer carriers and improve the efficacy of photodynamic treatment. Here, we describe the evaluation of an electrostatic complex of cationic phosphorus dendrimer and rose bengal in such aspects as singlet oxygen production, cellular uptake, and phototoxicity against three basal cell carcinoma cell lines. Rose bengal-cationic dendrimer complex in molar ratio 5:1 was compared to free rose bengal. Obtained results showed that the singlet oxygen production in aqueous medium was significantly higher for the complex than for free rose bengal. The cellular uptake of the complex was 2-7-fold higher compared to a free photosensitizer. Importantly, rose bengal, rose bengal-dendrimer complex, and dendrimer itself showed no dark toxicity against all three cell lines. Moreover, we observed that phototoxicity of the complex was remarkably enhanced presumably due to high cellular uptake. On the basis of the obtained results, we conclude that rose bengal-cationic dendrimer complex has a potential in photodynamic treatment of basal cell carcinoma.

  3. Progesterone-specific stimulation of triglyceride biosynthesis in a breast cancer cell line (T-47D)

    International Nuclear Information System (INIS)

    Judge, S.M.; Chatterton, R.T. Jr.

    1983-01-01

    The purpose of this study was to examine the lactogenic response of human mammary cancer cell lines to hormones in vitro. Progesterone was found to stimulate the incorporation of 14C from [14C]acetate into triglycerides (TG) and to promote accumulation of TG with a fatty acid composition similar to that of human milk fat in T-47D cells. Lipid droplets were observed in larger numbers without concomitant accumulation of casein granules in cells incubated with progesterone, but secretion of lipid into the medium did not occur. An effect of progesterone on TG accumulation was detectable after 12 hr and was maximal at 72 hr. Increasing doses of progesterone (10(-9) to 10(-5) M) caused a progressive increase in TG accumulation. The presence of cortisol and/or prolactin did not alter TG formation nor the dose response of the cells to progesterone. The growth rate of T-47D cells was not altered by the presence of progesterone in the medium. Neither of the human mammary cancer cell lines, MCF-7 and HBL-100, nor the human fibroblast cell lines, 28 and 857, responded to progesterone. The data indicate that, while the normally lactogenic hormones do not stimulate milk product biosynthesis in the cell lines tested, progesterone specifically stimulated synthesis and accumulation of TG in the T-47D cells

  4. DNA fingerprinting of glioma cell lines and considerations on similarity measurements.

    Science.gov (United States)

    Bady, Pierre; Diserens, Annie-Claire; Castella, Vincent; Kalt, Stefanie; Heinimann, Karl; Hamou, Marie-France; Delorenzi, Mauro; Hegi, Monika E

    2012-06-01

    Glioma cell lines are an important tool for research in basic and translational neuro-oncology. Documentation of their genetic identity has become a requirement for scientific journals and grant applications to exclude cross-contamination and misidentification that lead to misinterpretation of results. Here, we report the standard 16 marker short tandem repeat (STR) DNA fingerprints for a panel of 39 widely used glioma cell lines as reference. Comparison of the fingerprints among themselves and with the large DSMZ database comprising 9 marker STRs for 2278 cell lines uncovered 3 misidentified cell lines and confirmed previously known cross-contaminations. Furthermore, 2 glioma cell lines exhibited identity scores of 0.8, which is proposed as the cutoff for detecting cross-contamination. Additional characteristics, comprising lack of a B-raf mutation in one line and a similarity score of 1 with the original tumor tissue in the other, excluded a cross-contamination. Subsequent simulation procedures suggested that, when using DNA fingerprints comprising only 9 STR markers, the commonly used similarity score of 0.8 is not sufficiently stringent to unambiguously differentiate the origin. DNA fingerprints are confounded by frequent genetic alterations in cancer cell lines, particularly loss of heterozygosity, that reduce the informativeness of STR markers and, thereby, the overall power for distinction. The similarity score depends on the number of markers measured; thus, more markers or additional cell line characteristics, such as information on specific mutations, may be necessary to clarify the origin.

  5. Expression of G-protein inwardly rectifying potassium channels (GIRKs in lung cancer cell lines

    Directory of Open Access Journals (Sweden)

    Schuller Hildegard M

    2005-08-01

    Full Text Available Abstract Background Previous data from our laboratory has indicated that there is a functional link between the β-adrenergic receptor signaling pathway and the G-protein inwardly rectifying potassium channel (GIRK1 in human breast cancer cell lines. We wanted to determine if GIRK channels were expressed in lung cancers and if a similar link exists in lung cancer. Methods GIRK1-4 expression and levels were determined by reverse transcription polymerase chain reaction (RT-PCR and real-time PCR. GIRK protein levels were determined by western blots and cell proliferation was determined by a 5-bromo-2'-deoxyuridine (BrdU assay. Results GIRK1 mRNA was expressed in three of six small cell lung cancer (SCLC cell lines, and either GIRK2, 3 or 4 mRNA expression was detected in all six SCLC cell lines. Treatment of NCI-H69 with β2-adrenergic antagonist ICI 118,551 (100 μM daily for seven days led to slight decreases of GIRK1 mRNA expression levels. Treatment of NCI-H69 with the β-adrenergic agonist isoproterenol (10 μM decreased growth rates in these cells. The GIRK inhibitor U50488H (2 μM also inhibited proliferation, and this decrease was potentiated by isoproterenol. In the SCLC cell lines that demonstrated GIRK1 mRNA expression, we also saw GIRK1 protein expression. We feel these may be important regulatory pathways since no expression of mRNA of the GIRK channels (1 & 2 was found in hamster pulmonary neuroendocrine cells, a suggested cell of origin for SCLC, nor was GIRK1 or 2 expression found in human small airway epithelial cells. GIRK (1,2,3,4 mRNA expression was also seen in A549 adenocarcinoma and NCI-H727 carcinoid cell lines. GIRK1 mRNA expression was not found in tissue samples from adenocarcinoma or squamous cancer patients, nor was it found in NCI-H322 or NCI-H441 adenocarcinoma cell lines. GIRK (1,3,4 mRNA expression was seen in three squamous cell lines, GIRK2 was only expressed in one squamous cell line. However, GIRK1 protein

  6. [The characters and specific features of new human embryonic stem cells lines].

    Science.gov (United States)

    Krylova, T A; Kol'tsova, A M; Zenin, V V; Gordeeva, O F; Musorina, A S; Goriachaia, T S; Shlykova, S A; Kamenetskaia, Iu K; Pinaev, G P; Polianskaia, G G

    2009-01-01

    Four continuous human embryonic stem cell lines (SC1, SC2, SC3 and SC4), derived from the blastocysts has been described. The cell lines were cultivated on mitotically inactivated human feeder cells. The cell lines SC1 and SC2 have passed through 150 population doublings and the cell lines SC3 and SC4 -- near 120 populations doublings, which exceeds Hayflick limit sufficiently. These cell lines maintain high activity of alkaline phosphatase, expression of transcription factor OCT-4 and cell surface antigens (SSEA-4, TRA-1-60 and TRA-1-81), confirming their ESC status and human specificity. Immunofluorescent detection of antigens, characteristic of ectoderm, endoderm and mesoderm confirms the ability of these cells to retain their pluripotency under in vitro condition. PCR analysis revealed expression of six genes specific for pluripotent cells (OCT-4, NANOG, DPPA3/STELLA, TDGF/CRIPTO and LEFTYA). Correlation between the level of proliferative activity and the character of DNA-bound fluorescent staining was found. Fluorescent dyes, Hoechst 33342 and PI, produced diffuse staining of the nuclei in slowly proliferating cells of the SC1 and SC2 lines. In contrast, in actively proliferating cells of the SC3 and SC4 lines, the clear staining of the nuclei was observed. Upon changing the cultivation condition, proliferative activity of SC3 and SC4 lines decreased and became similar to that of SC1 and SC2 lines. The character of the fluorescent staining of all these lines was also shown to be similar. These results show that quality of the fluorescent staining with Hoechst 33342 and PI reflects the level of proliferation. Possible causes and mechanisms of this feature of human ESC are discussed.

  7. Effect of sirolimus on urinary bladder cancer T24 cell line

    Directory of Open Access Journals (Sweden)

    Oliveira Paula A

    2009-01-01

    Full Text Available Abstract Background Sirolimus is recently reported to have antitumour effects on a large variety of cancers. The present study was performed to investigate sirolimus's ability to inhibit growth in T24 bladder cancer cells. Methods T24 bladder cancer cells were treated with various concentrations of sirolimus. MTT assay was used to evaluate the proliferation inhibitory effect on T24 cell line. The viability of T24 cell line was determined by Trypan blue exclusion analysis. Results Sirolimus inhibits the growth of bladder carcinoma cells and decreases their viability. Significant correlations were found between cell proliferation and sirolimus concentration (r = 0.830; p Conclusion Sirolimus has an anti-proliferation effect on the T24 bladder carcinoma cell line. The information from our results is useful for a better understanding sirolimus's anti-proliferative activity in the T24 bladder cancer cell line.

  8. Characterization of the replication timing program of 6 human model cell lines

    Directory of Open Access Journals (Sweden)

    Djihad Hadjadj

    2016-09-01

    Full Text Available During the S-phase, the DNA replication process is finely orchestrated and regulated by two programs: the spatial program that determines where replication will start in the genome (Cadoret et al. (2008 Oct 14, Cayrou et al. (2011 Sep, Picard et al. (2014 May 1 [1–3], and the temporal program that determines when during the S phase different parts of the genome are replicated and when origins are activated. The temporal program is so well conserved for each cell type from independent individuals [4] that it is possible to identify a cell type from an unknown sample just by determining its replication timing program. Moreover, replicative domains are strongly correlated with the partition of the genome into topological domains (determined by the Hi-C method, Lieberman-Aiden et al. (2009 Oct 9, Pope et al. (2014 Nov 20 [5,6]. On the one hand, replicative areas are well defined and participate in shaping the spatial organization of the genome for a given cell type. On the other hand, studies on the timing program during cell differentiation showed a certain plasticity of this program according to the stage of cell differentiation Hiratani et al. (2008 Oct 7, 2010 Feb [7,8]. Domains where a replication timing change was observed went through a nuclear re-localization. Thus the temporal program of replication can be considered as an epigenetic mark Hiratani and Gilbert (2009 Feb 16 [9]. We present the genomic data of replication timing in 6 human model cell lines: U2OS (GSM2111308, RKO (GSM2111309, HEK 293T (GSM2111310, HeLa (GSM2111311, MRC5-SV (GSM2111312 and K562 (GSM2111313. A short comparative analysis was performed that allowed us to define regions common to the 6 cell lines. These replication timing data can be taken into account when performing studies that use these model cell lines.

  9. Study of radiosensitization of chloroquine on esophageal cancer cell line

    International Nuclear Information System (INIS)

    Yuan Xiaoli; Li Tao; Huang Jianming; Zha Xiao; Deng Bifang; Lang Jinyi

    2014-01-01

    Objective: To investigate the possibility of chloroquine radiosensitization of esophageal cancer cell line TE-1 and its further mechanism. Methods: Effect of chloroquine on cell viability of TE-1 cells was determined by MTT method. Expression of LC3, Beclin-1 and formation of acidic vesicular organelles (AVOs) were determined by Western blot, and fluorescence staining with Lyso-Tracker Red DND-99, respectively. Clonogenic survival of TE-1 cells was examined by clonogenic forming assay. Results: Chloroquine showed dose-dependent inhibition of TE-1 cell growth, and its values of IC_5_0 and IC_1_0 were (72.33±5.28) and (15.42±3.33) μmol/L, respectively. The expression of Beclin-1 and LC3-II/I markedly increased in irradiated TE-1 cells. The addition of chloroquine with IC_1_0 concentration significantly reduced the fluorescence and intensity of AVOs accumulation in the cytoplasm of TE-1 cells. Clonogenic survival fraction decreased obviously in TE-1 cells with addition of chloroquine after radiation and the value of SERD0 was 1.439. Conclusions: Chloroquine could radiosensitize esophageal cancer cells by blocking autophagy-lysosomal pathway and be used as a potential radiosensitizing strategy. (authors)

  10. Cellular and Phenotypic Characterization of Canine Osteosarcoma Cell Lines

    Directory of Open Access Journals (Sweden)

    Marie E. Legare, Jamie Bush, Amanda K. Ashley, Taka Kato, William H. Hanneman

    2011-01-01

    Full Text Available Canine and human osteosarcoma (OSA have many similarities, with the majority of reported cases occurring in the appendicular skeleton, gender predominance noted, high rate of metastasis at the time of presentation, and a lack of known etiology for this devastating disease. Due to poor understanding of the molecular mechanisms underlying OSA, we have characterized seven different OSA canine cell lines: Abrams, D17, Grey, Hughes, Ingles, Jarques, and Marisco and compared them to U2, a human OSA cell line, for the following parameters: morphology, growth, contact inhibition, migrational tendencies, alkaline phosphatase staining, heterologous tumor growth, double-strand DNA breaks, and oxidative damage. All results demonstrated the positive characteristics of the Abrams cell line for use in future studies of OSA. Of particular interest, the robust growth of a subcutaneous tumor and rapid pulmonary metastasis of the Abrams cell line in an immunocompromised mouse shows incredible potential for the future use of Abrams as a canine OSA model. Further investigations utilizing a canine cell model of OSA, such as Abrams, will be invaluable to understanding the molecular events underlying OSA, pharmaceutical inhibition of metastasis, and eventual prevention of this devastating disease.

  11. Establishment of optimized MDCK cell lines for reliable efflux transport studies.

    Science.gov (United States)

    Gartzke, Dominik; Fricker, Gert

    2014-04-01

    Madin-Darby canine kidney (MDCK) cells transfected with human MDR1 gene (MDCK-MDR1) encoding for P-glycoprotein (hPgp, ABCB1) are widely used for transport studies to identify drug candidates as substrates of this efflux protein. Therefore, it is necessary to rely on constant and comparable expression levels of Pgp to avoid false negative or positive results. We generated a cell line with homogenously high and stable expression of hPgp through sorting single clones from a MDCK-MDR1 cell pool using fluorescence-activated cell sorting (FACS). To obtain control cell lines for evaluation of cross-interactions with endogenous canine Pgp (cPgp) wild-type cells were sorted with a low expression pattern of cPgp in comparison with the MDCK-MDR1. Expression of other transporters was also characterized in both cell lines by quantitative real-time PCR and Western blot. Pgp function was investigated applying the Calcein-AM assay as well as bidirectional transport assays using (3) H-Digoxin, (3) H-Vinblastine, and (3) H-Quinidine as substrates. Generated MDCK-MDR1 cell lines showed high expression of hPgp. Control MDCK-WT cells were optimized in showing a comparable expression level of cPgp in comparison with MDCK-MDR1 cell lines. Generated cell lines showed higher and more selective Pgp transport compared with parental cells. Therefore, they provide a significant improvement in the performance of efflux studies yielding more reliable results. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  12. Differential responses to radiation and hyperthermia of cloned cell lines derived from a single human melanoma xenograft

    International Nuclear Information System (INIS)

    Rofstad, E.K.; Brustad, T.

    1984-01-01

    One uncloned and five cloned cell lines were derived from a single human melanoma xenograft. Cells from passages 7-12 were exposed to either radiation or hyperthermia (42.5 0 C, pH = 7.4) under aerobic conditions and the colony forming ability of the cells was assayed in soft agar. The five cloned lines showed individual and characteristic responses to radiation as well as to hyperthermia. The variation in the response to radiation was mainly reflected in the size of the shoulders of the survival curves rather than in the D 0 -values. The variation in the response to hyperthermia was mainly reflected in the terminal slopes of the survival curves. The survival curve of cells from the uncloned line, both when exposed to radiation and hyperthermia, was positioned in the midst of those of the cloned lines. The response of the cloned lines to radiation did not correlate with the response to hyperthermia, indicating that tumor cell subpopulations which are resistant to radiation may respond well to hyperthermia

  13. Piperlongumine inhibits the proliferation and survival of B-cell acute lymphoblastic leukemia cell lines irrespective of glucocorticoid resistance

    International Nuclear Information System (INIS)

    Han, Seong-Su; Han, Sangwoo; Kamberos, Natalie L.

    2014-01-01

    Highlights: • PL inhibits the proliferation of B-ALL cell lines irrespective of GC-resistance. • PL selectively kills B-ALL cells by increasing ROS, but not normal counterpart. • PL does not sensitize majority of B-ALL cells to DEX. • PL represses the network of constitutively activated TFs and modulates their target genes. • PL may serve as a new therapeutic molecule for GC-resistant B-ALL. - Abstract: Piperlongumine (PL), a pepper plant alkaloid from Piper longum, has anti-inflammatory and anti-cancer properties. PL selectively kills both solid and hematologic cancer cells, but not normal counterparts. Here we evaluated the effect of PL on the proliferation and survival of B-cell acute lymphoblastic leukemia (B-ALL), including glucocorticoid (GC)-resistant B-ALL. Regardless of GC-resistance, PL inhibited the proliferation of all B-ALL cell lines, but not normal B cells, in a dose- and time-dependent manner and induced apoptosis via elevation of ROS. Interestingly, PL did not sensitize most of B-ALL cell lines to dexamethasone (DEX). Only UoC-B1 exhibited a weak synergistic effect between PL and DEX. All B-ALL cell lines tested exhibited constitutive activation of multiple transcription factors (TFs), including AP-1, MYC, NF-κB, SP1, STAT1, STAT3, STAT6 and YY1. Treatment of the B-ALL cells with PL significantly downregulated these TFs and modulated their target genes. While activation of AURKB, BIRC5, E2F1, and MYB mRNA levels were significantly downregulated by PL, but SOX4 and XBP levels were increased by PL. Intriguingly, PL also increased the expression of p21 in B-ALL cells through a p53-independent mechanism. Given that these TFs and their target genes play critical roles in a variety of hematological malignancies, our findings provide a strong preclinical rationale for considering PL as a new therapeutic agent for the treatment of B-cell malignancies, including B-ALL and GC-resistant B-ALL

  14. Piperlongumine inhibits the proliferation and survival of B-cell acute lymphoblastic leukemia cell lines irrespective of glucocorticoid resistance

    Energy Technology Data Exchange (ETDEWEB)

    Han, Seong-Su, E-mail: seong-su-han@uiowa.edu [Division of Pediatric Hematology-Oncology, University of Iowa Carver College of Medicine, Iowa City, IA (United States); Han, Sangwoo [Health and Human Physiology, University of Iowa Carver College of Medicine, Iowa City, IA (United States); Kamberos, Natalie L. [Division of Pediatric Hematology-Oncology, University of Iowa Carver College of Medicine, Iowa City, IA (United States)

    2014-09-26

    Highlights: • PL inhibits the proliferation of B-ALL cell lines irrespective of GC-resistance. • PL selectively kills B-ALL cells by increasing ROS, but not normal counterpart. • PL does not sensitize majority of B-ALL cells to DEX. • PL represses the network of constitutively activated TFs and modulates their target genes. • PL may serve as a new therapeutic molecule for GC-resistant B-ALL. - Abstract: Piperlongumine (PL), a pepper plant alkaloid from Piper longum, has anti-inflammatory and anti-cancer properties. PL selectively kills both solid and hematologic cancer cells, but not normal counterparts. Here we evaluated the effect of PL on the proliferation and survival of B-cell acute lymphoblastic leukemia (B-ALL), including glucocorticoid (GC)-resistant B-ALL. Regardless of GC-resistance, PL inhibited the proliferation of all B-ALL cell lines, but not normal B cells, in a dose- and time-dependent manner and induced apoptosis via elevation of ROS. Interestingly, PL did not sensitize most of B-ALL cell lines to dexamethasone (DEX). Only UoC-B1 exhibited a weak synergistic effect between PL and DEX. All B-ALL cell lines tested exhibited constitutive activation of multiple transcription factors (TFs), including AP-1, MYC, NF-κB, SP1, STAT1, STAT3, STAT6 and YY1. Treatment of the B-ALL cells with PL significantly downregulated these TFs and modulated their target genes. While activation of AURKB, BIRC5, E2F1, and MYB mRNA levels were significantly downregulated by PL, but SOX4 and XBP levels were increased by PL. Intriguingly, PL also increased the expression of p21 in B-ALL cells through a p53-independent mechanism. Given that these TFs and their target genes play critical roles in a variety of hematological malignancies, our findings provide a strong preclinical rationale for considering PL as a new therapeutic agent for the treatment of B-cell malignancies, including B-ALL and GC-resistant B-ALL.

  15. Development and characterization of a cell line WAF from freshwater shark Wallago attu.

    Science.gov (United States)

    Dubey, Akhilesh; Goswami, Mukunda; Yadav, Kamalendra; Sharma, Bhagwati S

    2014-02-01

    A new epithelial cell line, WAF was developed from caudal fin of freshwater shark, Wallago attu. The cell line was optimally maintained at 28 °C in Leibovitz-15 (L-15) medium supplemented with 20 % fetal bovine serum. The cell line was characterized by various cytogenetic and molecular markers. The cytogenetic analysis revealed a diploid count of 86 chromosomes at different passages. The origin of the cell lines was confirmed by the amplification of 547 and 654 bp sequences of 16S rRNA and cytochrome oxidase subunit I genes of mitochondrial DNA, respectively. WAF cells were characterized for their growth characteristics at different temperature and serum concentration. Epithelial morphology of the cell line was confirmed using immunocytochemistry. Further cell plating efficiency, transfection efficiency and viability of cryopreserved WAF cells was also determined. Cytotoxicity and genotoxicity assessment of cadmium salts on WAF cells by MTT, NR and comet assay illustrated the utility of this cell line as an in vitro model for aquatic toxicological studies. The cell line will be further useful for studying oxidative stress markers against aquatic pollutants.

  16. Isolation and characterization of a radiosensitive Chinese hamster ovary cell line

    International Nuclear Information System (INIS)

    Fuller, L.F.

    1987-01-01

    A x-ray sensitive Chinese hamster ovary cell line was isolated using a semi-automated procedure in which mutagenized CHO cells were allowed to form colonies on top of agar, x-irradiated, then photographed at two later times. Comparison of the photographs allowed the identification of colonies which displayed significant growth arrest. One of the colonies identified in this manner produced a stable, radiosensitive line. This cell line is normal in x-ray induced inhibition of DNA synthesis, and single- and double-strand break repair, and is moderately sensitive to ethyl methane sulfonate and UV light. The sensitive line performs only half as much x-ray-induced repair replication as the parental line and this deficiency is believed to be the primary cause of its radiosensitivity. The sensitive line produces significantly higher numbers of x-ray-induced chromosome and chromatid aberrations including chromatid aberrations following exposure during the G 1 phase of the cell cycle. The line is hypomutable compared to the parental line with x-ray exposure inducing only one-third as many 6-thioguanine resistant colonies

  17. Evaluation of Insulin Medium or Chondrogenic Medium on Proliferation and Chondrogenesis of ATDC5 Cells

    OpenAIRE

    Yao, Yongchang; Zhai, Zhichen; Wang, Yingjun

    2014-01-01

    Background. The ATDC5 cell line is regarded as an excellent cell model for chondrogenesis. In most studies with ATDC5 cells, insulin medium (IM) was used to induce chondrogenesis while chondrogenic medium (CM), which was usually applied in chondrogenesis of mesenchymal stem cells (MSCs), was rarely used for ATDC5 cells. This study was mainly designed to investigate the effect of IM, CM, and growth medium (GM) on chondrogenesis of ATDC5 cells. Methods. ATDC5 cells were, respectively, cultured ...

  18. A novel RNA sequencing data analysis method for cell line authentication.

    Directory of Open Access Journals (Sweden)

    Erik Fasterius

    Full Text Available We have developed a novel analysis method that can interrogate the authenticity of biological samples used for generation of transcriptome profiles in public data repositories. The method uses RNA sequencing information to reveal mutations in expressed transcripts and subsequently confirms the identity of analysed cells by comparison with publicly available cell-specific mutational profiles. Cell lines constitute key model systems widely used within cancer research, but their identity needs to be confirmed in order to minimise the influence of cell contaminations and genetic drift on the analysis. Using both public and novel data, we demonstrate the use of RNA-sequencing data analysis for cell line authentication by examining the validity of COLO205, DLD1, HCT15, HCT116, HKE3, HT29 and RKO colorectal cancer cell lines. We successfully authenticate the studied cell lines and validate previous reports indicating that DLD1 and HCT15 are synonymous. We also show that the analysed HKE3 cells harbour an unexpected KRAS-G13D mutation and confirm that this cell line is a genuine KRAS dosage mutant, rather than a true isogenic derivative of HCT116 expressing only the wild type KRAS. This authentication method could be used to revisit the numerous cell line based RNA sequencing experiments available in public data repositories, analyse new experiments where whole genome sequencing is not available, as well as facilitate comparisons of data from different experiments, platforms and laboratories.

  19. Application of DNA fingerprints for cell-line individualization.

    OpenAIRE

    Gilbert, D A; Reid, Y A; Gail, M H; Pee, D; White, C; Hay, R J; O'Brien, S J

    1990-01-01

    DNA fingerprints of 46 human cell lines were derived using minisatellite probes for hypervariable genetic loci. The incidence of 121 HaeIII DNA fragments among 33 cell lines derived from unrelated individuals was used to estimate allelic and genotypic frequencies for each fragment and for composite individual DNA fingerprints. We present a quantitative estimate of the extent of genetic difference between individuals, an estimate based on the percentage of restriction fragments at which they d...

  20. Multidrug resistance in tumour cells: characterisation of the multidrug resistant cell line K562-Lucena 1

    Directory of Open Access Journals (Sweden)

    VIVIAN M. RUMJANEK

    2001-03-01

    Full Text Available Multidrug resistance to chemotherapy is a major obstacle in the treatment of cancer patients. The best characterised mechanism responsible for multidrug resistance involves the expression of the MDR-1 gene product, P-glycoprotein. However, the resistance process is multifactorial. Studies of multidrug resistance mechanisms have relied on the analysis of cancer cell lines that have been selected and present cross-reactivity to a broad range of anticancer agents. This work characterises a multidrug resistant cell line, originally selected for resistance to the Vinca alkaloid vincristine and derived from the human erythroleukaemia cell K562. This cell line, named Lucena 1, overexpresses P-glycoprotein and have its resistance reversed by the chemosensitisers verapamil, trifluoperazine and cyclosporins A, D and G. Furthermore, we demonstrated that methylene blue was capable of partially reversing the resistance in this cell line. On the contrary, the use of 5-fluorouracil increased the resistance of Lucena 1. In addition to chemotherapics, Lucena 1 cells were resistant to ultraviolet A radiation and hydrogen peroxide and failed to mobilise intracellular calcium when thapsigargin was used. Changes in the cytoskeleton of this cell line were also observed.A resistência a múltiplos fármacos é o principal obstáculo no tratamento de pacientes com câncer. O mecanismo responsável pela resistência múltipla mais bem caracterizado envolve a expressão do produto do gene MDR-1, a glicoproteína P. Entretanto, o processo de resistência tem fatores múltiplos. Estudos de mecanismos de resistência m��ltipla a fármacos têm dependido da análise de linhagens celulares tumorais que foram selecionadas e apresentam reatividade cruzada a uma ampla faixa de agentes anti-tumorais. Este trabalho caracteriza uma linhagem celular com múltipla resistência a fármacos, selecionada originalmente pela resistência ao alcalóide de Vinca vincristina e derivado

  1. Hematopoietic Cancer Cell Lines Can Support Replication of Sabin Poliovirus Type 1

    Science.gov (United States)

    van Eikenhorst, Gerco; de Gruijl, Tanja D.; van der Pol, Leo A.; Bakker, Wilfried A. M.

    2015-01-01

    Viral vaccines can be produced in adherent or in suspension cells. The objective of this work was to screen human suspension cell lines for the capacity to support viral replication. As the first step, it was investigated whether poliovirus can replicate in such cell lines. Sabin poliovirus type 1 was serially passaged on five human cell lines, HL60, K562, KG1, THP-1, and U937. Sabin type 1 was capable of efficiently replicating in three cell lines (K562, KG1, and U937), yielding high viral titers after replication. Expression of CD155, the poliovirus receptor, did not explain susceptibility to replication, since all cell lines expressed CD155. Furthermore, we showed that passaged virus replicated more efficiently than parental virus in KG1 cells, yielding higher virus titers in the supernatant early after infection. Infection of cell lines at an MOI of 0.01 resulted in high viral titers in the supernatant at day 4. Infection of K562 with passaged Sabin type 1 in a bioreactor system yielded high viral titers in the supernatant. Altogether, these data suggest that K562, KG1, and U937 cell lines are useful for propagation of poliovirus. PMID:25815312

  2. Macrolide Antibiotics Exhibit Cytotoxic Effect under Amino Acid-Depleted Culture Condition by Blocking Autophagy Flux in Head and Neck Squamous Cell Carcinoma Cell Lines

    Science.gov (United States)

    Hirasawa, Kazuhiro; Moriya, Shota; Miyahara, Kana; Kazama, Hiromi; Hirota, Ayako; Takemura, Jun; Abe, Akihisa; Inazu, Masato; Hiramoto, Masaki; Tsukahara, Kiyoaki

    2016-01-01

    Autophagy, a self-digestive system for cytoplasmic components, is required to maintain the amino acid pool for cellular homeostasis. We previously reported that the macrolide antibiotics azithromycin (AZM) and clarithromycin (CAM) have an inhibitory effect on autophagy flux, and they potently enhance the cytocidal effect of various anticancer reagents in vitro. This suggests that macrolide antibiotics can be used as an adjuvant for cancer chemotherapy. Since cancer cells require a larger metabolic demand than normal cells because of their exuberant growth, upregulated autophagy in tumor cells has now become the target for cancer therapy. In the present study, we examined whether macrolides exhibit cytotoxic effect under an amino acid-starving condition in head and neck squamous cancer cell lines such as CAL 27 and Detroit 562 as models of solid tumors with an upregulated autophagy in the central region owing to hypovascularity. AZM and CAM induced cell death under the amino acid-depleted (AAD) culture condition in these cell lines along with CHOP upregulation, although they showed no cytotoxicity under the complete culture medium. CHOP knockdown by siRNA in the CAL 27 cells significantly suppressed macrolide-induced cell death under the AAD culture condition. CHOP-/- murine embryonic fibroblast (MEF) cell lines also attenuated AZM-induced cell death compared with CHOP+/+ MEF cell lines. Using a tet-off atg5 MEF cell line, knockout of atg5, an essential gene for autophagy, also induced cell death and CHOP in the AAD culture medium but not in the complete culture medium. This suggest that macrolide-induced cell death via CHOP induction is dependent on autophagy inhibition. The cytotoxicity of macrolide with CHOP induction was completely cancelled by the addition of amino acids in the culture medium, indicating that the cytotoxicity is due to the insufficient amino acid pool. These data suggest the possibility of using macrolides for “tumor-starving therapy”. PMID

  3. Quantitative and molecular analyses of mutation in a pSV2gpt transformed CHO cell line

    International Nuclear Information System (INIS)

    Stankowski, L.F. Jr.; Tindall, K.R.; Hsie, A.W.

    1983-01-01

    Following NDA-mediated gene transfer we have isolated a cell line useful for studying gene mutation at the molecular level. This line, AS52, derived from a hypoxanthine-guanine phosphoribosyl transferase (HGPRT) deficient Chinese hamster ovary (CHO) cell line, carries a single copy of the E. coli xanthine-guanine phosphoribosyl transferase (XGPRT) gene (gpt) and exhibits a spontaneous mutant frequency of 20 TG/sup r/ mutants/10 6 clonable cells. As with HGPRT - mutants, XGPRT - mutants can be selected in 6-thioguanine. AS52 (XGPRT + ) and wild type CHO (HGPRT + ) cell exhibit almost identical cytotoxic responses to various agents. We observed significant differences in mutation induction by UV light and ethyl methanesulfonate (EMS). Ratios of XGPRT - to HGPRT - mutants induced per unit dose (J/m 2 for UV light and μg/ml for EMS) are 1.4 and 0.70, respectively. Preliminary Southern blot hybridization analyses has been performed on 30 XGPRT - AS52 mutants. A majority of spontaneous mutants have deletions ranging in size from 1 to 4 kilobases (9/19) to complete loss of gpt sequences (4/19); the remainder have no detectable (5/19) or only minor (1/19) alterations. 5/5 UV-induced and 5/6 EMS-induced mutants do not show a detectable change. Similar analyses are underway for mutations induced by x-irradiation and ICR 191 treatment

  4. Efficient production of a gene mutant cell line through integrating TALENs and high-throughput cell cloning.

    Science.gov (United States)

    Sun, Changhong; Fan, Yu; Li, Juan; Wang, Gancheng; Zhang, Hanshuo; Xi, Jianzhong Jeff

    2015-02-01

    Transcription activator-like effectors (TALEs) are becoming powerful DNA-targeting tools in a variety of mammalian cells and model organisms. However, generating a stable cell line with specific gene mutations in a simple and rapid manner remains a challenging task. Here, we report a new method to efficiently produce monoclonal cells using integrated TALE nuclease technology and a series of high-throughput cell cloning approaches. Following this method, we obtained three mTOR mutant 293T cell lines within 2 months, which included one homozygous mutant line. © 2014 Society for Laboratory Automation and Screening.

  5. In vitro study of combined cilengitide and radiation treatment in breast cancer cell lines

    International Nuclear Information System (INIS)

    Lautenschlaeger, Tim; Perry, James; Peereboom, David; Li, Bin; Ibrahim, Ahmed; Huebner, Alexander; Meng, Wei; White, Julia; Chakravarti, Arnab

    2013-01-01

    Brain metastasis from breast cancer poses a major clinical challenge. Integrins play a role in regulating adhesion, growth, motility, and survival, and have been shown to be critical for metastatic growth in the brain in preclinical models. Cilengitide, an αvβ3/αvβ5 integrin inhibitor, has previously been studied as an anti-cancer drug in various tumor types. Previous studies have shown additive effects of cilengitide and radiation in lung cancer and glioblastoma cell lines. The ability of cilengitide to enhance the effects of radiation was examined preclinically in the setting of breast cancer to assess its possible efficacy in the setting of brain metastasis from breast cancer. Our panel of breast cells was composed of four cell lines: T-47D (ER/PR+, Her2-, luminal A), MCF-7 (ER/PR+, Her2-, luminal A), MDA-MB-231 (TNBC, basal B), MDA-MB-468 (TNBC, basal A). The presence of cilengitide targets, β3 and β5 integrin, was first determined. Cell detachment was determined by cell counting, cell proliferation was determined by MTS proliferation assay, and apoptosis was measured by Annexin V staining and flow cytometry. The efficacy of cilengitide treatment alone was analyzed, followed by assessment of combined cilengitide and radiation treatment. Integrin β3 knockdown was performed, followed by cilengitide and radiation treatment to test for incomplete target inhibition by cilengitide, in high β3 expressing cells. We observed that all cell lines examined expressed both β3 and β5 integrin and that cilengitide was able to induce cell detachment and reduced proliferation in our panel. Annexin V assays revealed that a portion of these effects was due to cilengitide-induced apoptosis. Combined treatment with cilengitide and radiation served to further reduce proliferation compared to either treatment alone. Following β3 integrin knockdown, radiosensitization in combination with cilengitide was observed in a previously non-responsive cell line (MDA-MB-231

  6. Heterogeneity in 2-deoxy-D-glucose-induced modifications in energetics and radiation responses of human tumor cell lines

    International Nuclear Information System (INIS)

    Dwarkanath, Bilikere S.; Zolzer, Frido; Chandana, Sudhir; Bauch, Thomas; Adhikari, Jawahar S.; Muller, Wolfgang U.; Streffer, Christian; Jain, Viney

    2001-01-01

    Purpose: The glucose analog and glycolytic inhibitor, 2-deoxy-D-glucose (2-DG), has been shown to differentially enhance the radiation damage in tumor cells by inhibiting the postirradiation repair processes. The present study was undertaken to examine the relationship between 2-DG-induced modification of energy metabolism and cellular radioresponses and to identify the most relevant parameter(s) for predicting the tumor response to the combined treatment of radiation + 2-DG. Methods and Materials: Six human tumor cell lines (glioma: BMG-1 and U-87, squamous cell carcinoma: 4451 and 4197, and melanoma: MeWo and Be-11) were investigated. Cells were exposed to 2 Gy of Co-60 γ-rays or 250 kVP X-rays and maintained under liquid-holding conditions 2-4 h to facilitate repair. 2-DG (5 mM, equimolar with glucose) that was added at the time of irradiation was present during the liquid holding. Glucose utilization, lactate production (enzymatic assays), and adenine nucleotides (high performance liquid chromatography and capillary isotachophoresis) were investigated as parameters of energy metabolism. Induction and repair of DNA damage (comet assay), cytogenetic damage (micronuclei formation), and cell death (macrocolony assay) were analyzed as parameters of radiation response. Results: The glucose consumption and lactate production of glioma cell lines (BMG-1 and U-87) were nearly 2-fold higher than the squamous carcinoma cell lines (4197 and 4451). The ATP content varied from 3.0 to 6.5 femto moles/cell among these lines, whereas the energy charge (0.86-0.90) did not show much variation. Presence of 2-DG inhibited the rate of glucose usage and glycolysis by 30-40% in glioma cell lines and by 15-20% in squamous carcinoma lines, while ATP levels reduced by nearly 40% in all the four cell lines. ATP:ADP ratios decreased to a greater extent (∼40%) in glioma cells than in squamous carcinoma 4451 and MeWo cells; in contrast, presence of 2-DG reduced ADP:AMP ratios by 3-fold in

  7. No benefits of ultrafractionation in two head-and-neck cancer cell lines with different inherent radiosensitivity

    International Nuclear Information System (INIS)

    Boehringer-Wyss, Nicole; Clarkson, Stuart G.; Allal, Abdelkarim S.

    2002-01-01

    Purpose: To assess if ultrafractionation is applicable in the context of an unknown hyperradiosensitivity (HRS) status, we studied the survival and repair capacity of two tumor cell lines after irradiation with two different dose/fractionation schedules that can be used in a clinical setting. Methods and Materials: Squamous cell carcinoma cell lines SCC-3 (radioresistant) and SCC-6 (radiosensitive) were used. Survival was studied by clonogenic assay after multiple fractions of 0.5 Gy (2 fractions/day, 6-h interval) and 2 Gy (1 fraction/day) for a total dose of 8 Gy of γ-rays. The capacity to repair single-strand and double-strand breaks (SSB, DSB) was assessed by comet assay. The messenger RNA (mRNA) levels of DNA-dependent protein kinase (PK) components were analyzed by RNase protection and real-time polymerase chain reaction (PCR). Results: In both cell lines, no apparent difference was noted between the two fractionation protocols. In particular for SCC-3, the mean surviving fraction tended to be lower after 2 Gy than after 0.5 Gy fractions. In SCC-3 and SCC-6 no significant difference was observed in the repair capacity of SSB and DSB after exposure to single doses of 0.5 Gy or 2 Gy. After exposure to the same single doses, the mRNA levels of DNA-PK catalytic subunit (PKcs), Ku 70, and Ku 80 were similar. Conclusions: Our data do not support the concept of ultrafractionation, at least when using fractions of 0.5 Gy in the cell lines studied. This suggests that methods for testing HRS status in individual tumors need to be developed before the relevance of ultrafractionation can be investigated in the clinic

  8. High hRFI expression correlates with resistance to Fluoro pyrimidines in human colon cancer cell lines and in xenografts

    International Nuclear Information System (INIS)

    Sasaki, S.; Tokyo Univ., Tokyo; Watanabe, T.; Konishi, T.; Kitayama, J.; Nagawa, H.; Kobunai, T.

    2005-01-01

    We previously reported that the over-expression of hRFI, a protein preferentially expressed in the digestive tract regions of several cancers, exhibited a tendency to inhibit TNF-α induced apoptosis. In this study, we sought to determine the potential effect of hRFI expression on the sensitivity to 5-fluorouracil (5-FU) and/or other fluoro pyrimidines. For the whole lysates of 8 colon cancer cell lines, we performed Western blotting with anti-hRFI antibody and analyzed the correlations between the expression level of hRFI and the cell lines' sensitivity to 5-FU induced apoptosis. Furthermore, for a tissue micro array consisting of 32 xenograft derived human cancer cell lines, we examined the expression levels of hRFI and survivin by immunohistochemical staining, and analyzed the correlations between the expression of each protein and the sensitivity to several chemotherapeutic agents in the xenografts examined. Both in colon cancer cell lines and in xenografts, the expression level of hRFI was correlated with resistance to 5-FU and its derivatives. This evidence suggests that hRFI may be a marker predicting the response to fluorouracil derived chemotherapeutic agents and that the reduction of the expression level of hRFI might improve the outcome of chemotherapy

  9. Establishment of a pig fibroblast-derived cell line for locus-directed transgene expression in cell cultures and blastocysts

    DEFF Research Database (Denmark)

    Jakobsen, Jannik E; Li, Juan; Moldt, Brian

    2011-01-01

    We report the establishment of a spontaneously immortalized pig cell line designated Pig Flip-in Visualize (PFV) for locus-directed transgene expression in pig cells and blastocysts. The PFV cell line was isolated from pig ear fibroblasts transfected with a Sleeping Beauty DNA transposon-based do......We report the establishment of a spontaneously immortalized pig cell line designated Pig Flip-in Visualize (PFV) for locus-directed transgene expression in pig cells and blastocysts. The PFV cell line was isolated from pig ear fibroblasts transfected with a Sleeping Beauty DNA transposon...

  10. Radiation response of mouse lymphoid and myeloid cell lines. Pt. 3

    International Nuclear Information System (INIS)

    Radford, I.R.; Murphy, T.K.

    1994-01-01

    The authors have examined the timing of γ-irradiation-induced death in relation to cell cycle progression using a panel of mouse lymphoid or myeloid cell lines. Death was found to occur immediately after irradiation ('rapid interphase' death), or after arrest in G 2 phase ('delayed interphase' death), or following one or more mitoses ('mitotic/delayed mitotic' death). In part II of this series of papers the authors demonstrated the occurrence of radiation-induced apoptosis in all these cell lines. Several of the cell lines showed different timing of death dependent upon the radiation dose used. These differences in the timing of radiation-induced death are shown to be useful indicators of the relative radiosensitivity of haematopoietic cell lines. (author)

  11. Interaction between x-irradiated plateau-phase bone marrow stromal cell lines and co-cultivated factor-dependent cell lines leading to leukemogenesis in vitro

    International Nuclear Information System (INIS)

    Naparstek, E.; Anklesaria, P.; FitzGerald, T.J.; Sakakeeny, M.A.; Greenberger, J.S.

    1987-01-01

    Plateau-phase mouse clonal bone marrow stromal cell lines D2XRII and C3H cl 11 produce decreasing levels of M-CSF (CSF-1), a specific macrophage progenitor cell humoral regulator, following X-irradiation in vitro. The decrease did not go below 40% of control levels, even after irradiation doses of 50,000 rad (500 Gy). In contrast, a distinct humoral regulator stimulating growth of GM-CSF/IL-3 factor-dependent (FD) hematopoietic progenitor cell lines was detected following radiation to doses above 2000 rad. This humoral factor was not detectable in conditioned medium from irradiated cells, weakly detected using factor-dependent target cell populations in agar overlay, and was prominently detected by liquid co-cultivation of factor-dependent cells with irradiated stromal cell cultures. Subclonal lines of FD cells, derived after co-cultivation revealed karyotypic abnormalities and induced myeloblastic tumors in syngeneic mice. Five-eight weeks co-cultivation was required for induction of factor independence and malignancy and was associated with dense cell to cell contact between FD cells and stromal cells demonstrated by light and electron microscopy. Increases in hematopoietic to stromal cell surface area, total number of adherent cells per flask, total non-adherent cell colonies per flask, and cumulative non-adherent cell production were observed after irradiation. The present data may prove very relevant to an understanding of the cell to cell interactions during X-irradiation-induced leukemia

  12. Resistance of a soybean cell line to oxyfluorfen by overproduction of mitochondrial protoporphyrinogen oxidase.

    Science.gov (United States)

    Warabi, E; Usui, K; Tanaka, Y; Matsumoto, H

    2001-08-01

    The diphenyl ether herbicide oxyfluorfen (2-chloro-4-trifluoromethylphenyl 3-ethoxy-4-nitrophenyl ether) inhibits protoporphyrinogen oxidase (Protox) which catalyzes the oxidation of protoporphyrinogen IX (Protogen) to protoporphyrin IX (Proto IX), the last step of the common pathway to chlorophyll and haeme biosynthesis. We have selected an oxyfluorfen-resistant soybean cell line by stepwise selection methods, and the resistance mechanism has been investigated. No growth inhibition was observed in resistant cells at a concentration of 10(-7) M oxyfluorfen, a concentration at which normal cells did not survive. While the degree of inhibition of total extractable Protox by oxyfluorfen was the same in both cell types, the enzyme activity in the mitochondrial fraction from non-treated resistant cells was about nine-fold higher than that from normal cells. Northern analysis of mitochondrial Protox revealed that the concentration of mitochondrial Protox mRNA was much higher in resistant cells than that in normal cells. There were no differences in the absorption and metabolic breakdown of oxyfluorfen. The growth of resistant cells was also insensitive to oxadiazon [5-tert-butyl-3-(2,4-dichloro-5-isopropoxyphenyl)-1,3,4-oxadiazol-2-(3H)- one], the other chemical class of Protox inhibitor. Therefore, the resistance of the selected soybean cell line to oxyfluorfen is probably mainly due to the overproduction of mitochondrial Protox.

  13. Cytotoxicity of 125I decay in the DNA double strand break repair deficient mutant cell line, xrs-5

    International Nuclear Information System (INIS)

    Yasui, L.S.

    1992-01-01

    Survival of parental Chinese hamster ovary (CHO) K1 cells and the DNA double strand break (DSB) repair deficient mutant, xrs-5 was determined after accumulation of 125 I decays. Both CHO and xrs-5 cells were extremely sensitive to accumulated 125 I decays. D o values for CHO and xrs-5 cells were 40 and approximately 7 decays per cell, respectively. Difference in cell survival between CHO and xrs-5 cells was not due to differences in overall 125 IUdR incorporation, differences in labelling index (LI) or differences in plating efficiency (PE). Relative biological effectiveness (RBE) values calculated relative to 137 Cs gamma radiation survival values (D o and D 10 ) were higher in xrs-5 cells compared with CHO cells, although both CHO and xrs-5 cells have high RBE values that correspond to a high sensitivity of CHO and xrs-5 cells to 125 I decay. (Author)

  14. Expression and function of β-adrenergic receptors in human hematopoietic cell lines

    International Nuclear Information System (INIS)

    Maeki, T.; Andersson, L.C.; Kontula, K.K.

    1992-01-01

    We investigated the expression and functional characteristics of β-adrenoceptors in a panel of 10 phenotypically different human hematopoietic cell lines. A binding assay with [ 125 I]iodocyanopindolol as the ligand revealed that cell lines of myelomonocytic or histiocytic derivation (HL-60, ML-2, RC-2A, U-937) expressed high numbers of β-adrenoceptors. An intermediate density of receptors was found in a non-T, non-B cell leukemia line (Nall-1), whereas T-cell (JM, CCRF-CEM), B-cell (Raji) or erythroleukemic cell lines (K-562, HEL) displayed minimala or undetectable binding of the radioligand. Isoprenaline-stimulated cAMP production by the cells correlated to their extent of β-adrenoceptor expression. Southern blot hybridization analysis of genomic DNA from the cell lines with a 32 P-labelled β 2 -adrenoceptor cDNA probe revealed no evidence for major rearrangement or amplification of the receptor gene. Incubation with isoprenaline in vitro suppressed the proliferation of the receptor-rich RC-2A cells but did not affect the growth rate of the receptor-deficient K-562 cells. Treatment with propranolol slightly enhanced the proliferation of the RC-2A cells but did not markedly alter the growth rate of two other cell lines, regardless of their β-adrenoceptor status. These findings indicate a regulatory influence by the sympathoadrenergic system on selected cells of the myelomonocytic lineage. (au)

  15. Snail regulates cell survival and inhibits cellular senescence in human metastatic prostate cancer cell lines.

    Science.gov (United States)

    Emadi Baygi, Modjtaba; Soheili, Zahra Soheila; Schmitz, Ingo; Sameie, Shahram; Schulz, Wolfgang A

    2010-12-01

    The epithelial-mesenchymal transition (EMT) is regarded as an important step in cancer metastasis. Snail, a master regulator of EMT, has been recently proposed to act additionally as a cell survival factor and inducer of motility. We have investigated the function of Snail (SNAI1) in prostate cancer cells by downregulating its expression via short (21-mer) interfering RNA (siRNA) and measuring the consequences on EMT markers, cell viability, death, cell cycle, senescence, attachment, and invasivity. Of eight carcinoma cell lines, the prostate carcinoma cell lines LNCaP and PC-3 showed the highest and moderate expression of SNAI1 mRNA, respectively, as measured by quantitative RT-PCR. Long-term knockdown of Snail induced a severe decline in cell numbers in LNCaP and PC-3 and caspase activity was accordingly enhanced in both cell lines. In addition, suppression of Snail expression induced senescence in LNCaP cells. SNAI1-siRNA-treated cells did not tolerate detachment from the extracellular matrix, probably due to downregulation of integrin α6. Expression of E-cadherin, vimentin, and fibronectin was also affected. Invasiveness of PC-3 cells was not significantly diminished by Snail knockdown. Our data suggest that Snail acts primarily as a survival factor and inhibitor of cellular senescence in prostate cancer cell lines. We therefore propose that Snail can act as early driver of prostate cancer progression.

  16. A human osteosarcoma cell line expressing herpes simplex type-1 thymidine kinase: studies with radiolabeled (E)-5-(2-iodovinyl)-2'-fluoro-2'-deoxyuridine

    Energy Technology Data Exchange (ETDEWEB)

    Morin, Kevin W. [Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, T6G 2N8 (Canada); Duan Weili [Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, T6G 2N8 (Canada); Knaus, Edward E. [Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, T6G 2N8 (Canada); McEwan, Alexander J.B. [Department of Radiology and Diagnostic Imaging, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, T6G 2N8 (Canada); Wiebe, Leonard I. [Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, T6G 2N8 (Canada)]. E-mail: leonard.wiebe@ualberta.ca

    2005-07-01

    Introduction: (E)-5-(2-Iodovinyl)-2'-fluoro-2'-deoxyuridine (IVFRU) is a pyrimidine nucleoside analogue that accumulates selectively in murine cells expressing herpes simplex type-1 thymidine kinase (HSV-1 TK). The uptake of [{sup 125}I]IVFRU in human 143B osteosarcoma cells transduced with a retroviral vector bearing the HSV-1 TK gene (143B-LTK cells) is now reported. Methods: HSV-1 TK gene expression in 143B-LTK cells was confirmed by Western blotting and reverse transcriptase (RT)-PCR. Cell and subcellular uptake of [{sup 125}I]IVFRU was determined in cell culture, and whole body biodistribution after intravenous injection of [{sup 125}I]IVFRU was determined using nude mice bearing implanted 143B or 143B-LTK tumors. Results: Although IVFRU was less toxic to the human cell line expressing HSV-1 TK (143B-LTK) than ganciclovir, both IVFRU and ganciclovir were not toxic to the cell line not expressing HSV-1 TK (143B). When cells were exposed to [{sup 125}I]IVFRU in vitro, only the 143B-LTK cells accumulated radioactivity. The acid-soluble fraction from 143B-LTK cell lysates contained 8-fold greater activity than the acid-insoluble fraction after an 8-h exposure to [{sup 125}I]IVFRU. Biodistribution of [{sup 125}I]IVFRU in nude mice bearing subcutaneous 143B and 143B-LTK tumors revealed widespread distribution of the nucleoside in vivo but with specific localization in 143B-LTK tumors. Conclusion: The underlying biochemical process of metabolic entrapment of IVFRU in human osteosarcoma cells expressing HSV-1 TK is responsible for selective localization in these cells. The differences in subcellular distribution into the nucleic acid fraction, and in cytotoxicity, reflect the importance of cell type and lineage as determinants of the performance of gene imaging radiopharmaceuticals.

  17. Evaluating hepatocellular carcinoma cell lines for tumour samples using within-sample relative expression orderings of genes.

    Science.gov (United States)

    Ao, Lu; Guo, You; Song, Xuekun; Guan, Qingzhou; Zheng, Weicheng; Zhang, Jiahui; Huang, Haiyan; Zou, Yi; Guo, Zheng; Wang, Xianlong

    2017-11-01

    Concerns are raised about the representativeness of cell lines for tumours due to the culture environment and misidentification. Liver is a major metastatic destination of many cancers, which might further confuse the origin of hepatocellular carcinoma cell lines. Therefore, it is of crucial importance to understand how well they can represent hepatocellular carcinoma. The HCC-specific gene pairs with highly stable relative expression orderings in more than 99% of hepatocellular carcinoma but with reversed relative expression orderings in at least 99% of one of the six types of cancer, colorectal carcinoma, breast carcinoma, non-small-cell lung cancer, gastric carcinoma, pancreatic carcinoma and ovarian carcinoma, were identified. With the simple majority rule, the HCC-specific relative expression orderings from comparisons with colorectal carcinoma and breast carcinoma could exactly discriminate primary hepatocellular carcinoma samples from both primary colorectal carcinoma and breast carcinoma samples. Especially, they correctly classified more than 90% of liver metastatic samples from colorectal carcinoma and breast carcinoma to their original tumours. Finally, using these HCC-specific relative expression orderings from comparisons with six cancer types, we identified eight of 24 hepatocellular carcinoma cell lines in the Cancer Cell Line Encyclopedia (Huh-7, Huh-1, HepG2, Hep3B, JHH-5, JHH-7, C3A and Alexander cells) that are highly representative of hepatocellular carcinoma. Evaluated with a REOs-based prognostic signature for hepatocellular carcinoma, all these eight cell lines showed the same metastatic properties of the high-risk metastatic hepatocellular carcinoma tissues. Caution should be taken for using hepatocellular carcinoma cell lines. Our results should be helpful to select proper hepatocellular carcinoma cell lines for biological experiments. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Identification of genes associated with cisplatin resistance in human oral squamous cell carcinoma cell line

    OpenAIRE

    Zhang Ping; Zhang Zhiyuan; Zhou Xiaojian; Qiu Weiliu; Chen Fangan; Chen Wantao

    2006-01-01

    Abstract Background Cisplatin is widely used for chemotherapy of head and neck squamous cell carcinoma. However, details of the molecular mechanism responsible for cisplatin resistance are still unclear. The aim of this study was to identify the expression of genes related to cisplatin resistance in oral squamous cell carcinoma cells. Methods A cisplatin-resistant cell line, Tca/cisplatin, was established from a cisplatin-sensitive cell line, Tca8113, which was derived from moderately-differe...

  19. Metabolic Response to NAD Depletion across Cell Lines Is Highly Variable.

    Science.gov (United States)

    Xiao, Yang; Kwong, Mandy; Daemen, Anneleen; Belvin, Marcia; Liang, Xiaorong; Hatzivassiliou, Georgia; O'Brien, Thomas

    2016-01-01

    Nicotinamide adenine dinucleotide (NAD) is a cofactor involved in a wide range of cellular metabolic processes and is a key metabolite required for tumor growth. NAMPT, nicotinamide phosphoribosyltransferase, which converts nicotinamide (NAM) to nicotinamide mononucleotide (NMN), the immediate precursor of NAD, is an attractive therapeutic target as inhibition of NAMPT reduces cellular NAD levels and inhibits tumor growth in vivo. However, there is limited understanding of the metabolic response to NAD depletion across cancer cell lines and whether all cell lines respond in a uniform manner. To explore this we selected two non-small cell lung carcinoma cell lines that are sensitive to the NAMPT inhibitor GNE-617 (A549, NCI-H1334), one that shows intermediate sensitivity (NCI-H441), and one that is insensitive (LC-KJ). Even though NAD was reduced in all cell lines there was surprising heterogeneity in their metabolic response. Both sensitive cell lines reduced glycolysis and levels of di- and tri-nucleotides and modestly increased oxidative phosphorylation, but they differed in their ability to combat oxidative stress. H1334 cells activated the stress kinase AMPK, whereas A549 cells were unable to activate AMPK as they contain a mutation in LKB1, which prevents activation of AMPK. However, A549 cells increased utilization of the Pentose Phosphate pathway (PPP) and had lower reactive oxygen species (ROS) levels than H1334 cells, indicating that A549 cells are better able to modulate an increase in oxidative stress. Inherent resistance of LC-KJ cells is associated with higher baseline levels of NADPH and a delayed reduction of NAD upon NAMPT inhibition. Our data reveals that cell lines show heterogeneous response to NAD depletion and that the underlying molecular and genetic framework in cells can influence the metabolic response to NAMPT inhibition.

  20. Metabolic Response to NAD Depletion across Cell Lines Is Highly Variable.

    Directory of Open Access Journals (Sweden)

    Yang Xiao

    Full Text Available Nicotinamide adenine dinucleotide (NAD is a cofactor involved in a wide range of cellular metabolic processes and is a key metabolite required for tumor growth. NAMPT, nicotinamide phosphoribosyltransferase, which converts nicotinamide (NAM to nicotinamide mononucleotide (NMN, the immediate precursor of NAD, is an attractive therapeutic target as inhibition of NAMPT reduces cellular NAD levels and inhibits tumor growth in vivo. However, there is limited understanding of the metabolic response to NAD depletion across cancer cell lines and whether all cell lines respond in a uniform manner. To explore this we selected two non-small cell lung carcinoma cell lines that are sensitive to the NAMPT inhibitor GNE-617 (A549, NCI-H1334, one that shows intermediate sensitivity (NCI-H441, and one that is insensitive (LC-KJ. Even though NAD was reduced in all cell lines there was surprising heterogeneity in their metabolic response. Both sensitive cell lines reduced glycolysis and levels of di- and tri-nucleotides and modestly increased oxidative phosphorylation, but they differed in their ability to combat oxidative stress. H1334 cells activated the stress kinase AMPK, whereas A549 cells were unable to activate AMPK as they contain a mutation in LKB1, which prevents activation of AMPK. However, A549 cells increased utilization of the Pentose Phosphate pathway (PPP and had lower reactive oxygen species (ROS levels than H1334 cells, indicating that A549 cells are better able to modulate an increase in oxidative stress. Inherent resistance of LC-KJ cells is associated with higher baseline levels of NADPH and a delayed reduction of NAD upon NAMPT inhibition. Our data reveals that cell lines show heterogeneous response to NAD depletion and that the underlying molecular and genetic framework in cells can influence the metabolic response to NAMPT inhibition.

  1. Establishment of cell lines from adult T-cell leukemia cells dependent on negatively charged polymers.

    Science.gov (United States)

    Kagami, Yoshitoyo; Uchiyama, Susumu; Kato, Harumi; Okada, Yasutaka; Seto, Masao; Kinoshita, Tomohiro

    2017-07-05

    Growing adult T-cell leukemia/lymphoma (ATLL) cells in vitro is difficult. Here, we examined the effects of static electricity in the culture medium on the proliferation of ATLL cells. Six out of 10 ATLL cells did not proliferate in vitro and thus had to be cultured in a medium containing negatively charged polymers. In the presence of poly-γ-glutamic acid (PGA) or chondroitin sulfate (CDR), cell lines (HKOX3-PGA, HKOX3-CDR) were established from the same single ATLL case using interleukin (IL)-2, IL-4, and feeder cells expressing OX40L (OX40L + HK). Dextran sulfate inhibited growth in both HKOX3 cell lines. Both PGA and OX40L + HK were indispensable for HKOX3-PGA growth, but HKOX3-CDR could proliferate in the presence of CDR or OX40L + HK alone. Thus, the specific action of each negatively charged polymer promoted the growth of specific ATLL cells in vitro.

  2. Effects of cyclosporin A on a kidney epithelial cell line (LLC-PK1).

    Science.gov (United States)

    Becker, G M; Gandolfi, A J; Nagle, R B

    1987-05-01

    Cyclosporin A (CSA), a potent immunosuppressant with the adverse side effect of nephrotoxicity, inhibited cell growth of pig kidney tubule cells (LLC-PK1) in culture. CSA (10(-5) M) also induced intense cytoplasmic vacuolation and the formation of dense granules. At the same concentration an analogue of CSA, cyclosporin G, had much less effect. This cell line may prove useful for revealing the mechanism of CSA-nephrotoxicity and testing the nephrotoxic potential of new analogues of cyclosporine.

  3. Vesicle-associated membrane protein 7 (VAMP-7) is essential for target cell killing in a natural killer cell line

    International Nuclear Information System (INIS)

    Marcet-Palacios, Marcelo; Odemuyiwa, Solomon O.; Coughlin, Jason J.; Garofoli, Daniella; Ewen, Catherine; Davidson, Courtney E.; Ghaffari, Mazyar; Kane, Kevin P.; Lacy, Paige; Logan, Michael R.; Befus, A. Dean; Bleackley, R. Chris; Moqbel, Redwan

    2008-01-01

    Natural killer cells recognize and induce apoptosis in foreign, transformed or virus-infected cells through the release of perforin and granzymes from secretory lysosomes. Clinically, NK-cell mediated killing is a major limitation to successful allo- and xenotransplantation. The molecular mechanisms that regulate the fusion of granzyme B-containing secretory lysosomes to the plasma membrane in activated NK cells, prior to target cell killing, are not fully understood. Using the NK cell line YT-Indy as a model, we have investigated the expression of SNAP REceptors (SNAREs), both target (t-) and vesicular (v-) SNAREs, and their function in granzyme B-mediated target cell killing. Our data showed that YT-Indy cells express VAMP-7 and SNAP-23, but not VAMP-2. VAMP-7 was associated with granzyme B-containing lysosomal granules. Using VAMP-7 small interfering RNA (siRNA), we successfully knocked down the expression of VAMP-7 protein in YT-Indy to less than 10% of untreated cells in 24 h. VAMP7-deficient YT-Indy cells activated via co-culture with Jurkat cells released <1 ng/mL of granzyme B, compared to 1.5-2.5 μg/mL from controls. Using Jurkat cells as targets, we showed a 7-fold reduction in NK cell-mediated killing by VAMP-7 deficient YT-Indy cells. Our results show that VAMP-7 is a crucial component of granzyme B release and target cell killing in the NK cell line YT-Indy. Thus, targeting VAMP-7 expression specifically with siRNA, following transplantation, may be a viable strategy for preventing NK cell-mediated transplant rejection, in vivo

  4. Rabies virus co-localizes with early (Rab5) and late (Rab7) endosomal proteins in neuronal and SH-SY5Y cells.

    Science.gov (United States)

    Ahmad, Waqas; Li, Yingying; Guo, Yidi; Wang, Xinyu; Duan, Ming; Guan, Zhenhong; Liu, Zengshan; Zhang, Maolin

    2017-06-01

    Rabies virus (RABV) is a highly neurotropic virus that follows clathrin-mediated endocytosis and pH-dependent pathway for trafficking and invasion into endothelial cells. Early (Rab5, EEA1) and late (Rab7, LAMP1) endosomal proteins play critical roles in endosomal sorting, maturity and targeting various molecular cargoes, but their precise functions in the early stage of RABV neuronal infection remain elusive. In this study, the relationship between enigmatic entry of RABV with these endosomal proteins into neuronal and SH-SY5Y cells was investigated. Immunofluorescence, TCID 50 titers, electron microscopy and western blotting were carried out to determine the molecular interaction of the nucleoprotein (N) of RABV with early or late endosomal proteins in these cell lines. The expression of N was also determined by down-regulating Rab5 and Rab7 in both cell lines through RNA interference. The results were indicative that N proficiently colocalized with Rab5/EEA1 and Rab7/LAMP1 in both cell lines at 24 and 48 h post-infection, while N titers significantly decreased in early infection of RABV. Down-regulation of Rab5 and Rab7 did not inhibit N expression, but it prevented productive infection via blocking the normal trafficking of RABV in a low pH environment. Ultrathin sections of cells studied by electron microscope also verified the close association of RABV with Rab5 and Rab7 in neurons. From the data it was concluded that primary entry of RABV strongly correlates with the kinetics of Rab-proteins present on early and late vesicles, which provides helpful clues to explain the early events of RABV in nerve cells.

  5. Nanotopography induced contact guidance of the F11 cell line during neuronal differentiation: a neuronal model cell line for tissue scaffold development

    International Nuclear Information System (INIS)

    Wieringa, Paul; Micera, Silvestro; Tonazzini, Ilaria; Cecchini, Marco

    2012-01-01

    The F11 hybridoma, a dorsal root ganglion-derived cell line, was used to investigate the response of nociceptive sensory neurons to nanotopographical guidance cues. This established this cell line as a model of peripheral sensory neuron growth for tissue scaffold design. Cells were seeded on substrates of cyclic olefin copolymer (COC) films imprinted via nanoimprint lithography (NIL) with a grating pattern of nano-scale grooves and ridges. Different ridge widths were employed to alter the focal adhesion formation, thereby changing the cell/substrate interaction. Differentiation was stimulated with forskolin in culture medium consisting of either 1 or 10% fetal bovine serum (FBS). Per medium condition, similar neurite alignment was achieved over the four day period, with the 1% serum condition exhibiting longer, more aligned neurites. Immunostaining for focal adhesions found the 1% FBS condition to also have fewer, less developed focal adhesions. The robust response of the F11 to guidance cues further builds on the utility of this cell line as a sensory neuron model, representing a useful tool to explore the design of regenerative guidance tissue scaffolds. (paper)

  6. Loss and stabilization of resistance to aminopterin in mouse cell lines

    International Nuclear Information System (INIS)

    Safronov, V.V.; Kapitsa, O.S.; Sapegina, M.B.; Gorodetskii, S.I.

    1986-01-01

    Using step-wise selection, lines of mouse L-cells were obtained (clones B-82, TK-), resistance to aminopterin (AP) of which exceeds resistance of parental cells by 10 3 -5 x 10 4 times. Increased resistance is the result of amplification of the gene for dihydrofolate reductase (DHFR), which was established according to increase in enzyme activity by 15-120 times and by cytogenetic methods. Development and disappearance of resistance to AP was studied and karyological analysis of lines obtained was conducted. Two types of karylogical changes were revealed: the presence of double microchromosomes (DM) and of a marker chromosome having homogeneously staining regions (HSR). The localization of the DHFR and HSR genes was demonstrated using in situ hybridization. At early stages of the development of resistance and for a long time, an extrachromosomal localization of amplified genes in the structure of DM, which determine unstable resistance to toxin, is fundamental. The possibility was demonstrated of the long-term existence of cells in which DM and HSR are present simultaneously. Change in number of copies of the DHFR gene in lines of such cells occurs through change in the number of DM, while size and localization of HSR are constant in different conditions of cell culturing. The presence of HSR determines stable resistance to AP. Data were obtained in support of an intermediate relative stabilization of resistance, which is caused by temporary insertion of copies of the DHFR gene into other sections of chromosomes, in addition to HSR dispersed variously through the genome

  7. Cytotoxic effects of Pinus eldarica essential oil and extracts on HeLa and MCF-7 cell lines.

    Science.gov (United States)

    Sarvmeili, Najmeh; Jafarian-Dehkordi, Abbas; Zolfaghari, Behzad

    2016-12-01

    Several attempts have so far been made in the search of new anticancer agents of plant origin. Some studies have reported that different species of Pine genus possess cytotoxic activities against various cancer cell lines. In the present study, we evaluated the cytotoxic effects of Pinus eldarica bark and leaf extracts or leaf essential oil on HeLa and MCF-7 tumor cell lines. Hydroalcoholic and phenolic extracts and the essential oil of plant were prepared. Total phenolic contents of the extracts were measured using Folin-Ciocalteu reagent. Essential oil components were determined by gas chromatography-mass spectroscopy (GC-MS). Cytotoxic activity of the extracts and essential oil against HeLa and MCF-7 tumor cell lines were assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. The polyphenolic content of hydroalcoholic and phenolic extracts of the bark and hydroalcoholic extract of the leaf were 48.31%, 47.2%, and 8.47%, respectively. According to the GC-MS analysis, the major components of the leaf oil of P. eldarica were: β -caryophyllene (14.8%), germacrene D (12.9%), α-terpinenyl acetate (8.15%), α -pinene (5.7%), and -α humulene (5.9%). Bark extracts and leaf essential oil of P. eldarica significantly reduced the viability of both HeLa and MCF-7 cells in a concentration dependent manner. However, leaf extract showed less inhibitory effects against both cell lines. The essential oil of P. eldarica was more cytotoxic than its hydroalcoholic and phenolic extracts. The terpenes and phenolic compounds were probably responsible for cytotoxicity of P. eldarica . Therefore, P. eldarica might have a good potential for active anticancer agents.

  8. Culture of human cell lines by a pathogen-inactivated human platelet lysate.

    Science.gov (United States)

    Fazzina, R; Iudicone, P; Mariotti, A; Fioravanti, D; Procoli, A; Cicchetti, E; Scambia, G; Bonanno, G; Pierelli, L

    2016-08-01

    Alternatives to the use of fetal bovine serum (FBS) have been investigated to ensure xeno-free growth condition. In this study we evaluated the efficacy of human platelet lysate (PL) as a substitute of FBS for the in vitro culture of some human cell lines. PL was obtained by pools of pathogen inactivated human donor platelet (PLT) concentrates. Human leukemia cell lines (KG-1, K562, JURKAT, HL-60) and epithelial tumor cell lines (HeLa and MCF-7) were cultured with either FBS or PL. Changes in cell proliferation, viability, morphology, surface markers and cell cycle were evaluated for each cell line. Functional characteristics were analysed by drug sensitivity test and cytotoxicity assay. Our results demonstrated that PL can support growth and expansion of all cell lines, although the cells cultured in presence of PL experienced a less massive proliferation compared to those grown with FBS. We found a comparable percentage of viable specific marker-expressing cells in both conditions, confirming lineage fidelity in all cultures. Functionality assays showed that cells in both FBS- and PL-supported cultures maintained their normal responsiveness to adriamycin and NK cell-mediated lysis. Our findings indicate that PL is a feasible serum substitute for supporting growth and propagation of haematopoietic and epithelial cell lines with many advantages from a perspective of process standardization, ethicality and product safety.

  9. Cellular Glycolysis and The Differential Survival of Lung Fibroblast and Lung Carcinoma Cell Lines.

    Science.gov (United States)

    Farah, Ibrahim O

    2016-04-01

    Tumor growth and abnormal cell survival were shown to be associated with a number of cellular metabolic abnormalities revealed by impaired oral glucose tolerance, depressed lipoprotein lipase activity leading to hypertriglyceridemia, and changes in amino acid profile as evidenced by increased plasma free tryptophan levels in patients with breast, lung, colon, stomach, and other cancers from various origins. The above findings seem to relate to or indicate a shift to non-oxidative metabolic pathways in cancer. In contrast to normal cells, cancer cells may lose the ability to utilize aerobic respiration due to either defective mitochondria or hypoxia within the tumor microenvironments. Glucose was shown to be the major energy source in cancer cells where it utilizes aerobic /anaerobic glycolysis with the resultant lactic acid formation. The role of energetic modulations and use of glycolytic inhibitors on cancer/normal cell survival is not clearly established in the literature. We hypothesize that natural intermediates of glycolysis and the citric acid cycle will differentially and negatively impact the cancer phenotype in contrast to their no effects on the normal cell phenotype. Therefore, the purpose of this study was to evaluate six potential glycolytic modulators namely, Pyruvic acid, oxalic acid, Zn acetate, sodium citrate, fructose diphosphate (FDP) and sodium bicarbonate at μM concentrations on growing A549 (lung cancer) and MRC-5 (normal; human lung fibroblast) cell lines with the objective of determining their influence on visual impact, cell metabolic activity, cell viability and end-point cell survival. Exposed and non-exposed cells were tested with phase-contrast micro-scanning, survival/death and metabolic activity trends through MTT-assays, as well as death end-point determinations by testing re-growth on complete media and T4 cellometer counts. Results showed that oxalic acid and Zn acetate both influenced the pH of the medium and resulted in

  10. A comparative study of the FcepsilonRI molecule on human mast cell and basophil cell lines

    DEFF Research Database (Denmark)

    Jensen, Bettina Margrethe; Dissing, S; Skov, P S

    2005-01-01

    Mast cells and basophils express the high-affinity IgE receptor FcepsilonRI. We have analysed the human mast cell line LAD2 and four subclones of the basophil cell line KU812 in order to reveal possible differences concerning the FcepsilonRI surface regulation, anti-IgE-triggered activation......, FcepsilonRIalpha protein stability and the mRNA level of FcepsilonRIalpha-, beta- and the truncated beta-chain (beta(T)), and thereby determine the utility of these cell lines in investigations of the FcepsilonRI biology....

  11. Isolation, Characterization, and Establishment of Spontaneously Immortalized Cell Line HRPE-2S With Stem Cell Properties.

    Science.gov (United States)

    Shams Najafabadi, Hoda; Soheili, Zahra-Soheila; Samiei, Shahram; Ahmadieh, Hamid; Ranaei Pirmardan, Ehsan; Masoumi, Maryam

    2017-10-01

    The retinal pigment epithelium is a monolayer of highly specialized pigmented cells located between the neural retina and the Bruch's membrane of the choroid. RPE cells play a crucial role in the maintenance and function of the underlying photoreceptors. This study introduces a spontaneously arising human retinal pigment epithelial cell line, HRPE-2S, which was isolated from primary RPE cell culture of 2 days old male donor. We characterized morphology and functional properties of the new cell line. The immortalized cell line was maintained in culture for more than 70 passages and 240 divisions. The average doubling time of the cells was approximately 22 h and got freezed at 26th passage. The cell line expressed RPE-specific markers RPE65 and cell junction protein ZO1 as an epithelial cell marker. It also expressed CHX10, PAX6, Nestin, SOX2 as stem and retinal progenitor cell markers. Ki67 as a marker of cell proliferation was expressed in all HRPE-2S cells. It represented typical epithelial cobblestone morphology and did not phenotypically change through several passages. Stem cell-like aggregations (neurospheres) were observed in SEM microscopy. The cells represented high mitotic index. They could be viable under hypoxic conditions and serum deprivation. According to functional studies, the cell line exhibited stem cell-like behaviors with particular emphasis on its self-renewal capacity. LDH isoenzymes expression pattern confirmed the same cellular source for both of the HRPE-2S cells and primary RPE cells. Characteristics of HRPE-2S cells promise it as an in vitro model for RPE stem cell-based researches. J. Cell. Physiol. 232: 2626-2640, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  12. Establishment of the first humpback whale fibroblast cell lines and their application in chemical risk assessment

    Energy Technology Data Exchange (ETDEWEB)

    Burkard, Michael, E-mail: Michael.burkard@eawag.ch [Griffith University, Environmental Futures Research Institute, Southern Ocean Persistent Organic Pollutants Program, Brisbane, QLD (Australia); Eawag, Swiss Federal Institute of Technology, Dübendorf (Switzerland); Whitworth, Deanne [The University of Queensland, School of Veterinary Science, Gatton, QLD (Australia); Schirmer, Kristin [Eawag, Swiss Federal Institute of Technology, Dübendorf (Switzerland); ETH Zürich, Institute of Biogechemistry and Pollutant Dynamics, Zürich (Switzerland); EPF Lausanne, School of Architecture, Civil and Environmental Engineering, Lausanne (Switzerland); Nash, Susan Bengtson [Griffith University, Environmental Futures Research Institute, Southern Ocean Persistent Organic Pollutants Program, Brisbane, QLD (Australia)

    2015-10-15

    Highlights: • We established and characterised the first humpback whale fibroblast cell lines. • Cell lines have a stable karyotype with 2n = 44. • Exposure to p,p′-DDE resulted in a concentration-dependent loss of cell viability. • p,p′-DDE sensitivity differed considerably from human fibroblasts. • Exposure to a whale blubber extract showed higher sensitivity than to p,p′-DDE alone. - Abstract: This paper reports the first successful derivation and characterization of humpback whale fibroblast cell lines. Primary fibroblasts were isolated from the dermal connective tissue of skin biopsies, cultured at 37 °C and 5% CO{sub 2} in the standard mammalian medium DMEM/F12 supplemented with 10% fetal bovine serum (FBS). Of nine initial biopsies, two cell lines were established from two different animals and designated HuWa1 and HuWa2. The cells have a stable karyotype with 2n = 44, which has commonly been observed in other baleen whale species. Cells were verified as being fibroblasts based on their spindle-shaped morphology, adherence to plastic and positive immunoreaction to vimentin. Population doubling time was determined to be ∼41 h and cells were successfully cryopreserved and thawed. To date, HuWa1 cells have been propagated 30 times. Cells proliferate at the tested temperatures, 30, 33.5 and 37 °C, but show the highest rate of proliferation at 37 °C. Short-term exposure to para,para′-dichlorodiphenyldichloroethylene (p,p′-DDE), a priority compound accumulating in southern hemisphere humpback whales, resulted in a concentration-dependent loss of cell viability. The effective concentration which caused a 50% reduction in HuWa1 cell viability (EC{sub 50} value) was approximately six times greater than the EC{sub 50} value for the same chemical measured with human dermal fibroblasts. HuWa1 exposed to a natural, p,p′-DDE-containing, chemical mixture extracted from whale blubber showed distinctively higher sensitivity than to p,p′-DDE alone

  13. Cell lines generated from a chronic lymphocytic leukemia mouse model exhibit constitutive Btk and Akt signaling

    NARCIS (Netherlands)

    Singh, Simar Pal; Pillai, Saravanan Y.; de Bruijn, Marjolein J. W.; Stadhouders, Ralph; Corneth, Odilia B. J.; van den Ham, Henk Jan; Muggen, Alice; van Ijcken, Wilfred; Slinger, Erik; Kuil, Annemieke; Spaargaren, Marcel; Kater, Arnon P.; Langerak, Anton W.; Hendriks, Rudi W.

    2017-01-01

    Chronic lymphocytic leukemia (CLL) is characterized by the accumulation of mature CD5(+) B cells in blood. Spontaneous apoptosis of CLL cells in vitro has hampered in-depth investigation of CLL pathogenesis. Here we describe the generation of three monoclonal mouse cell lines, EMC2, EMC4 and EMC6,

  14. Isolation and characterization of conditionally immortalized mouse glomerular endothelial cell lines.

    Science.gov (United States)

    Rops, Angelique L; van der Vlag, Johan; Jacobs, Cor W; Dijkman, Henry B; Lensen, Joost F; Wijnhoven, Tessa J; van den Heuvel, Lambert P; van Kuppevelt, Toin H; Berden, Jo H

    2004-12-01

    The culture and establishment of glomerular cell lines has proven to be an important tool for the understanding of glomerular cell functions in glomerular physiology and pathology. Especially, the recent establishment of a conditionally immortalized visceral epithelial cell line has greatly boosted the research on podocyte biology. Glomeruli were isolated from H-2Kb-tsA58 transgenic mice that contain a gene encoding a temperature-sensitive variant of the SV40 large tumor antigen, facilitating proliferative growth at 33 degrees C and differentiation at 37 degrees C. Glomerular endothelial cells were isolated from glomerular outgrowth by magnetic beads loaded with CD31, CD105, GSL I-B4, and ULEX. Clonal cell lines were characterized by immunofluorescence staining with antibodies/lectins specific for markers of endothelial cells, podocytes, and mesangial cells. Putative glomerular endothelial cell lines were analyzed for (1) cytokine-induced expression of adhesion molecules; (2) tube formation on Matrigel coating; and (3) the presence of fenestrae. As judged by immunostaining for Wilms tumor-1, smooth muscle actin (SMA), podocalyxin, and von Willebrand factor (vWF), we obtained putative endothelial, podocyte and mesangial cell lines. The mouse glomerular endothelial cell clone #1 (mGEnC-1) was positive for vWF, podocalyxin, CD31, CD105, VE-cadherin, GSL I-B4, and ULEX, internalized acetylated-low-density lipoprotein (LDL), and showed increased expression of adhesion molecules after activation with proinflammatory cytokines. Furthermore, mGEnC-1 formed tubes and contained nondiaphragmed fenestrae. The mGEnC-1 represents a conditionally immortalized cell line with various characteristics of differentiated glomerular endothelial cells when cultured at 37 degrees C. Most important, mGEnC-1 contains nondiaphragmed fenestrae, which is a unique feature of glomerular endothelial cells.

  15. Neurotoxicity induced by dexamethasone in the human neuroblastoma SH-SY5Y cell line can be prevented by folic acid.

    Science.gov (United States)

    Budni, J; Romero, A; Molz, S; Martín-de-Saavedra, M D; Egea, J; Del Barrio, L; Tasca, C I; Rodrigues, A L S; López, M G

    2011-09-08

    Folic acid (folate) is a vitamin of the B-complex group that is essential for cell replication. Folate is a major determinant of one-carbon metabolism, in which S-adenosylmethionine donates methyl groups that are crucial for neurological function. Many roles for folic acid have been reported, including neuroprotective and antidepressant properties. On the other hand, increased concentrations of corticoids have proven neurotoxic effects and hypersecretion of glucocorticoids has been linked to different mood disorders. The purpose of this study was to investigate the potential protective effect of folic acid on dexamethasone-induced cellular death in SH-SY5Y neuroblastoma cell line and the possible intracellular signaling pathway involved in such effect. Exposure to 1 mM dexamethasone for 48 h caused a significant reduction of cell viability measured as 3-[4,5 dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide (MTT) reduction. Exposure of SH-SY5Y cells for 72 h to increasing concentrations of folate (1-300 μM) was not cytotoxic. However, pretreatment with folate (10-300 μM) reduced dexamethasone-induced toxicity in a significant manner. To explore the putative intracellular signaling pathways implicated in the protective effect of folate we used different protein kinase inhibitors. The protective effect of folic acid on dexamethasone-induced neurotoxicity was reversed by the phosphatidylinositol-3 kinase/Akt (PI3K/Akt, LY294002), Ca²⁺/Calmodulin-dependent protein kinase II (CaMKII, KN-93), and protein kinase A (PKA, H-89) inhibitors, but not the mitogen-activated protein/extracellular signal-regulated kinase (MEK1/2, PD98059) and protein kinase C (PKC, chelerythrine) inhibitors. In conclusion, the results of this study show that folic acid can protect against dexamethasone-induced neurotoxicity and its protective mechanism is related to a signaling pathway that involves PI3K/Akt, CaMKII, and PKA. Copyright © 2011. Published by Elsevier Ltd.

  16. Neutron and photon clonogenic survival curves of two chemotherapy resistant human intermediate-grade non-Hodgkin lymphoma cell lines

    International Nuclear Information System (INIS)

    Aref, Amr; Yudelev, Mark; Mohammad, Ramzi; Choudhuri, Rajani; Orton, Colin; Al-Katib, Ayad

    1999-01-01

    Background: The potential role of neutron therapy in the management of intermediate-grade non-Hodgkin lymphoma (IGNHL) has not been examined because of the belief that the anticipated radiobiological effectiveness (RBE) would be uniformly very low. Purpose: To determine the fast neutron RBE for two chemotherapy-resistant IGNHL cell lines. Methods and Materials: Conventional soft agar clonogenic survival curves following irradiation by 60 Co and fast neutron were established for two IGNHL cell lines. These cell lines, WSU-DLCL2 and SK-DHL2B, were found in previous studies to be able to repair sublethal damage, and were also resistant to L-Pam and doxorubicin chemotherapy. Results: When the surviving fraction after 2 Gy photon was chosen as the biological endpoint, the RBE for WSU-DLCL2 and SK-DHL2B measured 3.34 and 3.06. Similarly, when 10% survival was considered, the RBE for these two cell lines measured 2.54 and 2.59. The RBE, as measured by the ratios α neutron/α photon, for WSU-DLCL2, SK-DHL2B cell lines are 6.67 and 5.65, respectively. These results indicate that the RBE for these IGNHL cell lines is higher than the average RBE for cell lines of other histological types. Conclusion: Fast neutron irradiation may be of potential value in treating selected cases of IGNHL

  17. Spontaneous lung metastasis formation of human Merkel cell carcinoma cell lines transplanted into scid mice.

    Science.gov (United States)

    Knips, Jill; Czech-Sioli, Manja; Spohn, Michael; Heiland, Max; Moll, Ingrid; Grundhoff, Adam; Schumacher, Udo; Fischer, Nicole

    2017-07-01

    Merkel cell carcinoma (MCC) is an aggressive skin cancer entity that frequently leads to rapid death due to its high propensity to metastasize. The etiology of most MCC cases is linked to Merkel cell polyomavirus (MCPyV), a virus which is monoclonally integrated in up to 95% of tumors. While there are presently no animal models to study the role of authentic MCPyV infection on transformation, tumorigenesis or metastasis formation, xenograft mouse models employing engrafted MCC-derived cell lines (MCCL) represent a promising approach to study certain aspects of MCC pathogenesis. Here, the two MCPyV-positive MCC cell lines WaGa and MKL-1 were subcutaneously engrafted in scid mice. Engraftment of both MCC cell lines resulted in the appearance of circulating tumor cells and metastasis formation, with WaGa-engrafted mice showing a significantly shorter survival time as well as increased numbers of spontaneous lung metastases compared to MKL-1 mice. Interestingly, explanted tumors compared to parental cell lines exhibit an upregulation of MCPyV sT-Antigen expression in all tumors, with WaGa tumors showing significantly higher sT-Antigen expression than MKL-1 tumors. RNA-Seq analysis of explanted tumors and parental cell lines furthermore revealed that in the more aggressive WaGa tumors, genes involved in inflammatory response, growth factor activity and Wnt signalling pathway are significantly upregulated, suggesting that sT-Antigen is the driver of the observed differences in metastasis formation. © 2017 UICC.

  18. SET-NUP214 fusion in acute myeloid leukemia- and T-cell acute lymphoblastic leukemia-derived cell lines

    Directory of Open Access Journals (Sweden)

    Zaborski Margarete

    2009-01-01

    Full Text Available Abstract Background SET-NUP214 fusion resulting from a recurrent cryptic deletion, del(9(q34.11q34.13 has recently been described in T-cell acute lymphoblastic leukemia (T-ALL and in one case of acute myeloid leukemia (AML. The fusion protein appears to promote elevated expression of HOXA cluster genes in T-ALL and may contribute to the pathogenesis of the disease. We screened a panel of ALL and AML cell lines for SET-NUP214 expression to find model systems that might help to elucidate the cellular function of this fusion gene. Results Of 141 human leukemia/lymphoma cell lines tested, only the T-ALL cell line LOUCY and the AML cell line MEGAL expressed the SET(TAF-Iβ-NUP214 fusion gene transcript. RT-PCR analysis specifically recognizing the alternative first exons of the two TAF-I isoforms revealed that the cell lines also expressed TAF-Iα-NUP214 mRNA. Results of fluorescence in situ hybridization (FISH and array-based copy number analysis were both consistent with del(9(q34.11q34.13 as described. Quantitative genomic PCR also confirmed loss of genomic material between SET and NUP214 in both cell lines. Genomic sequencing localized the breakpoints of the SET gene to regions downstream of the stop codon and to NUP214 intron 17/18 in both LOUCY and MEGAL cells. Both cell lines expressed the 140 kDa SET-NUP214 fusion protein. Conclusion Cell lines LOUCY and MEGAL express the recently described SET-NUP214 fusion gene. Of special note is that the formation of the SET exon 7/NUP214 exon 18 gene transcript requires alternative splicing as the SET breakpoint is located downstream of the stop codon in exon 8. The cell lines are promising model systems for SET-NUP214 studies and should facilitate investigating cellular functions of the the SET-NUP214 protein.

  19. Advances in Mammalian Cell Line Development Technologies for Recombinant Protein Production

    Directory of Open Access Journals (Sweden)

    Say Kong Ng

    2013-04-01

    Full Text Available From 2006 to 2011, an average of 15 novel recombinant protein therapeutics have been approved by US Food and Drug Administration (FDA annually. In addition, the expiration of blockbuster biologics has also spurred the emergence of biosimilars. The increasing numbers of innovator biologic products and biosimilars have thus fuelled the demand of production cell lines with high productivity. Currently, mammalian cell line development technologies used by most biopharmaceutical companies are based on either the methotrexate (MTX amplification technology or the glutamine synthetase (GS system. With both systems, the cell clones obtained are highly heterogeneous, as a result of random genome integration by the gene of interest and the gene amplification process. Consequently, large numbers of cell clones have to be screened to identify rare stable high producer cell clones. As such, the cell line development process typically requires 6 to 12 months and is a time, capital and labour intensive process. This article reviews established advances in protein expression and clone screening which are the core technologies in mammalian cell line development. Advancements in these component technologies are vital to improve the speed and efficiency of generating robust and highly productive cell line for large scale production of protein therapeutics.

  20. A bovine cell line that can be infected by natural sheep scrapie prions.

    Directory of Open Access Journals (Sweden)

    Anja M Oelschlegel

    Full Text Available Cell culture systems represent a crucial part in basic prion research; yet, cell lines that are susceptible to prions, especially to field isolated prions that were not adapted to rodents, are very rare. The purpose of this study was to identify and characterize a cell line that was susceptible to ruminant-derived prions and to establish a stable prion infection within it. Based on species and tissue of origin as well as PrP expression rate, we pre-selected a total of 33 cell lines that were then challenged with natural and with mouse propagated BSE or scrapie inocula. Here, we report the successful infection of a non-transgenic bovine cell line, a sub-line of the bovine kidney cell line MDBK, with natural sheep scrapie prions. This cell line retained the scrapie infection for more than 200 passages. Selective cloning resulted in cell populations with increased accumulation of PrPres, although this treatment was not mandatory for retaining the infection. The infection remained stable, even under suboptimal culture conditions. The resulting infectivity of the cells was confirmed by mouse bioassay (Tgbov mice, Tgshp mice. We believe that PES cells used together with other prion permissive cell lines will prove a valuable tool for ongoing efforts to understand and defeat prions and prion diseases.

  1. Establishment of c-myc-immortalized Kupffer cell line from a C57BL/6 mouse strain

    Directory of Open Access Journals (Sweden)

    Hiroshi Kitani

    2014-01-01

    Full Text Available We recently demonstrated in several mammalian species, a novel procedure to obtain liver-macrophages (Kupffer cells in sufficient numbers and purity using a mixed primary culture of hepatocytes. In this study, we applied this method to the C57BL/6 mouse liver and established an immortalized Kupffer cell line from this mouse strain. The hepatocytes from the C57BL/6 adult mouse liver were isolated by a two-step collagenase perfusion method and cultured in T25 culture flasks. Similar to our previous studies, the mouse hepatocytes progressively changed their morphology into a fibroblastic appearance after a few days of culture. After 7–10 days of culture, Kupffer-like cells, which were contaminants in the hepatocyte fraction at the start of the culture, actively proliferated on the mixed fibroblastic cell sheet. At this stage, a retroviral vector containing the human c-myc oncogene and neomycin resistance gene was introduced into the mixed culture. Gentle shaking of the culture flask, followed by the transfer and brief incubation of the culture supernatant, resulted in a quick and selective adhesion of Kupffer cells to a plastic dish surface. After selection with G418 and cloning by limiting dilutions, a clonal cell line (KUP5 was established. KUP5 cells displayed typical macrophage morphology and were stably passaged at 4–5 days intervals for more than 5 months, with a population doubling time of 19 h. KUP5 cells are immunocytochemically positive for mouse macrophage markers, such as Mac-1, F4/80. KUP5 cells exhibited substantial phagocytosis of polystyrene microbeads and the release of inflammatory cytokines upon lipopolysaccharide stimulation. Taken together, KUP5 cells provide a useful means to study the function of Kupffer cells in vitro.

  2. Presence of dopamine D-2 receptors in human tumoral cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Sokoloff, P.; Riou, J.F.; Martres, M.P.; Schwartz, J.C. (Centre Paul Broca, Paris (France))

    1989-07-31

    ({sup 125}I) Iodosulpride binding was examined on eight human cell lines derived from lung, breast and digestive tract carcinomas, neuroblastomas and leukemia. Specific binding was detected in five of these cell lines. In the richest cell line N417, derived from small cell lung carcinoma, ({sup 125}I) iodosulpride bound with a high affinity (Kd = 1.3 nM) to an apparently homogeneous population of binding site (Bmax = 1,606 sites per cell). These sites displayed a typical D-2 specificity, established with several dopaminergic agonists and antagonists selective of either D-1 or D-2 receptor subtypes. In addition, dopamine, apomorphine and RU 24926 distinguished high- and low-affinity sites, suggesting that the binding sites are associated with a G-protein. The biological significance and the possible diagnostic implication of the presence of D-2 receptors on these cell lines are discussed.

  3. B cell signatures of BCWD-resistant and susceptible lines of rainbow trout: a shift towards more EBF-expressing progenitors and fewer mature B cells in resistant animals.

    Science.gov (United States)

    Zwollo, Patty; Ray, Jocelyn C; Sestito, Michael; Kiernan, Elizabeth; Wiens, Gregory D; Kaattari, Steve; StJacques, Brittany; Epp, Lidia

    2015-01-01

    Bacterial cold water disease (BCWD) is a chronic disease of rainbow trout, and is caused by the Gram-negative bacterium Flavobacterium psychrophilum (Fp), a common aquaculture pathogen. The National Center for Cool and Cold Water Aquaculture has bred two genetic lines of rainbow trout: a line of Fp-resistant trout (ARS-Fp-R or R-line trout) and a line of susceptible trout (ARS-Fp-S, or S-line). Little is known about how phenotypic selection alters immune response parameters or how such changes relate to genetic disease resistance. Herein, we quantify interindividual variation in the distribution and abundance of B cell populations (B cell signatures) and examine differences between genetic lines of naive animals. There are limited trout-specific cell surface markers currently available to resolve B cell subpopulations and thus we developed an alternative approach based on detection of differentially expressed transcription factors and intracellular cytokines. B cell signatures were compared between R-line and S-line trout by flow cytometry using antibodies against transcription factors early B cell factor-1 (EBF1) and paired domain box protein Pax5, the pro-inflammatory cytokine IL-1β, and the immunoglobulin heavy chain mu. R-line trout had higher percentages of EBF(+) B myeloid/ progenitor and pre-B cells in PBL, anterior and posterior kidney tissues compared to S-line trout. The opposite pattern was detected in more mature B cell populations: R-line trout had lower percentages of both IgM(+) mature B cells and IgM-secreting cells in anterior kidney and PBL compared to S-line trout. In vitro LPS-activation studies of PBL and spleen cell cultures revealed no significant induction differences between R-line and S-line trout. Together, our findings suggest that selective resistance to BCWD may be associated with shifts in naive animal developmental lineage commitment that result in decreased B lymphopoiesis and increased myelopoiesis in BCWD resistant trout relative

  4. Exploring the Anticancer Activity of Grape Seed Extract on Skin Cancer Cell Lines A431

    Directory of Open Access Journals (Sweden)

    V. Mohansrinivasan

    2015-08-01

    Full Text Available In this study, grape seeds were extracted using ethyl acetate and petroleum ether by solvent-solvent extraction method. The phytochemical tests were performed to identify different phytochemical compounds present in the grape seed extract (GSE. Antibacterial activity of the GSE was determined using agar diffusion method against Gram- positive and Gram-negative bacteria. Gas chromatography-mass spectrometry (GC-MS and Fourier transform infrared spectroscopy (FTIR analysis was done to identify the presence of bioactive compounds and their functional groups. The GC-MS results revealed a total of four compounds, known to have potent activity against cancer cells, viz, squalene, the most potent compound found in ethyl acetate extract and diethyl phthalate, ethyl-9- cis -11- trans octadecadienoate and (R-(--14,-methyl-8-Hexadecyn-1-ol in petroleum ether extract. Cytotoxic activity of the GSE was observed against skin cancer cell lines A4321 using 3-(4, 5-dimethylthiazol-2-yl-2-5-diphenyl tetrazolium bromide MTT assay. The IC50 value of the GSE against A431 skin cancer cell line was 480 µg/mL. This is first such report against A4321 cell lines. The study gives the overall perception about importance of GSE in medicine and nutraceuticals purposes.

  5. Investigation of the bystander effect in MRC5 cells after acute and fractionated irradiation in vitro

    International Nuclear Information System (INIS)

    Soleymanifard, Shokouhozaman; Toossi, Mohammad Taghi Bahreyni; Samani, Roghayeh Kamran; Mohebbi, Shokoufeh

    2014-01-01

    Radiation-induced bystander effect (RIBE) has been defined as radiation responses observed in nonirradiated cells. It has been the focus of investigators worldwide due to the deleterious effects it induces in nonirradiated cells. The present study was performed to investigate whether acute or fractionated irradiation will evoke a differential bystander response in MRC5 cells. A normal human cell line (MRC5), and a human lung tumor cell line (QU-DB) were exposed to 0, 1, 2, and 4Gy of single acute or fractionated irradiation of equal fractions with a gap of 6 h. The MRC5 cells were supplemented with the media of irradiated cells and their micronucleus frequency was determined. The micronucleus frequency after single and fractionated irradiation did not vary significantly in the MRC5 cells conditioned with autologous or QU-DB cell-irradiated media, except for 4Gy where the frequency of micronucleated cells was lower in those MRC5 cells cultured in the media of QU-DB-exposed with a single dose of 4Gy. Our study demonstrates that the radiation-induced bystander effect was almost similar after single acute and fractionated exposure in MRC5 cells. (author)

  6. Investigation of the bystander effect in MRC5 cells after acute and fractionated irradiation in vitro

    Directory of Open Access Journals (Sweden)

    Shokouhozaman Soleymanifard

    2014-01-01

    Full Text Available Radiation-induced bystander effect (RIBE has been defined as radiation responses observed in nonirradiated cells. It has been the focus of investigators worldwide due to the deleterious effects it induces in nonirradiated cells. The present study was performed to investigate whether acute or fractionated irradiation will evoke a differential bystander response in MRC5 cells. A normal human cell line (MRC5, and a human lung tumor cell line (QU-DB were exposed to 0, 1, 2, and 4Gy of single acute or fractionated irradiation of equal fractions with a gap of 6 h. The MRC5 cells were supplemented with the media of irradiated cells and their micronucleus frequency was determined. The micronucleus frequency after single and fractionated irradiation did not vary significantly in the MRC5 cells conditioned with autologous or QU-DB cell-irradiated media, except for 4Gy where the frequency of micronucleated cells was lower in those MRC5 cells cultured in the media of QU-DB-exposed with a single dose of 4Gy. Our study demonstrates that the radiation-induced bystander effect was almost similar after single acute and fractionated exposure in MRC5 cells.

  7. Establishment and characterization of a fin cell line from blunt snout bream, Megalobrama amblycephala.

    Science.gov (United States)

    Zhu, Dong-Mei; Yang, Kun; Wang, Wei-Min; Song, Wen

    2013-12-01

    This study established and characterized a new cell line (MAF) from the fin of blunt snout bream (Megalobrama amblycephala), a freshwater fish cultivated in China. MAF cells proliferated well in medium 199 supplemented with 10 % fetal bovine serum at 28 °C and have been subcultured more than 95 times in almost a year. MAF cells were revived at 90-95 % viability after 3-6 months of storage in liquid nitrogen. Karyotyping indicated that the modal chromosome number of MAF cells was 48. The MAF cell line consisted predominantly of fibroblastic and epithelial-like cells from M. amblycephala, which was confirmed by immunofluorescence and mitochondrial 12s rRNA sequencing. Viral susceptibility tests showed that MAF cells were susceptible to infection by snakehead rhabdovirus, spring viremia carp virus, and channel catfish virus, which was demonstrated by the presence of cytopathic effect, high viral titers, and PCR products. Bacterial cytotoxicity studies showed that extracellular products from Aeromonas hydrophila were toxic to MAF cells. Cu²⁺ was also cytotoxic to MAF cells, and the 24-h IC₅₀ value was 144.48 μmol/l. When MAF cells were transfected with pEGFP-N1 plasmid, bright fluorescent signals were observed, and the transfection efficiency reached up to 5 %. These results suggest that the MAF cell line may provide a valuable tool for studying virus pathogenesis, as well as cytotoxicity testing and genetic manipulation studies.

  8. Effect of 5-azacytidine and galectin-1 on growth and differentiation of the human b lymphoma cell line bl36

    Directory of Open Access Journals (Sweden)

    Joubert-Caron Raymonde

    2001-12-01

    Full Text Available Abstract Background 5-AzaCytidine (AzaC is a DNA demethylating drugs that has been shown to inhibit cell growth and to induce apoptosis in certain cancer cells. Induced expression of the galectin1 (Gal1 protein, a galactoside-binding protein distributed widely in immune cells, has been described in cultured hepatoma-derived cells treated with AzaC and this event may have a role in the effect of the drug. According to this hypothesis, we investigated the effect of AzaC and Gal1 on human lymphoid B cells phenotype. Methods The effect of AzaC and Gal1 on cell growth and phenotype was determined on the Burkitt lymphoma cell line BL36. An immunocytochemical analysis for detection of Gal1 protein expression was performed in AzaC-treated cells. To investigate the direct effects of Gal1, recombinant Gal1 was added to cells. Results Treatment of lymphoid B cells with AzaC results in: i a decrease in cell growth with an arrest of the cell cycle at G0/G1 phase, ii phenotypic changes consistent with a differentiated phenotype, and iii the expression of p16, a tumor-suppressor gene whose expression was dependent of its promoter demethylation, and of Gal1. A targeting of Gal 1 to the plasma membrane follows its cytosolic expression. To determine which of the effects of AzaC might be secondary to the induction of Gal1, recombinant Gal1 was added to BL36 cells. Treated cells displayed growth inhibition and phenotypic changes consistent with a commitment toward differentiation. Conclusions Altered cell growth and expression of the cell surface plasma cell antigen, CD138 are detectable in BL36 cells treated by AzaC as well as by Gal1. It seems that AzaC-induced Gal1 expression and consequent binding of Gal1 on its cell membrane receptor may be, in part, involved in AzaC-induced plasmacytic differentiation.

  9. Anti-Proliferative Activity of Meroditerpenoids Isolated from the Brown Alga Stypopodium flabelliforme against Several Cancer Cell Lines

    Directory of Open Access Journals (Sweden)

    Patricia Valentao

    2011-05-01

    Full Text Available The sea constitutes one of the most promising sources of novel compounds with potential application in human therapeutics. In particular, algae have proved to be an interesting source of new bioactive compounds. In this work, six meroditerpenoids (epitaondiol, epitaondiol diacetate, epitaondiol monoacetate, stypotriol triacetate, 14-ketostypodiol diacetate and stypodiol isolated from the brown alga Stypopodium flabelliforme were tested for their cell proliferation inhibitory activity in five cell lines. Cell lines tested included human colon adenocarcinoma (Caco-2, human neuroblastoma (SH-SY5Y, rat basophilic leukemia (RBL-2H3, murine macrophages (RAW.267 and Chinese hamster fibroblasts (V79. Antimicrobial activity of the compounds was also evaluated against Staphylococcus aureus, Salmonella typhimurium, Proteus mirabilis, Bacillus cereus, Enterococcus faecalis and Micrococcus luteus. Overall, the compounds showed good activity against all cell lines, with SH-SY5Y and RAW.267 being the most susceptible. Antimicrobial capacity was observed for epitaondiol monoacetate, stypotriol triacetate and stypodiol, with the first being the most active. The results suggest that these molecules deserve further studies in order to evaluate their potential as therapeutic agents.

  10. ING1 and 5-azacytidine act synergistically to block breast cancer cell growth.

    Directory of Open Access Journals (Sweden)

    Satbir Thakur

    Full Text Available Inhibitor of Growth (ING proteins are epigenetic "readers" that recognize trimethylated lysine 4 of histone H3 (H3K4Me3 and target histone acetyl transferase (HAT and histone deacetylase (HDAC complexes to chromatin.Here we asked whether dysregulating two epigenetic pathways with chemical inhibitors showed synergistic effects on breast cancer cell line killing. We also tested whether ING1 could synergize better with chemotherapeutics that target the same epigenetic mechanism such as the HDAC inhibitor LBH589 (Panobinostat or a different epigenetic mechanism such as 5-azacytidine (5azaC, which inhibits DNA methyl transferases. Simultaneous treatment of breast cancer cell lines with LBH589 and 5azaC did not show significant synergy in killing cells. However, combination treatment of ING1 with either LBH589 or 5azaC did show synergy. The combination of ING1b with 5azaC, which targets two distinct epigenetic mechanisms, was more effective at lower doses and enhanced apoptosis as determined by Annexin V staining and cleavage of caspase 3 and poly-ADP-ribose polymerase (PARP. ING1b plus 5azaC also acted synergistically to increase γH2AX staining indicating significant levels of DNA damage were induced. Adenoviral delivery of ING1b with 5azaC also inhibited cancer cell growth in a murine xenograft model and led to tumor regression when viral concentration was optimized in vivo.These data show that targeting distinct epigenetic pathways can be more effective in blocking cancer cell line growth than targeting the same pathway with multiple agents, and that using viral delivery of epigenetic regulators can be more effective in synergizing with a chemical agent than using two chemotherapeutic agents. This study also indicates that the ING1 epigenetic regulator may have additional activities in the cell when expressed at high levels.

  11. Uveal Melanoma Cell Lines: Where do they come from? (An American Ophthalmological Society Thesis).

    Science.gov (United States)

    Jager, Martine J; Magner, J Antonio Bermudez; Ksander, Bruce R; Dubovy, Sander R

    2016-08-01

    To determine whether some of the most often used uveal melanoma cell lines resemble their original tumor. Analysis of the literature, patient charts, histopathology, mutations, chromosome status, HLA type, and expression of melanocyte markers on cell lines and their primary tumors. We examined five cell lines and the primary tumors from which they were derived. Four of the five examined primary tumors were unusual: one occupied the orbit, two were recurrences after prior irradiation, and one developed in an eye with a nevus of Ota. One cell line did not contain the GNA11 mutation, but it was present in the primary tumor. Three of the primary tumors had monosomy 3 (two of these lacked BAP1 expression); however, all five cell lines showed disomy 3 and BAP1 expression. All of the cell lines had gain of 8q. Two cell lines lacked expression of melanocyte markers, although these were present in the corresponding primary tumor. All cell lines could be traced back to their original uveal melanoma. Four of the five primary tumors were unusual. Cell lines often differed from their primary tumor in chromosome status and melanocyte markers. However, their specific chromosome aberrations and capacity to continue proliferation characterize them as uveal melanoma cell lines.

  12. Aberrant over-expression of a forkhead family member, FOXO1A, in a brain tumor cell line

    International Nuclear Information System (INIS)

    Dallas, Peter B; Egli, Simone; Terry, Philippa A; Kees, Ursula R

    2007-01-01

    The mammalian FOXO (forkhead box, O subclass) proteins are a family of pleiotropic transcription factors involved in the regulation of a broad range of cellular processes critical for survival. Despite the essential and diverse roles of the FOXO family members in human cells and their involvement in tumor pathogenesis, the regulation of FOXO expression remains poorly understood. We have addressed the mechanisms underlying the high level of expression of the FOXO1A gene in a cell line, PER-453, derived from a primitive neuroectodermal tumor of the central nervous system (CNS-PNET). The status of the FOXO1A locus in the PER-453 CNS-PNET cell line was investigated by Southern blotting and DNA sequence analysis of the proximal promoter, 5'-UTR, open reading frame and 3'-UTR. FOXO1A expression was assessed by conventional and quantitative RT-PCR, Northern and Western blotting. Quantitative real-time RT-PCR (qRT-PCR) data indicated that after normalization to ACTB mRNA levels, canonical FOXO1A mRNA expression in the PER-453 cell line was 124-fold higher than the average level of five other CNS-PNET cell lines tested, 24-fold higher than the level in whole fetal brain, and 3.5-fold higher than the level in fetal brain germinal matrix cells. No mutations within the FOXO1A open reading frame or gross rearrangements of the FOXO1A locus were detected. However, a single nucleotide change within the proximal promoter and several nucleotide changes within the 3'-UTR were identified. In addition, two novel FOXO1A transcripts were isolated that differ from the canonical transcript by alternative splicing within the 3'-UTR. The CNS-PNET cell line, PER-453, expresses FOXO1A at very high levels relative to most normal and cancer cells from a broad range of tissues. The FOXO1A open reading frame is wild type in the PER-453 cell line and the abnormally high FOXO1A mRNA expression is not due to mutations affecting the 5'-UTR or proximal promoter. Over expression

  13. Maslinic acid inhibits proliferation of renal cell carcinoma cell lines and suppresses angiogenesis of endothelial cells

    Directory of Open Access Journals (Sweden)

    Parth Thakor

    2017-03-01

    Full Text Available Despite the introduction of many novel therapeutics in clinical practice, metastatic renal cell carcinoma (RCC remains a treatment-re-sistant cancer. As red and processed meat are considered risk factors for RCC, and a vegetable-rich diet is thought to reduce this risk, research into plant-based therapeutics may provide valuable complementary or alternative therapeutics for the management of RCC. Herein, we present the antiproliferative and antiangiogenic effects of maslinic acid, which occurs naturally in edible plants, particularly in olive fruits, and also in a variety of medicinal plants. Human RCC cell lines (ACHN, Caki-1, and SN12K1, endothelial cells (human umbilical vein endothelial cell line [HUVEC], and primary cultures of kidney proximal tubular epithelial cells (PTEC were treated with maslinic acid. Maslinic acid was relatively less toxic to PTEC when compared with RCC under similar experimental conditions. In RCC cell lines, maslinic acid induced a significant reduction in proliferation, proliferating cell nuclear antigen, and colony formation. In HUVEC, maslinic acid induced a significant reduction in capillary tube formation in vitro and vascular endothelial growth factor. This study provides a rationale for incorporating a maslinic acid–rich diet either to reduce the risk of developing kidney cancer or as an adjunct to existing antiangiogenic therapy to improve efficacy.

  14. Antitumor effects of a sirtuin inhibitor, tenovin-6, against gastric cancer cells via death receptor 5 up-regulation.

    Directory of Open Access Journals (Sweden)

    Sachiko Hirai

    Full Text Available Up-regulated sirtuin 1 (SIRT1, an NAD+-dependent class III histone deacetylase, deacetylates p53 and inhibits its transcriptional activity, leading to cell survival. SIRT1 overexpression has been reported to predict poor survival in some malignancies, including gastric cancer. However, the antitumor effect of SIRT1 inhibition remains elusive in gastric cancer. Here, we investigated the antitumor mechanisms of a sirtuin inhibitor, tenovin-6, in seven human gastric cancer cell lines (four cell lines with wild-type TP53, two with mutant-type TP53, and one with null TP53. Interestingly, tenovin-6 induced apoptosis in all cell lines, not only those with wild-type TP53, but also mutant-type and null versions, accompanied by up-regulation of death receptor 5 (DR5. In the KatoIII cell line (TP53-null, DR5 silencing markedly attenuated tenovin-6-induced apoptosis, suggesting that the pivotal mechanism behind its antitumor effects is based on activation of the death receptor signal pathway. Although endoplasmic reticulum stress caused by sirtuin inhibitors was reported to induce DR5 up-regulation in other cancer cell lines, we could not find marked activation of its related molecules, such as ATF6, PERK, and CHOP, in gastric cancer cells treated with tenovin-6. Tenovin-6 in combination with docetaxel or SN-38 exerted a slight to moderate synergistic cytotoxicity against gastric cancer cells. In conclusion, tenovin-6 has potent antitumor activity against human gastric cancer cells via DR5 up-regulation. Our results should be helpful for the future clinical development of sirtuin inhibitors.

  15. Achillea millefolium L. hydroethanolic extract inhibits growth of human tumor cell lines by interfering with cell cycle and inducing apoptosis.

    Science.gov (United States)

    Pereira, Joana M; Peixoto, Vanessa; Teixeira, Alexandra; Sousa, Diana; Barros, Lillian; Ferreira, Isabel C F R; Vasconcelos, M Helena

    2018-06-05

    The cell growth inhibitory activity of the hydroethanolic extract of Achillea millefolium was studied in human tumor cell lines (NCI-H460 and HCT-15) and its mechanism of action was investigated. The GI 50 concentration was determined with the sulforhodamine B assay and cell cycle and apoptosis were analyzed by flow cytometry following incubation with PI or Annexin V FITC/PI, respectively. The expression levels of proteins involved in cell cycle and apoptosis were analyzed by Western blot. The extracts were characterized regarding their phenolic composition by LC-DAD-ESI/MS. 3,5-O-Dicaffeoylquinic acid, followed by 5-O-caffeoylquinic acid, were the main phenolic acids, while, luteolin-O-acetylhexoside and apigenin-O-acetylhexoside were the main flavonoids. This extract decreased the growth of the tested cell lines, being more potent in HCT-15 and then in NCI-H460 cells. Two different concentrations of the extract (75 and 100 μg/mL) caused alterations in cell cycle profile and increased apoptosis levels in HCT-15 and NCI-H460 cells. Moreover, the extract caused an increase in p53 and p21 expression in NCI-H460 cells (which have wt p53), and reduced XIAP levels in HCT-15 cells (with mutant p53). This work enhances the importance of A. millefolium as source of bioactive phenolic compounds, particularly of XIAP inhibitors. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. A 1H nuclear magnetic resonance study of structural and organisational changes in the cell

    International Nuclear Information System (INIS)

    Tunnah, Susan K.

    2000-01-01

    Increasing importance is being placed on understanding the role of membrane lipids in many different areas of biochemistry. It is of interest to determine what interactions may occur between membrane lipids and drug species. Furthermore, an increasing body of evidence suggests that membrane lipids are involved in the pathology of numerous diseases such as rheumatoid arthritis, cancer and HIV. Clearly, the more information available on the mechanisms involved in diseases, the greater the potential for identifying a cure or even a prevention. 1 H nuclear magnetic resonance (NMR) spectroscopy was used to study the alterations in membrane lipid organisation and structure in intact, viable cultured cells. Changes in the 1 H NMR spectra and the spin-lattice relaxation measurements of the human K562 and the rat FRTL-5 cell lines were observed on the addition of the fatty acid species: triolein, evening primrose oil, arachidonic acid and ITF 1779. Results indicate that the membrane lipids are reorganised to accommodate the interpolation of these molecules. The spatial arrangement adopted by each of these species appeared to dictate its effect on the lipids. Doxorubicin and menadione, both known to cause oxidative stress, were added to K562 cells. Although both agents are known to act by different mechanisms, the NMR data and scanning electron microscopy suggested that both caused similar alterations in the membrane organisation and lipid fluidity. Protrusions were formed indicating areas of weakness in the membrane. Spin-echo NMR was employed to investigate the action of the thiol-containing compounds, penicillamine, captopril and N-acetylcysteine in erythrocytes under conditions of oxidative stress. Results indicate that while captopril acts as a free radical scavenger, penicillamine may act as either oxidant or reductant. N-acetylcysteine was observed to act as a reducing agent. (author)

  17. Enhancement of Radiation Response in Osteosarcoma and Rhabomyosarcoma Cell Lines by Histone Deacetylase Inhibition

    International Nuclear Information System (INIS)

    Blattmann, Claudia; Oertel, Susanne; Ehemann, Volker

    2010-01-01

    Purpose: Histone deacetylase inhibitors (HDACIs) can enhance the sensitivity of cells to photon radiation treatment (XRT) by altering numerous molecular pathways. We investigated the effect of pan-HDACIs such as suberoylanilide hydroxamic acid (SAHA) on radiation response in two osteosarcoma (OS) and two rhabdomyosarcoma (RMS) cell lines. Methods and Materials: Clonogenic survival, cell cycle analysis, and apoptosis were examined in OS (KHOS-24OS, SAOS2) and RMS (A-204, RD) cell lines treated with HDACI and HDACI plus XRT, respectively. Protein expression was investigated via immunoblot analysis, and cell cycle analysis and measurement of apoptosis were performed using flow cytometry. Results: SAHA induced an inhibition of cell proliferation and clonogenic survival in OS and RMS cell lines and led to a significant radiosensitization of all tumor cell lines. Other HDACI such as M344 and valproate showed similar effects as investigated in one OS cell line. Furthermore, SAHA significantly increased radiation-induced apoptosis in the OS cell lines, whereas in the RMS cell lines radiation-induced apoptosis was insignificant with and without SAHA. In all investigated sarcoma cell lines, SAHA attenuated radiation-induced DNA repair protein expression (Rad51, Ku80). Conclusion: Our results show that HDACIs enhance radiation action in OS and RMS cell lines. Inhibition of DNA repair, as well as increased apoptosis induction after exposure to HDACIs, can be mechanisms of radiosensitization by HDACIs.

  18. Inhibition of Zoledronic Acid on Cell Proliferation and Invasion of Lung Cancer Cell Line 95D

    Directory of Open Access Journals (Sweden)

    Mingming LI

    2009-03-01

    Full Text Available Background and objective Abnormal proliferation and metastasis is the basic characteristic of malignant tumors. The aim of this work is to explore the effects of zoledronic acid on cell proliferation and invasion in lung cancer cell line 95D. Methods The effect of zoledrnic acid (ZOL on proliferation of lung cancer cell line 95D was detected by MTT. The expression of proliferation and invasion-relation genes and proteins were detected by Western blot, RT-PCR and immunofluorescence. Changes of invasion of lung cancer cell numbers were measured by polycarbonates coated with Matrigel. Results ZOL could inhibit the proliferation of lung cancer cell line 95D in vitro in a time-dependant and a dose-dependant manner. With time extending after ZOL treated, the mRNA expresion of VEGF, MMP9, MMP2 and protein expression of VEGF, MMP9, ERK1/ ERK2 were decreased. The results of Tanswell invasion showed the numbers of invasive cells were significantly reduced in 95D cells treated with ZOL 4 d and 6 d later. Conclusion ZOL could inhibit cell proliferation and invasion of lung cancer cell line 95D.

  19. δ-Aminolevulinic acid cytotoxic effects on human hepatocarcinoma cell lines

    Energy Technology Data Exchange (ETDEWEB)

    De Siervi, Adriana; Vazquez, Elba S; Rezaval, Carolina; Rossetti, María V; Batlle, Alcira M del [Centro de Investigaciones sobre Porfirinas y Porfirias (CIPYP), Argentine National Research Council (CONICET), Department of Biological Chemistry, FCEN, University of Buenos Aires (Argentina)

    2002-01-01

    Acute Intermittent Porphyria is a genetic disorder of heme metabolism, characterized by increased levels of porphyrin precursors, δ-aminolevulinic acid (ALA) and porphobilinogen (PBG). ALA has been reported to generate reactive oxygen species and to cause oxidative damage to proteins, subcellular structures and DNA. It is known that oxidative stress can induce apoptosis. The aim of this work was to study the cytotoxic effect of ALA on two hepatocarcinoma cell lines. We have determined the impact of ALA on HEP G2 and HEP 3B hepatocarcinoma cell lines survival as measured by the MTT assay. ALA proved to be cytotoxic in both cell lines however; HEP G2 was more sensitive to ALA than HEP 3B. Addition of hemin or glucose diminished ALA cytotoxicity in HEP G2 cells; instead it was enhanced in HEP 3B cells. Because apoptosis is usually associated with DNA fragmentation, the DNA of ALA treated and untreated cells were analyzed. The characteristic pattern of DNA fragmentation ladders was observed in ALA treated cells. To elucidate the mechanisms of ALA induced apoptosis, we examined its effect on p53 expression. No changes in p53 mRNA levels were observed after exposure of both cell lines to ALA for 24 h. CDK2 and CDK4 protein levels were reduced after ALA treatment at physiological concentrations.

  20. δ-Aminolevulinic acid cytotoxic effects on human hepatocarcinoma cell lines

    Directory of Open Access Journals (Sweden)

    del Batlle Alcira M

    2002-03-01

    Full Text Available Abstract Background Acute Intermittent Porphyria is a genetic disorder of heme metabolism, characterized by increased levels of porphyrin precursors, δ-aminolevulinic acid (ALA and porphobilinogen (PBG. ALA has been reported to generate reactive oxygen species and to cause oxidative damage to proteins, subcellular structures and DNA. It is known that oxidative stress can induce apoptosis. The aim of this work was to study the cytotoxic effect of ALA on two hepatocarcinoma cell lines. Results We have determined the impact of ALA on HEP G2 and HEP 3B hepatocarcinoma cell lines survival as measured by the MTT assay. ALA proved to be cytotoxic in both cell lines however; HEP G2 was more sensitive to ALA than HEP 3B. Addition of hemin or glucose diminished ALA cytotoxicity in HEP G2 cells; instead it was enhanced in HEP 3B cells. Because apoptosis is usually associated with DNA fragmentation, the DNA of ALA treated and untreated cells were analyzed. The characteristic pattern of DNA fragmentation ladders was observed in ALA treated cells. To elucidate the mechanisms of ALA induced apoptosis, we examined its effect on p53 expression. No changes in p53 mRNA levels were observed after exposure of both cell lines to ALA for 24 h. CDK2 and CDK4 protein levels were reduced after ALA treatment at physiological concentrations.

  1. δ-Aminolevulinic acid cytotoxic effects on human hepatocarcinoma cell lines

    International Nuclear Information System (INIS)

    De Siervi, Adriana; Vazquez, Elba S; Rezaval, Carolina; Rossetti, María V; Batlle, Alcira M del

    2002-01-01

    Acute Intermittent Porphyria is a genetic disorder of heme metabolism, characterized by increased levels of porphyrin precursors, δ-aminolevulinic acid (ALA) and porphobilinogen (PBG). ALA has been reported to generate reactive oxygen species and to cause oxidative damage to proteins, subcellular structures and DNA. It is known that oxidative stress can induce apoptosis. The aim of this work was to study the cytotoxic effect of ALA on two hepatocarcinoma cell lines. We have determined the impact of ALA on HEP G2 and HEP 3B hepatocarcinoma cell lines survival as measured by the MTT assay. ALA proved to be cytotoxic in both cell lines however; HEP G2 was more sensitive to ALA than HEP 3B. Addition of hemin or glucose diminished ALA cytotoxicity in HEP G2 cells; instead it was enhanced in HEP 3B cells. Because apoptosis is usually associated with DNA fragmentation, the DNA of ALA treated and untreated cells were analyzed. The characteristic pattern of DNA fragmentation ladders was observed in ALA treated cells. To elucidate the mechanisms of ALA induced apoptosis, we examined its effect on p53 expression. No changes in p53 mRNA levels were observed after exposure of both cell lines to ALA for 24 h. CDK2 and CDK4 protein levels were reduced after ALA treatment at physiological concentrations

  2. Anticancer potential of Hericium erinaceus extracts against particular human cancer cell lines

    Directory of Open Access Journals (Sweden)

    Younis AM

    2017-06-01

    Full Text Available Cancer is a leading cause of death worldwide. Cancer resulted in 8.2 million human deaths in 2012. It is expected that annual cancer cases will rise from 14 million in 2013 to 22 million within the next two decades. Mushrooms are extensively used as nutritional supplements in many countries. Moreover, mushrooms have many medicinal properties, including anticancer activity. In this study, the anticancer activity of different polar and non-polar extracts of Hericium erinaceus were evaluated against different human cancer cell lines including human liver carcinoma (Hep G2, the human colonic epithelial carcinoma (HCT 116, the human cervical cancer cells (HeLa and the human breast adenocarcinoma (MCF-7 using 3-(4,5-Dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay. Furthermore, as a control, the cytotoxicity effect of the different extracts were tested against isolated mouse hepatocytes. It was observed that the extracts by water and methanol from fresh and lyophilized fruiting bodies of H. erinaceus had the strongest anticancer effect. In contrast, the extracts by ether and ethyl acetate from mycelia and broth of H. erinaceus showed lower anticancer activity against the tested carcinoma cell lines. The highest anticancer activity was recorded for aqueous extract of lyophilized fruiting bodies with half maximal inhibitory concentration (IC50 values of 6.1±0.2, 5.1±0.1, 5.7±0.2 and 5.8±0.3 µg/ml against Hep G2, HCT 116, HeLa and MCF-7 cells, respectively with non-significant effect on the normal mouse hepatocytes. To summarise, polar extracts of H. erinaceus can be good sources for isolating natural anticancer compounds. I recommend further chemical studies to isolate the active principles of the extract of H. erinaceus evaluated in the present.

  3. Chemo-radioresistance of small cell lung cancer cell lines derived from untreated primary tumors obtained by diagnostic bronchofiberscopy

    International Nuclear Information System (INIS)

    Tanio, Yoshiro; Watanabe, Masatoshi; Inoue, Tamotsu

    1990-01-01

    New cell lines of small cell lung cancer (SCLC) were established from specimens of untreated primary tumors biopsied by diagnostic bronchofiberscopy. The advantage of this method was ease of obtaining specimens from lung tumors. Establishment of cell lines was successful with 4 of 13 specimens (30%). Clinical responses of the tumors showed considerable variation, but were well correlated with the in vitro sensitivity of the respective cell lines to chemotherapeutic drugs and irradiation. One of the cell lines was resistant to all drugs tested and irradiation, while another was sensitive to all of them. Although the acquired resistance of SCLC is the biggest problem in treatment, the natural resistance to therapy is another significant problem. Either acquired or natural, resistance mechanisms of SCLC may be elucidated by the use of such cell lines derived from untreated tumors. This method and these SCLC cell lines are expected to be useful for the serial study of biologic and genetic changes of untreated and pre-treated tumors, or primary and secondary tumors. (author)

  4. CD40 expression in Wehi-164 cell line.

    Science.gov (United States)

    Karimi, Mohammad Hossein; Ebadi, Padideh; Pourfathollah, Ali Akbar; Soheili, Zahra Soheila; Moazzeni, Seyed Mohammad

    2010-07-01

    CD40-CD154 interaction is an important process for cellular and humoral immunity regulation and can be effective in the body's defense against tumors. In the present study, we evaluated the expression of CD40 in Wehi-164 cell line. CD40 expressions on the cell surface and in the cytoplasm were assessed by flow cytometry and intracellular staining assay, respectively. Also, the mRNA expression was identified by real time-PCR. The obtained results showed the high mRNA and cytoplasmic protein expression of CD40 but no surface expression. These results suggest that the Wehi-164 cell line down regulates expression of CD40 on the surface for evasion of immune system.

  5. The effect of resveratrol in combination with irradiation and chemotherapy. Study using Merkel cell carcinoma cell lines

    International Nuclear Information System (INIS)

    Heiduschka, G.; Lill, C.; Brunner, M.; Thurnher, D.; Seemann, R.; Schmid, R.; Houben, R.; Bigenzahn, J.

    2014-01-01

    Merkel cell carcinoma (MCC) is a rare, but highly malignant tumor of the skin. In case of systemic disease, possible therapeutic options include irradiation or chemotherapy. The aim of this study was to evaluate whether the flavonoid resveratrol enhances the effect of radiotherapy or chemotherapy in MCC cell lines. The two MCC cell lines MCC13 and MCC26 were treated with increasing doses of resveratrol. Combination experiments were conducted with cisplatin and etoposide. Colony forming assays were performed after sequential irradiation with 1, 2, 3, 4, 6, and 8 Gy and apoptosis was assessed with flow cytometry. Expression of cancer drug targets was analyzed by real-time PCR array. Resveratrol is cytotoxic in MCC cell lines. Cell growth is inhibited by induction of apoptosis. The combination with cisplatin and etoposide resulted in a partially synergistic inhibition of cell proliferation. Resveratrol and irradiation led to a synergistic reduction in colony formation compared to irradiation alone. Evaluation of gene expression did not show significant difference between the cell lines. Due to its radiosensitizing effect, resveratrol seems to be a promising agent in combination with radiation therapy. The amount of chemosensitizing depends on the cell lines tested. (orig.) [de

  6. Heterogeneity of osteosarcoma cell lines led to variable responses in reprogramming.

    Science.gov (United States)

    Choong, Pei Feng; Teh, Hui Xin; Teoh, Hoon Koon; Ong, Han Kiat; Choo, Kong Bung; Sugii, Shigeki; Cheong, Soon Keng; Kamarul, Tunku

    2014-01-01

    Four osteosarcoma cell lines, Saos-2, MG-63, G-292 and U-2 OS, were reprogrammed to pluripotent state using Yamanaka factors retroviral transduction method. Embryonic stem cell (ESC)-like clusters started to appear between 15 to 20 days post transduction. Morphology of the colonies resembled that of ESC colonies with defined border and tightly-packed cells. The reprogrammed sarcomas expressed alkaline phosphatase and pluripotency markers, OCT4, SSEA4, TRA-1-60 and TRA-1-81, as in ESC up to Passage 15. All reprogrammed sarcomas could form embryoid body-like spheres when cultured in suspension in a low attachment dish for up to 10 days. Further testing on the directed differentiation capacity of the reprogrammed sarcomas showed all four reprogrammed sarcoma lines could differentiate into adipocytes while reprogrammed Saos-2-REP, MG-63-REP and G-292-REP could differentiate into osteocytes. Among the 4 osteosarcoma cell lines, U-2 OS reported the highest transduction efficiency but recorded the lowest reprogramming stability under long term culture. Thus, there may be intrinsic differences governing the variable responses of osteosarcoma cell lines towards reprogramming and long term culture effect of the reprogrammed cells. This is a first report to associate intrinsic factors in different osteosarcoma cell lines with variable reprogramming responses and effects on the reprogrammed cells after prolonged culture.

  7. Heterogeneity of Osteosarcoma Cell Lines Led to Variable Responses in Reprogramming

    Science.gov (United States)

    Choong, Pei Feng; Teh, Hui Xin; Teoh, Hoon Koon; Ong, Han Kiat; Choo, Kong Bung; Sugii, Shigeki; Cheong, Soon Keng; Kamarul, Tunku

    2014-01-01

    Four osteosarcoma cell lines, Saos-2, MG-63, G-292 and U-2 OS, were reprogrammed to pluripotent state using Yamanaka factors retroviral transduction method. Embryonic stem cell (ESC)-like clusters started to appear between 15 to 20 days post transduction. Morphology of the colonies resembled that of ESC colonies with defined border and tightly-packed cells. The reprogrammed sarcomas expressed alkaline phosphatase and pluripotency markers, OCT4, SSEA4, TRA-1-60 and TRA-1-81, as in ESC up to Passage 15. All reprogrammed sarcomas could form embryoid body-like spheres when cultured in suspension in a low attachment dish for up to 10 days. Further testing on the directed differentiation capacity of the reprogrammed sarcomas showed all four reprogrammed sarcoma lines could differentiate into adipocytes while reprogrammed Saos-2-REP, MG-63-REP and G-292-REP could differentiate into osteocytes. Among the 4 osteosarcoma cell lines, U-2 OS reported the highest transduction efficiency but recorded the lowest reprogramming stability under long term culture. Thus, there may be intrinsic differences governing the variable responses of osteosarcoma cell lines towards reprogramming and long term culture effect of the reprogrammed cells. This is a first report to associate intrinsic factors in different osteosarcoma cell lines with variable reprogramming responses and effects on the reprogrammed cells after prolonged culture. PMID:25170299

  8. Modulation of clonogenicity, growth, and radiosensitivity of three human epidermoid tumor cell lines by a fibroblastic environment

    International Nuclear Information System (INIS)

    Gery, Bernard; Little, John B.; Coppey, Jacques

    1996-01-01

    Purpose: To develop a model vitro system to examine the influence of fibroblasts on the growth and survival of human tumor cells after exposure to ionizing radiation. Methods and Materials: The cell system consists of three epidermoid carcinoma cell lines derived from head and neck tumors having differing growth potentials and intrinsic radiosensitivities, as well as a low passage skin fibroblast strain from a normal human donor. The tumor cells were seeded for five days prior to exposure to radiation: (a) in the presence of different numbers of fibroblasts, (b) in conditioned medium from stationary fibroblast cultures, and (c) on an extracted fibroblastic matrix. Results: When grown with fibroblasts, all three tumor cell lines showed increased clonogenicity and increased radioresistance. The radioprotective effect was maximal at a density of approximately 10 5 fibroblasts/100 mm Petri dish, and was greatest in the intrinsically radiosensitive tumor cell line. On the other hand, the effects of incubation with conditioned medium or on a fibroblastic matrix varied among the tumor cell lines. Thus, the protective effect afforded by coculture with fibroblasts must involve several cellular factors related to the fibroblast itself. Conclusions: These observations emphasize the importance of cultural conditions on the apparent radiosensitivity of human tumor cell lines, and suggest that the fibroblastic connective tissue enveloping the malignant cells should be considered when the aim is to establish a radiopredictive assay from surgical tumors fragments

  9. Fed-batch bioreactor performance and cell line stability evaluation of the artificial chromosome expression technology expressing an IgG1 in Chinese hamster ovary cells.

    Science.gov (United States)

    Combs, Rodney G; Yu, Erwin; Roe, Susanna; Piatchek, Michele Bailey; Jones, Heather L; Mott, John; Kennard, Malcolm L; Goosney, Danika L; Monteith, Diane

    2011-01-01

    The artificial chromosome expression (ACE) technology system uses an engineered artificial chromosome containing multiple site-specific recombination acceptor sites for the rapid and efficient construction of stable cell lines. The construction of Chinese hamster ovary(CHO) cell lines expressing an IgG1 monoclonal antibody (MAb) using the ACE system has been previously described (Kennard et al., Biotechnol Bioeng. 2009;104:540-553). To further demonstrate the manufacturing feasibility of the ACE system, four CHO cell lines expressing the human IgG1 MAb 4A1 were evaluated in batch and fed-batch shake flasks and in a 2-L fed-batch bioreactor. The batch shake flasks achieved titers between 0.7 and 1.1 g/L, whereas the fed-batch shake flask process improved titers to 2.5–3.0 g/L. The lead 4A1 ACE cell line achieved titers of 4.0 g/L with an average specific productivity of 40 pg/(cell day) when cultured in a non optimized 2-L fed-batch bioreactor using a completely chemically defined process. Generational stability characterization of the lead 4A1-expressing cell line demonstrated that the cell line was stable for up to 75 days in culture. Product quality attributes of the 4A1 MAb produced by the ACE system during the stability evaluation period were unchanged and also comparable to existing expression technologies such as the CHO-dhfr system. The results of this evaluation demonstrate that a clonal, stable MAb-expressing CHO cell line can be produced using ACE technology that performs competitively using a chemically defined fed-batch bioreactor process with comparable product quality attributes to cell lines generated by existing technologies.

  10. Effect of suicidal gene combined with irradiation on esophageal carcinoma cell line

    International Nuclear Information System (INIS)

    Pan Jianji; Wang Jiezhong; Zheng Tianrong; Zheng Qiuhong

    2005-01-01

    Objective: As generally known that non-cytotoxic pro-drag can be transformed into cytotoxic drug by suicide gene, this work is to investigate the effect of Coli cytosine deaminase/5-fluorocytosine suicide gene (CD/5-FC) used alone or combined with irradiation in esophageal carcinoma cell line(EC). Methods: CD gene was amplified from Coli DNA genome library with PCR technique, with the eukaryotic vector pcDNA3.1-CD then constructed. ECl09 cells were transfected with pcDNA3.1-CD by liposome method. The cytotoxic effect, bystander effect and radiosensitization effect of CD/5-FC in ECl09 was analyzed. Results: The transfection of CD gene into ECl09 and its transcription was confirmed by RT-PCR method. In vitro, 5-FC showed significantly cytotoxic effect on the EPC cell transfected with CD gene. After adding 5-FC , the survival rate of cultured cell containing 5 % transfect CD gene cell was 41.8 % ± 14.2% while that in the control group was 94.6 ± 4.3 %, (t=3.14, P < 0.05). The survival rate of cultured cell containing 10% transfected CD gene cell was 37.8 ± 4.4% compared to 95.6% ± 5.4% in the control group, (t=9.75, P<0.01). CD/5-FC showed significant radiosen-sitization effect, the survival fraction of CD transfected cell was much lower in 5-FC combined with irradiation, when compared with 5-FC alone and radiotherapy alone group together, (F=11.50, P < 0.01 ). When it was compared with 5-FC alone group and irradiation alone group separately, the difference was also significant( F=4.11, P < 0.05 and F10.53, P < 0.01, respectively). Conclusions: Suicide gene CD/5-FC shows conspicuous by-stander effect and radiosensitization effect. (authors)

  11. Antiproliferative effect of isopentenylated coumarins on several cancer cell lines.

    Science.gov (United States)

    Kawaii, S; Tomono, Y; Ogawa, K; Sugiura, M; Yano, M; Yoshizawa, Y; Ito, C; Furukawa, H

    2001-01-01

    33 coumarins, mainly the simple isopentenylated coumarins and derived pyrano- and furanocoumarins, were examined for their antiproliferative activity towards several cancer and normal human cell lines. The pyrano- and furanocoumarins showed strong activity against the cancer cell lines, whereas they had weak antiproliferative activity against the normal human cell lines. The decreasing rank order of potency was osthenone (10), clausarin (25), clausenidin (26), dentatin (24), nordentatin (23), imperatorin (29), seselin (27), xanthyletin (21), suberosin (17), phebalosin (8) and osthol (12). The structure-activity relationship established from the results revealed that the 1,1-dimethylallyl and isopentenyl groups have an important role for antiproliferative activity.

  12. Garcinia dulcis Fruit Extract Induced Cytotoxicity and Apoptosis in HepG2 Liver Cancer Cell Line

    Directory of Open Access Journals (Sweden)

    Mohd Fadzelly Abu Bakar

    2015-01-01

    Full Text Available Garcinia dulcis or locally known in Malaysia as “mundu” belongs to the family of Clusiaceae. The study was conducted to investigate the anticancer potential of different parts of G. dulcis fruit extracts and their possible mechanism of action in HepG2 liver cancer cell line. MTT assay showed that the peel, flesh, and seed extracts of G. dulcis induced cytotoxicity in HepG2 cell line with IC50 values of 46.33 ± 4.51, 38.33 ± 3.51, and 7.5 ± 2.52 µg/mL, respectively. The flesh extract of G. dulcis induced cell cycle arrest at sub-G1 (apoptosis phase in a time-dependent manner. Staining with Annexin V-FITC and propidium iodide showed that 41.2% of the cell population underwent apoptosis after 72 hours of exposure of the HepG2 cell line to G. dulcis flesh extract. Caspase-3 has been shown to be activated which finally leads to the death of HepG2 cell (apoptosis. GC-MS analysis showed that the highest percentage of compound identified in the extract of G. dulcis flesh was hydroxymethylfurfural and 3-methyl-2,5-furandione, together with xanthones and flavonoids (based on literature, could synergistically contribute to the observed effects. This finding suggested that the flesh extract of G. dulcis has its own potential as cancer chemotherapeutic agent against liver cancer cell.

  13. Down-regulation of Rab5 decreases characteristics associated with maintenance of cell transformation

    International Nuclear Information System (INIS)

    Silva, Patricio; Soto, Nicolás; Díaz, Jorge; Mendoza, Pablo; Díaz, Natalia; Quest, Andrew F.G.; Torres, Vicente A.

    2015-01-01

    The early endosomal protein Rab5 is highly expressed in tumor samples, although a causal relationship between Rab5 expression and cell transformation has not been established. Here, we report the functional effects of targeting endogenous Rab5 with specific shRNA sequences in different tumor cell lines. Rab5 down-regulation in B16-F10 cells decreased tumor formation by subcutaneous injection into C57/BL6 mice. Accordingly, Rab5 targeting in B16-F10 and A549, but not MDA-MB-231 cells was followed by decreased cell proliferation, increased apoptosis and decreased anchorage-independent growth. These findings suggest that Rab5 expression is required to maintain characteristics associated with cell transformation. - Highlights: • Rab5 is important to the maintenance of cell transformation characteristics. • Down-regulation of Rab5 decreases cell proliferation and increases apoptosis in different cancer cells. • Rab5 is required for anchorage-independent growth and tumorigenicity in-vivo

  14. Responses of human normal osteoblast cells and osteoblast-like cell line, MG-63 cells, to pulse electromagnetic field (PEMF

    Directory of Open Access Journals (Sweden)

    Suttatip Kamolmatyakul

    2008-01-01

    Full Text Available The objective of this in vitro study is to investigate the effect of pulsed electromagnetic field (PEMF on cellular proliferation and osteocalcin production of osteoblast-like cell line, MG-63 cells, and human normal osteoblast cells (NHOC obtained from surgical bone specimens. The cells were placed in 24-well culture plates in the amount of 3x104 cell/wells with 2 ml αMEM media supplemented with 10% FBS. The experimental plates were placed between a pair of Helmoltz coils powered by a pulse generator (PEMF, 50 Hz, 1.5 mV/cm in the upper compartment of a dual incubator (Forma. The control plates were placed in the lower compartment of the incubator without Helmotz coils. After three days, the cell proliferation was measured by the method modified from Mossman (J. Immunol Methods 1983; 65: 55-63. Other sets of plates were used for osteocalcin production assessment. Media from these sets were collected after 6 days and assessed for osteocalcin production using ELISA kits. The data were analyzed using a one-way analysis of variance (ANOVA. The results showed that MG-63 cells from the experimental group proliferated significantly more than those from the control group (20% increase, p<0.05. No significant difference in osteocalcin production was detected between the two groups. On the other hand, NHOC from the experimental group produced larger amount of osteocalcin (25% increase, p<0.05 and proliferated significantly more than those from the control group (100% increase, p<0.05. In conclusion, PEMF effect on osteoblasts might depend on their cell type of origin. For osteoblast-like cell line, MG-63 cells, PEMF increased proliferation rate but not osteocalcin production of the cells. However, PEMF stimulation effect on human normal osteoblast cells was most likely associated with enhancement of both osteocalcin production and cell proliferation.

  15. Induction of expression of two phenotypic markers of pulmonary type II cells in a cultured cell line

    International Nuclear Information System (INIS)

    Henderson, R.F.; Waide, J.J.; Scott, G.G.

    1994-01-01

    The functions of pulmonary type II cells, such as synthesis of pulmonary surfactant and metabolism of inhaled xenobiotics, can be studied in primary isolates of lung cells. However, isolated type II cells, when cultured, quickly lose the phenotypic expressions characteristics of type II cells, including surfactant lipid and protein synthesis and alkaline phosphatase (AP) activity. A cultured cell line that maintained expression of type II cell markers of differentiation would be advantageous for the study of such functions as surfactant synthesis and secretion. Such a cell line would allow generation of a large number of homogeneous cells for study. The purpose of the current study was to induce markers of differentiated type II cells in a cultured cell line to facilitate studies of factors that control surfactant synthesis and secretion

  16. Synthesis and biological evaluation of [18F]tetrafluoroborate: a PET imaging agent for thyroid disease and reporter gene imaging of the sodium/iodide symporter

    International Nuclear Information System (INIS)

    Jauregui-Osoro, Maite; Sunassee, Kavitha; Weeks, Amanda J.; Berry, David J.; Paul, Rowena L.; Cleij, Marcel; O'Doherty, Michael J.; Marsden, Paul K.; Szanda, Istvan; Blower, Philip J.; Banga, Jasvinder Paul; Clarke, Susan E.M.; Ballinger, James R.; Cheng, Sheue-Yann

    2010-01-01

    The human sodium/iodide symporter (hNIS) is a well-established target in thyroid disease and reporter gene imaging using gamma emitters 123 I-iodide, 131 I-iodide and 99m Tc-pertechnetate. However, no PET imaging agent is routinely available. The aim of this study was to prepare and evaluate 18 F-labelled tetrafluoroborate ([ 18 F]TFB) for PET imaging of hNIS. [ 18 F]TFB was prepared by isotopic exchange of BF 4 - with [ 18 F]fluoride in hot hydrochloric acid and purified using an alumina column. Its identity, purity and stability in serum were determined by HPLC, thin-layer chromatography (TLC) and mass spectrometry. Its interaction with NIS was assessed in vitro using FRTL-5 rat thyroid cells, with and without stimulation by thyroid-stimulating hormone (TSH), in the presence and absence of perchlorate. Biodistribution and PET imaging studies were performed using BALB/c mice, with and without perchlorate inhibition. [ 18 F]TFB was readily prepared with specific activity of 10 GBq/mg. It showed rapid accumulation in FRTL-5 cells that was stimulated by TSH and inhibited by perchlorate, and rapid specific accumulation in vivo in thyroid (SUV = 72 after 1 h) and stomach that was inhibited 95% by perchlorate. [ 18 F]TFB is an easily prepared PET imaging agent for rodent NIS and should be evaluated for hNIS PET imaging in humans. (orig.)

  17. Colony, hanging drop, and methylcellulose three dimensional hypoxic growth optimization of renal cell carcinoma cell lines.

    Science.gov (United States)

    Matak, Damian; Brodaczewska, Klaudia K; Lipiec, Monika; Szymanski, Łukasz; Szczylik, Cezary; Czarnecka, Anna M

    2017-08-01

    Renal cell carcinoma (RCC) is the most lethal of the common urologic malignancies, comprising 3% of all human neoplasms, and the incidence of kidney cancer is rising annually. We need new approaches to target tumor cells that are resistant to current therapies and that give rise to recurrence and treatment failure. In this study, we focused on low oxygen tension and three-dimensional (3D) cell culture incorporation to develop a new RCC growth model. We used the hanging drop and colony formation methods, which are common in 3D culture, as well as a unique methylcellulose (MC) method. For the experiments, we used human primary RCC cell lines, metastatic RCC cell lines, human kidney cancer stem cells, and human healthy epithelial cells. In the hanging drop assay, we verified the potential of various cell lines to create solid aggregates in hypoxic and normoxic conditions. With the semi-soft agar method, we also determined the ability of various cell lines to create colonies under different oxygen conditions. Different cell behavior observed in the MC method versus the hanging drop and colony formation assays suggests that these three assays may be useful to test various cell properties. However, MC seems to be a particularly valuable alternative for 3D cell culture, as its higher efficiency of aggregate formation and serum independency are of interest in different areas of cancer biology.

  18. Generation and characterization of rat liver stem cell lines and their engraftment in a rat model of liver failure

    Science.gov (United States)

    Kuijk, Ewart W.; Rasmussen, Shauna; Blokzijl, Francis; Huch, Meritxell; Gehart, Helmuth; Toonen, Pim; Begthel, Harry; Clevers, Hans; Geurts, Aron M.; Cuppen, Edwin

    2016-01-01

    The rat is an important model for liver regeneration. However, there is no in vitro culture system that can capture the massive proliferation that can be observed after partial hepatectomy in rats. We here describe the generation of rat liver stem cell lines. Rat liver stem cells, which grow as cystic organoids, were characterized by high expression of the stem cell marker Lgr5, by the expression of liver progenitor and duct markers, and by low expression of hepatocyte markers, oval cell markers, and stellate cell markers. Prolonged cultures of rat liver organoids depended on high levels of WNT-signalling and the inhibition of BMP-signaling. Upon transplantation of clonal lines to a Fah−/− Il2rg−/− rat model of liver failure, the rat liver stem cells engrafted into the host liver where they differentiated into areas with FAH and Albumin positive hepatocytes. Rat liver stem cell lines hold potential as consistent reliable cell sources for pharmacological, toxicological or metabolic studies. In addition, rat liver stem cell lines may contribute to the development of regenerative medicine in liver disease. To our knowledge, the here described liver stem cell lines represent the first organoid culture system in the rat. PMID:26915950

  19. [Establishment and characterization of a cell line derived from human ovarian mucinous cystadenocarcinoma].

    Science.gov (United States)

    Wan, Q; Xu, D; Li, Z

    2001-07-01

    To establish a cell line of human ovarian cancer, and study its characterization. The cell line was established by the cultivation of subsides walls, and kept by freezing. The morphology was observed by microscope and electromicroscope. The authors studied its growth and propagation, the agglutination test of phytohemagglutinin (PHA), the chromosome analysis, heterotransplanting, immuno-histochemistry staining, the analysis of hormone, the pollution examination and the test of sensitivity to virus etc. A new human ovarian carcinoma cell line, designated ovarian mucinous cystadenocarcinoma 685 (OMC685), was established from mucinous cystadenocarcinoma. This cell line had subcultured to 91 generations, and some had been frozen for 8 years and revived, still grew well. This cell line possessed the feature of glandular epithelium cancer cell. The cells grew exuberantly, and the agglutinating test of PHA was positive. Karyotype was subtriploid with distortion. Heterotransplantations, alcian blue periobic acid-schiff (AbPAS), mucicarmine, alcian blue stainings, estradiol (E2) and progesterone were all positive. Without being polluted, it was sensitive to polivirus-I, adenovirus 7 and measles virus. OMC685 is a distinct human ovarian tumous cell line.

  20. Third-line Targeted Therapy in Metastatic Renal Cell Carcinoma: Results from the International Metastatic Renal Cell Carcinoma Database Consortium.

    Science.gov (United States)

    Wells, J Connor; Stukalin, Igor; Norton, Craig; Srinivas, Sandy; Lee, Jae Lyun; Donskov, Frede; Bjarnason, Georg A; Yamamoto, Haru; Beuselinck, Benoit; Rini, Brian I; Knox, Jennifer J; Agarwal, Neeraj; Ernst, D Scott; Pal, Sumanta K; Wood, Lori A; Bamias, Aristotelis; Alva, Ajjai S; Kanesvaran, Ravindran; Choueiri, Toni K; Heng, Daniel Y C

    2017-02-01

    The use of third-line targeted therapy (TTT) in metastatic renal cell carcinoma (mRCC) is not well characterized and varies due to the lack of robust data to guide treatment decisions. This study examined the use of third-line therapy in a large international population. To evaluate the use and efficacy of targeted therapy in a third-line setting. Twenty-five international cancer centers provided consecutive data on 4824 mRCC patients who were treated with an approved targeted therapy. One thousand and twelve patients (21%) received TTT and were included in the analysis. Patients were analyzed for overall survival (OS) and progression-free survival using Kaplan-Meier curves, and were evaluated for overall response. Cox regression analyses were used to determine the statistical association between OS and the six factors included in the International Metastatic Renal Cell Carcinoma Database Consortium (IMDC) prognostic model. Subgroup analysis was performed on patients stratified by their IMDC prognostic risk status. Everolimus was the most prevalent third-line therapy (27.5%), but sunitinib, sorafenib, pazopanib, temsirolimus, and axitinib were all utilized in over ≥9% of patients. Patients receiving any TTT had an OS of 12.4 mo, a progression-free survival of 3.9 mo, and 61.1% of patients experienced an overall response of stable disease or better. Patients not receiving TTT had an OS of 2.1 mo. Patients with favorable- (7.2%) or intermediate-risk (65.3%) disease had the highest OS with TTT, 29.9 mo and 15.5 mo, respectively, while poor-risk (27.5%) patients survived 5.5 mo. Results are limited by the retrospective nature of the study. TTT remains highly heterogeneous. The IMDC prognostic criteria can be used to stratify third-line patients. TTT use in favorable- and intermediate-risk patients was associated with the greatest OS. Patients with favorable- and intermediate-prognostic criteria disease treated with third-line targeted therapy have an associated

  1. Poly (A+ transcriptome assessment of ERBB2-induced alterations in breast cell lines.

    Directory of Open Access Journals (Sweden)

    Dirce Maria Carraro

    Full Text Available We report the first quantitative and qualitative analysis of the poly (A⁺ transcriptome of two human mammary cell lines, differentially expressing (human epidermal growth factor receptor an oncogene over-expressed in approximately 25% of human breast tumors. Full-length cDNA populations from the two cell lines were digested enzymatically, individually tagged according to a customized method for library construction, and simultaneously sequenced by the use of the Titanium 454-Roche-platform. Comprehensive bioinformatics analysis followed by experimental validation confirmed novel genes, splicing variants, single nucleotide polymorphisms, and gene fusions indicated by RNA-seq data from both samples. Moreover, comparative analysis showed enrichment in alternative events, especially in the exon usage category, in ERBB2 over-expressing cells, data indicating regulation of alternative splicing mediated by the oncogene. Alterations in expression levels of genes, such as LOX, ATP5L, GALNT3, and MME revealed by large-scale sequencing were confirmed between cell lines as well as in tumor specimens with different ERBB2 backgrounds. This approach was shown to be suitable for structural, quantitative, and qualitative assessment of complex transcriptomes and revealed new events mediated by ERBB2 overexpression, in addition to potential molecular targets for breast cancer that are driven by this oncogene.

  2. Targeting ceramide metabolic pathway induces apoptosis in human breast cancer cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Vethakanraj, Helen Shiphrah; Babu, Thabraz Ahmed; Sudarsanan, Ganesh Babu; Duraisamy, Prabhu Kumar; Ashok Kumar, Sekar, E-mail: sekarashok@gmail.com

    2015-08-28

    The sphingolipid ceramide is a pro apoptotic molecule of ceramide metabolic pathway and is hydrolyzed to proliferative metabolite, sphingosine 1 phosphate by the action of acid ceramidase. Being upregulated in the tumors of breast, acid ceramidase acts as a potential target for breast cancer therapy. We aimed at targeting this enzyme with a small molecule acid ceramidase inhibitor, Ceranib 2 in human breast cancer cell lines MCF 7 and MDA MB 231. Ceranib 2 effectively inhibited the growth of both the cell lines in dose and time dependant manner. Morphological apoptotic hallmarks such as chromatin condensation, fragmented chromatin were observed in AO/EtBr staining. Moreover, ladder pattern of fragmented DNA observed in DNA gel electrophoresis proved the apoptotic activity of Ceranib 2 in breast cancer cell lines. The apoptotic events were associated with significant increase in the expression of pro-apoptotic genes (Bad, Bax and Bid) and down regulation of anti-apoptotic gene (Bcl 2). Interestingly, increase in sub G1 population of cell cycle phase analysis and elevated Annexin V positive cells after Ceranib 2 treatment substantiated its apoptotic activity in MCF 7 and MDA MB 231 cell lines. Thus, we report Ceranib 2 as a potent therapeutic agent against both ER{sup +} and ER{sup −} breast cancer cell lines. - Highlights: • Acid Ceramidase inhibitor, Ceranib 2 induced apoptosis in Breast cancer cell lines (MCF 7 and MDA MB 231 cell lines). • Apoptosis is mediated by DNA fragmentation and cell cycle arrest. • Ceranib 2 upregulated the expression of pro-apoptotic genes and down regulated anti-apoptotic gene expression. • More potent compared to the standard drug Tamoxifen.

  3. Targeting ceramide metabolic pathway induces apoptosis in human breast cancer cell lines

    International Nuclear Information System (INIS)

    Vethakanraj, Helen Shiphrah; Babu, Thabraz Ahmed; Sudarsanan, Ganesh Babu; Duraisamy, Prabhu Kumar; Ashok Kumar, Sekar

    2015-01-01

    The sphingolipid ceramide is a pro apoptotic molecule of ceramide metabolic pathway and is hydrolyzed to proliferative metabolite, sphingosine 1 phosphate by the action of acid ceramidase. Being upregulated in the tumors of breast, acid ceramidase acts as a potential target for breast cancer therapy. We aimed at targeting this enzyme with a small molecule acid ceramidase inhibitor, Ceranib 2 in human breast cancer cell lines MCF 7 and MDA MB 231. Ceranib 2 effectively inhibited the growth of both the cell lines in dose and time dependant manner. Morphological apoptotic hallmarks such as chromatin condensation, fragmented chromatin were observed in AO/EtBr staining. Moreover, ladder pattern of fragmented DNA observed in DNA gel electrophoresis proved the apoptotic activity of Ceranib 2 in breast cancer cell lines. The apoptotic events were associated with significant increase in the expression of pro-apoptotic genes (Bad, Bax and Bid) and down regulation of anti-apoptotic gene (Bcl 2). Interestingly, increase in sub G1 population of cell cycle phase analysis and elevated Annexin V positive cells after Ceranib 2 treatment substantiated its apoptotic activity in MCF 7 and MDA MB 231 cell lines. Thus, we report Ceranib 2 as a potent therapeutic agent against both ER + and ER − breast cancer cell lines. - Highlights: • Acid Ceramidase inhibitor, Ceranib 2 induced apoptosis in Breast cancer cell lines (MCF 7 and MDA MB 231 cell lines). • Apoptosis is mediated by DNA fragmentation and cell cycle arrest. • Ceranib 2 upregulated the expression of pro-apoptotic genes and down regulated anti-apoptotic gene expression. • More potent compared to the standard drug Tamoxifen

  4. Glycoproteins and sialyl transferase of human B lymphoblastoid cell lines

    International Nuclear Information System (INIS)

    Lui, S.W.L.; Ng, M.H.

    1980-01-01

    We used two radiolabeling methods to study glycoproteins on the surface of lymphoblastoid cells. One of the methods affects tritiation of residues which are oxidized with galactose oxidase and the other causes tritiation of neuraminic acid residues. This approach was shown to allow a better resolution of cell surface glycoproteins than if either method were used alone. Glycoproteins of B 1 - 19 cells which harbor the Epstein-Barr virus genomes were compared with those of its parental cell line, BJAB, which does not harbor the viral genomes. These studies did not reveal a unique viral protein. A 28,000 mol. wt. glycoprotein was found to be the most prominent neuraminic acidlabeled product of B 1 - 19 cells and also of the two other cell lines, Raji and Ly38, which harbor the EBV genomes. A similar molecular weight species from BJAB cells identified by galactose oxidase labeling might be deficient in neuraminic acid residues as it was poorly labeled by the periodate oxidation method. The neuraminic acid content and level of sialyl transferase of BJAB cells were found to be lower than those of the other cell lines studied. (auth.)

  5. Selection of radioresistant cells by vitamin A deficiency in a small cell lung cancer cell line

    International Nuclear Information System (INIS)

    Terasaki, Takeo; Shimosato, Yukio; Wada, Makio; Yokota, Jun; Terada, Masaaki

    1990-01-01

    Radiation sensitivity of a human small cell lung cancer cell line, Lu-134-B cells, cultured in serum-supplemented medium and of cells transferred to and cultured in delipidized serum-supplemented (vitamin A-deficient) medium was studied. The cells cultured in serum-supplemented medium showed the phenotype of classic small cell lung cancer sensitive to radiation, while cells transferred to delipidized serum-supplemented medium showed partial squamous cell differentiation and became resistant to radiation. These results suggest that some small cell lung cancer cells in vitro change their morphology and radiosensitivity depending on the culture conditions. The change in radiosensitivity was reproducible, and was not reversible by culture of the radioresistant cells in delipidized serum-supplemented medium with addition of retinoic acid (vitamin A-sufficient medium) for two months, although squamous cells disappeared. Acquisition of radioresistancy was considered to occur as the result of clonal selective growth in delipidized medium of a minor cell population in the original cell culture, based on a study of chromosome number. It was also found that there was no association of myc-family oncogenes with the changes of radiosensitivity in this cell line. (author)

  6. A {sup 1}H nuclear magnetic resonance study of structural and organisational changes in the cell

    Energy Technology Data Exchange (ETDEWEB)

    Tunnah, Susan K

    2000-07-01

    Increasing importance is being placed on understanding the role of membrane lipids in many different areas of biochemistry. It is of interest to determine what interactions may occur between membrane lipids and drug species. Furthermore, an increasing body of evidence suggests that membrane lipids are involved in the pathology of numerous diseases such as rheumatoid arthritis, cancer and HIV. Clearly, the more information available on the mechanisms involved in diseases, the greater the potential for identifying a cure or even a prevention. {sup 1}H nuclear magnetic resonance (NMR) spectroscopy was used to study the alterations in membrane lipid organisation and structure in intact, viable cultured cells. Changes in the {sup 1}H NMR spectra and the spin-lattice relaxation measurements of the human K562 and the rat FRTL-5 cell lines were observed on the addition of the fatty acid species: triolein, evening primrose oil, arachidonic acid and ITF 1779. Results indicate that the membrane lipids are reorganised to accommodate the interpolation of these molecules. The spatial arrangement adopted by each of these species appeared to dictate its effect on the lipids. Doxorubicin and menadione, both known to cause oxidative stress, were added to K562 cells. Although both agents are known to act by different mechanisms, the NMR data and scanning electron microscopy suggested that both caused similar alterations in the membrane organisation and lipid fluidity. Protrusions were formed indicating areas of weakness in the membrane. Spin-echo NMR was employed to investigate the action of the thiol-containing compounds, penicillamine, captopril and N-acetylcysteine in erythrocytes under conditions of oxidative stress. Results indicate that while captopril acts as a free radical scavenger, penicillamine may act as either oxidant or reductant. N-acetylcysteine was observed to act as a reducing agent. (author)

  7. In vitro synergistic antitumor efficacy of sequentially combined chemotherapy/icotinib in non‑small cell lung cancer cell lines.

    Science.gov (United States)

    Wang, Min-Cong; Liang, Xuan; Liu, Zhi-Yan; Cui, Jie; Liu, Ying; Jing, Li; Jiang, Li-Li; Ma, Jie-Qun; Han, Li-Li; Guo, Qian-Qian; Yang, Cheng-Cheng; Wang, Jing; Wu, Tao; Nan, Ke-Jun; Yao, Yu

    2015-01-01

    The concurrent administration of chemotherapy and epidermal growth factor receptor‑tyrosine kinase inhibitors (EGFR‑TKIs) has previously produced a negative interaction and failed to confer a survival benefit to non‑small cell lung cancer (NSCLC) patients compared with first‑line cytotoxic chemotherapy. The present study aimed to investigate the optimal schedule of the combined treatment of cisplatin/paclitaxel and icotinib in NSCLC cell lines and clarify the underlying mechanisms. HCC827, H1975, H1299 and A549 human NSCLC cell lines with wild‑type and mutant EGFR genes were used as in vitro models to define the differential effects of various schedules of cisplatin/paclitaxel with icotinib treatments on cell growth, proliferation, cell cycle distribution, apoptosis, and EGFR signaling pathway. Sequence‑dependent antiproliferative effects differed among the four NSCLC cell lines, and were not associated with EGFR mutation, constitutive expression levels of EGFR or downstream signaling molecules. The antiproliferative effect of cisplatin plus paclitaxel followed by icotinib was superior to that of cisplatin or paclitaxel followed by icotinib in the HCC827, H1975, H1299 and A549 cell lines, and induced more cell apoptosis and G0/G1 phase arrest. Cisplatin and paclitaxel significantly increased the expression of EGFR phosphorylation in the HCC827 cell line. However, only paclitaxel increased the expression of EGFR phosphorylation in the H1975 cell line. Cisplatin/paclitaxel followed by icotinib influenced the expression of p‑EGFR and p‑AKT, although the expression of p‑ERK1/2 remained unchanged. The results suggest that the optimal schedule of the combined treatment of cisplatin/paclitaxel and icotinib differed among the NSCLC cell lines. The results also provide molecular evidence to support clinical treatment strategies for NSCLC patients.

  8. BETULINIC ACID WAS MORE CYTOTOXIC TOWARDS THE HUMAN BREAST CANCER CELL LINE MDA-MB-231 THAN THE HUMAN PROMYELOCYTIC LEUKAEMIA CELL LINE HL-60

    Directory of Open Access Journals (Sweden)

    LATIFAH SAIFUL YAZAN

    2009-01-01

    Full Text Available Betulinic acid (BA is a pentacyclic triterpene found in several botanical sources that has been shown to cause apoptosis in a number of cell lines. This study was undertaken to determine the in vitro cytotoxic properties of BA towards the human mammary carcinoma cell line MDA-MB-231 and the human promyelocytic leukaemia cell line HL-60 and the mode of the induced cell death. The cytotoxicity and mode of cell death of BA were determined using the MTT assay and DNAfragmentation analysis, respectively. In our study, the compound was found to be cytotoxic to MDA-MB-231 and HL-60 cells with IC50 values of 58 μg/mL and 134 μg/mL, respectively. Cells treated with high concentrations of BA exhibited features characteristic of apoptosis such as blebbing, shrinking and a number of small cytoplasm body masses when viewed under an inverted light microscope after 24 h. The incidence of apoptosis in MDA-MB-231 was further confirmed bythe DNA fragmentation analysis, with the formation of DNA fragments of oligonucleosomal size (180-200 base pairs, giving a ladder-like pattern on agarose gel electrophoresis. BA was more cytotoxic towards MDA-MB-231 than HL-60 cells, and induced apoptosis in MDA-MB-231 cells.

  9. Nestin expression in the cell lines derived from glioblastoma multiforme

    International Nuclear Information System (INIS)

    Veselska, Renata; Kuglik, Petr; Cejpek, Pavel; Svachova, Hana; Neradil, Jakub; Loja, Tomas; Relichova, Jirina

    2006-01-01

    Nestin is a protein belonging to class VI of intermediate filaments that is produced in stem/progenitor cells in the mammalian CNS during development and is consecutively replaced by other intermediate filament proteins (neurofilaments, GFAP). Down-regulated nestin may be re-expressed in the adult organism under certain pathological conditions (brain injury, ischemia, inflammation, neoplastic transformation). Our work focused on a detailed study of the nestin cytoskeleton in cell lines derived from glioblastoma multiforme, because re-expression of nestin together with down-regulation of GFAP has been previously reported in this type of brain tumor. Two cell lines were derived from the tumor tissue of patients treated for glioblastoma multiforme. Nestin and other cytoskeletal proteins were visualized using imunocytochemical methods: indirect immunofluorescence and immunogold-labelling. Using epifluorescence and confocal microscopy, we described the morphology of nestin-positive intermediate filaments in glioblastoma cells of both primary cultures and the derived cell lines, as well as the reorganization of nestin during mitosis. Our most important result came through transmission electron microscopy and provided clear evidence that nestin is present in the cell nucleus. Detailed information concerning the pattern of the nestin cytoskeleton in glioblastoma cell lines and especially the demonstration of nestin in the nucleus represent an important background for further studies of nestin re-expression in relationship to tumor malignancy and invasive potential

  10. Guidelines for the use of cell lines in biomedical research.

    Science.gov (United States)

    Geraghty, R J; Capes-Davis, A; Davis, J M; Downward, J; Freshney, R I; Knezevic, I; Lovell-Badge, R; Masters, J R W; Meredith, J; Stacey, G N; Thraves, P; Vias, M

    2014-09-09

    Cell-line misidentification and contamination with microorganisms, such as mycoplasma, together with instability, both genetic and phenotypic, are among the problems that continue to affect cell culture. Many of these problems are avoidable with the necessary foresight, and these Guidelines have been prepared to provide those new to the field and others engaged in teaching and instruction with the information necessary to increase their awareness of the problems and to enable them to deal with them effectively. The Guidelines cover areas such as development, acquisition, authentication, cryopreservation, transfer of cell lines between laboratories, microbial contamination, characterisation, instability and misidentification. Advice is also given on complying with current legal and ethical requirements when deriving cell lines from human and animal tissues, the selection and maintenance of equipment and how to deal with problems that may arise.

  11. Mycoplasma hyorhinis-Contaminated Cell Lines Activate Primary Innate Immune Cells via a Protease-Sensitive Factor.

    Directory of Open Access Journals (Sweden)

    Simon Heidegger

    Full Text Available Mycoplasma are a frequent and occult contaminant of cell cultures, whereby these prokaryotic organisms can modify many aspects of cell physiology, rendering experiments that are conducted with such contaminated cells problematic. Chronic Mycoplasma contamination in human monocytic cells lines has been associated with suppressed Toll-like receptor (TLR function. In contrast, we show here that components derived from a Mycoplasma hyorhinis-infected cell line can activate innate immunity in non-infected primary immune cells. Release of pro-inflammatory cytokines such as IL-6 by dendritic cells in response to Mycoplasma hyorhinis-infected cell components was critically dependent on the adapter protein MyD88 but only partially on TLR2. Unlike canonical TLR2 signaling that is triggered in response to the detection of Mycoplasma infection, innate immune activation by components of Mycoplasma-infected cells was inhibited by chloroquine treatment and sensitive to protease treatment. We further show that in plasmacytoid dendritic cells, soluble factors from Mycoplasma hyorhinis-infected cells induce the production of large amounts of IFN-α. We conclude that Mycoplasma hyorhinis-infected cell lines release protein factors that can potently activate co-cultured innate immune cells via a previously unrecognized mechanism, thus limiting the validity of such co-culture experiments.

  12. Amplified genes may be overexpressed, unchanged, or downregulated in cervical cancer cell lines.

    Directory of Open Access Journals (Sweden)

    Oscar Vazquez-Mena

    Full Text Available Several copy number-altered regions (CNAs have been identified in the genome of cervical cancer, notably, amplifications of 3q and 5p. However, the contribution of copy-number alterations to cervical carcinogenesis is unresolved because genome-wide there exists a lack of correlation between copy-number alterations and gene expression. In this study, we investigated whether CNAs in the cell lines CaLo, CaSki, HeLa, and SiHa were associated with changes in gene expression. On average, 19.2% of the cell-line genomes had CNAs. However, only 2.4% comprised minimal recurrent regions (MRRs common to all the cell lines. Whereas 3q had limited common gains (13%, 5p was entirely duplicated recurrently. Genome-wide, only 15.6% of genes located in CNAs changed gene expression; in contrast, the rate in MRRs was up to 3 times this. Chr 5p was confirmed entirely amplified by FISH; however, maximum 33.5% of the explored genes in 5p were deregulated. In 3q, this rate was 13.4%. Even in 3q26, which had 5 MRRs and 38.7% recurrently gained SNPs, the rate was only 15.1%. Interestingly, up to 19% of deregulated genes in 5p and 73% in 3q26 were downregulated, suggesting additional factors were involved in gene repression. The deregulated genes in 3q and 5p occurred in clusters, suggesting local chromatin factors may also influence gene expression. In regions amplified discontinuously, downregulated genes increased steadily as the number of amplified SNPs increased (p<0.01, Spearman's correlation. Therefore, partial gene amplification may function in silencing gene expression. Additional genes in 1q, 3q and 5p could be involved in cervical carcinogenesis, specifically in apoptosis. These include PARP1 in 1q, TNFSF10 and ECT2 in 3q and CLPTM1L, AHRR, PDCD6, and DAP in 5p. Overall, gene expression and copy-number profiles reveal factors other than gene dosage, like epigenetic or chromatin domains, may influence gene expression within the entirely amplified genome

  13. Radiation-induced alterations of histone post-translational modification levels in lymphoblastoid cell lines

    International Nuclear Information System (INIS)

    Maroschik, Belinda; Gürtler, Anne; Krämer, Anne; Rößler, Ute; Gomolka, Maria; Hornhardt, Sabine; Mörtl, Simone; Friedl, Anna A

    2014-01-01

    Radiation-induced alterations in posttranslational histone modifications (PTMs) may affect the cellular response to radiation damage in the DNA. If not reverted appropriately, altered PTM patterns may cause long-term alterations in gene expression regulation and thus lead to cancer. It is therefore important to characterize radiation-induced alterations in PTM patterns and the factors affecting them. A lymphoblastoid cell line established from a normal donor was used to screen for alterations in methylation levels at H3K4, H3K9, H3K27, and H4K20, as well as acetylation at H3K9, H3K56, H4K5, and H4K16, by quantitative Western Blot analysis at 15 min, 1 h and 24 h after irradiation with 2 Gy and 10 Gy. The variability of alterations in acetylation marks was in addition investigated in a panel of lymphoblastoid cell lines with differing radiosensitivity established from lung cancer patients. The screening procedure demonstrated consistent hypomethylation at H3K4me3 and hypoacetylation at all acetylation marks tested. In the panel of lymphoblastoid cell lines, however, a high degree of inter-individual variability became apparent. Radiosensitive cell lines showed more pronounced and longer lasting H4K16 hypoacetylation than radioresistant lines, which correlates with higher levels of residual γ-H2AX foci after 24 h. So far, the factors affecting extent and duration of radiation-induced histone alterations are poorly defined. The present work hints at a high degree of inter-individual variability and a potential correlation of DNA damage repair capacity and alterations in PTM levels

  14. Imiquimod activates p53-dependent apoptosis in a human basal cell carcinoma cell line.

    Science.gov (United States)

    Huang, Shi-Wei; Chang, Shu-Hao; Mu, Szu-Wei; Jiang, Hsin-Yi; Wang, Sin-Ting; Kao, Jun-Kai; Huang, Jau-Ling; Wu, Chun-Ying; Chen, Yi-Ju; Shieh, Jeng-Jer

    2016-03-01

    The tumor suppressor p53 controls DNA repair, cell cycle, apoptosis, autophagy and numerous other cellular processes. Imiquimod (IMQ), a synthetic toll-like receptor (TLR) 7 ligand for the treatment of superficial basal cell carcinoma (BCC), eliminates cancer cells by activating cell-mediated immunity and directly inducing apoptosis and autophagy in cancer cells. To evaluate the role of p53 in IMQ-induced cell death in skin cancer cells. The expression, phosphorylation and subcellular localization of p53 were detected by real-time PCR, luciferase reporter assay, cycloheximide chase analysis, immunoblotting and immunocytochemistry. Using BCC/KMC1 cell line as a model, the upstream signaling of p53 activation was dissected by over-expression of TLR7/8, the addition of ROS scavenger, ATM/ATR inhibitors and pan-caspase inhibitor. The role of p53 in IMQ-induced apoptosis and autophagy was assessed by genetically silencing p53 and evaluated by a DNA content assay, immunoblotting, LC3 puncta detection and acridine orange staining. IMQ induced p53 mRNA expression and protein accumulation, increased Ser15 phosphorylation, promoted nuclear translocation and up-regulated its target genes in skin cancer cells in a TLR7/8-independent manner. In BCC/KMC1 cells, the induction of p53 by IMQ was achieved through increased ROS production to stimulate the ATM/ATR-Chk1/Chk2 axis but was not mediated by inducing DNA damage. The pharmacological inhibition of ATM/ATR significantly suppressed IMQ-induced p53 activation and apoptosis. Silencing of p53 significantly decreased the IMQ-induced caspase cascade activation and apoptosis but enhanced autophagy. Mutant p53 skin cancer cell lines were more resistant to IMQ-induced apoptosis than wildtype p53 skin cancer cell lines. IMQ induced ROS production to stimulate ATM/ATR pathways and contributed to p53-dependent apoptosis in a skin basal cell carcinoma cell line BCC/KMC1. Copyright © 2015 Japanese Society for Investigative Dermatology

  15. Cell surface glycopeptides from human intestinal epithelial cell lines derived from normal colon and colon adenocarcinomas

    International Nuclear Information System (INIS)

    Youakim, A.; Herscovics, A.

    1985-01-01

    The cell surface glycopeptides from an epithelial cell line (CCL 239) derived from normal human colon were compared with those from three cell lines (HCT-8R, HCT-15, and CaCo-2) derived independently from human colonic adenocarcinomas. Cells were incubated with D-[2- 3 H]mannose or L-[5,6- 3 H]fucose for 24 h and treated with trypsin to release cell surface components which were then digested exhaustively with Pronase and fractionated on Bio-Gel P-6 before and after treatment with endo-beta-N-acetylglucosaminidase H. The most noticeable difference between the labeled glycopeptides from the tumor and CCL 239 cells was the presence in the former of an endo-beta-N-acetylglucosaminidase H-resistant high molecular weight glycopeptide fraction which was eluted in the void volume of Bio-Gel P-6. This fraction was obtained with both labeled mannose and fucose as precursors. However, acid hydrolysis of this fraction obtained after incubation with [2- 3 H]mannose revealed that as much as 60-90% of the radioactivity was recovered as fucose. Analysis of the total glycopeptides (cell surface and cell pellet) obtained after incubation with [2- 3 H]mannose showed that from 40-45% of the radioactivity in the tumor cells and less than 10% of the radioactivity in the CCL 239 cells was recovered as fucose. After incubation of the HCT-8R cells with D-[1,6- 3 H]glucosamine and L-[1- 14 C]fucose, strong acid hydrolysis of the labeled glycopeptide fraction excluded from Bio-Gel P-6 produced 3 H-labeled N-acetylglucosamine and N-acetylgalactosamine

  16. DNA methylation profiles of ovarian epithelial carcinoma tumors and cell lines.

    Directory of Open Access Journals (Sweden)

    Sahar Houshdaran

    2010-02-01

    Full Text Available Epithelial ovarian carcinoma is a significant cause of cancer mortality in women worldwide and in the United States. Epithelial ovarian cancer comprises several histological subtypes, each with distinct clinical and molecular characteristics. The natural history of this heterogeneous disease, including the cell types of origin, is poorly understood. This study applied recently developed methods for high-throughput DNA methylation profiling to characterize ovarian cancer cell lines and tumors, including representatives of three major histologies.We obtained DNA methylation profiles of 1,505 CpG sites (808 genes in 27 primary epithelial ovarian tumors and 15 ovarian cancer cell lines. We found that the DNA methylation profiles of ovarian cancer cell lines were markedly different from those of primary ovarian tumors. Aggregate DNA methylation levels of the assayed CpG sites tended to be higher in ovarian cancer cell lines relative to ovarian tumors. Within the primary tumors, those of the same histological type were more alike in their methylation profiles than those of different subtypes. Supervised analyses identified 90 CpG sites (68 genes that exhibited 'subtype-specific' DNA methylation patterns (FDR<1% among the tumors. In ovarian cancer cell lines, we estimated that for at least 27% of analyzed autosomal CpG sites, increases in methylation were accompanied by decreases in transcription of the associated gene.The significant difference in DNA methylation profiles between ovarian cancer cell lines and tumors underscores the need to be cautious in using cell lines as tumor models for molecular studies of ovarian cancer and other cancers. Similarly, the distinct methylation profiles of the different histological types of ovarian tumors reinforces the need to treat the different histologies of ovarian cancer as different diseases, both clinically and in biomarker studies. These data provide a useful resource for future studies, including those of

  17. Investigating the role of caveolin-2 in prostate cancer cell line

    Directory of Open Access Journals (Sweden)

    Jin-Yih Low

    2017-02-01

    Full Text Available Prostate cancer is a worldwide problem. While the role of caveolin-1 has been extensively studied, little is known about the role of caveolin-2 (CAV2 in prostate cancer. Up-regulation of CAV2 in androgen independent PC3 cells compared to normal prostate cell line and androgen dependent prostate cancer cell lines has been observed. Recent studies suggest that up-regulation of CAV2 plays an important role in androgen independent prostate cancer. This study investigates whether CAV2 is important in mediating the aggressive phenotypes seen in androgen independent prostate cancer cells. The androgen independent prostate cancer cell line, PC3 was used that has been shown to express CAV2, and CAV2 knock down was performed using siRNA system. Changes to cell number, migration and invasion were assessed after knocking down CAV2. Our results showed that down-regulating CAV2 resulted in reduced cell numbers, migration and invasion in PC3 cells. This preliminary study suggests that CAV2 may act to promote malignant behavior in an androgen independent prostate cancer cell line. Further studies are required to fully elucidate the role of CAV2 in androgen independent prostate cancer.

  18. Radiosensitivity of prostatic cell lines: bicalutamide effect (Casodex), micro-RNAs actions

    International Nuclear Information System (INIS)

    Quero, J.L.

    2011-10-01

    The first aim of our study was to evaluate the effect of the association between bicalutamide, an androgen receptor inhibitor, and ionizing radiation in three prostate cancer cell lines. The second aim was to examine a possible correlation between the expression of miR-210 or miR-373, the tolerance to hypoxia tolerance and the responses to radiation.We found that bicalutamide produced cytostatic and cytotoxic effects in the androgen receptor- positive LNCaP cell line. The androgen receptor-negative DU145 and PC3 cell lines were more resistant to bicalutamide. However, these cell lines were affected by high bicalutamide concentration with the same endpoints as for LNCaP cells. The inhibition of proliferation by bicalutamide was associated with G1 cell cycle phase arrest, increased expression of p27KIP1 protein, and decreased expression of HER2 protein. Last but not least, bicalutamide elicited a marked radioprotective effect in LNCaP cells when associated with concomitant irradiation. This result suggests that bicalutamide and radiotherapy should not be delivered in close temporal proximity, especially in case of hypo-fractionated radiotherapy protocols.Hypoxia is a well known radioresistance factor in tumors and is associated with a bad prognosis in prostate cancer. In this study, we found that hypoxia promotes the expression of HIF-1α, CA9, VEGF and miR-210 but not miR-373 in prostate cancer cell lines irrespective of their androgen receptor status.Our findings suggest that miR-210 expression is correlated with resistance to hypoxia and could be used as a prognostic marker in prostate cancer. Conversely, miR-210 inhibition did not impact the radiation susceptibility of PC3 prostate cancer cell line under hypoxia. (author)

  19. Similar kinetics of chromatid aberrations in X-irradiated xrs 5 and wild-type Chinese hamster ovary cells

    International Nuclear Information System (INIS)

    MacLeod, R.A.F.; Bryant, P.E.

    1990-01-01

    We have studied the kinetics of chromatid aberrations in cells of the Chinese hamster ovary (CHO-K1) derived, X-ray sensitive cell line xrs 5 irradiated in the G 2 phase at 37 0 C, as well as during a cell cycle extended by transient hypothermia at 33 0 C. While a given X-ray dose was estimated to produce about 4 times as many chromatid break and twice the frequency of exchanges in xrs 5 cells as in the parent line, there was no difference between the lines in the rates of disappearance of chromatid breaks during G 2 at either temperature; and similar patterns of chromatid exchange kinetics were observed in the two lines. Both the frequencies and distributions of chromatid breaks at different times after irradiation are consistent with the view that the disappearance of these during incubation represents a repair process. These results imply that the G 2 chromosomal radiosensitivity of the xrs 5 mutant resides at the level of initial chromatid damage. (author)

  20. Establishment and characterization of 7 novel hepatocellular carcinoma cell lines from patient-derived tumor xenografts.

    Directory of Open Access Journals (Sweden)

    Hong Xin

    Full Text Available Hepatocellular carcinoma (HCC is a common cancer with poor prognosis worldwide and the molecular mechanism is not well understood. This study aimed to establish a collection of human HCC cell lines from patient-derived xenograft (PDX models. From the 20 surgical HCC sample collections, 7 tumors were successfully developed in immunodeficient mice and further established 7 novel HCC cell lines (LIXC002, LIXC003, LIXC004, LIXC006, LIXC011, LIXC012 and CPL0903 by primary culture. The characterization of cell lines was defined by morphology, growth kinetics, cell cycle, chromosome analysis, short tandem repeat (STR analysis, molecular profile, and tumorigenicity. Additionally, response to clinical chemotherapeutics was validated both in vitro and in vivo. STR analysis indicated that all cell lines were unique cells different from known cell lines and free of contamination by bacteria or mycoplasma. The other findings were quite heterogeneous between individual lines. Chromosome aberration could be found in all cell lines. Alpha-fetoprotein was overexpressed only in 3 out of 7 cell lines. 4 cell lines expressed high level of vimentin. Ki67 was strongly stained in all cell lines. mRNA level of retinoic acid induced protein 3 (RAI3 was decreased in all cell lines. The 7 novel cell lines showed variable sensitivity to 8 tested compounds. LIXC011 and CPL0903 possessed multiple drug resistance property. Sorafenib inhibited xenograft tumor growth of LIXC006, but not of LIXC012. Our results indicated that the 7 novel cell lines with low passage maintaining their clinical and pathological characters could be good tools for further exploring the molecular mechanism of HCC and anti-cancer drug screening.